Operating System/3 (0S/3)

Extended FORTRAN

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to “SPERRY UNIVAC Operating
System/3 (0S/3) Extended FORTRAN Programmer Reference’”, UP-8262 Rev. 1.

This update includes the following changes to the job contro! procedure for release 7.1:
= Specification of catalog files
L] Expanded explanation of parameters

All other changes are either corrections or expanded descriptions applicable to features present in extended
FORTRAN prior to the 7.1 release.

Copies of Updating Package C are now available for requisitioning. Either the updating package only, or the
complete manual with the updating may be requisitioned by your local Sperry Univac representative. To receive
updating package only, order UP-8262 Rev. 1-C. To receive the complete manual order UP-8262 Rev. 1.

U125 Rey, 73

Mailing Lists Mailing Lists 18, 19, 20, 21, 75 and 76 Library Memo for
BZ, CZ and MZ (Package C to 8262 Rev. 1, Covers UP-8262 Rev. 1-C
and 14 pages plus Memo)

REL

41

ALE

el
=

September, 1981

Extended FORTRAN

RY==UNIVAC

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact

your local Sperry Univac representative. ‘

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. it is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer information Distribution Center
{CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1975, 1976 — SPERRY CORPORATION PRINTED IN US.A.

SPERRY UNIVAC
Operating System/3 (0S/3)

Extended FORTRAN

Supplementary Reference

This document contains the latest information available at the time of preparation.

Therefore, it may contain descriptions of functions not implemented at manual distribution

time. To ensure that you have the latest information regarding levels of implementation
‘ and functional availability, please contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding leve!, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Rand Corporation.
FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered

trademarks of the Sperry Rand Corporation. AccuScan, ESCORT, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Rand Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1976, 1976 — SPERRY RAND CORPORATION PRINTED IN US.A. "~

. Changes to UP-8262 Rev. 1:
Page 7-5

To the definition of a under 7.3.2, after the words
‘‘an integer variable’’, add ‘‘(3.3.2)7°.

Delete the last sentence in the paragraph preceding
7.3.2.1. Replace it with the following:

ess internal representations described in 2.2 and
2.3 as specified by the format indicator, a. If

the format indicator is an array name, the array
must contain a legal FORMAT descriptor from opening
to closing parenthesis. An integer variable format
indicator must contain a FORMAT statement in an
ASSIGN statement. Our asterisk character specifies
list-directed formatting.

A COMPLEX item always requires two FORMAT editing
codes.

To the definition of a under 7.3.2.1, after the
words " ‘an integer variable name’’, add (3.3.2).

PCN 10 1 UpP-8262 Rev. 1

Page 7-15

Under 7.3.4 the definition of a, after the words ‘an
integer variable name’’ add (3.3.2).

Page 7-25
To the definition of a at the top of the page after
words "‘an integer variable name’’ add (3.3.2) and
after the words "‘character asterisk’” add (7.3.5.2).
Page 7-26
Under 7.4.3, the definition of a, after the word ,
“‘assigned”” add (3.3.2) and after the word "‘asterisk’’
add (7.3.5.2).

ALTLOD= {vol-ser-no}
RES,YSRUN

In the definition following the format, change the words
*“file-label”’ to “‘file identifier”’” and change YLOD
to SYSRUN.

Page D-1

Replace the entire format of the FOR job control
procedure with the following:

PCN 10 2 UP-8262 Rev. 1

FOR N
//{symbol] FORL PRNTR=)/(lun
FORLG (N [,vol—ser—no])
20
B (vol-ser-no,label)
JIN= (RES)
(RES,label)
| (RUN,label)
—

(vol-ser-no,label)
(RES,label)

,0UT=)(RUN, label)

u RUN $YSRUN

[vol-ser-no
,SCR1= {RES }

{(vol—ser—no,label)}
| ,ALTLOD= (RES,YSRUN) [,O0PT=(D,N,X)]

[,MDE=1][,STX=option] [,CNL=k]
,LIN= {filename{] [(,LST=option]

N — |]

LIB1

Page D-2

Add the following immediately preceding the keyword
parameter PRNTR.

Operation:

FOR
This form of the procedure call statement is

used to compile an Extended FORTRAN source
program.

FORL
This form of the procedure call statement is
used to compile a Extended FORTRAN source
program and link—-edit the object modules.

FORLG
This form if the procedure call statement is
used to compile a Extended FORTRAN source
program, link-edit the object modules, and
execute the load module.

PCN 10

@]

UP-8262 Rev. 1

Replace the format and description of the PRNTR ,
keyword parameter with the following: .

N

PRNTR= lun
N [,vol-ser-no]
29

Specifies the logical unit number of the

printer, and, optionally, the destination-id

(vol-ser-no). If a printer device assignment

set is not to be generated, the value N is

coded, and the printer device assignment set

must be manually inserted in the control |
stream. |

PRNTR=(lun[,vol=-ser-no])
Specifies the logical unit member (20-29)
of the printer device. Optionally, the
destination—-id (vol-ser-no) can be specified.

PRNTR=(N[,vol-ser-no])
Indicates that a device assignment set for the
printer must be manually inserted in the
control stream. This permits LCB and VFB job
control statements to be used in the control
stream. The volume serial number can also be
specified.

Keyword Parameter IN:

Change the words ‘‘file label (label)’’ to
**file identifier (label)’’ wherever they occur.

Keyword Parameter OUT:

Change the words “‘file label’’ to "“file
identifier’” wherever they occur.

Page D-3

Change the format of the keyword parameter ACTLOG to
read:

ALTLOI= {(vol-ser—no,label)}
(RES,S$YSRUN)

In the Qescription following the format, change the
words ' file label’’ to “‘“file identifier”’, and
change YLOD to YRUN.

PCN 10 4 UF-8262 Rev. 1

Changes to UP-8262 Rev. 1 (Extended FORTRAN)
Page 7-1
The last sentence in the second paragraph of 7.1 should read:

The peripheral devices are assigned unit numbers within the user’s
system where the unit number is a unique integer constant (k) in
the range 1<k<99. X 720 P77

NS EUR
Page 7-5
The description of ‘‘U’’ in line 3 should read:

Is a constant or an integer variable (k) designating an input or
output device in the range of 1<k <99.

Page 7-9

In 7.3.3.1.2. Real Descriptor - E Conversion (srEw.d), the last two
lines of the first paragraph should read:

exceeds the precision of the list element, the value will be
rounded to the correct size. If the value is too large or too
small for the range, a zero will be substituted.
Page 7-21
In 7.3.6.2. BACKSPACE Statement the description of ¢‘u’’ should be:

Is a constant or integer variable designating an 1/0 device.

In 7.3.6.2. BACKSPACE Statement, the fifth paragraph of the Description
should read:

The BACKSPACE statement cannot be used with disc files under any

conditions. It cannot be used with a file of blocked records or
with a file having two 1/O areas or a work area; . . .

Page 7-23
In 7.4.1. DEFINE FILE Statement, the description of ¢‘u’? should be:
Is a constant or integer variable designating an I1/0 device.
Page 7-25
In 7.4.2. Disc READ Statement, the description of ¢‘u’’ should be:

Is a constant or integer variable designating an 1/0 device
followed by an apostrophe.

PCN 9 ' 1 UP=-8262 Rev. 1

Page 7-26

Page

Page

Page

In 7.4.3. Disc WRITE Statement, the description of ‘‘u’’ should be:

Is a constant or integer variable designating an I/0 device followed
by an apostrophe.

7-27
In 7.4.4. Disc FIND Statement, the description of “‘u’’ should be:

Is a constant or integer variable designating an 1/0 device followed
by an apostrophe.

9-1

In 9.1. GENERAL line 2, delete the word ¢‘tape’’.
9--2

The // PARAM format should be changed as follows:

1 10

Page

PCN

// A PARAM A OUT=filename,
LIN=f1ilename,LST=option,0PT~(D,N,X) ,NXT=LNK,CNL=K,
MDE=I,STX=option,IN=module -name/filename
In line 5 under 9.2.1. Compiler Arguments, the sentence should read:
Specifies compilation of source programs residing in disc files.
9-6
Delete the word ‘‘tape’’ in line one.
Add a new paragraph 9.5. Organizing a Job Control Stream as follows:

9.5. Organizing a Job Control Stream

A special job control procedure simplifies the creation of a legal job

control stream. Appendix D describes the use of this job control procedure.

If a user wishes to create his own job control cards, he should consider
the following guidelines:

® The compiler requires one work file. (The JPROC, WORK1, supplies this
file.)

® Use of IN and OUT options requires appropriate disc files.

9 2 UP=8262 Rev,

1

®

Page

Page

Page

PCN 9

® A printer with LFD PRNTR is always required.
® Because of the stacked compilation feature (9.3), the // OPTION
REPEAT feature of 0S/3 JCL is not r??a}€?d Tﬁ@;?g?fefft be used.
= If // OPTION LINK= or // OPTION LINK,GO is specified, no linkage
editor control cards or control stream data for the program are
allowed because the source correction facility (9.4) or the stacked
compilation feature (9.3) would mistake data sets for FORTRAN source.
11-22
Under the FRECFORM=VARBLK argument, add the following sentence:
BACKSPACE is not allowed if this option is chosen.
Under the FRECFORM=FIXBLK argument, add the following sentence:
BACKSPACE is not allowed if this option is chosen.
Under the FNUMBUF=1 argument add the following sentence:
This argument is required if BACKSPACE is to be allowed.
Under the FWORKA=NO argument, add the following sentence:
This argument is required if BACKSPACE is to be allowed.
11-26
Add the following nulleted item to the list of assumed defaults:

® BACKSPACE is not allowed because a work area is required.

In 11.3.4.5. Sequential Disc Files, change the first sentence of the
second paragraph to read:

Sequential disc files are conceptually identical with tape files
‘except a BACKSPACE command is not allowed.

B-1

Add the following sentence following the first sentence introducing the
tables:

Note that the letter k when used with unit specifications represents
a unique integer constant in the range of 1<k<99.

3 UP=8262 Rev.

1

Page D-1

Add the following bulleted item to the list in D.1. JOB CONTROL PROCEDURE

after line 5:

automatic linkage or execution of a program.

Insert the following sentences in D.1 after the fourth paragraph (line 15):

The FORL procedure call generates an OPTION LINK job control statement

which automatically executes the linkage editor after compilation.
The FORLG procedure call generates both OPTION LINK and OPTION GO

job control statements which cause the program to be linked and
executed.

NOTE:

Linkage control cards or program data is not allowed with these
forms of the procedure call.

Change the format under D.1 as follows:

FOR 'lun'
//[symbol] < FORL PRNTR=1 54 [(,vol-ser-no))

FORLG
i ‘ E;;é;ser-no,label) (vol-ser=-no,label)
» = (RES,label) ,OUT= < (RES,label)
(RUN’label) (RUN, label)

I vol=ser-no (vol-ser-no,label)
SCR1= 9 Res »ALTLOD= 9 pps YLOD)

[,OPT=(D,N,X)] [,MDE=1] [,STX=option] [,CNL=k]
[,LIN=filename] [,LST=option]
Page D-2

Delete the OUT=NO parameter and description.

PCN 9 4 UP-8262 Rev. 1

Page E-1

. : Add the following paragraph after the last sentence of the Appendix E.
RORE
Compile~-Time Diagnostic Messages introductizh tL Ta&alé"l 1.0
For each diagnostic issued, the source statement is marked by a
dollar sign ($) below the column where the error was first recog-
nized. When diagnosing a long statement consisting of multiple
continuation card, the dollar sign occassionally appears under
the wrong card, but flags the proper column. To locate the error

the user should check the flagged column on each card of the
statement.

PCN 9 5 UP-8262 Rev, 1

-~ & -

8262 Rev. 1 ‘ SPERRY UNIVAC Operating System/3 c PSS 1

UP-NUMBER UPDATE LEVEL PAGE
PAGE STATUS SUMMARY
ISSUE: Update C — UP-8262 Rev. 1
. RELEASE LEVEL: 7.1 Forward
. Page Update . Page Update . Page Update
Part/Section| \umber | Level ||Part/Section| number | Level | |Part/Section) nyber | Level
Cover/Disclaimer [+ 11 (cont) 17 thru 19 A
20 Orig.
PSS 1 C . 21,22 A .
23 thru 25 Orig.
Preface 1 Orig. 26 thru 28 A
29 thru 31 Orig.
Contents 1 thru 4 Orig. 32,33 A
5 A 34 thru 38 Orig.
6thru 8 Orig. 39 B
40 thru 42 Orig.
1 1 thru 7 Orig. 43 B
2 1 thru 7 Orig. 12 1 thru 3 Orig.
3 1thru 6 Orig. Appendix A 1thrub - Orig.
4 1thru 7 Orig. Appendix B 1 Orig.
2,3 A
5 1 thru 22 Orig. 4 Orig.
23 A 5,6 A
24 thru 27 Orig.
28 A Appendix C 1 thru 6 Orig.
29 Orig.
Appendix D 1 [
6 1thru 9 B Orig. 2 A
. 2% c
7 1 A 3,4 (o
2,3 Orig. 5 thru 10 Orig.
4,5 A 11,12 C
6 thru 8 Orig. 13 thru 15 Orig
9 A R
10thru 14 | Orig. Appendix E ! A
15 A 2 thru 23 Orig.
16 thru 20 Orig.] R
21 A Appendix F 1 thru 10 Orig.
22 Orig.) -
23 A Appendix G 1thru 6 Orig.
24 Orig. -
25 thru 27 A Index 1thru 4 Orig.
5 A
8 1thru 3 Orig. Gthru 8 Orig.
9 1,2 A User Comment
3 B | Sheet
4 Orig
5 thru 7 A
10 1thrub Orig.
11 1 Orig.
2 C
3 thru 10 Orig.
11 C
12,13 A
14 Orig.
15,16 A
16a A

All the technical changes are denoted by an arrow (¥} in the margin. A downward pointing arrow (') next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (4) is found. A horizontal arrow () pointing to
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletijons,

Preface 1

UPDATE LEVEL | PAGE

UP-NUMBER

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of SPERRY UNIVAC
Operating System/3 (0S/3). This manual specifically describes the SPERRY UNIVAC Operating System/3
(OS/3) Extended FORTRAN. Its intended audience is the experienced FORTRAN programmer new to SPERRY
UNIVAC operating systems, and the 0S/3 in particular.

The fundamentals of FORTRAN programmer reference manual, UP-7536 {(current version) is also available for
general information concerning FORTRAN programming. A knowledge of that manual is assumed. It is useful in
reviewing the language; however, it does not present the Extended FORTRAN implementation for 0S/3.

This manual is divided into three parts and seven appendixes:

. PART 1. EXTENDED FORTRAN PROGRAM STRUCTURE

' Discusses Extended FORTRAN compiler, the general structure of source programs, coding form layout,
character set, types of data including constants, variables, and array elements used in integer and real
arithmetic.

. PART 2. FORTRAN STATEMENTS

Describes Extended FORTRAN expressions and assignment statements, control statements, statements
used for functions and subroutines, specification statements, and I/0 statements.

. PART 3. COMPILE, EXECUTE, AND DEBUG PROCEDURES
Discusses data initialization, compilation, configuration of the execution environment, and debugging.
. APPENDIXES

Provide additional information concerning:

A — Character set

B, C — UNIT options

D — FORTRAN sample job streams
E — Diagnostics

‘ F — Run-time library routines

G — Subroutine linkage

8262 Rev. 1 I SPERRY UNIVAC Operating System/3 Contents 1
UP-NUMBER UPDATE LEVEL | PAGE
Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. INTRODUCTION
1.1. SCOPE 1—1
1.1.1. Compatibility 1—2
1.1.2. Extensions 1—2
1.2. SOURCE PROGRAMS 1—-3
1.2.1. Character Set 1—4
1.2.2. FORTRAN Statements 1—4
1.2.3. Comments 1—4
1.2.4. Symbolic Names 1—5
1.2.5. Source Statement Order 1—5
1.3. STATEMENT CONVENTIONS 1—-7

2. DATA TYPES
2.1. GENERAL 2—1
2.2. CONSTANTS 2—1
2.2.1. Integer Constants 2—1
2.2.2. Real Constants 2—2
2.2.3. Double Precision Constants 2—3
2.2.4, Hexadecimal Constants 2—3
2.2.5. Complex Constants 2—4
2.2.6. Logical Constants 24
2.2.7. Literal Constants 2—5
2.3. VARIABLES 2—5
2.4. ARRAYS 2—6
2.41. Array Element Reference 2—-6
2.4.2, Element Position Location 2—7

8262 Rev. 1

SPERRY UNIVAC Operating System/3 Contents 2
UP-NUMBER UPDATE LEVEL | PAGE
3. EXPRESSIONS AND ASSIGNMENT STATEMENTS .
3.1. GENERAL 3—1
3.2. EXPRESSIONS 3—1
3.2.1. Arithmetic Expressions 3—1
3.2.2. Relational Expressions 3—1
3.2.3. Logical Expressions 3—2
3.2.4, Evaluation Order 3-—-2
3.2.5. Mixed-Mode Arithmetic 3—3
3.2.6. Arithmetic Operation User Checks 3—-3
3.2.7. Implementation of Arithmetic Operations 3—4
3.3. ASSIGNMENT STATEMENTS 3—4
3.3.1. Arithmetic and Logical Assignment Statements 3—5
3.3.2. ASSIGN Statement 3—6
4. CONTROL STATEMENTS
4.1, GENERAL 4—1
4.2, ARITHMETIC IF 4—1
4.3, LOGICAL {F 4—2
4.4, UNCONDITIONAL GO TO 4—-3
4.5, COMPUTED GO TO 4—3
4.6. ASSIGNED GO TO 4—4
4.7. DO 4—4
4.71. Transfer of Control to and from a DO Range 4—6
4.8. CONTINUE 4—6
4.9 STOP 4—6
4.10. PAUSE 4—7
4.11. END 4—7
5. FUNCTIONS AND SUBROUTINES
5.1. GENERAL 5—1
5.2, PROCEDURE REFERENCE 5—3
5.2.1. Function Reference 5—3
5.2.2. Subroutine Reference (CALL Statement) 5—3

8262 Rev. 1] SPERRY UNIVAC Operating System/3 Contents 3

UP-NUMBER UPDATE LEVEL | PAGE
5.3. STATEMENT FUNCTION DEFINITION 5—4
5.4. SUBPROGRAM DEFINITION 5—5
5.4.1. External Functions 5—6
54.1.1. FUNCTION Statement 5—6
54.1.2. RETURN Statement 5—7
5.4.1.3. ABNORMAL Statement 5—7
5.4.2. Subroutines 5—8
5421. SUBROUTINE Statement 5—9
54.22. Subroutine RETURN Statement —
5.4.3. Multiple Entry to Function and Subroutine Subprograms 5—11
5.5. ARGUMENT SUBSTITUTION 5—12
5.5.1. Call by Value 5—13
5.5.2. Call by Name 5—13
5.5.3. Symbolic Substitution 5—14
5.6. LIBRARY PROCEDURES 5—14
5.6.1. Intrinsic Functions 5—156
5.6.2. Standard Library Functions 5—17
5.6.2.1. Specification Statement Interaction 5—17
5.6.3. Standard Library Subroutines 5—-23

6. SPECIFICATION STATEMENTS
6.1. GENERAL 6—1
6.2. ARRAY DECLARATION —
6.2.1. Array Declarator —
6.3. DIMENSION STATEMENT 6—2
6.4. TYPE STATEMENTS 6—3
6.4.1. Explicit Type Statements 6—3
6.4.2. IMPLICIT Statement 6—4
6.5. EQUIVALENCE STATEMENT 6—6
6.6. COMMON STATEMENT 6—6
6.6.1. COMMON/EQUIVALENCE Statement Interaction 6—7
6.7. EXTERNAL STATEMENT 6—8
6.8. PROGRAM STATEMENT 6—9
7. INPUT AND OUTPUT

7.1. GENERAL 7—1
7.2. INPUT/OUTPUT LIST 7—1
7.2.1. DO-Implied List 72

8262 Rev, 1

SPERRY UNIVAC Operating System/3

Contents 4

UP-NUMBER UPDATE LEVEL | PAGE
7.3. SEQUENTIAL FILES 7—2
7.3.1. Unformatted |/0 Statements 7—3
7.3.1.1. END and ERR Clauses 7—4
7.3.2. Formatted READ/WRITE Statements 7—4
7.3.2.1. I/0 Compatibility Statements 7—5
7.3.3. FORMAT Statement 7—6
7.3.3.1. Field Descriptors 77
7.3.3.1.1. Integer Descriptor (riw) 7—8
7.3.3.1.2. Real Descriptor — E Conversion (srEw.d) 7—9
7.3.3.1.3. Real Descriptor — F Conversion (srFw.d) 7—9
7.3.3.1.4. Double Precision Descriptor (srDw.d) 7—10
7.3.3.1.5. Logical Descriptor (rLw) 7—10
7.3.3.1.6. General Descriptor (srGw.d) 7—10
7.3.3.1.7. Hollerith Descriptor — A Conversion (rAw) 7—10
7.3.3.1.8. Hollerith Descriptor — H Conversion {wHc,c,...cw) 7—10
7.3.3.1.9. Hexadecimal Descriptor {rZw}) 7—11
7.3.3.1.10. Litera! Descriptor (‘c,C,...Cn") 7—11
7.3.3.1.11. Blank Descriptor (wX) 7—12
7.3.3.1.12. Record Position Descriptor (Tp) 7—12
7.3.3.1.13. Scale Factor Effects 7—13
7.3.3.2. Multiple Record Format Specification 7—13
7.3.3.3. Carriage Control Conventions 7—13
7.3.34. Format Interaction With the 1/0 List 7—14
7.3.4. Reread 7—15
7.3.5. List-Directed Input/Output 7—16
7.3.5.1. NAMELIST Statement 7—17
7.3.5.2. Simple List-Directed Input/Output 7—19
7.3.6. Auxiliary 1/0 Statements 7—20
7.3.6.1. REWIND Statement 7—20
7.3.6.2. BACKSPACE Statement 7—21
7.3.6.3. ENDFILE Statement 7—21
7.3.7. Sequential File Considerations 7—22
7.4. DIRECT ACCESS FILES 7—23
7.4.1. DEFINE FILE Statement 7—23
7.4.2. Disc READ Statement 7—24
7.4.3. Disc WRITE Statement 7—26
7.4.4. Disc FIND Statement 7—27

8. DATA INITIALIZATION
8.1. GENERAL 8—1
8.2. DATA STATEMENT 8—1
8.3. BLOCK DATA SUBPROGRAM 8—3
8.3.1. BLOCK DATA Statement 8—3
9. COMPILATION
9.1. GENERAL 9—1

8262 Rev. 1 : A Contents 5

P NUMBER | SPERRY UNIVAC Operating System/3 vroate Lever | pacs
9.2. PARAMETER STATEMENT FORMAT 9—1
9.2.1. Compiler Arguments 9—2
9.3. STACKED COMPILATION 9—5
9.4. SOURCE CORRECTION FACILITY 9—6
9.5. CREATING A JOB CONTROL STREAM 9—6 —-—

10. DEBUGGING
10.1. GENERAL 10—1
10.2. CONDITIONAL COMPILATION 10—1
10.3. DEBUG STATEMENT 10—1
10.4. DEBUGGING PACKET 10—2
10.4.1. AT Statement 10—3
10.4.2. TRACE ON Statement 10—3
10.4.3. TRACE OFF Statement 10—3
10.4.4, DISPLAY Statement 10—4
10.5. FORMATTED MAIN STORAGE DUMP 10—-5
11. CONFIGURATION OF THE EXECUTION ENVIRONMENT

11.1. DATA MANAGEMENT INTERFACE 11—1
11.2. CONFIGURATIONS SUPPLIED 11—1
11.3. PROGRAMMER-DEFINED CONFIGURATIONS 11—2
11.3.1. File Definition Conventions 11—2
11.3.1.1. Device Type 11—3
11.3.1.2. Record and Block Sizes 11—3
11.3.1.3. Record Formats 11—3
11.3.1.4. Buffer Allocation 11—4
11.3.1.5. File Type 11—5
11.3.2. START Statement 11—6
11.3.3. FORTRAN Initialization Procedure (FUNTAB) 11—6
11.3.4. FORTRAN Unit Definition Procedure (UNIT) 11—6
11.3.4.1. Printer File Definition 11—-7
11.3.4.2. Card Input Files 11—10
11.3.4.2.1. Spooled Card Input File Definition 11—10
11.3.4.2.2. Data. Management Card Input File Definition 11—12
11.3.4.3. Card Output File Definition 11—16a
11.3.4.4. Tape File Definition 11—19
11.3.4.5. Sequential Disc Files 11—26
11.3.4.6. Direct Access Disc File Definition 11—32

. 11.3.4.7. Reread Unit Definition 11—36
11.3.4.8. Equivalent Unit Definition 11—-37
11.3.5. FORTRAN Unit Definition Termination Procedure (FUNEND) 11—39
11.3.6. Error Environment Definition Procedure (ERRDEF) 11—39

11.3.7. END Statement

11—42

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

Contents 6

12. PROGRAM COLLECTION AND EXECUTION

12.1. GENERAL
12.2. LINK EDITING FORTRAN PROGRAMS
12.2.1. FORTRAN Supplied Modules
12.2.2. Overlay and Region Structures
12.2.3. Linkage Editor Output
12.3. Execution FORTRAN Programs
12.3.1. FORTRAN 170 Units
12.3.2. Pause Messages
12.3.3. Diagnostic Messages
APPENDIXES
A. CHARACTER SEY
A.1. SOURCE PROGRAM AND INPUT DATA CHARACTERS
A.2, PRINTER GRAPHICS
B. SUMMARY OF UNIT OPTIONS
C. ADDITIONAL UNIT OPTIONS

c.1.

c.2.

c.3.

C.4.

C.5.

C.6.

C.7.

C.8.

GENERAL

PRINTER OPTIONS

CARD READER OPTIONS

CARD PUNCH OPTIONS

TAPE FILE OPTIONS

SEQUENTIAL DISC FILE OPTION

DIRECT ACCESS DISC FILE OPTIONS

ADDITIONAL DATA MANAGEMENT DEVICES

12—1

12—1
12—1
12—2
12—2

123
123
12—3
12—3

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

I UPDATE LEVEL

Contents 7
PAGE

D. FORTRAN SAMPLE JOB STREAMS

D.1.

D.2.

D.3.

D.4.

D.5.

JOB CONTROL PROCEDURE

SAMPLE COMPILE—LINK—EXECUTE

SOURCE FROM DISC LIBRARY—STACKED COMPILATION

COMPILE—ASSEMBLE—LINK—EXECUTE

COMPILATIONS WITH PARAM OPTIONS

E. COMPILE-TIME DIAGNOSTIC MESSAGES

F. RUN TIME MODULES

G. SUBROUTINE LINKAGE

G.1.
G.1.1.
G.1.2
G.1.3.
G.1.4
G.1.5.

G.2.

G.2.1.
G.2.2.
G.2.3.

G.3.

INDEX

CALLING FORTRAN SUBPROGRAMS
Save Area

Required Entry Conditions

Exit Conditions

Mathematical Library

Compiled Subprograms

CALLING FROM FORTRAN PROGRAMS
Parameter List Formats

Label Arguments

Conventions

TRACEBACK INTERFACE

USER COMMENT SHEET

FIGURES

10—1. DEBUG Statement and Packet

D—10

D—11

D—14

10—4

8262 Rev. 1 H 3 Contents 8
P NUMBER SPERRY UNIVAC Operating System/ l UPDATE LEVEL | pacS

TABLES .
1—1. Extended FORTRAN Character Set 1—4
1—2. Source Statement Order 1—6
2—1. Data Types and Optional Lengths 2—5
2—2. Relative Location of Array Elements 2—7
3—1. Extended FORTRAN Operators and Evaluation Order 3—3
3—2. Result Types and Lengths for Mixed-Mode Arithmetic 3—4
3—3. Assignment Statement Conversions 3—5
b—1 Extended FORTRAN Procedures 5—1
5— Argument Forms 5—2
5—3. Intrinsic Functions 5—15b
5—4. Standard Library Functions 5—18
5—6. Standard Library Subroutines 5—29
7—1. FORMAT Statement Field Descriptors 7—7
7--2. Carriage Control Conventions 7—14
7—3. Permissible Associations of List Items 7—15
A—1 EBCDIC Input Character Set A—1
A—2. Representative Character Set A—3
B—1. Summary of UNIT Arguments for Printer File B—1
B—2. Summary of UNIT Arguments for Spooled Card Input File B—2
B—3. Summary of UNIT Arguments for Card Input File B—2
B—4. Summary of UNIT Arguments for Card Output File B—3
B—5. Summary of UNIT Arguments for Tape File B—3
B—6. Summary of UNIT Arguments for Sequential Disc Files B—5
B—7. Summary of UNIT Arguments for Direct Access Disc Files B—6
B—8. Summary of UNIT Arguments for Reread Unit B—6
B—9. Summary of UNIT Arguments for Equivalent Unit B—6
E—1 Compile-Time Diagnostic Messages E—2
F—1 Extended FORTRAN Run-Time Modules F—1
G—1. Save Area Format G—1
G—2. Function Types and Corresponding Registers G—3

1-1

UP-NUMBER UPDATE LEVEL | PAGE

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

1. Introduction

1.1. SCOPE

The SPERRY UNIVAC Operating System/3 (0S/3) Extended FORTRAN consists of the following components:
L an extended American National Standard FORTRAN language;

. a compiler, which transforms programs written in that language into a form suitable for execution;

] a library of input/output (1/0) and data formatting routines; and

n a library of commonly used mathematical functions and service routines.

The Extended FORTRAN compiler accepts programs written in the FORTRAN language and produces an object
. module that is suitable input to the linkage editor. Source programs may reside in the control stream or in a
source program library. A job control procedure is provided to invoke the compiler, allocate scratch files, and so
on. The output of the compiler must then be processed by the linkage editor; during this processing,
mathematical and |/0 routines are taken from the Extended FORTRAN library and included in the executable
program. User-defined procedures, if they are required, are also included during the link edit. These latter
procedures may be coded in FORTRAN or in some other language, such as COBOL, assembly, etc.

The output of the linkage editor is a load module that may consist of several overlay phases. During the
execution of the object program, the overlay phases may be loaded by specific calls by FORTRAN statements, or
they may be loaded automatically by referencing a routine in an overlay that is not currently in main storage. The
load module will accept and produce ASCII files.

When the compiler is loaded, it interrogates the system to determine the amount of main storage space available
to it. It then partitions the work space into an optimum allocation for table space and for 1/0 buffers.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL] PAGE

During compilation, the compiler produces the following listings:

L A listing of the source program — each source statement is accompanied by any compiler-generated
diagnostics; for each diagnostic, the source statement is marked at the character for which the diagnostic is
produced.

= A main storage map showing the addresses allocated to the variables and arrays in the program.

u The object code in the form of a pseudo-assembly language program.

Any of the listings may be suppressed by user options.

The compiler is self-initializing, and any number of FORTRAN source programs may be processed by one call onthe

compiler by job control. If a FORTRAN source statement follows an END statement in the source input file, it is

assumed that another program is to be processed, and the compiler reinitializes itself.

1.1.1. Compatibility

The SPERRY UNIVAC Extended FORTRAN language includes the American National Standard FORTRAN and the

IBM System/360/370 DOS FORTRAN IV languages as subsets. Programs that conform to either of these

specifications are accepted without change. Extended FORTRAN is also highly compatible with SPERRY UNIVAC

Series 70 FORTRAN.

1.1.2. Extensions

The Extended FORTRAN language provides many extensions to American National Standard FORTRAN,
X3.9—1966. These extensions are:

= Subscript expressions may be integer or real arithmetic expressions {2.4.1).

u Arithmetic assignment statements can be used to assign complex values to integer and real variables, or
integer and real values to complex variables (3.3.1).

= A literal message is permitted with the STOP and PAUSE statements (4.9 and 4.10).

L] An executable END statement is provided {(4.11).

. The inclusion of statement labels (preceded by the & character) in the list of actual arguments in a subroutine
call to be referenced by a RETURN statement is permitted. Thus, the subroutine can transfer control back to

designated statements in the calling program (5.4.2.1).

u The ENTRY statement permits entry into a function or subroutine subprogram at points other than the
beginning of the subprogram (5.4.3).

] Standard library routines are available: OVERFL, DVCHK, ERROR, ERROR1, SLITE, SLITET, SSWTCH, LOAD,
FETCH, DUMP, PDUMP, and OPSYS (5.6.3).

L] Arrays may have a maximum of seven dimensions (6.2.1).

- Dimension declarator subscripts are permitted in common storage.

. Optional length specifications for logical, integer, complex, and real variables and arrays can be declared
(6.4.1).

UP-NUMBER

UPDATE LEVEL l PAGE

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

L An IMPLICIT statement is provided for user-defined implicit typing of symbolic names in a program unit(6.4.2).
L] End of file and error recovery are provided in READ statements (7.3.1.1).

u The applicability of the G field descriptor has been extended to cover integer and logical data (7.3.3.1.6).
L T and Z format codes are provided (7.3.3.1.9 and 7.3.3.1.12).

L Special 170 formats and statements are provided for direct access storage devices (7.4).

u The specification of hexadecimal constants in DATA statements is permitted (8.2).

The Extended FORTRAN language also includes several extensions to IBM System/360/370 FORTRAN IV; these
include:

» Embedded comments (1.2.3).
L Extended exponentiation (3.2).

. An integer variable name can be used to represent the statement label of a FORMAT statement. Thus,
references can be made to FORMAT statements by integer variable name or by actual statement label (3.3.2).

. Optional statement labels on arithmetic IF (4.2).

u Logical IF, PAUSE, and STOP statements can be terminal statements of DO loops (4.7).

L Array element names may be referenced on the right-hand side of statement functions (5.3).

u An ABNORMAL statement is provided for optimal code generation {5.4.1.3).

] The mathematical library may be referenced by generic names (5.6).

= The ability to initialize variables and arrays in type and DIMENSION statements (6.3 and 6.4.1).
» The ability to use the IMPLICIT statement anywhere in the specification statement group (6.4.2).
] The elimination of the restriction that all named common blocks be the same size (6.6).

= A PROGRAM statement is provided to optionally name a main program (6.8).

L] Two classes of list-directed I/0 statements are provided (7.3.5).

L DO-implied loops in DATA stafements (8.2).

L The BLOCK DATA statement contains an optional name for the subprogram (8.3.1).

= Extended error recovery procedures are provided for the mathematical library (11.3.3).

n Blocked and buffered input/output is provided (Section 11).

1.2. SOURCE PROGRAMS

General procedures to be followed in FORTRAN programming are presented in the following paragraphs.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 1-4

UP-NUMBER UPDATE LEVEL | PAGE

1.2.1. Character Set ‘

The character set consists of the FORTRAN character set and special characters as shown in Table 1—1. Each
character is represented in the Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC codes not
shown in the table have no graphic equivalents in the Extended FORTRAN character set, but these characters
can be stored internally and transmitted to and from card, tape, and disc storage.

Table 1—1. Extended FORTRAN Character Set

Alphabetics A through Z and $
FORTRAN Numerics 0 through 9
character
set Special symbols =, ()+-*/.&";
Blank A or blank space
Extended Any characters capable of representation in EBCDIC, such as:
character
set* ¢><lu1:@#2 -~

*The special character set can change with the options selected for the system
printer, with 48 to 127 characters available, depending on printer model. See
Appendix A for a detailed discussion of the character set.

1.2.2. FORTRAN Statements

FORTRAN statements are coded on the FORTRAN coding form, where columns 1 through 72 can be used for the
contents of a FORTRAN line. All characters in a line are restricted to the FORTRAN character set, except incomments
and literal constants. Columns 73 through 80 are ignored and may be used in any manner; the information in these
columns is printed in the source program listing, but execution of the program is not affected by this information.

Each FORTRAN statement is written in columns 7 through 72. The first line of a statement must contain either azero
or a blank character in column 6. A statement may be continued on one or more successive lines with a nonzero,
nonblank character in column 6 for each line that is a continuation. A statement consists of one initial lineandup to
19 continuation lines.

A statement label consists of one through five decimal digits in columns 1 through 5. The contents of these columns
for continuation lines are ignored during program compilation but are shown on the program listing and may be used
by the programmer. Leading zeros, and embedded and trailing blank characters, are ignored in a statement label.
Each statement label must be unique within its program unit. A special use of column 1 is indicated by an X
coded there for program debugging purposes (9.2).

1.2.3. Comments

The compiler provides four methods of entering comments: columns 73—80 on any line; columns 1—5 on
continuation lines; the comment line; and embedded comments. A comment line is indicated by the character C in
column 1. The contents of each comment line are shown on the program listing, but are ignored by the compiler. A
semicolon in columns 7 through 71 in a FORTRAN statement line indicates that the information immediately
following and written on the same line is to be treated as a comment; for example:

*C" FOR COMMENT

STAT =
NUMBER | JFORTRAN STATEMENT >

7 10 20 30 40

o | RESQRT, (AD, CALCULATE, SQUARE, RObT,

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE
. A comment following a semicolon is continued on a succeeding statement line by specifying a C in column 1:
“C" FOR COMMENT
[| STATEMENT] &
NUMBER | S[FORTRAN STATEMENT >
L 518]7 10 20 30 40

i1 1 1 Dﬁl 1 ‘lolol L | L=1 l i + lql’il IBAEIGIIINI IIITIEIRI AITIIIOINI | I T W |
Cl i 1 I leloLPI i 1

1 1 A i 1 Lt l ! i) S 1 1 1 1 l ! i 1 1 W i i

The statement, SUBROUTINE SWAP (A,B), including commentary, may be written as follows:

L1 i1 S’AULBLR‘olUlTiIlNlEl ;1 LTIHIIXSl lsLUlBl‘RlalulT"I'lNlEl I S
sLWlAlpI | W T S 1 1 ;l lElxlclHlAlNJGlElsl lTlHIEl lleLLiUlElsl L

AL 1 | 2 CIAL,API)I | N S U . ¥ | 101Fl 1T1WQ ARLELA!L'I IVLAlRlIIAlBlLlEISI

A semicolon in a literal constant is a valid character and does not indicate a comment; a semicolon to the left of
column 7 does not indicate a comment. Blank cards are ignored by the compiler.

1.2.4. Symbolic Names
. Symbolic names contain up to six alphanumeric characters, the first of which must be alphabetic.

A special type of symbolic name, a label parameter, is associated with the RETURN statement. It consists of the &
character immediately followed by a statement label. A label parameter can appear only in a list of actual arguments
in a CALL statement (5.2.2).

1.2.5. Source Statement Order

Table 1—2 shows the order in which the source statements of each program unit must be written. Within each
grouping, the statements may be written in any sequence.

Every executable program contains one main program and as many subprograms as required. A main program is a
set of statements and comments that is not headed by a FUNCTION, SUBROUTINE, or BLOCK DATA statement.
Subprograms are headed by one of these statements. A subprogram headed by a BLOCK DATA statement is a
specification subprogram; one headed by a FUNCTION or SUBROUTINE statement is a procedure subprogram. The
term “‘program unit”’ is used to refer to any main program or subprogram. All program units are terminated with an
END statement. The first statement of a main program may optionally be a PROGRAM statement.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 1-6

UPDATE LEVEL | PAGE

LINE 1

LINE n END

Table 1—2. Source Statement Order

Program Declarators:

BLOCK DATA PROGRAM
FUNCTION SUBROUTINE

Specification Statements:

ABNORMAL EXTERNAL
COMMON IMPLICIT
COMPLEX INTEGER
DIMENSION LOGICAL
DOUBLE PRECISION REAL
EQUIVALENCE

DEFINE ==
FILE Statement Functions

Executable Statements:
COMMENT
Arithmetic assignment ENDFILE

Arithmetic IF FIND

ASSIGN PAUSE

Assigned GO TO PRINT

BACKSPACE READ

CALL PUNCH

Computed GO TO RETURN

Logical assignment REWIND

DATA Logical IF STOP

CONTINUE Unconditional GO TO
DO WRITE

ENTRY

FORMAT

NAMELIST

DEBUG

AT

TRACE ON
TRACE OFF
DISPLAY

Any Executable Statement

NOTES:

1.

Vertical lines demarcate statements that may be freely intermixed; for example, FORMAT statements
may appear anywhere between the program declarator {(which may not exist) and the END statement.

Horizontal lines demarcate statements that must be in the order shown; for example, statement functions
must follow all specification statements.

DATA statements must follow any specification statements that reference items to be initialized (see
dotted line).

SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

8262 Rev. 1
PAGE

1-7

1.3. STATEMENT CONVENTIONS

Conventions used to illustrate FORTRAN statements in Sections 1 through 9 are presented throughout those

sections. Conventions for illustrating statements in assembler language in Sections 10 and 11 and Appendixes C
and D are as follows:

. Capital letters, parentheses (}, and punctuation marks (except braces, brackets, and ellipses) must be coded
exactly as shown. An ellipsis (a series of three periods) indicates the presence of a variable number of entries.

u Lowercase letters and terms represent information supplied by the user.
= Information within braces { } represents necessary entries, one of which must be chosen.
. Information within brackets [] {including commas) represents optional entries that are included or omitted

depending on program requirements. Braces within brackets signify that one of the entries must be chosen
if that operand is included.

L Underlined parameters are selected automatically when a parameter is omitted. These are called defaults.
n Some defaults are dependent on entries selected in other arguments. For example:

k
FRECSIZE= 80; if FMODE=STD
160; if FMODE=BINARY

The notation
|FRECSIZE*4
specified as a default for an argument other than FRECSIZE, indicates that the default value for this argument

consists of the value specified for the FRECSIZE argument, multiplied by 4. This default value should be used
only as a default; it should not be specified as a predefinition argument.

UP-NUMBER

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

l UPDATE LEVEL

PAGE

21

2. Data Types

2.1. GENERAL

The data types available in SPERRY UNIVAC Operating System/3 (0S/3) Extended FORTRAN are integer, real,
double precision, complex, logical, hexadecimal, and literal. For additional information concerning FORTRAN
data types, refer to the "‘Writing a FORTRAN Program” section of the fundamentals of FORTRAN reference
manual, UP-7536 (current version). Data types are categorized by their manipulation within the FORTRAN
program; e.g., data may appear as constants, variables, or elements of an array. Each of these categories is
explained in this section. Additional information on the hardware characteristics of integer and real arithmetic
may be found in the discussion of the arithmetic section in the SPERRY UNIVAC 90/30 System processor
reference manual, UP-8052 (current version).

2.2. CONSTANTS

A constantis an arithmetic, logical, or literal value defined by its representation in the source program. Once defined,
a constant must not be redefined during program execution. An arithmetic constant is said to be signed if it is written
with a plus or a minus sign, and an unsigned constant is treated as a positive value. Constants are represented
internally, using 8-bit bytes organized as single units, groups of two (half words), groups of four (words), and groups
of eight (double words).

2.2.1. Integer Constants

An integer constant consists of an optional sign followed by a string of decimal digits with no decimal point. An
integer constant may have a maximum of 10 digits. If the value of the constant is positive, it may be preceded by a
plus sign; if the value is negative, it must be preceded by a minus sign; for example:

1
—365
100000000

An integer constant has the following 4-byte representation in storage:

integer

0fn1 7| 8 15 | 16 23 |24 31

Byte 1 l Byte 2 | Byte 3 | Byte 4

8262 Rev. 1 SPERRY UNIVAC Operating System/3 =

UP-NUMBER UPDATE LEVEL | PAGE

where:

Is the sign bit (O indicates positive; 1 indicates negative).

integer
Is a 31-bit binary integer, in twos complement representation.

The maximum absolute value for an integer is 2,147,483,647 (23'—1).

2.2.2. Real Constants
A real constant may be written as:

n A basic real constant: an optionally signed string of up to seven significant digits with a decimal point
preceding, embedded in, or following the string; for example:

—1701.001

= A basic real constant followed by a decimal exponent; the decimal exponent is expressed by the letter E
followed by an optionally signed integer constant with a maximum of two significant digits; for example:

170.1e—03

L] An integer constant followed by a decimal exponent; if the integer portion exceeds the permitted seven digits,
truncation of the excess rightmost digits results; for example:

+1701E—4
17010E—b

Real constants occupy one word (four bytes) of storage in normalized floating-point representation. The format is:

s
characteristic fraction
011 718 15’16 23|24 31
Byte 1 Byte 2 I Byte 3 Byte 4
where:
S
Is the sign bit.

characteristic
Is the exponent portion of the real number in seven bits; it is derived from the power of 16 by which the
fraction must be multiplied to give the real value; the characteristic is stored as an excess 64 number.

fraction
Is six hexadecimal digits representing the fractional part of the real value. The radix point is between bits
7 and 8.

The maximum range for a real constant is from approximately 10-78 through 1075. It may have the value O where
the fraction is identically binary O.

8262 Rev. 1 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL | PAGE

2.2.3. Double Precision Constants

A double precision constant is similar to a real constant, except that it may contain up to 16 significant digits. It
is written as a basic real constant or an integer constant followed by a double precision exponent; a double
precision exponent is expressed by the letter D followed by an optionally signed integer constant with a
maximum of two significant digits; for example:

—.180018201840D12

A double precision constant is stored like a real constant, except that two words (eight bytes) of storage are used:

s characteristic fraction
0 i1 718 15 | 16 23 | 24 31
Byte 1 Byte 2 | Byte 3 | Byte 4
32 39'40 47| 48 55 I 56 63
Byte5 l Byte 6 ‘ Byte 7 | Byte 8

A double precision constant may range in value from approximately 10 ~78 through 1075, or it may have the
value O.

2.2.4. Hexadecimal Constants

Hexadecimal constants are written as the letter Z followed by any combination of up to 32 hexadecimal! digits; the
hexadecimal digits and their equivalents are:

Hexadecimal Digits Decimal Equivalents Binary Representation
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111

8262 Rev. 1 SPERRY UNIVAC Operating System/3 2-4
UP-NUMBER UPDATE LEVEL | PAGE
Hexadecimal Digits Decimal Equivalents Binary Representation .
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
Hexadecimal constants can be used only to initialize variables or arrays in specification or initialization statements.
The maximum number of digits used for initialization is determined by the type of data associated with the constant.
If the number of digits specified exceeds the maximum, the leftmost digits are truncated. If less than the maximum
are specified, hexadecimal O’s are padded on the left. Two hexadecimal digits occupy one byte in main storage. Some
examples of hexadecimal constants are:
Hexadecimal Binary
Constant Equivalent
ZF9 1111 1001
ZA8 1010 1000
ZC5 1100 0101
2.2.5. Complex Constants
A complex constant consists of an ordered pair of real constants or double precision constants, each of which may be
signed, separated by a comma, and enclosed in a set of parentheses. The first portion of the complex constantis the
real part, and the second is the imaginary part of the complex value. For example, (3.1415,182.) and
(314D—2,—18.2D1) are valid complex constants. Complex constants are stored in either two or four words,
depending on whether a double precision constant appears. The presence of a double precision constant within the
parentheses causes the other constant to be treated as double precision, thus forming a double precision complex
constant of 16 bytes. Integer constants in this context will be converted to real constants by the compiler. For
example:
(10,50D+7) becomes (10.0 b+0,50D+7)
(10,10) (10.0 E+0,10.0 E+0)
CALL A (10,10) CALL A (10,10)
CALL A ((10,10)) CALL A ((10.0, 10.0))
2.2.6. Logical Constants .

Logical constants specify the logical values .TRUE. or .FALSE. and occupy one word in storage. The value .FALSE.
has a binary representation of O; .TRUE. has a binary representation of 1.

8262 Rev. 1
UP-NUMBER

PAGE

| SPERRY UNIVAC Operating System/3

UPDATE LEVEL

2-5

2.2.7. Literal Constants

A literal constant consists of one or more characters from the Extended FORTRAN character set (Table 1—1).
Each character in the string requires one byte of storage. Two methods of writing literal constants are:

L as a Hollerith constant in the form wHc,c,...c,, where w is an unsigned integer constant and ¢ represents a
character; or

= as a character string enclosed in apostrophes: ‘c;c,...c;". If the apostrophe occurs in the string, itis represented
by doubling that character.

The literal DO NOT would be represented by ‘DO NOT’ or 6HDO NOT, and the literal DON'T would be represented by
‘DON"T or 5SHDON'T.

2.3. VARIABLES

A variable is represented by a symbolic name (1.2.4) that identifies a single value. A variable is associated with a
data type, and in Extended FORTRAN there is both a standard and an optional length specification that
determines the number of bytes assigned in main storage (Table 2—1).

The type associated with a variable is determined by either the explicit type declaration statements (6.4.1), by the
IMPLICIT statement (6.4.2), or by the variable name used. Names beginning with the letters |, J, K, L, M, or N are
assumed to represent integer values; names beginning with all other letters or $ are assumed to represent real
values.

Table 2—1. Data Types and Optional Lengths

B FORTRAN Standard Length Optional Length
Name Data Type in Bytes Data Type in Bytes
Integer Integer*4 4 Integer=2 2
Real Real+4 4 Real+8 8
Double precision Double precision 8 None
Complex Complex+8 8 Complex*16 16
Logical Logical 4 4 Logical*1 1

To prevent confusion where the length can differ, the complete data type will appear in this document: a reference to
16-byte complex data will appear as complex*16. A reference to logical data without any length specification refers
to logical*4 data. The optional specification for real data is real*8, the equivalent of double precision representation.

Variables of the double precision type have only a standard length. There is no variable type associated with literal or
hexadecimal data. The optional length described may be specified in either the explicit type statements or the
IMPLICIT statement.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

The internal representation of the values is identical with that described for the proper constant type, with the
exception of integer*2 and logical*1 where there are no corresponding constants. The integer=2 variable or array
element occupies two bytes, with the sign stored in the most significant bit:

s integer

011 7|8 1

Byte 1 Byte 2

The maximum value for the integer=2 type is 32767 (2'5—1). The hardware does not provide overflow indications if
the integer*2 is exceeded; therefore, significant numeric bits can propagate into the sign bit.

Example:
The following program prints the value —32768, with no indication of arithmetic overflow.

“C" FOR COMMENT

STATEMENT! SFORTRAN STATEMENT >

518|7 10 20 30
L L 1 L IINITIEIGIElRl l*'l lzl III/I3|2I71617I/I ﬂlJI/l| I/i QlKl 1] 1 i
i 1 1 i KJ: llL-‘-lJ'l 1 i | 1 i i 1 I 1 1 i 1 i 1 | 1 i I 1 1 1 1 i | 1
1 L 1 1 PI‘RI;IALNITI lllol’lKl 1 1 1 l i i 1 1 1 | 1 L l 1 I 1 i 1 1

The logical*1 variable or array element occupies one byte in main storage. The value .FALSE. has a binary
representation of O; .TRUE. is nonzero and is usually 1:

2.4. ARRAYS

An array is an ordered set of values. Each value is called by array element, and the entire set is identified by a
symbolic name called an array name. An array is described by an array declarator (Section 6). In Extended
FORTRAN, the array can be declared as having a maximum of seven dimensions.

The form of the array declarator is dependent on the number of dimensions as shown in Table 2—2. For
instance, an array named AGQO with three dimensions, each four elements in size, has the declarator AGO
(4,4,4). AGO is the array name, and the numbers in the parentheses are dimension declarators. Each dimension
declarator must be an unsigned integer constant, except when a dimension is adjustable. In this case, the
dimension declarator must be an integer variable with a length of four bytes.

2.4.1. Array Element Reference

Any element in an array may be referenced by using the array name, followed by parenthesized subscripts in the
format:

array name (s,.,s;...,Sp)

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

2-7

where:

May be any integer or real arithmetic expression. The arithmetic expression must be evaluated during
execution as an integer greater than 0. Each subscript is evaluated in accordance with the standard rules
for evaluating mixed-mode expressions (Section 3).

Must correspond to the total number of subscripts in the declarator.

in an EQUIVALENCE statement, the number of subscripts may be either one (where the correspondence of elements
is determined by the location of array elements as in 2.4.2) or the number of subscripts in the array declarator.

2.4.2. Element Position Location

General expressions for locating the position of an array element relative to its first element are given in Table
2—2. In the table, the first byte of the array is relative location O; the letters a,b,...,g refer to the value of a
subscript expression in an array element reference; the letters A,B,...,G refer to the values of the dimension
declarators; and the m is a multiplier determined by the number of bytes of storage required for each array

element.
Table 2—2. Relative Location of Array Elements
Number of Declarator Subscript Relative Location of Element
Dimensions Form Form in the Array
1 (A) (a) {a-1)*m
2 (A B) (a,b) ((a-1)+A*{b-1)}*m
3 (A,B,C) (a,b,c) {{a-1)+A*(b-1)+AxB=(c-1})*m
7 {A,B,C,D,EF,G) (a,b,c,d,e,f,g) ({a-1)+A*(b-1)+AxB+(c-1)+
. tA*B+C*D*E*F={g-1))*m
Examples:

If an array declarator were AGO(17), if the element referenced were AGO(4), and if the array were real, then
the location of the first byte of the fourth element relative to the beginning of the array is found with the
expression (a-1)*m. In this case: (4-1)*4 = 12, or the first byte of that element is the twelfth from the beginning

of the array.

If AGO were declared as AG0O(9,10,11) and the element to be located were AGO(3,4,5), then the calculation is
((2)+9+(3)+9+10x(4))*4, or location 1556.

UP-NUMBER

8262 Rev. 1] SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

3-1

3. Expressions and Assignment Statements

3.1. GENERAL

This section discusses the use of expressions in SPERRY UNIVAC Operating System/3 {0OS/3) Extended
FORTRAN programming, and describes the assignment statements. For additional information, refer to the
“FORTRAN Expressions’ and “‘Assignment Statements’” sections of the fundamentals of FORTRAN reference
manual, UP-7536 (current version).

3.2. EXPRESSIONS

An expression is a group of one or more elements and operators that is evaluated as a single value during
execution. Three different classes of expressions are evaluated: arithmetic, relational, and logical expressions.
Each of these expressions, as well as the order of evaluation, mixed-mode arithmetic, and user checks on
arithmetic operations, is discussed in the following paragraphs.

