
•

•

•

Operating System/3 (OS/3)

Extended FORTRAN

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to "SPERRY UNIVAC Operating
System/3 (OS/3) Extended FORTRAN Programmer Reference", UP-8262 Rev. 1.

This update includes the following changes to the job control procedure for release 7.1:

• Specification of catalog files

• Expanded explanation of parameters

All other changes are either corrections or expanded descriptions applicable to features present in extended
FORTRAN prior to the 7 .1 release .

Copies of Updating Package C are now available for requ1s1t1oning. Either the updating package only, or the
complete manual with the updating may be requisitioned by your local Sperry Univac representative. To receive
updating package only, order UP-8262 Rev. 1-C. To receive the complete manual order UP-8262 Rev. 1 .

Mailing Lists
BZ, CZ and MZ

Mailing Lists 18, 19, 20, 21, 75 and 76
(Package C to 8262 Rev. 1, Covers
and 14 pages plus Memo)

September, 1981

. .

•

•

•

•

Extended FORTRAN

•

•
H UNIVAC UP-8262 Rev. 1

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1975, 1976 - SPERRY CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

SPERRY UNIVAC
Operating System/3 (OS/3)

Extended FORTRAN
Supplementary Reference

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please contact your local Sperry Univac representative .

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Rand Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Rand Corporation. AccuScan, ESCORT, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Rand Corporation. ·

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406 .

©1975, 1976 - SPERRY RAND CORPORATION PRINTED IN U.S.A. .

•

•

•

•

•

•

Changes to UP-8262 Rev. 1:

Page 7-5

PCN 10

To the definition of a under 7.3.2, after the words
'~an integer variable'', add ''(3.3.2)''.

Delete the last sentence in the paragraph preceding
7.3.2.1. Replace it with the following:

••• internal representations described in 2.2 and
2.3 as specified by the format indicator, a. If
the format indicator is an array name, the array
must contain a legal FORMAT descriptor from opening
to closing parenthesis. An integer variable format
indicator must contain a FORMAT statement in an
ASSIGN statement. Our asterisk character specifies
list-directed formatting.

A COMPLEX item always requires two FORMAT editing
cod es.

To the definition of a under 7.3.2.1, after the
words ''an integer variable name'', add (3.3.2) •

1 UP-8262 Rev. 1

Page 7-15

Under 7.3.4 the definition of a, after the words ''an
integer variable name'' add (3.3.2).

Page 7-25

To the definition of a at the top of the page after
words ''an integer variable name'' add (3.3.2) and
after the words ''character asterisk'' add (7.3.5.2).

Page 7-26

Under 7.4.3, the definition of a, after the word
''assigned'' add (3.3.2) and after the word ''asterisk''
add (7.3.5.2).

ALTLOD=
{

vol-ser-no}
RES,YRUN

In the definition following the format, change the words
''file-label'' to ''file identifier'' and change YLOD
to $!$RUN.

Page D-1

PCN 10

Replace the entire format of the FOR job control
procedure with the following:

2 UP-8262 Rev. 1

•

•

•

•

•

•

//[symbol] ~~g~L l l FORLG) [PRNTR= {(tn} [, vol-ser-no])}]

{ ~~~~)ser-no,label)fJ (RES,label)
(RUN,label)

{

(vol-ser-no,label)}]
(RES, label)
(RUN,label)
RUN $!$RUN

[{
vol-ser-no}J

,SCRl= RES ~

[{
(vol-ser-no,label)}l

,ALTLOD= (RES,YRUN) j

[,MDE=I] [,STX=option] [,CNL=k]

[,OPT=(D,N,X})

{
filename}] [,LST=option]
LIBl

Page D-2

PCN 10

Add the following immediately preceding the keyword
parameter PRNTR.

Operation:

FOR

FORL

This form of the procedure call statement is
used to compile an Extended FORTRAN source
program.

This form of the procedure call statement is
used to compile a Extended FORTRAN source
program and link-edit the object modules.

FOR LG
This form if the procedure call statement is
used to com~ile a Extended FORTRAN source
program, link-edit the object modules, and
execute the load module •

3 UP-8262 Rev. 1

Replace the format and description of the PRNTR
keyword parameter with the following:

PRNTR= {({ ~:n} [, vol-ser-no])}
Specifies the logical unit number of the
printer, and, optionally, the destination~id
(vol-ser-no). If a printer device assignment
set is not to be generated, the value N is
coded, and the printer device assignment set
must be manually inserted in the control
stream.

PRNTR={lun[,vol-ser-no])
Specifies the logical unit member (20-29)
of the printer device. Optionally, the
destination-id (vol-ser-no) can be specified.

PRNTR={N[,vol-ser-no])
Indicates that a device assignment set for the
printer must be manually inserted in the
control stream. This permits LCB and VFB job
control statements to be used in the control
stream. The volume serial number can also be
specified.

Keyword Parameter IN:

Change the words ''file label (label)'' to
''file identifier (label)'' wherever they occur.

Keyword Parameter OUT:

Change the words ''file label'' to ''file
identifier'' wherever they occur.

Page D-3

PCN 10

Change the format of the keyword parameter ACTLOG to
read:

AL'ILO:C=
{

(vol-ser-no,label)}
(RES , $ Y $RUN)

In the description following the format, change the
words ''file label'' to ''file identifier'', and
change YLOD to YRUN.

4 UF-8262 Rev. 1

•

•

•

•

•

•

Changes to UP-8262 Rev. 1 (Extended FORTRAN)

Page 7-1

The last sentence in the second paragraph of 7.1 should read:

Page 7-5

The peripheral devices are assigned unit numbers within the user's
system where the unit number is a unique integer constant (k) in
the range 1 <k<99. ~lW I I I? 31 pjj '77

The description of ''U'' in line 3 should read:

Page 7-9

Is a constant or an integer variable (k) designating an input or
output device in the range of 1 < k .;;; 99.

In 7.3.3.1.2. Real Descriptor - E Conversion (srEw.d), the last two
lines of the first paragraph should read:

Page 7-21

exceeds the precision of the list element, the value will be
rounded to the correct size. If the value is too large or too
small for the range, a zero will be substituted.

In 7.3.6.2. BACKSPACE Statement the description of ''u'' should be:

Is a constant or integer variable designating an I/O device.

In 7.3.6.2. BACKSPACE Statement, the fifth paragraph of the Description
should read:

Page 7-23

The BACKSPACE statement cannot be used with disc files under any
conditions. It cannot be used with a file of blocked records or
with a file having two I/O areas or a work area; • • •

In 7.4.1. DEFINE FILE Statement, the description of ''u'' should be:

Is a constant or integer variable designating an I/O device.

Page 7-25

In 7.4.2. Disc READ Statement, the description of ''u'' should be:

PCN 9

Is a constant or integer variable designating an I/O device
followed by an apostrophe •

1 UP-8262 Rev. 1

Page 7-26

In 7.4.3. Disc WRITE Statement, the description of ''u'' should be:

Page 7-27

Is a constant or integer variable designating an IIO device followed
by an apostrophe.

In 7.4.4. Disc FIND Statement, the description of ''u'' should be:

Page 9-1

Is a constant or integer variable designating an IIO device followed
by an apostrophe.

In 9.1. GENERAL line 2, delete the word ''tape''·

Page 9-2

The II PARAM format should be changed as follows:

1

II D. PARAM D.

10

OUT=filename,
LIN=filename,LST=option,OPT-(D,N,X),NXT=LNK,CNL=K,
MDE=I,STX=option,IN=module·namelfilename

In line 5 under 9.2.1. Compiler Arguments, the sentence should read:

Specifies compilation of source programs residing in disc files.

Page 9-6

Delete the word ''tape'' in line one.

Add a new paragraph 9.5. Organizing a Job Control Stream as follows:

9.5. Organizing a Job Control Stream

A special job control procedure simplifies the creation of a legal job
control stream. Appendix D describes the use of this job control procedure.

If a user wishes to create his own job control cards, he should consider
the following guidelines:

PCN 9

• The compiler requires one work file. (The JPROC, WORK1 , supplies this
file.)

• Use of IN and OUT options requires appropriate disc files.

2 UP•8262 Rev. 1

•

•

•

•

•

•

• A printer with LFD PRNTR is always required •

• Because of the stacked compilation feature (9.3), the II OPTION
REPEAT feature of OSl3 JCL is not ril~riljd 1!"~j(ff'/.ft be used.

• If 11 OPTION LINK= or 11 OPTION LINK, GO is specified, no linkage
editor control cards or control stream data for the program are
allowed because the source correction facility (9.4) or the stacked
compilation feature (9.3) would mistake data sets for FORTRAN source.

Page 11-22

Under the FRECFORM=VARBLK argument, add the following sentence:

BACKSPACE is not allowed if this option is chosen.

Under the FRECFORM=FIXBLK argument, add the following sentence:

BACKSPACE is not allowed if this option is chosen.

Under the FNUMBUF=largument add the following sentence:

This argument is required if BACKSPACE is to be allowed.

Under the FWORKA=NO argument, add the following sentence:

This argument is required if BACKSPACE is to be allowed •

Page 11-26

Add the following nulleted item to the list of assumed defaults:

• BACKSPACE is not allowed because a work area is required.

In 11.3.4.5. Sequential Disc Files, change the first sentence of the
second paragraph to read:

Sequential disc files are conceptually identical with tape files
except a BACKSPACE command is not allowed.

Page B-1

PCN 9

Add the following sentence following the first sentence introducing the
tables:

Note that the letter k when used with unit specifications represents
a unique integer constant in the range of 1 ~ k~ 99 •

3 UP•8262 Rev. 1

__ ...,

Page D-1

Add the following bulleted item to the list in D.1. JOB CONTROL PROCEDURE •
after line 5:

automatic linkage or execution of a program.

Insert the following sentences in D.1 after the fourth paragraph (line 15):

The FORL procedure call generates an OPTION LINK job control statement
which automatically executes the linkage editor after compilation.

The FORLG procedure call generates both OPTION LINK and OPTION GO
job control statements which cause the program to be linked and
executed.

NOTE:

Linkage control cards or program data is not allowed with these
forms of the procedure call.

Change the format under D.1 as follows:

// [symbol] rn~ } [PRNTRD g~n } [(,vol •ser-no) J J

[

• {. ~:~;ser·no ,label) t J
,IN (RES,label)

. (RUN,label)
[{

(vol·ser-no,label)}]
,OUT• (RES,label)

(RUN,label)

[,SCRID { ~~·ser•no } J [,ALTLOn-{ ~=~:;;;~;;label)} J
[,OPT•(D,N,X)] [,MDE•1] [,STX•option] [,CNL•k]

[,LIN•filename] [,LST•option]

Page D-2

Delete the OUT•NO parameter and description.

PCN 9 4 UP-8262 Rev. l

•

•

•

•

•

Page E-1

PCN 9

Add the following paragraph after the last sentence of the Appendix E.

Compile ·Time Diagnostic Messages introductifk,.Y t'bi Ta~:l.~ ! JJ~: 77
For each diagnostic issued, the source statement is marked by a
dollar sign ($) below the column where the error was first recog·
nized. When diagnosing a long statement consisting of multiple
continuation card, the dollar sign occassionally appears under
the wrong card, but flags the proper column. To locate the error
the user should check the flagged column on each card of the
statement •

5 UP-8262 Rev. 1

., -

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

ISSUE: Update C - UP-8262 Rev. 1
RELEASE LEVEL: 7.1 Forward

c
UPDATE LEVEL PAGE

PSS 1

Part/Section
Page Update

Part/Section
Page Update

Part/Section
Page Update

Number Level Number Level Number Level

Cover/Disclaimer c 11 (cont) 17 thru 19 A

PSS

Preface

Contents

1

2

3

4

5

6

7

8

9

10

11

20 Orig.

1 c 21,22 A
23 thru 25 Orig.

1 Orig. 26 thru 28 A
29 thru 31 Orig.

1 thru 4 Orig. 32,33 A

5 A 34 thru 38 Orig.

6 thru 8 Orig. 39 B
40 thru 42 Orig.

1 thru 7 Orig. 43 B

1 thru 7 Orig. 12 1 thru 3 Orig.

1 thru 6 Orig. Appendix A 1 thru 5 Orig.

1 thru 7 Orig. Appendix B 1 Orig.
2,3 A

1 thru 22 Orig. 4 Orig.

23 A 5,6 A
24 thru 27 Orig.
28 A Appendix C 1 thru 6 Orig.

29 Orig.
Appendix D 1 c

1 thru 9 Orig. 2 A
2a c

1 A 3,4 c
2,3 Orig. 5 thru 10 Orig.

4,5 A 11, 12 c
6 thru 8 Orig. 13 thru 15 Orig.

