|

COMPUTER SYSTEMS

perating System/3 (OS/3)
Sort/Merge

User Guide

e s P81
For ijfeﬁ 105«{ gp‘ >

This Library Memo announces the release and availability of “SPERRY UNIVAC® Operating System/3 (0S/3)
Sort/Merge User Guide’’, UP-8342 Rev. 3.

This revision documents the following new sort/merge features for the 8.0 release:

Data management environment considerations have been included indicating the file types supported.

UOS parameter of OUTFIL control statement for indpendent sort/merge now defaults to 100% rather than
0%.

All messages for the sort/merge job are displayed at the initiating workstation.
SORT3 is now compatible with 1BM System/32 and 34 sorts, as well as with the IBM System/3 sort.

The record type specification for SORT3 now allows the specification of UDATE, UDAY, UMONTH, and
UYEAR for Factor 2.

The field specification for SORT3 now allows you to specify up to a maximum of 256 bytes for the overflow
field length.

All other changes are corrections or expanded descriptions applicable to features present in sort/merge prior to the
8.0 release.

Destruction Notice: If you are going to 0S/3 release 8.0, use this revision and destroy all previous copies. |f you are

not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8342 Rev. 2, UP-8342 Rev. 2-A and UP-8342 Rev. 2-B will be available for 6 months after the release
of 8.0. Should you need additional copies of this edition, you should order them within 90 days of the release of
8.0. When ordering the previous edition of a manual, be sure to identify the exact revision and update packages
desired and indicate that they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.

©vD1-251 Rey, 3/73

Mailing Lists Mailing Lists A0OO, AO2, A03, A04, 18, 18U, 19, 19U, Library Memo for
BZ, CZ and MZ 20, 20U, 21, 21U, 75, 75U, 76, and 76U UP-8342 Rev. 3
{Cover and 336 pages)

RELEASE DATE:

September, 1982

Sort/Merge

Environment: 90/25, 30, 30B, 40 Systems

=LJNIVAC UP-8342 Rev. 3

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and UNIS
are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1976, 1977, 1978 — SPERRY CORPORATION PRINTED IN USA.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 PSS 1
SORT/MERGE

PAGE STATUS SUMMARY

ISSUE: UP-8342 Rev. 3
RELEASE LEVEL: 8.0 Forward

Part/Section szr?lg er ULr::z;':e Part/Section Nzﬁs er ULF:;';G Part/Section szr?ser ULF:K:G
Cover/Disclaimer Appendix C 1 thru 4
PSS 1 Appendix D 1 thru 11
Preface 1,2 Index 1 thru 18
Contents 1thru 9 User Comment
Sheet
PART 1
Title Page
1 1 thru 14
PART 2
Title Page
2 1 thru 12
3 1 thru 65
4 1 thru 19
PART 3
Title Page
5 1 thru 11
6 1 thru 54
7 1thru 6
8 1 thru 16
9 1 thru 18
PART 4
Title Page
10 1 thru 13
11 1 thru 37
12 1thru?7
PART 5
Title Page
Appendix A 1thru8
Appendix B 1 thru 4

All the technical changes are denoted by an arrow () in the margin. A downward pointing arrow { *) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow ‘) is found. A horizontal arrow () pointing to
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Preface 1
SORT/MERGE

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY UNIVAC Operating System/3 (0S/3). It specifically describes the function
and effective use of the sort/merge programs available to the user of 0S/3. The intended
audience is the novice programmer with a basic knowledge of data processing but with
little programming experience, and the programmer whose experience is on systems other
than Sperry Univac.

An introductory manual, the introduction to sort/merge, UP-8073 (current version), is also
available. It briefly describes the general characteristics and facilities offered by the
sort/merge programs for OS/3. For the more experienced programmer, the sort/merge
programmer reference, UP-8054 (current version) is available.

In this manual, sort/merge subject matter is divided into the following parts:

® Part 1. Survey of Sort/Merge

= Part 2. Independent Sort/Merge

® Part 3. Subroutine Sort/Merge

u Part 4. System/3, 32, and 34 Compatible Sort (SORT3)

= Part 5. Appendixes

We suggest that you read this manual from beginning to end. Although each part is self-
contained, you can profit by comparing the three sort/merge programs in order to select
the one most suited for your application.

Part 1. Survey of Sort/Merge

Introduces you to the process of record sorting in relationship to the three sort programs

offered by 0S/3. The information is presented in terms of what each program does, how
you use them, and what you should consider before using them.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Preface 2
SORT/MERGE

Part 2. Independent Sort/Merge

Describes this sort/merge program from the system viewpoint and accents the software
framework and the operational phase structure. Part 2 emphasizes independent
sort/merge from the user viewpoint, including independent sort/merge requirements you
must supply:

® Job controi stream

® Sort/merge control statements

] User exits to own-code routines

This part also discusses the independent sort/merge application to a typical disk sort
problem and ends with program and control stream examples.

Part 3. Subroutine Sort/Merge

Describes this sort/merge program from the user viewpoint by using the same disk sort
problem from Part 2 to empbhasize:

m User program interface with subroutine sort/merge

m Assembling, link editing, and executing a typical disk sort program

m Special job control stream applications

m Subroutine sort/merge user own-code routines.

Part 3 also supplies subroutine sort/merge program examples.

Part 4. System/3, 32, and 34 Compatible Sort

Describes this sort/merge program from the system viewpoint to emphasize the purpose,
application, software framework, and operational structure of the program. In addition,

Part 4 describes the IBM System/3, 32, and 34 compatible sort from the user viewpoint to
include the supportive requirements you must supply to run the sort. This includes:

m Job control stream

® Sort control statements
Part 5. Appendixes
Contain:

m Statement conventions

® Sort parameter table contents

Subroutine sort/merge interface requirements for the COBOL programmer

0S/3 and standard EBCDIC and ASCIl collating sequences

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 1
SORT/MERGE
Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. SURVEY OF 0S/3 SORT/MERGE PROGRAMS

1. INTRODUCTION
1.1. WHY YOU NEED A SORT PROGRAM 1-1
1.2, SORT/PROGRAMS AVAILABLE TO THE 0S/3 USER 1-1
1.2.1. Independent Sort/Merge 1-2
1.2.2. Subroutine Sort/Merge 1-2
1.2.3. System/3, 32, and 34 Compatible Sort (SORT3) 1-3
1.3. CONCEPT OF MODULAR SORT STRUCTURE 1-4
1.4. WHAT 0S/3 SORT PROGRAMS CAN DO FOR YOU 1-5
1.5. DATA MANAGEMENT CONSIDERATIONS 1-6
1.6. PROGRAM RESTRICTIONS 1-7
1.7. ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM 1-8
1.7.1. Main Storage Allocation 1-9
1.7.2. Auxiliary Storage Work Area Assignments 1-10
1.7.3. 170 Data File Organization 1-11
1.7.4 Sort Options 1-11
1.8. STRUCTURING YOUR INPUT/OQUTPUT DATA 1-12

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 2
SORT/MERGE

PART 2. INDEPENDENT SORT/MERGE

2. INDEPENDENT SORT/MERGE BASIC CONCEPTS

2.1. GENERAL 2-1
2.2, SORT PROBLEM: A SOLUTION 2-2
2.3. WHAT SORT/MERGE DOES FOR YOU 2-3
2.3.1. Software Framework 2-5
2.3.2. Sort/Merge Operation Phases 2-7
2.3.2.1. Phase O: Sort Initialization and Assignment 2-7
2322, Phase 1: Data Input and Internal Sort 2-8
2.3.23 Phase 2: Preliminary Merge 2-9
2.3.2.4. Phase 3: Final Merge 2-11

3. INDEPENDENT SORT/MERGE REQUIREMENTS YOU SUPPLY

3.1. GENERAL 3-1

3.1.1. Job Control Stream 3-3

3.2, SORT/MERGE CONTROL STATEMENTS 3-14
3.2.1. Defining a Sort Operation 3-15
3.2.2. Defining Data Records 3-23
3.2.3. Defining the Input File 3-25
3.24. Defining the Output File 3-29
3.2.5. Ending Input to Sort/Merge 3-35
3.2.6. Handling Special Independent Sort/Merge Specifications 3-35
3.3. EXIT CODES 3-43
3.3.1. Defining Exits 3-44
3.3.1.1. Exiting to Your Own-Code Routines 3-44
3.3.1.2. Exiting to System-Supplied DELETE Routine 3-46
3.3.2. Using Exit Codes 3-46
3321 Input File Label Processing 3-46
3.3.2.2. Input File Processing 3-47
3.3.23. Input File Read Error Processing 3-48
3.3.24. Output File Label Processing 3-48
3.3.2.5. Output File Processing 3-48
3.3.2.6. Write Error Processing for Direct Access Devices 3-49
3.3.2.7. Record Sequencing 3-50
3.3.28. Data Reduction 3-50
3.3.2.9. User-Defined Collation Sequencing 3-51
3.3.3. An Example of Exit-Code Use 3-51
3.3.4. General Purpose Registers 3-556
3.3.5. Providing a Branch for User Own-Code Exits 3-55
3.3.6. Formatting the Exit Parameter List 3-56
3.3.7. Job Control for the Own-Code Routine 3-57
3.4. USING THE MERGE-ONLY PROCESS 3-60
3.4.1. Defining the Merge-Only Operation 3-60
3.4.2. Merge-Only Exit Code for Input File Processing 3-63

3.4.3. Merge-Only Exit Code for Input File Read Error Processing 3-64

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

Contents 3

®

RUNNING YOUR SORT JOB FROM A WORKSTATION

4. INDEPENDENT SORT/MERGE PROGRAM AND CONTROL
STREAM EXAMPLES

4.1.
4.2.
4.3.
4.4,

4.5,

5.1.

5.2.

)

5.3.1.
5.3.2.

6.1.
6.2.
6.3.
6.4

6.4.1.
6.4.2.

6.4.3.

53.2.1.
5322
5.3.2.3.
5.3.24.

6.4.2.1.
6.4.22.
6.4.2.3.
6.4.2.4.

GENERAL

INDEPENDENT SORT/MERGE CONTROL STATEMENT EXAMPLES
JOB CONTROL STREAMS TO PERFORM INDEPENDENT DISK SORTS
JOB CONTROL STREAM TO PERFORM INDEPENDENT TAPE SORTS

JOB CONTROL STREAM TO PERFORM AN INDEPENDENT DEFAULT SORT

PART 3. SUBROUTINE SORT/MERGE

5. SUBROUTINE SORT/MERGE BASIC CONCEPTS

GENERAL
SORT PROBLEM: A SOLUTION

WHAT SORT/MERGE DOES FOR YOU
Software Framework
Subroutine Sort/Merge Phases
Phase O: Sort Initialization and Assignment
Phase 1: Initial Sort
Phase 2: Preliminary Merge
Phase 3: Final Merge

6. SUBROUTINE SORT/MERGE REQUIREMENTS YOU SUPPLY

GENERAL
INITIATING THE OPERATION
DEFINING FILES :

EXPLAINING RUN REQUIREMENTS TO SUBROUTINE SORT/MERGE
Required MR$PRM Parameters
Optional MR$SPRM Parameters
Device Assignment Parameters
Record Definition Parameters
Restart Parameter
Miscellaneous Parameters
MR$PRM for the Disk Sort Program

3-65

4-15

4-18

|
W NN = = =00 0
P WO OO

O)G’)CDO)CPO)O’O’)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 4
SORT/MERGE
6.5. ACTIVATING THE SUBROUTINE SORT/MERGE (MR$OPN) 6-31
6.6. GETTING DATA INTO THE SORT PROCESS 6-32
6.7. PASSING CONTROL TO OUTPUT PROCESS 6-32
6.8. DRAWING DATA FROM THE SORT PROCESS 6-33
6.9. ENDING THE SORT RUN 6-34
6.10. SUBROUTINE SORT/MERGE MACRO PARAMETER USAGE 6-38
6.11. ASSEMBLING, LINKING, AND EXECUTING YOUR PROGRAM 6-39
6.11.1. Assembling the Program 6-39
6.11.2. Link Editing the Program 6-41
6.11.3. Executing the Program 6-41
6.11.4. Typical Subroutine Disk Sort Job Control Stream 6-43
6.11.4.1. Alternate Job Control Stream 6-52
6.11.5. Job Control Stream for Tape Work File Assignment 6-53
6.12. SUBMITTING SORT PARAMETER TABLE ENTRIES VIA THE JOB CONTROL
STREAM 6-53
7. SUBROUTINE SORT/MERGE USER OWN-CODE ROUTINES
71. DEFINITION 7-1
7.2. RECORD SEQUENCE OWN-CODE ROUTINE (RSOC) 7-1
7.3. DATA REDUCTION OWN-CODE ROUTINE (DROC) 7-3
8. SPECIAL SUBROUTINE SORT/MERGE APPLICATIONS
8.1. TAG SORT 8-1
8.2 RESTART FACILITIES 8-2
8.3. MERGE-ONLY FUNCTION 8-2
8.3.1. What Merge-Only Does for You 8-3
8.3.2. Merge-Only Requirements You Supply (MG$REL and MGSRET) 8-6
8.3.3. Assembling, Link Editing, and Executing Subroutine Merge-Only Program 8-15
9. SUBROUTINE SORT/MERGE PROGRAM EXAMPLES
9.1. GENERAL 9-1
9.2 SUBROUTINE TAPE SORT 9-1
9.3. SUBROUTINE TAPE SORT WITH RESTART USING PARAM STATEMENT 9-5

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 5
SORT/MERGE

9.4. SUBROUTINE TAPE SORT USING OWN-CODE ROUTINE 9-8

9.5. SUBROUTINE INTERNAL SORT 9-13

9.6. SUBROUTINE DISK SORT USING CONSOLIDATED DATA MANAGEMENT 9-13

PART 4. SYSTEM/3, 32, AND 34 COMPATIBLE SORT -

10. SYSTEM/3, 32, AND 34 COMPATIBLE SORT BASIC CONCEPTS -

10.1. GENERAL 10-1

10.2. EXECUTION OF THE SORT3 PROGRAM 10-2

10.3. SOFTWARE FRAMEWORK OF SORT3 PROGRAM 10-2

10.3.1. Phase 0: Sort Initialization and Assignment 10-5

10.3.2. Phase 1: Data Input and Internal Sort 10-6

10.3.3. Phase 2: Preliminary Merge 10-8

10.3.4. Phase 3: Final Merge and Output 10-9

10.4. RECORD HANDLING DURING SORT 10-10

10.5. CHARACTERISTICS OF SORTS PERFORMED BY SORT3 PROGRAM 10-11

10.6. RUNNING SORT3 FROM A WORKSTATION 10-13 -
11. SYSTEM/3, 32, AND 34 COMPATIBLE SORT REQUIREMENTS YOU SUPPLY

11.1.

11.2.

11.2.1.
11.2.2.
11.2.3.
11.2.4.

11.3.

11.3.1.
11.3.2.
11.3.3.

11.3.3.1.
11.3.3.2.
11.3.3.3.

11.3.4.

GENERAL

PREPARING JOB CONTROL STATEMENTS FOR YOUR SORT
Identifying and Scheduling Your Job

Assigning Devices to Your Job

Initiating the Execution of the SORT3 Program

Marking the End of Your Job

SORT CONTROL SPECIFICATIONS FOR YOUR JOB
Determining the Sort Specifications Needed
Numbering Your Sort Specifications
Preparing the Sort Specifications

Header Specification

Record Type Specification

Field Description Specification
Defining an Alternate Collating Sequence

111

11-3
11-4
11-4
11-5
11-6

11-6
1-7
11-8
11-10
11-10
11-14
11-21
11-36

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 6
‘ SORT/MERGE

-> 12. SYSTEM/3, 32, AND 34 COMPATIBLE SORT PROGRAM AND
CONTROL STREAM EXAMPLES

12.1. GENERAL 121
12.2. SORT PROGRAM CONTROL SPECIFICATION EXAMPLES 121
12.3. SORT PROGRAM CONTROL STREAM EXAMPLES 12.-6

PART 5. APPENDIXES

A. STATEMENT CONVENTIONS

A1, GENERAL FORMAT RULES FOR SUBROUTINE AND INDEPENDENT

SORT/MERGE A-1
A.2. INDEPENDENT SORT/MERGE CONTROL STATEMENT FORMAT RULES A-6
A.3. SUBROUTINE SORT/MERGE MACRO FORMAT RULES A-8

B. CONTENTS OF SORT PARAMETER TABLE

C. SUBROUTINE SORT/MERGE INTERFACE REQUIREMENTS FOR THE
COBOL PROGRAMMER

D. STANDARD EBCDIC AND ASCII COLLATING SEQUENCES

D.1. GENERAL D1
D.2. EBCDIC/ASCH/HOLLERITH CORRESPONDENCE D-2
D.2.1. Hollerith Punch Card Code D-2
D.2.2. EBCDIC D-2
D.2.3. ASCl D-2
D.3. 0S/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS D-8
D.4. 0S/3 COLLATING SEQUENCE FOR ASCIlI GRAPHIC CHARACTERS D-10
INDEX

USER COMMENT SHEET

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 7
SORT/MERGE

FIGURES
1-1. Modular Structure of OS/3 Sort Programs 1-5
1-2. Input Data Records before Sort -13
1-3 Data Records after Sort -14
2-1 Key, Record, and Block Interrelationship 2-3
2-2 Execution of Independent Sort/Merge 2-4
2-3 independent Sort/Merge Operational Phases 2-6
2-4 Data to Independent Sort/Merge Program (Phase 0) 2-7
2-5 Data Route (Phase 1) 2-8
2-6 Data Route (Phase 2) 2-9
2-7 Data Route (Phase 3) 2-11
3-1. Disk Sort Program Flowchart Using independent Sort/Merge 3-2
3-2. Independent Disk Sort Coding 3-3
3-3. Typical Job Control Stream for an independent Sort/Merge Application 3-12
3-4. Device Assignment Results 3-13
3-5 Copying Corresponding Partitions 3-19
3-6 Copying Specific Partitions 3-20
3-7 Moving Sorted Partitions 3-22
3-8 INPFIL Control Statement Coding Examples 3-26
3-9. Partition Sizing for Single-Partition Output Disk Files 3-33
3-10. Partition Sizing for Multipartitioned Output Disk Files 3-34
3-11. OPTION Control Statement Coding Examples 3-37
3-12. Input File, Unsorted Records (Additional Data Fields Not Shown) 3-38
3-13. Tag-Sorted Output File when ADDROUT=A 3-38
3-14. Tag-Sorted QOutput File when ADDROUT=D 3-39
3-15. Same Work File Device Reserved for Output File Processing 3-40
3-16. Same Input Device Shared between Input File and Sort Work File 3-41
3-17. Coding Example for Using Exit Code E15 3-52
3-18. Writing Merge-Only Records from Two Partitioned Input Files to a Partitioned Output File 3-62
3-19. Typical Job Control Stream for an independent Merge-Only Operation 3-63
5-1. Calling in Sort/Merge Modules (Phase 0) 5-2
5-2. Reading Unsorted Input Records {Phase 1) 5-3
5-3. Sorting Input Records and Building Record Strings {(Phase 2) 5-4
5-4. Writing Sorted Records to the Output File (Phase 3) 5-5
5-5. Data Route (Phase 1) v 5-7
5-6. Subroutine Sort/Merge Operational Phases 5-10
6-1. Disk Sort Program Flowchart 6-2
6-2. Sort Common Module as Initial Interface 6-4
6-3. Data Management Macro Specifications 6-6
6-4. Subroutine Sort/Merge Disk Sort Coding - Part 1 6-7
6-5. Key Field on Byte Boundary 6-9
6-6. Binary Key Field with Bit-Byte References 6-9
6-7. Main Storage Area Allotted by STOR without Number of Bytes Specified 6-13
6-8. Main Storage Area Allotted by STOR Specifying Maximum Number of Bytes 6-14
6-9. Same Work File Device Reserved for Output File Processing 6-18
6-10. Same Input Device Shared between Input File and Sort Work File during Subroutine

Sort/Merge Phases 6-19

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 8

SORT/MERGE

6-11. Input File, Unsorted Records (Additional Data Fields Not Shown) 6-20
6-12. Tag-Sorted Output Files 6-21
6-13. Variable-Length Records and BIN Size 6-21
6-14. ADTABL Parameter Adding Table Entries within the Same Program 6-25
6-15. ADTABL Parameter Referencing Table in Previous Program 6-26
6-16. Subroutine Sort/Merge Disk Sort Coding - Part 2 6-30
6-17. Disk Sort Program Coding 6-35
6-18. User Program Interface with Subroutine Sort/Merge 6-37
6-19. Complete MR$PRM Macro Format 6-38
6-20. Assembly, Linkage Edit, and Execution Run System Flowchart 6-42
6-21. Disk Sort Program Job Control Stream 6-43
6-22. Typical Job Control Stream for a Subroutine Sort/Merge Application 6-50
6-23. Device Assignment Results 6-51
6-24. Disk Sort Program Alternate Job Control Stream 6-52
8-1 Subroutine Merge-Only Operational Phases 8-4
8-2. Initial Comparison for Winner Record 8-6
8-3 End of File Merge-Only Processing 8-6
8-4. Subroutine Merge-Only Program Flowchart 8-7
8-5 Subroutine Merge-Only Program Coding 8-13
8-6. User Program Interface with Subroutine Merge-Only 8-16
10-1. Functional Divisions of a SORT3 Job 10-1
10-2. Execution of SORT3 Program 10-3
10-3. SORT3 Operational Phases 10-4
10-4. Operational Phase O 10-5
10-5. Operational Phase 1 10-7
10-6. Operational Phase 2 10-8
10-7. Operational Phase 3 10-9
10-8. Example of Address Out (ADDROUT) Sort 10-11
10-9. Example of Tag-along Sort 10-12
11-1. Typical Job Control Stream for Executing SORT3 under 0OS/3 Job Control 11-2
11-2. Typical Job Control Stream for Executing SORT3 under 0S/3 Operational Control Language

(OCL) Processor 11-3
11-3. SORT3 Specifications Form 11-9
11-4. Numbering Sort Specifications 11-11
11-5. Header Specification Formats 11-11
11-6. Record Type Specification Format 11-15
11-7. Field Description Specification Formats 11--22
A-1. Statement Conventions Example A-1

C-1. Typical Job Deck for 0S/3 COBOL Program Executing a Sort via 0S/3 Subroutine
Sort/Merge c-4

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Contents 9
SORT/MERGE
TABLES
1-1. File Types Supported in the Data Management Environments 1-7
1-2. Comparison of Data Capacities and Access Speeds for Direct Access Devices -10
1-3. Comparison of Transfer Rates for Magnetic Tape Devices -1
3-1. Data Format Codes 3-17
3-2. Exit Codes: Their Allowable Functions and Associated Phases 3-44
3-3. Branch Table Format 3-56
3-4. Parameter List Format 3-57
6-1 Data Format Codes 6-10
6-2 Summary of Sort/Merge Parameter Usage 6-40
11-1. SORT3 Specifications, Type and Function 11-7
11-2. Conditions Governing SORT3 Specification Requirements 11-8
11-3. Column Summary for Header Specification 11-13
11-4. Column 8 Entries and Their Effect on Factor 1 and 2 Field Lengths 11-17
11-56. Test Relationships for Factor 1 and 2 Comparisons 11-17
11-6. Factor 1 Field Length Requirements 11-18
11-7. Column Summary for Record Type Specification 11-20
11-8. Column Summary for Field Description Specification 11-35
B-1. Sort Parameter Table B-2
C-1 Extended COBOL Interface with OS/3 Subroutine Sort/Merge C-2
D-1 Cross-Reference Table: EBCDIC/ASCII/Hollerith D-3
D-2 0S/3 Collating Sequence: EBCDIC Graphics D-8
D-3 0S/3 Collating Sequence: ASCHl Graphics D-10

PART 1. SURVEY OF OS/3 SORT/MERGE
PROGRAMS

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-1
SORT/MERGE

1. Introduction

1.1. WHY YOU NEED A SORT PROGRAM

Why is it important that you have a sort capability? Well, consider the amount and types of
data contained in your files, and the number of ways in which you use that data. You’ll
probably discover that you seldom use all of the data for every job and that the
organization of the data does not always lend itself to efficient methods of processing
during certain applications. In general, most files contain a collection of data records,
possibly of different types, that have no relationship other than their existence in the same
file. Finding records and specific types of data in your files requires a search, and
searching takes time. However, less time is expended to search an ordered file than to
search an unordered file, and time is directly related to processing efficiency. This is
where a good sort program comes into play. It allows you to select the data you need and
to organize that data according to criteria such as an employee number, customer account
number, an inventory item, or whatever your particular job application requires.
Remember, data is useless for the most part unless it can be related to something real
such as the type of record entries mentioned. A file properly organized and formatted for
the job at hand allows the use of techniques that achieve faster searching of your files,
faster determination of the presence or absence of the information needed, and faster
record retrieval during job execution.

1.2. SORT PROGRAMS AVAILABLE TO THE OS/3 USER

The SPERRY UNIVAC Operating System/3 (0S/3) offers you three alternative methods of
sorting your data files by providing you with a sort package containing the coding for three
sort programs: independent sort/merge, subroutine sort/merge, and IBM System/3, 32,
and 34 compatible sort (SORT3). All three programs are modular in structure and are
capable of operating in a minimum system configuration. Although they produce the same
results, the programs are implemented at different levels of programming, require different
degrees of user program intervention, and permit a varying degree of user control over the
actual sort operation. Each has its distinct advantages and disadvantages.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-2
SORT/MERGE

1.2.1. Independent Sort/Merge

Independent sort/merge is essentially an easy-to-use canned service program. It does not
need to be assembled or linked and requires only a minimum of user programming and
intervention. The program is loaded and directed at run time via sort/merge control
statements you include in the control stream of your job. Because sort/merge control
statements and job control are used to define files, records, and functional structure of the
sort to the system, you have no lengthy register address manipulations to program. You
simply provide the data files, assign your devices, and define the sort or merge-only
procedure you want independent sort/merge to perform.

For the user of indexed sequential access method files (ISAM) and for those who want to
perform specialized functions other than those provided by the program, independent
sort/merge allows you to write your routine (called an own-code routine). Own-code
routines can be used to extend your control over the selection of external formats and
disposition of output records, record sequencing, and data reduction. Own-code routines
are written in basic assembly language (BAL) and must conform to the interfaces of the
sort program and the conventions of 0S/3. Although it supports user own-code,
independent sort/merge does not allow you to indiscriminately pass control to your
routines. Exiting to own-code routines is restricted to specific operational phases of the
sort. The rules for, and restrictions placed on, the use of own-code routines within
independent sort/merge are provided in Part 2.

Independent sort/merge programs can be executed either in a batch environment (on
cards) or in an interactive environment (from a workstation). Although the sample job
control streams for independent sort/merge are shown on cards, they can be keyed in
from a workstation. The rules for preparing your sort control statements and specifications
on cards also apply to workstation keyins. The procedure for executing your sort program
interactively is described in Section 3.

1.2.2. Subroutine Sort/Merge

Subroutine sort/merge, unlike independent sort/merge, is not a canned service program.
It simply provides you with sort modules capable of performing various sorting and
merging functions and allows you to write the sort program you want, using these
modules. This affords you the benefit of exercising greater control over the sort/merge
process and the advantage of flexibility in specifying:

= External input record formats

a Sources of input records

® External output record formats

= Disposition of final output records

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-3
SORT/MERGE

However, greater user control means an increase in user programming. In fact, you will
have to assemble, link, and execute subroutine sort/merge from your job control stream in
addition to programming many of the other activities that are automatically performed for
the user of independent sort/merge. This means you get directly involved with job control,
data management, the assembler, etc. You provide the routines for inputting and
outputting data, and you establish the necessary communication links between your
program and subroutine sort/merge. Your responsibilities will also include the
programming needed for defining files, reserving buffer areas, manipulating register
addresses, and delivering data to and retrieving data from the sort, as well as initiating
and terminating the sort process.

By design, subroutine sort/merge can be incorporated as part of a much larger program
or, if combined with input and output routines, it can be part of a more conventional run
where sorting is the primary objective. Both basic assembly language (BAL) and COBOL
can serve as the medium through which you establish the communications link to
subroutine sort/merge. When BAL is employed, sort/merge and data management macros
are used for defining sort requirements. {See Part 3.) When COBOL is used, you must use
COBOL SORT statements to define the sort. (For more information, see Appendix C.)

1.2.3. System/3, 32, and 34 Compatible Sort (SORT3)

SORTS3, like the independent sort/merge, is also considered an easy-to-use, canned sort
program because it is modular in design and requires a minimum of user programming
and does not need to be assembled or linked to your program. It increases the versatility of
the OS/3 sort package by providing you with a program that is compatible with the IBM
System/3, 32, or 34 sort. That is, SORT3 accepts, with minor differences, all System/3,
32, or 34 sort specifications and offers all of the features of these sorts that are feasible
within the OS/3 operating system. In addition to disk and tape input files, the SORT3
program is capable of processing input data from card files. It also provides you with added
control over the record sequencing, data reduction, and data disposition without the
necessity of reverting to user own-code routines.

SORT3 is designed to operate under control of the OS/3 supervisor and data management
systems. However, it can be initiated through either OS/3 job control language (JCL} or
the operation control language (OCL) processor. Running SORT3 under the OCL processor
does not require you to make any changes to your existing System/3, 32, or 34 sort job
stream; the OCL statements and sequence specification remain the same as though you
were running in a System/3, 32, or 34 environment. Instructions for running SORT3
under OS/3 JCL are provided in Part 4.

Like independent sort/merge, SORT3 gives you a choice of operating either in a batch
environment or interactively from a workstation. The procedure for executing SORT3 from a
workstation is the same as described for independent sort/merge, except that the // EXEC
statement will specify SORT3 instead of SORT. (See 3.5))

A

A

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-4
SORT/MERGE

1.3. CONCEPT OF MODULAR SORT STRUCTURE

In the process of describing the OS/3 sort package, we have referred to the sort programs
as being modular in structure. What do we mean by modular? Modular, as related to the
sort programs, refers to the method used to package the sort/merge programs. Rather
than writing separate sort programs for every conceivable type of sort, we have broken the
sort/merge process into a group of interrelated, yet independent, functional subtasks. The
subtasks are coded as executable routines and provided to you as load modules residing in
the system load library (YLOD). Most load modules are common to all three 0S/3 sort
programs. Their implementation into your job is based on the structure you establish in
your job stream. That is, you define the type of sort you want performed through
parameterized statements in your job control stream, and the sort program will structure
the sort/merge process accordingly. One advantage of modular programming is that it
conserves main storage space. The sort program loads only those modules needed for the
particular sort/merge phase being executed. It also aids in adapting the 0S/3 sort
programs to the requirements of your installation by increasing programming flexibility.

In addition to the sort modules, the OS/3 sort package provides call modules to interface
each sort program with the system. The call modules for the two canned programs,
independent sort/merge and the System/3, 32, or 34 compatible sort, are the SORT and
SORT3 system driver programs, respectively. They both reside in YLOD. The call module
for the subroutine sort is the sort common module (SG$ORT) that resides in the system
object library file (YOBJ). All three call modules perform similar introductory functions,
but each contains elements peculiar to the sort program that it calls.

Figure 1-1 shows the modular structure of the OS/3 sort package. (Note that the load
modules are common to all three sort programs.)

If you wish to copy the OS/3 sort package onto your own user library file, you can do so
by means of the librarian as described in the system service program (SSP) user guide,
UP-8062 (current version). Be sure to include all of the following modules:
m System load library file (YLOD)

— Sort load modules beginning with SM$

— Independent sort/merge system driver program SORT

— System/3 compatible sort system driver program SORT3
a System object library file (YOBJ)

— Subroutine sort/merge sort common module (SG$ORT)
] System macro library file ($YSMAC)

— Five subroutine sort/merge macros beginning with MR$

— Two subroutine merge-only macros beginning with MG$

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-b

SORT/MERGE
SYSRES
0S/3 SYSTEM LIBRARY
INTERFACE SORT LOAD,
MODULES OBJECT, AND MACRO
MODULES
SYSTEM
Il pﬁggﬁm - . INDEPENDENT SORT/MERGE
(SORT) (LOAD MODULES)
0S/3
MAIN
STORAGE SORT
COMMON -
< MODULE [= SUBROUTINE SORT/MERGE
(SGS$ORT) {MACRO, OBJECT, and
LOAD MODULES)
SYSTEM
RIVER
- pF?OGRAM < = SYSTEM/3, 32, or 34
(SORT3) COMPATIBLE SORT
(LOAD MODULES)

Figure 1—1. Modular Structure of 0S/3 Sort Programs

1.4. WHAT OS/3 SORT PROGRAMS CAN DO FOR YOU

In general, the sort programs available in OS/3 assist you in producing a tailored output
file from your existing input data files. Through the sorting and merging techniques
employed in these programs, you can reformat a file (rearrange records and selectively
include or omit specific record types), reformat records, and summarize record fields. The
types of sorts performed include full record sorts, tag sorts, and summary sorts. All three
sort programs can:

® sort records in ascending or descending sequence;

® sort fixed-length or variable-length records;

] sort blocked or unblocked records;

. sort records with noncontiguous key or control fields;

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-6
SORT/MERGE

® recognize key and control fields in the following formats:

— character

— binary (signed and unsigned)

— decimal (signed zoned and unsigned zoned)
— packed decimal

— leading and trailing sign numeric

— overpunched leading and trailing sign numeric
— EBCDIC data in ASCII collating sequence

— floating point {single and double precision)

® sort two or more different characters having the same collating value (multiple
character sort);

B sequence files in accordance to user-specified (alternate) collating sequence;
® perform data validity and data integrity checks during sorting; and
m perform restart procedures for tape sorts.

The output produced from your sort job is file formatted according to your instructions to
the sort program. You are not, however, automatically provided a copy of the output file
produced by the sort. If you want a copy of the sorted file, you can obtain it by running the
appropriate data utility routine, as described in the data utilities user guide/programmer
reference, UP-8069 (current version). The successful execution of your job results in a
terminated normally message printed on your job log and a list of the total number of
records included in the sort and the total number of records deleted during the sort.

1.5. DATA MANAGEMENT CONSIDERATIONS

The data management environment you use governs the types of files that can be sorted
by the sort/merge programs. Table 1-1 lists the file types and shows the data
management environments that support them.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-7
SORT/MERGE

Table 1—1. File Types Supported in the Data Management Environments

Data Management Environment
File Type Consolid;ted Data Mixed Basic Data
Management Only Management Only

MIRAM disk Yes Yes No
IRAM disk Yes Yes Yes
Nonindexed disk No Yes - Yes
SAM disk No Yes Yes
Dam disk No No No
ISAM disk No No No
Card* Yes Yes Yes
Tape Yes Yes Yes
Data set

diskette* Yes Yes Yes
*SORT3 only

For further information on the various file types, refer to the basic data management user
guide, UP-8068 (current version) and the consolidated data management concepts and
facilities, UP-8825 (current version).

1.6. PROGRAM RESTRICTIONS

Variations in a program design, capability, and implementation sometimes restrict the use
of a sort program for specific applications or for specific system configurations. The
restrictions that apply to the sort programs are as follows:

® All Sort Programs

- All sorting is limited to disk-only and tape-only sorts or storage-only sorts.

- The disk work files that you assign to your program must be of the same type,
that is, all type 8430 or all type 8418, and so on.

- If you use interactive services (consolidated data management environment only),
your disk files must be multiple indexed random access method (MIRAM) files.

- Volume of data sorted and merged is limited by the type and physical capacity of
the tape or disk space assigned as auxiliary work storage.

- Indexed random access method (IRAM) files are supported. Input files must have
been created by 0OS/3. The records must be fixed length. The output files are
nonindexed, and all volumes of the output file must be mounted.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-8
SORT/MERGE

® Independent Sort/Merge and Subroutine Sort/Merge

- Input files must be disk only or tape only.

- IRAM files are not supported when the independent or subroutine sort/merge is
used for a merge-only application.

- Auxiliary storage work areas can be disk or tape, but not both. The independent
or subroutine sort/merge is limited to eight disk files or six tape files.

-~ User own-code routines can be substituted for those provided in the independent
or subroutine sort/merge if they satisfy the requirements of the program and
0S/3 programming conventions.

m SORT3
- Input files can be card, tape, disk or diskette.

~ A merge-only application cannot be performed by the SORT3 program.

- SORT3 does not support data reduction or record sequencing and checking
through the use of user own-code exit routines.

- Auxiliary storage work areas can be disk or tape, but not both. SORT3 is limited
to six disk files or six tape files.

1.7. ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM

The careful user should be aware of elements affecting the performance of his sort
program. These elements are:

® Available main storage

] Number and type of assigned auxiliary storage devices

n Record characteristics

u Input and output data file organization

L Options under which the sort program operates

Remember to be explicit in supplying instructions to your sort program and to be careful in
setting up your file and record formats. This results in faster sorts that require less central
processor time and reduces the number of 1/0 operations required. To improve program

efficiency, consider these factors during record and file preparation:

] Record size

n File size

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-9
SORT/MERGE

= Key or control field size

u Number of key or control fields
® Record format

® File format

As a rule, simplification reduces processing and the time needed to perform a function. By
simplifying the key fields and decreasing their number and size, you decrease the number
of comparisons and the length of time needed to make each comparison. Sort performance
improves when input and output records are blocked. Decrease record size and you
increase efficiency because a greater number of records are processed at one time for a
given amount of main storage.

To improve processing speed and efficiency:

® Be generous with storage; assign more than one |/0 device to the sort for auxiliary
storage and more than the minimum amount of main storage.

® Simplify your file and record formats.

= Be explicit in defining your output file requirements to the sort program.

1.7.1. Main Storage Allocation

In general, the more main storage available to a sort program, the more efficient the
performance. It decreases the number of /0 functions because fewer passes are needed
to produce strings of sequenced data for final merging. Therefore, proper consideration
given to these factors when preparing your program reduces processing time and
increases program efficiency. The minimum main storage requirements for your sort
depend upon which method you use:

® |ndependent sort/merge requires 16,000 bytes, plus sufficient main storage for the
larger of either two input blocks or two output blocks. User own-code routines may
require additional main storage.

When performing a merge-only operation, independent sort/merge requires 16,000
bytes, plus sufficient main storage to hold two buffers for each input file and two
buffers for the output file.

s Subroutine sort/merge requires 12,400 bytes. If the record length is greater than 100
bytes, you should allow 12,400 bytes plus five times the input record length. (These
figures do not include the requirements for your program, its preamble, or your own-
code routines.)

m An internal-only sort/merge, performed by independent or subroutine sort/merge
requires sufficient main storage to hold the entire input file, plus eight bytes for each
record, in addition to the preceding requirements.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-10
SORT/MERGE

m SORT3 requires a minimum of 16,000 bytes. However, the more sort specifications
you include in your program the less main storage available for the actual sort. Each
sort specification processed requires 12 bytes of main storage. Also bear in mind that
additional main storage is required when using an alternate coilating sequence (280
bytes), field specifications for packed data (40 bytes each), and include or omit, or
both, specifications for packed data (100 bytes).

Performing large volume sorts is most efficient when 50,000 to 150,000 bytes of main
storage are allocated.

1.7.2. Auxiliary Storage Work Area Assignments

Work areas may be assigned as auxiliary storage on tape or disk, but not both. If disk
storage is used, all work area disks must be of the same general type, i.e., sectorized or
nonsectorized. It is important not to underestimate the amount of auxiliary storage
required. When possible, avoid assigning the bare minimum of auxiliary storage needed;
otherwise, the sort program must perform a greater number of intermediate merge passes
to sequence records. This wastes time and reduces program efficiency. Because the
volume of data processed varies with the quantity and type of magnetic tapes or disks
assigned as auxiliary storage, selecting auxiliary storage devices with faster data transfer
rates results in a faster sort. Data volume doesn’t reduce sort performance.

Disk space is assigned by using standard sort work file names DMOT1,...,DMOn or system
scratch space file names $SCR1,...,$SCRn (in consecutive order) on LFD job control
statements or by using WORK jproc calis. If one work file is allocated, the file name DMO1
or $SCR1 must be assigned; if two are used, the names DMO1 and DM02 or $SCR1 and
$SCR2 must be assigned, and so forth. A maximum of eight disk files may be assigned to
the independent sort/merge and subroutine sort/merge programs. The SORT3 program is
limited to a maximum of six disk files. The amount of disk space requested must be
sufficient to hold the entire volume of data to be sorted, plus 10 to 20 percent additional
space for overhead requirements. (An additional 10 to 20 percent space should be
requested if data involves variable-length records.) In addition, all disk files used in the
sort operation must be the same type; i.e., mixed disk types are unacceptable. Table 1-2
contains a comparison of the direct access storage devices used by the sort programs. Sort
execution time tables that indicate specific performance times of an average sort
application with disk work files are available in the sort/merge programmer reference, UP-
8054 (current version).

Table 1—2. Comparison of Data Capacities and Access Speeds for Direct Access Devices

Disk Subsystem Type

Characteristics

8411 8414 8415 8416 8418-92/93 8418-94/95 8424 8425 8430
Maximum data capacity 7,250,000 29,170,000 33,200,000 28,958,720 28,958,720 57,917,440 58,300,000 58,352,000 100,018,280
{8-bit bytes per disk pack)
Maximum track capacity 3625 7294 13,030 10,240 10,240 10,240 7294 7294 13,030
(bytes)
Minimum cylinder access 25 20 10 10 10 10 10 7.5 7

time (ms)

Average cylinder access 75 60 33 30 27 33 30 415 27
time (ms)

Maximum cylinder access 135 130 60 60 45 60 55 80 50
time (ms}

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-1
SORT/MERGE

When tape is used, the auxiliary storage work areas use labeled or unlabeled tapes. Work
files are assigned by using standard tape sort file names SMO1 through SMO6 (in
consecutive order) on LFD job control statements. A minimum of three tape units, and a
maximum of six, may be assigned. Each tape work file must be large enough to contain all
of the input data; i.e., the volume of data that can be processed in a tape sort is limited to
the capacity of the smallest reel of tape assigned to the sort. The speed (rate) of data
transfer from different tape units varies according to the tape density (number of bits
recorded across the width of the tape) and the number of recording tracks (7 or 9). Refer to
Table 1-3.

Table 1—3. Comparison of Transfer Rates for Magnetic Tape Devices

Magnetic Tape Subsystem Type

Data Transfer Rate UNISERVO 10 UNISERVO 12 UNISERVO 14 UNISERVO 16 UNISERVO 20 UNISERVO VI-C
9-track {phase encoded)
1600 bpi* 40,000 bps 68,320bps** 96,000 bps 192,000 bps 320,000 bps -
9-track {NRZI)
800 bpi 20,000 bps 34,160 bps 48,000 bps 96,000 bps - 34,160 bps
7-track (NRZ1)
200 bpi 5,000 bps 8,540 bps 12,000 bps 24,000 bps - 8,540 bps
556 bpi 13,900 bps 23,740 bps 33,400 bps 66,700 bps — 23,740 bps
800 bpi 20,000 bps 34,160 bps 40,000 bps 96,000 bps - 34,160 bps
* bpi = bits perinch
**bps = bits per second

1.7.3. 1/0 Data File Organization

Data file organization begins with record layouts. If you assume that you have a fixed
number of records, a file of large records takes longer to sort than a file of smaller records.
Also, larger keys and more keys per record increase sort time because lengthier
comparisons are needed.

Record sizes that exceed one-half track in length may require up to 100 percent more
space or twice the normal space calculated by multiplying the number of records to be
sorted by the record size.

1.7.4. Sort Options

When using either independent sort/merge or subroutine sort/merge, there are two
optional parameters that affect performance:

& NOCKSM=D or NOCKSM=T

" USEQ

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 1-12
SORT/MERGE

By specifying NOCKSM=D or NOCKSM=T, you suppress the calculation of a checksum
word for blocks written to disk (D) or tape (T). A checksum word is used to verify the
integrity of data blocks transferred from sort/merge to work files. The calculation and
operation of a checksum word increases overall sort/merge operation time. Similarly, -if
you specify the USEQ optional parameter to indicate a special collation sequence other
than EBCDIC or ASCII, you increase sort/merge performance time.

The SORT3 counterparts to the aforementioned options are the VERIFY OPTION and the
ALT COLLATING SEQ entries in the header specification.

1.8. STRUCTURING YOUR INPUT/OUTPUT DATA

When you first consider the problem of sorting data, you may be faced with a large volume
of information that may or may not be organized into workable units. Dividing information
into records, blocks, and files helps both you and the computer identify where the data is
located and control the changes or manipulations you want performed. After carefully
examining the nature and content of the input data and determining the record layout and
block size that best suits your needs, you must indicate, via your control stream, what size
records and blocks you intend to input for processing and output after the sorting
operation is completed.

Records can be divided into smaller units called fields. Specific fields, called key fields or
just keys in the independent sort/merge and subroutine sort merge program and contro/
fields in the SORT3 program, are used for comparing records to arrange them in the order
you want. To tell the sort program which keys to use, you must specify the size and
position of the keys within records.

Figure 1—2 illustrates what the data contained in key fields of the first two input data
record blocks might look like before the sort:

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

RECORD 1

RECORD 2

RECORD 3

RECORD 4

RECORD 5

RECORD 6

RECORD 7

RECORD 8

RECORD 9

RECORD 10

Key or Control Field

5 4
0 5
6 3
5 4
4 4
5 5
0 0
9 6
0 o
0|0

Figure 1—2.

Input Data Records before Sort

Block 1

Block 2

UP-8342 Rev. 3 SPERRY UNIVAC 0S§/3 1-14
SORT/MERGE

Of course, your volume of data is much larger than the two 400-byte record blocks shown
in Figure 1—2, but the results of sorting the records in ascending order by key fields
should be as shown in Figure 1—3.

Key or Control Field

RECORD 1 o{o|3121]l6)51a4a
RECORD 2 ol 3{fojo}jols|lofo
RECORD 3 1olo]lol7]0fo0]s Block 1
RECORD 4 2]l 0]la)e 3] 8]|4]a4
RECORD 5 413]3lojo}jofjoto
RECORD 6 5{4lalslel|ls |55
RECORD 7 61 8] 7]9|9]|8{6]3
RECORD 8 710}s5)0)s9}]3|o0o}o Block 2
RECORD 9 g8lslsalsls]2to}s
RECORD 10 g9la|le|o]lolo]ls]| a4

Figure 1—3. Data Records after Sort

PART 2. INDEPENDENT SORT/MERGE

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-1
SORT/MERGE

2. Independent Sort/Merge
Basic Concepts

2.1. GENERAL

The independent sort/merge is a self-contained processor that assists you in sorting and
merging, or just merging, data files. You initiate it by writing a job control stream including
some sort/merge control statements and job control statements that you will learn in the
following sections.

Operating in a minimum system configuration, independent sort/merge reads your data
files, sorts and merges the data according to your specifications, then writes the data to
your output file. It does this with almost no user program intervention, if you supply the
data files and specify the sort/merge procedures you want performed. There is only one
exception to this capacity: the OS/3 sort does not support indexed sequential files (ISAM).
Any ISAM files must be read or written via user own-code; thus, if you have indexed
sequential files and use the independent sort/merge, you would enter your own-code
routine via an exit code. (See 3.3.)

In addition to simplifying your sort/merge job execution, independent sort/merge allows
you to write own-code routines to perform specialized functions that it doesn’t provide or
that you want to handle differently.

To use own-code routines, specify to the independent sort/merge:

a the name of your routine;

m the approximate size of its load module; and

® the phase of the sort/merge operation from which it is to be called.

An exit code contained in the control stream automatically calls your routine to perform its
function at the appropriate time. Own-code routines, their associated exit codes, and their
functions are explained in greater detail in 3.3.

A good example of routines you might want to perform differently would be 1/0 file
handling routines. You can program your own input or output file processing routines or
let the independent sort/merge handle one file while your own-code routine handles the

other. Thus, you can have both convenience and fiexibility when you use the independent
sort/merge.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-2
SORT/MERGE

The main advantage in using the independent sort/merge is that you have no assembly or
linkage steps to perform. You simply submit job control and sort/merge control
statements, then execute them. This is a tremendous time and storage saver. To help you
understand the activities performed by the independent sort/merge and the information it
requires from you, we now examine a disk sort problem application.

2.2. SORT PROBLEM: A SOLUTION

A brief narrative outline of the independent sort/merge disk sort program follows. For
details about input and output files before and after the sort/merge operation, refer to 1.4.

SYSTEM: 0S/3

PROGRAM: Independent Sort/Merge Disk Sort

FUNCTION:

1. This program sorts and merges an unordered file of employee records.

2. It is a disk sort.

3. It uses a sort key to sort and merge records.

4. The sort key is the employee number.

5. Employee number is located in the first eight byte positions of each record.
6. Records are sorted in ascending order.

INFORMATION:

1. This program needs one additional work file to perform the sort/merge ($SCR1).

2. Because data volume for the independent sort/merge example (Figures 3—2 and
3—4) is low, the work file is assigned to disk device 50. Usual job situations,
however, call for a larger volume of data. For optimum sort efficiency, a volume
should never hold more than one work file, and input and output files should be
on a separate volume.

INPUT AND QUTPUT:;

1. The program produces an output file of records sorted in ascending order.
2. Both input and output files use fixed-length, blocked records.

3. Each record contains 80 bytes.

4. Each block contains 5 records.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-3
SORT/MERGE

OUTPUT:
The program produces an output file of records sorted in ascending order.

Figure 2—1 summarizes these specifications.

80 bytes = 1 record

400 bytes = 1 block

Figure 2—1. Key, Record, and Block Interrelationship

2.3. WHAT SORT/MERGE DOES FOR YOU

Independent sort/merge is a modular canned program. Each module performs a specific
function when needed by a particular operational phase. After the needed modules are
called by the system driver program, they are loaded into main storage and executed. Not
all called modules are independent sort/merge modules. Some may be your own modules.
To determine which modules to use during certain phases, independent sort/merge
examines your specifications in the sort parameter table that you indicate via sort/merge
control statements and sometimes via job control statements in the job control stream.
Entries in the sort parameter table provide information concerning the type of sort, the
peculiarities of the input files, the final disposition and sequence of the output file,
characteristics of the records to be processed, and control functions. See Appendix B for
the format of the sort parameter table. Figure 2—2 illustrates how the independent
sort/merge operation executes.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-4

SORT/MERGE
MAIN STORAGE S/M MODULE
SYSRES
SYSTEM CALL =
DRIVER PROGRAM YSLOD
(SORT)
INDEPENDENT D
DISKS SO“F:;/SIIUEREGE LOAD S/M
DSP101, 103, 120 - MODULE
© TRANSFER
RECORDS
SORTED
RECORDS
(WORK FILES)
1/0 BUFFER AREA /—-_\
Reap [N DSPITT A

_J ~ INPUT

. ' WRITE ouTPUT
* i FILE

N—

WORK AREA
FOR SORT KEY
FIELD COMPARISONS

TO AUXILIARY STORAGE

Figure 2—2. Execution of Independent Sort/Merge

When you submit your job control stream including the sort/merge control statements to
the system and the EXEC statement is read, the system driver program (SORT) is loaded,
and it calls the first module of the independent sort/merge into main storage from the
system load library file (YLOD). Your previous job control statements include device
assignment sets that tell independent sort/merge where to find the input files, where to
perform the sorting in work files, and where to write the output file. The EXEC statement
signals independent sort/merge to accept your sort parameter table specifications that
provide information concerning sort procedures peculiar to your problem.

Notice there is an interplay of activities between your job control stream and the
independent sort/merge canned program. The entire sort/merge operation centers around
elements you supply and elements that independent sort/merge supplies.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-5
SORT/MERGE

2.3.1. Software Framework

Independent sort/merge and subroutine sort/merge modular organization is basically the
same. Both types of sort/merge consist of two to four operational phases normally
executed in this sequence:

u Sort initialization and assignment (phase O)
n Data input and internal sort (phase 1)

® Preliminary merge (phase 2)

® Final merge and output (phase 3)

In cases where the input file is biased (partially sequenced) or is small enough so that one
final merge produces the required output file, independent sort/merge bypasses the
preliminary merge (phase 2) and proceeds to the final merge and output (phase 3). In a
merge-only operation, phases 1 and 2 are both bypassed. Independent sort/merge
proceeds directly from initialization and assignment to phase 3, where records are read
into main storage, merged, and written to the output file. Figure 2—3 shows the
independent sort/merge operational phases.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3

SORT/MERGE

2-6

START
// EXEC SORT

PHASED
SORTANITIALIZATION
AND ASSIGNMENT

PHASED
DATA INPUT

AND

INTERNAL SORT

INTER-

MEDIATE PHASE 2

Y

ALLOWABLE USER
EXITS TO OWN CODE
ROUTINES

£
€15 See Table 3—2.
E18

PRELIMINARY
. MERGE

WORK
FILE

SEQUENCED DATA STRINGS

Y

ALLOWABLE USER
EXISTS TO OWN-CODE
ROUTINES

E65
E75 See Table 3—2.
E84

NS,
“n, \60(,
B Yo 3’0@
Rop O
L I SORTED DATA FOR

MERGE — ONLY APPLICATION | =

PREVIOUSLY SEQUENCED FILES

FINAL SEQUENCED OUTPUT

LEGEND:

——= QOperational flow
—-— Data flow

—— Exits from sort/merge
program to user-supplied
routines

D Sort/merge operational EOJ
phases

Figure 2—-3.

Independent Sort/Merge Operational Phases

ALLOWABLE USER
EXITS TO OWN-CODE

£31 ROUTINES

E32
E35 See Table 3—2.
€38
E39

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-7
SORT/MERGE

‘ 2.3.2. Sort/Merge Operation Phases

2.3.2.1. Phase O: Sort Initialization and Assignment

Phase O initializes the sort process by reading sort control statements from the job control
stream (Figure 2—4). It validates both the content and syntax of these statements and
then passes control to an assignment segment of the phase. By examining your
parameters, the assignment segment determines the type of sort function to be performed
(tape, disk, internal sort, or merge-only) and caiculates and structures the sort/merge
processor to perform only the sort functions you specify. When the assignment segment
completes its task, phase O passes control to phase 1 or, in a merge-only procedure, to
phase 3.

r——--"-""""""" " “"“"“-"="="="—""7—="~= !
| |
[|
| A |
| |
| |
| READ I) INITIALIZATION SEGMENT
| CONTROL |
I STATEMENTS I
| |
| [
1 f
) _
l—— ————————— F — e — e e e e e e — — - — —:
l |
| |
| i |
| |
! /—\ |
[SYSTEM DRIVER PROGRAM :
| (SORT) SYSRES |
ASSIGNMENT I |
SEGMENT | ___——"_—__*4 |
| LoAD |
SYSLOD |
I INDEPENDENT S/M MODULE
[SORT/MERGE :
| MODULE |
! |
|l l
LEGEND: ! }
. e [S |

Figure 2—4. Data to Independent Sort/Merge Program (Phase O)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-8
SORT/MERGE

2.3.2.2. Phase 1: Data Input and Internal Sort

When phase 1 receives control at the end of phase O, it initiates the input routine and
performs internal sort operations. The input routine can be supplied by independent
sort/merge or by you. If you use your own input routine, you must identify it to the
independent sort/merge via a user exit code (3.3). The input routine opens input files,
validates file labels, and reads data records one at a time before giving them, in successive
order, to the internal sort routine for initial sorting. Internal sorting in main storage
produces strings of sequenced data that are written as intermediate files to auxiliary
storage devices (tape or disk). If the number of data strings produced during the internal
sort are few enough to be merged in one final merge, phase 2, the preliminary merge, is
bypassed and control passes to phase 3 for final merging and output to the output file.
Otherwise, strings of sequenced data must be continuously merged into larger and larger
data strings until only one final merge operation is required to produce an output file
sequenced in the order you specified. Figure 2—5 illustrates data flow from the input file
through internal sort processing.

When the internal sort is completed, control passes to either phase 2 or phase 3.

MAIN STORAGE

INDEPENDENT SORT/MERGE

INPUT FILE OF

EMPLOYEE
RECORDS

READ INPUT

atl—.
-~}

1/0 BUFFER AREA

WRITE ORDERED STRINGS
OF DATA TO DISK WORK FILES

. BUILD SEQUENCED A)
 DATASTRINGS /_

DSP120 DSP101 DSP103
| I
WORK WORK
FILE FILE

LEGEND:

Data flow

Figure 2—5. Data Route (Phase 1)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-9
SORT/MERGE

2.3.2.3. Phase 2: Preliminary Merge

When phase 2 receives control, the module executed for it continuously merges data
strings produced in phase 1. These merge passes occur between auxiliary storage devices,
each successive merge producing longer and longer sequenced data strings. When only
one final merge pass is needed to create a single sequenced string (final output string),
phase 2 passes control to phase 3. Figure 2—6 shows long sequenced data strings ready
to be given to the final merge phase as a result of phase 2 operations.

MAIN STORAGE

INDEPENDENT
SORT/MERGE
MODULE

INTERNAL
WORK AREA
. FOR KEY
. FIELD COMPARISONS

LEGEND:

Data flow

MERGE | STRINGS

DSP120 DSP101 DSP103

Figure 2—6. Data Route (Phase 2)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-10

SORT/MERGE
When you use the input data records shown in Figure 1—2, the record strings produced .
by phase 2 are:
Key Field
FIRST STRING: — e e

RECORD 1 0 0 3 2 1 6 5 a4

RECORD 2 1) 0 0 7 0 0 5

RECORD 3 2 0 4 6 3 8 4 4

RECORD 4 6 8 7 9 9 8 6 3

RECORD 5 9 4 6 0 0 0 5 4

SECOND STRING: Key Field

RECORD 1 0 3 0 0 0 6 0 0
RECORD 2 4 3 3 0 0 0 0 0
RECORD 3 5 4 4 8 6 5 5 5
RECORD 4 7 0 5 0 9 3 0 0
RECORD 5 8 8 8 5 5 2 9 6

THIRD STRING:

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 2-1
SORT/MERGE

2.3.2.4. Phase 3: Final Merge

The final merge phase merges all strings written to the intermediate files into one
sequenced string and passes it either to the independent sort/merge output routine or to
your own output routine. If you provide the output routine, you must identify the exit code
required to transfer control to your routine. User exit codes allowed during this phase are
described in 3.3.2.4, 3.3.2.5, 3.3.2.6, 3.4.2, and 3.4.3. When you use your own output
routine, the final output data string passes to your routine for final disposition. Otherwise,
control passes to the independent sort/merge output routine which opens the output file,
writes the output sequenced data, closes the output file, and returns control to the
supervisor. Figure 2—7 depicts data flow from auxiliary storage devices to the output file

via phase 3.

DSP101

MAIN STORAGE

UNUSED
STORAGE

1O BUFFER
AREA

SORT OUTPUT MODULE
oR .
USER OUTPUT EXIT ROUTINE

FINAL MERGE
PHASE

LEGEND:

D Data flow

Figure 2—7. Data Route (Phase 3)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 2-12
SORT/MERGE

Contents of a file after phase 3 final merge processing would appear as follows:

Key Field

RECORD 1 0 0 3 2 1 6 5 4

RECORD 2 0 3 0 0 0 6 0 0

RECORD 3 1 0 0 0 7 0 0 5

RECORD 4 2 0 4 6 3 8 4 4

RECORD 5 4 3 3 0 0 0 0 0

RECORD 6 5 4 4 8 6 5 5 5

RECORD 7 6 8 7 9 9 8 | s 3

RECORD 8 7 0 5 0 9 3 0 0

RECORD 9 8 8 8 5 5 2 9 6

RECORD 10 9 4 6 0 0 0 5 4

To compare file contents before and after the sort, refer to Figures 1—2 and 1—3.

General-purpose registers and a branch table provide the interface required to link either
independent sort/merge or your own modules with a particular phase of operation. Refer
to 3.3.4 and 3.3.5 for more information about the role general-purpose registers and the
branch table play in independent sort/merge.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-1
SORT/MERGE

3. Independent Sort/Merge
Requirements You Supply

3.1. GENERAL

The independent sort/merge requirements you supply are simple and direct. They consist
of job control statements and a set of sort/merge control statements. The amount of detail
involved in writing the job control stream depends upon the complexity of the sort. In
essence, your sort/merge control statements tailor the available independent sort/merge
modules to suit the requirements of a particular sort/merge operation (disk, tape, default,
etc).

By answering these three questions concerning the independent sort/merge operation,
you can construct the specifications needed for the sort:

1. How is the sort to be performed?
2. What does the sort act upon?
3. Which file is the sort using?

The independent sort/merge control statement, SORT, answers the first question via your
parameters that supply the information needed to sort the records. You can answer
question 2 by writing the RECORD sort control statement. This supplies information
describing the record size and formats used in the sort. Input and output files are defined
by using the INPFIL and OUTFIL control statements. To indicate the end of the sort control
stream, you use the END control statement.

Before we discuss the functions of each sort control statement, let's step through the
flowchart of a typical sort program (Figure 3—1).

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-2
SORT/MERGE

START
(//EXEC SORT)

DEFINE
SORT
OPERATION
(SORT)

DEFINE
LOGICAL
RECORDS
(RECORD)

DEFINE INPUT FILE
TO SORT/MERGE
(INPFIL)

DEFINE
OUTPUT FILE
TO SORT/MERGE
(OUTFIL)

END THE
SORT/MERGE
CONTROL EQJ
STATEMENTS
(END)

Figure 3—1. Disk Sort Program Flowchart Using Independent Sort/ Merge

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-3
SORT/MERGE

3.1.1. Job Control Stream

In order to schedule your program and allocate the system resources to it, you must assign
a name to the job so that the system can distinguish it from other jobs. The job control
statement that identifies the job and signifies the beginning of control information for the
job is the JOB statement. Figure 3—2 shows the entire job control stream required for our
independent disk sort program, including the input data before the sort and the output
data after the sort.

1 10 20

// JOB SRTEXMPL,,7000,9000,2

// DVC 2@ // LFD PRNTR

// DNC 5¢ // VOL DSP@28 // LBL INFILE // LFD SORTINI

// DVC 5@ // VOL DSP@28 // LBL OUTFILE // LFD SORTOUT,,INIT
// DVC 5@ // vOL DSP@28 // EXT ST,C,,CYL,5

LBL $SCR1 // LFD DM@I

'// EXEC SORT

/$

SORT FIELDS=(1,8,CH),DISC=I]

10.| RECORD LENGTH=(88) ,TYPE=F

W ood o FwiNh —
~
~

1. INPFIL BLKS|ZE=4Q@
12.| OUTFIL BLKSIZE=Lgg
13.] END

14,] /%

15.1 /¢

16.| // FIN

Figure 3—2. Independent Disk Sort Coding (Part 1 of 7)

BLK&

g

rr

N

16

11

REC#K BKSZ R(CSZ

1

80

80

80

80

&0

30

80

&0

&0

80

80

80

80

80

&o

80

&0

80

80

8¢

80

e 1

00321654
FFFFFFFF44
0032165400

10007005
FFFFFFFF44
1000700500

68799863
FFFFFFFF44
6879986300

94600054
FFFFFFFF44
9460005400

20463844
FEFFFFFF4G
20466384400

54486555
FFEFFFFF&44
S448655500

03000600
FFFFFFFF44
0300060000

88855296
FFFFFFFF&44
8885525600

43300000
FFEFFFFF&44
4330000000

70509300
FFFFFFFF44
7050930000

DAYTONOH
CCEEDDDC44
4182656800

ceseessl2l

4444444444
0000000000

4L446444404
0000000000

464464464404
0000000000

GLL4L444444
poooooo0o0cCe

LLLLLALLLG
0000000000

GL44444444
0000000000

4444444444
0000000000

LLL44464444
0000000000

4644444444
0000000000

LLa4L4644404
0000000000

44464644444
0000000000

Figure 3—2.

DATA FILE BEFORE SORT

. 1 1

GL44444044
0000000000

LLL4404444
0000000000

GLL4444444
0000000000

LL444464444
0000000000

LA444444404
0000000000

4464646464444
0000000000

L46446446404
0000000000

GL464444404
0000000000

LL444464444
0000000000

LLLL644444
0000000000

44446444444
0000000000

I

46646444444
0000000000

LL44444444
0000000000

444464464444
0000000000

44444644444
0000000000

LLL4LLLLL4
0000000000

L4446444444
0000000000

LL44444444
0000000000

LL44444444
0000000000

LLL4L44444
0000000000

4444444444
0000000000

L6446446444
0000000000

ceveesaedD

LhbbLb644444
0000000000

444444644404
0000000000

444446464444
0000000000

44444464404
0000000000

4444444444
0000000000

LLLb444444
0000000000

46464444444
0000000000

44464444444
0000000000

4644446464444
0000000000

GLLbLb4444
0000000000

44464644444
0000000000

Independent Disk Sort Coding (Part 2 of 7)

cseeeesabl

bLaL66440444
0000000000

LL444446444
0000000000

44444446444
0000000000

46444644444
0000000000

64446444444
0000000000

4646464444
0000000000

44446444444
0000000000

4464444444
0000000000

L4444444044
0000000000

4444444444
0000000000

6444444444
0000000000

ceacesee?l

64444464444
0000000000

GLL4L44644044
0000000000

44444464444
oooooo00000

44446444444
0000000000

GLL4L444444
0000000000

4444444444
0000000000

44444446444
0000000000

44444440444
0000000000

44446444444
0000000000

44444444044
0000000000

4444464444
0000000000

cseseessB0

464466444404
0000000000

44464440444
0000000000

664464444644
0000000000

LL464644444
0000000000

44446444444
0000000000

44446444444
0000000000

444464446444
0000000000

44444440444
0000000000

L444444444
0000000000

L4444644444
0000000000

6444444444
0000000000

£ 'A9Y TYES-dN

IDHIN/LHOS
£/S0 JDVAINN AHY3dS

v-€

o
—
»
3

14

17

19

20

22

RECS

1

BKSZ RCSZ
80 80
80 80
80 80
80 80
80 80
g0 &0
&0 80
50 80
80 80
80 80
80 80

ceeeeeaa10

STLOUISM
EEDDECED4S
2336692400

YORKPEN
EDDDDCD4LSLS
8692755000

NEWARKNJ
DCECDDOD4S
5561925100

MIAMIFLA
DCCDCCDC4S
4914963100

GHO0001
DCFFFFF444
6800001000

MC000004
DDFFFFFF44
4600000400

PA000007
DCFFFFFF&44
7100000700

NJO000012
ODFFFFFF&44
5100001200

FLO00006
COFFFFFF44
6300000600

33655307
FFFFFFFF&44
3365530700

10985469
FFFFFFFF44
1098546900

ceeenssadl

44444446444
0000000000

444444644440
0000000000

bLL4644004004
00000000¢C0

464464444644
0000000000

LLbLbbb4644
0000000000

G4b66046444
0000000000

LLL4460406404
0000000000

444464444644
0000000000

44444446444
0000000000

444446446444
0000000000

4646440444044
0000000000

Figure 3—2.

DATA FILE BEFORE SORT (cont)

B 1

4444444444
0000000000

LLL4L464L4444
0000000000

4446464644644
0000000000

GLL44440644
0000000000

GLL4464444
0000000000

444464464444
0000000000

LL4446444404
0000000000

446466464444
0000000000

66646464444
0000000000

444404444404
000000000C

4644444444
0000000000

ceraaaact

LLLL44L4404
0000000000

LLLLLLL4LLL
0000000000

LL44L444444
0000000000

46644444404
0000000000

LL44444444
0000000000

LLL444446404
0000000000

LLe44444044
0000000000

464444404044
6000000000

4444444444
0000000000

LLL4L444444
0000000000

Leb4044444
0000000000

ceeeseasS0

LA4444464044
0000000000

44444444044
0000000000

44466444444
0000000000

LL44444444
0000000000

44464644444
0000000000

LLLL4L4L4444
0000000000

Lbh6bbb44L4S
0000000000

Le6046444044
0000000000

444644464444
0000000000

bLL6444440
0000000000

LLL446464444
0000000000

Independent Disk Sort Coding (Part 3 of 7)

N 1

GL444446444
0000000000

L4L44446444
0000000000

LLLL46464L444
0000000000

GLALLL4L4L444
0000000000

LL444L464444
0000000000

LLL44464L444
0000000000

L444444444
0000000000

LaL4444444
0000000000

LLL4L44444
0000000000

444464444644
0000000000

LA44644440644
0000000000

44464444444
0000000000

LL4LL4L4444
0000000000

LLLLALLLLL
0000000000

LL44444444
0000000000

4444446404448
0000000000

44644444444
0000000000

44444444404
0000000000

46444644044
0000000000

4444444444
0000000000

GLLL44L4444
0000000000

4444646444
0000000000

cesesasa80

LLL6444444
0000000000

L64644L400404
0000000000

6664444444
0000000000

La464646044044
0000000000

444446440644
0000000000

LLL44L44444
0000000000

LoabbLb464
0000000000

L664646464G
0000000000

4464404464404
0000000000

LL4L4L406404
0000000000

44466404044
0000000000

IDH3N/LHOS
€/S0 JVAINN AHH3dS

€ 'A8Y ZPE8-dN

S-€

BELK# REC# BKSZ RCSZ

23

24

25

[a%]
o

27

2¢

29

30

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

e

98654777
FFFFFFFF44
9865477700

68548833
FFEFFFFF44
6854883300

40675987
FFEFFFFF44
4067598700

77330659
FFFFFFFF44
7733065900

90675004
FFEFFFFF44
9067500400

09436750

FFEFFFFF44
0943675000

11766325
FFFFFFFF44
1176632500

50964097
FFFFFFFF&44
5096409700

ceeessasdl

44444644444
0000000000

L46660064LS
0000000000

44446446444
0000000000

4444444444
0000000000

444464464444
0000000000

44444444644
0000000000

4444444444
0000000000

44444460444
0000000000

Figure 3—2

DATA FILE BEFORE SORT (cont)

. 1

LL44444444
0000000000

46444464444
0000000000

L444444444
0000000000

4444444444
0000000000

4644444444
0000000000

44446444044
0000000000

464464464444
0000000000

4444444444
0000000000

casveseddl

444644446444
0000000000

GL44L444444
0000000000

4644444444
0000000000

4444444444
0000000000

LL444464444
0000000000

44444464444
0000000000

444464464444
0000000000

44444644444
0000000000

-

64444644444
0000000000

464446464444
0000000000

4644444444
0000000000

4444444444
0000000000

6444444444
0000000000

444464444404
0000000000

46446444444
0000000000

6444444444
0000000000

Independent Disk Sort Coding (Part 4 of 7)

cesreesabl

4444444444
0000000000

444464644444
0000000000

4444444444
0000000000

L446444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

ceeeacsall

44644444444
0000000000

4L46444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

LL44444444
0000000000

44464444444
0000000000

444446444644
0000000000

ceseesadB0

44444044444
0000000000

44446444444
0000000000

46444444444
0000000000

b444440444
0000000000

44464444444
0000000000

44444644444
0000000000

44446444440
0000000000

LL44444444
0000000000

€ 'A8Y ZTHE8-dN

JOHINW/LHOS
€/S0 OVAINN AHH3dS

9-€

BELKF

1

ny

RECF

1

N

[aV]

@]

BEKSZ RCSZ
400 80
400 80
400 80
400 80
400 80
400 80
400 80
400 80
460 80
400 &0
400 &0

ceeeeesall

DAYTCNCH
CCEEDDDC44
4183656800

FLOO00O06
COFFFFFF44
6300000600

MIAMIFLA
DCCOCCDCA4S
4914963100

MO00000¢
DOFFFFFF&4L
4600000400

NEWARKNJ
DCECODDD4A4
5561925100

NJOOC0O012
DDFFFFFF44
5100001200

¢x00001
DCFFFFFLLL
6800001000

PAC000O7
DCFFFFFF4L4
7100000700

STLCUISM
EEDDECED4S
2336492400

YORKPEN
EDDCDCD4LA
£€92755000

00321654
FFEFFFFF4L
0022165400

seeeeseadl

LLLLL4L4L444
0000000000

LLLL4L4L4444
0000000000

LLL4444444
0000000000

LLL6444444
0000000000

LLL4464444
0000000000

GLLL4L44444
0000000000

LLLLLLLL4L4
0000000000

LLLLL44L4644
0000000000

LL4L4L46464444
0000000000

L444464060444
gooooo00CCO

LLLLLLLLLY
0000000000

Figure 3—2

DATA FILE AFTER SORT

seessess30

LLLLLL4L4L44
0000000000

LLLLL4L4444
0000000000

4444444444
0000000000

444644640444
0000000000

LL46444444
0000000000

4446460464404
0000C00Q000

Lbahb4b4044
0000000000

LL40644644040
0000000000

LL46464404
00000000CO

LLL4444444
0000000000

LLLL4440644
0000000000

O

44444464444
0000000000

LA464L460L444
0000000000

L4644464444
0000000000

LLLLLL4L444
0000000000

L44464446444
0000000000

LL4464646444
0000000000

LLLL44L4L4L4L4
0000000000

LL4L4L4444044
0000000000

LLLbb0b6b644
0000000000

4664444444
0000000000

LLLLL0646404
0000000000

seseseasd0

GLLL4444644
0000000000

LLL4LL4444
0000000000

44444446444
0000000000

4646444044
0000000000

GLLLL646444
0000000000

LLL64L4644044
0000000000

LeLL44L0440
0000000000

GLb4LL44604
0000000000

LLLL4464040
0000000000

GLLLLL4400
0000000000

LLabb640404
0000000000

Independent Disk Sort Coding (Part 5 of 7)

N 1

GLL4LLL4L4LL
0000000000

LLLLLLL4L44
0000000000

LL44446464644
0000000000

GLLLLLLLLL
0000000000

LL4440444044
0000000000

LLLLLLL4L44
0000000000

LL6L44L4444
0000000000

LLL4L4LL4LLG
0000000000

LL4L4LLLLLLG
0000000000

LhLLbLL4LG
0000000000

4444444040
0000000000

ceeennssl0

L446444444
0000000000

Ga4444646444
0000000000

444444644404
0000000000

GLLL4L44L4444
000C000000

bLLL44640444
0000000000

LLL444L4L444
0000000000

LALLLLLLLL
0600000000

LL4L4464444
0000000000

GLLL4464444
0000000000

LLLLLL4444
0000000000

LL464464044
0000000000

cenessas80

L44440440444
0000000000

4444444440
0000000000

444444644040
00000060000

LLL4444444
0000000000

LL4bL4464404
0000000000

LL4LLL4L444
0000000000

LLbL444404
0000000000

4444400040
0000000000

L44464440444
0000000000

GLLLbbLb44
0000000000

L44L4440044
0000000000

I943INW/1HOS
€/50 JVAINN AYH3dS

€ 'A3Y ZTYES-dN

L€

£ LKa

i~

&

€
-

RECH

2

ta

[P}

vn

EKSZ RCSZ
4C0 &0
4C0 80
400 8¢C
400 30
400 &0
4G0 ¢0
400 80
400 80
400 go
400 8¢
400 30

B K1)

03000600
FFEFFFFF4LA
0300060000

09436750
FFFFFFFF44
0942675000

100070C5
FFEFFEFF4LA

1000700500

109€5469
FFFEFFFF4L4
1098546900

11766325
FFFEFFEF44
1176632500

20463844
FFFFFFFF44
2046384400

33655307
FFFEFFFF44
3365530700

40675987
FFFFFFFF&44
4067598700

43300000
FFFFFFFF44
4330000000

50964097
FFFFFFFF44
5096405700

54486555
FFFFFFFF44
5448655500

ceeavess20

LLL444406044
0000000000

LLLLL44444
0000000000

LLLLLLLLLLG
0000000000

4444464044
0000000000

LL4440600444
0000000000

4444444444
0000000000

LLL4444444
0000000000

L4464646404444
0000000000

444444440400
0000000000

46644644444
0000000000

GLeL64644444
0000000000

Figure 3—2.