3.2.1. Arithmetic Expressions
An arithmetic expression is constructed as a numeric constant, a variable name, an array element reference, a

function reference, or combinations of these by using arithmetic operators. An arithmetic expression is always
evaluated as a numeric value.

3.2.2. Relational Expressions

A relational expression, actually a subset of logical expressions, consists of two arithmetic expressions separated by
a relationa! operator. The expression is evaluated at execution as .TRUE. or as .FALSE.. No complex type of arithmetic
expression may be used in a relational expression; however, the other types may be mixed in any combination.

When mixed-mode arithmetic comparisons are made, the priority of the data type is:

Data Type Priority
Real*8 {(double precision) 1
Real*4 2
Integer=4 3
Integer*2 4

The expression having lower priority is converted to the type of the higher priority, and the comparison is made.
For example, if the relational expression consists of an integer expression and a real expression, the integer is
converted to a real*4 type before the comparison is made.

The result of a relational expression is always logical*4 type.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

3-2

3.2.3. Logical Expressions
A logical expression is:

u a relational expression, a logical constant, a logical variable reference, a logical array element reference, a
logical function reference, or a logical expression in parentheses;

L] a logical or relational expression preceded by the operator .NOT.; or
u two logical or relational expressions separated by .AND. or .OR..

If both operands of a logical expression are of the logical*1 type, then the result is of logical=1 type; otherwise,
the result is of the logical*4 type.

3.2.4. Evaluation Order
An expression is evaluated by the priority of the operators in Table 3—1 and then calculated as follows:
1. This process begins with the leftmost operator.

2. If no parentheses intervene, the currentoperator is compared with the operator on its right. If the priority of the
current operator is greater than or equal to the priority of the next operator, the current operation is performed
and the result becomes the operand of the prior operator. Otherwise, the next operator becomes the current
operator, and this step is repeated, using it for comparison.

3. Upon encountering the right end of an expression, remaining operations are performed from right to left.
4, Sequential exponentiation is performed from right to left. For example, X**Y*+Z is evaluated as X**(Y**Z).
5. Sequential integer division is performed from left to right. For example, |/J/K is evaluated as (1/J)/K.

6. Expressions in parentheses are treated as single operands and evaluated first, starting with the innermost
parenthesized expression, before continuing the left-to-right comparisons.

In addition to the rules already described, the order in which operations are performed may be slightly affected by
optimizations:

- Sequential operations with the same priority, except exponentiation, can be performed in any order. For
example, A+B+C may be performed as (A+B)+C, or (A+C)+B, or (B+C)}+A. At compilation time, an option is
provided to require such expressions to be evaluated strictly from left to right. In addition, parentheses may be
used to force a specific order of evaluation.

L] Logical expressions are not always completely evaluated; once the value is known, evaluation ceases. For
example:

IF (A.GT.B.OR.C.LT.FUNC(X)) GO TO 10

If A were greater than B, control would be transferred to statement 10 immediately, because the expression
must be .TRUE.. The function FUNC is not referenced.

u The removal of locally constant subexpressions from DO loops and the elimination of duplicate subexpressions
may result in the calculation being performed in a place other than that specified. Therefore, if underfiow,
overflow, or divide check should occur for any of those locally constant calculations, they would occur upon
entry to the DO loop rather than where they were originally written.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

3-3

Table 3—1. Extended FORTRAN Operators and Evaluation Order

Operation Operator Order of Priority
Function evaluation f(x) 1
Exponentiation ** 2
Multiplication *

3
Division /
Addition or unary plus +

4
Subtraction or unary minus -
Greater than .GT.
Greater than or equal to .GE.
Less than LT,

5
Less than or equal to .LE.
Equal to .EQ.
Not equal to .NE.
Logical negation .NOT. 6
Logical product AND, 7
Logical sum .OR. 8

3.2.5. Mixed-Mode Arithmetic

Mixed-mode arithmetic occurs when an operation is performed on two operands that are not the same type. The type
and length of the result are shown in Table 3—2 for the arithmetic operators, including exponentiation.

3.2.6. Arithmetic Operation User Checks

The following subroutine calls enable the programmer to check the evaluation of an arithmetic expression:

CALL DVCHK(i)

CALL OVERFL{(i)

CALL ERROR1 and CALL ERROR(i}

Routines used to set and test an indicator.

See 5.6.3 for more information on these subroutines.

Used to check for a division by zero after the division has been executed.

Executed after an arithmetic operation to check for an overflow or underfiow condition.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 3-4

UP-NUMBER UPDATE LEVEL

PAGE

Table 3—2. Result Types and Lengths for Mixed-Mode Arithmetic

First Operand: Type {Length)
integer |Integer |Real Real Complex | Complex
(2) (4) (4) (8) (8) (16}
Integer JInteger |Integer |Real Real Complex | Complex
(2) (4) (4) (4) (8) (8) (16)
Integer |Integer |iInteger |Real Real Complex | Complex
(4) (4) (4) (4) (8) (8) (16)
Second Real Real Real Real Real Complex | Complex
(o] nd:
pere (@) (@) (@) @ 8) (8) (16)
Type Real |Real |Real [Real |Real |Complex|C
{Length) ea ea ea ea ea omplex | Complex
(8) (8) (8} (8) (8) (16) (16)
Complex | Complex [Complex | Complex | Complex | Compiex | Complex
(8) (8) (8) (8) (16) (8) (16)
Complex | Complex | Complex | Compiex | Complex | Complex | Complex
{16) (16) {16} (16) {16} (16) (16)

3.2.7. Implementation of Arithmetic Operations

When the compiler generates object code for arithmetic and logical expressions, most of the FORTRAN
operations are performed by using inline instructions. The size or complexity of some operations can cause the
compiler to generate calls to routines provided in the Extended FORTRAN library.

Multiplication and division involving complex variables and array elements are performed by library routines.
Exponentiation operations are performed by a library routine, except for cases involving integer or real bases
raised to an integer constant power, where inline multiplications are generated.

These library routines are completely described in the FORTRAN mathematica! library reference manual, UP-8029
{current version).

3.3. ASSIGNMENT STATEMENTS

A value is assigned to a variable or an array element by executing an assignment statement. This value is the current
value until the variable or array element is redefined. There are three possible assignment statements: the
arithmetic and logical, which are described in this section, and the ASSIGN statement (3.3.2).

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

3-5

3.3.1. Arithmetic and Logical Assignment Statements

Format:

Is any type of arithmetic variable or array element name for an arithmetic assignment statement; orvis a
logical variable or array element name for a logical assignment statement.

Is any type of arithmetic expression for an arithmetic assignment statement; and e is a logical
expression for logical assignment statements.

Description:

The arithmetic or logical assignment statement assigns a single value to a variable or array element. The =
operator is read as ‘‘is replaced by’" as in "AMR is replaced by 8.19"" for AMR=8.19.

For all data types except logical, Table 3—3 demonstrates the conversion of the expression e to the type of the
receiving variable represented by v. Combinations of arithmetic and logical types are illegal. No conversion
takes place in logical evaluations except where e is logical*4 and v is logical *1; in this case, the high order
three bytes of e are ignored. The conversions are accomplished by intrinsic functions (5.6.1).

Table 3—3. Assignment Statement Conversions

Data Integer Real Dol_'t_’le Complex
Types Integer«+2 {integer«4) {real+4) Precision {(complex+8) Complex+16
(real+8)
Integer#2 None * * * * *
Integer ** None IFi X(e) IFIX IF1X IFIX(SNGL
(integer #4) (SNGL(e)) (REALIe)) (DREAL{e}))
Real e FLOAT (e) None SNGL(e) REAL{e) SNGL
(real«4) (DREAL(e))
v Double e DFLOAT(e) DBLE(e) None DBLE DREALI(e)
precision (REAL(e))
Complex bl CMPLX(FLOAT CMPLX CMPLX(SNGL | None CMPLX(SNGL
{complex+8) {e),0.0) {e,0.0) (e),0.0) (REAL(e)) , SNGL
(AIMAG(e)))
Complex*16 i DCMPLX(DFLOAT | DCMPLX{(DBLE | DCMPLX DCMPLX(DBLE | None
(e},0.0) (e),0.0) {e,0.0) | (REAL(e})),DBLE
(AIMAG(e)))

*Processing for integer=2 is identical with that for integer, except that the high order 16 bits of integer*4 are truncated.

**The sign is extended.

**¥|n these cases, e is treated as an integerx4.

NOTE:

See Table 5—3 for the definitions of these intrinsic functions.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 3-6
UP-NUMBER UPDATE LEVEL | PAGE

3.3.2. ASSIGN Statement .

Format:

ASSIGN k TO i >

where:
k
Is a statement label in the same program unit as the ASSIGN statement and is the label of another
executable statement or of a FORMAT statement.
i
Is the name of an integer=4 variable.
Description:

The ASSIGN statement permits an integer variable name to represent a statement label; the variable name can
then be used in the assigned GO TO statement or as a reference to a FORMAT statement. Once the integer
variable name has been assigned a value by the ASSIGN statement, it can be used for no other purpose until it
is redefined. For instance, it cannot be used in an arithmetic expression unless its value is redefined by an
arithmetic assignment statement or a READ statement.

8262 Rev. 1 I SPERRY UNIVAC Operating System/3 4-1

UP-NUMBER UPDATE LEVEL | PAGE

4. Control Statements

4.1. GENERAL
Control statements are executable statements that modify the normal sequence of program execution. The

control statements used in Extended FORTRAN are identical in function with those described in the “Control
Statements’” section of the fundamentals of FORTRAN reference manual, UP-7536 (current version).

4.2. ARITHMETIC IF
Format:

IF (e} k;,k; ks

‘ where:

e
Is any integer, real, or double precision arithmetic expression; complex is not permitted.
k
Is a statement label in the same program unit as the arithmetic IF control statement.
Description:

If the arithmetic expression value is negative, control is passed to the statement with the k; statement
label; if the value is zero, k, receives control; and if the value is positive, k; receives control. If any label is
omitted, control is passed to the next executable statement following the IF statement when the conditions
for the missing label are met. Trailing commas may be omitted when labels are not specified.

Note that the internal representation of real and double precision values is an approximation. One of these
types could be stored internally as a nonzero approximation of zero.

8262 Rev. 1 l SPERRY UNIVAC Operating System/3] 4-2
UP-NUMBER UPDATE LEVEL | PAGE
Examples:

“C" FOR COMMENT

STATEMENT! SFORTRAN STATEMENT >
LP 567 10 20 30
) IlF,ClI|’,l,)‘\lQ,,12,O, N
Ly PR UT U S U S Y SR SV T VA AN TN ST VAT WY SN SN TN T W AU SHS WA ST S
2 OV TR =YD NS b ey
Lo L b ey b v v by oy
L L ITFCBIETA- 1,50 ,,5120

Statement 5 indicates that control is to be transferred to the statement labeled 10 if | is less than 1, to the
statement labeled 20 if | equals 1, or to the next statement following 5 if | is greater than 1.

Statement 6 transfers control to statement 15 if Y is grater than X; otherwise, control is transferred to the
next executable statement.

Statement 7 transfers control to statement 20 when BETA is greater than 1.5.

4.3. LOGICAL IF
Format:
IF (e) s

where:

Is any logical expression (3.2.3).

Is any executable statement except a DO, END, or another logical IF statement.

Description:

The logical IF statement allows the execution of a statement to be dependent on the truth of a logical

expression.
Examples:
[W S 1 IIF\Clél.IA\HLDA'IBI)IGIOI tTIGL 12101 RO RS S S S S
1 L 1 i IAFICLCI’AGIT1‘1D|>1 1W|R|IIT|E| lcl 'IOL)IGI 1 J i | I [j—1

If both A and B are .TRUE., the GO TO statement is executed, and control passes to statement 20. If either
A or B is .FALSE., the GO TO statement is ignored and control is transferred to the next executable
statement.

The WRITE statement in the second example is executed if the value represented by C is greater than that
represented by D. Otherwise, control passes to the next executable statement below the IF statement.

4-3

UP-NUMBER PAGE

UPDATE LEVEL

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

. 4.4, UNCONDITIONAL GO TO
Format:
GO TO k

where:

Is the statement label of an executable statement in the same program unit.
Description:

The unconditional GO TO statement provides an unconditional transfer of control to the statement with the
label specified.

4.5. COMPUTED GO TO

Format:

GO TO(k; ky..... k)i

where:
k
’ Is a statement label of an executable statement in the same program unit.
i
Is an integer variable that must be defined by using an arithmetic assignment or a READ statement
before the execution of the GO TO control statement. The comma preceding i is optional.
Description:

The computed GO TO control statement permits the transfer of control to a label whose position in the GO TO
control statement equals the value of an integer variable. For instance, if the value of the integer variable is 3,
control is transferred to the third statement label in the computed GO TO control statement. If the integer
variable is negative, is equal to O, or is greater than the number of statement labels in the control statement,
control is transferred to the next executable statement following the computed GO TO statement.

Example:
“C" FOR COMMENT
SUNMENT] SlFORTRAN STATEMENT >
587 10 20 30
I 1 1] 1 GLOL ITI@L lcll 15}312151913151 ﬁlq'lsl)lﬁl lxlTlElM L i { i i 1

When the value of the integer variable ITEM is 4, control is transferred to statement 45; when the value of ITEM
is 1, control is transferred to 15; and so on. Any value other than 1 through 4 results in contro! being
. transferred to the next executable statement following the GO TO statement.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 4

UP-NUMBER

UPDATE LEVEL | PAGE

4.6. ASSIGNED GO TO

Format:

GO TO i,(k; ks.....kp)

where:
i
Is the name of 4-byte integer variable that must be defined by an ASSIGN statement.
k
Is the statement label of an executable statement within the same program unit as the assigned GO TO
control statement; the parenthesized list of labels and the preceding comma are optional and may be
omitted. The list aids in defining the flow of control to the compiler. This list, therefore, aids the compiler
in diagnosing errors and often provides significantly better code generation. When used, the label list
must contain all possible destination labels.
Description:

The assigned GO TO control statement transfers program control to the statement labeled with the current
value represented by an integer variable.

Example:
*C" FOR COMMENT
SNUmsen | SFORTRAN STATEMENT >
&7 10 20 30

) IO S | GIDI ITIOI lKlsl;l l(llioicl||3|’41|1512||l7|2|l18lg121l1)l 1 1

When the current value of the integer variable K5 is associated with one of the statement labels in
parentheses, control is transferred to the system with that label. The value of the integer variable can have
been defined only by the ASSIGN statement (3.3.2). When the list of statement labels (10, 13, 15, 17, 18,

21) is omitted from the assigned GO TO control statement, control is still transferred to the executable
statement.

4.7. DO
Format:

DO ni=m;,m;m;
where:

Is the statement label of the terminal statement of the DO loop, which must follow the DO statement, but
which cannot be another DO statement..

Is the control variable, which is an integer variable that may be referenced, but not redefined, within the .
DO range.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

4-5

Is the initial parameter, the value of which is assigned to the control variable before the first execution of
the DO loop; this value should be less than or equal to the value of m,.

Is the terminal parameter; it is compared to the control variable after each execution of the DO loop;
when the value of the control variable is greater than the value of m,, the DO control statement is
satisfied and control passes out of the DO range.

Is the incrementing parameter; its value is added to the control variable i after each execution of the DO
loop and before the comparison of m, and the control variable i. When this parameter is omitted, 1 is
assumed to be the increment value.

Description:

A DO control statement initiates and controls the repeated execution of the group of statements within the DO
range, which extends from the first executable statement following the DO control statement to the terminal
statement.

For a DO statement, the compiler generates two blocks of executable code:

in the position of the DO statement, a block that defines the control variable to the value of the initial
parameter, and

between the terminal statement of the DO loop and the statement following it, a DO control block. Here,
the control variable is incremented and tested, and program execution is resumed by either exiting or
reentering the DO range.

If no control statements are present in the DO range, the loop will be executed

m; — my
+1
mj;

times by the actions of the DO control block. A control statement can prevent the execution of the DO control
block; for example, the loop

"C" FOR COMMENT

N SFORTRAN STATEMENT »>
5167 10 20 30
| —
11 1 [Dlol l‘lol lIl=l‘l'll‘lOl 1 l i i [l 1 1 L [l i 1 l i 1 1 1. L 1 1
1 1 i 1:1 i | 1 1 1 1 i ' 1 1 1 1 i 1 Y 1 4 1 1 1 1 | 1 1 1 L L H 1
i L ll |0 IIFI(LAl.IGITl'IBI)III Icl |)12|Ol}l3lol 1 1 1 l 1 1 1 1 1 [I

may be executed 10 times, unless the condition

(A - GE - B)-AND- (C - GT - 0-0)

occurs, which would prevent the execution of the DO control block and cause premature loop exit.

8262 Rov. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

PAGE

4-6

Either integer constants or integer variable names may be used as parameters for the DO control statement;
variables used as parameters may not be redefined within the DO range. The index variable of the DO loop
should be considered to be undefined when the loop is exhausted, even though it is maintained in main storage
during the loop.

4.7.1. Transfers of Control to and from a DO Range

In Extended FORTRAN programs, program control can always be transferred out of a DO loop without satisfying
the DO control statement parameters. However, control can be transferred into a DO range only from the
extended DO range, which consists of those statements executed between the transfer out of the innermost DO
of a completely nested DO loop and the transfer back into the DO loop range. For a more complete explanation of
the DO control statement, refer to the “‘Control Statements” section of the fundamentals of FORTRAN reference

manual, UP-7536 (current version).

4.8. CONTINUE

Format:
CONTINUE

Description:
The CONTINUE control statement can serve as a terminal statement of a DO range. It produces no coding and
may be used anywhere in the program, subject to the ordering in Table 1—2, without affecting the logical

program execution. When used as the terminal statement of a DO range, the CONTINUE control statement
must be labeled.

4.9. STOP
Formats:
- STOP
STOP n
STOP ‘a’

where:
Is a message in the form of an unsigned decimal integer constant of not more than five digits.

Is a message in the form of a literal of not more than 243 characters enclosed in apostrophes.
Description:
The STOP control statement terminates job step execution and returns program control to the operating

system, indicating the logical end of the program. When a STOP n or a STOP'a’ is executed, a display is
always produced at the job's diagnostic device (Section 11).

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

4.10. PAUSE
Formats:
PAUSE
PAUSE n
PAUSE ‘a’

where:

Is a console message in the form of an unsigned decimal integer constant of not more than five digits.

Is a console message in the form of a literal of not more than 243 characters enclosed in apostrophes.

Description:
The PAUSE control statement halts execution of the program and produces a display at the system console.

The operator has the choice of allowing the program to proceed to the next executable statement or to cancel
the job.

4.11. END

Format:
END

Description:
The END control statement is an executable statement indicating the physical end of a program unit; it may not
have a statement label. When the END statement is executed in a main program it is interpreted as a STOP

control statement (4.9). When executed in a subroutine or function subprogram, the END statement is
equivalent to a RETURN statement.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 -

UP-NUMBER UPDATE LEVEL | PAGE

5. Functions and Subroutines

5.1. GENERAL

When a calculation or series of calculations is required repeatedly in a FORTRAN program, the statements used to
perform the calculations can be coded once as a procedure. This procedure can be referenced each time the
calculations are to be performed. Procedures, as explained here and described in the “’Procedures and Procedure
Subprograms’’ section of the fundamentals of FORTRAN reference manual, UP-7536 (current version), may be
categorized by:

] whether the procedure coding is inserted inline by the compiler each time the procedure is referenced, or
whether the procedure is compiled separately as a subprogram;

. whether the procedure is referenced by a subroutine CALL statement or by a function reference; and
. n whether the procedure is written by the user or supplied with the FORTRAN library.
Table 5—1 lists the procedures and shows their relationships within these categories.

Table 5—1. Extended FORTRAN Procedures

Coding Inline Referenced Code
Procedure

or Subprogram By Source
Statement Inline Function User
function reference
External Subprogram Function User
function reference
Intrinsic Intine* Function UNIVAC
function reference
Standard Subprogram Function UNIVAC
library reference
function
Subroutine Subprogram CALL User

statement

Standard Subprogram CALL UNIVAC
library statement

l subroutine

*Some of the larger intrinsic functions are external subprograms.
They are marked with @ in Table 5—3.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 5-2
UP-NUMBER UPDATE LEVEL | PAGE

Functions are procedures referenced in expressions within FORTRAN statements. They always have at least one
argument; they always return the value associated with their name when they are executed; and they return control .
to the expression within the referencing statement. The functions are:

L Statement functions

. External functions

n Intrinsic functions

L Standard library functions

Only statement functions and external functions are coded by the user.

Subroutines are procedures coded as subprograms; when they are referenced, control is transferred to the
subroutine, it is executed, and control is then returned to the statement following the subroutine reference.
Subroutines are either user-coded or supplied as standard library subroutines. Subroutines differ from functions in
the method of referencing the procedure, in that multiple values or no value can be returned, and in the method by
which control is returned to the referencing program unit.

Functions always transfer a value associated with the function name, but subroutines do not. When value
transfers are made by subroutines, they are accomplished by redefining arguments or common storage.
Arguments are included as part of the procedure definition; these are dummy arguments. Arguments are also
specified in the procedure reference; these are actual arguments. Substitutions of actual for dummy arguments
are made when the procedure is referenced at execution time.

The actual arguments in the procedure reference must correspond to the dummy arguments in the procedure
definition. They must correspond in number, data type (except for literals), and order. The argument forms permitted
for actual arguments in the user-coded procedures are shown in Table 5—2.

Table 5—2. Argument Forms

Form of Actual Arguments i?;:?::st FEu):;tce:i'::s Subroutines
Variable name Yes Yes Yes
Expression Yes Yes Yes
Function reference Yes Yes Yes
Array element name Yes Yes Yes
Array name No Yes Yes
Literal constant No Yes Yes
Label parameter No No Yes
{statement label

preceded by &)

External procedure name No Yes Yes

NOTE:

External procedure names appearing as actual arguments must be declared
in an EXTERNAL statement (6.7) or referenced previously in a CALL
statement or function reference.

5-3

UP-NUMBER UPDATE LEVEL | PAGE

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

‘ 5.2. PROCEDURE REFERENCE

Depending on whether the procedure is a function or a subroutine (Table 5—1), it is referenced by either the function
reference or the subroutine CALL statement.

5.2.1. Function Reference

Statement functions, external functions, intrinsic functions, and standard library functions are all referenced in
expressions with the general function reference format:

f (a1 ,az,...,an)

where:
f
Is the symbolic name that was used to identify the user-coded function in its function definition, or that
was supplied as the function name of an intrinsic or library function.
a

Represents an actual argument; at least one is required.

Actual arguments must agree in type, number, and order with the dummy arguments in the function definition, but
actual argument types are not restricted by the data type of the function name. The forms permitted for actual
arguments are shown in Table 5—2 for statement functions and external functions, in Table 5—3 for intrinsic
functions, and in Table 5—4 for standard library functions.

. Examples:
"C" FOR COMMENT

[T
S UENT 3§F0RTRAN STATEMENT >
5

7 10 20 30

b L |CE=CBRTCSVRZV) HICARATNYAM | |
) SN W W ¢ MIAIIICIOlleIOl‘RITl*i*lJIA!WAl_lIlNlTlclKlglQlAlBlL'lVQ lRl\l)l

In the first statement, the standard library function CBRT is referenced. In the next line, a user-coded
statement function, INT, is referenced, and three actual arguments are included in the function reference. An

integer type value is returned to the referencing expression, although the actual arguments are both integer
and real types.

5.2.2. Subroutine Reference (CALL Statement)

All subroutines, whether written by the user or supplied with the compiler, are referenced with the CALL statement.

Format:

CALL s (a;.ay,....ap)

8262 Rev. 1 SPERRY UNIVAC Operating System/3 5—4

UP-NUMBER

UPDATE LEVEL] PAGE

where:

s

Is the symbolic name of the subroutine as defined by the user or as supplied with the standard library
subroutines.

Is an actual argument. The use of a statement label preceded by an ampersand is allowed (5.4.2.2). The
argument list is optional and must be enclosed in parentheses when used.

Description:

The CALL statement is used to transfer control to the subroutine specified by the name. The maximum number
of actual arguments permitted is 255; the allowed forms are listed in Table 5—2.

Example:

“C" FOR COMMENT

STATEMENT] SEORTRAN STATEMENT >

I 5807 10 20 30
1 1 i 1 CIAILILI J-PIGANIU_IM] 1 1 l 1 1 i 1 1 i H 1 1 I L 1 1 1 i i 1
{ [\ i [\ CIAlLlLL 1E1RABLDJRL<xIlN|E|R|)| | W TS § i 1 Y i l 1 i i i 1 1 [y
1 1 i 1 CIAll‘-ll'-l ISIUIBICIXIQIYJQI&IIIOI, lFlUlNlclgl&lzlol)l 1] 1 1 d

Three subroutines are referenced by the calls in the example. In the first CALL statement, control is transferred
to the subroutine PGNUM. When the next line is executed, the standard library subroutine ERROR is called; the
actual argument INER is specified. The last line in the example references the subroutine SUB; among the
arguments are two statement labels, &10 and &20, which provide an optional method of returning control
from the subroutine explained in 5.4.2.2.

5.3. STATEMENT FUNCTION DEFINITION

The user-coded functions are the statement functions and the external functions. External functions are coded as
subprograms, as described in 5.4. Statement functions, however, are user-coded procedures that are defined with
only one FORTRAN statement. Statement functions require at least one argument and return one value to the
referencing statement. They are referenced with the function reference described in 5.2.1. After the evaluation of
the statement function, control is returned to the expression within the referencing statement.

Format:

f(aj.a,.....ap) = €

where:
f
Is the symbolic function name assigned to the procedure.
a
Is a dummy argument consisting of a variable name.
e

Is a limited arithmetic or logical expression.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

5-5

Description:

5.4.

The statement function definition statement defines a function that may be referenced in a subsequent
expression. The statement function definition statement must precede all executable statements in the
program unit and must follow all specification statements (Table 1—2). Note that a reference to another
function is permitted, but if such a reference is made to a statement function, that statement function must
have been previously defined in the program unit. For example,

"C" FOR COMMENT

P NUMBER | ;FORTRAN STATEMENT >

7 10 20 30

1.1 | 1 Qlul l(lAl)l l:l ,121’101*1SIQ1R4T1 lCiAl)l 1 1 I 1 i 1 1 1 i |
- i1 AJVIRI lclph QIBI:IplNlTl)l l=l IAI*I*I‘BI+IQIUI lclplNlTl)l 1 i

| - | i A|V|R| I CIAI} LBIQ lplNlTl)l l=l LAI*I *IBI+IQIU1 lCIPlNITl)I i i
1 1| QIUI lclAl)l L:l l21'lol*lsIQ|‘RlTl lclAl)I { 1 l | - | 1 I i H

is not permitted.

The value returned by the statement function is typed by the statement function name. The name is typed
according to the rules for variables described in 2.3, or it is typed by a type statement (6.4) in the same program.
Note that it is the function name, not the type of the arguments or of the expression, which determines the
value type returned by the statement function, and that the function name cannot be referenced from other
subprograms.

Dummy argument names in the statement function definition may appear as variable names in the same
program unit. A maximum of 255 arguments may appear in the definition.

A limited expression is an arithmetic or logical expression that cannot contain a reference to another
statement function unless that function was previously defined. If the statement function being defined
appears in an external function or a subroutine, the expression cannot contain a symbolic name identical with
an entry name in the same subprogram. An array element may be referenced in the limited expression.

SUBPROGRAM DEFINITION

Of the three user-coded procedures — statement functions, external functions, and subroutines — the latter two are
coded as subprograms.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 l 56
UP-NUMBER UPDATE LEVEL PAGE
5.4.1. External Functions '.

An external function is a user-coded function procedure requiring more than one FORTRAN statement for its
definition. External functions require at least one argument and return at feast one value to the referencing
statement. They are referenced with the function reference (5.2.1). After evaluation of the externa! function, control
is returned to the expression within the referencing statement, where computation continues, using the value
associated with the function name.

An external function is defined by coding the required FORTRAN statements as a subprogram that begins with a
FUNCTION statement (5.4.1.1) and ends with an END statement {4.11).

The external function returns a value of the type determined by the function or entry name, not by the data types of
the arguments. The data type of the function name is decided by the first letter of the external function name(2.3),a
type statement (6.4) in the same program unit as the FUNCTION declaration, or in the type specification in the
FUNCTION statement.

Multiple entry into an external function is provided by the ENTRY statement (5.4.3).

5.4.1.1. FUNCTION Statement
Format:

t FUNCTION f*s (a;,a;,....ap)

where:
t
Is an optional type specification used to determine the data type of the symbolic name f, and therefore of
the value returned by the external function; when this specification is omitted, the type is determined by
a type statement in the same program unit or by the implicit type of the external function name. The
permissible types are INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGIC.
f
Is the symbolic name identifying the procedure; routines supplied by Sperry Univac reserve the
dollar sign as the third character of the function name. The name, or an ENTRY name, must be
assigned a value by using a READ or assignment statement to define the function value.
*s
Is an optional length specification for the symbolic function name (2.3). This option may be used only
when the type option is used and the type specified is not DOUBLE PRECISION.
a
Is a dummy argument that may be a variable name, an array name, or a procedure name; variable names
may be enclosed in slashes to use the call-by-name method of argument substitution (5.5.2).
Description:;

The FUNCTION statement defines an external function and must be the first statement of the subprogram
coded to define the external function.

Sgéjuﬂh;;-;n | SPERRY UNIVAC Operating System/3 roate Lever | pace 57
. Examples:
“C" FOR COMMENT
| STATEMENTT T R TRAN STATEMENT _»
567 10 20 30

. | |INTEIGER FUNCTION XX 1%2 CAD,
L RETURN, L e L iy
b1 END | 0 v v v v b b
T A i AR S S S SR A A A A S
L | [FUNCITION YY U, (BgCy®y M) 1y
o | RETUIRNG v b v
L JEND L s e e

In the examples, two external function subprograms are outlined. In the first, the value returned is defined as a
2-byte integer. The second subprogram returns a 4-byte real value unless the external function name YY1 is
. typed in the same program unit as another data type.

5.4.1.2. RETURN Statement
Format:

RETURN
Description:

The RETURN statement causes control to be transferred from the subprogram used to define the external
function (or subroutine as explained in 5.4.2.2) to the program unit that referenced the subprogram.

5.4.1.3. ABNORMAL Statement

One of the functions of the SPERRY UNIVAC Operating System/3 Extended FORTRAN compiler is to increase
efficiency by eliminating computational redundancies. In a statement sequence such as:

X = A*B+C
Y = FUNC(A)
Z = SiIN(A*B)

the A*B is considered to be a common subexpression. The statements are usually evaluated as:

. TEMP = A*B
_ X = TEMP+C
Y = FUNC(A)

Z = SIN(TEMP)

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

5-8

Other computational redundancies may be generated by the compiler and then eliminated while expanding the array
element location function (Table 2—2). However, if the function FUNC redefines the value of its argument A, the
reordering produces unexpected results. Functions that cause such undesirable side effects are known as abnormal
functions and should be identified to the compiler.

A function is considered abnormal if it:

= redefines the value of an argument or of an entity declared in common storage (as discussed in the
preceding paragraph);

] contains an input/output statement, such as a function that prints its results; or

L does not always produce the same function value when given identical arguments, such as a function that
saves values between successive references.

Format:
ABNORMAL f,.f,,...f,

where:

Is the name of an abnormal function.
Description:
The ABNORMAL statement identifies abnormal functions.
When a program unit contains no ABNORMAL statement, all referenced functions are considered
abnormal, except for the standard library functions (Table 5—4). In an ABNORMAL statement, all listed
functions are considered abnormal; any other functions encountered are considered normal. An

ABNORMAL statement without a list specifies that all functions are normal.

An abnormal function is permitted to cause side effects affecting other statements, as in the preceding
example, but the function should not impact the same statement or expression. For example,

A(ly = I=F(l)

will, in general, cause unpredictable results if the function F is abnormal.

5.4.2. Subroutines

User-coded subroutines are procedures that, like external functions, are separately compiled as subprograms.
Unlike function subprograms, however, subroutines:

L] do not require arguments;
n do not necessarily return a value to the referencing program unit;
] have no data type associated with the subroutine name;

u are defined with the SUBROUTINE statement (5.4.2.1);

] are referenced with the CALL statement (5.2.2); and

8262 Rev. 1 . 5-9
stem/3
UP-NUMBER | SPERRY UNIVAC Operating Sy / oPoATE LEVEL | pacE
L return control to the first executable statement after the CALL statement, or they can return control to a

selected statement label in the referencing program unit (5.4.2.2).

Subroutines may have a maximum of 265 arguments; the argument forms permitted are shown in Table 5—2.
Multiple entry into a subroutine is permitted (5.4.3). Subroutines are always considered to be abnormal.

5.4.2.1. SUBROUTINE Statement

Format:

SUBROUTINE s (a,,a,,...,ap)

where:
s
Is a symbolic name identifying the subroutine. Avoid the use of the dollar sign as the third character of
the subroutine name, since this convention is used in naming system routines. This name cannot appear
elsewhere in the subprogram.
a
Is a dummy argument. The argument list is optional; when it is used, it is enclosed in parentheses. Each
specification may be a variable name, an array name, a procedure name, or an asterisk. Variable names
may be enclosed in slashes to specify the call-by-name method of argument substitution (5.5.2).
Description:

The SUBROUTINE statement defines the subroutine and must be the first statement of the subprogram.

An asterisk in the dummy argument list signifies that the corresponding actual argument is a label parameter
preceded by an ampersand to provide an optional method of returning control to the referencing program unit.

5.4.2.2. Subroutine RETURN Statement

Format:
RETURN
or

RETURN i

where:
Is a positive integer constant or variable; this specification points to a label parameter in the actual
argument list of the CALL statement.
Description:
The RETURN statement always returns control to the first executable statement following the CALL statement

unless the optional integer specification is used. This option is not available when the RETURN statement is
used to return control from an external function procedure.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

5-10

The optional method of returning control from an external subroutine requires the use of the label
parameter specification (signaled by an ampersand) in the actual argument list of the CALL statement, the
use of an asterisk in the corresponding dummy argument in the SUBROUTINE statement, and the integer
specification of the RETURN statement. If integer = n, the statement RETURN n causes control to be
returned to the statement in the main program labeled with the nth label parameter in the actual argument
list of the CALL statement.

Examples:

“C" FOR COMMENT

STATEMENT! 2FORTRAN STATEMENT >

5167 10 20 30
I R R ST S A ST A SR S A SRS S S N
L., | |CALL SUBCGX,&1.00,Y,8110,8120) .,
T (Y NN TN (500 U U U MUY SN YN WA W S NN S SN OO WO NN NAN NN N N N SN M SN N NN A
T EllllllljllllllllIJI[[IIII]ALLLI

S T N sl(')lBl.Rlbl“,l.‘.IIINlEI lsIUIBlClAl,l*l’IBl;l*lsl*l)l N N S N R |

| S llllIIIIIllllllllllllllILLlllll

| N | RIEITIULRlNI 12| [T S | l N WO DU NUR S SN N T | l G W W N N B |
»
[]
| W U b0 R B l | S R SR NN U NN SN SN l U Y GRS N SR N T N | | S R NN S G B |
[I S R|E|T|U|R:N| U E W L S I | S W NS SN N R W | l a4t 111
»
| W W § :l i 1 I | S U | 1 [S S | l L1 | I S S N | 1 l Lt 1 i 1 1 1
[I | R4E1TAU|R1N1 |3| T W G S l A N W NN SO TR S | I | O S S T B |
[
¢
N B N PSR S S S T N S SO S A l [UG N DR S N N R N | l | N G R G N I |
| T | RIEITIUIRINI lll | I R T | I | Y N WO DRI SN WO S G | I it i 1 |
T EI&DL | I T U S S R S T IR S T T AN T N S N B N [T B S |
’
Lod LU R SRS NN Y NN NN N ST S S S SN N U ST SN SN SN NN S WU N N TN Y N TN N M

The subroutine SUB is entered when the CALL statement is executed. Control is returned to differing parts of
the calling program, depending on which RETURN statement is executed in the procedure definition. If the first
RETURN statement is executed, control is returned to the statement labeled 110 in the calling program. This
occurs because the integer option of the RETURN statement was used and the value of the integer is 2; control
is returned to the second label parameter in the CALL statement, &110. If the second RETURN statement is
executed, control returns to the executable statement immediately following the CALL statement; if the third is
executed, control goes to statement 120; if the fourth, to statement 100. When the value of the integer is less
than 1 or greater than the number of asterisks, control is returned to the statement following the CALL
statement.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

PAGE

5-11

5.4.3. Multiple Entry to Function and Subroutine Subprograms
Alternate entry points to external functions and subroutines are provided by the ENTRY statement.
Format:

ENTRY e (a;,a,,....ap)

where:
e
Is a symbolic name that identifies the procedure entry point.
a
Is a dummy argument corresponding to an actual argument, if any, in order, number, and type.
Description:

Arguments are optional for entry into a subroutine. At least one argument is required for entry into a function.

Any dummy argument may be enclosed in slashes (5.5.2).

An ENTRY statement is nonexecutable and does not affect the normal sequence of statement execution. It
defines only those formal arguments in its list; other formal arguments not defined by the ENTRY
statement and used in the subprogram must have been defined by a previous reference to the subprogram.
The value returned by an external function is the value type defined by the entry name. In a FUNCTION
subprogram, the main storage address associated with the function name and all entry names is the same;

thus, there is an implied equivalence between the names.

The following rules apply to the ENTRY statement:

Avoid the use of the dollar sign as the third character for the ENTRY name specification, since this is
the convention for system routines.

In an external function subprogram, unpredictable results can occur when the entry name referenced is
not assigned a value, or when the last entry name defined is of a data type different from the referenced

entry name.

The same dummy arguments can be specified in more than one entry; the number of dummy arguments
may differ at different entry points.

An ENTRY into an external function subprogram must specify at least one argument.

Only those arguments specified in the argument list of an ENTRY statement are initialized; other
arguments are retained from previous function or entry references. Either the function name or at least
one entry name must be assigned a value in the function subprogram.

The asterisk must not be used as a dummy argument in an ENTRY statement of a function.

A procedure subprogram, whether an external function or a subroutine, must not reference itself or any
of its entry points.

An entry name may not be used in a statement function expression within the same subprogram.

5—-12
PAGE

8262 Rev. 1 ' ‘ SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

Example: .

“c* FOR COMMENT
r[;rf‘u’f;‘:.{” HFORTRAN STATEMENT >
L T G S S
C [[FUNCTION RS, (AL B REAL ISUM)\,
‘.., | DOUBILE PRECISIION DPS , , , |, 0y
o NG e e e e
C 1160 T8 1000 e e e L
o [ENTR)Y, DPS . CA B3 DOUBLE |PRECTISION [SUM
TR B L Y T S S B G A S B N S S S S SRS
L 1160 T V00, e b e e e L
o ENTRY, TS CAL,BII, INTEGER S8UM | 1,00
PR B . P N S P S S SR S S
VOOl RS=AN+B e b
b | 168, Tib (200,300, 4000 N,]y Ly
L 200l RETURN, vy le v v e byvv v v by o
L, 300/ DPS=RS, o b e e L e e e
o JRETURN oy by e b by
TN Xl B A T A T B S S T
o JRETURN v v b b s e Ly
Lo G JEND e e e b b

The external function in the example returns an integer, real, or double precision value as the sum of tworeal
arguments, depending on where the procedure was entered.

5.5. ARGUMENT SUBSTITUTION

When a procedure is invoked, the actual arguments, if any, are substituted for the dummy arguments in the
procedure receiving control. Extended FORTRAN provides three methods of argument substitution:

L] Call by value
[] Call by name (or address)

] Symbolic substitution

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

5-13

5.5.1. Call by Value

The call-by-value method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE, FUNCTION, and ENTRY statements are simple variables. For the procedure
reference

CALL A(B, C, D)
and the procedure definition
SUBROUTINE A (X, Y, 2)

the compiler generates a calling sequence for the CALL or FUNCTION reference, and a prologue for the
SUBROUTINE, FUNCTION, or ENTRY statement. The calling sequence consists of a transfer of control to the start of
the procedure and a list of main storage addresses where the actual arguments may be found. The prologue contains
instructions that perform the argument substitution. In the preceding example, the prologue performs actions
analogous to the FORTRAN statements X =B, Y =C, andZ = D.

This technigue allows the dummy arguments to be referenced in the procedure body as though they were simple
variables local to the procedure. When a RETURN statement is encountered, an epilogue is executed. An
epilogue is a coding sequence that transmits the values of the dummy arguments to the calling program if they
were redefined; thus, statements analogous to B = X, C =Y, and D = Z are executed. The compiler generates a
prologue and an epilogue for each SUBROUTINE, FUNCTION, and ENTRY statement. The RETURN statement
causes the execution of the epilogue associated with the last prologue that was executed. Thus, in the following
example, the subroutine on the left is treated as through it were written like the subroutine on the right.

SUBROUTINE A(B) SUBROUTINE A JPROLOGUE START
. B = actual argument
ASSIGN 100000 TO |

GO TO 100001 ;PROLOGUE END
100000 actual argument = B ;EPILOGUE START
RETURN ;EPIOLOGUE END

100001 CONTINUE

ENTRY C(D) GO TO 100002 JUMP OVER ENTRY STATEMENT
. ENTRY C ;PROLOGUE START
D = actual argument
ASSIGN 100003 TO |

GO TO 100002 ;PROLOGUE END
100003 actual argument = D ;EPILOGUE START
RETURN ;EPILOGUE END

100002 CONTINUE

RETURN GO TO 1 (100000, 100003)

5.56.2. Call by Name

The call-by-name method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE, FUNCTION, or ENTRY statements are declared to be arrays or procedure
names. In these cases, the prologue copies the address of the actual argument into the procedure. Thereafter,
the code generated for the array references in the procedure must retrieve the address of the array prior to
accessing the array for computational purposes. See 6.2.1 for additional information on array declarator
processing. As an option, the user may specify this method of argument substitution for simple variables by
enclosing the dummy argument in slashes:

SUBROUTINE A (B,/C/,D)

8262 Rev. 1 SPERRY UNIVAC Operating System/3 5-14
UP-NUMBER UPDATE LEVEL | PAGE
In most cases, the choice is arbitrary, but special cases exist and can cause differing results: .

CALL SQUARE (B,B)

SUBROUTINE SQUARE (X)Y)

X = Xxx2
Y = Yx*x2

Here, the introduction of slashes around X and Y will cause different results.

5.5.3. Symbolic Substitution

Symbolic substitution is the only method used for argument substitution in statement functions. This consists of the
direct replacement of the statement function reference with the function expression; for example:

ISF(A,B,C) = 3.14159+A + B/C

90 W =ISF(X,Y,Z)/100.0

Statement 90 is interpreted as:
90 W = IFIX (3.14159+«X + Y/Z)/100.0

This method of statement function evaluation produces faster code, and usually requires less space than a
procedure containing an epilogue and a prologue. If a program contains a large number of references to a statement
function, the user may choose to define an external function subprogram to save main storage space. The
substituted expression is converted, if necessary, to the type of the statement function name (intrinsic function IFIX,
Table 5—3).

5.6. LIBRARY PROCEDURES

The three classes of procedures provided by Sperry Univac that are available to the FORTRAN programmer are:

= Intrinsic functions, invoked with a function reference and usually associated with highly machine-dependent
procedures or non-FORTRAN capabilities, such as processing a variable-length argument list (5.6.1).

u Standard library functions, invoked with a function reference and provided for evaluation of common
mathematical functions in the areas of trigonometry, logarithms, roots, etc. While these procedures couild be
written in the FORTRAN language, Sperry Univac provides them in a library (in assembly language output
form) in order to optimize accuracy, size, and performance (5.6.2).

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

5-15

L Standard library subroutines, invoked with the CALL statement. They are associated with the operating
environment of the program and perform functions such as checking external switches, loading overlay
phases, etc. (5.6.3).

Extended FORTRAN provides nearly 100 intrinsic and standard library functions, many highly similar; for
example, six functions are provided to determine the absolute value of an argument, differing only in the types of
their arguments and function values.

To reduce the difficulty of remembering so many names and the risk of clerical errors in programming, Extended
FORTRAN provides generic function reference. These similar functions can be referenced by a single name
called the generic name which, in this case, is ABS. Existing programs can reference the library using the
member names of the generic class {ABS, IABS, JABS, DABS, CABS, and CDABS).

The names and properties of these functions are known to the compiler. When a function reference using a generic
name is encountered, the compiler generates a reference to the proper member of the generic set by examining the
types of the arguments. Generic reference is not provided for library subroutines or for user-coded procedures.

5.6.1. Intrinsic Functions

The intrinsic functions supplied with the compiler are listed in Table 5—3. Intrinsic functions are referenced with the
function reference described in 5.2.1. After evaluation of the function, the function value is returned to the
referencing statement at the expression containing the function reference.

Table 5—3. Intrinsic Functions (Part 1 of 2}

G . Member Member Member
eneric Number X N
Name Use Ar " Function Argument Function
guments
Name Type Type
Determine the 1 ABS Real+4 Real*4
ABS absolu te value IABS Integer «4 Integer =4
of the argument JABS Integer x 2 Integer =2
DABS Double precision Double precision
;ABS % Determine the 1 CABS* Complex*8 Real+4
CABS absoiute value CDABS* Complex=16 Double precision
of the argument
AINT Truncation; 1 AINT Realx4 Real*4
eliminate the DINT Double precision Double precision
fractional
portion of argument
INT Truncation; 1 INT Reai+4 Integer=4
eliminate the IDINT Double precision Integer=4
fractional
portion of argument
MOD Remaindering; 2 JMOD Integer 2 Integer«2
defined as (Argument 2 AMOD Real+4 Real+4
a;—Ixla,, must be MOD Integer»4 Integer »4
where [x] is the nonzero.) DMOD Double precision Doubte precision
greatest integer
whaose magnitude
does not exceed
the magnitude of
a,/a, and whose
sign is the same
asaq/a,

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

Table 5—3. Intrinsic Functions (Part 2 of 2}

Generic y Number ’l:Vleml?er AMember Memt‘aer
Name se Arguments unction rgument Function
Name Type Type
3 MAX 2 Select the largest =2 JMAX0O @ Integer»2 Integer 2
MAXO0 value AMAX0 @ Integer=4 Reai»4
AMAX1T @ Real+4 Real+4
{MAX D
3 MAX0 o) f Integer=4 Integer«4
MAX1 @ Real+4 Integer=4
bMAX1T O Double precision | Double precision
% MIN % Select the smallest >2 JMINO @ Integer=2 Integer «2
MINO value AMINO Integer«4 Real+4
AMIN1 @ Real+4 Real+4
MIN*)
; MINO** @ & Integer«4 Integer»4
MIN1 ® Real+4 Integer»4
DMIN1 ©) Double precision Double precision
Convert argument 1 FLOAT @ Integer+4 Real=4
from integer DFLOAT @ Integer=4 Double precision
N to real or HFLOAT @ Integer=2 Real*4
double precision DHFLOT @ Integer=2 Double percision
Convert argument 1 IFIX @ Real*4 Integer=4
from real to HFIX @ Real*4 Integerx2
integer
SIGN Replace the 2 JSIGN Integer=2 Integer=2
algebraic sign SIGN Real*4 Real+4
of the first ISIGN Integer»4 Integer=4
argument with DSIGN Double precision | Double precision
the sign of the
second argument
DIM Positive difference; 2 JDIM Integer»2 Integer«2
subtract the smaller DiM Reai+4 Real+*4
of the two arguments IDIM Integer+4 Integer*4
from the first argument DDIM Double precision Double precision
SNGL Convert double precision 1 SNGL Double precision Real«4
to real CSNGL Complex*16 Complex*8
REAL Get real part of a 1 REAL Complex*8 Real+4
complex number DREAL Complex*16 Double precision
AIMAG Get imaginary part of 1 IMAG, Complex+8 Real»4
IMAG a complex number AIMAG
DIMAG Complex=*16 Double precision
DBLE Convert from real to 1 DBLE Real+4 Double precision
double precision CDBLE Complex+8 Complex=*16
CMPLX Convert two real 2 CMPLX Real*4 Complex=8
arguments to a DCMPLX Double precision | Complex*16
complex number
CONJG Get conjugate of 1 CONJG Complex*8 Complex*8
a complex number DCONJG Complex*16 Complex*16

@ This function is an external procedure supplied in the Extended FORTRAN library.

@ This function is accessible only through its member name.

8262 Rev. 1
UP-NUMBER

UPDATE LEVEL | PAGE

l SPERRY UNIVAC Operating System/3

5-17

5.6.2. Standard Library Functions

The standard library functions (Table 5—4) are function subprograms supplied with the compiler. They are accessed
with a function reference (5.2.1) and return control to the referencing program unit within the expression of the
referencing statement. Detailed information on performance, size, and mathematical methods is available in the
Series 90 FORTRAN mathematical library programmer reference manual, UP-8029 (current version).

5.6.2.1. Specification Statement Interaction

This section details the effects of listing the name of an intrinsic or standard library function in an ABNORMAL,
EXTERNAL, or type statement.

If the generic name of an intrinsic function is specified in an EXTERNAL statement, generic reference to that
function is no longer possible, and the function is treated as a user-provided function. Members of the generic
class whose names differ from the generic name are available for specific reference. If the procedure name
appears in an actual argument list, that name is transmitted to the referenced procedure.

For example, if the name ABS appears in an EXTERNAL statement, any function reference to ABS, regardiess
of the type or number of arguments, is presumed to be a reference to a user ABS function. An explicit reference
to DABS is still recognized as an intrinsic function reference.

When the procedure name ABS appears in an actual argument list, the name ABS is transmitted.

If a member name of an intrinsic function is specified in an EXTERNAL statement, generic reference is still
possible to the class to which it belongs, except for the cited member, which is no longer available. In all
procedure references and argument lists, the name is assumed to be a user-supplied procedure.

For example, if DABS is mentioned in an EXTERNAL statement, references to ABS with integer or real*4
arguments are still permitted. An ABS reference with a double precision argument will cause a diagnostic
message to be printed during compilation, and the function will not be evaluated. DABS is presumed to be a
user-supplied procedure.

If the generic name or a member name of a standard library function appears in an EXTERNAL statement,
complete generic or specific reference is permitted. If the name appears in an argument list, that particular
name is transmitted. For example, if LOG is cited as EXTERNAL, LOG function references cause either ALOG,
DLOG, CLOG, or CDLOG to be invoked. When it appears as a procedure name in an actual argument list, the
name LOG is transmitted.

If the generic name or a member name of an intrinsic or standard library function appears in a type statement
with an initial data declaration, the name is considered to be a simple variable. The name may never be
followed by a left parenthesis, as in a function reference. If it is a member name that is different from the
generic name, generic function reference is permitted to invoke all other members of the generic class.

If the generic name or a member name of an intrinsic or standard library function appears in a type statement
without an initial data declaration and the type does not conflict with the function type of a member name in
Table 5—2 or 5—3, then the type declaration has no effect, since the types of these functions are already
known to the compiler.

If the generic name of an intrinsic or standard library function appears in an ABNORMAL statement, or if it
appears in a type statement that conflicts with-the function type of a member name in Table 5—2 or 5—3, itis
considered to be a user-supplied function. Specific reference to other members of the same generic class is
still permitted.

If a member name of an intrinsic or standard library function appears in an ABNORMAL statement, or if it
appears in a type statement that conflicts with its function type as specified in Table 5—2 or 5—3, it is
considered to be a user-supplied function. Generic reference to that generic class is permissible as long as it
does not cause the cited member to be invoked; a diagnostic is issued when this occurs, and no function
reference is generated.

