
•

Assembler
Programmer Reference

(S1ste,,, 'lo/
for Series 'JDs~e UP-'1227

This Library Memo announces the release and availability of Updating Package A to "SPERRY®
Operating System/3 (OS/3) Assembler Programmer Reference", UP-8914.

The Operating System/3 (OS/3) assembler translates a symbolic language into computer instructions such as
how to store data and how to retrieve it. This manual provides a quick-reference guide for the experienced
assembler programmer, summarizing the use of basic assembly language (BAL) instructions.

This update documents a change to the ICM instruction.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
recieve only the updating package, order UP-8914-D. To receive the complete manual, order UP-8914 .

Mailing Lists
BZ, CZ, and MZ

Mailing Lists BOO, B 18, 28U, and 29U.
(Package A to UP-8914,
5 pages plus Memo)

Library Memo for
UP-8914-D

January, 1985

•

•

•
Assembler

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to "SPERRY
Operating System/3 (OS/3) Assembler Programmer Reference", UP-8914.

This update contains corrections or clarifications applicable to features present in the OS/3 Assembler prior to
the 8.2 release.

Copies of Updating Package C are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8914-C. To receive the complete manual, order UP-8914.

Mailing Lists
BZ, CZ and MZ

Mailing Lists BOO, 818, 28U, and 29U
(Package C to UP-8914
27 pages plus Memo)

Library Memo for
UP-8914-C

IJDl-251 Rev. 1 February, 1984

•

•

•

•
VDi .251 Rev, ~Y73

Assembler

Programmer Reference

This Library Memo announces the release and availability of Updating Package B to "SPERRY UNIVAC Operating
System/3 (OS/3) Assembler Programmer Reference", UP-8914.

This update documents the following enhancements to the assembler for release 8.0:

• The display of final error messages on the console

• The addition of two privileged instructions (Get IORB, Put IORB)

• An additional warning message when using continuation characters with macro instructions

This update also includes minor technical corrections to material applicable to the assembler prior to release 8.0.

Copies of Updating Package B are now available for requisitioning. Either the updating package only, or the
complete manual with the updating package may be requisitioned by your local Sperry Univac representative. To
receive only the updating package, order UP-8914-B. To receive the complete manual, order UP-8914.

Mailing Lists
BZ, CZ and MZ

Mailing Lists BOO, 818, 28U, and 29U
(Package B to UP-8914,
98 pages plus Memo)

Library Memo for
UP-8914-8

September, 1982

•. -

•

•

- 1

•

•

•

•
• UNISYS

•

•

OS/3
Assembler
Programming
Referenc' Manual

Copyright© 1987 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation.
Previous Title: OS/3 Assembler Programmer Reference

Relative to Release
Level 9.0

Priced Item

August 1987

Printed in U S America
UP-8914

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE
DOCUMENT. Any product and related material disclosed herein are only
furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to
the products described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential
damages.

You should be very careful to ensure that the use of this information
and/or software material complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

FASTRAND, +SPERRY, SPERRY+UNIVAC, SPERRY, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIS, UNIVAC, and + are registered trademarks
of Unisys Corporation. ESCORT, PAGEWRITER, PIXIE, PC/IT, PC/HT,
PC/microlT, SPERRYLINK, and USERNET are additional trademarks of
Unisys Corporation. MAPPER is a registered trademark and service mark
of Unisys Corporation. CUSTOMCARE is a service mark of Unisys
Corporation.

•

•

•

•

•

•

UP-8914

Part/Section
Page

Number

fcover

Title Page/Disclaimer

PSS 1

Preface 1

Contents 1, 2

3

4

5

6

7

8 thru 10

11

Section 1 Title Page

1

2

3
4, 5

Section 2 Title Page

1 thru 5

6

7 thru 9

10, 11

12 thru 19

20 thru 25

26
27

28 thru 31

32 thru 40

41, 42

43, 44

45

46 thru 52

53

54 thru 65

66

67

68
69, 70

70a

71. 72

73

74

75

76

76a
77 thru 80
81

82 thru 89

•New pages

SPERRY UNIVAC OS/3
ASSEMBLER

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update E - UP-8914
9.0 Forward

Update

Level
Part/Section

Page Update

Number Level

E Section 2 90 B

(cont) 91 thru 94 Orig.

E• 95 B

96 thru 98 Orig.

E 99 B

100 thru 109 Orig.

Orig. 110 B

111 thru 116 Orig.

Orig. 117 A

B 118 thru 138 Orig.

A 138a B

B 139 Orig.

Orig. 140 A

A 141, 142 Orig.

Orig. 143 B

c 144 thru 157 Orig.

158 B

Orig. 159, 160 Orig.

c 161 B

Orig. 162 Orig.

B 163 B

Orig. 164 thru 170 Orig.

171 B

Orig. 172 thru 174 Orig.

Orig. 175, 176 B

B 177, 178 Orig.

Orig. 179 A

B 180 thru 182 Orig.

Orig. 183 B

c 184 thru 187 Orig.

B 188 B

Orig. 189 Orig.

c 190 A

Orig. 190a A

B 191 Orig.

Orig. 192 B

B 192a B

Orig. 193 thru 196 Orig.

A 197 B

Orig. 198 thru 204 Orig.

A

B Section 3 Title Page Orig.

Orig. 1 Orig.

B 2 B

B 3 thru 14 Orig.

B 15 B

c 16 Orig.

Orig. 17 B

D 18 thru 31 Orig.

A

A Section 4 Title Page Orig.

Orig. 1 thru 10 Orig.

B 11, 12 B

Orig. 13 thru 20 Orig.

21 B

22 thru 29 Orig.

Part/Section

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Glossary

User Comment Form

PSS 1
Update E

Page Update

Number Level

Title Page Orig.

1 thru 9 B

10 A

11 B

12 thru 14 Orig.

15 B

16, 17 Orig.

Title Page Orig.

1 thru 5 Orig.

6, 7 c

Title Page Orig.

1 thru 13 Orig.

Title Page Orig.
1, 2 Orig.

3 thru 5 B

6 thru 8 Orig.

Title Page Orig.

1 thru 5 Orig .

Title Page Orig.

1 thru 6 Orig.

Title Page Orig.

1 thru 9 Orig.

10, 11 B

12 thru 17 Orig.

All the technical changes are denoted by an arrow (==>) in the margin. A downward pointing arrow (~) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (1t) is found. A horizontal arrow (==>) pointing to a line
indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both
lines or deletions.

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

Preface 1

Preface

This programmer reference manual is one in a series designed to be used as a quick-reference document for
programmers familiar with the SPERRY UNIVAC Operating System/3 (OS/3). This particular manual describes
the basic assembly language (BAL) instructions, directives, and macro definition statements that allow the user
to write assembly language programs and procedure definitions (procs).

No extensive introductory information or examples of use are provided. This type of information is presented in
the current versions of two other assembler manuals: an introduction to the assembler, UP-8030. and an
assembler user guide, UP-8913_

The information contained in this manual is presented as follows:

• SECTION 1 _ GENERAL INFORMATION

Provides a brief overview of the assembler, the job control stream requirements of the assembler, and the
conventions that must be observed when reading and writing assembler code.

• SECTION 2- BAL APPLICATION INSTRUCTIONS

Describes each of the BAL application instructions recognized by the OS/3 assembler. These descriptions
are presented in alphabetic order by their operation code mnemonic.

• SECTION 3. BAL DIRECTIVES

Describes each of the directives that are used to control the operation of the assembler. These directives
are also presented in alphabetic order by their operation code mnemonic.

• SECTION 4. BAL MACRO DEFINITION STATEMENTS

Describes the macro definition statements used to write and call procedure definitions. These statements
are presented in alphabetic order.

• APPENDIXES

•

Contain assembler references, character set code references, math references, source corrections, and
system variable symbols helpful to the BAL programmer.

GLOSSARY

Defines the terms, expressions, and abbreviations peculiar to the assembler .

•

•
,,

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. GENERAL INFORMATION

ASSEMBLER OVERVIEW

JOB CONTROL REQUIREMENTS

ASSEMBLER CODING FORM
Symbol Field
Operation Field
Operand Field
Comment Field
Continuation Column
Sequence Field

READING INSTRUCTION NOTATIONS
Assembler Application Instruction Notations
Notation Rules and Meanings

2. BAL APPLICATION INSTRUCTIONS

A

AD

ADR

AE

AER

AH

Contents 1

Contents

1-1

1-1

1-1
1-2
1-2
1-2
1-2
1-3
1-3

1-3
1-3
1-4

2-1

2-2

2-3

2-4

2-5

2-6

UP-8914 SPERRY UNIVAC OS/3 Contents 2
ASSEMBLER

Al 2-.7 •
Al 2-8

ALR 2-10

AP 2-11

AR 2-13

AU 2-14

AUR 2-15

AW 2-16

AWR 2-17

BAL 2-18

BALR 2-19

BC 2-20

BCR 2-22

BCT 2-23 • BCTR 2-24

BXH 2-25

BXLE 2-26

c 2-27

co 2-28

CDR 2-29

CE 2-30

CER 2-31

CH 2-32

CL 2-33

CLC 2-34

CLCL 2-35

Cll 2-36 • CLIS 2-37

UP-8914

• CLM

CLR

CLRCH

CLRDV

CP

CR

CSM

CVB

CVD

D

DD

DOR

DE
DEIJ>
DER

DP

DR

ED

EDMK

EIO

:N?
EX

EXD

GRB

HOR

HOV

HER

HPR

• IC

SPERRY UNIVAC OS/3
ASSEMBLER

Contents 3
Update B

2-38

2-40

2-41

2-42

2-43

2-44

2-45

2-46

2-48

2-49

2-50

2-51

2-52
2-53
2-54

2-55

2-57

2-58

2-63

2-65
2-(~6
2-67

2-69

2-70

2-70a

2-71

2-72

2-73

2-74

UP-8914

ICM

IPL

ISK

L

LA

LCOR

LCER

LCHR

LCR

LCTL

LO

LOA

LOR

LE

LER

LH

LIA

LM

LNOR

LNER

LNR

LPOR

LPER

LPR

LPSW

LR

LRC

LRR

LTOR

SPERRY UNIVAC OS/3
ASSEMBLER

Contents 4
Update A

2-75

2-76

2-76a

2-77

2-78

2-79

2-80

2-81

2-82

2-83

2-84

2-85

2-86

2-87

2-88

2-89

2-90

2-91

2-93

2-94

2-95

2-96

2-97

2-98

2-99

2-100

2-101

2-102

2-103

•

•

UP-8914

• LTER

LTR

M

MD

MOR

ME

MER

MH

MIO

MP

MR
MSS
MVC

MVCL

• MVI

MVN

MVO

MVZ

N

NC

NI

NR

0

oc

01

OR

PACK

• PRB

RESET

SPERRY UNIVAC OS/3
ASSEMBLER

Contents 5
Update B

2-104

2-105

2-106

2-108

2-109

2-110

2-111

2-112

2-113

2-114

2-116
z-117
2-118

2-119

2-120

2-121

2-122

2-123

2-124

2-126

2-128

2-130

2-131

2-133

2-135

2-137

2-138

2-138a

2-139

~

UP-8914

s

SD

SOR

SDV

SE

SER

SH

SHL

SL

SLA

SLDA

SLDL

SLL

SLM

SLR

SP

SPM

SR

SRA

SADA

SRDL

SRL

SRP

SSK

SSM

SSTM

ST

STC

SPERRY UNIVAC OS/3
ASSEMBLER

Contents 6

2-140

2-141

2-142

2-143

2-144

2-145

2-146

2-147

2-149

2-151

2-153

2-155

2-156

2-157

2-158

2-159

2-161

2-162

2-163

2-165

2-166

2-167

2-168

2-170

2-171

2-172

2-173

2-174

•

•

•

UP-8914 SPERRY UNIVAC OS/3 Contents 7
ASSEMBLER

• STCM 2-175

STCTL 2-176

STD 2-177

STE 2-178

STEP 2-179

STH 2-180

STM 2-181

STA 2-183

STAR 2-184

STS 2-185

SU 2-186

SUR 2-187

SVC 2-188

• SW 2-189

SWR 2-190

TM 2-191

TMS 2-192

TR 2-193

TAT 2-195

TS 2-197

UNPK 2-198

x 2-199

xc 2-200

XI 2-202

XR 2-203

ZAP 2-204

•

UP-8914 SPERRY UNIVAC OS/3 Contents 8
ASSEMBLER

• 3. BAL DIRECTIVES

ccw 3-1 -CNOP 3-2

COM 3-3

COPY 3-5

CSE CT 3-6

DC (Floating Point) 3-7

DC (Standard Format) 3-9

DROP 3-10

OS 3-11

DSECT 3-12

EJECT 3-13

END 3-14

ENTRY 3-15 •
EOU 3-16

EXTRN 3-17

1cn 3-18

ISEQ 3-19

LTORG 3-20

OPSYM 3-21

ORG 3-23

PRINT 3-24

PUNCH 3-25

RE PRO 3-26

SPACE 3-27

START 3-28

TITLE 3-29 • USING 3-30

UP-8914

• 4.

••

•

SPERRY UNIVAC OS/3
ASSEMBLER

BAL MACRO DEFINITION STATEMENTS

ACTR

AGO

AIF

ANOP

00

ENO

ENDO

GBL

GBLA

GBLB

GBLC

LCL

LCLA

LCLB

LCLC

MACRO

Macro Call Instruction

MENO

MEXIT

MNOTE

Model Statement

NAME

PNOTE

PROC

Prototype Statement

SET

SETA

Contents 9

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-8

4-8

4-8

4-9

4-9.

4-9

4-9

4-10

4-11

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-21

4-22

4-25

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

Contents 10

SeTB 4-26 • SETC 4-29

APPENDIXES

A. ASSEMBLER REFERENCES

B. CHARACTER SET CODE REFERENCES

c. MATH REFERENCES

FLOATING-POINT MATH C-10
Floating-Point Addition C-11.
Floating-Point Division C-12
Floating-Point Multiplication C-13

D. SOURCE CORRECTIONS

GENERAL 0-1

PAR AM D-2 • REC D-6

SEQ D-7

SKI D-8

E. SYSTEM VARIABLE SYMBOLS

F. ATTRIBUTE REFERENCES

Type Attributes F-2
Length Attributes F-4
Scale Attributes F-5
Integer Attributes F-5
Count Attributes F-5
Number Atttributes F-6

GLOSSARY

USER COMMENT SHEET

•

•

•

•

-
UP-8914 SPERRY UNIVAC OS/3

ASSEMBLER

TABLES

A-1. Instruction Formats
A-2. Instruction Repertoire
A-3. Extended Mnemonic Branch Codes
A-4. Summary of Operators
A-5. Comparison of Terms
A-6. Characteristics of Constant and Storage Definition Type Codes
A-7. PROC, MACRO, and Call Instruction Comparison
A-8. Check-off Table Terms

B-1. Punched-Card, ASCII, and EBCDIC Codes
B-2. EBCDIC Chart
B-3. ASCII Character Code Chart

C-1. Comparison of Numeric Expressions
C-2. Hexadecimal-Decimal Integer Conversion
C-3. Hexadecimal-Decimal Fraction Conversion
C-4. Hexadecimal Addition and Subtraction Table
C-5. Powers of 16
C-6. Powers of 2

F-1. Valid Attribute Reference Applications
F-2. Attributes of Symbols

Contents 11
Update C

A-1
A-3
A-12
A-13
A-13
A-14
A-15
A-16

B-1
B-6
B-7

C-1
C-2
C-6
C-7
C-8
C-9

F-2
F-3

•

•

•

••

1. General Information

•

•

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

1-1
Update C

ASSEMBLER OVERVIEW

The SPERRY UNIVAC Operating System/3 (OS/3) assembler permits highly efficient, machine-instruction
programs to be written in symbolic form. The assembler consists of an instruction translator and a macro facility.
The instruction translator converts symbolic instructions to machine instructions on a one-to-one basis. The
macro facility allows a subroutine to be coded, assigned a name, stored in a permanent library, and then to be
included in a source program by a simple reference to the subroutine name in a single instruction. The macro
facility greatly reduces the amount of repetitive coding required for routines used frequently within a program or

in many different programs.

The assembler accepts source-image input from punched cards, magnetic tape, and disk. It reads source
statements and produces a relocatable object module. The object module can then be linked to other object
modules to form one load module that is suitable for loading and execution on your SPERRY system. ..-

A set of assembler directives is provided to aid the user in program organization and in directing the course of an
assembly. All assembly runs produce a printed listing of source code, object code, label cross-references, cross
references, and (when necessary) error diagnostics. The final error statement message, which gives the total
number of statements flagged in the assembly, is also displayed on the console upon completion of the
assembly.

JOB CONTROL REQUIREMENTS

The job control statements required to assemble, linkage edit, and execute are:

LABEL OOPERATIONll OPERAND COMMENTS
10 16

,_._-~"-=-'=--WJ"'-U='-"==--L-L-.L..LJ _ _L_~J...._l__L_--1...i_......L_L_J_L_L_L I 1N1AM1f:1 1J:Q__l_Li~~j__1_l___l_ _L_i__L ... L,1- -L

-'---'-'--'--'-·-'---'- [-'--'---'-'--L~~-'---'--'--LJ__l_-LL-'--1-'--'-~~,e: ,Mi6,L ,c, ',L.1 I,N,I(• .E.1X,E,C,UT IE,-'- L

I I I 15,T,A,R,D ,O,F, ,QIA,T,A, I I I I I I 1-L_i__i__

1 I 1 ...LJ....

I I I I t I

t--'-~--'--'-'---'--1-t--'--'-'--"-++--'-'--.L..1---'--L_L.L.J.-'--J__L_L_j_J___l_l___JL_L.L.J._J_J__L_L_j_J___J._[___L_L_L.L..l_J_L_L_L_j_j__J._L__JLL.L-1-J_~

.~~~~-'--~~~~~~~-'-'--.L..1-~~-'-'-~'--'--'--'-'--.L..1-~LJ__L_i_.J_-'-'--'-

ASSEMBLER CODING FORM

Using an assembler coding form eases the job of writing the program, for the programmer and for the keypunch
operator, who must prepare the punched card deck from the written program. Columns 9 and 15 are ruled to
remind the programmer that the symbol and operation fields must be terminated by at least one blank .

UP-8914

Symbol Field

SPERRY UNIVAC OS/3
ASSEMBLER

1-2

The first eight columns of the assembler coding form may contain a symbol. An asterisk (*) indicates that this
coding line does not contain instructions and that it contains only comments. The rules for using the symbol
field are:

1. The symbol must start in column 1.

2. The symbol must begin with an alphabetic character or special letter.

3. The symbol must not exceed eight characters in length.

4. The symbol must not contain embedded blanks or other special characters.

5. The field must be terminated by a blank.

Operation Field

The operation code is written in the operation field (columns 10 through 14). These codes specify the operation
to be performed. The rules for using this field are:

1 . The operation code must not contain embedded blanks.

2. The operation code must be written exactly as shown in the list of mnemonics for instructions, directives,
and procs or macroinstructions.

3. The operation field must be terminated by a blank.

4. The operation code must not start in column 1.

Operand Field

The operand field begins in column 16 and usually ends in or before column 71. The operands that form part of
the assembler statements are written in this field. The rules for using this field are:

1 . The operand field is terminated by a blank that is not enclosed by apostrophes.

2. Operands may be continued onto the next line by placing a nonblank character in column 72. Up to two
continuation lines are permitted.

3. Continuation lines start in column 16.

Comment Field

Operand specification is usually completed by column 40, thus leaving columns 41 through 71 free for
comments. There must be at least one blank between the end of the operand specification and the start of the
comments. Long comments can be entered by coding an * in column 1 .

•

•

•

•

•

•

UP-8914

Continuation Column

SPERRY UNIVAC OS/3
ASSEMBLER

1-3
Update B

When the operand specification is continued onto the next line, a nonblank character must be written in column
72. Do not confuse this with continuing a comment. An operand specification can be continued for a total of
three lines. The second and third continuation lines start in column 16.

Sequence Field

Columns 73 through 80 may be used for entering sequence numbers. This is done by assigning consecutive
numbers to each line of coding and is useful for reassembling the card deck if it should be dropped.

READING INSTRUCTION NOTATIONS

Throughout this manual, notations are used to describe the general forms of programmer-written and computer
generated formats. A complete consolidated listing of all the notations is given in Appendix A.

Assembler Application Instruction Notations

There are eight forms of assembler application instructions:

RR Register to register

RX Register to indexed storage or storage to indexed register

RS Register to nonindexed storage or storage to nonindexed register

SI Storage immediate

SS Storage to storage (type SS1)

SS Storage to storage (type SS2)

s Storage

SM - Storage mask

All of the assembler application instructions and other information are explained in formats that the user can
write and in the assembler format that generates the machine coding. The following assembler application move
instruction (MVC) is an SS1 type:

Explicit Format:

LABEL 6 OPERATION 6 OPERAND

(symbol] MVC

UP-8914

Implicit Format:

LABEL

[symbol]

ti OPERATION 6

MVC

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

After this application instruction is assembled, it is in the following form:

I. opcode ,I. '1 ,.!,. b1 ,.I,.

~32 b2 351~ d2 .,I

1-4

d1 J

Table A-1 shows the six formats as generated by the assembler in machine code, as well as the explicit and
implicit formats for the programmer coding.

Notation Rules and Meanings

The following conventions are used in application instruction, assembler directive, macroinstruction, proc, and
control statement formats:

• Optional information is enclosed in brackets [] and may be specified or omitted.

For example:

[symbol]

• Braces { } indicate multiple options, at least one of which must be chosen.

For example:

PRINT {ON }
OFF

• Braces within brackets signify that one of the options must be chosen if that operand is specified.

For example:

•

•

••

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

1-5

• When given a choice of multiple options, the option that is shaded is the default option and indicates the
choice that is made by the system if the user does not specify one of the options.

For "example:

• Uppercase letters, terms, and punctuation marks indicate information that must be coded exactly as
shown.

For example:

Mnemonic codes MVN, PACK, and CLC are uppercase.

• Lowercase letters and terms indicate variables that are supplied by the user.

•

•

For example:

[symbol]

An ellipsis, a series of three periods, indicates that a series of entries may be coded .

For example:

Keyword parameters may be coded in any order .

For example:

IOROUT=LOAD,BLKSIZE=S 12,RECFORM=FIXBLK
BLKSIZE=512,IOROUT=LOAD,RECFORM=FIXBLK

• Positional parameters must be coded in the order shown. Commas are required after each positional
parameter except the last. When a positional parameter is omitted from a series of positional parameters,
the comma must be retained to indicate the omission.

For example:

11 JOB 0003 .. 30,8000,COOO
11 JOB 0003.,30,8000

• Throughout this book, the register notations RO through R15 represent the registers 0 through 15.

For example:

BALR R2,R3

• I

•

•

•

2. BAL Application Instructions

•

•

•

•

•

•

•

•

UP-8914 ~PERRY UNIVAC OS/3
ASSEMBLER

2-1

A

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

A 5A RX 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT• 0, SET TO 0
D FIXED·POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

.IF RESULT<O,SET TO 1
• FIXED-POINT OVERFLOW BOUNDARY

• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 OoPERAT10N 0 OP 1 NOT 000 NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the value of operand 2. a full word in main storage, to be algebraically added to operand 1, a
general register; the results are placed in operand 1 .

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] A

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] A

Operational Considerations:

• Operand 2 must be on a full-word boundary address.

• Operand 2 must contain data in fixed-point binary format.

• A fixed-point overflow condition is produced when a value greater than 231-1 or -231 is reached in
operand 1 (r1). After overflow, the sign and value of the result are incorrect .

• The contents of operand 2 remain unchanged .

UP-8914

AD
Floating Point

SPERRY UNIVAC OS/3
ASSEMBLER

2-2

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

AD &A RX 4

Condition Codes

• IF RESULT• 0, SET TO 0
• IF RESULT <o. SET TO 1
.IF RESULT>O.SETT02
01F OVERFLOW, SET TO 3
OuNCHANGED

Function:

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED·POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

• SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF·WORD BOUNDARY

0 OP 2 NOT ON HALF·WORD BOUNDARY

0 OP 2 NOT ON FULL·WORD BOUNDARY

• OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODO NUMBERED REGISTER

0 NONE

Causes the contents of the double word in storage specified by operand 2 to be algebraically added to the
contents of the double-word register specified by operand 1 (r1). The sum is normalized and placed in the
operand 1 (r1) register.

Explicit Format:

LA81L fl OPERATION fl OPERAND

[symbol] AO

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] AD

•

•

•

•

•

UP-8914

General

OBJECT
OPCODE FORMAT INST.

TYPE L.GTH.

MNEM. HEX. (BYTESl

ADR 2A RR . 2

Condition Codes

• IF RESUL. T - 0, SET TO 0
• IF RESUL. T <o, SET TO 1
• IF RESUL. T >o. SET TO 2
0 IF OVER FL.OW, SET TO 3
QUNCHANGED

Function:

SPERRY UNIVAC OS/3
ASSEMBLER

2-3

ADR
Floating Point

Possible Program Exceptions

0 ADDRESSING 0 PROTECTION

0 DATA (INVAL.ID SIGN/DIGIT) • SIGNIFICANCE

0 DECIMAL. DIVIDE • SPECIFICATION:

0 DECIMAL. OVERFL.OW • NOT A FL.OATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HAL.F-WORD BOUNDARY

• EXPONENT OVER FL.OW 0 OP 2 NOT ON HAL.F·WORD BOUNDARY

• EXPONENT UNDERFL.OW 0 OP2NOTONFUL.~WORDBOUNDARY

0 FIXED·POINT DIVIDE 0 OP 2 NOT ON DOUBL.E·WORD

0 FIXED-POINT OVERFL.OW BOUNDARY

0 0 FL.OATING·POINT DIVl'?E OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Causes the contents of the double~word register specified by operand 2 (r2) to be algebraically added to the
contents of the double-word register specified by operand 1 (r1). The sum is normalized and placed in the
operand 1 (r1) register.

Explicit and Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] AOR r1 ,r2

UP-8914 SPERRY UNIVAC OS/3 2-4
ASSEMBLER

AE
Floating Point

General Possible Program Exceptions

OPCODE

MNEM. HEX.

AE 7A

FORMAT
TYPE

RX

Condition Codes

OBJECT
INST.
LGTH.
(BYTES!

4

• IF RESULT• 0, SET TO 0
• IF RESULT <o. SET TO 1
• IF RESULT >o. SET TO 2
01F OVERFLOW, SET TO 3
OuNCHANGED

Function:

• ADDRESSING • PROTECTION

0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY
/

• EXPONENT UNOERFLOW • OP 2 NOT ON FULL-WOAD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD

0 FIXED·POINT OVERFLOW BOUNDARY

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER

0 NONE

Causes the contents
contents of a full wo
full word in the oper

of the fult word in storage specified by operand 2 to be algebraically added to the
rd in the register specified by operand 1 (r1). The sum is normalized and placed in the
and 1 (r1) register.

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] AE r1 ,d2 (x2 ,b2)

Implicit Format: .

LABEL /lOPIRATIONfl OPERAND

[symbol] AE r,,52<x2>

•

•

•

•

•

•

UP-8914

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

AER 3A RR 2

Condition Codes

.IF RESULT=O,SETTOO
• IF RESULT <o. SET TO 1
.IF RESULT>O.SETT02
D IF OVERFLOW, SET TO 3
0UNCHANGED

Function:

SPERRY UNIVAC OS/3
ASSEMBLER

2-5

AER
Floatlng Point

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

• EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D NONE

Causes the contents of a full word in the register specified by operand 2 (r2) to be algebraically added to a
full word in the register specified by operand 1 (r1). The sum is normalized and placed in the operand 1 (r,)
register .

Explicit and Implicit Format:

LABEL .6.0PERATION .6. OPERAND

[symbol] AER r 1,r2

UP-8914

AH

SPERRY UNIVAC OS/3
ASSEMBLER

2-6
Update B

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

AH 4A RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 D
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the value of operand 2, a half word in main storage, to be algebraically added to operand 1, a
general register; the results are placed in operand 1.

Explicit Format:

LABEL !:J. OPERATION !:J. OPERAND

[symbol] AH

Implicit Format:

LABEL !:J. OPERATION !:J. OPERAND

[symbol] AH

Operational Considerations:

• Operand 2 must be on a half-word boundary address.

• Operand 2 must contain data in fixed-point binary format.

• A fixed-point overflow condition is produced when a value greater than 231-1 or -231 is reached in
operand 1 (r 1). After overflow, the sign and value of the result are incorrect.

• The contents of operand 2 remain unchanged .

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-7

Al

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) Q DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

Al 9A SI 4 0 EXECUTE • OP 1 NOT ON. HALF-WORD BOUNDARY

Q EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 0
.IF RESULT>o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT O"OD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the value of operand 2. immediate data, to be algebraically added to operand 1, a half word in main
storage; the results are placed in operand 1 .

Explicit Format:

LABEL A OPERATION A OH RAND

[symbol) Al

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol) Al

Operational Considerations:

• Operand 1 must be on a half-word boundary address.

• Operand 1 must contain data in fixed-point binary fOrmat.

• A fixed-point overflow condition is produced when a value greater than 215-1 or -215 is reached in
operand 1. After overflow, the sign and value of the result are incorrect .

• The maximum value for operand 2 (i 2) is +127 or -128 .

UP-8914

AL

SPERRY UNIVAC OS/3
ASSEMBLER

2-8

General Possible Program Exceptions

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 BJECT
OPCODE FORMAT NST.

TYPE LGTH.
MNEM. HEX. BYTES)

0 DECIMAL OVERFLOW
AL 5E RX 4 0 EXECUTE

0 EXPONENT OVERFLOW

Condition Codes 0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

• PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• 0
• SET TO 0

OP 2 NOT ON FULL-WOAD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY • SET TO 1 0 FIXED-POINT OVERFLOW Q

• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 J 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER
seeOPER.CONSIDERATION_s ____ "'-______________________ ..._D~N-O __ N_E __________________________ _,

Function:

Causes the contents of operand 2, a full word in storage, to be logically added to the contents of the full

word in the operand 1 (r1) register. The sum is placed in operand 1 (r1).

Explicit Format:

LABIL OPERAND

[symbol] AL

Implicit Format:

LAB&L fiOPERATION 6 OPERAND

[symbol] AL

Operational Considerations:

• Logical addition is performed by adding all 32 bits of each operand.

• The contents of operand 2 remain unchanged.

• Operand 2 must be a full word, in storage, on a full-word boundary.

•

•

•

UP-8914

•
•

•

•

The condition code is set:

SPERRY UNIVAC OS/3
ASSEMBLER

to zero if result is zero, with no carryout of most significant bit;

to 1 if result is not zero, with no carryout of most significant bit;

to 2 if result is zero, with carryout of most significant bit; or

to 3 if result is not zero, with carryout of most significant bit .

2-9

AL

UP-8914

ALR

SPERRY UNIVAC OS/3
ASSEMBLER

2-10
Update B

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
ALR 1E RR 2 0 EXECUTE D , OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

• SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 D
• SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 D OPERATION D OP 1 NOT ODO NUMBERED REGISTER

SEE OPER. CONSIDERATIONS • NONE

Function:

Causes the contents of the operand 1 (ri) and operand 2 (r2) registers to be logically added. The sum is
placed in operand 1 (r1).

Explicit and Implicit Format:

LABEL /::,,OPERATION /::,, OPERAND

[symbol] ALR r 1,r2

Operational Considerations:

• Logical addition is performed by adding all 32 bits of each operand.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set to:

0 if result is zero, with no carryout of most significant bit;

if result is not zero, with no carryout of most significant bit;

2 if result is zero, with carryout of most significant bit; or

3 if result is not zero, with carryout of most significant bit.

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-11
Update B

AP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

• DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

AP FA SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT~O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 0
.IF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Algebraically adds the contents of operand 2 (a packed number in main storage) to operand 1 (also a
packed number in main storage). The result is stored in operand 1.

Explicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] AP

Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] AP

Operational Considerations:

• All signs and digits are checked for validity, and the sign of the result is determined algebraically.

• A zero result has a positive sign when the operation is completed without overflow.

• Operand 1 and operand 2 must be packed numbers.

• When most significant digits are lost because of overflow, the partial result has the sign that the
correct result would have had .

UP-8914

AP

•

•

•

SPERRY UNIVAC OS/3
ASSEMBLER

If operand 2 is shorter than operand 1, operand 2 is extended with zero digits .

2-12

An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carryout of the most significant digit position of the result field is lost.

Operand 1 and operand 2 may overlap if their least significant bytes coincide. This makes it possible
to add a number to itself.

•

•

•

•

•

•

UP-8914

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

AR 1A RR 2

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESUI. T <o. SET TO 1
• IF RESULT >o. SET TO 2
.IF OVERFLOW, SET TO 3
OuNCHANGEo

Function:

SPERRY UNIVAC OS/3
ASSEMBLER

2-13

AR

Possible Program Exceptions

0 AOORESSING 0 PROTECTION

0 CATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL OIVIOE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP2NOTONHALF~ORDBOUNOARY

0 EXPONENT UNOERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

OoPERAT10N 0 OP 1 NOT ODO NUMBERED REGISTER

0 NONE

Causes the value of operand 2 (r2) to be algebraically added to the value of operand 1 (r1). The results are
placed in operand 1 .

Explicit and Implicit Format:

LABEL A OPERATION A OPERAND

[symbol) AR

Operational Considerations:

• A fixed-point overflow condition is produced when a value greater than 231-1 or -231 is reached in
operand 1. After overflow, the sign and value of the result are incorrect.

• The contents of the register for operand 2 (r2) remain unchanged .

UP-8914

AU
Floating Point

SPERRY UNIVAC OS/3
ASSEMBLER

2-14

GeneraJ Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTESI

AU 7E RX 4

Condition Codes

• IF RESULT• 0, SET TO 0
• IF RESULT <o. SET TO 1
• IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
QUNCHANGED

Function:

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

• EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED.POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

• SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

0 . OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODO NUMBERED REGISTEJ::

0 NONE

Causes the contents of the full word in storage specified by operand 2 to be algebraically added to the
contents of a full word in the register specified by operand 1 (r1). The sum is placed in the operand 1 (r1)

register.

Explicit Format:

LABEL 6 OPERATION!:. OPERAND

[symbol] AU

Implicit Format:

LABEL !:.OPERATION 6 OPERAND

[symbol) AU

Operational Consideration:

• The execution of the AU instruction is identical to that of the AE instruction, except that the sum is
not normalized before being placed in operand 1.

•

•

•

•

•

•

UP-8914

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

AUR 3E RR 2

Condition Codes

• IF RESULT s 0, SET TO 0
.lF RESULT<o.SETTO 1·
• IF RESULT >o. SET TO 2
01F OVERFLOW, SET TO 3
OuNCHANGED

Function:

SPERRY UNIVAC OS/3
ASSEMBLER

2-15

AUR
Floating Point

Possible Program Exceptions

0 ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • l\IOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER

0 NONE

Causes the contents of a full word in the register specified by operand 2 (r2) to be algebraically added to a
full word in the register specified by operand 1 (r1). The sum is placed in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] AUR r1 ,r2

Operational Consideration:

• The execution of the AUR instruction is identical to that of the AER instruction, except that the sum is
not normalized before being placed in operand 1 .

UP-8914

AW
Floating Point

SPERRY UNIVAC OS/3
ASSEMBLER

2-16

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES!

AW &E RX

Condition Codes

• IF RESULT• 0, SET TO 0
.IF RESULT<O.SETTO t
.IF RESULT>O. SET TO 2
01F OVERFLOW, SET TO 3
0UNCHANGEO

Function:

4

• ADDRESSING

0 CATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

• EXPONENt OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

• SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP t NOT ON HALF.WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

• OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP t NOT EVEN NUMBERED REGISTER

0 OP t NOT ODD NUMBERED REGISTER

0 NONE

Causes the contents of a double word in storage specified by operand 2 to be algebraically added to the
contents of the double word in the register specified by operand 1 (r1). The sum is placed in the double
word in the register specified by operand 1 (r,).

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol) AW

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol) AW

Operational Consideration:

• The execution of the AW instruction is identical to that of the AO instruction. except that the sum is
not normalized before being placed in operand 1 (r1).

•

•

•

•

•

•

UP-8914

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

AWR ZE RR z

Condition Codes

• IF AESUL T 3 0, SET TO 0
• IF RESULT <o. SET TO 1
.,F AESULT>o.SETT02
Q1F OVERFLOW, SET TO 3
QUNCHANGED

Function:

SPERRY UNIVAC OS/3
ASSEMBLER

2-17

AWR
Floating Point

Possible Program Exceptions

0 ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING~POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF.WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL.WOAD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD

0 FIX Eb-POINT OVERFLOW BOUNDARY

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

C;;iuses the contents of the double-word register specified by operand 2 (r2) to be algebraically added to the
double-word contents of operand 1 (r,). The sum is placed in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] AWR

Operational Consideration:

• The execution of the AWR instruction is· identical to that of the ADA instruction, except that the sum
is not normalized before being placed in operand 1 (r1) •

UP-8914

BAL

SPERRY UNIVAC OS/3
ASSEMBLER

2-18

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 CATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
BAL 45 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF·WORO BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORO BOUNDARY

- Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORO BOUNDARY

0 IF RESULT• 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON OOUBLE·WORO

0 FIXEO·POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW. SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Loads the address of the next sequential instruction into the register in the first operand and then
branches to the location specified in the second operand. The normal sequence of instructions may be
reinstated when a return branch via r1 is taken. BAL is an unconditional branch instruction.

NOTE:

Bits 32 through 39 (instruction length code, condition code. and program mask) of the current program
status word (PSWJ are stored in bit positions 0 through 7 of operand 1 (r1). The return address is stored in
bits 8 through 31 of operand 1 (rJ.

EJcplicit Format:

LABEL tJ. OPERATION/:. OPERAND

[symbol] BAL

Implicit Format:

LABEL tJ.OPERATIONtJ. OPERAND

[symbol] BAL

•

•

•

•

•

•

UP-8914

General

0 BJECT
OPCODE FORMAT IN ST.

TYPE L GTH.

MNEM. HEX. (B

BALR 05 RR

Condition Codes

D IF RESULT= o. SET TO 0
01F RESULT<O,SETTO 1
D IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

Function:

YTES)

2

SPERRY UNIVAC OS/3
ASSEMBLER

2-19

BALR

Possible Program Exceptions

D ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

D EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

OoPERATION

D PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

Loads the relative address of the next sequential instruction into the first operand register and then
branches to the address in the second operand register. The normal sequence of instructions may be
reinstated when a return branch via r1 is taken. When the second operand (r2) is zero. there is no branch
and the next sequential instruction is executed .

NOTE:

Bits 32 through 39 (instruction length code, condition code, and program mask) of the current program
status word (PSW) are stored in bit positions 0 through 7 of operand 1 (r,). The return address is stored in
bits 8 through 31 of operand 1 (r1).

Explicit and Implicit Format:

LABEL t.OPERATION /:, OPERAND

[symbol] BALR r 1,r2

t

UP-8914

BC

SPERRY UNIVAC OS/3
ASSEMBLER

2-20
Update C

General Possible Program Exceptions

OBJECT
OPCODE FORMAT

TYPE
MNEM. HEX.

BC 47 RX

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1
0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

Function:

INST.
LGTH.
(BYTES)

4

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0
0
0
0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
D OP 1 NOT ODD NUMBERED REGISTER

• NONE

Checks the specified mask .(m1), operand 1, with the current condition code. If any 1 bits match, a branch
takes place to the location specified by operand 2; otherwise, the next sequential instruction is executed.
See Table A-3 for the list of BC formats and equivalent extended mnemonic codes.

Explicit Format:

LABEL tJ. OPERATION tJ. OPERAND

[symbol] BC

Implicit Format:

LABEL tJ. OPERATION tJ. OPERAND

[symbol] BC

Operational Considerations:

• The mask, operand 1, determines the condition code setting as follows:

An 8 produces the mask 10002, which tests for a zero result condition code.

A 4 produces the mask 01002' which tests for a less than zero result condition code.

•

•

•

UP-8914

•

•

•

SPERRY UNIVAC OS/3
ASSEMBLER

2-21
Update C

BC

A 2 produces the mask 00102, which tests for a greater than zero result condition code.

A 1 produces the mask 0001 2, which tests for an overflow result condition code.

A zero produces the mask 00002 , which is equivalent to no operation.

Any combination of 1 's and O's in the mask tests for more than one condition code.

Any 1 bit on and tested produces the branch.

• A mask specification of 15 (1111 2) produces an unconditional branch .

t

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-22
Update C

t

BCR

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION OPCODE FORMAT INST.
TYPE LGTH. 0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:
0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

BCR 07 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY
0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
0 FIXED-POINT OVERFLOW BOUNDARY

0 IF RESULT <o. SET TO 1
0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET To 2

01F OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER
.UNCHANGED • NONE

Function:

Checks the specified mask (m,), operand 1, with the current condition code. If any 1 bits match, a branch
takes place to the location specified by operand 2 (r2); othe_rwise. tt:ie next seguential instruction is
executed. If operand 2 (r2) is zero, no branch will take place. See Table A-3 for the list of BC formats and
equivalent extended mnemonic codes.

Implicit and Explicit Format

LABEL t.OPERATION t. OPERAND

[symbol] BCR

Operational Considerations:

• The mask, operand 1, determines the condition code setting as follows:

An 8 produces the mask 1 OOOz. which tests for a zero result condition code.

A 4 produces the mask 01002, which tests for a less than zero result condition code.

A 2 produces the mask 00102, which tests for a greater than zero result condition code.

A 1 produces the mask 0001 2, which tests for an overflow result condition code.

A zero produces the mask OOOOz. which is equivalent to no operation.

Any combination of 1 'sand O's in the mask tests for more than one condition code.

Any 1 bit on and tested produces the branch.

• A mask specification of 15 (1111 2) produces an unconditional branch.

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-23
Update C

BCT

Gen era I Possible Program Exceptions

OBJECT
OPCODE FO RMAT INST.

T YPE LGTH.
MNEM. HEX. (BYTES)

BCT 46 RX

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1
0 IF RESULT >o, SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

Function:

4

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0
D
0
0

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

Each time this instruction is executed, the value in r 1 is decremented by 1 and then tested to see
whether the result is equal to zero. If the result is not equal to zero, a branch takes place to the
location specified by operand 2. If the result is equal to zero, then no branch takes place and the next
sequential instruction is executed. This instruction can be used to control the number of times a loop
routine is executed.

Explicit Format:

LABEL !:::. OPERATION /:::. OPERAND

[symbol BCT

Implicit Format:

LABEL !:::. OPERATION !:::. OPERAND

[symbol] BCT

UP-8914

BCTR

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

BCTR 06 RR

Condition Codes

01F RESULT=O,SETTOO
01F AESULT<O,SETTO 1
01F RESULT>O,SETT02
0 IF OVERFLOW, SET TO 3
.UNCHANGED

Function:

2

SPERRY UNIVAC OS/3
ASSEMBLER

2-24
Update C

Possible Program Exceptions

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0
0
0
0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WOAD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

BCTR is the RR format type of BCT and works in the same way, except the second operand (r2) is a
register rather than a storage location. The BCTR instruction is initiated by loading a value in the first
operand register (r,) to be used as a count value and a branch address into the second operand
register (r2). Each time this instruction is executed, the value in r, is decremented by 1 and then tested
to see whether the result is equal to zero. If the result is not equal to zero, a branch takes place to
the address in the second operand (r2). If the result is equal to zero, then no branch takes place and
the next sequential instruction is executed. This instruction can be used to control the number of times
a loop routine is executed. If the second operand (r2) is zero, no branch will take place.

Implicit and Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] BCTR r 1 ,r2

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-25
Update C

BXH

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

BXH 86 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>o.sETT02
01F OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Compares the algebraic sum of operand 1 (r 1) and operand 2 (r 3) to a value that is equal to the
number of the register specified as operand 2 (r3) or r3 + 1. If the sum of operand 1 (r1) and operand
2 (r3) is less than or equal to the compare value, the next sequential instruction is executed; if the sum
is greater than the compare value, then a branch will take place to the location specified by operand
2, which is d2 (b2) or S2 • The value being used as the reference is always an odd-numbered register
and is specified by r 3 if r 3 is an off-numbered register, or is r 3 + 1 if r 3 is an even-numbered register.
Following the comparison, the sum is placed in operand 1. All quantities are treated as signed
integers.

Explicit Format:

LABEL 6 OPERATION t. OPERAND

[symbol) BXH

Implicit Format:

LABEL 6 OPE RATION 6 OPERAND

[symbol] BXH

UP-8914

BXLE

SPERRY UNIVAC OS/3
ASSEMBLER

2-26
Update B

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

BXLE 87 RS

Condition Codes

D IF RESULT= 0, SET TO 0
01F RESULT<O.SETTO 1
01F RESULT>O,SETT02
0 IF OVERFLOW, SET TO 3
.UNCHANGED

Function:

4

D ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

D PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

This instruction is the same as BXH, except that the branch is made when the sum of the first operand (r1)

and the third operand (r3) is less than or equal to the value being compared.

Explicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] BXLE

Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] BXLE

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-27

c

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

c 59 RX 4

Condition Codes

• IF r
1

=OPERAND2, SET TO 0
• IF r 1 <oPERAND 2, SET TO 1
• IF r 1 >oPERAND 2, SET TO 2
QIF OVERFLOW, SET TO 3
0 UNCHANGED

Function:

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0
0
0

• 0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Causes the contents of operand 1 (ri) to be algebraically compared with the contents of operand 2, a full
word in main storage.

Explicit Format:

LABEL /:::.OPERATION /:::. OPERAND

[symbol] c

Implicit Format:

LABEL /:::.OPERATION /:::. OPERAND

[symbol] c

Operational Considerations:

• The contents of both operands remain unchanged.

• Operand 2 must be on a full-word boundary .

UP-8914

CD
Floatlng Point

SPERRY UNIVAC OS/3
ASSEMBLER

2-28
Update C

General Possible Program Exceptions

OPCODE

MNEM. HEX.

CD 69

FORMAT
TYPE

RX

Condition Codes

• IF OP1 = OP2, SET TO 0
• IF OP1<0P2, SET TO 1
• IF OP1 >oP2, SET TO 2
0 IF OVERFLOW, SET TO 3
QUNCHANGED

Function:

OBJECT
INST.
LGTH.
(BYTES)

4

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

• 0
0
0

•

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER D
0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

Causes the contents of a double word in the register specified by operand 1 (r1) to be algebraically
compared with the contents of a double word in storage specified by operand 2. The condition code is set
by this instruction.

Explicit Format

LABEL 60PERATIONti OPERAND

[symbol] CD

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] CD

Operational Considerations:

• Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum, including the guard digit is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different .

•

J

•

•

•
UP-8914

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

CDR 29 RR 2

Condition Codes

• IF OP1 = OP2, SET TO 0
• IF OP1 <oP2, SET TO 1
• IF OP1 >oP2, SET TO 2
0 IF OVERFLOW, SET TO 3
QUNCHANGED

Function:

SPERRY UNIVAC OS/3
ASSEMBLER

2-29
Update C

CDR
Floatlng Point

Possible Program Exceptions

0 ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER

D 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Causes the contents of a double word in the register specified by operand 1 (r1) to be algebraically
compared with the contents of a double word in the register specified by operand 2 (r2). The condition code
is set by this instruction.

• Explicit and Implicit Format:

•

LABEL 6 OPERATION 6 OPERAND

[symbol] CDR r 1'r2

Operational Considerations:

• Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum. including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different.

UP-8914

CE
Floating Point

SPERRY UNIVAC OS/3
ASSEMBLER

2-30
Update C

General Possible Program Exceptions

OBJECT
OPCODE FORMAT

TYPE

MNEM. HEX.

CE 79 RX

Condition Codes

• IF OP1 = OP2, SET TO 0
• IF OP1 <oP2, SET TO 1
• IF OP1 >oP2, SET TO 2
0 IF OVERFLOW, SET TO 3
OuNCHANGED

Function:

INST.
LGTH.
(BYTES)

4

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

• 0
0 • D

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0
0

OP 1 NOT EVEN NUMBERED REGISTER

OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Causes the contents of a full word in the register specified by operand 1 (r1) to be algebraically compared
with the contents of a full word in storage specified by operand 2. The condition code is set by this
instruction.

Explicit Format

LABEL ti OPERATION ti OPERAND

[symbol] CE

Implicit Format:

LABEL ti OPE RATION !!. OPERAND

[symbol] CE

Operational Considerations:

• Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different .

•

•

•

•

•

•

UP-8914

General

OBJ ECT
OPCODE FORMAT INS T.

TYPE
MNEM. HEX.

CER 39 RR

Condition Codes

• IF OP1 = OP2, SET TO 0
• IF OP1 <oP2, SET TO 1
• IF OP1 > OP2, SET TO 2

Q1F OVERFLOW, SET TO 3
OuNCHANGED

Function:

LG TH.
(BY TES)

2

SPERRY UNIVAC OS/3
ASSEMBLER

2-31
Update C

CER
Floatlng Point

Possible Program Exceptions

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

• 0
0
0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
0 OP 1 NOT 000 NUMBERED REGISTER

0 NONE

Causes the full-word contents of the register specified by· operand 1 (r1) to be algebraically compared with
the contents of a full word in the register specified by operand 2 (r2J. "!'he condition code is set by this
instruction .

Explicit and Implicit Format:

LABEL Cl OPERATION i:::. OPERAND

[symbol] CER

Operational Considerations:

• Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different .