DATA FILE AFTER SORT (cont)

tieeeae.30

GLLLLLLL4LL
000C00000C

L44646400644
0000000000

GLhbbasbaibe
0000000000

44444446406
0000000000

LL44444444
0000000000

4444444444
0000000000

LLLbabbL44
0000000000

GLLLLLL4L4L4
0000000000

44464644444
0000000000

4444444444
0000000000

44444444404
0000000000

P

4446440644404
0000000000

LLL44L4L44044
0000000000

LLLLL4L4L44LG
0000000000

LL4444606404
0000000000

LALLLLL404
0000000000

444644606444
0000000000

44440444444
0000000000

LL4L64464444
0000000000

GLL44466444
0000000000

LLL4444444
0000000000

LL444464444
0000000000

-1

GbbbLbanbd
0000000000

Lh4bbLb4444
0000000000

LLL64644044
0000000000

GLa4444440
0000000000

LLLLL44444
0000000000

44444444044
0000000000

LL444440644
0000000000

GL44444444
0000000000

4444644444
0000000000

bh4446444644
0000000000

4444444444
0000000000

Independent Disk Sort Coding (Part 6 of 7)

-1

bLL6L46044044
0000000000

LLLLLL44L4L4G
0000000000

LLLLLLLLLG
0000000000

L4L4L4L4L4440
0000000000

4444440404
0000000000

444406404404
0000000000

4444444444
0000000000

QLALL4L464L444
0000000000

LLLLLLLL4LYG
0000000000

LL44464444
0000000000

44444404404
0000000000

P

LLL4LLLL4L44
0000000000

64444644444
0000000000

LLLLLL4LL44
0000000000

LL6464440404
0000000000

LLLL44644404
0000000000

LL44L4644444
0000000000

LLL4444444
0000000000

LLLLLL4L4L44
0000000000

be44444444
0000000000

L44464644444
0000000000

6444444444
0000000000

ceceeesa80

GLLL440444
0000000000

L44464644444
0000000000

Lab6bL44444
0000000000

L44L4404444
0000000000

LLLLLLLLLYS
0000000000

44464444404
0000000000

L4444444044
0000000000

LL4L444446404
0000000000

GL444440444
0000000000

4444444440
0000000000

444644444044
0000000000

394IN/LH0S
£/S0 JVAINN AHY3dS

€ 'Add ZvE8-dN

8-€

ELK#® REC# BKSZ RCS2

o

2

wn

9]

400

400

400

400

400

400

400

6400

80

80

80

80

8¢

80

B 1

68548833
FFFFEFFFL4
6854883300

68799863
FFFFFFFF44
6879986300

705093200
FFFFFFFF4L
7050930000

77330659
FFEFFFFF44
7732065900

§8855256
FEFFFFFF&44
8885529600

50675004

FFFFFFFF4LL
9067500400

$4600054
FFFFFFFF44
9460005400

98654777
FFFFFFFF&4
9865477700

ceseeess2l

LL444L606640
0000000000

LLLLbLbbhLLY,
0000000000

LLL44L44L444
0000000000

LL64L444444
0000000000

4444464444
0000000000

444440644044
0000000000

LLL464464444
0000000000

Lbbbbbbbby
0000000000

DATA FILE AFTER SORT (cont)

- 1

LA4644640644
0000000000

LLLb6444044
0000000000

LL4646464444
0000000000

LL464664044
0000000000

GLLLL44400
0000000000

44444464444
0000000000

L444444444
0000000000

4444404444
0000000000

P

GL4LLLLLLLYL
0000000000

LLLLLLLLLG
0000000000

LL44446040644
0000000000

4444444044
0000000000

LLL44L404L004
0000000000

LLAL44L4L4L440G
0000000000

LLLLLLLLLYG
0000000000

L444446440448
0000000000

1

LLLLLLL4L44
0000000000

LLLLLLLLLL
0000000000

L4444064444
0000000000

GLLLLLLLLYL
0000000000

464464640644
0000000000

44444446404
0000000000

LhLbbbb64644
0000000000

LLLL444L444
0000000000

Figure 3—2. Independent Disk Sort Coding (Partb 7 of 7)

veeenseabl

46644446404
0000000000

LLL4444444
00000G0000

LLb44LL4L444
0000000000

LLL4L444L444
0000000000

444444444
0000000000

GLLLLLL4L4L4
0000000000

LLLLLLLLLYL
0000000000

LLLLLLLLLG
0000000000

cecesnsatl

44444444
0000000000

LLLL44L4L444
0000000000

Le4L4464606444
0000000000

LLLLLLLL4LL
0000000000

LLLLL0L44644
0000000000

LLLLLLL4L4LG
0000000000

LLL440440644
0000000000

LLLLLLLLLY
0000000000

evessaes80

4446444444
0000000000

LLLLbL4LL4L4
0000000000

LLL4L444444
0000000000

L444444440
0000000000

L664444444
0000000000

LLLL44L4444
0000000000

LLL4L40L4L444
0000000000

L444400004
0000000000

IDYIW/LHOS
€/80 JVAINN AHY3d4S

€ 'A9Y TYE8-dN

6-€

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-10
SORT/MERGE

According to the example job control stream (Figure 3—2), SRTEXMPL is the 8-character
alphanumeric name of your job (line 1). The double comma indicates that the job priority
parameter is omitted. Because it is omitted, the system assumes normal (N) priority. The
numbers 7000 and 9000 are hexadecimal values (equivalent to 28,672 and 36,864 in
decimal) that represent the minimum number of main storage bytes (including job
prologue) required to execute the largest job step of this job and the maximum number of
main storage bytes requested but not required to execute the largest job step of this job.
The number 2 indicates that no more than two tasks can be active at the same time in any
job step. A task is a unit of work that the supervisor schedules.

In order to process incoming information, the system needs hardware devices to handle
the processing, and you must assign devices to various routines in your program. A device
assignment set consists of at least two or as many as five job control statements; i.e., the
DVC and LFD statements or the DVC, VOL, EXT, LBL, and LFD statements. Each device
assignment set begins with a DVC statement that assigns a logical unit number. For
specific 1/0 device numbers, check the list of device types and features in the job control
user guide, UP-8065 (current version).

The first device usually assigned is a printer. It is needed to print messages for operator
action or information. The printer must be assigned the standard name PRNTR on the LFD
statement (Figure 3—2, line 2).

Your next series of job control statements (lines 3 through 10) follow a pattern in
assigning input, output, and sort work files. The pattern of specifications for each file is
the file name within a volume name on a specific device.

FILE NAME

l

VOLUME NAME

!

DEVICE NUMBER

In this example (Figure 3—2), your first DVC statement after the printer device assignment
set assigns device number 50 to your input file named INFILE (line 3). The second DVC
statement assigns the same device to your output file (line 4). Looking at the next DVC
statement (line 5), notice that the same device is assigned for sort work file $SCR1.
Because our input files are very low volume, this is possible; however, under normal
circumstances for larger input volume, you should assign one disk device for each sort
work file and another for input and output files. The sort operates more efficiently when
one work file is assigned per disk. The name $SCR1 is for a temporary work file. Next you
must identify the disk volume to be used. The VOL statement supplies volume serial
numbers that uniquely identify tape or disk volumes (lines 3, 4, and 5). The name you
assign to your input and output file volume is the alphanumeric name DSP028 (lines 3
and 4). For the sort work file volume name, you specify the same, DSP028 (line 5).

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-11
SORT/MERGE

To provide disk space for sort work files and to designate information needed to create
new files or extend existing disk files, you specify the EXT job control statement on the
device assignment sets for each sort work file. Each EXT statement applies to the first
volume specified on the immediately preceding VOL statement (line 5). Notice there is no
EXT statement for either input or output files because these files already exist (lines 3 and
4). The input file was created by the data utility program that used your card input data,
and the output file needed an EXT only on the first run. ST indicates that your work file is
accessed via the system access technique (SAT). The C allocates contiguous space for the
extent; a comma indicates omission of an optional parameter, CYL specifies that space
must be allocated in cylinder; and the 5 indicates the number of cylinders allocated for the
file.

Data management needs to know the file identifiers you designate for your program. Only
one LBL statement is allowed per device assignment set. You specify the disk sort
program’s input file identifier as INFILE (line 3), the output file identifier as OUTFILE (line
4), and the sort work file identifier as $SCR1.

To associate the file information in the job control stream with the data management file
definition, you must specify the standard label names SORTINn and SORTOUT on the LFD
job control statement for each file (lines 3 and 4). Thus your first two LFD statements in the
job control stream would specify the name SORTIN1 for the input file and SORTOUT for the
output file. If more than one input file is being processed, the label names for the files must
be assigned in sequence (SORTIN1 for the first file, SORTIN2 for the second file, etc.). The
number of input files sort/merge can process depends on the type of operation being
performed (sort/merge or merge-only). For sort/merge operations, sort/merge can process
up to nine tape or disk files (SORTIN1 to SORTIN9). For merge-only operations, sort/merge
can process up to 16 tape or disk files (SORTIN1 to SORTINO for the first nine files and
SORTINA to SORTING for the last seven files).

The INIT parameter on the LFD statement for the output file indicates that you want to start
writing at the beginning of the file, overlaying its previous contents. The LFD statements for
sort work files must specify the file names DMO1 through DMO8 or $SCR1 through $SCRS,
in consecutive order, beginning with DMO1 or $SCR1. Thus, the third LFD statement
specifies the name DMO1 (line 6).

An easier way of assigning work areas on disk would be to use WORK job control procedure
(jproc) calls. A WORK jproc automatically generates a device assignment set allocating
system scratch space as a work area. The format for the WORK jproc call needed for our
program is //WORK1. This statement takes the place of lines 5 and 6 in Figure 3—2. The
WORK jproc, used without parameters, allocates 4000 256-byte blocks of scratch space on
your system resident device (SYSRES) or the volume containing your system run library
{YSRUN). You can increase the amount of work space and specify the use of other disk
volumes through optional parameters. For more information about the WORK jproc, see the
job control user guide, UP-8065 (current version).

There are three important features to consider when building an independent sort/merge
control stream.

1. No device assignment or execute statements are needed for the assembler because
independent sort/merge does not need to be assembled.

2. To link file descriptions, LFD job control statements for independent sort/merge
programs must use the standard names SORTINn and SORTOUT.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-12
SORT/MERGE

3. No linkage editor job control statements are required because independent
sort/merge does not need to be linked. Thus, when you execute (EXEC) the sort
program using independent sort/merge, the independent sort/merge interface
module comes from the system load library file (YLOD).

In part 1 of Figure 3—2, beginning with line 8, /$ indicates the start-of-data to the
independent sort. Lines 9 through 13 are your parameters for the sort parameter table
being structured for your disk sort program. Lines 14 through 16 indicate the end-of-data
to the independent sort/merge, the end of job stream, and the end of the card reader
operation. For details about job control and its language, see the job control user guide,
UP-8065 (current version).

Figure 3—3 shows the job control stream required to execute your disk sort program using
independent sort/merge. Figure 3—4 illustrates the results of your device assignment set
specifications. This same job control stream can also be created and executed from a
workstation. (See 3.5.)

Terminates card /! EIN
reader operation
/&

/- Marks the end
of job contro!
stream

The sort/merge
control statements
preceded and fotiowed program control
by data sentinels. statements
(See 3.2.)
/$
// EXEC SORT
Executes the independent sort/merge
// DVC —~ // LFD o) DVC, LFD, LBL (for disk) and LFD
sequence job control statements required to
assign auxiliary storage, if needed.

EXT statement may also be needed
for disk files. (See 3.1.1.)

// DVC — // LFD

séquence DVC, VOL, LBL (for disk} and LFD

————— job control statements required to
assign the output file. EXT statement
is also needed to allocate a new disk

// bvC - // LFD file. {See 3.1.1.}
sequence

DVC, VOL, LBL (for disk) and LFD
job control statements required to
assign the input file. (See 3.1.1.)

(——- Device assignment set for the printer

// DVC — // LFD
sequence

preceding job steps
if any

// JOB name

JOB statement is always required to initiate
the job and assign main storage.

Figure 3—3. Typical Job Control Stream for an Independent Sort/Merge Application

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3

SORT/MERGE

LFD=SORTIN1

LBL=OUTFILE
LFD=SORTOUT

|

EXT=5 cylinders
t BL= $SCR1

VOL=DSP028
LFD=DMO1 p
!

DEVICE=50

-

Figure 3—4. Device Assignment Results

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-14
SORT/MERGE

3.2. SORT/MERGE CONTROL STATEMENTS

Sort/merge control statements are your way of providing the independent sort/merge
with the information needed to sort and merge records of your input files. These
statements, issued from the control stream, define the functional structure of the
independent sort/merge by:

® defining the sort/merge to be performed;

® describing your records, the input and output files, and the sort key fields; and

® specifying any own-code routine that you may use during program execution.

The actual structure of the independent sort/merge is based on the entries contained in
the sort parameter table. The initialization phase of independent sort/merge interprets and
uses the parameters you specify in the control statements to write entries into the sort
parameter table. (See Appendix B.)

Independent sort/merge uses eight control statements:

SORT

Defines the sort key fields, sorting sequence, auxiliary storage, and the number
and size of the input files.

MERGE

Defines a merge-oniy job.
RECORD

Defines the records to be sorted or merged.
INPFIL

Defines the input file to the sort/merge processor and specifies the procedures
for opening and closing input tape files.

OUTFIL

Defines the output file to the sort/merge processor and specifies the procedures
for opening and closing output tapes.

OPTION
Specifies additional options and information to the sort/merge program.

MODS
Required when you include user routines in a sort/merge application. It defines
your program routines with related user own-code exits. Also allows you to

perform automatic data reduction of your files through the use of the system-
supplied data reduction routine (DELETE).

UP-8342 Rev. 3

SPERRY UNIVAC 0S5/3 3-15
SORT/MERGE

END

Indicates that the last control statement of a related group of sort/merge control
statements has been read. This is an optional control statement.

To understand the functions of the sort/merge control statements, we will examine each
of them and relate them to the coding for our disk sort program.

3.2.1. Defining a Sort Operation

The SORT control statement defines a sort operation to independent sort/merge. All
parameters are optional, but specifying your exact requirements will increase program
efficiency. The SORT control statement defines:

m sort key fields and their sorting sequence;

the type and number of auxiliary storage devices needed,

the approximate number of logical records in the input file being sorted; and

® the total number of input files entered into the sort.

The format of the SORT control statement is:

LABEL A OPERATION A

OPERAND

SORT

—

(istrt-pos-11 [lgth-1] [form-1] [seq-1]
[,...,strt-pos-n,lgth-n [form-n] [,seq-n]])

FIELDS=
([strt-pos-ﬂ {,Igth-1] [,seq-1] [,...,strt-pos-n,lgth-n
| [,seq-n]]) ,FORMAT=code
i ALL
,COPY= < (input-file-partition-number-output-file-partition-number
L [,...,input-file-partition-number-output-file-partition-number])

—

DISC
< TAPE =number

WORK
-]

JFILE=number {“

| Nocksm= {?}}

[,SIZE=number]

[SORTP= (output-file-partition-number input-file-1-partition-number
[,...,input-file-9-partition-number])

C (CHPT Provided and accepted for compatibility with
L ’ { CHKPT }] other systems; however, no action is performed
by 0S/3 sort/merge.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-16
SORT/MERGE

The FIELDS keyword parameter may be used to specify up to 12 key fields. The order in
which you specify the key fields is considered by independent sort/merge as the order of
significance. The first key field defined is the major sorting field, the second specified is
the first minor sorting field, and so on.

There are two formats for the FIELDS parameter. One format has four subparameters to
indicate the starting position, length, data format, and sequence for each key field. The
other format has three of the same subparameters plus the FORMAT subparameter. The
data format may vary for each key field or it may be the same for all key fields. If you omit
the FIELDS parameter, one key field is assumed, beginning at byte 1, the same length as
the record up to a maximum of 256 bytes, with character format and ascending sequence.
If you specify FIELDS but omit any of the subparameters, you must retain their associated
commas, except for trailing commas.

The strt-pos subparameter is a decimal number specifying the starting point of a key field
relative to the beginning of the record. All key fields except binary key fields must start on
a full-byte boundary. The key field starting positions for independent sort/merge differ
from the subroutine sort/merge and SORT3 programs in that starting positions are
indicated by byte numbers instead of position numbers. For example, specifying 9 as strt-
pos indicates that the most significant byte of the key field begins at byte 9 of the record
as illustrated by the following diagram:

Key
Field
.
RECORD 1 -
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
LEGEND:
B = Byte

The byte numbering method used by independent sort/merge is compatible with other
systems.

Binary key fields may start on a bit boundary, i.e., a specific bit within a specific byte of a
record. In this case, you specify strt-pos in byte-bit format. Bits are numbered from O to 7.
As an example, assume that key field 1 starts at bit 2 of byte 9 in the record. You would
specify 9.2 for the strt-pos-7 subparameter.

The /gth subparameter is a decimal number specifying the key field length in full bytes
following any of these formats:

n
n.

n.0

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-17
SORT/MERGE

When using binary key fields, specify key field length in byte-bit format. The number of
bits specified must not exceed seven. For example, a key field length of six bits would be
written as 0.6; that is, we have a key field that is six bits long. If the key field extends from
bit 2 of byte 10 through bit 5 of byte 12, the /length subparameter would be specified as
24.

Byte 10 Byte 11 Byte 12

LEGEND:

[] Key field tength

The form subparameter is a code consisting of two or three alphabetic characters
specifying the key field’s data format. If you omit this subparameter, the format is assumed
to be character (CH). This subparameter is used when the data format varies for each key
field. If all key fields have the same data format, you can use the FORMAT=code
subparameter. In this case, the same codes used for the form subparameter are
permissible; however, you must not specify the form subparameter when using the
FORMAT subparameter. The format codes and their maximum allowabile field lengths are
shown in Table 3—1.

Table 3—1. Data Format Codes (Part T of 2)

Format Description Allowable Field Length

AC EBCDIC data in ASCII

collating sequence 1 — 256 bytes
ASL ASCIl numeric data

leading sign 2 — 256 bytes
AST ASCH numeric data

trailing sign 2 — 256 bytes
Bi Unsigned binary 1 bit to 256 bytes

Character (EBCDIC or ASCH) 1 — 256 bytes
CLO Numeric data overpunched

leading sign 1 — 256 bytes
CSL Leading sign numeric 2 — 256 bytes
CST Trailing sign numeric 2 — 256 bytes

4

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-18
SORT/MERGE

Table 3—1. Data Format Codes (Part 2 of 2]

Format
Code Description Allowable Field Length
CTO Numeric data overpunched
trailing sign 1 — 256 bytes
Fl Fixed-point integer 1 — 256 bytes
FL Floating point 1 — 256 bytes
MC Multiple character, user- 1 — 256 bytes
specified collating sequence
PD Packed decimal 1 — 32 bytes
usQ Character, user-specified
collating sequence 1 — 256 bytes
D Zoned decimal 1 — 32 bytes

The seq subparameter specifies the sorting sequence of the key field: A for ascending
order and D for descending order. If omitted, ascending sequence is assumed.

The following coding illustrates FIELDS specifications. Line 1 shows that the first key field
begins at byte 1 of the record, is four bytes long, has a character format, and is to be
sorted in ascending sequence. The second key field begins at byte 10 of the record and is
12 bytes long, has a binary format, and is to be sorted in ascending sequence. Line 2 is
basically the same as line 1 except that the format of both key fields is the same.
Therefore, rather than defining them separately in the FIELDS parameter, they are jointly
defined by means of the FORMAT parameter. The sequence subparameters are omitted,
indicating that the default is to be applied. Remember that a comma must be coded in
place of a missing subparameter except after the last subparameter. Line 3 shows three
key fields with varying data formats. The first two are packed decimal and the third has a
character format. All fields are to be sorted in ascending sequence by default. The
WORK=3 parameter indicates that three work files (either tape or disk) are assigned to the
job. This parameter is optional.

LABEL AOPERAT | ONA OPERAND

1 10 16
1. SORT FIELDS=(1,4,CH,A,18,12,B1,A)
2. SORT FIELDS=(1,4,,18,12), FORMAT=CH

3. SORT FIELDS=(85,3,PD,,88,3,PD,,8,9,CH) ,WORK=3

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-19
SORT/MERGE

Occasionally you may want to use multipartitioned disk files. Partitioning files simplifies
sorting where only certain data are involved in the sort. Suppose you perform a sort on
data records in one partition. At the end of the sort, you still want to write out the other
partitions to the output partitioned file. The COPY keyword parameter is then required to
copy disk input files directly into the output file without becoming involved in the sort. This
keyword parameter may be used only when one input file is specified.

There are two ways to specify the COPY parameter. COPY=ALL specifies that data records
contained in all input file partitions not involved in the sort are to be copied into the
corresponding partitions of the output file.

LABEL AOPERATIONA OPERAND
i 10 16
SORT COPY=ALL

Figure 3—5 illustrates an action caused by this parameter.

INPUT FILE OUTPUT FILE

PARTITION 1 PARTITION 1

COPIED

PARTITION 3

PARTITION 3

COPIED

LEGEND:

Partitions not being sorted

Figure 3—5. Copying Corresponding Partitions

Using the alternate specification, you would indicate the input-file-partition-number and
output-file-partition-number. Each specification is a decimal number from 1 to 7. The first
number identifies the input file partition from which data records are to be copied into the
output file. The second number specifies the output file partition into which the data
records of the previously specified input file partition is to be written. The following coding
and Figure 3—6 illustrate the specifications needed to copy partitions 2 and 4 from the
input file to partitions 1 and 2 of the output file.

SORT COPY=(2.1,4.2)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-20
SORT/MERGE

INPUT FILE OUTPUT FILE

PARTITION 1

COPIED

PARTITION 3 PARTITION 3

COPIED

PARTITION 4

LEGEND:

- Partitions not being sorted

Figure 3—6. Copying Specific Partitions

Unless the sort is small and can be executed in main storage, it requires additional work
(scratch) space to perform its operations. You can choose one of three parameters on the
SORT control statement as the medium used for work area: DISC, TAPE, or WORK. DISC
and TAPE parameters are used to designate those media; however, the WORK parameter
can indicate the number of disk or tape files assigned to independent sort/merge as
working storage.

After designating the medium, you must specify a decimal number indicating the
maximum number of files available to independent sort/merge as working storage. This
number must not exceed 8 for disk files or 6 for tape files. You assign disk and tape files
in LFD job control statements using standard name DMO1,....DMO8 or $SCR1,...,$SCR8 for
disk, SMO1,...,.SMO06 for tape.

If you omit this specification, independent sort/merge determines the number and type of
work files assigned, from the PUBS list generated by job control when devices were
assigned to your job. On the other hand, if you do not assign any work files in the job
control stream, the sort defaults to an internal, main storage sort, even if you include the
DISC, TAPE, or WORK parameter in the SORT control statement.

The following coding illustrates how this parameter could be added to the previously
described FIELDS parameters. In line 1, the WORK parameter indicates three work files
comprising tape or disk. In line 2, the DISC parameter indicates that three disks are to be
used for work files.

LABEL AOPERAT IONA OPERAND
] 10 16
1. SORT FIELDS=(1,4,CH,A,18,12,B1,A) ,WORK=3

2. SORT FIELDS=(1,4,,14,12),FORMAT=CH,D I5C=3

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-21
SORT/MERGE

Independent sort/merge needs to know the total number of input files to be sorted in each
run. The FILE parameter supplies this information. Your data input files are specified as
SORTINT1,...,SORTIN9 on LFD statements in the job control stream. If you have more than
one input file and forget to code the FILE parameter, independent sort/merge will process
only your first input file. The following coding indicates that two input files are to be
entered into the sort.

LABEL AOPERATIONA OPERAND
1 10 16

SORT FILE=2

A checksum word is normally calculated for each data block written to work files (disk or
tape). The checksum is the logical sum of all the data in the block. When the block is read,
the checksum is recalculated and compared with the previous calculation to verify data
integrity. A miscompare indicates a hardware problem because data integrity in reading or
writing data was not maintained. You can bypass this specification by coding the NOCKSM
parameter. This increases overall sort performance. D means omit disk checksum, and T
means omit tape checksum. The foliowing coding indicates that no checksum word is to be
calculated for each data block written to the disk work file.

SORT NOCKSM=D

By specifying the NOCKSM parameter, you can save a considerable amount of processing
time.

Another parameter, SIZE, specifies the approximate number of records in the input file. If
you use the CALCAREA parameter in the OPTION sort control statement, the SIZE
parameter is required for an accurate calculation of optimum sort time and disk work
space. The following coding indicates that 3500 records are contained in the input file. If
you do not specify the number of records in the input file, independent sort/merge
assumes a file size of 25,000 records. You can greatly increase independent sort/merge
program efficiency by supplying this information.

SORT SIZE=3500

Like the COPY parameter, which handles the transfer of disk input file partitions not
involved in the sort to disk output file partitions, the SORTP parameter transfers those
sorted partitions from the disk input file or files to a disk output file partition. The SORTP
keyword parameter is required when the sort/merge operation involves data records read
from or written to multipartitioned disk files. The first keyword subparameter of the SORTP
specifies the output-file-partition-number. This is a decimal number from 1 to 7 that
identifies the specific partition of an output file to which sorted data is to be written.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-22
SORT/MERGE

You may specify up to nine partitioned input files to be read to the sort. The input file
specification format is input-file-1-partition-number [,...,input-file-9-partition-number]. The
FILE keyword parameter in the SORT control statement specifies the exact number of
input files involved in the sort. Each input file may be subdivided into a maximum of seven
partitions. If you are sorting two or more partitioned input files, you can sort only one
partition from each file. There is a way to make independent sort/merge sort more than
one partition of an input file by causing it to treat the additional partition as a partition of a
new file. To do this you redefine as a new input file each additional partition you want
sorted from the original input file by writing an additional job control device assignment
set in your job control stream. The following coding and Figure 3—7 illustrate the use of
SORTP parameter.

LABEL AOPERATIONA OPERAND
] 10 16
SORT SORTP=(3,1,3)

INPUT FILE 1 OUTPUT FILE

PARTITION 1

PARTITION 2

PARTITION 2

-
-

—~~ INPUTFILE2 |}

PARTITION 4 PARTITION 4

PARTITION 3 |
REDEFINED /

FILE 2

// DVC 50 !
// vOL DSP111 !
// LBL MYWORK /
/I LFD SORTIN2 / LEGEND:

Data flow from
sorted partitions

Figure 3—7. Moving Sorted Partitions

The three subparameter numbers on the SORTP parameter indicate that output file
partition 3 receives the sorted data from partitions 1 and 3 of the input file. Although on
the SORTP parameter you may specify more than one input partition from which data is
received for sorting, the. SORTP parameter is not put into effect until you redefine
additional input files in your job control device assignment sets.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-23
SORT/MERGE

3.2.2. Defining Data Records

The RECORD sort control statement defines the type and length of the data records being
sorted or merged. It also allows you to delete records from a file by character identification
and byte position. The RECORD statement is not generally required for disk input files
unless records are variable length or if length modifications are to be made; however, if
you omit the RECORD control statement, you also must omit the INPFIL control statement.
Both must be omitted or both must be present. It is required for tape input files, IRAM
files, and when input processing is handled by a user exit routine (3.3). The RECORD sort
control statement format is;

LABEL A OPERATION A OPERAND
RECORD {LENGTH=(Igth-1 [1gth-2] [Igth-3] [igth-4] [,Igth-5]) }
RCSZ=hytes
,TYPE= {

i BIN={ bytes }]
|’ (min-bytes size-1,freq-11,... size-n freq-1])

[, DEBLANK=(delete-char,byte-position)]

If input is from tape or IRAM disk files, you must include either a LENGTH or RCSZ
parameter.

The LENGTH parameter can list one to five lengths. Each length specifies definite
information about fixed- or variable-length records for input, internal sort, and output
phases of the sort/merge operation. Lgth-1 specifies the decimal number of bytes in the
input record for fixed-length records or the maximum input record length for variable-
length records. (This length must not exceed 32,767 bytes.) Lgth-2 gives the length (in
bytes) of each record released to the internal sort phase for fixed-length records or the
maximum-length record for variable-length records. If omitted, sort/merge assumes the
Igth-1 specification for this parameter. Do not specify /gth-2 for a merge-only operation;
however, you must retain its associated comma. Lgth-3 specifies the output record length
in bytes for fixed-length records or maximum output record length for variable-iength
records written to tape or single-partition disk output files. Output record lengths written
to multipartitioned disk files are specified via the RCSZ keyword parameter in the QUTFIL
control statement (3.2.4). If /gth-3 is omitted, /gth-2 is assumed for sort operations, and
Igth-1 for merge-only operations. Lgth-4 is a decimal number specifying the minimum
input record length in bytes for variable-length records, and /gth-5 specifies the number of
bytes in variable-length input records that appear most frequently in the input file. If you
have variable-length records and omit /gth-4 and /gth-5, this information is obtained from
the BIN parameter. The LENGTH parameter is required for a tag sort (3.2.6).

The other parameter alternative is RCSZ. It is a more general specification that indicates
the record length for fixed-length records or the maximum record size for variable-length
records.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-24
SORT/MERGE

If input is from sequential or direct access disk files and you fail to specify either LENGTH
or RCSZ parameters and also the BLKSIZE parameter on the INPFIL sort control statement,
independent sort/merge defaults to the input record size supplied by data management.

In the following coding, line 1 illustrates the LENGTH parameter for variable-length
records. The maximum input record length is 120 bytes; maximum length of each variable-
length record released to the internal sort is 100 bytes; maximum length of each variable-
length record written to the output file is 30; minimum input record length is 65 bytes;
and the number of bytes in the most frequently appearing records of the input file is 65.
Line 2 illustrates the more general specification of the RCSZ parameter, giving the number
of bytes in each fixed-length record or the maximum record size for variable-length
records.

LABEL AOPERATIONA OPERAND

1 10 16
1. RECORD LENGTH=(12¢,100@,30,65,65)
2. RECORD RCSZ=8¢

The TYPE parameter specifies the type (D, F, or V) of records to be processed by the
independent sort/merge. Specifications in this keyword apply only to tape and single-
partition disk files. Specifications for data record types contained in multipartitioned disk
files are defined in the TYPE keyword parameter of the OUTFIL control statement (3.2.4).
TYPE=D specifies that data records are ASCIl, variable-length records. An F specifies
fixed-length records. This type of data record is assumed by default if you omit the TYPE
parameter. The V specifies variable-length records. The following coding specifies a fixed-
length record format and a record size of 80 bytes.

RECORD TYPE=F,RCSZ=89

To conserve main storage space and provide optimum processing speed, variable-length
records are divided into fixed-length subrecords (fixed-bin sizes). The BIN parameter either
specifies the size of these subrecords or supplies the information needed by independent
sort/merge to calculate the subrecord size. The BIN parameter has two formats. In the
first format, you can specify the decimal number of bytes in each bin. In the second
format, you indicate the minimum number of bytes in a bin (a number large enough to
accommodate all sort key fields within the record plus the 4-byte record length field), the
number of bytes in the most frequently occurring record sizes, and a number specifying
either the percentage or estimated number of the most frequently occurring records. If the
number is less than 100, independent sort/merge assumes this specification to be a
percentage. If 100 or more, the number is assumed to be an estimate of the number of the
specified-size records in the file to be sorted. A maximum of six different variabie-length
record sizes and their frequencies may be specified. The sum of the records specified does
not have to total 100 percent of the file.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-25
SORT/MERGE

Assuming that all five /gth subparameters of the LENGTH parameter were not specified,
the following coding on line 1 specifies the number of bytes in each bin of a variable-
length record. Line 2 shows information you supply to independent sort/merge to
calculate the bin size: minimum of 30 bytes per bin, a most frequently occurring record
length of 80 bytes, and approximately two hundred 80-byte records in the file to be sorted.

LABEL AOPERATIONA OPERAND
1 10 16
1. RECORD BIN=L4g
2. RECORD BIN=(30,8@,200)

You should code the BIN parameter if you use the RCSZ parameter or if you omit the /gth-
4 and Igth-5 subparameters of the LENGTH keyword parameter. |f BIN and LENGTH are
both omitted, independent sort/merge calculates bin size from the /gth specifications of
the FIELDS parameter.

The DEBLANK parameter of the RECORD sort control statement allows you to delete
specific records from the file by defining a specific character and identifying its byte
position. The first subparameter (delete-char) indicates the character that, when found in
the byte specified by the byte-position subparameter, causes the record to be deleted from
the file. The second subparameter (byte-position) denotes the byte position of the character
used as a deletion indicator. In the following coding example, the DEBLANK parameter
specifies that any records with the character A in byte 4 are to be deleted.

RECORD DEBLANK=(A,L4)

3.2.3. Defining the Input File

The INPFIL sort/merge control statement defines your input file to independent
sort/merge and specifies open and close procedures for tape files. It is not required if
input files are on disk, except for IRAM files. The BLKSIZE parameter must be specified for
IRAM files; all other parameters are optional.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-26
SORT/MERGE
LABEL AOPERATION A OPERAND
.
_ bytes
INPFIL [BLKSIZE { (bytes-1[,....bytes-8]) }]

[[BUFOFF=n]

[LBYPASS]

B NORWD
_YRWD

|

F,DATA={

[LEXIT]

_ § factor
['lNTERLACE’ { (factor-file-1[,...,factor-file-n])

[,SKIPBYTE=n]

[rVOLUME={‘(I\?c:I-1 [,...vol-8]) }]

Provided and accepted for compatibility with other
systems; however, no action is performed by OS/3
sort/merge.

Figure 3—8 shows coding examples referenced in the following INPFIL control statement

discussion.
LABEL AQPERATIONA OPERAND
] 10 16
1. INPFIL BLKS | ZE=800
2. INPFIL BLKSIZE=(8EG,12E@,I6(ZQ)
3. INPFIL BUFOFF=3@,DATA=A
L, INPFIL BLKSIZE=880,BYPASS,CLOSE=NORWD
5. INPFIL EXIT

Figure 3—8. INPFIL Control Statement Coding Examples

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-27
SORT/MERGE

The BLKSIZE parameter has two formats, one for sort/merge application and one for a
merge-only application. The first format applies to the sort/merge operation. It specifies
the number of bytes in each input file block when all input file blocks are the same length
or the length of the largest input block when block size varies. If the largest block length is
not specified when variable length blocks are involved, data will be lost through truncation
when the larger blocks are encountered. Line 1 of Figure 3—8 illustrates the first format.
The second format is required in a merge-only operation when input files have different
block sizes. The subparameters (bytes-1/,...,.bytes-8]) specify block size, in bytes, of each
input file in order. For example, the first subparameter (bytes-1) specifies the number of
bytes per block for input file 1, the second subparameter specifies the block size for input
file 2, and so on. If you specify only one block size for an input file (bytes-7 subparameter),
all additional files are assumed to have blocks equa! in length. Line 2 of Figure 3—8
illustrates three input files, each of a different block size. If you omit the BLKSIZE
parameter and also the RCSZ keyword parameter on the RECORD control statement,
independent sort/merge assumes that all input blocks are the size of the first block
processed. You must include the BLKSIZE parameter if you have IRAM files.

When tape data is in ASCll code, your program needs information prefixing each block of
data. This is because ASCIl has a 7-bit character code and there must be a compensation
between ASCIl and EBCDIC character code lengths, as well as space allotted for header
information. The BUFOFF (buffer offset) parameter defines the length of a block prefix
when you use an ASCIl data block structure. You indicate a decimal number from O to 99
on the BUFOFF parameter. Figure 3—8, line 3 shows this parameter as well as the data
format parameter specifying ASCIl code. These two parameters are usually coded together.

Another optional INPFIL parameter is the BYPASS parameter. It has no associated values
but when you specify BYPASS, you direct the independent sort/merge input phase to
ignore all unreadable blocks of data on the input file. Independent sort/merge does not
keep a record of the blocks ignored. Figure 3—8, line 4 shows an 800-block input file for
which all unreadable data blocks are to be ignored by the sort/merge input phase.
There are several rewind methods for closing input tape files:
= CLOSE=NORWD

Does not rewind input tape file on closing.
= CLOSE=RWD

Rewinds the input tape file to load point on closing.
m CLOSE=RWI

or

CLOSE=UNLD

Rewinds with interlock on closing.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-28
SORT/MERGE

To understand when to use these parameters, consider the conditions which require their
use. For example, you would want to specify NORWD if your tape contained multiple files
and you were planning to run successive sorts on file 1 and file 2. You wouldn't return to
the tape load point after sorting file 1 because you want to leave the tape prepositioned on
file 2 for the second sort. Suppose, on the other hand, you wanted to perform two
successive sorts on the same file. After the first sort at the end of the input tape or input
file, the tape needs to be rewound to the beginning of the file for the second sort on a
different key. This situation would require the RWD specification. The rewind with
interlock (RWI) and unload (UNLD) subparameters perform identical functions; i.e., the tape
is rewound with interlock, making those files inaccessible unless the operator intervenes.
The RWI or UNLD is a protective procedure you might specify if you didn't want to risk
writing over the tape files.

If you omit the CLOSE parameter, the default is UNLD. Figure 3—8, line 4 shows that no
rewinding is performed upon closing the input file.

You can specify two data formats: ASCHl or EBCDIC. DATA=A indicates data recorded in
ASCIl; DATA=E indicates data recorded in EBCDIC. EBCDIC is the default assumed if you
omit the DATA parameter. In the coding examples of Figure 3—8, since no data format is
specified, the system assumes a normal default condition of E (EBCDIC) except on line 3,
where ASCII data format is specified.

Instead of letting sort/merge provide the input routines, sometimes you may want to
supply your own routine for reading the input file. The EXIT parameter indicates that you
are providing the entire input routine. EXIT has no associated value, and you may not code
any other INPFIL parameters when you specify it. Figure 3—8, line 5 shows this coding by
indicating that you want to read the input file via your own input routine.

Data management has a special feature called the interlace feature. Interlacing is a
method of recording data records on a disk file so that more than one physical record may
be written or accessed during each disk rotation. To properly access data records from
such an input file, your program must provide the independent sort/merge with the
interlace factor used during file creation. The INTERLACE keyword parameter has two
formats. The first specifies the interlace factor for a single input file, the second for
muitiple input files. The following coding illustrates the two formats:

LABEL AOPERATIONA OPERAND

1 10 16
INPFIL INTERLACE=4
INPFIL INTERLACE=(4,3,4)

The interlace fator is based upon many variables: time frame (internal between data
records); block size (number of physical records per track), disk rotational speed; and 1/0
time (time required to read or write a record). The data management user guide, UP-8068
{current version) provides a detailed explanation of interlace.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-29
SORT/MERGE

Just as there are several rewind methods for closing input tape files, there are two rewind
methods for opening input tape files:

1. OPEN=NORWD specifies no rewind to load point on opening and is used when you
don’t want to begin processing an input file at the beginning of the tape but at some
pre-positional location.

2. OPEN=RWD specifies rewind to load point on opening and is used when you want to
begin processing at the tape load point. RWD is the assumed default if you omit the
OPEN parameter. Thus, for each of the coding lines of Figure 3—8, input tape files
are rewound to load point on opening.

A record block doesn’t always begin with the first data record. The SKIPBYTE parameter
specifies the location of the first data record in relation to the beginning of the block:

LABEL AOPERATIONA OPERAND
] 10 16
INPFIL SKIPBYTE=1g

The n is a decimal number you supply to indicate that the first data record is n+1 from the
beginning of the block; that is, the first n bytes are to be skipped. In the coding example,
the first data record starts at byte 11.

3.2.4. Defining the Output File

The OUTFIL control statement defines output procedures to independent sort/merge. All
parameters are optional. They:

® define block size;
m define rewind alternatives for opening and closing the output file;
® indicate if you are providing the output routine; and

® indicate if a tape mark is to be written before the first data record of each volume in
the output file.

Notice that the following OUTFIL control statement format contains parameters similar to
the INPFIL control statement (3.2.3).

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-30
SORT/MERGE

LABEL AOPERATION A OPERAND
[
[{ bytes
OUTFIL _ < (bytes-partition-1,bytes-partition-2

BLKSIZE= [,....bytes-partition-7])

[, BUFOFF=n]

B NORWD

_JRWD

,CLOSE= .RWI

[,EXITI]

IRAM
JFILTYPE= { NI
i SAM

pones

factor
,INTERLACE=< (factor-partition-1,factor-partition-2
[,...,factor-partition-7])

[LNOTPMK]

NPTN= l number-of-partitions }:‘

[_,OPEN= { NORWD }] @

,_,RCSZ=(max-bytes-partition-1,max-bytes-partition-z :l
L [,...,max-bytes-partition-71)

percentage
,SIZE= ¢ (percentage-partition-1,percentage-partition-2
[,...,percentage-partition-71)

,TYPE=(partition-1-type partition-2-type|,... partition-7-type])

(UOS=(ext-percent-partition-1,ext-percent-partition- 2]
[,...,ext-percent-partition-7])

These parameters are valid for disks as well as tapes. The OUTFIL control statement is not
needed if both input and output files are on disk, the output file is to have the same block
size and record size as the input files, and output is to a single-partition file or a
previously-defined multipartitioned file. If the output file has been predefined, you should
not specify the first optional parameter on the LFD job control statement, indicating the
maximum number of extents in the file. In addition, if you do use the OUTFIL control
statement for a previously defined output file, all file specifications must be the same as
when the file was created, or an error will result.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-31
SORT/MERGE

The BLKSIZE parameter can specify:

® the number of bytes in the output data block written to a tape or single-partition disk
output file (format 1); or

® the number of bytes in the output data blocks written to specific partitions in a
multipartitioned disk output file (format 2).

If block size is needed and you do not specify the BLKSIZE parameter or the RCSZ
parameter in any sort control statement, independent sort/merge assumes a block size
equal to the input block. In the following coding, line 1 indicates that you are writing 400-
byte data blocks to the output file. Line 2 indicates that you are writing output data blocks
to three partitions on a disk output file. The first partition receives 400-byte output data
blocks; the second partition receives 150-byte data blocks; and the third partition receives
640-byte data blocks.

LABEL AOPERATIONA OPERAND
] 10 16
1. OUTFIL BLKS 1 ZE=L @@
2. OUTFIL BLKSI1ZE=(Lgd,150,64Q)
3. OUTFIL BUFOFF=2¢

The BUFOFF parameter is used in the OUTFIL control statement, for specifying the length
of a block prefix for an ASCIl data block structure. This buffer offset specifies a decimal
number from O to 99, indicating a special adjustment for data written in ASCII character
code. The BUFOFF example in line 3 indicates an adjustment of 20 bytes for an ASCII
format file.

The CLOSE parameter specifies rewind alternatives for closing tape output files. All the
specifications are identical to the CLOSE parameter specifications for the INPFIL control
statement (3.2.3): NORWD indicates no rewind on closing a tape output file;: RWD, rewind
on closing; RWI or UNLD, rewind with interlock on closing. Similarly, the UNLD is
assumed by default if you omit the CLOSE parameter on the OUTFIL control statement.

To specify that you are providing your own output routine for writing the entire output file,
write the EXIT parameter. No other parameters may be specified on the QUTFIL control
statement when you specify EXIT. There is no assigned value for the EXIT parameter.

By using the FILTYPE parameter, you can create an indexed random access method,
nonindexed, or sequential access method output file. This parameter may be omitted if the
output file is to be the same type as the input file. IRAM output files are always
nonindexed, even if the input file has an index. If you are operating in the mixed data
management environment with tape input and you want disk output, the disk output file
will always be a nonindexed MIRAM file.

The INTERLACE parameter is required if you want to use the data management interlace
feature to create the data output file for the independent sort/merge. On output
processing, interlacing is a method of recording more than one physical record on a disk
for each rotation. In order to write an interlaced output file, your program must give

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-32
SORT/MERGE

independent sort/merge the interlace factor required to create the file. You specify this
factor number in the INTERLACE parameter. For a more detailed explanation of the
variables used to determine the interlace factor, see the data management user guide, UP-
8068 (current version). Line 1 of the following coding example specifies an interlace factor
of 4 to create a single-partition output file. Line 2 specifies interlace factors for four
partitions of a multipartitioned output disk file. A maximum of seven partition factors may
be specified.

LABEL AOPERATIONA OPERAND
1 10 16
I. OUTFIL INTERLACE=4L
2. OUTFIL INTERLACE=(3,7,4,5)

If you do not want a tape mark written before the first data record of each volume in the
tape output file, you can indicate this via the NOTPMK parameter. It has no associated
values and is coded as follows:

OUTFIL NOTPMK

Omitting the NOTPMK causes a tape mark to be written before the first record of each
volume in the tape output file.

When you plan to use a multipartitioned disk output file, you must specify the number of
partitions to be created in that file via the NPTN parameter. The decimal number you
specify must be from 1 to 7. For example, the following coding indicates that the output
disk file contains four partitions.

OUTFIL NPTN=4

To specify rewind alternatives on opening tape output files, use the OPEN parameter
values identical to the OPEN parameter of the INPFIL control statement; i.e.,
OPEN=NORWD for no rewind to load point and OPEN=RWD for rewinding the output tape
file to the load point. If you omit the OPEN parameter on OUTFIL, independent sort/merge
assumes the RWD specification by default.

In addition to the block size, you can also indicate the maximum number of bytes in
records written to each partition of a multipartitioned disk output file. The RCSZ parameter
does this. You may specify up to seven maximum record sizes — one for each partition.
The following coding example indicates that output records are written to three disk
partitions. Each number within the parentheses represents the maximum number of bytes
for records written to partitions 1, 2, and 3, respectively.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-33

SORT/MERGE
LABEL AOPERATIONA OPERAND
1 10 16
OUTFIL RCSZ=(84,120,205)

If you fail to specify the RCSZ parameter, independent sort/merge supplies the same
number of bytes as the input record for all partitions.

To indicate to independent sort/merge the size of each partition on the output disk, you
use the SIZE parameter. The size specifies a percentage (a 1- or 2-digit decimal number).
There are two formats for the SIZE parameter. The first applies to a single-partition output
disk file occupying less than 100% of the available file space. Suppose you coded:

OQUTFIL SI1ZE=5¢

Your disk partition size would be 50% of the file space available (Figure 3—9).

50% FOR
USE
: AVAILABLE OUTPUT
FILE SPACE

UNUSED SPACE {

LEGEND:

- File space for use

Figure 3—9. Partition Sizing for Single-Partition Output Disk Files

If you do not specify the SIZE parameter, independent sort/merge assumes a single-
partition output disk file occupying 100% of the available file space.

The second SIZE parameter (percentage-partition-1, percentage-partition-2/.,...,percentage-
partition-7]) format can specify file space assigned to specific partitions of a
multipartitioned disk output file. Since a maximum of seven partitions are allowed, you
may specify up to seven percentages on this parameter. The following coding specifies a
disk output file with three partitions. The first partition would use 30% of the output disk
file; the second partition, 45%; and the third partition, 15%. Figure 3—10 shows how your
output disk file space would be partitioned.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-34

SORT/MERGE
LABEL AOPERATIONA OPERAND
1 10 16
OUTFIL SIZE=(39,45,15)

30%

PARTITION-1 {

PARTITION-2 AVAILABLE OUTPUT
FILE SPACE
PARTITION-3 45%
UNUSED
SPACE 156%

@

10%

Figure 3—10. Partition Sizing for Multipartitioned Output Disk Files |

You can tell independent sort/merge the type of record you write to each partition of a .
multipartitioned file via the TYPE parameter. Indicate a record type for each partition by
choosing one of the following specifications:

m D ASCIl variable-length records

. F Fixed-length records

® V Variable-length records

If you omit this parameter, the fixed type is assumed by default.

Suppose each of the three partitions you described in the previous SIZE parameter
example has a different record type: partition-1 contains ASCIl variable-length records;
partition-2, fixed-length records; and partition-3, variable-length records. Your TYPE

parameter would have to include at least the D and V specifications. If you coded a comma

for partition-2 type record as follows, independent sort/merge would supply the default
condition of fixed-length records.

OQUTFIL TYPE=(D,,V)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-35
SORT/MERGE

After you've assigned percentages of disk output file space to specific partitions, your
number of records might increase and you might find that you exceed the amount of
output file space allocated for certain partitions. The UOS parameter solves this problem
by allowing the partitions to be dynamically extended by data management when they
become full. When you submitted an EXT job control statement for your output file, you
specified, in the third parameter, the number of cylinders you wanted for secondary
storage allocated. In the UOS parameter, you indicate what percentage of that amount you
want each partition extended by when it requires more space. You can specify up to 100%
for each partition. If you want to extend a partition by 100%, you can specify 100 for that
partition or you can omit the specification because the default is 100%. If you want to
extend a partition by less than 100, you must specify a percentage for that partition in the
UQOS parameter. Suppose, for example, you specified five cylinders for the third parameter
of the EXT statement. If you have a 3-partition file, you might want to specify 100% for the
first and second partition and 20% for the third partition.

LABEL AOPERATIONA OPERAND
] 19 16
OUTFIiL vos=(1dd,,29)

If the first or second partition becomes filled, data management will extend the size of that
partition by five cylinders. If five additional cylinders aren’t enough, data management will
extend the partition by another five cylinders. If the third partition is used up, data
management will extend it by one cylinder at a time.

3.2.5. Ending Input to Sort/Merge

The END control statement is optionally used to notify independent sort/merge that all
sort/merge control statements have been processed and that program execution may
begin. This control statement has no parameters and is coded as follows:

LABEL AOPERATIONA OPERAND
1 16 16

END

The END control statement is not to be specified when sort/merge specifications are
embedded in a jproc. Otherwise, the run processor mistakenly interprets the END control
statement as the END directive for the jproc.

3.2.6. Handling Special Independent Sort/Merge Specifications

The OPTION control statement consists of optional parameters that supply independent
sort/merge with additional information not applicable to any of the other sort/merge
control statements. Parameters with built-in default conditions automatically become
effective if you omit them. The OPTION control statement format follows:

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 3-36
SORT/MERGE

LABEL AOPERATION A OPERAND
OPTION ADDROUT= { £ }]
-
CALCAREA
' NO
I CALCAREA—{YES}
,CSPRAM= {OPTION }]
i YES

[,KEYLEN=bytes]

[,LABEL=(output,input-1[,...,input-n] ,work)]

,PRINT={ IICAL}:|
NONE

[_ f work-file-name
i RESERV { (work-file-name[,output-file-name])

—

[LRESTART]

i _ f work-file-name

’SHARE { (work-file-name[,input-file-name])}]

[, STORAGE=Dbytes]

[,VERIFY]

[LALTWK]

[, DUMP]

[LERASE]
Provided and accepted for compatibility with

[.ROUTE] other systems; however, no action is performed
by OS/3 sort/merge.

[,SORTIN]

[.SORTOUT]

[, SORTWK]

i

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-37
SORT/MERGE

For compatibility with other systems, OS/3 independent sort/merge accepts but does not
act upon seven parameters: ALTWK, DUMP, ERASE, ROUTE, SORTIN, SORTOUT, and
SORTWK.

You may specify the other OPTION control statement parameters in any order. With this in
mind, we plan to discuss those parameters concerning special specifications for disk
access input records (ADDROUT and KEYLEN), those concerning input, output, and work
files (LABEL, RESERV, SHARE, VERIFY CALCAREA, and STORAGE), and those that affect
external control (CSPRAM, PRINT, and RESTART). Figure 3—11 contains coding examples
pertaining to the following parameter discussion.

LABEL AOPERATIONA OPERAND
] 10 16 72
» I
1. OPTION ADDROUT=D,CALCAREA=YES,CSPRAM=YES
2. OPTION STORAGE=1800@,KEYLEN=1@,PRINT=NONE,VERIFY
3. OPTION STORAGE=180@,LABEL=(S,S,S) ,RESERV=(SMg6) , C
k. SHARE=(SM@1)

Figure 3—11. OPTION Control Statement Coding Examples

The ADDROUT parameter is required when independent sort/merge must perform a tag
sort. The tag sort performed by independent sort/merge is a method of constructing a file
that contains only the direct access addresses, or the addresses and key fields, of the
records in the original file. If you provide the input through an own-code routine, you must
obtain the disk address of each input record and place it into the 10-byte address field of the
new tag sort record. The total length of all key fields per tag sort record, including the 10-
byte record address field, cannot exceed 256 bytes. A tag sort can be performed only when
input is from a nonindexed or IRAM file. Multiple input files cannot be tag sorted. If input is
from an IRAM file, the output of the tag sort will be an IRAM file without an index.

If you specify A on the ADDROUT parameter, the final output is only the direct access
addresses of the input records. D specifies that the output file is to contain both the direct
access addresses and sort key fields of each record. Figure 3—11, line 1, illustrates the
ADDROUT parameter. Figures 3—12, 3—13, and 3—14 show unsorted key fields from four
records and the resulting records returned to your output file after the tag sort. It is not the
intent to show actual record formats in Figures 3—12, 3—13, and 3—14 but to illustrate the
concept of record sorting by key fields and the outputs produced by a tag sort operation.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-38

SORT/MERGE
RECORD MAJOR KEY MINOR KEY
ADDRESS FIELD /' FIELD
\ 540 33 001654

360 04 002992

180 06 007959

001 10 004570

INPUT FILE
(UNSORTED RECORDS)

Figure 3—12. Input File, Unsorted Records (Additional Data Fields Not Shown)

INPUT FILE WORK FILE QUTPUT FILE
(UNSORTED RECORDS) (RECORDS SORTED ON MAJOR KEY FIELD) (RECORD ADDRESSES ONLY)
540 33 001654 540 33 001654 540
360 04 002992 001 10 004570 001
180 06 007959 180 06 007959 180
001 10 004570 360 04 002992 360

Figure 3—13. Tag-Sorted Output File when ADDROUT=A

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-39

SORT/MERGE
WORK FILE OUTPUT FILE
INPUT FILE (RECORDS SORTED ON (RECORD ADDRESSES
(UNSORTED RECORDS) MAJOR KEY FIELDS) AND KEY FIELDS)
540 33 001654 540 33 001654 540 33 001654
360 04 002992 001 10 004570 001 10 004570
180 06 007959 180 06 007959 180 06 007959
—— —nie
001 10 004570 360 04 002992 360 04 002992

Figure 3—14. Tag-Sorted Output File when ADDROUT=D

The following restrictions apply when ADDROUT is used:
1. Output block size must be a multiple of:
a. 10 bytes for ADDROUT=A
b. The sum of the sort key field lengths plus 10 bytes for ADDROUT=D

2. The /[gth-2 and /gth-3 values in the /ength specification of the RECORD control
statement must be used. The /gth-2 value must be 10 bytes plus the sum of the sort
key field lengths. The /gth-3 value must be:

a. 10 bytes for ADDROUT=A

b. 10 bytes plus the sum of the sort key field lengths (after any user modification at
exit E35) for ADDROUT=D

Focusing now on the use of direct access for input records, note that record blocks may be
preceded by a key. This key is used by data management and has an entirely different
purpose from the sort key field represented on the FIELDS parameter of the SORT control
statement. You use the KEYLEN parameter to specify a decimal number of bytes in each
key. Figure 3—11, line 2 shows a KEYLEN parameter coding example. If you do not specify
the KEYLEN parameter, it is assumed that blocks do not have keys.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3
SORT/MERGE

3-40

Files may have standard or nonstandard labels or may be on unlabeled tapes. The LABEL
parameter specifies the label types for output, input, and work files. If files have
nonstandard labels, you must process those labels yourself via the user exits E11 and E31.
The LABEL parameter specifies one of the following 1-character codes describing the label

type for output, input, and work files — in that order:
N Nonstandard labels
S Standard labels

U Unlabeled tapes

You may specify a maximum of nine input files. Standard labels are assumed on all files if
you omit the LABEL parameter. Figure 3—11, line 3 illustrates the coding of a LABEL

parameter, indicating standard labels for output, input,

and work files.

By coding the RESERV parameter, you can reserve for your output data file a tape unit
assigned to the independent sort/merge as a scratch or work file. This allows the tape
unit to function as a work file during the input and intermediate phases of the sort/merge
operation and as the device for the output data file during the output phase. Figure 3—15

illustrates this.

MAIN STORAGE

TAPE DEVICE 92

INDEPENDENT S/M
L INTERMEDIATE
PHASE COMPLETED

WORK
FILE

A

REWIND

REMOVE WORK FILE
TAPE AND MOUNT YOUR
OUTPUT FILE TAPE

MAIN STORAGE

TAPE DEVICE 92

INDEPENDENT S/M
L OUTPUT PHASE

Y

OUTPUT
FILE OF
SORTED
RECORDS

Figure 3—15. Same Work File Device Reserved for Output File Processing

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-41
SORT/MERGE

Independent sort/merge provides messages at the system console instructing you when to
unload the scratch tape and mount the output tape. The work-file-name specifies the
standard sort work file name (SMO1,...,SMO06) of the reserved tape device. The same
device cannot be assigned for both the RESERV and SHARE keyword parameters. The
device is associated with this name through an LFD job control statement. If you use the
second format, you can also specify the output-file-name, and the console messages will
include the name of the output file the operator is to mount.

In like manner, the SHARE parameter specifies the double use of one tape device by input
and work files. It allows a tape unit assigned to the independent sort/merge to be used as
the input device during the input phase of sort/merge operation and as a sort work file
during the intermediate and output phases (Figure 3—186).

MAIN STORAGE TAPE DEVICE 90

INDEPENDENT S/M
= INPUT PHASE
COMPLETED

INPUT
FILE

A

REWIND

REMOVE INPUT FILE
TAPE AND MOUNT YOUR
WORK FILE TAPE

MAIN STORAGE TAPE DEVICE 90

INDEPENDENT S/M
= INTERMEDIATE
= PHASE

_______________ WORK
FILE

L

Figure 3—16. Same Input Device Shared between Input File and Sort Work File

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-42
SORT/MERGE

Messages at the system console tell you when to unload an input tape and mount a
scratch tape. The work-file-name specifies the standard sort work file name
(SMOT1,...,.SMO06) of the shared tape device. The device is associated with this file name
through an LFD statement in the job control stream. if you use the second format, you can
use the /nput-file-name subparameter to specify the name of the input file that is to be
shared, and a console message will be provided telling the operator which input tape to
dismount. Remember to assign different device numbers to your files specified on the
RESERV and SHARE parameters.

For output accuracy, coding the VERIFY parameter specifies that each output block will be
checked to ensure that it is written correctly when the output file is on a direct access
device. The VERIFY parameter has no associated values. Refer to Figure 3—11, line 2 for
an illustration of the VERIFY parameter.

In a disk sort, independent sort/merge can calculate for you the optimum working storage
area required for efficient sorting operations based on the parameters you supply on the
sort control statements. After its calculations, it displays execution information pertinent to
the defined sort/merge operation. It does these calculations when you specify the
CALCAREA parameter. The information it supplies is the estimated sort time in minutes
and the number of cylinders independent sort/merge requires for work space. If you
specify CALCAREA=YES, the sort is executed. If you specify CALCAREA or
CALCAREA=NO, optimum working storage is calculated and execution information is
displayed, but the sort is not executed. If you use the CALCAREA parameter, the SIZE
parameter on the SORT statement should be specified; otherwise, the default value of
25,000 records will be used in calculating working storage area and the result may not be
accurate.

If you want the sort to use less main storage than is allocated in the job region, you can
indicate that decimal number of bytes on the STORAGE parameter. Otherwise,
independent sort/merge obtains this information from your job control statements. Lines 2
and 3 of Figure 3—11 show this parameter coded.

Occasionally, you may need to include certain parameters from the job control stream at
execution time. To tell independent sort/merge you are submitting parameters in this way,
you must use the CSPRAM parameter. The keyword parameters that independent
sort/merge can accept via the control stream at run time are BIN, DISC, NOCKSM,
RESERV, RESUME, SHARE, and TAPE. You enter these keyword parameters via PARAM
job control statements. There are three values to choose from on the CSPARM parameter:
NO, OPTION, or YES. NO specifies that sort/merge parameters will not be accessed from
the control stream. This specification is assumed by default if you omit the parameter. The
OPTION and YES keywords operate identically. The control stream is tested for the
presence of //PARAM statements. If they are present, they are read. See Figure 3—11,
line 1 for an example of this parameter.

When independent sort/merge encounters errors, it provides error messages. These error
messages are interpreted in the system messages programmer/operator reference, UP-
8076 (current version). The way to specify the printing options for these error messages is
the PRINT parameter. There are three values to choose from: ALL, CRITICAL, and NONE. If
omitted, the default provided for the PRINT parameter is ALL, which specifies that all

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-43
SORT/MERGE

messages and control statements are written to the job log for subsequent printing. The
CRITICAL specification indicates that only fatal error messages are to be written to the job
log. NONE specifies that no messages be written to the log. Figure 3—11, line 2 illustrates
this specification. Error messages that are written to the job log also are displayed on the
operator console.

When a tape sort has been interrupted, and you want to restart it at the last recovery
point, you write the RESTART parameter. There are no values associated with this
parameter. The system console interfaces with independent sort/merge by displaying
messages concerning sort/merge execution status, fatal errors, possible recovery
information, and directions for mounting, dismounting, and labeling tapes during the
sort/merge process. The recovery information supplied by the system console is the
recovery point number or last cycle break executed before the sort was interrupted. You
need this number to restart your job. By coding this number on a PARAM job control
statement on the RESUME keyword parameter and by indicating the RESTART and
CSPRAM keyword parameters on the OPTION sort control statement (3.2.6), you can
restart your sort job by resubmitting the job control stream. The PARAM job control
statement must immediately follow the /* statement for the sort/merge control
statements.

The OPTION control statement that you must include for a tape restart is coded in line 1
as follows.

LABEL AOPERATIONA OPERAND
] 10 16
1. OPTION RESTART,CSPRAM=YES

// PARAM RESUME=(PASS,d61)

Line 2 is an example of a PARAM statement that could indicate the recovery number you
just read from the system console.

3.3. EXIT CODES

Independent sort/merge allows you to pass control during certain phases of its operation
to your own-code routines which you write in BAL or to the system-supplied DELETE data
reduction routine. These points where control passes to your routines are called exits.

You use them when you want your own routines to handle input or output file processing,
record sequencing, data reduction, or special collation sequencing or you want
independent sort/merge to perform automatic data reduction. The MODS control
statement (3.3.1) allows you to specify:

= the phase number where your own-code routine or the DELETE routine enters the
independent sort/merge or merge-only operation; and

® the load module name of the routine, its approximate size, and the applicable exit-
code number.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-44
SORT/MERGE

Because each exit allows definite functions to be performed and these functions are
contained only in specific operational phases, your must choose exits and assign them to
the operational phase to which they are associated. Table 3—2 lists exit codes, the
functions each exit code allows you to perform, and the phase associated with each exit-
code number.

Table 3—2. Exit Codes: Their Allowable Functions and Associated Phases

Phase Exit Code Function
1 Et1 Input file label processing
E15 Input file processing:

— Reading input files

— Counting input records

— Inserting records

— Deleting records

— Modifying record size

— Modifying record content
— Modifying control fields

E18 Read error processing
3 E31 Output file label processing
E32 Input file processing during merge-only application:

— Modifying record content
— Modifying control fields
— Record substitution

E35 Output file processing
(Same as for E15 except applicable to ocutput files)

E38 Read error processing during merge-only application
E39 Write error processing for direct access devices
1-3 E65 Record sequencing
E75 Data reduction
E84 User-defined collation sequencing

3.3.1. Defining Exits

3.3.1.1. Exiting to Your Own-Code Routines

In order to activate your own-code routines (load modules), you need a MODS control
statement to define exits. The MODS statement specifies the sort/merge phase in which
your own-code routine load module is to be executed (PHn), the name (module-name) and
approximate length (/ength) of your module, and the exit-code numbers (exit-code) that are
to be used. If you plan to use your own routines in more than one phase, you must specify
each phase individually by repeating the PHn parameter for each phase exiting to your
own-code routines. The three exit codes which apply to all three phases (E65, E75, and
E84) must be specified individually by means of an identifying code that takes the place of
a phase number. Follow the first PHn parameter and subparameters with a comma, a
continuation character coded in column 72 (if necessary), and another PHn parameter with
its set of subparameters defining exits for that phase.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-45

SORT/MERGE
The MODS control statement format is:
LABEL AOPERATION A OPERAND
MODS PHn={module-name/[,length] ,exit-codel,...,exit-code])

[,...,PHn=(module-name[length] .exit-codel,... exit-code])]

You must always code the phase number PHn, module-name, and exit-code; however, the
length subparameter is optional. You can choose from the following decimal numbers
specifying the sort/merge phase in which your own-code routine is to execute or
identifying a routine that is executed during all phases.

n Description

1 Phase 1 (input-internal sort)

3 Phase 3 (final merge-output)

6 All phases (record sequencing routine)

7 All phases (data reduction routine)

8 All phases (user-defined collation sequencing)

The module-name subparameter may contain up to eight characters; the first character
must be alphabetic. The name you specify is the name of your own-code routine’s load
module. Module /ength specifies the number of decimal bytes in the load module. If you
omit the /ength subparameter, independent sort/merge obtains the length from the load
module header record. Exit-code specifies the exit code numbers (i.e., E11, E15) listed as
subparameters on the phase to which they apply. You format the MODS control statement
according to the routines you want to use during sort/merge operations; for example, if
you're going to provide your own input file label processing routine and input file reading
routine, you format the MODS control statement to reflect the exit codes required for input
label (E11) and input file (E15) processing (line 1).

LABEL AOPERATIONA OPERAND
1 10 16 72
. — -
s 5
1. MODS PH1=(PHASE1,385@,E11,E15), C

PH3=(PHASE3,270%,E31,E35)

Since both exits pertain to data input phase 1 of sort/merge, you indicate PH1 (line 1). In
addition, you specify the name of your own routine’s load module (PHASE1) and the
approximate number of bytes (3850) required for your load module. Line 2 illustrates the
continuation of phase specifications. Here, you specify that your routine’s load module
named PHASE3 contains 2700 bytes and is to receive control during phase 3 of the
independent sort/merge execution via exits 31 and 35. These exits process output file
labels and read output files.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-46
SORT/MERGE

3.3.1.2. Exiting to System-Supplied DELETE Routine

A special format of the MODS control statement is provided to allow you to exit to a
system-supplied data reduction routine called DELETE. The DELETE routine is supplied as
a load module in the system load library (YLOD) and, when activated, automatically
deletes duplicate records from your files. (See 3.3.2.8.) Defining the exit for the DELETE
routine is the same as that for exiting to your own-code routines (3.3.1.1), except that you
must use the system name DELETE when specifying the name of the load module.

The MODS control statement format for automatic data reduction is:

LABEL J A OPERATION A l OPERAND

l MODS] PH7=(DELETE [, length] ,E75)

3.3.2. Using Exit Codes

Independent sort/merge can exit to your own-code routines only during the phases you
specify in the MODS control statement. Independent sort/merge passes control to your
own-code routine via a branch table and general registers. When the exit is reached,
register 15 is loaded with the address of the first location of the exit routine load module,
which must be the branch table. This branch table must be covered by specifying register
15 as the base register. Before your routine assumes control from independent
sort/merge, you must save certain register contents. (See 3.3.3.) Table 3—2 heips to
categorize exit codes within their related phases. The following discussion describes the
functions that your own-code routines are permitted to perform.

3.3.2.1. Input File Label Processing

When you specify nonstandard labels for tape input files on the OPTION control statement,
you must enter that tape input file label processing routine via exit code E11. E11 enables
independent sort/merge to gain entry to your own-code nonstandard label processing
routine.

If you omit exit 11 (you do not specify E11 on the MODS control statement) for input files
that contain nonstandard or user labels, the labels are bypassed. However, you must
specify the input files as unlabeled (LABEL=U) in the OPTION control statement. Exit code
E11 enables the input files to interface with your own-code routine. This exit is essentially
the same as the LABADDR keyword parameter routine in DTF mode, or the ULABEL
keyword parameter routine in consolidated data management mode. For more information
on the use of these routines, basic data management users should consult the basic data
management user guide, UP-8068 (current version); consolidated data management users
should consult the consolidated data management concepts and facilities, UP-8825
{current version).

UP-8342 Rev. 3 SPERRY UNIVAC 05/3 3-47
SORT/MERGE

In the use of register 15, there is a conflict between sort/merge exit conventions and data
management. The sort/merge conventions require that register 15 be used as the base
register for each exit module, whereas data management requires that register 15 contain
the DTF address for the label processing routine in DTF mode. For exit 11, register 1 will
contain the address of the DTF or, if consolidated data management is being used, the
CDIB. In DTF mode, after the user has established a new base register other than 15, the
following instructions must be issued:

LR 15,1 Puts DTF address in 15

L 1,176(0,15) Puts buffer address in 1
This will set up the registers so that the LBRET macros can be issued. The consolidated
data management user label routine must be executed without adding this code.
3.3.2.2. Input File Processing

Input file processing (exit code E15) enables independent sort/merge to enter your own-
code routine to perform any of the following functions during phase 1:

® Read input files

8 Count input records

= Insert records

& Delete records

n Lengthen or shorten records

m Modify record contents or control fields

When you specify E15 on your MODS control statement, exit code E15 receives control
each time an input record passes to internal sort phase 1. Since your routine may perform
a number of different functions on an E15 exit code, you must tell the sort what you
decide to do after the exit occurs. You supply this information to the sort by placing an
action code in the action word, a 4-byte area in main storage that independent sort/merge
sets up when it detects the EXIT parameter on the INPFIL sort control statement. You may

place any of the following action codes in the action word.

Action Code Action Taken

0 Accept the record by modifying it prior to entering the internal sort or
by taking no action

4 Delete the record from the sort
8 Request no return to exit code (E15 in this case) because exit use is
completed

12 Create a new record and insert it into the sort

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-48
SORT/MERGE

The action word is a 1-word (4-byte) entry in the parameter list, a table built by
independent sort/merge to specify location of records and information affecting record
processing (3.3.6).

3.3.2.3. Input File Read Error Processing

By specifying exit code E18 on the MODS control statement, you enable independent
sort/merge to enter your own-code read error processing routine for the input file.
Independent sort/merge takes the address of your error routine and places it in the sort
input DTF. This supplies to data management the ERROR keyword parameter that names
your error handling routine, and you return to the sort via the BR 14 instruction. For more
information about the ERROR instruction, refer to the data management user guide, UP-
8068 (current version). You write only the BR 14 instruction to return to the sort.
Independent sort/merge dynamically activates the ERROR keyword parameter. If you
specify the BYPASS parameter on the INPFIL control statement and exit E18 on the MODS
control statement, the E18 specification overrides the BYPASS.

3.3.2.4. Output File Label Processing

The exit-code E31 specification on your MODS control statement enables independent
sort/merge to enter your own-code nonstandard label processing routine for the output
file. Functionally, it corresponds with the E11 exit for input files and interfaces the output
file via the LABADDR data management DTF keyword parameter and the LBRET
imperative macro instruction. As in exit 11, there is a conflict with the use of register 15.
(See 3.3.2.1.) The user must establish a new base register and then load registers 15 and
1 as required for exit 11.

In consolidated data management, there is no register conflict. Register 1 will contain the
address of the CDIB as required by the consolidated data management user label routine.
Refer to the consolidated data management concepts and facilities, UP-8825 (current
version).

3.3.2.5. Output File Processing

Exit code E35 enables independent sort/merge to enter your own-code routine for output
file processing during phase 3. Any of the following functions may be used in your own-
code output routine;

u Write output records

] Count output records

u Insert records

= Lengthen or shorten records

= Modify record contents or control fields

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-49
SORT/MERGE

By specifying exit code E35 on your MODS control statement, you indicate that E35 should
receive control each time an output record passes to final merge phase 3. Like exit code
E15 for input file processing, there are a number of possible functions your own-code
output routine can perform. Thus, you must tell the sort what you decide to do after exit
E35 occurs. To supply this information, you place action codes in the action word of exit
code E35 in the exit parameter list. (The action word is a 1-word (4-byte) field identified by
the parameter list; a table built by independent sort/merge to specify the location of
records and information affecting record processing. Additional details concerning
parameter list format are given in 3.3.6.) The action codes allowed are:

Action Code Action Taken

0 No change

4 Delete the record from the sort

8 Request no return to exit

12 Insert and accept a new record for output

Action codes 4 and 8 are valid only when the EXIT parameter is specified in the QUTFIL
control statement (3.2.4). If the EXIT parameter is not specified, then all of the action
codes listed are valid until sort/merge passes the last record to the exit 35 routine. At this
time, 8 and 12 are the only valid action codes.

After the last record is written, control is passed to the end-of-file routine. In this case, the
first entry in the exit parameter table is O contained in a 1-word (4-byte) field which
normally contains the address of the next record to be sent to the output buffer.

Exit code E35 is not valid in a merge-only application.

3.3.2.6. Write Error Processing for Direct Access Devices

There is no recovery from this type of error; however, you may supply your own-code
routine to handle a direct-access-device writing error by writing an E39 exit code on your
MODS control statement. To interface with the output file, your own-code routine uses the
same approach as data management error handling via the ERROR keyword parameter of
the DTF declarative macro and the BR 14 instruction. The ERROR keyword parameter
specifies the name of your error processing routine, and the BR 14 instruction returns
control from your error processing routine to the independent sort/merge. Refer to the
data management user guide, UP-8068 (current version) for more information about the
ERROR keyword parameter. You write only the BR 14 instruction. Independent sort/merge
dynamically activates the ERROR keyword parameter by taking your error processing
routine address and placing it in the sort input DTF.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-50
SORT/MERGE

3.3.2.7. Record Sequencing

Exit code E65 is used during phases 1, 2, and 3 for entering your own-code record
sequencing routine from independent sort/merge. Independent sort/merge enters your
routine each time two records are compared, to determine which will be sorted first. You
decide the record sorting sequence in your routine.