Table 5—4. Standard Library Functions (Part 1 of 5)

1

2

General Generic Member ok Argument Function Value
Operation Name Name Definition Namber Type o T‘:’:ﬂ;“’
Trigonometric SIN 1 real+4 Ix|<(2"8.m real»4
{in radians) 1<y
y=sin{x)
DSIN 1 real+§ Ix|<(2%0 m) real +8
(in radians) —-1<y 1
SIN
CSIN 1 complex+8 |x1|<(218.1r) complex+8
(in radians) l'x2]<174.673 -M <y1,y2<M
y=sin{z)
CDSIN 1 complex*16 |x.| [< 2%0.m complex+16
{in radians) Ix,| < 174,673 -M <y, v, M
cos 1 real 4 Ixi<@2"8m real+4
{in radians) -1<y
y=cos{x)
DCOS 1 real+8 Ix] <2 50.17) real+8
(in radians) -t <y <1
Ccos
CCOs 1 complex*8 |x1| < (218.17) complex*8
{in radians) Ix,l < 174,673 My, v, SM
y=cos{z}
CDCOSs 1 complexs 16 Ix1 |< (250 m complex+16
{in radians) Ix,l <174.673 -M <y v, <M
TAN 1 real4 Ix| < (2'8.m real+4
{in radians) -M €y <M
TAN y=tan(x)
DTAN 1 reat8 Ixt < (250 m real+8
{in radians) -M< y <M
{COTAN 1 real+4 x| < (2"8.m) reat «4
CcOoT] {in radians) -M €y €M
COTAN
' } y=cotan(x)
cot DCOTAN 1 real+8 xl <(2%0.m real »8
[DCOT] (in radians} -M <y €M
NOTES:
1. M=16%3.(1-167°) for real«4 and 16%%-(1-167"%) for real +8
2. z is a complex number of the form x_ + x,, i

H38WNN-dN

¢/waysAg Bunesadp JVAINN AHHIdS

L ‘A9Y Zozs

T3IA3T 31vadn

3OVd

81—§

Table 5—4. Standard Library Functions (Part 2 of 5)

F .
General Generic N o - Argument unction Value
T
Operation Name Name Definition ype and
Number Type Range Range
Trigonometric ASIN 1 real »4 IxI< 1 real *4 (in radians)
{cont.} ARSIN —aR <y <n/2
ASIN
y=arcsin{x)
ARSIN . .
DASIN 1 real +8 Ix 1< 1 real+8 (in radians}
DARSIN - m/2 <y <m/2
{ACOS } 1 real +4 Ix <1 real +4 in radians)
<
ACOS ARCOS 0<ys<n7
ARCOS y=arccos(x)
DACOS 1 real +8 Ix 1< real 8 (in radians)
DARCOS oSys<m
ATAN 1 real =4 any real argument real +4 (in radians)
—mR <y €12
ATAN y=arctan(x)
DATAN 1 real»8 any real argument real *8 {in radians}
-2 <y T2
ATAN2 2 real+4 any real arguments reai+4 {in radians)
X1 except (0,0) -n<y<nw
ATAN2 y=arclan<_)
DATAN2Z2 X2 2 real*8 any real arguments real 8 {in radians}
except (0,0 - r<y €n
Hyperbolic SINH 1 real+4 Ix| < 175.366 real+4
X e~ X My <M
y= 2
DSINH 1 real 8 Ix} < 175.366 real »8
M < y <M
SINH
CSINH 1 complex Ix1 (<174 673 complex *8
x 18
oot 8 Ixyl<218.7 M Sy, v, SM
Y= 2
COSINH 1 complex |X1| < 174673 complex «16
*16 Ixyl <250.7 M <y y, SM
» I»
COSH ! real +4 Ix} < 175.366 real=4
eXpe—X -M <y <M
COSH y=
2
DCOSH 1 real «8 Ix] < 175.366 real=8
M Sy M

H38WNN-dN
| "A9Y 29Z8

g/waisAg bunessd0 IVAINN AHYHALS

39Vvd] T3A3T 3.1vadn

61—-S

Table 5—4. Standard Library Functions (Part 3 of 5]

Argument Function Value
General Generic Member Math
i Definition Type and
Operation Name Name Number Type Range Range
Hyperbolic CCOSH 1 complex+8 Ix,I<174.673 complex *8
{cont.) [k, 1< 218y -M <y.y, W™
z, -z 2 172
COSH y=21¢
2
lex+16
CDCOSH 1 complex+16 | 1X1[S 174673 complex
[x,1< 2507 -M <y v, SM
TANH 1 real =4 any real argument real »4
eX—g—X -1 Sy s
TANH =
eX+e™ X
DTANH 1 real «8 any real argument real8
1Sy €1
Exponential EXP 1 real »4 x 2 —-180.218 real+4
x € 174673 0SSy sSM
y=e*
DEXP 1 reat+8 x 2 —-180.218 real«8
x < 174673 0Sy<M™
EXP
CEXP 1 complex+8 x, < 174673 complexs8
Ix,| < (2'8m MLy, v, <M
2 2 1"Y2
y=e
CDEXP 1 complex»*16 x < 174673 complexs16
Ixpl < (259m -M <y, v, <M
>
Base 10 . EXP10 1 realed x= — 180.216/In{10) real+4
Exponential %< 174.673/In{10) OSysM
EXP10 y = 10%
x=— 180.216/in{10) real+8
DEXP1 1 reals8
0 x< 174.673/In(10) OSys<M
Natural logarithm ALOG
LOG 1 real +4 x>0 real +4
y = —-180.218
< 174.673
'ALOG I y=log, x or Y
LOG =|
DLOG y=intx) 1 real+8 x>0 real*8
y = ~180.218
y < 174673

HIBGWNN-dN
| "AeY Zozg

g/wasAg bunesedQ JVAINN AHY3dS

39vd , 43A37 3Lvadn [

0Z¢—S

Table 5—4. Standard Library Functions (Part 4 of 5)

. Argument Function Value
General Generic Member Mathematical
) Definiti Type and
Operation Name Name inition Number Type Range Range
Natural logarithm CLOG 1 comptex*8 z ¥ 0+0i complex»8 y=y+yyi
Yy 2 —-180.218
y=PViog, (2) vy < 175.021
T <n
ALOG Sy, S
LOG PV is principle value,
hich
CDLOG whie mea:rs y2d . 1 complex»16 z # 0+0i complex*16 y=y ,+y,i
between —7 an . vi > _180218
vy < 175.021
- < 12 <7
Common logarithm ALOG10 1 real«4 x>0 real«4
LOG10 y = —78.268
ALOG10 y < 75.859
LOG10 y=10910%
DLOG10 1 real+8 x>0 real«8
y =>-78.268
y < 75.859
Square root SQRT 1 real «4 x 20 real *4
0<y <mI”2
y=Jxor
DSQRT y=x1/2 1 real +8 x 20 real «8
o<y <Mm/2
SQRT
CSQRT 1 complex *8 any complex argument complex+8
0 <y, < 10087 M2
ly,! < 1.0087 M172)
y=Jzor
y=z1/2
CDSQRT 1 complex+16 any complex argument complex=*16
0 < yqy < 1.0087 (M2
v, < 1.0087 (M1/2)
Cube root CBRT 1 real »4 any real argument real+4
_m1/3 <v<M1/3
CBRT y=x1/3
DCBRT 1 real *8 any real argument real+8

—m1B<y <m3

H3gWNN-dN

g/wsaysAg bunesadO JVAINN AHHICS

A3A3T 31vadn

3Ovd

L "AdY 2928

1z-s

Table 5—4. Standard Library Functions (Part 5 of 5)

General Generic Member Mathematical Argument F“':"'°" Value
Operation Name Name Definition vpe and
Number Type Range Range
Distribution ERF x 1 real »4 any real argument real*4
ERF T 1 Sysa
Yium
DERF o 1 real+8 any real argument real »8
1<y
ERFC 1 real+4 any reat argument real =4
w 0SSy K2
2 2
y= 7“ e Ydu
ERFC n
X
DERFC y=1 — erf(x} 1 real»8 any real argument real +8
0< y K2
GAMMA 1 reat«4 x >27252 54 real +4
- x < 57.5744 088560 <y <M
GAMMA ¥ =/u"‘1e‘”du
0
DGAMMA 1 real+8 x> 27252 4ng real +8
x < 67.5744 0.88560 Sy <M
ALGAMA 1 real =4 x >0 and real»4
x<4.2913 " 1073 ~-0.12149 <y <M
y=loge F(x) or
ALGAMA -
LGAMMA =} x=1g—uy
DLGAMA v Og{" AR B ceal +8 x >0 and real 8

x<4.2913 - 1073

~0.12149 Sy <M

HIgWNN-dN
I "AeY Z9Z8

g/weisAg Bunessd JVAINN AHYHILS

q93A37 34vadn [

39vd

(4 Au]

A
UPDATE LEVEL

8262 Rev. 1 l SPERRY UNIVAC Operating System/3 5-23

UP-NUMBER

PAGE

5.6.3. Standard Library Subroutines

The standard library subroutines are procedures available in subprograms supplied with the compiler. These
subroutines are invoked by the CALL statement, and control is returned to the main program at the first executable
statement immediately following the CALL statement. All of the standard library subroutines may be overridden; a
user may supply his own routine with any of the FORTRAN names, such as OVERFL, ERROR, etc. Such routines
must be included with an INCLUDE control card at the time the program is linked. Note that each library name
has a $ generated as the second character (e.g., O$ERFL and ESROR).

The subroutines provided by Extended FORTRAN are presented here and summarized in Table 5—5.
L Arithmetic Overflow and Underflow Test (OVERFL)

The overflow check subroutine, OVERFL, informs the program when computational results are not within the
maximum or minimum magnitude permitted for a value. A real computation always yields a correct fraction,
but the exponent is incorrect by 128 for an overflow and by —128 for an underflow. An overflow during an
integer computation yields unpredictable results. An overflow or underflow causes a program check interrupt;
when this occurs, various switches are set and program execution resumes at the next instruction, which may
be in the same FORTRAN statement. These switches are interrogated by the OVERFL subroutine:

CALL OVERFL (i}

where:

Is an integer+*4 variable.
The variable is assigned a value of 1, 2, or 3 to indicate the status of the interrupt switches.

The OVERFL subroutine operates in three separate modes for compatibility with other FORTRAN systems:

— Extended FORTRAN Mode

Integer and real overflow and real underflow are monitored. Only the last event, either overflow or
underfliow, is reflected in the interrupt switches. The i values assigned are:

1 — An overflow interrupt has occurred. A previous underflow interrupt will not be
reported, and the overflow/underflow interrupt switch is reset.

2 — Neither overflow nor underflow has occurred.

3 — An underflow interrupt has occurred. A previous overflow interrupt will not be
reported, and the overflow/underflow interrupt switch is reset.

Integer overflows are reported only if the // OPTION BOF is in the job control stream of the
executable program.

For example, the statements

X = {10E75+10E75) + {(10E—75*10E—75)
CALL OVERFL (I}
CALL OVERFL (J)

set the value of | to 3 and J to 2, indicating, respectively, that an underflow was the last interrupt and that
there are no conditions to report. If the arithmetic statement is written as

X = (10E—75*10E—75)+(10E75*10E75)

| has the value 1, indicating that an overflow was the last event.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER 5-24

UPDATE LEVEL | PAGE

— SPERRY UNIVAC Series 70 Mode ‘

Integer and real overflow and real underflow are monitored independently. The ivalues assigned are:

1 — An overflow has occurred. The overflow switch is reset. OVERFL should be entered
again to determine if an underflow has also occurred.

2 — Neither overflow nor underflow has occurred.
3 — An underflow has occurred. The underflow interrupt switch is reset.
- The module FLSOVW70 must be included with an INCLUDE control card during linkage editing and

the // OPTION BOF must be specified in the job control stream.
For example, the statements

X = (10E75%10E75)4-(10E—75+10E—75)
CALL OVERFL (1)
CALL OVERFL (J)
CALL OVERFL (K)

set the value of I to 1,Jt0 3, andK to 2, indicating, respectively, an overflow, an underflow, and that there
are no conditions to report.

— IBM System 360/370 Mode

Real overflow and underflow are monitored, but integer overflow is ignored. The i values assigned are
identical with those for the Extended FORTRAN mode.

The desired mode of operation is selected when the executable program is linked and executed. Selection of
IBM mode causes the DVCHK subroutine to ignore integer division by O.

u Divide Check Subroutine (DVCHK)
The divide check subroutine, DVCHK, informs the program when an integer or real division by O occurs or an
integer result of a division exceeds +2,147,483,647. In both cases, an indicator is set, and the computation
vields the original dividend. This indicator is interrogated with the statement:

CALL DVCHK (i)

where:

Is an integer*4 variable.
The values assigned to i by DVCHK are:
1 — when a divide check has occurred. The indicator is reset.
2 — when adivide check has not occurred.

Integer divide checks are reported only if the job control statement // OPTION BOF is present in the
control stream of the executable program. .

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVELI PAGE

5-25

Example:

*“C" FOR COMMENT

rSLAULE:EER"; gg I;ORTR]AON STATEMENT % > o

L CALL] DNVCHWCTD) | v vy v b
16O TIO 100,200 T
Lo, 10] |[SToP ' TERMINATIION ON DNCHK'
L1 20 JCONTIINVE, | 4 v v v L vy w v v v by a0 00

If a division by O was attempted (| = 1), program control is transferred to statement 10; otherwise, control goes
to statement 20.

Error Indicator Test (ERROR)

This standard library subroutine tests an indicator to determine if a function error condition or an /0 ERR exit

has occurred:

CALL ERROR (i)

where:

Represents an integer*4 variable.

The integer variable is assigned the following values:

1 —_—

if a function error condition exists after a reference to a standard library function (Table 5—4)
or to the ERROR1 subroutine;

if no function or /0 error exists;
if an ERR exit was taken from an 1/0 statement because of a data transmission error;
if an ERR exit was taken from an 1/0 statement because of improper data; and

if an ERR exit was taken because of an unrecoverable 1/0 error. No further references to the
file are permitted.

A subsequent call of the ERROR subroutine, prior to additional 1/0 or function references, always returns a

value of 2.

Error Indicator Setting Subroutine (ERROR1)

This subroutine is used in conjunction with the ERROR subroutine; CALL ERROR1 sets the function error
indicator tested by the ERROR subroutine. This is also performed by the standard library functions. The
reference to the ERROR1 subroutine is:

CALL ERROR1

5--26

8262 Rev. 1 SPERRY UNIVAC Operating System/3
PAGE

UP-NUMBER

UPDATE LEVEL

Example:

*C" FOR COMMENT
,
STATEMENT

NUMBER
F 5
| R | ;% an |>SI‘A\\(1 ;C.CQ.)I PR ST S SE WA ST N VRNTEN NN S ST S NN W WO

) I T S | ClAleLi 1E1R1R|OIR4 lclll)} 11 T | P 1 |) l | F S R . | 1
11 1 GIDI ITJEI 1 cliol,_L"hOL) 19 111 1 j I S N T S T I 1l 1 ¢ 1 ¢t |
1 lu'lo CIOANITIIINI ULEI 1 1 I P I 1 | 1 1 ! i 1 l d 1 S S N S |

FORTRAN STATEMENT >
7 10 20 30

°~Com.

[I | xillJLllllrllllllllJ_llglLllllLl

L, .30 lerror, condition rovtine |,

| I lLLlllJ_LlJlLlIllILIJIIIILIIIILJ

Ly FUNCITION XRAY 1(B), v v vl
1o Ilr:i (B, JLLOIQ_LZLOI,I‘IOI S S T U RO (0 N N W S SR VT
200 |CALL) BERRORWY, v v v L
| I I S PIEITIUIRINIJIIIIIIIIIlllllllll;llngLJ
L, VO IGONTIINVE, v v by

L] Indicator Setting Subroutine (SLITE)

The SLITE standard library subroutine sets or resets one or more of four indicators internal to the subprogram.
This subroutine is used with the SLITET subroutine, which tests these indicators. The format of the CALL

statement is:

CALL SLITE (e)

where:

Is an integer expression. The value of the expression determines the indicator settings:
0 — if all four indicators are to be reset.
1, 2, 3, or 4 — to set the corresponding sense indicator.

—1, —2, —3, or —4 — to reset the corresponding indicator.

8262 Rev, 1 I SPERRY UNIVAC Operating System/3 5-27
UP-NUMBER UPDATE LEVEL | PAGE
. L Indicator Testing Subroutine (SLITET)
The SLITET subroutine tests the indicators controlled by the SLITE subroutine. The format of the CALL
statement is:
CALL SLITET (e.i)
where:
e
Is an integer expression with a value corresponding to the sense indicator to be tested.
i
Is an integer variable name returning the results of the test.
If the indicator specified by e is set, the integer variable i is set to 1. If the indicator is not set, or if e is outside the
range 1 < e < 4, then i is set to 2. Execution of the SLITET subroutine does not affect the indicator settings.
L Control Information Check (SSWTCH)

The SSWTCH standard library subroutine allows the FORTRAN programmer to check control information
during program execution. This control information is provided prior to execution of the program on a //
SET UPSI job control card used in the operating system.

The format of the CALL statement is:

CALL SSWTCH (e,i}

where:

Is an integer expression with a value of 1 through 4, representing a binary switch position.

Is the integer variable name used to return the result of the switch position test.

If the specified binary switch is set, the variable has the value 1; otherwise, its value is 2, Execution of the
SSWTCH subroutine does not alter the switch settings.

Main Storage Dump Routines (DUMP and PDUMP)

These subroutines cause a dump or listing of the main storage assigned to the program; the subroutines are
described in Section 10.

EXIT Subroutine

The EXIT standard library subroutine terminates the program. The CALL EXIT statement is equivalent to the
FORTRAN STOP statement (4.9).

8262 Rev, 1
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC Operating System/3

5-28
PAGE

FETCH Subroutine

The FETCH subroutine loads an executable program and transfers control to its transfer address.
Processing in the calling program is not resumed. An 1/0 error during the load causes immediate job
termination. The CALL statement has the format:

CALL FETCH (s)

where:
s
Is a load module name which must be either a 6- or 8-character name enclosed in apostrophes,
or a double precision or complex variable containing a load module name.
Examples:
“C" FOR COMMENT
F’}ULE;‘:R"T EFORTRAN STATEMENT >
5 7 10 20 30 40
1 L 1 i : 1 1 1 I L 1 W W 4 L 1 ' 1 l 1 i i L 1 L 1 A i 1 1 i i 1 1 1 1 1 1 l 1 1 i 1 L 1 1
1 1 1 i D lolulBlLlEl lPLR IELCJI lsjllelNl I-D lNlAlMEl /l ' }L |01Al‘DlMxl ! /1 i l N A i) S B
1 1 1 1 ClAlLlLl lFlEITlClHI l(lDlNlAlMlEl)l 1 1 1 AL 1 I 1 1 11 i 1 1 1 1 I i 1 1 i i 1 1
1l 1 1 :llLLLLllLJIlllLlLJ.l.llllll'llllllLJ[lllllll
e) A L CAA ILILI IFIEITICIHI L (ll I.le A—DMXII l) L A l 1 L L A L L 1 | L l 1 1 " ! 1 1 1

The two calls of the FETCH standard library subroutine are equivalent.
LOAD Subroutine
The LOAD standard library subroutine loads subprogram overlays. Control is not transferred to the
subprogram but returns to the statement immediately following the CALL statement requesting the overlay.
Anl1/0 error during the load causes immediate job termination. The loaded subprogram cannot share the same
main storage addresses as the procedure containing this CALL statement.
The format of the CALL statement is:
CALL LOAD (s)
where:
Is a phase name that must be an 8-character name enclosed in apostrophes, or a double precision

or complex variable containing a phase name.

OPSYS Subroutine

The OPSYS subroutine loads subprogram overlays and transfers control to the statement following the CALL
statement.

8262 Rev, 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

5—-29

The format of the CALL statement is:

CALL OPSYS (‘LOAD’,s)

where:

Is a phase name that must be an 8-character name enclosed in apostrophes, or adouble precision
or complex variable containing a phase name.

This statement is equivalent to the CALL LOAD (s) statement.

Table 5—5. Standard Library Subroutines

Subroutine Format Use

OVERFL CALL OVERFL (i) Tests for overflow or underflow,

DVCHK CALL DVCHK (i) Tests for invalid division.

ERROR CALL ERROR (i) Tests for function or /O error conditions.

ERROR1 CALL ERROR1 Sets the function error indicator.

SLITE CALL SLITE (e) Sets the sense indicators specified.

SLITET CALL SLITET (e,i) Tests for the setting of specified sense indicators.

SSWTCH CALL SSWTCH (e,i) Tests the binary switch specified by the integer
expression and returns a value in the integer
variable name.

DUMP CALL DUMP (list) Dumps main storage assigned to the program;
program execution terminates.

PDUMP CALL PDUMP (list) Dumps main storage assigned to the program;
program execution continues.

EXIT CALL EXIT Terminates the program,

FETCH CALL FETCH (s} Loads and transfers control to the overlay specified
by the phase name.

LOAD CALL LOAD (s) Loads subprogram overlays and transfers control to the
program statement after the CALL statement,

OPSYS CALL OPSYS {'LOAD’,s) Loads subprogram overlays and transfers control to the
program statement after the CALL statement; equivalent
to CALL LOAD statement.

6—1

UP-NUMBER PAGE

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

UPDATE LEVEL

6. Specification Statements

6.1. GENERAL
Specification statements are nonexecutable statements that inform the compiler about program data and main

storage allocation. See the “Specification Statements’’ section of the fundamentals of FORTRAN reference manual,
UP-7536 (current version). All statements in this section are order dependent. Refer to Table 1—2.

6.2. ARRAY DECLARATION
An array is an ordered set of elements identified by a symbolic name (2.4). An array may be declared in a DIMENSION

statement, a COMMON statement, or in an explicit type statement {INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL).

6.2.1. Array Declarator
Format:

v (iy,iz,....i7)

where:
v
Is a symbolic name identifying the array.
i
Is a unsigned integer constant or integer variable (for adjustable dimensions); an integer variable used to
declare an adjustable dimension must be a COMMON variable or a dummy argument of the integerx4
type; from one to seven dimensions may be declared.
Description:

The array declarator specifies the name and the dimensions of an array. If the array name is a dummy
argument, the array is a dummy array, and the dimensions may be specified as integer variables. In the
interest of efficiency, dummy arrays are processed at execution time in a special fashion. The procedure
prologue (6.56.1, 5.5.2) saves the subscripts in dimension declarators from the argument list or common
storage, and derives a partial solution to the equation used to locate array elements (Table 2—2).
Thereafter, subscript calculations in the body of the procedure can be performed more quickly. A side effect
of this technique, however, is that it is impossible to redeclare array dimensions within procedures; for
. example, in the code sequence:

j:-zzup;;:;ﬁ | SPERRY UNIVAC Operating System/3 UPDATE LEVEL PAGE6—2
"C* FOR COMMENT

r{;,fJMEé‘EER“T HFORTRAN STATEMENT >

51817 10 20 30 40
. | IDIMENSTION B ¢51, 000 v v L]
b o CALLL A CBL S, V0 e
L A T B S
iy | [SUBRPUTINE A Xy T I) o0 Ly
.. | DIMENSTION X (T, 7). DECLARES (5,,10)]
v SV ES e b]
MO TENOL e e e
b P CMI N S e e e e]
Ly PR SN S U S SO S RS S U S ST S N SO WA N S S U T Y S S WA

statements 5 and 10 do not change the array from X(5,10) to X{10,5).

6.3. DIMENSION STATEMENT
Format:

DIMENSION v, (i;)/c1/.Valis)/ €3/ ,...¥nlin)/ Cn/

where:
(i)
Is an array declarator (6.2.1).
c
Is an optional list of constants, each element of which is either a constant or a constant preceded by an
unsigned integer constant multiplier in the format j*c. The constants are used to initialize the array.
Description:

The DIMENSION statement declares and optionally initializes arrays. Elements in the array are initialized
starting with the firstelement. An array may be partially initialized, but an array that is a dummy argument may
not be initialized. COMMON arrays should be initialized only in BLOCK DATA subprograms.

The constants in the list should agree in type with the array to be initialized. The compiler will convert numeric
constants to the type of the corresponding array, but truncation may occur. In addition, the list may contain
hexadecimal and literal constants.

UP-NUMBER

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

6-3

. Examples:

“C" FOR COMMENT

SLAUTME:EER FORTRAN STATEMENT »

617 10 20 30 40

—_— —
SN DIIIMElNlSlILULNL lllNlRlAlYl l(lllol)l TR R D WA W S O l | S S S S S |
S S T :A J] | RN R TR WA NONUN S R S | I SRS W SR S U N S S I YRS W W B | L4 g l) S U N TR S |
14 1) DIIIMIE‘NISIILlel lAlRlRlAinzch ‘ lol) 1/1 | L® 10\ /1? lAIRlRlA‘Y13l<l\iol‘;lblgll‘{.l)l
i1 1 " l /III'LO%lzl3lql*lok'lol/l l " 11 i 1 1 1 i 1 | | 1 i 1 1 1 l 11 1 i 1 1

The first DIMENSION statement declares an integer array named INRAY, which has 10 elements. No
initialization of the array is accomplished.

The second DIMENSION statement declares two arrays containing real data elements: ARRAY2 has 10

elements, the first of which is initialized with the value 1.0; ARRAY3 has 240 elements, the first of which is
initialized with the value of 1.0, while the other elements are initialized with 0.0.

6.4. TYPE STATEMENTS

Two kinds of type statements can be used in SPERRY UNIVAC Operating System/3 Extended FORTRAN: the
explicit type statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL; and the IMPLICIT
type statement.-In the absence of typing with these statements, symbolic names starting with the letters |,
J, K, L, M, and N are considered to be interger*4 type (FORTRAN name rule); all others are considered to

. be real*4.
6.4.1. Explicit Type Statements
Format:

txs a;*s/ ¢, /,az*s/cz/,...,an*s/cn/

where:
t
Is the type, specified as INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.
a
Is a variable name, an array name, an array declarator, or a function name.
c
Is an optional list of constants used to initialize the immediately preceding variable name or array. When
used to initialize an array, the /c/ may be a list, each element of which maybe a ¢, or j*c when using the
multiplier constant.
*s
Is an optional length specification (2.3); may not be specified if the type is DOUBLE PRECISION.
Description:
. An explicit type statement not only specifies the data type of a name but also contains initialization values

when the /c/ option is used. Numeric initialization values are converted to the type of the corresponding
variable or array, but note that truncation may occur.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

6-4
PAGE

UPDATE LEVEL

The length implied by type (t), with or without the optional length specification (*s), applies to every name in the
list unless it is specifically overridden by a specification for the individual name. See 5.6.2.1 for a discussion of .
specifying intrinsic and standard library functions in type statements.

Examples:

"C* FOR COMMENT

STATEMENT] 2 ORTRAN STATEMENT >
567 10 20 30

. | REALI LOAF IDTA/5..2/,, JoKkE/ 7.5/, |
e PPMATRII NG, 4., 5)./160%0..0/, 10y
A N R B R
o [REALRE A,BLC L b
A N S S R
oo | REAL ALB*8.,.0 | v

The first statement specifies LOAF, IOTA, JOKE, and MATRIX as real types. In addition, the statement
indicates that IOTA is assigned a value of 5.2; JOKE, 7.5; and the array MATRIX consists of 60 elements
and is initialized with 0.0 in every element.

In the second explicit type statement, the variables A, B, and C all are typed as double precision due to the
length specification.

The third type statement specifies A and C as real variables; B is a double precision variable because of its
length specification.

6.4.2. IMPLICIT Statement

Format:

IMPLICIT t*s(a,.a,,...,ap). t*s(ag.1—am,...)....

where:
t
Is the type, specified as INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.
a
Is a letter (A through Z and $) associated with the specified data type. The format of this specification may
be A,B,C, etc., with commas separating each letter, or it may be A—D, to specify a range of letters.
*$
Is the optional length specification.
Description:

The IMPLICIT statement permits the user to specify his own implicit type conventions for each program unit.
The IMPLICIT statement types symbolic names by the first letter of the name, including the dollar sign.

8262 Rev, 1
UP-NUMBER

I SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

65

If $ is to be included in a range specification (two letters separated by a minus sign), it must be last. The
dollar sign indicates real data by the standard typing conventions.

Symbolic names that start with a letter not covered by the IMPLICIT statement are typed according to the
standard convention in 2.3. Any implicit typing, whether standard or specified by the IMPLICIT statement, is
superseded by explicit typing.

Symbolic names that appear in the program before the IMPLICIT statement are typed by standard conventions,
except for dummy arguments in a SUBROUTINE or FUNCTION statement and the function name in a
FUNCTION statement, which are redefined by the first IMPLICIT statement, but not subsequent IMPLICIT
statements. IMPLICIT statements must appear in the specification group (Table 1—2).

Example:

*"C" FOR COMMENT
EULEQ‘EERNT FORTRAN STATEMENT >

5 7 10

PNCont.

20 30 40

IIMLPIL—IIICJIATA lRlElAlLl%lBl(nAl_lDlg_El)laynLLbiGlIlclAlL-A(‘ILI)13l 1

IINJIEIGLEIRL%ZICJNJ?lQI%LUI’l 1V1)1-'nILNITIEIGJE1R1(1X1‘1$1)1 i i l 1

After processing the IMPLICIT statement in the example, names beginning with the letters of the character set
are typed as follows:

u A through D are double precision, as specified by the IMPLICIT statement, because real*8 is the
equivalent of double precision;

" E is real, because of the standard convention;

L] F is double precision, as specified by the IMPLICIT statement;
n G and H are real because of the standard convention;

L I, J, and K are integer because of the standard convention;

u L is logical, as specified by the IMPLICIT statement;

u M is integer because of the standard convention;

L N is integer=2, as specified by the IMPLICIT statement;

u O and P are real because of the standard convention;

L Q is integer+2, as specified by the IMPLICIT statement;

L R through T are real because of the standard convention;

L U and V are integer*2, as specified by the IMPLICIT statement;
n W is real because of the standard convention; and

n X through $ are implicitly typed as integer by the IMPLICIT statement.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 66
UP-NUMBER UPDATE LEVEL PAGE
6.5. EQUIVALENCE STATEMENT .
Format:

EQUIVALENCE (k;).(k,).....(kp)

where:

Is a list of the form a,,a,,...,a,, and each a is a variable name, an array element name, or an array name.
Each name specified in the list shares assigned storage. Dummy arguments may not appear in the list.

Description:

The EQUIVALENCE statement permits sharing of a main storage unit by two or more entities specified within
parentheses. The equivalence provided by the statement is in relation to the first, or leftmost, byte of the
entities specified. (See 6.6.1 for a discussion of the effects of the interaction of EQUIVALENCE and COMMON
statements.)

Program execution time is increased whenever a variable that does not have a proper boundary alignment is
referenced. To achieve proper alignment, a variable must have an assigned main storage address that is an
integral muitiple of its length. Complexx16 variables require an 8-byte (double word) and complex*8
requires a 4-byte alignment. There are no boundary requirements for the logical*1 variables.

The first variable in each EQUIVALENCE group is assigned to a main storage address that is a multiple of 8
| if possible. If erroneous boundaries are present in the EQUIVALENCE group, the addresses in the group are
increased successively by 2, 4, and 6 in an attempt to correct the error. Thereafter, it is the programmer’s
responsibility to ensure that the variables in the EQUIVALENCE group have the proper alignment.

A variable with incorrect boundary alignment is recognized during compilation, and a warning diagnostic is
provided. When the program is linked, a library routine is provided which receives control when the hardware
interrupt caused by a reference to a variable with an improper alignment occurs. The subroutine repeats the
instruction that caused the interrupt, after having moved the operand to the proper boundary.

6.6. COMMON STATEMENT

Format:

COMMON /x;/a;/.../Xn/a8n

where:
X
Is an optional symbolic name identifying the COMMON block. If no symbolic name appears between the
slashes or if x; with its associated slashes is omitted, blank COMMON is assumed.
a

Is a nonempty list of variable names, array names, or array declarators. No dummy arguments are
permitted.

8262 Rev. 1 l SPERRY UNIVAC Operating System/3 6-7
UP-NUMBER UPDATE LEVEL PAGE
Description:

The COMMON statement aliows sharing of a common main storage area by different program units. When
block names are specified, the compiler treats each block as a separate control section (CSECT) whose
allocation will appear separately on the linker map. When no block name is specified (blank COMMON), the
compiler uses a CSECT name that is not assigned by the programmer. It is the programmer’s responsibility
to ensure that every variable and array in COMMON has the proper boundary alignment. Automatic
boundary error recovery is provided (6.5), but this increases execution time.

Every named or blank COMMON block is assigned a main storage address that is a muitiple of 8. Each
COMMON variable or array is assured of proper alignment if it is placed in the block in descending length:
complex»16 variables and double precision first, then real and complex+8, and so on until logicalx1
variables. In differing program units, when multiple definitions of a COMMON block specify different sizes
for the block, the largest definition is accepted.

6.6.1. COMMON/EQUIVALENCE Statement Interaction

The compiler does not process COMMON and EQUIVALENCE statements individually in the sequence in which they
are encountered. Instead, these statements are processed in three consecutive phases:

1.

COMMON storage is allocated by processing all COMMON statements without regard to boundary
requirements.

2. EQUIVALENCE groups that do not contain COMMON variables or arrays are processed, and storage is
allocated. In any group containing improper boundaries, address adjustments are attempted.

3. EQUIVALENCE groups that contain COMMON variables or arrays are allocated storage without regard to
boundary requirements. This may have the effect of lengthening COMMON at the right end of the list;
COMMON cannot be extended at the left end of the list.

Example:

“C" FOR COMMENT

'“N"JME:EE,{” SFORTRAN STATEMENT >

5167 10 20 30
o | IDIMEINSTON AC3D) 0 0
o | COMMON B CDy
o IEQUIIVALENCE CALDD), o 000 e
c o L ICOMMOING By L b

produces a blank COMMON configuration of

D E
B c shares storage with |shares storage with A(3)
A1) A(2)

6-8
PAGE

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

The first three statements can be ordered in any arbitrary sequence with the same result. Replacement of the third N
line with’ '

“C" FOR COMMENT

Ninaen | SFORTRAN STATEMENT >
5167 10 20 30
| I 1 ELQIUII[VIAILIELN_lclel l(lAl(l3l)415' I-Bl)l L 1 1 l) I U T | i 1 1

is an illegal extension of COMMON.

6.7. EXTERNAL STATEMENT
Format:
EXTERNAL v,,v,,....vp

where:

Is the name of an external function or an external subroutine.
Description:

The EXTERNAL statement specifies function or subroutine names used as actual arguments to an external
procedure. If an intrinsic function name appears in an EXTERNAL statement, that procedure is assumed to
have been written by the user, and no assumptions about its properties are made. This is also true with the
standard library function names. (See 5.6.2.1 for a discussion of specifying intrinsic and standard library
functions in an EXTERNAL statement.)

A procedure name can appear both as an actual argument and as adummy argument. This can occur when the
procedure name is passed through multiple levels of procedure reference. In such a case, an EXTERNAL
statement must appear at every level of procedure call.

When the context of the program uniquely identifies a symbolic name to be a procedure name, the EXTERNAL
statement is unnecessary:

| I W 11114141_1||111|ll|l|||||11lll||
lIIOl lclAlLlLllAlelllllllllllllleJLllll

1 1 1 i i 1 I 1

lzloll 1CLA11L1|B|(|A1)|||||11:|11|||1111|111

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-9

UPDATE LEVEL

PAGE

No EXTERNAL statement is needed, but if statements 10 and 20 were reversed in sequence, the statement

“C" FOR COMMENT

NUMBER

STATEMENT] £

g
5106

FORTRAN STATEMENT —>»
7 10 20 30

ELX 1T1EIRJN|A1L| ;An

llJIllllllJ_JALlllJlllj

would be needed.

6.8. PROGRAM STATEMENT

Format:

PROGRAM s

where:

Is the symbolic name used to identify a main program.

Description:

The PROGRAM statement may be optionally used to identify a main program for later reference by the linkage
editor and librarian. When present, the PROGRAM statement is the first statement of the program unit. Inthe
absence of this statement, the compiler assumes the name $MAIN for main programs. Two main programs
cannot be compiled in the same job if this statement is not specified, since the second main program will
otherwise supersede the first.

The symbolic name s is a special name that bears no relationship to any variable or array name in the program
unit. It must be unigue with respect to the SUBROUTINE, FUNCTION, BLOCK DATA, and COMMON block
names in the executable program.

A
UPDATE LEVEL

8262 Rev. 1 | SPERRY UNIVAC Operating System/3 7-1

UP-NUMBER

PAGE

7. Input and Output

7.1. GENERAL

This section describes the characteristics of the input/output system and the SPERRY UNIVAC Operating
System/3 (0S/3) Extended FORTRAN statements required for input and output control. For further information,
refer to the "Input/Output and FORMAT Statements’” section of the fundamentals of FORTRAN reference
manual, UP-7536 (current version). Also see Section 11 in this manual, which describes the USage of the 0S/3
data management system.

The FORTRAN input and output statements are READ and WRITE. These statements designate an 1/0 device
and reference an 1/0 list, they may reference a FORMAT statement. The input and output devices, that may be
used in FORTRAN for sequential files include: card reader, printer, card punch, magnetic tape, and disc
subsystems used sequentially. Direct access processing is also possible with disc subsystems. The peripheral

devices are assigned unit numbers within the user’s system where the unit number is a unique integer constant
(k) in the range between 1 and 99.

. 7.2. INPUT/OUTPUT LIST

The purpose of an 1/0 list is to identify variables, arrays, and array elements so that they may be transferred to and
from external devices. The |/0 list is an ordered set of items with the format:

a,a,,...,an

where:

Is a simple 170 list which may be a variable, array element, or array name;
Is two simple lists separated by a comma;
Is a simple 1/0 list in parentheses; or

Is a DO-implied list (7.2.1).

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

Example:
V2,ARRAY ,MATRIX(5)
This 1/0 list consists of a variable, an array name, and an array element.
In an unformatted input/output statement, the |/0 list directly determines record length; in a formatted

statement, record length is determined by the interaction between the list and the FORMAT specifications.
Section 11 discusses record length limitations with regard to various devices and file access methods.

7.2.1. DO-Implied List
Format:
(k.d)

where:
Is an 170 list (7.2).
Is a DO specification with the form: i=m,, m,, m; where parameter interpretation is identical with the DO
statement (4.7). .

Description:

The DO-implied list allows the transfer of list elements in the sequence specified by the DO parameters. DO-
implied lists may be nested to a maximum of seven levels.

Example:
(({AX(1,J,K),I=1,5),=1,5),K=1,5)
if the 3-level DO-implied list in the example is used in a WRITE statement, the group of 125 elements of array

AX is transferred to the specified external medium. The transfer would be to storage if the list were used in a
READ statement. See 2.4.1 for the general expression to determine the location of array elements.

7.3. SEQUENTIAL FILES

The use of the American National Standard FORTRAN |I/0 statements READ, WRITE, BACKSPACE, REWIND,
and ENDFILE is defined in the following paragraphs. The FORMAT statement, used for editing values
represented by character strings on the external media, is also described.

Files referenced with the standard statements are always treated as sequential, even when they reside on disc
storage.

UP-NUMBER

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

7-3

7.3.1. Unformatted |/0 Statements

An entire list of variables, arrays, and array elements transferred to an external device by an unformatted WRITE

statement exists as a single logical record for a subsequent unformatted READ or BACKSPACE order. The formats
are:

WRITE (u) k
READ (u,EOF=label,,ERR=label,) k

READ (u,END=label,,ERR=label,) k

where:
u
Is a constant or integer variable designating an 1/0 device.
EOF=label
Is an optional specification denoting the statement label of the statement to receive control if an end of
file condition occurs;
END=label ,
May be substituted for the EQF=label specification.
ERR=label
Is an optional specification denoting the statement label of the statement to receive control if an error
condition occurs. ’
k
Is an I/0 list, which may be empty for a READ statement to indicate the record is to be skipped.
NOTE:

If both the EOF and ERR specifications, or both the END and ERR specifications, are present, their order may be
interchanged.

Description:

The unformatted 1/0 statements initiate and control the transfer of unformatted data between a designated
peripheral device and main storage.

Unformatted 1/0 is designed for high efficiency data transfer and, consequently, no data conversion
operations take place; the variables are in the representation specifiedin 2.2 and 2.3. Only minor input validity
checking is performed in keeping with this emphasis on throughput.

If the list for a WRITE statement consists of two integers followed by three double precision values, the only
valid READ statements for that record are:

READ (u) ; bypass the record
READ (u} |

READ (u) 1,1

READ (u) 1,1,.D

READ (u) 1,1,D,D

READ {u) I,1,D,D,D

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A 74
UP-NUMBER UPDATE LEVEL | PAGE
Even more efficiency can be achieved by reducing a list to a single element. Compare the following program
segments: .
"C" FOR COMMENT
I n
{S‘T,;*ULE;‘EER“T SFORTRAN STATEMENT >
si€l7 10 2 30 40
L 1 XL i DIIlMlEllelIlﬁiN IAICIllol)l}IBICIZlOl)l’;lCl(lslol>l 1 4 1 1 1 1 i 1 J
1 1 i 1 ‘DIDIUIBILIEK APIR]EICAIlSIIIDINI lBl e i 1 1 1 l A 1 1 1 1 L i 1 1 l i L 1
11 1 1 A :1 L J 1 | . A L 1 1 L1 1 1 1 U A 1 i i 1 l L 1 1 i1 1 1 1t LI 1 1
4t 1 1 WlRlIlTlEl lclql)l JAL"ILBJA’ICI 1 1 1 1 H i | 1 l 1 1 1 1 1 1 i | H l i 1 1
i1 1 A DII IMEI NSIIIDLNI lAJcllJol)l}lBl(llel)l’,}lclclslol)IA'LDIUIMIMIYICISIOI) 1
J 1 i 1 DIDIUI‘BlLlEl APARIEICAIISIIIvINL JBJ i1 1 1 i 1 I 1 i 1 1 i 1l 1 1 1 l 11 1
1 i 1 1 ElQlUlIlVlAlLlElNLClEl lchlUlMlMlYla’.lAl)l?l(-l-DlUlMMYl(l‘l \l)l’lBl)l’I 1
i1 1 i \ (lcl?lDlUlMMlYl('ls-l\l)l)l 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i l 1 1 1
.t i i 1 L : A 1 l 1 1 | L 1 I e ! l | L ' | l do L I i l 1 1 L 1 Lodoo oL 1 1 l | 1 1
1)| 1 1 WlRllelEl lclqi)L LDIUIMMIYI | 1 1l 1 1 1 1 1 l 1 1 1 1 1 1 1 1 | l 1 | 1

The contiguous ascending storage addresses implied by DUMMY in the second segment allow greater
efficiency in the data transfer.

7.3.1.1. END and ERR Clauses

The END and ERR specifications may appear in any order after the integer unit designation. EOF is an alternate
form for END and is identical in function in Extended FORTRAN. If the END parameter is not present in a READ
statement, the program is terminated with an informational message if the end of data is encountered. If either
the END or EOF specification is present, control is transferred to the specified statement label when the end of
data is encountered.

The ERR parameter specifies a statement label to - which control is passed when it is impossible to completely
process the current list. Other records in the file might still be available for processing. To describe the situation,

the indicators tested by the ERROR subroutine (5.6.3) are set. If the ERR parameter is not specified, the program
is terminated with an informational message when a record cannot be processed. Refer to 11.3.1.4.

7.3.2. Formatted READ/WRITE Statements
Formats:

READ (u,a) k
- READ (u,a,EOF=label,) k

READ (u,a,END=label,) k

READ (u,a,END=label,,ERR=label,) k

WRITE (u,a) k

A
UPDATE LEVEL

7-5
PAGE

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER

. where:

u
Is a constant or an integer variable designating an input or output device, and has a value of from 1
to 99.
a .
Is an array name, an integer variable (3.3.2), a NAMELIST name (7.3.5.1), the label of a FORMAT
statement (7.3.3), or the asterisk character (7.3.5.2).
EOF=label
Is an optional specification indicating that if an end of file condition is encountered on input, the program
is to branch to the label specified.
END=label
Accomplishes the same as EOF=label.
ERR=label
Is the optional specification of a label to which control is passed on encountering an error condition.
k
Is an optional 1/0 list.
Description:

The formatted READ/WRITE statements initiate and control the transfer of formatted data between

. designated peripheral device and main storage. Data is always converted from and to character strings on *
external media and the internal representations specified in 2.2 and 2.3 as specified by the format
indicator, a. If the format indicator is an array name, the array must contain a legal FORMAT descriptor
from opening to closing parenthesis. An integer variable format indicator must contain a FORMAT
statement label from an ASSIGN statement. An asterisk character specifies list-directed formatting. A
COMPLEX item always requires two FORMAT editing codes.

7.3.2.1. 1/0 Compatibility Statements

The following FORTRAN Il statements are accepted by the Extended FORTRAN processor:
READ ak
PUNCH a.k
PRINT a.k

where:

Is the statement label of a FORMAT statement, an array name, an integer variable name (3.3.2), or
the asterisk character (7.3.5.2).

Is an 1/0 list.

. NOTE:

No unit specification is made because it is unnecessary; the compiler addresses the appropriate device in the user’s
system configuration.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER . l UPDATE LEVEL

76

PAGE

7.3.3. FORMAT Statement ‘
Format:

| FORMAT (q1t1 z? tzZz.. -tn_1 Zn-q tan)

where:
! .
Is the label of the FORMAT statement.
q
Is an optional group of one or more slashes; each time a slash appears in the FORMAT statement, it
signals the end of a logical record.
t
Is a field descriptor (7.3.3.1) or a group of field descriptors specifying the data conversion or the action to
be executed.
z
Is a field separator (either a slash or a comma) required when more than one field descriptor is used;
commas are not required when they follow fields described by blank {(wX), Hollerith (wHc,c,...cw) and
literal (‘cyc,...c,") descriptors; slashes end a logical record.
Description:

The FORMAT statement specifies editing information for transforming formatted data (character strings), from

and to internal representations. The FORMAT statement descriptors are described in the following
paragraphs.

Examples:

“C" FOR COMMENT

[o
SUIRENT] ZFORTRAN STATEMENT >
5617 10 20 30
_ 1,00| FORMAT, (' FIRST PAGE. ' /D) | .\ .,
i l\ llio FIOIRLMLAITI lcl /I/lllll IIzlﬁllzlxlIlllzl/l)L i l 1 1 L i L 1 1

If referenced by a WRITE statement, the first FORMAT statement causes the transfer of the literal FIRST PAGE
and provides an additional blank logical record. The second format statement skips three logical records and

then describes a record with a 12-byte integer field, two blanks and another 12-byte integer field, plus another
blank record.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

7-7

7.3.3.1. Field Descriptors

The field descriptors specify the kind of 1/0 data conversion or action to be executed. Extended FORTRAN
allows the descriptors listed in Table 7—1.

Table 7—1. FORMAT Statement Field Descriptors

Classification

Field Descriptor

Integer

Real (E conversion)

Real (F conversion)

Double precision

Logical

General

Hollerith (A conversion)

Hollerith (H conversion)

Hexadecimal

Literal

Blank

Record position

riw
srEw.d
srFw.d
srDw.d
rlw
srGw.d
rAw
ch,cz.._.cw
rZw
'1C2...Cn"
wX

Tp

_.
n

LEGEND:

¢ = character

a repeat count (0 <r < 255)
w = the field width (0 < w< 255)
s = the scale factor nP (—128 <n <+127)

d = decimal positions (0<d<w)

p = character position in the external record (0 < p < 32767}

8262 Rev. 1 SPERRY UNIVAC Operating System/3
UP-NUMBER

UPDATE LEVEL | PAGE

7-8

The specifications within the field descriptors are explained below, and the input and output actions
accomplished by the descriptors are described in 7.3.3.1.1 through 7.3.3.1.12.

u Repeat Count

The repeat count allows a field descriptor to be repeated a maximum of 2565 times. The repeat count
specification must be an unsigned integer constant. The field descriptor 5L3 isthesameasL3,L3,L3,L3,L3.

. Field Width

The field width specification is an unsigned integer constant indicating the number of character positions the
data occupies, or will occupy, in the external medium. The specification must not exceed 255.

L Scale Factor
Input and output using the E, F, D, and G conversion codes can be scaled up or down {multiplied or divided) by
the specified power of 10, when the scaling specification in the format nP is included in the field descriptor. A

complete description is available in the fundamentals of FORTRAN reference manual, UP-7536 (current
version). Refer also to 7.3.3.1.13 in this manual.

[] Decimal Positions

The specification describes the number of digits to the right of the decimal point; if none exist, a zero must be
specified.

] Character

Any character of the Extended FORTRAN character set is permissible.
u Character Position

See 7.3.3.1.12.

Field descriptors may be grouped by using parentheses. The left parenthesis may be preceded by a group repeat
count indicating the number of times the enclosed descriptors are to be repeated. The maximum is 255. Nesting to
three levels is permitted. The result of the basic group and repeat count 2(2X,2I5F10.0) is
2X,15,15,F10.0,2X,15,15,F10.0.

7.3.3.1.1. Integer Descriptor (riw)

On input operations, if the value exceeds the range, only the least significant digits are stored with the sign, if any. An
integer, which consists of a signed integer constant where the positive sign is optional, may contain, or be preceded
by, embedded zeros or blanks. Blanks are interpreted as zeros.

If the value exceeds the permissible range of +32,768 for integer*2 or +£2,147,483,647 for integerx4, the list
element is defined to be the least significant 16 or 32 bits.

On output, the external field is preceded by a minus sign if the value is negative, and may be preceded by blanks,
space permitting, if the value is positive. If the internal value cannotbe converted into the w characters specified, the
output field is set to w asterisks.

8262 Rev. 1
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC Operating System/3

PAGE

7-9

7.3.3.1.2. Real Descriptor — E Conversion (srEw.d)

On input, the external field consists of a string of digits optionally preceded by blanks or zeros preceded by an optional
sign. Blanks are interpreted as zeros. The digit string may specify a decimal point, which overrides the d specification
in the descriptor. The digit string may be followed by exponent notation, E or D followed by an optionally signed
integer constant. If the integer constant is signed, the E or D may be omitted. If the number of significant digits
exceeds the precision of the list element, the value will be rounded to the correct size. If the value is too small or
too large for the range, a zero will be substituted.

On output, the external field has the following format:

s10.n1n2...ndEszee

where:
$1
Is the sign of the value, either blank or —,
n
Is a decimal digit.
$;
Is the sign of the exponent, either blank or —.
ee

Is the 2-digit. exponent.
Note the decimal point preceding the digits.

For a complete representation of all values, the w specification should provide at least seven more additional
field positions than the d specification.

The rules governing the output form when w is not at least 7 greater than d are:
» If (w—d) is 6, the zero character preceding the decimal point is deleted from the output form.

" if (w—d) is 5 and the value is nonnegative, both the s, and the zero characters preceding the decimal pointare
deleted from the output form.

a If neither of the above conditions holds, the entire output field is set to asterisks.

7.3.3.1.3. Real Descriptor — F Conversion (srFw.d)
For input action, refer to the E conversion description (7.3.3.1.2). On output, the external field has the following form:
S i1 iz.-.iw_d_‘| ‘ f1f2fd

where:
Is the sign of the value, either blank or —.

Is a digit within the integer portion of the output value.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 1

UP-NUMBER UPDATE LEVEL

PAGE

f
Is a digit within the fractional portion of the output value. ‘

Sufficient space must be provided for a minus sign if the value is negative. if the integer part of the value is
nonnegative and requires more than {w-d-1) character positions for its representation, or is negative and requires
more than (w-d-2) character positions, then the E conversion is used instead of the F conversion specified by the
descriptor. If neither F nor E conversions suffice to represent the value, the entire field is set to asterisks.

7.3.3.1.4. Double Precision Descriptor (srDw.d)

For input action, refer to the E conversion description in 7.3.3.1.2. On output, also discussed in 7.3.3.1.2, the
external field has the following form:

$:0.nyn,...nyDs,ee

7.3.3.1.5. Logical Descriptor (rLw)

The logical field descriptor allows the input or output of logical values. On input, thefieldis scanned untilaToranFis
encountered; if no T or Fis found, the listelement is setto .FALSE.. On output, a T or anF is inserted in the record. The
character is right-justified and is preceded by w-1 blanks.

7.3.3.1.6. General Descriptor (srGw.d)

This descriptor provides the capabilities of the E, F, | and the L conversion codes. During an input operation, this
descriptor accepts any real data form with or without an exponent. During an output operation, the F conversion code
is automatically selected if sufficient field width is specified in the descriptor; if not, the standard E or D exponential
form is selected for output. The G descriptor may also be used to transfer integer, double precision, and logical data
fields. For double precision data, the G descriptor is, in effect, the same as a D descriptor. For integer and logical data,
the G descriptor is interpreted as an | or an L descriptor, respectively. The d and s editing information in the format
may be omitted when transferring integer or logical data; it is ignored when present.

7.3.3.1.7. Hollerith Descriptor — A Conversion (rAw)

This descriptor requires a corresponding variable or array element name in the I/0 list. The maximum number of
characters that can be transmitted to a variable or array element is equal to the length, in bytes, of the variable or
array element.

On input, if the descriptor specifies fewer than the maximum number of characters, the data field is transferred to
main storage and left-justified; blanks are inserted in the remaining storage positions. If the descriptor specifies
more than the maximum number of characters, only the rightmost characters of the data field are transferred to main
storage. The remaining characters are skipped.

On output, if the descriptor specifies fewer characters than can be represented in the variable type, the leftmost
characters of the data field are transferred from main storage. If the descriptor specifies more characters thancan be
represented in the variable type, the data field, right-justified and preceded by blanks, is transferred from main
storage to the external field.

7.3.3.1.8. Hollerith Descriptor — H Conversion (wHc;c;...c,,)

On input, the next w characters transferred from the external device replace the current Hollerith data specified in
the format statement. On output, the Hollerith data currently contained in the FORMAT statement is transferred to
an external device.

7-11

UP-NUMBER PAGE

8262 Rev. 1 i SPERRY UNIVAC Operating System/3

UPDATE LEVEL

. 7.3.3.1.9. Hexadecimal Descriptor (rZw)

This descriptor is used to transfer hexadecimal digits, any two of which may be stored in one byte in the list item. The
number of digits associated with the data types are:

Number of
Type Hexadecimal Digits (k)
Logical*1 2
Logicalx4 8
Integer=2 4
Integer*4 8
Real*4 8
Double precision 16
Complex*8 16
Complex*16 32

On input, the hexadecimal digits are stored two to a byte, right-justified and zero filled; blanks are interpreted as
zeros. If a minus sign precedes the value, the leftmost bit of the variable is set to 1.

. On output, a sign position is never produced, and when w is less than k in the above table, hexadecimal digits are
truncated on the left. When w exceeds k, (w-k) blanks precede the value.

7.3.3.1.10. Literal Descriptor (‘c,c,...c,")

This format code, similar in function to the H conversion, causes alphanumeric information to be read into or written
fromthe literal data in the FORMAT statement. It is not necessary to specify an external field width. No 1/0 listitemin
a READ or WRITE statement is associated with this form of alphanumeric transmission. If an apostrophe is required
in a Hollerith string, two successive apostrophes must be specified. For example, the characters DON'T are
represented as ‘DON"T'. The effect of the literal format code depends on whether it is used with an input or an output
statement.

] Input

The characters in the external field replace the literal data in the FORMAT specification in main storage.
Contiguous inner apostrophes in the FORMAT specification are consolidated into a single apostrophe. Field
width is determined by the literal length after contiguous apostrophes are eliminated. For example, the
FORMAT descriptor ‘A” B’ causes the next four characters to be input. Each apostrophe in the external field is
treated as a separate character.

For example, if the input data in positions 1 through 10 is COUNTERAAA and the following statements are
used, the READ statement causes the 10 characters specified COUNTERAAA to be transferred, replacing the
characters HEADINGAAA in the FORMAT statement.