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

~~~~~~~~~~~~~~~~~~~~ 

CH 

2-32 

General Possible Program Ecxceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

CH 49 RX 4 

Condition Codes 

• IF r
1

=OPERAND2, SET TO 0 
• IF r

1 
<OPERAND 2, SET TO 1 

• IF r 
1 

>OPERAND 2, SET TO 2 

0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE· 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 
0 • 0 
0 

NOT A FLOATING-POINT REGISTER 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGl~TER 

0 NONE 

Causes the contents of operand 1 (r1) to be algebraically compared with the contents of operand 2 (a half 
word in main storage), after operand 2 is expanded, by propagating the sign bit to fill a full word. 

Explicit Format 

LABEL /':,.OPERATION/':,. OPERAND 

[symbol] CH 

Implicit Format: 

LABEL /':,.OPERATION /':,. OPERAND 

[symbol] CH 

Operationa I Considerations: 

• The contents of both operands remain unchanged. 

• Operand 2 must be on a half-word boundary. 

• 

• 

• 



• 

• 

·-

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-33 

CL 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

CL 55 RX 4 

Condition Codes 

• IF r 1 •OPERAND2, SET TO 0 
• IF r

1
<OPERAND2, SET TO 1 

• IF r1 >OPERAND 2, SET TO 2 
0 IF OVERFLOW, SET TO 3 
QUNCHANGED 

Function: 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXEO·POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 

• 0 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP2NOTONFUL~WORDBOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes the contents of a full word in storage specified by operand 2 to be compared with the contents of 
the register specified by operand 1 (r1). The condition code is set according to the comparison result. 

Explicit Format: 

LABEL l:J. OPERATION l:J. OPERAND 

[symbol] CL r 1 ,d2 ("2 ,b2 ) 

Implicit Format: 

LABEL l:J.OPERATION l:J. OPERAND 

[symbol] CL r1 ,~(x2 ) 

Operational Considerations: 

• Operands are considered unsigned binary numbers and all bit combinations are valid. 

• The contents of both operands remain unchanged. 

• Operand 2 must be on a full-word boundary. 



UP-8914 

CLC 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-34 

General Possible Program Exceptions 

OPCOOE 

MNEM. HEX. 

CLC 05 

FORMAT 
TYPE 

SS 

Condition Codes 

• IF OP1 • OP2, SET TO 0 
• IF OP1 < OP2, SET TO 1 
• IF OP1 > OP2, SET TO 2 
01F OVERFLOW, SET TO 3 
OuNCHANGEO 

Function: 

OBJECT 
INST. 
LGTH. 
(BYTES) 

6 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE , 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNOERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIOE 

0 OPER_ATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 
0 

NOT A FLOATING-POINT REGISTER 

OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 
0 

OP 2 NOT ON FULL-WORD BOUNDARY -

OP 2 NOT ON DOUBLE-WORD 
BOUNOARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes the contents of one area in main storage specified by operand 1 to be compared with an equal 
length area in main storage specified by operand 2. The condition code is set according to the comparison 
result. 

Explicit Format: 

LABEL AOPERAT10N A OPERAND 

[symbol) CLC 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol) CLC s, (1)"2 

Operational Considerations: 

• The I specification of operand 1 specifies the length of both operands. 

• Operands are considered unsigned binary numbers and all bit combinations are valid. 

• The contents of both operands remain unchanged. 

• The instruction is processed from left to right, byte by byte. 

• If the number of bytes to be compared is not explicitly shown in operand 1. then the number will be 
equal to the length attribute of operand 1. 

• 

•• 



• 

• 

·-

UP-8914 

General 

OBJECT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Possible Program Exceptions 

2-35 

CLCL 

• ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 0 DATA (INVAL.ID SIGN/DIGIT) 0 SIGNIFICANCE 

TYPE L.GTH. 
MNEM. HEX. (BYTESl 0 DECIMAL. DIVIDE • SPECIFICATION: 

0 DECIMAL. OVERFL.OW 0 NOT A FL.OATING-POINT REGISTER 
CLCL OF RR 2 0 EXECUTE 0 OP 1 NOT ON HAL.F·WORD BOUNDARY 

0 EXPONENT OVERFL.OW 0 OP 2 NOT ON HAL.F-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFL.OW 0 OP 2 NOT ON FUL.L.·WORD BOUNDARY 

• IF OP 1 =OP 2, SET TO 0 
0 FIXED-POINT DIVtOE 0 OP 2 NOT ON DOUBL.E-WORD 

0 FIXED-POINT OVER FL.OW BOUNDARY 
• IF OP 1<0P 2, SET TO 1 0 
• IF OP 1>0P 2, SET TO 2 0 FL.OATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 2 NOT EVEN NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the contents of one area in main storage, specified by operand 1, to be compared with another area 
in main storage specified by operand 2. The condition code is set according to the comparison result. The 
two main storage areas need not be equal in length; if not, operand 2 specifies an immediate padding byte, 
which is added to the shorter main storage area . 

Explicit and Implicit Formats: 

LABEL 60PERATION 6 OPERAND 

[symbol] CLCL 

Operational Considerations: 

• Operand 1 must specify the even-numbered register of an even-odd register pair in which the even
numbered register specifies the operand 1 address and the odd-numbered register the operand 1 
length. 

• Operand 2 must specify the even-numbered register of an even-odd register pair in which the even
numbered register specifies the operand 2 address and the odd-numbered register the operand 2 
length and the padding byte. 

• Operands are considered unsigned binary numbers and all bit combinations are valid. 

• The instruction compares main storage left to right, byte by byte. 



UP-8914 

CLI 

SPERRY UNIVAC 05/3 
ASSEMBLER 

. 2-36 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

CLI 95 SI 4 

Condition Codes 

• IF OPERAND 1 • i
2

, SET TO 0 
• IF OPERAND 1<1

2
, SET TO 1 

• IF OPERAND 1>12, SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERAT10N 

• PROTECTION 

0 SIGNIFICANCE 

D SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 
0 
0 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER D 
0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Causes the contents of one byte in main storage specified by operand 1 to be compared with the one byte 
of immediate data specified in operand 2. The condition code is set according to the comparison result. 

Explicit Format 

LABEL 60PERATION6 OPERAND 

[symbol] CLI 

Implicit Format: 

LABIL 60Pl!RATION6 OPERAND 

[symbol) CLI 

Operational Considerations: 

• Operands are considered unsigned binary numbers and all bit combinations are valid. 

• Operands are one byte in length. 

• The contents of operand 1 remain unchanged. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER . 

2-37 

CLIS 

General Possible Program Exceptions 

OBJECT • ADDRESSING 0 SIGNIFICANCE 
OPCODE FORMAT INST. 0 DATA (INVALID SIGN/DIGIT) • SPECIFICATION: 

TYPE LGTH. 0 DECIMAL DIVIDE 0 MNEM. HEX. (BYTES) NOT A FLOATING-POINT REGISTER 
0 DECIMAL OVERFLOW 0 OP 1 NOT ON HALF-WORD BOUNOARY 

CLIS E1 SM 6 0 EXECUTE 0 OP 2 NOT ON HALF-WORD BOUNDARY 
0 EXPONENT OVERFLOW 0 OP 2 NOT- ON FULL·WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON DOUBLE-WORD 
0 FIXED-POINT DIVIDE BOUNDARY 

• IF OP 2 ~OP 3, SET TO 0 0 FIXED-POINT OVERFLOW 0 OP 1 NOT EVEN NUMBERED REGISTER 
• IF OP 2<0P 3, SET TO 1 0 FLOATING-POINT DIVIDE 0 OP 1 NOT ODO NUMBERED REGISTER • IF OP 2>oP 3, SET TO 2 
0 IF OVERFLOW, SET TO 3 0 OPERATION • LOW-ORDER BIT OF OP1 DISPLACE-

QUNCHANGEO • PROTECTION 
MENT MUST BE ZERO 

Function: 

Causes a byte in main storage addressed by operand 1 to be compared with operand 2, a byte of immediate 
data. The condition code is set according to the result. A mask specified in operand 3 uses the condition 
code to determine whether program control passes to the next sequential instruction or to another location 
specified in operand 4 as an offset from the next sequential instruction . 

Explicit Format: 

LABEL 6. OPERATION 6. OPERAND 

[symbol] CLIS 

Implicit Format: 

LABEL A OPERATION 6. OPERAND 

[symbol] CLIS 

Operational Considerations: 

• The offset field, which must be an even number, is 12 bits long and can range from -2048 decimal 
bytes to +2046 decimal bytes. 

• The user can code the offset as an absolute or relocatable expression. 

• The user must specify both the mask and the immediate byte as self-defining terms . 



UP-8914 

CLM 

General 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Possible Program Exceptions 

2-38 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT 

TYPE 
MNEM. HEX. 

CLM BO RS 

Condition Codes 

• IF OP 1 •OP 2, SET TO 0 
• IF OP 1 <oP 2, SET TO 1 
• IF OP 1 >oP 2, SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

INST. 
LGTH. 
(BYTES) 

4 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERF.LOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OOPERATION 

0 SIGNl.FICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes some or all of the operand 1 register to be compared with contiguous data in main s.torage starting 
at the ·operand 2 address. A mask specified by operand 3 determines how much of the operand 1 register 
takes part in the comparison. The condition code is set according to the result. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] CLM r1 ,m3,d2(b2) 

' 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] CLM r, ,m3.S2 

Operational Considerations: 

• The operand 3 mask determines which bits in the operand 1 register take part in the comparison, as 
follows: 

An 8 produces the mask 100018, causing bits 0-7 to be compared. 

A 4 produces the mask 010016, causing bits 8-15 to !:le compared. 

A 2 produces the mask 001016, causing bits 16-23 to be compared. 

A 1 produces the mask 0001 18, causing bits 24-31 to be compared. 

• 

• ; 
/ 

• 



UP-8914 

•• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• Each comparison treats its data as unsigned binary data. 

• Comparison proceeds left to right, byte by byte. 

• The operand 3 mask must be a self-defining term ranging from O to 15 . 

2-39 



UP-8914· 

CLR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-40 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES> 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
CLR 15 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

• IF r
1 

• r
2

,SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
.1Fr

1
<r

2
,SETTO1 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
• IF r

1 
>r

2
,SET TO 2 0 0 IF OVERFLOW, SET TO 3 OoPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED • NONE 

Function: 

Causes the contents of the operand 1 (r1) register to be compared with the contents of the operand 2 (r2) 

register. The condition code is set according to the comparison result. 

Explicit and Implicit Format: 

LABEL /),.OPERATION/),. OPERAND 

[symbol] CLR 

Operational Considerations: 

• Operands are considered unsigned binary numbers and all bit combinations are valid. 

• The contents of both operands remain unchanged. 

• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

CLRCH 9F02 s 4 

Condition Codes 

• SET TO 0 
• SET TO 1 
0 SET TO 2 

OsET TO 3 

0UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-41 
Update B 

CLRCH 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Allows a pending 1/0 interrupt on a channel interruption queue to be dequeued. 

Explicit Format: 

LABEL .0.0PERATION .0. OPERAND 

[symbol] CLRCH 

Implicit Format: 

LABEL .0.0PERATION ,0, OPERAND 

[symbol] CLRCH 

t 



UP-8914 

CLRDV 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

CLRDV 9DX2 RS 4 

Condition Codes 

• SET TO 0 
• SET TO 1 

• SET TO 2 

• SET TO 3 
0 UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-42 
Update B 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 
0 OP 1 NOT EVEN NUMBERED REGISTER 

0 
• OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Dequeues one or more directives from the device directive queue. 

Explicit Format: 

LABEL ti OPERATION ti OPERAND 

[symbol] CLRDV 

Implicit Format: 

LABEL ti OPE RATION ti OPERAND 

[symbol] CLRDV 

• 

• 

• 



• 

• 

•• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-43 

CP 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT 

TYPE 

MNEM HEX. 

CP F9 SS 

Condition Codes 

• IF OP1 ~ OP2, SET TO 0 
• IF OP1 <OP2, SET TO 1 
• IF OP1 >oP2, SET TO 2 
Q1F OVERFLOW, SET TO 3 

OuNCHANGED 

Function: 

INST. 
LGTH. 
!BYTES) 

6 

• ADDRESSING 

• DATA !INVALID SIGN/DIGIT) 

0 DECIMAL DIV.IDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

Q EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

Q FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

Q SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF·WOAO BOUNDARY 

0 OP 2 NOT ON HALF.WOAD BOUNDARY 

0 OP 2 NOT ON FULL·WOAO BOUNDkRY 

0 OP 2.NOT ON DOUBLE-WOAD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Compares th.e contents of two storage areas to see whether they are algebraically equal, operand 1 is 
higher, or operand 1 is lower. The condition code is set to reflect the results of this compare. A branch 
instruction is usually used after the compare ·instruction . 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] CP 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol} CP 

Operational Considerations: 

• All signs and digits are checked for validity, and comparison proceeds from right to left. 

• If the operand fields are unequal in length, the shorter field is extended with zero digits. 

• Operands with zero values and unlike signs compare as equal. 

• All valid codes representing the same sign are considered equal. 

• Operand 1 and operand 2 may overlap if their least significant bytes coincide . 

• The contents of both operands remain unchanged . 



UP-8914 

CR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-44 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALI 0 SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
CR 19 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF r1• r2, SET TO 0 
0 FIXED·POINT DIVIDE 0 OP 2 NOT ON DOUBLE·WORD 

0 FIXED.POINT OVEFIFLOW BOU NOA RY 
• IF r1 <r2, SET TO 1 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBEFIEO f'IEGISTEA 
• IF r1 >r2 , SET TO 2 0 OP 1 NOT ODD NUMBERED REGISTER 0 IF OVERFLOW, SET TO 3 OoPEAAT10N 
0 UNCHANGED • NONE 

Function:. 

Causes the contents of operand 1 (r1) to be algebraically compared to operand 2 (r2). 

Explicit and Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol) CR r 1 ,r~ 

Operational Consideration: 

• The contents of both registers remain unchanged. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-45 
Update B 

CSM 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

CSM B9 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

• IF OP 1 =OP 2, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF OP 1 <oP 2, SET TO 1 • • IF OP 1>0P 2,SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION • OP 3 NOT EVEN NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes some or all of a full word in main storage addressed by operand 2 to be logically compared with 
some or all of the odd-numbered register contained in the even-odd register pair specified by operand 1, 
according to a mask contained in the operand 1 even register. The condition code is set according to the 
result. Then, if the two operands are equal, the instruction replaces some or all of the operand 2 field with 
data taken from the odd-numbered register contained in the even-odd register pair specified by operand 3. 
The even-numbered operand 3 register contains a mask that controls data replacement. 

Explicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] CSM 

Implicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] CSM 

Operational Considerations: 

• Within the operand 1 and operand 3 masks, a 1 bit causes its corresponding bit in the odd-numbered 
register to take part in the current operation, whether comparison or data replacement. A zero bit 
causes its corresponding bit to be ignored. 

• Both r1 and r 3 must be specified as even registers . 

• Operand 2 must reside on a full-word boundary . 



UP-8914 

CVB 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-46 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

CVB 4F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
• FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

• UNCHANGED 0 NONE 

Function: 

Converts the packed decimal number in operand 2, a double word in main storage, to a fixed-point signed 
binary number, which is placed in operand 1 (ri). 

Explicit Format: 

LABEL !:::.OPERATION!:::. OPERAND 

[symbol] CVB 

Implicit Format: 

LABEL !:::. OPERATION!:::. OPERAND 

[symbol] CVB 

Operational Considerations: 

• Operand 2 is a 15-digit packed signed decimal number in a double word on a double-word boundary 
in main storage. 

• Operand 2 is checked for valid digits and sign code before conversion to a fixed-point, 32-bit signed 
binary number. 

• 

• 

• 



UP-8914 

• 
• 

• 
• 

• 

. • ' 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-47 

eve 

The maximum number that can be converted and still contained in a 32-bit register is 2, 147.483.647 
(231-1 ). The minimum number is -2, 147,483,648 (-231). For decimal numbers exceeding this 
range, the 32 least significant bits are stored in the first operand location and a fixed-point divide 
exception is generated. 

If operand 2 is negative, the result will be in twos complement notation . 

The contents of operand 2 remain unchanged . 



UP-8914 

CVD 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-48 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES> 

CVD 4E RX 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
Q1F RESULT>O. SET TO 2 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 
0 
0 
0 

NOT A FLOATING-POINT REGISTER 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 

• 
0 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Converts the fixed-point signed binary number in operand 1 (r1) to a packed decimal number, which is 
placed in operand 2, a double word in main storage. 

Explicit Format: 

LABEL /:),.OPERATION/:),. OPERAND 

[symbol] CVD 

Implicit Format: 

LABEL 60PERATION 6. OPERAND 

[symbol] CVD 

Operational Considerations: 

• Operand 1 is a fixed-point. 32-bit signed binary number in a register. 

• Operand 2 is a 15-digit packed signed decimal number in a double-word main storage location on a 
double-word boundary. 

• The contents of operand 1 remain unchanged. 

• 

• 

• 



• 

• 

·-

UP-8914 

General 

OBJECT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Possible Program Exceptions 

2-49 

D 

• AOORESSING • PROTECTION 
OPCODE FORMAT INST. Q CATA (INVALID SIGN/OIGIT) 0 SIGNIFICANCE 

TYPE LGTH. 
MNEM. HEX. (BYTES) 0 DECIMAL OIVIOE • SPECIFICATION: 

0 0 DECIMAL OVERFLOW NOT A FLOATING-POINT REGISTER 
D SD RX 4 0 EXECUTE 0 OP 1 NOT ON HALF·WOAO BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORO BOUNDARY 
Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WOAO BOUNDARY 

0 IF RESULT• O. SET TO 0 
• FIXED-POINT OIVIOE 0 OP 2 NOT ON DOUBLE-WORD 
Q FIXED-POINT OVERFLOW BOUNDARY 

01F RESULT<O.SETTO 1 • 01F RESULT>o. SET TO 2 0 FLOATING-POINT OIVIOE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT 000 NUMBERED REGISTER 
.UNCHANGED 0 NONE 

Function: 

Causes the value in the even-odd pair of registers specified by operand 1 (r1) to be divided by the full-word 
operand 2 (the divisor). The quotient and remainder are placed in the operand 1 registers. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] 0 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] 0 

Operational Considerations: 

• Operand 1 is treated as a 64-bit fixed-point signed binary integer and occupies an even-odd register 
pair. The operand 1 field of the instruction must specify an even-numbered register. The 32-bit 
remainder and 32-bit quotient replace the dividend in the even-numbered and odd-numbered 
register, respectively. 

• Operand 2 is treated as a 32-bit fixed-point signed binary integer. The contents of operand 2 remain 
unchanged after execution. 

• The sign of the quotient is determined algebraically, and the remainder assumes the sign of the 
dividend. A zero quotient or zero remainder is always positive. 

• When the quotient exceeds 32 bits or the divisor is equal to zero, a fixed-point divide exception 
occurs, no division takes place, and the dividend remains unchanged. 



UP-8914 

DD 
Floating Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-50 

General. Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE L.GTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 
DD &D RX 4 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED.POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

01F RESULT<O.SETTO 1 
0 FIXED·POINT OVERFLOW BOUNDARY 

Q1F RESULT>O. SET TO 2 • FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

Q1F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the double-word contents of the operand 1 (r1) register to be divided by the contents of the double 
word in storage specified by operand 2. The normalized quotient is placed in the. register specified by 
operand 1 (r1). Any remainder is not preserved. 

Explicit Format: 

LABEL A OP£RATION A OPERAND 

[symbol] DO 

Implicit Format: 

LABEL tlOP£RATION tl OPERAND 

[symbol] DO 

• 

• 

• 



• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE 1.GTH. 
MNEM. HEX. (BYTES) 

DOR 20 RR 2 

Condition Codes 

0 IF RESUI. T • 0, SET TO 0 
D•F RESUl.T<O,SETTO 1 
0 IF RESUI. T >o. SET TO 2 
0 IF OVER Fl.OW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-51 

DOR. 
Floating Point 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A Fl.OATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HAl.F·WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HAl.F·WORD BOUNDARY 

• EXPONENT UNDERFLOW 0 OP 2 NOT ON FULl.·WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED.POINT OVER Fl.OW BOUNDARY 

0 • Fl.DATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the double-word contents of the operand 1 (r1) register to be divided by the double-word contents of 
the operand 2 (r2) register. The normalized quotient is placed in the operand 1 (r1) register. Any remainder 
is not preserved. 

Explicit and Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] DOR 



UP-8914 

DE 
FloaUng Point 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

DE 70 RX 4 

Condition Codes 

0 IF RESULT• 0, SET TO 0 
01F RESULT<O,SETTO 1 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-52 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-~OFID BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

• EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 
0 IF RESULT >o. SET TO 2 • FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 0 IF OVERFLOW, SET TO 3 0 OPERATION 
.UNCHANGED 0 NONE 

Function: 

Causes the full-word contents of the operand .1 (r1) register to be divided by the full-word contents of a full 
word in storage specified by operand 2. The normalized quotient is placed in a full word in the operand 1 
(r1) register. Any remainder is not preserved. 

Explicit Format 

LABEL A OPERATION A OPERAND 

[symbol] DE 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] DE 

• 

•• 

•• 



•• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-53 

DEQ 

General Possible Program Exceptions 

OBJECT • ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 
0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

DEQ 84 SI 4 0 EXECUTE • OP 1 NOT ON FULL-WOAD BOUNDARY 
0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY 

• SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WOAD 
0 FIXED-POINT OVERFLOW BOUNDARY 

• SET TO 1 D 
•sETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• SETT03 • OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 
0 UNCHANGED 0 NONE 

Function: 

Removes an element from a list whose list control block is addressed by operand 1. An 8-bit mask specified 
by operand 2 enables certain list processing options. The condition code is set according to the result. 

Explicit Format: 

LABEL !:::. OPERATION!:::. OPERAND 

[symbol) DEQ d, (b, ),i2 

Implicit Format: 

LABEL !:::.OPERATION!:::. OPERAND 

[symbol] DEQ s, ,i2 

Operational Considerations: 

• Operand 1 must address a main storage location that lies on a full-word boundary. 

• Operand 2 sets bits 8-15 of the object instruction as follows: 

Bits 8-9: set to 002 if the newly dequeued element is simply to be removed; set to 01 2 if the 
element is to be added to the free element list. 

Bits 10-11 : unused; must be set to 0. 

Bit 12: set to 1 to enable the data movement option; otherwise set to 0 . 

Bits 13-15: control the register load option. 



UP-8914 

DER 
Floating Point 

General 

-OBJECT 
OPCOi;>E FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

DER 30 RR 2 

Condition Codes 

0 IF RESULT z 0, SET TO 0 
01F RESULT<O.SETTO 1 
01F RESULT>o.sETT02 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-54 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING·POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WOAD BOUNDARY 

• EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE·WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 • FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

OOPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the full-word contents of the operand 1 (r1) register to be divided by the full-word contents of the 
operand 2 (r2) register. The normalized quotient is placed in a full word in the operand 1 (r1) register. Any 
remainder is not preserved. 

Explicit and Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] DER '1·'2 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-55 

DP 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES> • DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

DP FD SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F AESULT<O,SETTO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 OoPEAATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NON.E 

Function: 

Causes the contents of operand 1 (the dividend) to be divided by the contents of operand 2 (the divisor). The 
quotient and remainder are placed in the operand 1 location. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol) DP 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] DP 

Operational Considerations: 

• All signs and digits are checked for validity. 

• The quotient and remainder occupy the entire operand 1 field. The remainder is right-justified in the 
field, carries the sign of operand 1, and is equal in size to operand 2. The quotient, carrying the 
algebraically determined sign, is right-justified in the rest of the field. 

• The maximum dividend (operand 1) size is 31 digits and sign. The maximum quotient size is 29 digits 
and sign. The smallest remainder is one digit and sign. The maximum divisor is 15 digits . 



UP-8914 

DP 

• 
• 

• 

.. 

SPERRY UNIVAC 05/3 
ASSEMBLER 

Operand 1 and operand 2 fields may overlap if their least significant bytes coincide . 

2-56 

If the number of quotient digits exceeds the size of the quotient field or if division by zero is 
attempted, a decimal divide exception results; the divisor and dividend remain unchanged in their 
storags locations. 

A decimal divide exception occurs if the dividend does not have at least one leading zero. The 
conditi~n for a decimal divide exception can be determined by aligning the leftmost digit of the divisor 
(operand 2) field with the leftmost less 1 digit of the dividend (operand 1) field and performing a 
subtraction. If, after alignment, the divisor is less then or equal to the dividend, a decimal divide 
exception is indicated. 

A specification exception indicates the divisor exceeds 15 digits or operand 1 is not longer than 
operand 2. 

• 

• 

• 



• 

• 

UP-8914 

-
General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Possible Program Exceptions 

Q AOOAESSING 0 PROTECTION 

Q CATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

2-57 

DR 

MNEM. HEX. (BYTES) 0 DECIMAL OIVIOE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

DR 1D RR 2 0 EXECUTE 0 OP 1 NOT ON HALF·WOAO BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY 

• FIXED-POINT DIVIDE 0 OP 2 NOT ON OOUBLE·WOAO 0 IF AESUL T 2 0. SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY 0 IF RESULT <o. SET TO 1 
0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o. SET TO 2 0 Q1F OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT 000 NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the va,lue in the even-odd registers specified by operand 1 (rd to be divided by the value in the 
register (the divisor) specified by operand 2 (r2). The quotient and remainder are placed in the operand 1 
registers . 

Explicit and Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] DR r, ,r 2 

Operational Considerations: 

• Operand 1 is treated as a 64-bit fixed-point signed binary integer and occupies an even-odd register 
pair. The operand 1 field of the instruction must specify an even-numbered .register. The 32-bit 
remainder and 32-bit quotient replace the dividend in the even-numbered and odd-numbered 
register, respectively. 

• Operand 2 is treated as a 32-bit fixed-point signed binary integer. The contents of operand 2 remain 
unchanged after execution. 

• The sign of the quotient is determined algebraically and the remainder assumes the sign of the 
dividend. A zero quotient or zero remainder is always positive. 

• When the quotient exceeds 32 bits or the divisor is equal to zero, a fixed-point divide exception 
occurs. no division takes place. and the dividend remains unchanged. 

• A specification exception occurs if r 1 specifies an odd-numbered register. 



UP-8914 

ED 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-58 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
• DATA (INVALID SIGN/DIGIT) 0 SIGN!FICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE Q SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

ED DE SS & 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORO BOUNDARY 

• SET TOO 
0 FIXED·POINT DIVIDE 0 OP 2 NOT ON DOUBLE·WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 

Q FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
• SET TO 2 0 0 SET TO 3 QOPERATION OP 1 NOT ODO NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS 0 NONE 

Function: 

Causes the packed data specified by operand 2 to be unpacked and edited under the control of a mask 
(pattern) specified by operand i . The result is placed in the main storage location specified by operand 1. 
This instruction can produce the following types of results: 

• Zero suppression 
Ex: 00173 - 173 

• Character protection 
Ex: 000453 - •••4_53 

• Punctuation 
Ex: 123400 - $1,234.00 

• Multiple field editing 
Ex: 12531468 - 12.53M14.68 

Explicit Format: 

LABEL fl OPERATION fl 

[symbol] ED 

Implicit Format: 

LABEL fl OPERATION fl 

[symbol] ED 

OPERAND 

OPERAND 

s, (I) ·52 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-59 

ED 

Operational Considerations: 

• For every digit in the source field, operand 2, there must be an equal number of digit select 
characters, significance start characters. or a combination of both in the pattern. 

• The significance indicator, referred to as the S switch. indicates by its on or off state the significance 
or nonsigriificance. respectively, of subsequent operand 2 digits or message characters. Significant 
operand 2 digits replace their corresponding digit select or significance start characters in the result. 
Significant message characters remain unchanged in the result. 

• The S switch is turned off when the edit instruction starts and when a sign code of "C" (+) is 
reached; and it is turned on when the first significant (nonzero) digit is reached. 

• When the S switch is off, zeros to be transferred from operand 2 are suppressed and the fill character 
is inserted in the corresponding operand 1 position. When the S switch is on, any zero to be 
transferred from operand 2 is unpacked into the corresponding operand 1 position. At the beginning 
of execution, the S switch is off. 

• 

• 

Editing includes sign and punctuation control and the suppression and protection of leading zeros. It 
also facilitates programmed blanking for all zero fields. Several fields may be edited in one operation, 
and numeric information may be combined with text . 

The instruction proceeds from left to right . 

• Operand 2 data must be in packed format and must contain valid numerics and sign codes. 

• The original contents of operand 1 is the mask, the pattern which controls the edit process. 
Depending on the edit requirements, some or most of the bytes originally in operand 1 are replaced 
by data from operand 2. The mask is expressed in unpacked format and may consist of any 
combination of 8-bit characters. 

• As the mask is scanned from left to right, one of three things happens to each mask character: 

An operand 2 digit is expanded to a zoned character. The zoned character replaces the mask 
character. When the operand 2 digit is stored as the result, its code is expanded from packed to 
unpacked format by attaching a generated zone code. 

The mask character is left unchanged. 

A fill character is stored in the result. The fill character is taken from the first byte position of 
the mask. The choice of this character is not dependent upon the editing function initiated by 
this code. The editing function occurs after the code has been assigned as a fill character . 



UP-8914 

ED 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-60 

Each mask character is replaced by a result character that depends on three conditions: 

1. the digit obtained from operand 2; 

2. the mask character; and 

3. the 5 switch status. 

When a digit select or significance start byte is found in the mask. the 5 switch and an operand 2 
digit are examined. This results in either the unpacked operand 2 digit or the fill character replacing 
the mask character. A valid decimal digit (if the mask byte is a significance start) or nonzero decimal 
digit (if the mask byte is a digit select) sets the 5 switch to on if the operand 2 byte does not contain a 
plus code in the four least significant bit positions. 

• The fill character is the leftmost character of the edit mask (operand 1 ). Any valid hexadecimal value 
(8.2) may be used as a fill character. This character is retained for the editing which follows. This 
position does not receive a digit from the operand 2 data. 

• The digit select byte is a character in the operand 1 mask represented by EBCDIC code 20. If the 
digit select byte is encountered and the 5 switch is on, any digit, O through 9, is unpacked to 
replace the digit select byte. If the 5 switch is off. the operand 2 digit is examined and only nonzero 
digits are unpacked into operand 1. The fill character replaces the digit select byte if the examined 
digit is zero. The 5 switch is turned on when the first nonzero operand 2 digit is encountered; this 
allows succeeding zeros from operand 2 to be included in the result. 

• The significance start byte is represented in the edit mask by EBCDIC code 21. The significance start 
byte performs the same function as the digit select byte except the significance start byte turns the S 
switch on. regardless of the value of the current operand 2 digit. Once the S switch is on. it remains 
on for all succeeding digits; however, the current digit is not affected. The S switch may be turned 
off by a field separator byte or by a positive sign code within operand 2. 

• Any other symbol or data in the operand 1 edit mask. as represented by hexadecimal codes, is 
retained unchanged if the S switch is on. If the S switch is off. this other data is replaced by the fill 
character. During this operation, the digit of operand 2 is neither accessed nor addressed-advanced. 

• The sign of operand 2. positive or negative, must be a value greater than binary 9 (10022). Any 
hexadecimal value A through F is acceptable. The ~ign itself is not moved to operand 1; instead. a 
sign indicator, such as a minus sign or letters CR, is either deleted from or retained in operand 1, 
depending on the sign of operand 2. 

The sign of operand 2 also affects the S switch. A positive sign turns the S switch off, thus causing 
the following characters in operand 1 to be replaced by the fill character. A negative sign leaves the 
S switch unchanged. 

• 

• 

• 



UP-8914 

• 

• 

• 

• 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-61 

ED 

If the fill character is a blank, if no significance start byte appears in the mask, and if operand 2 is all 
zeros, the editing operation blanks the result field. 

Overlapping operand 1 and operand 2 fields produces unpredictable results . 

The length specification (I) in the object instruction specifies the length of the mask (operand 1 ). The 
length of the mask can be determined as: 

one byte for the fill character; 

one byte for each digit select byte, significance start byte, and field separator byte; and 

one byte for each message character. 

Usually, operancj 2 is shorter than operand 1 because a zone (a half byte) and a numeric (a full byte) 
are inserted in the result for each operand 2 digit. The total number of digit-select and significance 
start bytes in the mask must equal the number of operand 2 digits to be edited. 

If operand 2 containing unpacked data is to be edited, it must first be packed by the PACK instruction . 
In packing an odd number of bytes, an odd number of digit positions and the sign are produced. In 
packing an even number of bytes, an odd number of digit positions and the sign are produced. The 
extra digit position in the latter case is zero and is the most significant position in operand 2. The 
extra position must be provided for in the mask by specifying an extra 058 or 558. Space, asterisk, or 
other character fill occurs and may be dropped when transferring the edited operand to output. 

• Multiple-field editing operations are indicated by the presence of one or more field separator bytes 
(EBCDIC code 22). The field separator byte identifies the individual fields in this operation and is 
always replaced in the mask with a fill character. The 5 switch is always off after the field separator 
byte is encountered. If field separators are not indicated by the mask, the entire operand 2 is 
considered one field. 

• The condition code, reflecting the status of the last source field edited, is set: 

to zero when all of the operand 2 digits in the last field are zero; if the mask of the last field has 
no significance start or digit select bytes, the operand 2 digits are not examined and the 
condition code is set to zero; 

to 1 when a nonzero operand 2 digit is detected and the S switch is set after the last mask digit 
is examined; or 

to 2 when a nonzero operand 2 digit is detected and the 5 switch i~ off after the last mask digit 
is examined. 

Code 3 is not used . 



UP-8914 

ED 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-62 

The operation of the edit instruction is summarized in the following table . 

Mask (Operand 1) EBCDIC S Switch Data (Operand 2) Resulting Resulting l 
Character Code Status Character 

(Operand 1) S Switch 
Character Status 

Fill character Any Off Not examined None Off 

Digit select 20 On Digit Digit On* 
byte 

Off Nonzero Digit On* 

Off Zero Fill Off 
character 

Significance 21 On Digit Digit On* 
start byte 

Off Nonzero· Digit On* 

Off Zero Fill On* 
character 

Message Any except On Not examined Message On· 
character 20.21.22 character 

Off Not examined Fill Off 
character 

Field 22 On Not examined Fill Off 
separator byte character 

Off Not examined · Fill Off 
character 

*Sign detection (examined simultaneously with operand 2 digit) affects the S switch as follows: 

1. A plus or minus sign detected as a most significant digit causes a data exception. 
2. A plus sign detected as a least significant digit causes the S switch to be turned off. 
3. A minus sign has no effect on the S switch. 

• If the number of bytes to be edited is not explicitly shown in operand 1, then the number will be equal 
to the length attribute of operand 1. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-63 

EDMK 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

• DATA (INVAL.ID SIGN/DIGIT) Q SIGNIFICANCE 
TYPE LGTH. 

MNEM. HEX. (BYTES) Q DECIMAL. DIVIDE 0 SPECIFICATION: 

0 DECIMAL. OVERFL.OW 0 NOT A FL.OATiNG-POINT REGISTER 

EDMK OF SS 6 0 EXECUTE 0 OP 1 NOT ON HAL.F-WORD BOUNDARY 

0 EXPONENT OVERFL.OW 0 OP 2 NOT ON HAL.F-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFL.OW 0 OP 2 NOT ON FUL.L.-WORD BOUNDARY 

• IF RESUL.T • 0, SET TO 0 
Q FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

Q FIXED-POINT OVERFL.OW BOUNDARY 
• IF RESULT <o. SET TO 1 

Q FL.OATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
• IF RESULT >o. SET TO 2 0 Q IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

This instruction is identical to the edit {ED) instruction, except for the additional function of placing the 
address of the first significant result digit in register 1. This is done to permit the use of a floating $ 

character or other character in the result field. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] EDMK. 

Implicit Format: 

LABEL Cl.OPERATION Cl. OPERAND 

[symbol] EDMK 

Operational Considerations: 

• The edit and mark (EDMK) instruction is identical to the edit (ED) instruction, except that EDMK 
inserts the resulting address of the first significant character in the low-order 24 bits of general 
register 1. This insertion occurs whenever the result character is a zoned source digit and the 
significant switch is zero before examination of the digit . 



UP-8914 SPERRY UNNAC OS/3 
ASSEMBLER 

2-64 

EDMK 

.• The edit and mark instruction facilitates the programming of floating currency-symbol insertion. The 
character address inserted in general register 1 is one more than the address where a floating 
currency sign would be inserted. The branch on count (BCTR) instruction, with zero in the R2 field! 
may be used to reduce the inserted address by 1 . 

• The character address is not stored when significance is forced. To ensure that general register 1 
contains a valid address when significance is forced, it is necessary to place into the register 
beforehand the address of the pattern character that immediately follows the significance starter. 

• When a single instruction is used to edit several fields, the address of the first significant result 
character of each field is inserted into bit positions 8 through 31 of general register 1. Only the 
address of the first significant character of the last field is available after the instruction is completed. 

• If the number of bytes to be edited is not explicitly shown in operand 1, then the number will be equal 
to the length attribute of operand 1. 

• 

• _,/ 

• 



• ' 

• 

·-

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

EIO EO SS & 

Condition Codes 

• SET TOO 
• SET TO 1 
•sETT02 
•sETT03 
QUNCHANGED 

Function: 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-65 

EIO 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE. 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

.OPERATION 0 OP 1 NOT ODD NUMBERED REGISTfR 

0 NONE 

causes an 1/0 request block to be enqueued on a device directive queue. 

Explicit Format: 

LABEL C:. OPERATION C:. OPERAND 

[symbol] EIO 

Implicit Format: 

LABEL C:. OPE RATION C:. OPERAND 

[symbol] EIO 



UP-8914 

ENQ 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-66 

General Po~ible Program Exceptions 

OPCODE 

MNEM. HEX. 

FORMAT 
TYPE 

ENQ 83 SI 

Condition Codes 

• SET TOO 
• SET TO 1 
.SETT02 
.SETT03 
OuNCHANGED 

Function: 

OBJECT 
INST. 
LGTH. 
(BYTES) 

4 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

• OP 1 NOT ON FULL-WOAD BOUNDARY 

D 
0 
D 

OP 2 NOT ON HALF-WOAD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER D 
0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Adds an element to a list whose list control block is addressed by operand 1. An 8-bit mask specified by 
operand 2 enables certain list processing options. The condition code is set according to the result. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] ENQ 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] ENQ 

Operational Considerations: 

• Operand 1 must address a main storage location that lies on a full-word boundary. 

• Operand 2 sets bits 8-15 of the object instruction as follows: 

Bits 8-9: set to 002 if the element is to be simply added; set to 01 2 if the element is to be taken 
from the free element list. 

Bits 10-11: unused; must be set to 0. 

Bit 12: set to 1 to enable the data movement option; otherwise set to 0. 

Bits 13-15: control the register store option. 

• 

• 

• 



-----------------------

• 

• 

UP-8914 

General 

OBJECT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Possible Program Exceptions 

2-67 
Update B 

EX 

• ADDRESSING • PROTECTION 
OPCODE FORMAT INST. D SIGNIFICANCE 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

EX 44 RX 4 • EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 D D IF RESULT >o, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

• SEE OPER. CONSIDERATIONS D NONE 

Function: 

Used to branch to a nonsequential instruction, then to execute it, with or without modification, and then to 
return to the normal sequence of instructions. 

If operand 1 is 0, the instruction at the operand 2 address, specified by d2 (x2, b2 ), is executed without 
modification. If operand 1 (r 1) is the range 1-15, the contents of r1 are used to modify the subject 
instruction when that instruction is staticized. 

When r1 is nonzero, modification of the operand 2 instruction proceeds as follows: A logical addition (OR) 
is performed on the contents of bits 24 through 31 of r1 and bits 8 through 15 of the operand 2 instruction. 

The result replaces bits 8 through 15 of the operand 2 instruction. The rules of operation for logical 
addition are illustrated by the following truth table: 

Operand 1 Operand 2 Result 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

The subject instruction is executed as if it were in the normal instruction sequence except that the 
instruction length code and updated instruction address fields of the current program status word (PSW) 
reflect the execute instruction. The subject instruction itself is never modified permanently in main 
storage, and the subject instruction cannot be another execute instruction . 



UP-8914 

EX 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-68 

Normally, instruction sequencing continues with the instruction following the execute instruction. 
However, if the instruction at the operand 2 address is a successful branch instruction, the instruction 
address field of the current PSW is replaced by the branch address, and instruction sequencing continues 
with the instruction located at the branch address. If the operand 2 instruction is branch and link or branch 
and link external, the instruction address stored in the link register is that of the instruction following the 
execute instruction. 

Explicit Format: 

LABEL t. OPERATION t. OPERAND 

[symbol] EX 

Implicit Format: 

LABEL to OPERATION t. OPERAND 

[symbol] EX 

Operational Considerations: 

• If an interrupt occurs after the completion of the subject instruction, the old PSW contains the 
address of the instruction following the execute instruction or the branch address. 

• The condition code may be set by the instruction at the operand 2 address. 

• Possible program exception: 

Specification exception (The address specified by operand 2 is an odd-numbered address.) 

NOTE: 

A program exception condition can be caused by the execute instruction or the instruction specified in the 
execute instruction. 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-69 
Update B 

EXD 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

EXD 8300 s 4 • EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT~ 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 D 
01F RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D IF OVERFLOW, SET TO 3 • OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

• SEE NOTE D NONE 

Function: 

The diagnostic instruction at the operand 2 location in main storage is executed. 

Explicit Format: 

LABEL ti OPERATION 6 OPERAND 

[symbol] EXD 

Implicit Format: 

LABEL 6 OPE RATION 6 OPERAND 

[symbol] EXD 

NOTE: 

Condition code may be set by the subject diagnostic or special function. 



t 

UP-8914 

GRB 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

GRB OB RR 2 

Condition Codes 

.IF RESULT=O,SETTOO 

.IF RESULT<O,SETTO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-70 
Update B 

Possible Program Exceptions 

• ADDRESSING 0 PROTECTION 

D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Moves the IORB specified by operand 2 (r2) to the IORB pool specified by operand 1 (r,). 

Explicit and Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] GRB r 1 ,r 2 

• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

HOR 24 RR 2 

Condition Codes 

D IF RESULT= 0, SET TO 0 
01F RESULT<O.SETTO 1 

D 1F RESULT >o. SET To 2 
D IF OVERFLOW, SET TO 3 

• UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-70a 
Update B 

HOR 
Floating Point 

Possible Program Exceptions 

D ADDRESSING 0 PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

• EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 

D D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Causes the double-word contents of the operand 2 (r2) register to be divided by 2. The normalized quotient 

is placed in the double-word operand 1 (r 1) register. 

Explicit and Implicit Format: 

LABEL L'.lOPERATION Ll OPERAND 

[symbol] HDR r 1,r2 

Operational Considerations: 

• The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit of the fraction is 
placed into the most significant bit position of the guard digit, and the vacated fraction bit position is filled 
with zero. The intermediate result is normalized and placed in the operand 1 (r 1) location. 

• When normalization causes the exponent to become less than zero, an exponent underflow condition 
exists. If the exponent underflow mask bit of the current program status word (PSW) is 1, the exponent of 
the result is 128 greater than the correct value. If the exponent underflow mask bit of the current PSW is 
zero, the result is made true zero. 

• When the fraction of operand 2 (r2 ) is zero, the result is made a true zero, a normalization is not attempted, 
and a significance exception does not occur . 



• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

HOV 9ED1 s 4 

Condition Codes 

• SET TO 0 

• SET TO 1 

• SET TO 2 

• SET TO 3 
0 UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-71 
Update B 

HOV 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the current 1/0 operation at the addressed 1/0 device to be stopped. 

Explicit Format: 

LABEL l:iOPERATION l:i OPERAND 

[symbol] HDV 

Implicit Format: 

LABEL l:i OPERATION l:i OPERAND 

[symbol] HDV 



UP-8914 

HER 
Floating Point 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

HER 34 RR 2 

Condition Codes 

01F RESULT=O,SETTOO 
01F RESULT<O.SETTO 1 
D 1F RESULT >o. SET To 2 
D IF OVERFLOW. SET TO 3. 
• UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-72 
Update B 

Possible Program Exceptions 

D ADDRESSING D PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

• EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 

D D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Causes the full-word contents of the operand 2 (r2) register to be divided by 2. The normalized quotient is 
placed in the full word in the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL t:.OPERATION t:. OPERAND 

[symbol] HER r 1,r2 

Operational Considerations: 

• The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit of the fraction 
is placed into the most significant bit position of the guard digit, and the vacated fraction bit position 
is filled with zero. The intermediate result is normalized and placed in the operand 1 (r1 ) location. 

• When normalization causes the exponent to become less than zero. an exponent underflow condition 
exists. If the exponent underflow mask bit of the current program status word (PSW) is 1, the 
exponent of the result is 128 greater than the correct value. If the exponent underflow mask bit of 
the current PSW is zero, the result is made true zero. 

• When the fraction of operand 2 (r2 ) is zero, the result is made a true zero, normalization is not 
attempted, and a significance exception does not occur. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-73 
Update C 

HPR 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

HPR 99 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT= o. SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY D 1F RESULT <o. SET To 1 
0 

01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Halts the processor. An operator start/run response sets the location counter to the specified operand 
1 address and initiates execution. 

Explicit Format: 

LABEL !'::.OPE RATION /'::. OPERAND 

[symbol] HPR d, (b, ), i2 
HAL THERE HPR 0(5),81 

Implicit Format: 

LABEL !'::.OPERATION!'::. OPERAND 

[symbol] HPR s, ,i2 
HPR TAG,X'FF' 

t 

+ 



UP-8914 

IC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-74 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 
IC .43 RX 4 D EXECUTE D OP 1 NOT ON HALF-WOAD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HAU'-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WOAD BOUNDARY 

D IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WOAD 

0 FIXED-POINT OVERFLOW BOUNDARY 
D IF RESULT <o. SET To 1 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
01F AESULT>O.SETT02 
D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

Function: 

Causes one byte from the area in main storage specified by operand 2 to be moved into the least significant 
eight bits of the operand 1 (r1) register. 

Explicit Format: 

LABEL 6. OPERATION 6. OPERAND 

[symbol] IC 

Implicit Format: 

LABEL 6.0PERATION 6. OPERAND 

[symbol] IC 

Operational Considerations: 

• The contents of operand 2 remain unchanged. 

• The contents of the most significant 24 bits of the operand 1 (r1 ) register remain unchanged. 

• Operand 2 may be an area in main storage defined as longer than one byte, but only one byte will be 
moved. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-75 
Update B 

ICM 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

ICM BF RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 D 
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D SET TO 3 0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS 0 NONE 

Function: 

Causes data from contiguous main storage bytes starting at the operand 2 address to be inserted into the 
operand 1 register according to a mask specified in operand 3. 

Explicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] ICM 

Implicit Format: 

LABEL !'::.OPERATION 6 OPERAND 

[symbol] ICM 

Operational Considerations: 

• Operand 2 need not reside on a full-word boundary. 

• Operand 3 must be specified as a self-defining term. 

• The condition code is set to: 

0 if all inserted bits or the mask is zeros; 

if the first bit of the inserted field equals 1; or 

2 if the first bit of the inserted field is zero, but not all inserted bits are zeros. 

Condition code 3 is not used. 

t 



UP-8914 

IPL 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-76 
Update A 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

IPL 8303 s 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 D 0 IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D IF OVERFLOW, SET TO 3 • OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

Function: 

Causes an initial program load (IPL) operation to occur. 

Explicit and Implicit Format: 

LABEL .0.0PERATION .0. OPERAND 

[symbol] IPL 

• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

ISK 09 RR 2 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-76a 
Update C 

ISK* 

Possible Program Exceptions 

• ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Inserts into the least significant bits of operand 1 the protection key assigned to the location 
addressed by operand 2 . 

Explicit and Implicit Format: 

LABEL 

[symbol] 
INKET 

b. OPERATION b. 

ISK 
ISK 

OPERAND 



.I 

• 

• 



.• --

•• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-77 

L 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

l 58 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALFWORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE.WORD 

0 FIXEO·POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW. SET TO 3 0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of operand 2, a full word in main storage, to be placed in the operand 1 register (r 1 ). 

Explicit Format 

LABEL A OPERATION A OPERAND 

[symbol] L 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] L 

Operational Considerations: 

• Operand 2 is a full wora in main storage on a full-word boundary. 

• The contents of operand 2 remain unchanged . 



UP-8914 

LA 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-78 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

LA 41 RX 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
01F AESULT>o. SET TO 2 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

4 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL-WOAD BOUNDARY 

0 OP 2 NOT ON OOUBLE·WOAO 
80UNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUM8EREO REGISTER 

• NONE 

Causes the main storage address or the self-defining term specified by operand 2 to be loaded into the 
least significant 24 bits of the operand 1 (r1) register. The eight most significant bits of the operand 1 (ri) 
register are set to zeros. 

Explicit Format 

LABIL AOPIRATIONA OPERAND 

[symbol] LA 

Implicit Format: 

LABEL A OPERATION!:::. OPERAND 

[symbol] LA 

Operational Considerations: 

• The generated address is not checked for validity. 

• The con.tents of operand 2 remain unchanged. 

• If only the x2 or~ register is used and is the same as the operand 1 (r,) register, the content of the 
operand 1 (r1) register is incremented by the decimal value d2• 

• If operand 2 is expressed as a decimal value without the reference of any register, then operand 1 (r1) 

is loaded with the operand 2 decimal value. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-79 

LCDR 
~Point 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A Fl..OATING·POINT REGISTER 
LCDR 23 RR 2 0 EXECUTE 0 OP 1 NOT ON HAl.F·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORO BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED·POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 

0 •11= RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 OOPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0UNCHANGED 0 NONE 

Function: 

Causes the sign of the double-word contents of the operand 2 (r2) register to be reversed. The result is 
placed in the double-word operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] LCDR 

Operational Considerations: 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged" . 



UP-8914 

LCER 
Floating Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-80 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

LCER 33 . RR 2 

Condition Codes 

• IF RESULT• 0, SE"r TO 0 
• IF RESULT <o. SET TO 1 
• IF RESULT >o;'SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 

0 

OP '!2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the sign of the full-word contents of the operand 2 (r2) register to be reversed. The result is placed 
in the full-word operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] LCER 

Operational Considerations: 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

LCHR 9F03 s 4 

Condition Codes 

• SET TO 0 

.SET TO 1 
• SET TO 2 

.SET TO 3 

OuNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-81 
Update B 

LCHR 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Loads the addressed channel with the partition code and offset for its associated channel control block. 

Explicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] LCHR d2(b2) 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] LCHR s2 



UP-8914 

LCR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-82 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

LCR 13 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

.IF RESULT=O,SETTOO 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

• FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SF.TTO 1 0 
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the twos complement of the value of the contents of the operand 2 register (r2) to be placed in the 
operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL f::l OPERATION /:l OPERAND 

[symbol] LCR r1 ,r2 

Operational Considerations: 

• The twos complement of the second operand is placed in the first operand location. 

• A fixed-point overflow condition exists when the maximum negative number is complemented; the 
number remains unchanged. Zero remains unchanged under complementation. 

• Operand 2 (r2) remains unchanged. 

• 

• 

• 



• 

•' 
'· 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES I 

LCTL 87 RS 4 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 
01F RESULT>O. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNNAC OS/3 
ASSEMBLER 

2-83 

LCTL 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 Fl>l:ED.POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED·POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 .OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Loads the control registers starting with the operand 1 register and ending with the operand 3 register 
from contiguous full words in main storage starting at the operand 2 address. 

Explicit Format: 

LABEL /j, OPERA TtON /j, OPERAND 

[symbol] LCTL 

Implicit Format: 

LABEL OPERAND 

[symbol] LCTL 



UP-8914 

LO 
F1oatlng Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-84 

General Possible Program Exceptions 

'OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING·POINT REGISTER 

LO 68 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE·WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<o.SETTO 1 0 
01F RESULT>o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODO Nl,.IMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of a double word in storage specified by QP8rand 2 to be placed in the double word in 
the operand 1 (r1) register. 

Explicit Format 

LABIL OPERAND 

[symbol] LO 

Implicit Format 

LABEL 60PERATION6 OPERAND 

[symbol] LO 

Operational Consideration: 

• The contents of operand 2 remain unchanged. 

• 

• 

• 



•• 

., 

UP-8914 

General 

OSJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (SY TES) 

LDA 51 RX 4 

Condition Codes 

0 IF RESULT a 0, SET TO 0 
01F RESULT<o.sETTO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-85 

LOA 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 fliOT ON HALF-WORD SOUNDARY 

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD SOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUSLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

.OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

LoadS the address of a directive, in logical address form, in the operand 1 register. The directive address is 
located in main storage as specified by operand 2. 

Explicit Format: 

LABEL /j. OPERATION /j. OPERAND 

[symbol] LOA r1 ,d2 (x2,b2 ) 

Implicit Format: 

LABEL /j. OPE RATION /j. OPERAND 

[symbol] LOA r, .S2 (x2) 



UP-8914 

LOR 
Floating Point 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-86 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LOR 28 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 
01F RESULT>o.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER. 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of the double word in the operand 2 (r2) register to be placed in the double word in the 
operand 1 (r1) register. 

Explicit and Implicit Format 

LABEL !J.OPEAATION/J. OPERAND 

[symbol] LOR 

Operational Consideration: 

• The contents of operand 2 (r2) remain unchanged. 

• 

• ~·/ 

• 



• 

•• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-87 

LE 
floatln9 Point 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE L.GTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-PO!NT REGISTER 
LE 78 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE·WORD 

01F RESULT<O.SETTO 1 0 FIXED-POINT OVERFLOW BOUNDARY 

01F RESULT>o. SET To 2 0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of a full word in storage specified by operand 2 to be placed in a full word in the 
operand 1 (r1) register. 

Explicit Format: 

LABEL fl OPERATION!::,,. OPERAND 

[symbol] LE 

Implicit Format: 

LABEL /:lOPIRATION fl OP!RAND 

[symbol] LE 

Operational Consideration: 

• The contents of operand .2 remain unchanged . 



UP-8914 

LER 
Ao.ting Point 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-88 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LER 38 RR z 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP2NOTONFUL~WORDBOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
OrF RESULT<o.seTTO 1 

0 
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTE'R 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of a full word in the operand 2 (r2) register to be placed in a full word in the operand 1 
(r1) register. 

Explicit and Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] LER 

Operational Consideration: 

• The contents of operand 2 (r2) remain unchanged. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-89 

LH 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

LH 48 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

01F RESULT=O,SETTOO 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 0 
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATl.ON 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of operand 2, a half word in main storage, to be expanded ahd placed in the operand 1 
register (r1). 

Explicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] LH 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] LH 

Operational Considerations: 

• Operand 2 is a half word in main storage on a half-word boundary. 

• The contents of operand 2 remain unchanged. 

• Operand 2 is placed in the register of operand 1 (r,) and then is expanded to a full word by 
propagating the sign bit through the most significant bits . 



UP-8914 

LIA 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

LIA 61 RX 4 

Condition Codes 

D IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-90 
Update B 

Possible Program Exceptions 

D ADDRESSING D PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

D D IF RESULT >o. SET To 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

Function: 

Translates the 24-bit absolute address specified by operand 2 into directive address format and loads that 
address into the operand 1 register. 

Explicit Format: 

LABEL t.OPERATION t. OPERAND 

[symbol] LIA 

Implicit Format: 

LABEL t.OPERATION t. OPERAND 

[symbol] LIA 

• 

• 

• 



./ 

•• 

UP-8914 

LM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-91 

General Possible Program Exceptions 

OBJECT • AOORESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 CATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

LM 98 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORO BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORO BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT OIVIOE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 0 IF RESULT <o. SET TO 1 
0 

0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP.J NOT ODO NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of operand 2. one or more fulJ words in main storage. to be placed in the registers of 
operand 1 (r1) through operand 3 (r3). 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] LM 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] LM 

Operational Considerations: 

• The general registers, starting with the register specified by operand 1 (r1) and ending with the 
register specified by operand 3 (r3). are loaded with full words from main storage, beginning with the 
address specified by operand 2 . 

• The r~isters are loaded in ascending numeric sequence. beginning with the register specified by 
operand 1 (r1) and continuing through the register specified by operand 3 (r3). 



UP-8914 

LM 

• 
• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-92 

One register may be loaded by specifying the same register for both operand 1 (r1) and operand 3 (r3) • 

If the register specified by operand 3 (r3) is lower than the register specified by operand 1 (r,), then 
the register specified by operand 1 (r1) and all registers with a number greater than operand 1 (r1) 

plus the register specified by operand 3 (r3) and all registers with a number less than operand 3 (r3) 

are loaded.· 

• The contents of operand 2, in main storage, remain unchanged. Operand 2 must be on a full-word 
boundary. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC 0513 
ASSEMBLER 

2-93 

LNDR 
Floating Point 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
Q DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LNDR 21 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON OOUBLE·WOAO 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the sign of the double word in the operand 2 (r2) register to be made negative. The result is placed 
in the double-word register specified by operand 1 (r1). 

Explicit and Implicit Format: 

LABEL 6. OPERATION l::i. OPERAND 

[symbol] LNDR 

Operational Considerations: 

• Operand 2 (r2) is made negative even if the fraction is zero. 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged . 



UP..8914 

LNER 

SPERRY UNIVAC OS/3 
ASSEMBLER' 

Generat Possibte Program Exceptions 

OBJECT . Q AODAESSING Q PROTECTION: 
OPCODE FORMAT INST. 

TYPE L..GTH. 
· Q DATA (INVALID SIGN/DIGIT) 0 SIGNl'FICANCE 

MlllEM. #EX. UlYTES), . D DECIMAL DIVIDE .• SPEClFlc:ATIOlll: 

. 0 DECIMAL. OVERFLOW • • NOT A FLOATING-POINT REGISTER 
t LNER 3f Rft 2 •O EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

Q EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WOAD BOUNDARV 

'••F RESULT - a. SET TO o· 
Q FIXED·POINT 01\tlOE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED.POINT OVERFLOW BOU NOA RY 
.IF FIESULT<O, SET TO t 0 . 0 iF FIESU 1..:r >o. SET TQ. 2 Q Ft.OATING-POllllT DIVIDE OP 1 lllOT EVEN lllUMBERED REGISTER 

• Q1F OVEFtFt.OW, SET TO 3 Q OPE.RATION· 0 OP 1 NOT ODD NUMBERED REGISTER 

· OuNCHANGED 0NONE 

Causes the sign of a full word in the operand' 2(r.2)- register to be> made negative. The result is pJaced in a 
full wor.d in: the register. specified by operarw;t 1' (r1 t. 

Explicit and Implicit Format 

UBEL i1 OPERA110N ts. 

fsymbofl .LNER 

Operational" Considerationth 

• 0.perand 2 fr2) is. made negative even if the fraction is zero. 

• The- exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-95 
_Update B 

LNR 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

LNR 11 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT~ 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SETTO 1 D D 1F RESULT >o, SET To 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED • NONE 

Function: 

Causes the twos complement of the absolute value of the contents of the operand 2 and register (r2) to be 
placed in the operand 1 (r,) register. 

Explicit and Implicit Format: 

LABEL !::,. OPE RATION !::,. OPERAND 

[symbol] LNR r 1,r2 

Operational Considerations: 

• 

• 

• 

The twos complement of the absolute value of the second operand (r2 ) is placed in the first operand 
(r 1 ) location. 

The operation complements positive numbers; negative numbers and zero remain unchanged . 

Operand 2 (r2) remains unchanged . 



UP-8914 

LPDR 
Floatlng Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-96 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LPDR 20 RR 2 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 D 
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the sign of the double word in the operand 2 (r2 ) register to be positive. The result is placed in the 
double word of the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 60PEAATION 6 OPERAND 

[symbol] LPDR r1 ,r2 

Operational Considerations: 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• 

• 

• 



•• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-97 

LPER 
FlcH!tlng Point 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LPER 30 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 
.IF RESULT>O. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 QOPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the sign of a full word in the operand 2 (r2) register to be positive. The result is placed in a full word 
of the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol) LPER 

Operational Considerations: 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged . 



UP-8914 

LPR 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-98 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

LPR 10 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Conditio.n Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

• FIXED-POINT OVERFLOW BOUNDARY 0 IF RESULT <o. SET TO 1 
0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

• IF RESULT >o. SET TO 2 0 .IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the absolute value of the contents of the operand 2 register (r2) to be placed in the operand 1 (r1) 

register. 

Explicit and Implicit Format: 

LABEL AOPERATIONA OPERAND 

[symbol) LPR r, .r2 

Operational Considerations: 

• Positive numbers remain unchanged. When the second operand (r2) is negative, the twos 
complement is placed in the first operand (r1) location. 

• A fixed-point overflow condition exists and the number remains unchanged when the maximum 
negative number is complemented. 

• Operand 2 (r2) remains unchanged. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-99 
Update B 

LPSW 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

LPSW 82 s 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 0 
0 IF RESULT >a. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.SEE NOTE 0 NONE 

Function: 

Replaces all or part of the current PSW. 

Explicit Format: 

LABEL D.OPERATION D, OPERAND 

[symbol] LPSW 

Implicit Format: 

LABEL D. OPERATION D. OPERAND 

[symbol] LPSW 

NOTE: 

Condition code is set as specified in the new PSW loaded. 

t 



UP-8914 

LR 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

LR 18 RR 2 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 

0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-100 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

Causes the contents of the register specified by operand 2 (r2) to be loaded into the register specified by 
operand 1 (r1). 

Explicit and Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] LR r1 ,r2 

Operational Considerations: 

• The contents of the register specified by operand 2 (r2) are loaded into the register specified by 
operand 1 (r1). 

• The contents of the register specified by operand 2 (r2) remain unchanged. 

• 

• 

• 



• 

•• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

LRC 830E s 4 

Condition Codes 

• SET TOO 
•seTTO, 
OsETT02 
OseTT03 
QUNCHANGEO 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-101 

LRC 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF·WOAD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD 

0 FIXED-POINT OVER Fl.OW BOUNDARY • 0 FLOATING-POINT DIVIDE OP 2 NOT EVEN NUMBERED REGISTER 

.OPERATION 0 OP 1 NOT 000 NUMBERED REGISTER 

0 NONE 

Calculates the parity on corresponding bits of every byte in a data block. 

Explicit Format 

LABEL 6 OPERATION 6 OPERAND 

[symbol] LRC 

Implicit Format: 

LABEL 

I 

!::!..OPERATION!::!.. 

[symbol] LRC 

OPERAND 



.UP-8914 

LRR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-102 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DE.CIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
LRR A3 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
Q1F RESULT>O,SETT02 

0 Q1F OVERFLOW, SET TO 3 .OPERATION OP 1 NOT ODO NUMBERED REGISTER 

• UNCHANGED 0 NONE 
. 

Function: 

Loads the relocation register specified by operand 1 with data taken from the full word in main storage 
specified by operand 2. 

Explicit Format: 

LABEL l:,. OPERATION l:,. OPERAND 

[symbol) LRR 

Implicit Format 

LABEL l:,. OPERATION l:,. OPERAND 

[symbol] LRR r, .S2 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-103 

LTDR 
Floating Point 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
Q DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING·POINT REGISTER 

LTDR 22 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORO BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORO BOUNDARY 

• IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<o.SETTO 1 0 
.• IF RESULT >o. SET TO 2 0 FLOATING·POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 Q OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

QUNCHANGEO 0 NONE 

Function: 

Causes the double-word contents of the operand 2 (r2) register to be placed in the double-word operand 1 
(r1) register. The condition code is set by this instruction. 

Explicit and Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] LTOR r1 ,r2 

Operational Considerations: 

• The contents of operand 2 (r2) remain unchanged. 

• When the same register is specified by operand 1 (r,) and operand 2 (r2), the operation is equivalent 
to a test without data movement . 



UP-8914 

LTER 
Floating Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-104 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LTER 32 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT• 0, SET TO 0 
0 FIXED·POINT DIVIDE 0 OP 2 NOT ON DOUBLE·WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 0 
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the contents of a full word in the operand 2 (r2) register to be placed in a full word in the operand 1 
(r1) register. The condition code is set by this instruction. 

Explicit and Implicit Format 

LABEL fl OPIRA TION !::. OPIRAND 

[symbol] LTER 

Operational Considerations: 

• The contents of operand 2 (r2) remain unchanged. 

• When the same register is specified by operand 1 (r,) and operand 2 (r2). the operation is equivalent 
to a test without data movement. 

• 

• 

• 



• 

• 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

LTR 12 RR 2 

Condition Codes 

• IF RESULT• 0, SET TO 0 
• IF RESULT <o. SET TO 1 
• IF RESULT >o. SET TO 2 
01F OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-105 

LTR 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF·WORO BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OoPERAT10N OP 1 NOT ODO NUMBERED REGISTER 

• NONE 

Causes the contents of the register specified by operand 2 (r2) to be loaded into the register specified by 
operand 1 (r1) and the condition code to be set to reflect the value contained in the registers. 

Explicit and Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] LTR 

Operational Considerations: 

• The contents of the register specified 'by operand 2 (r2) are loaded into the register specified by 
operand 1 (r1). 

• The contents of the register specified by operand 2 (r2) remain unchanged . 



UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

M SC RX 4 

Condition Codes 

01F RESULT• 0,SETTOO 
0 IF RESULT..( 0, SET TO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-106 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY • 0 FLOATING-PA!llNT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

OoPERATION 0 OP 1 NOT 000 NUMBERED REGISTER 

0 NONE 

Causes the contents of the odd register of the even-odd pair specified by operand 1(r1) to.be multiplied by 
the contents of operand 2, a full word in main storage. The product is placed in the even-odd pair of 
registers specified by operand 1 (r1). 

Explicit Format: 

LAB&L AOPERATIONA OPERAND 

[symbol] M 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] M 

Operational Considerations: 

• Both operands are treated as fixed-point. 32-bit signed integers. 

• The contents of operand 2, the multiplier in a full word in main storage. remain unchanged. 

• The product is treated as a 64-bit, fixed-point signed integer and occupies an even-odd register pair 
specified by operand 1 (r1). 

• 

• ' 

• 



UP-8914 

• 
• 

• 
• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-107 

M 

The multiplicand is first loaded into the odd-numbered register of the even-odd pair specified by 
operand 1 (r1). The content of the even-numbered register is ignored until replaced by the most 
significant 32 bits of the product. 

The sign of the product is determined algebraically . 

A specification exception results if operand 2 is not on a full-word boundary and also if operand 1 (r,) 
specifies an odd-numbered register. 



UP-8914 . 

MD 
Floating Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-108 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

MD &C RX 

Condition Codes 

0 IF RESULT• 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

• EXPONENT OVERFLOW 

• !:XPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

Q OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING·POINT REGISTER 

0 OP 1 NOT ON HALF·WOAO BOUNDARY 

0 OP 2 NOT Ofl! HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL·WOAO BOUNDARY 

• OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes the contents of the double word in the operand 1 (r1) register to be multiplied by the contents of a 
double word in main storage specified by operand 2. The normalized product is placed in the double word 
of the operand 1 (r1) register. 

Explicit Format: 

LABEL 60PIRATION 6 OPERAND 

[symbol) MD 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol) MO 

• 

• / 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

MOR 2C RR 2 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O.SETTO 1 
01F RESULT>O,SETT02 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-109 

MOR 
Floating Point 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

• EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of the double word in the operand 1 (r1) register to be multiplied by the contents of the 
double word in the operand 2 (r2) register. The normalized product is placed in the double word of the 
operand 1 (r1) register . 

Explicit and Implicit Format: 

LABEL b. OPERATION b. OPERAND 

[symbol] MOR 



UP-8914 

ME 
Floating Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-110 
Update B 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

ME 7C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT~ 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 

0 
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

Q1F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER J 
.UNCHANGED 0 NONE 

Function: 

Causes the contents of a full word in the operand 1 (r1) register to be multiplied by the contents of a full 
word in main storage specified by operand 2. The normalized product is placed in a full word of the operand 
1 (r1) register. 

Explicit Format: 

LABEL /).OPERATION /). OPERAND 

[symbol] ME 

Implicit Format: 

LABEL !:!. OPE RATION /). OPERAND 

[symbol] ME 

• 

• 

• 



•• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

MER JC RR 2 

Condition Codes 

0 IF RESULT a 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 
01F OVERFLOW. SET TO 3 
.UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-111 

MER 
Floating Point 

Possible Program Exceptions 

0 Ao'DRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

• EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of a full word in the operand 1 (r1) register to be multiplied by the contents of a full 
word in the operand 2 (r2) register. The normalized product is placed in a full word in the operand 1 (r1) 

register. 

Explicit and Implicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] MER 



UP-8914 

MH 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-112 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM.' HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING·POINT REGISTER 

MH 4C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF.WORD BOUNDARY 

0 EXPONENT OVERFLOW • OP 2 NOT ON HALFWORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULLWORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of the register specified by operand 1 (ri) to be multiplied by the contents of operand 
2, a half word in main storage. The product is placed in the register specified by operand 1 (r,). 

Explicit Format. 

LABEL A OPE RATION A OPERAND 

[symbol] MH 

Implicit Format: 

LABEL A OPERATION A. OPERAND 

[symbol] MH 

Operational Considerations: 

• Operand 2 is expanded after being read from storage; then both operands are treated as fixed-point, 
32-bit signed integers. 

• The contents of operand 2. the multiplier, a half word in main storage, remain unchanged. 

• The sign of the product is determined algebraically. 

• If the multiplication results in a product that exceeds 32 bits, the high-order bits are ignored but the 
overflow condition is not indicated. The sign and value of the product may not be correct after 
overflow. 

• A specification exception will result if operand 2 is not on a half-word boundary . 

• 

• 

• 



• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

MIO 81 'RS 4 

Condition Codes 

• SET TO 0 
• SET TO 1 
• SET TO 2 
•sETT03 
OuNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-113 

MIO 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) .0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Moves directives to and from a directive pool and moves buffers to and from a buffer pool. 

Explicit Format: 

LABEL A OPERATION/). OPERAND 

[symbol] MIO 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] MIO 



UP-8914 

MP 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-114 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • .SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

MP FC. SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON OOUBLE·WORO 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 0 
0 IF RESUL "f >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of operand 1 to be multiplied by the contents of operand 2. The product is placed in 
the operand 1 location. 

Explicit Format: 

LAIEL 60PERATION6 OPERAND 

[symbol] MP 

Implicit Format: 

LABEL 60PEAATION 6 OPERAND 

[symbol] MP 

Operational Considerations: 

• All signs and digits are checked for validity, and the sign of the product is determined algebraically. 

• Operand 1 must be longer than operand 2. 

• Operand 1 and operand 2 may overlap if their least significant bytes coincide. 

• The size of the multiplier (operand 2) cannot be more than 15 digits and sign. 

• 

• 

• 



UP-8914 

• 
• 

• 

•• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-115 

MP 

The number of digits in the product is equal to the number of digits in the operands; therefore, the 
multiplicand (operand 1) must have a field of most significant zero digits to equal, in size, operand 2. 
The maximum product size is 31 digits. At least one most significant digit of the product field is zero. 

Data exception indicates one or more of the fo11owing conditions: 

Invalid sign or digit code 

Operand 1 has insufficient high-order zero digits. 

Incorrect overlap 



UP-8914 

MR 

General 

OBJECT 

SPERRY UNIVAC.OS/3 
ASSEMBLER 

Possible Program Exceptions 

2-116 

0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 0 SIGNIFICANCE 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

MR 1C RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORO BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 • 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of the odd register of the even-odd pair specified by operand 1 (r,) to be multiplied by 
the contents of the register specified by operand 2 (r2). The product is placed in the even-odd pair of 
registers specified by operand 1 (r1). 

Explicit and Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] MR 

Operational Considerations: 

• Both.operands are treated as fixed-point, 32-bit signed integers. 

• The contents of operand 2 (r2), the multiplier, remain unchanged. 

• The product is treated as a 64-bit, fixed-point signed integer and occupies an even-odd register pair 
specified by operand 1 (r1). 

• The multiplicand is first loaded into the odd-numbered register of the even-odd pair specified by 
operand 1 (r1). The content of the even-numbered register is ignored until replaced by the most 
significant 32 bits of the product. 

• The sign of the product is determined algebraically. 

• A specification exception results if operand 1 (r1) specifies an odd-numbered register. 

• 

• 

• 



• 
UP-8914 SPERRY UNIVAC OS/3 

ASSEMBLER 

2-117 

MSS 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 
0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

MSS E3 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 
0 EXPONENT OVERFLOW D OP 2 NOT ON HALF·WORD BOUNDARY 

Condition Codes D EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 
0 FIXED-POINT OVERFLOW BOUNDARY 

• SET TO 1 
0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 

• SETT02 0 •sETT03 .OPERATION OP 1 NOT ODD NUMBERED REGISTER 
D UNCHANGED 0 NONE 

Function: 

Performs an operation specified by operand 1 on two operands indirectly specified by operand 2. The result 
is optionally put in the location specified by operand 1. The condition code is set according to the result. 
Program control, depending on the result, then passes either to the next sequential instruction or skips 
forward the number of half bytes specified by immediate operand 3, continuing with the instruction found 
there. 

Explicit Format: 

LABEL Li OPERATION Li OPERAND 

[symbol] MSS 

Implicit Format: 

LABEL Li OPERATION Li OPERAND 

[symbol] MSS 

Operational Considerations: 

• The immediate byte of operand 1 must be specified as a self-defining term within the range 016-S, 6• 

• Operand 2 must lie on a full-word boundary. 

• Operand 3 can be specified as an absolute or relocatable expression. In neither case, however. must 
it exceed 15 half words (30 bytes) in value. 



UP-8914 

MVC-

SPERRY UNNAC 05/3 
ASSEMBLER 

2-118 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTESI 

MVC 02 SS 

Condition Codes 

0 IF RESULT• O. SET TO 0 
01F RESULT<O,SETTO 1 
01F RESULT>o. SET To 2 
01F OVERFLOW. SET TO 3 
.UNCHANGED 

Function: 

& 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE . 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 
0 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of the field in main storage specified by operand 2 to be placed in the field in main 
storage specified by operand 1. 

Explicit Format. 

LABEL !:..OPERATION!:.. OPERAND 

[symbol] MVC 

Implicit Format: 

LABEL t:.. OPERATION t:.. OPERAND 

[symbol] MVC 

Operational Considerations: 

• The transfer proceeds from left to right. 

• The number of bytes transferred is specified by 1 in operand 1. 

• The contents of operand. 2 remain unchanged unless operand 1 and operand 2 overlap. 

• If the number of bytes to be moved is not explicitly shown in operand 1, then the number will be 
equal to the length attribute of operand 1. 

• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Possible Program Exceptions 

2-119 

MVCL 

• ADDRESSING • PROTECTION OPCODE FORMAT INST. 0 SIGNIFICANCE TYPE LGTH. 0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 
0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

MVCL OE RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 
0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORO BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 
Q FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

• IF OP 1 • OP 2, SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY 
• IF OP 1<0P 2, SET TO 1 • • IF OP t>oP 3,SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

•sET TO 3 OOPERATION 0 OP 2 NOT EVEN NUMBERED REGISTER 
QUNCHANGED 0 NONE 

Function: 

Moves data from the main storage area specified by operand 2 to the main storage area specified by 
operand 1. 

Explicit and Implicit Format: 

LABEL £lOPERATION £l OPERAND 

[symbol] MVCL 

Operational Considerations: 

• Operands 1 and 2 must each specify the even-numbered register of an even-odd register pair. Within 
each operand, the even-numbered register contains the operand address, and the odd-numbered 
register, the operand length. 

• When operand 2 is shorter than operand 1, a·padding byte contained in operand 2 fills the remaining 
area of operand 1. When operand 2 is longer than operand 1, only as much of operand 2 as equals 
operand 1 in length is moved, starting at the operand 2 address. 

• The instruction proceeds left to right, byte by byte. 

• The instruction terminates, setting the condition code to 3, if destructive overlap would otherwise 
occur. that is, if a main storage location would be used as an operand 2 source byte after acting as an 
operand 1 destination byte . 



UP-8914 

MVI 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-120 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
MVI 92 SI 4 0 EXECUTE 0 OP, 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORO BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT 2 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 OoPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the one byte of data used in the instruction as operand 2 to be moved into the one byte of main 
storage specified by operand 1 . 

Explicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] MVI 

Implicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] MVI 

Operational Considerations: 

• The immediate data in the instruction, operand 2. must specify one byte of data. 

• The length attribute of the field specified by operand 1 may be longer than one byte, but only the one 
byte addressed by operand 1 will be replaced by the immediate data (operand 2). 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-121 

MVN 

General Possible Program Exceptions 

'OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

MVN 01 SS 

Condition Codes 

0 IF RESULT• 0, SET TO 0 
01F RESULT<O,SETTO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

6 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OV.ERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the least significant four bits (the digit or numeric field) of each byte specified by operand 2 to be 
moved to the least significant four bits of each byte of operand 1 . . 

Explicit Format 

LABEL 6 OPERATION fl OPERAND 

[symbol] MVN 

Implicit Format: 

LABIL AOPIRATIONA OPIRAND 

[symbol] MVN 

Operational Considerations: 

• The four most significant bits of each byte (zone field) remain unchanged. 

• The contents of operand 2 remain unchanged unless there is overlapping. 

• Overlapping of operands is permitted. 

• The number of bytes transferred is specified by 1 in operand 1 . 

• If the number of bytes to be moved is not explicitly shown in operand 1, then the number will be 
equal to the length attribute of operand 1 . 



UP-8914 

MVO 

SPERRY UNIVAC 0513 
ASSEMBLER 

2-122 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES! 

MVO F1 SS 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 
Q1F RESULT>o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

6 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT! 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED·POINT DIVIDE 

0 FIXED·POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL·WORO BOUNDARY 

0 OP 2 NOT ON DOUBLE·WORO 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Moves the contents of operand 2 to operand· 1 with a 4-bit (half-byte) shift to the left. 

Explicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] MVO 

Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] MVO 

Operational Considerations: 

• This instruction proceeds from right to left. 

• The operands are not checked for valid codes. 

• Overlapping fields may occur. Unless the operands overlap, operand 2 and the least significant four 
bits of operand 1 remain unchanged. 

• If the second operand is exhausted before the first operand, the remaining first operand field is zero 
filled. If the result exceeds the capacity of the first operand field, the remaining digits of the second 
operand are ignored. This operation, in effect, prefixes the least significant digit or sign of the first 
operand with the digits of the second operand. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-123 

MVZ 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
MVZ 03 SS 8 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<o.sETTo 1 0 
Q1F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 OOPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the. most significant four bits (the zone field) of each byte specified by operand 2 to be moved to the 
most significant four bits of each byte of operand 1. · 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] MVZ 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] MVZ s, (1)-52 

Operational Considerations: 

• The four least significant bits of each byte (digit field) remain unchanged. 

• The contents of operand 2 remain unchanged unless there is overlapping. 

• Overlapping of operands is permitted. 

• The number of bytes transferred is specified by I in operand 1. 

• If the number of bytes to be moved is not explicitly shown in operand 1, then the number will be 
equal to the length attribute of operand 1 . 



UP-8914 

N 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-124 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE 1..GTH. 
MNEM. HEX. (BYTESI 

N 54 RX 

Condition Codes 

• IF RESULT• 0, SET TO 0 
• IF. RESUI.. T :i=o, SET TO 1 
0 IF RESULT >o. SET TO 2 
01F OVERFl..OW, SET TO 3 
QUNCHANGED 

Function: 

4 

• ADDRESSING 

0 DATA (INVAl..10 SIGN/DIGIT) 

0 DECIMAi.. DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFl..OW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF·WO.RO BOUNDARY 

0 OP 2 NOT ON HAl..F-WORO BOUNDARY 

• OP 2 NOT ON FULl..-WORO BOUNDARY 

0 

0 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes a logical full-word AND operation to be performed on the contents of operand 1 (r,) and operand 2. 
The result is stored in the operand 1 (r,) register. Operand 2 is a full word in main storage. 

Explicit Format 

LABEL 60PEAAT10N D. OPERAND 

lsvmbolJ N 

Implicit Format: 

LABEL D.OPERATION I:. OPERAND 

[symbol] N 

Operational Considerations: 

• If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resultant bit will be 
1. If either bit is zero, the resultant bit will be zero. 

• The rules of operation for logical AND (N) are illustrated by the following truth table: 

• 

• 

• 



UP-8914 

• 

• 

• 

• 

SPERRY UNIVAC. OS/3 
ASSEMBLER 

0,.,.nd 1 Operand 2 

0 0 

0 1 

1 0 

1 1 

2-125 

N 

Result 
(Operand 11 

0 

0 

0 

1 

It is possible to clear selected bits in operand 1 (r1) by specifying zeros in the corresponding bit 
positions of operand 2. 

Operand 2 must be on a full-word boundary . 



UP-8914 

NC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-126 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. IBYTESI 

NC D4 SS 6 

Condition Codes 

• IF RESULT• 0, SET TO 0 
• IF RESULT ¢0, SET TO 1 
0 IF RESULT >o. S

0

ET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONEN-T UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OOPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 
0 

OP 1 NOT EVEN NUMBERED REGISTER 

OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes a logical AND operation to be performed on the contents of operand 1 and operand 2. Both 
operands are located in main storage. The result is stored in operand 1 . 

Explicit Format: 

LABEL t::. OPERATION t::. OPERAND 

[symbol] NC 

Implicit Format: 

LABEL t::. OPERATION t::. OPERAND 

[symbol] NC 

Operational Considerations: 

• If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resultant bit will be 
1 . If either bit is zero, the resultant bit will be zero. 

• The rules of operation for logical AND (NC) are illustrated by the following truth table: 

• 

• 

• 



UP-8914 

• 

• 

• 
• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Operand 1 0P8f'8ftd 2 

0 0 

0 1 

1 0 

1 1 

2-127 

NC 

Result 
(Operand 11 

0 

0 

0 

1 

It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions 
of operand 2. 

The number of bytes involved in the ANO instruction is specified by I in operand 1 . 

If the number of bytes to be used is not explicitly shown in operand 1, then the number will be equal 
to the length attribute of operand 1 . 



UP-8914 

NI 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-128 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE L.GTH. 
MNEM. HEX. (BYTES) 

NI 94 SI 4 

Condition Codes 

• IF RESUL. T • 0, SET TO 0 
• IF RESUL. T :i'o, SET TO 1 
0 IF RESUL. T >o. SET TO 2 
0 IF OVERFL.OW, SET TO 3 
OuNCHANGEo 

Function: 

• ADDRESSING 

0 DATA (INVAL.ID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATIN~-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 
0 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER I 
0 NONE 

Causes a logical ANO operation to be performed on the contents of operand 1 (a byte in main storage) and 
operand 2 (a byte of immediate data in the instruction). The result is stored in operand 1. 

Explicit Format 

LABEL Cl OPERATION Cl OPERAND 

[symbol] NI 

Implicit Format: 

LABEL Ci.OPERATION Cl OPERAND 

[symbol] NI 

Operational Considerations: 

• If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resultant bit will be 
1. If either bit is zero, the resultant bit will be zero. 

• The rules of operation for logical AND (NI) are illustrated by the following truth table: 

• 

• i .. ,.· 

• 



UP-8914 

• 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Operand 1 Operand 2 

0 0 

0 1 

1 0 

1 1 

2-129 

NI 

Result 
(Operand 11 

0 

0 

0 

1 

It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions 
of operand 2 • 



UP-8914 

NR 

General 

OBJECT 
OPCODE FOR

0

M AT INST. 
TYP E LGTH. 

MNEM. HEX. (BYTES) 

NR 14 RR 

Condition Codes 

• IF.RESULT~ 0, SET TO 0 
• IF RESULT :¢:0, SET TO 1 
On= RESULT>o. SET To 2 
0 IF OVERFLOW, SET TO 3 
Oi.JNCHANGED 

Function: 

2 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-130 

Possible Program Exceptions 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED·P_OINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 
0 
0 
0 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF.WORD BOUNDARY 

OP 2 NOT ON FULL-WOAD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

Causes a logical ANO operation t~ be performed on the contents of the registers specified by operand 1 (r1) 

and operand 2 (r2). The result is stored in operand 1 (r,). 

Explicit and Implicit Format: 

LABEL Ll OPERATION Ll OPERAND 

[symbol] NA 

Operational Considerations: 

• If the corresponding bit positions in both operand 1 (r,) and operand 2 (r2) contain I, the resultant bit 
will be 1. If either bit is zero, the resultant bit will be zero. 

• The rules of operation for logical ANO (NA) are illustrated by the following truth table: 

• 

OP.rand 1 Operand 2 
Result 

(Operand 11 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions 
of operand 2. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-l31 

0 

General Possible Program Exception.s 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 56 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT :¢:0, SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

QUNCHANGED 0 NONE 

Function: 

Causes a logical OR operation to be performed on the contents of operand 1 (r1) and operand 2. a full word 
in main storage. The result is stored in operand 1 (r1). 

Explicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] 0 

Implicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] 0 

Operational Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands 
contain 1; otherwise. the result bit position is set to zero. 

• The rules of operation for logical OR (0) are illustrated by the following truth table: 



UP-8914 

0 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Result Operand 1 Operand 2 
{Operand 11 

0 0 0 

0 1 1 

1 0 1 

1 t t 

Operaod 2 must be on a full-word boundary . 

2-132 

• 

• 

• 



•• 

• 

•• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-133 

oc 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

TYPE LGTH. 

MNEM. HEX. (BYTES I 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

oc D& SS & 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE·WORD 

0 FIXED.POINT OVERFLOW BOUNDARY 
.IF FIESULT#:O, SET TO 1 0 0 IF Rl!SULT>o. SET TO 2 0 FLOATING.POINT DIVIDE 01" 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes a logical OR operation to be performed on the contents of main storage specified by operand 1 and 
operand 2. The result is stored in operand 1. 

Explicit Format: 

LABEL t.OPERATION t. OPERAND 

[symbol] oc 

Implicit Format: 

LABEL t. OPERATION t. · OPERAND 

[symbol] oc 

Operationa I Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands 
contain 1; otherwise, the result bit position is set to zero. 

• The rules of operation for logical OR (QC) are illustrated by the following truth table: 



UP-8914 SPERRY UNNAC OS/3 
ASSEMBLER 

2-134 

oc 

Operand 1 Operand 2 Results 
!Operand 11 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

• The number of bytes used is specified by I in operand 1. 

• If the number of bytes to be used is not explicitly shown in operand 1, then the number will be equal 
to the len9th attribute of operand 1 . 

• 

• , J 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-135 

01 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTESI 

QI 96 SI 

Condition Codes 

• IF RESULT• 0, SET TO 0 
• IF AESUL T :#=o. SET TO 1 
0 IF AESUL T > 0, SET TO 2 
01F OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL-WOAD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes a logical OR operation to be performed on the contents of operand 1 (a byte in main storage) and 
operand 2 (a byte of immediate data in the instruction). The result is stored in operand 1 . 

Explicit Format: 

LABEL t:. OPERATION t:. OPERAND 

[symbol] 01 

Implicit Format: 

LABEL t:. OPE RATION t:. OPERAND 

[symbol] 01 

Operational Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands 
contain 1; otherwise, the result bit position is set to zero . 



UP-8914 

01 

SPERRY UNNAC OS/3 
ASSEMBLER 

• The rules of operation for logical OR (01) are illustrated by the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

2-136 

• 

• 

• 



• 

••• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

OR 16 RR 2 

Condition Codes 

• IF RESULT~ O. SET TO 0 
• IF RESULT ;i!:o, SET TO 1 
·o IF RESULT>o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
QUNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-137 

OR 

. Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 
.,, 

0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

Causes a.logical OR operation to be performed on the contents of the registers specified by operand 1 (r1) 

and operand 2 (r2). The result is stored in operand 1 (r1). 

Explicit and Implicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] OR 

Operational Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands 

contain 1; otherwise, the result bit position is set to zero. · 

• The rules of operation for logical OR (OR) are illustrated by the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 11 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



UP-8914 

PACK 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-138 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

PACK F2 SS 

Condition Codes 

0 IF RESULT• 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
0 IF RESUL. T >o. SET TO 2 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

6 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL. DIVIDE 

0 DECIMAL. OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVER FL.OW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HAL.F-WORD BOUNDARY 

0 OP 2 NOT ON FUL.L.-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Converts the contents of operand 2 from the unpacked format to the packed format, which is placed in 
operand 1. 

Explicit Format: 

LAllL A OPIRATION A CIPIRAND 

[symbol] PACK 

Implicit Format: 

LABEL A OPERATION A OPEU"D 

[symbol] PACK s, 0,) .Sz 02) 

Operational Considerations: 

• This instruction proceeds one byte at a time from right to left. The first byte operated on has its sign 
and digit reversed. (An F4 becomes 4F .) Each byte from then on has its zone removed and the digit 
half of the byte packed into the receiving area. 

• If operand 2 does not completely fill operand 1, the remaining operand 1 field is zero filled. 

• If the result exceeds the capacity of the operand 1 field, the remaining operand 2 digits are ignored. 

• The operands are not checked for valid codes . 

• Overlapping fields may occur; each resultant byte is processed after each operand byte . 

• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

PRB DC RR 2 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 

0 IF RESULT> 0, SET TO 2 

0 IF OVERFLOW, SET TO 3 
• UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-138a 
Update B 

PRB 

Possible Program Exceptions 

• ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Moves the IORB specified by operand 2 (r2) to the IORB pool specified by operand 1 (r1). 

Explicit and Implicit Format: 

LABEL [',OPERATION 6. OPERAND 

[symbol] PRB r 1,r2 

t 



• 

• 

• 



• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE L.GTH. 

MNEM. HEX. (BYTES) 

RESET 8301 s 4 

Condition Coctes 

• SET TO 0 
0 SET TO 1 
0 SET TO 2 
.SETT03 
0 UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-139 

RESET 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVAL.ID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL. DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE·WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

.OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

_ Resets selected areas of the processor. 

Explicit Format: 

LABEL 

[symbol] 

INST3 

Implicit Format: 

LABEL 

[symbol] 

INST3 

LlOPERATION Ll OPERAND 

RESET 

RESET 

Ll OPERATION Ll OPERAND 

RESET 

RESET PLACE1 



UP-8914 

s 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-140 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

s 58 RX 4 

Condition Codes 

• IF RESULT• 0, SET TO 0 
• IF RESULT <o. SET TO 1 
• IF RESULT >o. SET TO 2 
.IF OVERFLOW, SET TO 3 
QUNCHANGED 

Function: 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

• FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF·WOAD BOUNDARY 

0 

• 0 

OP 2 NOT ON HALF-WOAD BOUNDARY 

OP 2 NOT ON FULL·WORO BOUNDARY 

OP 2 NOT ON OOUBLE·WOAD 
BOUNDARY 

0 -OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of operand 2. a full word in main storage, to be subtracted from the contents of the 
register specified by operand 1 (r1). The results are placed in the operand 1 (r1) register. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] s r 1 ,d2 ("2 ,b2) 

Implicit Format 

LABEL A OPERATION A OPERAND 

[symbol] s r, •52 

Operational Considerations: 

• The subtraction is performed by converting the number in operand 2 into a signed twos complement 
binary number and then algebraically adding it to the value in operand 1 (r1). 

• The maximum fixed-point number that can be contained in a 3;2-bit register is 2, 147,483,647(231-1). 
The minimum number is -2.147,483,648(-231). For decimal numbers outside this range, an 
overflow condition is produced. 

• Operand 2 must be on a full·word boundary. 

• The contents of operand 2 are not changed by the subtract (S) instruction . 

• 

• 

• 



... 

• / 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-141 

.SD 
FIOlltlng Point 

G eneral Possible Program Exceptions 

OBJECT 
OPCODE F OAMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

SD 68 RX 4 

Condi ti on Cqdes 

• IF RESULT• 0 , SET TO 0 
O. SET TO t 
0, SET TO 2 

W, SET TO 3 

• IF RESULT< 
.IF RESULT> 
01F OVEAFLO 
QUNCHANGED 

Function: 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

• EXPONENT OVERFLOW 

• EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

• SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP t NOT ON HALF-WOAD BOUNDAAY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

D OP 2 NOT ON FULL-WOAD BOUNDAAY 

OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

OP t NOT EVEN NUMBERED REGISTER 

• 
0 
0 OP t NOT ODD NUMBERED AEGISTEA 

0 NONE 

Causes the contents of a double word in main storage specified by operand 2 to be algebraically subtracted 
ontents of the double-word register specified by operand 1 (r1). The normalized difference is 
he operand 1 (r1) register . 

from the c 
placed int 

Explicit Format: 

LASE A OPERATION A OPERAND 

[symb ol] so 

Implicit Format: 

LABE L A OPERATION A OPERAND 

[symb ol] SD 

Operational Cons ideration: 

• Thee 
opera 

xecution of the SD instruction is identical to that of the AD instruction, except that the sign of 
nd 2 is reversed before addition. 



UP-8914 

. SOR 
Floating Point 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

Ml\IEM. Hl:X. (BYTES) 

SOR 28 RR 

Condition Codes 

• IF RESULT= 0, SET TO 0 
.IF RESULT<O.SETTO 1 
• IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

2 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-142 

Possible Program Exceptions 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

• EXPONENT OVERFLOW 

• EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

• SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOAT•NG·POINT REGISTER 

0 
0 
0 
0 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULLWORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes the contents of the double-word register specified by operand 2 (r2) to be algebraically subtracted 
from the contents of the double-word register specified by operand 1 (r1). The normalized difference is 
placed in the operand 1 (r1 ) register. 

Explicit and Implicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] SOR r1 ,r2 

Operational Consideration: 

• The exec~tion of the SOR instruction is identical to that of the ADR instruction, except that the sign 
of operand 2 (r2) is reversed before addition. 

• 

• 

• 



----------------------

UP-8914 

• 
General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

SDV 9C02 s 4 

Condition Codes 

• SET TO 0 

• SET TO 1 

• SET TO 2 

.SET TO 3 
0 UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-143 
Update B 

SDV 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Enqueues a device on the designated channel device initiation queue for subsequent 1/0 operations. 

Explicit Format: 

• LABEL 6.0PERATION 6 OPERAND 

[symbol] SDV 

Implicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] SDV 

• 



UP-8914 SPER RY UNIVAC OS/3 2-144 
ASSEMBLER 

SE 
Floating Point 

General Possible Program Exceptions 

OBJECT 
OPCODE INST. 

MNEM. HEX. 

FORMAT 
TYPE LGTH. 

(BYTES) 

SE 78 RX 

Condition Codes 

• IF RESULT~ 0, SET TO 0 
.IF RESULT<O.SETTO 1 
.IF RESULT>O,SETT02 
Q IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

4 

SSING • ADORE 

0 DATA ( 

Q OECIMA 

0 OECIMA 

0 EXECU 

INVALI 0 SIGN/DIGIT) 

L DIVIDE 

L OVERFLOW 

TE 

• EXPON 

• EXPON 

0 FIXED-

0 FIXED-

0 FLOAT 

0 OPERA 

ENT OVERFLOW 

ENT UNDERFLOW 

POINT DIVIDE 

POINT OVERFLOW 

ING-POINT DIVIDE 

TION 

• PROTECTION 

• SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALFWORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

·n storage specified by operand 2 to be algebraically subtracted Causes the contents of a full word in ma1 
from a full word .in the register specified 
operand 1 (r1) register. 

Explicit Format: 

LABEL Do OPERATION 6 

[symbol] SE 

Implicit Format: 

LABEL 6 OPERATION 6 

[symbol] SE 

Operational Consideration: 

• The execution of the SE instruction 
operand 2 is reversed before additio 

by operand 1 (r1). The normalized difference is placed in the 

OPERAND 

r 1 ,d2 (x2 ,b2) 

OPERAND 

r 1 ,s2 (x2) 

is identical to that of the AE instruction, except that the sign of 
n. 

• 

-

• 



• 

• 

••• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE L.GTH. 
MNEM. HEX. (BYTESI 

SER 38 RR 

Condition Codes 

• IF RESUL.T • 0, SET TO 0 
• IF RESUL.T <o. SET TO 1 
• IF RESUI.. T >o. SET TO 2 
0 IF OVERF L.OW, SET TO 3 
OuNCHANGED 

Function: 

2 

SPERRY UNNAC OS/3 
ASSEMBLER 

2-145 

SER 
Floating Point 

Possible Program Exceptions 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL. DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

• EXPONENT OVERFLOW 

• EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

• SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF·WORO BOUNDARY 

0 
0 
0 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FUl..L-WORD BOUNDARY 

OP 2 NOT ON DOUBL.E·WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of a full word in the operand 2 (r2) register to be algebraically subtracted from a full 
word in the operand 1 (r1) register. The normalized difference is placed in a full word in the operand 1 (r1) 

register . 

Explicit and Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol SER '1 ·'2 

Operational Consideration: 

• The execution of the SER instruction is identical to that of the AER instruction, except that the sign of 
operand 2 is reversed before addition . 



UP-8914 

SH 

SPERRY UNIVAC OS/3 
ASSEMBLER 

-

2-146 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM HEX. (BYTES) 

SH 48 RX 

Condition Codes 

• IF RESULT: o. SET TO 0 
• IF RESULT< 0, SET TO 1 
• IF RESULT >o. SET TO 2 
.IF OVERFLOW, SET TO 3 
QUNCHANGED 

Function: 

4 

• ADDRESSING 

0 DATA (INVALIDSIGN/DIGITi 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

• FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

D 
0 

• 0 
0 

NOT A FLOATING-POINT REGISTER 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP2NOTONFUL~WORDBOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of operand 2, a half word in main storage. to be subtracted from 
0

the contents of the 
register specified by operand 1 (r1). The results are to be placed in the operand 1 (r,) register. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] SH 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] SH 

Operational Considerations: 

• The subtraction is performed by converting the number in operand 2 into a signed twos complement 
binary number. expanded to a full word. and then algebraically adding it to the value in operand 1 (r1 ). 

• The maximum fixed-point number that can be contained in 32-tit register is 2, 147,483,647(231-1 ); 
the minimum number is -2. 147.483,648(-231). For_ decimal numbers outside this range, an 
overflow condition is produced. 

• Operand 2 must be on a half-word boundary . 

• The contents of operand 2 are not changed by the subtract half word (SH) instruction . 

• 

• 

• 



• ' 

.{ 

-

•·-

UP-8914 

General 

OPCOD E FORMAT 
TYPE 

MNEM. H EX. 

SHL 98 RS 

Condition Codes 

• SET TO 0 
• SET TO 1 
• SET TO 2 
.SET TO 3 

ANGED QUNCH 

Function: 

OBJECT 
INST. 
LGTH. 
(BYTES) 

4 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-147 

SHL 

Possible Program Exceptions 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

• OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Shi fts the operand 1 register or even-odd register pair right or left by the number of bits specified in bits 
31 of the effective operand 2 address. 26-

Explicit Fo rmat: 

LABEL L\OPERATION L\ OPERAND 

[symbol] SHL 

Implicit Fo rmat: 

Operation 

• 

LABEL L\ OPERATION L\ OPERAND 

[symbol] SHL 

al Considerations: 

Operand 3, bits 12-15 of the object instruction, forms a 4-bit mask that controls SHL operation as 
follows: 

Bit 12 (XOOO): set to 0 for a noncircular shift; set to 1 for a circular shift. 

Bit 13 (OXOO): set to 0 for a left shift; set to 1 for a right shift. 

Bit 14 (OOXO): set to 0 to shift a single register; set to 1 to shift an even-odd register pair. 

Bit 15 (OOOX): set to 0 to shift in O's; set to 1 to shift in 1 's. 



UP-8914 

SHL 

SPERRY UNIVAC 05/3 
ASSEMBLER 

2-148 

• For an even-odd register pair, the user must specify the even-numbered register as operand 1. 

• Operand 2 can be specified as a self-defining term. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-149 . 

SL 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

TYPE LGTH. 

MNEM. HEX. (BYTES) 0 DECIMAi. DIVIDE • SPECIFICATION: 

0 DECIMAi. OVERFLOW 0 NOT A Fl.OATING-POINT REGISTER 

SL SF RX 4 0 EXECUTE 0 OP 1 NOT ON HAl.F·WORO BOUNDARY 

0 EXPONENT OVER Fl.OW 0 OP 2 NOT ON. HAl.F·WORO BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FUl.1.-WORO BOUNDARY 

0 SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 0 
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

•seT TO 3 0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS 0 NONE 

Function: 

Causes the contents of a full word in main storage specified by operand 2 to be subtracted logically from 
the contents of the operand 1 (r1) register. The difference is placed in operand 1 (r1). 

Explicit Format 

LABEL A OPERATION A OPERAND 

[symbol] SL 

Implicit Format 

LABEL A OPERATION t::. OPERAND 

[symbol] SL 

Operational Considerations: 

• The subtraction is performed by adding the twos complement of operand 2 to operand 1. 

• All 32 bits of both operands are used. 

• The .contents of operand 2 remain unchar:iged. 

• Operand 2 must be on a full-word boundary. 



UP-8914 

SL 

• The condition code is set: 

SPERRY UNIVAC 05/3 
ASSEMBLER 

to 1 if result is not zero (no carryout of most significant bit position}; 

to 2 if result is zero (carryout of most significant bit position); or 

to 3 if result is not zero (carryout of most significant bit position). 

2-150 

Code 0 is not used. A zero difference cannot be obtained without a carryout of the most significant bit 
position. 

• 

• 

• 



• 

•• 

• 

UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

2-151 

SLA 

General Possible Program Exceptions 

OBJ ECT 
OPCODE FORMAT INST 

TYPE LGT H. 

MNEM. HEX. (BY TES) 

SLA 88 RS 4 

Condition Codes 

• IF RESULT• 0, SET TO 0 
• IF AESl.,ILT < 0, SET TO 1 
• IF AESULT>o. SET TO 2 
• IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

0 AODRESSING 

0 DATA (INVALID SIGN/OIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

• FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 
0 
0 

0 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WOAD BOUNDARY 

OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the 31-bit integer field in the register specified by operand 1 (r,) to be shifted left the number ot bit 
positions specified by the six low-order bits of the second operand (s2) address . 

Explicit Format: 

LABEL A OPERATION A OPERAND 

(symbol] SLA 

Implicit Format: 

LABEL A OPERATION A OPERAND 

(symbol] SLA 

Operational Considerations: 

• The 31-bit integer of the first operand (r,) is shifted left the number of bit positions specified by the 
low-order six bits of the second operand address. 

• The vacated low-order bit positions of the register are zero filled. The sign bit of the register remains 
unchanged. 

• If a bit unlike the sign bit is shifted out of the high-order numeric bit position, a fixed-point overflow 
condition exists . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-152 

SLA 

• For numbers with an absolute value of less than 230, a left shift of one bit position is equivalent to 
multiplying the number by 2. 

• A shift of 31 bits causes the entire integer to be shifted out of the register. When the entire integer 
field for a positive number has been shifted out. the register contains a value of zero. For a negative 
number, the register contains a value of -231. 

• A zero shift value provides a sign and magnitude test. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-153 

SLDA 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES> 

SLDA BF RS 4 

Condition Codes 

• IF RESULT• 0, SET TO 0 
• IF RESUL. T <o. SET TO 1 
• IF RESUL. T >o. SET T0-2 
.IF OVERFL.OW, SET TO 3 
QUNCHANGEO 

Function: 

Q ADDRESSING 

0 CATA (INVALID SIGN/DIGIT) 

0 DECIMAL OIVIOE 

0 DECIMAL OVERFLOW 

0 E;.i<ECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

Q FIXED·POINT DIVIDE 

• FIXED-POINT OVER FL.OW 

0 FL.OATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

Q NOT A FL.OATING·POINT REGISTER 

0 OP t NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HAL.F·WORD BOUNDARY 

0 OP 2 NOT ON FULL.·WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

• OP t NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the 63-bit integer field in the pair of registers specified by operand 1 (r1) to be shifted left the 
number of bit positions specified by the six low-order bits of the second operand (s2) address. 

Explicit Format 

LABEL 6. OPERATION 6. OPERAND 

[symbol] SLDA r1 ,d2 (b2
) 

Implicit Format: 

LABEL 6.0PERATION 6. OPERAND 

[symbol] SLDA r, .S2 

Operational Considerations: 

• Operand 1 (r1) must refer to an even-numbered register of an even-odd register pair. 

• The contents of both registers, except the sign bit of the even register, are shifted as one 63-bit 
integer. The vacated low-order bit positions of the odd register are zero filled. The sign bit of the even 
register remains unchanged. 

• If a bit unlike the sign bit is shifted out of the high-order numeric bit position of the even register, a 
fixed-point overflow condition exists. 



UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

2-154 

SLDA 

• A zero shift value in the double-shift operations provides a double-length sign and magnitude test. 

• For numbers with an absolute value of less than 230, a left shift of one bit position is equivalent to 
multiplying the number by 2. 

• Shifting 63 bits causes the entire integer to be shifted out of the registers. When the entire integer 
field for a positive number has been shifted out, the register contains a value of zero. For a negative 
number, the register contains a value of -23~. 

• 

• 

• 



•• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-155 

SLDL 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

SLDL 80 RS 

Condition Codes 

0 IF RESULT a 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

4 

Q ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

Q DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

Q EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED·POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WOAD BOUfllDAAY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 
0 

OP 2 NOT ON FULL-WOAD BOUNDARY 

OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

• OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes the· contents of the double word in the pair of registers specified by operand 1 (r1) to be shifted left 
the number of bit positions specified by the least significant six bits of the operand 2 address. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] SLDL 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] SLDL 

Operational Considerations: 

• The vacated least significant bit positions of the registers are zero filled. 

• Bits shifted out of the even-numbered register are lost. 

• Operand 1 (r1) must refer to the even-numbered register of an even-odd register pair . 



UP-8914 

SLL 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-156 

G en era I Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTESJ 

SLL 89 RS 4 

Condition Codes 

0 IF RESULT: 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 
01F OVERFLOW. SET TO 3 
• UNCHANGED 

