
•

•

•
U-01-251 Rev, 3173

All~: CHkRLIE GI~BS

ui111
lA\'208M45541

SPE-RRl UNI\IAl

UP

1 - 1L1b LORN~ALL STRlET
'VAhC.OUVU'< u C

UA !';

lfC>J 1C7

Dialog Specification
Language

User Guide/Programmer
Reference

This Library Memo announces the release and availability of Updating Package B to "SPERRY UNIVAC Operating
System/3 (OS/3) Dialog Specification Language User Guide/Programmer Reference", UP-8806.

This update incorporates minor changes and corrections to the manual for release 8.0:

• Nested COPY commands

• Compile bigger dialogs

• Output command

Copies of Updating Package Bare now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8806-8. To receive the complete manual, order UP-8806.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A02, A06, BOO, 802, 18, 18U, 19, 19U,
20, 20U, 21, 21 U, 28U, 29U, 75, 75U, 76, and 76U

(Package B to UP-8806,
42 pages plus Memo)

Library Memo for
UP-8806-B

September, 1982

-- ----------------------
' .

•

•

•

•

•

•

UP-8806

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1, 2

Contents 1, 2
3,4
5,6
7

1 1
2
3 thru 5
6
6a
7 thru 9

2 1 thru 4

3 1 thru 3

4 1, 2
3
4 thru 15
16, 17
18 thru 26

5 1
2 thru 6
7
8 thru 10
10a
11, 12
13thru54

6 1 thru 3
4
5 thru 7
8
9 thru 20
21
22
23 thru 26
26a
27
28 thru 47
48
48a
49,50
51

7 1
2 thru 28

*New pages

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

PAGE STATUS SUMMARY

ISSUE: Update B - UP-8806
RELEASE LEVEL: 8.0 Forward

Update
Level Part/Section

Page Update
Number Level

Orig. 8 1, 2 B
3 A

B 4, 5 B

Orig. Appendix A 1 Orig.

Orig. Appendix B 1 A

B 2 thru 5 Orig.

Orig.
A Appendix C 1 thru 4 Orig.

5 B
Orig. 6 thru 8 Orig.

B
Orig. Appendix D 1 thru 3 Orig.

B 4 B

B* 5 Orig.

B 6 B

Orig. Appendix E 1 thru 7 Orig.

Orig. Glossary 1, 2 Orig.
3 A

Orig. 4 Orig.

A
Orig. Index 1 Orig.

A 2 B
Orig. 3 Orig.

4 A
Orig. 5,6 B

A 7, 8 Orig.
Orig.
A User Comment
A Sheet
A
Orig.

Orig.
B
Orig.
B
Orig.
A
Orig.
B
B*
A
Orig.
B
B*
Orig.
A

B
Orig.

Part/Section

PSS 1
Update B

Page
Number

Update
Level

All the technical changes are denoted by an arrow r-J in the margin, A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow (-)pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

... .

•

•

•

,,.

UP-8806 SPERRY UNIVAC OS/3 Contents 3
DIALOG SPECIFICATION LANGUAGE Update B

• 5. DECLARATIONS

5.1. INTRODUCTION 5-1

5.2. NAMING AND DEFINING AN ARRAY - BASIC

CONCEPTS (DATA) 5-1
5.2.1. How to Name and Define Variable Arrays (DATA Format 1) 5-2
5.2.2. How to Name and Define Message Arrays (DATA Format 2) 5-12

5.3. HOW TO NAME AND DEFINE CONTROL MASKS (MASK) 5-15

5.4. HOW TO NAME AND DEFINE BLOCKS (DO ... END) 5-18

5.5. NAMING AND DEFINING TREES - BASIC CONCEPTS (TREE) 5-25
5.5.1. How to Name and Define Simple Trees (TREE Format 1) 5-27
5.5.2. How to Name and Define Nested Trees (TREE Format 2) 5-42

5.6. NAMING AND DEFINING SEPARATE BRANCHES - BASIC
CONCEPTS (BRANCH ... END) 5-49

5.6.1. How to Name and Define Simple Separate Branches
(BRANCH ... END Format 1) 5-49

5.6.2. How to Name and Define Separate Branches Containing
Nested Trees (BRANCH ... END Format 2) 5-51

• 5.7. HOW TO NAME AND DEFINE SUBSTITUTION TEXT (MEANS) 5-53

6. COMMANDS

6.1. INTRODUCTION 6-1

6.2. FORMING UNNAMED BLOCKS - BASIC CONCEPTS (DO ... END) 6-4

6.2.1. How to Form Blocks (DO ... END Format 1) 6-4

6.2.2. How to Form Trunk Blocks (DO ... END Format 2) 6-6

6.2.3. How to Form Branch Blocks (DO ... END Format 3) 6-7

6.3. HOW TO CALL NAMED BLOCKS (CALL) 6-8

6.4. FORMING UNNAMED TREES - BASIC CONCEPTS (TREE) 6-9

6.4.1. How to Form Simple Trees (TREE Format 1) 6-9

6.4.2. How to Form Nested Trees (TREE Format 2) 6-11

6.5. HOW TO DISPLAY TREES (PRESENT) 6-13

6.6. HOW TO SOLICIT RESPONSE FROM THE DIALOG USER (ENTER) 6-15

6.7. HOW TO DISPLAY MESSAGES (DISPLAY) 6-17

6.8. HOW TO PRINT MESSAGES IN THE SUMMARY REPORT (PRINT) 6-20

t

• 6.9 . STORING DIALOG USER RESPONSES IN AN INPUT BUFFER -

BASIC CONCEPTS (OUTPUT) 6-23

6.9.1. How to Store Dialog User Responses (OUTPUT Format 1) 6-23
6.9.2. How to Route Stored Responses to Input Buffer and Return Control

to Program (OUTPUT Format 2) 6-25

t

UP-8806

6.10.

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

CHANGING ARRAY VALUES - BASIC CONCEPTS
6.10.1. How to Change All Array Elements (LOAD Format 1)
6.10.2. How to Change Current Array Element (LOAD Format 2)

6.11.

6.11.1.
6.11.2.
6.11.3.

CHANGING CONTROL MASK VALUES - BASIC
CONCEPTS
How to Change Control Mask to a New Value (SET Format 1)
How to Reset Control Masks to Initial Value (SET Format 2)

How to Reset Arrays and Their Control Masks to Initial Value
(SET Format 3)

6.12. HOW TO USE A CONTROL MASK TO CHANGE A
CONTROL MASK

6.13 PERFORMING CONDITIONAL OPERATIONS - BASIC
CONCEPTS

6.13.1. How to Perform Conditional Operations Outside Trees
(IF Format 1)

6.13.2. How to Perform Trunk Conditional Operations (IF Format 2)
6.13.3. How to Perform Branch Conditional Operations (IF Format 3)

6.14. HOW TO INDICATE THE END OF YOUR
PROGRAM

6.15. HOW TO START MESSAGES ON A NEW LINE
ON SCREEN

6.16. HOW TO COPY SOURCE CODE FROM LIBRARY FILE

(LOAD)

(SET)

(MASK)

(IF)

(EOF)

(NEWLINE)

INTO YOUR PROGRAM (COPY)

6.17. HOW TO ADVANCE THE PRINTER FORM TO A
NEW PAGE (EJECT)

6.18. HOW TO ADVANCE THE PRINTER FORM TO A
NEW LINE

6.19. HOW TO ADVANCE THE PRINTER FORM TO
A NEW PAGE AND PRINT A TITLE

7. SAMPLE PROGRAM

7.1. GENERATION OF DIALOG SCREENS

7.2. SUMMARY REPORT

7.3. RESULTS OF OUTPUT COMMAND

8. JOB CONTROL STATEMENTS

8.1.