The first instruction in your own-code routine must be the USING assembler directive,
assigning register 15 as a base register. Your program receives the addresses of the two
records to be compared in register 11 and 12. For variable-length records, the addresses
supplied are those of the first bin of each record. The 4-byte record length field is part of
the first bin. You pass the result of the comparison to independent sort/merge via
condition code settings. If the record for the address in register 11 is first, the condition
code should be set to low (cc=1). If the record for the address in register 12 is first, you
set the condition code to high (cc=2). If the sequence of the two records is arbitrary, you
set the condition code to equal (cc=0). Control is returned to independent sort/merge via a
branch to register 14.

3.3.2.8. Data Reduction

When independent sort/merge encounters records with equal keys, it normally retains
both records in an arbitrary sequence. If you want to eliminate duplication in your files,
you can do so by using the system-supplied DELETE routine or by using exit code E75 to
enter your own-code data reduction routine. To use the system-supplied automatic data
reduction routine, include the following version of the MODS control statement in your
control stream.

MODS PH7=(DELETE,,E75)

When processed, this MODS statement causes independent sort/merge to load and
execute the load module for the automatic data reduction routine called DELETE. The
routine reduces data by deleting duplicate records whenever they are encountered. You
can use the DELETE routine for input files that contain either fixed-length or variable-
length records but not both types. In your own-code routine, each time two records with
equal keys are processed, you may:

m delete one of the duplicate records;

® combine data contained in the duplicate records to create a new record; or
N use a combination of retaining, deleting, and combining duplicate records.

The first instruction in your own-code routine must be the USING assembler directive
specifying register 15 as a base register. Independent sort/merge places the addresses of
the two records with equal keys in registers 11 and 12. if one of the records is to be
deleted, normally the address of the record to be retained is in register 11 and the deleted
record address is in register 12, unless in your routine you overlay the address in register
11, thereby forcing the deletion of the address in register 11 and saving the address in
register 12, Your program returns control to independent sort/merge four bytes beyond
the address specified in register 14.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-51
SORT/MERGE

If you want to save the contents of both records, control must be returned to independent
sort/merge at the address specified in register 14.

3.3.2.9. User-Defined Collation Sequencing

Exit code E84 is used whenever you want to specify an alternate collating sequence to the
one supplied by independent sort/merge or to sort two or more different characters that
have the same collating values. To determine which operation you wish to perform, E84 is
used in conjunction with the character format code (USQ and MC) specified in the FIELDS
keyword parameter of the SORT and MERGE control statements. Because both USQ (user-
specified collating sequence) and MC (multiple character) specifications use the E84 exit
code, they are mutually exclusive within a sort or merge operation. The distinction between
the two is that the USQ specification for character code format requires you to provide
independent sort/merge with two 256-byte translation tables at exit code E84 when control
is passed to your own-code routine. The first table (input) must translate and collate the
input record key fields, and the second table (output) must return the fields to their original
format. You only require one table, the input table, when you use the MC specification. The
translation table is used only for comparison purposes and not to change the actual data in
the record. {See Appendix D for OS/3 EBCDIC and ASCIl standard collating sequences.)

3.3.3. An Example of Exit-Code Use

Figure 3—17 finishes the discussion of exit codes by illustrating the coding required to
build a branch table, set up a base register, save and restore general registers, and provide
a return address to independent sort/merge. It also shows how you can write your own
input/output routine. The exit code used in this example is E15 as specified by the MODS
control statement (line 101). This example modifies the record contents (line 57).

Notice the DTF keyword parameters, ERROR (line 19) and EQOFADDR (line 20), which give
data management the name of the error routine (line 68) and the end-of- data routine (line
60). When errors occur or the end-of-data condition is reached, data management enters
the error handling routine or end-of-data routine, respectively. Data management requires
170 buffers to be half-word aligned (line 21). If your input files are on 8416 or 8418 fixed-
sector disks, or if you want to make your program device independent, your |/0 buffer
areas must be in muitiples of 256 bytes, or, in this case, 512 bytes instead of the 400
bytes shown in the example (lines 22 and 23). The 18-word (72 byte) data management
save area must be full-word aligned (line 24). There are two ways of providing the save
area address to data management: loading the address into general register 13 before
entering the data management imperative macro (see line 34, Figure 3-17), or specifying
the label of the area via the SAVAREA keyword parameter in your DTF. For more details
about the SAVAREA keyword parameter, refer to the data management user guide, UP-
8068 (current version). Using the SAVAREA keyword frees register 13 for other use by
your program.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-52
SORT/MERGE

// JOB SRTEXMP5, ,800¢,Ad0d 1
// DVC 2@ // LFD PRNTR 2
// WORKI 3
// WORK2 = // ASM 4
// EXEC ASM 5
/$ 6
PHASE] START @ 7
USING *,15 8
B El ERROR 9
B E15 10
B E18 ERROR 11
ET] EQU * 12
E18 EQU * 13
CANCEL 14
¥ 15
! DATA MANAGEMENT WORK AREA AND DTF 16
kS 17
INPUT DTFSD BLKSI|ZE=4@@,RECSIZE=80, IOAREAT=BUFF1, |OAREA2=BUFF2, o 18
I0REG=(2) ,RECFORM=F | XBLK, ERROR=|0ERROR, OPTION=YES, C 19
EOFADDR=EOF, TYPEFLE=INPUT 20
DS OH 21
BUFF1 DS cLLod 10AREAT 22
BUFF2 DS CLLog | OAREA2 23
SAVEAREA DS 18F DATA MANAGEMENT SAVE AREA 24
SAVE DS 18F ROUTINE SAVE AREA 25
¥ 26
EXIT E15 ROUTINE 27
% 28
EIS EQU * 29
STM 13,6,SAVE SAVE REGISTERS 30
LR 4,15 SET NEW BASE REGISTER FOR YOUR ROUTINE 31
DROP 15 FREE RI15 32
USING PHASEI,4 SET R4 AS BASE REGISTER 33
LA 13,SAVEAREA SET DATA MANAGEMENT SAVE AREA 34
TAG BC @,NEXT FALL THROUGH ON FIRST TIME 35
OPEN INPUT OPEN THE INPUT FILE 36
MV I TAG+1 ,X'F@!' ALTER BRANCH FOR NEXT ENTRY 37
NEXT EQU * 38
GET INPUT GET A RECORD 39
BAL 5,M0D MODIFY THE RECORD 4o
L 1,SAVE+16 LOAD PARAM LIST ADDR INTO REG 1 i
ST 2,8(0,1) STORE THE ADDRESS OF THE RECORD L2
IN THE PARAM LIST 43
L 3,4(1) GET ADDR OF ACTION CODE Ly
MVC @(4,3), INSERT SET INSERT IN ACTION WORD 45
RETURN EQU % Lé
LM 13,6,SAVE RESTORE REGISTERS L7
BR 14 RETURN TO INDEPENDENT S/M 48
L9
* 50
MOD EQU 51
% 52
53

Figure 3—17. Coding Example for Using Exit Code E15 (Part 1 of 2)

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

SORT/MERGE

3-63

BR 5
EOF EQU =
L 1,SAVE+16
L 3,4(1)
MVC @(4,3),EOD
CLOSE INPUT
B RETURN
IOERROR EQU *
B E18
INSERT DC Fr12!
EOD DC F'8!
MESSAGE
END
/ *
// WORK]1

ROUTINE TO MODIFY THE RECORD

MVC 8(45,2) ,MESSAGE

DC CL45'THIS RECORD HAS BEEN MODIFIED THROUGH EXIT 15!

// EXEC LNKEDT

/$

LOADM PHASEI
INCLUDE PHASEI

/*
//
//
//
//
//
//
//

DVC
VoL
LBL
LFD
DvC
VoL
EXT
LBL
LFD
bvC
EXT
LBL
LFD

50

DSP@28
MYFILE!I
INPUT

50

DSP@28
»5,CYL, L
MYFILE2
SORTOUT, , INIT
RES
sT1,C,,CYL,5
$SCR1

DM@1

EXEC SORT,YSSRUN

SORT FIELDS=(1,8,CH)
RECORD RCSZ=84,TYPE=F
INPFIL EXIT

OUTFIL BLKSIZE=8g
MODS PH1=(PHASE1, ,El5)

EN
/%
/&

D

// FIN

Figure 3—17. Coding Example for Using Exit Code E15 fPart 2 of 2)

ADD MESSAGE TO RECORD

RETURN

END OF DATA ROUTINE

LOAD PARAM LIST ADDR INTO REGI
GET ACTION WORD ADDR

SET ACTION CODE 8 FOR END OF

EXIT ACTIVITY

CLOSE INPUT ROUTINE

RETURN

ERROR HANDLING ROUTINE

BRANCH TO CANCEL

= //DM@1 WORKI BLK=20000

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-64
SORT/MERGE

Since your routines are associated with phases of independent sort/merge, all routines for
a particular phase must be linked together as one load module. Exit code E15 that we are
using in this coding example, as well as exit codes E11 and E18, belongs to phase 1. Thus
to access exit code E15, we must code the branch table for the phase 1 exits in the order
shown (lines 9—11). At execution time, your sort control statements have told
independent sort/merge that:

® vyour key field starts in byte 1, extends eight bytes, and has a character data format
(line 97);

® your records are fixed type and 80 bytes long (line 98);

® you intend to use a phase 1 exit code (E15) for your own-code input processing
routine (line 101);

® your output block size is 80 bytes (line 100);
m the load module name for your input routine is PHASE1 (line 101); and
. you are supplying a routine to modify input records (line 51—57 and line 99).

The first step you must take in your own-code routine is to save those registers used by
independent sort/merge (line 30) and load the address of the data management save area
into register 13 (line 34). You set up a new base register for your own-code routine (line
33), open the input file, and read records (lines 36—39). To modify records, you branch out
to your record modification routine (line 40) and return inline to load the parameter list
address in register 1 and store the address of the modified record in the parameter list
(lines 41 and 42). This record modification information is needed by independent
sort/merge to continue its succeeding phases and give the sorted record results you want.
Therefore, you must move the address of the changed record to the parameter list. After
this move, the parameter list contains the changed record address and, thus, the
information needed by independent sort/merge in the first full word addressed by register
1. You must then tell independent sort/merge how to create a new record and to insert it
into the sort. First, you get the address of the action code (line 44) and place it in register
3. Then, you insert the action code, a DC assembier directive indicating a full-word
constant with the number 12 (line 71), into the parameter list at the second full-word
position (line 45). When the end of input file is reached and all record inserts and
modifications have been made, you change your action code in the parameter table by
getting the action word address (line 62) and setting the action code to 8 (line 63). You
close the input file (line 65). The final step in coding is to restore the registers used by
independent sort/merge (line 47) and return to the independent sort/merge (line 48). In
keeping with the data management DTFSD macro specification for the EOFADDR keyword
parameter, the end-of-file routine (line 60) is labeled EOF, the address of your routine
handling the end-of-data condition.

Certain registers do play an important role in implementing the transfer from the
independent sort/merge to your own-code routines. As we examine the use and function
of these registers in the following discussion, refer frequently to Figure 3—17 to
understand how registers help implement the linkage from independent sort/merge to
your own-code routines.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-65
SORT/MERGE

3.3.4. General Purpose Registers

Four general purpose registers play important roles in enabling independent sort/merge to
communicate with your own-code routines and to provide linkage between its modules
and your routine. These registers are 1, 13, 14, and 15.

In cases where several functions may be performed by your routine during a particular
sort/merge phase, independent sort/merge requires an action code from your routine to
tell it what to do with a record or how to handle the situation at hand. Your parameter list
is the place where independent sort/merge receives this action code, but first it needs the
address of the parameter list in order to locate the action code. Independent sort/merge
places the address of the parameter list in register 1. The possible action code response
your routine must make depends upon the exit-code function being performed. Action
codes for the various exit codes used in the independent sort/merge are described in
3.3.2.2. The format for your own-code parameter list is discussed in 3.3.6.

In your own-code routine, you use registers for base registers and movement of addresses.
The contents of any registers you use during execution of your own-code routine must be
saved in a save area and restored to their original values before returning control to
independent sort/merge. This save area must be 18 full words (72 bytes) long, fuil-word
aligned, and defined by a DS assembler directive in your program. Independent sort/merge
places the address of a save area in register 13.

Before independent sort/merge enters your own-code routine via the exit-code, it must
save the address of the next sequential instruction in its module. This address is known as
the return address. Independent sort/merge places its return address in register 14. At its
conclusion, your own-code routine must then branch back to the independent sort/merge
via register 14.

When exiting to a user routine, independent sort/merge loads register 15 with the
address of the exit routine. The appropriate exit routine is then entered via the branch
table (3.3.5) which is required at the beginning of each exit load module.

If you use exit codes E11, E18, E38, or E39, you must enter and leave them by using data
management DTF keyword parameters and imperative macros explained in the discussion
of each exit code (3.3.2). You can find more detailed information concerning data
management user exits in the data management user guide, UP-8068 (current version).

3.3.5. Providing a Branch for User Own-Code Exits

Independent sort/merge locates and enters each own-code routine via a branch table
entry which must also be the first coding of the own-code load module. Table 3—3
indicates the table format and the phases with which each exit code is associated. The
right half of Table 3—3 represents the actual user coding required to build the branch
table. (See lines 9 through 11 in Figure 3—17 for an illustration of this coding.)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-56
SORT/MERGE

Table 3—3. Branch Table Format

Applicable
Phase of Sort/Merge Typical Table Format
Operation

1 entry Ett
E15

E18

E31
E32
E35
E38
E39

3 entry

Mmoo mw|w oD

When independent sort/merge gives control to your own-code routine, it loads register 15
with the address of the first branch table entry and then enters your routine at the
appropriate branch table entry. Own-code routines for the same phase of the sort must be
linked together as one common load module. Each routine used at a given exit must have
its own point of entry (exit code) listed in the branch table.

Several exit codes (E65, E75, E84) link the sort to your own-code routines differently.
Because functions provided at these exits are common to all phases of independent
sort/merge, they are linked as independent load modules rather than as one common load
module by phase association. The point of entry for exit codes E65 and E75 is the first
position in the load module. Exit code E84, however, has a unique problem. It is used for
entering either a user-defined, alternate collating sequence (USQ) or a user-defined
collating sequence for sorting two or more different characters having equal collating
values. Because exit code E84 has no executable code of its own, your coding must show
the address for entry to your translation tables as the first word of the load module. If your
own-code routine is for an alternate collating sequence, you must provide two table entry
addresses; one for the input translation table and one for the output translation table. For
MC (multiple character) sorting, you need only one table entry address because this function
uses only the input table for comparison purposes (conversion is not performed during this

operation thereby eliminating the need for the output translation table). The format for exit
code E84 is:

entry DC A(convto-address)

DC A(convfrm-address)

3.3.6. Formatting the Exit Parameter List

Independent sort/merge uses information it finds in the parameter list to locate your
response (action code). The action code you place in the action word tells independent
sort/merge how to process your records. Register 1 points to the first entry in the
parameter list when control passes to your own-code routine. Each entry in the parameter
list is a 1-word (4-byte) entry. Table 3—4 describes the parameter list information required
and the parameter positions it occupies in the list.

Some exits do not use the parameter list. These exits work according to data management
requirements, using data management keywords and imperative macros to locate own-
code routines and return to the sort. The data management user guide, UP-8068 (current
version) discusses these keywords and imperative macros in more detail.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-57

SORT/MERGE
Table 3—4. Parameter List Format
Exits P';as::iT:t:Iro. Function of Parameter
E11,E31 None Interfaces conform to data management conventions for
LABADDR routines.*
E15 1 Address of record in the input buffer
2 Address of action word
E32 1 Address of record in input buffer
E35 1 Address of record next scheduled for the output buffer
2 Address of last record in the output buffer
3 Address of action word
4 Address of sequence check word
E18, E38 None See data management conventions for ERROR routines.*
E39 None See conventions for data management ERROR routine.*
E65 None See EB5 description (3.3.2.7).
E75 None See E75 description {3.3.2.8).
E84 None No executable code at this exit

*Refer to the data management user guide, UP-8068 (current version).

The parameter list is used by three exits: E15, E32, and E35. E15 uses a 2-word
parameter list, E32 uses a 1-word parameter list, and E35 uses a 4-word parameter list.
All other exits use other interface conventions.

3.3.7. Job Control for the Own-Code Routine

After you have written your own-code routine, you must assemble and link it (see Figure
3—17, lines 3 to 5 and 76 through 81) before you can use the routine in your independent
sort/merge program. Perhaps you want to assemble and link your routine and execute the
sort/merge in a single run as described in Figure 3—17. In this case, independent
sort/merge finds the load module in the job run library file (§Y$SRUN). However, you may
want to save your own-code routine in the form of a load module which you can use over
and over again.

If you decide to save the load module for future use, you again have two choices. You can
store the module in the system load library file (YLOD), where the sort/merge modules
also reside, or in a private library file. If you store the module in YLOD, you have a little
less coding to do and independent sort/merge can retrieve the module slightly faster at
execution time.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-58
SORT/MERGE

Example 1 gives the job control stream needed for storing your own-code routine in
$YSLOD.

Example 1:

1 10 20

// JOB OWNCODE

// DVC 2@ // LFD PRNTR
// ASM

/$

YOUR PROGRAM CODING

/*

// LINK PHASE1,0UT=(RES,$YSLOD)
0.1 /¢
1 // FIN

— =0 O~ NN W N —

Notice that we have used the job control procedure (jproc) calls for both the assembler
(line 3) and the linkage editor (line 9). This saves a considerable amount of coding. The
first parameter on the LINK jproc tells the linkage editor to include the object module
called PHASE1 in the load module it is creating. Since the label field is omitted, the name
of the load module will also be PHASE1 by default. The OUT parameter tells the linkage
editor to place the load module in the YLOD file on your SYSRES volume.

When you want to execute the independent sort/merge, you use the job control stream in
example 2.

Example 2:

] 10 20

// JOB SRTEXMPL, ,600d,8000
// DVC 2@ // LFD PRNTR

// DVC 5@ // VOL DSP@d1
// LBL MYFILE1 // LFD INPUT
// DVC 58 // VOL DSP@@1
// EXT ,,,CYL,h

// LBL MYFILE2

// LFD SORTOUT

//DMB1 WORKI

10. | //DM@2 WORK2

11.]| // EXEC SORT

O O~ o1 Fw N —

12.1 /%

13.| SORT FIELDS=(1,8)

14, INPFIL EXIT

15, MODS PHI1=(PHASE1,3588,E15)
16.1] END

17.] /%

18.1 /¢

19.1 // FIN

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-59
SORT/MERGE

There are three indications in example 2 that an own-code routine is being provided. On
line 4, the LFD name for the input file is INPUT, instead of the standard input file name
SORTIN1. This matches the label you used on the input DTF when you wrote the program.
(See Figure 3—17, line 18.) The EXIT parameter on the INPFIL control statement (line 14)
indicates that you are providing the input routine, and the MODS control statement (line
15) specifies that your load module is named PHASE1 and is to be called from phase 1 at
exit E15. Job control automatically looks for your load module in YLOD.

If you want to store your program in an alternate library file, you might use the job control
stream in example 3.

Example 3:
1 10 20
i. // JOB OWNCODE
2. // DVC 2¢ // LFD PRNTR
3. // ASM
b, | /%
5_ *
6. * YOUR PROGRAM CODING
7' kS
8. /*
9. // DVC 5@ // VOL DSP@@2
to.| // EXIT sT,,,CYL,!
11 // LBL OWNCODE // LFD OWNCODE
12 // WORKI
13.] // EXEC LNKEDT
14,1 /$
15. LINKOP OUT=0WNCODE
16. LOADM PHASEI
17. INCLUDE PHASEI
18.1 /*
19.]| /¢
20.1 // FIN

The device assignment set in lines 9 through 11 sets up a file labeled OWNCODE on volume
DSPO02 to contain the load module PHASE1. If you wanted to add PHASE1 to a program file
which already existed, you would omit the EXT statement (line 10). In this example, we have
elected to use the WORK jproc, the EXEC LNKEDT statement, and linkage editor control
statements (lines 12 through 18) in place of the LINK jproc. The OUT keyword parameter of
the LINKOP control statement tells the linkage editor to store the load module in the file
with the LFD name OWNCODE. The LOADM and INCLUDE statements tell the linkage editor
to name the load module PHASE1 and to include the object module PHASE1.

At execution time, you have to tell job control where to find the load module you have
placed in an alternate library file. The same coding is needed as in Example 2, except for
an additional device assignment set and a change in the EXEC statement.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-60
SORT/MERGE

Example 4:

1 10 20

10a.{// DVC 51 // VOL DSP@@2
10b.|// LBL OWNCODE // LFD OWNCODE
11. |// EXEC SORT,OWNCODE

Lines 10a and 10b represent the device assignment set for the load module containing
your own-code routine. The second parameter of the EXEC statement (line 11) must give
the LFD name of the alternate library file on which the load module, PHASE1, is stored.
Actually, placing OWNCODE in the EXEC statement will cause job control to search the
alternate library for all the needed sort modules. When they are not found in OWNCODE,
job control will automatically go to YLOD, where the sort/merge modules reside. It takes
slightly longer to retrieve modules this way than if you had stored PHASE1 in YLOD, but
the difference in total sort time is negligible.

3.4. USING THE MERGE-ONLY PROCESS

You need the merge-only process when you have previously-sorted or sequenced files and
want only to combine or merge them. The merge-only operation can combine two to eight
similarly ordered files into one final output file arranged in the same sequence as the
input files. When independent sort/merge performs the merge-only process, control goes
only to the final merge phase and bypasses the internal sort and preliminary merge
phases. The same sort control statements’ used for the sort/merge operation may be used
for the merge-only operation except you replace the SORT control statement with the
MERGE control statement. User own-code exit routines for a merge-only operation; i.e.,
exit routines E32 and E38, are associated with phase 3 of the sort. Thus, when
independent sort/merge performs a merge-only operation, it begins with phase 0, skips
phases 1 and 2, and ends with phase 3, where it enters your own-code routine via exit
codes E32 or E38 if you specified them on your MODS sort control statement. See 2.3.1
and Figure 2—3 for a better understanding of independent sort/merge phase operation
during merge-only processing.

3.4.1. Defining the Merge-Only Operation

Independent sort/merge needs information about key fields, their formats, and the number
of files to be merged. The MERGE control statement specifies this information as the
SORT statement does for a sort/merge operation. It replaces the SORT control statement
when you specify a merge-only operation. The MERGE control statement format is:

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-61

SORT/MERGE
LABEL A OPERATION A OPERAND
MERGE [(Istrt-pos-1] Ligth-1] [form-1] [seq-1]

,o,Strt-pos-n Igth-n[,form-n] [seq-
FIELDS= I pos-n,lgth-n[] Lseqn]])

([strt-pos-1] {,Igth-1] [,seq-1] [..... strt-pos-n,lgth-n
[seq-n] |),FORMAT=code

- (FILES }_{ number }]

[’ {ORDER
,MERGEP=(output-file-partition-number,

input-file-1-partition-number,

input-file-2-partition-number
{,...,input-file-number-8-partition-number])

The FIELDS parameter specifies the key field starting position (strt-pos-7), the length of the
key field (/gth-7), the data format code (form-1), and the merging sequence (seq-7),
ascending or descending. The FORMAT subparameter is used to specify the data format
code when the data formats for all key fields are the same. Data format codes for this
subparameter are the same as those for the SORT control statement (Table 3—1).
Descriptions for positional subparameters of the FIELDS keyword parameter on the
MERGE control statement are the same as those for the SORT control statement (3.2.1). If
you omit the FIELDS keyword parameter, a character field is assumed beginning in
position 1, the record length is assumed as the field length up to 256 bytes, and records
will be merged in ascending sequence. If you specify FIELDS and omit any of its
subparameters, you must retain their associated commas, except for trailing commas.

The keyword parameters FILES and ORDER can be used interchangeably to specify the
number of data input files you want to merge. This number must not exceed 16. If you elect
not to include either the FILES or ORDER parameter in the MERGE control statement,
independent sort/merge assumes 16 input files. Remember, input files are defined via LFD
statements in your job’s control stream. Therefore, you must use the system standard file
names SORTIN1,...,.SORTIN9 for the first nine input files defined and SORTINA,...,SORTING
for the remaining seven input files defined. The file names must be defined in sequence.

The MERGEP option keyword parameter is used when data records involved in a merge-
only operation are read from and written to partitioned disk files. A partitioned disk file
(input or output) may contain up to seven partitions; however, you are limited to merging
data in only one partition from each input file read to the merge. Independent sort/merge
can merge data from a maximum of eight previously sequenced input files. (All input files
must be on the same device type.} Thus, you can specify up to eight partitions, one for
each input file, from which data records are read to the merge. (The exact humber of input
files involved in the merge must agree with that specified in the FILES or ORDER keyword
parameters.) Since only one output file can be assigned to a merge-only operation, your
MERGEP keyword parameter must identify the partition of that file into which merged data
records are written. The position of the partition number specification in that MERGEP
parameter identifies the files with which it is associated. Notice that at least two input-
file-partition-numbers are required if you decide to use the MERGEP parameter.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-62
SORT/MERGE

Line 1 in the following coding example specifies that the key field begins at byte 9 of the
record being merged, is one byte long, has character data format, and is to be merged in
ascending order. It also specifies three input files to be merged. Line 2 shows the same
specification except independent sort/merge assumes the character data format code and
ascending merge sequence by default. In line 3, we add the optional keyword parameter,
MERGEP. MERGEP specifies that the disk output file is to receive the merged data records
in partition 3 from partition 2 of the first input file and partition 6 of the second input file.

LABEL AOPERATIONA OPERAND
] 10 16
1. MERGE FIELDS=(9,1,CH,A),FILES=3
2. MERGE FIELDS=(9,1),FILES=3
3. MERGE FIELDS=(9,1),FILES=3,MERGEP=(3,2,6)

Figure 3—18 illustrates the action of the MERGEP parameter specifications from line 3.

INPUT FILE 1

PARTITION 1

OUTPUT FILE
N N
N\ _MERGE
~ ~
N ~
N N
N S PARTITION 2

INPUT FILE 2
PARTITION 1
/ / PARTITION 4
/ /
PARTITION 2 / 4
/ /
/ Vs
/ / PARTITION 5
/ /
PARTITION 3 MERGE
4
// /
/ /
/ /
PARTITION 4 / /’
7y
/ /
/ /
PARTITION 5 / /
/
Vs
/
4 LEGEND:
/
{ Data flow

Figure 3—18. Writing Merge-Only Records from Two Partitioned Input Files to a Partitioned Output File

UP-8342 Rev. 3 * SPERRY UNIVAC 0S/3 3-63
SORT/MERGE

3.4.2. Merge-Only Exit Code for Input File Processing

You can use exit code E32 to enter your own-code routine from phase 3 of the merge-only
operation. Your own-code routine may modify the contents, including control fields, of
each record in the merge-only input files; however, it may not change the record size or
insert or delete records from the input merge-only files. In your own-code routine, you
may replace one record with another but you must be careful to avoid changing the
sequence of the record in the merge or a sequence error will result. To specify that you
want merge-only to enter your own-code routine, you indicate exit code E32, phase 3, and
the load module name of your own-code routine on the MODS control statement.

Figure 3—19 illustrates a typical job control stream required for an independent merge-

only operation. In the following discussion, we step through these statements to describe
the processing involved.

// JOB MRGEXMP2,,7000,9000,2

]
// OPR 'MERGE EXAMPLE 2' 2
// OPR 'VARYING BLOCK SIZE' 3
// DVC 50 4
// VOL DSPO28 5
// LBL MYLIBI ¢
// LFD SORTINI 7
// DVC 50 8
// VOL DSP@28 9
// LBL MYLIB2 10
// LFD SORTIN2 11
// DVC 50 12
// VOL DSP@28 13
// LBL MYL!B3 14
// LFD SORTIN3 15
// DVC 58 16
// VvOL DSP@28 17
// LBL MYL!B4 8
// LFD SORTOUT,,INIT 19
// EXEC SORT 20

~
W
N

MERGE FIELDS=(1,8,PD),FILES=3 22
RECORD TYPE=F,RCSZ=80 23
INPFIL BLKS12E=(800,400,1600) 24
OUTFIL BLKS{ZE=800 25
END 26
/% 27
/¢ 28
// FIN 29

Figure 3—19. Typical Job Control Stream for an Independent Merge-Only Operation

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-64
SORT/MERGE

The JOB statement supplies the name of your job, a minimum main storage requirement
of 7000 hexadecimal bytes, a maximum of 9000 hexadecimal bytes of main storage
requested for your program, and a maximum of 2 tasks simultaneously active during your
program execution. The two OPR control statements (lines 2 and 3) display the messages
enclosed in quotation marks to the operator at the system console. Lines 4, 8, 12, and 16
specify that device b0 is used for input and output files. Lines 5, 9, 13, and 17 specify that
the same volume (DSP028) is used for input and output files. The file identifier for input
file 1 is MYLIB1 (line 6); for input file 2, MYLIB2 (line 10); and for input file 3, MYLIB3
(line 14). The output file identifier is MYLIB4 (line 18). File names for the three input files
to be merged and the output file to receive the merged data records are the standard
names SORTIN1 (line 7), SORTIN2 (line 11), SORTIN3 (line 15), and SORTOUT (line 19),
respectively. The INIT parameter on the LFD statement (line 19) indicates that this output
file is to be initialized starting at the first record the first time the file is opened. The EXEC
statement (line 20) tells OS/3 job control to execute the SORT program. Your sort/merge
control statements follow, beginning with the /$ and ending with the /* delimiters. The
MERGE control statement (line 22) tells the independent merge-only that the key field
begins in byte 1, extends eight bytes, and is in packed decimal data format. There are
three files being merged. Records are 80 bytes, fixed length according to the RECORD
control statement (line 23). Input files 1, 2, and 3 are blocked at 800, 400, and 1600 bytes,
respectively, and the output file has a block size of 800 bytes. These specifications appear
in the INPFIL and OUTFIL control statements (lines 24 and 25). Finally the END, /*, /&,
and FIN control statements (lines 26 through 29) indicate the end of your sort control
statements, end of job step, end of job, and end of card reader operations.

Note that on first runs, the EXT job control statement is needed immediately after each
VOL statement to allocate each file; however, it should be removed on all succeeding runs
after the files have been allocated. The job control user guide, UP-8065 (current version)
explains the EXT statement in more detail.

3.4.3. Merge-Only Exit Code for Input File Read Error Processing

If you decide to write your own-code routine for processing input file read errors during
the merge-only operation, use exit code E38. The data management keyword parameter
ERROR on the DTF statement and the BR 14 instruction provide the interface between
merge-only and your routines. The data management user guide, UP-8068 (current
version) supplies more detailed information concerning this keyword and its interfacing
functions. Remember the sort dynamically activates the ERROR parameter by taking your
read error processing routine address and placing it in the sort input DTF. You write only
the BR 14 instruction to return to the sort.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 3-65
SORT/MERGE

3.5. RUNNING YOUR SORT JOB FROM A WORKSTATION

0S/3 provides you with the capability of running vour independent sort/merge job
interactively. This means two things:

= you can build a control stream to execute independent sort/merge at a workstation,
as opposed to punching it on cards or writing it to a diskette; and

® you can initiate the running of the control stream from the workstation, as opposed to
asking the system operator to run your job for you.

The easiest way to build a control stream from a workstation is by using the job control
dialog. The control dialog is an interactive facility of OS/3 that allows you to describe your
job requirements in English, in response to a series of questions, and then produces as its
output, the job control stream needed by OS/3 to run your job. The control stream
produced by the job control dialog is virtually identical to the control stream that you
would have to produce if you were running your job in a batch environment. Only now,
you do not have to be concerned with the intricacies of the job control language. The job
control dialog eliminates this requirement on your part.

After you have answered all the questions presented to you by the job control dialog, it
builds a control stream and stores it in a permanent library file for you. From here, you
can initiate its running by simply keying in the appropriate system RUN command, or if
you'd rather, you can change the contents of the control stream using another interactive
facility of OS/3 called the general editor.

The procedures for activating the job control dialog, initializing the running of a job, and
activating the general editor are described in detail in the OS/3 workstation user guide,
UP-8845 (current version).

More detailed descriptions of the job control dialog and the general editor are presented in
the job control user guide, UP-8065 (current version) and the general editor user guide,
UP-8828 (current version), respectively.

Note that if a job has been initiated from a workstation, all messages will be displayed on
the workstation rather than the system console. This includes those messages that you
have specified to be printed on the system printer. (See 3.2.6.)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-1
SORT/MERGE

4. Independent Sort/Merge Program
and Control Stream Examples

4.1. GENERAL

This section contains examples that illustrate program coding and job control streams for
independent sort/merge operation. The first group of examples illustrate sort/merge
control statements only and the succeeding examples show complete job control streams
including job control and sort control statements required for performing:

® Independent disk sorts
n Independent tape sorts

® An independent default sort

4.2. INDEPENDENT SORT/MERGE CONTROL STATEMENT EXAMPLES

The following six examples illustrate the sort/merge control statements needed to supply
information to independent sort/merge or merge-only for their functions. In each example,
the sort control statements are preceded by a /$ delimiter statement and followed by a /*
delimiter statement. The sort control statements within these delimiter statements
represent a data set to the independent sort/merge or merge-only.

Example 1 shows specifications for a tape sort/merge on fixed-length records.

Example 1:

/$

SORT FIELDS=(! ,4,CH,A,10,12,BI ,A) ,WORK=3,S1ZE=3500
RECORD TYPE=F,RCSZ=82

INPFIL BLKSIZE=82%,0PEN=RWD,CLOSE=UNLD,DATA=E
OUTFIL BLKSI1ZE=82@,0PEN=RWD,CLOSE=UNLD

OPTION PRINT=ALL,STORAGE=208¢d, LABEL=(S,S)

END

/%

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-2
SORT/MERGE

The SORT statement defines the key fields, the number of work files, and the number of
records to be sorted. The first key field begins in record position 1, is four bytes long, has a
character format, and is to be sorted in ascending sequence. The second key field begins
in position 10, is 12 positions long, is in binary format, and is to be sorted in ascending
sequence. Three work files are indicated by the WORK keyword parameter, and the input
file contains approximately 3500 records. The RECORD control statement defines the
record type as fixed with a record size of 82 bytes. The INPFIL control statement specifies
that the records are blocked at 820 characters per block, that the input file is on tape, and
that the tape is to be rewound to load point upon opening the rewound with interlock on
closing. Data is in EBCDIC format (DATA=E). The parameters specified in the OPTION
control statement provide for the printing of all messages, define the available main
storage as 20,000 bytes, and identify the input and output file labels as being standard
tape labels. The end of sort/merge control statements is indicated by the END control
statement in the job control stream.

Example 2 shows a tag sort on variable-length records.

Example 2:

/$

SORT FIELDS=(6,10,CH,A,12,10,CH,D) ,WORK=3,S1ZE=3500
RECORD TYPE=V,LENGTH=(L4@®,3d,,65,65)

OPTION ADDROUT=D

END

/%

The FIELDS parameter says that the first sort key begins in byte 6 and is 10 bytes long, in
character format, sorted in ascending sequence. The second sort key begins in byte 12 and
is 10 bytes long, in character format, sorted in descending sequence. The WORK
parameter indicates three work files, and the SIZE parameter indicates approximately 3500
records in the input file. The length specifications of these records for each phase of
sort/merge operation, required for a tag sort, are: maximum input record length, 400
bytes; maximum length of records released to the internal sort, 30 bytes; maximum output
record length, 30 bytes by default; minimum input record length, 65 bytes; and the record
length appearing most frequently in the input file, 65 bytes. The OPTION control statement
defines a tag sort in which output records are to include both the direct access address
and the key fields. The new tag sort records will be 30 bytes in length, including the 10-
byte address field and 20 bytes for the key fields. This length is reflected in the second
and third subparameters of the LENGTH parameter. The END control statement indicates
the end of sort/merge control cards.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-3
SORT/MERGE

Example 3 shows fixed-length record processing with user-written modification exits.

Example 3:

/5
SORT FIELDS=(2,4,CH,A) ,WORK=3,5|ZE=9000
RECORD TYPE=F,RCSZ=82
INPFIL EXIT
OUTFIL EXIT
OPTION STORAGE=21000
MODS PH1=(PHASE] ,4500,E11,E15), c
PH3=(PHASE3,4000,E3),E35), C
PH7=(PHASE7, 1000 ,E75)
END
/%

The FIELDS parameter describes the sort key beginning in byte 2, extending four bytes in
character format, and being sorted in ascending sequence. There are three work files
(WORK) and approximately 9000 records in the input file (SIZE). The INPFIL and OUTFIL
control statements both state the EXIT keyword parameter indicating that user own-code
routines will provide the coding for reading the input file and writing the output file. Exit
codes E11 and E15 (approximately 4500 bytes long) provide the entry points to your read
routines, and exit codes E31 and E35 (approximately 4500 bytes long) provide the entry
points to your write routines. In addition, this coding indicates that you will also provide a
routine (approximately 1000 bytes long) for processing records with equal key fields
(specified by exit code E75 in the MODS control statement).

Example 4 illustrates the use of CALCAREA in the option statement.

Example 4:

/$

SORT FIELDS=(2,4,,,12,19,,D),5I2E=65800
RECORD TYPE=F,RCSZ=82

INPFIL BLKSIZE=820

OUTFIL BLKSIZE=820

OPTION CALCAREA

END
/%

The FIELDS parameter describes the sort keys. The first key in byte 2 is four bytes long in
character format and is sorted in ascending sequence. The second key begins in byte 12,
extends 10 bytes in character format, and is sorted in descending sequence. There are
approximately 65,800 records in the input file (SIZE=65800). This example will not
perform a sort, but will give you the estimated sort time in minutes and the number of
cylinders independent sort/merge requires for disk work space.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-4
SORT/MERGE

Example 5 defines a merge-only operation that processes three input files of fixed-length
records (165 bytes), which are blocked 10 records per block. The sort key begins in byte
20, extends 10 bytes in character format, and is sorted in ascending sequence.

Example b:

/3

MERGE FIELDS=(20,10,CH,A),FILES=3
RECORD TYPE=F,RCSZ=165

INPFIL BLKSIZE=1650

OUTFIL BLKSIZE=1650

END
/*

Example 6 shows the same merge-only operation as example 5 except for the file blocking
specified by the INPFIL control statement. The first file is blocked at 1650 bytes (10
records per block), the second at 825 bytes (5 records per block), and the third at 2475
bytes (15 records per block).

Example 6:

/3
MERGE FIELDS=(2¢,10),FILES=3
RECORD TYPE=F,RCSZ=165
INPFIL BLKSIZE=(1650,825,2475)
OUTFIL BLKSIZE=1650
END
/*

4.3. JOB CONTROL STREAMS TO PERFORM INDEPENDENT DISK SORTS

The six examples that follow illustrate complete job streams to perform independent disk
sorts where:

m disk input files and disk work files are used to create a disk output file;

a multiple input files and one disk work file are used to create a single-partition disk
output file;

® a multipartitioned disk input file is used to create a muiltipartitioned disk output file;

® a multipartitioned disk input file is used to copy sorted records to a multipartitioned
output file showing the use of keyword parameter COPY=ALL; or

a a multipartitioned disk input file is used to copy a sorted record to a multipartitioned
output file showing the use of the selective COPY feature.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-5
SORT/MERGE

Example 1 illustrates a typical job control stream required for performing an independent
sort using disk input file, disk work files, and a disk output file. The job named SRTEXMP1
performs an independent sort of the data records contained in disk input file SORTIN1. The
three disk work files (DMO1 through DMO3) assigned to the sort are SAT (system access
technique) files. The first key field for sorting starts at byte 9 of the record and is one byte
long. The second key field starts at byte 1 and extends for eight bytes. The records are
character formatted and are sorted in ascending order (specified by default in the sort
statement). The records are 80 bytes long and are fixed length. Both the input file and the
output file are blocked at 800 bytes. Approximately 10,000 records are involved in the sort.

Example 1:

// JOB SRTEXMP1,,7000,9000,2]
// DVC 50 2
// VoL DSP@O1 INPUT FILE DEVICE 3
// LBL MYLIBI § ASSIGNMENT SET 4
// LFD SORTINI 5
// DVC 5@ 6
// VOL DSPQ@O! OUTPUT FILE DEVICE 7
// LBL MYLIB2 ASSIGNMENT SET 8
// LFD SORTOUT,,INIT 9
// DVC 51 10
// voL DSP11 WORK FILE! DEVICE 11
// LBL SRTWKI ASSIGNMENT SET 12
// LFD DM@, ,INIT 13
// DVC 52 14
// VOL DSP112 WORK FILE2 DEVICE 15
// LBL SRTWK2 ASSIGNMENT SET 16
// LFD DM@2,,INIT 17
// DVC 53 18
f; th gi;&;g WORK FILE3 DEVICE ;g
/7 LFD DMO3, . INIT ASSIGNMENT SET 21
// EXEC SORT 22
/S 23

SORT FIELDS=(9,1,,,1,8),W0RK=3,S|ZE=10000 24

RECORD LENGTH=(8@),TYPE=F 25

INPFIL BLKSI|ZE=800Q SORT PROGRAM 26
OUTFIL BLKS|ZE=800 27

END 28
/* 29
/& 30
// FIN 31

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 4-6
SORT/MERGE

Line
Number

1

22

23—29

24

25

26—27

28—29
30

31

Explanation

The JOB statement defines the job named SRTEXMP1 to the system,
minimum and maximum main storage required for the job, and number
of tasks active simultaneously during the job execution.

Assigns the input file. (See 3.1.1.)

Assigns the output file. (See 3.1.1.)

Assigns the disk work files. (See 3.1.1.) These files have been
previously created (indicated by lack of EXT statement); however, the
INIT option on the LFD statement allows the sort to access them as
through they were new files.

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

m a 1-byte character key field at byte 9 of the data records to be
sorted and an 8-byte field at byte 1;

® three work files; and
®m the input file contains approximately 10,000 records to be sorted.
The RECORD statement defines an 80-byte, fixed-length record.

The INPFIL and OUTFIL statements define the input and output block
sizes as 800 bytes.

Marks the end of the sort control statements.
Marks the end of the job stream.

Marks the end of reader operations.

Example 2 illustrates the job control stream required for performing an independent disk
sort using multiple input files, a disk work file, and a disk output file. The job named
SRTEXMP2 is to sort the data records of the three input files SORTIN1, SORTIN2, and
SORTIN3. The key fields are in packed decimal format and are to be sorted in ascending
order. Input files 1 and 3 are blocked at 800 bytes each and input file 2 at 400 bytes. The
output file is blocked at 800 bytes. Approximately 50,000 records are sorted.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 4-7
SORT/MERGE

. Example 2:

// JOB
// OPR
// OPR
// DVC
// VoL
// LBL
// LFD
// DvVC
// VoL
// LBL
// LFD
// DVC
// VoL
// LBL
// LFD
// DVC
// VoL
// LBL
// LFD
// DVC
// voL
// LBL

// LFD
. // EXEC SORT

SRTEXMP2, ,7000,9000
' SORT EXAMPLE 7'
'"MULTIPLE INPUT FILES'
50

DSPiog

SORTINI

SORTINI

50

DSP100

INPUTO2

SORTIN2

INPUT FILE] DEVICE
ASSIGNMENT SET

INPUT FILE2 DEVICE
ASSIGNMENT SET

INPUTE3 ASSIGNMENT SET
SORTIN3

50

DSP100

ouTPUT
SORTOUT, , INIT
51
DSP1G1
WORK

DM@1, ,INIT

OUTPUT FILE DEVICE
ASSIGNMENT SET

WORK FILE DEVICE
ASSIGNMENT SET

50
DSP140Q }INPUT FILE3 DEVICE

SORT FIELDS=(4,8,PD),FILE=3,S1ZE=50000

INPFIL BLKSIZE=(800,400,800)
OUTFIL BLKSIZE=(800)

END
/%

/&

// FIN

Line
Number

4—15b

16—19

SORT PROGRAM

Explanation

OW OOV EWN —

WWWRNNNDNDNNDNNRNDN o ot o ot o ot ot
N = OW OSSNV &SWN = O\WOoOSNOYW W N —

The JOB statement defines the job named SRTEXMP2 to the system
and the minimum and maximum main storage bytes, in hexadecimal,

required for the job.
Gives messages to operator at system console.
Assigns the three input files. (See 3.1.1.)

Assigns the output file. (See 3.1.1.)

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 4-8
SORT/MERGE

Line
Number

20—23

24

25—30

26

27

28
29—30
31

32

Explanation

Assigns the disk work file. (See 3.1.1.) This file has been previously
created (indicated by lack of EXT statement); however, the INIT option
on the LFD statement allows the sort to access it as though it were a
new file.

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

® an 8-byte packed decimal key field at byte 4 of the data records to
be sorted;

L] three input files; and
® the input files contain approximately 50,000 records to be sorted.

The INPFIL statement defines the input block sizes for each input file:
800 bytes for input files 1 and 3 and 400 bytes for input file 2.

The OUTFIL statement defines the output block size as 800 bytes.
Marks the end of sort/merge control statements.
Marks the end of the job stream.

Marks the end of card reader operations.

Example 3 illustrates the job control stream required to perform an independent disk sort
using a multipartitioned disk input file and single-partition disk output file. The job named
SRTEXMP3 sorts the data records contained in partition 3 of the input file SORTIN1 and
then writes the sorted records to output file SORTOUT. The key fields of the data records
are four bytes long, beginning at byte 1 of the record. Records are character formatted and
are sorted in ascending order. The requirements for the INPFIL and OUTFIL control
statements are determined by default.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-9
SORT/MERGE
Example 3:
// JOB SRTEXMP3,8000,9000 1
// DVC 50 2
// VOL DSP1o@ INPUT FILE DEVICE 3
// LBL INPUT ASS IGNMENT SET L
// LFD SORTINI 5
// DVC 50 6
// VOL DSP10@Q OUTPUT FILE DEVICE 7
// LBL OUTPUT ASSIGNMENT SET 8
// LFD SORTOUT,,INIT 9
// DVC 51 10
// VOL DSP10] WORK FILE DEVICE !
/7 LBL WORK ASSIGNMENT SET 12
// LFD DM@1,,INIT : 13
// EXEC SORT 14
/% 15
SORT FIELDS=(1,4,CH) ,SORTP=(1,3) 16
END SORT PROGRAM 17
/% 18
/& 19
// FIN 20
Line
Number Explanation
1 The JOB statement defines the job named SRTEXMP3 to the system
and minimum and maximum hexadecimal main storage bytes required
to run the job.
2—5 Assigns the input file. (See 3.1.1.)
6—9 Assigns the output file. (See 3.1.1.)
10—13 Assigns the disk work file. (See 3.1.1.) This file has been previously
created (indicated by lack of EXT statement); however, the INIT option
on the LFD statement allows the sort to access it as though it were a
new file.
14 initiates the execution of the independent sort/merge.
15-—-18 The data set containing the independent sort/merge control
statements.
16 The SORT statement specifies:

® a 4-byte character key field beginning at byte 1 of the data records
to be sorted;

a partition 3 of the input file contains the records to be sorted; and

®m the sorted records are to be written to a single-partition output file
(SORTOUT).

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-10

SORT/MERGE
Line
Number Explanation
17—18 Marks the end of the sort control statements.
19 Marks the end of the job stream.
20 Marks the end of card reader operations.

Example 4 illustrates the job control stream required for performing an independent disk
sort using multipartitioned disk input and output files. The job named SRTEXMP4 sorts the
data records contained in partition 3 of the input file SORTIN1 and then writes the sorted
records to partition 3 of the output file SORTOUT. Records to be sorted are character
formatted and the sort sequence is ascending. The key field for the sort begins in byte 2 of
each record and is four bytes long. Because the output file consists of four partitions
(NPTN=4), the user program must define all four partitions so that the output file can be
opened by independent sort/merge. To facilitate this requirement, the user’s data set must
include the BLKSIZE, the SIZE, the UQOS, the TYPE, and the RCSZ keyword parameters to
define each partition in the output file.

Example 4:

// JOB SRTEXMP4,,7000,9000 |
// DVC 50 2
// VOL DSP1@@ INPUT FILE DEVICE 3
// LBL INPUT ASSIGNMENT SET L
// LFD SORTINI 5
// DVC 5@ 6
// VoL DSP10g OUTPUT FILE DEVICE 7
// LBL OUTPUT ASS |GNMENT SET 8
// LFD SORTOUT, ,INIT 9
// DVC 5] 10
// VOL DSP1gl WORK FILE DEVICE 1
// LBL WORK ASSIGNMENT SET 12
// LFD DM@1,,INIT 13
// EXEC SORT 14
/$ 15
SORT FIELDS=(2,4,CH),SORTP=(3,3) 16
OUTFIL BLKS1ZE=(L4@d,250,800,200),S12E=(20,10,50,20), o 17
uos=(50,0,25,8),TYPE=(F,V,F,F) ,RCSZ=(40,50,80,48), C 18

NPTN=L4 19

END 20
/* 21
/& 22
// FIN 23

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 4-11
SORT/MERGE

Line
Number

10—13
14

15—19

16

17—19

Explanation

The JOB statement defines the job named SRTEXMP4 and minimum
and maximum main storage bytes required for the job.

Assigns the input file. (See 3.1.1.)

Assigns the output file. (See 3.1.1.)

Assigns the disk work file. (See 3.1.1.)

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

8 a 4-byte character key field at byte 2 of the data records to be
sorted; and

= the input and output files are multipartitioned files, with the input
record read from input file partition 3 and the sorted records
written to output file partition 3.

The OUTFIL statement defines:
8 the output block sizes;
u percentage of the output file reserved for each partition;

® percentage of secondary storage allocation to be suballocated to
each partition as needed;

® output record types; and
® output record sizes for each partition in the output file.

Block size is 400 bytes in output file partition 1, 250 bytes in partition
2, 800 bytes in partition 3, and 200 bytes in partition 4. Twenty percent
of the output file is assigned to partition 1, 10 percent to partition 2, 50
percent to partition 3, and 20 percent to partition 4. The percentage of
secondary storage for each partition is 50, 0, 25, and O percent,
respectively. Output record types for partitions 1 through 4 are fixed,
variable, fixed, and fixed, respectively. Record sizes for partitions 1
through 4 are 40 bytes, 50 bytes, 80 bytes, and 40 bytes. There are
four partitions in the output file.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-12
SORT/MERGE

Example 5 illustrates the job control stream required for performing an indpendent disk .
sort using multipartitioned input and output files and the COPY=ALL keyword parameter.
The COPY=ALL keyword parameter allows all partitions of the input file not involved in the
sort to be copied directly into the corresponding partitions of the output file. Records in the
partitions being sorted are processed in the usual manner. In this example, the job named
SRTEXMPS5 sorts only the data records contained in partition 3 of the 4-partitioned input
file SORTIN1. The sorted records are written to partition 3 of the output file SORTOUT.
Data records in the remaining partitions of the input file are not sorted but are copied into
the corresponding partitions in the output file as specified by the COPY=ALL keyword
parameter. In this type of sort, only the size (SIZE) of the output file partitions needs to be
defined. The expansion percentage (UOS) for each partition is assumed as O.

Example 5:
// JOB SRTEXMPS, , 7000 ,9000 1
// DVC 50 2
// VOL DSP10@ 3
// LFD SORTINI 5
// DVC 50 6
// VOL DSP10@ 7
// LBL OUTPUT OUTPUT FILE DEVICE ASSIGNMENT SET 8
// LFD SORTOUT,,INIT 9
// DVC 51 10
// VoL DSP1@1 11
// LBL WORK WORK FILE DEVICE ASSIGNMENT SET 12
// LFD DM@, ,INIT 13
// EXEC SORT 14
/$ () 15
SORT FIELDS=(2,4,CH) ,SORTP=(3,3) ,COPY=ALLU ¢opT pROGRAM 16
OUTFIL S1ZE=(20,10,50,20) ,NPTN=4 17
END 18
/% 19
/& 20
// FIN 21

Line

Number Explanation

1 The JOB statement defines the job named SRTEXMPS to the system

and the minimum and maximum main storage hexadecimal bytes
required for the job.
2—5 Assigns the input file. (See 3.1.1.)
6—9 Assigns the output file. (See 3.1.1.)

10—13 Assigns the disk work file. (See 3.1.1.)

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 4-13
SORT/MERGE

. Line

Number
14

15—19

16

17

18—19

® -

21

Explanation
Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

® a 4-byte character key field at byte 2 of the data records to be
sorted;

m only partition 3 of the input file is involved in the sort; and

m all other partitions of the input file are copied to their
corresponding partitions in the output file.

The OUTFIL statement defines the percentage of the output file to be
allocated for each partition in the output file. There are four partitions
in the output file (NPTN=4).

Marks the end of sort control statements.

Marks the end of the job stream.

Marks the end of the card reader operations.

Example 6 illustrates the job control stream required for performing an independent disk
sort involving multipartitioned disk files and demonstrating the use of the selective COPY
feature. In this example, the job named SRTEXMP6 sorts the data records in partition 3 of
the input file SORTIN1 and writes the sorted records to partition 1 in the output file
SORTOUT. The selective COPY keyword parameter specifies that partitions 1 and 2 of the
input file are to be copied directly into partitions 2 and 4, respectively, of the output file.
The characteristics of partitions copied from the input file to the output file remain the
same. It is best, to fully define the output file in all cases.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-14

SORT/MERGE

Example 6:
// JOB SRTEXMP6,,7000,9000]
// DVC 50 2
// VoL DSP1gg
77 LBL INPUT INPUT FILE DEVICE ASSIGNMENT SET ;
// LFD SORTINI 5
// bvC 5@ 6
// VOL DSP10@ 7
// LBL OUTPUT OUTPUT FILE DEVICE ASSIGNMENT SET 8
// LFD SORTOUT,,INIT 9
// DVC 51 10
// VoL DSP1Q] 11
7/ LBL WORK WORK FILE DEVICE ASSIGNMENT SET 12
// LFD DM@1,,INIT 13
// EXEC SORT 14
¢ (1,4) (1,3) (4) 12
SORT FIELDS=(1,4) ,SORTP=(1,3),C0PY=(1.2,2. 16
OUTFIL SIZE=(50,20,20,10) ,NPTN=4 } SORT PROGRAM 17
END 18
/* 19
/& 20
// FIN 21

Line

Number Explanation

1 The JOB statement defines:

® the job named SRTEXMP6 to the system; and
® minimum and maximum main storage bytes required for the job.

2—5 Assigns the input file. (See 3.1.1.)

6—9 Assigns the output file. (See 3.1.1))

10—13 Assigns the disk work file. (See 3.1.1.)

14 Initiates the execution of the independent sort/merge.

15—19 The data set containing the independent sort/merge control

statements.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-15

SORT/MERGE
Line
Number Explanation
16 The SORT statement specifies:
® a 4-byte character key field at byte 1 of the data records to be
sorted;
m data records in partition 3 of the input file are to be sorted and
written into partition 1 of the output file; and
u partitions 1 and 2 of the input file are to be copied into partitions 2
and 4, respectively, of the output file.
17 The OUTFIL statement defines the percentage of the OUTPUT file to be
allocated for each of the four partitions comprising the output file.
There are four output file partitions (NPTN=4).
18—19 Marks the end of sort control statements.
20 Marks the end of the job stream.
21 Marks the end of card reader operations.

4.4. JOB CONTROL STREAM TO PERFORM INDEPENDENT TAPE SORTS

Both examples 7 and 8 use tape input and work files to create tape output files. They
illustrate the use of SHARE, RESERV, RESTART, and CSPRAM parameters in the OPTION
sort control statement and the use of the PARAM job control statement to enter
parameters from the control stream.

Example 7 illustrates a typical job control stream required to perform an independent
sort/merge operation using tape for the input, output, and work files. The job named
SRTEXMP7 sorts the character-formatted data records to input file SORTIN1 into
ascending order and then writes those records to the output tape file SORTOUT. The
records are fixed-length and 80 bytes long, with a 10-byte sort key field starting in byte 8.
The data block size for both the input and output records is 800 bytes. The input and
output files are rewound to their starting point upon opening and rewound with interlock
upon closing. Tape device SMO1 is shared as an input device during input operations and
as a work storage device during sort operations. Tape device SMO3 is specified as a
reserved device used for working storage during the first two phases of the sort and for
output file during phase 3 of the sort.

UP-8342 Rev. 3 SPERRY UNIVAC 0S5/3 4-16
SORT/MERGE

Example 7:

// JOB SRTEXMP?7,,7000,90080,2
// DVC 99

// VOL MASTER

// LFD SORTINI
// DVC 9¢,1GNORE
// VOL TAPEQ]

// LFD SMOI

// DVC 91

// VOL TAPE@2

// LFD SM@2

// DVC 92

// VOL TAPE@3

// LFD SM@3

// DVC 92, 1GNORE

INPUT FILE DEVICE ASSIGNMENT SET

REDEFINED INPUT DEVICE ASSIGNMENT
SET TO WORK FILE

O O\ OV BWN —

WORK FILE DEVICE ASSIGNMENT SET

WORK FILE DEVICE ASSIGNMENT SET 12

REDEFINED WORK FILE DEVICE

N o N N et i !
=)

// VOL MASTER 15
// LFD SORTOUT ASSIGNMENT SET TO OUTPUT FILE 16
// EXEC SORT 17
/3 18
SORT FIELDS=(8,10,CH) 19
RECORD LENGTH=(80),TYPE=F 20
INPFIL BLKS|ZE=8¢G,0PEN=RWD,CLOSE=RW| SORT PROGRAM 21
OUTFIL BLKS!ZE=800 ,0PEN=RWD,CLOSE=RWI 22
OPTION SHARE=SM@1,RESERV=SM@3 23
END 24
/% 25
/& 26
// FIN 27
Line
Number Explanation
1 The JOB statement defines the job named SRTEXMP7 to the system
and minimum and maximum main storage bytes (in hexadecimal)
required to run the job.
2—4 Assigns the input file. (See 3.1.1.)
5—7 Redefines the device assigned to the input file as a work file, using the

IGNORE option of the DVC statement.

8—13 Assigns the remaining work files.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 4-17
SORT/MERGE

Line
Number

14—16

17
18—25

19
20
21—-22
23

2425
26

27

Explanation

Redefines the device assigned to SMO3 as the output file, using the
IGNORE option of the DVC statement.

Initiates the execution of the sort.
Is the data set containing the sort control statements.

The SORT statement defines a 10-byte character key field which begins
in byte 8 of the record.

The RECORD statement defines an 80-byte, fixed-length record.
The INPFIL and OUTFIL statements define the input and output block
sizes as 800 bytes and indicate that these files are to be set to load

point on opening and to interlock on closing.

The OPTION statement specifies SMO1 as the SHARE file and SMO03 as
the RESERV file. (See 3.2.6 and Figures 3—15 and 3—16.)

Indicates the end of the sort control statements.
Marks the end of the job stream.

Marks the end of card reader operations.

Example 8 illustrates a typical job control stream required for restarting an interrupted
tape sort performed by independent sort/merge. The sort itself is identical with that
described in example 7. (See example 7 for program and coding details.) By specifying the
RESTART and CSPRAM keyword parameters in the OPTION statement (line 25) included in
the user data set, the tape sort can be resumed. The system console displays the most
recent pass number, and the PARAM statement shown in line 28 of example 8 gives
independent sort/merge the pass recovery point at which the sort is resumed.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 4-18
SORT/MERGE

Example 8:

// JOB SRTEXM8,,7000,95000,2

// OPR 'SORT EXAMPLE 8'

// OPR 'TAPE SORT WITH RESTART'
// DVC 99

// VOL MASTER

// LFD SORTINI
// DVC 98, | GNORE
// VOL TAPE@]

// LFD SMO1

// DbVC 91

// VOL TAPE@2

// LFD SMp2

// DVC 92

// VOL TAPE®3

// LFD SMO3

// DVC 92, IGNORE
// VOL MASTER

// LFD SORTOUT
// EXEC SORT

/$

INPUT FILE DEVICE
ASSIGNMENT SET

REDEFINED INPUT DEVICE ASSIGNMENT
SET TO WORK FILE

WORK FILE DEVICE ASSIGNMENT SET

WORK FILE DEVICE ASSIGNMENT SET

REDEFINED WORK FILE DEVICE ASSIGNMENT
SET TO OUTPUT FILE

Rl W A A N e

N—o———_._.—t—..——‘
OW OOSIOOWVI ZWN w OW O~ OV 22U N

SORT FIELDS=(8,10,CH) 21
RECORD LENGTH=(80),TYPE=F 22
INPFIL BLKS |ZE=800 OPEN=RWD,CLOSE=RW! 23
OUTFIL BLKS|ZE=800 ,0PEN=RWD,CLOSE=RW| SORT PROGRAM 24
OPTION SHARE=SMG1,RESERV=SMO3,RESTART,CSPRAM=YES 25
END 26
/* 27
// PARAM RESUME=(PASS,023) 28
/6 29
// FIN 30

4.5. JOB CONTROL STREAM TO PERFORM AN INDEPENDENT DEFAULT SORT

The default sort is so named because all information supplied to independent sort/merge
is automatically defaulted in the absence of sort control statements. In the following
example, notice there are no sort control statements. The only indication of a sort is the
EXEC SORT job control statement in the control stream. This example illustrates a typical
job control stream required to perform a default disk sort operation. When a default sort is
performed, independent sort/merge takes the record size, block size, and record type
specifications from the volume-table-of-contents (VTOC) for the input file. The output file is
structured from the specifications for the input file. If the input file happens to be a
partitioned disk file, independent sort/merge assumes the first partition of the file as the
input partition. The output file is always a single partition file in a default sort operation.
The data records are assumed to be character formatted and to have one sort key field the
same length as the record but not to exceed 256 bytes. In a default sort, only one input
file can be processed, and all input, output, and work files assigned in the job control
stream must be disk files.

UP-8342 Rev. 3

SPERRY UNWVAC 0S/3
SORT/MERGE

. Example 9:

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/¢
//

Line

Number

® .

2—3

47

8—11

12—15

16

17

18

Jos
O0PR
OPR
DVC
VoL
LBL
LFD
DVC
VoL
LBL
LFD
pve
VoL
LBL
LFD

SRTEXMP9, ,7000,9000
'SORT EXAMPLE 6'
'DEFAULT SORT'
5¢

DSP100

INPUT

SORTINI

50

DSP100

OuTPUT
SORTOUT, , INIT

51

DSPI1@1]

WORK

DMO1,, INIT

EXEC SORT

FIN

Explanation

INPUT FILE DEVICE ASSIGNMENT SET

OUTPUT FILE DEVICE ASSIGNMENT SET

WORK FILE DEVICE ASSIGNMENT SET

WO OOV W N e

OOV W N —O

The JOB statement defines the job named SRTEXMP9 and minimum
and maximum main storage bytes required to run the job.

Gives message to the operator at the system console.

Defines the input file. (See 3.1.1.)

Defines the output file. (See 3.1.1.)

Defines the work file. (See 3.1.1.)

Initiates the execution of independent sort/merge default sort.

Marks the end of control stream.

Marks the end of card reader operations.

PART 3. SUBROUTINE SORT/MERGE

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-1
SORT/MERGE

5. Subroutine Sort/Merge
Basic Concepts

5.1. GENERAL

For greater control over the sort/merge process than independent sort/merge provides,
use the subroutine sort/merge. Naturally, the benefits you receive for this control cost
something — an increase in the programming that you must do. You will have to program
many of the activities that are done automatically by independent sort/merge.

Writing your own routines requires a good working knowledge of basic assembler
language (BAL) or COBOL and data management macros. Section 6 discusses a disk
subroutine sort/merge program example showing the use of BAL instructions and data
management macros. Appendix C provides some subroutine sort/merge interface
requirements for the COBOL programmer. Most users will use the independent
sort/merge; however, the subroutine sort/merge is available if you have special sorting
and data reduction problems.

The same disk sort problem used to illustrate independent sort/merge is used to illustrate

subroutine sort/merge. This enables you to compare the programming needed for each
method and help you decide which technique most adequately fills your needs.

5.2. SORT PROBLEM: A SOLUTION

To recapitulate, the disk sort problem general specifications are:

SYSTEM: 0S/3
PROGRAM: Subroutine Sort/Merge Disk Sort
FUNCTION:

1. This program sorts and merges an unordered file of employee records.
2. It is a disk sort.
3. It uses a sort key to sort and merge records.

4. The sort key is the employee number.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-2
SORT/MERGE

5. Employee number is located in the first eight byte positions of each record
(0—7).

6. Records are sorted in ascending order.

INFORMATION:

1. This program needs a work file, $SCR1, to perform the sort/merge.

2. Work files are assigned to disk device 50.

INPUT AND OUTPUT:

1. Both input and ouput files are fixed-length, blocked records.

2. Each record contains 80 bytes.

3. Each block contains 5 records.

OUTPUT:

The program produces an output file of records sorted in ascending order.
Figure 2—1 summarizes these specifications.
Between your input stage and the output results, the program you write activates the
subroutine sort/merge to perform the sort and return control to your program. The
sort/merge modules reside in the system load library file (YLOD) located on the
SYSRES volume. When your program activates the subroutine sort/merge, it calls the

sort/merge modules into main storage from YLOD (Figure 5—1).

MAIN STORAGE

SORT LINK MODULE

r___*. USER PROGRAM

MR$OPN
CALL

I SUBROUTINE

SORT MODULES

UNUSED
STORAGE

Figure 5—1. Calling in Sort/Merge Modules (Phase 0)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-3
SORT/MERGE

Before sorting can begin, your program must read the input file records from an input
device. In this case, the input device is a disk named DSP028. Your program reads input
records block by block from DSP028 into an 1/0 area in main storage called a buffer area.
Buffer areas compensate for the differences in speed between low-speed 1/0 devices and
high-speed main storage processing.

Using two buffer areas for record processing substantially increases sort speed. The disk
sort program we are building illustrates this. This increase occurs because we can read
records into one buffer while we empty the other buffer into a work area for further
processing (Figure 5—2).

Records are passed one at a time to the subroutine sort where they are sorted into strings
of sequenced data. The strings are stored on disk work files to be merged in phases 2 and
3 of the sort.

SORT LINK MODULE

T T PASS RECORD
TO SORT

PASS RECORD
TO MR$REL MACRO

DSP028
READ

USER PROGRAM

1/0 BUFFER
AREA

> YLOD

LOAD S/M

SUBROUTINE PHASE

SORT/MERGE

DISK-WORK
e FILES

UNUSED STORAGE

LEGEND:

Data flow

Figure 5—2. Reading Unsorted Input Records (Phase 1)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-4
SORT/MERGE

When all the input records have been read, passed to the subroutine sort/merge for the
sorting, and ordered into sequenced strings of data on the work files, the strings are
repeatedly merged to produce a single string of sorted data (Figure 5—3).

MAIN STORAGE

SORT LINK MODULE

USER PROGRAM

YLOD

. BUBROUTINE

_ SORT/MERGE

UNUSED
STORAGE

LEGEND:

Data flow

Figure 5—3. Sorting Input Records and Building Record Strings (Phase 2)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-5
SORT/MERGE

. When a single merge pass produces one string of ordered records, the sort returns to
your program, which may then request the return of records one at a time in the order

desired. Your program can then put the records in the output buffer and write them to
your output file (Figure 5—4).

MAIN STORAGE

— SORT LINK MODULE
REQUEST
RECORD
RETURN
(MRS$RET) USER PROGRAM REQUEST

L | RECORD

RETURN

FPER

. yoau
:v o .“AB

A

RETURN RECORD

LOAD S/M PHASE 3 ﬁ

" YLOD

SUBROUTINE
SORT/MERGE

UNUSED STORAGE

LEGEND:

[:] Data flow

Figure 5—4. Writing Sorted Records to the Output File (Phase 3)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-6

SORT/MERGE

5.3. WHAT SORT/MERGE DOES FOR YOU

Subroutine sort/merge is a sort/merge utility that you can call from your program via
macro instructions. The sort accepts unordered data from your program and returns it to
your program in the order you specified.

5.3.1. Software Framework

The subroutine sort/merge operation consists of two to four phases. Each phase employs
a specified sort/merge module to perform a distinct function. As each phase of the
sort/merge is performed, the sort/merge modules needed during that phase are loaded
into main storage and executed. Sort/merge modules are interrelated yet independent
modules residing as /oad modules in YLOD.

This brings us to the question of what happens during the subroutine sort/merge phases
and how we access the sort/merge load modules. To answer the first question, let’s take
a closer look at the sort/merge phases. The answer to the second question should be
clear when we examine what your program must supply to subroutine sort/merge.

5.3.2. Subroutine Sort/Merge Phases

Now that you know where the sort/merge modules reside and have a general idea of
their functions, you realize that sort/merge must be called by your program in order to
begin sorting records. To call the subroutine sort/merge, you must link the SGSORT
object module to your program. This module resides in YOBJ and is automatically
linked to your program when you specify the label MR$ORT as an EXTRN. SGSORT
initiates the subroutine sort/merge when the MR$OPN macro instruction is executed.

5.3.2.1. Phase 0: Sort Initialization and Assignment

Phase O, the sort initialization and assignment phase, is the first phase executed. It
collects and analyzes all information required by the following phases in determining the
overall sort/merge requirements. It extracts this information from the data your program
provides via parameter statements either in the MR$PRM sort macro or in the PARAM
job control statement. When the assignment function is completed, phase O passes
control to phase 1 or, in a merge-only procedure, to phase 3.

5.3.2.2. Phase 1: Initial Sort

In the beginning of phase 1, subroutine sort/merge accepts successive records from your
program, compares sort keys, and initially sorts them according to your specification (e.qg.,
ascending or descending sequence). During this phase, the records are accumulated in
sequential lists called record strings. These sequenced record strings are then written out
to tape or disk.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3

5-7
SORT/MERGE

If you remember your first two blocks of data records with key fields for comparison, the
input and initial sort process would look like Figure 5—b5.

MAIN STORAGE

RELEASE RECORD
TO SUBROUTINE
SORT/MERGE
PHASE 1

WRITE

ORDERED
DATA STRINGS

WORK
AREA

LEGEND:

Data flow

Figure 5—5. Data Route (Phase 1)

If you assign inadequate auxiliary storage to your program, the sort job step terminates.
However, if your work files are on disk, you can prevent your program from aborting by
including instructions that will repeatedly check the availability of work space. (See 6.6.)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-8
SORT/MERGE

5.3.2.3. Phase 2: Preliminary Merge

Phase 2 is initiated by the release of the last record to the subroutine sort/merge.
Subroutine sort/merge repeatedly merges the record strings produced during phase 1 so
that each successive pass produces fewer but longer sequential record strings. It
continues this process until only one final merge is needed to produce a single string of
sorted records. At this point, the subroutine sort/merge passes control to phase 3 for the
final merge.

If the record strings produced during phase 1 can be sequenced in one merge pass,
phase 2 is unnecessary and it is bypassed. This occurs when input to phase 1 is small
or closely resembles the final sequence desired, or a large amount of main storage is
available to the program. When a bypass occurs, phase 2 is skipped and control passes
from phase 1 to phase 3 for the final merge. If we required phase 2, the record strings
at the end of the phase would look like this:

First String: /—\K_iﬁﬁ.—-——_\
RECORD 1 ololalalilels|a
RECORD 2 1 0 olol710lo 5
RECORD 3 slolalelals!lala
RECORD 4 elsls1alolslsla
RECORD 5 olalelolololsla
Second String: Key Field

RECORD 1 olslolololslo|o
RECORD 2 alalalololololo
RECORD 3 slalalslelsls! s
RECORD 4 slolslolelslolo
recorns |s lel el slsl 2196

Third String:

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-9
SORT/MERGE

. 5.3.2.4. Phase 3: Final Merge

Phase 3 performs the final merge of the sequenced record strings and produces a single
string of sorted records that would look like this:

RECORD 1 0]0 3]2 1 6 51 4
RECORD 2 01]s3 oj]o 0 6 010
RECORD 3 110 0 017 o]o 5
RECORD 4 2 0] 4 6|3 8|4 4
RECORD b 4 {3 3 ojojo of}jo
o
RECORD 6 514 14 8|61]65 51 5
RECORD 7 6 |8 7 919 8 613
RECORD 8 7 0| 5 0o]9° 3|0 0
RECORD 9 8 818 515 2 916
RECORD 10 9 4| 6 ojo0fo0 51 4

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-10
SORT/MERGE

After the final merge of the record strings is completed, phase 3 makes the records
available to your program. At this point your program is responsible for requesting the
return of the sorted records and for writing them into your output file. The subroutine

sort/merge module operations and their interface with your main program are shown in
Figure 5—86.

START '

MAIN | STORAGE

USER CODING

CALL IN @

S/M LOAD
MODULE YLOD

SUBRQUTINE SORT/MERGE

INITIALIZATION
AND
ASSIGNMENT
{PHASE 0)

USER CODING

OPTIONAL 0 READ
TAPE T = INPUT
FILE

L | T
L

RELEASE
RECORDS TO
SUBR S/M

Figure 5—6. Subroutine Sort/Merge Operational Phases (Part 1 of 2)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 5-11
SORT/MERGE

INITIAL SORT
IPHASE 1)

CPRECIMINARY
MERGE
(PHASE 2)
CONTINUOUSLY

MERGED DATA
STRING

1

|

|

|

|

!

I

|

!

!

| SORT COMMON MODULE LOADS
| EACH PHASE FROM YLOD
I
I
!
I
|
!
|
I
!
I
I

OPTIONAL
AUXILIARY
STORAGE
WORK
AREA

INTO MAIN STORAGE AS THE
PHASE S REQUIRED

AUXILIARY AUXILIARY
STORAGE STORAGE
WORK WORK
AREA* AREA*

AUXILIARY
STORAGE
WORK
AREA*

|
1
|
| LonG sTRINGS OF

SEQUENCED DATA
FOR FINAL MERGE

FINAL MERGE.
(PHASE 3}

USER * CODING

RETURN RECORDS
FROM S/M

ONE B8Y ONE

i |
{

OPTIONAL °

TAPE

LEGEND:

D Subroutine sort/merge program

—— Operational flow

———= Data flow
. Work areas can also be on same disc as
input and output files if input is low
volume
Figure 5—6. Subroutine Sort/Merge Operational Phases (Part 2 of 2)
. Now that the importance of your main program cooperation with subroutine sort/merge

becomes quite evident, let's examine how you handle the needed interfacing activities
{Section 6).

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-1
SORT/MERGE

6. Subroutine Sort/Merge
Requirements You Supply

6.1. GENERAL

To use the subroutine sort/merge, your program must establish a communication link with
it. Like any other communication problem, a language is needed as a medium to convey
information. Basic assembler language (BAL) or COBOL is your medium for
communicating with subroutine sort/merge. Consequently, a good working knowledge of
BAL or COBOL is needed if you plan to use subroutine sort/merge. This section discusses
a disk subroutine sort/merge program example showing the use of BAL instructions and
data management macros. Appendix C provides some subroutine sort/merge interface
requirements for the COBOL programmer.