~~~~~~~--' 

Function:

0 ADDRESSING.

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXE:D·POINT DIVIDE

0 FIXcD·POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0
0
0
0
0

0
0

NOT A FLOATING POINT REGISTER

OP 1 NOT ON HALF WOAD BOUNDARY

OP 2 NOT ON HALF·WOAD BOUNDARY

OP 2 NOT ON FULL WOAD BOUNDARY

OP 2 NOT ON DOUBLc·WOAD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER

OP 1 NOT ODD NUMBERED REGISTER

• NONE •

Causes a full word in operand 1 (r1) to be shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address.

Explicit Format:

LABE L A OPERATION A OPERAND

[symbo I] SLL r 1 ,d2 (b2)

I
Implicit Format:

LASE L 6 OPERATION A OPERAND

[sym bol] SLL r, ,s2

Operatiol"!al Considerations:

• The vacated least significant bit positions of the register are zero filled.

• Bits shifted out of the register are lost.

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-157

SLM

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SLM 88 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of operand 2, one or more full words in main storage, to be placed in the problem
registers of operand 1 (r1) through operand 3 (r3).

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] SLM r 1 ,r 3 ,d2 (b2)

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] SLM r1 ,r3 ,s2

UP-8914

SLR

SPERRY UNIVAC OS/3
ASSEMBLER

2-158
Update B

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SLR 1F RR 2

Condition Codes

0 SET TO 0
• SET TO 1
• SET TC 2
• SET TO 3
SEE OPER. CONSIDERATIONS

Function:

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0
0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

0 · OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

Causes the contents of the operand 2 (r2) register to be subtracted logically from the contents of the
operand 1 (ri) register. The difference is placed in operand 1 (r1).

Explicit and Implicit Format:

LABEL ti OPERATION ti OPERAND

[symbol] SLR r1 ,r2

Operational Considerations:

• The subtraction is performed by adding the twos complement of operand 2 to operand 1.

• All 32 bits of both operands are used.

• The contents of operand 2 remain unchanged.

• The condition code is set to:

1 if result is not zero (no carryout of most significant bit position);

2 if result is zero (carryout of most significant bit position); or

3 if result is not zero (carryout of most significant bit position) ..

Code 0 is not used. A zero difference cannot be obtained without a carryout of the most significant bit
position.

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC 05/3
ASSEMBLER

2-159

SP

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SP FB SS 6

Condition Codes

• IF RESULT• 0, SET TO 0
• IF RESULT <o. SET TO 1
.IF RESULT>O.SET-T02

• 1 F OVERFLOW, SET TO J
QUNCHANGED

Function:

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

Q DECIMAL DIVIDE

• DECIMAL OVERFLOW

0 EXECUTE

0 EXPONE:NT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

Q FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

Q SIGNIFICANCE

0 SPECIFICATION:

0
0
0
0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF.WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Subtracts the contents of operand 2 from the contents of operand 1. The results are placed in operand 1.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] SP

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] SP

Operational Considerations:

• Subtraction is accomplished by reversing the sign of operand 2 and performing a decimal add. The
contents and sign of operand 2 are not affected by this operation.

• All signs and digits are checked f?r validity, and the sign of the result is determined algebraically.

• A zero result has a positive sign when the operation is completed without overflow.

• When most significant digits are lost because of overflow, the partial result has the sign that the
correct result would have had .

UP-8914

SP

SPERRY UNIVAC OS/3
ASSEMBLER

• If operand 2 is shorter than operand 1, operand 2 is extended with zero digits.

2-160

• An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carryout of the most significant digit position of the result field is lost.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide. Incorrect overlay will
cause a data exception.

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-161
Update B

SPM

General Possible Program Exceptions

OBJ EC
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTE

SPM 04 RR 2

Condition Codes

• SET TO 0
• SET TO 1
• SET TO 2
• SET TO 3
SEE OPER. CONSIDERATIONS

Function:

T

S)

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

Causes the program mask field (bits 34 through 39) of the current program status word (PSW) to be
changed according to the contents of operand 1 (r1).

Explicit and Implicit Format:

LABEL /).OPERATION /). OPERAND

[symbol] SPM r,

Operational Considerations:

• Bits 2 through 7 of the full-word contents of operand 1 (r1) replace the program mask field (bits 34
through 39) of the current PSW.

• Bits 0, 1, and 8 through 31 of r1 are ignored.

• The condition code is set equal to bit positions 2 and 3 of the first operand .

UP-8914

SR

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

SR 18 RR

Condition Codes

• IF RESULT~ 0, SET TO 0

.IF RESULT<O.SETTO 1
• IF RESULT >o, SET TO 2

.IF OVERFLOW, SET TO 3

OuNCHANGED

Function:

2

SPERRY UNIVAC OS/3
ASSEMBLER

2-162

Possible Program Exceptions

D ADDRESSING

D DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

D DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

• FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

Causes the contents of the operand 2 (r2) register to be subtracted from the contents of the operand 1 (r1)
register. The results are placed in the operand 1 (r1) register.

Explicit and Implicit Format

LABEL t.OPERATION t. OPERAND

[symbol] SR

Operational Considerations:

• The subtraction is performed by converting the number in operand 2 (r2) into a signed twos
complement binary number and then algebraically adding it to the value in operand 1 (r1).

• The maximum fixed-point number that can be contained in a 32-bit register is 2, 147.483,647(231 -1);
the minimum number is -2, 147.483,648(-231). For decimal numbers outside this range, an
overflow condition is produced.

• The contents of operand 2 (r2) are not changed by the subtract (SR) instruction.

•

•

•

•

•

•

UP-891 4 SPERRY UNIVAC OS/3
ASSEMBLER

2-163
Update B

F

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

SRA BA RS

Condition Codes

.IF RESULT=O,SETTOO

.IF RESULT<O,SETTO 1

.IF RESULT>o.sETT02
0 IF OVERFLOW, SET TO 3
QUNCHANGED

unction:

4

SRA

Possible Program Exceptions

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED·POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0
0
0
0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WOAD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
0 OP 1 NCT ODD NUMBERED REGISTER

• NONE

Causes the 31-bit integer field in the register specified by operand 1 (r,) to be shifted right the number of
bit positions specified by the six lower bits of the second operand (s2) address.

Ex plicit Format:

LABEL /::.OPERATION/::. OPERAND

[symbol] SRA

Im plicit Format:

LABEL /::.OPERATION/::. OPERAND

[symbol] SRA

0 perationa I Considerations:

• The 31-bit integer field of the first operand (r1) is shifted right the number of bit positions specified by
the low-order six bits of the second operand address. The sign bit remains unchanged.

• The bits shifted out of the low-order bit position of the register are lost; the vacated high-order bit
positions of the register are sign filled .

UP-8914

SRA

•

•

•

SPERRY UNIVAC OS/3
ASSEMBLER

2-164

A right shift of one bit position is equivalent to division by 2 with rounding downward. When an even
number is shifted right one position, the value of the field is that obtained by dividing the value by 2.
When an odd number is shifted right one position, the value of the field is that obtained by dividing
the next lower number by 2. For example, 5 shifted right by on"' bit position yields +2, whereas -5
yields -3.

A shift of 31 bits causes the entire integer to be shifted out of the register. When the entire integer
field of a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of -1.

A zero shift value provides a sign and magnitude test.

•

•

•

•

••

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-165

SRDA

General Possible Program Exceptions

OBJECT CJ ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH
Q DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. iBVTESl Q DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SADA BE RS 4 :J EXECUTE 0 OP 1 NOT ON HALF.WORD BOUNDARY

Q EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNOARY

Condition Codes :::J EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
Q FIXE:D·POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• IF RESULT <o. SET TO 1 Q FIXED POINT OVERFLOW BOUNDARY

.IF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER

OtF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT 000 NUMBERED REGISTER

QUNCHANGEO 0 NONE

Function:

Causes the 63-bit integer field in the pair of registers specified by operand 1 {r1) to be shifted right the
number of bit positions s~ified by the six low-order bits of the second operand (s2) address.

Explicit' Format:

LABEL A OPERATION A OPERAND

[symbol] SADA

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] SADA

Operational Considerations:

• Operand 1 (r1) must refer to an even-numbered register of an even-odd register pair.

• The contents of both registers, except the sign bit of the even register, are shifted as one 63-bit
integer. The bits shifted out of the low-order bit position of the odd register are lost; the vacated high
order bit positions of the register pair are sign filled.

• A right shift of one bit position is equivalent to dividing the number by 2, without a remainder.

• Shifting 63 bits causes the entire integer to be shifted out of the register. When the entire integer
field for a positive number has been shifted out. the register contains a value of zero. For a negative
number, the register contains a value of -· 1.

• A zero shift value in the double-shift operations provides a double-length sign and magnitude test.

UP-8914

SRDL
'

SPERRY UNIVAC OS/3
ASSEMBLER

2-166

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

SRDL BC RS

Condition Codes

0 IF RESULT= 0, SET TO 0
0 IF RESULT <o. SET TO 1

0 IF RESULT >o. SET TO 2
Q1F OVERFLOW. SET TO 3
.UNCHANGED

Function:

4

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING· POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER • 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Causes the contents of the double word in the pair of registers specified by operand 1 (r1) to be shifted right
the number of bit positions specified by the least significant six bits of the operand 2 address.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] SRDL

Implicit Format

LABEL A OPERATION A OPERAND

[symbol] SRDL

Operational Considerations:

• The vacated most significant bit positions of the registers are zero filled.

• Bits shifted out of the odd-numbered register are lost.

• Operand 1 (r,) must refer to the even-numbered register of an even-odd register pair.

•

•

•

• ,.

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-167

SAL

Gener al Possible Program Exceptions

OBJECT
OPCODE FOR MAT INST.

TY PE LGTH.
MNEM. HEX. (BYTES!

SRL 88 RS 4

Condition Codes

0 IF RESULT= 0, SE T TO 0
ET TO 1
ET TO 2
ET TO 3

0 IF RESULT <o. S
01F RESULT>o.s
0 IF OVERFLOW, S
.UNCHANGED

Function:

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXEDPOINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HAt..F-WORO BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

Causes a full

significant six

word in operand 1 (r1) to be shifted right the number of bit positions specified by the least

bits of the operand 2 address.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] SAL

Implicit Format:

LABEL AOPERATIONA OPERAND

[symbol] SAL

Operational Conside rations:

• The vaca ted most significant bit positions of the register are zero filled .

• Bits shift ed out of the register are lost .

UP-8914

SAP

SPERRY UNIVAC OS/3
ASSEMBLER

2-168

General Possible Program Exceptions

OBJECT
OPCODE FORM AT INST.

TYP E LGTH.

MNEM. HEX. (BYTES)

SRP FO SS

Condition Codes

.IF RESULT=O,SETTOO

.IF RESULT<O,SETTO 1
• IF RESULT >o. SET TO 2
.IF OVERFLOW, SET TO 3
QUNCl-!ANGEO

Function:

6

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

• DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

OoPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0
0
0

0

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODO NUMBERED REGISTER

0 NONE

Shifts a packed decimal number whose main storage location is addressed by operand 1 in the direction
and the number of bytes specified by operand 2. For right shifts, the instruction rounds the decimal result
according to the byte of immediate data comained in immediate operan~ 3.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] SRP

Implicit Format:

LABEL A OPERATION fl OPERAND

[symbol] SRP

Operational Considerations:

• Operand 2 forms an effective address, the low-order six bits of which specify the direction and extent
of the shift. These six bits are taken as a digit, the high-order bit of which specifies the direction of
the shift: 0 for a left shift, 1 for a right shift. The absolute value of the integer determines the number
of bytes to be shifted. Shifts can range from a left shift of 31 bytes to a right shift of 32 bytes.

• The low-order four bits of the operand 1 area in main storage are unchanged by this instruction; data
is shifted in or out from the high-order four bits of the low-order byte addressed.

•

•

••

UP-8914

•
•

•

•

• (
I

•

SPERRY UNIVAC OS/3
ASSEMBLER

Zeros are shifted in to replace vacated digits .

2-169

SRP

For a right shift, the value contained in immediate operand 3 is added to the last digit shifted out. A
carry may result, in effect rounding the remaining data up to the next whole integer. Usual values for
operand 3 are 0 (no rounding) and 5 (rounding).

Operand 2 may be a self-defining term .

UP-8914

SSK*

General

OBJ EC T
OPCODE FORMAT INST.

TYPE
MNEM. HEX.

LGTH.
(BYTE

SSK 08 RR

Condition Codes

0 IF RESULT• 0, SET TO 0
0 IF RESULT <o, SET TO 1
01F RESULT>o. SET TO 2
01F OVERFLOW, SET TO 3
.UNCHANGED

Function:

z
Sl

SPERRY UNNAC OS/3 2-170
ASSEMBLER

-

Possible Program Exceptions

• ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE 0 OP 1 NOT-EVEN NUMBERED REGISTER

• OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Specifies storage protectio n blocks of 512 bytes or 1024 bytes.

Explicit and Implicit Format:

LABEL ERATION/::,. OPERAND

[symbol) SSK r,, '2

is instruction is issued to a processor that does not have the control feature installed. *SSK is a featured instruction. If th
an operation exception will result.

-

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

2-171
Update B

SSM

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SSM 80 s

Condition Codes

01F RESULT=O,SETTOO
01F RESULT<O,SETTO 1

01F RESULT>O.SETT02
D IF OVERFLOW, SET TO 3
.UNCHANGED

Function:

4

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

D
0
0
0
0

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
0 OP 1 NOT ODO NUMBERED REGISTER

0 NONE

Causes the system mask of the current PSW to be replaced by the first half word of the first operand
(bits 0-7).