9 A
10thru14 Orig.
15 A

Appendix E 1 A
2 thru 23 Orig.

16 thru 20 Orig.
21 A Appendix F 1thru10 Orig.

22 Orig.
23 A

Appendix G 1 thru 6 Orig.

24 Orig.
25 thru 27 A Index 1 thru 4 Orig.

5 A

1 thru 3 Orig. 6 thru 8 Orig.

1, 2 A
3 B
4 Orig.

User Comment

I
Sheet

5 thru 7 A

1 thru 5 Orig.

1 Orig.
2 c
3 thru 10 Orig.
11 c
12. 13 A
14 Orig.
15, 16 A
16a A

All the technical changes are denoted by an arrow(-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow r-J pointing to

a line indicates a technical change in only that line. A horizon ta/ arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

'

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 Preface 1
UPDATE LEVEL PAGE

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of SPERRY UNIVAC
Operating System/3 (OS/3). This manual specifically describes the SPERRY UNIVAC Operating System/3
(OS/3) Extended FORTRAN. Its intended audience is the experienced FORTRAN programmer new to SPERRY
UNIVAC operating systems, and the OS/3 in particular.

The fundamentals of FORTRAN programmer reference manual, UP-7536 (current version) is also available for
general information concerning FORTRAN programming. A knowledge of that manual is assumed. It is useful in
reviewing the language; however, it does not present the Extended FORTRAN implementation for OS/3.

This manual is divided into three parts and seven appendixes:

• PART 1. EXTENDED FORTRAN PROGRAM STRUCTURE

Discusses Extended FORTRAN compiler, the general structure of source programs, coding form layout,
character set, types of data including constants, variables, and array elements used in integer and real
arithmetic.

• PART 2. FORTRAN STATEMENTS

Describes Extended FORTRAN expressions and assignment statements, control statements, statements
used for functions and subroutines, specification statements, and 1/0 statements.

• PART 3. COMPILE, EXECUTE, AND DEBUG PROCEDURES

Discusses data initialization, compilation, configuration of the execution environment, and debugging.

• APPENDIXES

Provide additional information concerning:

A Character set

B, C UNIT options

D FORTRAN sample job streams

E Diagnostics

F Run-time library routines

G Subroutine linkage

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. INTRODUCTION

1.1. SCOPE
1.1.1. Compatibility
1.1.2. Extensions

1.2. SOURCE PROGRAMS
1.2.1. Character Set
1.2.2. FORTRAN Statements
1.2.3. Comments
1.2.4. Symbolic Names
1.2.5. Source Statement Order

1.3. STATEMENT CONVENTIONS

2. DATA TYPES

2.1. GENERAL

2.2. CONSTANTS
2.2.1. Integer Constants
2.2.2. Real Constants
2.2.3. Double Precision Constants
2.2.4. Hexadecimal Constants
2.2.5. Complex Constants
2.2.6. Logical Constants
2.2.7. Literal Constants

2.3. VARIABLES

2.4. ARRAYS
2.4.1. Array Element Reference
2.4.2. Element Position Location

Contents 1
UPDATE LEVEL PAGE

Contents

1-1
1-2
1-2

1-3
1-4
1-4
1-4
1-5
1-5

1-7

2-1

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-5

2-5

2-6
2-6
2-7

8262 Rev. 1
UP-NUMBER

3.

4.

5.

SPERRY UNIVAC Operating System/3

EXPRESSIONS AND ASSIGNMENT STATEMENTS

3.1. GENERAL

3.2. EXPRESSIONS
3.2.1. Arithmetic Expressions
3.2.2. Relational Expressions
3.2.3. Logical Expressions
3.2.4. Evaluation Order
3.2.5. Mixed-Mode Arithmetic
3.2.6. Arithmetic Operation User Checks
3.2.7. Implementation of Arithmetic Operations

3.3. ASSIGNMENT STATEMENTS
3.3.1. Arithmetic and Logical Assignment Statements
3.3.2. ASSIGN Statement

CONTROL STATEMENTS

4.1. GENERAL

4.2. ARITHMETIC IF

4.3. LOGICAL IF

4.4. UNCONDITIONAL GO TO

4.5. COMPUTED GO TO

4.6. ASSIGNED GO TO

4.7. DO
4.7.1. Transfer of Control to and from a DO Range

4.8. CONTINUE

4.9. STOP

4.10. PAUSE

4.11. END

FUNCTIONS AND SUBROUTINES

5.1. GENERAL

5.2. PROCEDURE REFERENCE
5.2.1. Function Reference
5.2.2. Subroutine Reference (CALL Statement)

Contents 2
UPDATE LEVEL PAGE

• 3-1

3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-4

3-4
3-5
3-6

4-1

4-1

4-2

4-3 • 4-3

4-4

4-4
4-6

4-6

4-6

4-7

4-7

5-1

5-3
5-3
5-3

•

•

•

•

8262 Rev. 1
UP-NUMBER

6 .

7.

SPERRY UNIVAC Operating System/3

5.3 . STATEMENT FUNCTION DEFINITION

5.4. SUBPROGRAM DEFINITION

5.4.1. External Functions
5.4.1.1. FUNCTION Statement
5.4.1.2. RETURN Statement
5.4.1.3. ABNORMAL Statement
5.4.2. Subroutines
5.4.2.1. SUBROUTINE Statement
5.4.2.2. Subroutine RETURN Statement
5.4.3. Multiple Entry to Function and Subroutine Subprograms

5.5. ARGUMENT SUBSTITUTION
5.5.1. Call by Value
5.5.2. Call by Name
5.5.3. Symbolic Substitution

5.6. LIBRARY PROCEDURES
5.6.1. Intrinsic Functions
5.6.2. Standard Library Functions
5.6.2.1. Specification Statement Interaction
5.6.3. Standard Library Subroutines

SPECIFICATION STATEMENTS

6.1. GENERAL

6.2. ARRAY DECLARATION
6.2.1. Array Declarator

6.3. DIMENSION STATEMENT

6.4. TYPE STATEMENTS
6.4.1. Explicit Type Statements
6.4.2. IMPLICIT Statement

6.5. EQUIVALENCE STATEMENT

6.6. COMMON STATEMENT
6.6.1. COMMON/EQUIVALENCE Statement Interaction

6.7. EXTERNAL STATEMENT

6.8. PROGRAM STATEMENT

INPUT AND OUTPUT

7.1 . GENERAL

7.2. INPUT /OUTPUT LIST
7.2.1. DO-Implied List

Contents 3
UPDATE LEVEL PAGE

5-4

5-5

5-6
5-6
5-7
5-7
5-8
5-9
5-9
5-11

5-12
5-13
5-13
5-14

5-14
5-15
5-17
5-17
5-23

6-1

6-1
6-1

6-2

6-3
6-3
6-4

6-6

6-6
6-7

6-8

6-9

7-1

7-1
7-2

8262 Rev. 1
UP-NUMBER

8.

9.

SPERRY UNIVAC Operating System/3

7.3. SEQUENTIAL FILES
7.3.1. Unformatted 1/0 Statements
7.3.1.1. END and ERR Clauses
7.3.2. Formatted READ/WRITE Statements

7.3.2.1. 1/0 Compatibility Statements
7.3.3. FORMAT Statement
7.3.3.1. Field Descriptors
7.3.3.1.1. Integer Descriptor (rlw)
7.3.3.1.2. Real Descriptor - E Conversion (srEw.d)
7.3.3.1.3. Real Descriptor - F Conversion (srFw.d)

7.3.3.1.4. Double Precision Descriptor (srDw.d)

7.3.3.1.5. Logical Descriptor (rLw)
7.3.3.1.6. General Descriptor (srGw.d)

7.3.3.1.7. Hollerith Descriptor - A Conversion (rAw)

7.3.3.1.8. Hollerith Descriptor - H Conversion (wHc1c2 ... cw)

7.3.3.1.9. Hexadecimal Descriptor (rZw)
7.3.3.1.10. Literal Descriptor ('c1c2 ... cn')
7.3.3.1.11. Blank Descriptor (wX)
7.3.3.1.12. Record Position Descriptor (Tp)
7.3.3.1.13. Scale Factor Effects
7.3.3.2. Multiple Record Format Specification

7.3.3.3. Carriage Control Conventions

7.3.3.4. Format Interaction With the 1/0 List

7.3.4. Reread
7.3.5. List-Directed Input/Output
7.3.5.1. NAMELIST Statement
7.3.5.2. Simple List-Directed Input/Output
7.3.6. Auxiliary 1/0 Statements
7.3.6.1. REWIND Statement
7.3.6.2. BACKSPACE Statement

7.3.6.3. ENDFILE Statement

7.3.7. Sequential File Considerations

7.4. DIRECT ACCESS FILES
7.4.1. DEFINE FILE Statement
7.4.2. Disc READ Statement
7.4.3. Disc WRITE Statement
7.4.4. Disc FIND Statement

DATA INITIALIZATION

8.1. GENERAL

8.2. DATA STATEMENT

8.3. BLOCK DATA SUBPROGRAM
8.3.1. BLOCK DATA Statement

COMPILATION

9.1. GENERAL

Contents 4
UPDATE LEVEL PAGE

7-2 • 7-3
7-4
7-4
7-5
7-6
7-7
7-8
7-9
7-9
7-10
7-10
7-10
7-10
7-10
7-11
7-11
7-12
7-12
7-13
7-13
7-13
7-14
7-15
7-16
7-17
7-19 • 7-20
7-20
7-21
7-21
7-22

7-23
7-23
7-24
7-26
7-27

8-1

8-1

8-3
8-3

9-1 •

•

•

•

8262 Rev. 1
UP-NUMBER

10.

SPERRY UNIVAC Operating System/3

9.2. PARAMETER STATEMENT FORMAT
9.2.1. Compiler Arguments

9.3. STACKED COMPILATION

9.4. SOURCE CORRECTION FACILITY

9.5. CREATING A JOB CONTROL STREAM

DEBUGGING

10.1. GENERAL

10.2. CONDITIONAL COMPILATION

10.3. DEBUG STATEMENT

10.4. DEBUGGING PACKET

10.4.1. AT Statement
10.4.2. TRACE ON Statement
10.4.3. TRACE OFF Statement
10.4.4. DISPLAY Statement

10.5. FORMATTED MAIN STORAGE DUMP

11. CONFIGURATION OF THE EXECUTION ENVIRONMENT

11.1. DATA MANAGEMENT INTERFACE

11.2. CONFIGURATIONS SUPPLIED

11.3. PROGRAMMER-DEFINED CONFIGURATIONS
11.3.1. File Definition Conventions
11.3.1.1. Device Type
11.3.1.2. Record and Block Sizes
11.3.1.3. Record Formats
11 .3.1 .4. Butter Allocation
11.3.1.5. File Type
11.3.2. START Statement
11.3.3. FORTRAN Initialization Procedure (FUNTAB)
11.3.4. FORTRAN Unit Definition Procedure (UNIT)
11 .3.4.1 . Printer File Definition
11 .3.4.2. Card Input Files
11 .3.4.2.1. Spooled Card Input File Definition
11 .3.4.2.2. Data Management Card Input File Definition
11.3.4.3. Card Output File Definition
11.3.4.4. Tape File Definition
11.3.4.5. Sequential Disc Files
11.3.4.6 . Direct Access Disc File Definition
11.3.4.7. Reread Unit Definition
11.3.4.8. Equivalent Unit Definition
11.3.5. FORTRAN Unit Definition Termination Procedure (FUNEND)
11.3.6. Error Environment Definition Procedure (ERRDEF)
11.3.7. END Statement

A Contents 5
UPDATE LEVEL PAGE

9-1
9-2

9-5

9-6

9-6

10-1

10-1

10-1

10-'-2

10-3
10-3
10-3
10-4

10-5

11-1

11-1

11-2
11-2
11-3
11-3
11-3
11-4
11-5
11-6
11-6
11-6
11-7
11-10
11-10
11-12
11-16a
11-19
11-26
11-32
11-36
11-37
11-39
11-39
11-42

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

12. PROGRAM COLLECTION AND EXECUTION

12.1. GENERAL

12.2. LINK EDITING FORTRAN PROGRAMS
12.2.1. FORTRAN Supplied Modules
12.2.2. Overlay and Region Structures
12.2.3. Linkage Editor Output

12.3. Execution FORTRAN Programs
12.3.1. FORTRAN 1/0 Units
12.3.2. Pause Messages
12.3.3. Diagnostic Messages

APPENDIXES

A. CHARACTER SFf

A.1. SOURCE PROGRAM AND INPUT DATA CHARACTERS

A.2. PRINTER GRAPHICS

B. SUMMARY OF UNIT OPTIONS

c. ADDITIONAL UNIT OPTIONS

C.1. GENERAL

C.2. PRINTER OPTIONS

C.3. CARD READER OPTIONS

C.4. CARD PUNCH OPTIONS

C.5. TAPE FILE OPTIONS

C.6. SEQUENTIAL DISC FILE OPTION

C.7. DIRECT ACCESS DISC FILE OPTIONS

C.8. ADDITIONAL DATA MANAGEMENT DEVICES

Contents 6

UPDATE LEVEL PAGE

• 12-1

12-1
12-1
12-2
12-2

12-3
12-3
12-3
12-3

A-1

A-3

•
C-1

C-1

C-2

C-3

C-3

C-4

C-4

C-5

•

•

•

•

8262 Rev. 1
UP-NUMBER

D .