8262 Rev. 1 " . _
’ rating System/3 7-12
UP-NUMBER I SPERRY UNIVAC Ope g 5y UPDATE LEVEL | PAGE
“C" FOR COMMENT e
*TTN‘ULE;‘:R"T EFORTRAN STATEMENT » .
5 €07 10 20 30 40
— - =
i 1 1 1 RIELAI‘DI l(l\A;A Lzlol)l L l | | 1 | 1 i 1 1 l ! I U S N T S l 1 1 iy
(- lzlo FIDIKMIAATI LCL ‘lHlEjAlDlIlNIGI 1 1 | 'l)l 1 1 I | NN W SO | 1 1 1 1 I l 4 4 1
= Output
All characters, including blanks, within the apostrophes and the characters representing the literal constant
are written as part of the output data. The descriptor 'DON"'T’ causes the five characters DONT to be written.
Example:
i 1 A A WlRlIlTlEl I(llel‘}l ll lol)l | i 1 L I 1 | L i l 1 1 4 e 1 1 1 1 i l 1 1 1
1 1 1 l 10 FADJRLMAITL L(I ! 1 1T 1H1ElleL JARlEJ lsJALmlpl LlEi 1P lRlDlBlLlElMI Sl' l)l
Execution of the WRITE statement causes the following record to be written:
THESE ARE SAMPLE PROBLEMS
7.3.3.1.11. Blank Descriptor (wX)
This descriptor omits the next w consecutive characters on input. On output, the blank descriptor skips w positions in .

the output record. At the time each output formatted record is started, it is filled with blanks.

7.3.3.1.12. Record Position Descriptor (Tp)

This descriptor specifies the position in a FORTRAN record where data transfer is to begin. Input and output may
begin at any position by using the Tp descriptor. The value of p represents the start position. As noted for the X
descriptor, each output formatted record is blank filled at the time it is started. For example, the format
specification (T7, 13HEMPLOYEEANAME,T100,9HTELEPHONE,T40,12HHOMEAADDRESS) causes record
positions not specified in the field specification to be filled with blanks. However, for print records, the position
specified becomes print column t-1, because the first character of a print record is interpreted as the carriage
control character (Table 7—2), which is not printed. Thus, a print record for the format shown in the example
would be:

EMPLOYEE NAME HOME ADDRESS TELEPHONE

4 / /

LOCATION

The following statements cause the 10 characters starting from position 20 of the record to be converted according
to the F10.3 code and stored in Y, and the 5 characters starting from position 1 to be converted according to the F5.1
specification and stored in B.

.

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

7.3.3.1.13. Scale Factor Effects

Scale factors have the form nP, where n is an optionally signed integer constant, and affectonly D, E, F, and G format
codes. Scale factors associated with other format codes are not meaningful.

READ and WRITE statements set an effective oP at their outset. By using an nP directly preceding either a format
code or its associated repeat specification (if any), all the following D, E, F, and G format codes will be treated as
though each were preceded by nP until a new scale factor is encountered. This rule applies even when a rescan of
the entire FORMAT statement is required. For variables of type real or complex, a scale factor will either shift the
decimal point n positions or have no effect, according to the following rules:

L Scaling has no effect when an input field contains an exponent or, for G output, when the internal value is
within the range of effective F conversion.

= When an exponent is produced by a D, E, F, or G output conversion, scaling multiplies the basic real number by
10" and reduces the produced exponent by n. Thus, external value = internal-value.

n In all other cases, the scale factor implies a change of value according to the rule: external value = internal
value - 10",

7.3.3.2. Multiple Record Format Specification

The slash {/) is a record delimiter and a field separator. If a list of field specifications is followed by a slash, the

remainder of the record being edited is ignored on input or filled with spaces on output. Any editing codes following

the slash are used to edit the next record. The outer right parenthesis of the FORMAT statement is also a record

delimiter if 170 list elements of the corresponding |/0 statement remain at the time it is scanned.

7.3.3.3. Carriage Control Conventions

The first position of a printer output record does not print, but determines the action of the printer carriage. The
action executed for a given carriage control symbol is described in Table 7—2.

7-13

UP-NUMBER UPDATE LEVEL | PAGE

- "C" FOR COMMENT

F L .|
SNunaes "] FORTRAN STATEMENT >
5167 10 20 30
L1 1 L RIEIAIDI l(|34112|)l IYI'O'Il lBl 1 A1 1] I 1 1 1 l 1 L 1 1 { 11
) S T | 12 FIOIRIMIAITI |<1lelo|0’11FL\lO('|310';|TI\ 171F|51LLl4)l i S 1 11—

8262 Rev. 1 , SPERRY UNIVAC Operating System/3 7-14
UP-NUMBER UPDATE LEVEL | PAGE
Table 7—2. Carriage Control Conventions .
Symbol Meaning
A 1-line advance
0 2-line advance
+ No advance
1 Skip to top of next page
— 3-line advance
NOTE:
All actions take place before printing.
7.3.3.4. Format Interaction With the 1/0 List
During the execution of an I/0 statement, the FORMAT specification is scanned from left to right. Editing codes of
the form wH, "h,...h,’", wX and Tp, as well as slashes, are interpreted and acted upon without reference tothe 1/0 list.
When any other editing code is encountered, one of two possible actions is taken:
1. if a listelement remains to be transmitted, it is converted and transmitted, and the FORMAT scan continues; or .

2, if no list elements remain, both the current external record and the READ or WRITE statement are terminated.
A maximum of three levels of parentheses is permitted in a FORMAT statement:

LABEL FORMAT (..o 000000
12 332 2 3321
When the right parenthesis at level 1 is encountered and a list element remains to be transmitted, a new record is

started and one of two possible actions is taken:

1. if level 2 parenthetical groups exist, the FORMAT scan is resumed at the repeat count preceding the rightmost
level 2 grouping; or

2. the scan is resumed at the beginning of the FORMAT.

An occurrence of a complex variable in an |/0 list requires two real editing codes, and complex* 16 variable requires
two double precision editing codes.

List items must be associated as shown in Table 7—3.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A 7-15

UP-NUMBER UPDATE LEVEL | PAGE

. Table 7—3. Permissible Associations of List Items
Descriptor Data Types of List Items
Integer Integer=2, integer+4
Real {E conversion, Real*4, real+8, the real or
F conversion), imaginary part of complex*8 or complex*16
double precision types
Logical Logical*1, logical*4
General, Integer+2, integer+4, real*4, real*8
Hollerith logical*1, logical*4, the real or
(A conversion), imaginary part of complex*8 or
hexadecimal complex*16 types
7.3.4. Reread
Format:
READ (u,a)k
where:
o ‘
Is a constant or integer variable designating the reread unit.
a
Is the statement label of a FORMAT statement, an integer*4 variable (3.3.2), or an array name.
k
Is an 170 list.
Description:

The reread form of the READ statement allows the previous record transferred to main storage to be reedited
using a different FORMAT statement. This order neither selects nor initiates action on a peripheral device.

The Extended FORTRAN: library contains a unit table that associates unit numbers with files. In this
discussion, it is assumed that unit 29 has been associated with the reread feature; actually, any one or
more units can be designated (Section 11).

The reread feature is used when the program must determine the kind of information in a record. For instance,
both header and detail records may be intermixed, and each kind of record may require different editing
information in a FORMAT statement. After a READ order transfers a record to main storage, the record is
identified by the program. If the correct format was applied, the program performs the necessary action on the
data; if not, the program may execute a

READ (29,a) k

. in conjunction with the desired FORMAT statement.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

7-16
PAGE

UPDATE LEVEL

No ERR return is allowed with a reread. If an END or EOF label is specified and the previous read encountered an
end of file, control is returned to the specified label. An unformatted record may not be reread.

.\

Example:
8 .
characters 8 8 Heading Card
1.D.
K DATE TIME PLACE I
10 10 | 10 ‘ Detail Card
characters
\\\
2 DATA DATA = DATA
FIELD1 FIELD2 FIELD5
C FOR COMMENT
‘S_TN‘ULE;‘EER“’ HFORTRAN STATEMENT >
s1€7 10 2 30 40
1 1 1 1 DIOIUJBlLlEl JPLRAEICJIISIIIDLNl IDIAIT lAl ’;1TII1MIEI")I‘PILIAIClEI"lJ.Dl(15l >l I
Cl IKEIAD lRJElclblRlDA i 1 1 A 1 1 l 4 i 1 i 1 1 1 1 1 I 1 1 i H 1 1 . i i# L L 1
i1 L1 RlElAADl 1(11101?1\151)1 LII'. 1D1A1T1E1:1T111ME1 e;l‘plL—lAlclEl i i1 l JE 1 i
‘151 1 It plblRJAlAl-‘“l 1(111\1?131A181)1 1 J 1 1 | 1 1 1 1 1 1 1 11 ! i i l | 1 I\ 4
Cl IIDIE N T lI J:IYI lpLE1Cp4Rl.DA 4 L l i | 1 | | 1 L | 1 l J 1 il) TN S B | l I "
J I S IJFl ICIIJ—ll l)l';lqiql Ll l;lGlbl 1P1R|bchEJSlsl 1H1E1A1D111N|61 ICIAlRJ 1
CJ ICIAIRD lIlsl IDIEITIAIIILA 71 lslbl 1F1DIRIMIA1TL LEJ:DIIITI lALGLAIILNl 1 1 i J 1 1
1 i L I} RIEIAIDI l(lzlql‘}lslol)l LDl 1 L i 1 1 1 L i 1 l 4 1 1 1 1 1 1 1 1 l 1 | 1 1
31044 1 FAOIRIMAITI 1<1l1X14|5|D|l101'141>l 1 1 L 1 1 I 1 1 1 1 F I EU SO W { 1 i1 1 1

7.3.5. List-Directed Input/Output

Two classes of list-directed input/output statements are provided in Extended FORTRAN. Both classes process
only formatted records, with the Extended FORTRAN system automatically supplying the necessary FORMAT
specifications.

Namelist input/output records contain variable or array element names with their associated values. The
entire list is named, and on input the file is automatically searched to locate the name (7.3.5.1).

Simple list-directed input/output records contain values without variable or array names. The statements are
syntactically simple and require less main storage during program execution (7.3.5.2).

8262 Rev, 1 i te —1
o, | SPERRY UNIVAC Operating System/3 roare Lever | eace 7-17
7.3.5.1. NAMELIST Statement
Format:

NAMELIST /n,/a,.a;,....an/ny/a’;,a’%,...,a"%...

where:
n .
Is a namelist name of from one to six characters, beginning with a letter and enclosed in slashes, used to
identify the set of data names that follow.
a
Is a simple list of variables or arrays of any type representing the data to be transferred; array element
names are not permitted.
Rules:

1. Once the namelist name is defined by its appearance in a NAMELIST statement, it cannot be redefined in
any other statement and can appear only in I/0 statements.

2. The list of variables and array names belonging to the specified namelist ends with the specification of
another namelist name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or array name may be associated with more than one namelist name.

Description:

The NAMELIST statement is a nonexecutable statement that permits formatted data transfer operations
without either a FORMAT statement or a list of names in an I/0 statement.

To use this statement, symbolic data set names are specified in the NAMELIST statement and also in the record
of data to be transferred. No data type is implied by the data set name; for example, a NAMELIST statement
specifying two sets of data may appear as:

“C" FOR COMMENT
RUTMEJ‘EER"T HFORTRAN STATEMENT >
s|€]7 10 2 30 40

NLAIMIEILIIISLTL/IGIRIUIPI l 1/1Al 1111,lMAITIRlILXL/IGIRIUi‘Plzl/IXI'! IJI 1
DLIIMEINISIIIDLNI IM(AITIRIILXI A(‘lzlol)l S I RS W SRS VNN SUUI U T W | l i1

GRUP1 contains the variable names A and | and the array MATRIX. GRUP2 contains the variable names X
and J.

An 1/0 statement can specify a namelist name in place of the usual reference to a format specification. The
name specified identifies the record to be transferred. Data in a record is preceded by a variable or array

element name and an equals symbol. To ensure transfer of the correct data, the object program compares the
data name associated with a namelist with those in the record.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

7-18

The general formats of /0 statements used in conjunction with the NAMELIST statement are:
READ (unit, namelist-name,END—=label,,ERR=label,)
WRITE (unit,namelist-name)

Note that the END and ERR clauses are optional and that no list is present.

The general form of data for input is:

A&nla,=c,,a,=c,,

ap=6y.&END

where:
Is a namelist name, a name identical with the name specified in the NAMELIST statement.
Is a variable, array element or array name of any data type.

Is a single, optionally signed, constant of the same type as the associated name; or; if the name
is an array name, c is a list of one or more elements, each element separated by a comma,
where an element is either an optionally signed constant or a list of identical, optionally signed,
constants preceded by an unsigned integer repeat count of the form kx

The following rules pertain to input data:

1. The first character in a logical record must be blank. The second must be an ampersand immediately
followed by the namelist name without any embedded blanks. The namelist is separated from the
succeeding symbolic name by a blank or blanks. A comma after the last data unit is optional. The end of
the NAMELIST record is signaled by &END.

2. When an array element or an array occurs in a NAMELIST record, the data is an optionally signed
constant of the same type as its associated name. The constants can be preceded by an unsigned integer
and an asterisk to indicate repetition. An array need not be filled by its data list.

3. No blanks may be embedded in constants.

4, If logical constants are used, the acceptable values are T, or .TRUE., and F, or .FALSE..

5. Literal constants can be transferred on input by using either apostrophes or the wH field descriptor.
Literal constants may appear on an input record as TITLE="DON"'T’ or TITLE=5HDON'T.

A READ statement referencing a namelist name causes the next record to be read and tested for the proper
namelist name. If the name is found, the first variable or array name is read and compared with the list of
names defined in the NAMELIST statement. If the variable or array name is found in the list, the data value or
values are assigned, and the next name is accessed. If the record does not contain the namelist name,
subsequent records are read from the external medium until the record containing the name is found. If, after
the proper record is found, a variable or array name that is not in the list of names appears in the input record,
an error message is produced and the program is terminated.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

7-19

Output data contains the namelist name followed by variables, array elements, and/or array names and their
corresponding values. An array is written out by columns. Data fields are large enough to contain all the

significant digits. Output data can be read by an input statement referencing the namelist name. Literal data is
never produced as output.

7.3.5.2. Simple List-Directed Input/Output

List-directed 1/0 statements are identical in concept with formatted READ and WRITE statements except for the
lack of a specific FORMAT statement reference. They are distinguished by the presence of the character asterisk
(*) in place of the usual FORMAT reference, as in:

READ (10,%x,END=30) A,B,C

These statements initiate and control the transfer of formatted data between a designated unit and main storage.
Format control is provided by the Extended FORTRAN system based on the types of the list items and the record
length associated with the unit. When preparing input data, the programmer must ensure that it conforms to the
requirements of this list-directed format, specifically in regard to the use of the comma, slash, and blank
characters. List-directed output records are, of course, acceptable as list-directed input.

= Input Data Format
An input record consists of a list of constants, each demarcated by a separator. Separators are the characters:
blank (or a series of blanks)
comma (preceded and followed by zero or more blanks)
end-of-record
slash (preceded by zero or more blanks) -

Since the blank is considered a separator, no embedded blanks may appear in arithmetic constants; blank,
comma, or slash may appear within a literal constant enclosed within apostrophes, and end-of-record forces a
read of the next sequential record. For card input, end-of-record is determined by the fixed length of 80
positions. For other input, such as tape or disc, the length specification given at the time the record was written
is the determining factor. The slash separator causes termination of the READ statement. Real constants
must be associated with real list items; integer and literal constants may have any association. The
exponent identifiers E and D are considered equivalent. The real and imaginary parts of a COMPLEX
constant must be separated by a comma and enclosed in parentheses. A repeat count may precede a
constant using the form:

r«constant

Two or more consecutive comma separators (with any number of blanks or end of records intervening)
indicates that the corresponding list items are not to be redefined. Mulitiple numbers of these “'null items’ may
be indicated by:

(separator)rx(separator)

26 . . 7-20
S SPERRY UNIVAC Operating System/3 sronre Lever | maae
Example:
"C" FOR COMMENT
| STATENENTT R TRAN STATEMENT >
§l7 10 20 30
O IlNlTlEIGLElK |E_| :\LF'j 3161 RS TR S N RO SR W N R S S T N S
1.1 i L RIEIAIDICLUl#*L)I lAl‘llBl:lCl -;nD\;.lEl% lFl-,\lGJ-;_lHlslI—l it 1 1

12 14/

17.23961727,12,2*,'"HE"'S’

After the READ statement is executed, the values of the list items will be:

A 17.2396 (or 17.23961727 if real«8)
B 12.0

cD unchanged

E HE'S

F 12

G 14

H.iI unchanged

Output Data Format

The output records consist of a list of constants, each separated by a comma. Output records never contain
repeat items (r=constant) or literals. The maximum precision commensurate with the list item will be
represented.

7.3.6. Auxiliary 1/0 Statements

Auxiliary 170 statements control the demarcation of files and the positioning of files to desired points of reference.

7.3.6.1. REWIND Statement

Format:

REWIND u

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER

A
UPDATE LEVEL

PAGE

7-21

where:

Represents an integer constant or variable designating a sequential file on tape or disc.

Description:
The REWIND statement positions the file to a point immediately preceding all records of the file. The file is
closed before a rewind operation. A REWIND statement issued to an unopened file is a null operation. A

REWIND statement issued after an ENDFILE statement is issued allows the file to be reopened at the time of
the next READ or WRITE statement. ’

7.3.6.2. BACKSPACE Statement
Format:
BACKSPACE u

where:

Is an integer constant or variable designating an |/0 device.
Description:
The BACKSPACE statement activates the designated unit and causes a backspace of one logical record.
A record for a formatted file is defined by the termination of a WRITE statement, a slash encountered during

format control, or the last parenthesis encountered in the format when other list items exist in the

corresponding READ or WRITE statement. It is illegal for a format to demand a record longer than is present at
the current file position.

In an unformatted environment, a record is defined by a single WRITE statement. The BACKSPACE statement
has no effect if the file associated with a unit is currently positioned immediately preceding the first record.
This statement should not be used when the file was used for list-directed input/output.

A BACKSPACE statement issued to an unopened file is a null operation. Logically, a BACKSPACE statement
can follow only a READ statement or a WRITE statement to that file. A BACKSPACE statement after a WRITE
statement closes and positions the file; the file is open after a legal BACKSPACE statement.

The BACKSPACE statement cannot be used with disc files under any conditions, with a file of blocked

records, nor with a file having two 1/0 areas or a work area. However, these restrictions do not apply when
backspacing over a file's end-of-file record.

7.3.6.3. ENDFILE Statement
Format:
ENDFILE u

where:

Is an integer constant or variable designating a card, tape, or sequential disc output file.

7--22

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

Description: .

The ENDFILE statement closes the file specified by the unit number. Only a REWIND statement is allowed after
an ENDFILE statement is issued; all other commands produce error messages. An ENDFILE statement issued
to an unopened file is a null operation physically. ‘

7.3.7. Sequential File Considerations

The 170 statements may not be executed in arbitrary sequences; the following table shows instances where
specific commands are prohibited or ignored.

Current
Operation
Previous
Operation

READ | WRITE | ENDFILE | BACKSPACE | REWIND

Successful File
READ truncated

EOF
encountered
during READ P

WRITE P

ENDFILE P BACK- P N
SPACE
missing
(warning)

BACKSPACE

REWIND | l

No previous
operation | |

LEGEND:

| indicates an ignored operation.

P indicates a prohibited operation.

N indicates that the operation is noted, but the file is still positioned following

the last logical record. A second BACKSPACE must be issued to position the
file in front of the last logical record in the file.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A 7-23
UP-NUMBER UPDATE LEVEL | PAGE
. Further, not all operations are permitted on all devices; the following table shows prohibited combinations.
Operation
File type READ WRITE | ENDFILE | BACKSPACE | REWIND
TAPE * *
DISC * * p -
CARD READ P P P P
CARD PUNCH P P P
PRINTER P P P
REREAD P P P P
*This operation may be prohibited when the files are defined as input only or output only.
See 11.3.1.4 for further details.
Formatted and unformatted records may be freely intermixed on output tape and disc files, but it is a user
responsibility to read these records in the same mode as they were written.
7.4. DIRECT ACCESS FILES
Extended FORTRAN direct access statements are used to control disc subsystems. The term “‘direct access”
. refers to the ability of the disc to access a specified record of a file without accessing all preceding records. Disc
subsystems need not be accessed directly; these devices may be used with sequential files in the same manner
as for tape units. In this case, the only I/0 statements required are those described in 7.3.
The direct access |/0 statements are DEFINE FILE, FIND, READ, and WRITE. The direct access |/0 statements can
transmit either formatted or unformatted records.
7.4.1. DEFINE FILE Statement
Format:
DEFINE FILE u;(r;,my,x;,vq),U(r,my,Xo, V), Uy (M, xp,vp)
where:
u
Is a file identifier or an integer constant designating an 1/0 device. e
r
Is an integer constant specifying the number of records in the file.
m

Is an integer constant specifying the maximum size of a record in the file in terms of characters (bytes),
main storage locations (bytes), or main storage units (words), depending on the specification for x.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

7-24
UP-NUMBER

UPDATE LEVEL | PAGE

Is one of three possible code letters to indicate an option of format control: ‘

L, to transfer either formatted or unformatted data, where the specification for m determines the number
of bytes;

E, to transfer formaited data, where the specification for m determines the number of bytes;

U, to transfer unformatted data, where the specification of m designates main storage units.

Is the associated variable for the file, which must be an unsubscripted integer*4 variable. After execution
of a READ or WRITE statement, the variable is assigned a value in the range (1 < v < r) indicating the
sequential position of the next record in the file; after execution of a FIND statement, it is assigned a value
indicating the position of the desired record. It is not defined (i.e., set to a value) by the DEFINE FILE
statement.

Description:

A DEFINE FILE statment is executéble, and it dynamically describes one or more files that may be
referenced during program execution. At the start of execution of a FORTRAN program, all direct access
units are considered to be undefined, and no READ, WRITE, or FIND references are permitted. When a
DEFINE FILE is executed, the characteristics of one or more units are registered with the Extended
FORTRAN system, and the units are made available for use. Thereafter, further definitions of previously
defined units are ignored.

The associated variable v should not be passed indiscriminately between subprograms or used for purposes
other than a file pointer, since the compiler has no syntactic clues as to its usage when the DEFINE FILE
statement is absent in a subprogram. When an associated variable must be transmitted to a subprogram, it
should be passed in COMMON storage or, less preferably, associated with adummy argument called by name.

To calculate the record size in storage units (when using the U specification for parameter x): determine the
total number of bytes required for all the items of the I/0 list, and divide this by 4. If the quotient is not an
integer, round it to the next highest integer. There is no restriction on the transmission of multiple records by
FORMAT/ list interaction, but unformatted lists cannot specify more than one disc record.

Example:
] "C" FOR COMMENT
STATEMENT! 2 FORTRAN STATEMENT >
| &\7 10 20 30
... .| DEFENE FILE 3(1,00,1,20,,L [FILE3).,,
by, 45€981,,20, 8V FIVEISD), 0w Ly

File 3 is composed of 100 records, the maximum size of which is 120 bytes. L indicates that the record size is
specified in bytes. If the |/0 statement contains a reference to a format, 120 bytes of formatted data are
transferred; if not, unformatted data is transferred. File 5 contains 98 records, each 80 bytes in length.

7.4.2. Disc READ Statement

Format:

READ (u’p.a.ERR=label,,END=label,)k

I SPERRY UNIVAC Operating System/3 A 7-25
UPDATE LEVEL | PAGE
‘ where:

u
Is a constant or integer variable designating an |/0 device, followed by an apostrophe. ~—

p
Is an integer expression designating the position of the record in the file, which should be in the range
(1< p<< r), where r is the number of records in the file.

a
Is an optional label of a FORMAT statement, an array name, an integer variable (3.3.2), or the
character asterisk (7.3.5.2).

ERR=label,
Optionally specifies the label of a statement to which control is to be transferred when an error condition
occurs.

END=label,
Optionally specifies the label of a statement to which control is to be transferred when an ENDFILE
record is encountered, or when p is outside the file limits.

k
Is an 170 list.

Example:

"C* FOR COMMENT

‘TL‘UT,,E;‘EER"T EFORTRAN STATEMENT— ——— »

u 5187 10 20 30 40 50
1| [— DJEJFIIINIEI llelLYEl IBICI\LOLOL?I5I I lzﬂ"l\'l'\lFlIlLlEIBl)l ! i Li 4 1 1 1 i i 1.1 1 l 1
1 i i i IINITAEIGAEIRI IFAILLjElgk/lll 1 1 1 I 1 i I § U N T) 1 i 1 i I J A 1 1 1 1 i 1 1 l A
1 1 i i l:l Il | 1 1 1 1 i i 1 1 i] 1 i 1 i 1 1 1 1 l 1 1 1 1 1 1 1 | L l | i 1 L L i 1 1 i l |
TR _RJEIALDI 1<131|1 1F1I1L1E|3|718L717‘E;R:Rl=1'|l101)1 1A1’1Bx7|(1cj(lIx)x'MIx:Al I’l3lol)l L
Al |817 FDIRIMlAATl l<13xzx IEL‘LbL'LgL)l | i A, l § I Y S B T | lJ_l ¥ I L bl dl l 1

The first record in file 3 is transferred to main storage when the READ statement is first executed. Each

subsequent execution of the READ statement transfers the next record in the file to main storage, unless

the associated variable FILE3 is explicitly redefined. The descriptor 32F16.4 indicates that each unit of data
consists of 16 bytes and 32 such units of data are to be transferred. Thus, the 512 bytes (16x32) of the
record are transferred to main storage.

The slash in a FORMAT specification can control the starting point of data transfer in a file. If the FORMAT
statement in the example were:

FORMAT (//32F16.4)

the first execution of the READ statement would transfer the third record in the file; the second execution
would transfer the sixth record.

S
8262 Rev. 1 SPERRY UNIVAC Operating System/3 A 7-26

UP-NUMBER UPDATE LEVEL | PAGE

7.4.3. Disc WRITE Statement

Format:

WRITE (u'p,a) k

where: ‘
i
u |
- Is a constant or integer variable designating an 1/0 device, followed by an apostrophe. ‘
|
p
Is an integer expression designating the position of the record in the file.
a
Is an optional FORMAT statement label, an array name, an integer variable to which the statement
label of a FORMAT statement has been assigned (3.3.2), or the character asterisk (7.3.5.2).
k
Is an 1/0 list.
Example:

"C" FOR COMMENT

'SL“JME;‘EER"T TFORTRAN STATEMENT >

L. 5¢]7 10 20 30

... | DEFTINE, FILE, 4(11,50,36, L, FILEY) ,
N LOYGIICA L, L L Ly
T AR AR AT RS S SR
.. | DouBLE PRECISIOUN D, , |,
N T S
Ly FI LB, = 2 by
T T R A
| WRITIE (W FTLEM41,,2), T R, Db,
o 2 FORMAT, (T 8., F1[2.2,, D551, L)

Thirty-six bytes (8 + 12 + 15 + 1) are transferred from storage to the third record in the file. The format
specification indicates the number of bytes for the integer, real, double precision, and logical values
transferred. If the WRITE statement does not specify a format label, an unformatted WRITE statement is
executed. In this case, 20 bytes are transferred.

A 7-27

UPDATE LEVEL

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER

PAGE

. Variable Name Type Number of Bytes
| Integer 4
R Real 4
D Double precision 8
L Logical 4
20 Total

7.4.4. Disc FIND Statement
Forfnat:
FIND (u’'p)

where:
Is a constant or integer variable designating an 1/0 device, followed by an apostrophe.

p
. Is an integer expression designating the position of a record in the file.
Description:

The FIND statement can decrease the time required to execute an object program requiring records from disc.
This statement positions the access arms to a disc address specified by a file identifier and a record position.
During the time the arms are being positioned, execution of the object program can continue. After positioning,
a READ statement accessing the record addressed in the FIND statement may be executed, and the record is
transferred to main storage; thus, data transfer is completed more quickly when the arms are pre-positioned to
a required track address prior to the execution of a READ statement. The FIND statement is never logically
required in a program.

Example:

"C" FOR COMMENT

Tnars | 5FORTRAN STATEMENT >

5167 10 20 30
11 i 1 FIIINI-DI J(1l+l/l lzlol)l 1 | 11 In 1 1 1 1 1 1 i l] 1 | 1 i 1 1
1 1 i L l"l i l ! 1 i 1 1 1 i L I Il i 1 i 1 1 1 1 } I 1 1 1 1 1 1 1
1 1 L i RIEJAL-DJ lclwlll lzlol)l iAl‘,il I.BJA’_L icl L 1 1 | 1 1 1 I [} t 1

This example shows the relationship between a READ statement and a FIND statement. While the access arms
are being positioned, the statements between the FIND statement and the READ statement are executed.

8—1

UP-NUMBER PAGE

UPDATE LEVEL

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

8. Data Initialization

8.1. GENERAL

Data initialization for SPERRY UNIVAC Operating System/3 (0S/3) Extended FORTRAN programs is described in
this section. For more information, refer to the fundamentals of FORTRAN reference manual, UP-7536 (current
version). See the DIMENSION and type statements (6.3 and 6.4.1), which have an initialization capability. In the
absence of initialization, variables and array elements must be defined prior to reference.

8.2. DATA Statement
Format:

. DATA k,/d /. ky/dy/ ...k /dy/
where:

k

Is a list of variable names, array names, array element names, or implied DO lists separated by
commas.

Is a list of constants, any of which may be preceded by rx to specify a repeat count, wherer is an unsigned
integer constant; items in the list are separated by commas.

Description:
The DATA statement initializes values represented by a variable, an array, and specified array elements. None

of these items should be in blank COMMON; they should be in labeled COMMON only if the DATA statement
appears in a block data subprogram.

Array element names may appear in DATA statements if their usage conforms to the following conventions:

L] Subscript expressions are restricted to the standard American National Standard forms: ¢, v, ¢xv, c*
v+k, c«v-k, and v-k, where ¢ and k are positive integer constants and v is an integer variable.

- When v appears in a subscript, the array element name must be within the range of an implied DO listin
which v is the control variable.

. = The initial, terminal, and incremental values of the control variable of any implied DO list must be
specified as positive integer constants.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

8—2

Constants may be of the integer, real, double precision, complex, hexadecimal, logical, or literal type. When the
corresponding variable is of a differing type (except for logical or literal), the constant will be converted,
possibly causing truncation.

The DATA statement may be used to initialize arrays and variables with literal data. When initializing an array
element or variable, a long literal string is truncated on the right to the correct size and a shorter string is
filled with blanks on the right to the correct size.

Several consecutive elements of an array may be initialized with a single literal constant by using the array
name without a subscript or by using an array element as the last item in the list. The long literal constant is
placed in as many consecutive array elements as needed to contain it. If the last used position is only partially
filled, that element is padded on the right with blanks. Truncation occurs if the literal string exceeds the limit of

the array.

Example:

DIMENSION ARR(6)
DATA ARR/'ABCDEFGHIJKLM'/

produces

ARR(1)
ARR(2)
ARR(3)
ARR(4)
ARR(5)
ARR(6)

A long literal may be overlaid if the constant list contains more than one constant.

Example:

contains ‘ABCD’
contains ‘EFGH’
contains ‘IJKL’
contains ‘MAAA’
not initialized

not initialized

DIMENSION ARR(6)
DATA ARR,VAR/'ABCDEFGHIJKLM’,99/

produces

ARR(1)
ARR(2)
ARR(3)
ARR(4)
ARR(5)
ARR(6)
VAR

contains ‘ABCD’
contains 99.0
contains ‘lJKL’
contains ‘MAAA’
not initialized

not initialized

not initialized

8-3

UP-NUMBER PAGE

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

I UPDATE LEVEL

. Initialization may commence at any point in the array.
Example:

DIMENSION ARR(6)
DATA VAR,ARR(3)/17,10HABCDEFGHIJ/

produces

VAR contains 17.0
ARR(1) not initialized
ARR(2) not initialized
ARR(3) contains ‘ABCD’
ARR(4) contains ‘EFGH’
ARR(5) contains ‘[JAA’
ARR(6) not initialized

8.3. BLOCK DATA SUBPROGRAM

A block data subprogram is an independently compiled specification subprogram. It is used to initialize values in
labeled common blocks. The subprogram can contain only DATA, EQUIVALENCE, COMMON, DIMENSION, type, and

IMPLICIT statements. The block data subprogram is headed by the BLOCK DATA statement. The order of statements
is governed by the rules shown in Table 1—2.

‘ 8.3.1. BLOCK DATA Statement
Format: .
BLOCK DATA s

where:

Is an optional symbolic name used to identify the BLOCK DATA subprogram.

Description:

The BLOCK DATA statement is the first statement in a block data subprogram, the statement indicating the
beginning of a block data subprogram to the compiler. For a discussion of the effects of s, see the PROGRAM
statement (6.8). In the absence of s, the compiler supplies the name $BLOCK.

A
UPDATE LEVEL

9-1

8262 Rev. 1 - I SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

9. Compilation

9.1. GENERAL

The SPERRY UNIVAC Operating System/3 (0S/3) Extended FORTRAN compiler accepts source programs from

card or disc files. Programs may be placed in disc files for storage and maintenance by using the SPERRY e

UNVIAC 0S/3 system service programs. Refer to the current versions of OS/3 system service programs (SSP)
programmer reference (UP-8209), introduction to the SSP (UP-8043), and SSP user guide (UP-8062).

The Extended FORTRAN compiler is named FOR and requires one work file, allocated in the job control stream.

The compiler requires CC00,4 (X'CCOO0’) bytes of main storage plus space for the prologue. Additional storage is
utilized to increase compiler capacity. See Appendix D for examples of compilations using FOR.

. 9.2. PARAMETER STATEMENT FORMAT
Parameter statements for the compiler appear as punched cards in the job control stream.

Format:

o | o

I | A PARAMA

n-l =d1 ,n2=d2 yune

The // sequence must be in columns 1 and 2; columns 73 through 80 are not used. One or more blanks are
required before and after PARAM, and one or more blanks are permitted after a comma. Each argument consists
of a name (n), an equal sign, and a compiler directive (d). An argument may not contain embedded blanks.
Muiltiple PARAM statements are permitted, but continuation is not. An argument may not continue on another
card. For an explanation of statement conventions that apply to this section, refer to 1.3.

. i 1 3 A 9-2
ui?f.f,me; SPERRY UNIVAC Operating Sys om/ UPDATE LEVEL | PAGE
9.2.1. Compiler Arguments . ‘

A list of arguments provided by the compiler follows. Descriptions of the arguments follow the list. Refer to
Appendix D for additional compilation options for users experienced in assembly language.

* Format:
1 10
/[APARAMA OUT=filename,
LIN=filename, LST=option,OPT=(D,N,X) NXT=LNK,CNL=K,
MDE-=I,STX=option, IN=module-name/filename
f The occurrence of an IN argument signals the end of the scanning for PARAM statements in each set of

program units to be compiled. Arguments following an IN argument on a given // PARAM card are
ignored. Subsequent // PARAM statements may contain IN arguments to allow for stacked compilations.
{See 9.3)

Output Argument:

OUT=filename
Specifies the file in which the compiler is to place object modules.

A one to eight alphanumeric character identifier is specified by filename. If OUT is not specified, the
compiler places all object modules in the temporary scratch file YRUN.

Library Input Argument: .

LIN=filename
Specifies the name of the default file in which the source modules reside.

A one to eight alphanumeric character identifier is specified by filename. If LIN is not specified, the
compiler assumes the default filename of LIB1. This argument is used in conjunction with the IN
argument.

Listing Argument:

LST=option
Specifies the quantity of listings produced by the compiler.

One option may be chosen. The options include:

Specifies an abbreviated listing consisting of only the compiler identification, parameters, error
counts, and termination conditions.

B262Rev. 1 * SPERRY UNIVAC Operating System/3 B 9-3
UP-NUMBER UPDATE LEVEL } PAGE
S
. Specifies, in addition to the N listing, the source code listing with any serious diagnostics.
M
Specifies, in addition to the S listing, a storage map showing the addresses assigned to variables and
arrays.
w
Specifies, in addition to the M listing, academic and warning diagnostics.
0]
Specifies, in addition to the W listing, an object code listing showing the SPERRY UNIVAC 90
instructions generated for the executable statements.
The LST argument remains in effect for succeeding compilations until another LST argument is
encountered. If no LST PARAM is specified, the M option is assumed.
Options Argument;
OPT=(D. N, X)
Specifies compilation options.
One or all options may be chosen. The options include:
D
Specifies double spacing of the compiler listing.
o N
Specifies that no object program is to be generated. The program units are merely compiled and
cannot be executed.
X
Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments {10.2).
The default for the OPT argument is single spacing with the absence of the N and X specifications. All OPT
options remain in effect until another OPT specification is encountered. If only one OPT argument is
specified, the parentheses are optional.
Automatic Linker Call Argument:
NXT=LNK
Specifies the execution of the 0S/3 linkage editor will automatically be invoked after the compilation
of all program units in the next data set.
For card compilations, the linkage editor begins reading the PARAM statements immediately
following the /* which terminated the FORTRAN source card input.
For a disc compilation, the linkage editor begins reading the PARAM statements immediately
following the // PARAM card containing the IN'argument which specified the disc file to be
compiled and its associated correction file. -

There is no default for the NXT argument. NXT can be used to simplify the job control stream and improve

. performance.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 ‘

UPDATE LEVEL | PAGE

Compiler Termination Argument:

CNL=k
Specifies compiler termination if a diagnostic with a severity level k is generated.

The values for k are:
= 2, which indicates academic messages, e.g., a truncated constant;
L] 4, which indicates warning diagnostics, e.g., an extraneous comma in a list;

L] 6, which indicates serious diagnostics, e.g., an array reference without a preceding array declarator;
or

» 8, which indicates fatal errors, e.g., insufficient storage to complete the compilation.

If the CNL argument is not specified, the compiler processes all program units in the control stream,
regardiess of errors encountered. When specified, the CNL argument remains in force until redefined.

Mode Argument:

MDE=I
Specifies that the compiler is to evaluate expressions in a strict left-to-right order when there is a

choice, and that storage is to be allocated for variables and arrays in the sequence in which they
were encountered.

This argument is recommended for use when compiling programs originally developed under the IBM
System/360 Disc Operating System. When specified, the MDE argument remains in force for all remaining
compilations.

STXIT Macro Instruction Argument:

When the Extended FORTRAN Compiler generates code for a main program, a call to a FORTRAN IV library
subprogram is produced. This causes the execution of two STXIT macro instructions, locates the diagnostic
device, and sets up the program mask in the program status word (PSW).

The two STXIT macro instructions, for program checks and abnormal termination enable the library to:
u maintain switches for the OVERFL and DVCHK subroutines;

L recover boundary alignment errors caused by COMMON and EQUIVALENCE statements and
argument substitution; and

] provide for orderly shutdown of the program when fatal errors occur.

The STX argument for the compiler parameter statement provides user control of the execution of STXIT
macro instructions:

STX=Y

Causes the execution of two STXIT macro instructions at the beginning of a SUBROUTINE or a
FUNCTION subprogram. :

8262 Rev. 1 l SPERRY UNIVAC Operating System/3 A 9-5
UP-NUMBER UPDATE LEVEL | PAGE
STX=N
. Suppresses the execution of two STXIT macro instructions at program initiation. STX=N is used only
for main programs.
if the STX argument is not specified, a specification of Y is assumed for main programs, and a
specification of N is assumed for SUBROUTINE or FUNCTION subprograms.
The STX argument is operative only for the current subprogram to be compiled. This argument is
useful when integrating COBOL and assembler object modules with FORTRAN object modules.
Input Argument:
IN=module-name/filename
i

Specifies compilation of source programs residing in disc files.

Module-name is a one to eight alphanumeric character identifier indicating the name of a source
module to be compiled. Filename is a one to eight alphanumeric character identifier indicating the
name of a file in which the module resides. If /filename is not specified, a default name is assumed

and is described via the LIN argument.

9.3. STACKED COMPILATION

The

compiler is capable of processing arbitrary numbers of source program units during a single execution.

When the source programs are on punched cards, one or more units may be placed between the /$ and /* data
set delimiters. The data set is preceded by compilation // PARAM statements. Some compiler parameters are

global and apply to all programs compiled. When a global parameter is to be changed, the job control stream
should be organized into two or more data sets, each preceded by the required parameters. For example:

"C" FOR COMMENT

[STATEMENT] =
NUMBER | SIFORTRAN STATEMENT >
5167 10 20 30

/l/l 1PIARAIMI L.J.J‘ L L 1 | 1 1 L 1 l L L 1 L i ! 1 L 1 l 1 1 1 L | i 1
/1$1 1.1 41 l) U N R \ i 1 1 1 1 l } L 1 1 1 i 1 1 l 1 1 1 1 11 1
: (one or more program units)

/|'*| I A l) SRV NS NN NN U NN S S l S (Y D W T NN N U VN 1] [S N B | 1
/I/K IPLARAIM l.l‘l.l i 1 1 1 1 1 1 l Il i 1 1 i 1 1 i i l i | 1 1 1 1 1
l1$1 i | l RS NSNS WS WS NS SN SN I L Y T N T N SO B | i § NN D S S Y |
’ (one or more program units)

/1*; 1 1 1 J L | [| YRR ¢ 1 . 1 L l 1 i | L 1 | 1 1 1 1 1 | Il 1 i 1

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

A 9-6
UPDATE L.EVEL | PAGE

source module consists of one or more FORTRAN program units. The IN compiler parameter is used to identify
source files to the compiler. Global parameters can be redefined in the same way as for cards. For example:

— When the source programs are on disc files, the programs are identified by using a librarian module name. A .

"C" FOR COMMENT

PSLAULE:EERNTEI;ORTRIAON STATEMENT - > N

[/, PARAM o100 00 b e L
[/, PARAM IN=MODA/FIVIER ., , , 0 o vl vy
L, PARIAM s1e e v v v v v b e v L
[/, PARIAM IN=MODX | oo

9.4. SOURCE CORRECTION FACILITY

When source programs reside on disc, it is possible to change the source as it is read into the compiler. If a /$
and /* data set immediately follow the // PARAM statement with the IN argument, the compiler assumes that
the data set contains correction cards to the source file. The method of correction is the same foi the 0S/3
system librarian’s COR function. Refer to the current versions of 0OS/3 system service programs (SSP)
programmer reference (UP-8209), introduction to the SSP (UP-8043), and SSP user guide (UP-8062). The
corrections apply only to this compilation and the original source is not changed. When the compilation is
complete, the next card available in the control stream immediately follows the /* card. For exampie:

// PARAM IN=MODA/FILEA

/$
update of correction cards
J*
// PARAM . . .
NOTE:

A data set to be compiled from cards may not immediately follow an IN card because it will be mistaken for a
correction deck.

9.5. CREATING A JOB CONTROL STREAM

The problem of creating a legal job control stream is greatly simplified by using the proper jproc (job control
procedure). How to use the jprocs is described in Appendix D. However, if you wish to create your own job
control stream, the followig rules must be observed.

= The FORTRAN compiler requires one work file. The jproc WORK1 will supply this file.

] If the IN or OUT options are specified, the appropriate disc files must be defined.

8262 Rev. 1 ' i m/3 A 9-7
S e l SPERRY UNIVAC Operating System/ vroate Lever | race

L A printer device is required and must be defined by the // DVC 20 and // LFD PRNTR job control
. statements.

Because of the stacked compilation feature (9.3), the // OPTION REPEAT feature of job control is not
required and, in fact, must not be used.

u If the // OPTION LINK or the // OPTION LINK,GO job control statement is specified, no linkage editor
control cards or control stream data for the program is allowed; the source correction facility (9.4) or the
stacked compilation feature (9.3) would mistake the data sets for FORTRAN source code.

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

PAGE

10-1

10. Debugging

10.1. GENERAL
Debugging aids are provided with the SPERRY UNIVAC Operating System/3 (0S/3) Extended FORTRAN
compiler. These debugging aids consist of the standard 1/0 statements (especially list-directed statements

described in 7.3.5), conditional compilation, the DEBUG statement and its associated packets, and the DUMP and
PDUMP standard library subroutines for formatted main storage dumps.

10.2. CONDITIONAL COMPILATION

The compiler accepts a parameter which enables conditional compilation of any line which contains the
character X in position 1 of the line. When this parameter is enabled, the line will be compiled; otherwise, the
line is treated as a comment.

Example:

"C" FOR COMMENT

{:N‘JMEQ‘EER”T HFORTRAN STATEMENT >

1 slElr 0 20 30

Xl L 5 | PlRlIlhll_‘-l 1 \lol ‘111 IAJA;I IBI’;l 1Cl 1l i 1 [i] 1 i | 1 il .t
Xl ! lllo FL01R4MIA1—T1 1(131F1\ 151‘Ibl)l USEONN SO S U W WU S J B WA TR U S E '

This coding would be used to print intermediate results during the debugging of a program. When debugging is
complete, these statements can remain dormant in the source to be used at a later date if necessary. See
Section 9 for the format of the PARAM statement.

10.3. DEBUG STATEMENT

Format:

DEBUG o,...,0

8262 Rev. 1

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

10-2

Is an option and may be any of the following:

specifies a variable or array name whose new value is to be displayed when the value is
changed. If name refers to an array, the changed element is cutput; if the list of names, with
its associated parenthesis, is omitted, a display is performed every time any array elementor
variable has a value change. When the INIT option is omitted, changes of value are not

teflected in the output of the debugging operations.

SUBCHK (nq,n,,...,Nn)

specifies an array name, identifying the array where subscript validity is to be checked. If the
list of names, with its associated parenthesis, is omitted, all arrays are checked by comparing
the total subscript value and array size, and a message is produced for each failure. When the
SUBCHK option is omitted, no subscript checking occurs.

Specifies that the name of the subroutine, function, or entry being debugged is to be
displayed each time the subprogram is entered; notification is also given when execution
of the subprogram is complete.

Specifies the display of the program flow by statement label within the program being
debugged. A TRACE ON statement must appear in the debugging packet.

specifies an integer constant specifying the output unit for the debugging information. The
debugging information consists of the displays produced by the DEBUG and DISPLAY
statements and the DUMP and PDUMP subroutines. If a debug unit is not specified in the
main program, this information will be displayed on the standard diagnostic device until a
subprogram that defines the debug unit is executed. Subsequent definitions of the debug
unit are ignored.

UP-NUMBER
where:
o
INIT (ny.n,,....0R)
n
n
SUBTRACE
TRACE
UNIT{i)
i
Description:

The DEBUG statement is a specification statement informing the compiler that the debugging aids are to be
used and specifies the debugging operations to be performed. One DEBUG statement is permitted for each
program unit, as shown in Table 1—2,

An example of the DEBUG statement is given in Figure 10—1.

10.4. DEBUGGING PACKET

One or more debugging packets can be included for each program unit to be examined. These packets begin with the
AT statement and end with another AT statement specifying a new packet or with the program unit’'s END statement.
The debugging packet consists of an AT statement, debugging statements as required (TRACE ON, TRACE OFF, and
DISPLAY), and other FORTRAN source statements, as required.

8262 Rev. 1] SPERRY UNIVAC Operating System/3 103

UP-NUMBER

UPDATE LEVEL | PAGE

. General rules for using debugging packets are:
1. DO loops must not extend beyond the originating packet.
2. Only executable statements may appear in a debugging packet.

A simple debugging packet is illustrated in Figure 10—1.

10.4.1. AT Statement
Format:
AT a

where:

Is the statement label of an executable statement in the program unit to be debugged.
Description:

debugging starts. The debugging operations specified in the packet beginning with the AT statement are
performed before the statement in the program unit referenced by the AT statement is executed.

‘ 10.4.2. TRACE ON Statement
Format:
TRACE ON
Description:

The TRACE ON statement allows the tracing of the program flow by statement number. When a statement with
a label is executed inthe main program unit, the statement number is displayed in the debugging information.

The TRACE ON statement takes effect as specified by the AT statement, and the trace operates through any
level of subprogram call and return.

The TRACE option in the DEBUG statement must have been specified to use the TRACE ON statement. If

control in the program unit is transferred to a program unit for which the TRACE option in a DEBUG statement
was not specified, no trace output within that unit is made.

10.4.3. TRACE OFF Statement

The AT statement, the first statement of a debugging packet, specifies the point in the program unit at which
|
|
|
|
|
Format:

TRACE OFF

‘ Description:

The TRACE OFF statement stops the tracing operations initiated by the TRACE ON statement.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

10-4

10.4.4. DISPLAY Statement

Format:

DISPLAY k

where:

k

Is a list of variable and/or array names separated by commas.

Description:

The DISPLAY statement is used in a debugging packet to display data in a NAMELIST format (7.3.5.1). The

specification

DISPLAY k

has the same effect as the statements:

NAMELIST /n/k

WRITE

(u,n)

Array elements may not appear in the list.

"C" FOR COMMENT
[g
{’_L‘J,f::,” FORTRAN STATEMENT
5

7 10 20 > 30 40 50

o [SUBROUTINE XCALBDY, 0 0 s b
DIMENSION YCI1O 40D v v v v e vy o v b vy
P N S S N BT
e PO 0 TE A VO e e e
- D Vo . 3=V Vo b b .
S I S S R
c o W CT I b e e e b
e PERCOYGT T 001,200,,200 e
Y ¥e) B T NNl SRS RSP R R B
N D R SN
VO JEONTIINVE, L e e L
U L‘:lllxllllllll‘llLJlllllllJlll]]llllllllllJ
X, DEBUG, ., INIT (YD, SUBCHK (YD, SUBTRACE, ITRACE,,. . . ,
% o o JUHUNTTIC3) o b e b e
X LT Ny e e
X, JIJTRACIECON, v v by v s v by v L
) A|T||m1|1.11|;L.L4111111:1[A4_Lxl||11|1111:1|1
X TRACE OFF 0 v L v v b v v o v b
-> X DIIISIPlLuAIYn|I|,1J11111|11111111111111111!1111141 1
o G VEND e e

Figure 10—1.

DEBUG Statement and Packet

10-5
PAGE

8262 Rev. | l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

. 10.5. FORMATTED MAIN STORAGE DUMP

Two Extended FORTRAN standard library subroutines, DUMP and PDUMP, are provided to display variables or
arrays. These two subroutines are identical, except that DUMP terminates the calling program and PDUMP does

not.
Format:
CALL P (u-| ,|1,f1 ule,fz,...,un nfn)
where:
p
Is either DUMP or PDUMP.
u
Is a variable or array element name indicating the upper address boundary for the display.
|
Is a variable or array element name indicating the lower address boundary for the display.
f

Is an integer indicating the desired interpretation of the storage area.

The u and | specifications may be interchanged; their positions in the CALL statement do not influence the dump.
The argument list enclosed in parentheses is optional.

. The codes used for the format specification f are:

f Display Interpretation

0 Hexadecimal
1 Logical*1

2 Logical*4

3 Integer=2

4 Integer*4

5 Real*4

6 Real*8

7 Complexx*8
8 Complex*16

9 Literal

‘ The output of these subroutines is directed to the debug unit or to the standard diagnostic unit. If no argument
list is present, the dump is for the entire program and is in hexadecimal format.

UP-NUMBER

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

11

11. Configuration of the Execution Environment

11.1. DATA MANAGEMENT INTERFACE

This section describes the interface between SPERRY UNIVAC Operating System/3 (0S/3) Extended FORTRAN
and the 0S/3 data management system, including:

L the rélationships between unit numbers and external files;

L] the kinds of devices supported;

L] performance considerations, such as record blocking and buffering; and

= system defaults, that is, assumptions made by the system when specific directions are not provided.
Default actions taken when various errors are detected during program execution and how these defaults are
changed to suit application requirements are also described. An example of a complete execution environment is
given in 11.3.6.

An executable program requires a group of subroutines to support the FORTRAN I/0 statements and to provide
an interface to the data management system. These subroutines, individually called by the compiler, are
automatically placed in the executable program by the linkage editor. One module, the control module, is central

to the entire |/0 scheme, because it contains the following tables:

L a unit table containing a unit number and FORTRAN control information and having an entry for each unit
number implicit in the FORTRAN source program;

u a unit control table (a DTF in data management terminology) required by the data management system; and
L buffers and work areas for record processing.
A few control modules suitable for many application programs are contained in the Extended FORTRAN library

(11.2). For more complex programs, the control module must be configured, using the Extended FORTRAN unit
definition procedures (UNITs). Only one control module can exist in an executable program.

11.2. CONFIGURATIONS SUPPLIED

The following configurations are supplied by Sperry Univac for general use in simple applications. The unit
numbers selected are industry standard.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 J ¢ 11-2

UP-NUMBER UPDATE LEVEL

PAGE

. Control Module FL$IO .

Unit Device Notes

1 Card read Cards in control stream

3 Printer Also used for diagnostics

5 Card read Equivalent to unit 1

6 Printer Equivalent to unit 3 <
29 Reread

L Control Module FL$I01

-_ni_t_ Device Notes

1 Card read Cards in control stream

2 Card punch

3 Printer Also used for diagnostics

5 Card read Equivalent to unit 1

6 Printer Equivalent to unit 3

11,12 Tapes 508-byte variable unblocked
records, no labels, workfile

29 Reread To reread cards, but not tapes

When additional configurations are being generated for general use at a site, it is suggested that module names
FL$102, FL$103, etc., be used.

11.3. PROGRAMMER-DEFINED CONFIGURATIONS

The execution environment is configured using an assembly language source module with the form:

Continuationl—l

1 10 72

name START

file initialization
file definition,
file definition,

file definition
file termination
error definition
END

Each element of the preceding assembly module is discussed in detail in this section. For an explanation of the
statement conventions applicable to this section, refer to 1.3.

11.3.1. File Definition Conventions .

Basic information about various arguments specified in defining a file is presented in the following paragraphs. This
information applies to all files for which these features are specified.

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

11-3

11.3.1.1. Device Type

The device type is specified by the FDEVICE argument. This required argument is the basic criterion against which all
other arguments are validated. For example, if the device is specified as a printer, the specification of a 5000-
character record is rejected.

The specification for FDEVICE is one of the primary considerations in selecting default values for other
arguments. For example, if the device is specified as card input, the Extended FORTRAN system assumes the
card length to be 80, unless the user specifies otherwise.