Explicit Format:

LABEL 6. OPE RATION 6. OPERAND

[symbol] SSM d2(b2)

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] SSM s2

UP-8914

SSTM

SPERRY UNIVAC OS/3
ASSEMBLER

2-172

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SSTM BO RS 4

Con dition Codes

D1F RESULT=O,SETTOO
01F RESULT<O,SETTO 1

01F RESULT>O,SETT02
DI F OVERFLOW, SET TO 3
.UNCHANGED

~~~~~~~~--' 

Function: 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

• PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

D 
D 

OP 1 NOT EVEN NUMBERED REGISTER 

OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Causes the contents of the registers specified by operand 1 (r1 ) through operand 3 (r3) to be stored in 
operand 2, one or m9re full words in main storage. 

Explicit Format: 

LABEL .!\OPERATION Ll OPERAND 

[symbol] SSTM 

Implicit Format: 

LABEL LlOPERATION Ll OPERAND 

[symbol] SSTM 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-173 

ST 

General POS11ible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

ST 5G RX 4 0 EXECUTE 0 OP 1 NOT ON HALF·WORO BOUNDARY 

0 EXPONENT OVERFLOW 0 OP2NOTONHALF~OROBOUNOARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 0 IF RESULT<O.SETTO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

Q1F OVERFLOW, SET TO 3 OoPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of the operand 1 (r1) register to be stored in operand 2, a full word in main storage. 

Explicit Format: 

LABEL .fl OPERATION .fl OPERAND 

[symbol] ST 

Implicit Format: 

LABEL .fl OPERATION fl OPERAND 

[symbol] ST 

Operational Considerations: 

• The contents of the operand 1 (r1) register are not changed by the store (Sn instruction. 

• Operand 2. a full word in main storage, must be on a full-word boundary. 

• Operand 1 is the sending field; operand 2. the receiving field . 



UP-8914 SP EARY UNIVAC OS/3 2-174 
ASSEMBLER 

STC 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

STC 42 RX 

Condition Codes 

0 IF RESULT a 0, SET TO 0 
0 IF AESUL'T <o. SET TO t 
01F RESULT>O. SET TO 2 
01F OVERFLOW. SET TO 3 
8UNCHANGED 

Function: 

4 

SSING 

(INVALID SIGN/DIGIT) 

8ADDRE 

QDATA 

0 DECIM 

0 DECIM 

0 ExEcu 

0 EXPON 

0 EXPON 

0 FIXED 

0 FIXED 

0 FLOAT 

OOPERA 

AL DIVIDE 

AL OVERFLOW 

TE 

ENT OVERFLOW 

ENT UNDERFLOW 

-POINT DIVIDE 

·POINT OVERFLOW 

ING-POINT DIVIDE 

TION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP t NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the least significant eight bits of 
specified by operand 2. 

the operand 1 (r1) register to be stored in a byte of main storage 

Explicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] STC r 1 ,dz (><z ,bz) 

Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] STC r, ,52(x2> 

Operational Considerations: 

• The contents of operand 1 (r1) rema in unchanged. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-175 
Update B 

STCM 

General Possible Program Exceptions 

OPCO 

MNEM. 

STCM 

D IF RE 
D IF RE 

D IF RE 

OBJECT 
DE FORMAT INST. 

TYPE LGTH. 

HEX. (BYTES) 

BE RS 4 

Condition Codes 

SULT= 0, SET TO 0 
SULT<O,SETTO 1 
SULT>O, SET TO 2 

01F 0 

.UNC 

VE RF LOW, SET TO 3 
HANGED 

Function 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

D OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

St ores some or all of the contents of the operand 1 register to the main storage location starting at the 
erand 2 address. The mask specified by operand 3 controls the storage operation. op 

Explicit Format: 

LABEL /:::,.OPERATION/:::,. OPERAND 

[symbol] STCM 

Implicit Format: 

LABEL /:::,.OPERATION /:::,. OPERAND 

[symbol] STCM 

Operati onal Considerations: 

• Operand 2 need not reside on a full-word boundary . 

• Operand 3 must be specified as a self-defining term . 



UP-8914 

STCTL 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-176 
Update B 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE 

MNEM. HEX. 

STCTL 86 RS 

Condition Codes 

01F RESULT~O,SETTOO 
01F RESULT<O,SETTO 1 

0 IF RESULT >o. SET TO 2 

0 IF OVERFLOW, SET TO 3 

.UNCHANGED 

Function: 

LGTH. 
(BYTES) 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Stores the control registers starting with the operand 1 register and ending with the operand 3 register to 
contiguous full words in main storage starting at the operand 2 address. 

Explicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] STCTL 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] STCTL 

• 

• 

• 



• -

• 

• 

UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

2-177 

STD 
Floating Point 

General Possible Program Exceptions 

OPCODE 

MNEM. HEX. 

STD 60 

FOR MA 
TYPE 

RX 

OBJECT 
T INST. 

LGTH. 
(BYTES) 

4 

Condition Co des 

0 IF RESULT• O. SETT 00 
TO 1 
TO 2 
T03 

0 IF RESULT <o. SET 
01F RESULT>o. SET 
01F OVERFLOW. SET 
.UNCHANGED 

Function: 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL·WORD BOUNDARY 

• OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the conte nts of the register specified by operand 1 (r1) to be placed in a double word in main 
by operand 2. storage specified 

Explicit Format: 

LABIL ll OPIRA TION A OPERAND 

[symbol] STD 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] STD 

Operational Considerati ons: 

• The conten ts of the operand 1 (r1) register remain unchanged. 



UP-8914 

STE 
flodn9 Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-178 

General Possible Program Exceptions 

OBJECT 
OP CODE FORMAT INST. 

TYPE LGTH 

MNE M. HEX. (SYTESI 

STE 70 RX 

Condition Codes 

0 IF RESULT s 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
01F RESULT>O. SET TO 2 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POIN'7 DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 

• 0 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOU!'llDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of a full word in the register specified by operand 1 (r1) to be placed in a full word in 
main storage specified by operand 2. 

Explic it Format: 

LABEL AOPERATIONA OPERAND 

[symbol] STE r 1 ,d2 (x2 ,b2 ) 

lmplic it Format: 

LABEL AOPERATIONA OPERAND 

[symbol] STE r, .S2 (x2> 

Operational Consideration: 

• The contents of the operand 1 (r1) register remain unchanged. 

• 

• 



• 

• 

•• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTESI 

STEP 85 SI 4 

Condition Codes 

• SET TO 0 
•seTT01 
•sETT02 
.SETT03 
0 UNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-179 

STEP 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT UNDERFLOW • OP 1 NOT ON FULL WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Moves the specified station one position forward or backward in the list whose list control block is 

addressed by operand 1. This instruction can also call a list control program • 

Explicit Format: 

LABEL !::.. OPERATION!::.. OPERAND 

[symbol] STEP 

Implicit Format: 

LABEL !::.. OPERATION!::.. OPERAND 

[symbol] STEP 



UP-8914 

STH 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-180 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

STH 40 RX 

C.ondition Codes 

0 IF RESULT• 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 
Q1F OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON HALF-WORD BOUNDARY 

0 
0 

OP 2 NOT ON FULL·WORO BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the least significant 16 bits of the operand 1 (r1) register to be stored in operand 2, a half word in 
main storage. 

Explicit Format 

LABEL !:.OPERATION t:. OPERAND 

[symbol] STH 

Implicit Format: 

LABEL 

I 
!:.OPERATION t:. 

I 
[symbol ] STH r, ~("2) 

OPERAND 

Operational Consid erations: 
. 

• The contents of the operand 1 (r1) register are not changed by the store half word (STH) instruction. 

• Operand 2. a half word in main storage, must be on a half-word boundary. 

• Operand 1 is the sending field, operand 2 the receiving field. 

• 

• i 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-181 

STM 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 0 DATA (INVALI 0 SIGN/DIGIT) 0 SIGNIFICANCE 

TYPE LGTH. 
MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

STM 90 RS 4 0 EXECUTE o· OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
0 IF RESULT >o. SET TO 2 0 Q1F OVERFLOW, SET TO 3 OoPERAT10N OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of the registers specified by operand 1 (r1) through operand 3 (r3) to be stored in 
operand 2, one or more full words in main storage. 

Explicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] STM 

Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol]. STM 

Operational Considerations: 

• The contents of the general registers starting with the register specified by operand 1 (r1) and ending 
with the register specified by operand 3 (r3) are stored in one or more full words in main storage 
beginning with the address specified by operand 2 (s2). 

• The registers are used in ascending numeric sequence beginning with the register specified by 
operand 1 (r,) and continuing through the register specified by operand 3 (r3). 

• One register may be stored by specifying the same register for both operand 1 (r1) and operand 3 (r3) . 



UP-8914 

STM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-182 

• If the register specified by operand 3 (r3) is lower than the register specified by operand 1 (r
1

) then the 
register specified by operand 1 (r1) and all registers with a number greater than operand 1 (r1), plus 
the register specified by operand 3 (r3) and all registers with a number less than operand 3 (r

3
), are 

stored. 

• The contents of all registers used remain unchanged. 

• Operand 2 (~) must be on a full-word boundary. 

• 

• ) 
.. .' 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-183 
Update B 

STR 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

STR 03 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 0 
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Function: 

Controls internal timer register. 

Explicit and Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] STR 

t 



UP-8914 

STRR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-184 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

STRR A2 RS 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
D 1F RESULT <o. SET To 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Function: 

4 

• D 
D 
0 
D 
0 
0 
0 
D 
D 

• 

ADDRESSING 

DATA (INVALID SIGN/DIGIT) 

DECIMAL DIVIDE 

DECIMAL OVERFLOW 

EXECUTE 

EXPONENT OVERFLOW 

EXPONENT UNDERFLOW 

FIXED-POINT DIVIDE 

FIXED-POINT OVERFLOW 

FLOATING-POINT DIVIDE 

OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

D 
D 
D • 0 

NOT A FLOATING-POINT REGISTER 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Stores the relocation register specified by operand 1 to the main storage full word specified by operand 2. 

Explicit Format: 

LABEL t.OPERATION t. OPERAND 

[symbol] STRR 

Implicit Format: 

LABEL t.OPERATION t. OPERAND 

[symbol] STRR 

• 

• 

• 



• 

•• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-185 

STS 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES! 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER m 8302 s 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERF.LOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT• 0, SET TO 0 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

01F RESULT<O.SETTO 1 0 FIXED-POINT OVERFLOW BOUNDARY 

01F RESULT>o,SETT02 0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 • OPERATION· 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Stores the contents of processor hardware areas (registers, etc) into main. storage starting at the 
operand 2 location . 

EXplicit Format: 

LABEL A OPERATION A OPERAND 

[symbol) STS 

Implicit Format: 

LABEL Ll OPERATION Ll OPERAND 

[symbol] STS 



UP-8914 

su· 
F1oat1n9 Point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-186 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE L.GTH. 
MNEM. HEX. (BYTES) 

SU 7F RX 4 

Condition Codes 

• IF RESULT• O. SET TO 0 
• IF RESUL. T <o. SET TO 1 
• IF RESUL. T >o. SET TO 2 
0 IF OVERFL.OW, SET TO 3 
OuNCHANGED 

Function: 

• ADDRESSING 

0 DATA ONVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

• EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

• SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON FULL·WORO BOUNDARY 

0 

0 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes the contents of a full word in main storage specified by operand 2 to be algebraically subtracted 
from the contents of a full word in the register specified by operand 1(r1). The difference is placed in a full 
word in the operand 1 (r1) regist er. 

Explicit Format: 

LABEL 6.0PERATI ON!l OPERAND 

[symbol] SU r 1 ,d2 (x2 ,b2 ) 

Implicit Format: 

LABEL 6.0PERAT ION!!:.. OPERAND 

[symbol] SU r1 ,52 (x2 ) 

Operational Consideration: 

• The execution of the SU instruction is identical to that of the AU instruction, except that the sign is 
reversed before addition. 

• 

• 

• 



• 

• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

SUR JF RR 2 

Condition Codes 

.IF RESULT=O,SETTOO 

.IF RESULT<O.SETTO 1 
• IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
QUNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-187 

SUR 
Floating Point 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of a full word in the operand 2 (r2) register to be algebraically subtracted from a full 
word in the operand 1 (r1) register. The difference is placed in a full word in the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 6. OPERATION 6. OPERAND 

[symbol] SUR r1 ,r2 

Operational Considerations: 

• The execution of the SUR instruction is identical to that of the AUR instruction, except that the sign is 
reversed before addition . 



t 

UP-8914 

SVC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-188 
Update B 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

M NEM. HEX. (BYTES) 

SVC OA RR 2 

Condition Codes 

• SET TO 0 

• SET TO 1 

• SET TO 2 

• SET TO 3 
SEE OPER. CONSIDERATIONS 

Function: 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

D SPECIFICATION: 

D 
D 
D 
D 
D 

NOT A FLOATING-POINT REGISTER 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

• NONE 

Causes the interrupt code field (bits 24 through 31) of the current program status word (PSW) to be 
changed according to the contents of operand 1, a byte of immediate data in the instruction. 

Explicit and Implicit Format: 

LABEL b. OPERATION b. OPERAND 

[symbol] SVC 

Operational Considerations: 

• A supervisor call interrupt request is generated. 

• When the interrupt is granted, the contents of operand 1 (i,) are stored as the interrupt code (bits 24 
through 31) in the current program status word (PSW). The current PSW is stored in the supervisor 
call old PSW location, and the contents of the supervisor call new PSW location replace the current 
PSW. 

• The condition code is set equal to bits 34 and 35 of the supervisor call new PSW. It remains 
unchanged in the old PSW. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

2-189 

sw· 
FI011tlng Point 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE l.GTH. 
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL. OVER Fl.OW • NOT A FLOATING-POINT REGISTER 

SW &F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF.WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL.·WORD BOUNDARY 

• IF RESUL. T • 0, SET TO 0 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBL.E-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT<o. SET TO 1 

0 FLOATING-POINT DIVIDE 0 OP t NOT EVEN NUMBERED REGISTER 
.IF RESULT>O. SET TO 2 

0 01F OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Function: 

Causes the contents of a double word in main storage specified by operand 2 to be algebraically subtracted 
from the contents of the double word in the register specified by operand 1 (r1 ). The difference is placed in 
the double-word operand 1 (r1) register . 

Explicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] SW r1 ,d2 (x2 ,b2 ) 

Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] SW r, .Sz (Xz) 

Operational Consideration: 

• The execution of the SW instruction is identical to that of the AW instruction, except that the sign is 
reversed before addition . 



UP-8914 

SWR 
Floating Point 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

SWR . 2F RR 2 

··Condition Codes 

.IF RESULT= 0, SET TO 0 
• IF RESULT <o. SET TO 1 
.IF AESULT>O. SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-190 

Possible Program Exceptions 

Q AOORESSING 0 PROTECTION 

0 OATA (INVALID SIGN/OIGIT) • SIGNIFICANCE 

0 DECIMAL OIVIOE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF·WORO BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORO BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORO BOUNDARY 

0 FIXED-POINT OIVIOE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes the contents of the double word in the operand 2 (r2) register to be algebraically subtracted from 
the double-word contents of the operand 1 (r1) register. The difference is placed in the double-word 
operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol) SWR 

Operational Co,,sideration: 

• The execution of the SWA instruction is identical to that of the AWA instruction, except that the sign 
is reversed before addition. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-191 

TM 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
TM 91 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 0 0 SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS 0 NONE 

Function: 

Causes one byte in main storage specified by operand 1 to be tested for 1 bits according to the 8-bit mask 
specified in operand 2. The condition code is set to reflect the results of the test. 

Explicit Format: 

LABEL A OPERATION t. OPERAND 

[symbol] TM 

Implicit Format: 

LABEL A OPERATION t. OPERAND 

[symbol] TM 

Operational Considerations: 

• The 1 bits of the immediate operand 2 are used to test the bits of operand 1 . 

• The contents of operand 1 remain unchanged. 

• The condition code is set: 

to zero if all the 1 bits in the mask match zero bits in the byte tested or if all the bits in the mask 
are zero; 

to 1 if some of the 1 bits in the mask match zero bits in the byte tested; or 

to 3 if all the 1 bits in the mask correspond with 1 bits in the byte tested. 

Code 2 is not used. 



UP-8914 

TMS 

General 

OPCODE FORMAT 

TYPE 

MNEM. HEX. 

TMS E2 SM 

Condition Codes 

• SET TO 0 
• SET TO 1 

D SET TO 2 

• SET TO 3 

OBJECT 

INST. 
LGTH. 
(BYTES) 

G 

SEE OPER. CONSIDERATIONS 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-192 
Update B 

Possible Program Exceptions 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

• SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 

D 
D 

• 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 

OP 1 NOT ODD NUMBERED REGISTER 

LOW-ORDER BIT OF OP4 MUST BE 
ZERO . 

Causes a byte in main storage addressed by operand 1 to be tested against operand 2, a bY1e of immediate 
data. The condition code is set according to the result. A mask specified in operand 3 uses the condition 
code to determine whether program control passes to the next sequential instruction or to another location 
specified in operand 4 as an offset from the next sequential instruction. 

Explicit Format: 

LABEL 6.0PERATION 6. OPERAND 

[symbol] TMS 

Implicit Format: 

LABEL OPERAND 

[symbol] TMS 

Operational Considerations: 

• The offset field, which must be an even number, is 12 bits long and can range from -2048 decimal 
bytes to +2046 decimal bytes. 

• The user can code the offset as an absolute or relocatable expression. 

• The user must specify both the mask and the immediate byte as self-defining terms . 

• 

• 



UP-8914 

• 
• 

• 

• 

The condition code is set to: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

0 if all selected bits or the mask is zeros; 

1 if the selected bits are mixed (some zeros. some 1 's); or 

3 if all selected bits are 1 's. 

Condition code 2 is not used. 

2-192a 
Update B 

TMS 

t 



• 

• 

• 



• 

••• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-193 

TR 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE 1.GTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAi. DIVIDE 0 SPECIFICATION: 

0 DECiMAI. OVERFLOW 0 NOT A Fl.OATING-POINT REGISTER 

TR DC SS 6 0 EXECUTE 0 OP 1 NOT ON HAl.F-WORD BOUNDARY 

0 EXPONENT OVER Fl.OW 0 OP 2 NOT ON HAl.F-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESUI. T • 0, SET TQ 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O;SETTO 1 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTEA 
0 IF RESULT >o. SET TO 2 

0 01F OVERFLOW. SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Function: 

Causes the contents of operand 1 to be translated according to a table in main storage specified by operand 
2. As a result, operand 1 will contain data copied from the operand 2 table. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] TR 

Implicit Format: 

LABEL A OPERATION A OPERAND 

{symbol) TR 

Operational Considerations: 

• The 8-bit code of each character of operand 1 is used as an index to the base table address specified 
by operand 2. The character code located at this address 8-bit code value of operand 1 plus d2(b2) is 
transferred from the table to the character position of operand 1 . Thus, the original 8-bit code of 
operand 1 is replaced. 

• Translation continues until all characters specified by the length (I) have been translated. 

• The contents of the table are not changed unless overlap occurs . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-194 

TR 

• If the number of bytes· to be translated is not explicitly shown in operand 1, then the number will be 
equal to the length attribute of operand 1. 

• The programmer may place whatever values are required into the 256-byte translate table. When it is 
known what kind of bit configurations are expected as input (each unique configuration produces an 
address pointing to a unique table address). the desired value may be placed in the table to produce a 
translation. 

• 

• 

• 



• 

• ( 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER· 

-

2-195 

TRT 

General Poaible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE L.GTH. 
0 DATA (INVAL.IDSIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES I 0 DECIMAL. DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

TRT DD SS 8 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFL.OW 0 OP 2 NOT ON FULL.·WORO BOUNDARY 

• SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 0 
• SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 SETT03 OoPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS 0 NONE 

Function: 

Causes the contents of operand 1 to be translated according to a table in main storage specified by operand 2. 
The resultant data in the table will be tested and condition code set . 

Explicit Format: 

LA8EL !::. OPERATION !::. OPERAND 

[symbol) TRT 

Implicit Format: 

LABEL !::. OPERATION!::. OPERAND 

[symbol) TRT s, (I)~ 

Operational Considerations: 

• The translate and test (TAT) instruction searches the table in the same manner as the translate (TR) 

instruction. 

• The selected byte (result byte) in the translate table is examined and tested for an all-zero pattern. If 
the result byte is all zeros, it is ignored and the translate operation is continued. If the result byte is 
nonzero, the address of. the corresponding operand 1 byte is stored· in the least significant 24 bit 
positions of general register 1. the result byte is stored in the least significant 8-bit positions of 
general register 2, and the operation is terminated . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-196 

TRT 

• The contents of both operands remain unchanged. 

• If the maximum number of bytes to be translated is not explicitly shown in operand 1. then the 
number will be equal to the length attribute of operand 1. 

• The condition code is set: 

to zero if all result bytes are zero; 

to 1 if the result byte corresponding to any except the last operand 1 byte is nonzero; or 

to 2 if the result byte corresponding to the last operand 1 byte is nonzero. 

Code 3 is not used. 

• 

·-

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-197 
Update B 

TS 

General Possible Program Exceptions 

OPCODE FORMAT 

TYPE 

MNEM. HEX. 

TS 93 s 

Condition Codes 

• SET TO 0 
• SET TO 1 

0 SET TO 2 

0 SET TO 3 

OBJECT 
INST. 

LGTH. 
(BYTES) 

4 

SEE OPER. CONSIDERATIONS 

Function: 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING POINT DIVIDE 

0 OPERATION 

• PROTECTION 

D SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOA71NG-POINT REGISTER 

[_] OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Causes the operand, a byte in main storage, to be read and bit position 0 to be tested. After the byte is 
tested and the condition code is set. all the bits in this indicator byte are set to 1. The byte indicated by the 
operand can be used as an indicator switch that is tested and set to all binary 1 's by this instruction and 
then reset to binary O's by some other instruction. 

Explicit Format 

LABEL £:.OPERATION 6 OPERAND 

[symbol] TS 

Implicit Format 

LABEL 60PERATION 6 OPERAND 

[symbol] TS 

Operational Considerations: 

• Only the first bit of ti1e operand is tested to determine the condition code. 

• All eight bits of the operand are set to binary 1 's after the condition code is set. 

• The condition code is set as follows: 

0 if bit position 0 is zero; or 

- 1 if bit position 0 is 1 . 



UP-8914 

UNPK 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-198 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

UNPK F3 SS 

Condition Codes 

01F RESULT=O,SETTOO 
01F AESULT<O.SETTO 1 
01F RESULT>O.SETT02 
D IF OVEAF LOW, SET TO 3 
.UNCHANGED 

Function: 

6 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

D 
D 
D 
D 

OP 1 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON HALF-WORD BOUNDARY 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER D 
D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Converts the contents of operand 2 from a packed format to an unpacked format, which is placed in 
operand 1. 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] UNPK 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] UNPK 

Operational Consideration 

• This instruction proceeds one byte at a time from right to left. The first byte operated on has its sign 
and digit reversed (a 4C would become C4). Each half byte from then on is moved to the next left digit 
field, and an F is placed in the zone field of the receiving byte (EBCDIC notation). 

• Any unfilled bytes that are part of the specified length for operand 1 are zero filled. 

• Operand 2 data should be in packed decimal format. 

• Operand 1 should contain enough bytes to receive all digits, a zone for each digit, and a sign from 
operand 2. 

• Specification of a length attribute for operands 1 and 2 is optional. 

• 

• 



• 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

x 57 RX 4 

Condition Codes 

• IF RESULT• 0, SET TO 0 
.IF RESULT:#:O,SETTO 1 
01F RESULT>o. SET TO 2 
OIF OVERFLOW. SET TO 3 
OuNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-199 

x 

Possible Program Exceptions 

•. ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/OIGIT) 0 SIGNIFICANCE 

0 OECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

0 EXPONENT UNDERFLOW • OP2NOTONFUL~WORDBOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED·POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

QOPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

0 NONE 

Causes a logical exclusive OR operation to be performed on the contents of the operand 1 (r1) register and 
the full word in main storage specified by operand 2. The result is placed in operand 1 (r1). 

Explicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] x 

Implicit Format 

LABEL .60PIRATION .6 OPERAND 

[symbol] x 

Operational Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike; 
otherwise. the bit position in the result is set to zero. 

• The rules of operation for the exclusive OR (X) operation are illustrated by the following truth table: 

Openind 1 Operand 2 
Result 

(Operand 11 

0 0 0 

1 0 1 

0 1 1 

1 1 0 



UP-8914 

xc 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES I 

xc 07 SS 

Condition Codes 

• IF RESULT• 0, SET TO 0 
.IF RESULT :;Co. SET TO 1 
01F RESULT>O.SETT02 
01F OVERFLOW, SET TO 3 
OuNCHANGEO 

Function: 

6 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-200 

Pcmible Program Exceptions 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 

0 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Causes a logical exclusive OR operation to be performed on the contents of the areas in main storage 
specified by operand 1 and operand 2. The result is placed in operand 1 . 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] xc 

Implicit Format 

LABEL A~RATIONA OPERAND 

[symbol] xc 

Operational Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike; 
otherwise. the bit position in the result is set to zero. 

• The rules of operation for the exclusive OR operation are illustrated by the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 11 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

• 

• 

• 



UP-8914 

• 
-

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• The number of bytes used in each operand is specified by I in operand 1. 

2-201 

xc 

• If the number of bytes to be used in each operand Is not explicitly shown in operand 1, then the 
number will be equal to the length attribute of operand 1 . 



UP-8914 

XI 

General 

OBJECT 
OPCODE FOAM AT "INST. 

TYP E LGTH. 

MNEM. HEX. I BYTES) 

XI 97 SI 

Condition Codes 

• IF AESUL T; O. SET TO 0 
• IF RESULT :;i!:o, SET TO 1 
01F AESULT>O.SETT02 
01F OVERFLOW. SET TO 3 
OuNCHANGED 

Function: 

4 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-202 

Possible Program Exceptions 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED·POIN"T DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF WOAD BOUNDARY 

0 OP 2 NOT ON HALF·WOAD BOUNDARY 

0 OP 2 NOT ON FULL WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED AEGISTEA 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Causes a logical exclusive OR operation to be performed on the contents of operand 1 (a byte in main 
storage) and operand 2 (a byte of imm9diate·data in the instruction). The result is placed in operand 1. 

Explicit Format 

LAllL ~OPIAATION~ OPIRAND 

[symbol 1 XI d, (b, ) ,i2 

Implicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] XI s, ,i2 

Operational Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike; 
otherwise, the bit position in the result is set to zero. 

• The rules of operation for the exclusive OR (XI) operation are illustrated by the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 11 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

• 

• 

• 



• 

• / 

• 

UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BY fESl 

XR 17 RR 2 

Condition Codes 

• IF RESULT• 0, SET TO 0 
.IF RESULT¢0,SETTO 1 
01F RESULT >o. SET To 2 
01F OVERFLOW, SET TO 3 
QUNCHANGED 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-203 

XR 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORO BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 

0 0 OPERATION OP 1 NOT ODO NUMBERED REGISTER 

• NONE 

Causes a logical exclusive OR operation to be performed on the contents of the registers specified by 
operand 1 (r1) and operand 2 (r2). The result is placed in operand 1 (r1) • 

Explicit and Implicit Format: 

LABEL ll OPERATION l:l OPERAND 

[symbol) XR 

Operational Considerations: 

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike; 
otherwise. the bit position in the result is set to zero. 

• The rules of operation for the exclusive OR (XR) operation are illustrated by the following truth table: 

Result 
Operand 1 Operand 2 (Operand 1) 

0 0 0 

1 0 1 

0 1 1 

1 1 0 



UP-8914 

ZAP 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-204 

Gen era I Possible Program Exceptions 

OBJECT 
OPCODE FO AMAT INST. 

T YPE LGTH. 
MNEM. HEX. (BYTES) 

ZAP Fl SS 

Condition Codes 

• IF RESULT• 0, SET TO 0 
.IF RESULT<O, SET TO 1 
.IF AESULT>O, SET TO 2 
.IF OVERFLOW, SET TO 3 
0UNCHANGED 

Function: 

8 

• ADDRESSING 

• DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

• DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING.POINT DIVIDE 

OoPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 
0 

0 
0 

OP 2 NOT ON FULL-WORD BOUNDARY 

OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN e1UMBERED REGISTER 

OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

Clears operand 1 to zeros and adds the value of operand 2. Replaces operand 1 with the value of operand 2 . 

Explicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] ZAP 

Implicit Format: 

LABEL A OPERATION A OPERAND 

[symbol] ZAP 

Operational Considerations: 

• Equivalent to AP with zero in operand 1. Sign digit is generated. 

• Checks operand 2 sign and digits for validity. 

• Decimal overflow condition exists when operand 2 value will not fit in operand 1 . Most significant 
digits are truncated. 

• Zero result has positive sign. When overflow occurs, zero result has sign of operand 2. 

• Operand 2 is zero extended when it does not fill operand 1 . 

• Operands 1 and 2 may overlap if least significant bytes coincide, or if least significant byte of operand 
1 is to the right of the least significant byte of operand 2. 

• 

• 

• 



•• 

3. · BAL· 0·1reetives 

·-



• 

• 

• 



• 

• 

• 

UP-8914 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-1 

Defines and generates an 8-byte channel command word aligned on a double-word boundary. 

Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] ccw 

where: 

op, 
Is the command code specifying the operation to be performed. 

Is the address of the first byte in main storage of the data being controlled. 

Is the flag control indicating the options desired . 

Is the byte count indicating the number of bytes of data to be controlled . 

ccw 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-2 
Update B 

CNOP 

Function: 

Adjusts the location counter to a half-word, full-word, or double-word storage boundary without initiating 
any other operation. 

Format: 

LABEL 60PERATION 6 OPERAND 

unused CNOP 

where: 

a1 and a2 

Are absolute expressions consisting of predefined terms. 

Operational Considerations: 

The first expression in the operand field indicates a byte to which the location counter must be set. Legal 
values for the first expression are zero and 2 for full-word boundary alignment and zero, 2, 4, and 6 for 
double-word boundary alignment, as follows: 

• Zero indicates a full-word or double-word boundary. 

• A 2 indicates the second byte (first half word) past the boundary. 

• A 4 indicates the fourth byte (second half word) past a double-word boundary. 

• A 6 indicates the sixth byte (third half word) past a double-word boundary. 

Permissible values for the second expression are 4 and 8, indicating that the adjustment is relative to a 
full-word or double-word boundary, respectively. 

If the location counter is already set to the indicated byte, the CNOP has no effect. When alignment is 
needed, one, two, or three no-operation instructions are generated to increment the location counter to the 
proper half-word boundary and to ensure correct instruction processing. All terms must be predefined. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

3-3 

COM 

Function: 

Enables the programmer to define a control section to be used as a common storage area for two or more 
separately assembled routines. The format of the common section may be described by OS and DC 
directives. Labels appearing within the sections are defined. Like a dummy control section, no data or 
instructions are assembled in a common section. It has a separate location counter with an initial value of 
zero. Data may be entered into a common section only by execution of a program that refers to it. DC 
instructions act as OS instructions in the COM area because neither instructions nor constants in a 
common storage area are assembled. Labels defined in a common section are not subject to the 
restrictions imposed on dummy section labels. 

One assembly can define only one common section. However, several COM directives may appear amon.,g 
the source statements. Each COM directive after the first defines a continuation of the common section 
previously described. When several routines defining common storage are linked, the resulting module 
contains only one section corresponding to the common sections in the input modules. The length of this 
section is the length of the largest like common section in the input modules. 

Format 

LA•IL AOPIRAnONA OPERAND 

[symbol] COM unused 

Operational Considerations: 

If the common section is unlabeled, the area is addressed by referencing the label of a statement within 
the common section with a USING directive. · 

If more than one object module element refers to a common storage area with the same name, the 
references are to the same storage area. Only one common storage area is allocated within a load module 
to satisfy all object module requests for common storage areas with the same name. The size of a common 
storage area in a load module is determined by the maximum size requested by any object module for 
common storage with that name. Blank common storage areas are allocated in the same way. 

In a multiphase load module. common storage areas are not normally overlaid. 

The following rules apply to the use of common storage: 

An entry point cannot have the same name as a labeled common storage area included in the load 
module. 

When the linkage editor includes module elements (CSECT or COM) with the same name as a labeled 
common storage area, that section is treated as a block data subprogram (i.e., to initialize values of 
labeled common blocks) and is loaded into all or a portion of the common storage area. A block data 
subprogram is loaded when the phase in which it was included is loaded. Blank common cannot be 
initialized during loading unless the text encountered is for that COM ESD. 



UP-8914 

COM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-4 

If an object module has requested common storage. the partial inclusion of a single control section 
from that object module will cause the common storage area defined to be included also. regardless 
of whether or not the included control section refers to that common storage name. For further 
information. see the linkage editor portion in system service programs (SSP) user guide, UP-8062 
(current version). 

• 

• 

• 



•• 

• 

• 

UP-8914 

Function: 

SPERflY UNNAC 05/3 
ASSEMBLER 

3-5 

COPY 

Causes the source module identified in the operand field of the COPY directive to be included directly into 
the source program being assembled. 

Format: 

LABEL A OPERATION A oeERAND 

unused COPY symbol 

where: 

symbol . 

Identifies the code to be copied by the assembler. Only one symbol may be used. 

Operational Considerations: 

The assembler places the source code, identified by the operand, immediately after the COPY directive. 
This source module may not include any COPY. END. ICTL, MACRO. MEND. NAME, or PROC directives. 
Statements included in the program by a COPY directive are assumed to be in standard format regardless 
of any ICTL directives in the program . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-6 

CSE CT 

Function: 

Indicates the initiation or continuation of a control section. 

Format: 

LABEL LlOPEAATION Ll OPERAND 

[symbol] CSE CT unused 

Operational Considerations: 

The symbolic name of the control section defines an entry point of the program being assembled. This 
symbol must not appear as a symbol for any other source statement except the START directive of its 
control section or another CSECT directive to indicate continuation of the coding in the same control 
section. 

Each control section is adjusted to begin on a double-word boundary. The value of the symbol is the 
address of the first byte of the control section and has a length att.ribute of 1 . 

If the symbol is blank. the CSECT directive is a continuation of coding for an unnamed control section. If 
the symbol is 

0

blank and is not preceded by an unnamed control section, the CSECT initiates an unnamed 
control section. Only one unnamed control section is permitted in a module. 

• 

• 

• 



• 
UP-8914 SPERRY UNIVAC OS/3 

ASSEMBLER 
3-7 

DC 
Float1119 Point 

Function: 

Defines the value of a floating-point number and has a program storage location assigned to it. The format 
of floating-point constants differs from the standard format of the DC statement in that an additional 
subfield may appear - the scale modifier. 

Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] DC [d) t[Ln ][s+n] 'c[E±n)' 

where: 

[symbol) 

d 

t 

S+n 

Is up to eight characters. 

The duplication factor designates the number of identical constants or areas to be generated. An 
unsigned decimal value is used to specify the duplication factor. If no duplication subfiald is used, the 
assembler assumes a factor of 1. A duplication factor of zero generates neither a constant nor a 
storage area and, if no length factor is specified, the location counter will provide the proper 
boundary alignment and assign the location counter value to the symbol used. A duplication factor of 
zero is not permitted with literals. Even though the duplication factor can change the size of the 
storage area used, the use of the duplication factor does not change the length attribute of the field. 
The maximum value of the duplication factor is 256. 

The definition-type symbol is required to determine the alignment, padding, truncation, storage form, 
and implied length. (See Table A-6 for the characteristics of the E and D types.) 

Is the explicit length factor in decimal. Two types of floating-point constants are available: full word 
(E) and double word (D). The implied length of an E type constant is four bytes; if the length modifier 
is omitted. full-word boundary alignment is assigned. The implied length of a D type constant is eight 
bytes; if the length modifier is omitted. double-word boundary alignment is assigned. In either case, 
an explicit length modifier of from one to eight bytes may be specified. 

Is the scale modifier and must be positive signed or unsigned decimal number. If the sign is omitted, 
a positive value is assumed. The scale modifier is applied to a number after it has been converted to 
internal format. 



UP-8914 

DC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-8 

l'loatlng Point -
'c{E±nr 

Is the constant specification with optional exponent. A floating-point number is written as a decimal 
number which may be an integer (110), a fraction (75), or a mixed number (110.75). ·The floating
point number may be followed by an optional exponent represented by an E, a sign, and a decimal 
number, respectively. In the absence of a sign, a plus sign is assumed. The exponent for a constant is 
that power of 10 by which that constant will be multiplied before its conversion to internal format. 
This exponent value may range from -85 to +75. 

Operational Considerations: 

FULL 
WORD 

DOUBLE 
WORD 

The machine representation of the constant consists of a hexadecimal fraction (mantissa) and a 
hexadecimal exponent (characteristic). The arithmetic point is assumed to be at the left of the leftmost digit 
of the fraction. The characteristic represents the power of 16 by which the fraction must be multiplied to 
obtain the value of the constant. The machine format is as follows: 

(SHORT FORMAT) 

r chancteristlc rnentlsu g 
(exponent) (hc:tlonl n 

0 7 8 8 heudeclmel digits 31 

(LONG FORMA Tl 

r ?D chm'Kterittlc rnentlsu 
ft (exponent) (fraction I 

0 78 14 hexedlcimel digits 

where: 

sign 
Is the zero bit. the sign of the mantissa. 

characteristic 
Is a 7-bit binary number (signed and biased by the hexadecimal value 4011, decimal value 64) 
reflacting the scaling of the floating-point number. 

mantiua 

NOTE: 

Is the fraction after the constant has been converted to its machine representation; scaling is 
performed if specified. 

The floating-point value is the product of the mantissa (fraction) and the base 16 raised to the power of the 
biased characteristic (exponemJ after the exponent has been reduced by 64. 

• 

• 

• 



• 

•• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-9 

DC 
Standard Fonn•t 

Function: 

Defines the value of a decimal number, an alphanumeric expression, or address constant and has a 
program storage location assigned to it. 

Format: 

LABEL fl OPERATION fl OPERAND 

[symbol) DC 

"' 

where: 

[symbol) 

d 

t 

Is up to eight characters long. 

The duplication factor designates the number of identical constants or areas to be generated. An 
unsigned decimal value is used to specify the duplication factor. If no duplication subfield is used, tt>e 
assembler assumes a factor of 1 . A duplication factor of zero generates neither a constant nor a 
storage area and, if no length factor is specified, the location counter will provide the proper 
boundary alignment and assigns the location counter value to the symbol used. A duplication factor 
of zero is not permitted with literals. Even though the duplication factor can change the size of the 
storage area used, the use of the duplication factor does not change the length attribute of the field. 
The maximum value of the duplication factor is 256. 

The definition-type symbol is required for both DC and OS statement to determine the alignment, 
padding, truncation, storage form, and implied length. (See Table A-6 for the characteristics of the 
13 types used.) 

The length factor designates the explicit value of the length attribute of a field generated by a OS or 
DC statement. The length attribute of a field used in an assembler application instruction determines 
the number of bytes involved in that instruction. The maximum value of the length factor is 256. 
Boundary alignment is not provided when a length factor is specified. 

•c• or (c) 
The constant specification determines the constant, or storage, to be generated. When an apostrophe 
or ampersand is included in the constant specification, double apostrophes or ampersands are used 
to indicate the inclusion of these characters in the constant. The constant may take the form of data 
or an address, as shown in Table A-6 . 



UP-8914 

DROP 

Function: 

SPERRY UNIVAC 05/3 
ASSEMBLER 

3-10 

Informs the assembler that the registers specified are no longer available for base register assignment. 

Format 

LABEL OPERAND 

unused DROP 

where: 

r,[, ••. ,rnJ 

Specifies that the declared registers (0 through 15) are no longer available for base register 
assignment. 

Operational Considerations: 

Registers previously made available for base register assignment may be dropped and made available 
again in a USING directive. The value assumed to be in a base register may be changed by coding another 
USING directive without an intervening drop of that register. 

• 

• 

• 



• 

•• 

UP-8914 .SPERRY UNIVAC OS/3 
ASSEMBLER 

3-11 

OS 

Function: 

Defines storage to be used as work areas, to hold data, and to function as input and output areas. The 
storage areas are assigned program locations. 

Format: 

LABEL /::,. OPERATION /::,. OPERAND 

[symbol} OS 

where: 

symbol 

d 

t 

Is up to eight characters long. 

The duplication factor designates the number of identical constants or areas to be generated. An 
unsigned decimal value is used to specify the duplication factor. If no duplication subfield is used, the 
assembler assumes a factor of 1. A duplication factor of zero generates neither a constant nor a 
storage area and, if no length factor is specified, the location counter will provide the proper 
boundary alignment and assigns the location counter value to the symbol used. A duplication factor 
of zero is not permitted with literals. Even though the duplication factor can change the size of the 
storage area used, the use of the duplication factor does not change the length attribute of the field. 
The maximum value of the duplication factor is 256. 

The definition-type symbol is required for both DC and OS statements to determine the alignment, 
padding, truncation, storage form, and implied length. (See Table A-6 for the characteristics of the 
13 typeS used.) 

The length factor designates the explicit value of the length attribute of a field generated by a OS or 
DC statement. The length attribute of a field used in an assembler application instruction determines 
the number of bytes involved in that instruction. The maximum value of the length factor is 456. 

'c' or (c) 
The constant specification determines the constant, or storage, to be generated. When an apostrophe 
or ampersand is included in the constant specification. double apostrophes or ampersands are used 
to indicate the include of these characters in the constant. The constant may take the form of data or 
an adQress. as shown in Table A-6. 

NOTE: 

The maximum explicit length for a DS is 65,535 bytes. (See Table A-6 for C and X types.) Only the 
number, not the content, of the bytes reserved by a DS statement is determined by the assembler. 



UP-8914 SPERRY UNNAC 05/3 
ASSEMBLER 

3-12 

DSECT 

Function: 

Defines a data storage area permitting one or more programs to use indirect symbolic addressing for the 
same record items. 

Format: 

LABEL /::.OPERATION/::. OPERAND 

[symbol] DSECT unused 

Operational Consideration: 

Storage is not reserwd bv a OS directive within a dummy control section, and the data and instructions 
appearing in a dummy control section do not become part of the assembled program. A separate location 
counter with an initial value of zero is kept for each dummy control section. More than one DSECT directive 
with the same symbol may appear in a module. The first DSECT directive initiates the dummy control 
section, which is continued by the remaining DSECT directives. 

Symbols of statements in a dummy control section are called dummy section symbols. The following rules 
must be observed in using and assigning dummy section symbols: 

• An unpaired dummy section symbol may appear only in an expression defining a storage address for 
a machine instruction or an S-type constant. 

• A base register may not be specified for an address field containing an unpaired dummy section 
symbol. 

• The programmer must ensure that the appropriate value is loaded into the register specified in the 
USING statement. · 

To guarantee alignment between the actual storage area and the dummy control section, the user should 
align the storage area to a double-word boundary. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-13 

EJECT 

Function: 

Causes the assembler to continue the assembly listing on the top of the next page. 

Format 

LABEL A OPERATION A OPERAND 

unused EJECT unused 

Operational Considerations: 

If the next line of the listing causes a page change, the EJECT directive has no effect. 

When the EJECT directive is encountered, the printing form is skipped to the next page. If a title has been 
previously specified, the title is printed on the new page. An EJECT directive appearing in a source code 
macro definition causes the form to be skipped whenever the definition is listed and each time the macro is 
generated • 

The assembler will advance the assembly listing to a new sheet whenever a sheet is full. However, if the 
programmer would like each new logical part or subroutine to start at the top of a new sheet, the EJECT 
directive can be used whenever starting a new sheet is desired 

The EJECT directive itself is never printed • 



UP-8914 

END 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Indicates the end of a source program. 

Format: 

LABEL 6 OPERATION 6 

[symbol] END [e] 

where: 

e 
Is a relocatable expression. 

Operational Considerations: 

3-14 

OPERAND 

The END directive must be the last statement in the source program. An expression in the operand field 
designates the point in the program where control may be transferred after the program is loaded. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-15 
Update B 

ENTRY 

Function: 

Declares to the assembler those symbols defined by the module being assembled that may be referenced 
by other modules. 

Format: 

LABEL t:. OPERATION t, OPERAND 

unused ENTRY symbol [,symbol, ... ,symbol] 

Each symbol in the operand field is declared to be defined in this module. Their names and assigned values 
are included in the output of the assembler as external reference records. ..,_ 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-16 

EQU 

Function: 

Defines the length and value of a symbol using another symbol as all or part of the definition. 

Format: 

LABEL !J,. OPERATION !J,. OPERAND 

symbol EQU e[,a] 

where: 

e 
Is an absolute or relocatable expression. 

a 
Is an absolute expression. 

All symbols must be predefined. 

Operational Considerations: 

The symbol in the label field is defined as the value of the first expression in the operand. The maximum 
values are -223 to 223-1. The length attribute of the symbol is equal to the second expression (a) if 
explicitly stated. If the second expression (a) is omitted, the symbol will have the length attribute of the first 
term in the first expression (e). If the first term is an * or a self-defining term, the length attribute of the 
symbol is 1. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-17 
Update B 

EXT RN 

Function: 

Declares to the assembler those symbols used in the module being assembled that are defined in a 
different module. 

Format: 

LABEL A OPERATION A OPERAND 

unused EXTRN symbol [,symbol, ... ,symbol] 

Operational Considerations: 

Each symbol in the operand field is declared to be a symbol defined in some other module. The symbolic 
name and the external symbol identification assigned by the assembler are input to the linkage editor as an 
external definition record. Each reference to the externalized symbol creates an appropriate relocation 
mask to allow reference resolution at linkage editor time. When an EXTRN and a definition for an identical 
symbol appear in the same assembly, the EXTRN reference is discarded automatically, and the definition is 
accepted regardless of the order of appearance of either item . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-18 

ICTL 

Function: 

Specifies new values for the begin, end, and continue columns. Normally, a source statement begins in 
column 1 of the coding form and ends in column 71. If a continuation statement is needed, a character is 
written in column 72, and the statement continues in column 16 of the following line. 

Format: 

where: 

b 

e 

c 

LABEL ti OPERATION ti OPERAND 

unused ICTL [b] [,e] [,c] 

Is an unsigned decimal integer specifying the beginning column. It must be between 1 and 75. 

Is an unsigned decimal integer specifying the ending column. It must be greater than or equal to b + 5 . 

Is an unsigned decimal integer specifying the continuation column. It must be greater than or equal 
to b and less than e. The line is continued starting in the column specified by c. 

If b is omitted, it is assumed to be 1. If e is omitted, it is assumed to be 71. If c is omitted or if e equals 80, 
continuation records are not allowed. 

Operational Considerations: 

There can be only one ICTL directive in a source code module and it must immediately precede or follow 
any program-defined macro definitions. The ICTL directive applies only to those source statements that 
follow it. All library macro definitions are assumed to have normal output format. If the ICTL appears before 
the START card and it is incorrect, the assembly is terminated. When an ICTL appears out of sequence 
(must be first statement following START card), the ICTL terminates the assembly. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-19 

ISEQ 

Function: 

Informs the assembler which columns of the source statement contain the field used for checking the 
sequence of statements and controls the initiation and termination of sequence checking. 

Format: 

where: 

r 

LABEL tr.OPERATION 6 OPERAND 

unused ISEQ l,r 

Is a decimaJ integer specifying the leftmost column of the field to be used for the sequence check. 

Is a decimal integer specifying the rightmost column of the field to be used for the sequence check; r 
must be greater than or equal to I. 

Operational Considerations: 

Columns to be checked should not fall between the beginning and ending input columns specified for the 
program. 

The sequence check begins with the first source statement after the first ISEQ directive and is terminated 
by an ISEQ directive with a blank or invalid operand field. 

Sequence checking is not performed on statements generated from macro definitions or on statements 
inserted into the source code via a COPY directive. 

If no ISEQ directive is supplied, no sequence checking occurs . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-20 

LTORG 

Function: 

Generates all literals previously defined into a data pool within the source program. 

Format: 

LASEL A OPERATION A OPERAND 

[symbot] LTORG unused 

Operational Considerations: 

The literals are pooled following the occurrence of the LTORG directive. A symbol in the label field 
represents the first byte of the generated literal pool and is assigned a length attribute of 1. LTORG 
directives may not appear within a dummy control section or in a blank common storage area. If there are 
no LTORG statements in a program and literals are specified, or if any literals are specified after the last 
LTORG directive in a program, these literals are pooled at the end of the first control section. The 
programmer then must ensure that a valid base register is available to address the locations in the literal 
pool. 

Uterals are placed in the literal pool according to their total length (duplication factor multiplied by the 
length of the constant). The literal pool consists of four sections: 

1. Uterals with total lengths that are multiples of double words (eight bytes) 

2. Uterals with total lengths that are multiples of full words (four bytes) 

3. Literals with total lengths that are multiples of half words 

4. Any remaining literals 

Within each pool section, the literals are stored in order of occurrence. Before the literal pool is generated, 
the location counter is.adjusted to a double-word boundary. If two control sections are assembled together 
and an LTORG is not included in the second or following sections, then all the literals defined in all the 
sections will be pooled in the first section and may subsequently be available only to that first section. To 
ensure that each linked control section can use the literals declared by it, an LTORG can be used within 
each control section. 

• 

• / 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-21 

OPSYM 

Function: 

The delete operation code (OPSYM) directive permits the user to tell the assembler not to accept a certain 
mnemonic operation code. 

Format· 

LABEL 

mnemonic 
operation 
code 

A OPERATION A OPl!RAND 

OPSYM unused 

After the OPSYM directive is used to declare a mnemonic code as unacceptable, the assembler will not 
generate the normal object code for that mnemonic if it appears after the OPSYM. The user is then free to 
use the declared mnemonic another way, for example, as the mnemonic code of a macro prototype 
statement . 

The OPSYM directive cannot be used from within a PROC/MACRO or from within code generated as a 
result of conditional assembly statements. 



UP-8914 

OPSYM 

Example: 

LABEL 
1 

1l OPERATION 11 
10 16 

SPERRY UNIVAC OS/3 -
ASSEMBLER 

OPERAND 

3-22 

In this example, the program is preceded with a macro definition that is used in the program. Line 2 contains the 
mnemonic code A. which is the mnemonic operation code for an add full-word instruction. Before ttle A macro 
can be called into the program, an OPSYM directive must be used to tell the assembler not to recognize A as the 
add full-word mnemonic. The OPSYM directive must come before the line of code that references the macro; 
that is, line 8 must precede line 9. 

• 

• 

• 
---------------------------------------------·-·---·-··-···-·-------



•• 

•• ( 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-23 

ORG 

Function: 

Sets or resets the location counter to a specified value. 

Format 

LAaL /::. OPIRA TION /::. OPIRAND 

[symbol] ORG (a] 

where: 

e 
Is a relocatable expression. 

Operational Considerations: 

The location counter is set to the value of the expression in the operand field. When no expression is 
present. the location counter is set to the highest location previously assigned in that control section. A 
symbol in the label field has the same value as the expression in the operand field and is assigned a length 
attribute of 1. The expression in the operand field must be relocatable~ Its value must represent an address 
in the same control section in which the ORG occurs. This address value must be equal to or greater than 
the initial setting of the current location counter. If the expression is in error, the ORG directive is ignored 
and the line is flagged. All terms in the expression must be predefined. 

The ORG directive permits the location counter to be set to a value not on a half-word boundary. 

Bytes of storage reserved with an ORG directive are not set to zero or cleared when the program is loaded . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-24 

PRINT 

Function: 

Controls the contents of the assembly listing. 