8.2.

8.3.

INTRODUCTION

PARAM STATEMENT

SAMPLE JOB CONTROL STREAM TO EXECUTE THE
TRANSLATOR

(SPACE)

(TITLE)

Contents 4
Update B

6-26
6-26
6-28

6-30
6-31
6-34

6-35

6-36

6-40

6-40
6-43
6 44

6-46

6-47

6-48

6-49

6-50

6 51

7-1

7-27

7-28

8- 1

8-1

8-4

•

•

•

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

1.1. PROCESSING IN AN INTERACTIVE ENVIRONMENT

1-1

1 . Introduction

You use the dialog specification language to write programs that produce interactive dialogs
displayed to a dialog user on a workstation screen. A workstation is an interactive device with a
screen for displaying dialog text and a keyboard for entering user input. The interactive dialogs
consist of a series of questions and answers between the dialog user and the dialogs you write.
These interactive dialog sessions solicit input from the dialog user that is used as data for an
application program. Interactive processing allows the dialog user to provide data to the
application program by using the workstation instead of entering data by punched cards, disk,
diskette, and magnetic tape .

Figure 1-1 illustrates the interactive environment.

DIALOGS YOU WRITE WITH THE
DIALOG SPECIFICATION LANGUAGE
ALLOW THE DIALOG USER TO
USE A WORKSTATION TO PROVIDE
DATA TO AN APPLICATION PROGRAM .

Figure 1-1. Interactive Environment

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

1-2
Update B

Three elements work together to form interactive dialog sessions:

DIALOG SPECIFICATION
LANGUAGE

Used to write the source programs that

produce interactive dialogs displayed on

a screen.
I'·

DIALOG SPECIFICATION
LANGUAGE TRANSLATOR

Translates the source program you write

into encoded dialogs and stores them in

a special file.

DIALOG PROCESSOR

Serves as the interactive interface

betwean the dialog user, the

application program, and the dialogs

displayed on the screen.

1.2. THE DIALOG SPECIFICATION LANGUAGE AND ITS USE

You use the dialog specification language to write a program that displays an interactive dialog
on a workstation screen. These interactive dialogs are used by any application program in your
operation that would be enhanced by using a dialog to solicit data from a dialog user. You write
your dialog to satisfy the requirements of the application program. Using the high-level dialog
specification language, you specify the dialog structure, the messages displayed on the screen,
the input entered by the dialog user, and the content and format of output records and printed
reports.

•

•

•

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

1-5

1.2.1.2. Dialogs Written by You

Using the dialog specification language, you can write a dialog for any application program that
lends itself to an interactive environment.

Why should you write your own dialogs?

1.

2.

3.

4.

5.

6.

Dialogs are suited to your
needs.

Dialogs make data entry easy.

Dialogs reduce data entry
errors.

Dialogs enforce uniform
data entry

Dialogs are compatible with
your existing programs.

Dialogs can be used by
experienced and inexperienced
personnel.

When you write your own dialogs, you create an interactive interface to
new or existing application programs that suits your needs.

The dialog user can use the dialog to enter data in a conversational
manner. The dialog user can be an experienced or inexperienced person.

Because data entry is so simple, data errors are reduced. You can write the
dialog so that invalid responses are rejected. For example, if the dialog
asks the user to enter a division code, you can write the dialog to accept
only 5-digit numeric data. Although this doesn't ensure that the dialog
user will enter the correct code, it does help reduce errors.

Using a dialog to solicit input enforces uniform data entry and eliminates
incomplete entries.

Existing programs that use another medium for input, such as punched
cards, are easily changed to accept input from a dialog session. You can
use any language to write an application program that calls a dialog .

You can write the dialog so that users can choose the version of the dialog
that is at their level of experience. The dialog user can switch back and
forth between the versions at any time.

After you write the dialog, you store the source program in a library file. Figure 1-2
illustrates the process of writing a program with the dialog specification language .

-------~------------------------.

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

You write source dialogs by using
the dialog specification
language and store them
in a SAT library file
either by using the workstation
with the general editor (EDT) or by
using batch methods and standard
job control statements.

WORKSTATION

j
>~c-.,- -·

--
;··.···'<~~0->;0!-,X··,,,M.:Xi:"·«< ... ,,~W,W.;C~~;::;:< ... -

t •

, SOURCE - -- -
! DIALOGS •
;; WRITTEN IN t

'; DIALOG
; SPECIFICATION

LANGUAGE

PROGRAMMER

Figure 1-2. Use of Dialog Specification Language

1-6
Update B

SAT LIBRARY FILE

CONTAINS
SOURCE DIALOGS

1.3. THE DIALOG SPECIFICATION LANGUAGE TRANSLATOR AND ITS USE

After you store your source program (dialog) in a SAT library file, the dialog specification
language translator, referred to as the translator in the rest of this manual, takes over. The
translator operates only in consolidated data management (CDM) mode. The translator
uses the source program stored in the SAT library file as its main input. It takes the source
program from the library file, translates it into encoded dialogs, automatically stores the
dialog in a MIRAM file, and generates two output files:

1. Encoded MIRAM Dialog File

This file is the primary output of the translator. It is a MIRAM system file and
contains the encoded dialogs generated by the translator. You must give each
encoded dialog stored in this file a unique name. The dialog user specifies that name
in the job control stream of the program that calls that dialog. The encoded dialogs
are the input to the dialog processor. Because they're specially encoded dialogs, you
can't access them any way other than through the dialog processor. You can change
your dialog indirectly, however. First, you must change your code and then retranslate
it.

•

•

•

UP-8806

•

•

•

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

1-6a
Update B

When insufficient contiguous main storage exists in the system to process the dialog
file, the message

DP082 INSUFFICIENT MEMORY

is displayed and the job is terminated. You must wait until sufficient contiguous space
becomes available to retry the job .

•

•

•

•

•

•

UP-8806

2. Output Listing File

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

1-7
Update B

In addition to the encoded dialog file, the translator can, at your option, generate an output
listing file. This file contains:

Source Listing

A listing of the source program
translated by the dialog
specification language
translator.

Error Listing

A listing of the errors
detected during translation.
Error messages (Appendix E) are
categorized into warning
diagnostics and fatal diagnostics.

The translator requires at least 70K of main storage and runs under the minimum operating
system. You can't call the translator from other software as a subroutine - it is a stand-alone
product.

Figure 1-3 summarizes the use of the translator.

Source dialogs stored in the SAT
library file are compiled by the
translator, which generates an
encoded MIRAM dialog file containing
encoded dialogs, and an output
listing file containing listings
and errors in your source program.