File support provided by Extended FORTRAN is largely device independent. The user need not be concerned with
whether the device is a UNISERVO VI-C, VIII-C, 12, 16, or 20 Magnetic Tape Unit, for example, because the

system dynamically adapts itself to the varying requirements of these devices. The few features that cannot be
supported in a device-independent fashion are noted in this section.

11.3.1.2. Record and Block Sizes

Record and block sizes are specified by the two optional arguments FRECSIZE, which specifies the record size,
and FBKSZ, which specifies the block size.

The default value for FRECSIZE is selected by the FORTRAN system, based on the device type specified. For
FBKSZ, the default value is computed from the record size.

FBKSZ is associated with the tape and disc devices and must always be greater than or equal to the record size.

11.3.1.3. Record Formats

Four different record forms are available, including-variable-length unblocked, variable-length blocked, fixed-
length unblocked, and fixed-length blocked records, and are specified by the FRECFORM argument.

L Variable-Length Records

Formats for variable-length unblocked and blocked records follow.

— Variable-Length Unblocked Records (VARUNB)

1 5 block j

BCW RCW record

— Variable-Length Blocked Records (VARBLK)

BCW RCW record1 RCW record2 - RCW record

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

11-4

UPDATE LEVEL I PAGE

For both unblocked and blocked records, i specifies record size, j specifies block size, BCW specifies a data
management block control word, and RCW specifies a data management record control word.

The FORMAT statement (7.3.3.) may not specify a record larger than i-4 for variable-length records. For
unformatted input/output, no size limitation exists, since large FORTRAN records are automatically
segmented into multiple data management records, using the record control words to identify beginning,
middle, and end segments of the 1/0 list.

The BCW and RCW are controlled by Extended FORTRAN and the data management system and are not
accessible through the FORTRAN language. The FBKSZ and FRECSIZE arguments are interpreted as
maximums; shorter records will be accepted, and generated if possible, to save space on the external file
and to reduce channel contention for main storage access.

» Fixed-Length Records
Formats for fixed-length unblocked and blocked records follow.

— Fixed-Length Unblocked Records (FIXUNB)

Format:
1 block j
record

— Fixed-Length Blocked Records (FIXBLK)

Format:

1 block i

r . record
record 1 eco rd2 n

For both unblocked and blocked records, i is the size specified for the FRECSIZE argument, and j is the size
specified for the FBKSZ argument. For unblocked records, i and j must be equal. For blocked records, j is an
integral multiple of i. The last block of the file may be less than j bytes, but it is always a muitiple of i.

The FORMAT statement may not require more than i character positions for fixed-length records. In an unformatted
1/0 list, no more than i bytes may be required for a record.

11.3.1.4. Buffer Allocation

The amount of main storage used to support a unit is controlled by three interacting optional arguments:
FBUFPOOL, which specifies buffer pooling; FNUMBUF, which specifies the number of buffers to be aliocated to a
unit; and FWORKA, which specifies whether a work area is to be allocated.

Buffer pooling must be used with discretion, or unpredictable results will occur. When multiple units with pooled
buffers are active, only unblocked records may be processed, and only one buffer can be used. The term active covers
the time period from the first reference to the unit until termination, which, on input, means an END clause
return, and on output, means the execution of an ENDFILE statement. If only one unit using buffer pooling is
active at a given time, record blocking and double buffering can be used.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

11-5

During the processing of each unit definition procedure, a data management control block (DTF) is generated.
Then, assuming buffer pooling is not requested, one or two buffers are allocated, using the FBKSZ value or its
default to determine the block size. After the last unit definition procedure is processed, space for a work area is
allocated.

Work area size is determined by the largest record for which work area processing was requested.

Similarly, one or two buffers are allocated for units using pooled buffers. The largest blocksize specified for such use
is selected.

A work area is automatically assumed for output variable length blocked files.

For any application, a tradeoff can be made between main storage economy and program performance by use of
these arguments and blocksize adjustments. This is especially useful when the program processes large tape or
sequential disc files and is to be executed relatively often. In other cases, the system defaults are generally best.
Of the eight possible combinations, the following four are generally of greatest utility.

» One buffer, no work area, buffer pooling

This configuration gives greatest main storage economy. There is no overlap between computational and I/0
activity, and blocked files cannot be processed if more than one file is using pooled buffers.

n One buffer, no work area, no buffer pooling
This configuration requires more main storage, but allows unrestricted use of blocked files
There is no overlap between computational and 170 activity.

- One buffer, work area, no buffer pooling

This is the usual Extended FORTRAN default. This requires slightly more main storage, but allows overlap
between computational and 170 activity. The central processor loading is slightly increased because of
record movement, but overall performance is usually improved.

= Two buffers, no work area, no buffer pooling

This configuration requires a still greater amount of main storage, provides overlap, and reduces
computational loading due to the absence of record movement.

There is no requirement to allocate buffers for all units in the same fashion. The most attention should be given to the
highest activity files.

11.3.1.5. File Type

The type of file— input, output, or work — is specified by the FTYPEFLE argument. This argument is not necessary for
most devices. A printer, for example, is incapable of performing inputfunctions and is always classified as an output
device.

For tape and disc devices, the specification of an input or an output file permits the system to eliminate support
coding and reduce the size of the executable program. The specification of a work file causes support coding for both
input and output functions to be included.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

UPDATE LEVEL

11-6

11.3.2. START Statement

The START statement, a subprogram declarator statement required by the assembler, is the first statement of the
configuration definition.

Format:

1 ’10

name l START

A 1- to 8-character symbolic name used to reference the control module on a linkage editor INCLUDE statement
is specified by name. START is coded as shown.

This statement is always followed by the FUNTABL procedure call.

11.3.3. FORTRAN Initialization Procedure (FUNTAB)

The FUNTAB statement follows the START statement and precedes all other statements. It initializes either
Basic FORTRAN or Extended FORTRAN parameters needed by statements which follow. To initialize the
Extended FORTRAN parameters, the FUNTAB statement is coded as follows:

Format:

1 ' 10 l 17

l FUNTAB l SYS=FOR

NOTE:

Omitting the SYS=FOR operand from the FUNTAB call initializes Basic FORTRAN parameters.

11.3.4. FORTRAN Unit Definition Procedure (UNIT)

Each file definition consists of a call on the FORTRAN unit definition procedure (UNIT), with arguments
specifying characteristics of the file.

There are major syntactical differences between FORTRAN and assembly language:

] In the assembler, the statement continuation character is required for lines 1 through (n-1} in column 72,
whereas in FORTRAN it is required in lines 2 through n in column 6.

L No embedded blanks are permitted, and all continuation lines must start in column 16, as is illustrated in
subsequent examples.

8262 Rev. 1 Operating System/3 n-7
UP-NUMBER] SPERRY UNIVAC Ope 95y UPDATE LEVEL | PAGE
Format:
Continuation 1
1 10 16 72
UNIT ny=c,, X
n,=¢,, X
. X
nn =cn
Each argument consists of an identifying name (n), an equal sign, and a particular characteristic {c) of the
file being defined. Al arguments must start in column 16. If an argument is not required, it is omitted,
and the comma is deleted.
11.3.4.1. Printer File Definition
A single printer file is defined by using the UNIT procedure call presented in this paragraph. Following is a
listing, in order of relative importance and utility, of the arguments that may appear on this UNIT procedure call.
Following the listing, descriptions of UNIT arguments and a UNIT example are presented.
Work areas and buffer pooling are not supported for printers. The default number of buffers is 2.
Format:
1 10 16
UNIT FDEVICE=PRINTER
k
FUNIT=< PRINT
PUNCH
B filename
FORTEk; if FUNIT =k
FFILEID=< poor . ~
PRNTR; if FUNIT = PRINT
= PUNCH; if FUNIT = PUNCH
[FRECSIZE= K]
! 121 -
[1
FNUMBUF= 2

[FDIAGNOS=YES]

_fSKIP
[FPRINTOV—{—NOSKIP}]

[rom-{25

[FOPTION=YES]

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

11-8

Device ldentification Argument:

FDEVICE=PRINTER
Specifies that this is a printer file.

Unit Identifier Argument:

FUNIT=k ‘
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1—99 and READ, PRINT, and PUNCH) may be specified
by a control module.

The identifiers PRINT and PUNCH are provided for reference by the FORTRAN Il statements PRINT and
PUNCH, respectively, since these statements contain no specific unit identification. When a FORTRAN Il
statement is executed and one of these special identifiers has not been provided in the control module, the
first printer device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1<<k<<99. If the FFILEID argument is not specified, and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=PRNTR
Specifies the file name as PRNTR. If the FFILEID argument is not specified and FUNIT=PRINT has been
specified, PRNTR is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has been

specified, PUNCH is the default file name.

Record Size Argument:

k
FRECSIZE—{ m}

Specifies a positive integer constant (k), in the range 1<<k<<161. If this argument is omitted, 121 is the
default record size. This accommodates a 120-character SPERRY UNIVAC 0773 Printer, with one
- additional character for carriage control. Other printers may specify up to 160 print positions.

8262 Rev. T I SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

11-9

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to a unit.

FNUMBUF=2
Specifies two buffers to be allocated to a unit.

Diagnostic Messages Argument:
The Extended FORTRAN runtime environment always requires a device for diagnostic purposes.

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (9.3). This argument is not available for
input files.

Printer Forms Control Argument:

This argument specifies whether the forms control loop (or an electronic equivalent) contained in the
printer device for locating the top and bottom of the page is to cause automatic skipping across the seam of
the paper.

FPRINTOV=SKIP
Specifies that the printer is to skip to the top of the next page (home paper) when the bottom of the current
page (forms overflow) is detected.

FPRINTOV=NOSKIP
Specifies that no automatic forms control is desired. Spacing is then under sole control of the carriage
control characters (7.3.3.3.).

Invalid Character Processing Argument:

This argument specifies the action to be taken when a character with no corresponding printer graphic is
encountered.

FCHAR=QOFF
Specifies that a blank is to be substituted for the character and that the line is to be written to the printer
with no error notification.

FCHAR=0ON
Specifies that a device error is to be generated and the program is to be terminated.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified, and the file has not been allocated by job control statements, WRITE
statements are effectively ignored. A unit need not be declared as optional if the logic of the program does not
cause a reference to the unit. :

8262 Rev. 1 SPERRY UNIVAC Operating System/3 11-10

UP-NUMBER IUPDATELEVEL

PAGE

Example: .

“C" FOR COMMENT

r

STATEMENT! SFORTRAN STATEMENT >
507 10 20 30 72
ool UINIT, . FDEVICE=PRINTER, ., ., ... X
e b VO FUNTTIENO L e s X
b e FRECSTIZESION oy X
R ool FDTAGNOS=YES o0 |00 X)L
L ol FPRINTOVENDISKIP i

A printer is defined, unit 10, with 100 printable characters per line, which is to be used also for diagnostic
purposes. No automatic forms overflow is to take place, and device error recovery is requested. The
FORTRAN system assumes defaults of:

u file name is FORT10;

n two buffers;

. substitution of blanks for nonprinting characters; and

L] file is required if a reference occurs.

11.3.4.2. Card Input Files

Two methods, the operating system spooling facility and the data management card read procedures, are provided to
read data cards. The operating system spooling facility reads cards and transcribes them to a disc file before the
executable program is activated. When a card image is requested by the program, the operating system reads the
card image from disc and delivers it to the program. The data management card read procedures require the
allocation of a card reader device to the executable program and activate the device in synchronization with program
requests for card images. This method requires more main storage and is most suited to high volume applications.
The two methods are described in the following paragraphs.

11.3.4.2.1. Spooled Card Input File Definition

A spooled card input file is defined by using the UNIT procedure call presented in this section. Following is a
listing, in order of their relative importance and utility, of the arguments that may appear on the UNIT procedure
call. Following the listing, descriptions of UNIT arguments, programming considerations, and a UNIT example are
presented.

Only one spooled card input file is permitted for a given application.

Cc
UPDATE LEVEL

8262 Rev. 1 | : 11-11

UP-NUMBER

SPERRY UNIVAC Operating System/3

PAGE

Format:
1 10 16
UNIT FDEVICE=SPOOLIN
FUNIT= {k }
~ \READ

[FREREAD=YES]

[|=|3.|<sz={',;_m2 }]

[FBUFPOOL=YES]

[FRECSIZE - {!!‘g}]

Device ldentification Argument:

FDEVICE=SPOOLIN
Specifies that this is a spooled card input file (embedded data set).

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers {values 1—99 and READ,PRINT, and PUNCH) may be specified
by a control module.

The identifier READ is provided for reference by the FORTRAN Il READ statement, since this statement
contains no specific unit identification. When a FORTRAN 1l statement is executed and one of these special
identifiers has not been provided, the first spoolin device specified is used. The units are searched in the order
in which they are defined. In an executable program, only one such unit may be defined.

Reread Argument:

FREREAD=YES
Specifies that the unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Block Size Argument:

k
FBKSZ= {400}

Specifies a positive integer constant (k) that is an integral multiple of FRECSIZE. A large multiple of
FRECSIZE reduces operating system overhead. If a number is specified that is not an integral multiple
of FRECSIZE, the block size is rounded downward to the nearest multiple. The default block size is the
largest integral value of FRECSIZE that is less than or equal to 400.

A
UPDATE LEVEL

11-12
PAGE

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

Buffer Pooling Argument: .

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which means an
END clause return. If only one unit using buffer pooling is active at a given time, record blocking can be

used.

Record Size Argument:

FRECSIZE= {" }

80
Specifies the record size for a spooled card input file, where k may have a value from 1 to 128. The
f default record size of the spooled card input file is 80.

Programming Considerations:
Spooled input consists of one or more sets of cards, each headed with a card containing

/$

in columns 1 and 2 and terminated with a card containing

/-)(-
in columns 1 and 2.

The /$ card is always bypassed by the Extended FORTRAN library and is not accessible as a data card; the
/* card causes control to be transferred to the label specified in the END clause or, in the absence of an
END clause, causes program termination.

Example:
X "C" FOR COMMENT
STATEMENT! FORTRAN STATEMENT - >
5187 10 20 30 72
. L OUNIT, FDEVICE=SPOOLIN, . X
e e CFUNTITIS2, o, X
L i ien o S REREAD=NYES 0 00 X
., FBKSZ=280 00,

This UNIT procedure call defines a spooled card input file, unit 2, that participates in the reread feature.
Three cards (240 characters) at a time are read into the buffer to reduce operating system overhead. As a
default, the FORTRAN system assumes a unigue, nonpooled buffer.

11.3.4.2.2. Data Management Card Input File Definition .

A single data management card input file is defined by using the UNIT procedure call presented in this
paragraph. Following is a listing, in the order of this relative importance and utility, of the arguments that may
appear on the UNIT procedure call. Following the listing, descriptions of the UNIT arguments and a UNIT example
are presented.

8262 Rev, 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

A
UPDATE LEVEL

PAGE

11-13

The only limitation on the number of data management card input files is the system configuration and the number of
devices that can be allocated to the application. Cards may be read from a card punch if the device is equipped with

the optional read feature.

Format:

1 10

16

UNIT

Device Identification Argument:

FDEVICE=CARDIN

FDEVICE=CARDIN

k
FUNIT—{READ}

filename
FFILEID=< FORTk; if FUNIT=k

READER; if FUNIT=READ

[FREREAD=YES]

[FBUFPOOL=YES]

2

[FNUMBUF={1 }]

FWORKA= { YES; if FNUMBUF=1 }]

NO; if FNUMBUF=2

[_fk
_FRECSIZE—- {t_zg}]

[_)k
roxsz={recsize ||

i _§51
_FSTUB-{GG}]

[FOPTION=YES]

[FAUE=YES]

Specifies that this is a card input file.

Unit Identifier Argument:

FUNIT=k

Specifies a unique integer constant in the range 1<k<99.

FUNIT=READ

Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1—99 and READ, PRINT, and PUNCH) may be specified

by a control module.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

PAGE

The identifier READ is provided for reference by the FORTRAN Il READ statement, since this statement
contains no specific unit identification. When a FORTRAN |l statement is executed and this special identifier
has not been provided, the first card in device specified is used. The units are searched in the order in which
they are defined. In an executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename)

FFILEID=FORTk

Specifies the file name as FORTk, where 1<k<99. If the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=READER

Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has been
specified, READER is the default file name.

Reread Argument:

FREREAD=YES

The reread unit consists of a single buffer to which each formatted input record is transferred. To
conserve central processor time, this data movement is inhibited unless specifically requested.

Buffer Pooling Argument:

FBUFPOOL=YES
The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed, and only
one buffer can be used. A unit is active from the first reference to the unit until termination, which means

an END clause return. If only one unit using buffer pooling is active at a given time, double buffering can
be used.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved from a work
area for processing.

FWORKA=YES

Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO

Specifes that no space for a work area is to be allocated. If this argument is omitted and FNUMBUF=2 is
specified, the default is that no space is allocated for a work area.

8262 Rev. 1 | SPERRY UNIVAC Operating System/3 A 11-15
UP-NUMBER UPDATE LEVEL | PAGE
. Record Size Argument:
This argument specifies record size. *

k
FRECSIZE= {8_0}
Specifies a positive integer constant (k) in the range 1<k<128.

If 96-column cards are to be read, 96 must be specified. If this argument is omitted, 80 is the default record
size.

If an 8413 diskette is to be read, the record size specified must be that actually recorded on the diskette.

If the rightmost columns of an 80-column card are not meaningful to the program, this argument may be
used to save main storage space by specifying a shorter record size.

Block Size Argument:

This argument specifies the 8413 diskette block size.

k
FBKSZ= {FRECSIZE}

Specifies a positive integer constant (k<<1024) that should be an integral multiple of FRECSIZE. A
large multiple of FRECSIZE will reduce overhead. The default value is the FRECSIZE specification.

If a number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward to

. the nearest multiple. *

Stub Card Argument:
This argument specifies cards physically shorter than 80 columns.

FSTUB=51
Specifies a 51-column card.

FSTUB—=66
Specifies a 66-column card.

The card reader must be equipped with the proper optional feature if this argument is specified. if stub
cards are to be read, FSTUB must be specified. FSTUB is completely independent of the record size.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statements, the first READ
reference causes an end-of-file condition to occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A 11-16
UP-NUMBER UPDATE LEVEL | PAGE
Rejection of Mispunched Cards Argument: ,.
FAUE=YES

Specifies that cards with an illegal hole combination in a column are to be bypassed and will not be
delivered to the program.

When the device being used is a SPERRY UNIVAC 0716 Card Reader, the erroneous card is also sorted
into a unique error stacker.

If this argument is not specified, the card reader is stopped, and operator intervention is sought when an illegal
hole combination is detected.

Example:
"C" FOR COMMENT
{S-T,fULE;‘EER"T EFORTRAN STATEMENT >
5187 10 20 30 72
Lo L UNTT, FDEVIICE=CARDTI INI;LJ Ll X
11 i 1 A i I l J " i IFIUINLIITI:IRIEIAIDI‘I\J F N T § J 1 ul i 1 i 1 Lx]
S T B B T S B 1F1N1U1M1B1U1F1=121 RO N SR S T Y __1)_<J‘__A
1 1 1 1 N 1 1 1 1 i lFJRlELCISlIlilElSIS\b!-;l 1 1 1 1 1 1 1 1 !;,,A_J
1 A 1 . L 1 L A 1 LJFIAAUIEI—:lYlEISI) L1 N 1 1 l i i L A 1 L L)

This UNIT procedure call defines a card reader device, or a card punch device with the optional read
feature, to be referenced by using the FORTRAN Il READ statement. Two buffers are allocated for
efficiency, and only the first 56 characters on each card are to be transferred to main storage. Cards with
erroneous punches are ignored. The defaults assumed are:

L file name is READER,;

= records will not be reread;

. nonshared buffers with no work area;

L] no stub cards; and

L] file required if a reference occurs.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

A
UPDATE LEVEL

11-16a

PAGE

11.3.4.3. Card Output File Definition

A single card or 8413 diskette output file is defined by using the UNIT procedure calls presented in this
paragraph. Following is a listing, in the order of their relative importance and utility, of the arguments that may
appear on the UNIT procedure call. Following the listing, descriptions of UNIT arguments and a UNIT example are

presented.

Format:

1

10

16

UNIT

FDEVICE=CARDOUT

k
FUNIT—{ PUNCH }

[FBUFPOOL=YES]

[1
FNUMBUF={ 7 }J

FWORKA={

[k
| FRECSIZE—{-S_Q }:l

k

FBKSZ= {

[FCRDERR=RETRY]

[FOPTION=YES]

FRECSIZE

filename
FFILEID=< FORTk; if FUNIT=k
PUNCH; if FUNIT=PUNCH

YES; if FNUMBUF=1
NO; if FNUMBUF=2

/)

/)

i

~—

A
UPDATE LEVEL

11-17

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

. Device ldentification Argument:

FDEVICE=CARDOUT
Specifies that this is a card output file.

Unit ldentification Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1—99 and READ, PRINT, and PUNCH)} may be specified
by a control module.

The identifier PUNCH is provided for reference by the FORTRAN Il PUNCH statement, since this statement
contains no specific unit identification. When a FORTRAN Il statement is executed and this special identifier
has not been provided, the first cardout device specified is used. The units are searched in the order in which
they are defined. In an executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1-to 7-character FORTRAN style symbolic name (filename).

. FFILEID=FQORTk

Specifies the file name as FORTk where 1<k<99. If the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=PUNCH

Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has been
specified, PUNCH is the default file name.

Buffer Pooling Argument:

FBUFPOOL=YES

Specifies that buffer pooling is to be used. The buffers are to be logically equivalent with all other units
for which buffer pooling is specified.

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the
first reference to the unit until termination, which means the execution of an ENDFILE statement. If only
one unit using buffer pooling active at a given time, double buffering can be used.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A 11-18
UP-NUMBER UPDATE LEVEL | PAGE
Work Area Allocation Argument: .
This argument specifies whether records are to be processed directly in the buffer or moved from a work
area for processing.
FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.
FWORKA=NQ
Specifies that no space for a work area is to be allocated. If this argument is omitted and FNUMBUF=2is
specified, the default is that no space is allocated for a work area.
Record Size Argument:
FRECSIZE= k
80
— Specifies a positive integer constant (k) in the range 1<k<(128.
* If this argument is omitted, 80 is the default record size.
Block Size Argument:
This argument specifies the 8413 diskette block size.
FBKSZ= k
FRECSIZE . .
Specifies a positive integer constant (k<<1024) that should be an integral multiple of FRECSIZE. A

large multiple of FRECSIZE will reduce overhead. The default value is the FRECSIZE specification.

If a number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward to
the nearest multiple.

Device Error Recovery Argument:

FCRDERR=RETRY
Specifies that error recovery coding is included in the executable program.

If this argument is not specified or if the recovery attempt is unsuccessful, program termination is initiated
when device errors occur. Mispunched cards are automatically segregated into an error card stacker. This
argument is not meaningful if card output is spooled (transmitted to disc for later transcription to a card
punch).

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statement, WRITE
statements are effectively ignored.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

. A 11-19
8262 A
N ' SPERRY UNIVAC Operating System/3 roare Lever | pace
. Example:
"C" FOR COMMENT
‘S—T,;‘JMEBMEER“T SFORTRAN STATEMENT >
5187 10 20 30 72

[Lol IUINII lT: ! anDlE 1le ICIEI:CIAIQDDIUlTI B R S TR S S __2(_4*‘|

I 1 1 1 1 1 It l 1 i 1 1 AFAUJNIIITJ:J3LZA 1 1 1 i 1) l 1 1 1 1 1 1 ?< d

1)l 1 1 1 1 1 l 1 1 1 1 1FLBIULFlplOIOILl:IYIElslA'l 1 l 1 1 1 | 1 1 _,,J__xs__l

1 1 | i i il l 11 1 1 1F1C1R1D1E1R1RI:IRIE1T lkiYL 1 l 1 | i 1 i 1 1 {

This FUNDEF procedure call defines a card punch device, unit 32, with a pooled buffer. In the event of a device
error, automatic retry is to be attempted. The defaults assumed are:

L file name is FORT32;

u one buffer and one work area;
u record size of 80; and
» file is required if a reference occurs.

11.3.4.4. Tape File Definition

A single tape file is defined by using the UNIT procedure call presented in this paragraph. Following is a listing,
in the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

Format:

1 10

16

UNIT

FDEVICE=TAPE

k
FUNIT={READ }

PUNCH

filename

_ Y FORTK; if FUNIT=k
FFILEID=9 READER: if FUNIT=READ
_ PUNCH: if FUNIT=PUNCH

INOUT -
_ Y WORK:if FUNIT=k

FTYPEFLE=< |NPUT: if FUNIT=READ

L OUTPUT: if FUNIT=PUNCH

B VARUNB

VARBLK
FRECFORM= FIXUNB

L FIXBLK

8262 Rev. 1
UP-NUMBER

11-20
PAGE

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

. °

UNIT

(cont)

[FNUMBUF={% }]

_ {YES; if FNUMBUF=1
[FWOR KA_{N_O; if FNUMBUF=2 }]

[FBUFPOOL=YES]

r k
i FRECSIZE—{@ }»]

N k
_ VIFRECSIZE|; if FRECFORM=FIXUNB
FBKSZ= {|\FRECSIZE+4|; if FRECFORM=VARUNB
IFRECSIZE*4]; otherwise

[FREREAD=YES]
[FDIAGNOS=YES]

[FBKNO=YES]

. J IGNORE
[rennort={ e]

[FCKPT=YES]

[FF|LABL={SNT9_D}]

[FCKPTREC=YES]

RWD
FCLRW=< NORWD
UNLOAD

[FOPRW=NORWD]

[FOPTION=YES]

S et

A 11-21
8262 Rev. 1 .
P NUMBER | SPERRY UNIVAC Operating System/3 ronte Leved | pace
. Device Identification Argument:

FDEVICE=TAPE
Specifies that this is a tape file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1—99 and READ,PRINT, and PUNCH) may be specified
by a control module.

The identifiers READ and PUNCH are provided for reference by the FORTRAN li statements READ and PUNCH,
respectively, since these statements contain no specific unit identification. When a FORTRAN Il statement is
executed and one of these special identifiers has not been provided, the applicable device specified is used.
The units are searched in the order in which they are defined. In an executable program, only one such
unit may be defined.

File Name Argument:

. FFILEID=filename

Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FOQRTk
Specifies the file name as FORTk, where 1<k<99. if the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=READER
Specifies the file name as READER. If the FFILEID argument is not specifiedand FUNIT=READ has been
specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has been
specified, PUNCH is the default file name.

Type-of-File Argument:

FTYPEFLE=WORK or FTYPEFLE=INOUT
Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE default. FTYPEFLE=WORK should be specified if the tape is to be read and written. WORK
files are limited to a single volume (reel).

FTYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT is
the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the tape is to be read but never written.

. FTYPEFLE=QUTPUT
Specifies an outputfile. If this argument is not specified and FUNIT=PUNCH has been specified, OUTPUT
is the FTYPEFLE default. FTYPEFLE=QUTPUT should be specified if the tape is to be written but never
read.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A 11-22
UP-NUMBER UPDATE LEVEL | PAGE
Record Format Argument:
FRECFORM=VARUNB .
Specifies variable-length unblocked records.
FRECFORM=VARBLK
— Specifies variable-length blocked records. If this option is chosen, BACKSPACE is not allowed.
FRECFORM=FIXUNB
Specifies fixed-length unblocked records.
FRECFORM=FIXBLK
—— Specifies fixed-length blocked records. If this option is chosen, BACKSPACE is not allowed.
Buffer Allocation Argument:
FNUMBUF=1 ,
Specifies one buffer to be allocated to a unit. This argument is required if BACKSPACE is to be
allowed.
FNUMBUF=2
Specifies two buffers to be allocated to a unit.
Work Area Allocation Argument:
This argument specifies whether records are to be processed directly in the buffer or moved to and from awork
area for processing.
FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.
FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and
- FNUMBUF=2 is specified, the default is that no space is allocated for a work area. This argument is

required if BACKSPACE is to be allowed.
Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed, and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input means
an END clause return and on output means the execution of an ENDFILE statement. If only one unit using
buffer pooling is active at a given time, record blocking and double buffering can be used.

Record Size Argument:

K
FRECSIZE= {5&8}

Specifies a positive integer constant (k) in the range 18<k<32767 if fixed records are specified and
14<k<<32767 if variable records are specified. If this argument is omitted, 508 is the default record size.

Extended FORTRAN pads out all variable-length records to 18 bytes if necessary. This implies that it is
impossible to detect all instances when the program requests records longer than the length written.
Fixed-length records must be at least 18 bytes.

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

UPDATE LEVEL

11-23

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size. The
default values for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k
Specifies the block size (k) as a positive integer constant in the range 18<k<32767.

FBKSZ= FRECSIZE|
Indicates the blocksize is equal to the record size. If this argument is not specified, and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=|FRECSIZE+4
Indicates the block size is four more than the record size. If this argument is not specified, and
variable unblocked records have been specified, this is the default block size.

FBKSZ=|FRECSIZE*4|
Indicates the block size as four times the record size. If this argument is not specified and blocked
records have been specified, this is the default. Files containing blocked records cannot be
backspaced.

Example:

| P | llllllllIllllllllllllllllllllll

[N N ¢ 111 I TS 1F1R1§1C1F|®]RLM1=1V|A1R1-BlL-;K;] [R SN U S S |
I W S S l TR LFARIEIClsJIJZLE1=A\1810101 1 I) IR R U N B B

L4 PN SR TN A N T U T T T S N (NN U N N AN U N O S N N W0 Y

In this example FBKSZ is not specified. Since FRECFORM=VARBLK is specified, the default value for
FBKSZ is equal to four times the value of FRECSIZE.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Diagnostic Messages Argument:

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (9.3). This argument is not available for
input files.

The Extended FORTRAN run-time environment always requires a device for diagnostic purposes.

Block Numbering Argument:

FBKNO=YES
Specifies that sequence numbers are to be encoded in each block before it is written and checked after
each block is read. These block numbers are not visible to the FORTRAN programmer.

)

8262 Rev. 1 SPERRY UNIVAC Operating System/3 } 11-24
UP-NUMBER UPDATE LEVEL | PAGE
Device Error Processing Arguments: .

Two arguments are used to specify device error processing.
L FERROPT
Specifies action to be taken when an erroneous data block is encountered.

If omitted, specifies that control is to be transferred to the ERR clause of the READ statement;
abnormal termination procedures are to be initiated if the ERR clause is not present.

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SKIP
Specifies that the erroneous block is to be bypassed by reading the next block.

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted files
and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3) shouid be
referenced to determine the error type. if the error is unrecoverable, the unit cannot be referenced again.
Unrecoverable errors can be caused by severe device failure, parity errors that cause inconsistent
control information, or any error on a list-directed statement, which always implies loss of position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a
blocked file causes an ERR return for every logical record in the erroneous block. The term “logical
record” is interpreted identically with the BACKSPACE statement (7.3.6.2).

L FRECERR

FRECERR=YES
Specifies that formatted records in-blocks with parity or wrong length errors are to be moved to the
reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or
more erroneous bits. The next reference to the unit in error delivers the next record or causes
another ERR return. A reread unit must be defined to access the reread buffer (11.3.4.7). Refer also
to the ERRDEF procedure (11.3.6).

Tape Label Checking Argument:

FFILABL=STD
Specifies that system standard labels are assumed.

FFILABL=NO
Specifies that tapes are to be read and written without labels.

Checkpoint Processing Argument:
FCKPT=YES

Specifies that an input tape file contains operating system checkpoint dumps used to restart programs .
after a catastrophic failure.

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER

11-25
PAGE

UPDATE LEVEL

The block size must be 20 bytes or larger when this argument is used. FCKPT must be specified when
checkpoint dumps are present.

Tape Rewind Arguments:

Two arguments may be used to specify tape rewinding. They have no effect on the FORTRAN REWIND

command.
L FCLRW
FCLRW=RWD

Specifies that the tape is to be rewound to loadpoint when the STOP statement is executed.

FCLRW=NORWD
Specifies that there is to be no rewind when the STOP statement is executed.

FCLRW=UNLOAD
Specifies that there is to be rewind with interlock when the STOP statement is executed and that
the tape is inaccessible to subsequent steps in the job without operator intervention.

= FOPRW

FOPRW=NORWD
Specifies that the tape is not to be rewound to load point when it is first referenced.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statements, WRITE
statements are effectively ignored, and the first READ reference will cause an end-of-file condition to occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

A
UPDATE LEVEL

11-26
PAGE

8262 Rev. 1 J SPERRY UNIVAC Operating System/3 l

UP-NUMBER

Example: ‘

"C" FOR COMMENT
rﬁﬁ:;:’ EFORTRAN STATEMENT >
€7 10 20 30 _ 40 72

e L UNTT, , FDEVIICE=YAPE | v v v 1y X
b e FUNETIE e e e K]
L et FTYPEFLESTINPUTLL 0 00 v L X
b el FRECFIDRMEVARBLKL, 4 00 X
ol FWORKASYES L X
ool FRECSIZESNOO, Ly s X|
L ol FBKSZIZIO0O0O,, Xl
L ol FCKPTIZYES | v v vl v T

This example defines a tape file, unit 7, used for input only. The records are variable in length, with a
maximum size of 400 bytes, and blocked into a maximum blocksize of 1000 bytes. The file is processed by
using a work area, and checkpoint records are present and are to be bypassed when encountered.

The assumed defaults are:

] file name is FORT7;

= no buffer pooling, one unique buffer;
= no reread;

L not the diagnostic device;

L no block numbering;

L device errors to be returned to ERR labels with the record bypassed and not made available toreread;

u no labels;
L rewinds at start and end of processing; and
L file is required if a reference occurs.
— = BACKSPACE is not allowed because a work area is requested.

11.3.4.5. Sequential Disc Files

A single sequential disc file is defined by using the UNIT procedure call presented in this paragraph. Following is
a listing, in the order of their relative importance and utility, of the arguments that may appear on the UNIT
procedure call. Following the listing, descriptions of UNIT arguments and a UNIT example are presented. .

— Sequential disc files are conceptually identical with tape files, except that BACKSPACE is not allowed. Most
arguments are treated identically with tape file arguments.

8262 Rev. 1
UP-NUMBER

A

SPERRY UNIVAC Operating System/3 UPDATE LEVEL

PAGE

11-27

Format:

1 10

16

UNIT

FDEVICE=SDISC

k
FUNIT={ READ }

PUNCH

ves

filename

_ Y FORTK: if FUNIT=k
FFILEID=9 READER: if FUNIT=READ
5 PUNCH; if FUNIT=PUNCH

B INOUT

_ YWORK; if FUNIT=k
FTYPEFLE=" INPUT- if FUNIT=READ

_ OUTPUT: if FUNIT=PUNCH

B "VARUNB

_YVARBLK
FRECFORM=< /o

- FIXBLK

[FNUMBUF= { %—}]

[FBUFPOOL=YES]

YES; if FNUMBUF=1 }]
NO; if FNUMBUF=2

FSECTOR=

—

[FWORKA={

[FRECS|2E={§(E }]

k
| FRECSIZE | ; if FRECFORM=FIXUNB
| FRECSIZE + 4| ; if FRECFORM=VARUNB
| ERECSIZE * 4| ; otherwise

FBKSZ=

[FREREAD=YES]

[FDIAGNOS~=YES]

IGNORE

[FERROPT={ s

f]

[FRECERR=YES]

[FOPTION=YES]

[FVERIFY=YES]

8262 Rev. 1
UP-NUMBER

A
UPDATE LEVEL

11-28
PAGE

SPERRY UNIVAC Operating System/3

— FSECTOR=YES

Device Identification Argument: i

FDEVICE=SDISC
Specifies that this is a sequential disc file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=READ ‘
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers {(values 1—99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN Il
statements READ and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN |l statement is executed and one of these special identifiers has not been provided, the
applicable device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

Sector Processing Argument:

Specifies that processing on a sectorized disc is expected (e.g., an 8416). FSECTOR parameter is valid

for all file types: input, output, or work. The Extended FORTRAN I/0 system ensures that all 1/0

areas, including pooled |/0 areas, are integral multiples of 256 bytes in length. This is necessary to
‘ prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disc is expected. This argument is used to conserve
space in main storage.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FQRTk
Specifies the file name as FORTK, where 1<k<<99. If the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=READER

Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has
been specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has been
specified, PUNCH is the default file name.

Type of File Argument:;

- FTYPEFLE=WORK or FTYPEFLE=INOUT

Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE default. FTYPEFLE=WORK should be specified if the disc is to be read and written.

8262 Rev. 1 | SPERRY UNIVAC Operating System/3 l l
UPDATE LEVEL PAGE

11-29
UP-NUMBER
FTYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT is
the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the discis to be read but never written.
FTYPEFLE=QUTPUT
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified, PUNCH
is the default file name. FTYPEFLE=OUTPUT should be specified if the disc is to be written but never
read.
Record Format Argument:
FRECFORM=VARUNB
Specifies variable-length unblocked records.
FRECFORM=VARBLK
Specifies variable-length blocked records.
FRECFORM=FIXUNB
Specifies fixed-length unblocked records. If specifying a FIXBLK file (read to end-of-file and then e o

write), FSECTOR=YES should be specified since 1/0 on system sectorized discs must be done to
prepare for extension.

FRECFORM=FIXBLK
Specifies fixed-length blocked records.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to a unit.

FNUMBUF=2
Specifies two buffers to be allocated to a unit.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input means
an END clause return and on output means the execution of an ENDFILE statement. If only one unit using
buffer pooling is active at a given time, record blocking and double buffering can be used.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved to and from a work
area for processing.

FWORKA=YES

Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO

Specifies that no space for a work area is to be allocated. If this argument is omitted and FNUMBUF=2 is
specified, the default is that no space is allocated for a work area.

11-30
PAGE

' UPDATE LEVEL

8262 Rev. 1 , SPERRY UNIVAC Operating System/3

UP-NUMBER

Record Size Argument: ‘

k
FRECSIZE= {508 }

Specifies the record size as a positive integer constant (k). If this argument is omitted, 508 is the
default record size. See the specific disc subsystem reference manuals for maximum and minimum
record size specifications.

Block Size Argument:
This argument specifies the block size, which must always be greater than or equal to the record size.

The default value for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k
Specifies the block size as a positive integer constant in the range 3<k<3625. The upper limit can
be increased to 7294 bytes for SPERRY UNIVAC 8414/8424/8425 Disc Drive Units and to 13030
bytes for SPERRY UNIVAC 8430 Disc Drive Units.

FBKSZ— FRECSIZE]|
Indicates the block size is equal to the record size. If this argument is not specified and fixed unblocked
records have been specified, this is the default block size.

FBKSZ=|FRECSIZE+4
Indicates the block size is four more than the record size. If this argument is not specified and
variable unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE*4|
Indicates the block size is four times the record size. If this argument is not specified and blocked
records have been specified, this is the default block size.

Example:

| S S S Lll[llLlllllJlllllllllllllllllL
J S) S | l | AFlRlElcnplofRJML:1leIR1-BJL—.K1 l | i 1 L1 1
1 1 1 i i1 l I AAFlRlEnclsl-Il%lEl:l\laloloi S l PN N YOI W S S
L ATV N N S TS N YO S SN SO SO A S A W G N S0 U U G B A A R A N B

In this example, FBKSZ is not specified, Since FRECFORM=VARBLK is specified, the default value for
FBKSZ is equal to four times the value of FRECSIZE.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve .
central processor time, this data movement is inhibited unless specifically requested.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL |} PAGE

11-31

Diagnostic Messages Argument:

FDIAGNOS=YES

Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (9.3). This argument is not available for
input files.

The Extended FORTRAN runtime environment always requires a device for diagnostic purposes.

Device Error Processing Arguments:

Two arguments are used to specify device error processing.

FERROPT
Specifies action to be taken when an erroneous data block is encountered.

If omitted, specifies that control is to be transferred to the ERR clause of the READ statement;
abnormal termination procedures are to be initiated if the ERR clause is not present.

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SKIP
Specifies that the erroneous block is to be bypassed by reading the next block.

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted files
and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3) should be
referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced again.
Unrecoverable errors can be caused by severe device failure, parity errors that cause inconsistent
control information, or any error on a list-directed statement, which always implies loss of position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a blocked
file causes an ERR return for every logical record in the erroneous block. The term “logical record” is
interpreted identically to the BACKSPACE statement (7.3.6.2).

FRECERR

FRECERR=YES
Specifies that formatted records in blocks with parity or wrong length errors are to be moved to the
reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or
more erroneocus bits. The next reference to the unit in error delivers the next record or causes
another ERR return. A reread unit must be defined to access the reread buffer (11.3.4.7). Refer also
to the ERRDEF procedure (11.3.6).

Optional Units Argument:

FOPTION=YES

Specifies an optional unit, a unit not always required during program execution.

8262 Rev. 1
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC Operating System/3

PAGE

11-32

When this argument is specified and the file has not been allocated by job control statements, WRITE
statements are effectively ignored, and the first READ reference will cause an end-of-file condition to
occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

Sector Processing Argument:

}

FSECTOR=YES
Specifies that processing on a sectorized disc is expected (e.g., an 8416 or 8418). FSECTOR
parameter is valid for all file types: input, output, or work. The Extended FORTRAN 1/0 system
ensures that all 1/0 areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length.
This is necessary to prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disc is expected. This argument is used to conserve
space in main storage.

Write Verification Argument:

FVERIFY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper
recording on the disc surface.

This increased reliability necessarily causes some performance degradation.

Example:

) "C" FOR COMMENT

ﬁUTME;‘EER"T $FORTRAN STATEMENT >

p___ s 8’7__=10 _ 20 30 40 72
L L ONIT, | FDEVICE=SDISC,, (v v v v v v il X},
el PUNTTIEA e e X
e el FIYPEFRFLESOUTPYTL, 0 0w L X
L el FRECSTIZE=V000,, 1 L X
ol FVERIFEYENES, 0

This FUNDEF procedure call specifies a sequential disc file, unit 9, intended for output of variable

unblocked records with a maximum size of 1000 bytes. Each record is read checked after it is written. The
defaults assumed are:

L] file is named FORT9;
] variable unblocked records and one unique 1004-byte buffer with a work area;
" not a diagnostic device and not optional to the program;

L] records never reread and not available in the reread buffer after ERR returns.

11.3.4.6. Direct Access Disc File Definition

A direct access disc file is defined by using the UNIT procedure call presented in this paragraph. Following is a
listing, in the order of their relative importance and utility, of the arguments that may appear on the FUNDEF
procedure call. Following the listing, descriptions of FUNDEF arguments, programming conéiderations, and a
[FUNDEF example are presented.

8262 Rev, 1 l

A

SPERRY UNIVAC Operating System/3 11-33
UP-NUMBER UPDATE LEVEL | PAGE
. Direct access disc file options are treated identically with sequential disc file options.
Format:
1 10 16
UNIT FDEVICE=DISC
FUNIT=k
[_{NO -
i FSECTOR—{YES }]
i _ { filename
i FF“'E'D'{ FORTK; where k = FUNIT}]
[_ {INPUT
I FTYPEFLE= {OUTPUT }]
[FBUFPOOL=YES]
k
[FRECSIZE= {ﬂ }]
[FREREAD=YES]
[FRECERR=YES]
. [FVERIFY=YES]
Device ldentification Argument:
FDEVICE=DISC
Specifies that this is a direct access disc file.
Unit Identifier Argument:
FUNIT=k
Specifies a unique integer constant(k) in the range 1<k<<99.
A maximum of 102 unique unit identifiers (values 1—99 and READ, PRINT and PUNCH) may be specified
by a control module.
Sector Processing Argument:
FSECTOR=YES -—

Specifies that processing on a sectorized disc is expected (e.g., an 8416). FSECTOR parameter is valid
for all file types: input, output, or work. The Extended FORTRAN /0 system ensures that all /0
areas, including pooled |/0 areas, are integral multiples of 256 bytes in length. This is necessary to
prevent program termination or destruction of data.

FSECTOR=NO

Specifies that processing on a nonsectorized disc is expected. This argument is used to conserve

File Name Argument:

FFILEID=filename

space in main storage.

Specifies a 1- to 7-character FORTRAN style symbolic name.

8262 Rev. 1 SPERRY UNIVAC Operating System/3
UP-NUMBER |

UPDATE LEVEL | PAGE

11-34

FFILEID=FORTk

Specifies the file name as FORTk, where 1<k<99. If the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

Type of File Argument:

FTYPEFLE=INPUT
Specifies an input file.

FTYPEFLE=OUTPUT
Specifies an output file.

See Programming Considerations.
Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the

first reference to the unit until termination, which on input means an END clause return and an output
means the execution of an ENDFILE statement.

Record Size Argument:

k
FRECSIZE= { 512 }

Specifies the record size as a positive integer constant. If this argument is omitted, 512 is the default

record size. See the specific disc subsystem reference manuals for maximum and minimum record
size specifications.

Reread Argument:

FREREAD=YES

Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Device Error Processing Argument:;

FRECERR=YES

Specifies that formatted records in blocks with parity errors or wrong length errors are to be moved to the
reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR

return. A reread unit must be defined to access the reread buffer (11.3.4.7). Refer also to the ERRDEF
procedure (11.3.6).

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

11-35

Write Verification Argument:

FVERIFY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper

recording on the disc surface.

This increased reliability causes some performance degradation.

Programming Considerations:

The TYPEFLE specification does not restrict the use of READ and WRITE statements. The only implication
of TYPEFLE is that, for INPUT, label checking is performed and, for OUTPUT, labels are written. When the
associated DEFINE FILE statement is executed, it must specify a record size less than or equal to FRECSIZE.
The Extended FORTRAN system thereafter enforces the record size specified on the DEFINE FILE

statement, but always transfers records of FRECSIZE bytes to and from the disc.

Example:
"C" FOR COMMENT
F,fJME;‘EER"T SFORTRAN STATEMENT >

sigl7 10 20 30 40 72|
P ! lULNlI l-rl 1 FDEVIC |EF|D11 151C| [I N S SEN SR SR T S X1
1 1 1 1 1 i i l L 1 i L i IFIUINIIlTL:l|131',Il 1 1 4 A l 1 1 e d 1 l_l‘ Lx 1
11 1 1 N J JE—" 11 1 1F1T1Y1PIE|FIL1E|=1T’1NLPLUJT1?l It N]___L x 1
1 i 1 1 1 1 1 l 1 1 1 i | 1F1R|E|C131112|E‘:|3|u’|8Il;l l 1 1 | | 1 LL I 1

This UNIT procedure call specifies a direct access disc file, unit 13, which is to be read only. The record
size is 348. The defaults are:

file name is FORT13;
no buffer pooling;

buffer size is 348;

no reread and records not available in the reread buffer after ERR returns; and

no verification.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 11-36
UP-NUMBER UPDATE LEVEL | PAGE
11.3.4.7. Reread Unit Definition .

The reread unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing, in
the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, description of UNIT arguments, programming considerations, and a UNIT example are
presented.

A single VARUNB buffer is automatically constructed with a size equivalent to the largest record size of all the
units in the reread feature.

Format:
1 10 16
UNIT FDEVICE=REREAD
FUN|T={ k }
READ

Device Identification Argument:

FDEVICE=REREAD
Specifies that this is the reread unit.

Unit Identifier Argument;

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers {values 1—99 and READ, PRINT and PUNCH) may be specified
by a control module. The identifier READ is provided for reference by the FORTRAN |l READ statement,
since this statement contains no symbolic unit identification. When a FORTRAN II statement is executed
and this special identifier has not been provided, the applicable unit specified is used. The units are

searched in the order in which they are defined. In an executable program, only one such unit may be
defined.

Programming Considerations:

The record in the reread buffer is redefined only after a formatted READ statement is issued to a unit
specified with FREREAD=YES or FRECERR=YES.

Example:
] "C" FOR COMMENT
{:,fuf:fgm ZFORTRAN STATEMENT >
p___ s &|7 10 20 30 72
L L UNTT, FDEVI ICIEI=R1EIRIEIAIDI;I N R X
el FUNITIE2A e ey

The reread unit is defined to be unit 29.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

11-37

11.3.4.8. Equivalent Unit Definition

An equivalent unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing,
in the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.

Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

The function of an equivalent unit is to provide another reference number for a file. For example, an input file
might be referenced with both an extended FORTRAN statement with a unit number and FORTRAN |l statement
that implies the special name READ. An equivalent unit can be used to resolve conflicts of this type.

Format:

16

UNIT

Device ldentification Argument:

FDEVICE=EQUIV

FDEVICE=EQUIV

k
READ
PRINT
PUNCH

FUNIT=

k
READ
PRINT
PUNCH

FEQUIV=

Specifies that this is an equivalent unit.

Unit Identifier Argument:

FUNIT=k

Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=READ

Specifies READ as the unit identifier.

FUNIT=PRINT

Specifies PRINT as the unit identifier.

FUNIT=PUNCH

Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-—99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ, PRINT, and PUNCH are provided for reference by the FORTRAN
Il statements READ, PRINT, and PUNCH, respectively, since these statements contain no specific unit
identification. When a FORTRAN Il statement is executed and one of these special identifiers has not been
provided, the applicable device specified is used. The units are searched in the order in which they are

defined. In an executable program, only one such unit may be defined.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

11-38

PAGE

Establishing Equivalence Argument:

This argument is used to specify the unit that is to be treated as equivalent to the unit specified for FUNIT. When
a file reference to the unit specified for FUNIT occurs, device action takes place on the unit specified for

FEQUIV.

FEQUIV=k

Specifies a unique integer constant (k) in the range 1<k<99.

FEQUIV=READ

Specifies READ as the equivalent unit.

FEQUIV=PRINT

Specifies PRINT as the equivalent unit.

FEQUIV=PUNCH

Specifies PUNCH as the equivalent unit.

Examples:

"C" FOR COMMENT
"S‘T,fULE;‘EER"T ZFORTRAN STATEMENT >
567 10 20 30 72
A L L UNIT, FDEVICE=EQUINV,, | v x|,
o c e FUNTTEPRINT 0 L 0y X
L el FEQUINGES b e

This UNIT procedure call specifies an equivalent unit that has no number; it can be referenced only by
using a FORTRAN Il PRINT statement. When referenced, unit 5 is activated; unit 5 must be defined by

using another UNIT procedure call.

Circular equivalences, such as the following, are not permitted.

e

XFlElQlulllVl-;lll i Il 1 1 i1 l 1 i i 1 1 1

T S S { 11 LUJNlll-rl i nFanEleI LC'EE IERQIU 1I l\lj_,]_LI [S S N S N | IX 1

11 1 1 1 i1 l i1l 4 1 lFlUlNlIlTl:l\lﬁrl S T T | 1| l 1l 1 L L1 Lx 1

I S TSRO YR ST 1F1E101U|I|V1=121 R S WS RS N R ST 1.1 1 1 i
L]

) W | AT SRS NSNS S N N SO S N l N SN NN SN NN N S B | l J S S S S | Il 1
»

T G T | T B A RS S Y T R T LJ (TN W SN S SN G T | | [W W N W 1 A
[

J U N | O S N N WO S N T S SR WY SN SN SR SO Y N [N VT ST N S R J .| i 1

I N S | Lo 1U1N|I |T1 i 1FD1E I\ILI LE 1= IEQlUlI lVl; 1 1 [N U S N | rx i

) U S B L4 i l Y W 1F1U1N1I1T1=12‘1-’.1 § I N B | li) S S N W | 1>< i

8262 Rev. 1 -..l SPERRY UNIVAC Operating System/3

UP-NUMBER

B
UPDATE LEVEL

11-39

PAGE -

11.3.5. FORTRAN Unit Definition Termination Procedure (FUNEND)

The list of units specified with UNIT procedure calls is terminated by the FUNEND procedure call. The FUNEND
procedure call:

L terminates the unit list;
= generates a work area large enough to accommodate any unit for which FWORKA=YES is specified;
= generates one or two buffers large enough to accommodate any unit for which FBUFPOOL=YES is specified;

= generates a reread buffer large enough to accommodate any unit for which FREREAD=YES or FRECERR=YES
is specified; and

L] guarantees the presence of a diagnostic unit.
If FDIAGNOS=YES was specified for a unit, no action takes place. If a unit was specified as, or defaulted to,
FFILEID=PRNTR, that unit is specified as the diagnostic device. If neither of the preceding conditions holds, a

UNIT procedure call with the following form is generated, and a warning diagnostic is issued.

"C" FOR COMMENT

S ENT! SFORTRAN STATEMENT >
51617 10 20 30 72
11 i 1 i i1 iULNLI lTl Il lFJDlEiVII ICIEI:PIRII LMITIE[QI;J { H 1 i lx
1 J 1 1 I R l 1 i L i i |F1U1N111TL: ADARIILNITI‘,LL 1 l 1 1 | IO SR G S lx
1 1 I 1. 1 1 1 J 1 1 i1 1 lFlDlIlAlGINIDIsl:IYIELSIA,I l } I B | 1 J b lX
I S RSN S Y S S 4F1R1ElclslIlzlEl:l\lolll 1 I | S Y S T S Y Y
Format:
1 ‘ 10

' FUNEND

11.3.6. Error Environment Definition Procedure (ERRDEF)

During the execution of the object program, the Extended FORTRAN system monitors program operations for
consistency and legality, insofar as it is practical. The errors detected are grouped into seven classes, each
having a limit on the number of times the error is to be accepted before program termination and on the number
of diagnostic messages to be produced. The seven error classes include program, arithmetic, argument,
alignment, read, and data errors, explained in the following paragraphs, and fatal errors, which are catastrophic
errors forcing immediate program termination. A table in the library contains the limit information for each class.
This table is automatically included in the executable program if the table is not explicitly redefined by the
programmer. For this purpose, the error definition procedure (ERRDEF) is provided.

Treatment of nonfatal errors can be controlled by using the ERRDEF procedure call. Following is a listing, in order of
relative importance and utility, of the arguments that may appear on the ERRDEF procedure call. Following the
listing, descriptions of ERRDEF arguments and an ERRDEF example are presented. The ERRDEF procedure call
should follow the FUNEND procedure call in the configuration module.