. BAL is not your only communicating tool. You use a set of sort/merge macro
instructions to activate subroutine sort/merge. These macro instructions, which you code
as part of your program, are expanded into a sequence of machine instructions that bring
the subroutine sort/merge modules into your program as they are needed. A final,
essential communicating tool is the job control stream consisting of control statements
that name the devices used by your program and the subroutine sort/merge modules,
describe label and space allocations, and call for the execution of assembly and linkage
editor software routines as they are needed.

An easy way to remember the subroutine sort/merge requirements you supply is to think
of the word “IDEAS”. Each letter of this word represents something your program must
do when you use subroutine sort/merge:

| Initiate the operation.

D Define files.

E Explain sort/merge run requirements.

A Activate subroutine sort/merge services.

S Stop or end the sort/merge process.

Before coding any program, a flowchart is helpful. The flowchart for the disk sort program
. might look like Figure 6—1.

6-2

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3
SORT/MERGE
@ GETREC RECRET
MR$RET
START —> ﬁiﬁ? REQUESTS
RECORD SUBR S/M TO
RETURN SORTED
RECORDS TO
{ YOUR PROGRAM
MR$REL
DEFINE MR$ORT AS EXTRN LOCATES AND
TO LINK SORT COMMON RELEASES \
MODULE INPUT DATA
{SG$ORT) RECORD TO THE WRITE
SORT SORTED
RECORD
\
SATA OF INPUT OF OUTPUT
DATA FILE
MANAGEMENT X t DATA) FILE
(DTFSD) ' -
YES
SORT \ SORTFIN
CLOSE INPUT CLOSE INPUT
MR$PRM BUILDS DATA FiLE DATA FILE (IF
SORT PARAMETER {NOT NECESSARY NOT BEFORE).
TABLE TO CONTINUE CLOSE OUTPUT
PROGRAM) DATA FILE
Y Y
MR$OPN MR$SRT Y
OPENS INDICATES
SUBROUTINE END OF INPUT
SIM DATA FILE £0J
SORTIN \ SORTOUT \
OPEN DATA OPEN
INPUT OUTPUT
FILE DATA FILE

Figure 6—1. Disk Sort Program Flowchart

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-3
SORT/MERGE

6.2. INITIATING THE OPERATION

The first thing you must do is name your program (we will use SRTEXMPL) and set the
location counter to 0. The location counter always contains the address of the current
instruction. To set the location counter to O, use the START assembler directive.

LABEL AOPERATIONA OPERAND
] 10 16
SRTEXMPL START [/]

Part of initiating subroutine sort/merge is to establish a communication interface
between your program and the subroutine sort/merge program via a sort common
module. The sort common module (SG$ORT) is a standard interface module that resides
in the system object library file (YOBJ). To establish the communication interface
between your program and the subroutine sort/merge, you must link the sort common
module to your program in the link edit run.

The linkage editor links the sort common module (SG$SORT) in YOBJ to the user object
module produced by the assembler.

To specify linkage, define the entry point for the common sort module in your program by

naming MR$SORT as an external reference (EXTRN). This is done by coding line 2 as
follows:

1.|SRTEXMPL START 2
2. EXTRN MRSORT

When the linkage editor processes your program, EXTRN tells it that MR$SORT is not
defined in your program but refers to an object module which must be linked to it. The
linkage editor makes the sort common module part of your program when it builds the
load module for your program in the job run library file (YRUN). This must be done
before your program is loaded into main storage for execution. Once your program load
module is loaded into main storage, the sort common module loads phase O into main
storage, and the sort common module remains there for the duration of subroutine
sort/merge processing and provides a link between your program and the subroutine
sort. Phase O loads the other phases (Figure 5—86).

Until now, the interfacing procedures we've discussed would look like Figure 6—2.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-4
SORT/MERGE

MAIN STORAGE

9

® /| USER PROGRAM
/ LOAD MODULE
USER PROGRAM LOAD USER / INCLUDING »
PROGRAM ! SORT COMMON =
SORT COMMON MODULE (SGSORT)
MODULE (SG$ORT)

SYSRES

S/M MODULE
CALL

> YSRUN
PHASE 0

SUBROUTINE S/M | —
MODULE - @
LOAD S/M
MODULE Y0BJ

SUBROUTINE
S/M MODULES

SORT
COMMON
MODULE
(SG$ORT)

LINKAGE
EDITOR
PERFORMS
TRANSFER

Figure 6—2. Sort Common Module as Initial Interface

Naturally, you want to make your program relocatable. This can be done by using base
register addressing; in our program, we will use base register 4. To do this, we code:

LABEL AOPERATIONA

OPERAND
] 10 16

BALR 4.4

USING x4

The branch and link assembler instruction loads the starting address of your program
into register 4. When your program is loaded into main storage, its starting address is

loaded into register 4, the base register. The O operand indicates that no branching is to
occur.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-5
SORT/MERGE

The USING assembler directive assigns general register 4 to your program as the base
register. The asterisk (*) operand indicates that the value assumed to be in register 4
when the program is assembled is the current value in the location counter.

Next we must branch to the beginning of our program. This is accomplished by coding:

LABEL AOPERATI10NA OPERAND
] 10 16

B START

START is the label of the first instruction in our subroutine sort/merge program.

We have now completed the initialization of our program. To summarize, the coding for
our disk sort program up to this point looks like this:

SRTEXMPL START ¢
EXTRN MRSORT DEFINES MRSORT AS AN EXTRN
LINKS SORT COMMON MODULE TO
YOUR PROGRAM
BALR L,g
USING 4
B START

6.3. DEFINING FILES

The software supplied by Sperry Univac includes another powerful component called data
management, an elaborate group of routines that handle several types of processing, such
as sequential, random, and indexed-sequential. When using subroutine sort/merge, you
must provide your own |/0 routines. Each record is read in order of its physical location
on the tape or disk. (Subroutine tape sorts are shown in Section 9.) The several access
methods, and therefore the sort/merge, can process only files defined by the DTF
declarative macros peculiar to tape (DTFMT) or disk (DTFSD, DTFDA, DTFNI, or DTFMI)
input files. When you want to sort records in a file, you must tell the data management
software that the file you are processing is an input or an output file. The TYPEFLE
keyword parameter serves this purpose. In order to operate properly, data management
also needs specific information defining your program’s data files.

NOTE:

In this discussion, all references to data management mean basic data management.
Users of consolidated data management should refer to the consolidated data
management concepts and facilities, UP-8825 (current version) for information on defining
files.

In our discussion of your data files and the resultant files you wanted after subroutine
sort/merge execution (5.2), we looked at some of the file definitions, such as record size,
record format, and block size. Each of these specifications, in addition to other file
information, must appear in your program in a section called file definitions. For example,
you may define the files for sequential disk processing by using the DTFSD macro
instruction. Data management uses your file definitions to supply file information to the
system when your program requires it.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-6
SORT/MERGE

You can find the format of the DTFSD, DTFDA, DTFNI, DTFMI, or DTFMT macro
instructions in the data management user guide, UP-8068 (current version). We will not
repeat them here; if you need more information about these macro instructions, see the
user guide. The coding for the input and output file definitions on our disk sort example
program is illustrated in Figure 6—3.

LABEL AOPERATIONA OPERAND
] 10 16 72
Is____

INPUT DTFSD BLKSIZE=QGG,RECSIZE=8¢,IOAREAI=BUFF!,IOAREAZ=BUFF2,) C
IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, o
EOFADDR=EOF ,TYPEFLE=INPUT

OUTPUT DTFSD BLKSIZE=QG@,RECSIZE=8@,IOAREAI=BUFFI,IOAREA2=BUFF2, C
IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, C

TYPEFLE=OUTPUT

Figure 6—3. Data Management Macro Specifications

In this disk sort problem, we're specifying:

® a maximum block size of 400 bytes;

® a record size of 80 bytes;

® an IOAREAT1 called BUFF1 for the primary 1/0 buffer area;

® an additional IOAREA2 called BUFF2 to speed up 1/0 processing;
® a record format of fixed blocks; and

® an end-of-file address called EOF, which specifies the symbolic name of your
program’s routine to handle the end of input file processing.

You do not need an end-of-file routine for the output file because that is handled by the
end of job processing.

In addition, we're specifying the optional parameters ERROR, OPTION, TYPEFLE, and
IOREG. The ERROR=IOERROR parameter specifies that your program includes a routine
labeled IOERROR to handle unrecoverable errors. OPTION=YES indicates that both input
and output files are optional; i.e., you won't always use both of them. Although omitting
the file type parameter still generates the TYPEFLE=INPUT parameter by default, we
have input and output sort files to process so we use TYPEFLE=OUTPUT. This parameter
indicates that the second DTFSD is for an output file. The TYPEFLE=INPUT parameter
reads header/trailer labels for the input file, and the TYPEFLE=OUTPUT parameter writes
header/trailer labels for the output file. IOREG specifies the register used for
incrementing record addresses during the reading and writing of records. Here we are
using general register 2 as the index register.

When you specify IODAREA1 and IOAREA2, you must also define how much main storage
is required to handle the block size you indicated on the BLKSIZE parameter. Thus,
somewhere in your program you write the define storage statements as illustrated in
lines 2 and 3 of the following coding:

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-7

SORT/MERGE
LABEL AOPERAT IONA OPERAND
1 10 16
i. DS OH
2. DS cL8
3. | BUFFI DS CLLkog
b, DS CL8
5. | BUFF2 DS CLLad
6. | SAVEAREA DS 18F

Not only does data management associate IOAREA1 and IOAREA2 with their names,
BUFF1 and BUFF2, but it also looks for the needed space, indicated by character length
400 (CL 400). This data management space accommodates alternate input and output
block processing. If your input files are on 8416 or 8418 fixed-sector disks, or if you want
to make your program device independent, you must allow a multiple of 256 bytes for
each buffer area. Since your input and output block size is 400 bytes, you would need 512
bytes for each buffer area. Data management requires two other define storage
statements, DS CL8 (lines 2 and 4 on preceding coding form). These statements designate
eight additional bytes of storage immediately preceding the first and second |/0O areas
(BUFF1 and BUFF2 in this case), and a save area defined as 18 full words (72 bytes) of
storage, SAVEAREA DS 18F (line 6 on preceding coding form). This is the area where your
program saves the contents of any register used during execution of GET and PUT
imperative macro instructions.

Data management requires eight bytes before each buffer on output but it does not
require eight bytes before each buffer on input. /0 buffers must be half-word aligned
(see line 1 on preceding coding form), and the save area must be full-word aligned. It
should be noted at this point that there are two ways of providing the save area address
to data management: loading the address into general register 13 before entering the
data management imperative macro (see line 9, Figure 8—5) or specifying the label of
the area via the SAVAREA keyword parameter in your DTF. For more details about the
SAVAREA keyword parameter, refer to the data management user guide, UP-8068
(current version). Using the SAVAREA keyword frees register 13 for other use by your
program. Up to this point, our coding looks like Figure 6—4.

LABEL AOPERAT IONA OPERAND
| 10 16 72
{ ¢
4 3

1. | SRTEXMPL START 3.

2. EXTRN MRSORT DEFINES MRSORT AS AN EXTRN

3. LINKS SORT COMMON MODULE TO

4. YOUR PROGRAM

5. BALR 4.9

6. USING b

7. 8 START

8. | INPUT DTFSD BLKS | ZE=L@@,RECSIZE=8@, |0AREAI=BUFF 1, IOAREA2=BUFF?2, c

9. IOREG=(2) ,RECFORM=F IXBLK, ERROR={0ERROR,OPT ION=YES, C
10. EOFADDR=EOF , TYPEFLE=INPUT
11. | OUTPUT DTFSD BLKS i ZE=4@@,RECS | ZE=88, |I0AREAI=BUFF 1, |OAREA2=BUFF2, c
12. IOREG={2) ,RECFORM=F | XBLK, ERROR=10ERROR, OPT ON=YES, C
13. L TYPEFLE=OUTPUT
20a’] DS OH
21. DS cL8 STORAGE REQUIRED FOR DM
22. | BUFF1 DS CLhog
22a. b cL8
23. [BUFF2 DS CLLED
24, | SWVEAREA DS 18F DATA MANAGEMENT SAVE AREA

Figure 6—4. Subroutine Sort/Merge Disk Sort Coding — Part 1

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-8
SORT/MERGE

6.4. EXPLAINING RUN REQUIREMENTS TO SUBROUTINE SORT/MERGE

Your program must describe its sort/merge requirements to subroutine sort/merge. You
use the MR$SPRM macro instruction to do this. Subroutine sort/merge uses the
information specified by MR$PRM to build a sort parameter table. Each keyword
parameter you specify with MR$PRM becomes an entry in the sort parameter table. (See
Appendix B.)

Since the MR$PRM macro instruction has many parameters, we are going to show its
format in two parts. The first part illustrates only the required parameters. After discussing
the use of these parameters, the second part of the format shows the optional parameters
followed by a discussion of their use. To complete the explanation, 6.4.3 explains the
MR$PRM parameters we've specified for the disk sort program. Finally, 6.10 provides the
entire MR$PRM macro format and a table that summarizes the use of the parameters.

6.4.1. Required MR$SPRM Parameters

The MR$PRM format for the required parameters is:

LABEL A OPERATION A OPERAND
[symbol] MRS$PRM FIELD=(strt-pos-1,igth-1[,form-1] [seq-1] [,order-1] .
[,....strt-pos-n,Igth-n[,form-n] {,seq-n] [,order-n] 1)\ ,

. RSOC=symbol,

FIN=symbol,

IN=symbol,

OUT=symbol,

RCSZ=max-bytes,
= J symbol

STOR { (symbol, number-of-bytes) }

The first thing you must do is choose either the FIELD or RSOC parameter. One or the
other of these parameters is required but not both. if you are sorting by key field
comparison, you indicate the FIELD parameter. It has subparameters that define the sort
key fields to subroutine sort/merge. The key field definition includes starting position,
length, data format, sorting sequences, and order of significance. You must specify at
least the starting position and the length of key field. Specifications for the other
subparameters are generated by default.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-9

SORT/MERGE

By writing a decimal number for starting position, you indicate the starting point of a key
field relative to the beginning of the record. For subroutine sort/merge, there are two
numbering scales for bytes in records: the byte number and the byte position number.
Both byte numbers and byte position numbers proceed from most significant to least
significant (left to right); however, byte numbers begin at 1 and increase, while byte
position numbers begin at O and increase. Remember to specify key field starting
positions by byte position in the record, not by byte number.

Using your record layout for the disk sort as an example (Figure 1—2), notice that the
first key field starts at byte 1 of each record. You would specify O for the strt-pos-1
subparameter because byte 1 corresponds with byte position O of the record (Figure
6—D5).

RECORD 1 Key Field
—

Id N\
01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567
B1 B2 B3 B4 B5 B6 B7 B8
Pos O Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 6 Pos 7

Key Field Length =

- 8 Bytes o
LEGEND:
B Byte

Pos Position

Figure 6—5. Key Field on Byte Boundary

All key fields, with the exception of binary key fields, start on a full-byte boundary so you
can easily specify their starting points by using the byte position number in the record.
When you want to specify a binary key field, the starting position is not limited to a byte
boundary but can start at any bit position within a byte. Sometimes you might need to
specify the binary key field starting position in a byte-bit format. Suppose that instead of
starting in record byte 1 or byte position number O, your 8-byte key field starts in bit
position 2 of record byte 6. You would specify 5.2 for byte position number 5, bit 2
(Figure 6—6).

RECORD 1
01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567
B1 B2 B3 B4 B5 B6 B7 B8
Pos O Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 6 Pos 7
Key Field Length
22 Bits or —————P

2 Bytes and 6 Bits

LEGEND:

B Byte

Pos Position

Figure 6—6.

Binary Key Field with Bit-Byte References

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-10
SORT/MERGE

The key field length subparameter (/gth) is also a mandatory specification. When you
specify a key field in full bytes, /gth is a whole number indicating the total number of bytes
the field occupies relative to the byte position number you specified in the strt-pos
subparameter (Figure 6—05). Since your record key fields from the disk sort example are
each eight bytes, you would write an 8 for the /gth subparameter as follows:

LABEL AOPERATIONA OPERAND
1 10 16
MRS$PRM FIELD=(g,8)

A binary key field's length is based upon the number of full bytes plus the number of
bits the field occupies. Using Figure 6—6, you would specify 2.6 for the /gth
subparameter, indicating a total of 22 bits or 2 bytes and 6 bits.

The form subparameter is not mandatory. It is a 2- or 3-character code that specifies the
key field's data format.

If you did not specify one of the format codes in Table 6—1, the default would be CH for
character code (form).

Table 6—1. Data Format Codes (Part 1 of 2)

Format Code Description I::r;ﬂ:r:g::‘"?;ﬁ::;
AC Character (EBCDIC in ASCII collation sequence) 1—256
ASL ASCIl leading sign numeric 2—256
AST ASCII trailing sign numeric 2256
Bl Unsigned binary 1 bit—256

B Character (EBCDIC or ASCI) 1—256
CLO Overpunched leading sign numeric 1—256
CSL Leading sign numeric 2256
CST Trailing sign numeric 2—256
CTO Overpunched trailing sign numeric 1—256
Fi Fixed-point integer 1—256

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-11
SORT/MERGE

Table 6—1. Data Format Codes (Part 2 of 2)

Maximum Aliowable

Format Code Description Field Length (Bytes)
FL Floating point 1—256
MC Multiple character, user-specified 1—256

collating sequence

PD Packed decimal 1—32
usQ Character, user-specified collation sequence 1-—-256
ZD Zoned decimal 1-32

Seq, the sorting sequence subparameter, could be A for ascending or D for descending. By
not writing a specification, you accept ascending sequence, the default condition.

As many as 255 different key fields may be specified. The order subparameter designates
the significance of multiple key fields from major to minor. The major key field is always
numbered 1; the next most significant key field is 2; and so on up to the maximum
specification of 255 key fields. If you omit the order subparameter, subroutine
sort/merge assumes the order in which you define the key fields to be the order of
significance. If you use order for one field, you must use it for all fields.

in the following coding example, line 1 describes a single key field. The key field strt-
pos-1 begins in byte position O and extends for seven bytes (/gth-7). The key field's data
format (form-1) is EBCDIC in ASCII collation sequence (AC). The D indicates a descending
sort sequence (seqg-7). Line 2 describes three keys. Each key has its own parameter
specifications. The first key has a starting position of byte position 5 extending through
byte position 12 (eight bytes). The format is assumed character (EBCDIC or ASCII), and
sort sequence is assumed ascending by default. The first key field is the second most
significant key field (order-17). The second key field starts in byte position number 16 and
extends through byte position number 18 (three bytes). Character format and ascending
sort sequence are assumed by default, and the second key field is the major key since
order-2 indicates 1. Finally, the third key field starts in byte position number 58 and
extends through byte position number 67 (10 bytes). Again, by default, the format is
assumed to be character and sequence, ascending. Key field 3 is the third in order of
major to minor key fields.

LABEL AOPERATIONA OPERAND
] 10 16

1. MRSPRM FIELD=(@,7,AC,D)
2. MR$PRM FIELD=(5,8,,,2,16,3,,,1,58,14,,,3)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-12
SORT/MERGE

Instead of specifying the FIELD parameter, you could choose the record sequencing own-
code parameter (RSOC). If you decided to write your own routine for record sequencing,
you would code RSOC and the symbolic name of your own-code routine:

LABEL AOPERATIONA OPERAND
1 10 16

MR$PRM RSOC=MYROUT

This parameter overrides the FIELD parameter if you specify both FIELD and RSOC.
RSOC is discussed in 8.2.

The sort/merge macro that initializes subroutine sort/merge is discussed in 6.5. Once
initialization is complete, subroutine sort/merge looks for the entry address of your
program. You define this entry location by specifying a symbolic name via the IN
parameter of the MR$SPRM sort macro:

MRSPRM IN=MYOPN

After sort/merge is complete and subroutine sort/merge is ready to return records to
your program, it looks for the location within your program where it can return control.
The OUT parameter symbolic name specifies this return location:

MR$PRM OUT=MYCLSE

As soon as the last sorted record is returned to your program, you've reached the output
end-of-data and you must tell subroutine sort/merge where to pass control. The FIN
parameter indicates your symbolic name for the output end-of-data routine:

MRSPRM FIN=MYEND

In addition to the areas you've set aside for the program itself and for input/output
buffers, you need space in main storage for the subroutine sort/merge modules and for

sort/merge operations.
Using the STOR parameter, you can indicate either:

m the symbolic name of the first main storage location available for subroutine
sort/merge; or

L] the symbolic name and maximum number of bytes (decimal) available in main
storage, starting at that name.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-13
SORT/MERGE

If you do not give a maximum number of bytes, subroutine sort/merge uses main
storage locations starting at the address you specify (e.g., WORK) to the upper limit of
main storage allocated to your job region (Figure 6—7).

LABEL AOPERATIONA OPERAND
1 10 16

MRSPRM STOR=WORK

MAIN STORAGE

USER PROGRAM

USER

PROGRAM SORT COMMON MODULE
REGION
1/0 BUFFER AREA
STARTING
ADDRESS FOR _ _ _
SUBROUTINE
SORT/MERGE
JOB REGION
SUBROUTINE SORT/MERGE MODULES AS DEFINED
IN JOB PROLOGUE
SORT/MERGE WORK AREA FOR
REGION SORT/MERGE OPERATIONS

STORAGE AREA ALLOCATED
BY STOR=WORK

Figure 6—7. Main Storage Area Allotted by STOR without Number of Bytes Specified

If, for example, you specify a maximum number of main storage bytes by writing
STOR=(WORK,15000), the main storage area allocated for subroutine sort/merge would
extend 15,000 bytes from your starting address of WORK. Main storage space allocation
would look like Figure 6—8.

MR$PRM STOR=(WORK, 15@00)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-14

SORT/MERGE

MAIN STORAGE

USER PROGRAM

USER
PROGRAM SORT COMMON MODULE
REGION
I/0 BUFFER AREA
STARTING
ADDRESS o
FOR SUBROUTINE
SORT/MERGE
SUBROUTINE SORT/MERGE MODULES
JOB REGION
AS DEFINED
SORT/MERGE WORK AREA FOR N JOB PROLOGUE
REGION SORT/MERGE OPERATIONS

STORAGE AREA ALLOCATED
BY STOR=(WORK,15000)

UNUSED

Figure 6—8. Main Storage Area Allotted by STOR Specifying Maximum Number of Bytes

If you use the STOR parameter to specify the amcunt of main storage available to
subroutine sort/merge, be sure to allocate a sufficient amount. See 1.6.1 for minimum
main storage requirements.

The last required MR$PRM parameter is RCSZ. You must specify the size of fixed-length
data records or the maximum size of variable-length data records to be sorted. Indicate a
decimal number of bytes after the equal sign, e.g., RCSZ=80.

LABEL AOQPERATIONA OPERAND
] 10 16

MRS PRM RCSZ=8¢

Size specified for variable-length records must include the 4-byte record length field that
precedes each record. If a tag sort has been indicated (ADDROUT keyword parameter
specified), the record size must equal the combined length of all key fields specified plus
the 10-byte record access address field. Maximum allowable record size depends
somewhat upon the system hardware configuration.

This completes our discussion of the required MR$PRM parameters.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 6-15

SORT/MERGE

6.4.2. Optional MR$PRM Parameters

In addition to required parameters, MR$PRM has many optional parameters. Some are
more frequently used than others. The following format shows all the MR$PRM optional

parameters:
LABEL AOPERATION A OPERAND
[symbol] MR$PRM ADDROUT= {g }]

[,ADTABL=symbol]

[I_3|N={bytes }]
|’ (min-bytes,size-1,freq-1[,...,size-n,freq-n])

[carc= {Ves }]

B NO
,CSPRAM= < OPTION

S DISC= { (address, max-disk-file-number)

| max-disk-file-number

_ { label-type }
B 2TAPE { (label-type,max-file-number)
DROC= {DELETE }]

symbol

—

I JMERGE= {YEs }]

i NOCKSM= {T }]

{,PAD=bytes]

[,PRINT={ CFil’:'TmAL}]
NONE

[, RESERYV =sort-filename}

[, RESUME=(PASS, recovery-number)}]
[,SHARE=sort-filename]
[,SIZE=number]

[,USEQ=(to-address,from-address)}]

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-16
SORT/MERGE

In order to help you relate these optional parameters with their functions, we will .
discuss them under these categories:

@& Device assignment parameters
8 Record definition parameters
= Restart parameter

] Miscellaneous parameters

Before each categorical explanation we will list the parameters to be discussed.

6.4.2.1. Device Assignment Parameters

Parameters used to define devices include:

LABEL AOPERATION A OPERAND
[symbol] MR$PRM DISC= { (address,max-disk-file-number)
max-disk-file-number

_ { label-type }
TAPE= { (label-type,max-file-number)

[, RESERYV =sort-filename]
[, SHARE=sort-filename]

The DISC and TAPE parameters identify the storage medium assigned to your work files.
You must first decide whether to use tape or disk. Suppose you choose disk. You would
decide whether to specify:

u address and maximum disk file number; or
® maximum disk file number.

The address subparameter specifies the symbolic name of a list of your own user-supplied
disk file names. The max-disk-file-number subparameter specifies the maximum number
of files available to sort/merge. This number must not exceed eight. Line 1 in the
following coding shows an example of the address and max-disk-file-number specification.
On the other hand, you can specify only the max-disk-file-number. This indicates the
maximum number of standard disk file names (not to exceed eight) assigned to subroutine
sort/merge. Line 2 of the following coding shows a maximum of seven disks to be used
for work files.

LABEL AOPERATIONA OPERAND
] 10 16

MR$PRM DISC=(MYLABEL,7)
2. MRSPRM DIsC=7

—_—
.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-17
SORT/MERGE

By using the TAPE parameter, you can identify the tape labels you want for all work
(scratch) tape files in your program and specify the maximum number of sort files that
may be assigned for subroutine sort/merge use. If you chose tape as your storage
‘medium, you have to decide whether to specify:

s |abel type (NO or STD); or
= label type and maximum file number.
Tapes are either unlabeled or labeled standard. In the following example, the first

specification indicates that you are assigning unlabeled tapes as scratch tape files; the
second specification assigns standard label tapes as scratch tape files.

LABEL AQPERATIONA OPERAND
] 10 16

1.] MRSPRM TAPE=NO

2. MRS$PRM TAPE=STD

If you specify both /abel type and max-file-number, you write the label type and a
decimal number to indicate a maximum number of tape files you want assigned as
working storage. The minimum is three; the maximum is six. For example, if you want to
use standard labels and a maximum of four auxiliary working storage tapes, you code:

MRS PRM TAPE=(STD,4)

This TAPE parameter specifies only the assignment of standard labels to four tape work

files. It does not assign standard sort tape file names. The LFD job control statement
does that.

If you omit both the DISC and TAPE parameters, subroutine sort/merge will determine
the type and number of work files from your LFD statements in the job control stream.
For tape files, standard labels are assumed.

The RESERV parameter reserves a tape unit for use by a sort work file and by an output
file. Sort/merge uses the tape unit as a work file during phases O, 1, and 2. At the
beginning of phase 3 when sort/merge transfers control to your program at the address
you specify on the OUT parameter, the work file is closed and rewound to the unload
point. After you dismount it and mount your data output file, the reserved tape unit
accepts your output file on the same device (Figure 6—9). You might specify a standard
tape sort file name (SMO1,...,.SMO06) as follows:

MRSPRM RESERV=SM@L

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-18

SORT/MERGE
MAIN STORAGE TAPE DEVICE 92
SUBROUTINE S/M
B INTERMEDIATE
PHASE COMPLETED WORK
FILE
———
REWIND
REMOVE WORK FILE
TAPE AND MOUNT YOUR
OUTPUT FILE TAPE
MAIN STORAGE TAPE DEVICE 92
SUBROUTINE S/M
B OQUTPUT PHASE OuTPUT
FILE OF
SORTED
_________________] RECORDS
—_—

Figure 6—9. Same Work File Device Reserved for Qutput File Processing

The SHARE parameter allows a tape unit assigned to subroutine sort/merge to be used
(shared) as a device for an input file during the initial sort phase of subroutine
sort/merge and as a work file during the remaining phases of sort/merge operation. You
designate a standard sort tape name (SMO1,...,.SMO06) for the SHARE parameter:

LABEL AOPERATIONA OPERAND
] 10 16

MR$PRM SHARE=SMJ1

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 6-19
SORT/MERGE

. The action taken might look like Figure 6—10.

MAIN STORAGE

TAPE DEVICE 90

SUBROUTINE S/M
INITIAL SORT
PHASE

_________________ INPUT
FILE

REWIND

REMOVE INPUT FILE
TAPE AND MOUNT YOUR
WORK FiLE TAPE

MAIN STORAGE

TAPE DEVICE 90

Y

SUBROUTINE S/M
PRELIMINARY
MERGE PHASE

. ——————————————— — WORK
FILE

-

Figure 6—10. Same Input Device Shared between Input File and Sort Work File during Subroutine Sort/Merge Phases

Remember, a shared tape cannot be reserved and a reserved device cannot be shared.
Associate the SHARE parameter with a dual-purpose input device and the RESERV
parameter with a dual-purpose output device.

6.4.2.2. Record Definition Parameters

The following parameters define records:

LABEL

AOPERATION A

OPERAND

[symbol]

MR$PRM

[ADDROUT={ { |]

e 5
' (min-bytes,size-1,freq-1[,...,size-n,freq-n])
[LUSEQ=(to-address,from-address)]

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-20
SORT/MERGE

The ADDROUT parameter is related to a special sort application called a tag sort. The tag
sort performed by subroutine sort/merge is a method of sorting in which the output file
contains only the direct access addresses, or the addresses and key fields, of the records in
the original file. The first 10 bytes of each reconstructed record contain the direct access
address field. The total length of all key fields per tag sort record cannot exceed 256 bytes. A
tag sort can be performed only when input is from a nonindexed or IRAM disk file. Multiple
input files cannot be tag sorted. When input is from an IRAM file, the output of a tag sort is
an IRAM file without an index.

When you want to perform a tag sort, you tell sort/merge via the ADDROUT parameter:

LABEL AOPERATIONA OPERAND
1 10 16

MRSPRM ADDROUT=A

MR$PRM ADDROUT=D

The ADDROUT parameter has two options. The D specifies that both the address field and
the record key fields are returned to your own program in the sorted record. The A specifies
that the sorted records returning to your program include only the address field. If you want
to construct a separate file containing the sorted key fields you need and you also want to
save the original addresses of the whole record that you tag sorted, specify D. You use A if
you don’t need to know the key field contents of the sorted records but want only their
addresses for retrieving the entire original record at a later time. Figures 6—11 and 6—12
show unsorted key fields from four records and the resulting records returned to your output
file after a tag sort. It is not the intent to show actual record formats in Figures 6—11 and
6—12 but only to illustrate the concept of record sorting by key fields and the outputs
produced by a tag sort operation. To retrieve the disk address of the record for a tag sort, you
must define the input file as a DTFNI file and use the imperative macro, NOTE, to obtain the
record address. The NOTE macro must never be used with a DTFSD file. It is issued only to a
DFFNI file.

RECORD MAJOR KEY MINOR KEY

ADDRESS FIELD/ FIELD

540 33 001654

360 04 002992

180 06 007959

001 10 004570

INPUT FILE
(UNSORTED RECORDS)

Figure 6—11. Input File, Unsorted Records (Additional Data Fields Not Shown)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-21

SORT/MERGE
OUTPUT FILE
(RECORD ADDRESSES
ONLY)
540
001
WORK FILE 180
INPUT FILE (RECORDS SORTED ON MAJOR |
(UNSORTED RECORDS) KEY FIELDS) 360
540 33 001654 540 33 001654
360 04 002992 001 10 004570
l ADDROUT=A
180 06 007959 180 06 007959 1 OUTPUT FILE
— (RECORD ADDRESSES AND
CONTROL FIELDS
001 10 004570 360 04 002992 ADDROUT=D)

| 540 33 001654
001 10 004570

180 06 007959

360 04 002992

Figure 6—12. Tag-Sorted Output Files

Although the BIN parameter is shown as optional, it is required if your records are
variable length. To conserve main storage space and provide optimum processing speed,
subroutine sort/merge divides variable-length records into fixed-length subrecords called
bins. Remembering that a 4-byte record-length field is considered a part of variable-
length records, several of them with key fields might look like Figure 6—13.

Record-Length Field Key Field 1 Key Field 2
e —— e — e ——
—
RECORD 1 86 B7 | B8 89 | B10 | Bt 812 | B13 | B14 | B15 22
Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos 180 BPR
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Record-Length Field Key Field 1 Key Field 2

o —— A AT A

RECORD 2

B6 B7 B8 B9 810 | B11 | B12 | B13 | B14 | B15 2

Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos =—————p 80 BPR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Record-Length Field Key Field 1 Key Field 2
d ™ e a— P

RECORD 3

86 87 B8 B9 B10| B11 | B12 | B13 | B14 | B15 2

Pos Pos Pos Pas Pos Pos Pos Pos Pos Pos Pos Pos == 100 BPR

0 4 5 6 7 8 9 10 1 12 13 14
LEGEND:
B8 Byte
8PR Bytes per raecord
Pos Position

ords and BIN Size

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-22
SORT/MERGE

There are two formats for the BIN parameter. The first format allows you to define the
size of these subrecords (bins), and the second format allows you to supply information
that subroutine sort/merge uses to calculate the bin size for you. If you specify the bin
size yourself, remember that the size must be large enough so that the first bin may
contain all the sort key fields within a record as well as the 4-byte record-length field.
Examining Figure 6—13 to determine the number of bytes for the format 1 BIN
parameter, notice that each record contains two key fields which extend 15 bytes into
the record. Therefore, the minimum number you can specify is 15. However, since you
have record lengths of 180, 80, and 100 bytes, all divisible by 20, a more efficient bin
size to specify might be 20.

LABEL AOPERATIONA OPERAND
1 10 16

MRSPRM BIN=20

Suppose you have the same record information from Figure 6—13 but you decide to let
subroutine sort/merge calculate the bin size. To calculate this number, subroutine
sort/merge needs:

® the minimum number of bytes which can accommodate all sort key fields for each
variable-length record plus the 4-byte record length field (min-bytes);

® the record length (size-7) appearing most frequently in the input file; and

8 the number or percentage of size-7 records in the input file (freq-7). If the number
specified is less than 100, subroutine sort/merge assumes it to be a percentage. If
100 or greater, it is assumed to be an estimate of the number of records in the file.

The same information can optionally be specified for additional record sizes appearing in
the input file. The following coding specifies that 15 bytes are needed to accommodate
all key fields, that 50 percent of your input file contains 180-byte records, and that there
are approximately two hundred 80-byte records and three hundred 100-byte records in
the file. You need not specify every record size appearing in your input file.

MR$PRM BIN=(15,18¢,50,8¢,200,100,300)

In our discussion of the FIELD parameter, we learned that there are many format codes
used to perform collation sequences (Table 6—1). If you have a collation sequence for 8-
bit character data differing from EBCDIC or ASCIl representation, you may specify USQ
on the form-1 subparameter of the FIELD keyword parameter. In addition to the FIELD
parameter, you specify the USEQ parameter of the MRSPRM macro.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-23

SORT/MERGE
. LABEL AOPERAT IONA OPERAND
] 10 16

MRSPRM FIELD=(@,8,USQ)

USEQ=(MYCODE,CODTRAN)

The to-address subparameter on the USEQ parameter specifies the address of a 256-byte
table that translates the record fields into your own collation sequence. The from-address

subparameter is the address of a 256-byte table that translates the fields back to the
original data format code for output.

Usually one table is sufficient to perform the necessary translations and since both
positional subparameters must be specified, you code the same address on both

subparameters. Thus, you would probably write the following coding if one table is
sufficient for the translations:

MRS$PRM FIELD=(®,8,USQ),

USEQ=(MYCODE,MYCODE)

6.4.2.3. Restart Parameter

Suppose that somewhere in the middle of merging records into your desired sequence,
the sort/merge program was interrupted. The number of collation passes previously
made is shown on the system console. To restart your tape sort, you code the most
recent collation pass number on the RESUME parameter.

LABEL | AOPERATION A l OPERAND

[symbol] l MR$PRM l [,RESUME=(PASS,recovery-number)]

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-24

SORT/MERGE
LABEL AOPERATIONA OPERAND
1 10 16
MRSPRM RESUME=(PASS,®53)

Instead of coding RESUME on the MR$PRM macro instruction and having to reassemble
your program, you can enter it from the job control stream by submitting a PARAM job
control statement (6.12), as in the following example:

// PARAM RESUME =(PASS,@53)

In order to enter RESUME on a PARAM statement, you must have coded CSPRAM=YES
on your MR$PRM macro (6.4.2.4).

Only tape sorts can be restarted. The disk cannot be repositioned as a tape is repositioned
for a restart.

6.4.2.4. Miscellaneous Parameters

The remaining optional parameters are:

LABEL AOPERATION A OPERAND

[symbol] MR$PRM [ADTABL=symbol]

[,CALC = {ﬁcE)S }]

[CSPRAM= {éﬁmn}]
YES

{ DELETE }]
symbol

,M E R G E { ‘::.:,,..v.,;;

i _[D
I ,NOCKSM—{T }]

[,PAD=bytes]

i ALL
PRINT={ CRITICAL
! NONE

[,SIZE=number]

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-25
SORT/MERGE

. Just as MR$PRM builds the sort parameter table, the ADTABL parameter allows you to
generate additional parameter tables and link them to the existing sort parameter table. It
is important to code ADTABL as the last parameter of the MR$PRM it is used in, because
subroutine sort/merge ignores all parameter entries following the ADTABL parameter
(Figure 6—14). This symbolic label may be the beginning of an additional parameter table
or any number of parameter tables. In addition to coding the ADTABL parameter last on
your MR$SPRM macro, you must create another sort parameter table in the current
program or reference a sort parameter table from another program. To link tables within
the same program later in the program, you indicate the symbolic label specified on the
ADTABL and write a MR$SPRM there as follows (line 13):

LABEL AOPERATIONA OPERAND
1 10 16 72
{§
1. { SORT MRS PRM FIELD=(8,8), C
2, IN=SORTIN, C
3. OUT=SORTOUT, C
L, FIN=SORTFIN, C
5. RCSZ=80 C
6. SOTR=VORK C
7. PAD=12, C
8. ADTABL=MYTABL
9.
10.
® |

12, .
13. | MYTABL MRS PRM DISC=4, C
14, ADDROUT=D

Figure 6—14. ADTABL Parameter Adding Table Entries within the Same Program

To reference sort parameter tables from other programs, you must indicate your symbolic
name from the ADTABL parameter as an external reference in your program and as an
entry point in the program being referenced (Figure 6—15). If duplicate fields exist in the
two parameter tables, the first occurrence is used.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

6-26

LABEL
1

AOPERAT IONA
10

16

OPERAND

COMMENT

SORT

ADDED
AFTER
FIRST |SRTAB
TABLE

MRSPRM

EXTRN

MRSPRM

FIELD=(D,8),
IN=SORTIN,
OUT=SORTOUT,
FIN=SORTFIN,
RCSZ=84,
STOR=WORK,
PAD=16,
ADTABL=MYTABL
MYTABL

FIELD=(12,4),
IN=SORTIN,

FIRST PROGRAM SORT
PARAMETER TABLE

OOOOOOOO0O

OUT=SORTOUT,
FIN=SORTFIN, SECOND PROGRAM SORT
MYTABL RCSZ=124, PARAMETER TABLE
DISC=4,
ADDROUT=D
ENTRY MYTABL

OO0 0

Figure 6—15. ADTABL Parameter Referencing Table in Previous Program

Another very useful optional parameter is the CALC parameter. This parameter may be
specified only for disk sorts. If you want the subroutine sort/merge to calculate optimum
working storage, display information produced during sort initialization, and then terminate
the job step, you must indicate CALC=NO (line 1).

—
.

MRS PRM CALC=NO
2. MRSPRM CALC=YES

The YES specification (line 2) causes the subroutine sort/merge to calculate optimum
working storage, display sort information, and proceed with the sort as defined by the
current sort parameter table. In either case, you must have specified the SIZE parameter
in MR$PRM, as well as all required record description keyword parameters. The
information displayed specifies the estimated sort time in minutes and the number of
cylinders required for work space.

In the SIZE parameter, you indicate the approximate number of records to be sorted. This
permits subroutine sort/merge to optimize its procedures. If you omit the SIZE parameter,
subroutine sort/merge assumes a file of 25,000 records and the sort may not be
optimized.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-27

SORT/MERGE
LABEL AOPERATIONA OPERAND
] 10 16 o, 12
3
MR$PRM S1ZE=2000, C

CALC=YES

Subroutine sort/merge also accepts sort/merge parameters from the job control stream by
means of the PARAM job control statement. See 6.12 for parameters you can submit to
subroutine sort/merge via the job control stream at run time. If you use this convenient
method of entering sort/merge parameters in the sort parameter table, you specify your
intention via the CSPRAM keyword parameter by coding YES (line 2). If you omit the
CSPRAM parameter or code CSPRAM=NO (line 1), subroutine sort/merge will not look for
PARAM statements in the job control stream.

—
.

MRSPRM CSPRAM=NO
2. MRS PRM CSPRAM=YES

It is advisable to specify CSPRAM=YES. Then, if you decide to add other parameters to
your sort parameter table, you may do so; or, if you don't, the execution of your program is
not affected. If you choose the default condition of CSPRAM=NO, you have to recode the
MR$PRM macro and recompile your program to add parameters. Only BIN, DISC,
NOCKSM, RESERV, RESUME, SHARE, and TAPE may be entered into the parameter table
via the PARAM job control statement.

Suppose you know that your data files contain a large quantity of records with equal key
fields. To avoid unnecessary key field comparison and redundancy in your output file, there
is a convenient method of eliminating or combining these records with equal key fields.
It's called data reduction own-code routine (DROC). This parameter allows you to specify
automatic data reduction to be performed by subroutine sort/merge or by your own-code
routine. Remember that record fields are duplicated in your files and that these whole
records may be either eliminated or combined. Therefore, all records in your data files for
data reduction must be fixed-length records. Never specify the DROC parameter for
variable-length records. If you specify DELETE (otherwise known as auto delete),
subroutine sort/merge performs data reduction automatically (line 1). Subroutine
sort/merge uses registers to handle the saving and deleting of records with duplicate
keys. For a more detailed description of how it performs deletion, read 7.3.

pa—
.

MRS PRM DROC=DELETE
2. MRSPRM DROC=MYWORK

Otherwise, the symbol you indicate on the DROC parameter specifies the symbolic label of
your own-code data reduction routine entry address (line 2). Own-code routines can delete
records with equal keys, summarize duplicate keys creating new records, or use a
combination of keeping, deleting, or summarizing records. Thus, if you are interested in
combining keys (summarizing) or a combination of deleting and combining, you must write
your own routine and specify its name on the DROC parameter of the MR$PRM macro.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-28
SORT/MERGE

Subroutine sort/merge is capable of performing a merge-only application. You tell
subroutine sort/merge to perform merge-only via the MERGE parameter:

LABEL AOPERATIONA OPERAND
] 10 16

1. MRS PRM MERGE=YES

2. MRSPSM MERGE=NO

If you omit this parameter, subroutine sort/merge assumes NO by default, a merge-only
operation is not performed. You can also specify that this is not a merge-only operation by
coding NO (line 2).

Normally, the subroutine sort/merge generates a checksum word for each output data
block written to the tape or disk working storage areas. The checksum word provides a
check of data integrity during read and write transfer operations (/0 processing) between
the sort/merge operation and the sort work files.

The checksum word is calculated by logically summing, into a 1-word field, the records in
the data block before they are written out to the sort work file. This checksum word is
placed in the data block that is written to the sort work file.

Later, after the data blocks are read back into main storage from the sort work file, a
checksum word is recalculated. Data integrity is then verified by comparing the new
checksum word with the old checksum word. If the new word equals the old, the sort
continues. If the comparison is unequal, the sort terminates. The checksum operation
works as follows:

INPUT BLOCK 1 MAIN STORAGE

h—

- rect| | oooooooo

REC? IARRARA R

RECALCULATE
CHECKSUM
WORD FOR

INPUT BLOCK1

00000000

meca| | 00000000 | 00000001

o]
)

NEW CHECKSUM
WORD WITH OLD
CHECKSUM
WORD

REC4 10000000 § 00000000

RECS 00000000

/ \ 4 \
/ AN / \
/ \ / \

/ N / \
CHECKSUM WORD N CHECKSUM WORD

COMPARE

00000000 | 00000000 | 10000000 | 11111110 00000000 | 00000000 | 10000000 | 11111110

SORT CONTINUES

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-29
SORT/MERGE

You can suppress this calculation of the checksum word by specifying the NOCKSM
keyword parameter for the device type to which output data blocks are written.

LABEL AOPERATIONA OPERAND
] 10 16

1. MR$PRM NOCKSM=D

2. MRSPRM NOCKSM=T

The D indicates no checksum word calculation for blocks written to disk (line 1). Specify T
for no checksum word calculations on blocks written to tape (line 2). Since checksum word
calculations are time consuming, it is wise to specify this parameter.

Another special optional parameter, PAD, allows you to augment the sort parameter table
beyond its generated length. This enables you to enter additional parameters into the table
from your own program at run time. The decimal number you enter specifies the number

of additional bytes to be added to the sort parameter table. Remember that these bytes
must be expressed in multiples of four.

The PAD parameter is used with the ADTABL parameter. The ADTABL specifies the name
of the additional sort parameter table or the table being referenced in another program,

and PAD specifies the number of extra bytes required for the additional parameter table
entries.

The following coding illustrates two PAD parameters:

MRSPRM PAD=12
MRSPRM PAD=8

N —

Also, see Figure 6—14, line 7 and Figure 6—15, line 7.

Subroutine sort/merge generates messages that are displayed on the system console or
written in the job control spool log. The parameter PRINT allows you to specify that you
want all messages (ALL), only critical messages (CRITICAL), or no messages (NONE)

written into the system message log. If you omit PRINT, all messages are written to the
system message log.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-30
SORT/MERGE

6.4.3. MRs$PRM for the Disk Sort Program

Let’'s consider the specifications you might make in the parameter table for the disk sort
program. Specifying the required parameters and other parameters pertinent to your disk
sort (Figure 6—16), you might write:

LABEL AOPERATIONA OPERAND

] 10 16 L, 72
14 | SORT MR$PRM FIELD=(8,8,CH), ¢
]5' IN=SORTIN, C
6. OUT=SORTOUT, c
]7' FIN=SORTFIN, c
18 RCSZ=88, C
19' STOR=WORK, C
20, DISC=4

Figure 6—16. Subroutine Sort/Merge Disk Sort Coding —Part 2

The FIELD parameter indicates that each of your record key fields start in byte position
number O, are eight bytes long, and are in the EBCDIC or ASCII character format (CH).
Since your sorting sequence is ascending, you don’t need to code an A for the seq-7
subparameter because A is the normal default. In this case, you are not sorting on more
than one key field so there is no need to specify the order-7 subparameter for major or
minor sort key fields. You assign the name SORTIN to the entry location of your program
by using the IN parameter. You also assign the name SORTOUT to the location in your
program where subroutine sort/merge can return control after it has sorted the records
and it is ready to return them to your program.

When subroutine sort/merge returns the last sorted record to your program, it looks for
the name of your output end-of-date routine. In your FIN parameter, you specified the
name SORTFIN. Your records for the disk sort are 80-byte, fixed-length data records, so
you specify a record size of 80 bytes.

On the STOR parameter, you indicate that the name of the first main storage location
available for working storage is WORK and that this area extends to the upper limit of
main storage allocated to your job region (Figure 6—7).

Since your sort/merge is being performed on disk, you specify in the DISC parameter that
you want to use disk space for additional working storage on the sort. For this program,
you choose to indicate only the maximum number of standard disk file names assigned to

subroutine sort/merge. The 4 specifies that four file names are assigned to subroutine
sort/merge.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-31
: SORT/MERGE

6.5. ACTIVATING THE SUBROUTINE SORT/MERGE (MR$OPN)

Once you define the input and output files (DTFSD), establish the communications
interface with subroutine sort/merge modules (MR$ORT), define the sort requirements
(MR$PRM), and reserve input and output buffer areas, you need some way to activate
phase O of subroutine sort/merge. The MRSOPN imperative macro instruction generates
linkage to call the sort/merge initialization module into main storage. This module
performs the initialization procedure of phase O before actual sort/merge execution. You
may choose to open the input data files before or after you open the subroutine
sort/merge; however, you must be sure to open both subroutine sort/merge and your
input data files before releasing records to the sort.

A label on the MR$OPN macro is optional, but for the operand you must indicate either
the symbolic label (address) of the sort parameter table or the number 1 indicating register
1 where you have previously loaded the address of your sort parameter table. A blank
operand field will also indicate that register 1 was loaded with the parameter table
address. In our disk program, we indicate the symbolic label of the sort parameter table on
the MRSOPN macro instruction. Continuing the disk sort program coding from the last
coding examples of Figure 6—4 and Figure 6—16, you would write:

LABEL AOPERATIONA OPERAND
1 10 16
25. | START EQU ®
26. MRSOPN SORT OPEN THE SUBROUTINE SORT/MERGE
27.] SORTIN LA 13,SAVEAREA POINT TO SAVE AREA
28. OPEN INPUT OPEN THE INPUT FILE
29. { GETREC GET INPUT GET RECORD FROM INPUT FILE
30. LR 1,2 LOAD R} WITH RECORD ADDRESS
31. 1 * ASSUMING R2 IS SPECIFIED AD
32. 1 % THE |/0 REGISTER IN THE INPUT DTF

When the MR$OPN has opened the subroutine sort/merge, it passes control to your
program at the address you specified in the IN keyword parameter of the MR$PRM macro
instruction. According to your specification on the IN parameter for the disk sort program,
your program receives control at the address of symbolic label SORTIN.

At this point, you begin your own program input routine. This routine loads the data
management save area address into register 13, opens your input data file (if you haven't
already opened it), reads each record, and sets the address of the record in register 1,
preparing it for release to the sort. You label your first input routine instruction SORTIN
because you want your program to receive control from subroutine sort/merge at that
point. To set the address of the data management save area, you load it into register 13
via the load-address (LA) instruction (line 27).

Next, by issuing the OPEN imperative macro instruction (line 28), you open the input data
file you named INPUT in your DTFSD. With the file open, you can read the input file by
designating the GET imperative macro instruction (line 29). Since you plan to read many
records and you’'ll need to repeat this instruction, you label it GETREC, giving yourself a
place to return for reading subsequent records. Data management automatically loads the
first data record address into register 2 when you specify IDREG=(2) on the DTFSD macro.
Because the sort/merge expects the address of the record being released to it to be in
register 1, you must load register 1 with the record address. In this example, a /oad
register (LR) instruction is used.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-32
SORT/MERGE

6.6. GETTING DATA INTO THE SORT PROCESS .

You've read the record and now you must pass it to subroutine sort/merge before
returning to read subsequent records.

The MRS$SREL macro generates code to release unsorted records one at a time to the
subroutine sort/merge for processing.

LABEL AOPERATIONA OPERAND

1 10 16
33. MRSREL RELEASE RECORD TO THE SORT
34, B GETREC GET NEXT RECORD

After the transfer occurs, subroutine sort/merge returns control to your program at the
instruction immediately following the MRSREL macro. Now you want to read the next
record, so you branch back to your GET instruction labeled GETREC. Reading records,
setting the address in register 1, and releasing records to the sort procedure are repeated
until the end of input file is reached. When data management reaches the end-of-input
file, it looks for the symbolic address of your end-of-file routine. Your EOFADDR
specification on the input DTFSD data management macro indicates the name EOF. This is
your means of exiting the read record loop.

If you are using disk work files and are not certain whether you have assigned enough
auxiliary storage, you can include a routine that will check on the availability of work area
before each record is passed to the subroutine sort/merge. When control is returned to
your program immediately following the MR$SREL macro instruction, register 1 will be set
to a positive value if more records can be accepted or to a negative value if work space
may be insufficient to complete the sort. Use a /oad and test register (LTR) instruction to
set register 1, followed by a branch minus (BM) instruction, which will cut short the read
record loop. You have several alternatives at this point. You can complete the sort with
only the records read thus far by branching to EOF; branch to your error processing
routine, IOERROR (6.9, line 53); or write a special routine to handle this condition in some
other way. In the example, we have labeled this routine NOROOM.

33a. LTR 1,1 LOAD R1 AND CHECK FOR NEGATIVE VALUE
33b. BM NOROOM GO TO 'NOROOM' ROUTINE

6.7. PASSING CONTROL TO OUTPUT PROCESS

After you read the last data record of the input file and reach the end of file, you designate
the end-of-file routine and issue a CLOSE imperative macro to close the input file
(although this is not required for continuing your program).

This is followed by the MR$SRT sort macro, which tells the subroutine sort/merge that
you have reached the end-of-input data and that it may now complete the process of
sorting and merging to produce the final results.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-33

SORT/MERGE

LABEL AOPERATIONA OPERAND

] 10 16
35. | EOF EQU * THIS LOCATION IS SPECIFIED
36. | % AS THE END OF FILE ADDRESS
37.1* IN THE INPUT DTF
38. CLOSE INPUT CLOSE THE INPUT FILE
39. MR$SRT TELLS THE SORT THAT THE
Lo. | * END OF FILE HAS BEEN REACHED.

After the sort receives all input data records, it completes a preliminary merge of record
strings. Subroutine sort/merge may skip this phase if your input file is small. The final
merge (phase 3) always occurs, and subroutine sort/merge looks in your sort parameter
table for the symbolic label you indicated on the OUT parameter of the MR$PRM. It passes
control to this label address when it is ready to return the records to your program. Since
you designated SORTOUT as the symbolic label for the disk sort program, the subroutine
sort/merge returns control to that label address which is the beginning of your output
routine.

6.8. DRAWING DATA FROM THE SORT PROCESS

Your output routine coding might continue as follows:

L1. | SORTOUT EQU * OUT ADDRESS

L2. OPEN OUTPUT OPEN THE OUTPUT FILE

43. |RECRET MRSRET REQUEST A RECORD RETURNED.
Ly, MVC g(80,2),6(1) MOVE THE SORTED RECORD TO
Lg., | * THE OUTPUT BUFFER AREA.R2 IS
Le. | = ASSUMED SPECIFIED AS THE 1/0
4y. | = REGISTER IN THE OUTPUT DTF.
4L8. PUT OUTPUT OUTPUT THE RECORD RETURNED
Lg. B RECRET

+ To begin your output routine, you open the output file (line 42) and request subroutine
sort/merge to return sorted records to your program via the MR$RET sort macro (line 43).
Records are released to your program one at a time. Consequently, the MRSRET macro
must execute for each returning sorted record. Because record writing is a repetitive
process, and the MR$SRET must execute for each record, you assign a symbolic label to the
MRSRET macro instruction to develop your output record processing loop (line 43).
MRSRET returns the address of sorted records one at a time to register 1 and returns
control to your program at the line of coding immediately following the MR$RET macro
instruction. When you open the output file and specify IOREG=(2) in the DTFSD data
management macro, register 2 is set to the location in the buffer where the first record is
to be moved. When control returns to your program (following the MR$RET), the record to
which register 1 points must be moved to the location where register 2 points (line 44).
When you issue a PUT macro, data management updates the address in register 2 to the
location for the next record, tests to see if the buffer is full, and, if it is full, writes the
block to the output file.

Next, you write the sorted record to disk via the PUT imperative macro (line 48) and issue
an unconditional branch (line 49) to the MR$RET macro, which you labeled RECRET (line
43). This loop repeats until it reaches the end of data indicating that all sorted records
have been returned to your program. '

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-34
SORT/MERGE

When subroutine sort/merge has returned all sorted records, it looks for a point in your
program to pass control and exit the return records loop. This point is specified as a
symbolic label address in the FIN parameter of your sort parameter table. You indicated
the label address FIN=SORTFIN in your disk sort parameter table, so subroutine
sort/merge returns control to your program at SORTFIN (the beginning of your close
output file routine). In this way, you exit the return record loop.

6.9. ENDING THE SORT RUN

Programming the ending of a sort run follows the same basic procedure as ending any other
program. If there are no other calcuiations or data manipulations to be performed on the
sorted data, you issue the CLOSE imperative macro to close the output data file and an EOJ
supervisor macro to notify the supervisor that the job step is completed.

LABEL AOPERATIONA OPERAND COMMENTS
] 10 16
50. | SORTFIN EQU * FIN ADDRESS
51. CLOSE OUTPUT CLOSE THE OUTPUT FILE.
52. ECJ END OF JOB STEP.

Another good addition to any program is an error routine to tell the system what
procedures it should take when an error occurs. If you include an error routine, you must
indicate the name of your error routine on the ERROR parameter of the DTFSD statements
for both input and output files. (See Figure 6—3, ERROR=IOERROR.) Suppose you name
your error processing routine IODERROR. You might use the following approach to handle
an error condition by using the CANCEL supervisor macro (line 54) to halt the current job
run.

53. | 10ERROR EQU *

5k . CANCEL CANCEL THE JOB.

55. LTORG DEFINE ALL LITERALS HERE.
56. | WORK EQU * START OF SORT WORK AREA.
57. | * THIS SET UP ALLOWS THE SORT
58. | % TO USE ALL MEMORY FROM

59. | * THIS LOCATION TO THE END OF
60. | * THE JOB REGION.

61. END SRTEXMPL

Finally, to lead into the necessary job control statements for your disk sort program, you
would write the LTORG assembler directive (line 55), which generates into your source
module all previously defined literals.

In the STOR parameter of the MR$PRM macro, you specified the symbolic label WORK.
That name indicated the starting address of the main storage area available to subroutine
sort/merge. Here, at the end of your program, you place your designation of that area (line
61). Your equate (EQU*) statement with the current location counter symbol (*) tells
sort/merge that it should use the area starting with the address in the current location
counter (now showing the address of the end of your program) to the end of the job region
as the space for its main storage work area. Figure 6—17 shows the coding of your disk
sort program to this point and the diagram following it, Figure 6—18, illustrates your
program’s interface with the subroutine sort/merge.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

6-35

Notice the use of equate statements in this program coding. In all cases except the last,
these statements are located at the beginning of input, sort, output, end, or error routines,
as indicated by their labels. Use of the equate statement is a valuable programming
technique that allows you to change or insert instructions at these points at a later time.

SRTEXMPL START

*

e
"

INPUT

OUTPUT

*
SORT

BUFFI

BUFF2

EXTRN

BALR
US ING
B

DTFSD

DTFSD

@ SETS LOCATION COUNTER TO ZERO.
MRSORT MRSORT DEFINES AN EXTRN.
LINKS COMMON SORT MODULE
TO YOUR PROGRAM.
4,0
* 4
START
BLKS |1 ZE=4@0O ,RECS | ZE=8@, I0AREA1=BUFF 1,1 0AREA2=BUFF2,

IOREG=(2) ,RECFORM=FIXBLK,ERROR=I0ERROR,OPT ION=YES,

EOFADDR=EOF ,TYPEFLE=INPUT

BLKS|ZE=40@ ,RECSIZE=80, 1 0AREA1=BUFF1,10AREA2=BUFF2,
IOREG=(2) ,RECFORM=F I XBLK,ERROR=10ERROR,OPT | ON=YES,

TYPEFLE=OUTPUT

MR$PRM FIELD=(@&,7,CH),

DS
DS
DS
DS
DS

SAVEAREA DS

ate
~

IN=SORTIN,
OUT=SORTOUT,
FIN=SORTFIN,
RCSZ=380,
STOR=WORK,
DISC=4

DATA MANAGEMENT WORK AREA
OH

CL8

CL4oo

cL8

CL4o0

18F DATA MANAGEMENT SAVE AREA

Figure 6—17. Disk Sort Program Coding (Part 1 of 2)

(]
W ool onun W —

(]

OOOOOOO0O

wN — O

14
15
16
17
18
19
20

20a
21
22
22a
23
24

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-36
SORT/MERGE
START EQU = 25
MRSOPN SORT OPEN THE SORT/MERGE SUBROUTINE 26
SORTIN LA 13,SAVEAREA POINT TO SAVE AREA 27
OPEN INPUT OPEN THE INPUT FILE 28
GETREC GET INPUT GET RECORD FROM INPUT FILE 29
LR 1,2 LOAD R) WITH RECORD ADDRESS 30
* ASSUMING R2 IS SPECIFIED AS 31
* THE 1/0 REGISTER IN THE INPUT 32
* DTF.
MRS$REL RELEASE RECORD TO THE SORT 33
B GETREC GET NEXT RECORD 34
EOF EQU = THIS LOCATION IS SPECIFIED 35
* AS THE END OF FILE ADDRESS 36
* IN THE INPUT DTF. 37
CLOSE INPUT CLOSE THE INPUT FILE. 38
MRSSRT TELLS THE SORT THAT THE END- 39
* OF-DATA HAS BEEN REACHED. Lo
SORTOUT EQU = OUT ADDRESS 4
OPEN OUTPUT OPEN THE OUTPUT FILE. 42
RECRET MRSRET REQUEST A RECORD RETURNED. L3
MVC @(86,2),0(1) MOVE THE SORTED RECORD TO L
* THE OUTPUT BUFFER AREA. 4g
* R2 IS ASSUMED SPECIFIED AS L6
* THE 1/0 REGISTER IN THE Ly
* OUTPUT DTF.
PUT OUTPUT OUTPUT THE RECORD RETURNED. L8
B RECRET REQUEST NEXT RECORD. 49
SORTFIN EQU = FIN ADDRESS 50
CLOSE OUTPUT CLOSE THE OUTPUT FILE. 51
E0J END OF JOB STEP. 52
* ERROR ADDRESS FOR DATA MANAGEMENT
IOERROR EQU =* 53
CANCEL CANCEL THE JOB 54
LTORG DEFINE ALL LITERALS HERE 55
WORK EQU = START OF SORT WORK AREA. 56
* THIS SETUP ALLOWS THE SORT 57
* TO USE ALL MEMORY FROM 58
* THIS LOCATION TO THE END OF 59
* THE JOB REGION. 60
END SRTEXMPL 61

Figure 6—17. Disk Sort Program Coding (Part 2 of 2)

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

6-37

START

The wuser program interfaces with the
subroutine sort/merge through the sort
common module. The sort common module
must be linked to the user’s program by the
linkage editor. Specify EXTRN MR$ORT.

The sort parameter table, which is created
by the MR$PRM macro, specifies to the sort
the different sorting options the user wants
to use. The other sort macros interact with
the subroutine sort/merge via the sort
common module.

The user provides all input and output data
processing and may modify records before,
during, and after the sort.

[

Sort initialization
{Phase 0)

Return via IN parameter

|
|
MR$OPN !
|
1
|

Information from sort
parameter table and job
control statements is
processed.

Input record is given to the
sort which builds initiai
(PHASE 1) strings in sort
work areas.

After all records have been
given to the sort, a
preliminary merging of the
record strings may occur.
If file is small or partially
sequenced, this phase may
be skipped.

A final merge of all the
record strings occurs.

- |
|
i
l
|
|
MRS$REL (record address
loaded in register 1)
I
I
1 (Phase 1)
Returns to instruction
following MR$REL macro
|
|
|
|
|
MR$SRT |
L
I L
| {Phase 2)
|
|
|
I
!
Return via OUT parameter
- [
' (Phase 3)
|
|
|
|
MR$RET |
T P
I
|
Returns to instruction

USER PROGRAM

following MR$RET macro
(record address in register 2)

|

The sort releases to the
user one sorted record
every time MRSRET
macro is issued.

SORT/MERGE

Figure 6—18. User Program Interface with Subroutine Sort/Merge

e e e e e e et e e e e e e e i e i ot e o o 2 o ot e o o o o o o e o e o e]

b -

0S/3 SUBROUTINE

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 6-38
SORT/MERGE

6.10. SUBROUTINE SORT/MERGE MACRO PARAMETER USAGE

We've examined required and optional MR$PRM macro parameters and a typical disk sort .

program MRS$SPRM specification. Figure 6—19 illustrates the entire MR$PRM macro

format.

LABEL AOPERATION A

OPERAND

[symbol] MR$PRM

FIELD=(strt-pos-1,lgth-1[,form-1] [,seq-1] [,order-1]
[,...,strt-pos-n,Igth-n[,form-n] [,seq-n] [,order-n]])/,

RSOC=symbol,
FIN=symbol,
IN=symbol,
OUT=symbol,
RCSZ=max-bytes,

- § symbol }
STOR { (symbol, number-of-bytes)

: ,ADDROUT= { 5 }]

[ADTABL=symbol] .
[BIN= { bytes }]

(min-bytes,size-1,freq-1[,...,size-n,freq-n})

_ {NO
| CALC = {ves}]

,CSPRAM={ | H
YES

DISC= { (address,max-disk-file-number)}
max-disk-file-number

_ [label-type }
| TAPE= { (label-type,max-file-number)
DROC= {DELETE }]

symbol

i _JD
| ,NOCKSM—{T }]

[, PAD=bytes]

PRINT= { CRITICAL } :I
NONE

Figure 6—19. Complete MRSPRM Macro Format (Part 1 of 2)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-39
SORT/MERGE

LABEL AOPERATION A OPERAND

MR$PRM [, RESERYV =sort-filename]
{(cont)
[,RESUME=(PASS, recovery-number)]
[, SHARE=sort-filename]
[,SIZE=number]

[LUSEQ=(to-address,from-address)]

Figure 6—19. Complete MRSPRM Macro Format (Part 2 of 2)

Table 6—2 summarizes sort/merge macro instructions required for subroutine sort/merge
execution in single-cycle sort/merge, merge-only, or internal (main storage) sort/merge
operations including MR$PRM subparameter use.

6.11. ASSEMBLING, LINKING, AND EXECUTING YOUR PROGRAM

Up to this point, you have written your program. Now you must assemble, link, and
execute it. This is done by embedding your program in a job control stream. The job
control stream consists of job control statements that name devices used by your program
and the subroutine sort/merge; describe labels and space allocations; and assemble, link,
and execute your program.

6.11.1. Assembling the Program

When you submit your program (including the job control statements before and after the
source coding) to the assembler, it prepares a machine language program from your
program’s source code. This machine language is called object code; the assembler’s
translation of your source code to object code is an object module that the assembler
places in the temporary job run library file (YSRUN). The whole process is called the
assembly run.

On the assembly run, no data is manipulated. The assembler simply analyzes each
statement and converts it into a form acceptable to the machine. Instructions called
assembler control directives direct the operation of the assembler. In your disk sort
program, the START assembler directive sets the initial location counter value. The END
directive indicates the end of your source program and the location where control is
transferred after your program is loaded into main storage.

You specify the EXTRN assembler directive and the assembler includes it in your program
object module as an unresolved external reference. The EXTRN directive tells the
assembler that you want the linkage editor to call in the sort common module in object
code form from the object library file (YSOBJ).

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-40
SORT/MERGE

Table 6—2. Summary of Sort/Merge Parameter Usage

Single-Cycle
Macros Sort/Merge Merge- Internal
Only Sort/Merge
and Disk Tape
Parameters !
Required |Optional|{ Required | Optional | Required | Optional | Required |Optional

MR$PRM X X X X

MR$OPN X X X X

MR$REL X X X

MR$SRT X X X

MRS$RET X X X

MGSREL X

MGS$RET X

Normal Linkage Sort Parameter Table Entries

DROC X X X X

FIN X X X X

IN X X X X

ouUT X X X

RSOC X X X X

Device Assignment Sort Parameter Table Entries

DISC X

RESERV X

SHARE X

STOR X X X X

TAPE X

Record Definition Sort Parameter Table Entries

ADDROUT X X X

BiN X X X

FIELD X X X X

RCSZ X X X X

USEQ X X X X

Restart Sort Parameter Table Entries
RESUME | [[X1 1 | [
Miscellaneous Sort Parameter Table Entries

ADTABL X X X X

CALC X

CSPRAM X X X X

MERGE X

SIZE X X X

NOCKSM X X

PAD X X X X

PRINT X X X X

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-41
SORT/MERGE

Another assembler directive, LTORG, tells the assembler to generate all literals that were
not previously defined in your source program. In other words, the assembler builds a
Iiteral table, a collection of constant values assigned to symbolic names.

6.11.2. Link Editing the Program

You now have an object module representing your source program in YRUN. The
linkage editor begins its activities by taking the object module as its input. If you elect to
write a control stream for the link edit job step, linkage editor scans its control stream data
set for linkage editor control statements and finds the LOADM and INCLUDE statements
which tell it to name the load module it is creating SRTEXM and to include the object
module named SRTEXMPL. (See Figure 6—24, lines 18 through 22.) Otherwise, if you use
the short way of linking the object module named SRTEXMPL, you use the LINK job
control procedure instead of the linkage editor statements. (See Figure 6—21, line 8.) The
linkage editor also scans your program object module for external references and finds
MRSORT. It looks for MR$SORT in Y0BJ, finds it is an entry point to the object module
SGSORT, and includes SG$ORT in the load module SRTEXM. Normally, linkage editor
places the load modules it produces in the temporary job run library file (YSRUN) unless
you specify that the load modules be placed in your user load library (a file separate from
the system resident library files).

6.11.3. Executing the Program

Now you have a load module that is acceptable to the system for the execution run. At this
point, you need the sort data files and device assignment set information. You supplied the
device assignment data after the linkage editor jproc call. (See Figure 6—21, lines 9
through 21.) At the end of your job control stream, the EXEC statement tells the supervisor
to execute your load module named SRTEXM. Your program load module normally comes
from YSRUN and the execution begins. In the execution run, the load modules for the
subroutine sort/merge are called from YLOD into main storage, as needed by your
program. When the sort/merge phases are completed, your sorted records are written to
the output files on the volumes and devices you specified in the job control stream. (See
Figure 6—21, lines 13 through 16.)

Figure 6—20 illustrates the assembly, linkage edit, and execution runs for a subroutine
sort/merge disk sort program.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-42
SORT/MERGE

SUBROUTINE SORT/MERGE SYSTEM FLOWCHART

MR$PRM |

m:g: MACROS
USED IN

MRSSRT) SoURCE

MRSRET{ coping
SORT/MERGE MERGE{ MGSREL

$YSMAC
MACROS ONLY \masReT

~—— ——

SOURCE CODE

(MR$ORT CODED
IN PROGRAM AS EXTERNAL SYMBOL)

0s/3
Ass‘i"o":LER (SORT MACROS GET EXPANDED)
COMPILER)
/
ASSEMBLY
LISTING
USER OBJECT
MODULE
Y
SORT COMMON 0s/3
MOBULE LINKAGE
{SGSORT! EDITOR
USER LOAD
MODULE
LINK EDIT -
LISTING (INCLUDING
SORT COMMON
MODULE)
SORT/MERGE
LOAD MODULZS
JOB CONTROL
STREAM _ svsLop _| (CALLEDINBYSORT
AL COMMON MODULE
WHENEVER NEEDED)
Y L 2
OoRr
OR 0s/3
PROCESSOR
{ - ol
| | > - >
INPUT | AUXILIARY STORAGE
(USER PROGRAM MAY ALSO (MAY NOT BE NEEDED IF ENOUGH
GENERATE ITS OWN INPUT INTERNALLY) USER PROGRAM OUTPUT MAIN STORAGE IS SPECIFIED)
oR

Figure 6—20. Assembly. Linkage Edit, and Execution Run System Flowchart

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-43
SORT/MERGE

6.11.4. Typical Subroutine Disk Sort Job Control Stream

In order to schedule your program and allocate system resources to it, you must assign a
name to the job so that the system can distinguish it from other jobs. The job control
statement that identifies the job and signifies the beginning of control information for the
job is the JOB statement. Figure 6—21 shows the entire job control stream required for
our disk sort program, the input data before the sort, and the output data after the sort.

It is important to note that this example employs very low volume input files. Under
normal disk sort conditions, input files are much larger, and the same disk used as it is in
this example for input, output, and the work file will result in the least efficient sort. The
most efficient disk sort is achieved when you use one work file per disk and a separate
disk for the input and output files.