INPUT

DIALOG
SPECIFICATION

LANGUAGE
TRANSLATOR

OUTPUT

CONTAINS LISTINGS
AND ERROR

MESSAGES (OPTIONAL)

Figure 1-3. Dialog Specification Language Translator

1.4. THE DIALOG PROCESSOR AND ITS USE

The dialog processor supervises the interactive exchanges between the dialog user and the
encoded dialogs stored in the encoded dialog file. The application program calls data
management, which, if so directed by job control, calls the dialog processor. The dialog
processor then displays the explanations and questions contained in the encoded dialog on the
workstation screen. When the dialog user keys in a response, the dialog processor analyzes
each response, controls succeeding interactions, and routes the response to a file used by the
application program that called the dialog.

t

----~--------------------------

UP-8806

NOTE:

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

1-8
Update B

When the application program is written in basic assembly language (BAL), the dialog
processor only supports the following data management macros: OPEN, CLOSE, DMINP,
and RIB. (The TRUNC parameter, however, is not supported, so report truncation by setting
the CD$ TRUNC bit in the CDIB macroinstruction.)

The dialog processor handles the display of standard control and error messages, the
positioning of headings, the tabulation of choices, and error recovery procedures, so you don't
have to include commands for these in your program.

For more information about the dialog processor, see the dialog processor user
guide/programmer reference, UP-8858 (current version).

Figure 1-4 summarizes the use of the dialog processor, and Figure 1-5 gives an overview of
interactive processing using dialogs.

Encoded dialogs stored in the
encoded MIRAM dialog file are
managed by the dialog processor,
which serves as the interface
between the dialog user, the encoded dialog,
and the application program
in an interactive environment.

Figure 1-4. Dialog Processor

ENCODED MIRAM DIALOG FILE

CONTAINS
ENCODED DIALOGS

DIALOG
USER

•

•

•

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

Dialogs that you write in the dialog specification language
are stored in a SAT library file. The translator compiles the
dialog and generates encoded MIRAM dialogs stored in the
encoded dialog file. The dialog processor supervises the
interactive dialog session between the dialog user, the
encoded dialog, and the application program.

SOURCE
DIALOGS
WRITIEN

IN DIALOG
SPECIFICATION

LANGUAGE

SAT LIBRARY FILE

CONTAINS
SOURCE DIALOGS

DIALOG
USER

Figure 1-5. Overview of Interactive Processing Using Dialogs

1-9
Update B

•

•

•

UP-8806

•

•

•

COMMANDS USED IN
BRANCHES

DISPLAY Command

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

DO ... END Command Format 3
ENTER Command

IF Command Format 3
LOAD Command Format 1 or 2 but no MASKED by clause

OUTPUT Command
PRINT Command

TREE Command
COPY Command

EJECT Command
NEWLINE Command

SPACE Command
TITLE Command

COMMANDS USED IN TRUNK

DISPLAY Command
DO ... END Co mm a n d F o rm a t 2
IF Command Format 2
LOAD Command Format 1 or 2

but no MASKED by clause
OUTPUT Command
PRINT Command
COPY Command
EJECT Command
N E W L I N E C o mm a n d
SPACE Command
TITLE Command

COMMANDS USED ONLY
IN TREES

DO ... END Command
Format 3

ENTER Command
IF Command

Format 3
}

Used only in
branches

6-3

COMMANDS NEVER USED
IN TREES

CALL Command
DO ... END Command

Format 1
EOF Command
IF Command

Format 1
MASK Command

·PRESENT Command
SET Command

Formats 1,2,3

DISPLAY Command
PRINT Command
NEWLINE Command

}
Used in branches
and trunk

DO ... END.Command
Format 2

IF Command
Format 2

}"'""'';"

Figure 6-1. Commands Used in Trees

t run k

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6.2. FORMING UNNAMED BLOCKS - BASIC CONCEPTS (00 ... END)

6-4
Update B

You use the DO ... END command to form unnamed blocks that are executed inline.
Unnamed blocks consist of commands and declarations delimited by the reserved words
DO and END. An unnamed block must contain a command or a declaration; it can't be
null.

Unnamed blocks are categorized into three types:

1. Blocks, which specify actions and control the repetition of block commands, the
transfer of control between block commands, the reinitialization of array and mask
variables, and the scope (local or global) of declarations and commands

2. Trunk blocks, which are used only in the trunk of a tree when you want to execute
more than one command conditionally with the IF command

3. Branch blocks, which are used only in the branches of a tree when you want to
execute more than one command conditionally with the IF command

6.2.1. How to Form Blocks (00 ... END Format 1)

You use the format 1 DO ... END command to form unnamed blocks that are executed

•

inline. They specify actions to be performed and control the repetition of block commands, •
the transfer of control between block commands, the reinitialization of array and mask
variables, and the scope (local or global) of commands and declarations. You can't use a
format 1 DO ... END command in the trunk or branches of a tree.

A graphic representation of an unnamed block formed by a format 1 DO ... END command
is:

BLOCK

DO;
declarations
commands

END;

•

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6-7

6.2.3. How to Form Branch Blocks (00 ... END Format 3)

You use the format 3 DO ... END command to form unnamed branch blocks used only in the
branches of a tree. You use this format when you want to execute more than one
command conditionally in the branch. In other words, when you use the format 3 IF
command in a branch to execute two or more commands, you must use a branch block.

A graphic representation of an unnamed branch block formed by the format 3 DO ... END
command is:

TR EE
Node

(I F a=b THEN

{

DO;
BRANCH command
BLOCK command

END;) ;

The format 3 DO ... END command is:

DO;

END;

DISPLAY Command;
DO ... END Command Format 3;
ENTER Command;
IF Command Format 3;
LOAD Command Format 1 or 2 but

no MASKED BY clause;
OUTPUT Command;
PRINT Command;
NEWLINE Command;

name: BRANCH
If a=b THEN

{

DO;
BRANCH command
BLOCK command

END;
END;

The following two examples show how a branch block is used when you want to execute
more than one command conditionally:

FINALBR: BRANCH
IF LEVEL="2" THEN

DO;

END;

DISPLAY TOTO;
ENTER OBJT;

END;

PRESENT TREE PARALLEL
(I F LEV EL=' ' 2 ' ' THEN

DO;
DISPLAY TOTO;
ENTER OBJT;

END;) ;

In both examples, the branch block formed by the format 3 DO ... END command is used to
execute a DISPLAY command and an ENTER command if the value of LEVEL is equal to 2 .

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6.3. HOW TO CALL NAMED BLOCKS (CALL)

6-8
Update B

You use the CALL command to execute a named block defined by a DO ... END declaration.
You may nest CALL commands as long as you don't repeat the name of the block in a
nested CALL command. You can't use the CALL command anywhere in the trunk or
branches of a tree.

A graphic representation of the use of a CALL command is:

CALL block-name;

I 1> {block-name:

BLOCK

The format of the CALL command is:

CALL block-name;

The explanation of the parameter is:

block-name

DO;
declarations
commands

END;

Name of a block defined by a DO ... END declaration.