8262 Rev, 1

UP-NUMBER

~

UPDATE LEVEL

< 11-40
PAGE

SPERRY UNIVAC Operating System/3

Format:

10 16

where:

ALL

ERRDEF :FPR°G=<{A%L}'{AJ.I1_-L}>J
FARlTH=<{_i|—_.} '{%L})
:FARG= <‘{.A_IL_L} {%L»

[FUNDFLO=YES]

-

eavone({udy } s])
—FREAD=<{_L} '{%_(;_L}X
o}l)

—)

NONE

READ

READ,DATA

READ,UNREC
READ,DATA,UNREC

DATA

DATA,UNREC

UNREC .

> .

FERROPT=

Is a positive integer constant less than 32,768, with i}, specifying the number of times the error istobe
accepted before program termination. For a fatal error, i is assumed to be 1.

Is a positive integer constant less than 32,768, with j<i, specifying the number of diagnostic messages to
be produced. For a fatal error, j is assumed to be 1.

Specifies that there is no limit on the number of times the error is to be accepted before program
termination or that there is no limit on the number of diagnostic messages to be produced.

,.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 11-41

UP-NUMBER UPDATE LEVEL | PAGE

During execution, the first j errors cause diagnostic messages to be produced; when the ith error occurs, a
diagnostic is issued, and program termination is initiated.

Program Error Argument (FPROG):

This argument is used to control system action when the flow of execution encounters a statement for which

code cannot be generated because of a syntax or other error or when an error occurs in FORMAT-1/0 list
interaction.

Arithmetic Error Argument (FARITH):

This argument is used to control system action when a program check interrupt occurs for overflow,
underflow, or divide check. The standard library functions (Table 5—4) cannot cause this error.

Argument Error Argument (FARG):

This argument is used to control system action when an out-of-range argument is transmitted to a standard
library function (Table 5—4).

Improper argument values can cause error reporting by the standard library functions (Table 5—3) because:
] the function is mathematically undefined for the argument, as SQRT (—10);
L] the function value is insignificant, as SIN (10E60); or

. the function value is too large to be represented, as T0E50** 10E50. This is analogous to an overflow
condition.

As a default, a function value too small to be represented {an underflow) is approximated by O and is not
reported or considered on the FARG counts.

Underflow Error Argument (FUNDFLO):

FUNDFLO=YES

Used to control system action when underflows occur. This argument indicates that underflow will
be reported and counted.

Alignment Error Argument (FALIGN):

This argument is used to control system action when a program check interrupt occurs for an instruction
referencing an illegal main storage boundary. This can occur because of improper COMMON and
EQUIVALENCE statements and during argument substitution in prologues and epilogues.

Read Error Argument (FREAD):

This argument is used to control system action when an input device error occurs. The error counts associated
with FREAD are meaningful only when an ERR clause is present in the referencing statement. If no ERR clause
is present, the program is immediately terminated, regardless of the specifications for the number of times the
error may be accepted or the number of diagnostic messages that may be produced.

Data Ervror Argument (FDATA):

This argument is used to control system action when the input data contains illegal characters. The error
counts associated with FDATA are meaningful only when an ERR clause is present in the referencing
statement. If no ERR clause is present, the program is immediately terminated, regardless of the
specifications for the number of times the error may be accepted or the number of diagnostic messages
that may be produced.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 1 1142
UP-NUMBER UPDATE LEVEL | PAGE
Error Options Argument (FERROPT): .

This argument specifies the meaning of the ERR clause. The Extended FORTRAN default is to pass control
to the ERR label only for parity or wrong length errors. The ERROR subroutine {5.6.3) is used to determine
the error type. Eight possible combinations of the following FERROPT specifications are available.

NONE
Used to control system action when the ERR clause feature is to be disabled.

READ

Used to control system action when control is to be passed to the ERR label for parity or wrong
length errors only.

DATA
Used to control system action when control is to be passed to the ERR label for data errors; this
class is composed of invalid input characters.

UNREC
Used to contro! system action when control is to be provided at the ERR clause for
unrecoverable device errors only. No further references to the unit are permitted.

Example:
"C" FOR COMMENT
[-
EULE;‘EER”T EFORTRAN STATEMENT —»
51817 0 20 30 72
[
g ., ERRDEF, FPROG:= (| IOIOJI. L xonol)#x L Xt
[- i i 'l it ! I 1 i i IFAAILIIAGJN):A(AAJLJLI?JSIOJ)J?I 1 1 i 1] jx)
Lt 1 1 1 1t l L 1 i 1 lFlElRl‘RplplleI(JDJAITIAG)I I | 1 1 i 1 i |

This ERRDEF procedure call indicates that if a program error occurs, the error may be accepted 100 times, and
100 diagnostic messages may be produced. If an alignment error occurs, there is no limit on the number of
times the error may be accepted, and 50 diagnostic messages may be produced. DATA, specified for error
options, indicates that control is to be passed to the ERR label if data errors occur. The standard defaults are
taken for all arguments not specified.

11.3.7. END Statement

The END statement, a source program terminator statement required by the assembler, indicates the end of the
definition of the execution environment.

8262 Rev, 1 'x;l

rating System/3 B 11-43
UP-NUMBER SPERRY UNIVAC Ope g3y / UPDATE LEVEL | PAGE
Format:
. 1 ' 10
END
The END statement, coded as shown, follows the ERRDEF procedure call, or if the ERRDEF procedure call
is not present, the FUNEND procedure call.
Example:
An example of a complete execution environment follows.
"C" FOR COMMENT
RJME;‘EER“T SIFORTRAN STATEMENT >
5167 10 20 30 72|
MY111®1 | 1SlT1A1RT1 J L1 4] i 1 | S L1 41 § W A S SR S 4
D N B Bt | I LFIUINJTMA‘JBJ lSlYLSIT 1FIOJ\>1 § I S N | I,J | S N TS S B |
Lo L NI FDEVICE=PREI 1N1T1E1R171 Lo XL
i 1 i i 1 i 1 L 1. 1 j — IFIUlNlIlTl:l‘LZI}I i 1 A s 1 l 1 1 i | i L X__L
) S T T | Lot l) U S ' AFJDAIIAIG]N0‘31:1Y1E|SL1 1 1 § SR N S T N | N S S|
@ .l DNIT, | FDEVICESTAPE, .|, . ., _x|,
[) TRRTR S R lFJy1NlIiTl:JLLlla;L SR Y W U A W Y U S W 4)5__1
1 1 1 | J S | l Y 1 i 1 lFLLYI-PLEJFIL‘LEI=|11N1p&lTl‘vl__[1 J S S 1 1 AX {
J i 1 | i1t 1 L 1) IFLRIEICISIIJéEJ:IZJOIOI I 1 i i 1 s 1 i i Ji "
J I 1 1 i 1F1U4LNJELNA.D1 i i i 1 [11t J L1 1 i 1 1 14 1 I | I 1
S S B Y el IEIRIRIDXEIFI B N B | lFlElRlRI®'PLTJil<l.DlAlTlAl)l el | |
T RS T | ltnElNl‘DanlJ_L;l‘lJJLl111111141ll [

8262 Rev. 1 I

UPDATE LEVEL I

SPERRY UNIVAC Operating System/3 11-43
UP-NUMBER] PAGE
Format:
1 | 10
END
The END statement, coded as shown, follows the ERRDEF procedure call, or if the ERRDEF procedure call
is not present, the FUNEND procedure call.
Example:
An example of a complete execution environment follows.
"C" FOR COMMENT
[| STATEMENT] = B
numBer | §JFORTRAN STATEMENT —p
51607 10 20 30 72

MY11101 i islTIAlRl-rl ORI R T l N S U S DU N NPU | l) D U U S 1 i | fnn
IR S S L1 LFLU 1N 1T¢A181 ls 1Y 1817 1F 1O LEI S8 G Y S W S J.,,_J B VS S S A U W S
T I UNIT, | FDEVI ICE =PRI 1NxT1E1Rl}|¢J V1 X
N B W i R B! 1F1U1N11|T1:1‘I21;4 N U S N | l JURT WR SO WU S | __1&7__1
i 4 L i A L1 1) U U lFlDAIlAlGIND SI:LYIEISJJ;I 1 H 1 I} N | N |
A L Y L LUINII ATL i lFLDijI lciE 1: TJAlprl; [l 1 l 1 i L 1 1 1x |
bt 11 i L l 11 1 1F1U4N111T1:1‘1 lla’L TR SN SO U WA N S S A S N __L)_<_,__»
1 1 1 1 1 . l 1 " i | lFLTIYIP1ElFlL15L=L11NLp1U1Tl:}l | 1 1 1 1 [x 1
F EES R SO ¥ 1 L_L R W G § 1F1&E1C151112|EJ:1210101 1t l | S W G| V- DU Y
U VO U 1 1 LFLULNJELNlpx U S S i B U D U N G | 1 1 { [T S G Y W | 1 1
TS W B | . E'LRIRIDAEIFI ! i Ll IFIEI‘RARIG‘PATl-—;S 1DlAIT1Al)J AL i |
S N S § 1 1E!N1D141141A1[11L1111Lll;LixJ_L —lmr“_l

UP-NUMBER

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

12-1

12. Program Collection and Execution

12.1. GENERAL

Before a set of program units compiled by the SPERRY UNIVAC Operating System/3 (0S/3) Extended
FORTRAN can be executed, they must be collected and the necessary FORTRAN supporting routines made
available to them. The 0S/3 linkage editor performs this task.

After the program units are link edited, all physical devices required for execution are assigned via 0S/3 job
control statements.

12.2. LINK EDITING FORTRAN PROGRAMS

Several special interfaces of the OS/3 linkage editor are used by Extended FORTRAN and described in this
section. The user should be aware of these interfaces to use the linkage editor successfully with FORTRAN
compiled programs. The linkage editor options listed in the system service programs programmer reference
manual, UP-8209 (current version) can be used only if they do not conflict with requirements of Extended
FORTRAN.

12.2.1. FORTRAN Supplied Modules

After programs are compiled by the FORTRAN compiler, various mathematical functions, service routines, and
system routines may have to be connected to the programs. This entire group of modules must then be
converted into executable format. The functions SIN, ALOG, and CBRT, the subroutines DUMP and DVCHK, and
the service routines read-write, integer editing, and error detection are examples of the services which may need
to be supplied before a FORTRAN program is executable.

A complete list of functions and services supplied with Extended FORTRAN may be found in Appendix F.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 12--2
UP-NUMBER UPDATE LEVEL | PAGE
12.2.2. Overlay and Region Structures .

Sometimes the executable program created as linkage editor output is too large to fit into the required main
storage limits. The 0S/3 linkage editor provides overlay and region segmentation methods to assist in creating
smaller executable load modules.

Programs compiled by the Extended FORTRAN compiler reference each subprogram with the automtaic overlay
feature of the 0S/3 system. Thus, an overlay structure may be used with no changes to the FORTRAN programs.
A few restrictions should be observed, however, so that the FORTRAN service routines operate correctly:
u The root phase of the overlay structure should contain the following:
— All common areas
— The execution environment module
— The modules FL$IOCOM, FLSABTRM, FL$SERCTL
— The main program of the execution
* L Any direct access associated variables should be in a common area.

] If the explicit overlay control statements CALL LOAD, CALL FETCH, or CALL OPSYS are used, the
automatic overlay feature will not operate correctly. The linkage editor option, NOV, must be specified to
suppress normal V-CON processing.

* = Local variables become undefined upon exit from a subprogram if the subprogram is in an overlay.

The user should take care when building overlay structures since program execution speed can be seriously
affected.

12.2.3. Linkage Editor Output

The executable module created by the linkage editor is placed in the system file, YSRUN. The program may be
executed directly from this file, or it may be saved with the 0S/3 system service routines.

In addition to load modules, the linkage editor produces a listing and a storage map for each load module. All

linkage editor errors should be resolved before attempting to execute the program. The storage maps should be
saved to aid in debugging the program.

The following example causes a FORTRAN program ($MAIN) and an execution environment module {(MYI10) to be
linked to an executable module (TEST). All supporting FORTRAN run-time moduies needed by $MAIN and MYIO
programs are automatically included into TEST from the system object module library, YOBJ.

// WORK 1
// EXEC LNKEDT
/$

LOADM TEST

INCLUDE $MAIN

INCLUDE MYIO

/*

8262 Rev. 1 I ‘ SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

12-3

PAGE

12.3. Execution FORTRAN Programs

The Extended FORTRAN compiler uses the 0S/3 Operating System and Data Management System to execute its
compiled programs. The following information describes the various 0S/3 interfaces that FORTAN requires.

12.3.1. FORTRAN I/0 Units

The FORTRAN [/0 unit module that is linked to the executable program specifies which units and devices may

be used during this execution. The user is responsible for supplying the actual devices which connect to the
units in the 1/0 unit module.

To connect an actual device to an executable program, the user supplies appropriate JCL statements which
allocate the device for this job or job step. He must assign a file on the device via the LFD job control statement
where the filename on the LFD statement is the same as the FFILEID parameter described in Section 11.
The FORTRAN diagnostic device must always be allocated to the executing program. In all Extended FORTRAN
default 1/0 configurations, this device is a printer with the FFILEID=PRNTR. When a device is not used during an
execution of a program, the device need not be assigned.

12.3.2. Pause Messages

If a PAUSE statement is executed, the text of the PAUSE message is displayed on the system console. The
program then waits for a response from the operator.

There are three allowable responses to a PAUSE message:
m CONT — continue the program execution.

= STOP — terminate the program normally.

= DUMP — terminate the program with a dump.

If any other response is made, the PAUSE message is reissued.

12.3.3. Diagnostic Messages

The FORTRAN run-time system has many diagnostic messages which may be displayed during execution.
These messages are output to the FORTRAN unit assigned for diagnostic information (11.3.4.1,
FDIAGNOS=YES).

The amount of information output by the FORTRAN run-time system may be controlled by the error definition
procedure (11.3.6); however, the STOP message and execution summary information are always output.
Therefore, when using preprinted forms or when printing final draft output, the user should assign the
diagnostic device separate from his good copy printer. For a complete list of run-time diagnostics, refer to the
system messages programmer/operator reference, UP-8076 (current version).

Diagnostic messages that can be generated during compilation are listed and described in Appendix E.

8262 Rev, 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL }| PAGE

A-1

Appendix A. Character Set

A.1. SOURCE PROGRAM AND INPUT DATA CHARACTERS

Table A—1 shows the EBCDIC input character set for Extended FORTRAN. The table indicates, in the upper
portion of each square, the card punches used to represent the hexadecimal value and, in the lower portion of
the square, the corresponding character on the keyboard of a SPERRY UNIVAC 1700 Series keypunch. The
SPERRY UNIVAC 1004 Card Processor changes to the character blank (hexadecimal Z40) all card punch
combinations marked with a dagger. For example, the hexadecimal value C1 is encoded with the keyboard
character A, 12—1 hole combination on the punched card.

Table A—1. EBCDIC Input Character Set (Part 1 of 4)

DIGHT]
2 3 1 2 3 4 5 [7
pigi
. 0,1,89 t 12,1,9 t 12,2,9 12,3,9 t | 1249 12,5,9 12,6,9 12,79t
0
12,11,1,8,9 t 11,19 t 11,29 11,39 t 11,4, 9 11,5, 9 11,6,9 1.7,9 t
1
, |Motes t 0.1.9 ' 0,2,9 0,3,9 t 0,4, 0,59 0,69 0,7,9 t
. 12,11,0,1,8,9 t 1.9 t 2,9 3,9 T 1 a9 5,9 6.9 7.9 t
{space) 12,0,1,9 t 12,0,2,9 12,0,3,9 t 12,0,4,9 12,0,5,9 12,0,6,9 120,79
4
12 12,11,1,9 t 12,11,2,9 12,11,3,9 t 12,11, 4,9 12,11,5,9 12,11,6,9 12,11,7,9 t
5
&
1 0,1 11,0,2,9 11,0,3,9 t 11,0,4,9 11,0,5,9 11,0,6,9 11,0,7,9 t
6
= (minus) /
7 12,11, 0 t 12,11,0,1,9 t 12,11,0,2,9 12,11,0,3,9 t 12,11,0,4.9 12,11,0,5, 9 12,11,0,6,9 12,11,0,7,91

8262 Rev. 1 - A-2
SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL | PAGE
Table A—1. EBCDIC Input Character Set (Part 2 of 4)
DIGH]
2
8 9 A B c D E F
DGl
1
t
12,8,9 12,1,8,9 ¥ 12,2,8,9 12,3.8,9 12,4,8,9 12,5,8,9 12,6,8.9 12,7,8,9
0
11,8,9 1,1.89 t 1,2,89 11,3,8,9 11,4,8.9 11,5,8,9 11,6,8,9 789 |
1
0,89 0,1.89 t 0,289 0,3,89 04,89 0.5,89 0,6,8,9 0789 |
2
8,9 1,89 t 2,89 389 4,89 5,89 6.8,9 7.8,9 t
3
12,0,8,9 12,1,8 t 12,2,8 12,3,8 12,4,8 12,5,8 12,6,8 12,7,8
4
¢ . < (+ | tvertical bar)
12,11,89 11,1, 8 t 11,2, 8 11,3,8 11,4, 8 11,56,8 11,6,8 1,78
5
1 $ %) -
11,0,8,9 0,1.8 t 12,11 0.3,8 0,4,8 0,58 0,6,8 0,78
8 , [comma) % __ tundertine} >)
12,11,0,8,9 1,8 t 2,8 3,8 4,8 58 68 7.8
7 . "
@ (apostrophe} N {quote mark)
Table A—1. EBCDIC Input Character Set (Part 3 of 4)
DIGHT]
2
0 1 2 3 4 5 [7
piGv
12,0,1,8 12,01 t 12,0,2 12,0, 3 12,0, 4 12,05 12,0,6 12,0, 7 t
8
° 12,11,1,8 12,11, 1 t 12,11, 2 12,11, 3 12,11, 4 12,11, 5 12,11, 6 12,11,7 t
a 11,0,1,8 11,0,1 t 1,0,2 11,0,3 1,04 11,0,5 11.0,6 1,0,7 t
8 12,11,0,1,8 12,11,0,1 t 12,11,0,2 12,11,0,3 12,11,0,4 12,11, 0,5 12,11,0,6 12,11,0,7 1
12,0 12,1 12,2 12,3 12,4 12,5 12,6 12,7
c
12— A B [D E F G
11,0 1.1 11,2 1,3 11,4 11,6 11,6 1,7
D
11-0 J K L M N o P
0,28 11,0,1,9 0,2 0,3 0,4 0.5 0,6 0,7
E
0-2-8 s T u v w X
0 1 2 3 4 5 6 7
E
o 1 2 3 4 5 6 7

8262 Rev. 1

SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE
. Table A—-1. EBCDIC Input Character Set (Part 4 of 4)
DIGIT]
2
8 9 A B c D E F
OHGY
s 12,0,8 12,0,9 t 12,0,2,8 t 12,0,3,8 t 12,0,4,8 t 12,0,5,8 t 12,0,6,8 t 12,0,7,8 t
o 12,11, 8 12,11,9 t 12,11,2,8 t 12,11,3,8 t 12,11,4,8 t 12,11,5,8 t 12,11,6,8 t 12,11,7,8 ¢
A 11,0,8 1,0,9 t 11,0,2,8 t 11,0,3,8 t 11,0,4,8 t 11,0,5,8 t 11,0,6,8 t 11,0,7,8 t
e 12,11,0,8 12,11,0,9 t 12,11,0,2,8 t 12,11,0,3.8 + 12,11,0,4,8 t 12,11,0,5,8 1 12,11,0,6,8 12,11,0,7.8 1
12,8 12,9 12,0,2,8,9 t 12,0,3,8,9 t 12,0,4,8,9 t 12,0,5,8,9 t 12,0,6,8,9 t 12,0,7.89 +
c
H t
1,8 1,9 12,11,2,8,9 t 12,11,3,89 ¢ 12,11,4,89 t 12,11,5,89 1 12,11,6,8,9 t 12,11,7,8,9 t
D
Q R
0,8 0,9 11,0,2,8,9 t 11,0,3,89 t 11,0,4,8,9 t 11,0,5,89 t 11,06,89 t 11,0,7.8,9 ¢
E
Y z
8 9 12,11,0,2,89 1 12,11,0,3.8,9 t 12,11,0,4,8,9 t 12,11,0,5,8,9 t 12,11,0,6,8,9 t 12,11,0,7,89 t
E
8 9

A.2. PRINTER GRAPHICS

The SPERRY UNIVAC Operating System/3 (0S/3) supports many different printer devices, each with subtly
different character sets. The character sets vary in size from 16 to 94 characters to accommodate differing
national languages and the needs of various applications. Internal representations of the character set may differ
due to translations performed by using a load code, a translation table within the printer control unit.

Table A—2 shows a representative character set and its internal hexadecimal representation. Special characters
and lowercase alphabetics may differ due to the printer model, the features installed, and the load code in use. These
features should be checked to ensure availability, and the table should be updated to reflect installation usages.

Table A~2. Representative Character Set (Part 1 of 4)

DIGIT
2

DIGIT
1

{blank)

— {minus}

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A4
UP-NUMBER UPDATE LEVEL] PAGE
Table A—2. Representative Character Set (Part 2 of 4) "
DIGIT
2 8 D E
DIGI
1
0
1
2
3
. (period) { |
4
$) 1
5
. lcomma) _ {underline})
6
' {apostrophe} " (quote mark)
7
Table A—2. Representative Character Set (Part 3 of 4)
DIGIT
2 3 5 6
IDIGY
1

~ {tilde)

8262 Rev. 1 " SPERRY UNIVAC Operating System/3 | A

UP-NUMBER UPDATE LEVEL PAGE
. Table A—2. Representative Character Set (Part 4 of 4)
DIGIT
2 8 3 A 8 c D E F
JOIGI
1
h i
8
q r
9
A Y 2z
-]
H]
c
a R
D
E Y F4
8 9
€

8262 Rev. 1 SPERRY UNIVAC Operating System/3 B-1

UP-NUMBER UPDATE LEVEL | PAGE

Appendix B. Summary of
UNIT Options

Summaries of UNIT arguments and the types of files they are used to define are presented in Tables B—1

through B—8.

Table B—1.

Summary of UNIT Arguments for Printer File

Argument

Use

Specifies the device to be used for the file.

k
FUNIT=3PRINT E

Specifies Extended FORTRAN unit
reference number or FORTRAN {1
statement reference.

. PUNCH
- filename

EORTK;if FUNIT =k
PRNTR; if FUNIT = PRINT
PUNCH:; if FUNIT = PUNCH

FFILEID=

Specifies job control file reference name
(LFD). Defaults PRNTR and PUNCH
taken only for FORTRAN 11 FUNIT.

FDEVICE=PRINTER
|
|
|

[FRECSIZE= % le]

Specifies logical record size.

[FNUMBUF= ; jz_‘]

Specifies number of input/output buffers.

[FDIAGNOS=YES]

Specifies the unit as the diagnostic device.

_ {sKkip]
[FPR'NTOV‘ gNOSKIP %

Specifies printer action when bottom of
page is encountered.

[FCHAR= 38—-;':2]

Specifies printer action for illegal characters.
OFF causes blank substitution; ON causes
program termination.

[FOPTION=YES)

Specifies a file not logically required. I the
file is not allocated, output is ignored.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

A

Table B—2. Summary of UNIT Arguments for Spooled Card Input File

Argument

Use

FDEVICE=SPOOLIN

Specifies the device to be used for the file.

FUN'T—gREAD %

Specifies Extended FORTRAN unit reference number
or FORTRAN !l statement reference.

[FREREAD=YES]

Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

N Y

Specifies size of unit buffer.

{FBUFPOOL=YES]

Specifies that the buffer for the unit is to be pooled.

- [FRECSIZE ; 80%]

Specifies card size to be read.

Table B—3. Summary of UNIT Arguments for Card Input File

Argument

Use

FDEVICE=CARDIN

Specifies device to be used for the file.

k
FUNIT—%READ%

Specifies Extended FORTRAN unit reference number
or FORTRAN II statement reference.

filename
FFILEID=< FORTk; if FUNIT=k

READER; if FUNIT=READ

Specifies job control file reference name (LFD).
Default READER taken only for FORTRAN 11
FUNIT,

[FREREAD=YES]

Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

{FBUFPOOL=YES]

Specifies that buffers for the unit are to be pooled, or
shared, with all other units so specified.

I:FNUMBUF 3 % i]

Specifies number of input buffers.

FWORKA= 3

YES: if FNUMBUF=1
NO; if FNUMBUF=2

]

Specifies that logical records are to be processed in a
work area rather than in the buffer,

FRECSIZE— 3 f]

Specifies logical record size.

k
80
FSTUB=]

Specifies that cards shorter than 80 columns are to
be processed.

[FOPTION=YES]

Specifies a file not logically required. if the file is
not allocated, and input causes an end return.

[FAUE=YES]

Specifies that mispunched cards are to be ignored.

k
> [’:BKSZ= 3 FRECSIZE %]

Specifies the block size for the 8413 diskette.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A B-3
UP-NUMBER UPDATE LEVEL | PAGE
‘ Table B—4. Summary of UNIT Arguments for Card Output File
Argument Use
FDEVICE=CARDOUT Specifies device to be used for the file.
_{k Specifies Extended FORTRAN unit reference number
FUNIT=
PUNCH or FORTRAN |1 statement reference.
filename Specifies job control file reference name (LFD).
FFILEID={ FORTk; if FUNIT=k Default PUNCH taken only for FORTRAN ||
PUNCH; if FUNIT=PUNCH FUNIT.
[FBUFPOOL=YES] Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.
[FNUMBUF: %-;— %] Specifies number of input buffers.
E:WORKA= % YES; if FNUMBUF=1 i] Specifies that logical records are to be processed in a
NO; if FNUMBUF=2 work area rather than in the buffer,
FRECSIZE= ;k % Specifies logical record size.
80
[FCRDERR=RETRY] Specifies that automatic error recovery is to be
attempted for mispunched cards.
[FOPTION=YES] Specifies a file not logicatly required. If the file is
not allocated, output is ignored,
. k Specifies the block size for the 8413 diskette.
= e
E:BKSZ 3 FRECSIZE%]
Table B—5. Summary of UNIT Arguments for Tape File (Part 1 of 2)
Argument Use
FDEVICE=TAPE Specifies device to be used for the file.
k Specifies Extended FORTRAN unit reference number
FUNIT={READ } or FORTRAN || statement reference.
PUNCH
_ filename Specifies job control file reference name (LFVD).
FFILEID= FORTk; if FUNIT=k Defaults READER and PUNCH taken only for
READER; if FUNIT=READ FORTRAN Il FUNIT.
PUNCH; if FUNIT=PUNCH
INOUT R Specifies level of data management support.
FTYPEFLE= WORK; if FUNIT=k
~ Y INPUT; if FUNIT=READ
L QUTPUT; if FUNIT=PUNCH
r VARUNB Specifies records as variable or fixed and blocked
_JVARBLK or unblocked.
FRECFORM= FIXUNB (
FIXBLK
ifi i ffers.
FFNUMBUF= 3_12_ 2:] Specifies number of input/output buffers
—FWORKA— % YES; if FNUMBUF=1 %] Specifies that logical records are to be processed in a
L h NO; if FNUMBUF=2 work area rather than in the buffer.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

B—~4

Table B—5. Summary of UNIT Arguments for Tape File (Part 2 of 2)

Argument

Use

[FBUFPOOL=YES]

Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.

= ik %
_FRECSIZE— %@]

Specifies logical record size. Taken as maximum for
variable records.

k
F IFRECSIZE|; if
_) FRECFORM=FIXUNB
FBKSZ= <|FRECSIZE+4|; if
FRECFORM=VARUNB
IFRECSIZE*4|; otherwise

Specifies the size of the unit buffer.

[FREREAD=YES]

Specifies that a copy of each formatted input record
is to be transferred to the reread buffer,

[FDIAGNOS=YES]}

Specifies the unit as the diagnostic device

[FBKNO=YES]

Specifies that output tape blocks are to be sequentially
numbered and input tape blocks are to be checked.

IGNORE
[FERROPT— 3SKIP E]

Specifies action for device errors. IGNORE and SKIP
disable the ERR clause for parity/length.

[FRECERR=YES]

Specifies that records with bad parity or wrong length
are to be moved to the reread buffer,

[FFlLABL= % z_ED 2]

Specifies standard or missing labels on magnetic tape.

[FCKPT=YES]

Specifies checkpoint dumps used to restart programs after
a catastrophic failure are present on input tapes.

RWD
E:CLF\‘W= NORWD }]
l UNLOAD

Specifies positioning at end of program execution for
input and output tapes.

[FOPRW=NORWD]

Specifies that rewind is disabled at first reference to
tape file.

[FOPTION=YES]

Specifies a file not logically required. If the file is

not allocated, output is ignored, and input causes an
end return.

8262 Rev. 1 SPERRY UNIVAC Operating System/3 A B-5
UP-NUMBER UPDATE LEVEL PAGE
. Table B—6. Summary of UNIT Arguments for Sequential Disc Files
Argument Use
FDEVICE=SDISC Specifies device to be used for the file.
k Specifies Extended FORTRAN unit reference number
FUNIT=<{ READ or FORTRAN Il statement reference.
PUNCH
NO e . . .

FSECTOR= YES Specifies processing on a sectorized disc expected. o
™ filename Specifies job control file reference name {LFD).

FEILEID= FORTK; if FUNIT=k Defaults READER and PUNCH taken only for

READER; if FUNIT=READ FORTRAN |l FUNIT.
| PUNCH; if FUNIT=PUNCH
[INOQUT - -
s _ Specifies level of data management support,
ETY _) WORK; if FUNIT=k
PEFLE= < INPUT; if FUNIT=READ
L OUTPUT; if FUNIT=PUNCH
VARUNB Specifies records as variable or fixed and blocked or
FRECFORM=/ VARBLK unblocked.
FIXUNB
FIXBLK

[FBUFPOOL=YES]

Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.

oo 7 {]

Specifies number of input/output buffers.

FWORKA= {

YES; if FNUMBUF=1 |
NO; if FNUMBUF=2

Specifies that logical records are to be processed in a
work area rather than in the buffer.

[FRECSIZE= ;; 8 %]

Specifies logical record size. Taken as maximum for
variable records.

k

IFRECSIZE |; if FRECFORM=FIXUNB
IFRECSIZE + 4 I; if FRECFORM=VARUNB,
IFRECSIZE * 4 | ; otherwise

FBKSZ=

Specifies the size of the unit buffer,

[FREREAD=YES]

Specifies that a copy of each formatted input record
is to be transferred to the reread buffer,

[FDIAGNOS=YES]

Specifies the unit as the diagnostic device.

IGNORE
[FERROPT— ;SKIP %]

Specifies action for device errors. IGNORE and
SKIP disable the ERR clause for parity/length.

[FRECERR=YES]

Specifies that records with bad parity or wrong
length are to be moved to the reread buffer,

{FOPTION=YES]

Specifies a file not logically required. If the file is
not allocated, output is ignored,and input causes
an end return.

[FVERIFY=YES]

Specifies a reread of each written block to ensure
proper parity.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL | PAGE

B-6

Table B—7. Summary of UNIT Arguments for Direct Access Disc Files

Argument

Use

FDEVICE=DISC

Specifies device to be used for the file.

FUNIT=k

Specifies Extended FORTRAN unit reference number.

—- [FSECTOR= g $CE)S }:l

Specifies processing on a sectorized disc expected.

filename
[FF“'EID_{FORTK; where k=FUNIT

i

Specifies job control file reference name (LFD).

_ JINPUT
[FTYPEFLE— {OUTPUT }]

Specifies level of data management support. (11.3.3.6).

[FBUFPOOL=YES]

Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.

[FRECSIZE= %;_12 2]

Specifies logical record size.

[FRECERR=YES]

Specifies that records with bad parity or wrong length
are to be moved to the reread buffer,

[FREREAD=YES]

Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

[FVERIFY=YES]

Specifies a reread of each written block to ensure
proper parity.

Table B—8. Summary of UNIT Arguments for Reread Unit

Argument

FDEVICE=REREAD

Specifies device to be used for the file.

_ ¥k Specifies Extended FORTRAN unit reference number
FUNIT
READ or FORTRAN [1 statement reference.
Table B——8. Summary of UNIT Arguments for Equivalent Unit
Argument Use

FDEVICE=EQUIV

Specifies device to be used for the file.

PUNCH

k Specifies Extended FORTRAN unit reference number
FUNIT= S:I,?“DT or FORTRAN I statement reference.
PUNCH
k Specifies the unit to be activated.
requiv- { READ

Cc-1

UP-NUMBER PAGE

l UPDATE LEVEL

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

®
Appendix C. Additional
UNIT Options

C.1. GENERAL

Additional options for execution environment configuration not presented in Section H are described in this
appendix. Users familiar only with FORTRAN, however, should ignore this entire appendix, since it requires detailed
knowledge of both assembly language and the data management system.

In the following descriptions of options for the various devices, a symbol required by an argument must be provided in
assembler language following the FUNEND procedure call or be defined in another module. If itis defined in another
module, the symbol must be named on an EXTRN statement in the UNIT module and on an ENTRY statement in
the module defining the symbol. For further information, refer to the data management reference manual, UP-
8068 (current version). For an explanation of the statement conventions applicable to this appendix, refer to 1.4.

@ c:2 rrinTER OPTIONS
Extended FORTRAN Printer Device Control Subroutines:

FORTRAN language rules require an advance and print sequence, but many printers accept only print and
advance sequences. To prevent significant loss of performance, a print line is not delivered to the data
management system until the spacing requirements of the next line are known. This requires special coding if
the executable program contains assembly language procedures that deliver images to any printer defined by a
UNIT procedure call.

Two subroutines are available for Extended FORTRAN printer device control.

. FLSPRNT

CALL FLSPRNT i.j.k
Used by the assembly language procedure to write a print line.

The address of the unit number, an INTEGER*4 variable, is specified by i. When i is negative, the
Extended FORTRAN unit PRINT is assumed. The address of the line length, an INTEGER*4 variable, is
specified by j. The address of the output line, the first character of which is a device independent
control character, is specified by k.

A save area must previously have been specified in register 13.

8262 Rev, 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

C-2

. FL$CLS

CALL FLSCLS i
Used to close the printer file if it is desirable for the assembly language procedure to perform
standard PUT macro instructions.

The address of the unit number is specified by i.

The DTF may now be opened and standard data management processing continued, using register 3 as
the IOREG. The automatic skip to home paper position may be lost if the file is closed immediately after
forms overflow is detected.

C.3. CARD READER OPTIONS

Additional options for the card reader are described in the following paragraphs.
Binary Card Input Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BINARY
Specifies binary translation mode. Binary card input defines two bytes for each card column. Holes
12 through 3 are mapped onto bits 2° through 2° of byte 1; holes 4 through 9 are mapped onto bits 28
through 2° of byte 2, etc. Bits 27 and 2°® of each byte are set to 0. When the BINARY option is
specified, the default value for FRECSIZE is changed from 80 to 160.

Binary cards should be read by using an unformatted statement or an A FORMAT code; 96-column
cards can not be read with BINARY mode.

ASCIll Character Set Argument:

FASCII=YES
Specifies the ASCII character set.

If this argument is not specified, the EBCDIC character set is used. If FMODE=BINARY is specified,
FASCII cannot be specified. ASCII does not imply a larger character set than EBCDIC, but is the accepted
standard for information interchange.

SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

8262 Rev. 1
PAGE

. C.4. CARD PUNCH OPTIONS

Additional options for the card punch are specified in the following paragraphs.
Binary Card Output Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BINARY
Specifies binary translation mode. Binary card output defines two bytes for each card column. Holes 12
through 3 are mapped onto bits 25 through 2° of byte 1; holes 4 through 9 are mapped onto bits 25 through
20 of byte 2, etc. Bytes 27 and 26 of each byte are not transmitted to the unit. When the BINARY option is
specified, the default value for FRECSIZE is changed from 80 to 160.
ASCIl Character Set Argument:

FASCII=YES
Specifies the ASCII character set.

If this argument is not specified, the EBCDIC character set is used. If FMODE=BINARY is specified, FASCI|

cannot be specified. ASCIl does not imply a larger character set than EBCDIC, but is merely the accepted
standard for information interchange.

C.5. TAPE FILE OPTIONS
‘ Additional options for magnetic tape are specified in the following paragraphs.
User Header and Trailer Labels Arguments:

The FFILABL and FLABADDR arguments are used to specify user header and trailer labels.

. FFILABL

This argument specifies the type of labels to be used. In addition tothe STD and NO options presentedin
Section 11, a third option is available.

FFILABL=NSTD
Specifies nonstandard labels.

A nonstandard labeled tape with user trailer labels cannotbe extended or backspaced after ENDFILE has
been encountered.

» FLABADDR

FLABADDR=symbol
Specifies that user header and trailer labels are to be processed.

The address of the user label routine is specified by symbol. This argument should be specified if
FFILABL=NSTD is specified.

c4

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

ASCII Tape Files Arguments:
m FASCII

FASCII=YES
Specifies ASCI files.

® FBUFOFF
FBUFOFF=k

Specifies that a block length field of O to 99 bytes is to be prefixed on each block. FBUFOFF may
be specified only if FASCH=YES has been specified. A value of 0—99 is specified by k.

If a value other than 4 is specified for k, the block length field is assumed to be destined for, or
received from, an alien operating system and is ignored. If the block size is determined by default,
FBUFOFF is added afterward.

= FLENCHK

FLENCHK=YES
Specifies that, for variable length records, the block length field is automatically set on output and
checked on input. FLENCHK may be specified only if FASCII=YES and FBUFOFF=4 have been
specified.

C.6. SEQUENTIAL DISC FILE OPTION

An additional option for sequential disc follows.
User Header and Trailer Argument:

FLABADDR=symbol
Specifies that the user header and trailer labels are to be processed. The address of the user label routine
is specified by symbol.

C.7. DIRECT ACCESS DISC FILE OPTIONS
Additional options for direct access disc are specified in the following paragraphs.
= FLABADDR
FLABADDR=symbol
Specifies that user header labels are to be processed. The address of the user label routine is
specified by symbol.
» FTRLBL
FTRLBL=YES

Specifies that user trailer labels are to be processed. This argument may be specified only if the
FLABADDR argument has been specified.

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

. C.8. ADDITIONAL DATA MANAGEMENT DEVICES

Files for sequential devices supported by the SPERRY UNIVAC Operating System/3 (0S/3) Data Managment
System and not presented in Section 11, such as optical document readers, paper tape, etc., are defined by using
the following UNIT procedure call. A listing, in the order of their relative importance and utility, of the arguments
that may appear on this UNIT procedure call is followed by descriptions of the arguments.

Format:

1 10 16

UNIT FDEVICE=DMS

FUNIT=k

FWORKA=YES

i _ { filename

| FFILEID= {m }]

B VARUNB
VARBLK

FRECFORM= FIXUNB

L FIXBLK

[k

| FRECSIZE= {@ }]

[FREREAD=YES]

Device ldentification Argument:
Specifies that this file is for a sequential device supported by the OS/3 data management system..
Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant in the range 1<k<99.

A maximum of 102 unique unit identifiers (values 1—99 and READ, PRINT, and PUNCH) may be specified
by a control module.

Work Area Allocation Argument:

FWORKA=YES

Specifies that records are to be moved to and from a work area for processing. Space for a work area is to
be allocated.

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

JUPDATE LEVEL

c-6

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FQRTk
Specifies the file name as FORTk, where 1<k<99. If the FFILEID argument is not specified, FORTk is the
default file name.

The UNIT procedure call generates an address constant that references the specification for FFILEID. A
define the file (DTF) macro instruction !abeled with the file name must be provided. An EXTRN statement is
automatically generated for the label specified in FFILEID.

Record Formats Argument:

FRECFORM=VARUNB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records.

FRECFORM=FIXUNB
Specifies fixed-length unblocked records.

FRECFORM=FIXBLK
Specifies fixed-length blocked records.

Record Size Argument:

This argument specifies the record size and is used only to ensure that the common work area is large enough
for all units using it. No I/0 areas are allocated; these must be defined by the user.

FRECSIZE= {ﬁ}
Specifies a positive integer constant.
If this argument is omitted, 508 is the default record size.
Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

UP-NUMBER

Cc D1
UPDATE LEVEL | PAGE

Appendix D. FORTRAN Sample
Job Streams

D.1. JOB CONTROL PROCEDURE

The FOR procedure call statement generates the necessary job control statements to compile an Extended
FORTRAN program. Optionally, it can generate job control statements that specify the following:

input - source library;

output - object library;

PARAM control statements defining the compiler processing logic; and
automatically link and/or execute the program.

The input may be embedded data cards, (/$, source deck, /*) immediately after the FOR procedure call, or a
module in any library as defined by the IN parameter. This results in the appropriate DVC—LFD control statement

sequence with an LFD name, LIB1, and the PARAM control statement, PARAM IN=module-name/LIB1, unless
the PARAM LIN statement is specified.

The object code is written in YRUN by default, but a specific output library can be specified by the QUT
parameter. This results in the appropriate DVC—LFD control statement sequence with an LFD name, OUTFPUT,
and the PARAM control statement, PARAM OUT=0UTFPUT.

The ALTLOD parameter generates the necessary DVC—LFD control statement with an LFD name, ALTLOD, and

the appropriate EXEC control statement to load and execute the FORTRAN compiler from a private library other
than YLOD.

Format:
e Y
/llsymbol] FORLG =9 {IN b [volser-nol J(|| (RES label)
| 20 (RUN, label)
(*,label)
B (vol-ser-no,label)
our-) (RExibel | [serr= {fea ™]
(* label)
L (RUN,$YSRUN) |
—ALTLOD— (vol-ser-no,label) [LOPT=(D,N.X)]
’ ~ YV (RES,label) ! o
(RUN, label)
(*,label)
| (RES,YSLOD) /

[LMDE=1] [,STX=option] [,CNL=option]

fil .
[,LIN= {L'IeB".Iame}] [,LST=option]

N

A
UPDATE LEVEL

D-2

UP-NUMBER PAGE

8262 Rev. 1 l SPERRY UNIVAC Operating System/3

Label:
symbol
Specifies the 1- to 6-character source module name; only needed when the IN parameter is used.
Operation: N
FOR
This form of the procedure call statement is used to compile an Extended FORTRAN source program.
FORL
This form of the procedure call statement is used to compile an Extended FORTRAN source program
and link-edit the object modules.
FORLG

This form of the procedure call statement is used to compile an Extended FORTRAN source program,
link-edit the object modules, and execute the load module.

Keyword Parameter PRNTR:

N

lun

N [.vol-ser-no]

20
Specifies the logical unit number of the printer, and, optionally, the destination-id (vol-ser-no). If a
printer device assignment set is not to be generated, the value N is coded, and the printer device
assignment set must be manually inserted in the control stream.

PRNTR=

PRNTR=(lun[,vol-ser-no]) .
Specifies the logical unit number (20—29) of the printer device. Optionally, the destination-id (vol-
ser-no) can be specified.

PRNTR=(N[,vol-ser-no])
Indicates that a device assignment set for the printer must be manually inserted in the control
stream. This permits LCB and VFB job control statements to be used in the control stream. The
volume serial number can also be specified.

Keyword Parameter IN:

This parameter specifies the input file referenced by the PARAM IN control statement. If omitted, the
source input is assumed to be embedded data cards (/$, source deck, /*).

IN=(vol-ser-no,label)
— Specifies the volume serial number (vol-ser-no) and the file identifier (label) where the source input
is located.

IN=(RES)
Specifies that the source input is located on the SYSRES device in YSRC.

IN=(RES, label)

Specifies that the source input is located on the SYSRES device, in the file identified by the file
— identifier (label).

IN=(RUN label)

- Specifies that the source input is located on the job’s $YSRUN file with the file identifier {label)
specified by the user.

2 Rev. 1 . .
8262 Rev J SPERRY UNIVAC Operating System/3 ¢ D22
UP-NUMBER UPDATE LEVEL | PAGE
. IN=(*,label)
Specifies that the source input is located on a catalog file identified by the file identifier (label).

Keyword Parameter OUT:

This parameter specifies the output file definition. If omitted, the object code is located on the job’s
YSRUN file.

OUT—=(vol-ser-no,label)

Specifies the volume serial number {vol-ser-no) and the file identifier (label) of the file where the
object code is to be located.

OUT=(RES. label)

Specifies that the object code is to be located on the SYSRES device, within the file specified by the
label parameter.

OUT=(RUN.,label)

Specifies that the object code is to be located on the job’s $YSRUN fite identified by a user specified
file identifier (label).

OUT=(*label)
Specifies that the object code is to be located on a catalog file identified by the file identifier (label).

Keyword Parameter SCR1:

. SCR1= {vol-ser-no }

RES
Specifies the volume serial number of the work file labeled $SCR1. If omitted, the work file is .
assumed to be on the SYSRES device.

Keyword Parameter ALTLOD:

This parameter specifies the location of the alternate load library. If omitted, the compiler is loaded from
$YSRUN.

ALTLOD=(vol-ser-no,label)
Specifies the volume serial number (vol-ser-no) and file identifier {label of an alternate load library
that contains the Extended FORTRN compiler.

ALTLOD=(RES, label)
Specifies that the alternate load library is located on the job’s SYSRES device, in the file identified by
the fite identifier (label).

ALTLOD=(RUN., label)
Specifies that the alternate load library is located on the job’s YRUN file with the file identifier
(label) specified by the user.

ALTLOD=(* label)
Specifies that the alternate load library is located on a catalog file identified by the file identifier
(label).

c
UPDATE LEVEL

D-3
PAGE

8262 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER

. Keyword Parameter OPT:

OPT=(D, N, X)
Specifies one or all of the following compilation options.

D Specifies double spacing of the compiler listing.

N Specifies that no object program is to be generated. The program units are merely compiled and
cannot be executed.

X Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments.

The default for the OPT argument is single spacing with the absence of the N and X specifications. Al OPT
options remaii ‘in effect until another OPT specification is encountered. f only one OPT argument is
specified, the parentheses are optional.

Keyword Parameter MDE:

MDE=I
Specifies that the compiler is to evaluate expressions in a strict left-to-right order when there is a

choice, and that storage is to be allocated for variables and arrays in the sequence in which they
were encountered.

This parameter is recommended for use when compiling programs originally developed under the IBM
System/360 Disc Operating System. When specified, the MDE parameter remains in force for all
. remaining compilations.

Keyword Parameter STX:

When the Extended FORTRAN compiler generates code for a main program, a call to a FORTRAN IV library
subprogram is produced. This causes the execution of two STXIT macro instructions, locates the diagnostic
device, and sets up the program mask in the program status word {PSW).

The two STXIT macro instructions, for program checks and abnormal termination enable the library to:
L] maintain switches for the OVERFL and DVCHK subroutines;

. recover boundary alignment errors caused by COMMON and EQUIVALENCE statements and
argument substitution; and

u provide for orderly shutdown of the program when fatal errors occur.
The STX parameter provides user control of the execution of STXIT macro instructions.

STX=Y
Causes the execution of two STXIT macro instructions at the beginning of a SUBROUTINE or a
FUNCTION subprogram.

STX=N
Suppresses the execution of two STXIT macro instructions at program initiation. STX=N is used only

. for main programs.

i If the STX parameter is not specified, a specification of Y is assumed for main programs, and a specification of N
is assumed for SUBROUTINE or FUNCTION subprograms.

~ -

8262 Rev. 1 SPERRY UNIVAC Operating System/3 c D-4
UP-NUMBER UPDATE LEVEL | PAGE
The STX parameter is operative only for the current subprogram to be compiled. This argument is useful when ‘
integrating COBOL and assembler object modules with FORTRAN object modules.

Keyword Parameter CNL:

CNL=option
Specifies compiler termination if a diagnostic with a severity level is generated.

The values are:
2, indicates academic messages, e.g., a truncated constant;
4, indicates warning diagnostics, e.g., an extraneous comma in a list;
6, indicates serious diagnostics, e.g., an array reference without a preceding array declarator; or
8, indicates fatal errors, e.g., insufficient storage to complete the compilation.

If the CNL parameter is not specified, the compiler processes all program units in the control stream,
regardless of errors encountered. When specified, the CNL parameter remains in force until redefined.

Keyword Parameter LIN:

LIN=filename
Specities the name of the default filename in which the source modules reside.

A 1- to 8-alphanumeric-character identifier is specified by filename. If the LIN parameter is not specified, the .
compiler assumes the default filename of LIB1. This parameter is used in conjunction with the IN parameter.

Keyword Parameter LST:

LST=option
Specifies the quantity of listings produced by the compiler. One of the following options may be
chosen.

N Specifies an abbreviated listing consisting of only the compiler identification, parameters, error
counts, and termination conditions.

8262 Rev. 1 I SPERRY UNIVAC Operating System/3 J b-5
UP-NUMBER UPDATE LEVEL | PAGE

S Specifies, in addition to the N listing, the source code listing with any serious diagnostics.

M Specifies, in addition to the S listing, a storage map showing the addresses assigned to
variables and arrays.

W Specifies, in addition to the M listing, academic and warning diagnostics.

0] Specifies, in addition to the W listing, an object code listing showing the SPERRY UNIVAC
90/30 instructions generated for the executable statements.

The LST parameter remains in effect for succeeding compilations until another LST parameter is

encountered. If no LST PARAM is specified, the M option is assumed.

Example 1a:

The following example illustrates the use of the FOR procedure call statement in its basic form:

~N 00OV RO —~

LABEL AOPERATIONA OPERAND A
10 16
/| JIDIBI FIRITIRN LA v b o b s e by v be e b
/l/l lFlblRl L I i1 i 1 1 1 1 l | L 1 J [| 1 l L1 I 1 l 1 J S T | 1 1 1 1 I 1
$l [B I o by ev by e e b e by oy b g g
[B B B L. L1y TR N YOO NN U VY U000 N Y U TN N N T OO N T U O W N U S T B A
1 ISlOlerlcle dlechkJ N T I S T R B S T A B NI T SN B B AN AT SN A M S A A
[R N B 1l 4 3 e o b e b s b e by e e g a4
/l*-l Ll Lto4 s oo b s b v s b b b b
Line Explanation
1 Indicates that the name of the job is FRTRN1A.
2 Indicates the name of the procedure being called (FOR). No keyword parameters specifying

special options for this compile are used.
3 Indicates start of data.
4—86 Represents the source deck to be compiled.

7 Indicates end of data.

262 Rev. 1 . D—6
5262 Rev I SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL | PAGE
Example 1b:
The basic form generates the following contro!l stream:
LABEL AOPERATIONA OPERAND A
16 72
l// b F RN LB PR RTINS N O B R B [SRR | Ll
Z /l/l IDlvlcl lZ o I 1 1 /l/ LlF ID 1 RINIT-IRI 1 1 1 i l i i | i L A l H I3 11 l i1 l
3 /1/1 IDIVICI IRE S PSRN T TN S N O T A o boa | IO SR B RS 1
q'/|/| EXIT| |%T$ICIJL31} C—YILI;l,ll NN SR SR A | el el 1
s5|//, LBL $BICRI, | L LED &ISICIRI!! T RS W N R |]l
6//1 lElxlEIcl F'DIRLL i B B | 1 l i 1 1 1 l i 1 1. l 11 1 1 1 1 l 1 1) 1 l 1 1 I
7/1$11l11 L1y T T TR AT S N Ll | IR S | L
81_111111' | IR [N E R B S ST S SR S | D B 1]
q 1 151D|ulrlc.ue dIQICkl RS T T R N T B | ' B !
)/ IR AN IO L.. I TS O U RO T A [| A | !
"/l*llllll | [N RS E N I ' A L Ll o] Lyt
Line Explanation
1 Indicates that the name of the job is FRTRN1B.
2 Indicates the defauit logical unit number and LFD name of the printer. .
3—5 Indicates that the work file needed for compiling is, by default, on the SYSRES device, has both
a file-label and LFD name of $SCR1, and uses the sequential access technique; that allocation
is contiguous; that three cylinders are allocated for the secondary increment; and that one
cylinder is allocated for the first extent.
6 Loads the Extended FORTRAN compiler from YLOD.
7 Indicates start of data.
8—10 Represents the source deck to be compiled.
11 Indicates end of data.
Example 2a:
The foliowing example illustrates the use of a FOR procedure call statement that defines all the keyword
parameters:
,//J FMZA U S R S EU S S S U H SRUN W N ST RAUNN NN NNVUNT S SR TN NS R I
2|//PRD FIOR ., [PIRNTR.=12,1 Ly IN=(DSseil |)1U1$1$IC121,)1}1 [T S S 1
3 /1/1,1 [| A 001T1=l(lDls£lzl)Iolslalwl)l; |L51T| :lsL,lJ pe b e byl X
W2 o IFCRHDSCZ ALTLOD = ALTILODLIR), |
5_/1&11111 Loov e pdewv o by v L v e v bogw g by v ey Loy o 1

8262 Rev. 1 ; 3 D-7
UP-NUMBER | SPERRY UNIVAC Operatmg System/ UPDATE LEVEL l PAGE
Line Explanation
1 Indicates that the name of the job is FRTRN2A.
2 Indicates the name of the procedure being called (FOR). The source module name is PROGNM.
The logical unit number of the printer is 21, and the input file has a volume serial number of
DSC1, with a file-label of U$SRC.
3 Indicates that the output file volume serial number is DSC2, with a file-label of U$OBJ. The
format of the compiler listing is supplied by the LST parameter.
4 Indicates that the work file needed for compiling has a volume serial number of DSC2. The
' Extended FORTRAN compiler is located on the device with a volume serial number of DSC3 in
the file labeled ALTLODLIB.
5 End of job.
Example 2b:

By using the keyword parameters in example 2a, the following control stream is generated.