Format: 

LABEL fl OPERATION fl OPERAND 

unused PRINT LJ Qi ]f •Iii; .] [ DATA ] [ SINGLE J L{oFF} i:{NOGEN} · ~4} ·{oouaLe} 

where: 

Specifies the listing is to be printed. 

OFF 
Specifies that no listing is printed. 

GEN 
Specifies that lines generated by a macroinstruction are printed. 

NOGEN 
Specifies that lines generated by a macroinstruction are not printed, except that the macroinstruction 
and any MNOTE messages generated are printed. 

DATA 
Specifi~ that all characters of each constant representation are printed. 

NOOATA 
Specifies that only the first eight characters of each constant representation are printed. 

SINGU: 
Specifies that the source listing is single-spaced. 

DOUBLE 
Specifies that the source listing is double-spaced. 

Operational Considerations: 

If a PRINT directive specifies OFF plus other parameters, the other specifications are not effective until a 
PRINT directive is encountered that specifies the listing facility is to be turned ON. The options provided by 
a PRINT directive are keyword (not positional) parameters; therefore, the comma is not required if a 
parameter is omitted. The initial print condition of assembly printing is ON, GEN. NOOATA, SINGLE. This 
condition remains until the first PRINT directive changes it. PRINT directives may change from only one to 
all of the parameters; any unspecified parameters remain in their previous condition. A PRINT directive 
may not appear in a macro definition. 

• 

• 

•• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-25 

PUNCH 

Function: 

Produces a record at assembly time. This directive is used to produce job control card images to precede or 
succeed. the object module; it eliminates the necessity of manually inserting them. 

Format: 

LABEL A OPERATION A OPERAND 

unused PUNCH ' . c, •""·•Cao 

where: 

c, •...• c., 
R~nts a string of up to 80 characters produced as a record in the object code output. 

Operational Considerations: 

The following conditions apply to characters in the oper!lnd field. 

• Up to 80 characters, including spaces, may be specified within the apostrophes. 

• An apostrophe within the operand must be specified as a pair of apostrophes. 

• An ampersand within the· operand must be specified as a pair of ampersands. 

• Spaces must be used to separate fields. 

• In counting the 80 characters, a pair of ampersands or apostrophes written to express a single 
apostrophe, or ampersand, counts as one. 

A PUNCH directive prior to the first control section of the program produces records prior to the first control 
section, and all others produce records after the last control section. 

Variable symbol substitution is performed within the operand field. 

Although the PUNCH directive may be included anywhere in the program, it may not be used before macro 
definitions • 



UP-8914 

REP RO 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-26 

Reproduces a record in its entirety (columns 1 through 80) during assembly time. This directive is useful in 
producing job control card images to precede or succeed the object module and eliminates the necessity of 
manually inserting them. 

Format: 

LABEL f1 OPERATION f1 OPERAND 

unused REPRO unused 

Operational Considerations: 

This directive causes the contents of the following source record to be reproduced as a record in the 
assembler output. Each REPRO direetive produces one record; up to 80 bytes are reproduced. 

A REPRO directive prior to the first control Section of the progr'm produces records prior to the first ~ontrol 
section-, and all others produce records after the last comrol section. 

All REPRO directives following the declaration of the first CSECT (ST ART) produce records that appear after 
the object module transfer record. Although this directive may be included anywhere in the program, it 
cannot be used before a macro definition. 

No substitution for variable symbols occurs in the record thus produced. 

• 

• 

• 



• 

• 

UP-8914 

Function: 

SPERRY UNIVAC 05/3 
ASSEMBLER 

3-27 

SPACE 

Advances the paper in the printer a specified number of lines. The operand field contains an unsigned 
decimal integer specifying the number of lines the paper is to be advanced. If no operand is coded, one line 
will be spaced. 

Format 

LABEL AOPERATloN A OPERAND 

unused SPACE [i) 

where: • 

i. 

Is an unsigned decimal integer . 



UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

3-28 . 

START, 

Function: 

Defines the program name, the name of the first control section, and the initial location counter value. 

Format: 

LABEL A OPERATION A OPERAND 

[symbol] START [a] 

where: 

a 
Is an absolute expression. 

Operational Considerations: 

A symbol in the label field becomes the name of the first or only control section in the program. If the label 
field is blank, an unnamed control section is begun. All statements following the START directive are 
assembled as part of the control section until another unique control section definition is encountered. 

The label field of a CSECT directive. which contains the same name as the label field of the ST ART 
directive, identifies the continuation of the control section. A blank label field in the CSECT directive 
identifies the continuation of an unnamed control section that began with an unnamed START directive. 

The symbol in the label field of the START directive also identifies or names the object program. If the 
START directive is unnamed, the object module is assigned the name ASMOBJ. The symbol must be a 
valid symbol. It is an aUtomatic entry point and has a length attribute of 1. The ST ART directive must not be 
preceded by any statements that would initiate a conti:ol section. 

The self-defining term in the operand field of the START directive establishes the initial location counter 
value for the first control section. If the self-defining term represents a value that is not a multiple of 8, the 
START directive is flagged and the location counter set to the next higher multiple of 8. If the operand is 
omitted, the initial control section is assigned a location counter value of zero. 

• 

• 

• 



• 

•• ( 

• 

UP-8914 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-29 

TITLE 

Provides data for the heading of each page of the assembler listing and advances the printer form to a new 
page. 

Format: 

LABEL fl OPERATION/:,. OPERAND 

unused TITLE 'c' 

, 

where: 

'c' 

Is a heading of up to 100 characters enclosed in apostrophes. 

Operational Considerations: 

The following conditions apply to characters in the operand field: 

• Any character may be specified, including spaces, within the defining apostrophes. 

• An apostrophe within the operand must be specified as a pair of apostrophes. 

• An ampersand within the operand must be specified as a pair of ampersands. 

• Spaces may be specified freely to separate heeding words. 

More than one TITLE directive is permitted in a program. A TITLE directive provides the heading for all 
pages in the listing that succeed it • 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

USING 

Function: 

Informs the assembler that a specified register is available for base register assignment and will contain a 
specific value at execution time. The value must be loaded by the program into the base register that the 
USING directive specifies. The assembler maintains a USING table of the specified registers. 

Format 

where: 

v 

LABEL /l OPERATION fl OPERAND 

unused USING 

Is the value assumed to be in the first specified register at execution time. This value may be 
relocatable or absolute. Literals are not permitted. 

r1( ••••• rn] 
Specifies that the declared registers (0 through 15) will be used as base registers loaded at execution 
time. These register numbers do not necessarily have to be assigned in ascending sequence. 

Operational Considerations: 

The first register specified after v is assigned the value of v; the next register is assigned the value of the 
first register plus 4096; the next register is assigned the value of the second register plus 4096; and so on 
through all the registers specified. A USING directive may specify a single register or a group of registers. 
or the registers may be specified by individual USING directives. 

Register O may be specified as a valid base register; however, the assembler assumes that it always 
contains the value O and calculates displacement as if the operand were zero. Register 0 must be the 
operand specified by r,. and any registers specified in the operand field following register 0 are assumed to 
contain increments of 4096 from zero. 

When v is absolute, the indicated registers may be used to process only absolute effective addresses. 

When v is relocatable, the indicated registers can be used to process only relocatable effective addresses. 
The registers r1, •••• rn are used to process only those addresses in the same control section as the address 
represented by v. 

The value specification in a USING directive sets the lower limit of an address range; the upper limit is 
automatically set 4095 bytes above the lower limit. The upper limit of a USING directive may be set less 
than 4095 bytes by being overlapped by the lower limit of another USING directive. 

The range specified by a USING directive is used by the assembler to assign base register and 
displacement values to those effective operand addresses that fall 111tithin that range. 

• 

• 

• 



UP-8914 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-31 

USING 

If an operand address is specified as an effective address instead of a base register and displacement 
specification, the assembler searches the USING table for a value yielding a displacement of 4095 or less; 
if there is more than one such value, the value that yields the smallest displacement is chosen. If no value 
yields. a valid displacement, the operand address is set to zero, and the line is flagged with an error 
indication. If more than one register contains the value yielding the smallest displacement, the highest 
numbered register is selected . 



• 

• 

• 



• 

4. BAL Macro Definition Statements 

• 

• 



• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-1 

ACTR 

Function: 

The ACTR statement is used to limit the number of AGO, AIF, GOTO, AGOB, AJFB. and DO statements that 
may be processed by the assembler either within a macro or within the source program. 

Format: 

LABEL i:lOPERATION t1 OPERAND 

unused ACTR SETA expression 

Operational Considerations: 

The ACTR statement must be written immediately following the local and global symbol declarations in 
either the source program or in a macro definition. There can be a separate ACTR statement in the source 
program and in each macro definition • 

The value of the expression in the operand field may be any positive value from 1 to 223-1. The value 
specified in the operand field causes a counter to be set to that value. This counter is decremented by 1 for 
each AGO, AGOB. or GOTO statement that is processed for each AIF or AIFB statement whose evaluation 
resulted i~ a true condition and for each time that the range of a DO statement is generated. 

If the counter is zero ·prior to decrementing, the following occurs; If a macro is being processed, its 
processing and that of any macros above it in a nest are terminated. 'fhe next statement to be processed is 
in the source code following the macroinstruction that initiated the nest. If the source code is being 
processed (outside a macro definition), an END directive is generated. The assembly continues with only 
tha~ portion of the program generated thus far. 

If an ACTR statement is not written, the value of the counter is 409618 • 



UP-8914 

AGO 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Unconditionally alters the sequence of source statement processing. 

Format: 

LABEL fl OPERATION fl OPERAND 

{
AGO } 
AGOB 
GOTO 

·52 

where: 

AGO 
Defines the operation . 

. ., 
Is a sequence symbol. 

·8z 
Is a sequence symbol defined in a following source code statement. 

Operational Considerations: 

4-2 

The label field of the AGO statement may contain a sequence symbol. AGOB or GOTO.may be used in lieu 
of AGO in the operation field. The sequence symbol in the operand field is the symbol of the next 
statement to be process8d. Branching forward or backward from the AGO statement is permitted. 

When an AGO statement is used in a macro definition, the sequence symbol specified in the operand field 
must appear in the label field of another statement in that macro definition. 

• 

• 

• 



-• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-3 

Alf 

Function: 

Conditionally alters the sequence of source statement processing. 

Format: 

LABEL A OPERATION A OPERAND 

[.s,] { AIF } 
AIFB 

(b).52 

where: 
, 

. ., 
Is a sequence symbol. 

Alf 
Defines the operation. 

(b) 
Is a SETS logical expression enclosed in parentheses. 

-~ 
Is a sequence symbol defined in a source code statement. 

Operational Considerations: 

The label field of the Alf statement may contain a sequence symbol. AIFB is permitted instead of AIF in the 
operation code field. 

Any logical expression permitted in the operand field of a SETB statement is valid in the operand field of 
the Alf statement except a 0 or a 1 enclosed in parentheses. The sequence symbol in the operation field 
must be written immediately after the parenthesis terminating the logical expression. 

If, after the logical expression has been evaluated, the condition is true (a value of 1 ), vou branch to the 
statement specified by the .s2 portion of the operand. If the condition is false (a value of 0), the statement in 
the source code following the Alf statement will be the next statement to be processed. Branching either 
forward or backward from the Alf statement is permitted. When an Alf statement is written in a macro 
definition, the sequence symbol specified in the operand field must appear in the label of another 
statement within that macro definition . 



UP-8914 

ANOP 

Function: 
-

SPERRY UNIVAC OS/3 
ASSEMBLER 

Enables branching. If .a branch is necessary and no statement within the source code supplies the branch 
destination in its label field, an ANOP statement can be coded to provide a label to which to branch. 

Format: 

LABIL CPIRANO 

{
ANOP } 
LABEL 

unused .s 

where: 

•• 
Is a sequence svmbc;>I. 

ANOP 
Defines the operation. 

Operational Considerations: 

The label field must contain a sequence symbol. 

When the label field of a statement that is desired as a branch destination point already contains a symbol 
or variable symbol, the branch destination is indicated by preceding the statement by an ANOP statement. 

LABEL is an acceptable synonym for ANOP in the operation field. 

• 

• 

• 



• 

·-

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-5 

DO 

Function: 

Defines the starting point of the code and the numbers of times it is to be generated. 

Format 

LABEL A OPERATION A OPERAND 

[&varisymb) DO a 

where: 

&verisymb 
Is an optional variable symbol. 

DO 
Defines the operation. 

• 
Is a valid SETA expression or a valid SET expression written in a macro definition in proc format. 

Operational Considerations: 

The expression in the operand field indicates the number of times the source code statements following 
the DO statement are produced in the object code. All lines of coding appearing between a op statement 
and its associated ENDO statement are generated. The value of the expression in the operand· field may be 
any value from 0 to 22~1. _If the_ value of the expression is negative, the 00 statement is flagged and 
ignored (that is, treated as. if the value has been a 1 ). 

The set of statements between the DO statement and its associated ENDO statement are said to be within 
the range of the DO statement. Any valid source code statement may be within the range of a DO 
statement, including other DO statements with their corresponding ENDO statements. DO statements may 
be nested up to 10 levels. 

A variable symbol may be entered in the label field of the DO statement. When the variable symbol in the 
label field is specified, it is used as a counter for the number of times a set of lines within the range of a 
DO statement has been generated. The value of this variable symbol is 1 the first time through the set of 
statements; 2 the second time through; and so forth. It is referenced in the same manner as a SETA 
symbol. 

If a DO statement is within the rang!' of another DO statement and the nested DO statement is reentered, 
its count begins at 1 again. The value of the variable symbol in the label field of the DO statements is 
available to the statements following the ENDO statement even if the operation of the DO statement cycle 
is interrupted . 

If an AGO, AGOB. GOTO, AIF, or AIFB statement outside the range of a DO statement results in an 
assembler branch to a sequence symbol inside the range of the DO statement, processing continues with 
the statement defining the sequence symbol. Processing proceeds from that point as though the DO 
statement operand had had a value of 1 . 



UP-8914 

END 

Function: 

-

SPERRY UNNAC OS/3 
ASSEMBLER 

Signifies the end of a macro definition in PROC format. 

Format 

LABEL /l OPERATION /l 

unusad END unused 

Operational Considerations: 

OPERAND 

An ENO statement signals the end of a macro definition. The assembler pairs each ENO statement with the 
most recently encountered unpaired PROC statement. The statements between pai~ PROC and ENO 
statements are defined as the body of a macro definition. 

• 

• 

• 



• 
UP-8914 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Indicates the end of the range of a DO statement. 

Format: 

LABEL I::. OPERATION I::. 

unused ENDO unused 

Operational Considerations: 

4-7 

ENDO 

OPERAND 

DO and ENDO statement$ must be paired. For every DO statement, there must be an ENDO statement to 
define the end of the range. 



UP-8914 SPERRY UNNAC OS/3 
ASSEMBLER 

4-8 

GBL 
GBLA 
GBLB 
GBLC 

Function: 

Declares global set symbols. The declarative chosen determines the range of values to which the set 
symbol may be set and the type of SET statement used to assign the values. 

Global set symbols are initialized only once and are used to pass values back and forth between macro 
definitions. A global set symbol declared at the source code level is available to all macro definitions in 
which it is also declared. 

Format 

unused 

GBl 

~OPERATION~ 

~
GBL ~ GBLA 
GBLB 
GBLC 

Declares a general-purpose global set symbol. 

GBLA 
Declares an arithmetic global set symbol. 

GBLB 
Declares a Boolean global set symbol. 

GBLC 
Declares a character global set symbol. 

S,.Si ..... ... 
Are set symbol names. 

Operational Considerations: 

OPERAND 

The operand field of the global set declaration may contain one or more set symbols. A global set symbol is 
considered defined when declared. It is initialized only once. that is, the first time it is declared. With 
subsequent declarations in other contexts, the global set symbol is available for use but is not reinitialized. 
A set symbol must be declared before it is available for use. A set symbol declared by a GBLA or GBLB 
statement is assigned an initial value of zero. A set symbol declared by a GBLC or GBL statement is 
assigned an initial value of a null character string. 

If a set symbol is declared as a global set symbol in more than one macro definition, it must be declared 
with the same statement code in each macro definition. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-9 

LCL 
LCLA 
LCLB 
LCLC 

Function: 

Declares local set symbols. The declarative chosen determines the values to which the set symbol may be 
set and the type of SET statement used to assign the values. A local set symbol is available for use only in 
the macro definition in which it is declared. 

Format 

LABEL 

unused 

where: 

LCL 

A OPERATION A 

{

LCL } LCLA 
LCLB 
LCLC 

s1 (,52 , ••• ,sn] 

Declares a general-purpose local set symbol. 

LCLA 
Declares an arithmetic local set symbol. 

LCLB 
Declares a Boolean local set symbol. 

LCLC 
Declares a character local set symbol. 

s,.~ ..... sn 
Are set symbol names. 

Operational Considerations: 

OPERAND 

The operand field of the local set declaration may contain one or more set symbol names. A local set 
symbol is considered defined when declared. A set symbol declared by an LCLA or LCLB statement is 
assigned an initial value of zero. 

A set symbol declared by an LCLC or LCL statement is assigned an initial value of a null character string. 



UP-8914 

MACRO 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Designates the start of a macro definition written in macro format. 

Format: 

LABEL A OPERATION A 

unused MACRO unused 

Operational Considerations: 

OPERAND 

This statement may be used only in macro definitions written in macro format. 

4-10 

-

A macro definition written in macro format consists of the following elements in the order specified: 

1. MACRO statement (heading) 

2. Prototype statement (macroinstruction format) 

3. Model statements (optional) 

4. MEND statement (trailer) 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-11 
Update B 

Macro Call Instruction 

Function: 

Causes a precoded set of assembler instructions (a macro definition) to be inserted into a source program 
at the point where the macro call instruction is located. The macro definition that is inserted into the 
source program is identified in the operation field of the macro call instruction. 

Format: 

LABEL .0.0PERATION 6 OPERAND 

[symbol] call-name 

If a symbol appears in the label field of a macroinstruction, it must be explicitly defined in the 
corresponding macro definition. 

The operation field of the macro call instruction contains a symbol that is the name of a macro definition 
stored in a library or being assembled with the program source code. The operation field calls the desired 
macro definition. The operand field may contain from 0 through 252 operands separated by commas. Each 
operand of the macro call instruction is either a positional or keyword parameter that specifies a value 
passed to the corresponding symbolic parameter references in the macro definition. 

The value of a positional parameter is identified by the position it holds in the operand field. Given a macro 
definition that expects four positional parameters to be specified, the operand field of the macro call 
instruction normally has the form: 

An omitted operand must be indicated by writing both commas that separated it from the string. 

If the second and third operands are omitted, the form of the operand field of the macro call instruction is: 

If the final parameters are the ones to be omitted, the commas following the last operand specified may be 
dropped. If the macro definition were to be called by using only the second of four parameters, the operand 
field of the macro call instruction has the form: 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-12 
Update B 

Macro Call Instruction 

A macro definition may specify that some or all of its parameters are keyword parameters. The 
specification of a keyword parameter consists of the keyword followed by an equal sign, followed by the 
value being specified for the parameter. Keyword parameters are separated by commas and may be 
specified in any order. Consecutive commas are not required to indicate omission of a keyword parameter 
specification. Keyword parameters have the form: 

or 

A macro definition having both positional and keyword parameters is called a mixed-mode macro 
definition. The operand field of a mixed-mode macroinstruction must contain any positional parameter 
specifications followed by the keyword parameter specifications being supplied. The last positional 
parameter specified is followed by a comma, followed by the first keyword parameter specification. Mixed

mode parameters have the form: 

Operational Considerations: 

Each of the macro call instruction operands consists of 1 to 127 characters, with the character string 
satisfying the following conditions: 

• May include one or more sequences of characters enclosed in single apostrophes. The apostrophes 
enclosing each character sequence are paired. Paired apostrophes may appear within paired 
apostrophes. 

• May include a single apostrophe outside paired apostrophes if written as part of the following 
sequence: any special character except an ampersand, the letter L, an apostrophe, and a letter. 

• May include an ampersand as the first character of a variable symbol if the ampersand is a single 
ampersand or the last ampersand of a string containing an odd number of ampersands. 

• May include paired parentheses outside paired apostrophes. To determine pairing, a left parenthesis 
is paired with the immediately following right parenthesis (that is, no parentheses between them). 
Additional pairs are determined by ignoring the first pair and reapplying the rule. 

• May include an equal sign only as the first character of an operand or within paired parentheses or 
paired apostrophes. 

• May include a comma as a character in a string if the comma is enclosed in paired parentheses or 
paired apostrophes. A comma standing alone is interpreted as the end of an operand. 

• May include a blank within paired apostrophes. A blank not enclosed in apostrophes terminates the 
operand field. 

NOTE: 

Operands can be coded on more than one line through the use of a continuation character in column 72. If 
a line is to be continued, the last operand on that line must be followed by a comma. A warning message is 
issued if a comma is not included. 

• 

• 

• 



• 

UP-8914 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Signifies the end of a macro definition written in macro format. 

Format: 

LABEL AOPEAATIONA 

unused MEND unused 

Operational Considerations: 

4-13 

MEND 

OPERAND 

This statement is allowed only once in each macro definition, Sind it must be the last statement of the 
definition . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-14 

MEXIT 

Function: 

Indicates to the assembler that the processing of a macro definition should be terminated before ending 
normally with a MEND statement. This statement is used when it is necessary to process only one section 
or operation of a macro definition rather than the entire macro definition. 

Format: 

LABEL ilOPERATION Ll OPERAND 

unused MEXIT unused 

Operational Considerations: 

When MEXIT is encountered, the assembler terminates processing the macro definition and processes the 
statement in the source program following the macro call instruction that called the macro definition 
containing the MEXIT. 

A second macroinstruction with different operands may request the processing of different portions of the 
macro definition containing the MEXIT. 

• 

• 

• 



• 

• 

UP-8914 

Funcuon: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

4-15 

MNOTE 

Generates an error message (which indicates how dangerous an error is) or a comment (which supplies 
information). An MNOTE statement is used in a macro definition or in source code statements. 

Format 

LABEL A OPERATION A OPERAND 

MNOTE 

~ 'm'~ l:l.'m' 
S,'m' 
*,'m' 

unused 

In this format, these can be specified: a message enclosed in apostrophes, a comma followed by a message 
enclosed in apostrophes, a severity code followed by a message, or an asterisk followed by a message. In all 
cases, the message is printed in the assembly listing source code. The severity code indicates the danger of the 
error that occurred. The severity code is a decimal value of 0 to 255. If a severity code of 1 is to be indicated, the 
user leaves a blank space (A) followed by the error message, enclosed in apostrophes. An asterisk used as the 
severity code indicates that the message following it is informational and not an error. As mentioned before, any 
of these specifications causes the message to be printed in the assembly listing. Also, MNOTE lines are flagged 
as errors and listed in the diagnostics portion of the assembly listing if they do not have an asterisk in operand 1. 
Messages ·preceded by an asterisk are not flagged or listed in the diagnostics because they are not errors. 

Variable symbols can be used as operands in an MNOTE statement . 



UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

4-16 

Model Statement 

Function: 

Model statements are between the NAME and ENO statements in a proc and between the prototype and 
MENO statements in a macro. The model statements define the pattern of operations to be performed at 
aseembly. Model statements do not generate object coda. 

Format 

LABEL AOPIRATION l;. OPEflAND 

[I variable symbol }] 
sequence symbol 
symbol · 

mnemonic code 

Operational Considenltlons: 

The IQel field cannot contain an asterisk. 

The operation field can contain the mnemonic operation code of an assembler instruction, directive, or 
macro definition. The field can also contain a variable symbol if a different operation is to be generated 
each time the macro is called. The variable symbol is restricted to seven characters, preceded by an 
ampersand. The operation field cannot contain the mnemonic codes ENO, ICTL. ISEQ, or PRINT. 

The operand field can contain symbols or variable symbols. The size of the field. after the variable values 
are aubetitut9d. is up to 240 charecter9. 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-17 

NAME 

Function: 

Supplies the mnemonic operation code by which a macro definition in proc format is referenced. The label 
field of this statement supplies the name of the macro definition in which it appears. 

Format 

LABEL fl OPERATION fl OPERAND 

call-name NAME pos-0 

The call-name symbol in the label field of the NAME statement identifies the mnemonic operation code by 
which the macro definition may be referenced. This symbol must be unique; it may not be the same as the 
mnemonic operation code of a machine, assembler directive, or assembler instruction or duplicate the 
mnemonic operation code associated with any other macro definition in the source program. 

In the operand field, pos-0 can be a decimal or alphanumeric value but it cannot be a variable symbol. The 
value in the operand field of the NAME statement is referenced as positional parameter Oby using the 
same symbolic parameter indicated in oeprand 1 of the PROC statement. The value can be varied for 
positional parameter 0 by using multiple NAME statements. 

Operational Considerations: 

At least one NAME statement is required for each macro definition, but more than one may be written. 
Each NAME statement specifies a different name (symbol) by which the macro definition may be 
reterenced. The NAME statement must be written immediately after the PROC statement. When more than 
one NAME statement follows the PROC statement, only the operand of the NAME statement containing 
the symbol used to reference the macro definition is available to the body of the definition. 

Multiple NAME statements allow the programmer to specify a different parameter for each NAME 
statement and to select the parameter by referencing that particular NAME statement . 



UP-8914 

PNOTE 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

4-18 

Generates an error message or a comment. A PNOTE statement is used in a macro definition or a source 
code statement. 

Format 

LAllL AOPIRATIONA ON RAND 

unused PNOTE 

In this format, there are two operand fields. In the first field, an asterisk can be specified to indicate that the 
message is informational and not an error, or a character expression can be specified containing up to six 
characters. The second operand fiekl contains the message. It can contain up to 79 characters. Regardless of the 
choice made for the first operand, the message is printed in the assembly listing source code. If it does not 
contain an asterisk as operand 1. a PNOTE statement is flagged as an error, and listed in the diagnostics portion 
of the assembly listing. If there is an asterisk in the first operand field. the line is not flagged or listed in 
diagnostics. This is done because an asterisk indicates that the message is not an error. 

Variable symbols e11n be used as operands in a PNOTE statement. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

4-19 

PROC 

Function: 

Designates the start of a macro definition written in proc format. 

Format 

LABEL fl OPERATION fl OPERAND 

[&symbol] PROC [&pos,n] [,&key, •,. •• ,&key"'•) 

where: 

&symbol 
Is a variable symbol referring to the label of the macroinstruction. 

&pos.n 
Is a variable symbol used in the body of the PROC to reference positional parameters in the call 
instruction. The n is a decimal number indicating how many positional parameters there are . 

&key,= ••.•• &kevm = 
Specifies the keyword parameters. (If only keyword parameters are specified, commas must be coded 
in operands 1 and 2.) 

Operational Considerations: 

A macro definition written in proc format consists of the following elements in the order specified. 

1. PROC statement (heading) 

2. NAME statements 

3. Model statements (optional) 

4. ENO statement (trailer) 

Macro definitions may contain either a macro or a proc format within a definition, but not both . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-20 

PROC 

The functions of the PROC statement are: 

• to designate the beginning of a macro definition; 

• to identify the variable symbol if any, that refers to the label of the macroinstruction; 

• to specify the maximum number of positional parameters in the macroinstruction calling a macro 
definition; 

• to identify the variable symbols to be used to address the positional and keyword parameters in the 
operand field of the macroinstruction; and 

• to optionally specify a default value for each keyword. Values assigned to keyword parameters are 
set to null if nothing follows the equal sign. If a default setting is provided, the respective keyword is 
set to that value when the proc is called. The setting then remains unchanged if the keyword is not 
specified with an appropriate value on the call line. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-21 
Update B 

Prototype Statement 

Function: 

Provides the mnemonic operation code by which a macroinstruction may call a macro definition written in 
macro format. It names the macro definition. The prototype statement specifies the names of the positional 
parameters in the macroinstruction that call the macro definition containing the prototype statement. 

Format: 

LABEL i'.OPERATION 6 OPERAND 

&symbol call-name &pos, , ... ,&posn ,&key 1 =, ... ,&key m = 

where: 

&symbol 
Is a variable symbol that refers to the symbol in the label field of the macro call instruction. 

call-name 
Is the symbol that is the name of the macro definition. 

&pos, ' ... ,&pos n 

Are variable symbols used as positional parameters. 

&key1=, ... ,&keym = 
Are variable symbols used as keyword parameters. 

Operational Considerations: 

If the label field of the prototype statement is blank, or if the variable symbol specified does not also appear 
in the label field of a model statement generated by the macro definition, the symbol in the label field of the 
macroinstruction will not be defined when the macro is generated. This symbol must not duplicate the 
name of any parameter or set symbol defined within the prototype statement. 

The operand field of the prototype statement contains the names of all the symbolic parameters that may 
be coded for the macro. Zero through 252 positional and keyword parameters are permitted in the operand ..,_ 
field. If the macroinstruction contains a mixture of both positional and keyword parameters, the names of 
all the positional parameters must precede the names of the keyword parameters. The names of the 
positional parameters must appear in the order specified in the operand field of each macro call 
instruction. 

Within the operand field of the prototype statement, the entry defining a positional parameter consists 

entirely of the variable symbol that names the parameter. The entry for a keyword parameter consists of 
the variable symbol naming the parameter, followed by an equal sign. The equal sign may be optionally 
followed by a string of characters specifying a default value for that parameter. If no specification for the 
parameter is supplied in the macro call instruction, the default value is the value supplied for a reference to 
that parameter within a macro definition. The default value must be written following the rules for 
macroinstruction operands. As many continuation lines may be used as required to contain the symbolic 
parameters and the desired comments. 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-22 

SET 

Function: 

Assigns either an arithmetic or character string value to a variable symbol declared by an LCL or GBL 
statement. 

Format: 

LABEL t. OPERATION A OPERAND 

&s SET 

where: 

&s 
Is a set symbol declared by LCL or GBL. 

SET 
Defines the operation. 

a 
Is a valid arithmetic expression. 

c 
Is a valid character expression. 

Operational Considerations: 

When the operand of the SET statement contains an arithmetic expression, the value of the expression 
may range from -223 to +223-1. When the operand of the SET statement contains a character expression, 
the maximum length that may be specified is eight characters. 

If a SET variable symbol is assigned a character value, a reference to the SET symbol yields the same result 
as a reference to SETC symbol assigned the same character value. Similarly, if a SET variable symbol is 
assigned an arithmetic value, a reference to the SET symbol yields the same result as a reference to a 
SETA symbol assigned the same value. A SET variable symbol with a character value may be reassigned 
an arithmetic value, and vice versa. 

A SET expression is a SETA expression allowing the use of the operators>,<.=.**, and++ in the SET 
expression when an arithmetic operator is valid. The characters ** represent the logical product AND, and 
the characters ++ represent the logical sum OR. 

• 

• 

• 



UP-8914 

• 

•r·· 

SPERRY UNIVAC OS/3 
ASSEMBLER 

4-23 

SET 

Each bit of the first term is compared with its corresponding bit in the second term, and the result of the 
comparison is placed in the corresponding position in the resulting term. The result of the bit comparison 
for each operator is: 

0 

0 

AND 

0 0 

0 

0 0 

A++B 

1 

1 

0 

0 

OR 

Result 

1 1 

0 1 

1 1 
, 

0 0 

The three relational operators are the equal(=) operator, the greater than(>) operator, and the less than 
(<) operator: 

= 

> 

< 

Compares the value of two terms or expressions. If the two values are equal, the assembler 
assigns a value of 1 to the expression. If the values are not equal, a zero value is assigned. 

Compares two terms or expressions. If the value of the first (left) term is greater than the value 
of the second (right) term, a value of 1 is assigned to the expression. If the value of the second 
term is greater than the value of the first term, a zero value is assigned. 

Compares the value of the first (left) expression or term with the second (right) expression or 
term. If the value of the first expression or term is less than the value of the second, a value of 
1 is assigned to the expression. If the value of the second expression or term is less than the 
value of the first, a zero value is assigned. 

Given the expression A+B > C, if the expression A+B has a greater value than the value of C, the 
assembler assigns a value of 1 to the expression. If the value of C is greater than the value of A+B, a zero 
value is assigned. 

Since the value of a relational or logical expression is arithmetic, the expression may be used as a term in 
an arithmetic expression. The following chart shows operator priority. 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-24 

SET 

Operator Hierarchy 

•J 5 

+,- 4 

•• 3 

++ 2 

<>-

Four statements are provided to assign values to set symbols: SETA, SETB. SETC, and SET. The statement 
used depends on the statement chosen to declare the set symbol. SETA, SETB. and SETC statements may 
be used only within macro definitions written in macro format. The SET statement may be used only within 
macro definitions written in proc format. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-25 

SETA 

Function: 

Assigns an arithmetic value to a variable symbol that was declared by an LCLA or GBLA statement. 

Format: 

LABEL A OPERATION A OPERAND 

&s SETA a 

where: 

&a 
Is a set symbol declared by either LCLA or GBL.A. 

SETA 
Defines the operation . 

• 
Is a valid SETA term or an arithmetic combination of valid SETA terms. 

Operational Considerations: 

A valid SET A term is: 

• a self-defining term; or 

• a variable symbol with an arithmetic value; or 

• a character value consisting of one to eight decimal digits. 

The arithmetic operators used in writing SETA expressions are+.-.•, and/. The expression may not. 
begin with an operator. Two operators or two terms may not succeed one another. · 

The rules of precedence for the evaluation of a SETA arithmetic expression are the same as stated for a 
SET statement. The value of a SETA expression may range from -223 to 223-1. 

When the SETA symbol is used in an arithmetic expression, the arithmetic value of the symbol is 
substituted for the symbol. If the SETA symbol is used in another context, the arithmetic value of the SETA 
symbol is converted to a decimal integer with leading zeros removed. A leading minus sign will be 
retained. This decimal value is then substituted for the SETA symbol. If the value of the SETA symbol is 
zero, a single zero is substituted. 

Four statements are provided to assign values to set symbols: SETA. SETB. SETC, and SET. The statement 
used depends on the statement chosen to declare the set symbol. SETA, SETB. and SETC statements may 
be used only within macro definitions written in macro format. The SET statement may be used only within 
macro definitions written in proc format. 



UP-891~ SPERRY UNIVAC OS/3 
ASSEMBLER 

4-26 

SETB 

Function: 

Assigns a binary value of 0 or 1 to a variable symbol that was declared by an LCLB or GBLB statement. 

Format: 

LABEL 6 OP!RA TION 6 OPERAND 

&s SETB b 

where: 

&s 
Is a set symbol declared in either LCLB or GBLS. 

SETB 
Defines the operation. 

b 
Is a valid logical expression, a 0 or a 1, that must be enclosed in parentheses. 

Operational Considerations: 

The logical expression in the operand field may have a value of either 0 (false) or 1 (true). and the set 
symbol specified in the name field of the set statement is assigned 'the resultant binary value. The logical 
expression may consist of a single term or logical c~mbination of terms. 

The permissible terms are: 

• a SETB arithmetic relational expression; 

• a SETB character relational expression; and 

• a SETB symbol. 

The SETB logical operators that may be used to combine the terms are a. a. and a The logical expression 
must not contain tvvo terms in succession. Two operators may appear in succession if the first operator is 
either • or a. and the second operator is m. Only the operator • is allowed prior to the first term of the 
expression. 

• 

• 

• 



UP-8914 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

4-27 

SETB 

A SETB arithmetic relational expression consists of two arithmetic expressions connected by a SETB 
relational operator. A SETB character relational expression consists of two character strings connected by 
a SETB relational operator. The SETB relational operators are: 

Operator Meaning 

NE Not equal 

EQ Equal 

LT Less than 

LE Less than or equal 

GT Greater than 

GE Greater than or equal 

The arithmetic expression that may be used as a term in the SETB arithmetic relational expression is 
defined under the SETA statement. The rules under the SETC statement define the format of the character 
string that may be used in a SETB character relational expression. If two character strings are of unequal 
length, the shorter will always compare less than the longer, regardless of actual value. The maximum 
length of character strings that may be compared is 127 characters. 

In writing SETB expressions, the SETB relational or logical operators must be preceded and followed by at 
least one blank or other special character. The relational expression may be optionally enclosed in 
parentheses. 

The procedure for evaluating a SETB expression is: 

• Each term (SETB symbol, SETB arithmetic expression. or SETB character expression) is evaluated and 
given a value of either 1 (true) or 0 (false). 

• Evaluation is from left to right. The weight of the logical operators is: 

• = 

• = 2 

• = 3 

Therefore,• is performed prior to D. and Dis performed prior tom. 

If a SETB variable symbol is used in the operand field of a SETA or DO statement. or in an arithmetic 
relation (in either a SETB or AIF term), the binary values O and 1 are converted to the arithmetic values +o 
and +1. 

If the SETB variable symbol is used in the operand field of a SET statement, the value substituted is 
dependent on the context. In an arithmetic expression, +1 or +o is substituted. In a character expression. 
the character values 1 and 0 are substituted. 



UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

4-28 

SETB 

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement 
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may 
be used only within macro definitions written in macro format. The SET statement may be used only within 
macro definitions written in proc format. 

• 

• 

• 



• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-29 

SETC 

Function: 

Assigns a character value to a variable symbol that was declared by an LCLC or GBLC statement. 

Format 

LABEL AOPERATIONA OPERAND 

&s SETC c 

" 
where: 

&s 
Is a set symbol declared by either LCLC or GBLC. 

SETC 
Defines the operation. 

c 
Is a valid SETC operand. 

Operational Considerations: 

A SETC operand must be a character expression . 

. The maximum length of the value that may be specified for a SETC symbol is eight characters. If more than 
eight characters are specified, only the leftmost eight characters are used by the assembler. 

Four statements are provided to assign values to set symbols: SETA. SETB, SETC, and SET. The statement 
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may 
be used only within macro definitions written in macro format. The SET statement may be used only within 
macro definitions written in proc format. 



• 
...... 

• 

• 



-.--

Appendix A. Assembler References 

• 



• 

•• 

• 



~ 

~ 

~ 

~ 

t 

• • • 
Table A-1. Instruction Formats (Part 1 of 2) 

Source Code Instruction Format Object Code Instruction Form•t 

Explicit Form Implicit Form Byte 1 Byte 2 Bytes 3 and 4 Bytes 5 and 6 
lns;;;:on First Half Word l Second Half Word l Third Half Word 

O 7iB 11_1_12 15 16 19 j_20 31 32 35 j_36 47 

I I I I reg reg I I 
RR [symbol] opcode r ,r Q) [symbol] opcode r

1
.r

2 
! I op 

1 
op_ 

2 1
1 

1

1 12 L ----

1-----+--------------+---------------+---o-p_c_o_de ____ l+-__ r_, __ l.._ __ 'i_---lJ : 
I II I address I 
I reg I I 

@ I I op 1 1 operand 2 I 
RX [symbol] opcode r 1,d2 (x2,b2) [symbol] opcode r 1,s21x2) ~I ---------i-' -=~·.::::::_.---':::::::::::::+~~~~=:::::::::::::=~~~~::::::::::::::o...~ 

opcode l r 1 l x2 _i b2 l d2 J 
! : reg reg i address : 

r.i\ I I op 1 op 3 1 operand 2 I 
RS (symbol] opcoder

1 
,r

3 
,d

2
(b

2
)\:V [symbol) opcode r

1
,r

3
,s

2 
l I ____ 1 --------------- J 

opcode 1 r1 l r3 1 b2 l d2 J 
I j immediate i address : 

. . I I operand I operand 1 I 
SI [symbol] opcoded1ib1),1 2 [symbol] opcodes1 ,1 2 L 1 ---------- , ------------ I 

opcode J i2 l b 1 J d 1 J 
I I : address i 
I I 1 operand 2 I 

S [symbol] opcoded2(b2) [symbol] opcodes
2 

I I 1 --------------- I 

opcode I opcode I b 2 I d 2 J 
-T I length I address I address 

I : op 1 and op 2 I operand 1 : operand 2 
[symbol]opcoded1 11,b1),d2 ib2) [symbol]opcodes1(1),s2 I J_------- 1 ______.....____ 1 ------------- j 

SS opcode l 1-1 l b1 l d 1 l b2 l d2 

I I I h I I I 
1 1 engt I address I address I 
I I op 1 op 2 operand 1 I operand 2 I 

[symbol] opcoded1 (1 1,b1),d2 11 2,b2) [symbol] opcodes111 1),s2 11 2) I 1 --~ _,_ I ------------- I -------------- _J 

opcode l 11 -1 } 12-1 J b 1 _J d 1 I b2 I d2 

1
1 

I immediate T immediate displacement ~ address I 
I operand 2 I mask 3 4 I operand 1 I 

SM [symbol! opcoded1ib1),i 2,m3 ,d4 [symbol] opcodes1,i 2,m3,d4 I I ~ I~ ~ I :::::._I 

opcode l i2 J m3 I d4 I b, I d1 

NOTES: 

Q) The RR instruction has three other forms: @ The RX instruction BC is written in the form: 

[symbol] opcode i1 for the SVC instruction; [symbol] opcode m 1,d2(x2,b2). 

[symbol] opcode r1 for the SPM instruction; and 

[symbol] opcode m1,r2 for the BCR instruction. 

@ The RS instruction has two other forms: 

the RS shift instructions are written without use 
of the r3 operand, in the form: 

[symbol] opcode r1 ,d2(b2 ) 

and some RS instructions, such as ICM and CLM, 
are written in the form: 

[symbol] opcode r 1,m3,d2(b2 ). 

c 
-0 
00 
CD 
~ 

~ 

en 
-0 
m 

)> 5'l 
en -< 
en c mz s: -co < r )> 
m C'"l 
:co 

en 
'-.. 
w 

c )> 
"C I a. 
Cl 

i 
co 



UP-8914 

OPCODE 

SPERRY UNIVAC OS/3 

ASSEMBLER 

Table A-1. Instruction Formats (Part 2 of 2) 

Meaning 

The application instruction operation code. 

The number of the general register containing operand 1 

The number of the general register containing operand 2 

The number of the general register containing operand 3 

A-2 
Update B 

The number of the general register containing an index number for operand 2 of the RX instruction 

The immediate data used as operand 1 of the SVC instruction 

The immediate data used as operand 2 of an SI instruction 

The length of the operands as stated in source code* 

The length of operand 1 as stated in source code* 

The length of operand 2 as stated in source code* 

The number of the general register containing the base address for operand 1 

The number of the general register containing the base address for operand 2 

The displacement for the base address of operand 1 

The displacement for the base address of operand 2 

The displacement used as operand 4 of an SM instruction 

The mask used as operand 1 

The mask used as operand 3 of an SM instruction 

Operand 1 

Operand 2 

Operand 3 

The symbol used to identify operand 1 in the implicit format 

The symbol used to identify operand 2 in the implicit format 

*This is coded as the true source code length of the operand, not the length less 1, as assembled in the object code. The 
assembler makes a reduction of 1 in the length when converting source code to object code. 

• 

• 

• 



UP-8914 

• 
Mnemonic 

A 
AD 
ADR 
AE 
AER 
AH 
Al 
AL 
ALR 
AP 
AR 
AU 
AUR 
AW 
AWR 
BAL 
BALR 
BC 
BCR 
BCT 
BCTR 
BXH 

• BXLE 
c 
CD 
CDR 
CE 
CER 
CH 
CL 
CLC 
CLCL 

CLI 
CLIS 

CLM 

CLR 
CLRCH 
CLRDV 
CP 
CR 
CSM 

CVB 
CVD 
D 
DD 
DOR 
DE 
DER 
DP 
DR • ED 
EDMK 
EIO 

SPERRY UNIVAC OS/3 
ASSEMBLER 

A-3 
Update B 

Table A-2. Instruction Repertoire (Part 1 of 9) 

Listing by Mnemonic Code 

Machine Byte Source Code Format 
Instruction Name 

Code Length Explicit Implicit 

Add 5A 4 r 1 ,d2(X2,b2) r,s2(X2) 
Add normalized, long 6A 4 r 1 ,d2(X2,b2) r1 ,s2(x2) 
Add normalized, long 2A 2 r1 ,r2 r1 ,r2 
Add normalized, short 7A 4 r, ,d2(X2,b2) r, ,S2(X2) 
Add normalized, short 3A 2 r1 ,r2 r, ,r2 
Add half word 4A 4 r, ,d2(X2,b2) r, .s2(X2) 
Add immediate 9A 4 d,(b,),i2 s, .i2 
Add logical 5E 4 r 1 ,d2(X2,b2) r1 ,ai(x2) 
Add logical 1E 2 r1 ,r r1 ,r2 
Add decimal FA 6 d1(1 1 ,d, ).d2(1vb2) s1(11 ).s2(l2) 
Add 1A 2 r, ,r2 r1 ,r2 
Add unnormalized, short 7E 4 r 1 ,d2(X2,b2) r, ,S2(X2) 
Add unnormalized, short 3E 2 r1 ,r2 r1 ,r2 
Add unnormalized, long 6E 4 r, ,d2(X2,b2) r, ,S2(X2) 
Add unnormalized, long 2E 2 r, ,r2 r1 ,r2 
Branch and link 45 4 r 1 ,d2(X2,b2) r, ,s2(x2) 
Branch and link 05 2 r1 r2 r1 ,r2 
Branch on condition 47 4 i,d2(X2,b2) i,S2(X2) 
Branch on condition 07 2 i.ri i.ri 
Branch on count 46 4 r 1 ,d2(X2,b2) r1 ,s2(x2) 
Branch on count 06 2 r1 ,r2 r1 ,r2 
Branch on index high 86 4 r1,r3,d2(b2) r1,r3,s2 
Branch on index low or equal 87 4 r,h,d2(b2) r1,r3,s2 
Compare algebraic 59 4 r,,d2(X2,b2) r1 ,s2(x2) 
Compare, long 69 4 r 1.d2(X2,b2) r, ,s2(x2) 
Compare, long 29 2 r1 ,r2 r1 ,r2 
Compare, short 79 4 r,,s2(X2,b2) r, .s2(x2) 
Compare, short 39 2 r1 ,r2 r1 ,r2 
Compare half word 49 4 r 1 ,d2(X2,b2) r, ,s2(x2) 
Compare logical 55 4 r, ,d2(X2,b2) r1 ,s2(x2) 
Compare logical 05 6 d, ,(l,b, ).d2(b2) s,(l),S2 
Compare logical characters OF 2 r1,r2 r1 ,r2 

long 
Compare logical immediate 95 4 d,,(b,),i2 s1,i2 
Compare logical immediate E1 6 d1(b,).i2.m3,d4 S1 ,i2,m3,S4 

and skip 
Compare logical characters BO 4 r1,m3,d2(b2) r, ,m3,s2 

under mask 
Compare logical 15 2 r1 ,r2 r1 ,r2 
Clear channel 9F02 4 (Privileged) (Privileged) 
Clear device 9DX2 4 (Privileged) (Privileged) 
Compare decimal F9 6 d1(1 1 ,b, ).d2(1 2,b2) s,(I, ).s202) 
Compare algebraic 19 2 r, r2 r1 ,r2 
Compare and swap under B9 4 r1,r3,d2(b2) r1,r3,s2 

mask 
Convert to binary 4F 4 r 1 ,d2(X2,b2) r, ,S2(X2) 
Convert to decimal 4E 4 r,,d2(X2,b2) r, ,S2(X2) 
Divide 50 4 r 1.d2(X2,b2) r1 ,s2(x2) 
Divide, long 60 4 r,,d2(X2,b2) r, ,S2(X2) 
Divide, long 20 2 r1 ,r2 r, ,r2 
Divide, short 70 4 r,,d2(X2,b2) r, .s2(X2) 
Divide, short 30 2 r1 ,r2 r1 ,r2 
Divide decimal FD 6 d1(1 1 ,b1 ),d2(1 2,b2) s,(I, ) .. s2(12) 
Divide 10 2 r1 ,r2 r1 ,r2 
Edit DE 6 d,(l,b,),d2(b2) S1(l),S2 
Edit and mark OF 6 d,(l,b,).d2(b2) s1(1),s2 
Enqueue 1/0 EO 6 (Privileged) (Privileged) 



UP-8914 

Mnemonic 

EX 
EXD 
GRB 
HOR 
HOV 
HER 
HPR 
IC 
ICM 
IPL 
ISK* 
L 
LA 
LCDR 
LCER 
LCHR 
LCR 
LCTL 
LD 
LOA 
LOR 
LE 
LER 
LH 
LIA 
LM 
LNDR 
LNER 
LNR 
LPDR 
LPER 
LPR 
LPSW 
LR 
LRC 

LRR 
LTDR 
LTER 
LTR 
M 
MD 
MOR 
ME 
MER 
MH 
MIO 
MP 
MR 
MVC 
MVCL 
MVI 
MVN 
MVO 
MVZ 
N 
NC 
NI 
NR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

A-4 
Update B 

Table A-2. Instruction Repertoire (Part 2 of 9) 

Listing by Mnemonic Code 

Machine Byte Source Code Format 
Instruction Name Code Length Explicit Implicit 

Execute 144 4 r, ,d2(X2,b2) r, .s2(X2) 
Execute diagnose 8300 4 (Privileged) (Privileged) 

Get IORB I OB 2 (Privileged) (Privileged) 

Halve, long 24 2 r1 ,r2 r1 ,r2 
Halt device 9E01 4 (Privileged) (Privileged) 

Halve, short 34 2 r1 .r2 r1 ,r2 
Halt and proceed 99 4 (Privileged) (Privileged) 

Insert character 43 4 r 1.d2(X2,b2) r, ,s2(x2) 
Insert characters under mask BF 4 r,,m 3,d2(b2) r1 ,m3 ,s2 
Initial program load 8303 4 (Privileged) (Privileged) 
Insert storage key 09 2 (Privileged) (Privileged) 

Load 58 4 r 1.d2(X2.b2) r, .s2(X2) 
Load address 41 4 r, .d2(X2.b2) r, .s2(x2) 
Load complement, long 23 2 r1 ,r2 r1 ,r2 
Load complement, short 33 2 r1 ,r2 r1 .r2 
Load channel register 9F03 4 (Privileged) (Privileged) 
Load complement 13 2 r1 .r2 r1 r2 
Load control B7 4 (Privileged) (Privileged) 
Load, long 68 4 r 1.d2(X2,b2) r, ,s2(x2) 
Load directive address 51 4 (Privileged) (Privileged) 
Load, long 28 2 r1 .r2 r1 ,r2 
Load, short 78 4 r 1.d2(X2.b2) r, ,s2(x2) 
Load, short 38 2 r 1,r2 r, .r2 
Load half word 48 4 r, .d2(X2,b2) r, .s2(x2) 
Load 1/0 address 61 4 (Privileged) (Privileged) 
Load multiple 98 4 r, ,r3,d2(b2) r1 ,r3 ,s2 
Load negative. long 21 2 r 1,r2 r1 ,r2 
Load negative. short 31 2 r1 .r2 r1 ,r2 
Load negative 11 2 r1 ,r2 r1 ,r2 
Load positive, long 20 2 r1 ,r2 r1 ,r2 
Load positive, short 30 2 r1 ,r2 r1 ,r2 
Load positive 10 2 r1 ,r2 r1 ,r2 
Load program status word 82 4 (Privileged) (Privileged) 
Load 18 2 r1 ,r2 r1 ,r2 
Longitudinal redundancy 830E 4 (Privileged) (Privileged) 

check 
Load relocation register A3 4 (Privileged) (Privileged) 
Load and test, long 22 2 r 1,r2 r, ,r2 
Load and test, short 32 2 r1 ,r2 r1 ,r2 
Load and test 12 2 r1 .r2 r1 r2 
Multiply 5C 4 r 1.d2(X2,b2) r, ,s2(x2) 
Multiply, long 6C 4 r, ,d2(X2,b2) r, .s2(X2) 
Multiply, long 2C 2 r 1,r2 r, .ri 
Multiply, short 7C 4 r 1.d2(X2,b2) r,,s2(X2) 
Multiply, short 3C 2 r 1,r2 r1 ,r2 
Multiply half word 4C 4 r, ,d2(X2,b2) r, .s2(X2) 
Move 1/0 81 4 (Privileged) (Privileged) 
Multiply decimal FC 6 d,(1, ,b, ).d2(12.b2) s,(I, ).s2.(12) 
Multiply 1C 2 r, ,r2 r, ,r2 

Move characters 02 6 d,(l,b,),d2(b2) S,(l),S2 
Move character long OE 2 r, .r2 r1 ,r2 
Move immediate 92 4 d,(b,),i2 s, .i2 
Move numerics Dl 6 d,(l,b,),d2(b2) S,(l),S2 
Move with offset Fl 6 d,(1, ,b, ).d2(l2.b2) s,(I, ),s2(1 2) 
Move zones 03 6 d,(l,b,),d2(b2) s,(l),S2 
AND logical 54 4 r, .d2(X2,b2) r, .S2(X2) 
AND logical 04 6 d,(l,b,).d2(b2) S,(l),S2 
AND logical immediate 94 4 d,(b,),i2 S1,i2 
AND logical 14 2 r, ,r7 r, ,r2 

• 

• 

• 



UP-8914 

• 
I 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

A-5 
Update B 

Table A-2. Instruction Repertoire (Part 3 of 9) 

Listing by Mnemonic Code 

Machine Byte Source Code Format 
Mnemonic Instruction Name 

Code Length Explicit lmpllc1t 

0 OR logical 56 4 r 1 ,d2(X2,b2) r, .s2(x2) 
oc OR logical 06 6 d,(l,b,),d2(b2) s,(l),s2 
01 OR logical immediate 96 4 d,(b,),i2 s, .i2 
OR OR logical 16 2 r 1,r2 r1 .r2 
PACK Pack F2 6 d,(1, ,b, l.d202.b2) s,(I, ).s2(12) 
PRB Put IORB oc 2 (Privileged) (Privileged) 
RESET Reset 8301 4 (Privileged) (Privileged) 
s Subtract ' 5B 4 r 1.d2(X2,b2) r, .S2(X2) 
SD Subtract normalized, long 6B 4 r 1.d2(X2,b2) r, .s2(x2) 
SOR Subtract normalized, long 2B 2 r1 ,r2 r,·,r2 
SDV Start device 9C02 4 (Privileged) (Privileged) 
SE Subtract normalized, short 7B 4 r 1.d2(X2,b2) r, ,s2(x2) 
SER Subtract normalized, short 3B 2 r1 .r2 r1 ,r2 
SH Subtract half word 4B 4 r 1.d2(X2,b2) r, .s2(x2) 
SHL Shift logical 9B 4 r1 ,m3,d2(b2) r1 ,m3,s2 
SL Subtract logical 5F 4 r 1.d2(X2,b2) r, .s2(X2) 
SLA Shift left single algebraic 8B 4 r, .d2(b2) r1 ,s2 
SLDA Shift left double algebraic 8F 4 r, .d2(b2) r1 ,s2 
SLDL Shift left double logical 80 4 r, .d2(b2) r1 ,s2 
SLL Shift left single logical 89 4 r,,d2(b2) r1 ,s2 
SLM Supervisor load multiple B8 4 (Privileged) (Privileged) 
SLR Subtract logical 1F 2 r1 .r2 r1 ,r2 
SP Subtract decimal FB 6 d,(l, ,b, ).d202.b2) s,(I, ).s2(12) 
SPM Set program mask 04 2 r, r, 
SR Subtract 1B 2 r 1,r2 r1 ,r2 
SRA Shift right single algebraic 8A 4 r, .d2(b2) r1 ,s2 
SRDA Shift right double algebraic 8E 4 r,,d2(b2) r, .S2 
SRDL Shift right double logical 8C 4 r, .d2(b2) r1 ,s2 
SRL Shift right single logical 88 4 r, .d2(b2) r1 ,s2 
SRP Shift and round decimal FO 6 d,(l, ,b, ).d2(b2).i3 s1(1 1 ),s2,i3 
SSK* Set system key 08 2 (Privileged) (Privileged) 
SSM Set system mask 80 4 (Privileged) (Privileged) 
SSTM Supervisor store multiple BO 4 (Privileged) (Privileged) 
ST Store 50 4 r, ,d2(X2,b2) r, .s2(X2) 
STC Store character 42 4 r, ,d2(X2,b2) r, .S2(X2) 
STCM Store characters under mask BE 4 r 1,m3,d2(b2) r1 .m3.s2 
STCTL Store control B6 4 (Privileged) (Privileged) 
STD Store long 60 4 r 1.d2(X2,b2) r, ,s2(x2) 
STE Store short 70 4 r,,d2(X2,b2) r, ,s2(x2) 
STS Store status 8302 4 (Privileged) (Privileged) 
SU Subtract unnormalized, short 7F 4 r 1.d2(X2,b2) r, ,s2(x2) 
SUR Subtract unnormalized, short 3F 2 r 1,r2 r1 ,r2 
SVC Supervisor call OA 2 i i 
SW Subtract unnormalized, long 6F 4 r,,d2(X2,b2) r1 .si(x2) 
SWLS Switch list scan 830F 4 (Privileged) (Privileged) 
SWR Subtract unnormalized, long 2F 2 r1 .r2 r1 ,r2 
TM Test under mask 91 4 d,(b,),i2 s, .i2 
TMS Test under mask and skip E2 6 d1(b, ).i2.m3,d4 S1 ,i2.m3,S4 
TR Translate DC 6 d,(l,b,).d2(b2) s,(1),s2 
TRT Translate and test DD 6 d,(l,b,).d2(b2) s,(l),s2 
TS Test and set 93 4 d1(b2) S2 
UNPK Unpack F3 6 d,(l, ,b, l.d2(l2.b2) s1(l 1 ).s2(l2) 
x Exclusive OR 57 4 r 1 .d2(X2,b2) r, .s2(X2) 
xc Exclusive OR 07 6 d1(1.b1).d2(B2) s,(l),s2 
XI Exclusive OR, immediate 97 4 d,(b,).i2 s, .i2 
XR Exclusive OR 17 2 r1 ,r2 r1 ,r2 
ZAP Zero and add decimal F8 6 d,(l, ,b, ).d2(l2.b2) s,(11 ).S2(l2) 

*Micro expansion feature 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 4 of 9) 

Listing by Alphabetic Instructions 

Instruction Name Machine Code 

Add lA 
Add 5A 
Add decimal FA 
Add half word 4A 
Add immediate 9A 
Add logical lE 
Add logical 5E 
Add normalized, long 2A 
Add normalized, long 6A 
Add normalized, short 3A 
Add normalized, short 7A 
Add unnormalized, long 2E 
Add unnormalized, long 6E 
Add unnormalized, short 3E 
Add unnormalized, short 7E 
AND 14 
AND 54 
AND 94 
AND D4 
Branch and link 05 
Branch and link 45 
Branch on condition 07 
Branch on condition 47 
Branch on count 06 
Branch on count 46 
Branch on index high 86 
Branch on index low or equal 87 
Clear channel - privileged 9F02 
Clear device - privileged 9DX2 
Compare 19 
Compare 59 
Compare and swap under mask B9 
Compare decimal F9 
Compare half word 49 
Compare logical 15 
Compare logical 55 
Compare logical 95 
Compare logical D5 
Compare logical characters under mask BD 
Compare logical immediate and skip El 
Compare logical characters long OF 
Compare. long 29 
Compare, long 69 
Compare, short 39 
Compare, short 79 
Convert to binary 4F 
Convert to decimal 4E 
Divide 1D 
Divide 5D 
Divide decimal FD 
Divide, long 2D 
Divide. long 6D 
Divide. short JD 
Divide, short 7D 
Edit DE 
Edit and mark DF 

A-6 
Update B 

Mnemonic 

AR 
A 
AP 
AH 
Al 
ALR 
AL 
ADR 
AD 
AER 
AE 
AWR 
AW 
AUR 
AU 
NR 
N 
NI 
NC 
BALR 
BAL 
BCR 
BC 
BCTR 
BCT 
BXH 
BXLE 
CLRCH 
CLRDV 
CR 
c 
CSM 
CP 
CH 
CLR 
CL 
cu 
CLC 
CLM 
CLIS 
CLCL 
CDR 
CD 
CER 
CE 
CVB 
CVD 
DR 
D 
DP 
DDR 
DD 
DER 
DE 
ED 
EDMK 

• 

• 



UP-8914 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 5 of 9) 

Listing by Alphabetic Instructions 

Instruction Name Machine Code 

Enqueue 1/0 - privileged EO 
Exclusive OR 17 
Exclusive OR 57 
Exclusive OR 97 
Exclusive OR D7 
Execute 44 
Execute diagnose - privileged 8300 