E.

F.

G.

SPERRY UNIVAC Operating System/3

FORTRAN SAMPLE JOB STREAMS

D.1. JOB CONTROL PROCEDURE

D.2. SAMPLE COMPILE-LINK-EXECUTE

D.3. SOURCE FROM DISC LIBRARY-STACKED COMPILATION

D.4. COMPILE-ASSEMBLE-LINK-EXECUTE

D.5. COMPILATIONS WITH PARAM OPTIONS

COMPILE-TIME DIAGNOSTIC MESSAGES

RUN TIME MODULES

SUBROUTINE LINKAGE

G.1. CALLING FORTRAN SUBPROGRAMS
G.1.1. Save Area
G.1.2 Required Entry Conditions
G.1.3. Exit Conditions
G.1.4 Mathematical Library
G.1.5. Compiled Subprograms

G.2. CALLING FROM FORTRAN PROGRAMS
G.2.1. Parameter List Formats
G.2.2. Label Arguments
G.2.3. Conventions

G.3. TRACEBACK INTERFACE

INDEX

USER COMMENT SHEET

FIGURES

10-1. DEBUG Statement and Packet

Contents 7
UPDATE LEVEL PAGE

D-1

D-9

D-10

D-11

D-14

t

G-1
G-1
G-2
G-2
G-3
G-4

G-4
G-4
G-5
G-5

G-5

t

10-4

t

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

TABLES

1-1. Extended FORTRAN Character Set
1-2. Source Statement Order

2-1. Data Types and Optional Lengths
2-2. Relative Location of Array Elements

3-1. Extended FORTRAN Operators and Evaluation Order
3-2. Result Types and Lengths for Mixed-Mode Arithmetic

3-3. Assignment Statement Conversions

5-1. Extended FORTRAN Procedures
5-2. Argument Forms
5-3. Intrinsic Functions
5-4. Standard Library Functions
5-5. Standard Library Subroutines

7-1. FORMAT Statement Field Descriptors
7-2. Carriage Control Conventions
7-3. Permissible Associations of List Items

A-1. EBCDIC Input Character Set
A-2. Representative Character Set

B-1. Summary of UNIT Arguments for Printer File
B-2. Summary of UNIT Arguments for Spooled Card Input File
B-3. Summary of UNIT Arguments for Card Input File
B-4. Summary of UNIT Arguments for Card Output File
B-5. Summary of UNIT Arguments for Tape File
B-6. Summary of UNIT Arguments for Sequential Disc Files
B-7. Summary of UNIT Arguments for Direct Access Disc Files
B-8. Summary of UNIT Arguments for Reread Unit
B-9. Summary of UNIT Arguments for Equivalent Unit

E-1. Compile-Time Diagnostic Messages

F-1. Extended FORTRAN Run-Time Modules

G-1. Save Area Format
G-2. Function Types and Corresponding Registers

Contents 8
UPDATE LEVEL PAGE

• 1-4
1-6

2-5
2-7

3-3
3-4

3-5

5-1
5-2
5-15
5-18
5-29

7-7
7-14
7-15

A-1
A-3

B-1
B-2 • B-2
B-3
B-3
B-5
B-6
B-6
B-6

E-2

F-1

G-1
G-3

•

•

•

•

8262 Rev. 1
UP-NUMBEFI

1.1. SCOPE

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

1. Introduction

The SPERRY UNIVAC Operating System/3 (OS/3) Extended FORTRAN consists of the following components:

• an extended American National Standard FORTRAN language;

• a compiler, which transforms programs written in that language into a form suitable for execution;

• a library of input/output (110) and data formatting routines; and

• a library of commonly used mathematical functions and service routines.

The Extended FORTRAN compiler accepts programs written in the FORTRAN language and produces an object
module that is suitable input to the linkage editor. Source programs may reside in the control stream or in a
source program library. A job control procedure is provided to invoke the compiler, allocate scratch files, and so
on. The output of the compiler must then be processed by the linkage editor; during this processing,
mathematical and 1/0 routines are taken from the Extended FORTRAN library and included in the executable
program. User-defined procedures, if they are required, are also included during the link edit. These latter
procedures may be coded in FORTRAN or in some other language, such as COBOL, assembly, etc.

The output of the linkage editor is a load module that may consist of several overlay phases. During the
execution of the object program, the overlay phases may be loaded by specific calls by FORTRAN statements, or
they may be loaded automatically by referencing a routine in an overlay that is not currently in main storage. The
load module will accept and produce ASCII files.

When the compiler is loaded, it interrogates the system to determine the amount of main storage space available
to it. It then partitions the work space into an optimum allocation for table space and for 1/0 buffers .

1-1

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 1-2

UPDATE LEVEL PAGE

During compilation, the compiler produces the following listings:

• A listing of the source program - each source statement is accompanied by any compiler-generated
diagnostics; for each diagnostic, the source statement is marked at the character for which the diagnostic is
produced.

• A main storage map showing the addresses allocated to the variables and arrays in the program.

• The object code in the form of a pseudo-assembly language program.

Any of the listings may be suppressed by user options.

The compiler is self-initializing, and any number of FORTRAN source programs may be processed by one call on the
compiler by job control. If a FORTRAN source statement follows an END statement in the source input file, it is
assumed that another program is to be processed, and the compiler reinitializes itself.

1 .1 .1 . Compatibility

The SPERRY UNIVAC Extended FORTRAN language includes the American National Standard FORTRAN and the
IBM System/360/370 DOS FORTRAN IV languages as subsets. Programs that conform to either of these
specifications are accepted without change. Extended FORTRAN is also highly compatible with SPERRY UNIVAC
Series 70 FORTRAN.

1.1.2. Extensions

The Extended FORTRAN language provides many extensions to American National Standard FORTRAN,
X3.9-1966. These extensions are:

• Subscript expressions may be integer or real arithmetic expressions (2.4.1).

• Arithmetic assignment statements can be used to assign complex values to integer and real variables, or
integer and real values to complex variables (3.3.1).

• A literal message is permitted with the STOP and PAUSE statements (4.9 and 4.10).

• An executable END statement is provided (4.11).

• The inclusion of statement labels (preceded by the & character) in the list of actual arguments in a subroutine
call to be referenced by a RETURN statement is permitted. Thus, the subroutine can transfer control back to
designated statements in the calling program (5.4.2.1).

• The ENTRY statement permits entry into a function or subroutine subprogram at points other than the
beginning of the subprogram (5.4.3).

• Standard library routines are available: OVERFL, DVCHK, ERROR, ERROR1, SLITE, SLITET, SSWTCH, LOAD,
FETCH, DUMP, PDUMP, and OPSYS (5.6.3).

• Arrays may have a maximum of seven dimensions (6.2.1).

• Dimension declarator subscripts are permitted in common storage.

• Optional length specifications for logical, integer, complex, and real variables and arrays can be declared
(6.4.1).

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

An IMPLICIT statement is provided for user-defined implicit typing of symbolic names in a program unit (6.4.2) .

• End of file and error recovery are provided in READ statements (7.3.1.1).

• The applicability of the G field descriptor has been extended to cover integer and logical data (7.3.3.1.6).

• T and Z format codes are provided (7.3.3.1.9 and 7.3.3.1.12).

• Special 1/0 formats and statements are provided for direct access storage devices (7.4).

• The specification of hexadecimal constants in DATA statements is permitted (8.2).

The Extended FORTRAN language also includes several extensions to IBM System/360/370 FORTRAN IV; these

incl Lide:

• Embedded comments (1.2.3).

• Extended exponentiation (3.2).

• An integer variable name can be used to represent the statement label of a FORMAT statement. Thus,
references can be made to FORMAT statements by integer variable name or by actual statement label (3.3.2).

• Optional statement labels on arithmetic IF (4.2) .

• Logical IF, PAUSE, and STOP statements can be terminal statements of DO loops (4.7) .

• Array element names may be referenced on the right-hand side of statement functions (5.3) .

• An ABNORMAL statement is provided for optimal code generation (5.4.1 .3) .

• The mathematical library may be referenced by generic names (5.6) .

• The ability to initialize variables and arrays in type and DIMENSION statements (6.3 and 6.4.1) .

• The ability to use the IMPLICIT statement anywhere in the specification statement group (6.4.2) .

• The elimination of the restriction that all named common blocks be the same size (6.6) .

• A PROGRAM statement is provided to optionally name a main program (6.8) .

• Two classes of list-directed 1/0 statements are provided (7.3.5) .

• DO-implied loops in DATA statements (8.2) .

• The BLOCK DATA statement contains an optional name for the subprogram (8.3.1) .

• Extended error recovery procedures are provided for the mathematical library (11.3.3) .

• Blocked and buffered input/output is provided (Section 11) .

1.2. SOURCE PROGRAMS

General procedures to be followed in FORTRAN programming are presented in the following paragraphs.

1-3

SPERRY UNIVAC Operating System/3 8262 Rev. 1
UP-NUMBER UPDATE LEVEL PAGE

1.2.1. Character Set

The character set consists of the FORTRAN character set and special characters as shown in Table 1-1. Each
character is represented in the Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC codes not
shown in the table have no graphic equivalents in the Extended FORTRAN character set, but these characters
can be stored internally and transmitted to and from card, tape, and disc storage.

Table 1-1. Extended FORTRAN Character Set

Alphabetics A through Z and $

FORTRAN Numerics 0 through 9
character
set Special symbols ;,()+-*/.&';

Blank fl or blank space

Extended Any characters capable of representation in EBCDIC, such as:
character
set* rt ><1%! :@#?-"

*The special character set can change with the options selected for the system
printer, with 48 to 127 characters available, depending on printer model. See
Appendix A for a detailed discussion of the character set.

1.2.2. FORTRAN Statements

FORTRAN statements are coded on the FORTRAN coding form, where columns 1 through 72 can be used for the
contents of a FORTRAN line. All characters in a line are restricted to the FORTRAN character set, except in comments
and literal constants. Columns 73 through 80 are ignored and may be used in any manner; the information in these
columns is printed in the source program listing, but execution of the program is not affected by this information.

Each FORTRAN statement is written in columns 7 through 72. The first line of a statement must contain either a zero
or a blank character in column 6. A statement may be continued on one or more successive lines with a nonzero,
nonblank character in column 6 for each line that is a continuation. A statement consists of one initial line and up to
19 continuation lines.

A statement label consists of one through five decimal digits in columns 1 through 5. The contents of these columns
for continuation lines are ignored during program compilation but are shown on the program listing and may be used
by the programmer. Leading zeros, and embedded and trailing blank characters, are ignored in a statement label.

Each statement label must be unique within its program unit. A special use of column 1 is indicated by an X
coded there for program debugging purposes (9.2).