LABEL AOPERATIONA OPERAND A
10 16

A/ JOB FIRTRNZBY | 1Lt L] L
2|4/, DVie 2} 1 // LFD PRNTR 1yt L] L
3 /I/IJDIVICA 5|0 I/l/l 1\/&'1.1 DSCH Ll | | 1
q’/,/. LBIL, 1U$51C;Rl 1 //l LED 1'—1I|B|\l A G R [
s|//, DVC, Bl 14/, VbIL DSC2 1 L] L
ol//, LBIL, Y$BBT, , |/|/. LFD DVTFPUT . (L] Ly
714/, .Dvie, 15" A VO, DSC2 g e | [
8l// EXT, SITLIC 3 eyl 1o a1 N L
9|4/, LBIL $PBICR L, , |/ LED 43CRI, ., 1., C] L
| /1/1 lDlvlcl |52.Ll I/L/l VDILI LD;_slclgl T RS B L | o
/s, LBL, .Aﬁm_.olv.z.n& A/ LD IALTLOD | L] L,
W/ EXEC JHDIRLAUTIEDD o 1) L] L
A/ PARAML VT =OUTEPUT 0 o 1y L |
W7/, PARAM ILer=8 | 1t L] L
15// PA IIN= P NM/ZULIBY 11 Lol [
IWJJ[:I 4o P T S S N N AU SE N B L | L

Line Explanation

1 Indicates that the name of the job is FRTRN2B.

2 Indicates that the printer is to be assigned to the logical unit number 21, with an LFD name of

PRNTR. This was obtained from line 2 in example 2a.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

{

Line

Explanation

10

11

12

13—15

16

Indicates that the input file volume serial number is DSC1. This was obtained from the IN
parameter of line 2 in example 2a. It is assigned to the device with a logical unit number of 50,
which was the first available number in the range of 50—54.

Indicates that the input file is labeled U$SRC with an LFD name of LIB1. This was obtained
from the IN parameter of line 2 in example 2a.

Indicates that the output file volume serial number is DSC2. This was obtained from the OUT
parameter of line 3 in example 2a. It is assigned to the device with a logical unit number of 51,
which was the next available number in the range of 50—54. Logical unit number 50 was
already assigned to the device with a volume serial number of DSC1 (line 3).

Indicates that the output file is labeled U$OBJ with an LFD name of OUTFPUT. This was
obtained from the OUT parameter of line 3 in example 2a.

Indicates the work file for the compiler has a volume serial number of DSC2. Because this
volume serial number was already used, this work file uses the same device logical unit
number of 51. This work file has both a file-label and LFD name of $SCR1 and uses the
sequential access technique; allocation is contiguous; three cylinders are allocated for the
secondary increment; and one cylinder is allocated for the first extent. This was obtained from
line 4 in example 2a.

Indicates that the alternate load library for the compiler has a volume serial number of DSC3. It
is assigned to the device with a logical unit number of 52, which was the next available number

in the range of 50—b4. This was obtained from the ALTLOD parameter of line 4 in example 2a.

Indicates that the alternate load library has a label of ALTLODLIB with an LFD name of
ALTLOD. This was obtained from the ALTLOD parameter of line 4 in example 2a.

Loads the Extended FORTRAN compiler from the file labeled ALTLOD.

PARAM control statements, which identify the processing options for the FORTRAN compiler.
These are generated in the following manner:

Line 13 — The filename OUTFPUT is generated automatically when the OUT parameter is used.
Line 14 — Indicates that compiler identification, parameters, error counts, termination
conditions, source code, and diagnostics will be listed. This was obtained from the LST

parameter in line 3 of example 2a.

Line 15 — The filename LIB1 is generated automatically when the IN parameter is specified.
The module name PROGNM is generated from the label field in line 2 of example 2a.

End of job.

D-8
PAGE

8262 Rev. 1 I SPERRY UNIVAC Operating System/3 ‘ D-9
UP-NUMBER UPDATE LEVEL PAGE
. D.2. SAMPLE COMPILE-LINK-EXECUTE
The following job control stream example illustrates a simple compilation from cards, linking the program EX1,
and execution of the bound program TEST1 from YRUN.
Example:
LABEL AOPERATIONA OPERAND A COMMENTS
I /1/| 4‘]-10[51 1EXA|@LP1L1E’I v b by v b v b e b b v b by
2' / /l lDlVICI 120 IL/I lL FDl llelNIT.IR LPlRlIINlTlﬁlRl IFLDIRL [AILILI IPIRIGLCLEISISIOIRISI J 11 34 1} l 1
3. //1 MOIRIKII Lty I B 1N|E1_1WO;RIK1 1F|I}'1En v b v v bev g by g
4. /|/| 1E1XIE|C| Fql’j 1 [T B stElexlaNn plDM\plrhlAnT\I p\N| [T W U A S W TR O N S S A O
5. /J/l 4‘PJA1R,AIM Lo g NI B IP:AJRIAIMIETIE:Rlsl(uAlsn 4N1E1£|D:Ep1)| | T A I
6'/l$lll|ll oo 1 llllJllllIlillIIlllllllllllllllLlllllllIl
IS A ;)lRlola;RAMllElLlllllllllll1||Ll1111111|1111111|11111
llJ_llll llll lllllllllll!lJllllLLJllllllllllllIALALAIllll
11 1 I 11 {plrlolglrorrl'— Iblbldlyl}l L. l I l i l) I . l 1 1 1 i l 141} I I N T | L 1
1 1 11 lJ 1 l 1t 1 | I - | l L1 1 L 1 | S l | l [N | I U | 1 L1 L i l 1 1 1 } I |
7 [N B ElNlDll v by e v by g by v b ey ey by
8/*1 JETE B La TR B SR lEIN|Dl 1C'1°M1plI|L|A1-rlI101N1 [B B S S SN SN S S !
q' / /l lwlquKl‘ ' L1 1 U S G l S KalNlEL J.WIOLRlKl lFlI lLlE| [l L4 1§ l S W L 1 | W Y l i1l
o] / /4 1E1XIE1C1 LNIISLEBJ- [N B |B|E161]:1M 1LII1N1K| 1Elq111: [SR T S B U B RV RS N I
I /$1 [N A b1 1 [S N |S|T1A1RxT| PlFl |I|N|P1U|T| 1T1°l 1L11 1N1KAG|E1 EJDLI;rlO& !
. 2, LIOAIDIN\ -rlelsl-rlllllLJll]lll TN NN AN BN AR AN S RN S AT A U AN R A
13, (ORI I IlNlclLlu El 1E|X1‘l AT S USSR R | L’l [T S0 S S S A B S ST U N N SRRV
’q /1*1 FE A | B [AN B IEINPI LLIIINIKI 1E1QIIT1 TR ST U T U0 DN ST ST S A A S R
,5' /l/l IEIXIaCl Elsj-rl' 1, YI$IR1U1N1 11 lBlslGIIlNl AELXLELCﬂULTlrioANJ 1 l T S l F I | l 1 1.t 4 l 1
A /1&1 [Lot TR T N B 1EN101 lolFl lchlBl Y YR SR S AN O ST U S U WY WY U0 NS U0 Y N S W
Line Explanation
1 Indicates the job name, EXAMPLE1
2 Indicates the printer device number for all processors
3 Specifies one work file for Extended FORTRAN compiler execution
4 Begins compilation
5 Adds parameters here as per job requirements
6 Start of data to compiler {(source program)
7 End of source data
8 End of compilation
9 Specifies one work file for the linkage editor

8262 Rev. 1
UP-NUMBER

D-10
PAGE

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Line

10

1"

12

13

14

15

16

Explanation

Begins the link edit

Start of data to linkage editor
Names new load module TEST1
Links source module named EX1
Ends link edit

Begins program execution

End of job

D.3. SOURCE FROM DISC LIBRARY — STACKED COMPILATION

This job control stream represents the source module from the disc library for a stacked compilation. Source
programs on disc files are identified using a librarian module name. Each source module consists of one or more
FORTRAN program units.

Example:
LABEL AOPERATIONA 6 OPERAND A COMMENTS

L /4/1 |J1°'B| lExAlMlplLlEz tog g AT U TR TN WU B SV A N U N ST A AT R SR AT SN A S N S A S N N
2' //1 Bvlcl 120 ‘ 1/1/1 LFPI IPlRlNlTan 1 l P11 J_l 11 1#1 1t 1 Ll U S l) U W 1) IS Y W
3'/1/11H9R4K1| | S TN U S R U S U N NN SN N U Y S SN U N A U S N S A R AN U 6 A O AR A S e
4. / /J 1131V|c1 15 1/1/1 1V = Ll 1Q§p10101 4/1/1 1L lBlLl IFLOIRISP!UIRIQLEJ 1 1/1/L ILIFDI lIlNlplUJTL
5'/1/1 lElxlElcl F% | j . l) W - | l Ll 1J_L 11 1 I l 11 1 L l Ll [l fl J;‘L i1 1.1
6' / /l IPIAIRIAM IlM‘l [UIL lE(Ll lrlNlpLUlTl Y | #1) N N . l i i [l 1 L3 | l i S W L 1 U W T
7‘ / /l IELAIRAIm IINl =1P\° lLlElzl/lIlNlpnglI- N O S | 1 } S l I . 1) U l I l) I N B
8 IO A 1 1+ v b e b s by v by e v Ly oy g b b g
q' lllll' llll lll*itlll‘l\lillll\[\ll#llllJllllJ_l;llli
D / /] IPAIRIAM IlNl-lMO UlL lEl JZLIlNlPll-,JTl 1 4 1 l J S | l F I N . [Ll LJ i 1 L 1 14 1
“'/1&111111 | TR v b e ey e v by g v by v by g by g

Line Explanation

1 Indicates job name, EXAMPLE2

2 Indicates the printer device number

3 Specifies one work file for Extended FORTRAN compiler

4 Specifies that the file, FORSOURCE, on disc DISCOQ, device 50, is the INPUT file.

5 Begins compilation

8262 Rev. 1 I SPERRY UNIVAC Operating System/3 c D-1
UP-NUMBER UPDATE LEVEL | PAGE
. Lin_e Explanation
6—7 Identifies the first and second source programs’ module names/filenames to the compiler
8—10 Identifies all succeeding and last source program module names/filenames to the compiler
11 End of job
D.4. COMPILE-ASSEMBLE-LINK-EXECUTE
This example shows the user-specified execution environment, spoolin input, and print and tape output.
Example:
LABEL AOPERATIONA OPERAND A
10 16 2
l. //1 13'10[B| 1EXA[M1]D|L|E3 U UV O NN T TN NN N SN T SO S SN SRR AATUNN S A | | L1
2' / /l lDlVlcl l2 Q l /1/1 1L FDI llelNlTlRl L] l | I N T X I 1 4 ’ 111 ‘ l
3//||‘NQR|K' Ly e by s e b v by Lo el]
4, //| 1E|X|E|C'| “:qu L1 [TV S S NS VS B R U 0 U0 N A W R Lo w0 | t
5'/$|111|1 [11 RN T IS A A U I AR U AR N beovaa b i
[B B L 1 [N N WY N OO U N S T N SN N N M L a o 1 !
., L 15 Ipl‘»lbB rlo'm lb edlyl3l [TN WA N N NN VO N N N A Lol |
|| l 1t L 1 11 [N T R R i N 1 | i1 J_L l
e /1*1 I by o0 RTINS W RNR A N A S N N SUN SO S B Lo a1 i
7//|WO[RK1| L1 IR AR N SN N AR S A P st]
& / /1 IWIDIRIKI2 l 1 1 1 1 1 1 1 l 11 1 1 l P14 1 l 1 1 l 1 J 1 I I
Q. //1 |E1XIE|C1 ASIM 11 b b e e v by o g Lo b i
IQ / /l lPlAlRlAM iLLs:rl= lMC T N | l) N S N | l 1 -1 1 l 4 1 l 1 P | 1 l I
“-/$|||||1 Loy Y S TN W TN VN R ST U NS N S S W0 B O L ovaa 1 |
12 YlIl (W B slTlALRIT [UL S N0 U TN N WS OO S O N O N IR |
i3] vl FIUINITIAB i lsgllslleLgRl | R Lo i
14] AR A IUINIIITI IDIEIVIIICIEI=llelIlNl-rlE:Rl 2 3 Lot | X
15, [I B Ly g IF1U1N111T1=1I| v b g b ol |
la | S . | l 11 UlNl IlTl IF IDIE lV 11 IclEl =is IPIOIOILII lN) P) l 41 1 i l X
[/ I Lo lFlUlNlI |T|=1RE1API’1 IR B! [N [
1<) I . | |FBKSZ=80 |, ...l
1. RN T UlNlIlTl FgElVII |C|E1=1T|Alp14}1 I IO Lol 1
m 1.1 1 l) I | L 11 1 FlUiNlIl-I-l =l|loi%l71 1 1 1| 1 I 1 1 l 1] i Li l x
FIN T L FLFIIILLEIIXD:LXIYIZI’l RIS Loy a1 | X
. 22 I {11 FlRlElchlolRﬂ=lF|IIX§LlKl,Ll Lo oo ! I X
= 23r i 111 l J 1 J_) I | JFlRlElClslIlzlEl=I215l61 11 l 1! ,l_l J S | L l

8262 Rev. 1 H C D-12
UP’NUM:;R SPERRY UNIVAC Operating System/3 PBATE LEVEL I .
Example: {cont)
LABEL AOPERATIONA OPERAND A
10 16 12
24 I B B ‘FJUINnElNID TR T U VSV T VO S YT YO W Y S M Y | L
25 TSR ! EiJ-lElclT FRT ARSI BN S Y RS TR | [T | L P
2 | 1, E|R1R10|EF A S A U VO YO U A N S N S U Y SO SO I R | L
Zl [N U SR A EINIDL] NN BN SN AN B S S i AN S o L
28 /1*1 'R AR L i oo b g by s b T Ll
21/1/1 lwlolRlKll | T [R I S T B B AR A S| oo | L L
o /l/l IEIXIElc‘l LlNJKIEIDlT FENEN R RS WA B B U RE R BRI R | N L
3|~/|$|11|1| T TSR N SN N NOE U S W U W00 N A M A W | T L
32, ' A L]OIAPlM TElslTlsl [N A A B S N A AR | L1
33{4 IS B IlNlannu EL | 1$1MA111N1 I N SRR U N W A B oo 1 Ll
A Lo g Ly IJNCILI EEL { 1M|YII101 cao b v b e bpv s 1| L
351/1*1 v oy Loia b d oo b vy by | I B | Ll
%. /1/1 [lVlCL 12 | l/l/l lLIFD 1F101‘R|T-1l v b e b | Lot i Lt
- 37 LL vacl 190 1/4/1 1\,0 Ll |1-1PSP|E|C)|O| l/I/l Llqu JXllel [Lol L
38 /1/1 lEleElcl T Elsﬂ_lsl’ $ YL‘IRIUINI RN AR SRR S ST E | [N L4
A /1$x a4 o Loyt Lot boea v by e by vy g |] L1
Lo g | I oo b by by g 1 | 1 L1
[I lils:P QqLIIlNI da1*19121 IR AN I ISR A A N R A B A | TN | | '
A S I B Lt 'S T SO A SR S S B U O S | IR B | L1
qo'A*llllll L [N T S S T T ST U A N B N TR N AT O AN R A | L1
‘“,/1&111111 [s ey v by v ey [| Ll
m Explanation
1 Indicates job name, EXAMPLE3
2 Indicates the printer device number
3 Specifies one work file for Extended FORTRAN compiler
4 Begins FORTRAN compilation
5 Start of data to compiler (source program)
6 End of data
7—8 Specifies two work files for the assembler
9 Begins Assembler execution
10 Specifies no cross-reference listing

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

D-13
PAGE

Line

11

12

13

14—15

15

16—18

17

18

19—23

20

21

22

23

24

25

26

27

28

29

30

31

32

33—34

35

36—37

38

Explanation

Start of data to the Assembler

Start of execution environment module (MYI0)

Initializes file for Extended FORTRAN

Defines first file (UNIT definition procedure) specifying a printer file
Specifies printer unit number 1

Defines second file (UNIT definition procedure) specifying a spooled input file
Identifies the reader as input device

Indicates input blocksize

Defines third file (UNIT definition procedure) specifying a tape file
Specifies tape unit number 10

Indicates the tape filename, XYZ

Specifies fixed-length blocked records

Specifies a tape record length of 256 bytes

Terminates UNIT procedure calls

File termination

Includes library table of error information in executable program
Terminates source program

End of data to Assembler

Specifies one work file for the linkage editor

Begins link edit

Start of data to linkage editor

Names the new load modules TEST3

Links the modules $MAIN and MYIO to TEST3

End of data to linkage editor

Connects devices assigned before execution of TEST3 to the FORTRAN unit table via their

LFD names

Executes load module TEST3 from YRUN

paa me. | SPERRY UNIVAC Operating System/3 eonte cever | oace
Line Explanation
39 Start of spoolin data
40 End of spoolin data
41 End of job
NOTE:

The default FFILEID for the printer is FORTT.

D.5. COMPILATIONS WITH PARAM OPTIONS

The following example illustrates the use of special options specified via the // PARAM statement:

Example:
LABEL NOPERATIONA 6 OPERAND A COMMENTS
l. /1/1 lJlolBl 1E XA'MIPILIE“ PSSO S U S OO0 N G S [T UV Y WS U U SN G Y S| U W U A S SN WA R U U Y GO
2' /l/l PlVlcl l2 o l/Lll lL F Dl IPIRLNltRI 1 1 l 11 L 1 l 1 L 1 1 l 1 1 1 1 l U l 11 1 1 1 B T T W | l) S N
3‘//11wlquK| L R S S SR N S S N A S S S ST S T H G S B A S SN SN A A SN S SN
q-/l/l 1EIXL%CI Fqﬂlnl TSNS WO O U G T Y S A U T S U U R T N S S G S U A S N BN A S N O SRR
§. /|/| lﬂAlRIMI ILISAT-l= O ’1°|RT1=1(1XL) 1D|)| ’1NX|T-|=IL|N1K1 ot b Lo g b by
6'/1$l|1111 Loy T T S U S T S U WU R VA W N S U U S ST S SN Y S0 WU S S A S SR WU NS TAU RGN U DO AT ST
Leaog gy Lo ¢y P U N U Y U TN S U U UV G A VAN N TS OO0 A S A S Y 0 WO W U S MUY S U O S A
| W . I{I‘Plr S1‘-141"“1 d°1+lal}1 o1 l IR S B R | l SN G A ST | J i by [I
AT | T v b e v b ey vy b g by b e v e g L g
7-/|*11|1| | PR U S S ST G N0 S S AN N0 YO A S N OO N S ST Y SV V0 U N SO AT ST W WA
8' /l$J 11 l 11 l 1 1 1 | l) | I L1 1 | l 1+ 114 l | 1 1131 I L1 1 1 } 1 1 1 4] .
... s b L‘QADM TLEJSITIql PRI U (N SR U N T AN S VIOUN AN SN T S S WY DU U N A RN U S A A S G N B WU R M
lo' | l L1 IlNlclL IUD E l$ mlIlNl -l l N T S S | I 1 1 1L J lPlalr Iamsl ‘IF 1D lr I ILL‘ L“ikl IEl ll .lt P]r 1 1 1
'l- /I*I 1 i l 11 l) i 41 1 l LoJ1 1 l L1t l | l l 1 1 .1 ' 11 1 1 I 1111 [I | l L1 1 1
12 /L/L LEIXlElc’l TElsl.rl J)I$ \‘,ls:RlulM s o b by g b e e b b s b by
13 S A | IS [T AU A SN S SRR RN A U A SR S SR AR RSN S ST S ST SR
Line Explanation
1 Names job EXAMPLE4
2 Assigns device 20 to printer
3 Specifies one work file for the Extended FORTRAN compiler and the linkage editor
4 Begins compilation
5 Specifies a double-spaced object code listing. Also indicates that cards with X in column 1 will

be accepted for compilation as FORTRAN statements.

6 Start of program data ‘

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

D—15
PAGE

10

11

12

13

Explanation

End of program data

Linkage editor is called directly from the compiler and this is start of linkage editor data
Names new load module TEST4

Links $MAIN module to TEST4

End of data to linkage editor

Executes load module TEST4 from YRUN

End of job

A
UPDATE LEVEL

E-—1
PAGE

8262 Rev, 1 \ SPERRY UNIVAC Operating System/3

UP-NUMBER

Appendix E. Compile-Time Diagnostic
Messages

The compile-time diagnostics are listed and described in Table E—1. All messages are prefixed with FC to
identify them as being generated by the FORTRAN compiler. The 3-digit number following FC in the Message
Number column explicitly identifies the diagnostic. The degree of severity is shown in the Severity Code column,

where:
2 = academic

4 = warning

6 = serious
8 = fatal
. The Diagnostic Message column shows the message as it appears when printed. The cause of the message and

the action to be taken are described in the remaining columns.

For each diagnostic message issued, the source statement is marked by a dollar sign ($) below the column where
the error was first recognized. When a long statement consisting of multiple continuation cards is diagnosed, the
dollar sign occasionally appears under the wrong card, but flags the proper column. To locate the error, check
the flagged column on each card of the statement.

Table E—1. Compile-Time Diagnostic Messages (Part 1 of 22)

. Explanation
Message Severity Di stic M
Number Code fagnostic Wessage
Reason Recovery
FCO00 6 ERROR Error in source code. Aiso the compiler Attempt to locate error by using diagnostic
and message file are incompatible. Submit marker $ which points to the error.
a Software User Report (SUR).
FCOO1 6 — ERROR An obsolete diagnostic that is incompatible Attempt to locate error by using the
with the message file has been issued by the diagnostic marker $.
compiler. Submit a SUR.
FC002 6 — DIMENSIONED VARIABLE A valid subscript is an integer or real Correct source code.
HAS INVALID SUBSCRIPT. arithmetic expression. Complex and
logical expressions are invalid.
FC003 2 variable NEVER Cited variable defined but not referenced Check for misspelling.
REFERENCED in the program.
FC004 2 variable NEVER Cited variable is not defined by an assignment Check for misspelling.
DEFINED statement READ. It does not appear in an
argument list to a subroutine or abnormal
function, or is not in a COMMON statement.
FC005 4 variable WILL CAUSE Variable specified is on improper main If the program is to be executed often,
BOUNDARY ERROR storage boundary. Execution can proceed but COMMON and EQUIVALENCE statements should
efficiency is compromised. be reorganized.
FC006 4 EQUIVALENCE STATEMENT EQUIVALENCE statement contains dummy Correct source program.
HAS INVALID VARIABLE argument name or procedure name.
NAME
FC007 6 VARIABLE USED AS Program context indicates that the array Provide a dimension declarator or
ARRAY BUT NEVER name indicated by the diagnostic marker $ correct misspelling of the
DIMENSIONED should have been preceded by a dimension symbolic name.
declarator in a DIMENSION,
COMMON or TYPE statement.
FC008 4 ARRAY WITH INCORRECT Any array declared with K dimension declarator Correct source program.

NUMBER OF SUBSCRIPTS

subscripts may be referenced in an
EQUIVALENCE statement with either one
or K reference subscripts.

438WNN-dN
L'A3H 2928

g/wasAg BunessdQ JVAINN AHYHIALS

J3IA3T ALvadn

3ovd

Table E—1. Compile-Time Diagnostic Messages (Part 2 of 22)

Explanation

HIAWNN-dN
L "AoY Z9Z8

Message Severity R R
Number Code Diagnostic Message
Reason Recovery
FC009 6 EQUIVALENCED In an EQUIVALENCE statement, subscripts Correct source program.
VARIABLE HAS INVALID must be constants and within thé
SUBSCRIPT boundaries of the array.
FCO010 4 SAME VARIABLE Same entity need not be mentioned more Check for possible misspelling
REPEATED IN GROUP than once in an equivalence group or and correct source code.
an equivalence set {one or more interacting
groups).
FCO11 4 GROUP HAS ONLY Equivalence group is not meaningful since a Correct source code.
ONE VARIABLE given entity is to share storage with an
unknown number of associates.
FC012 6 DIFFERENT COMMON Common blocks must be unique entities which Correct source program, correcting
BLOCK EQUIVALENCED cannot be associated via EQUIVALENCE possible misspelling in either COMMON
TOGETHER statements. or EQUIVALENCE statements.
FCO013 6 VARIABLES WITHIN Common block entities must be allocated in Delete common entities from the
SAME COMMON BLOCK ascending address sequence. EQUIVALENCE EQUIVALENCE statement and correct
EQUIVALENCED statements are not permitted to violate this possible misspelling in the COMMON
basic rule. statements.
FCO14 4 COMMON BLOCK Violation of a basic ANS/ECMA rule. Unless Change EQUIVALENCE statements
EXTENDED BACKWARD this diagnostic appears in every program unit in the source code.
referencing the block program execution,
results will be incorrect in the scurce code.
FCO015 6 INCONSISTENT Equivalence set is attempting to distort the Correct EQUIVALENCE statement.
EQUIVALENCE structure of an array which demands the
STATEMENT contiguity of successive array elements.
FCO016 6 EQUIVALENCE Excessive number of equivalence sets in the Reduce number of equivalence groups.
CLASS TOO LARGE program unit. The compiler can address only
65K in the equivalence table.
FCO018 2 STATEMENT LABEL Label on this statement is meaningless; Check program logic to determine

NEVER REFERENCED

control can never be transferred directly to
this label.

if a GO TO reference is needed.

73A3T 31vadn

3OVvd

g/waisAg Bunesadp IVAINN AHYIIS

3

e—

Table E—1. Compile-Time Diagnostic Messages (Part 3 of 22)

Explanation

Message Severity . .
Number Code Diagnostic Message
Reason Recovery
FCO019 6 LABEL NOT DEFINED Transfer of control to nonexecutable statement Change label.
ON EXECUTABLE not permitted.
STATEMENT
FC020 4 CONTROL CANNOT This statement is preceded by an unconditional Check other diagnostics produced
REACH THIS transfer of control and should be labeled. by this compilation and correct
STATEMENT the program; the block of code is
either unnecessary or missing a
reference label.
FC021 6 END OF DO BLOCK An unconditional transfer of control Correct source program.
CANNOT BE REACHED has been used as the terminal statement
of a DO loop. The DO terminal block is
inaccessible and only one iteration
of the DO is possible.
FC022 4 MULTIPLY DEFINED Statement labels must be unique within Change label and all references
L.ABEL a program unit. to it.
FC023 4 ASSIGNED GO TO Possible destination label did not appear Check for keypunch or logic
LABEL NEVER in an ASSIGN statement. errors.
ASSIGNED
FC024 4 RECURSIVE BRANCH A block jumps only to itself. No other Correct source program.
exit exists so the loop never terminates.
FCO025 2 ILLEGAL BRANCH A DO loop has been entered without executing Correct source program.
INTO DO LOOP the DO statement, which sets the control
variable to its initial value.
FC026 6 ILLEGAL BRANCH It is illegatl to branch into a debug packet Correct branch logic.
INTO DEBUG REGION from outside the packet and illegal to branch
out of the packet to another packet or the
main program.
FC027 2 ARITHMETIC DATA statement processor cannot perform Correct DATA statement.
CONSTANT a meaningful conversion.
INITIALIZES

LOGICAL VARIABLE

H3ISWNNN-dN
L "A3d 2928

¢/waisAg Bunesadp DVAINN AHYHIdS

TIA3T ILVAdN

3OVd

v—3

Table E—1. Compile-Time Diagnostic Messages (Part 4 of 22}

. Explanation
Message Severity Diagnostic Message
Number Code 9 g
Reason Recovery

FC028 2 LOGICAL CONSTANT DATA statement processor cannot perform Correct DATA statement.
INITIALIZES NON a meaningful conversion.
LOGICAL VARIABLE

FC029 2 LITERAL TRUNCATED Character string length exceeded length Correct DATA statement.
ON RIGHT of variable, example: A/'ABCDE’

FC030 6 INSUFFICIENT Except in an EQUIVALENCE statement, Add missing subscripts.
NUMBER OF an array element reference must contain
SUBSCRIPTS the same number of subscripts as the

array declarator.

FCO031 6 ILLEGAL VARIABLE Variable is not the induction variable of Correct subscript.
IN SUBSCRIPT a controlling imptied DO loop.

FC032 4 INSUFFICIENT DATA statement has more variables than Correct DATA statement.
NUMBER OF CONSTANTS constants.

FCO33 6 CONTROL VARIABLE Control variable appears twice in a nest Correct statement.
OF IMPLIED DO IS or is itself initialized within the loop.
DUPLICATED

FC034 2 TOO MANY More constants than variables appear in the Correct DATA statement.
CONSTANTS DATA statement.

FC035 6 FORMAT STATEMENT The FORMAT statement label was referenced Provide FORMAT statement
LABEL label-name in a READ/WRITE statement but not defined or correct the READ/WRITE.
ISUNDEFINED in the source program.

FC036 6 LABEL label-name IS The label specified was not defined. Either define the label or
UNDEFINED. USED {N correct the ASSIGN statement.
ASSIGN STATEMENT

FC037 4 FORMAT STATEMENT As stated. Correct the format label
LABEL label-name or remove the unnecessary
NEVER REFERENCED FORMAT statement.

FCO051 8 NO STATEMENTS IN Null data set or only comments in source Correct job control, or correct

PROGRAM UNIT

module.

source module.

T3A3T 3ivadn

3Ovd
3

HIAWNN-dN
L "A8d 2978

g/walsAg bunessd) JYAINN AHHIAS

G—

Table E—1. Compile-Time Diagnostic Messages (Part § of 22)

Explanation

ll\“lless:ge s::";:y Diagnostic Message
umber o Reason Recovery
FC052 8 PROGRAM CONTAINS A main program, subroutine, or function contains Correct subprogram.
NO USABLE no executable statements or a block subprogram
STATEMENTS contains no initial block declarations.
FC053 6 END STATEMENT IS End of file encountered on data set but no Provide END statement.
MISSING. END statement detected.
FC0b54 6 STATEMENT CANNOT Compiler cannot identify the statement. For Correct or compress the statement.
BE CLASSIFIED. large statements containing keywords such as
FORMAT, COMMON, etc, the keyword
must be within the first 3 lines.
FCO055 6 STATEMENT IS OUT OF See ordering requirements in Section 1. Place statement in proper sequence.
ORDER
FC056 6 MISSING AT STATEMENT. Debug packet not preceded by an AT Provide AT statement or change source sequence.
statement has been encountered.
FC057 6 STATEMENT INVALID A block data subprogram may only contain Remove statement.
FOR BLOCK DATA specification and data initialization
SUBPROGRAM statements.
FCO058 6 MISSING EQUAL SIGN No recognizable keyword, and syntax invalid Correct statement.
OR UNCLASSIFIABLE for arithmetic assignment, logical assignment,
STATEMENT or statement function.
FCO059 4 REDUNDANT RIGHT No corresponding left parenthesis for marked Check statement.
PARENTHESIS delimiter.
FC060 6 MISSING OPERATOR. An arithmetic or logical operator was expected Correct statement.
REMAINDER OF STATEMENT where indicated.
IGNORED
FC061 6 STATEMENT NOT Statement cannot be classified because of Correct statement.
CLASSIFIABLE misspelied keyword or unrecognizable syntax.
FC062 6 RETURN STATEMENT A RETURN statement shouid only appear in a Change statement to STOP or

IN MAIN PROGRAM.

subroutine or function subprogram.

CALL EXIT.

T3A37T 3LvaAdn

39vd

HIGWNN-dN

L "A3Y 2928

g/walsAg bunessdp JVAINN AHYIdS

Table E—1. Compile-Time Diagnostic Messages (Part 6 of 22)

Explanation

5 Q
2 O
cnN
g2
3]

m =
X

Message Severity . R
Number Code Diagnostic Message
Reason Recovery
FC063 6 MISSING (AFTER An IF statement is of the form Correct source program.
KEYWORD ‘IF’. IF ().
FC064 6 MISSING) AFTER An IF statement must be of the Correct source program.
KEYWORD °‘IF’. form IF ().
FC065 6 INVALID EXPRESSION The expression cannot be evaluated as Correct statement.
IN ARITHMETIC IF negative, zero, or positive.
FC066 6 COMPLEX EXPRESSION As stated. Correct program.
NOT PERMITTED IN
ARITHMETIC IF
FC067 6 STATEMENT NOT Keyword is not acceptable; Correct statement.
SCANNED AFTER statement scanning is discontinued.
KEYWORD
FC068 6 ILLEGAL CONVERSION In an ASSIGNMENT statement of the Correct statement or specify
IN ASSIGNMENT form V=E, when V is logical, E must additional data typing.
statement also be logical. When V is arithmetic,
E must also be arithmetic.
FC069 4 SCAN TERMINATED. Compiler couild not recover from syntax Correct statement.
REMAINDER OF error.
EXPRESSION IGNORED
FCO070 6 THE OBJECT STATEMENT A DO or logical IF cannot be the Correct statement.
OF THIS LOGICAL IF object statement of a logical IF.
IS ILLEGAL
FCO71 6 ILLEGAL DESTINATION The labels are for nonexecutable statements Correct flow of control.
LABEL{S) FOR or constitute an illegal entry into
ARITHMETIC IF a DO nest.
FCO072 6 INVALID SYNTAX IN Array element names and implied DO loops Correct syntax of statement.

NAMELIST STATEMENT

are not permitted.

g/waisAg bunessdQ JVAINN AHYIAS

T3A37 3LVAdn

39vd

Table E—1. Compile-Time Diagnostic Messages (Part 7 of 22)

Explanation

rcss:ge S::“::y Diagnostic Message
umber o Reason Recovery
FC073 6 NAMELIST NAME HAS Namelist names must be unique within a Change name.
BEEN PREVIOUSLY program unit.
DEFINED
FC074 6 INVALID DELIMITER The character indicated by the marker is Correct statement.
invalid, example is ‘5{’ in an
expression,
FC075 6 EXTERNAL STATEMENT The name is being declared to be a procedure Correct program to use name
REDEFINES USAGE OF name, but is used in a different context in consistently.
NAME another statement.
FCO076 6 COMMON BLOCK NAME The linker requires that all procedure and Change one of the names.
ALSO USED AS common block names must be unique.
SUBPROGRAM NAME
FC077 4 EQUIVALENCE GROUP Empty parenthetical grouping. Correct source statement.
NOT FOUND
FC078 6 SUBSCRIPT ILLEGAL A subscript in an EQUIVALENCE Correct statement.
OR NOT ALLOWED statement must be an integer constant.
HERE
FC079 4 SUBSCRIPT ON NON In a data statement, a variable name Either remove the extraneous
ARRAY IGNORED followed by a left parenthesis has been parenthesis or dimension the array.
found. Since the variable was not declared
previously in a dimension statement the
name is flagged as a nonarray. Recovery
is made to the next name in the variable
list.
FC080 4 LABEL ON Label is not accepted as the Warning only.
SPECIFICATION destination point of a control
STATEMENT IGNORED transfer.
FCO081 6 MORE THAN SEVEN An array may have from one to seven Correct statement.

SUBSCRIPTS

dimensions.

238WNN-dN
| "AsY 29Z8

g/weisAg bunesad JVAINN AHHIDS

39Vd | q3A3T 3ilvadn

Table E—1. Compile-Time Diagnostic Messages (Part 8 of 22)

Explanation

Message Severity A R
Number Code Diagnostic Message
Reason Recovery
FC082 4 MORE THAN ONE The dimensions of this array have been Delete declarator. Do not delete
DIMENSION decliared previously. the array name if a type or
DECLARATOR FOR COMMON statement.
THIS ARRAY ’
FC083 4 NO CONSTANTS IN As stated. Problem may be due to Correct the statement by
DATA CONSTANT mispunched constant or extraneous inserting the constant list
LIST delimiter in list. or correcting punctuation.
FC084 6 ILLEGAL FORM FOR A dimension declarator must be a constant Correct subscript.
DIMENSION DECLARATOR or integer variable.
FCO085 4 ONLY ONE EXPLICIT A symbolic name may appear only once in Remove second declaration.
TYPE DECLARATOR an explicit type statement.
ALLOWED
FC086 6 NAME ILLEGAL FOR NAME is not a variable or array name, Correct statement.
DATA or is a dummy argument, or a blank
common.
FC087 6 ADJUSTABLE DIMENSIONS As stated. Correct program logic.
PROHIBITED IN MAIN
PROGRAMS
FCO088 6 NON-LOGICAL USED Improper formation of logical expression. Correct expression.
IN LOGICAL
EXPRESSION
FC089 6 LOGICAL PRIMARIES Operators GT, GE, EQ, NE, LT, LE Correct expression.
USED WITH cannot be used with logical entries.
RELATIONAL
OPERATORS
FC090 6 LOGICAL PRIMARY As stated. Correct expression.

DETECTED iN
ARITHMETIC
EXPRESSION

REERE-NR Jal-Tp]

C

38
zZ R
g 2
w <
m-ﬂ
o]

g/wasAg bunessdQ JVAINN AHHIAS

35vd

Table E—1. Compile-Time Diagnostic Messages (Part 9 of 22)

Explanation

Message Severity . .
Number Code Diagnostic Message
Reason Recovery

FC091 6 ILLEGAL Expression is malformed. Correct expression.
EXPRESSION

FC092 6 MISSING RIGHT Right parenthesis missing or redundant; Add or delete a parenthesis.
PARENTHESIS left parenthesis present.

FC093 4 SCAN RESUMED AT As stated. Correct statement.
THIS POINT

FC094 6 LEFT PARENTHESIS DEFINE FILE should have Correct statement.
MISSING AFTER a parenthesis after the unit number.
UNIT NUMBER

FC095 6 MISSING COMMA 1/0 list does not have a comma Correct statement.
BETWEEN LIST between the two symbolic names.
ITEMS

FC096 4 MISSING RIGHT A right parenthesis must be present Correct statement.
PARENTHESIS IN following the format reference or
READ/WRITE END/ERR clauses.

FC097 4 1 THROUGH 99 Unit number out of range. Change unit reference.
ARE ONLY VALID
UNIT NUMBERS

FC098 6 UNIT MUST BE Noninteger data types not permitted as Change unit reference.
INTEGER CONSTANT unit number reference.
OR VARIABLE

FC099 4 FILE SIZE File size must be less than 25 bits. Reduce size.
TOO LARGE

FC100 6 FILE SIZE MUST The file size specified in a DEFINE Correct size specification.
BE INTEGER 4 FiLE statement must be an integer
CONSTANT 4 type.

FC101 4 RECORD SIZE IN Record size exceeds 13030 bytes. Reduce record size.

DEFINE FILE
STATEMENT IS TOO
LARGE

H39WNN-dN

I3A37 31vadn

39Vvd
0i—3

| "A8Y 2928

g/waisAg bunessdQ IYAINN AHHIJS

Table E—1. Compile-Time Diagnostic Messages (Part 10 of 22)

Messag Severit Explanation
e verity . .
Number Code Diagnostic Message -
Reason Recovery
FC102 6 MAX RECORD MUST Max record size specified in a DEFINE Correct size specification.
BE 14 CONSTANT FILE statement must be an integer
4 constant.
FC103 6 TRANSFER LETTER As stated. Correct DEFINE FILE statement.
MUST BE ‘L', ‘U,
OR ‘E’
FC104 6 MISSING UNIT The unit specification on a DEFINE Supply missing integer constant
SPECIFICATION FILE statement is missing. unit number.
FC105 6 ILLEGAL SYNTAX As stated. Correct statement.
INDATA
STATEMENT
FC106 6 BAD SUBSCRIPT Subscripted arrays in the variable list Correct subscript.
' FORMAT FOR of a DATA statement must be of the form
DATA ARRAY ‘C * V + K" where:
C and K are positive integer constants,
V is an integer variable.
FC107 6 RECORD POINTER Record pointer in a DAM statement must Use IFIX function or
MUST BE INTEGER be of type integer greater than zero ASSIGNMENT statement
EXPRESSION and less than or equal to the number t0 correct expression type.
of records in the file.
FC108 6 BAD NESTING OF As stated. An implied DO list must be Change statement.
IMPLIED DO IN completely enclosed in any surrounding
DATA STATEMENT implied DO list.
FC109 6 NAMELIST A namelist may be referenced only with Correct statement.
INCOMPATIBLE the FORTRAN |V statements READ/
WITH FORTRAN WRITE (unit, namelist).
It STATEMENTS
FC110 6 ILLEGAL As stated. Correct statement.
IMPLIED DO
SPECIFICATION
INDATA

STATEMENT

HISWNN-dN
1 "Aay 2928

g/wasAg bunesadp JVAINN AHYICS

A3A37 31vadn

39Vvd
L3

Table E—1. Compile-Time Diagnostic Messages (Part 11 of 22}

Explanation

Message Severity . .
Number Code Diagnostic Message
Reason Recovery
FC111 4 DUPLICATE END Two END clauses in one statement. Probably intended to be an ERR
CLAUSE clause.
FC112 4 END CLAUSE Not a supported feature of FORTRAN Change program logic.
NOT VALID V.
FOR WRITE
STATEMENT
FC113 6 MULTIPLY DEFINED Format labels must be unique. Change label and all references.
FORMAT STATEMENT
LABEL
FC114 6 MISSING OR END/ERR clause has no transfer label, Change destination label.
INVALID LABEL contains the tabel of a nonexecutable
statement, or has an illegal transfer
of control.
FC115 4 DUPLICATE ERR Two ERR clauses. Correct statement. Probably
CLAUSE should be END clause.
FC116 6 INVALID EDITING Edit code cannot be recognized. Correct statements.
CODE
FC117 4 NO 1/O LIST The variable list must appear in the Correct both statements.
ALLOWED WITH NAMELIST statement and not in
NAMELIST the READ/WRITE statement.
FC118 6 ILLEGAL 1/0 The symbolic name indicated by the Correct statement.
LISTITEM marker cannot appear in an
1/0 list.
FC119 6 REPEAT COUNT No repeat count is permitted on a format Remove repeat count.
ONT ‘T’ field descriptor. The legal form
of this descriptor is ‘“Tp’ where p
is an inteter such that 0 < p < 32767.
FC120 4 SCALE FACTOR The absolute value of the scale factor Correct scale factor.

OUT OF RANGE

cannot exceed 127.

H3IaWNN-dN
1 "nd 2928

g/wasAg bunessdg JYAINN AHHIIS

13A37 31vadn I

39Vvd

AR

Table E—1. Compile-Time Diagnostic Messages (Part 12 of 22)

Explanation

Message Severity . .
Number Code Diagnostic Message
Reason Recovery
FC121 2 INVALID USAGE Scale factor on a nonreal editing Correct statement.
OF SCALE FACTOR code.
FC122 4 FIELD WIDTH OR As stated. Reorganize format.
GROUP COUNT MUST
BE LESS THAN 256
FC123 6 MISSING GROUP As stated. Correct statement where
OR FIELD indicated by marker.
FC124 6 ILLEGAL SYNTAX As stated. Correct statement.
IN FIND
STATEMENT
FC125 6 ITEM NOT Item is not a variable or array Correct statement.
PERMITTED ON element name or function name.
LEFT SIDE OF
EQUALS OPERATOR
FC126 6 ITEM ILLEGALLY Name indicated is not a legal Check other diagnostics in
REFERENCED primary. program.
FC127 6 ITEM ILLEGAL Name in an 1/O list must be either Correct statement.
FOR 1/O LIST an array element, array name, or a
variable name.
FC128 6 NAME IS NOT A Conflict in usage of this name. The name was used in different
SUBROUTINE NAME context earlier in the program.
Correct one of the usages.
FFC129 6 ITEM NAMED NOT An invalid name has been scanned in Correct argument.
ARITHMETIC a function argument list. Valid arguments
ARGUMENT are constants, variables, arrays, or
procedure names.
FC130 6 FUNCTION OR Statement function out of sequence Correct sequence or supply

UNDECLARED ARRAY

or undeclared array.

array declarator.

H38WNN-dN
L "A9Y 2928

g/waysAg Bunessdp JVAINN AHHIdS

| 13A37 31vadn

39oVvd
€l—3

Table E—1. Compile-Time Diagnostic Messages (Part 13 of 22)

Explanation

Message Severity . .
Number Code Diagnostic Message
Reason Recovery
FC131 6 UNDECLARED ARRAY Appears in a context such as A(l) Correct program.
OR REPEATED =2.1, X=10, A(1)® ... where
STATEMENT the compiler assumed the first
FUNCTION statement was a statement function.
FC132 6 UNDECLARED This array name did not appear in a Correct spelling or insert
ARRAY NAME dimension declarator. the declarator.
FC133 6 SYMBOLIC NAMES As stated. Shorten name.
CANNOT EXCEED
SIX CHARACTERS
FC134 6 DO PARAMETER Array element names, procedure names, Correct statement and rerun
MUST BE A etc, not acceptable as DO parameters. job.
CONSTANT OR
SIMPLE VARIABLE
FC135 6 VARIABLE MUST As stated. Correct statement and rerun job.
BE OF TYPE
INTEGER
FC136 6 ITEM NOT A Array element encountered in improper Move array element to a simple
SIMPLE context. variable (scalar) in a previous
VARIABLE statement.
FC137 6 CONTROL VARIABLE Control variable missing from DO Correct statement.
SHOULD FOLLOW statement.
LOOP LABEL
FC138 6 VALUEWITH T The record position cannot exceed Correct format.
ILLEGAL OR TOO 32767.
LARGE
FC139 6 MISSING EQUAL As stated. Correct DO statement.
SIGN FOLLOWING
DO CONTROL
VARIABLE
FC140 6 ILLEGAL FORMAT The format code is not recognizable. Correct statement.

DESCRIPTOR

"H39WNNN-dN
| "A9Y Z9z8

g/wasAg bunesadQ JVAINN AHYIAS

l T3A3T 3Lvadn

39Vvd
vi—3

Table E—1. Compile-Time Diagnostic Messages (Part 14 of 22)

Explanation

Message Severity Diagnostic Message
Number Code
Reason Recovery

FC141 6 MISSING OR As stated. Name is illegal if used in a
ILLEGAL. SUB- differing context in prior
ROUTINE NAME statements.

FC142 6 MISSING OPERATOR Left parenthesis encountered after a Correct source statement.
OR UNDECLARED name known to be a scalar.
ARRAY

FC143 6 A SUBSCRIPT Complex and logical expressions may Correct subscript.
EXPRESSION MAY not be used as subscripts.
ONLY BE INTEGER
OR REAL

FC144 6 TOO FEW Array element reference contains fewer Correct either the declarator
SUBSCRIPTS FOR subscripts than the array declarator. or the reference.
THIS ARRAY

FC145 6 MISSING FORMAT The label on the format statement is Supply a label.
LABEL missing. Labels on format statements

are mandatory.

FC146 2 WARNING-REPEATED Previous scale factor cannot take effect. Correct source statement.
SCALE FACTOR

FC147 6 ACTUAL AND DUMMY In a statement function reference, Correct either the reference
ARGUMENTS ARE OF the actual and dummy arguments must be or statement function, or insert
DIFFERING TYPES of the same type. a type statement.

FC148 6 TOO MANY As stated. This diagnostic is for implicit Correct function reference.
ARGUMENTS FOR and basic external functions only.
THIS FUNCTION

FC149 6 TOO FEW ARGU- As stated. Add missing argument.
MENTS FOR THIS
FUNCTION

FC150 6 MISSSING LEFT As stated. Add a parenthesis.

PARENTHESIS

H3aWNN-dN
| "A3H 2928

J3AATT ILvadn

3DVd

g/wasAg buneiadQ JVAINN AHYIAS

Table E—1. Compile-Time Diagnostic Messages (Part 15 of 22)

Explanation

Message Severity . .
Number Code Diagnostic Message
Reason Recovery

FC151 6 DO LIST In scanning the DO statement list, the Supply terminal parameter.

TOO SHORT terminal parameter has not been found.
Consequently, the DO range is undefined.

FC152 4 SUBCHK LIST MAY Simple variable or procedure name encountered. Delete or correct symbolic name.
ONLY CONTAIN Subscript checking is only meaningful for
ARRAY NAMES arrays.

FC153 6 CONTROL VARIABLE As stated. Change variable to integer.
OF DO MUST BE
INTEGER TYPE

FC154 6 ARGUMENT TYPE The argument specified is illegal for the Correct function reference.
CONFLICT (generic) function specified.

FC155 6 IMPROPERLY A DO loop must be completely enclosed by Correct structure of loops.
NESTED DO any surrounding DO loop. See fundamentals
L.LOOPS of FORTRAN reference manual,

UP-7536 (current version).

FC156 6 LABEL FOR DO Error in processing label designating Fix label in DO statement.
MISSING OR BAD DO loop terminator.

FC1567 4 DUPLICATE AT Two AT statements specify the same Select proper debug packet.
STATEMENT statement label.
IGNORED

FC158 6 RECURSIVE Occurs for statement such as Correct program.
STATEMENT FUNCTION A{l)=A(1)+1.0 when A does not appear
OR UNDECLARED in a dimension declarator.
ARRAY

FC159 6 UNDECLARED ARRAY Statement cannot be classified either Correct statement or add
OR BAD STATEMENT as a statement function or an dimension declarator.
FUNCTION assignment statement.

FC160 6 REPEATED DUMMY Each dummy argument name must be unique. Correct statement.

ARGUMENTS IN
STATEMENT
FUNCTION

H38NNN-dN
L "A8H 2928

g/wasAg bunesadQ QVAINN AHHIAS

I3A3T 3Lvadn

3ovd

91—3

Table E—1. Compile-Time Diagnostic Messages (Part 16 of 22)

Explanation

73aA3T 3LvAdn

Message Severity i R
Number Code Diagnostic Message
Reason Recovery

FC161 2 EXTRANEOUS DATA As stated. Check that right parenthesis
AFTER CLOSING is not in an NH string with an
PARENTHESIS improper N.

FC162 6 iLLEGAL Statement function argument not a simple Correct statement function.
STATEMENT FUNCTION variable. This diagnostic can also occur
DEFINITION for an undeclared array.

FC163 6 A DEBUG AT, TRACE ON,TRACE OFF, and Correct order of statements.
STATEMENT OUT DISPLAY statements may only occur after
OF ORDER the DEBUG statement.

FC164 6 ENTRY STATEMENT These statements are permitted only in Remove statement and associated
NOT PERMITTED subroutine and function subprograms. program logic.
IN A MAIN
PROGRAM

FC165 6 ILLEGAL LIST The list may contain only variable and Correct statement.
SYNTAX FOR array names (without subscripts).
DISPLAY Dummy arguments cailed by name are
STATEMENT not permitted.

FC166 6 ENTRY NAMED USED As stated. Correct misspelling or program
IN ANOTHER logic.
CONTEXT

FC167 6 DUPLICATE DUMMY Dummy argument names must be unique. Correct statement.
ARGUMENTS

FC168 6 CALL BY NAME/ The method of argument processing for Select either CALL by NAME or
VALUE CONFLICT this argument is different in a previous CALL by VALUE and use
FOR THIS entry, subroutine, or function statement. consistently throughout
ARGUMENT program.

FC169 6 NO LABEL The debug packet has no reference point Provide label after AT statement.
SPECIFIED IN {entry label) in the source code and
AT STATEMENT cannot be executed.

FC170 6 DUPLICATE ENTRY As stated. Entry names must be unique. Change entry name.

NAME

Y38WNNN-dN
L "A8Y 2928

g/waisAg bunessdg JVAINN AHHIdS

3IOVd
L1—3

Table E—1. Compile-Time Diagnostic Messages (Part 17 of 22)

Explanation

Message S::ve;l:y Diagnostic Message

Number o Reason Recovery

FC171 6 FUNCTIONS MAY As stated. Add a status variable to argument
NOT USE list, or use the ERROR/ERROR1
LABELS AS subroutines for control purposes.
ARGUMENTS

FC172 6 FUNCTIONS MUST As stated. For functions such as random
HAVE AT LEAST number generators, an argument
ONE ARGUMENT must be present even if it is

never referenced.

FC173 6 ILLEGAL LIST A dummy argument list may consist only of Correct list.
SYNTAX FOR simple variable names which are unique
DUMMY ARGUMENT in the list.
LIST

FC174 4 MISSING NAME ON As stated. Provide a name; system default
PROGRAM STATEMENT is SMAIN.

FC175 4 EXTRANEOUS DATA As stated. Remove extraneous characters.
AFTER PROGRAM
NAME

FC176 4 EXTRANEOUS DATA As stated. Remove extraneous characters.
AFTER VALID
DEBUG OPTION

FC177 4 ONLY ONE DEBUG As stated. Convert to a continuation of the
STATEMENT ALLOWED previous debug statement.

FC178 6 ILLEGAL LIST Improper debug statement list. Correct statement at the point
SYNTAX indicated by the marker.

FC179 4 LABELS NOT AT is a nonexecutable statement. A Remove label from statement.
ALLOWED ON AT label is not allowed.
STATEMENTS

FC180 4 NON ARRAY OR An attempt has been made to specify the Either correct or remove the name.

VARIABLE INIT

Debug init option on an item which
is neither an array or simple variable
name.

HIFGNNN-dN
| "A3Y 2928

A3A37T 31vadn

39Vvd
81—3

g/waysAg Bunesadp OVAINN AHHIdS

Table E—1. Compile-Time Diagnostic Messages (Part 18 of 22)

™M s t Explanation
ge everity Diagnostic Message
Number Code
Reason Recovery

FC181 6 COMMON VARIABLE A variable may only occur in one common As stated.
MULTIPLY DEFINED block.

FC200 4 RECOVERED MISSING Field width in the format specification Define width of field.
FIELD WIDTH TO is missing. The compiler substitutes a
10 value of 10 and continues scanning.

FC201 2 WARNING SCALE The absolute value of the scale factor Correct the scale factor.
OUT OF RANGE cannot exceed 127.

FC202 2 IGNORED DIGITS A maximum of 5 digits may be specified Truncate the number or change it
AFTER FIFTH on a STOP or PAUSE statement. to a literal.
IN STOP OR PAUSE All excess digits were ignored.

FC203 2 HEXADECIMAL A hexadecimal constant may only contain Correct constant.
CONSTANT the digits O through 9 and A through F.
CONTAINS The constant may be a maximum of 32
INVALID HEX DIGIT characters in length.

FC204 4 WARNING INSERTED The opening parenthesis denoting an Correct statement.
LEFT PAREN implicit, equivalence or format list
TO START is missing. The compiler inserts the
GROUP parenthesis and continues scanning the statement.