Get IORB - privileged OB 
Halt and proceed - privileged 99 
Halt device - privileged 9E01 
Halve, long 24 
Halve. short 34 
Initial program load - privileged 8303 
Insert character 43 
Insert characters under mask BF 
Insert storage key - privileged 09 
Load 18 
Load 58 
Load address 41 
Load and test 12 
Load and test, long 22 
Load and test, short 32 
Load channel register - privileged 9F03 
Load complement 13 
Load complement, long 23 
Load complement, short 33 
Load control - privileged B7 
Load directive address - privileged 51 
Load half word 48 
Load 1/0 address - privileged 61 
Load, long 28 
Load. long 68 
Load multiple 98 
Load negative 11 
Load negative, long 21 
Load negative, short 31 
Load positive 10 
Load positive, long 20 
Load positive, short 30 
Load PSW - privileged 82 
Load relocation register - privileged A3 
Load, short 38 
Load, short 78 
Longitudinal redundancy check - privileged 830E 
Move 92 
Move D2 
Move 1/0 - privileged 81 
Move characters long OE 
Move numerics Dl 
Move with offset F1 
Move zones (Native and 9200/9300 Modes) D3 
Multiply 1C 
Multiply 5C 
Multiply decimal FC 
Multiply half word 4C 
Multiply, long 2C 
Multiply, long 6C 
Multiply, short 3C 
Multipy, short 7C 
OR 16 
OR 56 

A-7 
Update B 

Mnemonic 

EIO 
XR 
x 
XI 
xc 
EX 
EXD 
GRB 
HPR 
HDV 
HDR 
HER 
IPL 
IC 
ICM 
(F)ISK 
LR 
L 
LA 
LTR 
LTDR 
LTER 
LCHR 
LCR 
LCDR 
LCER 
LCTL 
LDA 
LH 
LIA 
LOR 
LO 
LM 
LNR 
LNDR 
LNER 
LPR 
LPDR 
LPER 
LPSW 
LRR 
LER 
LE 
LRC 
MVI 
MVC 
MIO 
MVCL 
MVN 
MVO 
MVZ 
MR 
M 
MP 
MH 
MOR 
MD 
MER 
ME 
OR 
0 



UP-B914 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 6 of 9) 

Listing by Alphabetic Instructions 

Instruction Name Machine Code 

OR 96 
OR (Native and 9200/9300 Modes) D6 
Pack F2 
Put IORB - privileged I QC 
Reset - privileged B301 
Service timer register - privileged 03 
Set program mask 04 
Set storage key - privileged OB 
Set system mask - privileged BO 
Shift and round decimal FO 
Shift left double BF 
Shift left double logical BD 
Shift left single BB 
Shift left single logical B9 
Shift logical 9B 
Shift right double BE 
Shift right double logical BC 
Shift right single BA 
Shift right single logical BB 
Start device - privileged 9C02 

Store 50 
Store character 42 
Store characters under mask BE 
Store control - privileged B6 
Store half word 40 
Store, long 60 
Store multiple 90 
Store relocation register - privileged A2 
Store, short 70 
Store status - privileged B302 
Subtract 1B 
Subtract 5B 
Subtract decimal FB 
Subtract half word 4B 
Subtract logical 1F 
Subtract logical 5F 
Subtract normalized, long 2B 
Subtract normalized, long 6B 
Subtract normalized. short 3B 
Subtract normalized, short 7B 
Subtract unnormalized, long 2F 
Subtract unnormalized, long 6F 
Subtract unnormalized, short 3F 
Subtract unnormalized, short 7F 
Supervisor call QA 
Supervisor load multiple - privileged BB 
Supervisor store multiple - privileged BO 
Switch list scan - privileged B30F 
Test and set 93 
Test under mask 91 
Test under mask and skip E2 
Translate DC 
Translate and test DD 
Unpack F3 
Zero and add FB 

NOTE: 

Tag symbol (F) before mnemonic indicates instructions that are added as features. 

A-B 
Update B 

Mnemonic 

01 
oc 
PACK 
PRB 
RESET 
STR 
SPM 
(F)SSK 
SSM 
SRP 
SLDA 
SLDL 
SLA 
SLL 
SHL 
SRDA 
SRDL 
SRA 
SRI.:' 
SDV 

ST 
STC 
STCM 
STCTL 
STH 
STD 
STM 
STRR 
STE 
STS 
SR 
s 
SP 
SH 
SLR 
SL 
SDR 
SD 
SER 
SE 
SWR 
SW 
SUR 
SU 
SVC 
SLM 
SSTM 
SWLS 
TS 
TM 
TMS 
TR 
TRT 
UNPK 
ZAP 

• 

• 

• 



UP-8914 

• 
Machine Code 

03 
04 
05 
06 
07 
08 
09 
OA 
OB 
oc 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
lA 
lB 
lC 
1D 
1 E 
1 F 
20 
21 
22 
23 
24 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

• 40 
41 
42 
43 
44 
45 
46 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 7 of 9) 

Listing by Machine Code 

Mnemonic Instruction Name 

STR Service timer register - privileged 
SPM Set program mask 
BALA Branch and link 
BCTR Branch on count 
BCR Branch on condition 
(F)SSK Set storage key - privileged 
(F)ISK Insert storage key - privileged 
SVC Supervisor call 
GRB Get IORB - privileged 
PRB Put IORB - privileged 
MVCL Move characters long 
CLCL Compare logical characters long 
LPR Load positive 
LNR Load negative 
LTR Load and test 
LCR Load complement 
NR AND 
CLR Compare logical 
OR OR 
XR Exclusive OR 
LR Load 
CR Compare 
AR Add 
SR Subtract 
MR Multiply 
DR Divide 
ALR Add logical 
SLR Subtract logical 
LPDR Load positive, long 
LNDR Load negative, long 
LTDR Load and test, long 
LCDR Load complement, long 
HDR Halve, long 
LDR Load, long 
CDR Compare, long 
ADR Add normalized, long 
SDR Subtract normalized, long 
MDR Multiply, long 
DDR Divide, long 
AWR Add unnormalized, long 
SWR Subtract unnormalized, long 
LPER Load positive, short 
LNER Load negative, short 
LTER Load and test, short 
LCER Load complement, short 
HER Halve, short 
LER Load, short 
CER Compare, short 
AER Add normalized, short 
SER Subtract normalized, short 
MER Multiply.short 
DER Divide, short 
AUR Add unnormalized, short 
SUR Subtract unnormalized, short 
STH Store half word 
LA Load address 
STC Store character 
IC Insert character 
EX Execute 
BAL Branch and link 
BCT Branch on count 

A-9 
Update B 



UP-S914 

Machine Code 

47 
4S 
49 
4A 
4B 
4C 
4E 
4F 
50 
51 
54 
55 
56 
57 
5S 
59 
5A 
5B 
5C 
5D 
5E 
5F 
60 
61 
6S 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
7S 
79 
7A 
7B 
7C 
7D 
7E 
7F 
so 
S1 
S2 
S300 
S301 
S302 

S303 
830E 
S30F 
S6 
S7 
SS 
89 
SA 
SB 
SC 
SD 
SE 
SF 
90 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 8 of 9) 

Listing by Machine Code 

Mnemonic Instruction Name 

BC Branch on condition 
LH Load half-word 
CH Compare half-word 
AH Add half-word . 
SH Subtract half-word 
MH Multiply half-word 
CVD Convert to decimal 
CVB Convert to binary 
ST Store 
LDA Load directive address - privileged 
N AND 
CL Compare logical 
0 OR 
x Exclusive OR 
L Load 
c Compare 
A Add 
s Subtract 
M Multiply 
D Divide 
AL Add logical 
SL Subtract logical 
STD Store, long 
LIA Load 1/0 address - privileged 
LD Load, long 
CD Compare, long 
AD Add normalized, long 
SD Subtract normalized, long 
MD Multiply, long 
DD Divide, long 
AW Add unnormalized, long 
SW Subtract unnormalized, long 
STE Store, short 
LE Load, short 
CE Compare, short 
AE Add normalized, short 
SE Subtract normalized, short 
ME Multiply, short 
DE Divide, short 
AU Add unnormalized, short 
SU Subtract unnormalized, short 
SSM Set system mask - privileged 
MIO Move 1/0 - privileged 
LPSW Load PSW - privileged 
EXD Execute diagnose - privileged 
RESET Reset - privileged 
STS Store status - privileged 
IPL Initial program load - privileged 
LRC Longitudinal redundancy check - privileged 
SWLS Switch list scan - privileged 
BXH Branch on index high 
BXLE Branch on index low or equal 
SRL Shift right single logical 
SLL Shift left single logical 
SRA Shift right single 
SLA Shift left single 
SRDL Shift right double logical 
SLDL Shift left double logical 
SRDA Shift right double 
SLDA Shift left double 
STM Store multiple 

A-10 
Update A 

• 

• 

• 



UP-8914 

• 

• 

• 

Machine Code 

91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9C02 
9DX2 
9D 
9E01 
9F02 
9F03 
A2 
A3 
BO 
B6 
B7 
B8 
B9 
BD 
BE 
BF 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
DC 
DD 
DE 
DF 
EO 
E1 
E2 
FO 
F1 
F2 
F3 
F8 
F9 
FA 
FB 
FC 
FD 

NOTE: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

A-11 
Update B 

Table A-2. Instruction Repertoire (Part 9 of 9) 

Listing by Machine Code 

Mnemonic Instruction Name 

TM Test under mask 
MVI Move immediate 
TS Test and set 
NI AND 
CLI Compare logical 
01 OR 
XI Exclusive OR 
LM Load multiple 
HPR Halt and proceed - privileged 
Al Add immediate 
SHL Shift logical 
SDV Start device - privileged 
CLRDV Clear device - privileged 
HDV Halt device - privileged 
CLRCH Clear channel - privileged 
LCHR Load channel register - privileged 
STRR Store relocation register - privileged 
LRR Load relocation register - privileged 
SSTM Supervisor store multiple - privileged 
STCTL Store control - privileged 
LCTL Load control - privileged 
SLM Supervisor load multiple - privileged 
CSM Compare and swap under mask 
CLM Compare logical characters under mask 
STCM Store characters under mask 
ICM Insert characters under mask 
MVN Move numerics 
MVC Move 
MVZ Move zones (Native and 360120 Modes) 
NC AND (Native and 9200/9300 Modes) 
CLC Compare logical 
QC OR (Native and 9200/9300 Modes) 
xc Exclusive OR 
TR Translate 
TRT Translate and test 
ED Edit 
EDMK Edit and mark 
EIO Enqueue 1/0 - privileged 
CLIS Compare logical immediate and skip 
TMS Test under mask and skip 
SRP Shift and round decimal 
MVO Move with offset 
PACK Pack 
UNPK Unpack 
ZAP Zero and add 
CP Compare decimal 
AP Add decimal 
SP Subtract decimal 
MP Multiply decimal 
DP Divide decimal 

Tag symbol (F) before mnemonic indicates instructions that are added as features . 



UP-8914 

RR-Type Instructions 

Mnemonic Hexadecimal 

Code 
Operation 
Codem1 

BR 07 F 

NOPR 07 0 

- -
- -

BHR 07 2 

BLR 074 

BER 07 8 

BNHR 070 

BNLR 07 B 

BNER 07 7 

BOA 07 1 

BZR 07 8 

BMR 074 

BNOR 07 E 

BNZR 07 7 

BNMR 07 B 

BOA 07 1 

BZR 07 8 

BMR 074 

BPR 07 2 

BNOR 07 E 

BNZR 07 7 

BNMR 07 B 

BNPR 07 0 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-3. Extended Mnemonic Branch Codes 

RX-Type Instructions BC Equivalent 

Mnemonic Hexadecimal Explicit 
Code 

Operation 
Form 

Code m 1 

- - BCR 15,r 2 
- - BCR O,r2 
B 47 F BC 15,d2(x2.b2l 

NOP 47 0 BC O,d
2

(x
2

,b
2

) 

Used after Comparison Instructions 

BH 47 2 BC 2,d2(x2,b2) 

BL 47 4 BC 4,d
2

(x2,b2l 

BE 47 8 BC 8,d2(x2.b2) 

BNH 470 BC 13,d21x2 ,b2l 

BNL 47 B BC 11,d21x2.b2l 

BNE 47 7 BC 7,d2(x2.b2l 

Used after Test-Under-Mask Instructions 

BO 47 1 BC 1,d2(x2,b2l 

BZ 47 8 BC 8,d2(x2,b2l 

BM 474 BC 4,d
2

(x2,u2l 

BNO 47 E BC 14,d21x2,b2l 

BNZ 47 7 BC 7,d
2

(x2,b2l 

BNM 47 B BC 11,d2(x2,b2) 

Used after Arithmetic Instructions 

BO 47 1 BC 1,d21x2,b2) 

BZ 47 8 BC 8,d21x2,b2l 

BM 474 BC 4,d2(x2.b2) 

BP 47 2 BC 2,d2(x2,b2) 

BNO 47 E BC 14,d21x2.b2l 

BNZ 47 7 BC 7·1l2(x2.b2) 

BNM 47 B BC 11,d21x2.b2l 

BNP 470 BC 13,d21x2,b2l 

A-12 

• 
Function 

Branch unconditionally 

No operation 

Branch unconditionally 

No operation 

Branch if high 

Branch if low 

Branch if equal 

Branch if not high 

Branch if not low 

Branch if not equal 

Branch if all ones 

Branch if all zeros • Branch if mixed 

Branch if not all ones 

Branch if not all zeros 

Branch if not mixed 

Branch if overflow 

Branch if zero 

Branch if minus 

Branch if positive 

Branch if not overflow 

Branch if not zero 

Branch if not minus 

Branch if not positive 

• 



UP-8914 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-4. Summeey of Opt1n1ton 

Clulifiation O!Ml'9t0r o-ription ~ -Arithmetic operators ., A*/B is equivalent to A •'2.8 6 

II Covered quotient, A/ /B is 5 
equivalent to (A+B-11/B 

I A/B means arithmetic quotient 5 
of A end B. 

• A •e means arithmetic product 5 
of A end B. 

- A-8 means arithmetic difference 4 
of A and 8. 

+ A+B means arithmetic sum of 4 
AandB. 

Logiclll q>eraton •• A**B rneens logical product 3 
D ofAendB. 

++ A++B rneeM logical sum ID 2 
of A and B. 

-- A--B meam logiclll difference 2 
tJa of.A and B • 

Relational operators . A•B has value 1 if true: 1 
hes value 0 if false. 

> A>B hes value 1 if true: 1 
hes value O if false. 

< A<B hes value 1 if true: 1 
ha value 0 if false. 

Table A-5. Comperison of Terms 

Tenn ~ 

SO Ts CLI AREA10,.12. 

• Can be used in the 1st or 2nd SOT 
operands MVI AREAB. x·c2· 

• May be used in application so;: 
instructions and in assembler MVC E.J.12R51e!R81 
directions SOT SOT SOT 

Literals MVC AREA10.:£.l2:. 

• May only be used in the last Literal 
operand MVC AREA 10,~X'F 1 FO' 

• May not be used in assembler Literal 
directives CLC ONSW.~8'11111111' 

• Are preceded by an Literal 
equal (•)sign 

Symbols for constants AREA10 DSCL2 

• May be used in the 1st or 2nd N010 occ·10· 
operands MOVE10 Mvc,e~ 10,N,2!2, 

• May be used in application 
symbols 

instructions and in assembler 
directi-

A-13 



UP-8914 

Type Constant or 
Code Storage Type 

c Character 

x Hexadecimal 

B Binary 

p Packed decimal 

z Zoned decimal 

, 
H Half word, 

fixed point 

F Full word, 
fixed point 

y Half-word 
address 

A Full-word 
address 

s Base and 
displacement 

v External 
address 

E Full word, 
floating p0int 

D Double word, 
floating point 

SPERRY UNIVAC OS/3 
ASSEMBLER 

A-14 

Tab/#1 A-6. Characteristics of Constant and Storage Definition Type Codes 

Source Code Stonge Truncation length in Byt .. 
Alignment Specification Fonnat or Padding Minimum Maximum 

Implied Explicit Explicit* 

None Characters c·. Character Right Variable 1 256 (DC) 
65,535 (OS) 

None Hexadecimal x·. Hexadecimal Left Variable 1 256 (DC) 
digits 65,535 (OS) 

None Binary B'. Binary Left Variable 1 256 
digits 

None Decimal P"' Packed Left Variable 1 16 
digits decimal 

None Decimal z·. Character Left Variable 1 16 
digits 

Half word Decimal H'. Fixed-point Left 2 1 8 
digits binary 

Full word Decimal F' • Fixed-point Left 4 1 8 
digits binary 

Half word Expression Y() Binary Left 2 1 2 

Full word Expression A() Binary Left 4 1 4 

Half word One or two S( I Base and None 2 2 2 
expressions displacement 

Full word Relocatable V() Binary Left 4 3 4 
symbol 

Full word Decimal e·. Floating- Right 4 1 8 
di_gits point binary 

normalized 

Double word Decimal D'. Floating- Right 8 1 8 
digits point binary 

normalized 

•The maximum explicit length in bytes is that total length produced by the explicit le~gth factor times the duplication factor . 

• 

• 



UP-8914 

• 
HEADING 

BODY 

TRAILER 

HEADING 

• BODY 

TRAILER 

LABEL 

[symbol] 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-7. PROC. MACRO. and Call Instruction Comparison 

PROC CONSTRUCTION 

LABEL 60PERATION6 OPERAND 

[&symbol) PROC [&pos,n) [.&key 1=, ... ,&key m = J 
call-name NAME [pos-0) 

[too'}] mnemonic-code operands 

&symbol 
.symbol 

mnemonic-code operands 

unused END unused 

MACRO CONSTRUCTION 

LABEL 60PERATION6 OPERAND 

unused MACRO unused 

[&symbol) call-name [ &pos 1, .... &posJ[.&key 1=, ... ,&key m ,:-] 

[f'mOOI }] mnemonic-code operands 
&symbol 
.symbol 

mnemonic-code operands 

unused MEND unused 

CALL INSTRUCTION FORMAT 

/:::,.OPERATION 6 OPERAND 

call-name 

A-15 
Update B 



UP-8914 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

Condition Codes 

01F RESULT~ O,SETTOO 
01F RESULT<O.SETTO 1 
01F RESULT>O.SETT02 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

Explanation: 

• Addressing 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-8. Check-off Table Terms 

A-16 

Possible Program Exceptions 

Q ADDRESSING D PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

['.]FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 

0 
0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

A storage location outside the range of the installed storage is referenced by a program-specified address. 

• Data 

An invalid sign or digit code is detected in decimal operands. 

Fields in decimal arithmetic overlap incorrectly. 

The first operand of the multiply decimal instruction does not have a sufficient number of high-order 
zero digits. 

• Decimal Divide 

The quotient of a divide decimal instruction exceeds the capacity of the quotient part of the first operand 
field. 

• Decimal Overflow 

The result of an add decimal, subtract decimal, or zero and add instruction exceeds the capacity of the first 
operand location. 

• Execute 

The subject instruction of an execute instruction is an execute instruction. 

• Exponent Overflow 

The final characteristic resulting from a floating-point arithmetic operand exceeds 127. 

• Exponent Underflow 

The final characteristic resulting from a floating-point arithmetic operation is less than zero. 

• 

• 



• 

• ! 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

A-17 

Explanation: 

• Fixed-Point Divide 

The quotient of a fixed-point divide operation exceeds the capacity of the first operand (including division by 
zero), or the result of a convert to binary instruction exceeds 31 bits. 

• Fixed-Point Overflow 

A fixed-point add or subtract operation exceeds the capacity of the first operand field . 

. • Floating-Point Divide 

The divisor fraction in a floating-point divide operation is equal to zero. 

• Operation 

An illegal operation has been attempted or an operation using a noninstalled processor feature has been 
attempted. 

• Protection 

• 

A storage protection violation occurs on a program-generated address, when the protection feature is 
installed . 

Significance 

The final fraction resulting from a floating-point addition or subtraction is equal to zero. 

• Specification 

The unit of information referenced is not on an appropriate boundary. 

An invalid modifier field is specified in the STA instruction. 

The R1 field of an instruction that uses an even/odd pair of registers (64-bit operand) does not specify 
an even register. 

A floating-point register other than O. 2. 4, or 6 is specified. 

A multiplicand or divisor in decimal arithmetic exceeds 15 digits and sign. 

The first operand field is shorter than. or equal in length to, the second operand in decimal multiply 
and decimal divide instructions . 



• 

• 

• 



• 
•-c:..de ._..._ ,_ ··--Typo 

hpllcltF- I lmpllcitf-

RR I hymbolJ opcoc1e r 
1
.r 

2 
0 (symbol) opcode r1.r2 

RX I (1ymbol) opcode r 
1

.d
2 

C•
2
.b

2
1 (1ymbol) opcode r 

1
.a

2
Cx

2
1 

RS I (1ymbol) opcode r 
1 

,r 
3 

.d
2 

Cb
2

1 © I (1ym11o11 opcode r ,.r3.12 

-
SI I l•vmboll oll<Odo d 1Cb1U 20 (1y .... ol) opcode •1)2 

s I (symbol( opcode d
2

Cb
2

1 (1ymbol) opcode 1
2 

11ym11o11opcoded1 11.b
1

1.c1
2

1b21 I l•y,,.,o11 opcodl11111 •• 2 

SS 

(lymboll opcoc1od
1 

Cl
1
.b11.d

2
Cl

2
.b

2
1 I lsvmboll opcode11c1 11,12 Cl 2t 

SM (1ymbol) opcode d 1Cb
1
1)2,m3 ,d4 I (1ymbol) opcode 1 1 J2.m~• 

NOTES: 

© The RR lnolructlon .... - Olhor lormo: 

(1ymbol) oP<odl 1
1 

for lhe SVC ond SRF ln1trucllon, ond 

(1Ymbol I oP<odl r 1 for lhe SfM ln11ructlon. 

• •• 
Table A-1. Instruction Formats (Part 1 of 2) 

1 
I 
I 
l 

I 
I 
l 

Byte I 

oP<odl 

opcode 

oP<odl 

oP<odl 

Finl Half Word 

!J.I 
By1e2 
l!,112 .I, 

Olijoct C-. l1>11nlCllon formll 

UIU 
Second Hiii Word 

Byln 3ond4 
lt...120 

I ·· I ·· I b. I d, I 
I I I 

I reg reg I -- t 
I opl op3 I -•nd2 I 
----.~I 

I r, I r. I b. I _ -"_!_ __ m_I 
immedlale I -- -- -

I 
I -

IS_ll& 

Third Hall Word 

Byte16andB 
41 

I 
I 

I operand I eddrlSI I --------- i operand 1 I ______..._ 

~ I 
-... I I 

! i. I b, I d, 

I 
I I -,tnd2 1 I 

_____,_______ I I 
1-1 -opcod-,--t-, -o-pcodl--t-1 __:;b;__2 _,.,--=~::;:::d2=--..=::::o......t1 . : 

I ienlllh II lddrlSI I odchss I 

I I 

I 
L 

To 

oP<odl 

oP<odl 

opcode 

I op 1 and op 2 -•nd 1 : operand 2 I 
L----=---_! ~ : ---------- I 
r=·H I b, I d, =r~ d, 

I I I -, 
I length I -•11 I addreu 
I op 1 op 2 1 operand 1 1 operand 2 I 
I-·- -·-_l ------------- I ------- I Li-::1 I 1.-•mIQ -- d, I b. I d, 
~-- -----r------------ ----------.-

' immediate I immediate displacement I address 
I operand 2 I mask 3 4 I operand 1 

I --------- ! ..--"--., ~I ------ I 

l 
I 

I i2 I m3 I 
31 132 ~36 
~~J d4 d, .,., 7 II II 112 15 IJg 19 ho 

@ The RS lhlft 1n11ructlon1 are written without UM of the r
3 

ope,.nd, In the form: 

flymbol) opcode r 1.d
2

Cb
2
1 

@ Somt SI lnotrucllont, ouch•• HIO ond TIO, do not uM on 12 field. They ore wrlllen In Ille form: 

(1ymbol) opcodod1lb11 

c .,, 
00 
tO 

~ 

CJ) 

;H 
>:J:I 
(/) :0 
(/) -< 
mC 
~:!: 
ID~ 
ffi 0 

~ 
...... 
w 

! 



UP-8914 

Ch_,.,.. 
OPCODE 

r 1 

r2 

r3 

x2 

;, 

i2 

I 

'1 

12 

bl 

b2 

d, 

d2 

d4 

m3 

<IP1 

<IP2 

<IP3 

st 

52 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-1. Instruction Formats (Part 2 of 2) 

Meaning 

The application instruction operation code. 

The number of the general register containing operand 1 

The number of the general register containing operand 2 

The number of the general register containing operand 3 

A-2 

The number of the general register containing an index number for operand 2 of the AX instruction 

The immediate data used as operand 1 of the SVC instruction 

The immediate data used as operand 2 of an SI instruction 

The length of the operands as stated in source c;ode • 

The length of operand 1 as stated in source code• 

The length of operand 2 as stated in source code• 

The number of the general register containing the base address for operand 1 

The number of the general register containing the base address for operand 2 

The displacement for the base address of operand 1 

The displacement for the base address of operand 2 

The displacement used as operand 4 of an SM instruction 

The mask used as operand 3 of an SM instruction 

Operand 1 

Operand 2 

Operand 3 

The symbol used to identify operand 1 in the implicit format 

The symbol used to identify operand 2 in the implicit format 

-This is coded as the true source code length of the operand, not the length less 1, as assembled in the object code. The 
assembler makes a reduction of 1 in the length when converting source code to object code. 

• 

• 

• 



UP-8914 

• 
Mnemonic 

A 
AD 
AOR 
AE 
AER 
AH 
Al 
AL 
ALR 
AP 
AR 
AU 
AUR 
AW 
AWR 
BAL 
BALR 
BC 
BCR 
BCT 
BCTR 
BXH 
BXLE 
c 
CD 
CDR. 
CE 
CER 
CH 
CL 
CLC 
CLCL 

CLI 
CLIS 

CLM 

CLR 
CLRCH 
CLRDV 
CP 
CR 
CSM 

eve 
cvo 
D 
DD 
DOR 
OE 
OEQ 
DER 
DP • DR 
ED 
EDMK 
EIO 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 1 of 9J 

Listing by Mnemonic Code 

A-3 

Machine Byte Source Code Format 
Instruction Name 

Code Length Explicit Implicit 

Add SA 4 r, ,d2(X2,b2) r1S2(X2) 
Add normalized, long 6A 4 r,,d2(X2,bz) r,,S7(X2) 
Add normalized, long 2A 2 r, ,r2 r, .r2 
Add normalized, short 7A 4 r, .d2(X7,b2) r,,s2(X2) 
Add normalized, short 3A 2 r1,r2 r1 ,r2 
Add half word 4A 4 r 1 .d2(Xz,b2) r1 ,s2(x2) 
Add immediate 9A 4 d,(b,),i2 S1,i2 
Add logical SE 4 r,,d2(Xz,bzl r,,a2(x2) 
Add logical 1E 2 r1,r r, .r2 
Add decimal FA 6 d,(I, ,d, ),dz(lz,bzl S1(l,),S2(l2) 
Add 1A 2 r1,r2 r1 ,r2 
Add unnormalized, short 7E 4 r,,dz(Xz,bzl r1,S2(X2) 
Add unnormalized. short 3E 2 r1,r2 r1,r2 
Add unnormalized, lorig 6E 4 r,,d2(x2,bz) r1,S2(X2) 
Add unnormalized, long 2E 2 r1,r2 r1,r2 
Branch and link 4S 4 r, ,d7(X7,b2) r1,S2(X2) 
Branch and link OS 2 r1r2 r, .r2 
Branch on condition 47 4 i,dz(Xz,b2) i,Sz(Xz) 
Branch on condition 07 2 i,r2 ih 
Branch on count 46 4 r,,d2(Xz,bz) r1.S2(X2) 
Branch on count 06 2 r1,r2 r1,r2 
Branch on index high 86 4 r1.r3,d2(b2) r1 ,r3,s2 
Branch on index low or equal 87 4 r 1.r3,dz(b2) r, ,r3,s2 
Compare algebraic 59 4 r 1 .d2(Xz,b2) r1.S2(X2) 
Compare, long 69 4 r,,dz(x2,bz) r1,S2(X2) 
Compare. long 29 2 r1,r2 r,,r2 
Compare, short 79 4 r, ,Sz(Xz,bz) r1.S2(X2) 
Compare, short 39 2 r1,r2 r,,r2 
Ccmpare half word 49 4 r, ,dz(Xz,bzl r1.S2(X2) 
Compare logical 5S 4 r,,dz(x2.b2) r, ,S7(X2) 
Compare logical 05 6 d,,(l,b, Ldz(bzl s,(l),Sz 
Compare logical characters OF 2 r1,r2 r,,r2 

long 
Compare logical immediate 95 4 d,,(b,),i2 S1,i2 
Compare logical immediate E1 6 d1(b1 ),iz,m3,cf. S1,i2.~.S. 

and skip 
Compare logical characters BO 4 r, ,m3,dz(bz) r,,m3,Sz 

under mask 
Compare logical 15 2 r1,r2 r,,r2 
Clear channel 9F02 4 (Privileged) (Privileged) 
Clear device 90 4 (Privileged) (Privileged) 
Compare decimal F9 6 d,(l,,b, ),dz(lz,bzl S1(l,),Sz(l2) 
Compare algebraic 19 2 r,r2 r1 ,r2 
Compare and swap under B9 4 r,,r3,d2(b2) r,,r3,Sz 

mask 
Convert to binary 4F 4 r,,d2(X7,hz) r,,Sz(Xz) 
Convert to decimal 4E 4 f1,d2(X7,hz) r,,s2(x2) 
Divide 50 4 r 1.d2(X7,b2) r1,s2(X2) 
Divide, long 60 4 f1,d2(X7,bz) r1,sz(Xz) 
Divide, long 2D 2 r1,r2 r1,r2 
Divide, short 70 4 r, ,dz(Xz,b2) r1 .sz{x2) 
Dequeue B4 4 d,(b1).i2 Si.i2 
Divide, short 30 2 r1,r2 r,,r2 
Divide decimal FD 6 d,(I, ,b, ),dz(lz,bzl S1 (I, ), ,5z(l2) 
Divide 1D 2 r,.r2 r1,r2 
Edit DE 6 d,(l.b,).d2(bz) s,(l),Sz 
Edit and mark OF 6 d,(l,b,),d2(bz) S1(1),5z 
~ueue 1/0 EO 6 J..Privi .!!9._ecft _1Privileaedl 



UP-8914 

Mnemonic 

ENQ 
EX 
EXO 
HOR 
HOV 
HER 
HPR 
IC 
ICM 
ISK* 
L 
LA 
LCOR 
LCER 
LCHR 
LCR 
LCTL 
LO 
LOA 
LOR 
LE 
LEA 
LH 
LIA 
LM 
LNDR 
LNER 
LNR 
LPOR 
LPER 
LPR 
LPSW 
LR 
LRC 

LRR 
LTOR 
LTER 
LTR 
M 
MD 
MOR 
ME 
MER 
MH 
MIO 
MP 
MR 
MSS 
MVC 
MVCL 
MVI 
MVN 
MVO 
MVZ 
N 
NC 
NI 
NR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

A-4 

Table A-2. Instruction Repertoire (Part 2 of 9) 

Listing by Mnemonic Code 

Machine Byte Source Code Format 
Instruction Name Code Length Explicit Implicit 

Enqueue 83 6 d,(bi),i2 s1,i2 
Execute 44 4 r 1 .d2(X2,b2) r, .s2(x2) 

Execute diagnose 8300 4 (Privileged) (Privileged) 
Halve, long 24 2 r1 ,r2 r1 .r2 
Halt device 9E 4 (Privileged) (Privileged) 
Halve, short 34 2 r 1 ,r2 r, ,r2 
Halt and proceed 99 4 (Privileged) (Privileged) 
Insert character 43 4 r,,d2(X2.b2) r, .s2(x2) 
Insert characters under mask BF 4 r1,m3,d2(b2) r,,m3,s2 
Insert storage key 09 2 (Privileged) (Privileged) 
Load 58 4 r, ,d2(X2.b2) r, .s2(X2) 
Load address 41 4 r, ,d2(X2,b2) r, .s2(x2) 
Load complement, long 23 2 r1,r2 

- r1 ,r2 
Load complement, short 33 2 r1,r2 r, ,r2 
Load channel register 9F03 4 (Privileged) (Privileged) 
Load complement 13 2 r1,r2 rrr2 
Load control 87 4 (Privileged) (Privileged) 
Load, long 68 4 r,,d:(X2,b2) r, .s2(x2) 
Load directive address 51 4 (Privileged) (Privileged) 
Load, long 28 2 r1,r2 r1 ,r2 
Load, short 78 4 r,,d,(x2.~) r,.s2(x2) 
Load, short 38 2 r,,r2 r, ,r2 
Load half word 48 4 r1,d2{X7,~) r, .s2(x2) 
Load 1/0 address 61 4 (Privileged) (Privileged) 
Load multiple 98 4 r,,r3.d2(b2) r, ,r3,s2 
Load negative, long 21 2 r1,r2 r1,r2 
Load negative, short 31 2 r1,r2 r1,r2 
Load negative 11 2 r1,r2 r1 ,r2 
Load positive, long 20 2 r1,r2 r, ,r2 
Load positive, short 30 2 r1,r2 r1,r2 
Load positive 10 2 r1,r2 r1,r2 
Load program status word 82 4 (Privileged) (Privileged) 
Load 18 2 r,.r2 r1 ,r2 
Longitudinal redundancy 830E 4 (Privileged) (Privileged) 

check 
Load relocation register A3 4 (Privileged) (Privileged) 
Load and test, long 22 2 r1,r2 r1,r2 
Load and test, short 32 2 r1,r2 r, ,r2 
Load and test 12 2 r1,r2 r, r2 
Multiply SC 4 r 1 ,d2(X2,b2) r, ,S7(X2) 
Multiply, long 6C 4 r,,d2(X2.b2) r,,s2(x2) 
Multiply, long 2C 2 r1,r2 r1 ,r2 
Multiply, short 7C 4 r 1 ,d2(X2,b2) r,,s2(x2) 
Multiply, short 3C 2 r1 ,r2 r1 ,r2 
Multiply half word 4C 4 r 1 ,d2(X2,b2) r, .s2(X2) 
Move 1/0 81 4 (Privileged) (Privileged) 
Multiply decimal FC 6 d,(l,,b,),d2(12.~l s,(l,),s2.02l 
Multiply 1C 2 r1.r2 r1 .r2 

Modify storage and skip E3 6 d,(i, ,b, ),d:z(i3.~) S1.(i,),S7{i3) 
Move characters 02 6 d,(l,b, ).d2(~) s,(I).~ 

Move character long OE 2 r1,r2 r, ,r2 
Move immediate 92 4 d,(b,),i2 S1.i2 
Move numerics 01 6 d,(l,b,),d2(~) s,(I).~ 

Move with offset F1 6 d,(I, ,b, ).d202.~l s,(l,),s2U2l 
Move zones 03 6 d,(l,b,),d2(~) s 1 (1).~ 
AND logical 54 4 r,,d2lx2.~l r,,s2(x2) 
AND logical D4 6 d,(l,b, ).d2(~) s,(1),52 
AND logical immediate 94 4 d,(b,),i2 S1.i2 
AND .!Qgjcal 14 2 r ,[2 r ,[2 

• 

• 

• 



UP-8914 

• 

• 

• 

Mnemonic 

0 
QC 
01 
OR 
PACK 
RESET 
s 
SD 
SOR 
SDV 
SE 
SER 
SH 
SHL 
SIC 
SL 
SLA 
SLDA 
SLDL 
SLL 
SLM 
SLR 
SP 
SPM 
SR 
SRA 
SRDA 
SRDL 
SRL 
SRP 
SSK* 
SSM 
SSTM 
ST 
STC 
STCM 
STCTL 
STD 
STE 
STEP 
SU 
SUR 
SVC 
SW 
SWR 
TM 
TMS 
TR 
TRT 
TS 
UNPK 
x 
xc 
XI 
XR 
ZAP 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repenoire (Part 3 of 9) 

Listing by Mnemonic Code 

A-5 

Machine Byte Source Code Format 
Instruction Name Code Length Explicit Implicit 

OR logical 56 4 r 1 ,d2(X2,b2) r,,S2(X2) 
OR logical 06 6 d,(l,b,),d2(bi) s,(l).Si 
OR logical immediate 96 4 d,(b,),i2 S1.i2 
OR logical 16 2 r,,r2 r1 ,r2 
Pack F2 6 d,(l, ,b, ).d2(12.bil S1(l,),$i(l2) 
Reset S301 4 ·(Privileged) (Privileged) 
Subtract SB 4 r, ,d7(X2,b2) r,,S7(X2) 
Subtract normalized, long 68 4 r,,d7(X2,b2) r, .s2(x2) 
'Subtract normalized. long 28 2 r1,r2 r1,r2 
Start device 9C 4 (Privileged) (Privileged) 
Subtract normalized, short 78 4 r,,d2(X7,b2) r,,s2(X2) 
Subtract normalized, short 38 2 r1,r2 r1,r2 
Subtract half word 4B 4 r,,d2(X7,b2) r1,S2(X2) 
Shift logical 98 4 r, ,m3,d2(b2) r1,m3,Si 
Start 1/0 9C 4 (Privileged) (Privileged) 
Subtract logical SF 4 r 1.d7(X2,bi) r,,s2(X2) 
Shift left single algebraic SB 4 r,,d2(b2) r1,s2 
Shift left double algebraic SF 4 r,,d2(b2) r1,S2 
Shift left double logical SD 4 r,.d?(b2) - r1,s2 
Shift left single logical 89 4 r,,d2(b2) r,,S2 
Supervisor load multiple BS 4 (Privileged) (Privileged) 
Subtract logical 1F 2 r,.r2 r,,r2 
Subtract decimal F8 6 d,(I, .b, ).diU2.bil s,(l,).Si(l2) 
Set program mask 04 2 r, r, . 
Subtract 1B 2 r1,r2 r1,r2 
Shift right single algebraic BA 4 r,,d2(b2) r1,S2 
Shift right double algebraic SE 4 r1,d2(b2) r1,s2 
Shift right double logical SC 4 r1,d2(b2) r1,S2 
Shift right single logical SS 4 r,,di(b2) r1,s2 
Shift and round decimal FO 6 d,(l, ,b,),di(b2).i3 s,(l,),s2.i3. 
Set system key 08 2 (Privileged) (Privileged) 
Set system mask 80 4 (Privileged) (Privileged) 
Supervisor store multiple BO 4 (Privileged) (Privileged) 
Store 50 4 r,,d2(X2,b2) r1.Si(Xi) 
Store character 42 4 r 1 ,d2(X2,b2) r1,S2(X2) 
Store characters under mask BE 4 r i.m3,di(b2) r1.m3.Si 
Store control B6 4 (Privileged) (Privileged) 
Store long 60 4 r 1 ,d2(X2,bi) r,,s?(x2) 
Store short 70 4 r, ,d2(X2,b2) r, .si(x2) 
Step queue BS 4 d,(b,),i2 S1,i2 
Subtract unnormalized, short 7F 4 r, ,d2'x2.b2) r1.Si(X2) 
Subtract unnormalized, short 3F 2 r1,r2 r,,r2 
Supervisor call OA 2 i i 
Subtract unnormalized, long SF 4 r, ,d7(X2,b2) r1.S2(X2) 
Subtract unnormalized. long 2F 2 r,,r2 r1,r2 
Test under mask 91 4 d,(b,),i2 S1,i2 
Test under mask and skip E2 6 d,(b,),i2,m3.~ s, .ii.m3.S. 
Translate DC 6 d,(l,b,),d2(bi) s,(l),11i 
Translate and test DD 6 d,(t,b,),di(bi) s,(l),Si 
Test and set 93 4 d,(b,) S1 
Unpack F3 6 d,(l, ,b, ).dill2.bil s,(l,).Si(l2) 
Exclusive OR 57 4 r 1 ,d2(X2,b2) r, .S2(X2) 
Exclusive OR D7 6 d,(t,b,),d2(B2) s,(l).Si 
Exclusive OR, immediate 97 4 d,(b,),i2 S1,i2 
Exclusive OR 17 2 r1,r2 r1,r2 
Zero and add decimal FS 6 d,(l,,b,).di(l2.bil s,(t,),52(12) 

*Micro expansion feature 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repenoire (Part 4 of 9} 

listing by Alphabetic Instructions 

Instruction Name Machine Code 

Add 1A 
Add SA 
Add decimal FA 
Add half word 4A 
Add immediate 9A 
Add immediate (A6) 
Add logical 1E 
Add logical SE 
Add normalized, long 2A 
Add normalized, long 6A 
Add normalized, short .. 3A 
Add normalized, short 7A 
Add unnormalized, long 2E 
Add unnormalized, long 6E 
Add unnormalized, short 3E 
Add unnormalized. short 7£ 
ANO 14 
ANO S4 
AND 94 
AND 04 
Branch and link OS 
Branch and link 45 
Branch on condition 07 
Branch on condition 47 
Branch on count 06 
Branch on count 46 
Branch on index high 86 
Branch on index low or equal 87 
Clear channel - privileged 9F02 
Clear device - privileged 90 
Compare 19 
Compare 59 
Compare and swap under mask 89 
Compare decimal F9 
Compare half word 49 
Compare logical 15 
Compare logical 55 
Compare logical 95 
Compare logical 05 
Compare logical characters under mask BO 
Compare logical immediate and skip El 
Compare logical characters long OF 
Compare, long 29 
Compare, long 69 
Compare, short 39 
Compare, short 79 
Convert to binary 4F 
Convert to decimal 4E 
Dequeue 84 
Divide 10 
Divide 50 
Divide decimal FD 
Divide, long 20 
Divide, long 6D 
Divide, short 30 
Divide, short 70 
Edit DE 
Edit and mark OF 
Enqueue 83 

A-6 

• 
Mnemonic 

AR 
A 
AP 
AH 
Al 
Al 
ALR 
AL 
ADR 
AD 
AER 
AE 
AWR -
AW 
AUR 
AU 
NR 
N 
NI 
NC 
BALR 
BAL 
BCR 
BC 
BCTR 
BCT • BXH 
BXLE 
CLRCH 
CLRDV 
CR 
c 
CSM 
CP 
CH 
CLR 
CL 
CLI 
CLC 
CLM 
CLIS 
CLCL 
CDR 
CD 
CER 
CE 
eve 
cvo 
OEQ 
DR 
0 
OP 
DOR 
OD 
DER 

• OE 
ED 
EDMK 
ENQ 



UP-8914 

• 

•• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 5 of 9) 

Listing by Alphabetic Instructions 

Instruction Name Machine Code 

Enqueue 1/0 - privileged EO 
Exclusive OR 17 
Exclusive OR 57 
Exclusive OR 97 
Exclusive OR 07 
Execute 44 
Execute diagnose - privileged 8300 
Halt and proceed - privileged 99 
Halt device - privileged 9E01 
Halve. long 24 
Halve. shon 34 
Insert character 43 
Insert characters under mask BF 
Insert storage key - privileged 09 
Load 18 
Load 58 
Load address 41 
Load and test 12 
Load and test. long 22 
Load and test. short 32 
Load channel register -. privileged 9F03 
Load complement 13 
Load complement. long 23 
Load complement, short 33 
Load control - privileged 87 
Load directive address - privileged 51 
Load half word 48 
Load 1/0 address - privileged 61 
Load. long 28 
Load. long 68 
Load multiple 98 
Load negative 11 
Load negative, long 21 
Load negative, shon 31 
Load positive 10 
Load positive, long 20 
Load positive. short 30 
Load PSN - privileged 82 
Load relocation register - privileged A3 
Load, short 38 
Load, short 78 
Longitudinal redundancy check - privileged 830E 
Modify storage and skip E3 
Move 92 
Move 02 
Move 1/0 - privileged 81 
Move characters long OE 
Move numerics 01 
Move with offset F1 
Move zones (Native and 9200/9300 Modes) 03 
Multiply 1C 
Multiply SC 
Multiply decimal FC 
Multiply half word 4C 
Multiply, long 2C 
Multiply, long 6C 
Multiply, short 3C 
MuliiPV. short 7C 
OR 16 
OR 56 

A-7 

-Mnemonic 

ElO 
XR 
x 
XI 
xc 
EX 
EXO 
HPR 
HOV 
HOR 
HER 
IC 
ICM 
(F)IS~ 
LR 
L 
LA 
LTR 
LTDR 
LTER 
LCHR 
LCR 
LCOR 
LCER 
LCTL 
LOA 
LH 
LIA 
LOR 
LO 
LM 
LNR 
LNDR 
LNER 
LPR 
LPDR 
LPER 
LPSW 
LRR 
LER 
LE 
LRC 
MSS 
MVI 
MVC 
MIO 
MVCL 
MVN 
MVO 
MVZ 
MR 
M 
MP 
MH 
MOR 
MD 
MER 
ME 
OR 
0 



UP-S914 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Pert 6 of 9) 

Listing by Alphabetic Instructions 

Instruction Name 
-.... 

Machine Code 

OR 96 
OR (Native and 9200/9300 Modes) 06 
Pack F2 
Reset - privileged S301 
Service timer register - privileged 03 
Set program mask 04 
Set storage key - privileged OS 
Set system mask - privileged so 
Shift and round decimal FO 
Shift left double SF 
Shift left double logical so 
Shift left single SB 
Shift left single logical S9 
Shift logical 98 
Shift right double SE 
Shift right double logical SC 
Shift right single SA 
Shift right single logical 88 
Start device - privileged 9C02 
Step queue 85 
Store 50 
Store character 42 
Store characters under mask BE 
Store control - privileged 86 
Store. long 60 
Store half word 40 
Store multiple 90 
Store relocation register - privileged A2 
Store. short 70 
Store status - privileged S302 
Subtract 18 
Subtract 58 
Subtract decimal FB 
Subtract haH word . 48 
Subtract logical 1F 
Subtract logical SF 
Subtract normalized, long 28 
Subtract normalized, long 68 
Subtract normalized, short 38 
Subtract normalized. short 78 
Subtract unnormalized, long 2F 
Subtract unnormalized, long 6F 
Subtract unnormalized, short 3F 
Subtract unnormalized, short 7F 
Supervisor call OA 
Supervisor load multiple - privileged BS 
Supervisor store multiple - privileged BO 
Test and set 93 
Test under mask 91 
Test under mask and skip E2 
Translate DC 
Translate and test DD 
Unpack F3 
Zero and add FS 

NOTE: 

Tag symbol (Fl before mnemonic indicates instructions that are added as features. 

A-S 

• 
Mnemonic 

01 
QC 
PACK 
RESET 
STR 
SPM 
(F)SSK 
SSM 
SRP 
SLDA 
SLOL 
SLA 
SLL 
SHL 
SADA 
SRDL 
SRA 
SAL 
sov 
STEP 
ST 
STC 
STCM 
STCTL 
STD 
STH 
STM • STRR 
STE 
STS 
SR 
s 
SP 
SH 
SLR 
SL 
SOR 
SD 
SER 
SE 
SWR 
SW 
SUR 
SU 
SVC 
SLM 
SSTM 
TS 
TM 
TMS 
TR 
TRT 
UNPK 
ZAP 

• 



UP-8914 

• 
Machine Code 

03 
04 
05 
06 
07 
08 
09 
OA 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
10 
1E 
1F 
20 
21 
22 
23 
24 
28 
29 
2A 
28 
2C 
20 
2E 
2F 
30 
31 
32 
33 
34 
38 
39 
3A 
38 
3C 
30 
3E 
3F 
40 
41 
42 

• 43 
44 
46 
46 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 7 of 9) 

Listing by Machine Code 

Mnemonic Instruction Name 

STA Service timer register - privileged 
SPM Set program mask 
BALA Branch and link 
BCTR Branch on count 
BCR Branch on condition 
(F)SSK Set storage key - privileged 
(F)ISK Insert storage key - privileged 
SVC Supervisor call 
MVCL Move characters long 
CLCL Compare logical characters long 
LPR Load positive 
LNR Load negative 
LTR Load and test 
LCR Load complement 
NR AND 
CLR Compare logical 
OR OR 
XR Exclusive OR 
LR Load 
CR Compare 
AR Add 
SR Subtract 
MR Multiply 
DR Divide 
ALA Add logical 
SLR Subtract logical 
LPDR Load positive, long 
LNDR Load negative. long 
LTDR Load and test, long 
LCDR Load complement, long 
HOR Halve, long 
LOR Load, long 
CDR Compare, long 
ADR Add normalized, long 
SOR Subtract normalized, long 
MOR Multiply, long 
DOR Divide, long 
AWA Add unnormalized, long 
SWR Subtract unnormalized, long 
LPER Load positive, short 
LNER Load negative, short 
LTER Load and test, short 
LCER Load complement, short 
HER Halve, short 
LER Load, short 
CER Compare, short 
AER Add normalized, short 
SER Subtract normalized, short 
MER Multiply.short 
DER Divide, short 
AUR Add unnormalized, short 
SUR Subtract unnormalized, short 
STH Store half word 
LA Load address 
STC Store character 
IC Insert character 
EX Execute 
BAL Branch and link 
BCT Branch on count 

A-9 



UP-8914 

~achine Code 

47 
4S 
49 
4A 
48 
4C 
4E 
4F 
so 
S1 
S4 
SS 
S6 
S7 
S8 
S9 
SA 
SB 
SC 
SD 
SE 
SF 
60 
61 
68 
69 -6A 
68 
6C 
6D 
6E 
6F 
70 
78 
79 
7A 
78 
7C 
7D 
7E 
7F 
so 
81 
82 
8300 
8301 
S302 
830E 
86 
87 
88 
89 
BA 
88 
sc 
SD 
SE 
SF 
90 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table A-2. Instruction Repertoire (Part 8 of 9) 

Listing by Machine Code 

Mnemonic Instruction Name 

BC Branch on condition 
LH Load half-word 
CH Compare half-word 
AH Add half-word 
SH Subtract half-word 
MH Multiply half-word 
CVD Convert to decimal 
eve Convert to binary 
ST Store 
LOA Load directive address - privileged 
N AND 
CL Compare logical 
0 OR 
x Exclusive OR 
L Load 
c Compare 
A Add 
s Subtract 
M Multiply 
D Divide 
AL Add logical 
SL Subtract logical 
STD Store. long 
LIA Load 1/0 address - privileged 
LO Load. long 
CD Compare, rong 
AD Add normalized. long 
SD Subtract normalized, long 
MD Multiply, long 
DD Divide, long 
AW Add unnormalized, long 
SW Subtract unnormalized, long 
STE Store, short 
LE Load. short 
CE Compare. short 
AE Add normalized, short 
SE Subtract normalized, short 
ME Multiply, short 
DE Divide, short 
AU Add unnormalized, short 
SU Subtract unnormalized, short 
SSM Set system mask - privileged 
MIO Move 1/0 - privileged 
LPSW Load PSW - privileged 
EXD Execute diagnose - privileged 
RESET Reset - privileged 
STS Store status - privileged 
LAC Longitudinal redundancy check - privileged 
BXH Branch on index high 
BXLE Branch on index low or equal 
SAL Shift right single logical 
SLL Shift left single logical 
SRA Shift right single 
SLA Shift left single 
SRDL Shift right double logical 
SLOL Shift left double logical 
SADA Shift right double 
SLOA Shift left double 
STM Store multiole 

A-10 

• 

• 

• 



•• 

Appendix B. Character Set Code References 

• 

• 



• 

• 

• 



UP-8914 

• 
ChaNCter 

Uppercase A 

Uppercase 8 

Upperc-c 

Upperc-o 

Upperc:me E 

UPS*c:me F 

Uppercase G 

Uppercase H 

Uppercase I 

Uppercase J 

Uppercase K 

Uppercase L 

Uppercase M 

Uppercase N 

Uppercase 0 

UppercaMP 

Upperc:89 Q 

UppercaM R 

Upperc:me S 

Upperc:aseT 

Uppercase U 

Upperca9 V 

UppercaeW 

Upperc:a. X 

Upperca9 V 

Upperc:aM Z 

L.o-rcase a 

• l.o-rcaseb 

l.o-rcase c 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-1. Punched-Card, ASC/l and EBCDIC Codes (Pait 7 of 5) 

Printed c.rd ASCII 

Symbot Punch• Hexlldecimel Decimal 

Letters 

A 12-1 41 65 

B 12-2 42 66 

c 12-3 43 67 

0 12-4 44 68 

E 12-5 45 69 

F 12-6 46 70 

G 12-7 47 71 

H 12-8 48 72 

I 12-9 49 73 

J 11-l 4A 74 

K 11-2 48 75 

l. 11-3 4C 76 

M 11-4 40 77 

N 11-5 4E 78 

0 11-6 4F 79 

p 11-7 50 80 

a 11-8 51 81 

R 11-9 52 82 

s 0-2 53 83 

T 0-3 54 84 

u 0-4 55 85 

v 0-5 56 86 

w 0-6 57 87 

x 0-7 58 88 

y 0-8 59 89 

z 0-9 5A 90 

a 12-0-1 61 97 

b 12-0-2 62 98 

c 12-0-3 63 99 

B-1 

EBCDIC 

Heudacimal Decimal 

C1 193 

C2 194 

C3 195 

C4 196 

C5 197 

cs 198 

C7 199 

CB 200 

C9 201 

01 209 

02 210 

03 211 

04 212 

05 213 

06 214 

07 215 

08 216 

09 217 

e2 226 

e3 227 

e4 228 

es 229 

es 230 

e7 231 

ES 232 

E9 233 

81 129 

82 130 

83 131 



UP-8914 

a.--
Lowercased 

Lowerc-e 

Lowercne f 

Lowercase g 

Lowercase h 

Lowerca1e i 

Lowercasej 

Lo-c:mek 

Lo-easel 

L-casem 

L-c-n 

L-aneo 

Lowe~p 

Lowercase q 

Lowercme r 

Lowercase s 

L-caset 

Lowercase u 

Lowerc:asev 

Lowercase w 

Lowercme x 

Lowercasey 

L-case z 

0 

1 

2 

3 

4 

5 

6 

SPERRY UNNAC OS/3 
ASSEMBLER 

Table B-1. Punched-Card, ASCII, and EBCDIC Coda (Part 2 of 5} 

Printed Card ASCII 
Symbol Punch• Hexadecim81 Decimal 

d 12-0-4 64 100 

e 12-0-5 65 101 

f 12-0-6 66 102 

g 12-0-7 fi1 103 

h 12-0-8 68 104 

i 12-0-9 69 105 

j 12-11-1 6A 106 

k 12-11-2 68 107 

I 12-11-3 6C 108 

m 12-11-4 60 109 

n 12-11-5 6E 110 

0 12-11-6 6F 111 

p 12-11-7 70 l 12 

Q 12-11-8 71 113 

r 12-11-9 72 114 

s 11-0-2 73 115 

t 11-0-3 74 116 

u 11-0-4 75 117 

v 11-0-5 76 118 

w 11-0-6 77 119 

x 11-0-7 78 120 

y 11-0-8 79 121 

z 11-0-9 7A 122 

Numerals 

0 0 30 48 

1 1 31 49 

2 2 32 50 

3 3 33 51 

4 4 34 52 

5 5 35 53 

6 6 36 54 

B-2 

• 
EBCDIC 

Hexadecimel Dec:imel 

84 132 

85 133 

86 134 

87 135 

88 136 

89 137 

91 145 

92 146 

93 147 

94 148 

95 149 

96 150 

97 151 • 98 152 

99 153 

A2 162 

A3 163 

A4 164 

AS 165 

A6 166 

A7 167 

AS 168 
• 

A9 169 

FO 240 

Fl 241 

F2 242 

F3 243 

F4 244 • F5 245 

F6 246 



UP-8914 

• 
Character 

7 

8 

9 

Exclamation point 

- Quotation mark, dieresis 

Number sign, pound sign 

Dollar sign , 
Percent sign 

Ampersand 

Apostrophe, acute accent 

Opening parenthesis 

•• Closing parenthesis 

Asterisk 

Plus sign 

Comma, cedilla 

Minus sign, hyphen 

Period, decimal point 

Slash, virgule, solidus 

Colon 

Semicolon 

Less than 

Equal sign 

Greater than 

Ouesuon mark 

Commercial at symbol 

Opening bracket 

Closing bracket 

• Reverse slash 

Circumflex 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-1. Punched-Card. ASCII. and EBCDIC Codes (Part 3 of 5) 

Printed Card ASCII 

Symbol Punches Hex.tecimal Decimel 

7 7 37 55 

8 8 38 56 

9 9 39 57 

Symbols 

! 12-8-7 21 33 

.. 8-7 22 34 

z: 8-3 23 35 

s 11-8-3 24 36 

% 0-8-4 25 37 

& 12 26 38 

8-5 27 39 

( 12-8-5 28 40 

I 11-8-5 29 41 

. 11-8-4 2A 42 

+ 12-8-6 28 43 

0-8-3 2C 44 

- 11 20 45 

12-8-3 2E 46 

I 0-1 2F 47 

8-2 3A 58 

; 11-8-6 38 59 

< 12-8-4 3C 60 

= 8-6 30 61 

> 0-8-6 3E 62 

' 0-8-7 3F 63 

@ 8-4 40 64 

l 12-8-2 58 91 

I 11-8-2 50 93 

\ 0-8-2 5C 92 

/\ 11-8-7 SE 94 

B-3 

·EBCDIC 

Hex.tlCimel O.Cimel 

F7 247 

FB 248 

F9 249 

.5A4F 90 79 

7F 127 

78 123 

58 91 

6C 108 

50 80 

·70 125 

40 n 

50 93 

SC 92 

4E 78 

68 107 

60 96 

48 75 

61 97 

7A 122 

SE 94 

4C 76 

7E 126 

6E 110 

6F 111 

7C 124 

4A 74 

5A 90 

EO 224 

5F 95 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-1. Punched-Card. ASCII. and EBCDIC Codes (Part 4 of 5) 

Printed Card ASCII 
Char1e• Symbol Punch• Hexad1eimal Decimal 

Underline - 0-8-5 SF 95 

Grave accent ' 8-1 60 96 

Opening brace I 12-0 7B 123 

' 
Closing brace } 11-0 70 125 

Vertical line 
I 

12-11 7C 124 I 

Overline. tilde - 11-0-1 7E 126 

Card ASCII 
CharlCter Punch• Heudecim.t· Dec:im.t 

Nonprintable Characters 

ACK (Acknowledge! 0-9-8-6 06 6 

BEL (Bell I 0-9-8-7 07 7 

BS (Backspac:el 11-9-6 08 8 

CAN (Cancell 11-9-8 
' 

18 24 

CR (Carriage returnl 12-9-8-5 OD 13 

DC1 (Device control 11 11-9-1 11 17 

DC2 (Device control 21 11-9-2 12 18 

DC3 (Device control 31 11-9-3 13 19 

DC4 (Device control 41 9-8-4 14 20 

DEL IDetetel 12-9-7 7F 127 

OLE (Data link eSClq)el 12-11 -9-8-1 10 16 

OS (Digit select) 11-0-9-8-1 80 128 

EM (End of mediuml 11-9-8-1 19 25 

ENQ (Enquirvl 0-9-8-5 05 5 

EOT (End of transmission! 9-7 04 4 

ESC IEscapel 0-9-7 18 27 

ETB (End of transmission block I 0-9-6 17 23 

ETX !End of text) 12-9-3 03 3 

FF (Form feedl 12-9-8-4 QC 12 

FS (File separator) 11-9-8-4 lC 28 

B-4 

• 
EBCDIC 

Hexadecimal Decimal 

60 109 

79 121 

co 192 

DO 208 

4F SA 791oa 

Al 161 

EBCDIC 

Hex.dec:im.t Decimal 

2E 46 

2F 47 • 16 22 

18 24 

OD 13 

11 17 

12 18 

13 19 

3C 60 

07 7 

10 16 

20 32 

19 25 

20 45 

37 55 

27 39 

26 38 

03 3 • OC 12 

IC 28 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-1. Punched-Card, ASCII. and EBCDIC Codes (Part 5 of 5) 

Card ASCII 
Character 

P11nches Hexadecimal Decimal 

FS (Field separator) 0-9-2 82 130 

GS (Group separator) 11-9-8-5 10 29 

HT (Horizontal tabulation) 12-9-5 09 9 

LF (Line feed) 0-9-5 OA 10 

NAK (Negative acknowledge) 9-8-5 15 21 

NUL (Null) 12-0-9-8-1 00 0 

RS (Record separator) 11-9-8-6 1E 30 

SI (Shift in) 12-9-8-7 OF 15 

SO (Shift out) 12-9-8-6 OE 14 

SOH (Start of heading) 12-9-1 01 1 

SOS (Significance start) 0-9-1 81 129 

SP (Space) 20 32 

STX (Start of text) 12-9-2 02 2 

SUB (Substitute) 9-8-7 lA 26 

SYN (Synchronous idle) 9-2 16 22 

US (Unit separator) 11-9-8-7 lF 31 

VT (Vertical tabulation I 12-9-8-3 OB 11 

B-5 

EBCDIC 

Hexadecimal Decimal 

22 34 

10 29 

05 5 

25 37 

30 61 

00 0 

1E 30 

OF 15 

OE 14 

01 1 

21 33 

40 64 

02 2 

3F 63 

32 50 

1F 31 

OB 11 



UP-8914 

0 1 2 3 4 

0 NUL OLE DS© SP 

1 SOH DC1 so~ 
2 STX DC2 FS© SYN 

3 ETX DC3 

4 @ 

5 HT LF 

6 BS ETB 

7 DEL ESC EQT 

8 CAN 

9 EM 

A [f 
B VT 

c FF FS© DC4 < 

D CR GS© ENQ NAK ' E so® RS© ACK + 

F SI© us® BE~ SUB ®-~ 
NOTES: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-2. EBCDIC Chart 

5 6 7 8 9 

& -

I 

J®I :@ : • 
$ 

' # 

. % @ 

) -

; > = 

~@ 7 . 

A B c D 

A J 

B K 

c L 

D M 

E N 

F 0 

G p 

H Q 

I R 

E 

s 

T 

u 

v 

w 

x 

y 

z 

B-6 
Update C 

F 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Some graphic card code and hexadecimal assignments may differ depending on the device, language, 
application, and installation policy. 

<D OS, SOS, FS are the control characters for the EDIT instruction and have been asigned for ASCII mode 
processing so as not to conflict with the corresponsing character positions previously assigned in the 
EBCDIC chart. As these characters are not outside the range as defined in American National Standard, 
X3.4 - 1968, they must not. appear in external storage media, such as ANSI standard tapes. This 
presents no difficulty due to the nature of the EDT instruction. 

@ The following optional graphics can be substituted in the character set: 

/\.fort 

I tor I 

@ For 63-character printers, the following substitution is made: 

\for : 

@ The following substitutions are made for the UTS 400 handler: 

SPROT for SO FCC for US 
EPROT for SI MW for BEL 
SB for FS I for I 
EB for GS I for J 
SOE for RS 

® DC4 for the UTS 400 handler. 



UP-8914 

NOTES: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-3. ASCII Character Code Chart 

0 1 2 3 4 5 

0 NUL OLE SP 0 @ p 

1 SOH DC1 ! <D 1 A Q 

2 STX DC2 .. 2 B R 

3 ETX DC3 # 3 c s 

4 EQT DC4 $ 4 D T 

5 ENO NAK % 5 E u 

6 ACK SYN & 6 F v 

7 BEL ETB 7 G w 

8 BS CAN ( 8 H x 

9 HT EM ) 9 I y 

A LF SUB • J z 

B VT ESC + K [ 

c FF FS . < L \ 

D CR GS - = M I 

E so RS > N "<D 

F SI us I ? 0 -
.... 

6 

' 
d 

b 
(. 

d 
e 

r 
g 

h 
i 

J 

k 

I 

tn 
fl 

0 

7 

p 

~ 

r 

t' 
.) 

t 
L( 

v 

w 

x 

j 

z 

{ 

J 
} 
IV 

f)[L 

B-7 
Update C 

Some graphic card code and hexadecimal assignments may differ depending on the device, 
language, application, and installation policy. 

(!) Thi following optional graphics can be substituted 
in the following set: 

@ Printable 63-character set 

-----, for 6. 

I for I 

Control Char1cter Mmmonics 

ACK - 'Acknowledge ENO Enquiry SI -
BEL Bell EOT End of transmission so 
BS Backspace ESC Escape SOH -
CAN Cancel ETB End of transmission block sos -
CR Carriage return ETX End of text SP; 
DC1 Device control 1 FF Form feed STX -

DC2 Device control 2 FS Field separator SUB 
OC3 Device control 3 GS Group separator SYN 
OC4 - Device control 4 HT Horizontal tab us 
DEL Delete LF Line field VT -
OLE Data link escape NAK Negative acknowledge 
OS Digit select NUL Null 
EM End of medium AS Record separator 

Shift in 
Shift out 
Start of heading 
Start of significance 
Space 
Start of text 
Substitute 
Synchronous idle 
Unit separator 
Vertical tab 

t 



• 

• 

• 



•. ' 

Appendix C. Math References 

• 



• 

• 

• 



UP-8914 

• 

• 

• 

SPERRY UNIVAC 05/3 
ASSEMBlER 

Table C-1. Comparison of Numeric Expressions 

Type of Number Examples 

Character form (unpacked) I F ! 5 F I 0 F ! 01 

Zoned decimal (+} I F ! 5 F ! 0 c! 0 

Zoned decimal (-) I F l 5 F ! 0 o! 0 

Packed decimal (+ only) 5 ! 0 0 ! F 

Packed decimal, signed (+) 5 ! 0 0 : c 
Packed decimal, signed (-) 5 ! 0 0 ! D 

Hexadecimal (+ only) 0 l 1 F ! 4 

Floating point (+) I 4 ! 3 1 ! F 4 
I 

0 ! 0 I 0 I 
I 

Floating point(-) I c : 3 1 i F I I 

o ! o I I 4 I 0 
I 

Binary (+ only) I 0000 0001 1111 ! 0100 

Binary (+ only} I 1111 1110 0000 ! 1100 

Fixed point (+) I 0000 0001 1111 ! 0100 

Fixed point (-) I 1111 1110 0000 i 1100 

C-1 

Decimal 
Values 

500 

+500 

-500 

+500 

+500 

-500 

+500 

+500 

-500 

+500 

+65,036 

+500 

-500 



UP-8914 

0 1 2 

00 0000 0001 0002 
01 0016 0017 0018 
02 0032 0033 0034 
03 0048 0049 0060 
04 0064 0065 0066 
O& 0080 0081 0082 
08 0098 0097 0088 
07 0112 0113 0114 
08 0128 0129 0130 
08 0144 0146 0148 
QA 0180 0181 0182 
OB 0178 0177 0178 
oc 0192 0193 0194 
00 0208 0209 0210 
OE 0224 0226 0228 
OF 0240 0241 0242 

0 1 2 

10 02158 0257 0268 
11 0272 0273 0274 
12 0288 0289 0290 
13 0304 0306 0306 
14 0320 0321 0322 
1& 0336 0337 0338 
18 03&2 0363 0354 
17 0388 0388 0370 
18 0384 03815 0388 
19 0400 0401 0402 
1A 0418 0417 0418 
18 0432 0433 0434 
1C 0448 0449 0480 
10 0484 048& 0488 
1E 0480 0481 0482 
1F 0498 0487 0498 

0 1 2 

20 0&12 0&13 0914 
21 0928 0929 0530 
22 OIS44 Ol54I 0946 
23 OIS80 Oll81 OIS82 
24 0678 0677 0578 
215 Oll82 0683 0594 
28 0808 0809 0810 
27 0824 08215 0828 
28 0840 0841 0542 
29 Olll58 06157 06ll8 
2A 0872 0873 0874 
2B 0888 0889 0880 
2C 0704 0705 0708 
20 0720 0721 0722 
2E 0738 0737 0738 
2F 0752 0793 07&4 

0 1 2 

30 0188 0788 0770 
31 0784 0785 0788 
32 0800 CB>1 0802 
33 0818 0817 0818 
34 0832 0833 0834 
315 0848 0849 0880 
38 0864 Ol8S 0886 
'S7 08ll> 0881 0882 
38 0898 0887 08ll8 
38 0812 0913 0814 
3" 0828 0829 0930 
:a 0844 09415 0948 
3C 0880 0881 0882 
3D 0876 0877 0878 
3E 0892 0993 0894 
3F 1008 1009 1010 

SPERRY UNNAC OS/3 
ASSEMBLER 

Table C-2. Hexadecimal-Decimal Integer Conversion (Part 1 of 4) 

-.3 4 6 6 7 8 9 A 8 

0003 0004 0006 0006 0007 0008 0009· 0010 0011 
0019 0020 0021 0022 0023 0024 0026 0026 0027 
0036 0036 0037 0038 0039 0040 0041 0042 0043 
0061 0062 0063 0064 0056 0066 0067 0068 0059 
0067 0068 Ooee 0070 0071 0072 0073 0074 0076 
0083 0084 0085 0086 0087 0088 0089 0090 0091 
0099 0100 0101 0102 0103 0104 0105 0106 0107 
0116 0118 0117 0118 0119 0120 0121 0122 0123 
0131 0132 0133 0134 0135 0138 0137 0138 0139 
0147 0148 0149 0150 0151 0152 0153 0164 0155 
0183 0184 0186 0168 0187 0188 0189 0170 0171 
0179 0180 0181 0182 0183 0184 0185 0186 0187 
0195 0198 0197 0198 0199 0200 0201 0202 0203 
0211 0212 0213 0214 0216 0216 0217 0218 0219 
0227 0228 0229 0230 0231 0232 0233 0234 0235 
0243 0244 0246 0248 0247 0248 0249 0250 0251 

3 4 6 8 7 8 9 A 8 

02!i9 0280 0291 0282 0283 0284 0265 0286 0267 
0275 0278 0277 0278 0279 0280 0281 0282 0283 
0291 0292 0293 0294 0296 0298 0297 0298 0299 
0307 0308 0309 0310 0311 0312 0313 0314 0315 
0323 0324 0326 0328 0327 0328 0329 0330 0331 
0339 0340 0341 0342 0343 0344 0345 0348 0347 
03&5 03&8 03&7. 03&8 03ll8 0380 0381 0382 0383 
0371 0372 0373 0374 0375 0376 0377 0378 0379 
0387 0388 0388 0390 0391 0392 0393 0394 0396 
0403 0404 0405 0408 0407 0408 0409 0410 0411 
0419 0420 0421 0422 0423 0424 0425 0428 0427 
0436 0438 . 0437 0438 0439 0440 0441 0442 04of3 
0461 04&2 0493 0464 0451 04158 0457 0458 0459 
0487 0488 0489 0470 0471 0472 0473 0474 0476 
0483 0484 0486 0488 0487 0488 0489 0490 0491 
0489 OliOO 0801 0!502 OS03 0604 0505 0506 0507 

3 4 5 8 7 8 9 A 8 

0516 0918 0517 0918 0519 0520 0921 0522 0523 
0&31 0532 0533 0934 0636 0538 0537 0538 0639 
0547 0948 0549 Ol5llO 0561 0562 0663 0564 055& 
0563 OIS84 0&66 0568 0667 0568 0569 0570 0571 
0579 0580 0581 0582 0583 0584 0585 0586 0587 
0686 Oli88 0697 Ol598 0599 0800 0801 0802 OS03 
0811 0812 0813 0814 0815 0816 0817 0818 0819 
0827 0928 0829 0830 0831 0832 0633 0634 0835 
0843 0844 084& 0648 0847 0848 0849 0650 0661 
08ll9 0880 0881 OIS82 0563 0684 0865 0666 0867 
08715 0876 0977 0978 0679 0680 0681 0882 0883 
0881 0882 0883 0884 0885 0896 0897 0898 0699 
0701 0708 0709 0710 0711 0712 0713 0714 0715 
0723 0724 0725 0728 0727 0728 0729 0730 0731 
0739 0740 0741 0742 0743 0744 0745 0748 0747 
0715& 0768 0757 0758 0759 0780 0761 0762 0783 

3 4 !I 8 7 8 9 A 8 

0771 0772 0773 0774 0775 0778 0777 0778 0779 
0787 0788 0789 0790 0791 0792 0793 0794 0795 
0803 0804 0806 0808 0807 0808 0809 0810 0811 
0819 0820 0821 0822 0823 0824 082& 0826 0827 
0835 0838 0837 0838 0839 0840 0841 0842 0843 
0861 0862 0853 0854 0855 0866 0867 0858 0859 
0887 0888 0888 0870 0871 0872 0873 0874 0875 
O&l3 0884 0885 0888 0887 0888 0889 0890 0891 
Olll9 0800 0901 0902· 0903 0904 0905 0906 0907 
08115 0816 0817 0818 0819 0820 0921 0822 0823 
0831 0832 0933 0834 0836 0938 0837 0938 0939 
0847 0948 0949 0950 0951 0852 0853 0954 0965 
0983 0884 0985 0968 0967 0988 0969 0970 0971 
0979 0980 0881 0982 0983 0884 0985 0988 0887 
0999 0898 0997 0998 0999 1000 1001 1002 1003 
1011 1012 1013 1014 1015 1016 1017 1018 1019 

C-2 

• 
c D E F 

0012 0013 0014 0015 
0028 0029 0030 0031 
0044 0046 0046 0047 
0060 0061 0062 0063 
0076 0077 0078 0079 
0092 0093 0094 0095 
0108 0109 0110 0111 
0124 ·0125 0126 0127 
0140 0141 0142 0143 
0156 0167 0158 0159 
0172 0173 0174 0175 
0188 0189 0190 0191 
0204 0205 0206 0207 
0220 0221 0222 0223 
0236 0237 0238 0239 
0262 0253 0264 0255 

c D E F 

0268 0289 0270 0271 
0284 0286 0288 0287· 
0300 0301 0302 0303 
0318 0317 0318 0319 
0332 0333 0334 0335 
0348 0349 0350 0351 
0384 0385 0386 0387 
0380 0381 0382 0383 
0398 0397 0398 0399 
0412 0413 0414 0415 
0428 0429 0430 0431 
0444 0445 0446 0447 • 0460 0481 0482 0463 
0476 0477 0478 0479 
0492 0493 0494 0495 
0508 0509 0610 0511 

c D E F 

0524 0525 0526 0527 
0540 0541 0642 0643 
0556 0557 0558 0559 
0572 0573 0574 0575 
0588 0589 0590 0591 
0604 0605 0808 0807 
0820 0821 0822 0823 
0838 0837 0538 0639 
0862 0653 0664 0855 
0668 0669 0670 0871 
0884 0686 0686 0687 
0700 0701 0702 0703 
0716 0717 0718 0719 
0732 0733 0734 0735 
0748 0749 0750 0751 
0764 0765 0766 0787 

c D E F 

0780 0781 0782 0783 
0796 0797 0798 0799 
0812 0813 0814 0815 
0828 0829 0830 0831 
0844 0845 0846 0847 
0860 0861 0862 0863 
0876 0877 0878 0879 
0892 0893 0894 0895 
0908 0909 0910 0811 
0824 0925 0928 0827 
0840 0941 0942 0943 
0966 0967 0958 0959 • 0972 0973 0974 0975 
0988 0989 0990 0991 
1004 1006 1006 1007 
1020 1021 1022 1023 



UP-8914 

• 
0 1 2 

40 1024 1025 1026 
41 1040 1041 1042 
42 1056 1067 1058 
43 ion 1073 1074 
44 1088 1089 1090 
46 1104 1105 1106 
48 1120 1121 1122 
47 1138 1137 1138 
48 1162 1163. 1154 
49 1168 1169 1170 
4A 1184 1185 1186 
48 1200 1201 1202 
4C 1216 1217 1218 
40 1232 1233 1234 
4E 1248 1249 1250 
4F 1264 1265 1266 

0 1 2 

50 1280 1281 1282 
51 1296 1297 1298 
52 1312 1313 1314 
53 1328 1329 1330 
54 1344 1346 1348 
56 1360 1361 1382 
56 1376 1377 1378 
57 1392 1393 1394 
58 1408 1409 1410 
59 1424 1425 1428 

• 5A 1440 1441 1442 
58 1468 1457 1468 
5C 1<l72 1<t73 ,147.t 
50 1488 1489 1490 
5E !SIM 1505 1506 
5F 1620 1521 1622 

0 1 2 

80 1536 1537 1638 
61 1•2 1553 1156" 
62 1568 11589 1670 
83 1584 1585 1588 .. 1800 1801 1802 
6ll 1616 1617 1618 
66 1632 1633 1634 
67 19"8 16"9 1650 
6B 1664 1665 1666 
69 1680 1681 1682 
6A 1896 11187 1898 
6B 1712 1713 1714 
6C 1n8 1729 1730 
60 1744 1745 1746 
se 1760 1761 1782 
6F 1776 1m 1778 

0 1 2 

70 1792 1793 1794 
71 1808 1809 1810 
72 182.t 1825 1826 
73 1840 1841 1842 
74 1858 1857 1858 
75 1872 1873 187.t 
76 1888 1ml9 1890 
n 1904 1906 1906 
78 1920 1921 1922 
79 1938 1937 1938 • 7A 1952 1963 1954 
78 1968 1989 1970 
7C 1984 1985 1988 
70 2000 2001 2002 
7E 2016 2017 2018 
7F 2032 2033 2034 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table C-2. Hexadecimal-Decimal Integer Conversion (Pan 2 of 4J 

3 4 5 5 7 8 9 A a 

1027 1028 1029 1030 1031 1032 1033 1034 1035 
1043 1044 1046 1046 1047 1048 1049 1050 1051 
10158 1060 1081 1082 1063 1064 1066 1088 1087 
1075 1078 1077 1078 1079 1080 1081 1082 1083 
1091 1092 1093 1094 1095 1098 1097 1098 1099 
1107 1108 1109 1110 1111 1112 1113 1114 1115 
1123 1124 1125 1128 1127 1128 1129 1130 1131 
1139 1140 1141 1142 1143 1144 1145 1148 1147 
1156 1156 1157 1158 1159 1160 1181 1162 1163 
1171 1172 1173 1174 1175 1176 1177 1178 1179 
1187 1188 1189 1190 1191 1192 1193 1194 11915 
1203 1204 1206 1206 1207 1208 1209 1210 1211 
1219 1220 1221 1222 1223 1224 1225 1226 1227 
12315 1238 1237 1238 1239 1240 1241 1242 1243 
1261 1252 1263 1264 1266 1266 1267 1258 1259 
1267 1268 1269 1270 1271 1272 1273 1274 1275 

3 4 5 6 7 8 9 A a 

1283 1284 12815 1288 1287 1288 1289 1290 1291 
1299 1300 1301 1302 1303 13o4 1305 1308 1307 
1315 1316 1317 1318 1319 1320 1321 1322 1323 
1331 1332 1333 1334 1335 1336 1337 1338 1339 
1347 1348 1349 1350 1351 1362 1353 1354 1355 
1363 1384. 1385 1386 1387 1368 1389 1370 1371 
1379 1380 1381 1382 1383 1384 1386 1386 1387 
1396 1398 1397 1398 1399 1400 1401 1402 1403 
1411 1412 1413 1414 1415 1416 1417 1418 1419 
1427 1428 1429 1430 1431 1432 1433 1434 1436 
1443 1444 14415 1446 1447 1448 1449 1450 1451 
1<t69 1"'80 1481 1482 1463 1484 1486 1466 1487 
1<t76 t•76 1477 1<t78 1<t79 1480 1481 1482 1483 
1"91 1"92 1"93 1"94 1495 1496 1<t97 1498 1499 
1507 1608 1609 1510 1511 1512 1613 161.t 1515 
11523 152.t 1526 1626 1527 1528 1529 1630 1631 

3 .. 5 6 7 8 9 A 8 

1639 16"0 1641 15"2 1643 1544 15"5 1548 15"7 
1556 1556 1557 1558 1568 1560 1561 1562 1563 
11571 11572 11573 11574 1575 1576 1577 1578 1579 
1587 1688 1589 1580 1591 1592 1693 1584 1595 
1803 1804 1805 1606 1807 1608 1809 1610 1611 
1619 1620 Ul21 1622 1623 1624 1625 1626 1627 
1636 1638 1637 1638 1639 1640 1641 1642 1643 
1651 1662 1663 1654 1665 1656 1657 1658 1669 
1687 1668 1688 1870 1671 1672 1673 1674 1675 
1883 1684 1685 1686 1687 1688 1689 1690 1691 
1699 1700 1701 1702 1703 170.t 1705 1706 1707 
1715 1716 1717 1718 1719 1720 1721 1722 1723 
1731 1732 1733 1734 1735 1736 1737 1738 1739 
1747 1748 1749 1750 1751 1752 1753 17154 1755 
1783 1784 1765 1786 1767 1768 1769 1770 1771 
1779 1780 1781 1782 1783 178" 1785 1788 1787 

3 4 5 8 7 8 9 A 8 

1795 1798 1797 1798 1799 1800 1801 1802 1803 
1811 1812 1813 1814 1815 1816 1817 1818 1819 
1827 1828 1829 1830 1831 1832 1833 1834 1835 
1843 1844 1845 1846 1847 1848 1849 1850 1851 
1859 1860 1881 1882 1863 1864 1865 1866 1867 
1875 1876 1877 1878 1879 1880 1881 1882 1883 
1891 1892 1893 18" 1896 1896 1897 1898 1899 
1901 1908 1909 1910 1911 1912 1913 1914 1915 
1923 1924 1925 1926 1927 1928 1929 1930 1931 
1939 1940 1941 1942 1943 1944 19"5 1948 19"7 
1955 1956 1957 1968 1968 1960 1961 1962 1963 
1971 1972 1973 1974 1975 1976 1977 1978 1979 
1967 1988 1989 1990 1991 1992 1993 1994 1995 
2003 2004 2005 2006 2007 2008 2009 2010 2011 
2019 2020 2021 2022 2023 2024 2025 2026 2027 
2035 2038 2037 2038 2038 2040 2041 2042 2043 

C-3 

c 0 E F 

1036 1037 1038 1039 
1052 10l53 1064 1055 
1068 foal 1070 1071 
1084 1085 1086 1087 
1100 1101 1102 1103 
1118 1117 1118 1119 
1132 1133 1134 1135 
1148 1149 1150 1151 
1164 1165 1166 1167 
1180 1181 1182 1183 
1196 1197 1198 1199 
1212 1213 1214 1215 
1228 1229 1230 1231 
l244 12415 1248 1247 
1260 1261 1262 1263 
1276 1m 1278 1279 

c 0 E F 

1292 1293 1294 1296 
1308 1309 1310 1311 
1324 1325 1326 1327 
1340 1341 1342 1343 
1366 1367 1368 1369 
1372 1373 1374 1376 
1388 1389 1390 1391 
1404 1405 1406 1407 
1420 1421 1422 1423 
1438 1437 1438 1439 
1462 14153 1464 1465 
1"68 1469 1<t70 1471 
1484 1485 1488 1487 
1500 1501 1502 1503 
1516 1517 1618 1519 
1632 1533 1534 1636 

c 0 E F 

1548 15"9 1650 1661 
156.t 1566 1566 1567 
1580 1581 1582 1583 
1596 1597 1588 1599 
1612 1613 161.t 1615 
1628 1629 1830 1631 
1644 1645 1648 16"7 
1660 1661 1662 1663. 
1676 1677 1678 1679 
1692 1693 1694 1695 
1708 1709 1710 1711 
1724 1n5 1726 1n1 
1740 1741 1742 1743 
1756 1757 1758 1759 
1n2 1773 1774 1775 
1788 1789 1790 1791 

c 0 E F 

180.t 1806 1806 1807 
1820 1821 1822 1823 
1838 1837 1838 1839 
1852 1853 1864 1855 
1868 1869 1870 1871 
1884 1885 1886 1887 
1900 1901 1902 1903 
1916 1917 1918 1919 
1932 1933 1934 1935 
1948 19"9 1950 1951 
1964 19615 1966 1967 
1980 1981 1982 1983 
1996 1997 1998 1999 
2012 2013 2014 2015 
2028 2029 2030 2031 
2044 2045 2048 2047 



UP-8914 

0 1 2 

80 2048 2049 2050 
81 2084 2066 2066 
82 2080 2081 2082 
83 2098 2097 2098 
84 2112 2113 2114 
11& 2128 2129 2130 
88 2144 2145 2148 
ff1 2160 2181 2182 
88 2178 2177 2178 
88 2192 2193 2194 
8A 2208 2209 2210 
88 2224 2225 2229 
8C 2240 2241 2242 
80 22156 2257 2258 
8E 2272 2273 2274 
8F 2288 2289 2290 

0 1 2 

90 2304 230t5 2308 
91 2320 2321 2322 
92 2338 2337 2338 
93 2362 2353 2354 
94 2368 2369 2370 

. 96 2384 2385 2381 
98 2400 2401 2402 
97 2418 2417 2418 
98 2'432 2433 2434 
98 2448 2449 2450 
9A 2464 2465 2488 
98 2480 2481 2482 
9C 2498 2497 2498 
90 2512 2513 2514 
9E 2528 21529- 2530 
9F 2544 2545 2548 

0 1 2 

AO 2560 2581 2582 
A1 2578 2577 21578 
A2 2982 2583 2584 
A3 2808 2609 2810 
A4 2824 2625 2628 
Al5 2840 2641 2842 
A8 2856 2857 2868 
A7 2672 2673 2674 
A8 2888 2889 2890 
A9 2704 2705 2708 
AA 2720 2721 2722 
A8 2738 2737 2738 
ACO 2752 2753 2754 
ADO 2788 2789 2770 
AEO 2784 2785 2788 
AFO 2800 2801 2802 

0 1 2 

80 2818 2817 2818 
81 2832 2833 2834 
B2 2848 2849 2860 
B3 2864 2885 2866 