The following example illustrates the use of the CALL command:

CALL PROCSTMT;

PROCSTMT: DO;
OUTPUT ''PROCSTMT WAS CALLED.'';

END;

In this example, the CALL command references a block named PROCSTMT. When the
CALL command is executed, the PROCSTMT block provides the CALL command with the

~ data defined in the block. A named block can't be null. Some executable statement must
appear within each named block.

Another example of the CALL command is:

DO UNTIL TIMESW = ''l'';

CALL GETDATE;
CALL GETTIME;

END;

GETDATE: DO;
PRESENT DATE;

END;

GETTIME: DO;

PRESENT TREE2;
LOAD TIMESW = ''D'';

END;

•

•

•

•
UP-8806 SPERRY UNIVAC OS/3

DIALOG SPECIFICATION LANGUAGE

6.9. STORING DIALOG USER RESPONSES IN AN INPUT BUFFER -
BASIC CONCEPTS (OUTPUT)

6-23
Update B

Use the OUTPUT command to store dialog user responses in an output file and then route
them to an input buffer identified in the application program that called the dialog. Editing
in the DATA declarations controls the way data is stored. Use the OUTPUT command
anywhere in your program. A graphic representation of the use of the OUTPUT command
is:

PROGRAM WRITIEN IN
DIALOG SPECIFICATION
LANGUAGE

PRESENT

OUTPUT with EOR

[d i a Io g use r response

L

APPLICATION PROGRAM

J linput buffer J
J

• 6.9.1. How to Store Dialog User Responses (OUTPUT Format 1)

The format of the format 1 OUTPUT command is:

•

OUTPUT(' 'message'' l [EOR];
array-name
string-expression

First, we'll cover the required parameters of this command.

·'message'·

The message or value that is used as input by the application program.
The following example shows how an OUTPUT command is used:

PROCSTMT: DO;
OUTPUT ''PROCSTMT WAS CALLED'';

END;

In this example, the message PROCSTMT WAS CALLED is routed to an input
buffer for use by an application program.

array-name

Name of an array defined by a DATA declaration. It is the elements in the array
that are stored .

With the OUTPUT command, no underscores are generated, and the dialog user
can't enter data. Instead, the initialization value is displayed on the screen,
padded if necessary with spaces to the length of the element. The dialog user
just views the message.

UP-8806

t

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6-24
Update B

This example illustrates an OUTPUT command that references an array name:

ARRAY!: DATA \AS\ ;
PRESENT TREE PARALLEL

(ENTER ARRAY!; OUTPUT ARRAYl;);

When this tree is executed, ARRAY1 is displayed, and whatever response is
entered by the dialog user into ARRAY1 is stored for use by the application
program.

string-expression

Expression mainly used to concatenate messages and arrays so that one
OUTPUT command can process them at the same time. You must enclose the
concatenated value within brackets.

See Appendix D for a complete description of string expressions.

The following example shows how the OUTPUT command uses a string
expression to obtain output used by the application program:

Cl: DATA \AJ\ "GAS";

C2: DATA \AJ\ ''OIL'';

CJ: DATA \AS\ ''SOLAR'';

POWERNAME: DATA \AS\ ;

COMP: TREE EXCLUSIVE

(Cl; OUTPUT "S" EOR;)

(C2; OUTPUT "6" EOR;)

•

•
(CJ; ENTER POWERNAME; OUTPUT[' '7, POWERNAME] EOR;);

PRESENT COMP;

Assume that the application program that called this dialog has the following
input format:

n[,powername]

where:

n = S
For gas.

n 6

For oil.

n 7

For solar.

When this tree is presented, there is dual output, which is an important feature •
of the dialog processor. The summary report is designed for user readability,
while the output is designed for the requirements of an application program.

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

The dialog user sees:

1. GAS

2 . 0 I L
3. SO LAL __ _

SELECT ITEM BY ENTERING A NUMBER --

6-25
Update B

If the dialog user picks GAS, 5 is stored for use by the application program. If OIL, 6 is
stored, and if SOLAR, 7 is stored along with the value entered by the dialog user. See
the dialog processor user guide/programmer reference, UP-8858 (current version).

Now, we'll discuss the optional parameter.

EOR

End of the stored record.

Application programs request the input at the record level. The data is not
available to the application program until an EOR is output.

This example shows how EOR is used in a format 1 OUTPUT command:

DAY: DATA \A3\ ''MON'' ;

SPACE: DATA \A2\ ;

MONTH: DATA \A3\ ''JAN''

OUTPUT [DAY, SPACE \A3\, MONTH, "77"] EOR;

When the OUTPUT command with EOR is executed, the following is routed to
the input buffer and control returns to the program. (The EOR indicates the end
of the record.)

I MON JAN nl

6.9.2. How to Route Stored Responses to Input Buffer and
Return Control to Program (OUTPUT Format 2)

The format of the format 2 OUTPUT command is:

OUTPUT EOR;

When this command executes, the user responses stored in the output file are routed to the
input buffer and control returns to the program. You don't need this command when your
last format 1 OUTPUT command ends with the optional parameter EOR.

t

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6.10. CHANGING ARRAY VALUES - BASIC CONCEPTS (LOAD)

6-26
Update B

You use the LOAD command to change an array element to another value. The new value
replaces the original value of the element. Only the array elements whose corresponding
control mask bits are set to 1 or Tare changed. The LOAD command doesn't change the
control mask associated with each array. You can use the LOAD command anywhere in
the program, but when you use it in the branch of a tree, you can't use the MASKED BY
clause with it.

LOAD commands are categorized into two types:

1. Change all the array elements of an uncontrolled array to a new value.

2. Change the current array element of a controlled array to a new value.

6.10.1. How to Change All Array Elements (LOAD Format 1)

You use the format 1 LOAD command to change all array elements of an uncontrolled
array to a new value. The LOAD command only affects the elements whose corresponding
control mask bit is set to 1 or T. The elements are changed (loaded) one for one with the
results of successive evaluations of the value by using the corresponding elements. The
new value replaces the original value of the elements. The LOAD command doesn't
change the control mask for the array.

A graphic representation of the use of the format 1 LOAD command is:

ARRAY!' DATA \A2\ '~· ',
LOAD ARRAY! WITH ''X'';

t
.. B',' ARRAY!: DATA \A2\ ··x··. ··x··. ''X'';

The format of the format 1 LOAD command is:

LOAD uncontrolled-array-name WITHl''value'')
array-name
string-expression

L
ASKED BY {''bit-string'' ~;

mask-name
array-name
logical-expression

The parameters are:

uncontrolled-array-name

Name of an uncontrolled array defined by a DATA declaration whose elements

•

•

are replaced with new value. It is the destination array. •

UP-8806

•

•

•

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6-26a
Update B

An uncontrolled array is not referenced in a FOR ALL/EACH clause in a block.
Because the array is uncontrolled, the LOAD command moves the new value into
all the array elements whose corresponding control mask bit is set to 1 or T. This
value replaces the original value of that element.

"value"

The LOAD command moves the value you specify into the elements of the
destination array.

In the following example, the value of the element in the destination array is
replaced by a new value.