] 10 20

// JOB SRTEXMPL ,,70880,9080,2

1.
2.1 // DVC 20 // LFD PRNTR
3. | // WORKI
L, | // WORK2
5. | // EXEC ASM
6./
} YOUR PROGRAM CODING
7. /%
8. | //SRTEXM LINK SRTEXMPL
9. // DVC 50

10. | // vOL DSP@28

11. | // LBL MYFILEI

12.| // LFD INPUT
13.|// bvC 58

14. | // VOL DSP@28

15.| // LBL MYFILE2

16. | // LFD OUTPUT,,IN!IT
17.| // DVC 58

18.| // voL DSP@28
19.|// EXT sT1,C,,CYL,5
20. | // LBL $SCRI

21.1 // LFD DM@1

Figure 6—21. Disk Sort Program Job Control Stream (Part 1 of 5)

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

6-44

10 20

22. {77 EXEC SRTEXM,SYSRUN

1
23.1/¢
24 . |// FIN
BLK® RECH 8KS2 RC(CSZ

~

ta

1

80

&0

80

80

&0

30

80

20

20

&0

80

g0

80

80

80

80

80

&0

80

g0

a0

80

80

80

80

80

80

DATA FILE BEFORE SORT

creesaest0 cerieeenl20

00321654
FREFFFFFA4 44bbbbbbbs
0032165400 0000000000

10007005
FFFFFFFF44 LL4444440L0
1000700500 0000000000

68799863
FFFFFFFF4L 44bbbhbbbs
6879986300 0000000000

94600054
FFFFFPFF4L Lbb4bbbibs
9460005400 00000000CC

20463844
FFFFFFFF44 4444444444
2046384400 0000000000

54486555
FFFFFFFF44 4444444444
5448655500 0000000000

03000600
FFFFFFFF44 4444444444
0300060000 0000000000

88855296
FFFFFFFF&44 4444444444
8885525600 0000000000

43300000
FRFFEFFF4L 4bbbbbbbbl
4330000000 0000000000

70509300
FFFFFFFFAL LLLLALLLLL
7050930000 0000000000

DAYTONOH
CCEEDDODCAL 444444644044
4182656800 0000000000

STLOULISH
EEDDECEDLL 4444444444
2336492400 0000000000

YORKPEN
EDDDDCDLLL 4444444444
8692755000 0000000000

NEWARKNJ
DCECDDLD4A 44444444044

SR 1]

LL644644444
0000000000

GLLL4L4LL4LLY
0000000000

bLbbbbbbns
0000000000

GL444644444
0000000000

4644444444
0000000000

LLb4444444
00000C0000

LLb4444440
0000000000

L446464L44L4LS
0000000000

64446444444
0000000000

444646444444
0000000000

444646444444
0000000000

[IXT LYY YRS
6000000000

bL4b444444
0000000000

44464644444

reseseeasbl

bbhbbbbbbbn
0000000000

LLLLLLLLLS
0000000000

L44464L444404
0000000000

44446444444
0000000000

LLA4b6404644
0000000000

4hb6644440
0000000000

464444404
0000000000

4644644044
0000000000

44444640040
000000000¢C

LL4446404044
0000000000

44444040444
0000000000

L444444400
0000000000

444644404404
0000000000

LbbLb44444

crseeeas50

4444444044
0000000000

LLbbbbbbis
0000000000

44464444440
0000000000

444464464444
0000000000

4444404440
0000000000

L6464L46044640
0000000000

4444444444
0000000000

LebLLLLLLL
0000000000

Lbbbdibibes
0000000000

Lhbbbhbbbd
0000000000

L464444444
0000000000

Lhbh4b4444
0000000000

L4464444040
0000000000

LL444444644

esenenaabl

4444644644404
0000000000

L444L44444S
0000000000

4444444444
0000000000

44444644444
0000000000

444460464444
0000000000

446446444044
0000000000

L4464L404444
0000000000

bh64640444
0000000000

LLL4L4L44L4LS
0000000000

L4444644444
0000000000

4464444444
0000000000

4446644604
0000000000

hebbbabbby
0000000000

646444640444

Figure 6—21. Disk Sort Program Job Control Stream (Part 2 of 5)

ceeesres?0

4446464604444
0000000000

44406444444
0000000000

GhL4444444
0000000000

444446444044
0000000000

444446644444
0000000000

44444644444
0000000000

4444444404
0000000000

4464444444
0000000000

44446444444
0000000000

44406404444
0000000000

44646444444
0000000000

wh64b44444
0000000000

Lh44LL4644064
0000000000

4444444444

teeseeal80

LL4444664044
0000000000

L444440L040
0000000000

44444406444
0000000000

LL44444444
00060000000

646444644400
0000000000

L44444460644
0000000000

Gh44440440
0000000000

Q444444444
0000000000

LLLb4460L444
0000000000

LL444464464
0000000000

L444444444
0000000000

b4b4440444
0000000000

LL444446444
0000000000

L6446440004

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

6-45

BELK# REC# BKS2 RCSZ

15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
25 1
27 1
2¢ 1
29 1
30 1

80

80

&0

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

sasenanall
5561925100

MIAMIFLA
DCCDCCDPCAS
4914963100

OHO00001
DCFFFFF&L4
6800001000

N0000004
DOFFFFFF&4L
4600000400

PA0000O?
DCFFEFFFLL
7100000700

NJDOOO12
DDFFFFFF&4
5100001200

FLOO0ODOS
COFFFFFF&4
6300000600

33655307
FFFFFFFF44
3365530700

10985469
FFEFFFFF4L
1098546900

98654777
FFFFFFFF44
9865477700

68548833
FFEFFFFF44
6854883300

40675987
FFEFFFFF44
4067598700

77330659
FFFFFFFE4L
7733065900

90675004
FFFFFFEF4S
9067500400

09436750
FFFFFFFF44
0943675000

11766325
FFEFFFFF4L
1176632500

50964097
FFFFFFFFL4
5096409700

Figure 6—21.

DATA FILE BEFORE SORT {cont)

cessensa2l
0000000000

bhbbb6hb4bl
0000000000

Lhbbbbbbbl
0000000000

4444444440
0000000000

4444444444
0000000000

Leb4444444
0000000000

LLbbLLL4444
0000000000

LA44L4444LLYG
0000000000

LL44444444
0000000000

4hb6hbkbbls
0000000000

LhbbLbbbibby
0000000000

4444440444
0000000000

L4bLL444044
0000000000

444644464404
0000000000

4444444404
0000000000

b44646444444
0000000000

4444444444
0000000000

P 1

0000000000

44444444440
0000000000

44444444440
0000000000

4444444444
0000000000

4444444444
0000000000

LLbLbhbbb44
0000000000

h4444044444
0000000000

Lbbbhbbbbl
0000000000

LL44444444
0000000000

LL4444044040
0000000000

Lbabbbbbbih
0000000000

4444444444
0000000000

LA4L4L4644444
06000000000

4444444444
0000000000

LLL4444440
0000000000

4444444444
0000000000

46444644400
0000000000

seeeereshl

0000000000

L444444444
0000000000

L44L4L444404
0000000000

4444444444
0000000000

L4bblbbbly
0000000000

44444444404
0000000000

4444444444
0000000000

Lhbbbbbbng
0000000000

L444444444
0000000000

GL4LL44404
0000000000

L4444L444LG
0000000000

4444444444
0000000000

4444444444
0000000000

bbbbbbbbbl
0000000000

L44LLLLLLLYG
0000000000

Lb444404404
0000000000

44444404044
0000000000

ceesesesS0
0000000000

Gh64444444
0000000000

L444444044
0000000000

4444444444
0000000000

LL64644444
0000000000

466646444446
0000000000

4444444444
0000000000

44464444444
0000000000

46444440644
0000000000

64644644444
0000000000

Lh64444444
0000000000

Ghbbbbbbnd
0000000000

4440444444
0000000000

4444444444
0000000000

4444444444
0000000000

44444644444
0000000000

4444444440
0000000000

essnseasbl

0000000000

44640644404
0000000000

446646464444
0000000000

Q4444644444
0000000000

LL640644444
0000000000

6446406446444
0000000000

Chbb640444
0000000000

44646464440
0000000000

LYY TTYY Y Y
0000000000

44444464444
0000000000

LLL4444444
0000000000

LG44444444
06000000000

bhLLbbLb44
0000000000

44444460404
0000000000

Lh64446444
0000000000

ehbbbbbbbd
0000000000

444646444444
0000000000

Disk Sort Program Job Control Stream (Part 3 of 5)

cereensa 0
0000000000

L4L44440644
0000000000

444444440410
0000000000

46664440446
0000000000

Q4444644440
0000000000

44444464040
0000000000

4h4b4hbbbs
0000000000

LbLbbLLbbbbs
0000000000

L446444440
0000000000

LA4444L4L4LLLL
0000000000

44646444444
0000000000

44444444440
0000000000

4644464400640
0000000000

6646464644444
0000000000

46444644444
0000000000

Lbbbbbobil
0000000000

4444440644
0000000000

-1
0000000000

44444404444
0000000000

L44444404644
0000000000

Lh446446444
0000000000

4444444444
0000000000

444444640444
0000000000

444064446404
0000000000

44444644444
0000000000

bbhbbbbbhs
0000000000

4444440404
0000000000

bh4046440444
0000000000

4444444444
0000000000

4444444444
0000000000

L44L06L4L4444S
0000000000

44444444644
0000000000

4444444444
0000000000

L444L444444
0000000000

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

6-46

ELK#

~

(™

s

REC~F

wn

™

[™]

w

wn

EKS2 RCS2
400 80
400 80
400 80
400 80
400 80
400 80
400 80
400 80
400 80
400 80
400 80
400 &0
400 80
4co 80
400 80
400 80
4G0 80
400 80
400 80
400 &0
400 ac
400 30

cesesssall

DAYTCNCH
CCEEDDDCO4
4183656800

FLO00006
COFFFFFF44
6300000600

MIAMIFLA
pccoccocas
4914963100

M0000004
DOFFFFFF&44
4600000400

NEWARKNJ
DCECODDDA4
5561925100

NJ000012
DOFFFFFF44
5100001200

0400001
OCFFFFF&LL
6800001000

PAGO00O7
DCFFFFFF&4
7100000700

STLCUISM
EEDDECEDGL4
2336492400

YORKPEN
EDDODCDASLS
8692755000

00321654
FFFFFFFF44
0032165400

03000600
FEFFFFFFLL
0300060000

09436750
FEFFFFFF44
0943675000

10007005
FEFFFFFF44
1000700500

10985469
FFEFFFEF4L
1098546900

11766325
FFFFFFFF44
1176632500

20463844
FFFEFFFF44
2046384400

33655307
FEFFFFFF44
3365530700

40675987
FEFFFFFF44
4067598700

43300000
FFEEFFFF44
4330000000

50964097
FFFFFFFF4L
5056405700

SLLE6555
FFFFFFFF44
5448655500

Figure 6—21.

P4

44466464444
0000000000

LaL64464444
0000000000

Lobabbbisd
0000000000

LL444440644
0000000000

L64446464444
0000000000

L4444440444
0000000000

444644644404
0000000000

44444464404
0000000000

4444464640444
0000000000

L64406404444
0000000000

LLL6L0L4444
0000000000

4464446444644
0000000000

LL4464644L404
0000000000

44440046404
0000000000

4444440440
0000000000

444404444 4LL
0000000000

4464440644844
0000000000

LL60646446444
0000000000

L4446444444
0000000000

L4440440444
0000000000

LLLbbLb444
00006000000

46464464444
0000000000

DATA FILE AFTER SORT

ereanase30

446444444404
0000000000

GA4LLL04LLL
0000000000

4444444444
0000000000

46444644444
0000000000

4464444444
0000000000

46444644444
0000000000

464460444644
0000000000

44464444444
0000000000

LebbLb444644
0000000000

LL4L44L44LLLG
0000000000

bLbbbbb46044
0000000000

4444444044
0000000000

LL444644444
0000000000

LAbALL44 4L
0000000000

46444604440
0000000000

L446464L40444
0000000000

44446444444
0000000000

44444444414
0000000000

LL46444444
0000000000

Lbbb440444
0000000000

LLbbbbbibe
0C00000000

LL44444444
0000000000

creseseakhl

4644444444
0000000000

LobLLLLLLL
0000000000

LALL4LLLLLS
0000000000

44444464444
0000000000

LL44464040404
0000000000

L4444644444
0000000000

4444460644404
0000000000

44444404404
0000000000

44446464004
00000006000

44444404044
0000000000

LL40444404
0000000000

44444404444
0000000000

LLL44L4644064
0000000000

LLbLbblagd
0000000000

Lbbbbabbby
0000000000

Lhbbbbbbey
0000000000

LLb44446444
0000000000

LLL44446404
0000000000

LLLLLbbLby
0000000000

LLbbbbbibe
0000000000

LLbbbbib0s
000000C000

LLb444640404
0000000006

eeseenaa50

4446444444
0000000000

444464640444
0000000000

4444444444
0000000000

4644646444644
0000000000

4446464444446
0000000000

46444644444
06000000000

LALLLLLLLL
0000000000

4444444440
0000000000

4h4bhbbsls
0000000000

4446446464440
0000000000

444646444440
0000000000

Lhbb64464004
0000000000

4bh44644444
0000000000

LhL446404444
0000000000

444464644444
0000000000

L4L4444040
0000000000

bhLb464440
0000000000

LbbbLLL444L
0000000000

4L4464464 44
0000000000

L4464444444
0000000000

LLbbbbb4400
0000000000

GL4b44460644
00000006000

PN

LL644444464
0000000000

4644644444
0000000000

44444664444
0000000000

LL444644444
0000000000

LL444L44604044
0000000000

44446444444
0000000000

4444444400
0000000000

444644644404
0000000000

66466464404
0000000000

L44L4L4L4404
0000000000

Lhhb64064064
0000000000

44444664404
0000000000

L644464L0004
0000000000

4446444646400
0000000000

44444440004
0000000000

44466444004
0000000000

444464446004
0000000000

464464040060
0000000000

LL44444404
0000000000

Lhb6b446004
0000000000

bL4446444464
0000000000

Lbbbb464b4
0000000000

Disk Sort Program Job Control Stream (Part 4 of 5)

PR 4

44444444644
0000000000

bbbbbbbbsd
0000000000

44444464440
0000000000

44444444440
0000000000

464644446444
0000000000

44464444444
0000000000

44444644444
00600000000

4664446604
0000000000

44444040644
0000000000

4644440440
0000000000

LLLLLLLLLL
0000000000

4440644440
0000000000

4446464464006
0000000000

444444460040
0000000000

Lh6446464444
0000000000

LAL44464044
0000000000

L444464064044
0000000000

4444440460648
0000000000

LLLL4LL4LL4L
0000000000

Lhbbbibbbl
0000000000

44444446044
0000000000

Lb444640000
0000000000

ceeennes80

LL4464060444
0000000000

LL4464L446444
0000000000

Lb444440044
0000000000

4446444646444
0000000000

L444L406064LL
0000000000

44464444404
0000000000

L4LLLLLLLYL
0000000000

4644464004404
0000000000

44444406404
0000000000

GLbbbbbbbl
0000000000

4464440044
0000000000

Labb6b40444
0000000000

44444406004
0000000000

LLbbbbbbbh
0000000000

L4444644444
0000000000

464440406444
0000000000

LL44644L444
0000000000

bObbbbbbsh
0000000000

LA46064L4444
00000000C0

44444406404
0000000000

LL44464640444
0000000000

444444604600
0000000000

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-47
SORT/MERGE

DATA FILE AFTER SORT (cont)

ELKe HEL® BKSZ RCSZ ..eevnn.n 10 ceeenens 20 ciennans 30 eeeenann 40 ceieennn 50 heveenns 60 ceeienas 70 eereaess 80

S 2400 80 68548833
FFFFFFFF44 L44444060604 LL4LL44444L A444LL44L444L LA0LL46444040 L04L4L0444440 LALLLLL444 LL6L46044LG
6854883300 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

5 4 400 80 68799863
FFFFFFFFAL L444444444 LA4LLLLLLL L04L0644444 LOLLLLLLLL LLLLLLLLLL LLL4444440 LO4444LLLLYS
6879986300 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

5 5400 80 70509300
FFFFFFFFAL LL44LLL044L LLLLLLLLLL LALLL4444L4 LL4LLLLLLLL LLLLLLLLLL LL44444444 LL444LLLLL
7050930000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 00000060000

[1400 80 77330659
FFFFFFFFLL 444464446444 LOL4444L444 LL46444404 L0444440444 44404440404 LL6L44L064040 64444440444
7732065900 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

[2 400 80 88855296
FFEFFFFFOL 6LbLL44L4044 44644640640 L4440644604040 LL0L04464040 L44644004464 L464444440 444644400404
8885529600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

t 2 400 80 90675004

FFFFFFFFAL LL4444L4444 LL4L4LLALL L444L4L444404 LLLLLLLLLL L0LLL44444 LLALLL4L4L44 LA4LLALLLLLS
9067500400 0000000000 0000000000 00006000000 0000000000 00000000060 0000000000 0000000000

o 4 400 80 94600054
FFFFFFFF&LL 44444444406 LOL4444444 LA44446444 LALLLLLLLL LLLLLLLLLL LLLLLLLLAL 4404444404
9460005400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

& 5 400 80 98654777

FRFFFFFFAL 4444404404 L4446464040060 LLLL4LL44644 4464044444 4444444444 4444444444 LL4L4L4L4LLLG
9865477700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

Figure 6—21. Disk Sort Program Job Control Stream (Part 5 of 5)

SRTEXMPL is the 8-character alphanumeric name of your job (Figure 6—21, line 1). The
double comma indicates that the job priority parameter is omitted. Because it is omitted,
the system assumes normal (N) priority. The numbers 7000 and 9000 are hexadecimal
values (equivalent to 28,672 and 36,864 in decimal) that represent the minimum number
of main storage bytes (including job prologue) required to execute the largest job step of
this job and the maximum number of main storage bytes requested but not required to
execute the largest job step of this job. The number 2 indicates that no more than two
tasks can be active at the same time in any job step. A task is a unit of work that the
supervisor schedules.

In order to process incoming information, the system needs hardware devices to handle
the processing and you must assign devices to various routines in your program. A device
assignment set consists of at least two or as many as five job control statements; i.e., the
DVC and LFD statements or the DVC, VOL, EXT, LBL, and LFD statements.

// DVC 20 assigns device number 20 to the printer device designated by the system
filename, PRNTR (Figure 6—21, line 2). The two following job control statements, //
WORK1 and // WORK2 (Figure 6—21, lines 3 and 4), are job control procedure (jproc)
calls that allot temporary files for the assembly job step by automatically supplying the
DVC, VOL, EXT, LBL, and LFD parameter information you would otherwise have to specify
for assembler use. Two of these temporary files are needed by the assembler so that it can
assemble an object module from the source code you supply immediately after the start-
of-data (/$) control statement (Figure 6—21, line 6).

Finally, the // EXEC ASM statement (Figure 6—21, line 5) tells the system to load and
execute the assembler. The /$ indicates the start-of-data to the assembler. This data is
your program.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-48
SORT/MERGE

At the end of your source coding, you code a /* delimiter statement (Figure 6—21, line 7)
to indicate the end of data (your program) to the assembler.

So far, we have generated an object module called SRTEXMPL (label of the START
assembler directive) and it is in $YSRUN. Now we must use the linkage editor to prepare a
load module. The simplest way to do this is to use the LINK job control procedure call
(Figure 6—21, line 8). The LINK jproc generates a load module called SRTEXM from the
object module (called SRTEXMPL). Load module SRTEXM is then automatically placed in
$YSRUN, unless you specify an alternate library via the OUT keyword parameter. For more
information about job control procedures, refer to the job control user guide, UP-8065
{current version).

When you execute the load module SRTEXM (Figure 6—21, line 22), you tell the
supervisor to retrieve it from YRUN. Otherwise, the supervisor searches for the
SRTEXMPL load module in the YLOD first before going to YSRUN. Thus, by specifying
$YSRUN, you save processing time.

Your next series of job control statements (Figure 6—21, lines 9 through 21) follow a
pattern in assigning input, output, and sort work files. The pattern of specifications for
each file is the file name within a volume name on a specific device.

DEVICE NUMBER

L)

VOLUME NAME

{

FILE NAME

Each device assignment set begins with a DVC statement that assigns a device number
(Figure 6—21, lines 9, 13, and 17). For specific 1/0 device numbers, check the list of
device types and features in the job control user guide, UP-8065 (current version).

Your first DVC statement assigns device number 50 to your input file named MYFILE1
(Figure 6—21, lines 9 and 11). The second DVC statement assigns the same device to your
output file named MYFILE2 (lines 13 and 15). Looking at the next DVC statement (line 17),
notice that device number 50 is assigned for the sort work file $SCR1. Next, you must
identify the disk volume to be used. The VOL statement supplies volume serial numbers
that uniquely identify tape or disk volumes (lines 10, 14, and 18). The name you assign to
your input and output file volume is the alphanumeric name DSP028 (lines 10 and 14).
For the sort work file volume name you specify the same volume, DSP028 (line 18).

'

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-49
SORT/MERGE

To provide disk space for the sort work file and to designate information needed to create
new files or extend existing disk files, you specify the EXT job control statement on the
device assignment set for the sort work file. The EXT statement applies to the first volume
specified on the immediately preceding VOL statement (line 19). Notice that there is no
EXT statement for either input or output files because these files already exist. ST
indicates that your work file is accessed via the system access technique (SAT). The C
allocates contiguous space for the extent, a comma indicates omission of an optional
parameter, CYL specifies that space must be allocated in cylinders, and the 5 indicates the
number of cylinders allocated for the work file.

Data management needs to know the file names you designate for your program. The LBL
job control statement supplies this information by specifying label information for tape or
disk volumes. Only one LBL statement is allowed per device assignment set. You specify
the disk sort program’s input file identifier as MYFILE1 (line 11), the output file identifier
as MYFILE2 (line 15), and the sort work file identifier as $SCR1 (line 20).

To link the file information in the job control stream with the data management file
definition, you specify the DTF file label on the LFD job control statement of the device
assignment set for each file (lines 12 and 16). Thus your first two LFD statements in the
job control stream would specify the names INPUT and OUTPUT. Although job control
allows 8-character names, data management requires that logical file names not exceed
seven characters, the first of which must be alphabetic. Because the logical file names on
the LFD statements (lines 12 and 16) come from the file label on the data management
DTF macros, lines 12 and 16 must be the same as the file names in the labels of
corresponding DTF declarative macros. They also must not exceed seven characters. The
INIT parameter on the LFD statement for the output file (line 16) indicates that you want to
start writing at the beginning of the file, overlaying its previous contents.

When specifying the LFD statement for your sort work file, you must specify the link file
name DMO1 or $SCR1, because only these standard names are recognized internally by
data management for the sort work file area. Thus, the third LFD statement specifies the
name DMO1 (line 21). An easier way to allocate work areas on disk is with the WORK
jproc call. A WORK jproc automatically generates a device assignment set allocating
system scratch space as a work area. The format for a jproc call that would take the place
of lines 17 through 21 is //DMO1 WORK1 or just // WORK1. The WORK jproc, used
without parameters, allocates 4000 blocks of 256-bytes each (equivalent to one cylinder)
of scratch space on your system resident device (SYSRES) or the disk containing your
system run library (YRUN). You can increase the amount of work space and specify the
use of other disk devices through optional parameters. For more information about the
WORK jproc, see the job control user guide, UP-8065 (current version).

After you execute your program load module (line 22), the /& delimiter card must indicate
the end of your job control stream and the FIN job control statement, the end of the card
reader operation. Figure 6—22 shows the job control stream required to assemble, link,
and execute your disk sort program using subroutine sort/merge. Figure 6—23 illustrates
the results of your device assignment set specifications.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 6-50

SORT/MERGE

/// FIN Terminates
card reader
Marks the end operation
of the job
// PARAM if

contro! stream.

// PARAM

required by the

/! EXEC name1

// EXEC namef.

user program
) for the sort.

Required to

(See 6.12.)

execute the user

// DVC — // LFD
sequence

DVC, VOL, LBL (for disk),

program ““name1’’
which calls the sort.

DVC, VOL, LBL (for disk),

and LFD job control statements
required to assign auxiliary

/l bvC —// LFD
sequence

storage, if needed. EXT statement
may also be needed for disk files.
(See 6.11.4.)

// LINK name1

SOURCE DECK

$
// EXEC ASM

// DVC — // LFD
sequence

Previous job
step if any

// JOB name

and LFD job control statements
required to assign the output
file. EXT statement also needed
to aliocate a new disk fite.

(See 6.11.4.)

DVC, VOL, LBL {(for disk),and
"L.FD job control statements
required to assign the input
file. (See 6.11.4.)

Linkage editor job control procedure cali

User program source statements. (See 6.11.4.)

Job control statements required to execute the assembler.

/1 JOB name is always required to initiate the job and assign main storage.

Figure 6—22. Typical Job Control Stream for a Subroutine Sort/Merge Application

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-51
SORT/MERGE

LBL=MYFILE1
LFD={NPUT
LBL=MYFILE2
LFD=0OUTPUT

EXT=5 cylinders VOL=DSP028

LBL=$SCR1

LFD=DMO1

DEVICE=50

Figure 6—23. Device Assignment Results

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-52
SORT/MERGE

6.11.4.1. Alternate Job Control Stream

The job control stream shown in Figure 6—21 illustrates shortcuts in assigning work files
to the assembler and the linkage editor. If you choose to use the standard job control and
link editor statements equivalent to the WORK and LINK job control procedures, you can
do so (Figure 6—24); however, it makes lengthier coding and does not increase efficiency.
To set up the assembler and linkage editor work files, write DVC, VOL, EXT, LBL, and LFD
job control statements; to write a data stream for the linkage editor, use the LOADM and
INCLUDE linkage editor control statements, as shown in Figure 6—24.

1 10 20

7/ JOB SRTEXMPL, ,7000,9000,2

// DVC 28 // LFD PRNTR

// DVC RES

// EST ST,,1,BLK, (256,4000)

// LBL S$SCRI

LFD $SCRI = // WORKI
// DVC RUN // WORK2
// EXT ST,,1,BLK, (256,4000)

// LBL $SCR2

// LFD $SCR2

oW~ FWwWwPN —
~
~

11. |// EXEC ASM

12. |/

13.

14. YOUR PROGRAM CODING

15.

16. /%

17.1// WORKI

18.|// EXEC LNKEDT

19. 1/$ = // LINK SRTEXMPL
20. | LOADM SRTEXM

21. | INCLUDE SRTEXMPL

22. |/

23.1// DVC 5@ }

24. /7 voL DSP111 DEVICE ASSIGNMENT SET 1
25. // LBL MYFILEI

26. |// LFD INPUT

27.1// DVC 50

28.[// voL DSPI1I DEVICE ASSIGNMENT SET 2
29.1// LBL MYFILE2

30.}// LFD OUTPUT,,INIT

31.|// pvC 5l

32.|// VoL DSP12@

// EXT ST,CYL,,C,20 DEVICE ASS!IGNMENT SET 3
// LBL SRTWKI
// LFD DM@I]
EXEC SRTEXM

W W ww
oo~ ovu W
~
~

// FIN

Figure 6—24. Disk Sort Program Alternate Job Control Stream

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-53
SORT/MERGE

Notice that your load module name in the EXEC statement (line 36) must specify the name
from the LOADM control statement (line 20).

Using the WORK jproc statement (line 17) without any of its optional parameters
generates:

8 the device and volume numbers of your SYSRES volume;
® an extent of 4000 256-byte blocks;
® the label name $SCR1; and

] the LFD name $SCR1.

6.11.5. Job Control Stream for Tape Work File Assignment

If you want to use tape work files, your program requires the following series of job
control statements in your job control stream:

1 10 20

// DVC 9¢

// VOL TAP 15¢
// LBL SRTWKI
// LFD SM@3

2w N —

Line 1 specifies the logical device unit number. Lines 2 and 3 specify the volume serial
number and file label. The LBL statement is optional for tape files. Line 4 gives the
standard sort tape file name, SMO03. Three to six tape work files are required when you
are using tape auxiliary storage. You must assign the LFD names SM01, SM02, and SM03
if you are using three tape files, SMO4 for one additional file, and so on.

6.12. SUBMITTING SORT PARAMETER TABLE ENTRIES VIA THE JOB
CONTROL STREAM

You can change, add, delete, or override existing parameters in the sort parameter table by
coding PARAM job control statements in your control stream. Only the following keyword
parameters can be accepted from the control stream at program execution time:

BIN Bin size
DISC Disk work file allocation
NOCKSM Checksum suppression

RESERV Tape work file device reserved for output file

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 6-54

SORT/MERGE

RESUME Resumption of interrupted tape sort

SHARE Tape unit shared by input file and work file
TAPE Tape work file allocation

To code parameters you want to include in the control stream, use the same keyword
format as described for the MR$PRM macro instruction (Figure 6—19) and begin writing
your PARAM statement keyword parameters in column 10. Separate each parameter by a
comma and, if necessary, continue through column 71. if more parameters must be
included on that PARAM statement, follow the last keyword parameter by a comma and
code a nonblank character in column 72 to indicate more parameters to come. You may also
submit multiple PARAM statements as in the following example.

] 10 20

// PARAM TAPE=(STD,6),SHARE=SMf1
// PARAM NOCKSM=T

PARAM control statements should appear in your job control stream immediately following
the EXEC statement that initiates execution of your program. The following example
illustrates the proper placement of the PARAM job control statement to add keyword
parameters to the sort parameter table in the disk sort program.

// EXEC SRTEXM

1.

2.1 // PARAM DISC=7 ,NOCKSM=D
3.1 /¢

4.1 // FIN

Line 1 specifies the sort program to be executed. On line 2, the first keyword parameter
would change the disk sort program’s original specification of four disks to seven disks for
sort work file use. The NOCKSM keyword parameter specifies no checksum calculations
on disk. Both parameters are being added to the sort parameter table from the job control
stream.

In addition to coding PARAM job control statements, you must include the CSPRAM=YES
keyword parameter in your sort parameter table via the MR$PRM macro. Otherwise, if you
do not specify the CSPRAM or specify CSPRAM=NO, control stream processing is
bypassed. To avoid recompiling your program, it is wise to specify CSPRAM=YES on your
original program. If you do not add keyword parameters from the job control stream, the
CSPRAM=YES specification won't affect your program’'s execution. For an example of a
subroutine tape sort with a restart capability using a PARAM statement, see 9.3, line 30
and line 112.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 7-1
SORT/MERGE

7. Subroutine Sort/Merge User
Own-Code Routines

7.1. DEFINITION

Subroutine sort/merge handles two types of user own-code routines during sort
processing: -

n Record sequence own-code (RSOC)
u Data reduction own-code (DROC)

Whenever you use own-code routines, you must indicate that you are using them and
what you are naming them. By writing the RSOC or DROC keyword parameters in the
MR$PRM sort macro, you can fulfill both of these requirements. The result is that your
keyword specifications appear in the sort parameter table.

Both RSOC and DROC routines require registers 11, 12, 14, and 15 for communication
with the subroutine sort/merge. All other registers are available for use by the own-code
routine. Information contained in the registers and the action to be performed depend on
the specific own-code routine executed.

7.2. RECORD SEQUENCE OWN-CODE ROUTINE (RSOC)

Using the RSOC routine provides a powerful method of handling sort sequences that
involve more than a comparison for ascending or descending sequences. It enables you to
write your own routine for record comparisons that might include a variety of record key
field tests. RSOC allows you to compare the key fields of two records and to set the
condition code to indicate the order you want. If you specify RSOC on the MR$PRM macro,
do not specify the FIELD parameter. Nevertheless, the RSOC parameter overrides the
FIELD parameter if you should forget and specify both.

When two records are ready to be compared to determine which should precede the other,
subroutine sort/merge transfers control to your own-code routine at the address (symbolic
label name) you specified on your RSOC keyword parameter. Subroutine sort/merge
places the RSOC address in register 15 and stores the subroutine sort/merge return
address in register 14,

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 7-2
' SORT/MERGE

The first instruction in your own-code routine must be the USING assembler directive. It
must assign register 15 for use as the base register of your RSOC routine. Your RSOC
routine automatically receives the addresses of the two records to be compared in
registers 11 and 12. For variable-length records, addresses supplied to your RSOC routine
are those of the first bin of each record. The 4-byte length field is part of the bin. You pass
the result of the comparison to the subroutine sort/merge via condition code settings. If
the record for the address in register 11 is first, your own-code routine must set the
condition code to low (cc=1). If the record for the address in register 12 is first, your
routine must set the condition code to high (cc=2). If the sequence of the two records is
arbitrary, your routine must set the condition code to equal {cc=0).

After you set the condition codes resulting from the comparison, you may optionally write
a DROP assembler directive to disengage the use of base register 15 before you return
control to the subroutine sort/merge via a branch to register 14. A sketch of the key
instructions needed for using RSOC follows:

LABEL AOPERATIONA OPERAND ACOMMENTS
] 10 16
MRSPRM RSOC=MYROUT
'} YOUR PROGRAM
MYROUT USING *,15 ASSIGN BASE R15 TO OWN-CODE ROUTINE
-} YOUR OWN-CODE ROUTINE
DROP 15 D ISENGAGE BASE R15
BR 14
| } RETURNS TO THE SUBROUTINE SORT/MERGE

For a complete program example illustrating a user own-code routine for a subroutine sort,
see 9.4.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 7-3
SORT/MERGE

Use of the RSOC routine is not frequent but its availability can prove very valuable. For
example, your company might use a nonstandard arithmetic sign with data. In this case,
an RSOC routine can provide the necessary transsystem sign interpretation. The following
diagram illustrates file contents before and after the execution of a RSOC routine to
arrange the file in ascending sequence:

Before After
! !
Rec 1 \\ 'l Rec 1
\ !
& 5 3 7 \ ! - 6 0 9
\ /
\)
\ |
\ |
Rec 2 \ [} Rec 2
\ /
x | 6 of 9 “ / - |s 3 7
\ /
\ !
\ !
Rec 3 v Rec 3
\
1
X 5 3 7 L — 2 a 5
RSOC
and
Final
Rec 4 o Rec 4
1\
X 2 4 5 I + 1 1 o
I
Loy
’ \
Rec 5 II \ Rec 5
! \
& 8 1 9 ! \ + 5 3
! \ !
f \
! \
Rec 6 ! \ Rec 6
l \
& | 1 1 0 | \ + | 8 1 9
! \
! \
LEGEND:

2 X
o
+

7.3. DATA REDUCTION OWN-CODE ROUTINE (DROC)

DROC routines concern final disposition of fixed-length records with equal key field values.
DROC routines should not be used with variable-length records. When you specify the
DROC keyword parameter on the MR$PRM sort macro, you can specify:

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 7-4
SORT/MERGE

® automatic data reduction by deletion of duplicate records (DELETE), also called auto
delete; or

® the name of your own-code routine, which can handle the data reduction in three
ways:

1. by deleting one of the records containing equal keys;
2. by combining data contained in the two records to create a new record; and

3. by using a combination of keeping, deleting, and combining records with
duplicate keys.

Like the RSOC routine, DROC uses register 15 as a base register to contain its address.
Thus, the first instruction in your DROC routine should be the USING assembler directive
specifying register 15 as a base register. Registers 11 and 12 contain the addresses of the
two records with equal keys. If you wish to retain only one record, the retained record
address is in register 11 and the deleted record address is in register 12 unless, in your
own-code routine, you overlay the address in register 11. Such an overiay forces the
deletion of the address in register 11 and uses the address in register 12 as your saved
record address. Normally, register 11 addresses the saved record and control returns to
subroutine sort/merge four bytes beyond the subroutine sort/merge return address
specified in register 14. If you want to retain both records, control must return to
subroutine sort/merge at the address specified in register 14. Because register 14
contains the subroutine sort/merge return address, take great care not to change its
contents.

To end your DROC routine, you return control to independent sort/merge at the address
specified in register 14. You may optionally include the DROP assembler directive to
disengage register 15 from use as your routine’s base register. The following shows the
coding required to specify your own DROC routine. Notice in the diagram the file contents
before and after the execution of a DROC routine which specifies your own-code routine
symbolic label name, MYWORK.

LABEL AOPERATIONA OPERAND ACOMMENTS
1 10 16
MRS PRM DROC=MYWORK
. } YOUR PROGRAM
MYWORK USING *,15 ASSIGN BASE R15 TO OWN-CODE ROUTINE
. } . YOUR OWN-CODE ROUTINE
DROP 15 DISENGAGE BASE R15
BR 14

:} RETURNS TO THE SUBROUTINE SORT/MERGE

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3
SORT/MERGE
Before After
\ /
Rec 1 \ | Rec 1
\ !
1 2 3 4 \ ! 1 2 3 4
\ !
\ I
\ [
Rec 2 \ ,' _____________
\ k r 1
1 2 3 4 \ ! Previous Rec 2 deleted !
\ ! L o ____ J
[
Vo
Rec 3 \ | Rec 2
\
9 4 7 6 8 \\ / 4 1 1 2
DROC
and
Final
Rec 4 Sort Rec 3
[
\
6 0 I\ 6 | o 9 | 3
Iy
Iy
I
Rec 5 / Rec 4
| \
a4 1 1 2 \ 9 7 6
/ \
! \
1 \
l \
Rec 6 | V| e e
/ W r —~ 7
9 4 7 6 | \ ! Previous Rec 6 deleted |
] \‘ L e e ___ -

You also have the alternative specification of DELETE on the DROC parameter. Before

using this, you should be very sure that the records are exactly duplicated or that the key
fields you need are exactly duplicated, because the subroutine sort/merge performs
automatic data reduction by arbitrarily deleting one of the records with equal keys. Your
program receives no control in this instance. The illustration which follows shows the
coding required and a file before and after the execution of a DROC=DELETE specification

in the MR$PRM sort macro.
COMMENTS

LABEL AOPERATIONA OPERAND
i 10 16
MRS PRM DROC=DELETE

7-6

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3
SORT/MERGE
Before After
I\ ,
Rec 1 \ ! Rec 1
6 0 5 \ II 1 1 3 2
\ I
\ I
\ I
Rec 2 \ | Rec 2
1 1 3 ‘\ II 5 0 3 2
Voo
Vo
Rec 3 Vo Rec 3
Vo
7 5 DROC 6 0 5 5
and
Final
Sort
Rec 4 I\ Rec 4
5 0 II \ 7 5 8 8
l
!
Rec 5 /
. ety g
" le Lo | Lo Sreeresee
II \
/ \\
Rec6 bVl o e e e e e e e e e —
/ W I
1] \ | Previous Rec 6 deleted |
—d
/ \
J B

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-1
SORT/MERGE

8. Special Subroutine
Sort/Merge Applications

8.1. TAG SORT

A tag sort produces a sorted output file that contains only the direct access address or the
address and key fields of records. The main purpose of a tag sort is to reduce the amount
of storage required for your data files when you want the same files sorted in several
different ways. A tag file allows you to access your original file in the sequence you desire
without having to duplicate its entire contents. A tag sort can be performed only if you
have nonindexed or IRAM disk files.

By specifying the ADDROUT parameter on the MR$PRM macro instruction, you indicate
that you want to perform a tag sort. If you specify ADDROUT=A, only the 10-byte record
address is returned to your program. If you specify ADDROUT=D, sort/merge returns both
the address and the record key fields to your program. The length of a tag sort record
cannot exceed 256 bytes, including the 10-byte address field. Sometimes you may be
interested in creating a new file of key fields, as well as saving the addresses of the
records they came from for later reference. If this is your need, specify ADDROUT=D.
Otherwise, specify ADDROUT=A to indicate that you want only the addresses of the tag
sort records returned to your program. In this case, you would only be interested in sorting
the tag sort records and saving their addresses but not contents. The addresses would still
enable you to retrieve their record contents at a later time. (See 6.4.2.2.)

Tag sort records are not available to your own-code routines (RSOC and DROC). Because
the records are reconstructed during a tag sort, you may not know the exact location of
key fields in the tag sort record. It is up to you to obtain the disk address of that input
record being reconstructed and place it into the 10-byte address field of the new tag sort
record. To do this, you first define the file using the DTFNI data management macro
instruction and in your program’s record reading routine immediately after reading each
record (GET macro), issue the NOTE imperative macro to place the address of the record
into a program-addressable field of the DTFNI file table, designated filenameB. You may
address this area by concatenating the letter B to your 7-character logical file name. Refer
to data management user guide, UP-8068 (current version) for the uses of the NOTE
macro and the filenameB field. The following coding example illustrates the key
instructions needed for a tag sort that returns only the address field to your program.
Remember, the NOTE imperative macro must be used with the DTFNI, not the DTFSD,
declarative macro.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-2

SORT/MERGE
LABEL AOPERATIONA OPERAND ACOMMENTS
] 10 16
MRSPRM ADDROUT=A
} YOUR PROGRAM OPENING INSTRUCTIONS
INPUT DTFNI RECSIZE=100, I0REG=(2),
} OTHER DATA MANAGEMENT MACROS
GETREC GET INPUT READS RECORD
NOTE [INPUTB PLACES INPUT REC ADDR IN DATA
MANAGEMENT DEFINED AREA, INPUTB
MVC TAGREC+k4 (6) , INPUTB PLACES INPUT REC ADDR IN TAG
SORT REC ADDR AREA
MVC TAGREC+10(80) ,0(2) PLACES KEY FIELDS IN TAG SORT
% RECORD
MRSREL RELEASE RECORD TO THE SORT
B GETREC GET NEXT RECORD
TAGREC DC XL10'0@'

8.2. RESTART FACILITIES

If your program is interrupted in the middle of a tape sort/merge, there is a way to restart it
from the point of interruption. By coding the RESUME parameter on your MR$PRM macro
instruction, or on a PARAM job control statement, you can indicate that you want to recover
your tape sort. You must specify the most recent collation pass number displayed on the
system console. (See 6.4.2.3). For additional program examples, see 9.3.

8.3. MERGE-ONLY FUNCTION

The merge-only function combines two or more similarly ordered (presorted) input files into
one output file arranged in the same order as the input files. The merge-only function can
combine 2 to 16 previously sequenced files into one final output file.

In a situation that requires merge-only, you start with a number of files presorted in some
sequence. You are interested in expanding the size of your data files while reducing the
number of files you have to work with. At the same time, you don’t want to resort any
files. As long as the files you are combining have been presorted in the same sequence
(i.e., ascending or descending), your application is definitely a merge-only operation.
Because the merge-only function is a part of the subroutine sort/merge, you must indicate
to subroutine sort/merge that you want merge-only processing by writing the
MERGE=YES parameter on your MR$PRM macro instruction. This places the merge-only
indication in your sort parameter table.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-3
SORT/MERGE

8.3.1. What Merge-Only Does for You

The subroutine merge-only operation is activated in basically the same way as the
sort/merge, with two exceptions: the sort macro, MR$SRT, is not needed, and the release
and return macros, MR$REL and MRS$RET, are replaced by MGS$REL and MGS$RET. These
two macros are unique to merge-only processing.

Their formats are:

LABEL AOPERATION A OPERAND

[symbol] MGS$REL

LABEL AOPERATION A OPERAND

[symbol] MGSRET

When you initiate the merge-only operation, phase 3 is performed. Muitiple input files of
the same sequence must be combined so that the one final output file, though expanded,
has the same overall sequence. To determine the proper sequence, subroutine sort/merge
performs a tournament sort to find the record that meets the output file sequence that you
specified in your program. Initially, your program releases the first record of each input file
to subroutine sort/merge for comparison by pairs. Subroutine sort/merge continues until
a final comparison results in a single winner record. A tournament sort is similar to the
elimination process used in a tennis match or tournament playoff. Figures 8—1 and 8—2
depict how this process occurs.

UP-8342 Rev. 3 SPERRY UNIVAC 0S5/3 8-4

SORT/MERGE
START
USER PROGRAM
\
CALLIN - w
MERGE-ONLY YLOD
LOAD MODULE

SUBROUTINE { MERGE-ONLY

USER CODING
READ
OPTIONAL INITIAL
TAPE — e e e e RECORD
EACH INPUT
[J FILE

1

R

RELEASE
INITIAL
LEGEND: RECORDS ONE

AT A TIME TO
MERGE

1

Subroutine merge-only program
|

= QOperational flow & Y

o= == Data flow @

Figure 8—1. Subroutine Merge-Only Operational Phases (Part 1 of 2)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-5
SORT/MERGE

P T LT

SEE FIGURE 8-2 FOR
AN EXAMPLE OF TOUR-
NAMENT MERGE
PROCESS

SORT COMMON MODULE LOADS
EACH PHASE FROM YLOD
INTO MAIN STORAGE AS THE
PHASE 1S REQUIRED

1
1
]
'
1
'
L]
i
\
)
fe et e ancsas memacmmenme =

1 I
1

L}
USER ‘ J CODING

RETURN
WINNER
RECORDS FROM
MERGE ONE BY ONE

R

WRITE
WINNER
RECORDS

R
f Covon !

OPTIONAL
TAPE

LEGEND:

D Subroutine merge-only program

emeep= Operational flow

= == Data flow

Figure 8—1. Subroutine Merge-Only Operational Phases (Part 2 of 2)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-6
SORT/MERGE
MERGE-ONLY 557028 OF ~—
@\ -~ INPUT1 REC1 QTHERVOLY
S~ ASCENDING
SORTINI ‘ MGSREL __] SEQUENCE
i So
S~ INPUT2 REC1 COMPARE = SORT
SORTIN2 MGS$REL ™~ OuUTPUT ouT
MYLIB2 e < REC1 MYLIB4
<< (WINNER)
SORTING ~aeL INPUT3 REC1 COMPARE S .
MYLIB3 MGSREL_,,: 0 e & MGSRET=| Pjr
GET NEW
RECORD
Figure 8—2. Initial Comparison for Winner Record

The record selected as the winner is returned to your program and the file identifier points
your program to the next record to be released. After the first record is released, each new
record released to the merge is always obtained from the input file associated with the
returned winner record. The other records involved in the merge do not return to your
program but remain in the merge for the next comparison. This and all succeeding
comparisons are initiated as soon as your program replaces the returned winner record
with the new record to be included in the merge via the MG$RET macro. This new record
is always the next record of the winner record’s input file. The merge process repeats until
subroutine sort/merge processes all records from each input file and returns them to your
program. Figure 8—3 illustrates this.

Py
D5P028 O . €
ospoz8 "~ {orien voLul
~. INPUT1 (EOF REACHED)
~
SORTINY MYLIB ~ ASCENDING
MGSRET_ > SEQUENCE
__________,/<T—
SORTINZ { S~ INPUT2 (EOF REACHED| COMPARE = nu o SORT
~ TPUT MYLIB4 ouT
ET
MYLIB2 MGSRET __ > REC 200
~. WINNER
SORTING ~_ | meutsRec 200 REQUEST ; N
MYLIB3 MGSRET @ WINNER= o
{LAST REC}
NO NEW

RECORD

CLOSE
QUTPUT
FILE

Figure 8—3. End of File Merge-Only Processing

8.3.2. Merge-Only Requirements You Supply (MG$REL and MGS$SRET)

Before we start to explain a sample merge-only program, let’'s look at a flowchart of that
program (Figure 8—4) and the job description that follows.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

8-7

START

DEFINE MRSORT
AS EXTRN

ALL
1ST RECS

AND INPUT3 FILES

OPEN DATA
TO LINK SORT FROM INPUT
INPUT FILES
COMMON 1.2 &3 FILES
MODULE o REC'D
{SGSORT) ?
YES
RETREC
e
F||?EES 'T':)El;ffr A MRSOPN OPENS MGSRET
MANAGEMENT MERGE-ONLY REQUEST A
{DTFSDI PROCESSING WINNER RECORD
MERGE MERGEIN
MRS$PRM BUILDS MERGE WRITE
PARAMETER HOUSEKEEPING WINNER
TABLE FOR ROUTINE RECORD
MERGE-ONLY
FILSET GETREC
FOR INITIAL
MERGE — DEFINE INITIALIZE GETA
ADDRESS CONSTANTS a E:SL‘ESST‘F“NE?: o NEW
FOR INPUTY, INPUT2, RECORD

EACH INPUT FILE

DEFINE STORAGE

FOR WORK AREA,

INPUT BUFFERS,
AND DM SAVEAREA

MGSREL
RELEASE THE
INPUY DATA
RECORD TO THE
MERGE

Figure 8—4. Subroutine Merge-Only Program Flowchart

EOF
REACHED
?

MERGE-ONLY PROBLEM: A SOLUTION

SYSTEM: 0S/3

PROGRAM: Subroutine Merge-Only Program

FUNCTION:

FILSET

RETREC

EOF

CLOSE THAT
INPUT FILE
INDICATE EOF
TO MERGE

EOF
FOR ALL INPUT
FILES
?

RETREC

YES
MERGE FIN

END OF
DATA REACHED
CLOSE OUTPUT

FILE

1. This program merges records of three previously sequenced files to produce a single

output file.

2. It is a disk merge.

3. Previously sequenced files are in ascending sequence.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

INFORMATION:

1. This program needs a table of file addresses to help locate input files for initiation of

the first record merge from each file.

2. Buffer and output processing areas must be reserved in main storage for input and

output file processing.

3. All three input files are assigned to disk device 51.

INPUT & OUTPUT:

1. Both input and output files use fixed-length, blocked records.

2. Each record contains 80 bytes.

3. The first input file contains ten records per block, the second input file, five records,

and the third input file, twenty records.

OUTPUT:

The program produces a single output file of records merged in ascending order from three

input files.

After coding your initial job control statements and assigning a base register to your
program to make it relocatable (lines 1 through 11), you issue the EXTRN assembler
directive, which links the sort common module from YOBJ to your program (line 12),
and you define your input and output files to data management (lines 15 through 26).

1 10 20 72
f L
2)

1. // JOB MRGEXMPL,,7@00,9000,2
2. // DVC 2@ // LFD PRNTR
3. // WORK}
4, // WORK2
5. // EXEC ASM
6. /$
7. MRGEXMPL START @
8. BALR 4,0
9. USING *, 4
10. LA 13,SAVEAREA
11, B START
12. EXTRN MRSORT DEFINES THE SORT COMMON MODULE
13.1 * TO BE INCLUDED BY THE L INKAGE
14, | * EDITOR
15. INPUT1 DTFSD BLKSI1ZE=86@,RECSI1ZE=88, |IOAREATI=BUFFI, C
16. IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, C
17. EOFADDR=EQOF ,TYPEFLE=INPUT
18. INPUT2 DTFSD BLKS1ZE=8p@,RECSiZE=8d, IOAREAI=BUFF2, C
19. IOREG=(2) ,RECFORM=F | XBLK, ERROR={0ERROR,OPT {ON=YES, C
20. EOFADDR=EOF,TYPEFLE=INPUT
21. | INPUT3 DTFSD BLKSIZE=160@,RECSIZE=8¢, | OAREA1=BUFF3, C
22. IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,0PTION=YES, C
23. EOFADDR=EQOF,TYPEFLE=INPUT
24, | OUTPUT DTFSD BLKSI|ZE=4@Q@,RECSIZE=88, I0AREAT=0UTZ}, |0AREA2=0UT@2, C
25. WORKA=YES ,RECFORM=F I XBLK, ERROR=IOERROR,OPTION=YES, C
26. TYPEFLE=0UTPUT

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-9
SORT/MERGE

Your MR$PRM macro instruction, which creates the parameter table for your program,
supplies all the information needed by the subroutine sort/merge to perform the merge.
All the following parameters coded for the merge-only program example are required (lines
27 through 32). For other optional merge-only parameters that may be included in the sort
parameter table generated by MRSPRM, see 6.10.

LABEL AOPERATIONA OPERAND ACOMMENTS
1 10 16 .12
J J

27. | MERGE MRS PRM {N=MERGE IN, c
28. F IN=MERGEF IN, C
29. STOR=WORK, I
30. RCSZ=80, C
31. FIELD=(®,8,CH), o
32. MERGE=YES

Initially, the subroutine sort/merge needs a way to locate the first record of each input
file. Lines 33—36 show the way to provide that information to your program when it
begins the initial merge comparison. In addition, you must define an 18-full-word (72-byte)
save area which is full-word area aligned and a save area of 18 full words for data
management use (line 33).

33. | SAVEAREA DS 18F

34. | FILTABL DC A(INPUTI) ADDRESS OF N1 DTF
35. DC A(INPUT2) ADDRESS OF IN2 DTF
36. DC A(INPUT3) ADDRESS OF IN3 DTF

To begin your program, you open all the input files and the output file (lines 38 through
41). By issuing the MR$SOPN (line 42) and referencing the table from your MR$PRM sort

parameter table specifications (line 27), you open the subroutine merge (lines 37 through
44).

37. | START EQU *

38. OPEN INPUTI

39. OPEN INPUT2 OPEN INPUT FILES

Lo. OPEN INPUT3

4. OPEN OUTPUT OPEN OUTPUT FILE

42. MRSOPN MERGE OPEN SORT/MERGE SUBROUTINE
b3, | = REFERENC ING MR$SPRM MACRO
Lh, | = GENERATED AT MERGE

The next routines consist of handling the registers that receive initial file addresses and
index later file address references. You must read the initial record of each input file
before you release it to the merge via the MG$REL macro (line 54). This means that you
must increment the full length of your input file to get to the second file (line 55). This is
the value of setting up your file table of address constants earlier in lines 34 through 36.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-10

SORT/MERGE
LABEL AOPERATIONA OPERAND ACOMMENTS
] 10 16
4s. | MERGEIN EQU * IN ADDRESS
L6. LA 5,3(9,0) LOAD R5 WITH THE NUMBER OF
7.1 * INPUT FILES
48, LA 6,FILTABL GET FILE TABLE ADDRESS
g, | FILSET L 18,8(6) LOAD DTF ADDR IN R10 AND
50. | * USE AS AN INDEX TO IDENTIFY
51. | = INPUT FILE TO MERGE AND TO
52.] = YOUR PROGRAM.
53. BAL 7,GETREC GET FIRST RECORD FOR EACH FILE.
54, MGSREL RELEASE RECORD TO MERGE.
55, LA 6,4(8,6) INCREMENT TO NEXT DTF ADDR.
56. BCT 5,FILSET TEST FOR LAST INPUT FILE.
57. | = IF YES CONTINUE. IF NO GET FIRST
58.1 = RECORD OF NEXT FILE.

Before continuing, let's examine the function of the MGS$REL macro instruction. The
MGSREL is used to release only the initial record of each previously sequenced data file to
the subroutine merge. After the initial record of each input file has been released and the
merge begins, do not use MG$REL macro for releasing any subsequent records to the
merge-only. Issue the MG$REL macro only after your program has:

m defined input and output files and assigned devices on which they are located;

® created the interface between subroutine sort/merge and your program (EXTRN
MRS$ORT);

m defined merge-only processing (MR$PRM);
8 opened input and output files; and
B jnitiated subroutine sort/merge for merge-only processing (MRSOPN).

Two registers, R1 and R10, play important roles in receiving and storing addresses used by
the subroutine sort/merge. Before releasing the initial record of an input file to subroutine
sort/merge, you must identify both the record to be released and the file it belongs to. You
identify the records and files by loading the address of the record’s first byte into register 1
(line 67, GETREC routine) and the address or identifier of the file into register 10 (line 49,
FILSET routine).

59. | RETREC EQU *
60. MGSRET REQUEST A WINNER RECORD.

61. BAL 7,PUTREC WRITE RECORD TO OUTPUT FILE.
62. BAL 7 ,GETREC GET NEW RECORD FROM INPUT FiLE.
63. B RETREC GET A NEW WINNER RECORD.

64. | GETREC EQU * GET A RECORD ROUTINE.

65. LR 1,18 POINT TO INPUT FILE DTF.

66. GET (1) GET RECORD.

67. LR 1,2 POINT TO NEW RECORD.

68. BR 7 RETURN

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-11
SORT/MERGE

Your record and file identification coding must precede the MGS$REL macro (line 53
branches out to the GETREC routine, which points to the next record in line 67 before
branching back to the MGS$REL macro). After you release the initial record of the first
input file, the subroutine sort/merge returns control to your program at the instruction
immediately after the MG$REL macro (line 55). Your program must then point to (identify)
the next input file, where you must retrieve the first record for release to the merge (line
55). You create a processing loop from the initial record accessing to its release. When the
initial records from each input file have been released, your program can request the
subroutine sort/merge to compare them. Select one winner record that fulfills the output
sequence requirements you specified, and return it to your program. To return the winner
record, you issue the MG$RET macro (line 60). Once you issue MGSRET and it executes,
the MGS$REL macro is no longer required to release subsequent records to the merge. The
succeeding MG$RET executions automatically release the next winner record. In addition,
MGSRET initiates each succeeding merge process just by requesting the return of a
record.

Because of the double function of the MG$RET macro after the initial input file records are
merged, you must be cautious to avoid overlaying a previous winner record with the next
new record for merge, when submitting subsequent records for merge-only processing. If
you do not write your winner record to the output file before the next MG$RET execution,
the next record is called in, destroying your previous winner record. This can easily occur
because subroutine sort/merge does not move records accessed by your program during
the merge-only processing. Subroutine sort/merge, however, does make the winner
record available to your program by placing the address of its first byte into register 1 and
by returning control to the instruction immediately following the MG$RET macro (lines 67,
68, 63, and 61) in your program.

At this point, you must make certain that your program does not lose the winner record by
having it returned to your program and consequently overlayed by the next record. This
can occur because register 1 is the same register in which your program identifies the
address of the next record to be released to the merge. To avoid this error, place your
winner record into the output or work area (lines 69 through 72) before placing the
address of the next record to be released into register 1 (line 67). The following coding
shows how to avoid overlaying the winner record in our subroutine merge-only program:

LABEL AOPERATIONA OPERAND ACOMMENTS
i 10 16
59. | RETREC EQU *
60. MGSRET REQUEST A WINNER RECORD.
61. BAL 7 ,PUTREC WRITE RECORD TO OUTPUT FILE.
62. BAL 7,GETREC GET NEW RECORD FROM INPUT FILE.
63. B RETREC GET A NEW WINNER RECORD.
64. | GETREC EQU * GET A RECORD ROUTINE.
65. LR 1,149 POINT TO INPUT FILE DTF.
66. GET (1) GET RECORD.
67. LR 1,2 POINT TO NEW RECORD
68. BR 7 RETURN.
69. | PUTREC EQU % PUT RECORD ROUTINE.
70. MVC WORKAREA,Z (1) MOVE WINNER REC TO WORKAREA.
71. PUT OUTPUT, WORKAREA PUT OUT THE RECORD.

72. BR 7 RETURN.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-12
SORT/MERGE

After you write the winner record to your output file, your program must always replace
that record in the merge with the next record from the winner record input file (lines 62
and 64 through 68). Subroutine sort/merge enforces this requirement by placing the
identifier of the winner record input file in register 10 at the same time it returns the
winner record address to your program. You use this file identifier (address) from register
10 as a pointer to locate the next record you want released to the merge (lines 60 through
66). Thus, it is very important that you be careful not to alter the contents of register 10;
otherwise, the merge will be in error.

After obtaining the next record from the selected file, your program must load this record
address into register 1 (line 67). Execution of the MG$RET macro instruction then releases
the new record to the merge for processing (PUTREC and GETREC routines).

The entire cycle repeats until your program encounters an end-of-file condition for one of
the input files (identified by the file address in register 10). Your program must close this
depleted file and indicate an end-of-file condition to the subroutine sort/merge before
releasing additional records to the merge (EOF routine, lines 73 through 77).

LABEL AOPERATIONA OPERAND ACOMMENTS
1 10 16
73.1 EOF EQU ¢ END-OF-FILE ADDRESS.
ILE LR 1,10 LOAD R1 WITH DTF ADDRESS.
75. CLOSE (1) CLOSE THAT INPUT FILE.
76. XR 1,1 INDICATE EOF CONDITION TO MERGE.
77. B RETREC REQUEST ANOTHER WINNER.

By loading binary O’s into register 1 and executing the MG$RET macro instruction, your
program can indicate end-of-file status to the subroutine sort/merge (lines 59, 60, 76, and
77).

The merge is complete when all input files have been closed and the last winner record
has been returned to your program. Subroutine sort/merge looks for the symbolic label
specified on the FIN parameter of your sort parameter table (lines 28 and 73).

78. | MERGEFIN EQU * FIN ADDRESS.

79. CLOSE QUTPUT CLOSE OUTPUT FILE.
80. EQJ

81.| IOERROR EQU

82. CANCEL CANCEL THE JOB.

83. LTORG DEFINE LITERALS HERE.

In this routine, you close the output file and indicate an end-of-job condition to job control
(lines 79 and 80). Finally, you add the error routine named IOERROR as specified in your
DTF data management macros (lines 16, 19, 22, 25, 81, and 82). The LTORG assembler
directive in line 83 defines all literals from your program and line. Line 84 defines the
work area specified in your output DTF (line 25). Data management also requires an
additional eight bytes of storage before each output buffer, and all 1/0 buffers must be
half-word aligned (lines 85 and 87). Lines 86 and 88 indicate 400-byte buffer areas for
each output buffer, and lines 89—91 define the three 400-byte input buffers.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-13

SORT/MERGE

LABEL AOPERATIONA OPERAND ACOMMENTS

] 10 16
8L . { WORKAREA DS cL8o
85. DS Ly HALFWORD ALIGN
86. | ouTel DS CLhigp OUTPUT AREAI
87. DS LH
88. | ouT@2 DS CLL4op OUTPUT AREA2
89. | BUFFI DS CL8p@ INPUT AREAI
90. | BUFF2 DS CLhiog INPUT AREA2
91. | BUFF3 DS CL160¢ INPUT AREA3
92. | WORK EQU *
93. END MRGEXMPL

Line 92 equates the value of the location counter at this point in your program to the
beginning of the work area you specified in your MR$PRM macro (line 29). The END
assembler control directive indicates the end of your source program. Figure 8—5
illustrates a printout of the entire source program.

/ /AJOBAMRGEXMPL , , 7000 ,9000 , 2 1
//ADVCA20 // LFD PRNTR 2
//AWORK] 3
//AWORK2 0= // ASM A
//AEXECAASM 5
/$ 6
MRGEXMPL START 0 7
BALR 4,0 8
USING *,4 9
LA 13,SAVEAREA 10
B START 11
EXTRN MRSORT 12
* 13
* 14
INPUTI DTFSD BLKS!ZE=800,RECS|ZE=8¢,|0AREAI=BUFF], c 15
IOREG=(2) ,RECFORM=F I XBLK ,ERROR=10ERROR ,0PT | ON=YES , o 16
EOFADDR=EOF , TYPEFLE=|NPUT 17
INPUT2 DTFSD BLKS|ZE=4G0,RECS|ZE=80, | 0AREAI=BUFF2, c 18
IOREG=(2) ,RECFORM=F | XBLK , ERROR=10ERROR,OPT | ON=YES, c 19
EOFADDR=EOF, TYPEFLE=INPUT 20
INPUT3 DTFSD BLKS!ZE=1600,RECSIZE=80,|0AREA1=BUFF3, c 21
IOREG=(2) ,RECFORM=F | XBLK , ERROR=| OERROR , OPT | ON=YES, c 22
EOFADDR=EOF ,TYPEFLE=1NPUT 23
OUTPUT DTFSD BLKS!ZE=4oO ,RECS|ZE=86,10AREAI=0UTA , | OAREA2=0UTH2, c 24
WORKA=YES , RECFORM=F | XBLK ,ERROR=10ERROR,OPT | ON=YES , o 25
TYPEFLE=0UTPUT 26
* THE FOLLOWING MACRO GENERATES THE PARAMETER TABLE
*®
MERGE MR$PRM |N=MERGEIN, c 27
FIN=MERGEFIN, c 28
STOR=WORK, o 29
RCSz=84, c 30
FIELD=(@,8,CST), c 31
MERGE=YES 32
*

Figure 8—5. Subroutine Merge-Only Program Coding (Part 1 of 3)

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

SORT/MERGE

8-14

SAVEAREA DS 18F

FILTABL

START

%
MERGEIN

*

FILSET
*

*

*

.

RETREC

GETREC

PUTREC

EOF

MERGEFIN

*
*
}L

IOERROR

DC A(INPUTI)
DC A(INPUT2)
DC A(INPUT3)
EQU =

OPEN INPUTI
OPEN INPUT2
OPEN INPUT3
OPEN OUTPUT
MRSOPN MERGE

EQU *
LA 5,3(2,0)

LA 6,FILTABL
L 19,0(6)

BAL 7,GETREC
MGSREL

LA 6,4(a,6)
BCT 5,FILSET

EQU =

MGSRET

BAL 7,PUTREC
BAL 7,GETREC

B RETREC
EQU *

LR 1,10
GET (1)

LR 1,2

BR 7

EQU *

MVC WORKAREA, @(1)
PUT OUTPUT,WORKAREA

BR 7

EQUu *

LR 1,19

CLOSE (1)

XR 1,1

B RETREC
EQU *

CLOSE OUTPUT
EOJ

DATA MANAGEMENT SAVE AREA
ADDRESS OF IN1 DTF
ADDRESS OF IN2 DTF
ADDRESS 0OF IN3 DTF

OPEN
INPUT
FILES
OPEN OUTPUT FILE
OPEN S/M REFERENCING MRSPRM MACRO
IN ADDRESS

LOAD R5 WITH THE NUMBER OF INPUT
FILES.

GET FILE TABLE ADDRESS

LOAD DTF ADDR IN R10, USE AS INDEX
TO IDENTIFY INPUT FILE TO MERGE
AND TO YOUR PROGRAM,

GET FIRST REC FOR EACH FILE.
RELEASE REC TO MERGE.

INCREMENT TO NEXT DTF ADDR.

TEST FOR LAST INPUT FILE: IF YES,
CONTINUE. IF NO, GET FIRST REC OF
NEXT FILE.

REQUEST WINNER REC

WRITE REC TO OUTPUT FILE

GET NEW REC FROM INPUT FILE
GET NEW WINNER REC.

GET a REC ROUTINE

POINT TO INPUT FILE DTF.

GET RECORD.

POINT TO NEW RECORD

RETURN

PUT REC ROUTINE

MOVE WINNER RECORD TO WORKAREA
PUT OUT THE REC

RETURN

END-OF-FILE ADDR

LOAD Rl WITH DTF ADDR

CLOSE THAT INPUT FILE

INDICATE EOF CONDITION TO MERGE
REQUEST ANOTHER WINNER

FIN ADDRESS

CLOSE OUTPUT FILE

ERROR ADDRESS FOR DATA MANAGEMENT

EQu *
CANCEL
LTORG

CANCEL JOB
DEFINE LITERALS HERE

Figure 8—5. Subroutine Merge-Only Program Coding (Part 2 of 3)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 8-156

SORT/MERGE

WORKAREA DS cL8¢ 84
DS Ly 85

oUTa1 DS CcLL4oO OUTPUT AREAI 86
DS 4H 87

ouTo2 DS CLL4oO OUTPUT AREA2 88
BUFF1 DS CL80dg INPUT AREAI 89
BUFF2 DS CL4o0 INPUT AREA2 90
BUFF3 DS CL1600 INPUT AREA3 91
WORK EQU * 92
END MRGEXMPL 93

/% 94
/ /AWORK]1 95
// EXEC LNKEDT 96
/$ = //MER@1 LINK MRGEXMPL 97
LOADM MER®G1 98
INCLUDE MRGEXMPL 99
/* 100
// DVC 51 101
// VOL DSP@28 102
// LBL MYLIBI 103
// LFD INPUTI 104
// DVC 51 105
// VOL DSPO28 106
// LBL MYLIB2 107
// LFD INPUT2 108
// DVC 51 109
// VOL DSP@28 110
// LBL MYLIB3 112
// LFD INPUT3 113
// DVC 51 114
// VoL DSP@28 115
// LBL MYLIBA4 116
// LFD OUTPUT,,INIT 117
// EXEC MERG1,$YSRUN 118
/& 119

// FIN

Figure 8—5. Subroutine Merge-Only Program Coding (Part 3 of 3)

To eliminate extra coding, lines 3, 4, and 5 can be replaced by the ASM jproc call, which
automatically supplies two work areas for the assembler. Also, lines 95 through 100 may
be replaced by the single jproc call //MERO1 LINK MRGEXMPL.

8.3.3. Assembling, Link Editing, and Executing Subroutine Merge-Only Program

The process of assembling, link editing, and executing the subroutine merge-only program
is basically the same as our subroutine sort/merge disk sort program (6.11). Job control
statements precede and follow the subroutine merge-only program. Some execute the
assembler which produces an object module. The linkage editor uses this object module as
input to create a load module. Further job control following the source program specifies
device assignment sets and end statements (line 101 through 119). They tell us that the
three input files named MYLIB1, 2, and 3 are contained on the same volume, DSP028, on
the same input device 51 and that after merge processing, the records will be written to

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

8-16

one output file, MYLIB4 on that same volume DSP028 on device 51. The load module to
be executed can be found in the YRUN library. Refer to the system flowchart (Figure
6—20) which depicts assembly, linkage edit, and execution runs. Figure 8—6 illustrates
your program'’s interface with subroutine merge-only.

the user from the same file that the winner
came from.

When an end-of-file condition is reached,
this information is relayed via the MGSRET
macro, with register 1 binarily zeroed out.
Another winner is then chosen from the
records already released from the remaining
files.

MGS$RET macro (Register 1 loaded

e
with winner record address. Register

10 loaded with winner record file
address)

1

|

MGS$RET (register 1 loaded with

Y o

binary 0) |
|
|
|

If all input files are closed, returns via

FIN parameter. Otherwise, same as

input file address of the
winner record is also given to
the user so that a new record
may be read in to replace the
winner., The sort is also
informed by the user when an
input file is closed and a new
winner from the other files has
to be chosen.

above.

r— - "="=""=""="""=""="=""—""" |

! |

! |

! I

MR$OPN I !

- . |

As in the regular subroutine sort/merge an I Information from the sort |
interface is set up through the sort common i parameter table and job I
module The merge-only option, however, | control statements is |
must be specified in the MR$PRM macro. Return via IN parameter processed. |
g | |

' I

) I

| |

] |

i |

MGSREL (record address loaded !

Also as in the regular subroutine sort/merge, in register 1)] 7| The first record of each input !
the user performs all input and output] file is given to the sort in order |
operations. The user must release the first ! to initialize a tournament 1
record of each input file before the merge | . among these records. |
can start. This initial release is via the Returns to instruction)
MGS$REL macro. following MG$REL macro I
| |

. i

i |

| |

| |

! !

| |

| 1

MGS$RET (address of new :

Merging is commenced and carried out via record loaded in register 1) |
the MG$SRET macro, which selects a winner | [
from among the different records from each | Among the records from each |
file. This winner record, after being i input file, a winner is selected |
processed by the user, must be replaced by Returns to instruction following and returned to the user. The :
|

|

1

|

|

|

|

1

|

|

!

|

|

1

|

|

|

-

USER PROGRAM 0S/3 SUBROUTINE SORT/MERGE

MERGE-ONLY

Figure 8—6. User Program Interface with Subroutine Merge-Only

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 9-1
SORT/MERGE

9. Subroutine Sort/Merge
Program Examples

9.1. GENERAL
This section contains complete program coding examples and an explanation of:
® A subroutine tape sort

= A tape sort using the PARAM statement to add parameters to the sort parameter
table

®m A tape sort using a record sequence own-code routine (RSOC)
m An internal (main storage) sort

m A disk sort using consolidated data management
Each example illustrates the job control stream requirements needed to assemble, link,

and execute the program. Following each example is a line-by-line description of what
each instruction or group of instructions does.

9.2. SUBROUTINE TAPE SORT

The following example illustrates the general requirements for performing a typical
subroutine sort operation using tape work files and disk input and output files.

// JOB SRTEXMP2,,7000,9000,2 A 001
// DVC 20 // LFD .PRNTR 002
// WORKI 003
// WORK2 004
// EXEC ASM 005
/% 006
SRTEXMPL START @ 007
BALR 4,0 008

USING *,4 009

B8 START 010

EXTRN MR$ORT THIS DEFINE THE COMMON SORT o1t

* MODULE FOR INCLUSION BY THE 012
* LINKAGE EDITOR. 013
* 014
INPUT DTFSD BLKS|ZE=L@96 ,RECS | ZE=256, | DAREAI=BUFF1, c 015
IOREG= (2) ,RECFORM=F | XBLK ,ERROR= |OERROR , OPT1ON=YES, C 016

EOFADDR=EOF ,TYPEFLE=INPUT 017

(continued)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 9-2
SORT/MERGE
OUTPUT DTFSD BLKS[ZE=4096,RECS |ZE=256, | OAREA1=BUFF 1, c 018
IOREG-(Z),RECFORM—FIXBLK,ERROR-IOERROR,OPTION-VES, C 019
TYPEFLE=QUTPUT 020
* 021
* 022
SORT MRS$PRM IN=SORTIN, c 023
OUT=SORTOUT, c 024
FIN=SORTFIN, c 025§
STOR=WORK . c 026
TAPE=(NO,3), c 027
RCSZ=256, c 028
FIELD=(0,8,CH) 029
* 030
* DATA MANAGEMENT WORK AREAS 031
DS OH 032
DS cL8 033
BUFF1 DS CL4096 10AREA n3L
SAVEAREA DS 18F DATA MANAGEMENT SAVE AREA. 035
* 036
* 037
START EQU * 038
MRSOPN SORT OPEN SORT/MERGE SUBROUTINE. 039
SORTIN LA 13,SAVEAREA LOAD R1% WITH ADDR OF DM ok4o
* SAVE AREA. oM
OPEN INPUT OPEN THE INPUT FILE k2
* 043
* INPUT AND RECORD RELEASE ROUTINE. ob4
* 0Lsg
GETREC EQU * o6
GET INPUT GET RECORD FROM INPUT FILE. 047
LR 1,2 LOAD R1 WITH ADDR OF RFCORD o048
* TO BE RELEASED. ok9g
MRSREL RELEASE RECORD TO THE SORT. 050
8 GETREC GET THE NFXT RECORD. 051
* 052
* EOF ROUTINF 053
* 054
FOF EQU * 055
CLOSE INPUT CLOSE THE INPUT FILE 056
MRS$SRT INFORM THE SORT OF THE 057
* EOF CONDITION. 058
* 059
* OUTPUT AND RECORD RETURN ROUTINE 060
* 061
SORTOUT EQU * 062
OPEN OUTPUT OPEN THE OUTPUT FILE. 063
* 06b
REQREC MRSRET REQUEST THE RETURN OF A 065
* RECORD 066
MVC 01256,2) .0(1) MOVE THE SORTED RECORD TO OUTPHT 067
* BUFFER AREA. 068
* né9
PUT OUTPUT OUT PUT THE RECORD 070
] REQREC REQUEST NEXT RFCORD 071
* 072
* END OF SORT ROUTINE 073

074

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 9-3

SORT/MERGE
SORTFIN EQU * 075
CLOSE OUTPUT CLOSE THE OUTPUT FILE. 076
E0J 077
* 078
* ERROR ADDRESS FOR DATA MANAGEMENT 079
* 080
IOERROR EQU * 081
CANCEL CANCEL THE JOB 08"
LTORG DEFINE ALL LITERALS HERE ng3
WORK EQU * SORT WORK AREA. 084
END SRTEXMPL 085
/* 086
// WORKI 087
// EXEC ULNKEDT 088
/% 089
LOADM SORTG2 090
INCLUDE SRTEXMPL 09]
/% 092
// DNC 50 093
// voL DSP@Q 094
// LBL SORTIN 095
// LFD INPUT 096
// OVC 50 097
// VOL DSP@@1 . 098
// LBL SORTOUT 099
// LFD ouTPUT 100
// DVC 90 101
// VOL SCRCHI1 102
// LFD SM@! 103
// DVC 91 104
// VOL SCRCH2 105
// LFD SM@? 106
// DVC 92 107
// VOL SCRCH3 108
// \FD SM@3 109
// EXEC SORT@2,SYRUN 110
/¢ 111
// FIN 112
Line
Number Explanation

1

The name of the job is SRTEXMP2; it requires 28,672 decimal (7000;¢) bytes
of main storage as a minimum and requests 32,768 decimal (9000,¢) bytes
maximum. A maximum of two tasks can be active simultaneously in any job
step.

These job control statements assign the printer to the subroutine
sort/merge for displaying messages during program execution.

The WORK1 and WORK2 statements set up temporary files for the
assembler job step.

This statement initiates the execution of the assembler.

/$ job control delimiter statement indicates the start-of-data to the
assembler.

UP-8342 Rev. 3

SPERRY UNIVAC O0S/3 9-4
SORT/MERGE

Line
Number

7—11

156—20

23—29

32

33

34—35

38—39

40—42

46—51

556—58

62—63

65—71

75—77

81—82
83

84—86

Explanation

This group of assembler directives and instructions initializes your location
counter to zero, assigns register 4 as a base register, and defines the sort
common module,

These two DTFSD statements describe input and output files to data
management.

This MR$PRM macro sets up the sort parameter table and is referenced
later by the MR$SOPN macro (line 39). For information about these
parameters, see 6.4.

This DS statement half-word aligns the 1/0 buffer.

This DS statement provides the 8-byte area required by data management
before BUFFER 1.

These define storage statements set up 4096 bytes for input/output buffer 1
and 18 full words (72 bytes) of storage for the data management save area,
which must be full-word aligned.

The MR$OPN macro opens the subroutine sort/merge.
The sort input routine opens the input data file.

The input and record release routine reads records and releases them to the
sort.