84 2880 2881 2882 
BS 2898 2897 2898 
88 2912 2913 2914 
B7 2928 2929 2930 
B8 2944 2945 2946 
89 2980 2981 2982 
BA 2978 2977 2978 
88 2992 2993 2994 
BC 3008 3009 3010 
80 3024 3025 3026 
BE 3040 3041 3042 
BF 3058 3057 3058 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table C-2. Hexadecimal-Decimal Integer Conversion (Part 3 of 4} 

3 4 5 8 7 8 9 A B 

2061 2052 2053 2054 2066 2056 2057 2068 2059 
2087 2068 2069 2070 2071 2072 2073 2074 2075 
2083 2084 2086 2088 2087 2088 2089 2090 2091 
2099 2100 2101 2102 2103 2104 2106 2106 2107 
2115 2118 2117 2118 2119 2120 2121 2122 2123 
2131 2132 2133 2134 2136 2138 2137 2138 2139 
2147 2148 2149 2150 2161 2152 2153 2154 2155 
2183 2164 2185 2166 2187 2168 2169 2170 2171 
2179 2180 2181 2182 2183 2184 2186 2188 2187 
2195 2198 2197 2198 2199 2200 2201 2202 2203 
2211 2212 2213 2214 2215 2216 2217 2218 2219 
2227 2228 2229 2230 2231 2232 2233 2234 2235 
2243 2244 2245 2246 2247 2248 2249 2250 2251 
2259 2280 2261 2262 2263 2284 2266 2266 2267 
2275 2278 2277 2278 2279 2280 2281 2282 2283 
2291 2292 2293 2294 2295 2298 2297 2298 2299 

3 4 5 8 7 8 9 A 8 

2307 2308 2309 2310 2311 2312 2313 2314 2316 
2323 2324 2325 2328 2327 2328 2329 2330 2331 
2339 2340 2341 2342 2343 2344 2345 2348 2347 
2356 2358 2357 2358 2359 2360 2361 2362 2363 
2371 2372 2373 2374 2375 2378 2377 2378 2379 
2387 2388 2389 2390 2391 2392 2393 2394 2395 
2403 2404 2405 2406 2407 2408 2409 2410 2411 
2419 2420 2421 2422 2423 2424 2425 2428 2427 
2436 2438 2'437 2438 2439 2440 2441 2442 2443 
2461 2452 2463 2454 2455 2456 2457 2468 2459 
2467 2468 2489 2470 2471 2472 2473 2474 2475 
2483 2484 2485 2488 2487 2488 2489 2490 2491 
2498 2500 2501 2502 2503 2504 2505 2506 2507 
2515 2518 2517 2518 2519 2520 2521 2522 2523 
2531 2532 2533 2534 2535 2535 2537 2538 2539 
2547 2548 21549 2550 2!561 2562 2553 2564 2565 

3 4 5 8 7 8 9 A 8 

2583 2584 2585 21186 2587 2588 2569 2570 2671 
2579 2910 2581 292 2583 2584 2585 2588 2587 
2585 2598 2587 2598 21599 2800 2601 2602 2603 
2611 2812 2813 2614 2615 2618 2617 2518 2619 
2827 2828 2829 2630 2631 2832 2633 2834 2635 
2843 2844 2845 2548 2647 2848 2649 2650 2651 
2859 2880 2681 2662 2683 2664 2665 2868 2667 
2575 2678 2877 2878 2879 2880 2881 2682 2683 
2891 2892 2883 2694 2885 2898 2697 2598 2699 
2707 2708 2709 2710 2711 2712 2713 2714 2715 
2723 2724 2725 2726 2727 2728 2729 2730 2731 
2739 2740 2741 2742 2743 2744 2745 2746 2747 
2756 2758 2757 2768 2759 2780 2761 2782 2763 
2771 2772 2773 2774 2775 2778 2777 2778 2779 
2787 2788 2789 2790 2791 2792 2793 2794 2795 
2803 2804 2805 2808 2807 2808 2809 2810 2811 

3 4 5 6 7 8 9 A B 

2819 2820 2821 2822 2823 2824 2825 2828 2827 
2835 2836 2837 2838 2839 2840 2841 2842 2843 
2851 2852 2853 2854 2856 2856 2857 2858 2859 
2867 2868 2889 2870 2871 2872 2873 2874 2875 
2883 2884 2885 2888 2887 2888 2889 2890 2891 
2899 2900 2901 2902 2903 2904 2905 2906 2907 
2915 2918 2917 2918 2919 2920 2921 2922 2923 
2931 2932 2933 2934 2935 2938 2937 2938 2939 
2947 2948 2949 2950 2951 2952 2953 2954 2965 
2983 2984 2986 2986 2987 2968 2969 2970 2971 
2979 2980 2981 2982 2983 2984 2985 2986 2987 
2995 2996 2997 2998 2999 3000 3001 3002 3003 
3011 3012 3013 3014 3015 3016 3017 3018 3019 
3027 3028 3029 3030 3031 3032 3033 3034 3035 
3043 3044 3046 3046 3047 3048 3049 3050 3051 
3059 3080 3061 3082 3063 3054 3065 3066 3057 

C-4 

• 
c D e F 

2060 2061 2062 2063 
2076 2077 2078 2079 
2092 2093 2094 2095 
2108 2109 2110 2111 
2124 2125 2126 2127 
2140 2141 2142 2143 
2156 2157 2158 2159 
2172 2173 2174 2175 
2188 2189 2190 2191 
2204 2205 2206 2207 
2220 2221 2222 2223 
2236 2237 2238 2239 
2252 2253 2264 2255 
2268 2269 2270 2271 
2284 2286 2286 2287 
2300 2301 2302 2303 

c D e F 

2316 2317 2318 2319 
2332 2333 2334 2335 
2348 2349 2350 2351 
2364 2365 2366 2367 
2380 2381 2382 2383 
2396 2397 2398 2399 
2412 2413 2414 2415 
2428 2429 2430 2431 
2444 2445 2448 2447 
2460 2481 2482 2463 
2476 2477 2478 2479 
2492 -2493 2494 2495 
2508 2509 2510 2511 • 2524 2525 2526 2527 
2540 2541 2542 2543 
2556 2557 2558 2569 

c D e F 

2672 2573 2574 2575 
2588 2689 2590 2591 
2604 2605 2506 2607 
2620 2621 2622 2623 
2636 2637 2638 2639 
2652 2653 2654 2655 
2668 2669 2670 2671 
2684 2685 2686 2687 
2700 2701 2702 2703 
2716 2717 2718 2719 
2732 2733 2734 2735 
2748 2749 2750 2751 
2764 2765 2766 2767 
2780 2781 2782 2783 
2798 2797 2798 2799 
2812 2813 2814 2815 

c D E F 

2828 2829 2830 2831 
2844 2845 2846 2847 
2860 2861 2862 2863 
2876 2877 2878 2879 
2892 2893 2894 2895 
2908 2909 2910 2911 
2924 2925 2928 2927 
2940 2941 2942 2943 
2956 2957 2958 2959 
2972 2973 2974 2975 
2988 2989 2990 2991 
3004 3005 3006 3007 • 3020 3021 3022 3023 
3036 3037 3038 3039 
3052 3053 3054 3055 
3088 3069 3070 3071 



UP-8914 

0 1 2 3 

co 3072 3073 3074 3075 
C1 DB 3089 3090 3091 
C2 3104 3106 31<16 3107 
C3 3120 3121 3122 3123 
C4 3136 3137 3138 3139 
cs 3162 3153 3154 3166 
C6 3168 3169 3170 3171 
C7 3184 3186 3188 3187 
cs 3200 3201 3202 3203 
C9 3216 3217 3219 3219 
CA 3232 3233 3234 3235 
CB 3248 3249 3250 3251 
cc 3264 3265 3266 3267 
CD 3280 3281 3282 3283 
CE 3298 3297 3298 3299 
CF 3312 3313 3314 3316 

0 1 2 3 

DO 3328 3329 3330 3331 
01 3344 3345 3348 3347 
02 3380 3381 3362 3363 
03 3376 3377 3378 3379 
04 3392 3393 3394 3395 
05 3408 3409 3410 3411 
DB 3424 3426 3426 3427 
07 3440 3441 3442 3443 
08 3456 3457 3458 3469 
09 3472 3473 3474 3475 • DA 3488 3489 3490 3491 
08 3!504 3505 3606 3607 
DC 3520 3521 3522 3523 
DO 3536 3537 3638 3539 
DE 3562 3553 3664 3565 
OF 3568 3569 3670 3571 

0 1 2 3 

EO 3584 3685 3sae 3687 
E1 3600 3601 3so2 36o3 
E2 3616 3617 3618 3619 
E3 3632 3633 3634 3635 
E4 3648 3649 3650 3651 
E5 3664 3665 3666 3667 
E8 3680 3681 3682 3683 
E7 3896 3697 3698 3699 
ea 3712 3713 3714 3716 
E9 3728 3729 3730 3731 
EA 3744 3746 3746 3747 
ea 3760 3751 3762 3783 
EC 3776 3777 3778 3779 
ED 3792 3793 3794 3796 
EE 3808 3809 3810 3811 
EF 3824 3825 3826 3827 

0 1 2 3 

FO 3840 3841 3842 3843 
F1 3856 3867 3868 3869 
F2 3872 3873 3874 3875 
F3 3888 31119 3890 3891 
F4 3904 3905 3906 3907 
FIS 3920 3921 3922 3923 
F6 3936 3937 3938 3939 
F7 3952 3953 3964 3965 
F6 3968 3989 3970 3971 

• F9 3984 3985 3986 3987 
FA 4000 4001 4002 4003 
F9 4016 4017 4018 4019 
FC 4032 4033 4034 4035 
FD 4048 4049 4050 4061 
FE 4064 4065 4066 4067 
FF 4080 4081 4082 4083 

SPERRY UNNAC OS/3 
ASSEMBLER 

Table C-2. Hexadecimal·D~cima/ Integer Conversion (Part 4 of 4} 

4 5 6 7 8..,. 9 A 9 

3076 3077 3078 3079 3080 3081 3082 3083 
3002 3093 3094 3095 3096 3097 3098 3099 
3108 3109 3110 3111 3112 3113 3114 3115 
3124 3125 3126 3127 3128 3129 3130 3131 
3140 3141 3142 3143 3144 3145 3148 3147 
3166 3167 3168 3159 3160 3181 3162 3163 
3172 3173 3174 3176 3176 3177 3178 3179 
3189 3189 3190 3191 3192 3193 3194 3195 
3204 3206 3206 3207 3208 3209 3210 3211 
3220 3221 3222 3223 3224 3225 3226 3227 
3236 3237 3238 3239 3240 3241 3242 3243 
3252 3253 3264 3256 3256 3257 3268 3259 
3268 3269 3270 3271 3272 3273 3274 3275 
3284 3286 3286 3287 3288 3289 3290 3291 
3300 3301 3302 3303 3304 3306 3306 3307 
3316 3317 3318 3319 3320 3321 3322 3323 

4 5 8 7 8 9 A· 9 

3332 3333 3334 3335 3338 3337 3338 3339 
3348 3349 3360 3361 3352 3353 3354 3365 
3364 3385 3388 3387 3388 3369 3370 3371 
3380 3381 3382 3383 3384 3386 3386 3387 
3396 3397 3398 3399 3400 3401 3402 3403 
3412 3413 3414 3415 3416 3417 3418 3419 
3428 3429 3430 3431 3432 3433 3434 3435 
3444 3445 3448 3447 3448 3449 3460 3451 
3460 3461 3462 3463 3464 3465 3486 3467 
3476 3477 3478 3479 3480 3481 3482 3483 
3492 3493 3494 3495 3496 3497 3498 3499 
3508 3609 3510 3511 3512 3513 3614 3515 

. 3624 3525 3526 3627 3528 3629 3630 3531 
3540 3641 3642 3543 3544 3545 3546 3647 
3666 3557 3558 3659 3660 3561 3562 3563 
3572 3573 3574 3575 3676 3577 3578 3679 

4 6 6 7 8 9 A 9 

3688 3589 3590 3591 3592 3593 3694 3595 
3604 3606 3606 3607 3808 3609 3610 3611 
3620 3621 3622 3623 3624 3625 3626 3627 
3636 3637 3638 3839 3640 3641 3642 3643 
3652 3653 3654 3656 3658 3657 3658 3669 
3668 3689 3870 3871 3872 3873 3674 3875 
3684 3685 3686 3687 3688 3689 3690 3691 
3700 3701 3702 3703 3704 3705 3706 3707 
3716 3717 3718 3719 3720 3721 3722 3723 
3732 3733 3734 3735 3736 3737 3738 3739 
3748 3749 3750 3751 3752 3753 3764 3755 
3764 3785 3766 3787 3768 3789 3770 3771 
3780 3781 3782 3783 3784 3785 3788 3787 
3796 3797 3798 3799 3800 3801 3802 3803 
3812 3813 3814 3815 3816 3817 3818 3819 
3828 3829 3830 3831 3832 3833 3834 3835 

4 5 6 7 8 9 A 9 

3844 3846 3848 3847 3848 3849 3860 3861 
3880 3861 3862 3863 3864 3865 3866 3867 
3876 3877 3878 3879 3880 3881 3882 3883 
3892 3893 3894 3895 3896 3897 3898 3899 
3908 3909 3910 3911 3912 3913 3914 3915 
3924 3925 3926 3927 . 3928 3929 3930 3931 
3940 3941 3942 3943 3944 3945 3946 3947 
3966 3967 3958 3959 3960 3961 3982 3963 
3972 3973 3974 3975 3978 3977 3978 3979 
39811 3989 3990 3991 3992 3993 3994 3995 
4004 4006 4006 4007 4008 4009 4010 4011 
4020 4021 4022 4023 4024 4025 4028 4027 
4036 4037 4038 4039 4040 4041 4042 4043 
4052 4053 4064 4066 4056 4057 4068 4058 
4068 4069 4070 4071 4072 4073 4074 4075 
4084 408li 4086 4087 4088 4089 4090 4091 

C-5 

c 0 E F 

3084 3085 3086 3087 
3100. 3101 3102 3103 
3116 3117 3118 3119 
3132 3133 3134 3136 
3148 3149 3160 3161 
3164 3186 3188 3187 
3180 3181 3182 3183 
3198 3197 3198 3199 
3212 3213 3214 3216 
3228 3229 3230 3231 
3244 3246 3248 3247 
3260 3261 3262 3263 
3278 3277 3278 3279 
3292 3293 3294 3296 
3308 3309 3310 3311 
3324 3325 3326 3327 

c 0 E F 

3340 :J3j\1 3342 3343 
3366 3357 3358 3369 
3372 3373 3374 3375 
3388 3389 3390 3391 
3404 3406 3408 3407 
3420 3421 3422 3423 
3436 3437 3438 3439 
3462 3463 3454 3466 
3468 3469 3470. 3471 
3484 3485 3486 3487 
3500 3501 3602 3603 
3516 3517 3518 3519 
3532 3533 3534 3635 
3548 3549 3660 3561 
3564 3585 3588 3667 
31580 3!111 3582 3583 

c D E F 

3596 3597 3588 3599 
3612 3613 3614 3616 
3628 3629 3630 3631 
3644 3645 3648 3647 
3660 3661 3662 3663 
3676 3677 3678 3879 
3892 3693 3894 3896 
3708 3709 3710 3711 
3724 3725 3728 3727 
3740 3741 3742 3743 
3756 3757 3758 371!9 
3772 3773 3774 3776 

·3788 3789 3790 3791 
3804 3806 3808 3807 
3820 3821 3822 3823 
3838 3837 3838 3839 

c D E F 

3862 3863 3864 3866 
3868 3888 3870 3871 
3884 3885 3888 3887 
3900 3901 3902 3903 
3916 3917 3918 3919 
3932 3933 3934 3936 
3948 3949 39!50 3961 
3964 3965 3988 3987 
3880 3981 3982 3983 
3998 3997 3998 3999 
4012 4013 4014 4015 
4028 4029 4030 4031 
4044 4045 4048 4047 
4060 4081 4062 4083 
4076 4077 4078 4079 
4092 4093 4084 4088 



UP-8914 

Finl Digit 

Hex. Decinwl Hex. 

.0 .0000 .00 

.1 .0625 .01 

.2 .1250 .02 

.3 .1875 .03 

.4 .2500 .04 

.5 .3125 .05 

.8 .3750 .06 

.7 .4375 .07 

.8 .5000 .OS 

.9 .5625 .09 
A .8250 .oA 
.8 .6875 .08 
.c .7500 .oc 
.D .8125 .OD 
.E .8750 .OE 
.F .9375 .OF 

SPERRY UNIVAC 05/3 
ASSEMBLER 

Tabla C-3. Hexadecimal-Decimal Fraction Conversion 

s.aond Digit Third Digit 

Deci-1 Hex. Decinml 

.0000 0000 .000 .0000 0000 0000 

.0039 0825 .001 .0002 4414 0625 

.0078 1250 .002 .0004 8828 1250 

.0117 1875 .003 .0007 3242 1875 

.0156 2500 .004 .0009 7656 2500 

.0196 3125 .006 .0012 2070 3125 

.0234 3750 .006 .0014 6486 3750 

.0273 4375 .007 .0017 0898 4375 
,0312 5000 .008 .0019 5312 5000 
.0351 5625 .009 .0021 9726 5625 
.0390 8250 .DOA .0024 4140 8250 
.0429 6875 .008 .0028 8554 6875 
.0468 7500 .ooc .0029 2968 7500 
.0607 8125 .OOD .0031 7382 8125 
.0548 8750 .OOE .0034 1796 8750 
.0585 9375 .OOF .0036 6210 9375 

C-6 

Fourth Digit 

Hex. Decimml 

.0000 .0000 0000 0000 

.0001 .0000 1525 8789 

.0002 .0000 3051 7578 

.0003 .0000 4577 6367 

.0004 .0000 6103 5156 

.0005 .0000 7629 3945 

.0006 .0000 9165 2734 

.0007 .0001 0681 1523 

.0008 .0001 2207 0313 

.0009 .0001 3732 9102 
.OOOA .0001 5258 7891 
.0008 .0001 6784 8680 
.oooc .0001 8310 5469 
.OOOD .0001 9836 4258 
.OOOE .0002 1362 3047 
.OOOF .0002 2888 1836 

To convert a 4-digit (2-byte) hexadecimal fraction to a decimal fraction, add the values shown in the above table 
for each of the hexadecimal digits to be converted as illustrated below. The hexadecimal fraction .BSA 1 equals 
the approximate decimal fraction • 70948791 from the above table. 

.8 

.05 

.OOA 

.0001 

.86A1 

NOTE: 

from the table equals 
from the table equals 
from the table equals 
from the table equals 

equals the sum 

All value• /iatad are approximate va/uea. 

.6875 

.01953125 

.002441406250 

.000015258789 

• 709487915039 

• 

• 

• 



• 

01 02 03 04 Oli 08 07 08 ~ OA 
01 02 03 04 Oli 06 07 08 09 OA 08 
02 03 04 Oli 06 07 OB 09 OA OB oc 
03 04 Oli 06 07 OB 09 OA 08 oc OD 
04 Oli OB 07 08 09 OA OB oc OD OE 
Oli OB 07 08 09 OA OB oc OD OE OF 
06 07 08 09 OA 08 oc OD OE OF 10 
07 08 09 OA OB oc OD OE OF 10 11 
06 09 OA OB oc 00 OE OF 10 II 12 
09 OA OB oc OD OE OF 10 11 12 13 
OA OB oc 00 OE OF 10 11 12 13 14 
OB oc OD OE OF 10 11 12 13 14 15 
oc OD OE OF 10 11 12 13 14 15 16 
OD OE OF 10 11 12 13 14 15 16 17 
OE OF 10 11 12 13 14 15 16 17 18 
OF 10 11 12 13 14 15 18 17 18 19 
10 11 12 13 14 15 18 17 18 19 IA 
11 12 13 14 15 18 17 18 19 IA 18 
12 13 14 15 18 . 17 18 19 IA 18 IC 
13 14 15 16 17 18 19 IA 18 IC ID 
14 15 18 17 18 19 IA 18 IC ID IE 
15 18 17 18 19 IA 18 IC ID IE IF 
16 17 18 19 IA 1" IC ID 1E IF 20 
17 18 19 IA 18 IC ID IE IF 20 21 
18 19 IA 1B IC ID IE IF 20 21 22 
19 IA IB 1C 1D IE 1F 20 21 22 23 
IA 18 IC ID IE IF 20 21 22 23 24 
18 IC ID IE IF 20 21 22 23 24 25 
IC ID IE IF 20 21 22 23 24 25 28 
10 IE IF 20 21 22 23 24 25 28 27 
IE IF 20 21 22 23 24 25 28 27 28 
IF 20 21 22 23 24 25 26 27 28 29 

I 2 3 4 5 & 7 8 9 A 

• 

Tabla C-4. Haxadecimal Addition and Subtraction Table 

OB oc 00 OE OF 10 11 12 13 14 15 16 
oc 00 OE OF 10 11 12 13 14 15 18 17 
00 OE OF 10 11 12 13 14 15 16 17 18 
OE OF 10 . 11 12 13 14 15 18 17 18 19 
OF 10 11 12 13 14 15 16 17 18 19 1A 
10 II 12 13 14 15 18 17 18 19 IA 18 
11 12 13 14 15 16 17 18 19 IA 18 IC 
12 13 14 15 16 17 18 19 IA 18 IC ID 
13 14 15 18 17 18 19 IA 18 IC ID IE 
14 15 16 17 18 19 -IA 18 IC ID IE IF 
15 16 17 18 19 IA 18 IC ID IE IF 20 
18 17 18 19 IA 18 IC 10 IE IF 20 21 
17 18 111 IA IB IC 10 IE IF 20 21 22 
18 19 IA 18 IC ID IE IF 20 21 22 23 
19 IA 18 IC 10 IE IF 20 21 22 23 24 
IA 18 IC ID IE IF 20 21 22 23 24 25 
18 IC 10 IE IF 20 21 22 23 24 25 26 
IC ID IE IF 20 21 22 23 24 25 26 27 
ID IE IF 20 21 22 23 24 25 . 26 27 28 
IE IF 20 21 22 23 24 25 26 27 28 29 
IF 20 21 22 23 24 25 26 27 28 29 2A 
20 21 22 23 24 25 26 27 28 29 2A 28 
21 22 23 24 25 26. 27 28 29 2A 2B 2C 
22 23 24 25 26 27 28 29 2A 28 2C 20 
23 24 25 26 27 28 29 2A 2B 2C 20 2E 
24 25 26 27 28 29 2A 28 2C 20 2E 2F 
25 26 27 28 29 2A 28 2C 2D 2E 2F 30 
26 27 28 29 2A 28 2C 2D 2E 2F 30 31 
27 28 29 2A 28 2C 2D 2E 2F 30 31 32 
28 29 2A 28 2C 2D 2E 2F 30 31 32 33 
29 2A 28 2C 20 2E 2F 30 31 32 33 34 
2A 28 2C 20 2E 2F 30 31 32 33 34 35 
8 c D E F 10 11 12 13 14 15 18 

17 18 19 IA IB IC 
18 19 IA 18 . IC ID 
19 IA 18 1c· ID IE 
IA 18 IC ID IE IF 
18 IC 10 IE IF 20 
IC 1D IE IF 20 21 
ID IE If 20 21 22 
IE If 20 21 22 23 
IF 20 21 22 23 24 
20 21 22 23 24 25 
21 22 23 24 25 26 
22 23 24 25 26 27 
23 24 25 26 27 28 
24 25 26 27 28 29 
25 26 27 28 29 2A 
26 27 28 29 2A 28 
27 28 29 2A 28 2C 
28 29 2A 28 2C 20 
29 2A 28 2C. 20 2E 
2A 28 2C 2D 2E 2F 
28 2C 20 2E 2F 30 
2C 20 2E 2F 30 J 31 
20 2E 2f 30 31 32 
2E 2F 30 31 32 33 
2F 30 31 32 33 34 
30 31 32 33 34 36 
31 32 33 34 35 36 
32 33 34 35 36 37 
33 34 35 36 37 38 
34 35 36 37 38 39 
35 36 37 38 39 3A 
36 37 38 39 3A 38 
17 18 19 IA 18 IC 

ID IE IF 
IE IF 20 
IF 20 21 
20 21 22 
21 22 23 
22 23 24 
23 24 25 
24 25 26 
25 26 27 
26 27 28 
27 28 29 
28 29 2A 
29 2A 2B 
2A 28 2C 
28 2C 20 
2C 20 2E 
20 2E 2F 
2E 2F 30 
2F 30 31 
30 31 32 
31 32 33 
32 33 34 
33 34 35 
34 36 36 
35 36 37 
36 37 3B 
37 3B 39 
38 39 3A 
39 3A 38 
3A 38 . 3C 
38 3C 30 
3C 30 3E 
10 IE IF 

01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
oc 
OD 
OE 
OF 
10 
11 
12 
13 
14 
16 
16 
17 
18 
19 
IA 
18 
IC 
10 
1E 
IF 

• 
c 
" cD 
CD .... .,.. 

CJ) 

JI 
>~ (/) -< 
(/) c 
~~ 
~~ 
gin 

0 
CJ) 

' w 

n 
I ..... 



UP-8914 SPERRY UNIVAC OS/3 C-8 
ASSEMBLER 

• Table C-5. Powers of 16 

-16" n 

0 
16 1 

256 2 
4 096 3 

66 536 4 
1 048 576 5 

16 n1 216 6 
268 435 456 7 

4 294 967 296 8 
68 719 476 736 9 

099 511 627 776 10 
17 592 186 044 416 11 

281 474 976 710 656 12 
4 503 599 627 370 496 13 

72 067 594 037 927 936 14 
162 921 504 608 846 976 15 

These powers of 16 are especially useful in determining the value of floating-point numbers. 

-· 

• 



. UP-8914 

• 
~ n 2"" 

t 0 1.0 
2 1 0.5 
4 2 0.25 
I 3 0.125 

18 4 0.11112 5 
32 5 G.031 25 
84 8 0.015 8215 

128 7 O.ll07 812 

21111 8 ~-003 90I 
512 9 0.001 953 

t 024 10 0.000 978 
2 048 tt 0.000 481 

-
4 Oii 12 0.000 244 
8 192 13 0.000 122 

ti 384 14 0.000 Olt 
32 718 Ill 0.000 030 

• 531 18 0.000 0111 
131 072 17 0.000 007 
282 144 18 0.000 003 
1124 281 19 0.000 001 

t 048 571 2li 0.000 000 
2 097 1112 21 0.000 000 
4 194 304 22 0.000 000 
8 3111 - 23 0.000 000 

18 m 218 24 0.000 000 
33 554 432 211 0.000 000 
87 108 8114 28 0.000 000 

• 134 217 721 21 0.000 000 

21111 4311 4511 28 0.000 000 
531 870 912 29 0.000 000 

' 073 741 824 30 0.000 000 
2 147 CJ 848 31 0.000 000 

4 294 917 291 32 0.000 000 
8 Sat 934 582 33 0.000 000 

17 171 - 184 34 0.000 000 
34 359 738 3111 311 0.000 000 

18 719 478 738 31 0.000 000 
137 438 953 472 37 0.000 000 
274 877 90I 944 31 0.000 000 
548 7511 813 - » 0.000 000 

' - 511 121 776 40 0.000 000 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table C-6. Powers of 2 

5 

25 
125 
512 5 
281 25 

140 825 
070 312 5 
035 1511 25 
517 578 125 

2158 788 Ol2 5 
829 314 531 211 
814 817 2811 8211 
907 348 132 812 

953 174 318 40I 
471 837 1511 203 
238 418 579 101 
119 209 288 5liO 

059 804 .... m 
029 802 322 317 
014 901 181 193 
007 450 580 51111 

003 725 290 298 
001 882 845 149 
000 931 322 574 
000 4111 111 287 

000 232 830 843 
000 116 415 321 
000 Oll8 207 llO 
,·ooo Cll29 103 830 

000 014 5111 915 
000 007 2711 917 
000 003 137 978 
000 001 818 -000 000 909 .. 

5 

25 
125 
512 
781 

390 
685 
847 
923 

411 
230 
615 
307 

6113 
128 
913 
418 

228 
114 
807 
403 

701 

C-9 

5 
25 

1211 
312 5 
8118 25 
828 1211 

914 082 5 
957 031 41 
478 51!1 1211 
731 2117 812 II - 628 906 21 
934 814 4113 125 
417 407 221 1162 II 
733 703 813 281 211 - "' IOI 840 1211 
183 4211 903 320 312 II 
091 712 1111 llO 1511 211 
5411 8118 4711 830 071 1211 

m 928 237 9111 03ll 082 5 



UP-8914 

FLOATING-POINT MATH 

SPERRY UNIVAC OS/3 
ASSEMBLER 

C-10 

The floating-point instruction set is added to the instruction repertoire as part of the floating-point control 
feature. An operation exception results if a floating-point instruction is issued to a processor in which the 
floating-point control feature has not been installed. 

The floating-point instruction set provides for loading, adding, subtracting, comparing, multiplying. dividing, 
storing. and sign control of short or long format floating-point operands. Four double-word floating-point 
registers are provided to accommodate storing and loading of results and operands. These registers are 
numbered 0, 2. 4, and 6. The specification of any other register number results in a specification exception. For 
long format operands, the entire double-word register is involved in the operation. For short format operands. 
excluding the product in the short format multiply (ME) instruction, only the most significant word of the double
word register is involved in the operation. The least significant word remains unchanged. Separate instructions 
are proVided for operations with long and short format operands. 

Each operand is treated as a floating-point number consisting of a biased exponent (characteristic) and a signed 
fraction (mantissa). The biased exponent is expressed in excess-64 binary notation; the fraction is expressed as a 
hexadecimal number having an arithmetic point to the left of the high-order digit. The quantity expressed by the 
full floating-point number is the product of the fraction and the number 16 raised to the power of the biased 
e:teponent minus 64 (fraction times 1 sn-14). 

A quantity may be represented with the greatest precision by a floating-point number of a given fraction length 
when the number is in a "normalized" form. A normalized floating-point number has a nonzero. high-order 
hexadecimal fraction digit. 

An exponent overflow exception develops if, in the result of a floating-point instruction. the characteristic of the 
result exceeds 127 and the fraction of the result is not zero. An exponent underflow exception develops if the 
characteristic is less than zero and the fraction of the result is not zero. An exponent overflow exception causes 
a program interruption. An exponent underflow exception causes a program interruption if the exponent 
underflow mask bit of the current PSW is 1. 

A floating-point number having a zero characteristic, a zero fraction, and a positive (zero) sign is said to be a 
"true zero" number. 

The floating-point instructions are available in RR and RX formats. Therefore, at least one of the operands is 
contained in one of the floating-point registers. The other operand is located in the same or another register or in 
main storage. Each main storage address may be specified as relative or absolute. 

To increase the precision of certain computations, an additional least significant digit, the guard digit. is carried 
within the hardware in the intermediate result of the following operations: add-normalized, subtract-normalized, 
add-unnormalized, subtract-unnormalized. compare, halve, and multiply. In the execution of add-normalized, 
subtract-normalized, add-unnormalized, subtract-unnormalized, and compare instructions, when a right shift of 
the fraction is required to equalize two exponents, the last hexadecimal digit to be shifted out of the least 
significant digit position of the fraction is saved by the processor hardware as the guard digit. The shifted 
fraction, including the guard digit. is used in computing the intermediate result. In the halve instruction, the least 
significant bit position of the fraction is saved as the 15th digit of the fraction of the intermediate product. If the 
intermediate result is subsequently normalized, the guard digit is shifted left to become part of the normalized 
fraction. 

• 

• 

• 



• 

• 

• 

UP-8914 

• characteristic i 
II (exponent) 
n 

1 

SPERRY UNIVAC OS/3 
ASSEMBLER 

SHORT FORM FLOATING-POINT NUMBER 

7 8 

LONG FORM FLOATING-POINT NUMBER 

C-11 

mantissa 
(fraction) 

31 

Floating-Point Addition 

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are equal, the 
fractions are added to form an intermediate sum. If the exponents are unequal, the smaller exponent is 
subtracted from the larger. The difference indicates the number of hexadecimal digit shifts to the right to be 
performed on the fn:lction having the smaller exponem. Each hexadecimal digit shift to the right causes the 
exponent to be increased by 1. After equalization, the fractions are added to form an intermediate sum. 

A carrv-over digit of the most significant hexadecimal digit position of the intermediate sum. causes the 
intermediate sum to be shifted right one digit position and the exponent to be increased by 1 . If an exponent 
overflow condition occurs, the resultant floating-point number consists of a normalized and correct fraction, a 
correct sign, and an exponent which is 128 less than the correct value . 

• Normalization 

The intermediate sum is composed of 14 hexadecimal digits, a guard digit, and a possible carry-over digit. If 
any most significant digits of the intermediate sum are zero. the fraction including the guard digit is shifted 
left to form a normalized fraction. Vacated least significant digit positions are zero filled, and the exponent 
is reduced by the number of shifts. If normalization is unnecessary, the guard d~it is 1. 

• Exponent Underflow 

If normalization causes the exponent to become less than zero, an exponent underflow condition results. If 
the exponent underflow mask bit (38) of the current program status word (PSW) is 1, the resultant floating
point number has a correct and normalized fraction. a correct sign, and an exponent that is 128 more than 
the current value. If the exponent underflow mask of the current PSN is zero. the result is a true zero . 



UP-8914 SPERRY UNIVAC 05/3 
ASSEMBLER 

C-12 

• Zero Resuft 

If the intermediate sum, including the guard digit, is zero, a significance exception occurs. If the 
significance mask bit (39) of the current PSW is 1, the result is not normalized and the exponent remains 
unchanged. If the significance mask bit of the current PSW is zero and the intermediate sum is zero. the 
result is made a true zero. Exponent underflow cannot occur for a zero fraction. 

• Sign 

The sign of an arithmetic result is determined algebraically. The sign of a result with a zero fraction is 
always positive. 

Floating-Point Division 

Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient exponent 
is obtained by subtracting the exponents of the two operands and increasing the difference by 64. 

Both operands are normalized before division. Consequently, the intermediate quotient is correctly normalized or 
a right shift of one digit position may be required. The exponent of the intermediate result is increased by 1 if the 
shift is necessary. All operand 1 (r1) fraction digits are used in forming the quotient, even if the normalized 
operand 1 fraction is larger than the normalized operand 2 fraction. 

If the final quotient exponem exceeds 127, an exponent overflow exception results. The quotient consists of the 
correct and normalized fraction, a correct sign, and an exponent that is 128 less than the correct value. 

If the final quotient exponent· is less than zero, an exponent underflow condition exists. If the exponent 
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct sign, 
and an exponent that is 128 greater than the correct value. If the exponent underflow mask bit of the current 
PSVV is zero, the result is made a true zero. Underflow does not apply to the intermediate result or the operands 
during normalization. An exponent underflow exception causes a program interrupt if the exponent underflow 
mask bit of the current PSW is 1. 

Attempted division by a divisor with a zero fraction leaves the dividend unchanged, and a program exception for 
floating-point divide occurs. When division of a zero dividend is attempted, the quotient fraction is zero. The 
quotient sign and exponent are made zero and give a true zero result. No program exceptions occur. 

• 

• 

• 



• 

• 

• 

UP-8914 

Floating-Point Multiplication 

SPERRY UNIVAC OS/3 
ASSEMBLER 

C-13 

Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of the 
intermediate product is obtained by adding the exponents of the two operands and reducing the sum by 64. 

Both operands are normalized before multiplication and the intermediate product is normalized after 
multiplication. The intermediate product fraction is truncat!!d to 14 digits and ~ guard digit before normalization. 

If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant floating
point number consists of a correct and normalized fraction, a correct sign, and an exponent that .is 128 less than 
the correct value. The overflow condition does not occur for an intermediate product exponent exceeding 127 if 
the final exponent is brought within range during normalization. 

If the final product exponent is less than zero, an exponent underflow condition exists. If the exponent underflow 
mask bit (38) of the current PSW is 1, the resultant floating-point number has a correct and normalized fraction, 
a correct sign, and an exponent that is 128 greater than the correct value. If the exponent underflow mask bit of 
the current PSW is zero, the result is made a true zero. When an underflow characteristic becomes less than 
zero during normalization before multiplication, an underflow exception is not recognized. 

When all digits of the intermediate product are zero, the result is made a true zero. 

When the resulting fraction is zero, a program exception for exponent underflow or overflow does not occur . 



• 

, 

• 

• 



• 

' 

Appendix D. Source Corrections 

• 

,_ 

• 

i 



• 

• 

• 



•• 

• 

• 

UP-8914 

GENERAL 

SPERRY UNIVAC OS/3 
ASSEMBLER 

0-1 

The OS/3 assembler supports a source module correction routine. This routine is the same as the one used in 
the librarian. The correction deck is interchangeable between the assembler and the librarian except the 
librarian also uses the added COR control statement. The corrections made to the source module are temporary. 
The corrections are specified by the presence of both the source module input (/ / L).PARAML).IN=module name or 
the IN=(vol-ser-no, label) for the jproc call), and the correction records in the job control stream. These records 
must be within the data delimiters (/$ and /*). If there are no records between the data delimiters, no source 
correction is performed. 

There are three control statements associated with the correction routine: sequence (SEQ), recycle (REC), and 
skip (SKI). To make the source module corrections. the actual source record to be inserted is used as the 
correction card with the same sequence number as the record to be replaced. Insertions are performed by using 
at least one correction card (always the first card) with a sequence number falling betw~n ·the sequence 
numbers of the records betiNeen which the insertion is to be made. Any number of unsequenced correction 
cards may then follow the first sequence card. Deletions are performed by bypassing one or more orjginal source 
module records in the old data set, thus eliminating them from being written on the new data set. The SKI and 
REC statements are used for this function . 



UP-8914 

PARAM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

D-2 

The PARAM statement specifies the assembler processing options in effect at assembly time and alters the 
standard default options. If the user does not specify assembler options in the job control stream, the assembler 
functions as follows: 

• Searches only the system source library file ($Y$SRC) for any source module or copy code referenced 

• Searches only the system macro library file ($Y$SRC) for any macro references 

• Stores the object module produced in the job run library file ($Y$RUN) 

• Prints the source code, object code, cross-references, and diagnostic listings 

The value of &SYSPARM is equal to a null string. Columns 1 and 2 must contain slashes, followed by at least 
one blank column, and then PARAM followed by at least one blank column. Multiple options are supported for 
each option separated by commas. The end of the selected options is indicated by a blank column following the 
last option. All options selected are printed preceding the assembly listing. 

Format: 

1 

/ID. PARAM A 

10 

{'tile~-:"' 1} [i{ .. ti1e~';182 }]n 
$Y$SRC' $Y$SRC u 

[,IN=modulename [ /{fi. de·na .. me .. ·. }]] $V$SRC 

{
·fi. ·.·.·~;'18··· .. 1} [i{ ... fi. .··~~m.) e2 }]] 
'IY$MAC $Y$MAC' 

{ ([s11 [,s2] 
5
[,s3] [,s4])}] 

{ fi. • ... ·' • .. na· .. ·me··· ·.· · .. }J (N) . 
'$V~ 

[,RO= {8;}] 

[ ,SYSPAR M= {::;::m.} J 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

D-3 
Update B 

PARAM 

The parameter definitions are as follows: 

COPY= 
Enables up to two files to be identified as source code module libraries or specifies that no files are to 
be searched for source code modules. If this option is omitted, $Y$SRC is assumed and is the only 
file searched for source code module references. Only source code modules can be copied; the 
source code must be in the standard format and may not contain any COPY, ICTL, MACRO, PROC. or 
MEND directives. 

filename1 
Specifies that the file identified as filename1 is searched first for source code modules referenced 
and, if not found there, then $Y$SRC is searched: filename is any name the user specifies or the 
system source library. If filename1 = filename2, then COPY= filename1 will generate the same files 
to be searched as COPY = /filename2, except that, in the first case, the order in which the files are 
searched is filename1 and then $Y$SFIC; whereas, in the 2nd case, the order is $Y$SRC and then 
filename2. 

filename1 /filename2 
Specifies that the file identified as filename1 is searched first. Then, the file identified as filename2 is 
searched for source code modules referenced. When two filenames are specified for this parameter, 
the $Y$SRC file is not searched. 

filename1 /(N) 

(N) 

IN= 

Specifies only the file identified as filename1 is searched for source code modules referenced, as 
stated above: If filename1 = filename2, then COPY=filename1 /(N) is the same as COPY = 
(N)/filename2, with only one file searched in either case. 

Specifies no files, not even $Y$SRC, are searched for source code modules referenced. COPY = 
(N)/(N) is the same as COPY=(N). 

Identifies the name of the source module that is to be assembled and the file in which it resides. If 
this option is omitted, the source code must be in the control stream. 

modulename 
Specifies the name of the source module and directs the assembler to search the $Y$SRC file for the 
module; modulename is the name of the source module and is up to eight characters. 

modulename/filename 

LIN= 

Specifies the name of the source module and the file in which it resides; filename is any name you 
supply or the system source library. 

Enables up to two files to be identified as macro source files or no files to be searched for macro 
references. If this option is omitted, $Y$MAC is assumed and is the only file searched. 

filename1 
Identifies the file that is searched for macro references and, if not found there, then $Y$MAC is 
searched; filename is any name or the name of the system macro library. 

filename1 /filename2 
Identifies the two files that are searched for macro references. The file identified as filename1 is 
searched first, followed by the file identified as filename2. The $Y$MAC file is not searched. 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

0-4 
Update B 

PARAM 

filename1 /(N) 

Specifies only the file identified as filenamel is searched for macro references. 

(N) 

Specifies no files, not even $Y$MAC, are searched for macro references. 

LST= 

s 

Indicates the type of listing desired. If this option is omitted, source, object, cross-reference, and 
diagnostic listings are printed. 

A single specification requiring no parentheses. 

([s,) ... (,S4]) 

Any s in the series is one of the following: 

NC 

ND 

NR 

N 

DBG 

Specifies that cross-reference listings are suppressed. 

Specifies that diagnostic listings are suppressed. 

Specifies that the cross reference listing is to contain only those symbols that have at least one 
reference each. If specified with the NC option, that option overrides NR. 

Specifies that all output listings are suppressed. 

Specifies a proc or macro debug mode feature within the OS/3 assembler. When the feature is 
selected, the output listing shows the following: 

• Results of the expansion of any proc or macro called within the user program. including 
any conditional assembly directives processed as the result of the expansion itself. 
Source coding (constants, directives, and instructions) is listed twice and shows any 
appropriate substitutions. Any statements causing error diagnostics show the exit line in 
error. 

• A proc or macro that produces error diagnostics at the time it is encoded is listed 
following the END directive; e.g., system errors. A proc or macro is encoded once, but may 
be called multiple times. 

• If an error is detected at both expansion and encoding time, it appears two or more times. 

• 

Errors detected only at encoding time appear once following the END directive. 

All lines flagged (regardless of their order or appearance) are shown in the diagnostic 
summary list. Lines flagged at encoding time may or may not be flagged at expansion 
time. 

When this feature is not selected, any errors detected OLlring proc or macro expansion may not 
show the exact line in error, but rather the vicinity ot the item which is flagged. 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

D-5 
Update B 

PARAM 

OUT= 
Enables the user to specify the file that is to be used to store the object module output by the 
assembler. If this option is omitted, the object module is generated and stored in $Y$RUN, the 
system-run library. 

filename 

(N) 

RO= 

Identifies the file that is used as the output file by the assembler; filename is any name or the job run 
library. 

Specifies that no output file is used by the assembler and, thus, no object module is generated. 

Permits the user to optionally flag all base/displacement fields of instructions that yield absolute 
values less than 4096 (100016 ). Each statement is flagged with an "ADDRESSABILITY" error 
message. 

SYS PARM= 
Specifies the equivalent of a global SETC symbol, with the value specified in this option. If this option 
is omitted, the value of &SYSPARM is a null string . 

'string' 
Specifies a string of one to eight characters enclosed in apostrophes. An apostrophe within the string 
is represented by two apostrophes but only counts as one in determining the length of the string. 

Operational Consideration: 

The value established by SYSPARM is available within the assembly, both outside of and within macro 
definitions. This parameter is referenced as &SYSPARM within assembly statements. Any error in this 
specification directs the assembler to ignore the specification, and an appropriate error message is printed 
on the output printer . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

0-6 

REC 

Function: 

Causes the record pointer for the input module to be repositioned back to the first record in the module. In 
conjunction with the SKI control statement, it allows rearranging of major segments of the input module. 
When a REC control statement is processed, records are read from the input module up to and including 
the record whose sequence number matches the sequence number in the REC control statement field. 
Then, the record pointer for the input module is reset to the first record in the module. If the sequence field 
of the REC control statement is blank, repositioning of the record pointer takes place immediately. 

Format: 

LABEL 

ignored 

Parameters: 

last-sequence no. 

~OPERATION~ 

REC unused 

OPERAND 
73 
SEQUENCE 

[last-sequence-no.] 

One to eight alphanumeric characters identifying the sequence number of the last input record to be 
read from the input module. 

If omitted, the repositioning function takes place immediately. 

NOTES: 

1. Records are replaced one at a time by writing a source statement with a sequence number matching 
the sequence number of the record to be replaced. 

2. Records are inserted by- writing source correction statements with sequence numbers that fall 
between the sequence numbers of the input records between which insertion is to take place. Blank 
sequence fields cause an insertion to take place immediately. 

• 

• 

• 



• 

• 

• 

UP-8914 

SEQ 

Function: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

0-7 

Specifies the starting position and the length of the sequence field. If the sequence field is omitted, column 73 
is assumed to be the first column of the sequence field, which continues to the maximum of eight characters. 

Format: 

LABEL AOPERATIONA 

unused SEQ 

Parameters: 

column position 

OPERAND 

column position 
73 } , { content } 

00000000 

73 
SEQUENCE 

Specifies the first column position in the source record where the sequence field begins. 

If omitted, cmumn 73 is assumed to be the first column of the sequence field . 

content 

One- to eight-character value. The length of this value determines the length of the sequence field. 

NOTES: 

1. Card column 1 must be blank if the sequence field does not start in card column 1. 

2. T.he SEQ card always is the first card in the correction routine . 



UP-8914 

SKI 

SPERRY UNIVAC OS/3 
ASSEMBLER 

0-8 

Function: 

Allows one or more original input module records to be bypassed. Records are read from the input module 
until a sequence number is detected that matches the sequence number of the SKI command. The skip 
operation is started and continues until a sequence number that matches the operand field of the SKI 
command is detected. If the sequence field of the skip command is blank, the function is started 
immediately. 

Format: 

LABEL t:,. OPERATION t:,. 

ignored SKI 

Parameters: 

OPERAND 

last-sequence-no. 

73 
SEQUENCE 

[starting-sequence-no.] 

last-sequence-no. 
One to eight alphanumeric characters identifying the sequence number of the last input module 
record to be bypassed. 

starting-sequence-no. 
One to eight alphanumeric characters identifying the sequence number of the first source module 
record to be bypassed. 

If omitted, the skip operation is started immediately, starting with the input module record that immediately 
follows the last record operated on. 

• 

• 

• 



•• 

Appendix E. System Variable Symbols 

• 

• 



• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

E-1 

System variable symbols automatically generate values or character strings at assembly time. There are seven 
system variable symbols: &SYSECT, &SYSLIST, &SYSNDX, &SYSDATE, &SYSTIME. &SYSJDATE, and 
&SYSPARM. The following paragraphs contain the functions of each system variable symbol. 

&SYSECT is a system variable symbol used to represent the name of the control section containing a 
macroinstructio n. 

&SYSECT is assigned a value for each inner and outer macroinstruction processed by the assembler. This value 
is the name of the control section containing the macroinstruction. If &SYSECT is referenced in a macro 
definition, its substituted value is the name of the last CSECT, DSECT, or START directive that occurred prior to 
the macroins.truction. If a named CSECT, DSECT, or START directive did not appear prior to the macroinstruction, 
&SYSECT is assigned a null character value during the processing of the macro definition called by the macro 
call instruction. 

Any CSECT or DSECT directives processed within a macro definition affect the value of &SYSECT for any 
subsequent inner macroinstructions in the definition and for any outer and inner macroinstructions that occur 
outside the current nest of macro definitions. However, the value of &SYSECT remains constant during the 
processing of a given macroinstruction, and it is not affected by CSECT or DSECT directives or inner 
macroinstructions occurring in that macro definition. 

&SYSLIST is a system variable symbol. 

Within a macro definition in macro format, each positional parameter may be referenced by a name; however, 
each positional parameter need not be named in the macro prototype statemem and may be referenced in terms 
of its position within lhe macroinstruction operand field by writing the system variable symbol &SYSLIST 
followed by an expression in parentheses. The value of the expression identifies the position of the parameter in 
the operand field. The expression may be a SETA symbol or a self-defining term. Therefore, if a macro definition 
prototype statement has the operand field: 

&A,&B,&C 

the first positional parameter is referenced either as &A or &SYSLIST(1 ), the second is referenced either as &B 
or &SYSLIST(2), and the third positional parameter is either &C or &SYSLIST(3), and so on. This capability, which 
is used to index through the positional parameters, treats each parameter in the same way. 

A null character string is generated in place of &SYSLIST(m) if m is zero or greater than the number of positional 
parameters supplied in the macroinstruction. 

The system variable &SYSLIST may not be used in a mixed-mode (positional and keyword parameters included) 
macro definition. 

&SYSNDX is a sy~tem variable symbol. 

The assembler maintains a counter that is incremented by 1 each time the assembler encounters a 
macroinstruction. The value of this counter within the first macro is 1. The current value of this counter is 
supplied as the 4-digit character value of the system variable symbol &SYSNDX each time a macroinstruction is 
encountered. A macro definition that defines labels within the code it generates and that may be called more 
than once in a single assembly generally creates duplicate definitions of the same label. To avoid this problem, 
the system variable symbol &SYSNDX may be used as a suffix on. the labels defined by the macro definition, so 
that each time the macro definition is called, it will define a different set of labels . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

E-2 

&SYSOATE is a system variable symbol, which can be referenced in the user program text or within a macro 
definition to generate the date the user program is assembled. the date is produced in the user assembly listing 
as a character string representing the month, day, and year (mm/dd/yy) the program was assembled. If the user: 

1. assembles a program; 

2. stores it in a library; and 

3. retrieves the assembled program for execution at a later date -

any &SYSDATE reference in the user program references the original assembly date, not the current date when 
the user program is executed. 

The user specifies &SYSOATE as either an operand in a source code statement, which defines a constant (DC), 

or an operand field literal. 

Example: 

LABEL ~ERATI~ OPERAND A 
1 10 16 

When this line of source code is assembled, the object code contains the current date. 

The user can also use the &SYSOATE system variable symbol as a literal. 

Example: 

When this line of source code is executed, the assembly date is moved into a niain storage .area called BUF. 

&SYSTIME is a system variable symbol, which can be referenced either in the user program text or within a 
macro definition, to generate the time of day the user program is assembled. The date is produced in the user 
assembly listing as a character string representing the hour, minute, and second (hh.mm.ss) the assembly was 
run. If the user: 

1. assembles a program; 

2. stores it in a library; and 

3. retrieves the assembled program for execution at another time -

• 

• 

• 



• 

• 

UP-8914 SPERRY UNNAC OS/3 
ASSEMBLER 

E-3 

any &SYSTIME reference in the user program references the original assembly time, not the current time of 
execution. 

The user specifies &SYSTIME as either an operand in a source code statement, which defines a constant (DC), or 
an operand field literal. 

Example: 

LABEL OOPERATloNA OPERAND 
1 10 . 16 

When this line of source code is assembled, the object code contains the current time. 

The user can also use the &SYSTIME system variable symbol as a literal. 

Example: 

When this line of source code is executed, the assembly time is moved into a main storage area called BUF. 

&SYSJDATE is a 'system variable symbol, which can be referenced either in the user program text or within a 
macro definition, to generate the Julian date when the user program is assembled. The date is produced in the 
user assembly listing as a character string representing the month, day, year, and Julian value - day of the year 
(mmddyjjj) the assembly was run. If the user: 

1. assembles a program; 

2. stores it in a library; and 

3. retrieves the assembled program for execution at another time -

any &SYSJDATE reference in the user program references the Julian date of the original assembly. 

The user specifies &SYSJDATE as either an operand in a source code statement, which defines a constant (DC), 
or an operand field literal . 



UP-8914 

Example: 

LABEL OOPERATIONf. 
10 16 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

I 

When this line of source code is assembled, the object code contains the Julian date. 

The &SYSJDATE system variable symbol can also be used as a literal. 

Example: 

E-4 

When this line of source code is executed, the Julian date is moved into a main storage area called BUF. 

&SYSPARM is a system variable symnbol, which can be referenced either in the user program text or within a 
macro definition, to generate an 8-byte null character string at assembly time. The string is initially null but can 
be varied by using the PARAM statement (Appendix 0) as follows: 

LABEL Li OPERATION Li OPERAND 

//LiPARAMLi SVSPARM='string' 

By using the PARAM statement. the user can specify a string of up to eight characters. enclosed in apostrophes. 
Once the user has altered the value of &SYSPARM, any references to &SYSPARM produces the character string 
specified in the PARAM statement, not a null character string. 

To reference the &SYSPARM system variable symbol, the user specifies &SYSPARM as either an operand in a 
source code statement. which defines a constant (DC), or an operand field literal. 

Example: 

• 

• 

• 



• 

• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

E-5 

When this line of source code is assembled, the object code contains an 8-byte null character string. 
' 

The user can also use the &SYSPARM system yariable symbol as a literal. 

Example: 

LABEL OOPERATIONt. OPERAND 
1. 10 16 

I 

If the user does not precede this source code statement with a PARAM statement when this line of source code 
is executed, an 8-byte null character string is moved into a main storage area called BUF . 



• 

• 

- • 



-·-..,, 

Appendix F. Attribute References 

• 



• 

• 

• 



• 

• 

•• 

UP-8914 SPERRY UNNAC OS/3 
ASSEMBLER 

F~1 

The assembler assigns certain attributes to symbols and macro call operands that the user may refer to in 
conditional assembly statements. These attributes are: type (T), length (L), scale (S). integer (I), count (K), and 
number (N). 

The user can specify attributes in conditional assembly statements to control logic, which (in turn) can control 
the sequence and contents of the inline expansion code generated from model statements. Each kind of attribute 
has a specific purpose, which determin~s when it can be used. 

Format: 

LABEL 

[symbol) 

LlOPERATION Ll 

conditional 
assembly 
Operation 
code 

T 
L 

·s 
I 
K 
N 

OPERAND 

{
symbol } 
&symbol 

The attribute notation (T, L. S, I, K, or N) denotes which attribute of a symbol or parameter the user is using. The 
symbol or parameter is a reference to the data or field that possesses the attribute. The operation code must be a 
conditional assembly operation code except when the length attribute is being used . 

The origin of an attribute value is always either a symbol or parameter. Table F-1 gives the restrictions for using 
a symbol or parameter as the reference to obtain a particular data attribute. Whether a symbol or parameter can 
be used in an attribute reference depends on where the reference is made. If an attribute reference is made in 
macro source code (from inside a macro definition}, a symbol may be referenced for any data attribute except K 
or N. A symbol cannot be used in a count or number attribute reference in macro source code because when K 
or N is used inside a macro definition the only data that can be referenced is an operand field in the 
maaoinstruction call. To reference an operand field to obtain the K or N attribute, a symbolic parameter or 
&SYSLIST can be used; this also applies to the T, L. S •. and I attributes. A SET symbol and the system variable 
symbols listed in Table F-1 can only be used in the T and K attribute references when in macro source code. 
The user can get all but K or N attributes of a symbol in program source code, along with all of the other 
attributes, by using the symbol in the attribute referenc~. Macroinstruction operands cannot be referenced from 
program source code; therefore, a symbolic parameter or &SYSLIST cannot be part of an attribute reference in 
program source code. However, a SET symbol and the system variable listed in Table F-1 can be used in an 
attribute reference in program source code . 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

Tabltt F-1. Valid Attribute Rttftlrenctt Applications 

ATTRIBUTE 
REFERENCE 

T L s I K N 

..; ..; ..; ..; Symbol 

..; ..; Set Symbol 

..; ..; ..; ..; ..; ..; Symbolic Pa111mt1ter 

..; ..; ..; ..; ..; ..; &SYSLIST 

&SYSNOX,&SYSPARM, 
..; ..; &SYSJOA TE, &SYSECT, 

and &SYSTIME 

..; ..; ..; ..; SVmbol 

..; ..; SET Symbol 

..; ..; &SYSPARM,&SYSDATE, 
&SYSJDATE, ~ &SYSTIME 

../ • Valid Application 

F-2 

LOCATION 

Macro 
Source 
Code 

Program 
Source 
Coda 

There are two requirements that must be met before using symbols in attribute references. First, the symbol 
must appear either in the operand field of an EXTRN directive used outside of a macro, or in the label field of at 
least one assembler directive or instruction outside a macro. Second, there must not be any variable symbol in 
the source line in whose label field the symbol appears. In regards to the call operand attributes, the user must 
abide by the following criteria; the same as previously mentioned, with the addition that the operand must be a 
symbol and it may not be one generated by variable symbol replacement. The attributes of the operand are really 
the attributes of the symbol itself. A nested call operand may be a symbolic parameter whose attributes are then 
the same as the corresponding outer operand. The user can not use a length attribute if the type attribute is J, 
M, N, 0, T, or U. 

Since a call operand may be a sublist, the user can also refer to attributes of a sublist or each individual 
parameter in the sublist. When the user refers to these attriubtes, they will be assigned the same value as the 
first parameter in the sublist. 

The user can refer to attributes on conditional directives both inside and outside of macros. Symbols that appear 
in the label field of instructions generated by a macro are not assigned attributes. 

Type Attributes 

The user can use the type attribute to test for the characteristic of the operand or symbol. This is done by writing 
a T' folloWed by the symbol or symbolic parameter to be tested. This can also be used in SETC directive operand 
fields or as character expressions in SETB and AIF directive operand fields. Table F-2 summarizes the type 
attributes and the circumstances under which they are produced. 

• 

• 

• 



UP-8914 

• 
Type 

A 

B 

c 

0 

E 

F 

G 

• H 

I 

J 

K 

M 

N <D 
0 <D 
p 

R 

s 

T 

u@ 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table F-2. Attributes of Symbols (Part 1 of 2) 

Symbol Length 

Definition $Mcification 

Type A address Implied 
constant 

Binary constant Implied or 
explicit 

Character Implied or 
constant explicit 

Double-word Implied 
ffoating~nt 

constant 

full-word t.,,Plied 
fl~ting..point 

constant 

full-word Implied 
fixed-point 
constant 

Fixed-point Explicit 
constant 

Half-word Implied 
fixed-point. 
constant 

Machine instruction Implied 

Control section Not applicable 
name 

Floatin~int Explicit 
constant 

Macroinstruction- Not appli~able 

Self-defining term Not applicable 

Omitted operand Not applicable 

Packed decimal Implied or 
constant explicit 

Unaligned address Explicit 
constant (A. S, V. or YI· 

Type S address Implied 
constant 

External symbol Not applicable 

Type not available Not applicable 

F-3 

Alignment 

Full word 

Not applicable 

Not applicable 

Double word 

full word 

full word 

Not applicable 

Half word 

Half.word 

Double word 

Not applicable 

Not applicable 

Not applicable 

Not applicable 

Not applicable 

Not applicable 

Half word 

Not applicable 

Not applicable 



UP-8914 

Type 

v 

w 

x 

y 

z 

NOTE: 

SPERRY UNIVAC OS/3 
ASSEMBLfR 

Table F-2. Attributes of Symbols (Part 2 of 2) 

SVmbot LAntth 
Definition Speciflation 

Type V address Implied 
constant 

CCW statement Implied 

Hexadecimal Explicit or 
constant implied 

Type Y address Implied 
constant 

Zoned decimal Explicit or 
constant implied 

Alignment 

Full word 

Double word 

Not applical;lle 

Half word 

Not applicable 

© This attribute is produced only for macroinstruction operands. 

~ Type cannot be assigned. It is produced for inner and outer macroinstruction 
operands that cannot be assigned any other attribute, as well as for literals 
appearing as macroinstruction operands, symbols appearing in the label field of 
LTORG, ORG, or EQU directives, symbols appearing more than once in a source 
statement label field, and symbols appearing in the label field of DC or OS directives 
containing expression or variable symbols in the modifier subfields. The latter is true 
even if the modifier subfield expression consists solely of self-defining terms. 

Length Attributes 

F-4 

The user can reference the length attribute by writing an L' followed by the symbol or parameter whose attribute 
the user wants. The length attribute has a numeric value, which refers to the number of bytes assigned by the 
assembler to a data field. If the length attribute value is required for conditional (preassembly) processing, the 
symbol specified in the attribute reference must appear in the label field of a statement in open source code. The 
operand field of that statement must contain a self-defining term. 

The length modifier or length field must not be coded as a multlterm expression because the assembler does not 
evaluate this expression until assembly time. 

When the length attribute is used in conditional assembly statements, it can be specified only within an 
expression. Examples: L'&P(4), L'&VARY(1,2), L'&SYSUST(5). 

When a length attribute reference is specified in open source code, it is not available for use in conditional 
assembly statements. 

-· 

• 

• 



•• 

• 

UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

An L' cannot be generated directly by a macro or proc. lt·can be done indirectly as follows: 

LABEL OOPERA TIONA OPERAND 
10 16 

After generation, this would result in 

MVC Z(L 'Z},X 

Scale Attributes 

F-5 

The user can reference scale attributes of variable symbols by coding an S' followed by the desired symbol. 
Seating attributes are available only for labels of statements defining fixed-point or floating-point constants. This 
restricts them to H, F, 0, E, P type Z, type K, and type G constants in the OS/3 assembler. The scaling attribute is 
the value the user has assigned for the scale modifier of a fixed-point or floating-point constant. This modifier is 
an integer used· to assign a number of bits in an unnormalized constant for the fractional portion of the constant. 
For example, the scale modifier of a DC statement such as HFS'-19.788' would be 8, since it is specifying eight 
bits for the fractional part of the number. For decimal constants, the scaling attribute is the number of decimal 
digits to the right of the decimal point. 

Integer Attributes 

An integer attribute can be written with an I' followed by the symbol the user wishes. An integer attribute is 
computed from length and scaling attributes and is thus also applicable only to a symbol that is the label of a 
statement defining fixed-point or floating-point constants (F, H, 0, E, P, type Z. type K, and type G). A fixed-point 
integer attribute is equal to eight times the length attribute, minus the scaling attribute, minus 1 (1 '=8* 
L-S'-1 ). For floating-point, the user obtains the integer attribute by subtracting 1 from the length attribute, 
multiplying by 2, and subtracting the scaling attribute (1'=2*(L'-1 )-S'). 

A half-word, fixed-point constant (H) would have a length attribute of 2 (L'=2) and a scale attribute specified as 4 
(S'=4). Therefore, the integer attribute would be (8x2)-8-1 =7. A full-word, fixed-point constant would have a 
length of 4 (l'=4) and a scale attribute specified here as 12 (S'=12). The integer attribute, in this case, would be 
(8x4)-12-1=19. 

Since E is a floating-point full word, its length attribute is 4 (L'=4). The scale attribute is specified to be 3 (S'=3). 
Thus, the integer attribute is 2(4-1-3=3. When we have a floating-point, double-word constant (0), its length 
attribute is 8 (L'=S). The scale attribute is shown to be 6. The integer attribute can then be computed as 
2(8-1 )-6=8. For decimal constants, the integer attribute is the number of decimal digits to the left of the 
decimal point. 

Count Attributes 

The user can use the count attribute of a call operand to reference the number of characters in the operand, 
excluding commas. This attribute is determined after substitution of any variable symbols; that is, it uses the 
replacement characters rather than the variable symbol to determine the count attribute. The count attribute can 
be used in SETA or DO operand fields, and in relational expressions of SETS and AIF operands that are within a 
macro. 



UP-8914 SPERRY UNIVAC OS/3 
ASSEMBLER 

F-6 

If the operand selected is a sublist, the count attribute will include the parentheses and commas within the 
sublist. 

Number Attributes 

For call operands, the user can also reference the number of operands in an operand sublist. The number 
attribute can be referenced by writing an N' followed by the symbol or parameter whose attribute is wanted. This 
number is equal to 1 plus the number of commas separating or indicating the omission of operands in the 
sublist. This attribute is available in SETA, DO, SETB, or AIF directives. 

If an operand is not a sublist, the number attribute is 1. If an operand is omitted, its value is 0. 

Example: 

LABEL Ll.ol>ERATIC>Nt. OPERAND 
10 II 

COMMENTS 

1.-l .1. l l ..L. J....-1. . l _J, •· J. L l .I _J_ J.. l l. J 1 I .I l ..J l l 

.L .1- l J J. ' l l I j, l. l l l .1 ' l I 1 ' l "' l l J. l ' 

I j I J._ J._.._l 1 J._ 1 

l L.L . .l.-'-..I. .i.. 1 J. 

• L L .1.- '--"- i l 1 l I 

'-• ... l~ _,__J,._,_ L~, , 