FC205 4 WARNING INSERTED The closing parenthesis denoting the Correct statement.
RIGHT PAREN end of an implicit, equivalence, or
TO CLOSE format group is missing. The compiler
GROUP inserts the parenthesis and continues scanning.

FC206 2 WARNING INSERTED A comma necessary to syntax is missing. Correct list.

MISSING COMMA

If syntax has been acceptable up to this
point, the compiler inserts the comma
and continues scanning. Commas will
be inserted between multiple data fists
in data statements, multiple equivalence
groups, debug options or elements

in an 1/0 list.

HIgGWNN-dN
L "A8Y 2928

g/waysAg bunessdg JVYAINN AHHILS

73A37 3Lvadn

39Vd
6L—3

Table E—1. Compile-Time Diagnostic Messages (Part 19 of 22)

M s it Explanation
essage everity . .
Number Code Diagnostic Message
Reason Recovery
FC207 2 WARNING INTEGER An integer constant exceeds one full Examine constant for correctness.
TOO BIG USED word. Binary bits were truncated on the A precision or type change may
‘7FFFFFFF’ left, and a maximum positive value of be appropriate.
‘7TFFFFFFF’ was substituted.
FC208 4 RECOVERED BAD An array declarator or array element Correct subscript.
SUBSCRIPT TO ‘1’ reference contains an invalid or
unrecognizable expression as a subscript.
The compiler substitutes the value ‘1’
for the subscript and closes the current
array. Scanning continues with the next
array, if present.
FC209 4 RECOVERED MISSING Fraction width in the format specification Define format width.
FRACTION WIDTH is missing. The compiler substitutes the
. TOO vatlue 0 and continues scanning.
FC210 4 RECOVERED MISSING In a COMMON statement, either the Put in missing delimiter or name.
SLASH TO slash delimiting the common block name is
BLANK COMMON missing or the name itself is
unrecognizable.
FC211 4 RECOVERED AND Recovery was made to the next valid name Correct statement.
RESTARTED SCAN encountered after the bad data. The scan
AT THIS NAME resumes at this point. All unidentifiable
data prior to this point was ignored by the
compiler.
FC212 4 RECOVERED WRITE A WRITE statement has a left parenthesis Add missing delimiter.
NO PAREN missing. The compiler therefore treats
TO PRINT the statement as a PRINT statement.
FC213 6 SYNTAX The compiler has not encountered any Correct statement.
UNRECOGNIZED acceptable keywords or syntax and
cannot identify the statement. Scanning
is terminated.
FC214 2 WARNING COMPLEX The real and imaginary components of a Correct constant so that both

TYPE CONFLICT

complex constant do not agree in type.
The compiler converts the component of
lower type to the higher type.

components have the same type.

H3IgWNN-dN
g/waysAg Bunessdp DVAINN AHHIMS | nou 2928

I3A37 3lvadn

3IOVd
0c—3

Table E—1. Compile-Time Diagnostic Messages (Part 20 of 22}

Explanation

HIGWNN-dN

L "A9YH 2928

Message Severity . .
Number Code Diagnostic Message
Reason Recovery
FC215 2 WARNING For an integer constant, binary bits were Examine constant for correctness;
CONSTANT truncated on the left, which may affect its a precision change may be
TRUNCATED sign. For a double precision constant, decimal appropriate.
digits on the right were discarded. For a
single precision real constant, right
hexadecimal digits from its preliminary
internal representation were discarded.
FC216 4 WARNING FINAL The final period that delimits a relational Correct statement.
PERIOD INSERTED or logical operator is missing. The compiler
inserts the missing delimiter and continues
scanning.
FC217 4 WARNING INITIAL The initial period that delimits a relational Correct statement.
PERIOD INSERTED or logical operator is missing. The compiler
inserts the period if the following syntax
appears correct.
FC218 2 WARNING NOT A parenthesized expression has been encountered Correct parenthesized expression
AN IMPLIED in an 1/0O list. The compiler is anticipating if it is intended to be an
DO an implied DO loop, but the format of the implied DO.
expression is not of the form (NAME (1),
| = M1, M2, M3).
FC219 4 WARNING PERIOD The compiler has encountered a period Correct statement.
CHANGED TO which does not delimit a logical constant
ASTERISK or a logical or relational operator. The
compiler interprets the period as a
mispunched asterisk and continues scanning.
FC220 2 REAL EXPONENT The exponents on a real or double precision Correct constant.
DIGITS MISSING constant are missing.
FC221 4 ERROR HEX A hexadecimal constant may be a maximum of Correct or shorten hexadecimal
TRUNCATED 32 characters in length. Truncation occurs constant.
on the leftmost digits.
FC222 2 IGNORED COMMA An extraneous comma has been encountered in a Correct the statement by removing

define file list, an 1/O list, or a
format descriptor list.

the comma or inserting the
missing list item it delimits.

[
v
v)
>
_|
m
r
m
<
m
r
>
o
LN

g/waisAg bunesadg JYAINN AHYIdS

C ®
T N
z R
g7
Table E—1. Compile-Time Diagnostic Messages (Part 21 of 22) ﬁ, i
>
Explanation .
Message Severity Diagnostic Message P
Number Code
Reason Recovery
FC223 2 IGNORED LABEL A statement label has been found which exceeds Correct label.
OUT OF RANGE the maximum value of 99999.
AS DUMMY
FC224 4 IGNORED In scanning, the compiler has encountered invalid Correct statement. E@
UNRECOGNIZED data which it cannot identify. Recovery is made m
to the next valid name found and alf else in X
between is ignored. 3
FC225 4 WARNING POSSIBLE The compiler has encountered two apparently Correct statement. %
MISSING ASTERISK valid variable names or constants not =
separated by an operator, and assumes ;
multiplication was intended. O
- o - e O
FC226 2 IGNORED BAD The length specification on implicit or explicit Correct length specification or k-]
LENGTH type statement is either an invalid constant decrease its value. g
SPECIFICATION or the value exceeds 32. g
FC227 2 DO WARNING The compiler has encountered a variable name Check statement. ‘:,
of the form "5
‘DO NNN NAME =’ o
which looks like a DO statement. i
()
FC228 2 MISSING The closing apostrophe of a literal constant Close literal string.
APOSTROPHE is missing.
FC229 4 TRUNCATED A Hollerith constant or literal constant Shorten character string.
LITERAL has exceeded the maximum length of 255
characters.
S
FC230 4 BAD LABEL The statement label is either an invalid Correct statement label. c
constant or it exceeds the maximum label S
value of ‘99999". 2
m
FC901 8 COMPILER NEEDS The main memory is insufficient to Allocate more storage to the job, ,r-n
MORE SPACE FOR compile this program unit. or segment the program into r<n
THIS PROGRAM smaller units. -
o
5T
m N
N

Table E—1. Compile-Time Diagnostic Messages (Part 22 of 22)

Explanation

Message Severity . .
Number Code Diagnostic Message
Reason Recovery
FC902 8 STACK OVERFL.OW. The compiler control stack has become Check program for excessively
SIMPLIFY THIS too large. The compilation cannot be complex statements and simplify.
STATEMENT completed. If problem persists, submit a SUR.
FC903 8 I/0 ERROR ON The scratch files the compiler uses Make certain that the correct
COMPILER'S WORK have had a hardware error. It is number of work files are allocated
FILE impossible to complete compilation. and available.
FC904 8 SOURCE PROGRAM Module name on the PARAM IN Disptay contents of input file to
NOT FOUND card was not found on the input disc file. be certain the source program is there.
FC910 8 FORTRAN REQUIRES The compiler requires the extended instruction Load the 2K COS and a
MICROLOGIC EXPANSION set which is available only if the micrologic supervisor which supports
expansion has been loaded. floating-point features.
FC940 8 INTERNAL COMPILER The code is for maintenance purposes only and is

ERROR IN PHASE N,
CODE NN, CARD
NUMBER NNNN.

As indicated. Submit a SUR.

not meaningful to users, The card number is not

always present,,but can be useful, since the source

code may be changed to get around the problem,

The phase number may be useful in determining

where the compiler is processing erroneously:

B Phase 1 reads the source program, performs
syntax analysis and builds various tables
for later use,

B Phase 2 processes COMMON and EQUIVAL-
ENCE statements, performs preliminary storage
allocation, processes and generates label tables,
and prints the source program and any
diagnostics,

W Phase 3 processes subscripts, performs constant
arithmetic, processes constants and argument
lists, and symbolically expands statement
function references.

B Phase A performs storage allocation compilation
and prints the related map.

B Phase 5 generates preliminary code and processes
common subexpressions,

B Phase 6 generates the object module and ex-
ecutable code and prints it.

H3IgWNN-dN
g/wielsAg bunessdg JVAINN AHHILS

T3A37 31Vvadn

39Vd
€213

L "A3Y 2928

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

F—1
UPDATE LEVEL | PAGE

Appendix F.

Table F—1. Extended FORTRAN Run-Time Modules (Part 1 of 10)

Run Time
Modules

Modut CSECT or i
odute Entry Name Function
FL$ABS FL$ABS Integer and real absolute value
ABS
DABS
I1ABS
JABS
FL$ABTRM FL$SABTRM Abnormal termination code
FLSARFOR FLSARFOR Array FORMAT processor
FL$ASIN FLSASIN Arcsine/arccosine functions
ACOS
ARCOS
ARSIN
ASIN
FL$ATAN FLSATAN Arctangent functions
ATAN
ATAN2
FL$BCKSA FL$BCKSA BACKSPACE processor
FL$CABS FL$CABS Complex absolute value function
CABS
FL$CBRT FL$CBRT Cube root
CBRT
FL$CCS FL$CCS Complex exponential functions:
FL$CC c**C
FLS$CI C**14
FL$CJ C**12
FL$CR C**R4
FL$IC 14**C
FL$JC 12**C
FL$RC R4**C
FL$CDABS FL$CDABS Complex* 16 absolute value function
CDABS

8262 Rev. 1 SPERRY UNIVAC Operating System/3
UP-NUMBER

UPDATE LEVEL

F—2
PAGE

}

Table F—1. Extended FORTRAN Run-Time Modules (Part 2 of 10)

| CSECT or Function
Moduie Entry Name uncti
FL$CDDS FL$CDDS Complex*16 exponential functions:
FL$CD C8**R8
FL$CDC C8**C16
FL$CDD C16**C16
FL$DC R8**C8
FL$DCC C16**C8
FL$DCD C16**R8
FL$DCI C16**14
FL$DCJ C16**12
FL$DCR C16**R4
FL$DDC R8**C16
FL$IDC 14**C16
FL$JDC 12**C16
FL$RDC R4**C16
FL$CDEXP FL$CDEXP Complex*16 exponential functions
CDEXP
FL$CDLOG FL$CDLOG Complex*16 logarithm function
CDLOG
FL$CDLG
FL$CDMPY FL$CDMPY Complex*16 multiply/divide
CDDVD#
CDMPY#
FL$CDSIN FL$CDSIN Complex* 16 sine/cosine and hyperbolic sine/cosine
CDCOS functions
CDCOSH
CDSIN
CDSINH
FL$CDSQT FL$CDSQT Complex*16 square root function
CDSQRT
FL$CEXP FL$CEXP Complex exponential function
CEXP
FLSCLNRW FLSCLNRW File close routine (no rewind)
FL$CLOG FL$CLOG Complex logarithm function
CLOG
FL$CLOSE FL$CLOSE Final file close
FL$CMPLX FL$CMPLX Complex intrinsic functions:
CMPLX Cc8
DCMPLX C16
FLSCMPY FLSCMPY Complex multiply/divide
CDVD#
CMPY#
FLSCNFLT FLSCNFLT
FL$COLUM FL$COLUM

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

F-3
PAGE

Table F—1. Extended FORTRAN Run-Time Module (Part 2 of 10)

CSECT or .
Module Entry Name Function
FL$CONJG FLSCONJIG Conjugate intrinsic functions
CONJG Single-precision conjugate function
DCONJG Double-precision conjugate function
FL$CSIN FL$CSIN Complex sine/cosine and hyperbolic sine/cosine
CCOS functions
CCOSH
CSIN
CSINH
FL$CSQRT FL$CSQRT Complex square root function
CSQRT
FL$DASIN FL$DASIN Real *8 arcsine/arccosine functions
DACOS
DARCOS
DARSIN
DASIN
FL$DATAN FL$SDATAN Real *8 arctangent functions
DATAN
DATAN2
FL$DBLE FL$DBLE Single to double intrinsic functions:
CDBLE C8 to C16
DBLE R4 to R8
FL$DBOUT FL$DBOUT Debug 1/0 routines
FL$DBCL
FL$DBOP
FL$FLSH
FL$STKR
FL$DCBRT FL$DCBRT Real *8 cube root function
DCBRT
FL$DDPOW FL$DDPOW Real *8 power functions
DEXP
DEXP10
DLOG
DLOG10
FL$DD R8**R8
FLSDEXP$
FL$DI R8**14
FL$DJ R8**12
FL$DLOGS
FL$DR R8**R4
FL$ID 14**R8
FL$JD 12**R8
FL$RD R4**R8
FP$DTD R8**R8 (basic FORTRAN)
FP$DTH R8**12 (basic FORTRAN)
FP$DTI R8**14 (basic FORTRAN)
FP$DTR R8**R4 (basic FORTRAN)
FP$HTD 12**R8 (basic FORTRAN)
FPSITD 14**R8 (basic FORTRAN)
FP$RTD R4**R8 (basic FORTRAN)

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

F-4
PAGE

Table F—1. Extended FORTRAN Run-Time Module (Part 4 of 10)

CSECT or E .
Module Entry Name unction
FLSDEBUG FL$DEBUG Debug control routines:
FL$DARI array INIT
FL$DBGUN UNIT value
FL$DCHK SUBCHK
FL$DELI array element INIT
FLSDINT variable INIT
FLSDRTN RETURN
FL$DSBT SUBTRACE
FL$DTOF TRACE OFF
FL$DTON TRACE ON
FL$DTRC TRACE
FL$DUNT UNIT
FL$DEFIL FL$DEFIL DEFINE FILE statement processor
FL$DERF FL$DERF Real*8 error function
DERF
DERFC
FL$DFNDB FL$DFNDB FIND statement processor
FL$DGAMA FLSDGAMA Real *8 distribution function
DGAMMA
DLGAMA
FL$DHPER FL$DHPER Real *8 hyperbolic sine/cosine
DCOSH
DSINH
FL$DHYPT FL$DHYPT Real *8 hyperbolic tangent
DTANH
FL$DIM FL$DIM Positive difference intrinsic functions
DDIM
DIM
IDIM
JDIM
FLSDMAX FL$DMAX Real *8 maximum/minimum intrinsic functions
DMAX1
DMIN1
FL$SDOPNA FLSDOPNA Direct access READ/WRITE processor
FL$DFNDA Direct access FIND processor
FLSDSIN FL$DSIN Real *8 sine/cosine function
DCOS
DSIN
FL$DCOS$
FL$DSINS
FL$DSQRT FLSDSQRT Real *8 square root function
DSQRT
FL$DTAN FLSDTAN Real *8 tangent/cotangent function
DCOT
DCOTAN
DTAN

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

F—5
PAGE

Table F—1. Extended FORTRAN Run-Time Module (Part 5 of 10}

M " CSECT or .
odule Entry Name Function
FLSDUMP FLSDUMP DUMP/PDUMP processor
DUMP
FL$DUMPD
PDUMP
FL$DVCHK FL$DVCHK Divide check subroutine
DVCHK
FL$EDTAI FL$EDTAI A edit — input
FL$EDTAO FL$EDTAO A edit — output
FLSEDTCI FL$EDTCI Complex input
FL$SEDTCO FL$EDTCO Complex output
FL$EDTEO FL$EDTEO E edit — output
FL$EDTDO D edit — output
FLSEDTFI FL$SEDTFI F edit — input
FL$EDTEI E edit — input
FLSEDTDI D edit —~ input
FL$EDTFO FL$EDTFO F edit — output
FL$EDTGI FLSEDTGI G input
FL$EDTGO FLSEDTGO G output
FLSEDTII FL$EDTH | edit — input
FL$EDTIO FL$EDTIO | edit — output
FL$EDTLI FL$EDTLI L edit — input
FLSEDTLO FL$EDTLO L edit — output
FL$EDTZI FL$EDTZI Z edit — input
FL$EDTZO FL$EDTZO Z edit — output
FLSENDFA FLSENDFA ENDFILE processor
FL$ERCTL FL$ERCTL Error control and traceback routine
FLSSWTERR
FLSWTMSG
FL$SERE FL$ERE Syntax error CALL subroutine
FLSERF FL$ERF Real error function
ERF
ERFC
FL$ERRN FLSERRN Error message setup
FLSERTST FLSERTST ERROR/ERROR1 subroutines
ERROR
ERROR1

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

F—6
PAGE

Table F~1. Extended FORTRAN Run-Time Module (Part 6 of 10}

Module

CSECT or
Entry Name

Function

FLSFLOAT

FLSFLOAT
DFLOAT
DHFLOT
FLOAT
HFLOAT

Float intrinsic functions

FL$SFORMT

FL$FORMT

FORMAT processor

FL$FTCH

FLSFTCH
FETCH

FETCH subroutine

FLEGAMMA

FL$GAMMA
ALGAMA
GAMMA

Real gamma function

FL$GDIRI

FL$GDIRI

List-directed input processor

FL$GDIRO

FL$GDIRO

List-directed output processor

FL$GTMS3

FL$GTMS3
FL$SGTMSG

08/3 GET message processor

- FL$HXCVD

FLSHXCVD

Binary to decimal conversion

FLSHYPER

FLSHYPER
COSH
SINH
TANH

Real hyperbolic functions

FLSIFIX

FLSIFIX
HFIX
IFIX

Fix intrinsic function

FL$IMAG

FL$IMAG
AIMAG
DIMAG
IMAG

Imaginary part of complex intrinsic function

FLSINFL3

FLSINFL3
FLSINFL

Set file to input mode for 0OS/3

FLSINITL

FLSINITL

Program initialization routine

FLSINT

FLSINT
AINT
DINT
IDINT
INT

Integer intrinsic functions

FL$I1O0

FL$IO
FLSERRCT
FLSFUNTB
FLSRERDB
FLSWORKA
FL$1

FL$3
PRNTR
PRNTRC

Standard 1/O configuration

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 F-7

UPDATE LEVEL | PAGE

. Table F—1. Extended FORTRAN Run-Time Module (Part 7 of 10)

Module

CSECT or
Entry Name

Function

FL$IOARA

FL$IOARA

Dummy 1/0 common (basic FORTRAN)

FL$IOCLS

FL$IOCLS
FL$SDCLSE
FL$FCLS
FLSNMLCL
FL$SCLSE

1/0 statement termination
direct access 1/0O
formatted 1/0
namelist 1/O
sequential /O

FL$IOCOM

FL$IOCOM
FLSERBYT
FL$SERR
FL$GTSAV
FL$IFSAV
FL$I0SAV
FLSOFSAV
FL$ROSAV
FL$RWSAV
FL$SKADR
FL$TBSAV
FLSWTSAV

1/O control common

error control routine

FL$IOERR

FL$10ERR

Data management fatal error processor

FL$SIOLST

FL$IOLST
FL$IOLS

1/0 list item processor

FLSIOPEN

FL$IOPEN
FL$BCKSP
FL$DFIND
FL$SDOPEN
FLSENDFL
FLSREWND
FL$SOPEN

1/O argument list processor

for FIND statement
for direct access |/O

for sequential 1/0

FL$IO1

FLS$IO1
FL$ERRCT
FLSFUNTB
FLSRERDB
FLSWORKA
FL$1

FL$2

FL$3
FL$11
FL$12
FORT11
FORT11C
FORTI1E
FORT12
FORT12C
FORT12E
FORT2
FORT2C
PRNTR
PRNTRC

Alternate |/O configuration

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 F-8

UPDATE LEVEL | PAGE

\

Table F—1. Extended FORTRAN Run-Time Module (Part 8 of 10)

Module

CSECT or
Entry Name

Function

FL$IXP

FL$IXPI
FLS$H
FL$I
FLSJI
FLSJ
FP$SHTH
FP$HTI
FP$ITH
FP$ITI

Integer power functions:
14**14
14%*|2
12**14
12**12
12**12 (basic FORTRAN)
12**14 (basic FORTRAN)
14**12 (basic FORTRAN)
14**14 (basic FORTRAN)

FLSLOAD

FL$LOAD
LOAD
OPSYS

LOAD and OPSYS subroutines

FLSMAX

FLSMAX
AMAXO0
AMAX1
AMINO
AMIN1
JMAXO0
JMINO
MAX
MAXO0
MAX1
MIN
MiINO
MIN1

Max/min intrinsic functions

FLSMOD

FL$MOD
AMOD
DMOD
JMOD
MOD

Modulo arithmetic intrinsic functions

FLENAMEI

FLENAMEI

NAMELIST input

FLSNAMEO

FLSNAMEO

NAMELIST output

FLSOUTF3

FL$OUTF3
FLSOUTFL

Set file to output mode for 0S/3

FLSOVRFL

FLSOVRFL
OVERFL

Overflow subroutine

FLSOVW70

FLSOVW70
OVERFL

Series 70 overflow subroutine

FL$POWER

FLSPOWER
ALOG
ALOG10
EXP

EXP10
FLSALOGS
FLSEXP$
FL$IR
FL$JR
FLS$RI
FL$RJ

Real *4 power functions

14**R4
12**R4
R4**14
R4**12

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

F-9

Table F—1. Extended FORTRAN Run-Time Module (Part 9 of 10}

Module

CSECT or
Entry Name

Function

FL$POWER
(cont)

FL$RR
FPSEXPS$
FP$HTR
FP$ITR
FP$RTH
FP$RT!
FP$RTR
LOG
LOG10

R4**R4

12**R4 (basic FORTRAN)
14**R4 (basic FORTRAN)
R4**12 {basic FORTRAN)
R4**14 (basic FORTRAN)
R4**R4 (basic FORTRAN)

FL$READ

FLSREAD
FLSEOF
FLSERROA

Input file processor

FLSREAL

FLSREAL
DREAL
REAL

Real part of complex intrinsic function

FL$REOPN

FL$REOPN

Reopen closed file

FLSRWNDA

FLSRWNDA

REWIND statement processor

FL$SCNUM

FLSSCNUM

FL$SIGN

FL$SIGN
DSIGN
FL$DSIGN
FL$ISIGN
FL$JSIGN
ISIGN
JSIGN
SIGN

Sign intrinsic functions

FL$SIN

FL$SIN
cos
FLCOS
FLS$SINS
SIN

Sine/cosine functions

FL$SLITE

FL$SLITE
SLITE
SLITET

SLITE/SLITET subroutines

FL$SNGL

FL$SNGL
CSNGL
SNGL

Single from double intrinsic functions

FL$SOPNA

FL$SSOPNA

FL$SQRT

FL$SQRT
SQRT

Real *4 square root function

FL$SSWTH

FL$SSWTH
SSWTCH

System switch subroutines

FL$STOP

FL$STOP
FL$PAUSE

STOP/PAUSE processor

F-10

8262 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

Table F—1. Extended FORTRAN Run-Time Module (Part 10 of 10)

Modul CSECT or ¢ .
odule Entry Name unction

FLSSTXIT FLSSTXIT STXIT control routine
FL$STXTA

FLSTAN FLSTAN Real *4 tangent/contangent functions
COT
COTAN
TAN

FLSUNFOR FLSUNFOR Unformatted 1/O processor

FLSWRITE FL$WRITE Output file processor

8262 Rev. 1 | SPERRY UNIVAC Operating System/3 G-

UP-NUMBER

UPDATE LEVEL | PAGE

Appendix G. Subroutine Linkage

G.1. CALLING FORTRAN SUBPROGRAMS

All 0S/3 language processors, including Extended FORTRAN, generate and expect standard subprogram
linkages in their generated programs. These linkage conventions are defined in the supervisor user guide, UP-
8075 (current version). In addition, special FORTRAN conventions and considerations are required (suggested)
for successful operation of the run-time system.

G.1.1. Save Area

A FORTRAN subprogram requires a 72-byte, word-aligned save area, supplied by the calling program. Table
G—1 illustrates the format of a save area.

Table G—1. Save Area Format (Part 1 of 2)

Word Byte Content
1 0 RESERVED FOR SYSTEM USE
2 4 SAVE AREA BACKWARD LINK ADDRESS
3 8 SAVE AREA FORWARD L!NK ADDRESS
4 12 CALLING PROGRAM RETURN ADDRESS
5 16 CALLED PROGRAM ENTRY POINT ADDRESS
6 20 REGISTER 0
7 24 REGISTER 1
8 28 REGISTER 2
9 32 REGISTER 3
10 36 REGISTER 4
11 40 REGISTER 5
12 44 REGISTER 6
‘ 13 48 REGISTER 7

8262 Rev. 1 SPERRY UNIVAC Operating System/3 G-2

UP-NUMBER UPDATE LEVEL | PAGE

{

Table G—1. Save Area Format (Part 2 of 2}

Word Byte Content
14 52 REGISTER 8
15 56 REGISTER 9
16 60 REGISTER 10
17 64 REGISTER 11
18 68 REGISTER 12
NOTE:

Each word in the save area is aligned on a full-word boundary.

Word 1 of the save area contains the epilogue address for the entry point. Words 2 and 4 through 18 are
initialized according to standard linking conventions.

During execution of a FORTRAN subprogram, register 13 contains the address of this program’s save area. Word
2 contains the pointer to the save area supplied to the program. Just before returning to the calling program,
register 13 is restored to the calling program’s save area and a X'FF’ is put into byte 12 of the save area as a
termination indicator.

G.1.2. Required Entry Conditions

The following entry conditions are required:

L Register 13 must contain the save area address.

L] Register 14 must contain the return address.

L] Register 15 must contain the entry point address.

] If parameters are passed, register 1 must contain the address of a word-aligned parameter list. The

compiler-generated program requires that the actual arguments specified in the parameter list conform in
type and number with the dummy arguments. Each word in the parameter list contains the address of the
actual argument. If the dummy argument is:

— a simple variabie, the parameter list contains the address of the actual value being passed;
— an array name, the parameter list contains the address of the first element in the array;

— a subprogram name, the parameter list contains the address of a word containing the address of the
subprogram’s entry point.

G.1.3. Exit Conditions

When a FORTRAN subprogram returns to the calling program, registers 2 through 14 are restored to their
original contents and the contents of ali call-by-value actual arguments are set to the value of the corresponding
local dummy argument. If a subroutine is exiting, register 15 contains the K value of the RETURN K statement. A
simple RETURN is equivalent to RETURN O.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL l

G-3
PAGE

A function returns its value in a register depending on its type. The function types and corresponding registers
are illustrated in Table G—2.

NOTE:

Table G—2. Function Types and Corresponding Registers

Function Type

Register Containing Value

INTEGER*2
INTEGER([*4]

General register O

}

Floating point register O

COMPLEX[*8]
COMPLEX*16

Real part in floating register O
Imaginary part in floating register 2

REAL[*4]
REAL*8,DOUBLE PRECISION

LOGICAL*1
LOGICAL[*4]

General register O

Registers 0, 1, and 15 and all floating-point registers are not preserved over a subprogram reference.

G.1.4. Mathematical Library

The mathematical functions supplied by Extended FORTRAN are available to programs written in other
languages. Tables 5—3 and 5—4 specify the functions available and Appendix F lists the actual modules
containing these functions.

The mathematical library is entirely self-contained except for one external reference. If an error condition is
possible, the function uses the first word of FL$SIOARA (1/0 area) to get to an error control routine. The error
routine FLSERR is required for Extended FORTRAN. If a FORTRAN-compiled program is also included in the
executable module, FORTRAN automatically supplies the common area, FL$IOARA. However, if FORTRAN-
ccmpiled subprograms are not included in the load module, the user must supply the FLSIOARA module. An

assembly language routine to accomplish this follows:

AOPERATIONA 15 OPERAND A
F1L|$1110|A121A SITART] O v by v b v b b L a4y
I De P AGEORTERR) L vl v b b
FORTERR DS, | OH v Lo b b b i b v by
L UIS, ING FlaRlTlElkllelllsl AR T T (S T GRS U S S U Y S O B
[AN BN S| UMP SRS | P O TS OO U T NN Y G T S0 S N S S O
1 E:NID. 1 Lo e b by oy e b ey by

More complicated routines may be substituted when required. However, the first word at FLSIQARA must be an
address constant containing the address of the processing routine.

G-4
UPDATE LEVEL | PAGE

8262 Rev. 1] SPERRY UNIVAC Operating System/3

UP-NUMBER

{

G.1.5. Compiled Subprograms

Other language programs may use FORTRAN-compiled subprograms. FORTRAN subprograms assume
availability of a complete FORTRAN run-time library for support. However, if only a subprogram is used and the
FORTRAN library support is not available, then OVERFL, DVCHK, and orderly termination on fatal errors are not
normally supported.

To use the complete FORTRAN run-time library, the PARAM option STX=YES is available. A subprogram
compiled with this option calls the FLSINITL routine to provide full support.

The FLSINITL routine uses both the program check and abnormal termination island code services of the 0S/3
supervisor. In addition, the program mask bits in the PSW are set to allow exponent overflow and underflow
interrupts. A complete FORTRAN 1/0 environment is required for printing diagnostic information.

A subprogram may use FORTRAN /0 to process data files. However, a FORTRAN STOP statement must be used
to terminate job step processing. An ENDFILE statement should be used for any active sequential 1/0 unit before

the final exit from the FORTRAN routine. The ENDFILE statement ensures that the file is closed by data
management with all |/0 activity completed.

G.2. CALLING FROM FORTRAN PROGRAMS

When a FORTRAN-compiled program references a subprogram:

u register 1 contains the address of a parameter list;
. register 13 contains the address of an 18-word save area;
" register 14 contains the return address; and

= register 15 contains the subprogram’s entry address.

The four bytes at the address in register 14 is a NOP with the FORTRAN source line number in hexadecimal as
the second half word. An equivalent assembly language calling sequence would be as follows:

LABEL AOPERATIONA OPERAND A
10 16
v Lo PIUAC L P IRIBGSAVEAREEA L b v b
ot PUACC PR, PARMULSTE) b b
IS N B! Lo,y Rll151;1:1V1(1P1RJBJ§1NAIMIE”1 Co by v e b 4oy
oy by PIBALR RIS RVS e b b e L
Lo L INDP Xl\L(ll1Lln.em.umlb.emQL’1 I AR ST SRR

G.2.1. Parameter List Formats

If the subprogram reference has an actual argument list, register 1 contains the address of the parameter list.
The parameter list is a sequence of words containing the addresses of the actual arguments. The last word in the
parameter list is identified with bit O of the first byte of the word set to 1.

if the actual argument is a variable, array element reference, or constant, the parameter list points to the
appropriate location containing the value. An actual argument that is an array name is equivalent to passing the
first element in the array. Label arguments (G.2.2) are not passed in the parameter list.

G-5
PAGE

8262 Rev. 1 | SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

. NOTE:

Logical constants are always passed as LOGICAL*4 values and integer constants are always passed as
INTEGER*4 values.

G.2.2. Label Arguments

Labels may be passed in an actual argument list in a CALL statement. When labels occur, they are not explicitly
passed in the parameter list, but immediately following the CALL statement, they are converted to a form similar
to a computed GOTO. Upon return, the compiler expects register 15 to contain a value indicating how to process
the labels. For n labels, if register 15 contains a value i with 1<(i<n, control passes to the statement at the i th
label. Any other values in register 15 cause control to pass to the next sequential statement.

G.2.3. Conventions

A FORTRAN-compiled program assumes that registers 2 through 14 are not modified during a subprogram
reference. Register 13 contains a save area address for the called subprogram to save any needed registers. The
called subprograms should conform to the standard usage of this save area through normatl finkage conventions.
Words 1 and 2 must not be modified; they contain required FORTRAN system information. Registers 0, 1, 15,
and the four floating-point registers may be modified by the called program.

If the subprogram is a function, it must return a value. The location of this value is specified in Table G—2.

. G.3. TRACEBACK INTERFACE

When the FORTRAN run-time system prints a diagnostic, a traceback of the current subprogram linkage is
attempted. Beginning with the current save area, indicated by register 13, the traceback routine uses the
backward link, word 2, of each save area to determine the sequence of calls and then prints this information.
Observing the following conventions will avoid any possible problems with the traceback routines.

1. During subprogram execution, point register 13 to a local save area. This ensures a correct beginning for
the traceback.

2. Fill the backward link address, word 2, in every save area with the appropriate address. The main program
must have a zero in this field.

3. The traceback routine assumes the module name is located 72 bytes from the beginning of a save area.
The form is a 1-byte length, followed by one to eight bytes containing the module name. It would appear as
follows in assembly language:

LABEL AOPERATIONA OPERAND A
10 16

LYMDDL | START y oo b b s b v by v by by
NP AT B I B P B S U R RS BT BN
ST T O A Lo cev o by vy b e v b v by e by
3|A|V1E1A‘IR|E|A C 1181F1\10’| AT AR V4 .b.)’l'f.elsl T BT W W
Lot DIC, | | XI‘lbx ,1 | SO S i B N 1I 1eth91+lh1 [N BT RS TN I
. I G chL.L 1 c.cLlsl\lMlYIbemll L thame | oy e 1
I A B | 1:1 g PR TN ST T U T TN U T SN T N T S0 TN S T AN VI H T

8262 Rev. 1 | SPERRY UNIVAC Operating System/3 G-6
UP-NUMBER UPDATE LEVEL | PAGE
4. The traceback routine assumes the entry name is located four bytes after the entry point. The formisa 1- .

byte length, followed by one to six bytes containing the entry name. In assembly language, the normai
entry point is coded as follows:

LABEL AOPERATIONA OPERAND A
10 16

YIMIDDIII SlTlA'llT AT SRT IS N SN NS NN AN ST N S SO NG ST N S S SN SN S NN SN M A N
®

llllll ll.ll IllllllllllIllllllllllllljlllll

®
N I Lo Lo v b e bvy s b b e b ey

PRI B B INTR¥| MYENT] o 3 1o ol baaa o b gl
AR B! VIS ING &YIENITI;IRI' S b b a1
MYENT) B ., | R+ o | 0 v b b b b
T T B). - S S R A AT SRR O A O
el e [IGUS T MYENTS L)

5. The traceback routine assumes that a half-word line number is located two bytes after the return point
(specified in register 14). Refer to G.2 for an assembly language example of this.

8262 Rev. 1 | SPERRY UNIVAC Operating System/3 Index 1
UP-NUMBER UPDATE LEVEL | PAGE
Index
Term Reference Page Term Reference Page
ASSIGN statement 332 3—4
A
Assigned GO TO statement 46 4—4
ABNORMAL statement 54.13 5—7 ,
Assignment statements
Argument substitution arithmetic and logical 331 3—5
call by name 559 5—13 conversion Table 3—3 3—5
call by value 55.1 5—13 description 33 3—4
description 55 5—12
symbolic 553 514 | AT statement 104.1 10—3
Arguments B
compiler 9.2.1 9—2
description 5.1 5—2 .
forms Table 52 §—2 BACKSPACE auxitiary 1/0
UNIT See UNIT arguments.| Statement 1362 1=21
Arithmetic assignment statements 331 3—5 Binary arguments
card input €3 (-2
Arithmetic expressions 321 3—1 card output C4 -3
326 33 ,
Blank descriptor 733111 7-12
Arithmetic IF statement 41 4—1
BLOCK DATA statement 8.3.1 8—3
Arithmetic, mixed mode 325 3—3)
Block sizes 11312 11-3
Arithmetic operations .
implementation 327 3t Butfer allocation 11314 114
user checks 326 33
Arithmetic underfiow and overflow 5.6.3 5—-23 C
Arrays Call by name, argument substitution 552 5—13
declaration 6.2 6—1 o
declarator 6.2.1 6—1 Call by value, argument substitution 551 5--13
description 24 2—6 .
element position location 242 2—7 | CALL statement
element reference 241 2—6 description) 9.2.2 5—3
standard library subroutines 5.6.3 5—23
ASCH character set arguments C3 -2
C4 -3

8262 Rev. 1 SPERRY UNIVAC Operating System/3 Index 2
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page
Calling from FORTRAN programs Complex constants 225 2—4
conventions G23 G—5
description G2 G—4 Computed GO TO statement 45 4—3
label arguments G.2.2 G—5
parameter list formats G.2.1 G—4 Conditional compilation 10.2 10—1
Card input files Configurations
arguments Table B—3 B—2 file definition 11.3.1 11—-2
data management 113422 11—-12 programmer-defined 11.3 11-2
description 11342 1110 supplied 11.2 11—-1
spooled 113421 11-10
Table B—2 B—2 Constants
complex 225 2—4
Card output files double precision 223 2—-3
arguments Table B—4 B—3 hexadecimal 224 2—3
definition 11.343 11—-16 integer 221 2—1
literal 227 2—5
Card punch options Cc4 C—3 logical 226 2—4
real 222 2—2
Card reader options C.3 C-3
CONTINUE statement 438 4—6
Carriage control conventions 7333 7—13
Table 7—2 7—14 Control information check 5.6.3 527
Character set Control statements
description 1.2.1 1-2 CONTINUE statement 48 4—6
EBCDIC Table A—1 A—1 DO loops 47 4—4
printer graphics A2 A—3 END statement 411 4—7
source program and input data Al A—1 GO TO statement, assigned 46 4—4
GO TO statement, computed 45 43
Coding form 122 1—4 GO TO statement, unconditional 44 4-3
IF statement, arithmetic 42 4—1
Collection, program Section 12 IF statement, logical 43 4—2
PAUSE statement 4.10 4—7
Comments 123 1—4 STOP statement 49 4—6
COMMON statement
description 6.6 6—6 D
interaction with EQUIVALENCE
statement 6.6.1 6—7 D format 73314 7—10
Compatibility 1.1.1 1-2 Data initialization
BLOCK DATA statement 831 8—3
Compilation block data subprogram 8.3 8—3
arguments 921 9-2 DATA statement 8.2 8—1
conditional 10.2 10—1
description 9.1 9—1 Data management
PARAM options D5 D—14 additional devices c8 C—5
PARAM statement 9.2 9—1 card input file definition 11342 11—10
source correction facility 94 9—6 interface 111 11-1
stacked 9.3 9—5
DATA statement 8.2 8—1
Compile-assemble-link-execute, sample D.4 D—11
Data types
Compile-link-execute, sample D.2 D—9 description 2.1 2—1
constants 22 2—1
Compile-time diagnostics Table E—1 E—2 variables 2.3 2—5
arrays 24 2—6
Compiled subprograms G.15 G—4

8262 Rev. 1 | SPERRY UNIVAC Operating System/3 | Index 3
UP-NUMBER UPDATE LEVEL | PAGE
. Term Reference Page Term Reference Page
DEBUG statement 10.3 10—1 | Disc fibrary, source module for
stacked compilation D.3 D—10
Debugging
description 10.1 10—1 | Disc READ statement 142 1—24
conditional compilation 10.2 10—1
packet 104 10—2 | Disc WRITE statement 743 1—26
Fig. 10—1 10—4
DEBUG statement 10.3 10—1 | DISPLAY statement 1044 10—4
AT statement 10.4.1 10—3
TRACE ON statement 10.4.2 10—3 | Divide check subroutine 56.3 5—24
TRACE OFF statement 1043 10—3
DISPLAY statement 1044 10—4 | DO-implied list 721 1—2
formatted main storage dump 105 10—5
DO range 471 4—6
DEFINE FILE statement 741 7—23
DO statement 47 4—4
Definition, subprogram 54 5—5
Double precision constants 223 2—3
Descriptors
blank 733111 7—12 | Double precision descriptor 73314 7—10
double precision 73314 7—10
G field 73316 7—10 | DUMP subroutine call statement 5.6.3 5-27
general 13316 7—10
hexadecimal 73319 7—11 | Dump, formatted main storage 105 10—5
Hollerith, A conversion 13317 7—10
Hollerith, H conversion 73318 7—10 | DVCHK subroutine call statement 5.6.3 5—24
integer 73311 7—8
‘ literal 733110 7-11
logical 73315 7—10 E
real, E conversion 73312 7—9
real, F conversion 73313 7-9 EBCDIC input character set Table A—1 A—1
record position 733112 7—-12
Element position location, arrays 242 2—7
Device type 11.3.1.1 11-3 Table 2—2 2—17
Diagnostic messages Element reference, arrays 241 2—6
compile-time Appendix E
description 1233 12—3 | END clause 7311 7—4
DIMENSION statement 6.3 6—2 END statement 411 4—7
11.37 11—42
Direct access files
arguments Table B—7 B—6 ENDFILE auxiliary 1/0 statement 7363 7-21
definition 74 7—23
11.346 11—32| Entry conditions, subprograms G1.2 G—2
options c.7 C—4
ENTRY statement 543 5—11
Disc files
direct access 11346 11—32| EQUIVALENCE statement
C.7 C—4 description 6.5 6—6
Table B—7 B—6 interaction with common statement 6.6.1 6—7
sequential 11345 11—26
C.6 c—4 Equivalent unit
Table B—6 B—5 arguments Table B—9 B—6
definition 11.348 11-37
. Disc FIND statement 744 727
. ERR clause 73.1.1 1—4

8262 Rev. 1

Table 7—1 7—7

SPERRY UNIVAC Operating System/3 Index 4
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page
Error environment definition double precision 73314 7—10
procedure &ERRDEF? 11.36 11-39 general 73316 7—10
hexadecimal 73319 7—11
Error indicator set subroutine 56.3 5—25 Hollerith &A conversion? 733.17 7—10
Hollerith &H conversion? 73318 7—10
Error indicator test subroutine 563 5—25 integer 73311 7—8
literal 733110 7-11
ERROR subroutine call statement 563 5—25 logical 73315 7—10
real &E conversion? 73312 7-9
ERRORI subroutine call statement 56.3 525 real &F conversion? 73313 7-9
record position 733112 7-12
Evaluation order, expressions 324 32
Table 3—1 3-—3 File definition
card output 11343 11—16
Execution environment data management card input 113422 11—12
configurators supplied 11.2 11—-1 direct access disc 11.346 11-32
data management interface 11.1 11—1 printer 11341 11—7
error environment definition 1136 11—-39 sequential disc 11345 11—26
file definition conventions 11.3.1 11-2 spooled card input 113421 11-10
programmer-defined configurations 11.3 11-2 tape 11344 11—-19
START statement initialization
&FUNTAB? 11.3.2 11—6 File definition conventions
1133 11—6 buffer allocation 11314 11—4
unit definition 1134 11—6 device type 11.3.1.1 11-3
unit definition termination &FUNEND? 11.35 11—-39 file type 11.3.15 11-5
record and block sizes 113.1.2 11-3
Exit conditions, subprogram G.l3 G—2 record formats 113.1.3 11-3
EXIT subroutine 56.3 527 File type 11.3.15 11-5
Explicit type statement 6.4.1 6—3 FIND statement 744 1-21
Expressions FOR call statement D.1 D—1
arithmetic 321 3—1
evaluation order 324 3—2 FORMAT statement
Table 3—1 3-—3 carriage control conventions 7333 7—13
logical 323 3—2 Table 7—2 7—14
relational 322 3—1 description 733 7—6
field descriptors 7331 1—17
Extensions 1.1.2 1—2 Table 7—1 7—7
: interaction with 170 list 7334 7—14
External functions multiple record format specification 7332 7—13
ABNORMAL statement 54.13 57 permissible associations of list
description 541 5—6 items Table 7—3 7—15
FUNCTION statement 5411 5—6
RETURN statement 54.12 5—7 Formatted READ/WRITE statements 732 7—4
EXTERNAL statement 6.7 6—8 FRECSIZE 11341 11-7
F Function reference 521 5—3
FUNCTION statement 5411 5—6
FETCH subroutine call statement 563 5—28
Function subprograms, multiple entry 543 5—11
Field descriptors, FORMAT statement
blank 733111 7-—12
description 7.3.3.1 7—7

8262 Rev. 1 l SPERRY UNIVAC Operating System/3 A Index 5
UP-NUMBER UPDATE LEVEL | PAGE
. Term Reference Page Term Reference Page
Functions list 1.2 -1 .
description 5.1 5—2 list-directed 735 7—16
external 541 5—6 sequential files 13 71—2
intrinsic 56.1 5—15 1.3.7 1—22
Table 5—3 5—15 statements See 1/0 statements.
standard library 56.2 5—17
Table 5—4 5—18 Integer constants 221 2—1
statement, definition 53 5—4
Integer descriptor 7.33.1.1 7—8
FUNEND unit definition termination
procedure 11.35 11—39 | |Intrinsic functions 56.1 5—15
Table 5—3 5—15
FUNTAB initialization procedure 1133 11—6
170 list, format interaction 7334 7—14
Table 7—3 7—15
G
I/0 statements
General field descriptor (G) 73316 7—10 BACKSPACE 71.36.2 7-21
compatibility 7321 7—5
GO TO statement DEFINE FILE 741 7—23
assigned 46 4—4 disc FIND 744 71—217
computed 45 4-—-3 disc' READ 142 7—24
unconditional 44 4—3 disc WRITE 74.3 7—26
ENDFILE 7363 7—21
Graphics, printer A2 A—3 FORMAT 733 1—6
NAMELIST 7351 1—17
. READ 731 7—3
i H 732 7—4
734 -7—15
Hexadecimal constants 224 23 REWIND 7.36.1 720
WRITE 731 71—3
Hexadecimal descriptor 7.33.19 7—11 1.3.2 7—4
Hollerith descriptors 73317 7—10 {/0 unit module 12.3.1 12—3
73318 7—10
J
i
Job control procedure D.1 D—1
IF statement
arithmetic 42 4—1 Job control stream 95 9—6
logical 43 4—2 v
Job stream examples Appendix D
IMPLICIT statement 6.4.2 6—4
Indicator setting subroutine (SLITE} 56.3 5—26 L
Indicator testing subroutine (SLITET) 563 5—27 Label arguments G2.1 G—4
Initialization procedure (FUNTAB) 1133 11—6 | Library procedures
description 56 5-14
Input files, card See card input files. intrinsic functions 5.6.1 5—15
Table 5—3 5—15
Input/output standard library functions 56.2 5—17
description 7.1 7—1 Table 5—4 5—18
direct access files 74 7—23 standard library subroutines 563 523

\‘

Table 5—5 5—29

8262 Rev. 1 SPERRY UNIVAC Operating System/3 I Index 6
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page .
Library subroutines
DUMP 56.3 527 N
DVCHK 56.3 5—24
ERROR 56.3 5—25 _
ERRORL 563 595 NAMELIST statement 7351 1—17
FETCH 56.3 5—28
LOAD 5.6.3 528 0
OPSYS 56.3 5—28
OVERFL 56.3 5—23 . 1 a2
PDUMP 563 507 Operators, evaluation order Table 3—1 3—3
SLITE 56.3 5—26 : .
SLITET 563 527 OPSYS subroutine call statement 56.3 5—28
SSWICH 563 5=27 | output file definition, card 11343 11—16
Link editing ; _
description 122 19—1 OVERFL subroutine call statement 56.3 5—23
FORTRAN supplied modules 12.2.1 12—1 _
linkage editor output 1223 12—2 Overlays ?;232 ?2_22
overlay and region structures 12.2.2 12—12 o
Linkage, subroutine Appendix G P
List-directed input/output
description 735 716 PARAMa:gtztrgr:netl;t 921 92
NAMELIST statement 7351 1—17 format 9.2 9—1
simple 7352 719 special options D5 D—14
Literal constants 227 -5 Parameter list formats G22 G—5
Literal dESCfiDtOF 7.3.3.1.10 7—11 Pause messages 12.3.2 12—3
LOAD subroutine call statement 56.3 5—28 PAUSE statement 4.10 4—7
12.3.2 12—3
Logical assignment statements 331 3-5
Logical constants 226 94 PDUMP subroutine call statement 56.3 5—27
Logical descriptor 73315 7—10 P”"te’afr':fmems Table B—1 B—1
Logical expressions 323 3-2 definition 11341 17
Logical IF statement 43 4—p | Primter graphics -
M Printer options C.2 C—1
Main storage dump Procedures
ituti . —12
forn:atted 105 10—-5 gregstérr?:tl}‘tmsubstltutlon g 51) g___i
o function reference 521 5—3
Mathematical library G14 G—3 initialization (FUNTAB) reference 1133 11—6
. . . library 56 5—14
Mlxed-mode_ar_:thmetlc statement function definition 53 5—4
description 3.25 33 subprogram definition 5.4 5—5
result types and lengths Table 3—2 3—4 subroutine reference 521 53
Multiple record format specification 7332 7—13 unit definition 1134 11-6

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Index 7
PAGE

Term

Program collection and execution, link
editing

PROGRAM statement

READ statement
disc
formatted
unformatted

Real constants

Real descriptors

Record formats
Record position descriptor
Record sizes
Region structures
Registers, subprogram exit conditions
Relational expressions
Reread unit
arguments
definition
RETURN statement
REWIND auxiliary 1/0 statement

Run-time modules

Save area

Scale factor effects

Sequential disc files
arguments
definition
option

Sequential files, 170

SLITE subroutine call statement

Reference

122
638

142
132
13.1
222

73312
73313

11313

- 733112

11312
1222
Table G—2
322

Table B—8
134
5422
71361

Table F—1

Gl11
Table G—1

7.33.113
Table B—6
11345
c6

73
737

56.3

Page

12—1

71—24

Term

SLITET subroutine call statement
Source correction facility

Source module from disc library,
stacked compilation

Source programs
character set
comments
FORTRAN statements
statement order

symbolic names

Source statement order

Specification statement interaction,
standard library functions

Specification statements
array declaration
array declarator
COMMON statement
description
DIMENSION statement
EQUIVALENCE statement
EXTERNAL statement
PROGRAM statement
type statements

Spooled card input file
arguments
definition

SSWTCH subroutine call statement
Stacked compilation

Standard library functions
description
listing
specification statement interaction

Standard library subroutines

START statement

Statement function definition

Statements
control
conventions
FORTRAN
1/0
source, order
specification

Reference Page

56.3 5=-27
9.4 9—6
D.3 D—10
121 1—4
1.2.3 1—4
122 1—4
125 1-5
Table 1—2 1—6
1.24 1-5

125 1-5
Table 1—2 1—6

56.2.1 5—17
6.2 6—1
6.2.1 6—1
6.6 6—6
6.1 6—1
6.3 6—2
6.5 6—6
6.7 6—8
6.8 6—9
6.4 6—3
Table B—2 B—2
113421 11-10
56.3 5—27
9.3 9—5
56.2 5—17
Table 5—4 5—18
56.2.1 5—17
56.3 5—23
Table 5—5 5—29
49 4—6
53 5—4

See control statements.

1.3 1-7
122 1—4
See 1/0 statements.
125 1-5

See specification
statements.

8262 Rev, 1 . Index 8
P NUMBER SPERRY UNIVAC Operating System/3 I vroate Lever | pace
Term Reference Page Term Reference Page
STOP command 49 4—6 Unformatted 1/0 statements 731 71-3
Subprogram definition UNIT arguments
external functions 54.1 5—6 card input files Table B—3 B—2
multiple entry 543 5—11 card output files Table B—4 B—3
subroutines 542 5—8 direct access disc files Table B—7 B—6
equivalent unit Table B—9 B—6
Subprograms printer Table B—1 B—1
calling G.1 G—1 reread unit Table B—8 B—6
compiled G.15 G—4 sequential disc files Table B—6 B—5
entry conditions Gl2 G—2 spooled card input files Table B—2 B—2
exit conditions G13 G—2 tape files Table B—5 B—3
function types and corresponding
registers Table G—2 G—3 Unit definition procedure (UNIT)
mathematical library Gl4 G—3 card input files 11342 11—10
card output files 11343 11—16
Subroutines description 1134 11—6
description 542 5—8 direct access disc files 11.346 11-32
linkage Appendix G equivalent 11348 11-37
reference 522 5—3 printer files 11.34.1 11—7
RETURN statement 5422 5—9 reread 11347 11—-36
subprograms, multiple entry 543 5—11 sequential disc files 11345 11—26
SUBROUTINE statement 5422 5—§ tape files 11.344 11—-19
Symbolic names 124 1-5 Unit definition termination procedure
(FUNEND) 11.35 11-39
Symbolic substitution 553 5—14
UNIT options
; additional data management devices C.8 C—5
T card punch C4 C—3
card reader C3 C—2
T format codes 733112 7—-12 direct access disc file C7 C—4
printer C2 C—1
Tape files sequential disc files C.6 C—4
arguments Table B—5 B—3 summary Appendix B
definition 11.344 11-19 tape files C5 C—3
options €5 C—3
UNIT procedure call 1134 11—6
TRACE OFF statement10.4.3 10—3
TRACE ON statement10.4.2 10—3 '}
Traceback interface G.3 G—5 Variables 23 2—5
Type statements
description 6.4 6—3 - W
explicit 64.1 6—3
IMPLICIT 6.4.2 6—4 WRITE statement
disc 74.3 7—26
formatted 732 7—4
§) . unformatted 73.1 7—3
Unconditional GO TO 44 4—3

Cut along line.

e e e . . e . — . — ——— — —— — —— — d— — —— —— o o———— —— . ——— — S— —— —— — — — — — p— — —— s — a— G— — =

- .

SPERRY <= LUNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

{Document No.) (Revision No.) (Updaté No.)

Comments:

From:

{Name of User)

{Business Address}

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A)
Thank you for your cooperation

| " || | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

1N

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

System:

Manual Title:

UP No: Revision No: Update:

Name of User:

Address of User:

Comments:

&

FIRST CLASS
PERMIT NO. 21
BLUE BELL, PA.

B U s I N E S S n E p LY M A l L NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

‘ 1no

I
LINIVAC I
P.O. BOX 500 _

I

BLUE BELL, PA.
18422

ATTN: SYSTEMS PUBLICATIONS DEPT.

o e e s e e — . . o e e, e, e S e i i e S i it e S e i i b S e e e i et S o i S, s S S — — — A, St ki kit S e i St ST e . e, et oAb et S S S P Sttt et e e e e e .