TIMESW: DATA \D2\ "21";
LOAD TIMESW WITH "12";

The implicit control mask for TIMESW is 1, so when the LOAD command
references TIMESW, it replaces the value 21 with the value 12. TIMESW now
contains the value 12 .

•

•

•

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

The format of the EOF command is:

EOF;

6-47

If you omit the EOF command, the translator provides it and prints an error message on
the source listing.

6.15. HOW TO START MESSAGES ON A NEW LINE ON SCREEN (NEWLINE)

The NEWLINE command is a formatting command. You use it to terminate the current line
on the screen to begin a message on a new line. The message itself is specified by the
DISPLAY or ENTER command and is concatenated on a single line until a NEWLINE
command is encountered. At that point, a new line is started. You only use the NEWLINE
command in the trunk or branches of a tree.

The format of the NEWLINE command is:

NEWLINE;

The following example illustrates the use of the NEWLINE command:

JOBNAME: DATA \AS\;

JOBIDENT: BRANCH
IF LEVEL=' '2'' THEN DO;

''THE NAME IS A 1 TO 8 ALPHANUMERIC'';
NEWLINE;
''STRING, BEGINNING WITH AN ALPHANUMERIC'';
NEWLINE;
' 'CHARACTER.' ' ;
NEWLINE; NEWLINE;
END;

''ENTER NAME: ''; ENTER JOBNAME;
END;

PRESENT TREE PARALLEL (JOBI DENT;);

When this branch is executed, the dialog user sees the following message displayed on
the screen and also printed:

THE NAME IS A 1 TO 8 ALPHANUMERIC
STRING, BEGINNING WITH AN ALPHANUMERIC
CHARACTER.

ENTER NAME: --------

Notice that there is double spacing between the two messages since two NEWLINE
commands were specified at that point.

t

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6-48
Update B

6.16. HOW TO COPY SOURCE CODE FROM LIBRARY FILE INTO YOUR
PROGRAM (COPY)

The COPY command saves programming time by allowing you to store commonly used
coding in a library file and then reference it with a COPY command. The COPY command
also permits you to support dialogs written in more than one language. You can use the
COPY command anywhere in your program.

Use the COPY command to insert source code copied from a library file into your program.
You can use COPY commands to seven levels; that is, the sixth level of source code copied
from the library file can contain COPY commands.

You can reference COPY modules from no more than two libraries.

When the translator encounters a COPY command, all succeeding source lines are taken
from the library file until the EOF command in that file is reached. Control then returns to
the source line immediately following the COPY command last executed.

The format of the COPY command is:

COPY "module-name";

The parameter is:

•

·'module-name'·
Name of a source library file module that contains source code written in the •
dialog specification language.

The module name you specify must adhere to the naming conventions defined by
the library utilities. The library file name in which the module resides is specified
by the PARAM COPY job control statement (8.2).

A graphic representation of the use of the COPY command:

PROGRAM BEFORE
TRANSLATION

declarations

commands

COPY · 'module-nameA'';

E 0 F.
'

LIBRARY FILE 1

module-nameA
ARRAYl: DATA \Al\ I' x J J;

ARRAY2: DATA \Al\ 6 I y J':

ARRAY3: DATA \Al\ 6 I z I t ;

COPY ''module-nameB'';

LIBRARY FILE 2

module-nameB
ARRAYA: DATA \Dl\ " 1' ' ;
ARRAYB: DATA \Dl\ "2' ' ;

PROGRAM AFTER TRANSLATION

0001 declarations

0010 commands

9915
Cl9916 ARRAYl: DATA \Al\ "x ..
Cl9917 ARRAY2: DATA \Al\ "y ..

Cll918 ARRAY3: DATA \Al\ " z' '
C20919 ARRAYA: DATA \Dl\ "1 ..

c20020 ARRA YB: DATA \Dl\ .. 2"
921 EOF; •

••

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

6-48a
Update B

When you process a module from one copy library (COP in the example), the nested copy
module must come from the other copy library (SOURCE).

Example:

II JOB OSLTST., 12000, J219
II OVC 20 II LFO PRNTR
II OVC 50 II VOL 001906 II LBL OPS RC II LFO SOURCE
II OVC 50 II VOL 001906 II LBL PMTRANS II LFO OSLTOUT
II OVC 50 II VOL 001906 II LBL OPS RC II L FD SRC

II OVC 50 II VOL 001906 II LBL OPS RC II LFO COP
II WORKl
II EXEC OSLT
II PAR AM I N=C F I L El IS RC
II PA RAM OUT=OSLTOUT
II PA RAM COPY=COPISOURCE
I&

- --------------------------

•

•

•

•
UP-8806 SPERRY UNIVAC OS/3

DIALOG SPECIFICATION LANGUAGE
7-1
Update B

7. Sample Program

7.1. GENERATION OF DIALOG SCREENS

Figures 7-1 and 7-2 illustrate how dialogs are generated onto a screen from a sample
program written in the dialog specification language. Figure 7-1 shows the dialog screen
questions and the answers chosen for each question, and Figure 7-2 shows the program
that produced the screens. The number of each screen in Figure 7-1 relates the screen to
the corresponding coding elements in the program (Figure 7-2). The items in reverse type
(white letters on black background) in Figure 7-1 indicate responses from the dialog user.

• SCREEN 1

•

THIS DIALOG SESSION WILL ASSIST YOU IN CREATING 'CONTROL'
FILE RECORDS.

PLEASE TAKE YOUR TIME AND ANSWER EACH QUESTION CAREFULLY ...

PUSH TRANSMIT KEY TO PROCEED

Figure 7-1. Screen Displays for Sample Program (Part 1 of 10)

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

7-2

SCREEN 2

••••••• COMPANY ENVIRONMENT SPECIFICATIONS •••••••

SELECT THE COMPANY ENVIRONMENT FOR THIS USER FROM THE CHOICES BELOW:

1. A SINGLE COMPANY WITH NO DIVISIONS EXISTS FOR THIS USER.

2. A SINGLE COMPANY WITH MORE THAN ONE DIVISION EXISTS FOR THIS USER.

3. MORE THAN ONE COMPANY EXISTS FOR THIS USER.

•••NOTE: •••FOR MULTI-COMPANY ENVIRONMENTS, THE NUMBER OF DIVISIONS WILL
BE SPECIFIED FOR EACH COMPANY AS THE COMPANY IS DEFINED.

SELECT ITEM BY ENTERING A NUMBER.

SCREEN 3

••••••• COMPANY IDENTIFICATION

PLEASE ENTER THE APPROPRIATE INFORMATION BELOW:

ENTER THE COMPANY NAME AS IT SHOULD APPEAR ON REPORTS AND SCREENS:
(T. J GREEN SUPPLY COMPANY ______).