1 .2.3. Comments

The compiler provides four methods of entering comments: columns 73-80 on any line; columns 1-5 on
continuation lines; the comment line; and embedded comments. A comment line is indicated by the character C in
column 1. The contents of each comment line are shown on the program listing, but are ignored by the compiler. A
semicolon in columns 7 through 71 in a FORTRAN statement line indicates that the information immediately
following and written on the same line is to be treated as a comment; for example:

STATEMENT

) FORTRAN STATEMENT" NUMBER ...
5 7 10 20 30 40

...I.. ...I..
R =-1.SQ1"R r (t_).Ll..i_ C .c\LL....1..C_1.U L A....1.. T_1.E....1.. 5Q1U_i_AJ\ E _i_"R 0 b T

1-4

•

•

•

•

•

•

SPERRY UNIVAC Operating System/3 8262 Rev. 1
UP-NUMBER UPDATE LEVEL PAGE

A comment following a semicolon is continued on a succeeding statement line by specifying a C in column 1:

rl T •
s ATEMENT ;: FORTRAN STATEMENT ... NUMBER f

s 7 10 20 30 40

r-c· •o• co""'"

...1. ...1. ...1. ..L D}>...L ..L 110..L.0...1. I :..Ll..L }~~ JB..LE G l N..L ...1.1..L T...LE...1.1\i~ T..Ll...1.~)1.t...l ..L ...1. ...1. ...1. -. --,-

c...L Lt> ~Pl ...1. ...1. l ..L ..L l ..L ...1. ...L ..L

The statement, SUBROUTINE SWAP (A,B), including commentary, may be written as follows:

I SWAP EXCHANGES THE VALUES

2C.A 'B) ~F T REAL VA~1ABLES

A semicolon in a literal constant is a valid character and does not indicate a comment; a semicolon to the left of
column 7 does not indicate a comment. Blank cards are ignored by the compiler.

1.2.4. Symbolic Names

Symbolic names contain up to six alphanumeric characters, the first of which must be alphabetic.

A special type of symbolic name, a label parameter, is associated with the RETURN statement. It consists of the &
character immediately followed by a statement label. A label parameter can appear only in a list of actual arguments
in a CALL statement (5.2.2).

1.2.5. Source Statement Order

Table 1-2 shows the order in which the source statements of each program unit must be written. Within each
grouping, the statements may be written in any sequence.

Every executable program contains one main program and as many subprograms as required. A main program is a
set of statements and comments that is not headed by a FUNCTION, SUBROUTINE, or BLOCK DATA statement.
Subprograms are headed by one of these statements. A subprogram headed by a BLOCK DATA statement is a
specification subprogram; one headed by a FUNCTION or SUBROUTINE statement is a procedure subprogram. The
term "program unit" is used to refer to any main program or subprogram. All program units are terminated with an
END statement. The first statement of a main program may optionally be a PROGRAM statement .

1-5

8262 Rev. 1

UP-NUMBER

LINE 1

LINE n

NOTES:

COMMENT

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 1-2. Source Statement Order

Program Declarators:

BLOCK DATA PROGRAM
FUNCTION SUBROUTINE

Specification Statements:

ABNORMAL EXTERNAL
COMMON IMPLICIT
COMPLEX INTEGER
DIMENSION LOGICAL
DOUBLE PRECISION REAL
EQUIVALENCE

DEFINE 1----

FILE Statement Functions

Executable Statements:

ENTRY
Arithmetic assignment ENDFILE
Arithmetic IF FIND
ASSIGN PAUSE
Assigned GO TO PRINT
BACKSPACE READ

FORMAT
CALL PUNCH
Computed GO TO RETURN
Logical assignment REWIND

DATA Logical IF STOP
CONTINUE Unconditional GO TO
DO WRITE

NAME LIST

DEBUG

AT
TRACE ON
TRACE OFF
DISPLAY

Any Executable Statement

END

1. Vertical lines demarcate statements that may be freely intermixed; for example, FORMAT statements
may appear anywhere between the program declarator (which may not exist) and the END statement.

2. Horizontal lines demarcate statements that must be in the order shown; for example, statement functions
must follow all specification statements.

3. DATA statements must follow any specification statements that reference items to be initialized (see
dotted Ii ne).

1-6

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

1.3. STATEMENT CONVENTIONS

Conventions used to illustrate FORTRAN statements in Sections 1 through 9 are presented throughout those
sections. Conventions for illustrating statements in assembler language in Sections 10 and 11 and Appendixes C
and D are as follows:

• Capital letters, parentheses (), and punctuation marks (except braces, brackets, and ellipses) must be coded
exactly as shown. An ellipsis (a series of three periods) indicates the presence of a variable number of entries.

• Lowercase letters and terms represent information supplied by the user.

• Information within braces { } represents necessary entries, one of which must be chosen.

• Information within brackets [](including commas) represents optional entries that are included or omitted
depending on program requirements. Braces within brackets signify that one of the entries must be chosen
if that operand is included.

• Underlined parameters are selected automatically when a parameter is omitted. These are called defaults.

• Some defaults are dependent on entries selected in other arguments. For example:

[FRECSIZE•
{

k }] 80; if FMODE=STD
160; if FMODE=BINARY

The notation

I FRECSIZE*4 I

specified as a default for an argument other than FRECSIZE, indicates that the default value for this argument
consists of the value specified for the FRECSIZE argument, multiplied by 4. This default value should be used
only as a default; it should not be specified as a predefinition argument.

1-7

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

2.1. GENERAL

SPERRY UNIVAC Operating Sy~tem/3
UPDATE LEVEL PAGE

2. Data Types

The data types available in SPERRY UNIVAC Operating System/3 (OS/3) Extended FORTRAN are integer, real,
double precision, complex, logical, hexadecimal, and literal. For additional information concerning FORTRAN
data types, refer to the "Writing a FORTRAN Program" section of the fundamentals of FORTRAN reference
manual, UP-7536 (current version). Data types are categorized by their manipulation within the FORTRAN
program; e.g., data may appear as constants, variables, or elements of an array. Each of these categories is
explained in this section. Additional information on the hardware characteristics of integer and real arithmetic
may be found in the discussion of the arithmetic section in the SPERRY UNIVAC 90/30 System processor
reference manual, UP-8052 (current version).

2.2. CONSTANTS

A constant is an arithmetic, logical, or literal value defined by its representation in the source program. Once defined,
a constant must not be redefined during program execution. An arithmetic constant is said to be signed if it is written
with a plus or a minus sign, and an unsigned constant is treated as a positive value. Constants are represented
internally, using 8-bit bytes organized as single units, groups of two (half words), groups of four (words), and groups
of eight (double words).

2.2.1. Integer Constants

An integer constant consists of an optional sign followed by a string of decimal digits with no decimal point. An
integer constant may have a maximum of 10 digits. If the value of the constant is positive, it may be preceded by a
plus sign; if the value is negative, it must be preceded by a minus sign; for example:

1
-365

100000000

An integer constant has the following 4-byte representation in storage:

s integer

0 1 7 8 15 16

Byte 1 Byte 2 Byte 3

23 24 31

Byte 4

2-1

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

where:

s
Is the sign bit (0 indicates positive; 1 indicates negative).

integer
Is a 31-bit binary integer, in twos complement representation.

The maximum absolute value for an integer is 2, 147,483,647 (231-1).

2.2.2. Real Constants

A real constant may be written as:

UPDATE LEVEL PAGE

• A basic real constant: an optionally signed string of up to seven significant digits with a decimal point
preceding, embedded in, or following the string; for example:

-1701.001

• A basic real constant followed by a decimal exponent; the decimal exponent is expressed by the letter E
followed by an optionally signed integer constant with a maximum of two significant digits; for example:

170.lE-03

• An integer constant followed by a decimal exponent; if the integer portion exceeds the permitted seven digits,
truncation of the excess rightmost digits results; for example:

+1701E-4

17010E-5

Real constants occupy one word (four bytes) of storage in normalized floating-point representation. The format is:

s
characteristic fraction

0 1 7 8 15 16 23 24 31

Byte 1 Byte 2 Byte 3 Byte 4

where:

s
Is the sign bit.

characteristic
Is the exponent portion of the real number in seven bits; it is derived from the power of 16 by which the
fraction must be multiplied to give the real value; the characteristic is stored as an excess 64 number.

fraction
Is six hexadecimal digits representing the fractional part of the real value. The radix point is between bits
7 and 8.

The maximum range for a real constant is from approximately 1 o-7s through 1075. It may have the value 0 where
the fraction is identically binary 0.

2-2

•

•

•

•

•

•

8262 Rev. 1
UP·NUMBEPI

SPERRY UNIVAC Operating System/3
UPDATE L.EVEL. PAGE

2.2.3. Double Precision Constants

A double precision constant is similar to a real constant. except that it may contain up to 16 significant digits. It
is written as a basic real constant or an integer constant followed by a double precision exponent; a double
precision exponent is expressed by the letter D followed by an optionally signed integer constant with a
maximum of two significant digits; for example:

-.180018201840012

A double precision constant is stored like a real constant, except that two words (eight bytes) of storage are used:

' s characteristic fraction ~
0 1 7 8 15 16 23 24 31

Byte 1 Byte 2 Byte 3 Byte 4

32 39 40 47 48 55 56 63

Byte5 Byte6 Byte 7 Byte 8

A double precision constant may range in value from approximately 1 O - 70 through 1075 , or it may have the

value 0.

2.2.4. Hexadecimal Constants

Hexadecimal constants are written as the letter Z followed by any combination of up to 32 hexadecimal digits; the
hexadecimal digits and their equivalents are:

Hexadecimal Digits Decimal Equivalents Binary Representation

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

2-3

8262 Rev. 1
UP-NUMSEFI

SPERRY UNIVAC Operating System/3

Hexadecimal Digits Decimal Equivalents

8 8

9 9

A 10

B 11

c 12

0 13

E 14

F 15

UPDATE 1.EVEI. PAGE

Binary Representation

1000

1001

1010

1011

1100

1101

1110

1111

Hexadecimal constants can be used only to initialize variables or arrays in specification or initialization statements.
The maximum number of digits used for initialization is determined by the type of data associated with the constant.
If the number of digits specified exceeds the maximum, the leftmost digits are truncated. If less than the maximum
are specified, hexadecimal O's are padded on the left. Two hexadecimal digits occupy one byte in main storage. Some
examples of hexadecimal constants are:

Hexadecimal Binary
Constant Equivalent

ZF9 1111 1001
ZA8 1010 1000
ZC5 1100 0101

2.2.5. Complex Constants

A complex constant consists of an ordered pair of real constants or double precision constants, each of which may be
signed, separated by a comma, and enclosed in a set of parentheses. The first portion of the complex constant is the
real part, and the second is the imaginary part of the complex value. For example, (3.1415, 182.) and
(3140-2,-18.201) are valid complex constants. Complex constants are stored in either two or four words,
depending on whether a double precision constant appears. The presence of a double precision constant within the
parentheses causes the other constant to be treated as double precision, thus forming a double precision complex
constant of 16 bytes. Integer constants in this context will be converted to real constants by the compiler. For
example:

(10,500+7)
(10,10)
CALL A (10, 10)
CALL A ((10, 10))

2.2.6. Logical Constants

becomes (10.0 0+0,500+7)
(10.0 E+0,10.0 E+O)
CALL A (10, 10)
CALL A ((10.0, 10.0))

Logical constants specify the logical values .TRUE. or .FALSE. and occupy one word in storage. The value .FALSE.
has a binary representation of O; .TRUE. has a binary representation of 1.

2-4

•

•

•

•

•

•

8262 Rev. 1

UP·NUMBEA
SPERRY UNIVAC Operating System/3

2.2.7. Literal Constants

UPDATE LEVEL PAGE

A I iteral constant consists of one or more characters from the Extended FORTRAN character set (Table 1-1).
Each character in the string requires one byte of storage. Two methods of writing literal constants are:

• as a Hollerith constant in the form wHc1c2 ... cw where w is an unsigned integer constant and c represents a
character; or

• as a character string enclosed in apostrophes: 'c1c2 ... cn'. If the apostrophe occurs in the string, it is represented
by doubling that character.

The literal DO NOT would be represented by 'DO NOT' or 6HDO NOT, and the literal DON'Twould be represented by
'DON'T or 5HDON'T.

2.3. VARIABLES

A variable is represented by a symbolic name (1.2.4) that identifies a single value. A variable is associated with a
data type, and in Extended FORTRAN there is both a standard and an optional length specification that
determines the number of bytes assigned in main storage (Table 2-1).

The type associated with a variable is determined by either the explicit type declaration statements (6.4.1), by the
IMPLICIT statement (6.4.2), or by the variable name used. Names beginning with the letters I, J, K, L, M. or N are
assumed to represent integer values; names beginning with all other letters or $ are assumed to represent real
values .

Table 2-1. Data Types and Optional Lengths

FORTRAN Standard Length Optional Length
Name Data Type in Bytes Data Type in Bytes

Integer lnteger*4 4 lnteger*2 2

Real Real*4 4 Real*8 8

Double precision Double precision 8 None

Complex Complex*8 8 Complex*16 16

Logical Logical*4 4 Logical*1 1

To prevent confusion where the length can differ, the complete data type will appear in this document: a reference to
16-byte complex data will appear as complex* 16. A reference to logical data without any length specification refers
to logica1*4 data. The optional specification for real data is real*8, the equivalent of double precision representation.