The end-of-file routine closes the input data file and tells the sort that it has
reached the end-of-file (MR$SRT).

The sort output routine opens the output data file.

This routine returns records from the sort/merge, writes the record, and
requests the next record.

The end of sort routine closes the output file and notifies job control that the
end-of-job condition was reached.

The IOERROR routine is the error handling routine for data management.

LTORG assembler control directive defines all literals at this point in your
program.

The EQU statement indicates that the address of the current location
counter be used as the beginning of the main storage work area you
designated in the STOR parameter (line 26). The END assembler directive
concludes your source program and the /* is a job control delimiter
statement indicating the end-of-data (your source program) to the
assembler.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 9-5
SORT/MERGE

Line
Number
87

88
89—92
93—96
97—100
101—109
110

111

112

Explanation
Sets up a temporary work file for the link edit step.
This statement executes the linkage editor.

These statements indicate the data set to control the building of the load
module named SORTO2.

Assigns the input file named SORTIN to volume DSPOO1, on device 50.
Assigns the output file named SORTOUT to volume DSPOO1 on device 50.
Assigns the tape sort work files with LFD names SMO1, SM02, and SMO3
to volumes SCRCH1, SCRCH2, and SCRCH3 on devices 90, 91, and 92,
respectively.

Executes your program named SORTO02, which is found in YRUN library.

Marks the end of the job stream.

Marks the end of reader operations.

9.3. SUBROUTINE TAPE SORT WITH RESTART USING PARAM STATEMENT

The following example illustrates requirements to perform a restart after a subroutine
sort/merge program is interrupted. This example includes the RESUME parameter via the
job control PARAM statement and the CSPRAM parameter indication.

// JOB SRTEXMI3,,7000,9090

// ovC 20

// LFD PRNTR

// WORKI

// WORK2

// EXEC ASM

A

SRTEXMPL START @
BALR 4,0
USING =*,4
B START
EXTRN MRSORT THIS DEFINES THE COMMON SORT

*
*
L

INPUT DTFSD BLKSIZE=4@96 ,RECS!ZE=256, I0AREA1=BUFF1, c
IOREG=(2) ,RECFORM=F I XBLK,ERROR=|OERROR ,0PT |ON=YES, ¢
EOFADDR=EOF ,TYPEFLE=INPUT

OUTPUT DTFSD BLKS|ZE=L@96,RECS |ZE=256, |I0AREAI=BUFFI, c
IOREG=(2) ,RECFORM=F I XBLK ,ERROR=10ERROR ,0PT { ON=YES , c

MODULE FOR [INCLUSION BY THE
LINKAGE EDITOR.

N ot oot ot ot ot b ottt —
OWOOSNOMNI ESWN = 0OWONONNIEWN ~—

~N
—

TYPEFLE=QUTPUT

NN
w N

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

SORT

BUFF1

SAVEAREA
*
*

START

SORTIN
*

*
*
*

GETREC

*

EOF

*
%*
*

SORTOUT

*

REQREC
*

*

*
*
*

SORTFIN

*

*

*
(OERROR

MR$PRM [N=SORTIN,
OUT=SORTOUT,
FIN=SORTFIN,
STOR=WORK,
TAPES=(NO,3),
RCSZ=256,
CSPRAM=YES ,
FIELD=(0,8,CH)

DATA MANAGEMENT WORK AREAS

DS OH

DS cLa

DS CL40o96
DS 18F
EQU *

MRSOPN SORT
LA 13 ,SAVEAREA

10AREA
DATA MANAGEMENT SAVE AREA

OPEN SORT/MERGE SUBROUTINE
LOAD REG 13 WITH ADDR OF DM
SAVE AREA.

OPEN INPUT OPEN THE INPUT FILE.
INPUT AND RECORD RELEASE ROUTINE.
EQU *
GET INPUT GET RECORD FROM INPUT FILE.
LR 1,2 LOAD REG 1 WITH ADDR OF
RECORD TO BE RELEASED.
MRSREL RELEASE RECORD TO THE SORT.
B GETREC GET THE NEXT RECORD.
EOF ROUTINE
EQU *
CLOSE INPUT CLOSE THE INPUT FILE AND
MR$SRT INFORM THE SORT OF THE END-
OF-DATA CONDITION.
ouT PUT AND RECORD RETURN ROUTINE.
EQU *

OPEN OUTPUT
MR$RET
MvC 6(256,2) ,6(1)

PUT OUTPUT
B REQREC

END OF SORT ROUTINE.

EQU *
CLOSE OUTPUT
EOJ

OPEN THE OUTPUT FILE.

REQUEST THE RETURN OF A
RECORD.

MOVE THE SORTED RECORD TO THE
OUTPUT BUFFER AREA

OUTPUT THE RECORD.

REQUEST THE NEXT RECORD.

CLOSE THE OUTPUT FILE.

ERROR ADDRESS FOR DATA MANAGEMENT.

EQU %
CANCEL
LTORG

CANCEL THE JOB.
DEFINE ALL LITERALS HERE.

OO0

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
1o
1
42
43
uk
4s
46
47
48
49
50
5l
52
53
5k
55
56
57
58
59
60
61
62
63
6k
65
66
67
68
69
70
71

72

73

75
76
77
78
79
80
81

82
83
84

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

9-7

WORK EQU * SORT WORK AREA. 85
END SRTEXMPL 86
/* 87
// WORK] 88
// EXEC INKEDT 89
/% 90
LOADM SORTA3 91
INCLUDE SRTEXMPL 92
/* 93
// ovec 5¢ 94
// VOL DSP@@! 95
// LBL SORTIN 96
// LFO INPUT 97
// DVC 5@ 98
// voL DSP@®\ 99
// LBL SORTOUT 100
// LFD OUTPUT 101
// ovc 90 102
// VOL SCRCHI 103
// LFD SM@1 104
// DNC 91 105
// VOL SCRCH2 106
// LFD SM@? 107
// DVC 92 108
// VOU SCRCH3 109
// LFD SM@3 110
// EXEC SORT@3,$YSRUN 1
// PARAM RESUME=(PASS,233) 12
/¢ 113
/! FIN 114
Line
Number Explanation
1 The JOB statement names the program SRTEXM13 and specifies
approximately 28,000 decimal (7000,¢) bytes minimum main storage and
32,000 decimal (9000,5) bytes maximum main storage.
2—5 Assigns the printer to the job and sets up two temporary work files.
6 Executes the assembler.

7 /$ indicates the start-of-data (your source program) to the assembler.
8—14 These instructions set the location counter to zero, register 4 as base
register to the program, and define the sort common module.

16—21 DTFSD statement describes input and output files to data management.

24—31 SORT is the label of the MR$PRM macro that specifies sort parameter table
entries. (See 6.4 for details.) Line 30 must be specified if you intend to enter
the RESUME parameter via a PARAM statement in line 112,

34 This DS statement half-word aligns the 1/0 buffer.

35 This DS statement provides the 8-byte area required by data management

before BUFFER 1.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 9-8
SORT/MERGE

Line
Number

36—37

40—41

42—44
48—53

57—60

64—72

76—78

82—83
84

85—87

88—89

90—93

94—101
102—110
111

112—113

114

Explanation

These statements define storage areas for the 1/0 buffer and data
management save area. The 72-byte data management save area must be
full-word aligned.

MR$OPN opens the subroutine sort/merge by specifying the name of the
sort parameter table (line 24).

This sort input routine opens the input file.
This sort input routine reads records and releases them to the sort.

This end-of-file routine closes the input file and indicates the end-of-data
(MRS$SRT).

This output sort routine opens the output file, requests the return of sorted
records, and writes sorted records.

The end of sort routine, SORTFIN, closes the output file and tells job control
that the end-of-job condition was reached.

IOERROR is the error routine for data management.
LTORG defines all literals.

The EQU, END, and /* statements specify the beginning of the sort work
area, the end of the source program, and the end-of-data to the assembler.

WORK1 provides a temporary work file to the linkage editor and EXEC
executes the linkage editor.

This is the data set to the linkage editor (the load module SORTO3).

Disk input and output data files named SORTIN and SORTOUT are assigned
to volume DSPOO1, on device 50.

Tape work files with LFD names SMO1, SM0O2, and SMO3 are assigned to
volumes SCRCH1, 2, and 3 on devices 90, 91, and 92, respectively.

Your program named SORTO3 is executed from the YRUN library.
The PARAM statement includes the RESUME parameter to provide the
restart capability. (See 6.4.2.3 for more details.) The /& delimiter statement

indicates the end-of-job to job control.

Marks the end of reader operations.

9.4. SUBROUTINE TAPE SORT USING OWN-CODE ROUTINE

The following example shows the use of a record sequence own-code routine (RSOC).

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

// JOB SRTEXM15,,7000,9000
// DNC 2@
// LFD PRNTR

// WORKI
// WORK2
// EXEC ASM
/3
SRTEXMPL START @
BALR 4.0
USING *.4
B START
EXTRN MRSORT THIS DEFINES THE COMMON SORT
* MODULE FOR INCLUSION BY THE
* L INKAGE EDITOR.
*
INPUT DTFSD BLKS|ZE=L@O ,RECS|ZE=8@, |I0AREA1=BUFF1,

IOREG=(2) ,RECFORM=F 1 XBLK ,ERROR=I0ERROR ,0PT | ON=YES,

EOFADDR=EOF ,TYPEFLE=INPUT

OUTPUT DTFSD BLKSI|ZE=b@O,RECS) ZE=80, I0AREAI=BUFF1,
IOREG=(2) ,RECFORM=F | XBLK ,ERROR=10ERROR ,0PT | ON=YES,

TYPE=0UTPUT

SORT MRSPRM {N=SORTIN,

OUT=SORTOUT,
FIN=SORTFIN,

STOR=WORK,

TAPES=(NO,3),

RCSZ=80,

RSOC=RECCMPR

*

* DATA MANAGEMENT WORK AREAS

DS OH
DS cLs
BUFF1 DS CLLog

SAVEAREA DS 18F
*

%

START EQU *
MRS$OPN SORT
SORTIN LA 13,SAVEAREA
*
OPEN INPUT
*
* INPUT AND RECORD RELEASE
*
GETREC EQU *
GET INPUT
LR 1,2
*
MRSREL
B GETREC
%
* EOF ROUTINE

I0AREA
DATA MANAGEMENT SAVE AREA

OPEN SORT/MERGE SUBROUTINE
LOAD REG 13 WITH ADDR OF DM
SAVE ARFA.

OPEN THE INPUT FILE.

ROUT INE.

GET RECORD FROM INPUT FILE.
LOAD REG 1 WITH ADDR OF
RECORD TO BE RELEASED.
RELEASE RECORD TO THE SORT.
GET THE NEXT RECORD.

o0

OO0

W OoONOVIZWN —

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 9-10

SORT/MERGE
EOF EQU * 57
CLOSE INPUT CLOSE THE INPUT FILE AND 58 .
MR$SRT INFORM THE SORT OF THE END- 59
* OF -DATA CONDITION. 60
* 61
* RECORD RETURN AND OUTPUT ROUTINE. 62
* 63
SORTOUT EQU * 64
OPEN OUTPUT OPEN THE OUTPUT FILE. 65
* 66
REQREC MRSRET REQUEST THE RETURN OF A 67
* RECORD. 68
MvC @(8@,2),0(1) MOVE SORTED REC TO OUTPUT 69
* BUFFER AREA 70
PUT OUTPUT OUTPUT THE RECORD. 7
B REQREC REQUEST THE NEXT RECORD. 72
* 73
* END OF SORT ROUTINE. 74
* 75
SORTFIN EQU * 76
CLOSE OUTPUT CLOSE THF OUTPUT FILE. 77
£0J 78
* 79
* RSOC ROUTINE 80
* 81
RECCMPR EQU * 82
USING *,15 83
* IN THIS LOCATION A ROUTINE IS TO BE INSERTED TO PERFORM 84
* KEY COMPARISONS. REGISTERS 11 AND 12 CONTAIN THE ADDRESS 85
* OF THE RECORDS TO BE COMPARED. |F THE RECORD POINTED TO 86
* BY REG!STER 11 1S THE WINNER, THE CONDITION CODE IS TO BE 87
* SET TO LOW (CC=1). IF THE RECORD FOR THE ADORESS IN 88
* REGISTER 12 IS THE WINNER, THE CONDITION CODE !S TO BE 89
* SET TO HIGH (CC=2). IF THE TWO RECORDS ARE FQUAL. THE 90
* CONDITION CODE 1S TO BE SET TO EQUAL (CC=@). THE RSOC 91
* ROUTINE RETURNS TO THE SORT VIA REGISTER 14. 92
* 93
* 9l
cLe 978,11 ,8(12) COMPARE FOR ASCENDING SEQUENCE. 95
* IF THE SEQUENCE WERF DESCENDING 96
* REGISTER 11 AND REGISTER 12 97
- WNOULD BE SWITCHED SO THAT THE 98
* INSTRUCTION WOULD READ: 99
* cLe L(1e,12) ,4(0) 100
DROP 15 DISENGAGE USE OF R15 AS RSOC BASE REG
BR 14 RETURN TO THE SORT WITH THE 101
* CONDITION CODE SET BY THE 102
* COMPARE INSTRUCTION. 103
* 104
* 105
* ERROR ADDRESS FOR DATA MANAGEMENT 106
* 107
JOERROR EQU = 108
* CANCEL CANCEL THE JOB. 109
* 1o
* m
* 112
LTORG DEFINE ALL LITERALS HERE TO 113

*

FREE THE WORK AREA. 114

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

9-11

WORK EQU * SORT WORK AREA 115
END SRTEXMPL 116
/* 117
// WORK]1 118
// EXEC LNKEDT 119
/% 120
LOADM SORT@3 121
INCLUDE SRTEXMPL 122
I 123
// DvC 5@ 12k
// VoL DSP@@1 125
// LBL SORTIN 126
// LFD INPUT 127
// DVC 50 128
// VoL DSPg@I 129
// LBL SORTOUT 130
// LFD OUTPUT 131
// DVC 90 132
// VOL SCRCH! 133
// LFD SM@1 134
// ove 91 135
// VOL SCRCH2 136
// LFD SMO2 137
// bve 92 138
// VOL SCRCH3 139
// LFD SM@3 140
// EXEC SORT@3,S$YSRUN 14
/¢ 142
// FiIN 143
Line
Number Explanation
1—6 The program named SRTEXM15 uses approximately 28,000 decimal
(7000,6) bytes minimum main storage space and approximately 32,000
decimal (9000,¢) bytes maximum main storage. Two temporary work files
and a printer (if needed) are made available to the assembler and it is
executed.
7 This is the start-of-data to the assembler.
8—14 These instructions set the location number counter to zero, designate
register 4 as the base register, and define the sort common module
(MRS$ORT).
16—21 DTFSD macros define the input and output files to data management.
24—30 MRS$PRM defines the sort parameter table. Notice the name of the record
sequence own-code routine is RECCMPR (line 30).
24—30 For more details, see 6.4.1.
34 This DS statement half-word aligns the 1/0 buffer.
35 This DS statement provides the 8-byte area required by data management

before BUFFER 1.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 . 9-12
SORT/MERGE

Line
Number

36—37

40—41
42—44
48—53

57—59

64—66

67—72
76—78
82—105

108—109
113
115—117
118—123
124—131
132—140

141—142

143

Explanation

These instructions define storage for the half-word aligned 1/0 buffer area
and the data management 72-byte save area, which must be full-word
aligned. ‘
The MR$OPN macro opens the subroutine sort/merge.

The sort input routine opens the input file.

This input routine reads input records and releases them to the sort.

The end-of-file routine closes the output file and informs the sort of the end-
of-data condition.

The sort output routine opens the output file.

This routine requests the return of records from the sort and writes the
record.

The end of sort routine closes the output file and informs job control that
end-of-job was reached.

RECCMPR is the name of the user's own-code routine for record
sequencing.

IOERROR is the data management error handling routine.

LTORG assembler directive defines all literals.

This EQU statement points to the beginning of the work area. The END
assembler directive names the source module that is ending and /*

indicates to job control that end-of-data was reached.

Execute the linkage editor by using one temporary work file. /$ and /* mark
the beginning and end of the data set used by the linkage editor.

Both disk input file SORTIN and disk output file SORTOUT on volume
DSPOO1 use the same device 50.

Tape work files named SMO1, 02, and 03, on volumes SCRCH1, 2, and 3
reside on devices 90, 91, and 92, respectively.

Execute the program SORTO02 from YRUN library and indicate end-of-job
to job control (/&).

Marks end of reader operation.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3
SORT/MERGE

9.5. SUBROUTINE INTERNAL SORT

The distinguishing characteristic of an internal sort/merge is that the entire sort process
is accomplished in main storage without the use of tape or disk work files. The general
program coding for an internal-only sort is identical to that for a subroutine disk or tape

sort (Figure 6—17 and 9.2) except for the following modifications:

m The DISC and TAPE keyword parameters specified in the MR$PRM macro instruction

for the tape and disk sorts are omitted for the internal sort.

m Disk and tape work files are not assigned for internal sorts. (The assignment of work
files in the examples for tape and disk sorts appears in the job control stream.)

An internal sort/merge is feasible only if the input file is relatively small, because all of
the data must be in main storage at the same time. If you do not assign adequate main
storage, the sort will terminate. See 1.7.1 for minimum main storage requirements.

9.6. SUBROUTINE DISK SORT USING CONSOLIDATED DATA MANAGEMENT

The following example shows a subroutine disk sort operation using consolidated data

management to define input and output files.

// JOB SRTEXMPL,,7000,9080,2
// DVC 28 // LFD PRNTR

/7 WORK1
// WORK?2
// EXEC ASM
/3
SRTEXMPL START @ SETS LOCATION COUNTER TO ZERO.
EXTRN MRSORT MRSORT DEFINES AN EXTRN.
- LINKS COMMON SORT MODULE
* TO YOUR PROGRAM.
BALR 4.9
USING * ., 4
B START

SORTRIB RIB BFSZ=512,RCSZ=80,10A1=BUFF1,10A2=BUFF2 WORK=YES,
RCFM=FI1X,0PTN=YES ,MODE=SEQ

INPUT CDIB

ouTPUT CDIB

USING CD$CDIB,S

vioc CDIB=YES

*

*

SORT MR$PRM FIELD=(8,7,CH),
IN=SORTIN,
OUT=SORTOUT,
FIN=SORTFIN,
RCSZ=8%,
STOR=WORK,
DISC=4

00 N D W W N

@0

10

11

12

13
c 14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

O OO OO0

(continued)

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

BUFF1
BUFF2
-INOUTBUF

*

*

START

SORTIN

GETREC

EOF:

*

SORTOUT

RECRET

*

SORTFIN

DATA MANAGEMENT WORK AREA

DS OH
DS CL512
DS CL512
DS cLse
EQU -

MR$SOPN SORT
LA 5, INPUT

OPEN INPUT, (SORTRIB)

™ cDsisucc, L cDsisuce
BZ IOERROR

EQU *

DMINP INPUT,INOUTBUF

™ CD$IEOF,L'CDSIEOF
BO EOF
™ cpsisucc,L'cbsisucc

BZ IOERROR

LA 1,INOUTBUF

MRSREL

B GETREC

EQuU *

CLOSE INPUT

™ cbDsisucc,L'cDsisucc
BZ IOERROR

MRS SRT

EQU *

LA 5,0UTPUT

OPEN OUTPUT, (SORTRIB)

™ cbpsisucc, L cpsisucce
BZ IOERROR

MRSRET

LA 2, INOUTBUF

MvC 6(86,2),0(1)

DMOUT OUTPUT, INOUTBUF
™ cDsIsucc, L CcDsisucce

BZ IOERROR

B RECRET

EQU *

CLOSE OUTPUT

™ cD$Isucc, L chsIsuce
BZ IOERROR

E0)

OPEN THE SORT/MERGE SUBROUTINE

OPEN THE INPUT FILE
SUCCESSFUL OPERATION?
IF NOT, BRANCH TO IOERROR.

GET RECORD FROM INPUT FILE
INPUT FILE EMPTY?
IF EMPTY, BRANCH TO EOF.

LOAD R1 WITH RECORD ADDRESS.

RELEASE RECORD TO THE SORT.
GET NEXT RECORD.

THIS LOCATION IS SPECIFIED

AS THE END OF FILE ADDRESS.
CLOSE THE INPUT FILE.

TELLS THE SORT THAT THE END
OF FILE HAS BEEN REACHED.
OUT ADDRESS.

OPEN THE OUTPUT FILE.

REQUEST A RECORD RETURNED.

* LOAD R2 WITH BUFFER ADDRESS

MOVE THE SORTED RECORD TO
THE OUTPUT BUFFER AREA.
OUTPUT THE RECORD RETURNED.

FIN ADDRESS
CLOSE THE OUTPUT FILE.

END OF JOB STEP.

29
30
i1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

(continued)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 9-15
SORT/MERGE
: ERROR ADDRESS FOR DATA MANAGEMENT 80
. 81
IOERROR EQU * 82
CANCEL CANCEL THE JOB. 83
LTORG DEFINE ALL LITERALS HERE. 84
WORK EQU START OF SORT WORK AREA. 85
y THIS SETUP ALLOWS THE SORT 86
. TO USE ALL MEMORY FROM 87
: THIS LOCATION TO THE END OF 88
. THE JOB REGION. 89
END SRTEXMPL 90
/* 91
//SRTEXM LINK SRTEXMPL 92
// DVC 58 93
// VOL DSP@28 94
// LBL MYFILEIL 95
// LED INPUT 96
// DVC 58 97
// VOL DSP@28 98
// LBL MYFILE2 99
// LFD OUTPUT,,INIT 100
// DVC 58 101
// VOL DSP@28 102
// EXT $T,C,,CYL,5 103
// LBL $SCR1 104
// LFD DMO1 105
// EXEC SRTEXM,YRUN 106
/& 107
// FIN 108
Line
Number Explanation
1—5 The program named SRTEXMPL uses approximately 28,000 decimal (7000;,)
bytes of minimum main storage space and approximately 32,000 decimal
(9000,6) bytes of maximum main storage. Two temporary work files and a
printer (if needed) are made available to the assembler, and the assembler is
executed.
6 This is the start-of-data to the assembler.
7—13 These instructions set the location counter to zero, set register 4 as base
register to the program, and define the sort common module.
14—17 These instructions specify two files named INPUT and OUTPUT, each with a

CDIB macroinstruction. In addition, a RIB labeled SORTRIB is specified as
having a buffer size of 512 bytes, a record size of 80 bytes, an I0OA1 called
BUFF1 for the primary {/0 buffer area, an additional IOA2 called BUFF2 to
speed up |/0 processing, and sequential access. The WORK parameter
indicates that all input and output operations take place using data
contained in a work area. OPTN=YES indicates that all files associated with
SORTRIB are optional; i.e., they won’t always be used.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 9-16
SORT/MERGE

Line
Number

18—19

2228

30

31—-32

36—37
38
39

40—41

Explanation

Only one RIB macro is needed because it defines the characteristics of both
files INPUT and OUTPUT.

The VTOC macro generates a DSECT, which in effect is a map of the CDIB.
The USING directive associates register 5 with the address of the first CDIB
byte, CD$CDIB. Statements generated by VTOC then fix the indicators
CDSISUCC (lines 40, 46, 55, 63, 70, and 76) and CDS$IEOF (line 44) as
offsets from register 5. All you do, as a result, is load register 5 with the
address of any actual CDIB, and you can test the bit indicators in the CDIB
as symbols rather than having to know where exactly in the CDIB they lie.
The use of register 5 with VTOC does not affect register 4 because the
remainder of the program continues to use register 4 as its base register.

This MRSPRM macro sets up the sort parameter table and is referenced
later by the MRS$OPN macro (line 37). For information about these
parameters, see 6.4.

This DS statement half-word aligns the |/0O buffer.

These define storage statements set up 512 bytes for input/output buffers 1
and 2, and 80 bytes of storage for the data management save area, which
must be full-word aligned.

The MR$OPN macro opens the subroutine sort/merge.
Establishes the base register as described in line 18.
The sort input routine opens the input data file.

Before doing any 1/0 operation, you want to link bit indicators CD$ISUCC
(line 40) and CDSIEOF (line 44) to the file whose condition they are to test.
You do this by loading register 5 with the address of the input file CDIB, an
operation that takes place at location SORTIN. As long as register 5 remains
unchanged, CD$ISUCC and CDS$IEOF will reflect the condition of file INPUT.

When you open your input file (line 39), you associate it with the RIB named
SORTRIB. Lines 40 and 41 contain a pair of instructions that recur
throughout the program. The test under mask (TM) instruction at line 40
tests the successful-operation indicator CDSISUCC that is set during the
preceding OPEN operation. The branch on zero (BZ) instruction at line 41
causes a branch to routine IOERROR only if the CD$ISUCC indicator has
been set off (the |/O operation has failed for some reason); otherwise, the
operation has been successful and control passes to the next sequential
instruction. You code these TM and BZ instructions after each data
management macro in your program.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 9-17
SORT/MERGE

Line

Number

42—48

49—-50

52—59

60—62

65—72

74—78

82—83

84

85—91

92

93—96

Explanation

With the file open, you can read the input file by designating the DMINP
imperative macro (line 43). Because you plan to read many records and you
will need to repeat this instruction, you label it GETREC, giving yourself a
place to return for reading subsequent records. Data management
automatically loads the first data record address into register 2 when you
specify IORG=(2) on the RIB macro. Because sort/merge expects the
address of the record being released to it to be in register 1, you must load
register 1 with the record address (in this case, the work area INOUTBUF).
In this example, a load address (LA) instruction is used (line 48).

These instructions release the record to the sort and get the next record,
until the end of the input file is reached.

When the last record is read, the CDIB end-of-file indicator CD$IEOF is set
on. The TM and BO instructions at lines 44—45, which before have passed
control to the next instruction, now cause a branch to the routine beginning
at EOF. The end-of-file routine closes the input data file and tells the sort
that it has reached end-of-file (MR$SRT).

This is the sort output routine. You load register 5 with the address of the
OUTPUT file CDIB (line 61). This causes the bit indicator CD$ISUCC to
reflect the condition of the file QUTPUT. Line 62 opens the output file.

This routine returns each record from sort/merge, writes the record, and
requests the next record.

The end-of-sort routine closes the output file and notifies job control that
the end-of-job condition was reached.

The IOERROR routine is the error handling routine for data management.

The LTORG assembler control directive defines all literals at this point in the
program,

The EQU statement indicates that the address of the current location
counter is to be used as the beginning of the main storage work area you
designated in the STOR parameter (line 27). The END assembler directive
concludes your source program and the /* is the job control delimiter
statement indicating the end-of-data (your source program) to the
assembler.

This is the LINK job control procedure call, which generates a load module
called SRTEXM from the object module (called SRTEXMPL).

Assigns the input file named INPUT to volume DSP0O28 on device 50‘. The
INIT parameter on line 100 indicates that you want to start writing at the
beginning of the file, overlaying its previous contents.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 9-18
SORT/MERGE

Line
Number

101—105

106

107

108

Explanation

Assigns the disk sort work file with LFD name DMO1 to volume DSP028 on
device 50. The EXT statement specifies that your work file is accessed via
the system address technique (ST), allocates contiguous space for the extent
(C), specifies that space must be allocated in cylinders (CYL), and allocates 5
cylinders for the work file.

Executes your program named SRTEXM, which is found in the YSRUN
library.

Marks the end of the job stream.

Marks the end of reader operations.

PART 4. SYSTEM/3, 32, and 34
COMPATIBLE SORT

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 10-1
SORT/MERGE

10. System/3, 32, and 34 Compatible
Sort Basic Concepts

10.1. GENERAL

The SORT3 program, as introduced in Part 1, assists you in sorting and merging your data
files with only a minimum amount of user program intervention. Simplicity is the word
which best describes the use of this program because, basically, it does all the work for
you. It reads your data files, selectively sorts and merges the data according to your
specifications, and then writes the data to your output file. You do not have to concern
yourself with opening and closing files, supplying read and write routines, passing data to
the sort program or retrieving sorted data for the output. Your responsibility is to provide
the data files to be sorted, and to prepare the control stream necessary to define the sort
and execute the program. In relation to the entire job, your program responsibility, as
shown in Figure 10—1, is involved only with the input step of running SORT3. Details for
preparing both control statements and sort specifications are covered in Section 11.

INPUT EXECUTION OUTPUT
e O N, — /W\
CONTROL
> PERVISOR
STATEMENTS Su S0
SORT \/
SPECIFICATIONS N
soms || s
PROG FILE
INPUT >
FILES]
FOR
SORTING '
WORK
FILES

Figure 10—1. Functional Divisions of a SORT3 Job

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 10-2
SORT/MERGE

10.2. EXECUTION OF THE SORT3 PROGRAM

Execution of the SORT3 program takes place after the system input device has read your
control stream. In the discussion of program execution, take note of the interplay of
activities between your control stream input, the system, and the SORT3 program. The
entire sort/merge operation centers around the elements supplied by both you and
SORTS3.

Program execution begins when the EXEC statement (JCL) or RUN statement (OCL) is read
from the control stream you submitted to the system for running your job. This statement
signals the system to load the system driver program (Figure 10—2) for SORT3 into main
storage. The system driver program provides the interface between the system and the
remaining SORT3 program modules. The first action taken by the driver program is to call
into main storage the sort modules needed to initialize the sort process. The loading of the
modules signals the sort program to accept your sort specifications and execute the first
phase of the program: initialization and assignment. As explained in Section 1, the sort
program is modular and the various modules used in the sort process reside in the system
load library file (§Y$LOD) on the SYSRES volume. When one phase is completed, it signals
the driver program to load the next group of modules into main storage and execute the
next phase in the sort process.

10.3. SOFTWARE FRAMEWORK OF SORT3 PROGRAM

SORT3 consists of four operational phases that are normally executed in the following
sequence;

® Phase O — Sort initialization and assignment

8 Phase 1 — Data input read and internal sort

B Phase 2 — Preliminary merge

8 Phase 3 — Final merge and output

In cases where the input file is partially sequenced or is small enough so one final merge
produces the required output sequence, SORT3 bypasses phase 2 and proceeds to phase

3. where the records are read into main storage, merged, and written to the output file.
Figure 10—3 shows the operational phases of the SORT3 program.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

10-3

MAIN STORAGE

S/M MODULE

CALL

SYSRES
———————

TO AUXILIARY STORAGE

WORK AREA
FOR SORT CONTROL
FIELD COMPARISONS

Figure 10—2. Execution of SORT3 Program

SYSTEM
DRIVER PROGRAM YSSLOD
(SORT3)
————
SORT/MERGE
MODULES LOAD S/M
MODULE
WORK FILES _/
TRANSFER
RECORDS
o
SORTED
RECORDS ,
I/0 BUFFER AREA m
READ [N A
INPUT
FILE
WRITE OUTPUT
FILE

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

10-4

INPUT
INPUT ®
FILE FILE

INPUT
FILE

UNORDERED INPUT DATA

INTER-
MEDIATE
WORK

INTER-
MEDIATE

WORK
FILE

SEQUENCED DATA STRINGS

LEGEND:

e Qperational flow

Data flow

Sort/merge operational
phases

Figure 10—3.

RAW DATA INPUT

START

FINAL SEQUENCED OUTPUT

OUTPUT
FILE

EOJ

SORT3 Operational Phases

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 10-5
SORT/MERGE

10.3.1. Phase O: Sort Initialization and Assignment

Phase O (Figure 10—4) initializes the sort process by reading sort control statements from
the job control stream. It validates both the content and syntax of these statements and
then passes control to an assignment segment of the phase. By examining your
parameters, the assignment segment determines the type of sort function to be performed.
In addition, it builds a parameter table, sets up compare routines, and structures the
SORT3 processor to perform only the sort functions you have specified. When the
assignment segment completes its task, phase O passes control to phase 1.

MAIN STORAGE

PHASE 0
S/M MODULE
SYSRES CALL
SYSTEM DRIVER
PROGRAM
PHASE 0
L,/ PHASE 0
$/M MODULES INITIALIZATION
SEGMENT

SORT

SPECIFICATIONS
[} READS SORT SPECIFICATIONS

FIELD DESCRIPTION

[} VALIDATES CONTENTS AND

RECORD TYPE SYNTAX OF SPECIFICATIONS

HEADER

PHASE O

ASSIGNMENT
SEGMENT

[EXAMINES AND EVALUATES
SORT SPECIFICATIONS

= BUILDS SORT PARAMETER
TABLE

L] STRUCTURES SORT3
PROCESSOR

L SETS UP COMPARE ROUTINES

[PASSES CONTROL TO
PHASE 1

PASSES CONTROL TO OPERATIONAL PHASE 1

Figure 10—4. Operational Phase 0

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 10-6
SORT/MERGE

10.3.2. Phase 1: Data Input and Internal Sort

When phase 1 receives control, it initiates an input routine that opens your input files,
validates file labels, and reads the data records one at a time. (The location of your data
files is determined by the device assignment sets in your control stream.) Before a record
is passed to the internal sort routine of this phase for initial sorting, it is checked against
the criteria of your sort specifications to determine whether it is to be included in the sort.
If the record is to be included, phase 1 reformats the record into a sort record (according to
your specifications) and passes the sort record to the internal sort routine. (The details of
sort record handling are described in 10.4.)

Internal sorting is performed in main storage and produces strings of sequenced data that
are written as intermediate files to auxiliary storage devices (tape or disk). If the number of
data strings produced during the internal sort are few enough to be merged in one final
merge, phase 2, the preliminary merge is bypassed and control passes to phase 3 for final
merging and output to the output file. Otherwise, strings of sequenced data must be
continuously merged into larger and larger data strings until only one final merge
operation is required to produce an output file sequenced in the order you specified. Figure
10—5 illustrates data flow from the input file through internal sort processing.

When the internal sort is completed, control passes to either phase 2 or phase 3.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

SORT/MERGE

10-7

USER FILES

=
B

INPUT
FILE

e — e e

INPUT
RECORDS

INTERMEDIATE STORAGE

)

SEQUENCED

STRINGS OF
SORTED
RECORDS

MAIN STORAGE

OPERATIONAL PHASE 1

INPUT READ SEGMENT

INITIATES INPUT ROUTINE

—_ OPENS INPUT FILES
— VALIDATES FILE LABELS
— READS INPUT RECORDS

BUILDS SORT RECORDS FOR
THOSE RECORDS TO BE SORTED
{FORMATTED ACCORDING TO
SEQUENCE SPECIFICATION)

- -1

1/0 BUFFER AREA

v
INTERNAL SORT SEGMENT

SORTS RECORDS AS SETUP
BY ASSIGNMENT SEGMENT
OF PHASE 0

- ADDRESS OUT (ADDROUT)
SORT

— TAG ALONG SORT

— SUMMARY TAG ALONG
SORT

GENERATES STRINGS OF
SORTED {SEQUENCED) DATA

PASSES CONTROL TO NEXT
OPERATIONAL PHASE

3

Figure 10—5. Operational Phase 1

PASSES CONTROL TO OPERATIONAL PHASE 2

PHASE 1 LOAD

MODULES

SYSRES

N—

STORED DATA
STRINGS

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

10-8

10.3.3. Phase 2: Preliminary Merge

When phase 2 receives control, the module executed for it continuously merges data
strings produced in phase 1. These merge passes occur between auxiliary storage devices,
each successive merge producing longer and longer sequenced data strings. When only
one final merge pass is needed to create a single sequenced string (final output string),
phase 2 passes control to phase 3. Figure 10—6 shows long sequenced data strings ready
to be given to the final merge phase as a result of phase 2 operations.

INTERMEDIATE STORAGE

>

FILES

N

WORK]

MERGED
STRINGS

e e

A2

MAIN STORAGE

-]

OPERATIONAL PHASE 2

CONTINUOUSLY MERGES
RECORDS SORTED BY PHASE 1
INTO LONG SEQUENCED
STRINGS

|

= =

t

SORT WORK AREA

PHASE 2 LOAD
MODULES

SYSRES

PASSES CONTROL OPERATIONAL PHASE 3

Figure 10—6. Operational Phase 2

__,_/

~_

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 10-9
SORT/MERGE

. 10.3.4. Phase 3: Final Merge and Output

The final merge phase merges all data strings written to the work files into one sequenced
string and passes it to the sort output routine. The output routine opens your output file,
writes the output data, closes the output file, terminates the sort, and returns control to
the system. Figure 10—7 shows the data flow during phase 3 execution.

MAIN STORAGE

PHASE 3
LOAD MODULES

/’\ 7 OPERATIONAL PHASE 3 - - —
44 ! | - | SYSRES
|

L——

$YSLOD

WORK - FINAL MERGE
FILES _/

| |
N | S

1/0 BUFFER

I SORT OUTPUT OUTPUT
. FILE

N—

Y
SUPERVISOR

OUTPUT

FILE

\

/

Figure 10—7. Operational Phase 3

UP-8342 Rev. 3 SPERRY UNIVAC CS/3 10-10
SORT/MERGE

10.4. RECORD HANDLING DURING SORT

When your input records are read during phase 1 execution of the sort, SORT3 checks
each record to see if it is to be accepted or rejected on the basis of your sort
specifications. SORT3 builds a sort work record for each input record accepted into the
sort. The sort work record is reformatted to increase the efficiency of the sort process.
(SORT3 does not change the format of the actual input record.) In the reconstructed
format, control or key fields are placed ahead of data fields unless, of course, the control
fields are to be dropped during the sort.

INPUT RECORD
T TR
FORMAT CONTROL DATA DATA CONTROL
SORT WORK RECORD
FORMAT CONTROL CONTROL DATA DATA

The placement of specific control fields and data fields within the sort work record is
defined by the parameters of your record type and field description specifications. For
example, assume you have identified positions 27 through 30 of your input records as a
primary control field, and positions 1 through 5 as a secondary control field. Positions 6
through 26 contain data. Your input record would appear as:

1 56 26 27 30
| N -]
[| M 'I
INPUT
RECORD Control Field DATA Control Field
FORMAT

When SORT3 accepts the input record for sorting, it repositions the record fields according
to the sequence you have specified. The primary control field appears first, the secondary
field next, and so on until all the control fields are properly positioned and followed by the
data fields. The sort work record would appear as:

[(273045 (1-5 910 (6—26) 30
[| — —>— i
SORT
WORK ‘ _
RECORD Control Field [Control Field DATA
FORMAT .

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 10-11
SORT/MERGE

. The sort work record is sent for initial (internal) sorting after it is constructed. SORT3 uses
the control fields to sequence the records in either ascending or descending order
according to your sort specifications. When all the records are properly sequenced, SORT3
writes the records to your output file. The output record format is the same as the sort
work record format unless SORT3 is instructed to drop control fields during the sort.

10.5. CHARACTERISTICS OF SORTS PERFORMED BY SORT3 PROGRAM
There are three types of sort jobs performed by SORT3: addrout (address out), tag-alone
(data fields can tag along with control fields in the sorted records), and summary tag-along

(data is summarized in the sorted records).

The output from an addrout sort job (Figure 10—8) consists of 10-byte binary relative
record numbers of the records in the input file.

NOTE:

An addrout sort can be used to process disk files only.

MAJOR MINOR

RECORD KEY — KEY
ADDRESS FIELD FIELD

t b

. 540 33 001654 540 33 001654 l 540
360 04 002992 001 10 004570 I 001

[180 06 007959 r180 06 007959 l 180
001 10 004570 360 04 002992 360

INPUT FILE WORK FILE OUTPUT FILE

(UNSORTED REOCRDS) (WORK RECORDS SORTED (10-BYTE ADDRESS RECORDS

ON MAJOR KEY FIELD) SORTED ON MAJOR KEY FIELD)

Figure 10—8. Example of Address Out (ADDROUT) Sort

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 10-12
SORT/MERGE

The output for a tag-along sort (Figure 10—9) is a file of sorted records containing the

following:
1. Control fields and data
2. Control fields only

3. Data only

RECORD MAJOR KEY MINOR KEY

ADDRESS I FIELD l— FIELD

[540 33 001654
[360 04 002992
[180 06 007959

001 10 004570

INPUT FILE
(UNSORTED RECORDS)

WORK FILE OUTPUT FILE
(SORTED ON MAJOR KEY FIELD) (SORTED RECORDS)
[540 33 001654 I 33 001654
rom 10 004570 l 10 004570
[180 06 007959 [06 007959
360 04 002992 04 002992
—
(CONTROL FIELD AND DATA)
Fso 06 007959 l 001654
[001 10 004570 [004570
l 360 04 002992 roo7959
540 33 001654 002992
-
DATA
[540 33 001654 ras
[001 10 004570 [10
J 180 06 007959 l 06
360 04 002992 04
e

CONTROL FIELD

Figure 10—9. Example of a Tag-Along Sort

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 10-13
SORT/MERGE

The output for a summary tag-along is a file of sorted records containing the following:
1. Control fields, data fields, and summary data

2. Control fields only

3. Data fields and summary data

4. Data fields only

5. Summary data fields only

6. Control fields and summary data fields

10.6. RUNNING SORT3 FROM A WORKSTATION

0S/3 provides you with the capability of running sort jobs that use the SORT3 program
interactively from a workstation. The procedures used to build and prefile the control
stream for a SORT3 job closely parallel those applicable to independent sort/merge. (See
3.5)

If a job has been initiated from a workstation, all messages will be displayed on the
workstation rather than the system console. This includes those messages that you have
specified to be printed on the system printer. (See 11.3.3.1.)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-1
SORT/MERGE

11. System/3, 32, and 34 Compatible -
Sort Requirements You Supply

11.1. GENERAL

To run a SORT3 program, you are responsible for:
® |dentifying your job to the system

® Assigning the devices needed for the sort

® |nitiating execution of the sort program

m Defining the criteria for the sort

The first three items in our list of responsibilities are achieved through the use of control
statements in the job stream for SORT3. The last item is accomplished by a set of sort
specifications also included in the job stream. The detail involved in the preparation of the
control statements and sort specifications depends upon the complexity of the sort, the
system configuration in which you run the job and the size and format of your input files,
to name a few.

Preparation of the sort specifications will probably be the largest task in setting up your
job. As you know, these specifications define the criterion governing performance of the
sort. However, SORT3 simplifies this requirement by accepting the same sort
specifications that you used in the System/3, 32, or 34 environment, namely, the header,
record type, and field description sequence specifications. The format for these
specifications remains the same whether you use OS/3 job control or System/3 OCL to
run SORT3. Your responsibility is to prepare the sort specifications (as described in 11.3)
and include them as part of your control stream input.

The same does not hold true for the control statements needed to run your job. If you use
0S/3 job control, the control statements in your control stream must conform to the 0S/3
JCL conventions as defined in the job control user guide, UP-8065 (current version). If you
use the OCL processor to run your job, the control statements appearing in your control
stream must conform to the System/3 OCL conventions defined in the System/3 to OCL
transition user guide, UP-8379 (current version). The advantage of having both methods is
that you can use your existing control streams. For example, the user who has a control
stream for running his sort job in a System/3, 32, or 34 environment can run that same
control stream in an 0OS/3 environment by use of the OCL processor. For those using
0S/3 job control, prepare your control statements and submit your job as you would for
any other 0OS/3 job.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 11-2
SORT/MERGE

Typical job control streams for executing SORT3 under OS/3 JCL and the OCL processor

are shown in Figures 11—1 and 11—2, respectively.

These job control streams can also be created and executed from a workstation. (See 3.5.)

TERMINATES CARD
READER OPERATION

THE SORT/MERGE
CONTROL STATEMENTS
PRECEDED AND FOLLOWED
BY DATA SENTINELS.

// FIN

/&
MARKS THE END
OF JOB CONTROL STREAM

MARKS THE END OF
SORT SPECIFICATIONS.

/*

program control

sort statements CONSIST OF ONE HEADER SPECIFICATION,
(SEE 11.33)) RECORD TYPE SPECIFICATIONS (WHEN REQUIRED),
/s FIELD DESCRIPTION SPECIFICATIONS.
MARKS THE BEGINNING OF
// EXEC SORT3 SORT SPECIFICATIONS
b

sequence

// DVC — 7/ LFD

EXECUTES THE SORT3 PROGRAM.
ALWAYS REQUIRED.

DVC, VOL, LBL (FOR DISK) AND LFD

THE DEVICE
ASSIGNMENT SET

// DVC — // LFD
sequence

JOB CONTROL STATEMENTS REQUIRED TO
ASSIGN THE OUTPUT FILE. EXT STATEMENT
IS ALSO NEEDED TO ALLOCATE A NEW DISK
FILE. (SEE 11.2.2)

// DVC — // LFD
sequence

DVC, VOL, LBL, (FOR DISK) AND LFD
JOB CONTROL STATEMENTS REQUIRED TO
ASSIGN THE INPUT FILE. (SEE 11.2.2))

DEVICE ASSIGNMENT SET FOR THE PRINTER.

// JOB name

ALWAYS REQUIRED. (See 11.2.2))

JOB STATEMENT IS ALWAYS REQUIRED TO INITIATE
THE JOB AND ASSIGN MAIN STORAGE.

Figure 11—1. Typial Job Control Stream for Executing SORT3 under 0S/3 Job Control/

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-3
SORT/MERGE

MARKS END OF JOB

MARKS END OF CONTROL STREAM

(field description
specifications)

ALWAYS REQUIRED.
DEFINES OUTPUT FILE FORMAT.

SORT CONTROL STATEMENTS

record type
specifications REQUIRED WHEN SORT INCLUDES RECORDS HAVING
DIFFERENT FORMATS OR ONLY SELECTIVE RECORDS
ARE SORTED

OOOCHSORTA

ONE ALWAYS REQUIRED. DEFINES THE SORT

// FILE NAME-OUTPUT. ALWAYS REQUIRED. EXECUTES THE SORT3 PROGRAM

DEVICE ASSIGNMENT ALWAYS REQUIRED. IDENTIFIES OUTPUT FILE

/7 -WORK.
SET FILE NAME-WO

OPTIONAL. IDENTIFIES WORK FILE

// FILE NAME-INPUT.

ALWAYS REQUIRED. IDENTIFIES INPUT FILE

// LOAD $DSORT,unit

ALWAYS REQUIRED. IDENTIFIES PROGRAM TO BE RUN.

Figure 11—2. Typical Job Control Stream for Executing SORT3 under OS/3 Operational Control
Language (OCL) Processor

11.2. PREPARING JOB CONTROL STATEMENTS FOR YOUR SORT

The job control statements described in this section are used to direct the system in
handling your SORTS3 job in an OS/3 environment. They are responsible for:

s |dentifying and scheduling your job

m Assigning system resources for your job

m Defining your input, work, and output files

m |pitiating the SORT3 program

® Ending the job after the sort is completed

If you are running your sort under OCL processor, refer to the System/3 to 0S/3

transition user guide, UP-8379 (current version), for information concerning the format
and use of the OCL control statements.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-4
SORT/MERGE

11.2.1. ldentifying and Scheduling Your Job

The first statement in the job stream is the JOB statement. It assigns a unique name to
your job so that the system can distinguish it from other jobs being processed concurrently
with your job. The JOB statement also specifies the minimum and maximum main storage
requirements (in bytes) for the job and the priority of the job. The system will not schedule
your job or allocate the required system resources to it if the JOB statement is omitted.
The coding of a typical JOB statement may appear as:

// JOB PYRLSORT,,7000,9000

In the coding example of the JOB statement, PYRLSORT is the 8-character alphanumeric
name assigned to your job. The double comma indicates that you have elected not to
assign a priority level to the job. The system in this case assumes a normal priority. The
hexadecimal values 7000 and 9000 represent the minimum number of main storage bytes
needed to execute the largest job step of your job, and the maximum number of main
storage bytes requested (not required) to execute the largest job step of this job.

11.2.2. Assigning Devices to Your Job

The next series of job control statements that appear in the job stream are the device
assignment sets. Each device assignment set consists of as few as two job control
statements (DVC and LFD), or as many as five job control statements (DVC, VOL, EXT, LBL,
and LFD). The device assignment sets are used for the allocation of peripheral devices
needed for printing messages, inputting data, handling data during processing, and
collecting output data. They also identify the device type used, disk or tape volume
mounted, and the files to be processed. Each device assignment set begins with a DVC
statement that specifies the logical unit number for the device type upon which a
particular file is mounted and ends with an LFD statement that associates a logical file
name with that device. Detailed information about the device assignment statements and
a list of specific /O device numbers are provided in the job control user guide, UP-8065
(current version).

The first device that must be assigned for the sort job is the printer. SORT3 requires this
device to print messages for operator action or information. The coding used to assign the
printer may appear as:

// DVC 20 // LFD PRNTR

In this example, the printer to be assigned to your job is logical device 20. It must be
assigned the system standard name PRNTR in the LFD statement.

Following the printer assignment set are the assignment sets for the input, work, and
output files. The pattern of each set is similar. That is, the specifications for each file
identify a device, a file on a volume, and a logical file name.

For example:
// DVC 65 // VOL SYS200 // LBL PAYROLL // LFD INPUT

// DVC 66 // VOL SCR200 // LBL $SCR1 // LFD DMO1
// DVC 65 // VOL SYS200 // EXT SQ,C,CYL,5 // LBL EXEMPT // LFD OUTPUT

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-5
SORT/MERGE

In this example, the first DVC statement assigns device number 65 to your input file
named PAYROLL. The second DVC statement assigns device 66 to a temporary work or
sort scratch file named $SCR1. The third DVC statement also assigns device number 65 to
your output file EXEMPT. Unless your input files are very low volume, it is advisable to
assign one device for each sort work file and another device for your input and output
files. The sort operates more efficiently when one work file is assigned per device.

The VOL statements uniquely identify the volumes mounted on the devices you have
assigned. The input and output files mounted on device 65 are on volume SYS200 and the
work file is on volume SCR200.

By specifying the EXT job control statement in a device assignment set, you can provide
disk space for sort work files, designate information needed to create new files, or extend
existing disk files. Each EXT statement applies to the volume specified on the immediately
preceding VOL statement. In the example, the EXT statement is specified for the output
file to be created.

The LBL statements provide data management with the file identifier used to locate your
file on the specified volume. Only one LBL statement is allowed per device assignment set.
In the coding example, PAYROLL is the file identifier for the input file, $SCR1 is the
identifier for the work file, and the EXEMPT is the identifier for the output file.

To associate the file information in your job control stream with the data management file
definition, you must assign a logical or internal file name to each file. Logical file names
are assigned via the LFD statement. For the SORT3 program, you must use the system
standard names INPUT or INPUT1 through INPUT8 for the input file and OUTPUT for the
output file. (You may assign a maximum of eight input files to your job providing they all
contain the same size records.) The LFD statements for sort work files must specify the
system standard names DMO1 through DMO3 or $SCR1 through $SCR3, in consecutive
order starting with DMO1 or $SCR1. Therefore, the LFD statement for the work file in the
coding example is DMO1.

Although the example shown uses disk devices exclusively for input, work, and output
files, you are not limited to disk for these files. In addition to disk, input files may reside on
card, magnetic tape, and diskette; work files can be on magnetic tape; and output files can
be written to magnetic tape and diskette. (SORT3 supports the following types of input
files: punch card, magnetic tape, diskettes, nonindexed and sequential nonindexed disk,
and IRAM. Output files supported by SORT3 are magnetic tape, diskette, nonindexed and
sequential nonindexed disk, and IRAM. SORT3 does not support ISAM files.) If the input
file resides on a device other than disk and the output file is written to a disk file, then the
output file is an IRAM file. If both the input file and the output file are on disk, the output
file is the same type as the input file.

11.2.3. Initiating the Execution of the SORT3 Program

The // EXEC job control statement in your job control stream initiates the execution of the
SORT3 program. When processed, the EXEC statement causes the root phase of the
SORT3 program to be loaded from the system load library (SYSLOD) into the main storage.
The // EXEC statement immediately follows the device assignment sets in the job control
stream. The format of the // EXEC statement for SORT3 is:

// EXEC SORT3

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-6
SORT/MERGE

11.2.4. Marking the End of Your Job

So far we have provided the system with all the control information and control data
needed to execute your job. Now you must mark the end of your job so that job control
does not confuse it with other jobs in the control stream. (This could occur when the
system finishes executing your job and queries job control for more input.) To mark the
end of job, place /$ job control statement at the end of the sort specifications in your job
contro!l stream.

If no other jobs follow your job in the control stream, you'll want to terminate the card

reader operation. This is accomplished by including the // FIN control statement as the
last statement in your job control stream.

11.3. SORT CONTROL SPECIFICATIONS FOR YOUR JOB

To determine which modules to include in the sort, SORT3 must be instructed how to
conduct the sort. Directing sort execution is accomplished through the use of sort
specifications. The specifications convey:

8 what type of sort to perform;

B which record types to select for sorting;

u how to format the sorted records;

B how to format the output file; and

B what information (if any) is to be printed for user/operator use. The responsibility for
supplying the specifications to SORT3 falls upon you, the user.

The media used to present the specifications to the SORT3 program is punched cards;
however, job streams filed (via the general editor or job control language) in YJCS can
also be used. The SORT3 program accepts the specifications as control data and uses the
information presented in their parameter fields as the criteria from which it structures the
execution of its modules to sort the records of your file. The SORT3 specifications are:

® Header

= Record type

. Field description

The SORT3 specifications always follow the // EXEC statement in your control stream. A
start-of-data sentinel (/$) marks the beginning of the specifications, and an end-of-data

sentinel (/*) marks the end of the specifications in the control stream.

The three SORT3 specifications used to describe the sort and the information they convey
to the SORT3 program are summarized in Table 11—1. .

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-7
SORT/MERGE

Table 11—1. SORT3 Specifications, Type and Function

Specification Type Purpose
Header L Defines the type of sort conducted
= Defines format of the sorted file
L] Defines the system information printed
Record type n Defines the record types to be included or omitted from the sort
Field description] Defines format of the output records

11.3.1. Determining the Sort Specifications Needed

The number of sort specifications that must appear in your job control stream is based
upon the answer to two questions concerning your job.

1. Are all the records contained in your input file to be sorted?
2. Do all the records to be sorted have the same format?

If the answer to both questions is yes, you can bypass the normal specifiation requirement
of header, record type, and field description, and provide only the header and field
description specifications. The reason that SORT3 does not have to be selective in record
processing is because all the records are included in the sort and they are all of the same
type. (SORT3 considers the job to be an implied, include-all record type sort.) On the other
hand, SORT3 must be selective in its record processing whenever the answer to either or
both questions is no. Under these circumstances, you must identify the specific record
types you want included in or omitted from the sort. Therefore, a record type specification
must be included for each record type involved in the sort. The general rules for
determining how to include sort specifications in your job control stream are:

1. One header specification is required for every sort job and it is always the first
specification in the sequence.

2. A record type specification is required whenever the sort is not to include every
record in your file or the records selected for the sort have different formats. Under
these circumstances, a record type specification is required for each type of record.

3. Record type specifications are paired with field description specifications. A field
description specification must be provided for each record type specification appearing
in the job control stream.

4. Each field description specification immediately follows its associated record type
specification.

5. The paired record type and field description specifications follow the header
specification in the control stream.

The requirements for providing sort specifications and the sequence in which they must
appear in your job control stream are summarized in Table 11—2.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-8
SORT/MERGE

Table 11—2. Conditions Governing SORT3 Specification Requirements

Record Format Number of Sequence Specifications Required
Records to {Arrange in Order Listed)
Be Sorted

Same for all All 1. Header

records to

be sorted 2. Field description
Not all 1. Header

2. Record type

3. Field description

First Record Type Format:

Several different All or specified 1. Header
formats for the number from the

records to file 2. Record type
be sorted

3. Field description
Second and Each Subsequent Type Format:
1. Record type

2. Field description

11.3.2. Numbering Your Sort Specifications

It is not required that you number the sort specifications appearing in your job control
stream. However, numbering does avoid the possibility of getting the specifications out of
sequence if you should accidentally drop or mix up the card deck containing the
specifications. When used, every sort specification in your job control stream must be
numbered so the SORT3 program can determine if a specification is out of order or if the
entire specification sequence is arranged in a descending order. Because SORT3 is
designed to process sort specifications numbered in ascending sequence, either of the
other two conditions mentioned causes the program to issue a warning message to the
operator and to halt the sort. The sort remains halted until the operator instructs SORT3 to
continue processing or to terminate the job. To avoid this problem, make ceratin that each
sort specification is properly numbered and that the entire sequence of specifications is
arranged in ascending order by those numbers.

What constitutes a properly numbered sort specification? To help understand sort
specification numbering, refer to the SORT3 Specifications form shown in Figure 11—3.
The SORT3 Specification form is designed so each page of the form contains the facilities
for specifying one header specification, one record type specification, and one field
description specification. As you can see, the field columns of the specifications
correspond to the columns of the punched cards used in your control stream. The purpose
of the form is to provide you with an easy method of organizing and defining the sort
specifications applicable to your sort. When you are satisified that the specifications are
properly defined and are arranged in the order you want them processed, transferring
them to the punched cards becomes a simple matter.

SPERRY <= LUNIVAC

SORT 3 SPECIFICATIONS

PROGRAM PROGRAMMER DATE PAGE
FORM EIES EH COMMENTS
rvee M LARGEST |8 A z
SORTA ToTALOF (2 HEE £
g TPUT
SORTR CONTROL § NOT =l S 3;:0:0 2| RESERVED PROGRAM
Header LINE SORTRS FIELDS OF | USED § S12] LENGTH 3 w IDENTIFICATION
NO. SORTT ANY RECORD|S ~12[5 sSlE
TYPE] aia. | Z| >
3 sl 1213 17h18{19 2526}27(2829 32{33{34|35 73 80
P L) S PN P BT P P IR Ly I B S
RECORD |+
e (s FACTOR 1 REL FACTOR 2 (FIELD OR CONSTANT) COMMENTS
<
= Q| [«——————— consTANT —————————»
2 NE PROGRAM
UINE 3|5 LOCATION LT LOCATION {DENTIFICATION
=
no. | |EIS 6r
slzl5 LE o
=|8|S| FROM TO GE || FROM T0
Record 3 sigf7|8|9 1213 16{17 181920 23(24 21(28 39 71 80
Type
L i i1 N [L T SR R L4 41 [P |
" el L 1 L IAI“,L,L,LAAJlIIlA TSN T S W W W't I) SHD VA VAN S W . |
FE| i JEE Y 1. lll L g ALillllllll N T Y B W IS I I S T W T G
1 1 1 l 1 i 1 i 1 1 Y 1 o_p) 1 JI L1 1 | 1 i I 1 i 1 a4 1 i I 1 | JE 1 | S
11 1 l 1 11| 1 | 14 P | 11 J Y S O S SN M S | F U T T S S G | | W I | 11 1 11
Ll - L i Ly T PN R S R R ol 1 I [N S
FORM FORCED]
Tvee P — COMMENTS
w
=
[4L3)
wiet
- ot 3
v HEI- —
S LOCATION zlslo|lz £ 3 RESERVED PROGRAM
LINE £13 HEHERH IDENTIFICATION
No. | |2 oERES e
wiS alglgls S &
&N b 1 I
Z|S| From To c|a|o] - @
Field 3 slej7|sfe 12|13 sfi7)is)ie|2o 22|23 39 13 80
i 1 F A l 1 1 1 i L A 0 NS N W | 1 1 1 l 11 1 1 1 1 i 1 o4) i 1 1 i 1 1 i 1 1 1 1 1 i 4)
11 F Il l 1 i 1 1 l 1 it) 14 1 1 l 1 1 1 1 1 1 11 1 4 L 1 1L 1 1 L1 L 1 1 i -
L 1 F AL I 1 1 1 1 l 1 W} L 1 U | 1 § W U T S 1) A1 ! 1 1 1 1 i ! 1 1 1 1 L 1l 1
t 1 F 1 ‘ 1 i i1 } i ittt 1 4 i j i d i i i 1 i1 { (i L S A i i L JE S | 1 i 1
i1 F 1 J i | I l 1 I S T T T | l § I U W N B | J I T I | § W | O B T T |
. o P Ly PR N G ST NS GO NN T RO S SR PRI T S S doa N T S B U1

Figure 11—3. SORT3 Specifications Form

€ 'A9Y ZHEB-dN

IOHIN/LH0S
€/S0 OVAINN AYY3dS

6-11

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-10
SORT/MERGE

Usually one page is sufficient to define all of the specifications needed to describe the sort
to the SORT3 program. If necessary, specifications can be continued on subsequent pages.
The important thing is to keep the pages arranged in ascending sequence. Therefore, every
page containing specifications for your job must be assigned a 2-digit page number.
Because the page number is applicable to every specification line appearing on the page,
the number is also entered in the Page No. field (columns 1—2) of each specification line.
For example, the first page is number O1; all the specification lines on that page are
preceded with an 01 in columns 1 and 2. Subsequent pages would be numbered 02, 03,
and so on.

The specification lines on each page are also numbered in ascending sequence. A 3-digit
number specified in columns 3—5 (Line No. field} is used to identify each line. Make
certain you define the specifiations in the order in which they are to be procesed by
SORT3. It is suggested that you place a zero in column 5 of the Line No. field or leave this
column of the field blank to allow you the capability of inserting additional or out-of-
sequence specifications. This method of numbering eliminates renumbering existing
specification lines whenever an insertion is required. To illustrate this, suppose you have
used three lines to define a record type and have numbered the lines 010, 011, and 012.
At this point you realize you omitted a line of the record type specification that should
have been defined second in the sequence. Your numbering scheme leaves no room for
insertion; therefore, you are forced to renumber all of the existing specification lines. Had
your specification lines been numbered 010, 020, and 030, inserting the out-of-sequence
specification line could have been accomplished simply by assigning it a number greater in
value than 010 and less than 020. As you can see, any value from 1 to 9 assigned to
column 5 will properly sequence the inserted line. Figure 11—4 illustrated sort
specification page and line numbering. Specification line and page numbering is important
because SORT3 compares the 5-digit number formed by the entries in the Page No. and
Line No. fields as the specifications are read. Improperly sequenced sort specifications will
terminate the job.

One other thing you must be concerned with when numbering sort specifications is the
page and line numbers assigned to the header specification. The header specification must
always be the first sort specification processed in the sequence. Therefore, it is always
defined on page 01 and is given the line number 00O.

11.3.3. Preparing the Sort Specifications

Now that you have determined which sort specifications are required for your job, it is
time to define the specifications in a form recognizable to the SORT3 program: 80-column
card format.

11.3.3.1. Header Specification

The first sort specification that you must prepare is the header specification. This
specification allows you to identify the type of sort you want performed and to identify the
criteria for formatting the output (sorted) file. Figure 11—5 shows the format of the header
specification for each type of sort performed by the SORT3 program. The shaded areas
identify the fields that you must consider when preparing the specifications.

UP-8342 Rev. 3

SPER

RY UNIVAC 0S/3

SORT/MERGE

11-1

SPERRY== LINIVAC

SORT3

SPECIFICATIONS

PROGRAM PROGRAMMER DATE PAGE O\ OF l PAGES
FORM _ BB B COMMENTS
TYPE LARGEST (8 #2112 g
SORTA TOTALOF [HETR E
2(s 7| 1€
SORTR conTROL |5 NOT 51E(S] Recons |3 S| neseaveo PAOGRAM
Header PAGE} LINE SORTRS FIELOS OF | USED HEE R IDENTIFICATION
NO.{ NO SORTT |ANY RECORD(S =|Z|5 S|&
Tyee |® 5|3 2|
vo2fs slelr 1213 17hishe si2ef2r|28f20 32[33[3s[3s a0 n|n 80
oricook 1] .\ . o NP N AV TR S I
RECORD |¥
e |5 FACTOR 1 REL FACTOR 2 (FIELD OR CONSTANT) COMMENTS
<
= £ CONSTANT
pace] 2 NE PROGRAM
o e | 5|2 LOCATION LT LOCATION |DENTIFICATION
vo. |_|EIE o1
s|z|s LE o
S|3|3] From TO | Ge [T| FROM 10
Record 1o2js s|ej7|s|e 1213 w7 sfioj20 2l 2fas 38 (a0 1| 80)
Type
PlLolo - . VRN PR S TSI I B T S L
o101 2 . [F A PN S P NI ST
Q‘ng [S RN TRV SIS N S ST ST EN I N0 BTSSP S R R RN BRSO TR R SR
oloBQ P O S I i T U N R G A N ! T I R SR U U R IV R AR TR
T ook L P SO U A S VR ST AT A SRS S SR R USRS VO S I T TN ST NN S T T SN SV U S G G BT S
FORM FORCEQ
vt P i COMMENTS
&
i
x|
il |
= =]
2 BlEi| __
S| LOCATION =515z £ % RESERVED PROGRAM
PAGE UNE | [£]2 zEgle 23 IDENTIFICATION
8|3 os(2E S
§O.[NO EIN EREREES
£i8 SlaEE 2 &
ZIS| FRoM LI =1l e
Field 7|89 w21z wlirfisfief0 22(28 33]40 n|n 80
PR IR I RS VT N S S SV S SR N O RS) NS G SRR PR L
ol RIS GO S G T 0 N U S U0 ST AT S (N N S S S0 W00 SO SO S FITU S S GS W N S SR S S S SN SR S U AUV S UY
L |F T I R IS S T G S S T S N S G T S0 SNV ST ONE S NU ST ST S S SR v e v e b e
P L e - Lod v v Lo v e v v v by vy I SRS R S I S S A AT SN G AT R
Lo |f e b Ly L P RSN S U N0 S U0 00 WO WA A U0 [N0 U SN T S Y S B W | T SN T N U W U0 T S0 W S S WS W B A RS S S O S
o |F) A T T R AR SR O | - s e L TR
Figure 11—4. Numbering Sort Specifications
FORM _ gl ¥ 2| COMMENTS
T o | otaor |2 e g
< 213
SORTR CoNTROL (3 Nov HH= :ECT;:L 219 neseaveo PROGRAM
Header PAGE| LINE SORTRS FIELDS OF |5 USED Ziel2! Lenerw (B]% IDENTIFICATION
no.| No SORTT |ANY RECORD|S S 5|2
Tvee |B %13 2(¥
123 5|67 1213 171819 25|26 27}28{29 3233|3435 40 n|n 80!
" " el b U I ST S A T PP IS I G N U SN S S S G ST S S AU ST S ST
a. Address out sort (SORTA)
FORM gl %] H COMMENTS
1vee H LARGEST |8 FIE H
SORTA ToTALOF [c|3 & £
SORTR ConTROL {E NoT sig|s 3;‘;‘:% 3! aeseaveD PROGRAM
Header PAGE| LINE SORTRS FIELDS OF |& USED é;g LENGTH o 1DENTIFICATION
NO.| ND. SOATT |ANY RECORD|S SIZE H
Tyee |% zlE|3 E
123 sfe 1213 17 22rfosfes 32{33[3¢f3s a0 2|1 80
" " FEETEES U S S S S W s U e o
b. Tag-along sort (SORTR)
FORM H COMMENTS
rvee H LARGEST g “ 3
TOTALOF (= 2 £
SORTR conTRoL | < :gggg:) 2|S| aeseaveo PROGRAM
Header PAGE| LINE SORTRS FIELDS OF |2 g g =] (DENTIFICATION
NO.| wO. SORTT |ANY RECORD|Z z o|=
. TYPE | “ =1
12f3 s 12|13 3313435 a0 nin 80
. P G A S Y I R S T S RS U U SY RS R

Figure 11—5. Header Specification Formats

C.

Summa

ry sort (SORTRS)

UP-8342 Rev. 3 SPERRY UNIVAC 05/3 11-12
SORT/MERGE

Selecting the type of sort is accomplished by entering one of four sort names into the field
formed by columns 7 through 12 of the specification. Although four sort names are
provided for your selection, only three type sorts are possible: address out (SORTA), tag-
along (SORTR), and tag-along summary (SORTRS). The SORTT entry is provided strictly for
System/3 compatibility and, when specified, produces a tag-along sort the same as the
SORTR entry. SORT3 will not execute if you omit this field from the specification. The sort
type entry must be left-justified in the field.

In addition to telling SORT3 which sort to perform, you must provide control field and
record sequencing information to the program. The control field information (specified in
columns 13—17) tells SORT3 how large a buffer it must provide to accommodate the
control fields used in sorting your input records. You can specify anything up to 256 bytes.
But rather than arbitrarily assigning a value to this field, you can compute the number of
bytes needed by totaling the lengths of the control fields for each record type involved in
the sort. (Control field types are discussed under column 7 of the field description
specification (11.3.3.3). Normal (N) control fields, opposite (O) control fields, and forced (F)
control fields are included in this calculation.) The largest total is the value entered in the
field. For example, three record types are described for your sort. The total length of the
control fields for the first record type is 10 bytes; the total length for the second reocrd
type is 12, and the total for the third record type is 8. A buffer size of 12 bytes can
accommodate all three, so this is the value you would specify in columns 13—17. The
entry must be right-justified in the field.

Record sequencing refers to how the SORT3 program sequences the records in the sorted
output file. You can specify either ascending or descending by entering an A or D,
respectively, in column 18.

With the exception of the Output Record Length field (columns 29—32), the remaining
fields of the header specification need only be specified if you do not want the program’s
standard default options. For example, SORT3 uses a standard collating sequence for the
sort. If you want to specify an alternate sequence, you must specify the character S in
column 26. Of course, you must define characteristics of the alternate collation. This
requires you to prepare ALTSEQ statements and place them immediately after the header
specification in your job control stream. (ALTSEQ specifications are described in 11.3.4.)
When you specify an alternate collating sequence, make certain you do not use a packed
(P) or unpacked (U) Factor 1 in the record type specifiation. Otherwise, the proper records
may not be included in or omitted from your output file. The reason is that the ALTSEQ
specifications used to define your alternate collating sequence change the Factor 1 fields.
This change may affect the unit position and sign of an unpacked decimal number or any
one position of a packed decimal number. If it does, the basis of selecting records for the
sort is unpredictable.

The Print Option field (column 27) is also optional. Normally, SORT3 prints {(on the system
printer) and displays (on the system console) sequence specifications, diagnostic
messages, program status messages, action messages, and other system messages. This
is the default case. You can limit or inhibit this service by specifying a 1, 2, or 3 in column
27. A 1 causes only program status messages, action messages, and other system
messages to be printed and displayed. A 2 causes only action messages and other system
messages to be printed and displayed. A 3 causes only other system messages to be
printed and displayed. Note that if a job is initiated from a workstation, messages will be
displayed on the workstation rather than the system console.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-13
SORT/MERGE

If you requested one of the tag-along sorts for your job (SORTR, SORTRS, or SORTT), you
can have SORT3 drop control fields from the sorted output records by entering an X in
column 28. (Control fields are normally dropped when opposite fields or an alternating
collating sequence is specified. In both cases, SORT3 changes the control information
during the sort so it is meaningless as data. If, under these circumstances, you want to
retain the control information in the output record and keep it in a meaningful form, you
must define the control field twice: once as control fields and once as data fields.

- Previously, it was stated that the Output Record Length field (columns 29—32) was a
required field. This is true whenever one of the tag-along sorts is to be performed. The
entry in this field depends on whether control fields are dropped from the sorted output
records (X in column 28). If the control fields are dropped, the length specified includes
only data fields. The calculation is similar to that for columns 13—17; total the length of
the data fields in each record type in the sort. Enter the largest value right-justified in the
field. If control fields are retained in the output records, total the length of the data fields
for each record type in the sort and add the largest value to the value entered in columns
13—17. Enter the sum right-justified into columns 29—32. Under both conditions, the
value entered must not exceed 4096 bytes.

The VERIFY option (column 34) can be used to improve program performance (throughput)
by requesting SORT3 not to verify the data written on the work files during the sort. If this
field is blank, data verification is performed automatically. To inhibit this feature, enter an
N in the field.

Columns 40 through 80 have no effect on program function. They are provided for your
comments and program identification. They can be printed out whenever the Print Option
field (column 27) is specified as O or left blank.

A summary of the field entries for the header specification is provided in Table 11—3.

Table 11—3. Column Summary for Header Specification (Part 1 of 2)

Columns Entries Explanation
1—-2 00 Page number

3—5 000 Header number

6 H Header identification

7—12 SORTA Addrout sort job (disk files only)

SORTR Tag-along sort job

SORTRS Summary tag-along sort job

SORTT Tape sort (for System/3 compatibility only)

13—17 1—256 Longest control field used in sorting the reocrds (right-justified)
18 A Records in sorted file to be in ascending order by control fields
D Records in sorted file to be in descending order by control fields

19—25 Blank Not used

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-14
SORT/MERGE

Table 11—3. Column Summary for Header Specification (Part 2 of 2)

Columns ~ Entries Explanation
26 Blank Use standard OS/3 collating sequence in compare operations.
S Use an alternate collating sequence in compare operations. ALTSEQ statements will define

the collating sequence to be used.

27 O or Print and display:

Blank Sequence specifications
Diagnostic messages
Program-status messages
Action messages

Other system messages

1 Print and display:
Program-status messages
Action messages

Other system messages

2 Print and display action messages and other system messages.
3 Print and display other system messages only.
28 Blank Keep control fields in output records in tag-along sort job.
X Drop control fields from output records in tag-along sort job.
29-32 1-4096 Length of output records in tag-along sort job (right-justified)
33 Blank Not used
34 N Data written on the work file will not be verified.
35-39 Blank Reserved
40-80 Blank or Not used by SORT3. May be used for comments or program identification
any 0S/3
characters

11.3.3.2. Record Type Specification

The next sort specifications you must prepare for your job are the record type
specifications. Record type specifications are used for defining the types of input records
SORT3 is to include in or omit from the sort. Of course, there is no need to prepare record
type specifications if SORT3 does not have to be selective in sorting the records of your
input file. For example, if every record in your input files is to be sorted and the format of
each record is the same, SORT3 does not have to decide which records to include or omit.
You can, therefore, omit the record type specification from your job control stream. To
SORT3, the omitted specifications imply an include-all record condition for your sort. On
the other hand, a sort that includes or excludes specific record types requires you to
identify these record types to the SORT3 program. In this case, you must include a record
type specification for each record type to be sorted. Figure 11-6 shows the format of the
record type specification and the field entries you must consider for each type of sort
performed by SORTS3.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-15
SORT/MERGE

RECOAD |
TVPE
o

FACTOR 1 REL FACTOR 2 (FIELD OR CONSTANT} COMMENTS

£Q CONSTANT

PROGRAM
LOCATION LOCATI
LT 0 oN IDENTIFICATION

FROM To

17 18

Record 1 2|3 5 20

Type

23(24 27|28 39|40 72113 80

—.

| ST PR R

T R S R L1

NS L s a1

1 [T S S R S G i R
Y .O,A,J,J,,L,L ol e JU VP T S
L

TN S S B SR S P

TR A SR TR BRI

Lol Lt

Ll i s Lodoad 1]

f

T S R Ll

LEGEND:

@ Format when comparison involves input record field to a constant.
@ Format when comparison involves two input record fields.