ENTER THE 1 CHARACTER DEDUCTION CODE FOR BONDS FOR USE IN THE PAYROLL
APPLICATION SYSTEM: 11111
ENTER THE CHARACTER TO BE USED AS A NUMERIC DATE DELIMITER
(I.E.'/',':', OR'.'): 188

Figure 7-1. Screen Displays for Sample Program (Part 2 of 10)

•

•

•

•

•

•

UP-8806

8.1. INTRODUCTION

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

8-1
Update B

8. Job Control Statements

After you write the dialog, using the commands and declarations of the dialog specification
language, you enter the source program into a SAT library file. You can do this in either of
two ways:

1. Using the workstation terminal with the general editor (EDT). For a complete
explanation of job control, see the interact;ve job control user guide, UP-8822 (current
version). For an explanation of the general editor (EDT), see the general editor (EDT)
user guide/programmer reference, UP-8828 (current version) .

2. Using diskette, punched cards, disk, or magnetic tape along with the appropriate job
control language

In the dialog specification language, you use the characters /* to indicate the start of a
comment. Since /* is also used by the job control language to indicate the end of file for
user input, use I I OPTION EOD=/x in the job control stream to change the end-of-file
indicator. You can specify any character for x. For example, I I OPTION EOD=/ A
establishes that I A is used to indicate the end of the file.

Library facilities and the general editor help you build and update the source programs
stored in the library file.

8.2. PARAM STATEMENT

You use the PARAM job control statement to specify input, output, and COPY files used
during the execution of the translator. You can use one PARAM statement to specify all
three files, or you can use separate PARAM statements for each file .

t

t

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

8-2
Update B

The format of the PARAM statement is:

or:

II PARAM IN=modulename [If i lename]

[, OUT=f i I ename]

[

CO PY= { f i I en ame 1 [If i I en ame 2] }]
filenamel/(N)
(N)lfilename2
(N)

II PARAM IN=modulename[lf i lename]

II PARAM

II PARAM

OUT=f i I ename

COPY={f i lenamel[lfi lename2]}
f i lenamell(N)
(N)lf i lename2
(N)

II PARAM SEQ={lllumn-number}

II PARAM{::CK STROKE}=character

II PARAM{:~GHT BRACKET}=character

Here is what you need to know about the keyword parameters for the PARAM statement.

IN=modulename
You must use the IN parameter to specify the name of the source module that
you want the translator to translate.

The translator searches the YSRC library file for the input module you specify.
You don't need to specify DVC and LFD statements for the YSRC library file.

IN=modulenamelfi lename
This specifies the name of the source module containing your code and the name
of the source library file in which it resides.

The name of the source library file must be the same as the file name you
specified in the LFD statement for the input file.

OUT=f i I ename
This specifies the name of the output MIRAM file you want the translator to
create. (MIRAM is a disk access method that handles sequential, relative, and
indexed files.) The translator automatically stores the translated dialog in the
output MIRAM file.

•

•

•

UP-8806

•

•

•

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

8-3
Update A

This file must be the same as the file name you specify in the LFD statement for
the output file. If you omit this parameter, the translator doesn't create an output
MIRAM file (an encoded object module file).

COPY=f i I ename
This specifies the name of the first library file that stores modules to be copied
by the COPY command.

First, the translator searches this library file for the specified module referenced
in a COPY command in your source program. If the module is not there, the
translator searches the YSRC library file.

COPY=f i lenamel/f i lename2
This specifies that the file specified by filename1 is to be searched first by the
translator for source modules referenced in COPY commands.

Then, the file specified by filename2 is to be searched by the translator. The
YSRC library file is not searched by the translator.

COPY=f i lenamel/(N)
Only the file specified by filename1 is searched by the translator for the module.

COPY=(N)/f i lename2
Only the file specified by filename2 is searched by the translator for the module .

COPY=(N)
No files, not even the YSRC library file, are searched by the translator for the
module. This implies that you didn't use the COPY command in your source
program.

SEQ=column-number
The translator doesn't process the data from the column number you specify to
the end of the line, but it does print those columns in the source listing.

S EQ=\lli
The translator doesn't process the data from column 73 to the end of the line,
but it does print those columns in the source listing. This is the default value if
you omit a column number.

BACK STROKE=character
This allows the translator to accept another character in place of the back stroke
(\) character. You can't use any character allowed in the dialog specification
language syntax (4.2) to replace the back stroke character. When you specify an
invalid character, an error message occurs and the job is terminated. For
example, BACK STROKE=& indicates that the ampersand character (&) will
replace the back stroke character in the syntax.

RIGHT BRACKET=character
This allows the translator to accept another character in place of the right
bracket (]) character. You can't use any character allowed in the dialog
specification language syntax (4.2) to replace the right bracket character. When
you specify an invalid character, an error message occurs and the job is
terminated. For example, RIGHT BRACKET=! indicates that the exclamation
character (!) will replace the right bracket character in the syntax.

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

8-4
Update B

8.3. SAMPLE JOB CONTROL STREAM TO EXECUTE THE TRANSLATOR

After the source program is stored in the SAT library file, you can compile it and execute
..,.. the translator.

~

The following sample job control stream compiles the source program and executes the
translator. Assume that the private disk volume 001234 contains a source program named
DIALOG1 stored in an input source library named DLGLIBIN and that the translator uses
an output MIRAM file named DLGLBOUT. Also assume that space for the output file is
already allocated prior to the execution of the translator. The job control stream is:

1 . II JOB COMP I LE,, 18000
2. II OVC 20 II LFD PRNTR
3. II OVC 5 1 II VOL 001234 II LBL OLGLIBIN II LFO OSLTIN
4. II OVC 5 1 II VOL 001234 II LBL OLGLBOUT II LFO OSLTOUT
5. II OVC 5 1 II VOL 001234 II LBL COPYFILl II LFO COPYLIBl
6. II OVC 5 1 II VOL 001234 II LBL COPYFIL2 II LFO COPYLIB2
7. II WORK!
8. II EXEC OSLT
9. II PA RAM IN=OIALOGllOSLTIN
10. II PA RAM OUT=OS L TOUT
11 . II PA RAM COPY=COPYLIB11COPYLIB2
1 2 . I&

Step by step, this means:

1. The name of the job is COMPILE. A main storage space of X'18000' allows you to run
large dialogs. Smaller dialogs don't need main storage allocation.

2. This defines the printer file for output listings produced by the translator .

..,.. 3. The input SAT source library has a file identifier of DLGLIBIN and a file name of
DSLTIN. Notice that the file name must be the same as the file name specified in the
PARAM IN statement described in 9. DLGLTBIN and DSLTOUT are user-specified
names so you can name them anything you want for these files.

4. The output MIRAM file created by the translator has a file identifier (LBL) of
DLGLBOUT and a file name (LFD) of DSLTOUT. Notice that the file name must be the
same as the file name specified in the PARAM OUT statement described in 10.
DLGLBOUT and DSLTOUT are user-specified names so you can specify any name you
want for these files.

5. The alternate source library file (from which input records are copied by the
translator) has a file identifier (LBL) of COPYFIL 1 and a file name (LFD) of COPYLIB1.
Notice that the file name must be the same as the first file name specified in the
PARAM COPY statement described in 11.

6. Another alternate source library file has a file identifier of COPYFIL2 and a file name

•

•

of COPYLIB2. Notice that the file name must be the same as the second file name •
specified in the PARAM COPY statement described in 11.