Variables of the double precision type have only a standard length. There is no variable type associated with literal or
hexadecimal data. The optional length described may be specified in either the explicit type statements or the
IMPLICIT statement .

2-5

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 2-6

UPDATE LEVEL PAGE

The internal representation of the values is identical with that described for the proper constant type, with the •
exception of integer*2 and logical*1 where there are no corresponding constants. The integer*2 variable or array
element occupies two bytes, with the sign stored in the most significant bit:

integer

0 7 _a

Byte 1 Byte 2

The maximum value for the integer*2 type is 32767 (i 5-1). The hardware does not provide overflow indications if
the integer*2 is exceeded; therefore, significant numeric bits can propagate into the sign bit.

Example:

The following program prints the value -32768, with no indication of arithmetic overflow.

30

INTEGEl\ :*. 2 I/32767/ K

K = I+ J'

P'RINT 10 K

The logical*1 variable or array element occupies one byte in main storage. The value .FALSE. has a binary
representation of O; .TRUE. is nonzero and is usually 1.

2.4. ARRAYS

An array is an ordered set of values. Each value is called by array element, and the entire set is identified by a
symbolic name called an array name. An array is described by an array declarator (Section 6). In Extended
FORTRAN, the array can be declared as having a maximum of seven dimensions.

The form of the array declarator is dependent on the number of dimensions as shown in Table 2-2. For
instance, an array named AGO with three dimensions, each four elements in size, has the declarator AGO
(4.4.4). AGO is the array name, and the numbers in the parentheses are dimension declarators. Each dimension
declarator must be an unsigned integer constant, except when a dimension is adjustable. In this case, the
dimension declarator must be an integer variable with a length of four bytes.

2.4. 1. Array Element Reference

Any element in an array may be referenced by using the array name, followed by parenthesized subscripts in the
format:

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

where:

s

n

May be any integer or real arithmetic expression. The arithmetic expression must be evaluated during
execution as an integer greaterthan 0. Each subscript is evaluated in accordance with the standard rules
for evaluating mixed-mode expressions (Section 3).

Must correspond to the total number of subscripts in the declarator.

In an EQUIVALENCE statement, the number of subscripts may be either one (where the correspondence of elements
is determined by the location of array elements as in 2.4.2) or the number of subscripts in the array declarator.

2.4.2. Element Position location

General expressions for locating the position of an array element relative to its first element are given in Table
2-2. In the table, the first byte of the array is relative location 0; the letters a,b, ... ,g refer to the value of a
subscript expression in an array element reference; the letters A,8, ... ,G refer to the values of the dimension
declarators; and the m is a multiplier determined by the number of bytes of storage required for each array
element.

Table 2-2. Relative location of Array Elements

Number of Declarator Subscript Relative Location of Element
Dimensions Form Form in the Array

1 (A) (a) (a-1)*m
2 (A,B) (a,b) ((a-1)+A*(b-1))*m

3 (A,B,C) (a,b,c) ((a-1)+A*(b-1)+A*B*(c-1)) *m

7 (A,B,C,D,E,F ,G) (a,b,c,d,e,f,g) ((a-1)+A*(b-1)+A*B*(c-1)+

... +A*B*C*D*E*F*(g-1))*m

Examples:

If an array declarator were AG0(17), if the element referenced were AG0(4), and if the array were real, then
the location of the first byte of the fourth element relative to the beginning of the array is found with the
expression (a-1)*m. In this case: (4-1)*4=12, or the first byte of that element is the twelfth from the beginning
of the array.

If AGO were declared as AG0(9, 10, 11) and the element to be located were AG0(3,4,5), then the calculation is

((2)+9*(3)+9* 10*(4))*4, or location 1556 .

2-7

• '

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

3. Expressions and Assignment Statements

3.1. GENERAL

This section discusses the use of expressions in SPERRY UNIVAC Operating System/3 (OS/3) Extended
FORTRAN programming, and describes the assignment statements. For additional information, refer to the
"FORTRAN Expressions" and "Assignment Statements" sections of the fundamentals of FORTRAN reference
manual, UP-7536 (current version).

3.2. EXPRESSIONS

An expression is a group of one or more elements and operators that is evaluated as a single value during
execution. Three different classes of expressions are evaluated: arithmetic, relational, and logical expressions.
Each of these expressions, as well as the order of evaluation, mixed-mode arithmetic, and user checks on
arithmetic operations, is discussed in the following paragraphs.

3.2.1. Arithmetic Expressions

An arithmetic expression is constructed as a numeric constant, a variable name, an array element reference, a
function reference, or combinations of these by using arithmetic operators. An arithmetic expression is always
evaluated as a numeric value.

3.2.2. Relational Expressions

A relational expression, actually a subset of logical expressions, consists of two arithmetic expressions separated by
a relational operator. The expression is evaluated at execution as .TRUE. or as .FALSE .. No complex type of arithmetic
expression may be used in a relational expression; however, the other types may be mixed in any combination.

When mixed-mode arithmetic comparisons are made, the priority of the data type is:

Data Type

Real*B (double precision)

Real*4
lnteger*4
lnteger*2

Priority

1
2
3
4

The expression having lower priority is converted to the type of the higher priority, and the comparison is made.
For example, if the relational expression consists of an integer expression and a real expression, the integer is
converted to a real*4 type before the comparison is made.

The result of a relational expression is always logical*4 type.

3-1

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

3.2.3. Logical Expressions

A logical expression is:

• a relational expression, a logical constant, a logical variable reference, a logical array element reference, a
logical function reference, or a logical expression in parentheses;

• a logical or relational expression preceded by the operator .NOT.; or

• two logical or relational expressions separated by .AND. or .OR ..

If both operands of a logical expression are of the logical* 1 type, then the result is of logical* 1 type; otherwise,
the result is of the logical*4 type.

3.2.4. Evaluation Order

An expression is evaluated by the priority of the operators in Table 3-1 and then calculated as follows:

1. This process begins with the leftmost operator.

2. If no parentheses intervene, the current operator is compared with the operator on its right. If the priority of the
current operator is greater than or equal to the priority of the next operator, the current operation is performed
and the result becomes the operand of the prior operator. Otherwise, the next operator becomes the current
operator, and this step is repeated, using it for comparison.

3. Upon encountering the right end of an expression, remaining operations are performed from right to left.

4. Sequential exponentiation is performed from right to left. For example, X**Y**Z is evaluated as X**(Y**Z).

5. Sequential integer division is performed from left to right. For example, I/ J/K is evaluated as (I/ J)/K.

6. Expressions in parentheses are treated as single operands and evaluated first, starting with the innermost
parenthesized expression, before continuing the left-to-right comparisons.

In addition to the rules already described, the order in which operations are performed may be slightly affected by
optimizations:

• Sequential operations with the same priority, except exponentiation, can be performed in any order. For
example, A+B+C may be performed as (A+B)+C, or (A+C)+B, or (B+C)+A. At compilation time, an option is

provided to require such expressions to be evaluated strictly from left to right. In addition, parentheses may be
used to force a specific order of evaluation.

• Logical expressions are not always completely evaluated; once the value is known, evaluation ceases. For
example:

•

IF (A.GT.B.OR.C.LT.FUNC(X)) GO TO 10

If A were greater than B, control would be transferred to statement 10 immediately, because the expression
must be .TRUE .. The function FUNC is not referenced.

The removal of locally constant subexpressions from DO loops and the elimination of duplicate subexpressions
may result in the calculation being performed in a place other than that specified. Therefore, if underflow,
overflow, or divide check should occur for any of those locally constant calculations, they would occur upon
entry to the DO loop rather than where they were originally written.

3-2

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table 3-1. Extended FORTRAN Operators and Evaluation Order

Operation Operator Order of Priority

Function evaluation f(x) 1

Exponentiation ** 2

Multiplication *
3

Division I

Addition or unary plus +
4

Subtraction or unary minus -

Greater than .GT.

Greater than or equal to .GE .

Less than . LT.
5

Less than or equal to .LE.

Equal to .EQ.

Not equal to .NE.

Logical negation .NOT. 6

Logical product .AND. 7

Logical sum .OR. 8

3.2.5. Mixed-Mode Arithmetic

UPDATE LEVEL PAGE

Mixed-mode arithmetic occurs when an operation is performed on two operands that are not the same type. The type
and length of the result are shown in Table 3-2 for the arithmetic operators, including exponentiation.

3.2.6. Arithmetic Operation User Checks

The following subroutine calls enable the programmer to check the evaluation of an arithmetic expression:

• CALL DVCHK(i)

Used to check for a division by zero after the division has been executed.

• CALL OVERFL(i)

Executed after an arithmetic operation to check for an overflow or underflow condition.

• CALL ERROR1 and CALL ERROR(i)

Routines used to set and test an indicator .

See 5.6.3 for more information on these subroutines.

3-3

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 3-2. Result Types and Lengths for Mixed-Mode Arithmetic

First Operand: Type (Length)

Integer Integer Real Real Complex Complex

(2) (4) (4) (8) (8) (16)

Integer Integer Integer Real Real Complex Complex

(2) (4) (4) (4) (8) (8) (16)

Integer Integer Integer Real Real Complex Complex

(4) (4) (4) (4) (8) (8) (16)

Second Real Real Real Real Real Complex Complex

Operand:
(4) (4) (4) (4) (8) (8) (16)

Type
Real Real Real Real Real Complex Complex

(Length)

(8) (8) (8) (8) (8) (16) (16)

Complex Complex Complex Complex Complex Complex Complex

(8) (8) (8) (8) (16) (8) (16)

Complex Complex Complex Complex Complex Complex Complex

(16) (16) (16) (16) (16) (16) (161

3.2.7. Implementation of Arithmetic Operations

When the compiler generates object code for arithmetic and logical expressions, most of the FORTRAN
operations are performed by using inline instructions. The size or complexity of some operations can cause the
compiler to generate calls to routines provided in the Extended FORTRAN library.

Multiplication and division involving complex variables and array elements are performed by library routines.

Exponentiation operations are performed by a library routine, except for cases involving integer or real bases
raised to an integer constant power, where inline multiplications are generated.

These library routines are completely described in the FORTRAN mathematical library reference manual, UP-8029
(current version).

3.3. ASSIGNMENT STATEMENTS

A value is assigned to a variable or an array element by executing an assignment statement. This value is the current

value until the variable or array element is redefined. There are three possible assignment statements: the
arithmetic and logical, which are described in this section, and the ASSIGN statement (3.3.2).

3-4

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

3.3.1. Arithmetic and Logical Assignment Statements

Format:

_v= e

where:

v

e

Is any type of arithmetic variable or array element name for an arithmetic assignment statement; or vis a
logical variable or array element name for a logical assignment statement.

Is any type of arithmetic expression for an arithmetic assignment statement; and e is a logical
expression for logical assignment statements.

Description:

v

The arithmetic or logical assignment statement assigns a single value to a variable or array element. The=
operator is read as "is replaced by" as in "AMR is replaced by 8.19" for AMR=B.19.

For all data types except logical, Table 3-3 demonstrates the conversion of the expression e to the type of the
receiving variable represented by v. Combinations of arithmetic and logical types are illegal. No conversion
takes place in logical evaluations except where e is logical*4 and v is logical *1; in this case, the high order
three bytes of e are ignored. The conversions are accomplished by intrinsic functions (5.6.1) .

Table 3-3. Assignment Statement Conversions

e

Data Integer Real
Double Complex

Types lntager*2 linteger*4) (real*4) Precision (complex*BI Complex*16
(real*BI

lnteger•2 None * * * * *

Integer ** None IFIX(e) IFIX IFIX IFIX(SNGL
(integer*4) (SNGL(e)) (REAL(e)) (DREAL(e)))

Real *** FLOAT(e) None SNGL(e) REAL(e) SNGL
(real•4) (DREAL(e))

Double *** DFLOAT(e) DBLE(e) None DBLE DREAL(e)
precision (REAL(e))

Complex *** CMPLX(FLOAT CMPLX CMPLX(SNGL None CMPLX(SNGL
(complex*8) (e),0.0) (e,0.0) (e),0.0) (REAL(e)),SNGL

(AIMAG(e)))

Complex*16 *** DCMPLX(DFLOAT DCMPLX(DBLE DCMPLX DCMPLX(DBLE None
(e),0.0) (e),0.0) (e,0.0) (REAL(e)),DBLE

(AIMAG(e)))

*Processing for integer*2 is identical with that for integer. except that the high order 16 bits of integer*4 are truncated.