@ Format when comparison involves input record field to a keyword.

Figure 11—6. Record Type Specification Format

Before getting into the specifics of preparing the specification, let's briefly discuss how
SORT3 identifies records. Records are selected or omitted on the basis of a test or
comparison. That is, SORT3 looks at a particlar key field or fields (control and/or data) in
each record of your input file and compares the data in that field to a constant, keyword,
or the data in another field of the same record. (The data you are comparing is the Factor
1 field, and the data you are comparing it against is the Factor 2 field.) The results of the
comparison determine whether the record is selected or omitted from the sort.

What role do you play in this procedure for sorting records? You establish the criteria
upon which SORT3 makes its decisions. For example, the information coded in your record
type specifications:

s defines the length and location of the Factor 1 and Factor 2 fields used in the
comparison;

8 provides the constant if it is used;

® provides the keyword;

m defines how the data contained in the factor fields is to be interpreted during the
comparison;

] defines what the results of the comparison must be; and

® decides whether the record type based on the results of this test is to be included in
or omitted from the sort.

The decision to include or omit the record type defined in the specification is based on
your entry in column 6 (Record Type field). An | in this field tells SORT3 to include in the
sort only those records that meet the comparison requirements set forth in the
specification. An O in column 6 instructs SORT3 to omit those input records that meet the
comparison requirements defined in the specification.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-16
SORT/MERGE

Why have an include an omit capability? Consider a file that contains many different types
of records and you want to include only a few types in the sort. You automatically exclude
all records not wanted by defining only those few types you do want sorted. Now, consider
a time when you want to include all but a few record types in the sort. Rather than
providing a description for each record included in the sort, you can simply describe the
few records you want omitted. The remaining record types are automatically included in
the sort. From this example, you can see the advantages of having both options available.

In normal practice, an omit record description is always followed by a special version on
the include record description referred to as an include all record description. The include-
all description is defined by entering the character | in column 6 and leaving blank the
fields (columns 7—39) of the specification related to describing the record type. This tells
SORT3 to include all record types in the sort not previously defined to be omitted or
included. If you use the include-all version, only one can be specified per job and it must
be the last record type defined for that job.

Because a record type description can extend beyond one line of code on the form, you
must define the relationship of one line to another. Column 7 is used to define this
relationship. A blank field tells SORT3 that this is the first line of code for the record
description. An A entry states that this line of code is a continuation of the preceding line.
(The A represents an AND function.) An O entry defines that the line of code applies to a
different record type than the one described on the preceding line, but the field
descriptions are common to both record types. (The O represents an OR function.)
Comment lines are defined by an asterisk (*) in column 7. Comment lines have no effect
on sort other than being printed if you have specified the Print option on the header
specification.

How should SORT3 interpret the data in the Factor 1 and Factor 2 fields during compare
operations? When these fields contain alphanumeric data, an entry of C, Z, or D must be
entered in column 8 of the specification. The specific entry made depends upon what
portion of the data you want included in the comparison. That is, alphanumeric data
comprises two portions: a zone portion and a digit portion. The Z entry instructs SORT3 to
use only the zone portion of the data. The D entry specifies only the digit portion and the C
entry instructs SORT3 to use both portions. If the Factor 1 and Factor 2 fields contain
numeric data, a P or U character must be specified in column 8. The P entry indicates the
data is packed and the U entry indicates the data is unpacked. Packed numeric data
always contains a sign (positive or negative) and only the digit portion of the data.
Unpacked numeric data also contains a sign but includes both the zone and the digit
portions of the data. As you can see, the data type, and the method of comparison used,
have some influence on the length of the Factor 1 and Factor 2 fields. Table 11—4 lists
the available entries for column 8 and the restrictions each places on the length of the
Factor 1 and Factor 2 fields.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-17
SORT/MERGE

Table 11—4. Column 8 Entries and Their Effect on Factor 1 and 2 Field Lengths

Maximum Allowable
Column Entry Compare Operation Method Length for
Factor 1 and 2 Fields

C Use both zone and digit 256 bytes
portions of the bytes

z Use only the zone portion 1 byte
of the byte

D Use only the digit portion 16 bytes
of the bytes

P Packed numeric data 8 bytes or

15 digits and a sign

u Unpacked numeric data 16 digits

The remaining fields of the specifications pertain to defining the Factor 1 and Factor 2
fields for the sort, defining the conditions for field comparisons, etc.

First, let's discuss setting up the test conditions for the comparison. You have six test
conditions available to use in the comparison between the Factor 1 and Factor 2 fields.
Each condition instructs SORT3 to look for a specific test result from the comparison of
the two fields. The record is selected or rejected based on the results of the comparison.
Columns 17 and 18 are used for defining the results of the comparison. The entries for
this field and the restrictions in their use (where applicable) are given in Table 11—b.

Table 77—5. Test Relationships for Factor 1 and 2 Comparisons

Column 17—18 Entry Test Conducted
EQ Factor 1 field equal to Factor 2 field
NE Factor 1 field not equal to Factor 2 field
LT Factor 1 field less than Factor 2 field*
GT Factor 1 field greater than Factor 2 field*
LE Factor 1 field less than Factor 2 field*
GE Factor 1 field greater than or equal to Factor 2 field*

*These entries are not permitted when the comparison made involves only the zone portions
of the data (Z specified in column 8).

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-18
SORT/MERGE

The time has arrived to discuss the Factor fields. First, let's approach the Factor 1 field
(columns 9-16). SORT3 does not interpret the entry in this field as actual data, but as the
location of the data within your input records. As you can see, the Factor 1 field is
composed of two parts. The first part (columns 9-12) defines the position at which the
data begins in the record. The second part (columns 13-16) defines where the data ends.
The number of positions from one point to the other also represents the length of data.
Technically, the length of the data defined in the Factor 1 field can be any number of bytes
from 1 to 256. In practice, however, this length cannot exceed the length of the records in
the file. In addition, the length specified in the Factor 1 field is restricted by how the data
is interpreted (column 8 entry) and whenever the Factor 2 field defines a constant or
keyword. The allowable field lengths and the restrictions other field specifications place on
this length are defined in Table 11-6.

Table 11—6. Factor 1 Field Length Requirements

Column 8 Entry Maximum Factor 1 Field Length (in bytes)

C 256 When Factor 2 defines a constant, the length defined must not exceed 20.
When Factor 2 defines a keyword, the length must not exceed 6.

z 1

D 16

p* 8 Because the field is packed, it can actually represent 15 decimal digits and a
sign.

u* 16

*Do not use a packed or unpacked Factor 1 field if an alternate collating sequence is specified in the header
specification (S in column 26).

A few rules to keep in mind when coding the Factor 1 field are:

m All entries must be right-justified (the From Location must end in column 12 and the
To Location must end in column 16)

® You need not enter anything in the From Location when a Factor 1 field length of one
byte is defined.

In the brief description of how SORT3 compares the Factor fields, it was stated that the
data defined by the Factor 1 field was compared against a constant, keyword, or the data
in another field of the record. This constant or field location is identified in the Factor 2
field (columns 20-39). Because the Factor 2 field can specify either of two types of
information, you must tell the SORT3 program how to interpret the entry in the Factor 2
field. If a C is entered in column 19, the Factor 2 field contains a constant. If it contains a
field position, enter an F in the column.

When the Factor 2 entry defines a field, only columns 20—27 are used. The length of the
field defined must be the same as that specified for Factor 1. It must also be in the same
record type as Factor 1. The purpose of the From Location and the To Location, and the
rules for coding, are the same as for the Factor 1 field.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3

SORT/MERGE

11-19

All of the columns (20—39) are used when Factor 2 is a constant. However, the rules for
coding your entry depend on whether the constant is a packed or unpacked number, an
alphanumeric constant, a humeric constant, or a signed constant. In general, the constant
must be the same length as the Factor 1 field.

For example, if Factor 1 is a 4-position field, the constant field must take up four positions.
If the constant is the number 6, enter the 6 in column 23, and either leave columns
20—22 blank or fill them with zeros.

If the Factor 1 field contains a packed number, the length of the constant (including the
sign) must be twice the length of the Factor 1 field. The reason is that Factor 1 data is in
packed form, and the constant is in unpacked form. When alphanumeric constants are
specified (column 8 entry is C, Z, or D), the constant must be the same length as the factor
1 field and must always begin in column 20. When numeric constants are specified
(column 8 entry is P, U, or D), they must be right-justified within the field length defined in
Factor 1 (within twice the field length if Factor 1 is a packed number). For example,
assume that Factor 1 defines a 6-position field in the input record, and that Factor 2 is the
numeric constant 456. To right-justify the constant within six positions, put the constant
in columns 23—25. Because leading zeros are not required (to SORT3, blanks and zeros
look the same), columns 20—25 could contain either 000456 or 456 with three leading
blanks.

For signed constants, the last character in the constant must be its sign (+ or —) when
Factor 1 is a packed number. If Factor 1 is an unpacked number, and the constant is a
negative number, the last digit in the constant must be a character that indicates both the
numeric value of the last digit and the negative sign for the entire constant.

The following example shows the entries you make for records that have a packed —1 in
positions 1 and 2 of the record, an unpacked —24 in positions 5 through 8 of the record,
and an unpacked —10 in positions 11 through 16 of the record.

PAGE|

RECORD
TVPE
o)

—

FACTOR 1

RELT

FACTOR 2 (FIELD OR CONSTANT}

COMMENTS

~ CONTINUATION (A/0/°)

LOCATION

EQ
NE
LT

CONSTANT

LOCATION

PROGRAM

T BRI

T S R S

O S Y W T B

UNPACKED-IQ . . .

PR R

Loe a1 d
L

-

-

Ll

L

jors ::E § a 1DENTIFICATION
E §, FROM T0 é: 2| rrom 10
Record 123 s{e|7{s]s 12013 whrehis|2o e 272 33[e0 njn 80
Tyee L _L_‘;l,_(at L ,l J_LI" PR T By SR MED'.L v b JUSENTITITNTS S R A
_TAY 5] L2M UNPACKED-24: PRI DR
L 10” . [RTINL o OO Iy L dtoiodd
-

I S

Lil1

—

ol

‘‘‘‘

.

P

il

bodeded L1

As in the header specification, comments can be written in columns 40 through 80. They
have no effect on program functions, and are printed only if the Print Option is specified in
the header specification.

When the Factor 2 entry defines a keyword, the column 8 entry must be a C and the
column 19 entry must be a K. The permissible Factor 2 entries for a keyword are UDATE,
UDAY, UMONTH, and UYEAR. The Factor 1 field length must be 6 if UDATE is specified,
and the format of the date in the record fieild must be the same as UDATE. If UDAY,
UMONTH, or UYEAR is specified, the Factor 1 field length must be 2.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-20
SORT/MERGE

* The following example shows the entries you make when you are comparing fields with

RECORD |5~
'HV’;E § FACTOR 1 REL FACJOR 2{FIELD OR CONSTANT) COMMENTS
3
z €0 CONSTANT
IPAGE; 2 NE PROGRAN
ATION
no | ume | (3] LocATO) L0CATION IDENTIFICATION
80 Zis s
BEE LE o)
=(3|S| FROM T0 GE fic| FROM 0
Record v2ls sle|rfs|s zfis wfirsfele 2|a 2| 29|10 n|n 80,
Type T T T
da e L LTIKMDATIE L b e e e e i
LBl 0T jGEKUDAY L L R AP R BN R
' x‘; Cl.i9...1eQ U.NDLNP“H;A O S RS A T, vooawadooa v v ey b a0 w s g dat
HI;Q,A_ILL,;_AAEA LY EAR - Lir Lon Llia IO S FENENRI SRR
P P I 4l P ST S I S I T S S S AR U0 S S S A AUV AT ITET UGG
L i " L L PR ST S RE U PU S S S R T U S S 0 S SO T S N S AU AU SV SO SN S AU T N A S WOV U

As in the header specification, comments can be written in columns 40 through 80. They
have no effect on program functions and are printed only if the Print Option is specified in
column 27 of the header specification.

A summary of the field entries for the record type specification is provided in Table 11—7.

Table 11—7. Column Summary for Record Type Specification (Part 1 of 2)

Columns Entries Explanation
1-2 Page number
3-5 Line number (Leave column 5 blank or enter any value to keep the specifications in
ascending order.)
6 | Inciude.
o} Omit.
7 A And (These specifications continue the definition of the record described previously.)
(0] Or (These specifications define a different type of record than the previous one.)
Blank First of a set of | or O record types
* Comment
8 C Use both zone and digit portions of characters.
4 Use only zone portion of 1-character field.
D Use only digit portion of characters.
P Signed packed decimal data
U Signed unpacked decimai data
9-12 1-4096 The input record position in which the Factor 1 field begins (blank if field is only one position
long)
S 132167 |71-4096 The input record position in "which the Factor 1 field ends

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-21
SORT/MERGE

Table 11—7. Column Summary for Record Type Specification (Part 2 of 2)

Columns Entries Explanation
17-18 EQ Factor 1 must equal Factor 2.
NE Factor 1 must not equal Factor 2.
-IT— Factor 1 must be less than Factor 2. B
GT Factor 1 must be greater than Factor 2.
LE Factor 1 must be less than or equal to Factor 2.
GE Factor 1 must be greater than or equal to Factor 2.
19 C Factor 2 is a constant.
F Factor 2 is another field in the same input record.
K Factor 2 is a keyword: UDATE, UDAY, UMONTH, or UYEAR.
20-23 1-4096 The input record position in which the Factor 2 field begins (blank if field is only one position
long)
24-27 1-4096 The input record position in which the Factor 2 field ends
20-39 Any Factor 2 constant
characters
40-80 Any Comments or program identification
characters

11.3.3.3. Field Description Specification

The last sort specification to be prepared is the field description specification. This
specification instructs SORT3 how to format the records in the output file. For address out
sorts (SORTA), the field parameters in each line describe the control fields used to sort
record addresses. For tag-along sorts (SORTR and SORTT) and summary sorts (SORTRS),
the field parameters in each line define the fieilds SORT3 uses to create the output records.
Figure 11—7 shows the format of the field description specification and the fields that must
be considered for each type of sort performed by SORT3. When writing records to a disk file,
SORT3 normally blocks the file by a factor of eight unless this block size exceeds 1024
bytes; in which case, the block size is made as close as possible to 1024 without exceeding
this value. If any record size exceeds 512 bytes, then the output file is unblocked. Records
written to diskette files are always unblocked, and the block size of records written to tape
files is specified by the user.

SPERRY UNIVAC 0S/3
SORT/MERGE

UP-8342 Rev. 3

11-22

FORM FORCED)
wvee B e COMMENTS
— 5
._
S
<
-]
@ =1 <
gl LOCATION Glaly £ % RESERVED PROGRAM
pace LNE | |51 ERiS 22 IDERTIFICATION
NO.| NO. HH Egégg
HH =
HE ZEBZE
=|S| enom To EE
Field 1203 s|ej7{sfs w2hs sfrfisfela 2|n 39)40 12{n 8
i A L MRS | et 4 | TR | b1 1 S S
P I L PSR B D A | L N PR
P I L PRI B R | | L P I
a fF MUV N AR [WA | , L i T
||FF=-' Lo e [N A A A a | [N S E] ' AV S N A
A . L o [N ISP | PR
a. Address out sort (SORTA)
FORM FQRCED
v P s COMMENTS
ey &
=
|5
[<C
A 1
L4 <[z{z P~
al_ LOCATION HEEEE RESERVED PROGHAM
PAGH LNE | |%i3 RS 23 * IDENTIFICATION
No.[MO sl alo3lE U e
i =] =[S o
ia SIR\Z2 2 =
£ HE R
Z|S| From o [¥381° &8
Field v o2fs s|s|7]s]s 18fiaj20 22]23 39]40 n{n
i IF & ! ,‘]..ll‘ P ! U | IR | e L PR
S P - eva gy e b ey Pl e S A R R Ll U S ' N B
o PR 5 1.‘—'£...i)4tl‘..”.“ [N || AT Nl
ca F [INETEND YA ST U W BN U S R HPUOY S0 T N DU S S WA Lo et | L taa T ST
LxxFF%‘ [HY 1\(3);t\\1\\\\11 $ia 1 (I AN N 14 11 Il A D BB
,,,,,,,,,, e |f T ST S I R Laa A L s R) I
2 ¥
F x.‘_<.4) P DRSS L -] — P
b. Tag-along sort (SORTR)
FORM
TYPE F = COMMENTS
F— &
5
S{<
I 5i$
@ <[xi=z =
Sl LOCATION =S8z £ RESERVED PROGRAM
PaGE LINE | [%]2 zIElElS 23 I0ENTIFICATION
vo.| wo | [ZiE o|2|3lE 2 e
@|S S|al=ls S &
bR MEE]
C{S| FRoM 10 2RISl ce
Field I R R EIE w2hs wfirpes| 2|2 30|40 n|n
i S FEN— I | | P " L " v . N
i - NS RN B B U S Lo v (| ey " U S
P VIS SIS I EFOUR NN | NG SR | MR s Ly
TS v e e b loac Ly i S N I T S
T PR VAR S S S N D VRO Bt [T A A | [T A 'l A I
r NN] — 1, R] i i
N Ll | RS R | TS S | P S Ml SR
i Lot | S R SR | R R il PUb 0y i R R RN
I i i N Lo N i R " N i

c. Summary sort (SORTRS)
LEGEND:
Defining normal control fields
Defining opposite control fields
Defining forced control fields

Defining data control fields

@® 0o oo

Defining summary data fields

Figure 11—7. Field Description Specification Formats

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-23
SORT/MERGE

In reviewing the specification formats, note that columns 7—16 must be specified for all
sort jobs. Columns 17—19 are applicable only when forced control fields are used, and
columns 20—22 apply only to summary sorts.

To make certain SORT3 properly interprets the contents of the field description
specification, you must define whether a control field, data field, or comment is being
described in each specification line. Defining the field type is a function of the entry in
column 7 of the specification. Data field descriptions are indicated by a D entered in the
column, comments are indicated by an asterisk (*) in the column, and summary data are
indicated by an S in the column. Control field descriptions are indicated by column entries
of N, O, or F depending on the type of control field described (normal, opposite, or forced).

Data field descriptions are applicable only to the tag-along sorts (SORTR, SORTRS)
performed by SORT3. They define the fields you want SORT3 to include in your sorted
output records. They are not used for defining the fields used in sorting the records. When
your input file contains more than one type of record, it is not necessary that the total
length of data fields defined be the same for all record types, or that all record types
contain the same number of data fields.

The SORT3 program blank-fills short data fields to maintain a uniform length for all data
fields. It is necessary that within each set of included record type and field description
lines, the data field description lines follow the control field description lines in your
control stream. (SORT3, when building work records, requires control records to appear
ahead of data records.)

Do not include data field descriptions in your control stream for address out sorts (SORTA)
because SORT3 will process the description line as a comment. In mentioning comments,
it should be pointed out that comment lines serve no function other than helping you
document the sort. When properly identified (* in column 7), they can be coded anywhere
in the specification. However, it is preferred that they be coded in columns 40—80 to
avoid confusion. Comments are printed only when the Print Option (O or blank in column
27) is specified in the header specification.

Summary data field descriptions (S in column 7) can be defined for all three sort jobs
performed by SORT3. However, the data fields are summarized (added together) only in
the summary tag-along sort (SORTRS). For tag-along sorts (SORTR and SORTT), summary
data fields are processed as normal data fields. For address out sorts (SORTA), the
summary data fields are processed as comments.

It is important, when performing a summary sort, that the summary data fields in the work
and output records of the individual record types be located in the same position on each
record. This is not a consideration for the input records. No more than 24 data fields can
be summarized for each record type included in the sort.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-24
SORT/MERGE

The format for summary fields is defined by the first summary field description
specification processed for an included record type. It is suggested that a summary
specification be specified for each record type included in the sort. The advantage is that
SORTS3 will issue a warning whenever summary fields are not aligned; you can then make
the changes necessary. If summary field specifications are not provided, the data field
specifications should align the data for summarization. If summary specifications are not
provided when a summary tag-along sort (SORTRS) is specified, the output of the job
produced a file consisting of records with unlike control fields. This is due to the fact that
SORT3 eliminates all but one copy of each record having common control fields.

Another consideration when defining summary data fields is the possibility of overflow. To
allow for the possibility of an anticipated overflow condition, you should complete the
overflow field length entry in columns 20—22. These columns are used only by a
summary tag sort to eliminate the possibility of an overflow condition. (An entry in the
overflow field length columns is ignored for forced fields because they are only 1-byte in
length.) The entry made in columns 20—22 effectively increases the length of the
summary data field and should reflect the sum of the summary data field length and the
anticipated overflow length. Entries in columns 20—22 must also be right-justified and
must not exceed the maximum field length determined by your entry in column 8,

To illustrate the coding for columns 20—22, assume you want to summarize an unpacked
field in positions 8—11 of the input record. You know that the output will exceed the 4-
position summary field by 1 position. To allow for the expected overflow; specific an entry
of 5 in column 22,

If packed fields are summarized, columns 20—22 should specify the number of bytes of
packed data. For example, to summarize a packed field in positions 3—6 of the input
record, knowing that the output will exceed the 4-position packed summary field (7
numbers plus sign) by 1 position, specify a 5 in column 22 (9 numbers plus sign).

Normal control field descriptions are used to sort records in the normal sequence as
specified by the sequence field (column 18) in the header specification for the job.

Opposite control field descriptions are also used to sort records. However, they instruct
SORT3 to sequence the records opposite to that specified by the sequence field in the
header specification.

By defining normal and opposite control fields for your job, records can be sorted so some
control fields are in ascending order and other control fields are in descending order.

Force control field descriptions are used to modify the contents of control fields in the
work records constructed for the sort. Forced control field descriptions affect work records
and output records, but not your input records.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-25
SORT/MERGE

When a line of the specification is identified as a forced control field line (F in column 7),
SORT3 looks at columns 9—16 to identify the position of the control field in the input
record, then it checks columns 17—19 to see how the control field is affected. That is, the
entries in columns 17—19 tell sort how to modify the control field when it is placed into
the work record. The column 17 entry specifies which character in the control field
(identified in columns 13—16) SORT3 is to replace. The entry in column 18 gives the
replacement character for the field or, when column 17 is not used, adds a new character
to the control field identified. The column 19 entry shows a continuation in the force field
description (relates the specification to the preceding specification line}. To review the
various conditions under which you may use forced control fields, three examples are
provided as follows:

Example 1:

Example 1 illustrates a conditional force. Assume that each record in the file to be sorted
has a 1-byte control field in record position 10. If the byte contains the charcter R, SORT3
replaces it with the character H before sorting the records. The field description
specification is coded as follows:

FORM

Tyee F

COMMENTS

RESERVED PROGRAM
IDENTIFICATION

LOCATION
PAGE| LINE

NO.| NO.

RECORO CHARACTER

SUBSTITUTE CHARACTER

CONTINUATION
OVERFLOW

FIELD LENGTH

(SORTRS ONLY)

Field 1oafs)

)
]
H
3
=
@
8
~
8
N
8
@
-
=
H
&
=
=
8

T\ |~ TYPE (N/O/F/O/S®)
T [(cizinipun

15
)
=

I A AU B

U R U S S G S TS

s "
s R SR B S SN S e
[N S T S i B U B (
s '

el e e e Ly IO ST T G SO T S OO Y 0 I T S B

ENENENEEERERE

P PR i . " . i A PP TP S T

The SORT3 program constructs a work record for the selected input record.

Input Record Constructed Work Record
Data R Data R Data
I 1-byte control |
field in record 1-byte control field
position 10

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-26
SORT/MERGE
The content of the control field is checked for the character R. If it contains an R, the .

control field content is changed to H in the work record.

Original Work Record Modified Work Record
R Data H Data
Example 2:

Example 2 illustrates an unconditional force. An unconditional force allows you to add
(force) a new character into your output records. This is done without basing the force on
a specific control field of the input record as you would for a conditional force. Therefore,
you do not code columns 9—16 of the specification. However, you must define the
character that is being forced. You define this character in column 18.

The position that the forced character occupies in the output record is determined by the
sequence in which it appears in your control stream. That is, if it is the first control field
specification defined in your control stream, it will be the first control field in the output
record. This is shown in the following coding:

FORM
TYPE

FORCED COMMENTS

RESERVED PROGRAM

LOCATION
IDENTIFICATION

PAGq LINE
NO.| NO.

RECORD CHARACTER
I SUBSTITUTE CHARACTER
CONTINUATION
OVERFLOW
FIELD LENGTH
{SORTRS ONLY)

Field I

40 72{73 B0

=
@
&
&
3
N
3
8

[T | = __TYPE (N/O/F/D/S™)
D = ©zrorum

S S S T SR I R S | I . | T

POV TS H SR VU ST N E S S S AU S A Ul S T S e SRV ETE ST S

Pl R FOl B I T R U R i S AR o S SR R S A

P
.

PRI WO S U S YT VA S0 VAU U0 N VO S T T S M S AT N U W T Y S NP S S S T VSN B WA R Y
Ll

F o+ F OB

P Y YT U YU T Y G T S U 00 A 0 W S S S 0 [N IS IR A AR

ERENENERERERES

NS S R T S Lt 4 4 | I T S S

SPERRY UNIVAC 0S/3 11-27

SORT/MERGE

UP-8342 Rev. 3

When processed, this specification instructs SORT3 to place a percent sign in the first
control field position of the work and output records. All other control fields are positioned
after the percent sign. For example, if the input record format appears as:

The work record constructed from the field specification appears as follows:

Data

Control
Field
A

Data

Control
Field
B

Data

%

Control
Field
A

Control
Field
B

Data

If the forced control field is defined after the field descriptions for A and B, then the
percent sign (%) occupies the third control field position (first undefined control field
available) in the record. The work record constructed from the specification would appear

as:

Control Control
Field Field % Data
A B

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-28
SORT/MERGE

Example 3:

Example 3 illustrates a force-all condition. Force-all is a special form of conditional force
(Example 1) that can only occur when a control field in the input record does not contain a
particular field entry. if, for example, a specific control field in the input record does not
contain a particular character, you can direct SORT3 to change the contents of the control
field in the work record. Force-all specifications usually follow a series of conditional force
specifications. In the specifications shown, SORT3 checks the 1-byte control field in
position 1 to see if it contains the characters A, B, or #. If it does, A is replaced with the
character 2, B is replaced with a 4, and # with a $. If the control field does not contain an
A, B, or # entry, SORT3 places + in the control field.

FORM

vee | COMMENTS

PAOGRAM

RESERVED
IDENTIFICATION

LOCATION
FAGE LINE

NO. NO.

RECORD CHARACTER
OVERFLOW

FIELD LENGTH

{SORTRS ONLY}

=
@
=
8
N
N
2
8
Y
]
N
)
a3
8

N

s =lls
B3
<
;
r
[
},
).

T [N TN [~ TYPE (N/O/F/DS*)
DN IO 10 = zokum

PRV U S U0 W U S SO S SN0 (0 U Y S S G VA O T S S ST NSO S S ST S U ST Y S

EREEEREREREN)

E
|

Note the use of the X in column 19. This shows that each specification is a continuation of
the preceding line.

SORT3 replaces the specified control fields with hexadecimal FF or OO if (depending if
ascending or descending sequence is specified in the header specification):

m the force-all specification did not follow the conditional force specifications; and

m SORT3 cannot locate any of the characters specified in the conditional force
specification.

The following list summarizes the rules for coding the field description specification for
forced control fields:

Defining a Conditional Force Character

— Fill in columns 1—6 as for any control field.

— Put an F in column 7.

— Define the position of the control field in the input record in columns 13—186.
— Enter the character to be replaced in column 17.

— Enter the character it is to be replaced with in column 18.

© UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-29
SORT/MERGE

Defining a Force-All Character

— Fill in columns 1—6 as for any control field.

— Put an F in column 7.

— Enter the character which replaces the control field in column 18.

— Put any character in column 19. (The character in column 19 tells SORT3 that
the line is a continuation of the preceding line.)

— Leave columns 9—17 blank.
NOTE:

If a force-all line is not placed after conditional force and SORT3 does not find the
specified characters in the control field of the input record, then SORT3:

1. replaces the control field character with hex FF (if ascending sequence is specified in
the header); or

2. replaces the control field character with hex 00 (if descending sequence is specified
in the header).

Defining an Unconditional Force Character

— Fill in column 1—6 as for any control field.
— Put an F in column 7.

— Put the character to be forced in column 18.
— Leave columns 9—17 blank.

After defining the type of field being described, you must indicate to SORT3 what portion
of the input record it must use to build and sort work records. This definition is the
function of the entry made in column 8. If the data to be used is alphanumeric, you can
enter the characters C, Z, or D in column 8. A C entry tells SORT3 to use both zone and
digit portions of the data bytes in the fields defined. If you only want SORT3 to use the
zoned portion of each byte, enter a Z in column 8. The D entry limits SORT3 to use of the
digit portion of each byte. When numeric data is used for building and sorting work files,
you must define to SORT3 whether the data being used are signed packed decimal
numbers or signed unpacked decimal numbers. This is accomplished by entering a P or U,
respectively, in column 8.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-30
SORT/MERGE

In a situation where SORT3 is to force characters into a data field of the work record,
enter a V in column 8 and define the character to be forced in column 18.

To illustrate how the column 8 entry functions, assume that a 1-byte control field in the
input record can contain any one of the following characters:

Character Zone Digit
$ 0101 1011
A 1100 0001
B 1100 0010
C 1100 0011

If you wanted the records sorted into ascending order using the digit portion of the control
field characters, put a D in column 8. The characters will appear in the following order in
the output record:

A

B

C

$

If the records are to be sorted into ascending order using both the zone and digit portions,
enter a C in column 8. The order of the characters in the output records will be:

$
A
B

C

If you had a Z entered in column 8, and specified ascending sequence in the header
specification, the records with an $ control field precede records with an A, B, or C control
field. Because A, B, and C have identical zone portions, records with any of these
characters as a control field will not be any special order after the sort.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-31
SORT/MERGE

If you want to sort records so that some control fields are in ascending order and other
control fields are in descending order, opposite control fields should be used. An opposite
field is sorted in ascending order if descending order is specified on the header
specification, or in descending order if ascending order is specified on the header
specification. If the file contains different record types, all of which have an opposite
control field in the same record position, the column 8 entries for all these control fields
must be D, C, Z, or any combination of C and Z. With any other combination, the results of
the sort will be unpredictable.

NOTE:

When using opposite control fields, SORT3 changes them into meaningless control field
information when building the work record. Therefore, information is usually dropped by
coding an X in column 28 of the header specification for tag-along or summary sorts. To
retain the original control field data in the output record, repeat the description for the
information as a data field. The same holds true when using packed or unpacked control
fields.

If you specified packed or unpacked control fields (normal or opposite), SORT3 changes the
control fields while building the work record. Therefore, the contro! field information must
be dropped by coding an X in column 28 of the header specification. To retain the original
control field data in the output record, redefine the information as a data field.

When using control fields to sequence information in the sorted records, the following
rules must be followed:

® Only one character is allowed in a forced control field.
® Either a conditional or an unconditional force can be indicated.
m A force-all must be preceded by a conditional force.

m A forced control field can be defined by placing an F in column 7 of the field
specifications.

The order in which control fields are described in the field specification lines determines
the sequence of the records (tag-along sort) or the record addresses (addrout sort) in the
sorted file.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-32
SORT/MERGE

Suppose a file is to be sorted in ascending order (A in column 18 of the Header line) and
each record in that file has a normal control field in positions 1—2 and an opposite control
field in positions 5—7. Each record represents one customer’s order for a separate item.
The part number is in position 1—2; the number of parts ordered is in positions 5—7. The
unsorted file appears as:

Input Input Record Position
Record
Name 1 2 3 4 5 6 7
0 2 0 3 0 0
1 4 0 2 5 0]
2 3 0 6 0] 0]
3 1 4 4 5 0]
4 6 0 7 0]
5 3 0 5 9
6 6 0] 1 3 0
—T N ——— —m T —
Part Number
Number Ordered

The first control field can be used to sort the records in ascending order according to the
part number. The second control field is then used to sort the number of parts ordered in
descending order within each group of parts. The field specification would be coded as
follows:

FORM FORCED]
TYPE =] 1 COMMENTS]
=
=[5
. I
@ kHELM s
S| LOCATION HEE P RESERVED PAOGRAM
PAGE LINE | I5/Z HEEEEE IDENTIFICATION
NO.[NO HE SHEER
2|8 SZlEls 38
Z|S| From o [@z80 =8
Field 1 23 sls[7]s|s 1253 shr)isjiojze 22f23 33140 12|13 80
. PN,)) 2| L A DROP, THIS COMTRSL FIELD .,
N L3 o. < N B { belonn ey RO THIS CONTROL, FIELD, |
LDy, 2 Lol vt DATACONTREL, FIEED . 000 o)
y M <IN . | oy, OATA CONTRIDL, FXELD 0,00 o
T A L Pl I P Y S S T U T G0 VAU S SN A0 V00 S0 T Y U S TV T T 0 B S S S L
F ! N L N ST I i Lo N I

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

SORT/MERGE

11-33

The sorted output file is formatted as follows:

After completing the column 7 and 8 entries, you must identify where the record field
being used starts and ends in the input record. The position at which the field begins in
the record is entered (right-justified) in columns 9—12 (From columns). The position at
which the field ends in the record is entered (right-justified) in column 13—16 (To
columns). The order in which the fields are described in the specification determines the
order they appear in the sort output records. For example, suppose you have an input

Output Output Record Position
Record
Number 1 2 3 4 5
0 1 4 4 5 0
1 2 0 3 0 0
2 3 o) 6 0 0]
3 3 0 5 9
4 4 0 2 5 0
5 6 ¢ 1 3 0
6 6 0 7 0
™™ e e e —
Part Number
Number Ordered

record that looks as follows:

Record Field Positions

1

Part

{part number)

5

7

Cost

(price per item)

12

13

14

{balance in stock)

15

Stock

21

22

23

Limit
(reorder limit)

29

But you want your output (sorted) record to look like:

Part

Limit

12

Stock

19

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3) 11-34
SORT/MERGE

To format the output record, columns 9 through 16 would have to be coded as follows:

FORM poncg_n!
TYPE F h:‘ COMMENTS
AL =
=
o5
|
n o
© <5 -
S| LOCATION =l5[5|x £ 2 RESERVED PROGRAM
PAGE LINE | %/ BEEEEE] IDENTIFICATION
NO.| NO. =S NEEFED
wlS SlilElS 2 &
R I
|S| FROM o 223 ce
Field 1 203 s[s[7]s]s 1213 wi7)ishisjz0 22f2s 39)40 1|n)
e eNGe) 3 T N PARTY . ot
L FPbg ., 23 | 2 [PR [P 1 € 5 5y A P N N
L FBa L iR 21 [N B L BICK NI SO
P I L P B AR TV IS RN B U N SN 0 HNF U S USSR U RSO ST S S WU R SA S S S U R S
I N L i1 I [U S TS U S U N S S IR A AN U A U AU G U I S A e IO RS A Ly
o |F] J T I - (- P I L

The limitation to the maximum length of the field described in columns 9—16 is
determined by the entry in column 8.

Maximum Allowable

Column 8 Field Length
Entry (bytes)
C 256
z 1
D 16
P 8
u 16
\" 1

When fields 1-byte in length are being described, leave columns 9—12 (From) blank, and
enter the record position of byte right-justified in column 13—16.

Comments pertaining to field description specification are coded in columns 40—80 and
have no effect on the sort function. Comments are printed only if specified in Print option
of the header specification.

A summary of the field entries for the field description specification is provided in Table
11—8.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-35
SORT/MERGE

Table 11—8. Column Summary for Field Description Specification

Columns Contents Explanation
1—2 Page number
3—5 Line number (Leave column 5 blank, or enter any value to
keep the specifications in ascending order.)
6 F Field specification line
7 N Normal control field
(6] Opposite control field
F Forced control field
D Data field
S Summary data field
* Comment
8 P Signed packed decimal data
U Signed unpacked decimal data
C Use both zone and digit portions of bytes in the field.
z Use only zone portion of 1-byte field.
D Use only digit portion of bytes in the field.
Vv Force a data character into the data field.
9—12 1—4096 Starting position of field in the record (blank if field is one byte long)
13—16 1—4096 End position of field in the record
17 Any character Forced control fields only {the character the sort is to change)
18 Any character Forced control fields only (the character to substitute)
19 Blank Forced control field line is not a continuation of the preceding line.
Any character Forced control field is a continuation of the preceding line.
other than blank
20—22 1-256 Summary tag-along sort only (overflow field length entry)
23—39 Not used Not used
40—80 Any character Comments or program identification

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-36
SORT/MERGE

11.3.4. Defining an Alternate Collating Sequence

If you elect to use a collating sequence other than the standard collating sequence
provided by the SORT3 program, you are required to define the alternate collating
sequence to be used in its place. To do this, you must prepare alternate collation (ALTSEQ)
statements and include them in your job control stream. ALTSEQ statements are prepared
in 80-column punch card format and are positioned immediately after the header
specification in the control stream. A punch card with double asterisks (** in columns 1
and 2) immediately follows the ALTSEQ statements to mark their ending in the job stream.
When inserted into your job stream, ALTSEQ statements should appear as follows:

Job control statements

// EXEC SORT3

/$

Header specification

ALTSEQ statements

* %

Record type/field description specifications as required
/*

Job control statements

You may include as many ALTSEQ statements as needed to define the alternate collating
sequence. Each new statement, however, must begin in column 1 and must begin with
ALTSEQ.

The rules for preparing ALTSEQ statements are as follows:
1. Enter ALTSEQ in columns 1 through 6.
2. Leave columns 7 and 8 blank.

3. Enter, into columns 9 and 10, the hexadecimal equivalent of the character being
moved from its normal position in the collating sequence.

4. Enter, into column 11 and 12, the hexadecimal equivalent of the character whose
position in the collating sequence is to be assumed by the character specified in step
3.

5. Repeat steps 3 and 4 for as many pairs as required to define the characters that must
be taken out of the normal sequence. Do not leave spaces between sets of
hexadecimal entries.

6. End the series of statements by placing a card with double asterisks (**) in columns 1
and 2 after the last ALTSEQ statement.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 11-37
SORT/MERGE

Although ALTSEQ statements do not affect data fields or forced control field characters,
they do affect Factor 1 and Factor 2 fields, normal and opposite control fields, and control
field characters before they are replaced or added to by forced fields.

You should consider what effect an alternate collating sequence will have on these fields
for your particular job. In addition, packed and unpacked Factor 1 and 2 fields must not be
specified when an alternate collating sequence is used.

Another consideration when using an alternate collating sequence is whether the
characters moved in the sequence are considered equal or unequal. That is, when a
character is moved into the sequence position normally assigned to another character,
both the new and the original character occupy the same position. They are considered
equal. If they are not to be considered equal, the character that originally occupied the
position must be moved to another position. To illustrate this point, two examples are
provided. The first example shows the coding required to change one character in the
sequence (characters are considered equal). The second example applies to changing
several characters where they are unequal.

Examplie 1:

ALTSEQ 505B

%

The character defined by hexadecimal 50 (&) is moved to the position defined by
hexadecimal 5B ($). The ampersand and the dollar sign both occupy the same position and
are therefore considered equal.

Example 2:

ALTSEQ 4EF3F3F4F4F5

* %

The characters represented by the hexadecimal values shown in the ALTSEQ format are
as follows:

4E
3 F3
4 F4
5 F5

The format shown moves the character # into the position occupied by the character 3.
Because you do not want them to be considered equal, you must move the character 3 to
another position. To maintain the proper sequence in the collation, the character 3 is
moved into the character 4 position, 4 is moved into character 5 position, and so on.
Basically, you have altered the collating sequence so that # is inserted between 2 and 3.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 12-1
SORT/MERGE

12. System/3, 32,and 34 Compatible Sort -
Program and Control Stream Examples

12.1. GENERAL

This section contains examples that illustrate program coding and job control streams for

the System/3, 32, and 34 compatible sort operation. The first three examples illustrate =
only the sort specifications, and the four remaining examples show complete job streams

with the sort statements included.

12.2. SORT PROGRAM CONTROL SPECIFICATION EXAMPLES

The following three examples illustrate only the sort specifications used for an address out
sort, a tag-along sort, and a summary sort.

Example 1 shows the sort specifications for an address out sort. The purpose of the job is
to produce an output file containing the 10-byte relative addresses of all the records in the
input file. The records are sorted in ascending order by company division number (control
field position 39—41 of the input record), and then by employee life number (contro! field
position 1—6) within each division. You would code the sort specifications for this job as
follows:

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3

SORT/MERGE

12-2

Example 1:

PROGRAM PROGRAMMER DATE paGE .| oF | PAGES
FORM Lt o |z 2 COMMENTS
TYPE LARGEST (8 & .| =
SORTA TotALOF |E g|5lE 2
SORTA conTAoL |8 NoT 5[&ls 2;’;;:; 212! peseaven PROGAAM
Header [PAGE} LINE SORTRS FIELOSOF /3 UsED Z|c|2] cenorn |32 IDENTIFICATION
n0.| No. SORTT |ANY RECORD|Z cIZE 5|E
e |9 FHH] HE
W23 s|sl 1213 iefie 3 0 nfn 0
011000 SORTA | . . 9Al . 31,4 e I ale L
RECOAD |57,
W s FACTOR 1 REL FACTOR 2 (FIELD OR CONSTANT) COMMENTS
<
z EQ CONSTANT
= e PROGRAM
£
P:gi e | 1Els LOCATION u LOCATION IDENT AT
gl o
AN
SEE R 10 6k |S] FRom T0
Record 12)3 516(7f8f9 ¥ 1617 181920 23 7|8 3840 2|3 80|
T
ee L 1 R OV BRI 1 t Lo poa IR S S PERTET i B .
S | - Lo L Lih i L Loa o Sk L PRI BV PN RS PR RO
U EVIRVE AN adoa e 8 O PRI VR [S SV N L U ST AT Bt Ll I BT SR S U
L sl - i Lowvvdaa b cssa o ac iy o teadd i a TSI IR B JUNEET T SV S S
n 1 ' il | PR S SR W L Ly " L
I 1 dedod 0 il [A FEERENE U G S A S R R N
FORM €0) COMMENTS
vee IF =
) 18
x(5
- EHE
& 23z bt PROGRAM
Sl =55l =5 RESERVED
brod une | IS5l UM [BlelEiE e 2 JDENTIFICATION
ZiElE2
vo.| no. | 1312 HE e
HH E|ZE 5 £
w9 s|ajEls S &
HE SSI5P L g
>[s]| Faom 0 (221810 = 8
Field h 2f3 sle|7iajs s sfirfisfesj 22fn 1[40 1|n)
0.110.1.0{F 39 4. | . NAIS LON OF COMPANY . | . n N
.110.2,0] b T i d e EMPLOYEE LPE NUMBER |, PR L
A L | L I FTEFRUES PSS T ST S SR RN U N AU S S A 1 Ll Lo
i P L N 1. PTG P S P S PO SO AT c i e FUY
[..J' | I 1 PV ST ST I RS A RN U 0 S0 SV S S S S S TS TSI S T W ST 0 S B U B S A S A S A R NVO SIS I
LF 1 i Lo NPT B I R N | IR B a

In this example, the header statement defines the job as an address out sort by the entry
SORTA in columns 17—12 and specifies the longest total length of the control fields used
for the sort as 9. (The two control fields, division and life number, are 3 and 6 respectively
and are contained on the same record type.) The entry A in column 18 indicates ascending
order for the sort. Because no alternate collating sequence is specified, SORT3 will use
the standard collating sequence. The printing of all messages is inhibited by the 3 entry in
column 27.

Because all of the input records are involved in the sort, and they all have the same
format, it is not necessary to prepare a record type specification for this job. SORT3
assumes an include-all situation.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 12-3

SORT/MERGE

Both control fields used for sorting the records are identified as normal control fields by
the N entry in column 7 of the field description specification. The entry C in column 8
indicates that both the zone and the digit portion of the characters in the two control fields
are used for the sort. Because the division number is the first field used in the sort, its
position in the input record is defined first. It occupies three positions in the record,
beginning at position 39 and ending at position 41. The next field used for sorting (life
number) occupies six positions beginning at position 1 and ending at position 6.

Example 2 shows the sort specifications for a tag-along sort. The output file produced is to
contain the records of only those salespersons working for division 013 of the company.
Records are to be sorted in descending sequence by total sales. Each output record is to
contain the employee name and number, total monthly transactions, and total sales in
dollars. The division number is to be dropped from the output. You would code the sort
specifications for this job as follows:

Example 2:

a SORT 3 SPECIFICATIONS
PROGRAM PROGRAMMER DATE PAGE GOF PAGES
FORM ERE 5 tom
wvee M LARGEST [B 2l 13 z TS
SORTA ToTALOF | 2|8[g g
SORTR CONTROL (2 NOT <|E{S| S| PROGRAM
Header PAGE| LINE SORTRS | FIELDSOF (& useo =I5 :::::: Z| RESERVED IDENTIFICATION
#0.| NO. SORTT ANY RECORD|S HES g
e |4 “|=is >|
1203 slsfr 12§13 11afs
W u @ n|n %)
0.110.00l4iS ORTIR [N (] . LA NTET B AR] sl v b e
RECCRD |~
e S FACTOR 1 REL FACTOR 2 (FIELD OR CONSTANT) COMMENTS
<
z £ CONSTANT
s NE
lPAGE] e PROGRAM
no.| uNE | 13|z LoCATION L LocATioN IDENTIFICATION
wo. |_|EI§ ot
s|2(S te |
2|3|3| raom 10 | e |2 rhom i)
Record 1 2|3 si6i718|9 1213 16[17 18{19| 20 Px{pi mm 39|40 n|n 80|
Type
0.1j0.) .0/ 33 . 3sfEQicond, L. |y LVISLION 0113 ONLY EINCWUOED b\ vy f v
Y S g 4o i At e L el T SR Y S U ST U T T G
o P P 5 Y TR SRR A SRR N RIS SPRTUITI SRS EFI S AP ISR RV EPrI
Ly N SO IO [VO G S G U D S S S S S IS S0 S A U S U0 WO O Y T AU S L S S MO OO IO I TRY
| L P BRI Lo N i s v e by I A
) [" | L PR EE e | IS URPUR IS U0 S0 U T T N VU TN SN WA U SN WO T W R
FORM
Tvee P = COMMENTS
= I
=|5
Jrd b
I 5%
< < =|
S| LOCATION Z(5i8(, £ 5 RESERVED PROGRAM
pace Lme | || HEHEEE IDENTIFICATION
No. | WO EH =12[2% & 2
e HHEEEH
gl EHEEE
ES| rmow o 2I3ECE S
Field t 2j3 s5|8[7]a)s 12hs eppsfisla 22| 39]40 12{n 80
0.1(0.2.0/¢ 156 b b L Loy MOTAL, SALES|, .. Loy . IS
0103 0Finle] . 1 4] 28 P AR Law sy LJEMPLOYEE NAME | La o L
Q1|O4.0/FIDIC 126 .3 [. o EMPLOYEE NVMAER . o0 | i L
o1los.0Flolc! . 130} . .55 I Loy iy TOTAL MONTHLY, TRANSACTLIONS, o]y
[sYRleY-Yo)Li L 156 . bb t - Ll a1 s NoTAY, SALES) IN OOLLARS 00 b
A 4 i i T Lo i 0 ; I s N

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 12-4
SORT/MERGE

The header statement defines the job as a tag-along sort (SORTR) and defines the total
length of the control field used for the sort as 11. (Total sales field extends from position
56 to 66 in the record — a length of 11.) The entry D in column 18 specifies descending
order for the sort and the X in column 28 instructs SORT3 to drop control fields from the
output records. The total length of the output record, as determined by the data fields
described in the field description specification, is 51. (Control field lengths are not included
when they are dropped from the output records.) The standard collation sequence is used
and all messages are printed.

To select only those records applicable to the salespersons employed at division 13, the
record statement sets up a comparison (EQ in columns 17—18) between the division
number field of the input record (33—35) and the constant 013 (columns 20—23). If the
comparison proves equal, the record is included (I in column 6) in the sort.

Because the selected records are sorted according to the value in the total sales field
(56—66), this field must be the first described in the field description specification. The
entry N defines the field as a normal control field. Only the data portion of the characters
in this field are to be used for the sort as indicated by the entry D in column 8. The control
field begins at position 56 and ends at position 66. The remaining field description
specifications define the data fields (D in column 7) that are to be included in the output
records. The position (entries in columns 9—16) of each field is also identified for the
SORT3 program. Take note that the total sales field is described twice, once as a control
field and once as a data field. This was purposely done so this field would appear in the
output record. Remember SORT3 was instructed to drop control fields from the output
records.

Example 3 shows the sort specifications for a summary sort. The purpose of this job is to
produce an output file that lists, by customer account, the total number of shipments made
to each customer and the total doilar value of those shipment. The program, therefore,
must be capabie of selecting only those records of customers to whom shipments were
made, and to summarize the data in the shipment and dollar value fields of each record to
produce the totals required for the output.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 12-5
. Example 3:
SPERRY == UNIVAC SORT3 SPECIFICATIONS
PROGRAM PROGRAMMER DATE PAGE oF PAGES
ForM A = z COMMENTS
TYPE LARGEST (2 Zl z
1 SORTA ToTALOF S E| gureut |_|E
SORTH conTROL |2 hold 2| mecono [B1S) eseaven PROGRAK
Head PAGE| LINE SORTRS FIELDS OF w USED = LENGTH D[] IDENTIFICATION
er no.| NO SORTT |ANY RECORD|Z 5 s|E
g 3 EE
12l s|efr 1213 17}sfrs 3333 a0 nfn 80
0Q00SORTRS AL L L12.b RPN B ST I [N -
RECORD {4
V;IY’;E E FACTOR REL FACTOR 2 {FIELD OR CONSTANT} COMMENTS
: €Q CONSTANT
2 NE PROGRAM
":gE e | 15l LOCATION T LOCATION 1DENTIFICATION
z|g o1
NO. _ g § LE
2|3|S| From T0 e |S| FrOM 10
Record 1 23 s[6[7[8f9 1243 1617 181820 23(24 2728 39(40 21 20|
T
vee ool | el 1. SIEQLE ol i [S ST IR
L ol | SR 3 L1 el P T U U R O N S R N W S R R Ll ittt L1
1 LL,«‘ PR NI ' S S S PG S U G U S VAU Y 0T Y S S A U A S W WA U B S UV B R E R B A
SN BOVRITIR I i PR vl SISO Y Y O STV R S U U VO T YO0 A S S S S U S G Y M G N A A I R R RS
. L P S I T S SR S 'l ISR AR
i L T B TS S VS VT S U W WU A U U 0 W S SO Y A S U S Y BRSO
f[uvi;: F FDT:ED COMMENTS
<5
ik
= 5|2
& R -
=10 LOCATION M > RESEAVED PROGRAM
Pacel Lne | [£1F Z|e z IDENTIFICATION
NO.{ NO =2 2
2= 2
S S8 =
Z|S| From To @5 2
. Field v o2 s{e|7[e|s 1213 18/17)1shoj20 22|23 39)40 n|n 80
_ 0.1102.0[Nic| . 110! . 14 ! e KIUSTOMER ACCOUNT NUMBER
0J{Q30IFISID| 122 25 Led v v Lo s l,&H‘I.P.H,ENJ. TOTALS o v o vy
0.1 [OM.0FOWN] , ¢, |, Lol v vty vy IBLANK SPACE L0 I WS
o1i0500F o) o v | |8 L plon, N DN
O\IM‘OF@M“H% Lol v it TOTAL DOLLAR MALYE | 1 a o
04l01.0lr N BN 1 1 O L _ONERFLOW I NOILATOR ., |,

The SORTRS entry in columns 7—12 of the header specification defines the job as a
summary sort. The largest control field for any record is 10 and the records are to be
sorted into ascending order (A in column 18) by customer account number. Standard
collation is used, all messages are printed, and control fields are not to be dropped from
the output records (columns 26—28 blank). The output record length specified in column
26 is a total of the control field lengths and data field lengths specified in the field
description specification.

The record type specification identifies the records to be included (I in column 6) in the
sort as those with the character S in position 5 of the record. The records are sorted by
customer account number as defined by columns 9—16 of coding line 020 of the field
description. As the individual records are sorted, the two data fields identified in coding
lines 030 and 060 of the field description are summarized for identical customer account
numbers. The output records, therefore, reflect the total number of shipments made to
each customer and the total dollar value of those shipments. The output record format will
also contain a dollar sign preceding the total dollar value field as specified by the use of
the force field entry in coding line 050. An occurrence of an overflow condition while
summarzing the summary data fields is indicated by a question mark (?) in the last field of
the output record.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 12-6

SORT/MERGE

12.3. SORT PROGRAM CONTROL STREAM EXAMPLES

Sort control stream examples are provided to show how an address out sort and a tag-
along sort would be set up for execution under OS/3 job control or the OCL processor.
The data sets used for these examples are the same as those described in examples 1 and
2 respectively.

Example 4 shows the control stream and sort specifictions to perform an address out sort
under OS/3 job control execution.

Example 4:

10 20 /2

/%
/&
//

JOB EXAMPLE, ,8000,8000

DVC 2@ // LFD PRNTR

DVC 65 // VOL SYS2@@ // LBL DISKOUT // LFD INPUT
DVC 66 // VOL SCR2@@ // LBL $SCR1 // DM@I

DVC 65 // VOL SYS200¢

EXT ...

LBL CARDIN // LFD OUTPUT

EXEC SORT3

HSORTA 9A 3

FNC 39 41 DIVISION OF COMPANY
FNC] 6 EMPLOYEE LIFE NUMBER

FIN

Example 5 shows the same sort program as example 4 but set up for execution under the
OCL processor.

Example 5:

//
/&
//

LOAD $DSORT,FI
FILE NAME-INPUT,UNIT-D1,PACK-SYS20@,LABEL-DISKOUT,RETAIN-S
FILE NAME-WORK,UNIT-D2,PACK-SCR20@,RECORDS-78@,RETAIN-S
FILE NAME-OUTPUT,UNIT-D1,PACK-SYS20@,LABEL-CARDIN,RECORDS-600
RUN
HSORTA 9A 3
FNC 39 4l DIVISION OF COMPANY
FNC 1 6 EMPLOYEE LIFE NUMBER

END

FIN

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 12-7
SORT/MERGE

Example 6 shows the control stream and sort specifications data set to perform a tag-
along sort number OS/3 job control execution.

Example 6:

1 10 20

// JOB EXAMP6,,8000,8000

// DVC 2@ // LFD PRNTR

// DVC 65 // VOL SYS2@0@ // LBL HONPROD // LFD INPUT
// DVC 65 // VOL QC1111

// EXT ...

// LBL NAME // LFD OUTPUT

// DVC 66 // VOL D@@921 // LBL $SCR1 // LFD DM@I

// EXEC SORT3

/$
HSORTR 11D X 5i
I' D 33 35EQCI3
FND 56 66 TOTAL SALES
FNC 1 25 EMPLOYEE NAME
FDC 26 32 EMPLOYEE NUMBER
FOC 5@ &5 TOTAL MONTHLY TRANSACTIONS
y FDC 56 66 TOTAL SALES N DOLLARS
/&
// FIN

Example 7 shows the same sort program as example 6 but set up for execution under the
OCL processor.

Example 7:

// LOAD $DSORT,F1
// FILE NAME-INPUT,UNIT-D1,PACK-SYS20@,LABEL-HONPROD,RETAIN-S
// FILE NAME-OUTPUT,LABEL-NAME,UNIT-D2,PACK-QC1111,RECORDS-2000

// RUN
HSORTR 11D X 51
I'D 33 35EQCI3
FND 56 66 TOTAL SALES
FDC 1 25 EMPLOYEE NAME
FDC 26 32 EMPLOYEE NUMBER
FDC 5@ 55 ' TOTAL MONTHLY TRANSACTIONS
FDC 56 66 TOTAL SALES IN DOLLARS
// END
/s
// FIN

PART 5. APPENDIXES

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 A-1

SORT/MERGE

AA1.

Appendix A. Statement Conventions

GENERAL FORMAT RULES FOR SUBROUTINE AND INDEPENDENT
SORT/MERGE

The following general conventions apply to the coding formats illustrated in this manual
for both independent and subroutine sort/merge control statements and macros.

Vi EFw N =

Lowercase letters and words are generic terms representing information that must be
supplied by you (Figure A—1, lines 2 and 4). Such lowercase terms may contain
hyphens and acronyms (for readability).

Examples:

— Independent Sort/Merge
([strt-pos-1][,Igth-1][,form-1][,seq-1]
[....strt-pos-n,lgth-n[,form-n][seq-n]))

(strt-pos-1,Igth-1 [,seq-1],...,strt-pos-n,igth-n
[.seq-n]}),FORMAT=code

FIELDS=

— Subroutine Sort/Merge
[LJUSEQ=(to-address,from-address}]

Capital letters, commas, equal signs, and parentheses must be coded exactly as
shown. For example: The letter D on the ADDROUT parameter means return both
address field and record key fields to the program in a subroutine tag sort (Figure
A—1, line 1), and the letter A on the DATA parameter means input data is recorded
in ASCIl in an independent sort/merge (Figure A—1, line b).

LABEL AOPERAT IONA OPERAND
1 10 16
MRS PRM ADDROUT=D
MRS PRM RESUME=(PASS,#33)
MRS$PRM MERGE=YES
MR$ PRM FIELD=(1,6)
INPF L DATA=A

Figure A—1. Statement Conventions Example

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 A-2
SORT/MERGE

Information contained within braces { } represents alternate choices, of which only
one may be chosen.

— Independent Sort/Merge

([strt-pos-1] [igth-1] [,form-1] [,seq-1]
[.....strt-pos-n,Igth-n [form-n] [,seq-n]])
FIELDS=
(strt-pos-1,lgth-1 [,seq-1]1[,...,strt-pos-n,Igth-n

[.seq-n]]) ,FORMAT=code
— Subroutine Sort/Merge

FIELD= (strt-pos-1,lgth-1 [form-1][,seq-1] [,order-1]
[.....strt-pos-n,Igth-n[,form-n] [,seq-r;] [,order-n]])

RSOC=symbol

Information contained within brackets [] represents optional entries that (depending
upon program requirements) are included or omitted. Braces within brackets [{}]
signify that one of the specified entries must be chosen if that parameter is included.
Examples:

— Independent Sort/Merge

Braces within brackets: Brackets:
NORWD [,FILE=number]
RWD

— Subroutine Sort/Merge

Braces within brackets: Brackets:
__ (DELETE _
[,DROC— {symbol }] [,SIZE=number]

Optional parameters having lists of optional entries may have default specifications
supplied by the operating system when the parameters are not specified by you.
Although the default may be specified by you with no adverse effect, it is considered
inefficient to do so. For easy reference, when a default specification occurs in the sort
macro or sort control statement format, it is printed on a shaded background. If, by
parameter omission, the operating system performs some complex processing other
than parameter insertion, it is explained in text.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 A-3
SORT/MERGE

Examples:

—lIndependent Sort/Merge

m An ellipsis (series of three periods) indicates the presence of a variable number of
entries.

Examples:
— Independent Sort/Merge

bytes

[,BLKSlZE: { (bytes-1[,...,bytes-8])}]

— Subroutine Sort/Merge

FIELD= (strt-pos-1,Igth-1[,form-1] [,seq-1] [,order-1]
[,....strt-pos-n,Igth-n[,form-n] [,seq-n] [,order-n]1)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3) A-4
SORT/MERGE

m A keyword parameter consists of a word or a code usually, but not always, followed
by an equal sign and a specification. Keyword parameters can be written in any order
in the operand field and are separated by commas.

Examples:
— Independent Sort/Merge

Assume that INPFIL is an independent sort/merge control statement with four
optional keyword parameters; OPEN, CLOSE, DATA, and BYPASS.

LABEL AOPERAT | ONA OPERAND A
] 10 16

INPFIL OPEN=RWD,CLOSE=RWD, DATA=A

INPFIL CLOSE=RWD,DATA=A,OPEN=RWD

INPFIL DATA=A, CLOSE=RWD

INPFIL CLOSE=RWD,BYPASS

— Subroutine Sort/Merge

Assume that MR$PRM, the sort macro instruction, is specifying three of the
required keyword parameters: FIN, IN, and OUT.

SORTI MR$PRM FIN=SORTFIN, IN=SORTIN,OUT=SORTOUT
SORT2 MR$PRM F IN=SORTF IN,OUT=SORTOUT, IN=SORTIN
SORT3 MR$PRM IN=SORTIN,FIN=SORTFIN,OUT=SORTOUT
SORTL MRS$PRM OUT=SORTOUT, IN=SORTIN,FIN=SORTFIN

Positional parameters are presented in lowercase letters and require insertion of a
value.

Example:

ter-table-name}

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 A-5

SORT/MERGE

A keyword parameter may contain a sublist of parameters called subparameters,
which are separated by commas and enclosed in parentheses. The parentheses must
be coded as part of the specification. All subparameters presented in this manual are
positional. They must be coded in the order shown, and the comma must be retained
when a subparameter is omitted, except for trailing commas.

Examples:

— Independent Sort/Merge

LABEL AOPERATIONA OPERAND A
| 10 16

SORT FIELDS=(1,4,CH,A)

SORT FIELDS=(1,4,,A)

SORT FIELDS=(1,4)

— Subroutine Sort/Merge

MRS PRM FIELD=(@,1,AC,D,3)
MRS PRM FIELD=(g,1,,D)
MR$PRM FIELD=(@,1)
. You can apply the following rules to the coding of both independent and subroutine
sort/merge control statements and macro instructions.
m Sort/merge control statements and macro instructions are coded in the operation
field, which may begin in any column except column 1.
® Parameters are specified in the operand field. This field is separated from the
operation field by one or more blanks and must begin on the same line of the card.
® At least one space must separate the operand field from the comments field, if
included.
® Embedded blanks are not allowed. Anything after a blank is regarded as a comment.
® Values can be written with up to eight alphanumeric characters.
® Commas, equal signs, parentheses, and blanks are used only as field delimiters; they
may not be used in values.
® Periods are used to separate byte-bit specifications in the FIELD and FIELDS

parameters and input and output file-partition-numbers in the COPY parameter.

Any nonblank character in column 72 indicates that the statement is continued on
the following card. The continuation of an operand starts in column 16; the
continuation of comments starts in column 17. A continuation statement may not
begin with a comma in column 16.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 A-6
SORT/MERGE

A.2. INDEPENDENT SORT/MERGE CONTROL STATEMENT FORMAT RULES

Independent sort/merge control statements are placed in the control stream between the
start-of-data (/$) and end-of-data (/*) job control statements. Each control statement can
appear only once in your program. Sort/merge control statements should appear in this
general format on the coding form:

COL. | AoPERATIONA | OPERAND | AcommenTts | COL- SEQUENCE
1 72
73 80
blank
blank variable variable optional or optional
character

s Column 1

The first column or position must be blank for all sort/merge control statements.
= Operation

Use field for defining the operation to be performed. The permissible entries are:

END

INPFIL
MERGE
MODS
OPTION
OUTFIL
RECORD
SORT

The operation field must be the first field you define in a control statement. It starts in
any column after column 1 but cannot extend into column 72 (continuation field).

u Operand

The operands specify the parameters needed to define and execute the sort/merge.
Separate this field from the operation field by one or more blanks and begin the first
operand on the same card as your operation field. Operands are composed of keyword
parameters equated to a value, a set of values (positional parameters), or used as an
indicator without associated values.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 A-7
SORT/MERGE

u Comment

Use the comment field to annotate the sort/merge program. Leave one or more
blanks between the operand field and the comment field.

] Continuation

Column 72 is used for the continuation indicator. A blank indicates that this is the
last image of the statement. You may use any other character to indicate that the
statement is continued on the following image or card. The continuation character is
not included in any operation or operand field.

B Sequence

You may use the sequence field (positions 73 through 80) as you wish; however, it is
usually used for sequence numbering and identification.

Continuation statements are logical extensions of the preceding operand or comment. The
statement preceding a continuation statement contains characters through column 71 or
the operand may be discontinued by a comma followed by a blank. In either case, a
character must appear in column 72 to establish a continuation statement. The
continuation of an operand starts in column 16; the continuation of a comment starts in
column 17.

|
: STATEMENT
1 15 [16 117 CONTINUATION n| 712 |13 80
operand . .
blank continuation sequence-id
comment character

a Column 16

Contains the first characters or delimiter of the continued operand (never a comma).
s Column 17

Contains the first character of the continued comment.
a8 Column 71

Is the last column of the continuation statement.

] Column 72

Is any nonblank character; indicates that the next statement is a continuation
statement.

® Columns 73 through 80

Is the sequence identification.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 A-8
SORT/MERGE

A.3. SUBROUTINE SORT/MERGE MACRO FORMAT RULES

Macro instructions provide an interface between subroutine sort/merge and your program.
By using these macro instructions, you define the sort run; control the function, structure,
and execution of the subroutine by building a sort parameter table; and link the various
functional modules of the subroutine with your program. The conventions illustrated in A.1
show how to use the subroutine sort/merge macro instructions presented in this manual.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 B-1
SORT/MERGE

Appendix B. Contents of Sort
Parameter Table

The sort parameter table is the primary interface between your program and the modules
of the independent or subroutine sort/merge. Through this table, you define the
requirements that sort/merge uses to sequence your input files and produce an output file
ordered to your specifications.

Although a sort parameter table is needed by both independent and subroutine
sort/merge, you can never see or modify it when using the independent sort/merge.
Nevertheless, your sort control statements and job control statements used with
independent sort/merge supply information to the sort parameter table.

If you use the subroutine sort/merge, the sort parameter table is generated inline in your
program by execution of the MR$PRM macro instruction (6.4). Parameters can be modified
via entries you submit on sort parameter statements issued in your job control stream for
either independent or subroutine sort/merge. (See CSPRAM discussion, 3.2.6, and
PARAM discussion, 6.12.) Table B—1 is the resulting parameter table generated inline
after the MR$PRM macro is executed in your subroutine sort/merge program.

Each sort keyword generates a code. When you want to modify the location of certain sort
keyword parameters, you find their code in your program printout. The value next to each
code specifies the value you want to change. You may want to change some, all, or none
of these parameters.)

Lowercased letters in the value column of Table B—1 represent variable information
which you supply via your sort keyword parameters on the MR$PRM sort macro. Their
meaning is explained under the description of values in Table B—1. The codes, values, and
keyword parameters are the only information actually generated inline in your subroutine
sort/merge program.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 B-2
SORT/MERGE

Table B—1. Sort Parameter Table (Part 1 of 3)

Code Value Keyword Description of Values
Parameter

00 000000 000000 - Indicates the end of a parameter table

00 3aaaaa ADTABL aaaaaa — Is the address of an additional parameter table containing information
which applies to this sort

01 aaaaaa IN aaaaaa - The address specified by IN keyword. This address identifies the
location to which control returns following the opening of the
sort/merge.

02 aaaaaa ouT aaaaaa - The address specified by the OUT keyword. This address specifies
the location to which control returns when the sequenced records are
ready to be returned.

03 aaaaaa FIN aaaaaa — Specifies the location to which control returns after the last record
has been returned to the user

04 aaaaaa RSOC aaaaaa — Specifies the address at which the user own-code record sequencing
routine is located

05 aaaaaa DROC aaaaaa — Specifies the address at which the user own-code, data-reduction
routine is located

07 aaaaaa STOR aaaaaa — The address of the first byte of the work area reserved for the sort

FF nnnnnn nnnnnn - A binary value indicating the number of bytes availabie for sort
usage in the work area. This value is zero if the number of bytes is
absent.

08 00 nnnn RCSZ nnnn - A binary value specifying size of the record to be sorted. This
specifies the maximum record size for variable-length records and
includes the 4-byte record length field.

09 000000 MERGE 09 - Indicates a merge-only application

0A 00 nnnn BIN nnnn - A binary number specifying the BIN size for variable-length records

(form 1)
0A 00 nnnn BIN nann — A binary number specifying the minimum BIN size for variable-length
{form 2) records

FF $55555 $5555S - A binary number specifying a record size within the file to be sorted

FF 00 vvvy "AAAY — A binary number specifying the number of times this record size occurs
in the file or percentage of occurrences

FF $85555 Each size-n and freq-n subparameter pair requires two BIN continuation words in the

FF 00 vvvyv parameter table.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 B-3
SORT/MERGE

Table B—1. Sort Parameter Table (Part 2 of 3)

Code Value Keyword Description of Values
Parameter
0B ii pppp FIELD i - A binary number specifying the length of the field in bytes that are
FF cc qq fr represented as length-n for all fields that are in the byte-bit format.
FF 00 Il bb For binary fields, it is defined as true length (0 <ii < 255).
pPRPP - The location of the first byte of the key field relative to the.start
of the record (0 < pppp <32767)
cc - Binary code of the FIELD form parameter
00 = CH — character
01 = Bl — unsigned binary
02 = Fl - fixed pointer integer
03 = PD — packed decimal
04 = 2D - zoned decimal
05 = FL — floating point
06 = MC - multiple character, user-specified
collating sequence
07 = AC — EBCDIC data in ASC!i collation sequence
08 = csL - leading sign numeric
09 = CST -— trailing sign numeric
0A = CLO — numeric data overpunched leading sign
[a]:3 = CTO - numeric data overpunched trailing sign
ocC = ASL — ASCII numeric data leading sign
ob = AST — ASCil numeric data trailing sign
OE = usa - user specified collation sequence
aq - Binary code of the field sequence parameter
00 = ascending sequence, A
01 = descending sequence, D
14 - Binary value specifying the order of significance of this field
(01<rr < 255)
1} — A binary value, used only when Bl is specified. Specifies a
number of bits when the length of a ‘Bi’ field is not an even multiple
of bytes
(00 <ii < 07)
bb — A binary value used only in B1 fields to specify the first bit
location of a B1 field within the byte location specified by pppp
(00 <bb <07)
oc 0000 nn DISC nn — A binary value specifying the maximum number of disk file names that
FF aaaaas may be assigned
(0 <nn <8)
a3aaaa - The address of the list of user-supplied disk file names
oD 00 nn xx TAPE nn - A binary value specifying the maximum number of tape file names that
may be assigned
(0 <nn <86)
xx - A binary code indicating the tapes label parameter
00 = standard labels, STD
01 = no labels, NO
OE 0000 bb SHARE bb — Two unsigned decimal digits representing the last two characters of
the file name of the tape umit to be shared (SMO06, bb = 6 or less)
OF 0000 bb RESERV bb — Two unsigned decimal digits representing the last two characters of
the file name of the tape unit to be reserved (SMO06, bb = 6 or less)
14 rrerer RESUME= rreeer — Three-character pass recovery-number parameter
(PASS,..)

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 B-4
SORT/MERGE

Table B—1. Sort Parameter Table (Part 3 of 3)

Code Value Keyword Description of Values
Parameter
1A 00 gg hh NOCKSM gg—hh — Binary code indicating checksum to be omitted
a9 = 01 - omit tape checksum
hh = 01 - omit disk checksum
B aaaaaa USEQ aaaaaa — The address of a 256-byte translation table specifying the desired
collation sequence
FF dddddd dddddd — The address of a 256-byte translation table specifying the inverse
of the first table
20 000000 PAD The null PAD entry is used to reserve space in the parameter table. The entry is repeated
(bytes+3)/4 times, where bytes in (bytes+3) represents the PAD ’bytes’ parameter,
pal 0000 jj CSPRAM ji — Binary code indicating the CSPRAM option
o1 - OPTION
02 - YES
03 - NO
22 0000 nn ADDROUT nn - A binary code specifying the tag-sort option
00 - A - return only the direct access address of record
o - D - return the disk address and the record key fields
25 0000 nn CALC nn - A binary code signifying that sort optimization information is to
be calculated and displayed. The sort may be executed or terminated.
00 - NO - no execution
01 - YES - execution
26 nnannn SIZE nnnnnn — A binary number indicating the approximate number of records to be
sorted
29 0000 nn PRINT nn - A binary code indicating the type of messages to be displayed
00 - ALL
01 — CRITICAL
02 - NONE

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 C-1
SORT/MERGE

Appendix C. Subroutine Sort/Merge
Interface Requirements
for the COBOL Programmer

The SPERRY UNIVAC Operating System/3 (0S/3) COBOL sort facility uses the capabilities
of the subroutine sort/merge for sorting the data fields involved in your COBOL program.
The method of defining the requirements for the initialization and execution of the
subroutine sort/merge from your COBOL program, however, varies from that described in
Section 3 of this manual in that the requirements are specified according to 0S/3 COBOL
conventions. During compilation of your COBOL program, the OS/3 Extended COBOL
compiler expands the COBOL program sort statements into the parameter information
required by the subroutine sort/merge for defining the various sort/merge entries of the
sort parameter table and for executing the modular elements that make up the subroutine
sort/merge routine. If it is necessary to change the requirements of the sort prior to its
execution, you have the option to redefine some, but not all, of the compiler-generated
parameter information by inserting parameter control statements in the job control stream
for your program. You may also introduce certain additional parameters to the subroutine
sort/merge in the same manner.

During program execution, a message that questions the presence of parameter
statements in the control stream for your program is displayed on the system console.
(This display will not occur if you have specified the compiler output option
//APARAMAQUT=S in your program to disable the display feature.) Your response to the
question determines whether or not the parameter statements are accessed by the
subroutine sort/merge during execution of the sort. The parameters that you may insert
into the job control stream allow you to designate the type of sort desired, to reserve or
share the use of magnetic tape devices assigned as auxiliary working storage to the sort,
to replace the arbitrary BIN size provided by the compiler, to resume an interrupted tape
sort, or to inhibit the calculation of a summation check for files written to tape or disk.

Table C—1 summarizes the parameters supplied by the Extended COBOL compiler and
indicates those which may be inserted in the job control stream. Figure C—1 depicts a
typical job deck for a COBOL program executing a sort and shows the placement of sort
parameter statements in the job control stream. Further details of the use of subroutine
sort/merge through the O0S/3 COBOL sort facility are given in the Extended COBOL
supplementary reference manual, UP-8059 (current version).

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 Cc-2
SORT/MERGE

Table C—1. Extended COBOL Interface with 0S/3 Subroutine Sort/Merge (Part 1 of 2)
Execution Parameter
Use of Requirament May Be Passed . y
P t C ler A ind C £ i
Parameter arameter for in Job Control ompiler Action a OBOL Programmer’s Options
Sort/Merge* Stream
Normatl sort DROC (o] No None. Neither automatic nor user own-code data reduction
linkage (DROC) is available to the COBOL programmer.