7. A MIRAM work file for translator internal processing is allocated. This file is erased
when the job step is completed.

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

8-5
Update B

• 8. The translator, which resides in the system load library, is executed.

•

•

9. The input source file has a source module name of DIALOGl and a file name of ~

DSLTIN (same as the file name in 3).

10. The output encoded MIRAM dialog file created by the translator has a file name of ~
DSLTOUT (same as the file name in 4). If you omit this parameter, the translator does
not create an output file.

11. The two alternate source library files have file names of COPYLIBl and COPYLIB2.
These are the files from which source modules are copied by the translator when you
use a COPY command in your program.

12. This indicates the end of the job named COMPILE.

You can't change the encoded dialog file directly. First, you must change your code and
then retranslate it.

Only the dialog processor can access the encoded MIRAM file .

•

•

•

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

C.6. DISPLAY COMMAND (DISPLAY MESSAGE)

[DISPLAY](' 'message'' l;
array-name
string-expression

C.7. PRINT COMMAND (PRINT MESSAGE)

[PRINT](' 'message'' l;
array-name

I string-expression

C.8. OUTPUT COMMAND (STORE MESSAGE)

Format 1 (Store Dialog User Responses in Input Buffer):

OUTPUT(' 'message'' l [EOR];
array-name
string-expression

Format 2 (Route Output File to Input Buffer and Return Control to Program):

OUTPUT EOR;

C.9. LOAD COMMAND (CHANGE ARRAY ELEMENT VALUE)

Format 1 (Change Element of Uncontrolled Array):

LOAD uncontrolled-array-name WITH(" value" l
array-name
string-expression

[

MASKED BY{''bit-string'' ~;
mask-name
array-name
logical-expression

Format 2 (Change Element of Controlled Array):

LOAD controlled-array-name WITH(" value" l;
array-name
string-expression

C.10. SET COMMAND (CHANGE CONTROL MASK VALUES)

Format 1 (Change Control Mask to New Value):

SET{mask-namel } TO{''bit-string'' };
uncontrolled-array-name mask-name2

array-name
logical-expression

C-5
Update B

t

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

Format 2 (Reset Control Mask to Initial Value):

SET mask-name TO INITIAL ;

Format 3 (Reset Array and Control Mask to Initial Value):

SET uncontrolled-array-name TO INITIAL;

C.11. MASK COMMAND (MASK A CONTROL MASK)

MASK{mask-name-1 }WITH{"bit-string" };
uncontrolled-array-name mask-name2

array-name
logical-expression

C.12. IF COMMAND (CONDITIONAL OPERATIONS)

Format 1 (Conditional Operations Outside Trees):

IF(array-name l(<)(array-name) numeric-constant < = numeric-constant
,,,,;,;,,,,_,,,,,,,,,, ~ ~ ,,,,,,,,,,,_,,,,,,,,,,

THEN

CALL Command;
DO ... END Format 1 Command;
IF Format 1 Command;
LOAD Command;
MASK Command;
OUTPUT Command;
PRESENT Command;
SET Command;

ELSE

CALL Command;
DO ... END Format 1 Command;
IF Format 1 Command;
LOAD Command;
MASK Command;
OUTPUT Command;
PRESENT Command;
SET Command;

C-6

•

•

•

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

Conditional expression is the same as:

Conditional element is the same as:

[NOT] expression

Expression is the same as:

term[{~} term J ...

Term is the same as:

< expression
< =

<>
>=
>

·'···"m:n ., .. .,l
Element is the same as:

[-](array-name)
numeric-constant
(expression)

We'll briefly cover these parameters.

array-name
Array defined by a DATA declaration.

numeric-constant
Positive integer.

REM
An operator that stands for remainder.

An operator that stands for multiplication.

I
An operator that stands for division.

AND
See D.2 for an explanation.

D-3

UP-8806

OR

XOR

<

<=

> =

>

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

See 0.2 for an explanation.

See D.2 for an explanation.

An operator that stands for less than.

An operator that stands for less than or equal to.

An operator that stands for equal to.

An operator that stands for not equal to.

An operator that stands for greater than or equal to.

An operator that stands for greater than.

An example of a command that uses a conditional expression is:

IF OATA1'25+DATA2 = OATA3/0ATA4 THEN
DO UNTIL FLAG!< FLAG2;

CALL TIME;
LOAD FLAG! WITH FLAGl-1;

ENO;
ELSE CALL MOO;

D-4
Update B

In this example, the IF command uses a conditional expression. DATA1, DATA2, DATA3,
and DATA4 are arrays, and 25 is a numeric constant. This conditional expression is
evaluated by first computing the term DATA1 *25+DATA2 and then computing the term
DATA3/DATA4 and then comparing the two. If the result is true, then the block formed by
the 00 ... END command is executed until the condition FLAG1 < FLAG2 is true. If the
result of the IF command is false, the CALL MOD command is executed.

The following example shows another command that uses a conditional expression:

IF X=Y+Z ANO A=B OR A=C THEN
PRESENT COMPTREE;

0.4. STRING EXPRESSIONS

' I 'I I

•

•

You use string expressions in PRINT, DISPLAY, OUTPUT, and LOAD commands mainly to •
concatenate arrays and messages onto one line so that one command can process the
data. You must enclose the concatenated string expression within brackets and separate
them by a comma or a space.

•

•

•

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

String expression is the same as:

expression [format description]

Expression is the same as:

term[{~} term] ...

Format description is the same as:

size } [CJ\ s i z e L
size R
size[.size] ~

Term is the same as:

Element is the same as:

[-](array-name)
numeric-constant
(expression)

We'll cover the format description parameter here:

format description

D-5

You use the format description to assign a data type, size, and editing rule to an
array referenced in the string expression. This format description overrides any
format description you specified for the array in its DATA declaration. If you use
a format description with a concatenated string expression, concatenation is
performed before the formatting occurs, and then the data is processed in the
format you define.

See D.3 for an explanation of other parameters.

An example of a string expression used in a command is:

DAY: DATA \A3\ "MON";
SPASE: DATA \A2\ '' ''
MONTH: DATA \A3\ "JAN";

OUTPUT [DAY, SPASE \ A4 \.MONTH, "77"];

UP-8806 SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

0-6
Update B

The OUTPUT command uses a string expression to concatenate arrays and a message on
one line. The message MON JAN77 is written to the output file. Notice that the format
description used with SPASE in the OUTPUT command overrides the format description
used in the DATA declaration.

Other examples are:

,.._ OUTPUT [''ADDRESS:'' ,STNAME, CITYNAME, STATE, ZIP] EOR;

PRINT [ID,LABEL2. "OTHERS", HOURS! \D3.2R\];

PRINT DATA12 \AIOL\ ;

D.5. EXPRESSION

You use expression in the TIMES and CASE clauses in a block to create a number that
affects the execution of the block.

Expression is the same as:

term[{~} term]

Term is the same as:

e I emen]

Element is the same as:

[-] {array-name }
numeric-expression
(expression)

For an explanation of these parameters, see 0.3.