**The sign is extended .

***In these cases. e is treated as an integer*4.

NOTE:

See Table 5-3 for the definitions of these intrinsic functions.

3-5

8262 Rev. 1
UP·NUMBEFI

SPERRY UNIVAC Operating System/3
UPDATE L.EVEL. PAGE

3.3.2. ASSIGN Statement

Format:

ASSIGN k TO

where:

k
Is a statement label in the same program unit as the ASSIGN statement and is the label of another
executable statement or of a FORMAT statement.

Is the name of an integer*4 variable.

Description:

The ASSIGN statement permits an integer variable name to represent a statement label; the variable name can
then be used in the assigned GO TO statement or as a reference to a FORMAT statement. Once the integer
variable name has been assigned a value by the ASSIGN statement, it can be used for no other purpose until it
is redefined. For instance, it cannot be used in an arithmetic expression unless its value is redefined by an
arithmetic assignment statement or a READ statement.

3-6

•

•

•

•

•

•

8262 Rev. 1
UP·NUMBEFI

SPERRY UNIVAC Operating Systam/3
UPDATE LEVEL PAGE

4. Control Statements

4.1. GENERAL

Control statements are executable statements that modify the normal sequence of program execution. The
control statements used in Extended FORTRAN are identical in function with those described in the "Control
Statements" section of the fundamentals of FORTRAN reference manual, UP-7536 (current version).

4.2. ARITHMETIC IF

Format:

where:

e
Is any integer, real, or double precision arithmetic expression; complex is not permitted.

k
Is a statement label in the same program unit as the arithmetic IF control statement.

Description:

If the arithmetic expression value is negative, control is passed to the statement with the k1 statement
label; if the value is zero, k2 receives control; and if the value is positive, k3 receives control. If any label is
omitted, control is passed to the next executable statement following the IF statement when the conditions
for the missing label are met. Trailing commas may be omitted when labels are not specified.

Note that the internal representation of real and double precision values is an approximation. One of these
types could be stored internally as a nonzero approximation of zero .

4-1

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Examples:

30

5 lFCI-1)\0 20

6 IF(X-Y) 15

7 IFCBETA-1.5) 20

Statement 5 indicates that control is to be transferred to the statement labeled 10 if I is less than 1, to the
statement labeled 20 if I equals 1, or to the next statement following 5 if I is greater than 1.

Statement 6 transfers control to statement 15 if Y is grater than X; otherwise, control is transferred to the
next executable statement.

Statement 7 transfers control to statement 20 when BETA is greater than 1.5.

4.3. LOGICAL IF

Format:

IF (e) s

where:

e
Is any logical expression (3.2.3).

s
Is any executable statement except a DO, END, or another logical IF statement.

Description:

The logical IF statement allows the execution of a statement to be dependent on the truth of a logical
expression.

Examples:

IF (A · A Nl) . B) GO T0 20

I F (C • G T • 'D) W.R I T E (I 0) C

If both A and B are .TRUE., the GO TO statement is executed, and control passes to statement 20. If either
A or B is .FALSE., the GO TO statement is ignored and control is transferred to the next executable
statement.

The WRITE statement in the second example is executed if the value represented by C is greater than that
represented by D. Otherwise, control passes to the next executable statement below the IF statement.

4-2

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

4.4. UNCONDITIONAL GO TO

Format:

GOTOk

where:

k
Is the statement label of an executable statement in the same program unit.

Description:

The unconditional GO TO statement provides an unconditional transfer of control to the statement with the
label specified.

4.5. COMPUTED GO TO

Format:

where:

k
Is a statement label of an executable statement in the same program unit.

Is an integer variable that must be defined by using an arithmetic assignment or a READ statement
before the execution of the GO TO control statement. The comma preceding i is optional.

Description:

The computed GO TO control statement permits the transfer of control to a label whose position in the GO TO
control statement equals the value of an integer variable. For instance, if the value of the integer variable is 3,
control is transferred to the third statement label in the computed GO TO control statement. If the integer
variable is negative, is equal to 0, or is greater than the number of statement labels in the control statement,

control is transferred to the next executable statement following the computed GO TO statement.

Example:

STATEMENT c FORTRAN STATEMENT NUMBER 0 ~
5 i/ 7 10 20 30

.J. ..L ...!. ..L G}).J. .J. T1l9..L ..L (..L l ..LS...LI..J.2.J.5.J..!l.J.315..L..ll 4-..LS.J.) ...L.tl ..LI...!. T):l.M_ ..L ...!. .J. _L .J. _l

When the value of the integer variable ITEM is 4, control is transferred to statement 45; when the value of ITEM
is 1, control is transferred to 15; and so on. Any value other than 1 through 4 results in control being
transferred to the next executable statement following the GO TO statement.

4-3

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

4.6. ASSIGNED GO TO

Format:

where:

k

Is the name of 4-byte integer variable that must be defined by an ASSIGN statement.

Is the statement label of an executable statement within the same program unit as the assigned GO TO
control statement; the parenthesized list of labels and the preceding comma are optional and may be
omitted. The list aids in defining the flow of control to the compiler. This list, therefore, aids the compiler
in diagnosing errors and often provides significantly better code generation. When used, the label list
must contain all possible destination labels.

Description:

The assigned GO TO control statement transfers program control to the statement labeled with the current
value represented by an integer variable.

Example:

r•c• •OR COMMEN'
STATEMENT ..

NUMBER t FORTRAN STATEMENT ...
5 7 10 20 30

..1. ..1. ..I. ..1. G}:>..1. ..1. T1b..1. ..1.K..J..5..1....S.....1. ..L(..1.l.J.0..1.~1 l_1_3 ~ I 5L&__1_l_1_7 ~ ll81...1..1.2..Ll.1).l .l ..I. """T --,, --,, -,r

When the current value of the integer variable K5 is associated with one of the statement labels in
parentheses, control is transferred to the system with that label. The value of the integer variable can have
been defined only by the ASSIGN statement (3.3.2). When the list of statement labels (10, 13, 15, 17, 18,
21) is omitted from the assigned GO TO control statement. control is still transferred to the executable
statement.

4.7. DO

Format:

where:

n
Is the statement label of the terminal statement of the DO loop, which must follow the DO statement, but
which cannot be another DO statement ..

Is the control variable, which is an integer variable that may be referenced, but not redefined, within the
DO range.

4-4

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Is the initial parameter, the value of which is assigned to the control variable before the first execution of
the DO loop; this value should be less than or equal to the value of m2•

Is the terminal parameter; it is compared to the control variable after each execution of the DO loop;
when the value of the control variable is greater than the value of m2, the DO control statement is
satisfied and control passes out of the DO range.

Is the incrementing parameter; its value is added to the control variable i after each execution of the DO
loop and before the comparison of m2 and the control variable i. When this parameter is omitted, 1 is
assumed to be the increment value.

Description:

A DO control statement initiates and controls the repeated execution of the group of statements within the DO
range, which extends from the first executable statement following the DO control statement to the terminal
statement.

For a DO statement, the compiler generates two blocks of executable code:

• in the position of the DO statement, a block that defines the control variable to the value of the initial
parameter, and

• between the terminal statement of the DO loop and the statement following it, a DO control block. Here,
the control variable is incremented and tested, and program execution is resumed by either exiting or
reentering the DO range.

If no control statements are present in the DO range, the loop will be executed

---+1

times by the actions of the DO control block. A control statement can prevent the execution of the DO control
block; for example, the loop

STATEMENT~~~~~~--~

20 30

Db lo I= \0

10 IF(A.GT.~)IF(C)20 30

may be executed 10 times, unless the condition

(A · GE · B) ·AND· (C · GT · 0 · 0)

occurs, which would prevent the execution of the DO control block and cause premature loop exit.

4-5

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
4-6

UPDATE LEVEL PAGE

Either integer constants or integer variable names may be used as parameters for the DO control statement; .~ "'
variables used as parameters may not be redefined within the DO range. The index variable of the DO loop
should be considered to be undefined when the loop is exhausted, even though it is maintained in main storage
during the loop.

4.7.1. Transfers of Control to and from a DO Range

In Extended FORTRAN programs, program control can always be transferred out of a DO loop without satisfying
the DO control statement parameters. However, control can be transferred into a DO range only from the
extended DO range, which consists of those statements executed between the transfer out of the innermost DO
of a completely nested DO loop and the transfer back into the DO loop range. For a more complete explanation of
the DO control statement, refer to the "Control Statements" section of the fundamentals of FORTRAN reference
manual. UP-7536 (current version).

4.8. CONTINUE

Format:

CONTINUE

Description:

The CONTINUE control statement can serve as a terminal statement of a DO range. It produces no coding and
may be used anywhere in the program, subject to the ordering in Table 1-2, without affecting the logical
program execution. When used as the terminal statement of a DO range, the CONTINUE control statement
must be labeled.

4.9. STOP

Formats:

STOP
STOP n
STOP 'a'

where:

n
Is a message in the form of an unsigned decimal integer constant of not more than five digits.

a
Is a message in the form of a literal of not more than 243 characters enclosed in apostrophes.

Description:

The STOP control statement terminates job step execution and returns program control to the operating
system, indicating the logical end of the program. When a STOP n or a STOP'a' is executed, a display is
always produced at the job's diagnostic device (Section 11).

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

4.10. PAUSE

Formats:

PAUSE
PAUSE n
PAUSE 'a'

where:

n
Is a console message in the form of an unsigned decimal integer constant of not more than five digits.

a
Is a console message in the form of a literal of not more than 243 characters enclosed in apostrophes.

Description:

The PAUSE control statement halts execution of the program and produces a display at the system console.
The operator has the choice of allowing the program to proceed to the next executable statement or to cancel
the job.

4.11. END

Format:

END

Description:

The END control statement is an executable statement indicating the physical end of a program unit; it may not
have a statement label. When the END statement is executed in a main program it is interpreted as a STOP
control statement (4.9). When executed in a subroutine or function subprogram, the END statement is
equivalent to a RETURN statement.

4-7

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

5. Functions and Subroutines

5.1. GENERAL

When a calculation or series of calculations is required repeatedly in a FORTRAN program, the statements used to
perform the calculations can be coded once as a procedure. This procedure can be referenced each time the
calculations are to be performed. Procedures, as explained here and described in the "Procedures and Procedure
Subprograms" section of the fundamentals of FORTRAN reference manual, UP-7536 (current version), may be
categorized by:

• whether the procedure coding is inserted inline by the compiler each time the procedure is referenced, or
whether the procedure is compiled separately as a subprogram;

• whether the procedure is referenced by a subroutine CALL statement or by a function reference; and

• whether the procedure is written by the user or supplied with the FORTRAN library .

Table 5-1 lists the procedures and shows their relationships within these categories.

Table 5-1. Extended FORTRAN Procedures

Procedure
Coding lnline Referenced Code
or Subprogram By Source

Statement In line Function User
function reference

External Subprogram Function User
function reference

Intrinsic lnline* Function UNIVAC
function reference

Standard Subprogram Function UNIVAC
library reference

function

Subroutine Subprogram CALL User
statement

Standard Subprogram CALL UNIVAC
library statement

subroutine

*Some of the larger intrinsic functions are external subprograms.

They are marked with G) in Table 5-3.

5-1

8262 Rev. 1
UP·NUMBEFI

SPERRY UNIVAC Operating System/3
UPDATE L.EVEL. PAGE

Functions are procedures referenced in expressions within FORTRAN statements. They always have at least one
argument; they always return the value associated with their name when they are executed; and they return control
to the expression within the referencing statement. The functions are:

• Statement functions

• External functions

• Intrinsic functions

• Standard library functions

Only statement functions and external functions are coded by the user.

Subroutines are procedures coded as subprograms; when they are referenced, control is transferred to the
subroutine, it is executed, and control is then returned to the statement following the subroutine reference.
Subroutines are either user-coded or supplied as standard library subroutines. Subroutines differ from functions in
the method of referencing the procedure, in that multiple values or no value can be returned, and in the method by
which control is returned to the referencing program unit.

Functions always transfer a value associated with the function name, but subroutines do not. When value
transfers are made by subroutines, they are accomplished by redefining arguments or common storage.
Arguments are included as part of the procedure definition; these are dummy arguments. Arguments are also
specified in the procedure reference; these are actual arguments. Substitutions of actual for dummy arguments
are made when the procedure is referenced at execution time.

The actual arguments in the procedure reference must correspond to the dummy arguments in the procedure
definition. They must correspond in number, data type (except for literals), and order. The argument forms permitted
for actual arguments in the user-coded procedures are shown in Table 5-2.