~~~' .-1.. ....__L '--"-· LJ. j_..L.i I 

J-L-L.JL-.L-~....L...'-"-....L-.J...+..µJ IUlll!~-L.i-J......L.Ll..-.l.~•e.5E:gi A!~a.1.1.e ~Ft P.IARAJ'1..1 •••
J-L-L.JL-.1-~....L...~L-.J...+..µJ"-!UaSLJ..L-L-.J.....i....L I ,$.oA.U:...~B..L.l.E...h.Fi_P~-1 I l.i l

1-1-........_.__._........_l-P"....._.._._l-+"........,,~~._.__....L. ,tJUMBE:& ~F. ~?~ ~ 1Sium..L~T.
1-1-........_.__._........_~CIL.''-.L...il--P"''-"""'.......,,."-"-''-'--'-.J..... _ _,_ -''Dt!P:;. .ATilXI.l3LllT£ .aF1 1> ~AM

•

•

•

......

Glossary

•

• \._

•

•

•

•

••

•

UP-8914

A

SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 1

absolute expression
An expression whose value is unchanged by program relocation. The absolute expression can be an
absolute term or any combination of absolute terms. Arithmetic operators are permitted between absolute
terms.

Examples of absolute terms are: a symbol that has an absolute value, a self-defining term, or a length
attribute reference. ·

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within
an absolute expression. This type of absolute expression requires that each relocatable term be paired with
another relocatable term that has the opposite sign and the same relocatability attribute. The paired terms
need not be contiguous.

The effect of relocation is canceled by the pairing of relocatable terms with the same relocatable attribute
and opposite signs. The absolute expression is thereby reduced to a single absolute value.

The following are absolute expressions:

A
A+A-A
A-A+A+A
R+A-R
R-R+A
(R-R)*A
A*A

where:

A
Is an absolute term.

R
Is a relocatable term.

advance listing (EJECT)
Controlled by the EJECT directive .

UP-8914 SPERRY UNIVAC 05/3
ASSEMBLER '

Glossary 2

arithmetic operators

c

The symbols+,-,*,/,//,*/. The intrinsic meanings of+,-,•. and I are the usual ones: that is,+ indicates
addition. - indicates subtraction, • indicates multiplication, and I indicates division.

The operator I I denotes a covered quotient where A/ /8 is equivalent to (A+8-1)/8. A covered quotient
is equal to regular binary division except that, if there is a remainder, a 1 is added to the regular quotient.

The operator •I denotes a binary shift left or right. A• /8 indicates a left shift and is equivalent to
A*2B. A*/(-8) indicates a right shift and is equivalent to A/28.

character expression
A character string, a character substring, or a concatenation of strings or substrings. The maximum length
of a character expression is 127 characters. Character expressions are used as operands of SET and SETC
statements and as terms in a SETB relatiGnal expression.

A character string is at least one of the 256 valid characters enclosed by apostrophes. A character string,
unlike a character self-defining term, is not converted and treated as a binary value. The value of a
character string is determined by its length. Any character string is greater in value than any shorter
character string. Rules for writing character strings are:

• Two apostrophes must be written within a character string to represent one apostrophe. The two
apostrophes are replaced by a single apostrophe when the string is printed.

• Two ampersands must be written within a character string to represent one ampersand. Both
ampersands are retained as part of the character string. A single ampersand within the character
string is interpreted as the first character of a variable symbol.

A character substring is a valid character string followed by two arithmetic expressions separated by a
comma and enclosed in parentheses. The format is:

character string (e1,e2)

where:

e,
Specifies the leftmost character of the original character string to be included in the substring.

Specifies the number of characters to be in the substring.

The expressions e1 and e2 must be valid SETA expressions. If there are fewer characters (than the number
specified by e2) remaining after character·number e 1 in the string. the resultant substring is shortened to
include only valid characters of the original string. A null character string results if e1 is greater than the
number of characters in the original string.

•

•

•

•

•

•

UP-8914 SPERRY UNNAC OS/3
ASSEMBLER

Glossary 3

character set · .
The overall character set of the assembler. This set is divided into the following classes:

Alphabetic set:

Alphabetic characters: the uppercase letters A through Z

Special letters: ? $ # @

Numeric characters: 0 through 9

Special characters : + - • I . = 6. (blank) O . & • > <

comments statement
A statement that. when written within a source code statement, causes the assembler to generata
comments on the output listing. This type of comments statement is written with an asterisk in column 1
of the assembler coding form followed by the comment. To continue a comment on the following line,
column 72 must contaici X.

A special form of the comments statement is also available for use within macro definitions. This form is
used to include com~_e.nts in a macro definition that are not to be generated in the output listing. This type
is written with a period in column 1 of the assembler coding form, followed by an asterisk (*) in column 2.
follo~ by the comment .

Neither form of comments statement may be created by substitution for variable symbols. Substitution for
variable symbols is not performed on comment lines.

Three statements are available for listing comments, error messages, or internal references. The PNOTE
message statement may be used in either a macro definition or at the source code level. The MNOTE
message statement may be used only in a macro definition. If either of these statements is generated by a
macro definition, the statement will be printed, even if the NOGEN option of the PRINT statemeryt is in
effect. The comments statement may be used in macro definition form or in source code level form.

i

common storage definition
A common storage area for two or more separately assembled routines.

complex relocatable expressions
An expression that contains either 2 to 16 unpaired rel~atable terms or a negative relocatable term in
addition to any absolute or paired relocatable terms. ·

A complex relocatable expression may be written only in the operand field of either an A-type or Y-type
address constant.

Some complex relocatable expressions are:

A-R
-R/I
A-R-R+R-R

where:

A
Is an absolute term.

R
Is a relocatable term.

UP-8914

concatenation·
The joining together .of:

• two character strings;

• two character substrings; or

SPERRY UNIVAC OS/3
ASSEMBLER

• a character string and a character substring.

Glossary 4

A period designates concatenation into a single string of characters. When a substring is to be
concatenated with a following character string, the period may be omitted and concatenation is assumed.

conditional assembly
Statements used by the programmer to direct the assembler to:

• exclude lines of code from the assembler output;

• include a set of lines more than once in the assembly output; or

• establish and alter values to determine whether a set of lines should be included in the output listing.

Conditional assembly statements are used to control the pattern of coding generated within a macro
definition and to define and assign values to set symbols that can be used to vary parts of generated
statements.

conditional branch (Alf}
The statement that conditionally alters the sequence of source statement processing.

control section identification (CSECT)
The directive that indicates to the assembler the initiation or continuation of a control section.

D
define branch destination (ANOP}

The statement that facilitates branching by supplying a symbol in its label field.

define end of range (ENDO)
The statement used to indicate the end of the range of a DO statement.

define start of range (00)
The statement that defines the starting point of the code and the number of tim~ it is to be generated.

diagnostic listing
A listing of error statements. The diagnostic listing follows the assembly listing and contains a detaiied
accounting of any errors that occurred in the assembly. The listing contains the line number of the

statement in which the error occurred. the error code, and a message indicating the cause of the error. The
messages are listed in the order in which they occurred. A diagnostic listing is optional and can be
suppressed by using the PARAM statement with the LST=ND option in its operand field The PARAM
statement also provides the LST=OBG option for debugging a macro definition.

•

•

•

••

•

•

UP-8914 SPERRY UNNAC OS/3
ASSEMBLER

Glossary 5

When a macro definition is retrieved from a library, the END statement is flagged if an error occurs during
macro expansion. To obtain a diagnostic listing of the macro statement containing the error, the user must
use the LST=DBG option. If the macro definition is part of the source program, actual source statements
are flagged if they contain errors. Each error is then listed in the diagnostic fisting.

dummy control section identification (DSECT)
The directive that indicates to the assembler the areas defined in other modules.

E
expression

•

F

One or more terms connected by operators. A leading minus sign is allowed_ to produce the negative of the
first term. Each term in the expression may be either a relocatable term or an absolute term. A term is
absolute if its value is not changed by program relocation. A term is a relocatable term if its value is
changed by program relocation. Two relocatable terms may be considered to be paired if ttiey have opposite
signs and have the same relocatibility attribute (that is, appear in the same control section).

Evaluation of expressions obeys the following rules:

• Multiplication and division of a relocatable term by an absolute 1 or multiplication of an absolute 1 by
a relocatable term produces a relocatable term.

• Multiplication of any term by absolute 0 yields absolute 0 as a result .

• If a relocatable term enters any multiply or divide operation other than the above. an error flag is
given and the result is treated as absolute.

• The number of unpaired relocatable terms at any point in the evaluation must not exceed 16 .

• Intermediate results of the expression evaluation are full 32-bit values; however. the final result is
the truncated rightmost 24 bits.

Three types of expressions - absolute, relocatable, and complex relocatable - obtain various
characteristics from the term or terms that compose them.

fixed-point number
A number represented in one of three fixed-length binary formats composed of a ·single positive or negative
sign bit followed by a number field. When the sign bit is 0, the number represents a positive value; when 1,
the number represents a negative value. Negative numbers are represented in twos complement notation.
which is derived by inverting each bit of the binary number and adding 1 to the result of the inversion.

HALF WOAD

HI. number field
.• 1

FULLWORD

HI ,, I number field
1-

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

DOUBLE WORD

Glossary 6

1-...-~I. ___ number---field __ <Q
G
GBL

A general purpose global set symbol.

GBLA
An arithmetic global set symbol.

GBLB
A Boolean global set symbol.

GBLC
A character global set system.

generate literals (LTORG)
The directive that causes the assembler to generate literals previously defined.

H
high order

leftmost data; most significant byte or bit.

I
include code from a library (COPY)

The directive that includes code into the source program.

input format control (ICTL)
The directive that specifies new values for the begin, end, and continuation columns.

input sequence control (ISEQ)
The directive that informs the assembler what columns contain the sequence information.

L
LCL

A general purpose local set symbol.

LCLA
An arithmetic local set symbol.

LCLB
A Boolean local set symbol.

LCLC
A character local set symbol.

•

•

•

•

•

•

UP-8914 SPERRY UNIVAC .OS/3
ASSEMBLER

Glossary 7

leave blank lines on listing (SPACt:)
The directive that causes the assembler to advance the paper in the printer. -

length attribute of expressions --
An attribute that is determined by the assembler and is a function of the leading term of the expression. If
the first term of an expression is an absolute value, a length attribute of one byte is assigned to the
expression. If the leading term is a symbol, the number of bytes attributed to the expression is the same as
the length attributed to the symbol. Thus, if TAG appears in the label field of an LH (load half word)
instruction, it would have a length attribut~ of 4, since LH is a 4-byte instruction. In referencing the same
label, the expression TAG+195 a~so has a length attribute of 4. but the expression 195+ TAG has a length
attribute of 1 because the leading term is a decimal self-defining term.

length attribute of symbols
The number of bytes assigned to the instruction. constant, or storage area involved. For example, the label
of a 2-byte instruction has ci length attribute of 2, and the label of a OS statement reserving 200 bytes
would have a length attribute of 200. Symbols equated to location counter references or absolute value
representations usually have a length attribute of 1. The duplication factor (constant or storage area) has
no effect on the length attribute.

The maximum length attribute that can be generated by the assembler is 256 bytes: however, a OS may be
used to reserve more than 256 bytes of storage.

The length attribute· of a symbol may be referenced as a term in an expression by writing L' followed by the
symbol. Thus if the symbol STOREND is the name of a full-word field,

L'STOREND

would be considered a term and would have a length of four bytes.

listing content control (PRINT)
The directive that controls the contents of the assembly listing.

literals
Terms that represent data in the source coding. The assembler replaces the literal with the address of the
main storage location, in the literal table, of the value of the original literal. In the following example, the
literal =C'AA' will be replaced in this instruction by the address of a 2-byte area in the literal table
containing the binary value 11000001 11000001.

MOVEAA MVC TESTSW.=C'AA'

When the assembler recognizes a literal in the source code~ it searches the table of literals that have been
previously encountered. If a duplicate is found, then the relocatable address of the literal in the table
replaces the original literal in the source code. If a duplicate is not found, then the value of the original
literal is entered into the table and its address replaces the source code specification. Literals are similar in
form to the operands of DC and OS statements.

A literal may be used in any machine instruction that specifies a storage address, except that the literal
may not be specified as the receiving field operand of an instruction that modifies storage. i.e .. a literal may
be used only as the last operand of an application instruction. Literals may not be specified in address
constants, shift instructions, or 1/0 instructions. Literals must always appear as the complete operand
specification. They cannot be combined with other terms. nor with an explicit base register specification .

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 8

location counter reference
A reference maintained by the assembler for each control section created by the programmer. Each
counter contains the next available location for the associated control section. After the assembler
processes an instruction or constant, it adds the length of the 1nstruction or constant processed to the
correct location counter. The maximum value that the location counter can achieve is 223-1.

Each instruction must have an address that is a multiple of two bytes. This type of address is said to fall on
a haJf-word boundary. If the value of the location counter is not a multiple of 2 when assembling such an
instruction, a 1 is added to the location counter before assigning an address to the current statement.
Storage locations reserved in this way receive binary O's when the program is loaded. Certain constants
must be aligned to a half-word, full-word, or double-word boundary. Again the location counter is adjusted
to the boundary, and the storage locations that were bypassed receive binary O's when the program is
loaded, unless the adjustment occurred as a result of a OS or ORG directive.

The current value of the location counter, under which the program is currently being assembled, is
available for reference by the programmer. It is represented by the special character* (asterisk). If the
asterisk is 'Written as a term in an address constant or in an instruction operand expression, this character

is replaced by the storage address of the leftmost byte allocated to that instruction or constant. All such
implied references must be specified appropriately, since the asterisk (*) is also used as an arithmetic
operator to indicate muitiplication .

. log_ical op_erators
The symbols **, ++. and --. The characters ** represent the logical product (ANO), the characters ++
represent the logical sum (OR), and the characters -- represent the symmetric difference. exclusive OR
(XOR). .

Each bit of the first term is compared with its corresponding bit in the second term, and the result of the
comparison is placed in the corresponding position in the resulting term. The result of the bit comparison

for each operator is:

mm [iJ:l Elim

A .. B Result A++B Result A--B Result

1 1 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0 0 0 0 0

low order
Rightmost data; least significant byte or bit.

LSB
Least significant bit or byte, rightmost.

•

•

•

•

•

•

UP-8914

M

SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 9

macro definition
A formalized pattern of code written once if a certain series of instructions (e.g., a routine) is needed more
than once in a program or associated programs. The macro definition may be stored in a library for later
use or submitted for assembly with the source code deck.

Macro definitions may be prepared in one of two separate formats: macro or proc. The elements of the
macro and proc format types may not be mixed within a macro definition; however, macro definitions of
both types are permitted within a program. Macro definitions contained in the source program may be
preceded only by comment statements and the following assembler directives: ICTL, ISEQ, TITLE, SPACE,
EJECT, and PRINT. Any of these directives except ICTL may appear between macro definitions. A macro
definition within a macro definition (nesting) is not permitted in either the macro or the proc format.

model statements
The statements in a macro definition from which machine and assembler instructions are generated.
Model statements contain from one to four entries, as follows:

• The label field may contain a symbol, a variable symbol, or a sequence symbol, depending on the
operation defined. Comment statements may not be created by substitution for variable symbols.

• The operation field may contain any machine, assembler, or macro instruction mnemonic code except
END, ICTL, ISEQ, or PRINT.

• Either ordinary symbols or variable symbols may be written in the operand field. The size of this field
may not exceed 240 characters after substitution.

• The comments field may contain any combination of characters; however, substitution for variable
symbols is not performed on this field by the assembler. Comments are written in the format of the
statement the model represents.

• A macroinstruction that is a model statement within a macro definition is called an inner
macroinstruction, while a macroinstruction in the source module is called an outer macroinstruction.
A macroinstruction that appears in a macro definiton corresponding to an outer macroinstruction is
called a second-level macroinstruction. A macroinstruction that appears in the macro definition
corresponds to a second-level macroinstruction. Macroinstructions within macro definitions are
nested. The number of levels to which macroinstructions may be nested in an assembly depends
upon the amount of main storage available to the assembler.

• Because COPY statements within a macro definition are processed prior to the generation of code
from a macro definition, they are not considered to be model statements nor are they ever processed
as such.

• Model statements within a macro definition in proc format obey the same rules as model statements
in macro format.

MSB
Most· significant bit or byte, leftmost .

UP-8914

0

SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 10
Update B

operators

p

The 12 mathematical functions in the assembler that designate the method and (implicitly) the sequence to
be employed in combining terms or expressions. Evaluation of an expression begins with the substitution
of values for each term. The operations are then performed from left to right in hierarchical order. The
operation with the highest hierarchy number is performed first; operations with the same hierarchy
number are performed from left to right.

Parentheses may be used to alter the order of evaluation. Multiplication by 0 equals 0. The 12 operators
are divided into three classes: arithmetic operators, logical operators, and relational operators.

privileged instructions
Instructions used by the operating system when the processor is in the supervisor state. If an application
program (user program) attempts to execute a privileged instruction, a program exception interrupt will
occur because the processor will be in the problem state. The following are the privileged instructions for
the SPERRY UNIVAC Operating System/3 (OS/3).

• Clear channel (CLRCH)

• Clear device (CLRDV)

• Enqueue 110 (EIO)

• Execute diagnose (EXD)

• Get /ORB (GRB)

• Halt and proceed (HPR)

• Halt device (HDV)

• Initial program load (IPL)

• Insert storage key (ISK)

• Load channel register (LCHR)

• Load control (LCTL)

• Load directive address (LDA)

• Load 110 address (LIA)

• Load program status word (LPSW)

• Load relocation register (LRR)

• Longitudinal redundancy check (LRC)

• Move 1/0 (MIO)

• Put /ORB (PRB)

• Reset (RESET)

•

•

•

•

•

•

UP-8914

•

•

•

•

•

•

•

•

•

•

Scan switch list (SWLS)

Service timer register (STR)

Set storage key (SSK)

Set system mask (SSM)

Start device (SDV)

Store control (STCTL)

Store relocation register (STRR)

Store status (STS)

Supervisor load multiple (SLM)

SPERRY UNIVAC OS/3
ASSEMBLER

Supervisor store multiple (SSTM)

Glossary 11
Update B

program status word (PSW)
A special register containing information on the status of the program being run. The PSW contains the
condition code, interrupt code, and the address of the next executable instruction. See status switching
instructions.

PSW
See program status word.

R
relational operators

The equals symbol (=), the greater-than symbol (>). and the less-than symbol (<).

The equals operator is used to compare the value of two terms or expressions. If the two values are equal,
the assembler assigns a value of 1 to the expression; otherwise, a value of 0 is assigned.

The greater-than operator makes a comparison between two terms or expressions. If the value of the first
(left) term is greater than the value of the second (right) term, then a value of 1 is assigned to the
expression; otherwise, a value of 0 is assigned.

The less-than operator compares the value of the first (left) expression or term with the second (right)
expression. If the value of the first expression is less than the value of the second one, then a value of 1 is
assigned to the expression; otherwise, a value of 0 is assigned.

For the expression A+B>C. if the expression A+B has a value greater than a value of C, then the
assembler assigns a value of 1 to the expression; otherwise, a value of 0 is assigned.

A relational expression consists of a relational operator and its two operands. The operands in a relational
expression may be either two character expressions or two arithmetic expressions. A character expression

may not be compared to an arithmetic expression. Character expressions are valid only on conditional
assembly directives.

Since the evaluation of a relational expression yields an arithmetic result, a relational expression may be
used as a term in an arithmetic expression.

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 12

relocatability attributes
Values that are assigned to symbols defined in the label field of a source code line representing an
instruction, constant, or storage definition. A relocatable symbol is a symbol whose address would change
by a given number of bytes if the program in which it appears is relocated the same number of bytes from
its originally assigned address. Relocatable symbols are assigned values relative to the location counter.
0$cimal; character, binary, and hexadecimal representations are all absolute terms and have a relocation
attribute of 0.

relocatable· expressions
An expression whose value changes with program relocation. All relocatable expressions must be positive
values.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within a
relocatable expression.

Either type of relocatable expression requires the following conditions:

• All but one relocatable term must be paired.

• A minus sign must not precede the unpaired (remaining) relocatable term.

• Each pair of relocatable terms must have opposite signs and the same relocatability attribute.

• The paired relocatable terms do not have to be contiguous.

Using the above requirements, a relocatable expression is thereby reduced to a single relocatable term .
The following are relocatable expressions:

R
R/I
R+A or A+R
R-R+R
R-A
R*I or l*R

where:

A
Is an absolute term.

R
Is a relocatable term.

reproduce following record (REPRO)
The directive used to reproduce a record in the assembler output.

•

•

•

•

•

UP-8914

s

SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 13

SOT-,.
See self-defining terms.

self-defining terms (SOT)
Terms that rep.resent fixed values. They are presented by the programmer in a form that is easily
recognized and that has a value understood without the need of computation. SOTs are not relocatable;
they can be used to specify immediate data, registers, addresses, and masks. They can be used in
assembler directives, as well as in application instructions, and can be part of an expression. The size of an
SOT depends on where it is used. When used to designate a register, it cannot exceed a value of 15. After
conversion by the assembler to a binary format, the value is right-justified and filled with binary zeros on
the left to fit the designated field. SOTs can be represented in binary, hexadecimal, decimal, or character
form.

When a 24-bit hexadecimal, binary, or character SOT has a 1 in the sign bit. position, the ·sol will be
treated as a negative term in the evaluation of an arithmetic expression.

• A binary SOT consists of a series of 24 zeros and ones enclosed in apostrophes and preceded by the
letter B (e.g .. 8'101'.8'11110000'.8'00101'). The field is filled with high order zeros when
necessary.

• A hexadecimal SOT consists of up to six hexadecimal digits enclosed in apostrophes and preceded by
the letter X (e.g., X'FO'.X'C1 ',X'F1 FOFO'). Each hexadecimal digit represents a half byte of
information.

• A decimal SOT is an unsiQned decimal number consistina of uo to eiaht diQits havina a value of O
through 16, 777,215 (224-1) (e.g., 0, 32, 16000000). This number is converted by the assembler to a
binary value occupying one, two, or three bytes.

• A character SOT consists of \JP to 3 characters of the 256 valid characters, of which only 63 are
printable. The characters mu~~ be enclosed in apostrophes and preceded by the letter C (e.g., C'A'.
C'ABC'. C'12.3'. C'A1 '). Each ampersand or apostrophe to be included in a character representation
must be indicated by a double ampersand or double apostrophe, respectively. In this case. there may
be more than three characters within the apostrophes that delimit the SOT (e.g., C'3"S' produces 3'S;
C'A&&B' produces A&B).

set symbol .
A type of variable symbol. The rules for writing set symbols are the same as for other variable symbols:

• An ampersand (&) is followed by an alphabetic character followed by up to six additional characters
(total maximum characters: 8)

• If the ampersand is omitted, the assembler interprets the character string as a symbol and not as a
set symbol.

Because set symbols are evaluated in the macro generation phase of the assembler. they may be used as
counters. switches, or values to control the sequence of code generated. Unlike an ordinary symbol. the
value assigned to a set symbol may be altered during assembly. A set symbol may be either global or local.

A global set symbol, once declared and given a value by a SET statement, retains the same value until that
value is changed by another SET statement. A local set symbol is defined only within the macro definition
in which it is declared. The value of a local set symbol within one macro definition is not affected by the
declaration of either a global or local set symbol with the same name in another macro definition.

UP-8914 SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 14

Do not use &SYS as the first four characters of any symbol because they are reserved for the use of system
variable symbols.

Set symbols must be declared after macro prototype or NAME statements and before being referenced.

Four statements are provided to assign val~es to set symbols: SETA, SETB, SETC. and SET. The statement
used depends on the statement chosen to declare the set symbol.

• SETA

Assigns ·values to set symbols declared in either LCLA or GBLA.

• SETB

Assigns values to set symbols declared in either LCLB or GBLB.

• SETC

Assigns values to set symbols declared in either LCLC or GBLC.

• SET

Assigns values to set symbols declared in either LCL or GBL

1cial characters
The 14 special characters that are not part of the alphabetic set, are not special letters, and are
numerals. The special characters with their hexadecimal codes are:

Special Hexadecimal Special Hexadecimal
Character (EBCDIC) Code Character (EBCDIC) Code

+ 4E lleft 40
parenthesis

- (minus) 6o I right SD
parenthesis . SC . (period) 48

I 61 • 50
. (comma) 68 '(prime) 70
= 7E > SE
t:i. (blank) 40 < 4C

special letters
The four special letters are:

Hexadecimal
Special Letters (EBCDIC) Code

? SF
$ SB
78
@ 1C

•

•

•

-•

•

•

UP-8914 SPERRY UNIVAC OS/3. Glossary 15
ASSEMBLER

specify location counter (ORG)
The directive that sets or resets the location counter to a specified value.

status switching instructions
The instructions that provide the capability of altering processor operating characteristics. The set program
mask (SPM) and supervisor call (SVC) instructions replace part of the current program status word (PSW).

The format of the PSW is:

INTERRUPT
SYSTEM MASK KEV MOOE CODE

s s s s s s s p p p p p p p p
E I M A A A A A A

p p w A A s E
0 R R R R R R s R R M R

E E E E E E E

0 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 18 19 20 23 24 31

PROGRAM
INSTRUCTION ADDRESS

MASK

-
ILC cc B 0 E s

32 33 34 ~ 36 37 38 39 40 63

. .
For information on the format, description, and use of the PSW, see the processor programmer reference
(current version).

The test and set (TS) instruction is used to contr~I a byte in main storage to act as an indicator.

symbols
Identifications appearing in the label field of a s~tement defining an instruction, constant, or storage area
that are assigned the address value of the first byte of the source statement with which the symbol is
associated. The following rules apply to the use of symbols as labels. ·

• Must start in column 1

• Must start with an alphabetic character or special letter

• Must consist of only alphabetic characters, numeric characters, and special letters.

• Must not be longer than eight characters.

• Must not include a space (blank) or other special character

• Must be followed by a blank

The assembler associates three attributes with each symbol it processes. These attributes are value,
length, and relocatability. Symbols defined by the EQU directive adopt the attributes of the expression in
the operand field of the statement .

Once symbols are defined in the label field, they can be used as operands to represent the value that was
defined.

UP-8914

T

SPERRY UNIVAC OS/3
ASSEMBLER

Glossary 16

terms

u

Values coded by the programmer or computed by the assembler. There are five classes of terms recognized
by the assembler.

• Self-defining terms (Son

• Literals

• Symbols

• Location counter references

• Length attribute references

Self-defining terms are fixed values the programmer codes, such as 33,P'591 '.X'OF'.8'11100110', or
C'EBW'. Literals can have their value specified by the programmer or computed by the assembler and could
look like =X'FO',=C'A'. =P'-1'. or =8'00001000' as used in storage-to-storage instructions (e.g .• CLC
TAGA.=C'A'). Symbols. location counter references. and length attribute references are assigned values by
the assembler.

unassign base register (DROP)
The directive that informs the assembler-specified registers are no longer available for base register
assignment.

unconditional branch (AGO)
The statement that unconditionaily alters the sequence of source statement processing.

v
value attribute

The value assigned a symbol when it appears in the label field of any source code statement other than a
comment. A sy~bpl appearing in the label field of an EQU or ORG directive is assigned the value of the
expression in the operand field. In all other cases. the value assigned is the current value of the location
counter after the adjustment to a half-word. full-word, or double-word boundary, if necessary. The value is
assigned to the current label before the location counter is incremented for the next instruction, constant,
or storage definition. Thus. if a symbol appears in the label field of a statement defining an instruction.
constant, or storage area, the symbol is assigned a value equal to the storage area address of that
instruction, constant. or storage area.

The value of a symbol must lie in the range -223 through 223-1 .

variable symbol
A symbol consisting of two to eight characters; the first is an ampersand (&). the second is a letter (A
through Z) or a special character (? $ # @). and each of the remaining characters is a letter; special
character. or digit (0 through 9).

•

•

•

UP-8914

••

•

•

A variable symbol may be:

• a symbolic parameter;

• a set symbol;

SPERRY UNIVAC OS/3
ASSEMBLER

• the label of a DO statement; or

• a system variable symbol.

Glossary 17

Variable-symbol parameters represent either the label or one of the operands of the macroinstruction by
which the macro definition was named.

The following rules apply to the use of variable symbols:

• A variable symbol may not be used to generate a new sequence symbol, a SET symbol, a parameter.
or a system variable symbol.

• A variable symbol may not be used in the label or operand field of an ENO, ICTL, ISEQ, COPY, or
PRINT dir.ective.

• No variable-symbol replacement is performed on the line following a REPRO directive.

• Variable-symbol replacement must not produce leading blanks in the label or operand fields .

A variable symbol may appear in a statement concatenated (joined) with other variable symbols or
characters. If a variable symbol is immediately followed by a letter, digit, left parenthesis, or period, a
period must be written after the variable symbol to distinguish the variable symbol from the characters that
follow it. The variable symbol and the period following it are .replaced by the characters representing the
value of the variable symbol. The period does not appear in the printed statement. If a period is between a
character string (not in quotes) and a variable symbol (in" that order). the period is considered part of the
character string and will appear in the printed statement. '

The period after the variable symbol is optional if the variable symbol terminates with a right parenthesis or
is followed by another variable symbol or a special character other than a left parenthesis or a period .

•

,

•

•

CUT

I •

•

•

USER COMMENT SHEET

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines. and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY CORPORATION

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL. PENNSYLVANIA 19424

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

FOLD

CUT

•

•

•

~
I
I

• I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ai I
c:

I Cl • c:
0

I ca ..,
:i
u I

I
I

•

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

L

•

•

GUT

•

•

•

USER COMMENT SHEET

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD_

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY CORPORATION

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED·STATES

I
. CUT,..

I

•

•

•

•

•

•

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY CORPORATION

ATTN: SYSTEM PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19422-9990

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

•

•

•

I •1

e1
I

I

I .I
I

• UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

FOLD

II I

BUSINESS REPLY MAIL
ARST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
E/MSG Product Information Development
PO Box 500 Cl-NEG
Blue Bell, PA 19422-9990

1 ••• 111.1 ... 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

:e
I

_1

•

•

•

•