An example of a command that uses an expression is:

DO CASE MOD+LEVEL;
CALL ARRAY!;
CALL ARRAY2;
CALL ARRAY3;

END;

The CASE clause in a block uses an expression. The arrays in the expression MOD+LEVEL
are evaluated to obtain a number. This number determines which of the CALL commands

•

•

in the block are executed. If the result is 1, the first CALL command is executed. If the •
result is 2, the second CALL command is executed, and so on.

UP-8806

•

Term

A

Array
arrays referenced in parallel

controlled arrays

• description

editing rules

illustration
implicit control mask
initialization of array values

logical AND operation

message arrays
reinitialization of array values

uncontrolled arrays

uncontrolled arrays referenced in trees

variable arrays

Array control mask

Arrays referenced in parallel
description
illustration

• Available branches

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

Reference Page Term

B

Bit string
See arrays control masks
referenced in description
parallel.
See controlled Blocks
arrays . branch
4.6 4-14 description
5.2 5-1 global declarations and commands
See editing illustration
rules. local declarations and commands
Fig. 4-9 4-14 named
4.6 4-15 nested
See initialization reinitialization of array and control
of array values. mask values
See logical
AND
operation.
5.2.2. 5-12 trunk
See reinitialization unnamed
of array and control
mask values. Branch
See uncontrolled available branches
arrays. choice mode
See uncontrolled chosen branches
arrays. description
5.2.1 5-2 display mode

expansion of array elements
See control implied branches
mask. inline branches

rejected branches
separate named branches

4.6.4 4-19
Fig. 4-12 4-20

5.5 5-26

Index 1

Index

Reference Page

5.3 5-16
4.6 4-15

6.2.3 6-7
4.4 4-3
4.4.3 4-6
Fig. 4-1 4-4
4.4.2 4-5
5.4 5-18
4.4.l 4-4

See reinitialization
of array and
control mask
values.
6.2.2 6-6
6.2 6-4

5.5 5-26
5.5 5-26
5.5 5-26
4.5 4-8
5.5 5-26
4.6.3 4-18
4.6.2 4-17
5.5 5-26
5.5 5-26
See separate
branches.

UP-8806 SPERRY UNIVAC OS/3 Index 2
DIALOG SPECIFICATION LANGUAGE Update B

Term Reference Page Term Reference Page •
Branch blocks 6.23 6-7 c
BRANCH ... END declaration CALL command 6.3 6-8

description 5.6 5-49
separate branches containing CASE clause 5.4 5-22

nested trees 5.6.2 5-51
simple separate branches 5.6.l 5-49 Character set 4.2 4-2

Choice mode 5.5 5-26

Chosen branches 5.5 5-26

Coding rules
colon 3.4 3-2
columns 3.2 3-1
comma 3.4 3-2
comments 3.7 3-3
description 3.1 3-1
lines 3.3 3-1
punctuation 3.4 3-2
quotation marks 3.6 3-3
semicolon 3.4 3-2
space 3.5 3-2

Commands • CALL 6.3 6-8
commands used in tree structures Fig. 6-1 6-3
COPY 6.16 6-48
description 4.3 4-2
DISPLAY 6.7 6-17
DO ... END 6.2 6-4
EJECT 6.17 6-49
ENTER 6.6 6-15
EOF 6.14 6-46
IF 6.13 6-40
LOAD 6.10 6-26
MASK 6.12 6-36
NEWLINE 6.15 6-47
OUTPUT 6.9 6-23
PRESENT 6.5 6-13
PRINT 6.8 6-20
Sequence of execution 6.5 6-13
SET 6.11 6-30
SPACE 6.18 6-50
summary Appendix C
TITLE 6.19 6-51
TREE 6.4 6-9
use Table 6-1 6-2

Concatenated control mask 4.63 4-18

Conditional expressions D.3 D-2 •

UP-8806 SPERRY UNIVAC OS/3 Index 5
DIALOG SPECIFICATION LANGUAGE Update B

• Term Reference Page Term Reference Page

J

IF command Job control statements
branch conditional operations 6.13.3 6-44 description 8.1 8-1
conditional operations not in trees 6.13.1 6-40 PARAM statement 8.2 8-1
description 6.13 6-40 sample job control stream 8.3 8-4
trunk conditional operations 6.13.2 6-43

Implicit control mask 4.6 4-15

Implicit subscripting 4.6.5 4-23

Implied branches 4.6.2 4-17

INCLUSIVE node 5.5 5-26
5.5.1 5-29

INDEX clause 5.4 5-24

Initial value 5.4 5-19

Initialization of array values
allowable characters Table 5-1 5-6

• description 5.2.1 5-2
full initialization 5.2.1 5-7
partial initialization 5.2.1 5-7 L

Initialization of control mask values 5.3 5-15 Listings, translator 1.3 1-7

Interactive dialogs See dialogs. LOAD command
change array elements to new value 6.10.1 6-26

Interactive processing change current array element to new
description 1.1 1-1 value 6.10.2 6-28
dialog processor See dialog description 6.10 6-26

processor.
dialog specification language See dialog Local declarations and commands 4.4.2 4-5

specification
language. Logical AND operation

dialog specification language See dialog arrays referenced in parallel 4.6.4 4-20
translator specification conditional expressions D.3 D-2

language description 4.6.4 4-20
translator. logical expressions D.2 D-1

interactive environment Fig. 1-1 1-1 rules Table 4-1 4-20
overview Fig. 1-5 1-9

Logical expressions D.2 D-1

Loop generation 4.6.1 4-16

•

UP-8806

Term

M

MASK command

MASK declaration

MASKED BY clause
blocks
LOAD command
PRESENT command
trees

MEANS declaration

Message arrays

MIRAM files

N

Nested blocks

Nested trees
description
illustration
named trees
unnamed trees

NEWLINE command

Nodes
description

EXCLUSIVE
INCLUSIVE
PARALLEL
SEQUENTIAL

SPERRY UNIVAC OS/3
DIALOG SPECIFICATION LANGUAGE

Reference Page Term

0

6.12 6-36 OUTPUT command
description

5.3 5-15 results of OUTPUT command
returning control to program

5.4 5-24 Output listing file
6.10.1 6-28
6.5 6-14
5.5 5-26

5.7 5-53

5.2.2 5-12

8.2 8-2

p

PARALLEL node

PARAM statement
BACK STROKE
COPY keyword
d esc ri pti on
IN keyword
OUT keyword

4.4.1 4-4 RIGHT BRACKET
SEQ keyword

4.5.2 4-12 PRESENT command
Fig. 4-8 4-13
5.5.2 5-42 PRINT command
6.4.2 6-11

6.15 6-47

4.5 4-8
5.5 5-26
5.5.1 5-28
5.5.1 5-29
5.5.1 5-30
5.5.1 5-31

Index 6
Update B

Reference

6.9
7.3
6.9.2

1.3

5.5.1

8.2
8.2
8.2
8.2
8.2
8.2
8.2

6.5

6.8

Page •
6-23
7-28
6-25

1-7

5-30 •
8-3
8-3
8-1
8-2
8-2
8-3
8-3

6-13

6-20

•

I y

I
I

• I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ai I
c:

Cl I • c:
0

I "i'ii ...
::i

(.)

•

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

•