Table 5-2. Argument Forms

Form of Actual Arguments
Statement External

Subroutines
Functions Functions

Variable name Yes Yes Yes

Expression Yes Yes Yes

Function reference Yes Yes Yes

Array element name Yes Yes Yes

Array name No Yes Yes

Literal constant No Yes Yes

Label parameter No No Yes
(statement label
preceded by &)

External procedure name No Yes Yes

NOTE:

External procedure names appearing as actual arguments must be declared
in an EXTERNAL statement (6.7) or referenced previously in a CALL
statement or function reference.

5-2

•

•

•

•

•

•

8262 Rev.1
UP·NUMBEFI

SPERRY UNIVAC Operating System/3

5.2. PROCEDURE REFERENCE

UPDATE LEVEL PAGE

Depending on whether the procedure is a function or a subroutine (Table 5-1), it is referenced by either the function

reference or the subroutine CALL statement.

5.2.1. Function Reference

Statement functions, external functions, intrinsic functions, and standard library functions are all referenced in

expressions with the general function reference format

f (a1 .a2 ,anl

where:

f

a

Is the symbolic name that was used to identify the user-coded function in its function definition, or that
was supplied as the function name of an intrinsic or library function.

Represents an actual argument; at least one is required.

Actual arguments must agree in type, number, and order with the dummy arguments in the function definition, but
actual argument types are not restricted by the data type of the function name. The forms permitted for actual
arguments are shown in Table 5-2 for statement functions and external functions, in Table 5-3 for intrinsic
functions, and in Table 5-4 for standard library functions .

Examples:

STATEMENT~~~~~~~~-

20 30

C~=CBRT(Su~u)+CA~A+YA

R \)

In the first statement, the standard library function CBRT is referenced. In the next line, a user-coded
statement function, INT, is referenced, and three actual arguments are included in the function reference. An

integer type value is returned to the referencing expression, although the actual arguments are both integer
and real types.

5.2.2. Subroutine Reference (CALL Statement)

All subroutines, whether written by the user or supplied with the compiler, are referenced with the CALL statement.

Format:

5-3

8262 Rev. 1
UP·NUMBEA

SPERRY UNIVAC Operating Systam/3
UPDATE LEVEL PAGE

where:

s

a

Is the symbolic name of the subroutine as defined by the user or as supplied with the standard library
subroutines.

Is an actual argument. The use of a statement label preceded by an ampersand is allowed (5.4.2.2). The
argument list is optional and must be enclosed in parentheses when used.

Description:

The CALL statement is used to transfer control to the subroutine specified by the name. The maximum number
of actual arguments permitted is 255; the allowed forms are listed in Table 5-2.

Example:

STATEMENT~~~~~~~·-

20 30

CALL "PGN U

C.ALL

Three subroutines are referenced by the calls in the example. In the first CALL statement, control is transferred
to the subroutine PGNUM. When the next line is executed, the standard library subroutine ERROR is called; the
actual argument INER is specified. The last line in the example references the subroutine SUB; among the
arguments are two statement labels, & 10 and &20, which provide an optional method of returning control
from the subroutine explained in 5.4.2.2.

5.3. STATEMENT FUNCTION DEFINITION

The user-coded functions are the statement functions and the external functions. External functions are coded as
subprograms, as described in 5.4. Statement functions, however, are user-coded procedures that are defined with
only one FORTRAN statement. Statement functions require at least one argument and return one value to the
referencing statement. They are referenced with the function reference described in 5.2.1. After the evaluation of
the statement function, control is returned to the expression within the referencing statement.

Format:

where:

f
Is the symbolic function name assigned to the procedure.

a
Is a dummy argument consisting of a variable name.

e
Is a limited arithmetic or logical expression.

5-4

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Description:

The statement function definition statement defines a function that may be referenced in a subsequent
expression. The statement function definition statement must precede all executable statements in the
program unit and must follow all specification statements (Table 1-2). Note that a reference to another
function is permitted, but if such a reference is made to a statement function, that statement function must
have been previously defined in the program unit. For example,

STATEMENT ..
NUMBER f FORTRAN STATEMENT ...

5 7 10 20 30

I _l _1_ _l ~u_l _i_CJA)_l -_l _i_ 2_1 • _l 0 °*" $_1Qi_ 'R_l T _l _l (_l A ...J..i _l l _l -1 I I I I I

..1 _l _l AV..LR l (A ..i 'ft, ,'P ,N ,T I) I I ::I ,A,~1+1'B1-t- 1G1U1 1C?1N1i12 I I I

is permitted, but

AV"R l' NT) (l'N\)

QU (A) = T (A)

is not permitted .

The value returned by the statement function is typed by the statement function name. The name is typed
according to the rules for variables described in 2.3, or it is typed by a type statement (6.4) in the same program.
Note that it is the function name, not the type of the arguments or of the expression, which determines the
value type returned by the statement function, and that the function name cannot be referenced from other
subprograms.

Dummy argument names in the statement function definition may appear as variable names in the same
program unit. A maximum of 255 arguments may appear in the definition.

A limited expression is an arithmetic or logical expression that cannot contain a reference to another
statement function unless that function was previously defined. If the statement function being defined
appears in an external function or a subroutine, the expression cannot contain a symbolic name identical with
an entry name in the same subprogram. An array element may be referenced in the limited expression.

5.4. SUBPROGRAM DEFINITION

Of the three user-coded procedures - statement functions, external functions, and subroutines-the latter two are
coded as subprograms .

5-5

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

5.4.1. External Functions

An external function is a user-coded function procedure requiring more than one FORTRAN statement for its
definition. External functions require at least one argument and return at least one value to the referencing
statement. They are referenced with the function reference (5.2.1). After evaluation of the external function, control
is returned to the expression within the referencing statement, where computation continues, using the value
associated with the function name.

An external function is defined by coding the required FORTRAN statements as a subprogram that begins with a
FUNCTION statement (5.4.1.1) and ends with an END statement (4.11).

The external function returns a value of the type determined by the function or entry name, not by the data types of
the arguments. The data type of the function name is decided by the first letter of the external function name (2.3), a
type statement (6.4) in the same program unit as the FUNCTION declaration, or in the type specification in the
FUNCTION statement.

Multiple entry into an external function is provided by the ENTRY statement (5.4.3).

5.4.1.1. FUNCTION Statement

Format:

where:

t

f

*s

a

Is an optional type specification used to determine the data type of the symbolic name f, and therefore of
the value returned by the external function; when this specification is omitted, the type is determined by
a type statement in the same program unit or by the implicit type of the external function name. The

permissible types are INTEGER. REAL, DOUBLE PRECISION, COMPLEX, and LOGIC.

Is the symbolic name identifying the procedure; routines supplied by Sperry Univac reserve the
dollar sign as the third character of the function name. The name, or an ENTRY name, must be
assigned a value by using a READ or assignment statement to define the function value.

Is an optional length specification for the symbolic function name (2.3). This option may be used only
when the type option is used and the type specified is not DOUBLE PRECISION.

Is a dummy argument that may be a variable name, an array name, or a procedure name; variable names
may be enclosed in slashes to use the call-by-name method of argument substitution (5.5.2).

Description:

The FUNCTION statement defines an external function and must be the first statement of the subprogram
coded to define the external function.

5-6

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

Examples:

SPERRY UNIVAC Operating System/3

STATEMENT~~~~~~-~•

INT EGE ..
•

'RETURN

E Nl)

20

FUNCTI~N

l=UNCTIDN YY I C B

'REIURN

UPDATE LEVEL PAGE

30

1-*2. (A

HJ

In the examples, two external function subprograms are outlined. In the first, the value returned is defined as a
2-byte integer. The second subprogram returns a 4-byte real value unless the external function name YY1 is
typed in the same program unit as another data type .

5.4.1.2. RETURN Statement

Format:

RETURN

Description:

The RETURN statement causes control to be transferred from the subprogram used to define the external
function (or subroutine as explained in 5.4.2.2) to the program unit that referenced the subprogram.

5.4.1.3. ABNORMAL Statement

One of the functions of the SPERRY UNIVAC Operating System/3 Extended FORTRAN compiler is to increase
efficiency by eliminating computational redundancies. In a statement sequence such as:

X = A*B+C
Y = FUNC(A)
Z = SIN(A*B)

the A*B is considered to be a common subexpression. The statements are usually evaluated as:

TEMP= A*B
X = TEMP+C
Y = FUNC(A)
Z = SIN(TEMP)

5-7

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Other computational redundancies may be generated by the compiler andthen eliminated while expanding the array
element location function (Table 2-2). However, if the function FUNC redefines the value of its argument A, the
reordering produces unexpected results. Functions that cause such undesirable side effects are known as abnormal
functions and should be identified to the compiler.

A function is considered abnormal if it

• redefines the value of an argument or of an entity declared in common storage (as discussed in the

preceding paragraph);

• contains an input/output statement, such as a function that prints its results; or

• does not always produce the same function value when given identical arguments, such as a function that
saves values between successive references.

Format

where:

f
Is the name of an abnormal function.

Description:

The ABNORMAL statement identifies abnormal functions.

When a program unit contains no ABNORMAL statement, all referenced functions are considered
abnormal, except for the standard library functions (Table 5-4). In an ABNORMAL statement, all listed
functions are considered abnormal; any other functions encountered are considered normal. An
ABNORMAL statement without a list specifies that all functions are normal.

An abnormal function is permitted to cause side effects affecting other statements, as in the preceding
example, but the function should not impact the same statement or expression. For example,

A(I)= l*F(I)

will, in general, cause unpredictable results if the function F is abnormal.

5.4.2. Subroutines

User-coded subroutines are procedures that, like external functions, are separately compiled as subprograms.

Unlike function subprograms, however, subroutines:

• do not require arguments;

• do not necessarily return a value to the referencing program unit;

• have no data type associated with the subroutine name;

• are defined with the SUBROUTINE statement (5.4.2.1);

• are referenced with the CALL statement (5.2.2); and

5-8

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

return control to the first executable statement after the CALL statement, or they can return control to a
selected statement label in the referencing program unit (5.4.2.2).

Subroutines may have a maximum of 255 arguments; the argument forms permitted are shown in Table 5-2.
Multiple entry into a subroutine is permitted (5.4.3). Subroutines are always considered to be abnormal.

5.4.2.1. SUBROUTINE Statement

Format:

SUBROUTINE s (a1,a2, ... ,anl

where:

s

a

Is a symbolic name identifying the subroutine. Avoid the use of the dollar sign as the third character of
the subroutine name, since this convention is used in naming system routines. This name cannot appear
elsewhere in the subprogram.

Is a dummy argument. The argument list is optional; when it is used, it is enclosed in parentheses. Each
specification may be a variable name, an array name, a procedure name, or an asterisk. Variable names
may be enclosed in slashes to specify the call-by-name method of argument substitution (5.5.2).

Description:

The SUBROUTINE statement defines the subroutine and must be the first statement of the subprogram.

An asterisk in the dummy argument list signifies that the corresponding actual argument is a label parameter
preceded by an ampersand to provide an optional method of returning control to the referencing program unit.

5.4.2.2. Subroutine RETURN Statement

Format:

RETURN
or
RETURN i

where:

Is a positive integer constant or variable; this specification points to a label parameter in the actual
argument list of the CALL statement.

Description:

The RETURN statement always returns control to the first executable statement following the CALL statement

unless the optional integer specification is used. This option is not available when the RETURN statement is
used to return control from an external function procedure .

5-9

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The optional method of returning control from an external subroutine requires the use of the label
parameter specification (signaled by an ampersand) in the actual argument list of the CALL statement, the
use of an asterisk in the corresponding dummy argument in the SUBROUTINE statement, and the integer
specification of the RETURN statement. If integer = n, the statement RETURN n causes control to be
returned to the statement in the main program labeled with the nth label parameter in the actual argument
list of the CALL statement.

Examples:

STATEMENT~~~~~~---~

20 30

CALL

SUBROUTINE SuB (A ""*)

RE.T VRN 2

RETURN

RETURN 3

"RETV'RN

The subroutine SUB is entered when the CALL statement is executed. Control is returned to differing parts of
the calling program, depending on which RETURN statement is executed in the procedure definition. If the first
RETURN statement is executed, control is returned to the statement labeled 110 in the calling program. This
occurs because the integer option of the RETURN statement was used and the value of the integer is 2; control
is returned to the second label parameter in the CALL statement, & 110. If the second RETURN statement is
executed, control returns to the executable statement immediately following the CALL statement; if the third is
executed, control goes to statement 120; if the fourth, to statement 100. When the value of the integer is less
than 1 or greater than the number of asterisks, control is returned to the statement following the CALL
statement.