FIN X No Provides FIN from the AT END imperative statement of COBOL program
RETURN statement

IN X No Provides address to which sort/merge returns control to the
COBOL program after being initialized; this is the address
immediately before the file named in the COBOL USING
statement that has been opened, or immediately before the
PERFORM statement resulting from the INPUT procedure of
the SORT statement.

ouT X No Provides address immediately before the opening of the file
named in the GIVING statement, or the PERFORM statement
resulting from the OUTPUT procedure in the COBOL SORT
statement

RSOC (o] No None. User own-code exit for record sequencing (RSOC) is
not available to the COBOL programmer.

Facility DISC X Yes Enters the maximum {DISC=8). May be overridden by the
assignment COBOL programmer. Must be overridden by setting DISC=0
when an internal-only sort is specified

TAPE X Yes Enters the maximum (TAPE=6). May be overridden by the
COBOL programmer. Must be overridden by setting TAPE=0
when an internal-only sort is specified.

STOR X No Provides externally defined address KESALP, which is de-
fined by linkage editor as the end of the longest phase
in the load module, Also provides the amount of main
storage available for the sort to use; the sort uses main
storage from KE$SALP to the end of job region.

RESERV [e] Yes None. COBOL programmer may pass in job control stream.

SHARE (o] Yes None. COBOL programmer may pass in job control stream.

Record ADDROUT .0 No None. Tag sorting is not available to a COBOL program.
definition

BIN (o] Yes Provides the length of shortest record described in the
sort file description {SD). COBOL. programmer may
override when the lengths and positions of the key fields
in his records justify using a different BIN length to
improve the efficiency of the sort.

FIELD X No Provides FIELD from the information on sort key fields contained in
SORT statement in COBOL program

RCSZ X No Provides RCSZ from the maximum record size described in 01-level
entries following sort file description {SD)

USEQ o] No None. To sort data in other than ASCII or EBCDIC, the COBOL
programmer will need to use format 3 of the TRANSFORM verb
before presenting his data to the sort and afterwards to
retransiate it.

*X = Required for execution

O = Optional

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 C-3
SORT/MERGE

Table C—1. Extended COBOL Interface with 0S/3 Subroutine Sort/Merge (Part 2 of 2)

Execution Parameter
Use of Parameter Requirement !Vlav Be Passad Compiler Action and COBOL Programmer’s Options
Parameter for in Job Control
Sort/Merge* Stream
.[gg(:rsf’rt RESUME (o] Yes None. COBOL programmer specifies when required.
Miscel- ADTABLE [o] No Uses ADTABLE to dynamically link parameter table to program
faneous

CALCAREA o] No None. The CALCAREA option is not available to the COBOL
programmer.

CSPRAM (o] No Enters CSPRAM=OPTION, thus permitting the COBOL programmer
to make the decision at execution time whether to pass parameters
to sort/merge in job control stream

NOCKSUM o] Yes None. COBOL programmer may pass in job control stream

PAD &) No Uses PAD to reserve space for parameter table dynamically
linked by compiter

PRINT (o] No None. Default value (PRINT=ALL) is assumed by subroutine
sort/merge, and all messages generated by the sort are
displayed on the system printer.

SIZE o] No None. No means available to COBOL programmer to specify

*X = Required for execution

0O = Optional

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 c-4
SORT/MERGE

// FIN

/&

Parameter statements for // PARAM n

subroutine sort-merge

// EXEC name-1

// DVC-LFD
sequence

'~ For COBOL program

// symbol WORKnR input file

Auxiliary storage for
sort, if required, See
Note 1.

//IDVC-LFD
sequence

/e — For COBOL output program

LOADM-name-1

__ Linkage editor control statements.
See Note 2.

// EXEC LNKEDT

DVC-LFD

sequence = |inkage editor requirements

COBOL
SOURCE DECK

- COBOL program

Parameter statements —

for COBOL compiler /I PARAM nnn

// EXEC COBOL

DVC-LFD
sequence

// JOB name == JCL to execute COBOL compiler

NOTES:

1. Symbol specified is either DMnn for disk or SMnn for tape auxiliary storage. If you specify the // WORK jproc, the
DVC/LFD sequence set may be omitted. The // WORK jproc or the DVC/LFD sequence set is omitted when an
internal sort is specified by // PARAM DISK=0 or // PARAM TAPE=0.

2, Linkage editor control statements prepared by COBOL program shouid not include a RES statement (as this statement
is generated by OS/3 extended COBOL compiler) unless the programmer has specified the compiler output option //
A PARAM A OUT=L to inhibit generation of linkage editor control statements in the object module.

Figure C—1. Typical Job Deck for OS/3 COBOL Program Executing a Sort via 0S/3 Subroutine Sort/Merge

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 D-1
SORT/MERGE

Appendix D. Standard EBCDIC and
ASCIl Collating Sequences

D.1. GENERAL

Appendix D provides three useful tables containing collating sequences. The first (Table
D—1) presents a cross-reference table that enables you to compare the following standard
codes commonly used in data processing and in the SPERRY UNIVAC Operating System/3
(0S/3):

® Hollerith punched card code

® EBCDIC (Extended Binary Coded Decimal Interchange Code)

® ASCIl (American National Standard Code for Information Interchange)
® Binary bit-pattern (bit-configuration) representation for an 8-bit system
® Hexadecimal representation

Table D—2 provides a convenient chart of 0OS/3 EBCDIC graphics only, and Table D—3
lists OS/3 ASCH graphics only.

D.2. EBCDIC/ASCII/HOLLERITH CORRESPONDENCE

Table D—1 is a cross-reference table depicting the correspondences among the Hollerith
punch card code, ASCIl, and EBCDIC. The table is arranged in the sorting (or collating)
sequence of the binary bit patterns which have been assigned to the codes, with 0000
0000 being the lowest value in the sequence and 1111 1111 the highest. These binary bit
patterns are sorted in a left-to-right sequence (most significant to least significant bit).

Note that the column headed Decimal uses decimal numbers to represent the positions of
the codes and bit patterns in this sequence, but counts the position of the lowest value as
the zero position rather than the first. Thus, the position of the highest value bit pattern
1111 1111 is represented in the decimal column by 255, whereas it is actually the 256th
in the sequence. This scheme corresponds to the common convention for numbering
bytes, in which the first byte of a group is byte O, and is convenient when you are
constructing a 256-byte translation table.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 D-2
SORT/MERGE

The column headed Decimal also represents the collating sequence for the EBCDIC
graphic characters shown in the fourth column of the table; the fifth column, Hollerith
Punched Card Code, contains the holer patterns assigned to these EBCDIC graphics. Empty
space in the fourth column represents the positions of the EBCDIC control characters; the
EBCDIC space character is represented in the fourth column by the conventional notation
SP at decimal position 64, and the corresponding card code is no punches.

The ASCII graphic characters, listed in the sixth column of Table D—1, are also in their
collating sequence, and the hole patterns in the seventh column correspond to the ASCII
graphics. The ASCII space character is represented by the notation SP in the sixth column
at decimal position 32; the corresponding card code is, again, no punches. The empty
space in the sixth column represents the positions of the ASCIl control characters. The
shading in the ASCII graphic character column indicates where the 128-character ASCII
code leaves off: there are no ASCII graphic or control characters that correspond to the bit
patterns higher in collating sequence than 0111 1111 (the 128th in Table D—1).

D.2.1. Hollerith Punch Card Code

The Standard Hollerith punch card code specifies 256 hole-patterns in 12-row punched
cards. Hole-patterns are assigned to the 128 characters of ASCIl and to 128 additional
characters for use in 8-bit coded systems. These include the EBCDIC set. Note that no
sorting sequence is implied by the Hollerith code itself.

D.2.2. EBCDIC

EBCDIC is an extension of Hollerith coding practices. It comprises 256 characters, each of
which is represented by an 8-bit pattern. Table D—1 shows the EBCDIC graphic characters
only; the EBCDIC control characters are not indicated.

D.2.3. ASCIil

ASCH comprises 128 coded characters, each represented by an 8-bit pattern, and includes
both control characters and graphic characters. Only the latter are shown in Table D—1.

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

D-3

Table D—1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 1 of 5)
EBCDIC ASCH
Hexa- EBCDIC Hollerith ASCH Hollerith
Decimal deci- Binary Graphic Punched Card Graphic Punched Card
mal Character Code Character Code
0 00 0000 0000 12-0-9-8-1 12-09-8-1
1 o 0000 0001 12-9-1 1291
2 02 0000 0010 12-9-2 12-9-2
3 03 0000 0011 12-9-3 129-3
4 04 0000 0100 12:94 9.7
5 05 0000 0101 1295 09-8-5
6 06 00000110 12-9-6 0-9-8-6
7 07 0000 0111 12-9-7 0-9-8-7
8 08 0000 1000 12-9-8 11-9-6
9 09 0000 1001 12-98-1 12-9-5
10 0A 0000 1010 12-98-2 0-9-5
1 0B 0000 1011 12-9-8-3 12-9-8-3
12 ocC 0000 1100 12-9-8-4 12984
13 oD 0000 1101 12-98-5 12-9-8-5
14 0] 3 0000 1110 12-9-8-6 12-9-8-6
15 OF 0000 1111 129-8-7 12.98-7
16 10 0001 0000 12-11-9-8-1 12-11-9-8-1
17 11 0001 0001 11-9-1 11-9-1
18 12 0001 0010 11-9-2 11-9-2
19 13 0001 0011 11-9-3 11-9-3
20 14 0001 0100 11-9-4 q9.8-4
21 15 0001 0101 11-9-5 9-8-5
22 16 0001 0110 11-9-6 9-2
23 17 0001 0111 11-9-7 09-6
24 18 0001 1000 11-9-8 11-9-8
25 19 0001 1001 11-9-8-1 11.9-8-1
26 1A 0001 1010 11-9-8-2 9-8-7
27 iB 0001 1011 11983 09-7
28 1C 0001 1100 11984 11.9-8-4
29 1D 0001 1101 11.9-8-5 11-9-8-5
30 1E 0001 1110 11-98-6 11986
31 1F 0001 1111 11-9-8-7 11-9-8-7
32 20 0010 0000 11-0-9-81 SP No punches
33 21 0010 0001 09-1 ! 12-8-7
34 22 0010 0010 09-2 " 8-7
35 23 0010 0011 0-9-3 # 8-3
36 24 0010 0100 094 $ 11-8-3
37 25 0010 0101 0-9-5 % 0-8-4
38 26 00100110 0-9-6 & 12
39 27 00100111 0-9-7 ' 85
40 28 0010 1000 09-8 { 12-8-5
41 29 0010 1001 0-9-8-1) 1185
42 2A 0010 1010 2-9-8-2 > 11-8-4
43 2B 0010 1011 0-9-8-3 + 12-8-6
44 2C 00101300 09-8.4 ’ 0-8-3
45 2D 0010 1101 0-9-8-5 - 1
46 2€ 00101110 0-9-86 . 12-8-3
47 2F 0010 1111 0938-7 / 0-1
48 30 0011 0000 12-11-0-9-8-1 0 0
49 31 0011 0001 9-1 1 1
50 32 0011 0010 9-2 2 2
51 33 0011 0011 9-3 3 3
52 34 0011 0100 9-4 4 4
53 35 0011 0101 9-5 5 5
54 36 0011 0110 9-6 6 6

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 D-4
SORT/MERGE
Table D—1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 2 of 5)
EBCDIC ASCH
Hexa- EBCDIC Hollerith ASCHI Hollerith
Decimal deci- Binary Graphic Punched Card Graphic Punched Card
mal Character Code Character Code
55 37 00110111 9-7 7 7
56 38 0011 1000 9-8 8 8
57 39 0011 1001 9-8-1 9 9
58 3A 0011 1010 9-8-2 : 8-2
59 38 0011 1011 983 ; 11-86
60 3C 0011 1100 9-8-4 < 12-8-4
61 3D 0011 1101 9-8-5 = 8-6
62 3E 00111110 9-8-6 > 0-8-6
63 3F 0011 1111 9-8-7 ? 08-7
64 40 0100 0000 SP No punches @ 8-4
65 41 0100 0001 12-0-9-1 A 121
66 42 01000010 12-0-9-2 B 12-2
67 43 0100 0011 12-0-9-3 Cc 12-3
68 44 01000100 12-0-9-4 D 12-4
69 45 0100 0101 12-0-9-5 E 12-5
70 46 01000110 12-09-6 F 125
71 47 01000111 12-0-9-7 G 12-7
72 48 0100 1000 12-09-8 H 12-8
73 49 0100 1001 12.81 ! 12:9
74 4A 01001010 C 12.8.2 J 11-1
75 48 0100 1011 . 12-8-3 K 11-2
76 ac 0100 1100 < 12.8-4 L 11-3
77 4D 0100 1101 (12.8:5 M 11-4
78 4E 01001110 + 1286 N 115
79 4F 0100 1111 : 12.8.7 o] 11-6
80 50 0101 0000 Py 12 3 117
81 51 0101 0001 12-11-9-1 Q 118
82 52 0101 0010 12-11.9.2 R 119
83 53 0101 0011 12-119-3 S 0-2
84 54 0101 0100 12-11-9-4 T 0-3
85 56 0101 0101 121195 U 04
86 56 01010110 12-11.96 v 05
87 57 0101 0111 12-119-7 w 0-6
88 58 0101 1000 12-11-9-8 X 0-7
89 59 0101 1001 11-8-1 Y 08
90 A 0101 1010] 1182 Z 09
91 58 0101 1011 $ 11-8-3 (12-8-2
92 5C 0101 1100 * 1184 \ 08-2
93 5D 0101 1101) 1185 } 11-8-2
94 5€ 0101 1110 . 1186 AN 11-8-7
95 5F 0101 1111 A 1187 = 085
96 60 0110 0000 _ 1 ' 8-1
97 61 0110 0001 / 0-1 a 12-0-1
98 62 01100010 11-0.9.2 b 12:0-2
99 63 01100011 11.0.9-3 c 1203
100 64 01100100 11-0.0-4 d 12-:04
101 65 0110 0101 11-0-9-5 e 1205
102 66 01100110 11-0.9-6 f 12-0-6
103 67 01100111 11-0-9-7 g 12-0-7
104 68 0110 1000 11.0.9-8 h 12-08
105 69 0110 1001 0-8-1 i 1209
106 6A 0110 1010 ' 12.11 i 12-11-1
107 6B 0110 1011 , 0-8-3 k 12-11-2
108 6C 01101100 % 0-8-4 | 12-11-3
109 6D 01101101 — 0-8-5 m 12-11-4

UP-8342 Rev. 3

SPERRY UNIVAC 0S5/3
SORT/MERGE

Table D—1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 3 of 5)
EBCDIC ASCH

Hexa- EBCDIC Hollerith ASCil Hollerith
Decimal deci- Binary Graphic Punched Card Graphic Punched Card

mal Character Code Character Code
110 6E 0110 1110 > 0-8-6 n 12115
11 6F 0110 1111 ? 08-7 o 12-11-6
112 70 0111 0000 12110 P 12117
13 7 0111 0001 12-11-0-9-1 q 12-11-8
114 72 0111 0010 12-11-09-2 r 12-11-9
115 73 0111 0011 12-11.0-9-3 s 11-0-2
116 74 0111 0100 12-11-09-4 t 11-0-3
17 75 0111 0101 12-11-0-9-5 u 11.0-4
118 76 01110110 12-11-09-6 v 11-0-5
119 77 0111 0111 12-11-0-9-7 w 11-0-6
120 78 0111 1000 12-11-0-9-8 x 11-0-7
121 79 0111 1001 ' 8-1 y 11-08
122 7A 0111 1010 : 8-2 z 11-09
123 78 0111 1011 z 83 { 120
124 7C 0111 1100 @ 8-4 ! 12-11
125 70 0111 1101 ’ 8.5 } 11-0
126 7€ 0111 1110 = 8-6 ~ 11-011
127 7F 0111 1111 8-7 12:9-7
128 80 1000 0000 12-08-1 11-0-9-8-1
129 81 1000 0001 a 12-0-1 0-9-1
130 82 1000 0010 b 12-0-2 09-2
131 83 1000 0011 c 12-0-3 09-3
132 84 1000 0100 d 12-0-4 0-9-4
133 85 1000 0101 e 12-06 1195
134 86 1000 0110 f 12-0-6 12:9-6
135 87 1000 0111 g 12-0-7 11-9-7
136 88 1000 1000 h 12-08 098
137 89 1000 1001 i 12-0-9 0-9-8-1
138 8A 1000 1010 12-08-2 0982
139 8B 1000 1011 12-0-8-3 0-9-8-3
140 8C 7000 1100 12-0-8-4 0-9-8-4
141 8D 1000 1101 12.08-5 12-9-8-1
142 8E 1000 1110 12-0-8-6 12-9-8-2
143 8F 1000 1111 12-08-7 11-9-8-3
144 90 1001 0000 12-11841 12-11-0-9-8-1
145 97 1001 0001 j 12-111 C 91
146 92 1001 0010 k 12-11-2 11.9-8-2
147 a3 1001 0011 | 12-11-3 93
148 94 1001 0100 m 12-11-4 9-4
149 95 1001 0101 n 12-11-% 9.5
150 96 1001 0110 o 12-11-6 9-6
151 97 1001 0111 p 12-11-7 12-9-8
152 98 1001 1000 q 12118 9-8
153 99 1001 1001 r 12-11-9 9-8-1
154 9A 1001 1010 12-11-8-2 9-8-2
155 98B 1001 1011 12-11-8-3 9-8-3
156 9c 1001 1100 12-11-8-4 12-9-4
157 ap 1001 1101 12-11-85 11-9-4
158 9E 1001 1110 12-11-86 986
159 oF 1001 1111 12-11-8-7 11-0-9-1

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 D-6

SORT/MERGE

Table D—1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 4 of 5)
EBCDIC ASCI|

_ Hexa- EBCDIC Hollerith ASCH Hollerith

Decimal deci- Binary Graphic Punched Card Graphic Punched Card
mal Character Code Character Code

160 AQ 1010 0000 11-0-8-1 12-0-9-1
161 A1l 1010 0001 ~ 11-0-1 12-0-9-2
162 A2 1010 0010 s 11-0-2 12-0-9-3
163 A3 1010 0011 t 11-0-3 12-0-9-4
164 A4 1010 0100 u 11-0-4 12-0-9-5
165 A5 1010 0101 v 11-05 12-0-9-6
166 A6 10100110 w 11-0-6 12-09-7
167 A7 10100111 X 11-0-7 12-0-9-8
168 A8 1010 1000 y 11-0-8 12-8-1
169 A9 1010 1001 z 11-0-9 12-11-9-1
170 AA 1010 1010 11-08-2 12-11-9-2
171 AB 1010 1011 11-08-3 12-11-9-3
172 AC 1010 1100 11-0-8-4 12-11-9-4
173 AD 1010 1101 11-0-8-5 12-1195
174 AE 1010 1110 11-08-6 12-11-9-6
175 AF 10101111 11-08-7 12-11-9-7
176 BO 1011 0000 12-11-0-8-1 12-11-9-8
177 B1 1011 0001 12-11-0-1 11-8-1
178 B2 1011 0010 12-11-0-2 11-0-9-2
179 B3 1011 0011 12-11-0-3 11-09-3
180 B4 1011 0100 12-11-0-4 11-09-4
181 BS 1011 0101 12-11-0-5 11-0-9-5
182 B6 1011 0110 12-11-0-6 11-09-6
183 B7 1011 0111 12-11-0-7 11-0-9-7
184 B8 1011 1000 12-11-0-8 11-0-9-8
185 B9 1011 1001 12-11-09 0-8-1
186 BA 1011 1010 12-11-0-8-2 12-11-0
187 BB 1011 1011 12-11-08-3 12-11-0-9-1
188 BC 1011 1100 12-11-08-4 12-11-0-9-2
189 BD 1011 1101 12-11-0-8-5 12-11-0-9-3
190 BE 1011 1110 12-11-08-6 12-11-09-4
191 BF 1011 1111 12-11-08-7 12-11-09-5
192 co 1100 0000 { 12-0 12-11-0-9-6
193 03] 1100 0001 A 121 12-11-09-7
194 Cc2 1100 0010 B 12-2 12-11-09-8
195 C3 1100 0011 C 12-3 12-0-8-1
196 c4 1100 0100 D 12-4 12-0-8-2
197 c5 1100 0101 E 125 12-0-8-3
198 C6 11000110 F 126 12-0-8-4
199 Cc7 1100 0111 G 12-7 12-0-8-5
200 Cc8 1100 1000 H 12-8 12-08-6
201 Cc9 1100 1001 { 129 12-08-7
202 CA 1100 1010 12-0-9-8-2 12-11-81
203 cB 1100 1011 12-0-9-8-3 12-11-8-2
204 CcC 1100 1100 12-0-9-8-4 12-11-8-3
205 CcD 1100 1101 12-09-8-5 12-11-8-4
206 CE 11001110 12-0-9-8-6 12-11-856
207 CF 1100 1111 12-0-9-8-7 12-11-8-6
208 Do 1101 0000 } 11-0 12-11.87
209 D1 1101 0001 J 11-1 11-0-8-1

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

D-7

Table D—1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 5 of 5)
EBCDIC ASCHI

Hexa- EBCDIC Hollerith ASCII Hollerith
Decimal deci- Binary Graphic Punched Card Graphic Punched Card

mal Character Code Character Code
210 D2 1101 0010 K 11-2 11-0-8-2
211 D3 1101 0011 L 11-3 11-0-8-3
212 D4 1101 0100 M 11-4 11-08-4
213 D5 1101 0101 N 11-5 11-0-8-5
214 D6 1101 0110 0] 11-6 11-0-8-6
215 D7 1101 0111 P 11-7 11-0-8-7
216 D8 1101 1000 Q 11-8 12-11-0-8-1
217 D9 1101 1001 R 119 12-11-01
218 DA 1101 1010 12-11-9-8-2 12-11-0-2
219 DB 1101 1011 12-11-9-8-3 12-11-0-3
220 DC 1101 1100 12-11-9-8-4 12-11-04
221 bD 1101 1101 12-11-9-8-5 12-11-05
222 DE 1101 1110 12-11-98-6 12-11-0-6
223 DF 1101 1111 12-11-98-7 12-11-0-7
224 EO 1110 0000 \ 0-8-2 12-11-0-8
225 E1 1110 0001 11-091 12-11-09
226 E2 1110 0010 S 0-2 12-11-08-2
227 E3 1110 0011 T 0-3 12-11-08-3
228 E4 1110 0100 U 0-4 12-11-0-8-4
229 E5 11100101 \Y 0-5 12-11-08-5
230 E6 11100110 w 0-6 12-11-0-8-6
231 E7 11100111 X 0-7 12-11-08-7
232 E8 1110 1000 Y 08 12-0-9-8-2
233 E9 1110 1001 2 0-9 12-0-9-8-3
234 EA 1110 1010 11-0-9-8-2 12-0-98-4
235 £8 1110 1011 11-09-8-3 12-0-9-85
236 EC 11101100 11-0-9-8-4 12-0-9-8-6
237 ED 11101101 11-0-9-8-5 12-0-9-8-7
238 EE 11101110 11-09-8-6 12-1198-2
239 EF 11101111 11-0-98-7 12-11-9-8-3
240 FO 1111 0000 0 0 12-11-98-4
241 F1 1111 0001 1 1 12-11985
242 F2 1111 0010 2 2 12-11-98-6
243 F3 1111 0011 3 3 12-11-98-7
244 F4 1111 0100 4 4 11-0-9-8-2
245 F5 1111 0101 5 5 11-0-9-8-3
246 F6 1111 0110 6 6 11-09-84
247 F7 11110111 7 7 11-09-8-5
248 F8 1111 1000 8 8 11-0-9-8-6
249 F9 1111 1001 9 9 11-0-9-8-7
250 FA 1111 1010 12-11-0-9-8-2 12-11-09-8-2
251 FB 1111 101 12-11-0-9-8-3 12-11-09-8-3
252 FC 11111100 12-11-0-9-8-4 12-11-0-9-8-4
253 FD 1111 1101 12-11-0-9-8-5 12-11-09-8-5
254 FE 11111110 12-11-0-9-8-6 12-11-0-98-6
255 FF 11111111 12-11-0-9-8-7 12-11-09-8-7

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 D-8
SORT/MERGE

D.3. 0S/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS

The following table shows the 0S/3 collating sequence for EBCDIC characters and
unsigned decimal data. The collating sequence ranges from low (0O000000) to high
(11111111). The bit configurations that do not correspond to symbols (e.g.,, 0—73, 81—89,
etc.) are not shown. Some of these correspond to control commands for printers and other
devices.

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data is collating
algebraically; i.e., each quantity is interpreted as having a sign.

Table D—2. 0S/3 Collating Sequence. EBCDIC Graphics (Part 1 of 2)

Collating Bit Configuration Symbol Meaning
Sequence
0 0000 0000
64 0010 0000 SP Space
74 0100 1010 { Opening bracket
75 0100 1011 . Period, decimal point
76 0100 1100 < Less than sign
77 0100 1101 { Left parenthesis
78 0100 1110 + Plus sign
79 0100 1111 ! Exclamation point
80 0101 0000 & Ampersand
90 0101 1010] Closing bracket
91 0101 1011 $ Dollar sign
92 0101 1100 * Asterisk
93 0101 1101) Right parenthesis
94 0101 1110 ; Semicolon
95 0101 1111 A Logicat NOT
96 0110 0000 - Minus sign, hyphen
97 0110 0001 / Stash
106 01101010 | Vertical bar
107 0110 1011 , Comma
108 01101100 % Percent sign
109 0110 1101 - Underscore
110 01101110 > Greater than sign
111 0110 111 ? Question mark
122 0111 1010 : Colon
123 01111011 # Number sign
124 01111100 @ At sign
125 0111 1101 ! Apostrophe, prime
126 01111110 = Equals sign
127 0111 1111 s Quotation marks
129 1000 0001 a
130 1000 0010 b
131 1000 0011 c
132 1000 0100 d
133 1000 0101 e
134 1000 0110 f
135 1000 0111 g9
136 1000 1000 h
137 1000 1001 i
145 1001 0001 j
146 1001 0010 k
147 1001 0011 t
148 1001 0100 m

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3
SORT/MERGE

Table D—2. 0S/3 Collating Sequence: EBCDIC Graphics (Part 2 of 2)

Collating Bit Configuration Symbol Meaning

Sequence
149 1001 0101 n
150 1001 0110 o
151 1001 0111 P
162 1001 1000 q
153 1001 1001 r
161 1010 0001 ~ Tilde
162 1010 0010 s
163 1010 0011 t
164 1010 0100 u
165 1010 0101 v
166 1010 0110 w
167 10100111 X
168 1010 1000 y
169 1010 1001 z
192 1100 0000 { Opening brace
193 1100 0001 A
194 1100 0010 B
195 1100 0011 C
196 1100 0100 D
197 1100 0101 E
198 1100 0110 F
199 1100 0111 G
200 1100 1000 H
201 1100 1001 |
208 1101 0000 } Closing brace
209 1101 0001 J
210 1101 0010 K
211 1101 0011 L
212 1101 0100 M
213 1101 0101 N
214 1101 0110 (0]
215 1101 0111 P
216 1101 1000 Q
217 1101 1001 R
224 1110 0000 ~ Reverse slant
226 1110 0010 S
227 1110 0011 T
228 1110 0100 U
229 1110 0101 \
230 1110 0110 W
231 11100111 X
232 1110 1000 Y
233 1110 1001 z
240 1111 0000 0
241 1111 0001 1
242 1111 0010 2
243 1111 0011 3
244 1111 0100 4
245 1111 010 5
246 1111 0110 6
247 1111 0111 7
248 1111 1000 8
249 1111 1001 9

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 D-10
SORT/MERGE

D.4. 0S/3 COLLATING SEQUENCE FOR ASCIl GRAPHIC CHARACTERS

Table D—3 shows the 0S/3 collating sequence for ASCII characters and unsigned decimal
data. The collating sequence ranges from low (00000000) to high (01111111). Bit
configurations that do not correspond to symbols are not shown.

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and the signed

numeric data formats are collated algebraically; i.e., each quantity is interpreted as having
a sign.

Table D—3. 0S/3 Collating Sequence: ASCIl Graphics (Part 1 of 2}

(S::::;:\ncge Bit Configuration Symbol Meaning
0 0000 0000 Nuli
32 0010 0000 sP Space
33 0010 0001 ! Exclamation mark
34 0010 0010 " Quotation mark
35 0010 0011 # Number sign
36 0010 0100 $ Doillar sign
37 0010 0101 % Percent sign
38 00100110 & Ampersand
39 0010 0111 ! Apostrophe, prime
40 0010 1000 { Opening parenthesis
41 0010 1001) Closing parenthesis
42 0010 1010 * Asterisk
43 0010 1011 + Plus sign
44 0010 1100 , Comma
45 00101101 - Hyphen, minus sign
46 0010 1110 . Period, decimal point
47 0010 1111 / Slant
48 0011 0000 0
49 0011 0001 1
50 0011 0010 2
51 0011 0011 3
52 0011 0100 4
53 0011 0101 5
54 0011 0110 6
55 0011 0111 7
56 0011 1000 8
57 0011 1001 9
58 0011 1010 : Colon
59 0011 1011 ; Semicolon
60 0011 1100 < Less than sign
61 0011 1101 = Equals sign
62 0011 1110 > Greater than sign
63 0011 1111 ? Question mark
64 0100 0000 @ Commercial at sign
65 0100 0001 A
66 0100 0010 B
67 0100 0011 C
68 0100 0100 b
69 0100 0101 E
70 0100 0110 F
71 01000111 G
72 0100 1000 H
73 0100 1001 !
74 0100 1010 J
75 0100 1011 K
76 0100 1100 L
77 0100 1101 M

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

D-11

Table D—3. 05/3 Collating Sequence: ASCIl Graphics (Part 2 of 2)

Collating Bit Configuration Symbol Meaning
Sequence
78 0100 1110 N
79 0100 1111 0
80 0101 0000 P
81 0101 0001 Q
82 0101 0010 R
83 0101 0011 S
84 0101 0100 T
85 0101 0101 u
86 0101 0110 Y
87 0101 0111 w
88 0101 1000 X
89 0101 1001 Y
90 0101 1010 z
91 0101 1011 [Opening bracket
92 0101 1100 \ Reverse siant
93 0101 1101] Closing bracket
94 0101 1110 A Circumflex
95 0101 1111 et Underscore
96 0110 0000) Grave accent
97 0110 0001 a
98 0110 0010 b
99 0110 0011 c
100 0110 0100 d
101 01100101 e
102 01100110 f
103 01100111 g
104 0110 1000 h
105 0110 1001 i
106 0110 1010 j
107 0110 1011 k
108 0110 1100 I
109 0110 1101 m
110 01101110 n
111 0110 1111 o
112 0111 0000 p
13 0111 0001 q
114 0111 0010 r
115 0111 0011 s
116 0111 0100 t
17 0111 0101 u
118 0111 0110 v
119 0111 0111 w
120 0111 1000 x
121 0111 1001 y
122 0111 1010 z
123 01111011 { Opening brace
124 0111 1100 | Vertical line
125 0111 1101 } Closing brace
126 0111 1110 ~ Tilde

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

Index 1

SORT/MERGE
Index
Term Reference Page Term Reference Page
ASCII
code correspondence D2 D—1
A di collating sequences D.1 D—1
cgzzsiczzeeds, Irect access Table 1—2 1—10 cross-reference table Tabie D—1 D—3
description D.23 D—2
. variable-length records, partitioned
Acronyms Al A-l files 324 3—34
Action code . ;
input file processing 3322 3—47 ASCH graphics, collating
output file processing 33.25 3—48 Sequence Table D—3 D—10
: Assembler directives
Act d 3.2 —
ction wor 3322 3—47 DC 333 354
Address out (ADDROUT) sort Bgop 72 . 1—2
description 105 10—11 33. 3—59
Fig 10—8 10—11 END 6.11.1 6—39
example 12.2 12—2 3%22 gﬂi 2_1318
sample control stream 12.3 12—6 B —
pie control sk START 6111 6—39
USING, DROC routine 13 7—4
ADDROUT k d t ')
MR$§%mo:nag?0rame o 6.4.22 6—20 USING, subroutme. sort/merge 6.2 6—5
OPTION control statement 3.26 3—-39 USING, RSOC routine 1.2 1=2
tag sort 81 &=L Auto delete 73 7—4
AD,{AAR%LP;&W;?;S; arametef, 6.4.24 6—25 Automatic data reduction See data
o reduction
Alternate collating sequence 1134 11—-36 routine.
. . i . . Auxiliary storage
Alternate library, storing own-code routine 337 3—59 checking availability 66 6—32
. . disk 1.7.2 1—10
Alternative sort programs 1.2 1—1 inadequate 53992 5_7
standard file names 17.2 1—10
ALTSEQ statement 11.34 11—-36 tape 172 11
ALTWK keyword parameter, work area 172 1-10
OPTION control statement 326 3—-37
American National Standard Codes for
Information Interchange See ASCIl.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 2
SORT/MERGE
Term Reference Page Term Reference Page
B C
Base register addressing 6.2 6—4 CALC keyword parameter, MR$PRM
macro 64.24 6—26
Basic Assembler Language (BAL) 6.1 6—1
CALCAREA keyword parameter
BIN keyword parameter control statement example 42 4—3
MR$PRM macro 6422 6—21 OPTION control statement 3.26 3—42
PARAM control statement 326 3—42
6.12 6—53 CANCEL supervisor macro 6.9 6—34
RECORD control statement 322 3—24
Capabilities
Binary key fields 321 3—16 independent sort/merge 1.2.1 1-2
6.4.1 6—9 subroutine sort/merge 1.2.2 1—2
system/3, 32, and 34
Blanks Al A—5 compatible sort 123 1-3
BLKSIZE keyword parameter Capital letters Al A—1
INPFIL control statement 323 3-27
OUTFIL control statement 324 3—31 Checksum word 6424 6—28 -
Block size See BLKSIZE CLOSE imperative macro
keyword parameter. input file 6.7 6—32
output file 6.9 6—34
Braces Al A—2
CLOSE keyword parameter
Brackets Al A2 INPFIL control statement 323 3-=27
OUTFIL control statement 324 3—-31
Branch and link assembier
instruction 6.2 6—4 CLOSE keyword parameter
INPFIL controi statement 323 3-—-27
Branch table, exit codes OUTFIL control statement 324 3-31
format Table 3—3 3-—56
function 335 3—55 CoBOL
extended COBOL interface
Buffer area 52 5--3 requirements Appendix C
Table C—1 C—2
Buffer offset See BUFOFF sort program job control
keyword parameter. stream Fig. C—1 C—4
subroutine sort/merge 6.1 6—1
BUFOFF keyword parameter
INPFIL control statement 3.23 327 Coding conventions Al A—1
OUTFIL control statement 324 3—31
Collating sequence
BYPASS keyword parameter, INPFIL alternate 11.34 11-36
control statement 323 327 ASCH graphics Table D—3 D—10
single key field 6.4.1 6—11
Byte-bit format
independent sort/merge 321 3—16 Commas Al A—1
subroutine sort/merge 6.4.1 6—9 .
Comment field A2 A—7
Byte numbering method
independent sort/merge 321 3—16 Compatible sort, system/3, 32, and 34 123 1—-3
subroutine sort/merge 6.4.1 6—9
Condition code 712 7—=2

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 3
SORT/MERGE
Term Reference Page Term Reference Page
Conditional force 11.333 11—24 | Data input phase
independent sort/merge 2322 2—8
Consolidated data management 9.6 9—13 SORT3 10.3.2 10—6
Continuation indicator A2 A—7 DATA keyword parameter, INPFIL
control statement 323 3—28
Continuation statements A2 A—7
Data management
Control specifications, SORT3 11.3 11—6 considerations 1.5 1—6
12.2 12—1 Table 1—1 1—7
macro specifications, coding Fig. 6—3 6—6
Control statements, sort/merge routines 6.3 6—5
definition 32 3—14
END 325 3—35 Data management keywords
examples 42 4—1 BLKSIZE 6.3 6—6
format rules A2 A—b EOFADDR 333 3—51
INPFIL 323 3—25 ERROR 3323 3—48
MERGE 341 3—60 3326 3—49
MODS 331 3—44 6.3 6—6
OPTION 3.2.6 3—36 I0AREA1 6.3 6—6
OUTFIL 324 3—29 I0AREA2 6.3 6—6
RECORD 322 3-—23 IOREG 6.3 6—6
SORT 321 3—15 LABADDR 3324 3—48
OPTION 6.3 6—6
Control stream See job control stream. SAVAREA 333 3—51
TYPEFLE 6.3 6—6
Conversion table, user-defined
collation sequencing 335 3—55 Data management macros
DTFDA 6.3 6—5
COPY keyword parameter, SORT DTFMT 6.3 6—5
control statement 321 3—18 DTFNI 6.3 6—5
8.1 81
Cross-reference table, DTFSD 6.3 6—5
EBCDIC/ASCII/Hollerith Table D—1 D—3 LBRET 3324 3—148
CSPRAM keyword parameter Data records
OPTION control statement 3.26 3—36 after sort Fig. 1—3 1-—14
MR$PRM macro instruction 6424 6—27 before sort Fig. 1—2 1-—13
Cylinders, allocating 311 3—11 Data reduction routine
independent sort/merge 33.1.2 3—46
3328 3—50
subroutine sort/merge 7.3 7—3
6.4.2.4 6—27
Data strings 2322 2—8
Fig. 5—3 5—4
Data block 6.4.2.4 6—28
DC assembler directive 333 354
Data capacities, direct access
devices Table 1—2 1—10 DEBLANK keyword parameter, RECORD
control statement 322 3—-25
Data file organization 1.7.3 1—11
Default disk sort 45 4—18
Data format codes Table 3—1 3—17
Table 6—1 6—10 Default specifications Al A—2

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 4
SORT/MERGE
Term Reference Page Term Reference Page
Define storage (DS) statement 6.3 6—7 Duplicate records 73 7—3
DELETE data reduction routine 3312 3—46 DVC job control statement 311 3—10
3.3.28 3—51 6.11.4 6—48
11.2.2 114
DELETE specification, DROC parameter 13 7—5
Device assignment
input files 311 3—10
job control statements 311 3—10
output files 311 3—10
results Fig. 3—4 3—13
work files 311 3—10
Direct access devices E
access speeds Table 1—2 1—10
data capacities Table 1—2 1—10 EBCDIC
code correspondence D.2 D—2
DISC keyword parameter collating sequences Appendix D
MR$PRM macro 6421 6—16 cross-reference table Table D—1 D—3
PARAM control statement 326 3—42 data format 323 3—28
6.12 6—53 description D22 D—2
SORT control statement 321 3—20
Ellipsis Al A—3
Disk sort
consolidated data management 9.6 9—13 Embedded bianks Al A—5
flowchart Fig. 6—1 6—2
END assembler directive 6.11.1 6—40
DROC keyword parameter, MR$PRM
macro instruction 6424 627 END control statement
coding 325 3—35
DROC routine See data reduction use 32 3—15
own-code routine.
End-of-data {/*) statement 6.11.4 6—48
DROP assembler directive
DROC 1.3 7—3 End-of-file condition 832 8—12
RSOC 1.2 712
End-of-job 8.3.2 8—12
DS assembler directive 334 3—55
EOF routine 832 8—12
DTFDA macro instruction 6.3 6—5
EOFADDR keyword parameter 333 3—-51
DTFMT macro instruction 6.3 6—5
Equal key fields 6424 6—27
DTFNI macro instruction 73 7—3
data management 8.1 8—1
defining files, subroutine sort/merge 6.3 6—5 Equal signs Al A—1
retrieving disk address 6.4.2.2 6—21
ERASE keyword parameter, OPTION
DTFSD macro instruction 6.3 6—5 control statement 326 3—-37
6.42.2 6—21
Error handling routine
DUMP keyword parameter, OPTION read error processing, merge-only 343 3—64
control statement 326 3-—37 read error processing, sort/merge 3323 348
subroutine sort/merge 6.9 6—34
Duplicate keys 73 7—3 write error processing 3326 3—49

Term

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

Index 5

Error messages

Exit codes

SORT/MERGE
Reference Page Term Reference Page
ERROR keyword parameter External reference (EXTRN) 6.2 6—3
data management 6.3 6—6 6424 6—25
read error processing, merge-only 343 3—64
read error processing, sort/merge 3323 3—48 EXTRN assembler directive 6.2 6—3
subroutine sort/merge 6.9 6—34 8.3.2 8—38
write error processing 3326 3—49
326 3—42
EXEC ASM statement 6.11.4 6—47
EXEC statement 2.3 2—4
6.113 6—41
11.2.3 11-5
branch table 335 3—55 F
coding example Fig. 3—17 3-52
coltating example 3329 3-51 Field description specification, SORT3
data reduction 3328 3—50 column summary Table 11—8 1135
functions and associated phases Table 3—2 3—44 description 1131 11—7
input file label processing 3321 3—46 11333 11—-21
input file processing, merge-only 342 3—63 examples 11.333 11—-24
input file processing, sort/merge 3322 3—47 formats Fig. 11—7 11-—-22
input file read error processing,
merge-only 343 3—64 FIELD keyword parameter, MR$PRM
input file read error processing, macro 6.4.1 6—8
sort/merge 3323 3—48
output file label processing 3324 3—48 FIELDS keyword parameter
output file processing 3325 3—48 MERGE control statement 341 3—60
parameter list 336 3—56 SORT control statement 321 3—-16
program example 333 3—51
record sequencing 3327 3—50 File blocking, merge-only, control statement
using 332 3—46 examples 42 4—4
write error processing 3326 3—49
FILE keyword parameter, SORT
EXIT keyword parameter control statement 321 3-21
INPFIL control statement 323 3—28
OUTFIL control statement 324 3—31 File preparation 1.6 1—7
Exit parameter list FILES keyword parameter, MERGE
format Table 3—4 3-—=57 control statement 341 3—61
formatting 336 3—56
FILTYPE keyword parameter, OUTFIL
Exiting to routines control statement 324 3-31
system-supplied 3312 346
user own-code 3311 3—44 FIN job control statement 6.114 6—49
11.24 11—6
EXT job control statement 311 3—11
6.11.4 6—49 FIN keyword parameter, MR§PRM
macro instruction 6.4.1 6—12
Extended Binary Coded Decimal
Interchange Code See EBCDIC. Final merge phase
independent sort/merge 2324 2—11
Extended COBOL, subroutine SORT3 10.3.4 10—9
Table C—1 C—2 subroutine sort/merge Fig. 5—4 5—5

sort/merge

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 6
SORT/MERGE
Term Reference Page Term Reference Page
Fixed-length records |
merge-only, control statement
example 42 4—4 IBM System/3 compatible sort 1.2.3 1—-3
partitioned files 324 3—-34 »
size 322 3—23 IN keyword parameter, MR§PRM
tape sort, control statement macro instruction 6.4.1 6—12
example 42 4—1
with user exits, control INCLUDE statement 6.11.2 6—41
statement example 4.2 43 6.11.4.1 6—52
Force-all condition 11333 11—26 | Independent default sort, job
control stream example 45 4—18
Format rules Al A—1
Independent disk sort
FORMAT subparameter coding Fig. 3.2 33
MERGE control statement 341 3—60 flowchart Fig. 3—1 3-—2
SORT control statement 321 3—-17 job control stream 311 3-3
job control stream examples 43 4—4
key, record, and block
relationship Fig. 2—1 2--3
sample program 22 2—2
Independent sort/merge
basic concepts Section 2
byte numbering method 321 3—16
G control statement examples 42 4—1
control statement format rules A2 A—6
Generic terms Al A—1 control statements 32 3—14
control stream 311 3—11
GET imperative macro 6.5 6—31 data flow Fig. 2—3 2—6
data format 321 3—-17
GETREC routine 8.3.2 8—11 data records 322 3—-23
defining files 311 3—10
execution 2.3 2—3
Fig. 2—2 2—4
executing from workstation 35 3—65
flowchart Fig. 3—1 3—2
introduction 1.2.1 1-2
job control stream 311 3—3
Fig. 3—3 3—12
key fields 321 3—16
H merge-only operation 34.1 3—60
minimum main storage requirements 1.7.1 1-9
Hardware devices 311 3—10 operation phases gig_'22_3 g_g
Header specification, SORT3 record layout 321 3—16
requirements Section 3
column summary Table 11—3 11—13 scratch files 321 320
description ﬁgé 1 ﬁ_;o software framework 231 2—5
formats Fig’ 11—5 11:11 sort operation 321 3—15
: sorting sequence 321 3—18
Hollerith special specifications 3.26 3—36
code correspondence D.2 D—2 tag ks_ort gg? g—gg
cross-reference table Table D—1 D—3 working storage - -
punched card code description D21 D—2
Hyphens Al A—1

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

Index 7

SORT/MERGE
Term Reference Page Term Reference Page
Independent tape sort, job control INTERLACE keyword parameter
stream examples 4.4 4—15 INPFIL control statement 323 3—28
OUTFIL control statement 324 3—29
Indexed random access method
(IRAM) files See IRAM Interlacing See INTERLACE
files. keyword parameter.
Indexed sequential files (ISAM) See ISAM. Internal sort
independent sort/merge 2322 2—8
Initial sorting 2322 2—8 321 3—20
main storage requirements 1.7.1 1—9
Initialization phase SORT3 10.3.2 10—6
independent sort/merge 2321 2—7 subroutine sort/merge 95 9—13
SORT3 10.3.1 10—5
subroutine sort/merge Fig. 5—2 53 I/0 data file organization 173 1—-11
INPFIL control statement 1/0 data structuring 1.8 1—12
BLKSIZE keyword parameter 323 3—27
BUFOFF keyword parameter 323 3-27 I/0 devices 311 3—10
BYPASS keyword parameter 323 3-27
CLOSE keyword parameter 323 327 IOAREAL keyword parameter, data
DATA keyword parameter 323 3—28 management 6.3 6—6
EXIT keyword parameter 323 3—28
format 323 3—26 I0AREAZ keyword parameter, data
function 323 3—25 management 6.3 6—6
INTERLACE keyword parameter 323 3—28
OPEN keyword parameter 323 3—29 IOREG keyword parameter, data
SKIPBYTE keyword parameter 323 3—29 management 6.3 6—6
use 32 3—14
VOLUME keyword parameter 323 3—29 IRAM files
FILTYPE keyword parameter 324 3—30
Input files restrictions 1.6 1—7
defining 323 3—25 tag sort 326 3—38
device assignment 311 3—10
LABADDR keyword parameter 3321 3—46 ISAM files, restriction 1.6 1—7
label processing, own-code 2.1 2—1
routine 3321 3—46
LBRET imperative macro 3321 3—46
maximum number 326 3—40
merge-only operation 341 3—61
multipartitioned disk files 323 3—28
processing, merge-only 342 3—64
processing, sort/merge 3322 3—47
read error processing, sort/merge 3323 3—48
unsorted records Fig. 3—12 3-—38
Input routine 2322 2—8
Input tape file
closing 323 3—-27
opening 323 3—29
Interactive operation
independent sort/merge 35 3—65
SORT3 10.6 10—13
Interlace factor 324 3—32

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 8

SORT/MERGE
Term Reference Page Term Reference Page
J JOB statement 311 3—3
6.114 6—43
Job control dialog 35 3—65 11.21 11—4
Job control statements
DVC 311 3—10
6.11.4 6—48 K
11.2.2 114
EXEC 11.23 11-5 Key fields
EXT 311 3—11 equal 6424 6—27
6.114 6—49 73 7—3
FIN 6.114 6—49 tag sort 326 3-—-38
11.24 11—6 6.4.2.2 6—20
JOB 6.114 6—43 8.1 8—1
11.2.1 114
LBL 311 3—11 KEYLEN keyword parameter, OPTION
6.11.4 6—49 control statement 326 3—26
LFD 311 3—11
6.11.4 6—49 Keyword parameter Al A—4
PARAM 326 3—42
6.12 6—53
VoL 311 3—10
6114 648 L
See also SORT3 job control statements.
LABADDR keyword parameter, data
Job control streams management _
COBOL sort program Fig. C—1 C—4 input file label processing 3321 3—46
entering from workstation 35 3—65 output file label processing 3324 3—48
independent default sort examples 45 4—18
independent disk sort examples 43 4—4 LABEL keyword parameter, OPTION
independent merge-only operation Fig. 3—19 3—63 control statement 326 3—36
independent sort/merge 311 3—3
Fig. 3—3 3—12 Label types 326 3—40
independent tape sort examples 44 4—15
own-code routines 337 3—57 LBL]Ob control statement 311 3—11
PARAM statement, testing for 3.26 3—42 6114 6—43
SORT3, executing under 0S/3 .
job control Fig. 11—1 11—2 LBRET imperative macro
12.3 12—6 input file label processing 3321 3—46
SORT3, executing under 0S/3 output file label processing 3324 3—48
OCL processor Fig. 11—2 113
12.3 12—6 LENGTH keyword parameter, RECORD
submitting parameters 6.12 6—53 control statement 322 3—23
subroutine sort/merge 6.114 6—43)
Fig. 6—22 6—50 LFD job control statement 311 3—11
tape work file 6.115 6—53 6.11.4 6—49
Job deck Link edit, subroutine
COBOL sort program Fig. C—1 C—4 sort/merge 6.112 6—41
independent sort/merge Fig. 3—1 3-=2
subroutine sort/merge Fig. 6—22 6—50 Link edit run 6.2 6—3
Job priority 6.114 6—47 LINK statement 6.114 6—48
Job run library file (SY$RUN) 6.2 6—3 Linkage editor 6.2 6—3
6.11.2 6—41
Literal table 6.11.1 6—40

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 9
SORT/MERGE
Term Reference Page Term Reference Page
Load-address (LA) Merge, preliminary See preliminary
instruction 6.5 6—31 merge phase.
Load modules 531 5—6 MERGE contro! statement
331 3—44 FIELDS keyword parameter 341 3—60
FILES keyword parameter 341 3—61
Load register {LR) instruction 6.5 6—31 format 341 3—60
function 341 3—60
LOADM statement 6.11.2 6—41 MERGEP keyword parameter 34 3—61
6.114.1 6—52 ORDER keyword parameter 341 3—61
use 32 3—14
Location counter 6.2 6—3
MERGE keyword parameter, MR§PRM
Lowercase terms Al A—1 macro 6424 6—28
LTORG assembler directive 6.9 6—34 Merge-only, subroutine See subroutine
6.11.1 6—40 merge-only.
832 8—12
Merge-only exit code
input file processing 342 3—63
input file read error processing 343 3—64
Merge-only operation
independent sort/merge 341 3—60
M input files 34.1 361
. , job control stream Fig. 3—19 3—63
Machine language program 6.11.1 6—40 subroutine sort/merge 8.3 8—9
Macro instructions, sort/merge MERGEP keyword parameter, MERGE
format rules A3 A—8 control statement 341 3—61
MGSREL 83.1 8—3
8.3.2 8—10 Messages
MGSRET 831 8—3 error 326 3—42
832 8—11 system console 326 3—41
MR$OPN 6.5 6—31
MR$PRM 6.4 6—8 MGS$REL macro instruction
MRSREL 6.6 6—32 format 831 8—3
MRSRET 6.8 6—33 function 8.3.2 8—10
MR$SRT 6.7 6—32
MG$RET macro instruction
Magnetic tape devices, transfer rates Table 1—3 1—11 format 831 83
function 8.3.2 8—11
Main storage allocation
JOB statement 311 3—10 | MODS control statement
program requirements 17.1 1-9 format 33.1 3—44
STOR keyword parameter Fig. 6—7 6—13 function 331 3—44
STORAGE keyword parameter 326 3—42 PHn keyword parameter 33.1 344
Fig. 6—8 6—14 use 32 3—14
Main storage requirements Modular organization, independent
independent merge-only 1.7.1 1—-9 sort/merge 231 2.5
independent sort/merge 1.7.1 1-9
internal only sort/merge 17.1 1-9 Modular sort structure, concept 13 1—4
subroutine sort/merge 171 1-9 Fig. 1—1 1-—5
SORT/3 171 1-9
] MR$OPN macro instruction 6.5 6—31
Merge, final See final merge
phase. MRS$ORT external reference 6.2 6—3

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 10

SORT/MERGE
Term Reference Page Term Reference Page .
MR$PRM macro instruction N
ADDROUT keyword parameter 6.4.2.2 6—20
8.1 8—1 NOCKSM keyword parameter
ADTABL keyword parameter 64.24 6—25 MR$PRM macro 6.4.24 6—28
BIN keyword parameter 64.2.2 6—21 PARAM control statement 3.2.6 3—42
CALC keyword parameter 6.4.24 6—26 6.12 6—53
CSPRAM keyword parameter 64.2.4 6—27 SORT control statement 321 3-21
DISC keyword parameter 6.4.2.1 6—16 sort/merge performance 174 1—11
DROC keyword parameter 6.4.2.4 6—27
FIELD keyword parameter 6.4.1 6—8 Nonindexed file, FILTYPE
FIN keyword parameter 6.4.1 6—12 keyword parameter 324 3—31
format 6.4 6—8
6.10 6—38 | Nonstandard label processing 3.3.24 3—48
Fig. 6—19 6—38
function 64 6—8 Nonstandard labels See LABEL
IN keyword parameter 6.4.1 6—12 keyword parameter.
NOCKSM keyword parameter 6424 6—28
optional parameters 6.4.2 6—15 | NOTE imperative macro 6.4.2.2 6—21
OUT keyword parameter 6.4.1 6—12 81 8—1
PAD keyword parameter 6.4.24 6—29
PRINT keyword parameter 6424 6—29 NOTPMK keyword parameter,
RCSZ keyword parameter 6.4.1 6—14 OUTFIL control statement 324 3—32
required parameters 6.4.1 6—8
RESERV keyword parameter 6.4.2 6—17 NPTN keyword parameter, OUTFIL
restart facilities 8.2 8—2 control statement 324 3—32
RESUME keyword parameter 6.4.2.3 6—23
RSOC keyword parameter 6.4.1 6—8 Numbering sort specifications, SORT3 1132 11-8
SHARE keyword parameter 6421 6—18
SIZE keyword parameter 6424 6—26
STOR keyword parameter 6.4.1 6—12
TAPE keyword parameter 6.42.1 6—16
USEQ keyword parameter 6.422 6—22 o
MR$REL macro instruction 6.6 6—32
Object code 6.11.1 6—40
MRS$RET macro instruction 6.8 6—33
OPEN imperative macro 6.5 6—31
Multipartitioned disk files
copying 321 3—18 | OPEN keyword parameter
copying corresponding partitions Fig. 3—5 3—19 INPFIL control statement 323 3—29
copying specific partitions Fig. 3—6 3—20 OUTFIL control statement 324 3—32
fixed-length records 324 3—34
input processing 323 3—28 | Operand field A2 A—6
merge-only operation 34.1 3—61
Fig. 3—18 3—62 | Operation field A2 A—6
moving sorted partitions Fig. 3—7 3—-22
output file space 324 3—35 | Operation phases, independent
output processing 3.24 3—32 sort/merge
output record sizes 324 3—33 overview Fig. 2—3 2—6
partition size Fig. 3—10 3—34 phase 0, initialization 2321 2—7
variable-length records 324 3—34 phase 1, data input 2322 2—8
phase 2, preliminary merge 2323 2—9
Multiple key fields 6.4.1 6—11 phase 3, final merge 2324 2—11

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

Index 11

SORT/MERGE
Term Reference Page Term Reference Page
Operation phases, subroutine sort/merge Optional entries Al A—2
final merge (phase 3) 5324 5—9
Fig. 5—4 55 Optional parameters Al A—2
initial sort (phase 1) 5322 5—6
Fig. 5—2 53 ORDER keyword parameter, MERGE
preliminary merge {phase 2) 5323 5—8 control statement 341 3—61
Fig. 5—3 5—4
sort initialization and assignment OUT keyword parameter
(phase 0) 5321 5—6 linkage editor control statement 337 358
fFig. 5—1 52 6.11.4 6—A48
MR$PRM macro instruction 6.4.1 6—12
Operation phases, system/3, 32, 34
compatible sort QUTFIL control statement
description 10.3 10—2 BLKSIZE keyword parameter 324 3—31
Fig. 10—3 10—4 BUFOFF keyword parameter 324 3—-31
phase 0, initialization CLOSE keyword parameter 324 3-31
and assignment 10.3.1 10—5 EXIT keyword parameter 324 3—31
Fig. 10—4 10—=5 FILTYPE keyword parameter 324 3—-32
phase 1, data input and format 324 3—30
internal sort 10.3.2 10—6 function 324 3—29
Fig. 10—5 10—7 INTERLACE keyword parameter 324 3—-32
phase 2, preliminary merge 10.3.3 10—8 NOTPMK keyword parameter 324 3—32
Fig. 10—6 10—8 NPTN keyword parameter 324 3—-32
Phase 3, final merge and OPEN keyword parameter 324 3-32
output 10.3.4 10—9 RCSZ keyword parameter 324 3—33
Fig. 10—7 10—9 SIZE keyword parameter 324 3—33
TYPE keyword parameter 324 3—34
OPR control statement 3.6.4 3—64 UOS keyword parameter 324 3—35
use 32 3—14
OPTION control statement
ADDROUT keyword parameter 3.26 3—-36 Output files
ALTWK keyword parameter 326 3—37 defining 324 3—29
CALCAREA keyword parameter 326 3—36 device assignment 311 3—10
coding examples Fig. 3—11 337 fabel processing, own-code routines 3324 3—48
CSPRAM keyword parameter 326 3—36 multipartitioned 324 3—34
DUMP keyword parameter 326 3—-37 Fig. 3—10 3—34
ERASE keyword parameter 3.26 3—37 processing, own-code routine 3325 3—48
format 326 3—36 single-partition 324 3—33
function 326 3—36 Fig. 3—-9 3-33
KEYLEN keyword parameter 326 3-36 tag sorted, ADDROUT=A Fig. 3—13 338
LABEL keyword parameter 326 3—36 tag sorted, ADDROUT=D Fig. 3—14 3-—-39
PRINT keyword parameter 326 3—36
RESERV keyword parameter 326 3—-36 Output record ltoop 6.8 6—33
RESTART keyword parameter 326 3—36
ROUTE keyword parameter 326 3-—37 Output routine 6.8 6—33
SHARE keyword parameter 326 3—36
SORTIN keyword parameter 326 3—37 Own-code, capabiiity 1.6 1—8
SORTOUT keyword parameter 326 3-—-37
SORTWK keyword parameter 326 3—-37
STORAGE keyword parameter 326 3—-36
use 32 3—14
VERIFY keyword parameter 326 3—36
OPTION keyword parameter, data
management 6.3 6—6

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 12

SORT/MERGE
Term Reference Page Term Reference Page ‘
Own-code routines P
assembling and linking 337 3—57
branch table 335 3—55 Packed decimal data format 342 3—64
collating sequence 3329 3—51
conversion table 335 3—56 PAD keyword parameter, MR$PRM macro 6.4.2.4 6—29
data reduction (DROC),
independent sort/merge 3328 3—50 PARAM job control statement
data reduction (DROC), BIN keyword parameter 6.12 6—53
subroutine sort/merge 6.4.24 6—27 DISC keyword parameter 6.12 6—53
1.3 7—3 format 6.12 6—54
defining exits 331 3—44 NOCKSM keyword parameter 6.12 6—53
general-purpose registers 334 3—55 RESERV keyword parameter 6.12 6—53
input file label processing 3321 3—46 RESUME keyword parameter 6.12 6—53
input file processing, merge-only 34.2 3—63 SHARE keyword parameter 6.12 6—54
input file processing, sort/merge 3322 3—47 TAPE keyword parameter 6.12 6—54
input file read error processing,
merge-only 343 3—64 Parameter list, own-code routine 336 3—56
job control requirements 337 357
load modules 331 3—44 Parameter table
output file label processing 3324 3—48 additional 6.4.24 6—25
output file processing 3325 3—48 previous program Fig. 6—15 6—26
parameter list 336 3—56 sort Appendix B
phases 331 3—44
program example 333 3—51 Parentheses Al A—1
read error processing 3323 3—48
record sequence (RSOC} 7.2 7—1 Partition size
record sequencing 3327 3—50 multipartitioned disk files Fig. 3—10 3—34
return address 334 3—55 single-partition disk files Fig. 3—9 333
save area 334 3—55
write error processing 3326 3—49 Partitioned disk files See multipartitioned
disk files.
PASS subparameter 6423 6—23
Performance factors, sort/merge 17 1—8
Phases See operation phases.
PHn keyword parameter, MODS control
statement 331 3—44
Positional subparameters Al A—5
Preliminary merge phase
independent sort/merge 2323 2—9
SORT3 10.3.3 10—8
subroutine sort/merge Fig. 5—3 54
PRINT keyword parameter
MR$PRM macro 6.4.24 6—29
OPTION control statement 326 3—36
PUBS list 321 3—20
PUT imperative macro 6.8 6—33
PUTREC routine 832 8—12

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3
SORT/MERGE

Index 13

Term

RCSZ keyword parameter
MR$PRM macro
OUTFIL control statement

Read error processing sort/merge
error handling routine
ERROR keyword parameter

Read record loop
Record and file preparation
Record comparisons

RECORD control statement
BIN keyword parameter
DEBLANK keyword parameter
format
function
LENGTH keyword parameter
RCSZ keyword parameter
TYPE keyword parameter
use

Record definition, parameters
Record handling, SORT3

Record layouts
170 data file organization
subroutine sort/merge

Record sequence own-code routine (RSOC)

Record strings

Record type specification, SORT3
column summary
column 8 entries
description

Factor 1 field length
requirements

format

test relationships, Factor 1
and 2 comparisons

RESERV keyword parameter
MR$PRM macro
OPTION control statement
PARAM control statement

Reference Page

6.4.1 6—14
324 3—33
3323 3—48
3323 3—48
6.6 6—32
1.6 1-7
7.2 7—1
322 3—24
322 3—25
322 3—23
322 3—23
322 - 3—23
322 3—24
322 324
32 3—14
6422 6—19
10.4 10—10
173 1—11
6.4.1 6—9
1.2 7—1
2323 2—9
Fig. 5—3 5—4

Table 11—7 11—20
Table 11—4 11—17
1131 11-7
11332 11—-14

Table 11—6 11—18
Fig. 11—6

Table 11—5 1117

6421 6—17
326 3—36
326 3—42
6.12 6—53

11—-15

Term

Reserved tape unit
independent sort/merge
subroutine sort/merge

RESTART keyword parameter, OPTION
control statement

Restrictions

indexed random access method

(IRAM) files
ISAM files
sort program

RESUME keyword parameter
MR$PRM macro
PARAM control statement

restart facilities

Rewind methods
input tape file closing
input tape file opening
output tape file closing
output tape file opening

ROUTE keyword parameter, OPTION
control statement

Routines, exiting
system-supplied
user own-code

RSOC keyword parameter
MR$PRM macro
record sequencing

RSOC routine

Reference

326
6.4.2.1

326

16
16

6423
326
6.12
8.2

323
3.23
324
324

326

3312
3311

6.4.1
6.4.1

Page

3—40
6—17

6—23
3—42
6—53

3-—27
3—29
3—-31
3—32

3—46
3—44

6—8 .
6—11

See record sequence
own-code routine.

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 14

SORT/MERGE
Term Reference Page Term Reference Page
S TAPE keyword parameter 321 3—20
use 32 3—14
SAVAREA keyword parameter, data WORK keyword parameter 321 3—20
management 333 3—51
Sort files 6.4.2.1 6—17
Scratch files, subroutine sort/merge 6.4.2.1 6—17
Sort job step, termination 5.3.22 5—7
Sequence field A2 A—7
Sort/merge
Sequential access method file, FILTYPE modules, calling in Fig. 5—1 5—2
keyword parameter 324 3—32 parameter usage summary Table 6—2 6—40
SG$ORT See sort com- Sort/merge macro instructions
mon module. MGS$REL 832 8—6
MGSRET 8.3.2 8—6
Shaded background Al A—2 MR$OPN 6.5 6—31
MR$PRM Fig. 6—1 6—2
SHARE keyword parameter 6.4.1 6—8
MR$PRM macro 6.4.2.1 6—18 MRSREL 6.6 6—32
OPTION control statement 326 3—36 MRSRET 6.8 6—33
PARAM control statement 326 3—42 MR$SRT 6.7 6—32
6.12 6—54
Sort options 174 1—11
Shared tape files
input and sort work 3.26 3—-41 Sort parameter table
Fig. 6—10 6—19 contents Appendix B
sort work and output 6.4.2.1 6—18 linking additional tables 6.4.24 6—25
submitting entries from control stream 6.12 6—53
Single-partition disk files, partition size Fig. 3—9 3-33
Sort program
SIZE keyword parameter alternatives 1.2 1—1
MR$PRM macro 6.4.2.4 6—26 considerations 1.6 1—7
OUTFIL control statement 324 3—33 elements 1.7 1-8
SORT control statement 321 3-21 examples, SORT3 Section 12
introduction 11 1—1
SKIPBYTE keyword parameter, INPFIL 170 data structuring 1.8 1—12
control statement 323 3—29 modular structure concept 1.3 1-3
performance 17 1-8
Software framework, independent sort/merge 2.3.1 2—5 restrictions 1.6 1-7
SORT module 2.3 2—4 Sort program alternatives
independent sort/merge 121 1—2
Sort common module (SG$ORT) subroutine sort/merge 1.2.2 1—2
initial interface Fig. 6—2 6—4 system/3 compatible sort 1.2.3 1—-3
initiating operation 6.2 6—3
Sort structure, module concept 1.3 1—4
SORT control statement
COPY keyword parameter 321 3—18 Sort work record 10.4 10—10
DISC keyword parameter 321 3—-20
FILE keyword parameter 321 3-21 SORTIN keyword parameter, OPTION control
format 321 3—15 statement 326 3—37
FORMAT subparameter 321 3—17
function 321 3—15 SORTINn and SORTOUT file names 311 3—11
NOCKSM keyword parameter 321 3-21
SIZE keyword parameter 321 3-—-21 SORTQUT keyword parameter, OPTION
SORTP keyword parameter 321 3—-21 control statement 326 3-37

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3

Index 15

SORT/MERGE
Term Reference Page Term Reference Page
SORTP keyword parameter, SORT control Standard labels See LABEL
statement 321 3—21 keyword parameter.
SORTWK keyword parameter, OPTION START assembler directive 6.2 6—3
control statement 3.26 3—37 6.11.1 6—40
SORT/3 Start-of-data (/$) statement 6.114 6—47
basic concepts Section 10
description 1.2.3 1-3 Statement conventions Appendix A
examples Section 12
executing from workstation 10.6 10—13 | STOR keyword parameter, MRSPRM macro 64.1 6—12
execution 10.2 10—2
Fig. 10—2 10—3 STORAGE keyword parameter, OPTION
functional division Fig. 10—1 10—1 control statement 326 3—36
operational phases 10.3 10—2
Fig. 10—4 10—5 Structure
Fig. 10—~5 10—7 sort/merge 13 1-3
Fig. 10—6 10—8 See also modular structure.
Fig. 10—7 10—9
requirements Section 11 Subparameters Al A—5
sort job characteristics 10—5 10—11
specifications form Fig. 11—-3 119 Subroutine disk sort
alternate job control stream 6.114.1 6—52
SORT/3 control specifications coding Fig. 6—4 6—7
description 113 11—6 Fig. 6—16 6—30
determining need 1131 117 job control stream 6.11.4 6—43
examples 12.2 121 Fig. 6—21 6—43
numbering 11.3.2 118 sample program 5.1 5—1
Fig. 11—4 11—-11 using consolidated data management 9.6 9—13
preparing 11.33 119
Subroutine merge-only
SORT/3 job control statements assembling 8.3.3 8—15
device assigning 11.2.2 11—4 coding 832 8—38
end, marking 11.24 11—6 end of file processing Fig. 8—3 8—6
execution, initiation 1123 11-5 executing 833 8—15
identifying 11.2.1 114 file blocking, control statement examples 4.2 4—-4
scheduling 1121 11—4 fixed length records, control statement
examples 42 4—1
SORT/3 software framework initial comparison Fig. 8—2 8—6
data input 10.3.2 10—6 job description Fig. 8—4 8—7
final merge 10.34 10—9 link editing 833 8—15
internal sort 10.3.2 10—6 operational phases Fig. 8—1 8—4
output 10.3.4 10—9 program coding Fig. 8—5 8—13
preliminary merge 10.3.3 10—8 program flowchart Fig. 8—4 8—7
sort assignment 10.3.1 10—5 user program interface Fig. 8—6 8—16
sort initialization 1031 10—5
SORT/3 specification formats
field description Fig. 11—7 11--22
header Fig. 115 11—-11
record type Fig. 11—6 11—15

UP-8342 Rev. 3 SPERRY UNIVAC 0S/3 Index 16

SORT/MERGE
Term Reference Page Term Reference Page
Subroutine sort/merge System load library file (YLOD)
activating 6.5 6—31 own-code routine 337 3—60
alternate job control stream 6.114.1 6—52 sort/merge modules 1.3 1—4
assembling program 6.11.1 6—39
assembly run 6.11.1 6—39 System macro library file (YMAC) 1.3 1—4
basic concepts Section 5
byte numbering method 6.4.1 6—9 System message log 6.4.2.4 6—29
checksum word 6.4.2.4 6—28
defining files 6.3 6—5 System object library file (Y0BJ) 13 1—4
error handling routine 6.9 6—34 6.2 6—3
executing program 6.113 6—41
extended COBOL Table C—1 C—2 System/3, 32, and 34 compatible sort
flowchart Fig. 6—1 6—2 alternate collating sequence 11.34 11—-34
initialization procedure 6.5 6—31 basic concept Section 10
initiating 6.2 6—3 characteristics 10.5 10—11
input routine 6.5 6—31 control specifications 11.3 11—6
internal sort 95 9—13 Table 11—1 11—7
introduction 122 1—-2 examples - Section 12
job control stream 6.11.4 6—43 execution 10.2 10—2
Fig. 6—22 6—50 Fig. 10—2 10—3
key fields 6.4.1 6—8 job control statements,
6.4.2.2 6—20 preparation 11.2 11-3
link editing program 6.11.2 6—41 record handling 104 10—10
macro format rules A3 A—8 requirements Section 11
main storage requirements 1.7.1 1-9 software framework 10.3 10—2
merge-only 6.4.24 6—28 Fig. 10—3 10—4
merge-only function 8.3 8—2 specification numbering 11.3.2 11—-8
operation phases 532 5—6
Fig. 5—6 5—10
output routine 6.8 6—33
own-code routines Section 7
program examples Section 9
record layout 6.4.1 6—9
record size 6.4.1 6—14
requirements Section 6
run requirements 6.4 6—38
save area 6.3 6—7
software framework 531 5—6
sorting sequence 6.4.1 6—11
special applications Section 8
tag sort 6.4.2.2 6—20
8.1 8—1
tape sort 6.4.2.3 6—23
9.2 9—1
tape sort using own-code routine 94 9—8
tape sort with restart 93 9—5
user program interface Fig. 6—18 6—37
working storage 6.4.2.1 6—17
Summary tag-along sort 10.5 10—13
12.2 12—5
System access technique (SAT) 311 3—11
System driver program (SORT) 23 2—4
10.2 10—2

UP-8342 Rev. 3

SPERRY UNIVAC 0S5/3
SORT/MERGE

Index 17

Term

Table entries, adding

Tag-along sort
description

example
sample control stream

Tag sort
control statement example

files
independent sort/merge

IRAM file
subroutine sort/merge

Tape files, shared

TAPE keyword parameter
MR$PRM macro
PARAM control statement
SORT control statement
Tape labels

Tape mark

Tape sort
fixed-length records,
example
restarting

subroutine sort/merge, example
using own-code routine, example
with restart, example
Task
Temporary job run library file (YRUN)
Tournament sort
Transfer rates, magnetic tape devices
TYPE keyword parameter
OUTFIL control statement
RECORD control statement

TYPEFLE keyword parameter, data
management

Reference Page

Fig. 6—14 6—25
10.5 10—12
Fig. 10—9 10—12
12.2 12—3
123 12—7
42 4—2
Fig. 3—13 3—38
Fig. 3—13 3—38
Fig. 3—14 3—39
Fig. 6—12 6—20
326 3—38
326 3—38
6.4.2.2 6—20
8.1 8—1
See shared

tape files.

6421 6—16
326 3—42
6.12 6—>54
321 3—20
6421 6—17
See NOTPMK

keyword parameter.

4.2 4—1
6.4.2.3 6—23
8.2 8—2
9.2 9—1
9.4 9—8
9.3 9—5
6.11.4 6—47
6.11.1 6—40
83.1 8—3

Table 1—3 1—11

324 3—34
322 3—24
6.3 6—6

Term

UDATE

UDAY

UMONTH
Unconditional force

Unlabeled tapes

Unsorted input records, reading
Unsorted records, releasing to sort

UOS keyword parameter, OUTFIL control
statement

USEQ keyword parameter
MR$PRM macro
sort/merge performance

User own-code exits

USING assembler directive

UYEAR

Variable-length records
BIN size

partitioned files
size
tag sort example

VERIFY keyword parameter, OPTION
control statement

VOL job control statement

VOLUME keyword parameter, INPFIL control

statement
Volume serial numbers

Volume table of contents (VTOC)

Reference Page

11.332 11-19
11332 11—19
11332 11—19
11333 11—25

See LABEL
keyword parameter.

Fig. 5—2 53

6.6 6—32

324 335

6.4.2.2 6—22

1.74 1—11
See own-code
routines.

6.2 6—5
7.2 7—2

11332 11—19

322 3—24
Fig. 6—13 6—21
324 3—34
322 3—23
42 42

326 3—-36
311 3—10
6.114 6—48
323 3—29

6.11.4 6—A48

UP-8342 Rev. 3

SPERRY UNIVAC 0S/3 Index 18
SORT/MERGE
Term Reference Page Term Reference Page
w WORK job control procedure 311 3—11
Winner record, subroutine merge-only 831 8—3 WORK keyword parameter, SORT control
832 8—11 statement 321 3—20
Work area Work record, sort 10.4 10—10
auxiliary storage 1.7.2 1—-10
checking availability 6.6 6—32 Working storage
main storage 6.9 6—34 independent sort/merge 321 3—18
Fig. 6—7 6—13 optimum area 326 3—42
Work files Workstation, sort program
device assignment 311 3—10 execution
6.11.4 6—49 independent sort/merge 35 3—65
disk 1.7.2 1—10 SORT3 10.6 10—13
321 3—20
66 6—32 Write error processing 3326 3—49
tape 311 3—10
172 1—10
321 3—20
6421 6—17
6.11.5 6—53

SPERTY == UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title}

(Document No.) (Revision No.) {Update No.)
Comments:

o

£

o

c

o

o:

50

(@]
From:

{Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A))
Thank you for your cooperation

|
l
|
I
l
I
|
|
|
|
|
l
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
I
|
|
|

| " || | NO POSTAGE

NECESSARY
IF MAILED

IN THE
UNITED STATES

. 1nd

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