5-10

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

5.4.3. Multiple Entry to Function and Subroutine Subprograms

Alternate entry points to external functions and subroutines are provided by the ENTRY statement.

Format:

where:

e
Is a symbolic name that identifies the procedure entry point.

a
Is a dummy argument corresponding to an actual argument, if any, in order, number, and type.

Description:

Arguments are optional for entry into a subroutine. At least one argument is required for entry into a function.
Any dummy argument may be enclosed in slashes (5.5.2).

An ENTRY statement is nonexecutable and does not affect the normal sequence of statement execution. It
defines only those formal arguments in its list; other formal arguments not defined by the ENTRY
statement and used in the subprogram must have been defined by a previous reference to the subprogram.
The value returned by an external function is the value type defined by the entry name. In a FUNCTION
subprogram, the main storage address associated with the function name and all entry names is the same;
thus, there is an implied equivalence between the names.

The following rules apply to the ENTRY statement:

1. Avoid the use of the dollar sign as the third character for the ENTRY name specification, since this is
the convention for system routines.

2. In an external function subprogram, unpredictable results can occur when the entry name referenced is
not assigned a value, or when the last entry name defined is of a data type different from the referenced
entry name.

3. The same dummy arguments can be specified in more than one entry; the number of dummy arguments
may differ at different entry points.

4. An ENTRY into an external function subprogram must specify at least one argument.

5. Only those arguments specified in the argument list of an ENTRY statement are initialized; other
arguments are retained from previous function or entry references. Either the function name or at least
one entry name must be assigned a value in the function subprogram.

6. The asterisk must not be used as a dummy argument in an ENTRY statement of a function.

7. A procedure subprogram, whether an external function or a subroutine, must not reference itselforany
of its entry points.

8 . An entry name may not be used in a statement function expression within the same subprogram.

5-11

8262 Rev. 1
UP·NUMBEFI

SPERRY UNIVAC Operating System/3

Example:

r•c• FOR COMMENT

ATEMENT ~
UMBER YFORTRAN STATEMENT

5 6 7 10 20 30

FUNCTION 1\ S (A B) • 'RE AL Su

N:: I

G~ T~ 100

UPDATE LEVEL PAGE

ENTRY 'D?S (A B) • DOUBLE l'RE'CI$lbN SU

N=2

Gb T~ 100

ENTRY IS CA 1EGE.R Su
N=

10 RS=A+B

GO TD C2..00 300 4-00) N

200 'RETURN

300 D'PS'="RS

RETURN

4-00 IS==RS

EN'D

The external function in the example returns an integer, real, or double precision value as the sum of two real
arguments, depending on where the procedure was entered.

5.5. ARGUMENT SUBSTITUTION

When a procedure is invoked, the actual arguments, if any, are substituted for the dummy arguments in the
procedure receiving control. Extended FORTRAN provides three methods of argument substitution:

• Call by value

• Call by name (or address)

• Symbolic substitution

5-12

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

5.5.1. Call by Value

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The call-by-value method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE, FUNCTION, and ENTRY statements are simple variables. For the procedure

reference

CALL A(B, C, D)

and the procedure definition

SUBROUTINE A (X, Y, Z)

the compiler generates a calling sequence for the CALL or FUNCTION reference, and a prologue for the
SUBROUTINE, FUNCTION, or ENTRY statement. The calling sequence consists of a transfer of control to the start of
the procedure and a list of main storage addresses where the actual arguments may be found. The prologue contains
instructions that perform the argument substitution. In the preceding example, the prologue performs actions
analogous to the FORTRAN statements X = B, Y = C, and Z = D.

This technique allows the dummy arguments to be referenced in the procedure body as though they were simple
variables local to the procedure. When a RETURN statement is encountered, an epilogue is executed. An
epilogue is a coding sequence that transmits the values of the dummy arguments to the calling program if they
were redefined; thus, statements analogous to B = X, C = Y, and D = Z are executed. The compiler generates a
prologue and an epilogue for each SUBROUTINE, FUNCTION, and ENTRY statement. The RETURN statement
causes the execution of the epilogue associated with the last prologue that was executed. Thus, in the following
example, the subroutine on the left is treated as through it were written like the subroutine on the right .

SUBROUTINE A(B) SUBROUTINE A ;PROLOGUE START
B = actual argument
ASSIGN 100000TO I
GO TO 100001 ;PROLOGUE END

100000 actual argument= B ;EPILOGUE START
RETURN ;EPIOLOGUE END

100001 CONTINUE

ENTRY C(D) GO TO 100002 ;JUMP OVER ENTRY STATEMENT
ENTRY C ;PROLOGUE START
D =actual argument
ASSIGN 100003 TO I
GO TO 100002 ;PROLOGUE END

100003 actual argument= D ;EPILOGUE START
RETURN ;EPILOGUE END

100002 CONTINUE

RETURN GO TO I (1 00000, 100003)

5.5.2. Call by Name

The call-by-name method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE, FUNCTION, or ENTRY statements are declared to be arrays or procedure
names. In these cases, the prologue copies the address of the actual argument into the procedure. Thereafter,
the code generated for the array references in the procedure must retrieve the address of the array prior to
accessing the array for computational purposes. See 6.2.1 for additional information on array declarator
processing. As an option, the user may specify this method of argument substitution for simple variables by
enclosing the dummy argument in slashes:

SUBROUTINE A (B,/C/,D)

5-13

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

In most cases, the choice is arbitrary, but special cases exist and can cause differing results:

CALL SQUARE (B,B)

SUBROUTINE SQUARE (X,Y)

X = X**2
Y = Y**2

Here, the introduction of slashes around X and Y will cause different results.

5.5.3. Symbolic Substitution

Symbolic substitution is the only method used for argument substitution in statement functions. This consists of the
direct replacement of the statement function reference with the function expression; for example:

ISF(A,B,C) = 3.14159*A + B/C

90 W = ISF(X,Y,Z)/100.0

Statement 90 is interpreted as:

90 W = IFIX (3.14159*X + Y/Z)/100.0

This method of statement function evaluation produces faster code, and usually requires less space than a
procedure containing an epilogue and a prologue. If a program contains a large number of references to a statement
function, the user may choose to define an external function subprogram to save main storage space. The
substituted expression is converted, if necessary, to the type of the statement function name (intrinsic function IFIX,
Table 5-3).

5.6. LIBRARY PROCEDURES

The three classes of procedures provided by Sperry Univac that are available to the FORTRAN programmer are:

• Intrinsic functions, invoked with a function reference and usually associated with highly machine-dependent
procedures or non-FORTRAN capabilities, such as processing a variable-length argument list (5.6.1).

• Standard library functions, invoked with a function reference and provided for evaluation of common
mathematical functions in the areas of trigonometry, logarithms, roots, etc. While these procedures could be
written in the FORTRAN language, Sperry Univac provides them in a library (in assembly language output
form) in order to optimize accuracy, size, and performance (5.6.2).

5-14

•

•

•

•

•

•

8262 Rev. 1
UP-NUMB EA

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Standard library subroutines, invoked with the CALL statement. They are associated with the operating
environment of the program and perform functions such as checking external switches, loading overlay

phases, etc. (5.6.3).

Extended FORTRAN provides nearly 100 intrinsic and standard library functions, many highly similar; for
example, six functions are provided to determine the absolute value of an argument, differing only in the types of
their arguments and function values.

To reduce the difficulty of remembering so many names and the risk of clerical errors in programming, Extended
FORTRAN provides generic function reference. These similar functions can be referenced by a single name
called the generic name which, in this case, is ABS. Existing programs can reference the library using the
member names of the generic class (ABS, IABS, JABS, DABS, CABS, and CDABS).

The names and properties of these functions are known to the compiler. When a function reference using a generic
name is encountered, the compiler generates a reference to the proper member of the generic set by examining the
types of the arguments. Generic reference is not provided for library subroutines or for user-coded procedures.

5.6.1. Intrinsic Functions

The intrinsic functions supplied with the compiler are listed in Table 5-3. Intrinsic functions are referenced with the
function reference described in 5.2.1. After evaluation of the function, the function value is returned to the
referencing statement at the expression containing the function reference.

Table 5-3. Intrinsic Functions (Part 1 of 2)

Generic Number
Member Member Member

Name
Use

Arguments
Function Argument Function

Name Type Type

Determine the 1 ABS Real•4 Real•4

ABS absolute value IABS lnteger•4 lnteger•4

of the argument JABS lnteger•2 Integer• 2

DABS Double precision Double precision

1 ABS ~ Determine the 1 CABS* Complex•8 Real•4

CABS absolute value CDABS* Complex•16 Double precision

of the argument

AINT Truncation; 1 AINT Real•4 Real•4

eliminate the DINT Double precision Double precision

fractional
portion of argument

INT Truncation; 1 INT Real•4 lnteger•4

eliminate the IDINT Double precision lnteger•4

fractional
portion of argument

MOD Remaindering; 2 JMOD lnteger•2 lnteger•2

defined as (Argument 2 AMOD Real•4 Real•4

a1-[x] a2, must be MOD lnteger•4 Integer •4

where [x] is the nonzero.I DMOD Double precision Double precision

greatest integer
whose magnitude
does not exceed
the magnitude of
a1 /a 2 and whose
sign is the same
as a1/a 2

5-15

8262 Rev. 1

UP-NUMBER

Generic

Name

1 MAX ~
MAXO

1 MIN ~
MINO

SIGN

DIM

SNGL

REAL

AIMAG
IMAG

DBLE

CMPLX

CON JG

SPERRY UNIVAC Operating System/3

Table 5-3. Intrinsic Functions (Part 2 of 2)

Number
Member

Use
Arguments

Function
Name

Select the largest ;;:i.2 JM A XO CD
value AMAXO CD

AMAXl (2l

. 1MAX
MAXO CD f CD

MAXl (2l
DMAXl CD

Select the smallest ;;:i.2 JMINO CD
value AMINO (2l

AMINl CD
1 MIN*

MINO** ~~
MINl CD
DMINl CD

Convert argument 1 FLOAT (2l

from integer DFLOAT ~
to real or HFLOAT (2'
double precision DH FLOT QJ

Convert argument 1 IFIX (2)
from real to HFIX (2)
integer

Replace the 2 JSIGN

algebraic sign SIGN

of the first ISIGN

argument with DSIGN

the sign of the
second argument

Positive difference; 2 JDIM

subtract the smaller DIM

of the two arguments IDIM

from the first argument DDIM

Convert double precision 1 SNGL

to real CSNGL

Get rea I part of a 1 REAL

complex number DREAL

Get imaginary part of 1 IMAG,

a complex number AIMAG
DIMAG

Convert from real to 1 DBLE
double precision COBLE

Convert two real 2 CMPLX

arguments to a DCMPLX

complex number

Get conjugate of 1 CONJG
a complex number DCONJG

UPDATE LEVEL PAGE

Member Member
Argument Function

Type Type

lnteger•2 lnteger•2
lnteger•4 Real•4
Real•4 Real•4

lnteger•4 lnteger•4

Real•4 lnteger•4
Double precision Double precision

Integer• 2 lnteger•2

I nteger•4 Real•4
Real•4 Real•4

lnteger•4 lnteger•4

Real•4 I nteger•4
Double precision Double precision

lnteger•4 Real•4

lnteger•4 Double precision

lnteger•2 Real•4

lnteger•2 Double percision

Real•4 lnteger•4

Real•4 lnteger•2

lnteger•2 Integer• 2

Real•4 Real•4

lnteger•4 lnteger•4

Double precision Double precision

lnteger•2 lnteger•2

Real•4 Real•4
lnteger•4 lnteger•4
Double precision Double precision

Double precision Real•4

Complex•16 Complex•8

Complex•8 Real•4

Complex•16 Double precision

Complex•8 Real•4

Complex•16 Double precision

Real•4 Double precision

Complex•B Complex• 16

Real•4 Complex•8

Double precision Complex• 16

Complex•8 Complex•8
Complex•16 Complex•16

CD This function is an external procedure supplied in the Extended FORTRAN library.

(2) This function is accessible only through its member name.

5-16

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

5.6.2. Standard Library Functions

The standard library functions (Table 5-4) are function subprograms supplied with the compiler. They are accessed
with a function reference (5.2.1) and return control to the referencing program unit within the expression of the
referencing statement. Detailed information on performance, size, and mathematical methods is available in the
Series 90 FORTRAN mathematical library programmer reference manual, UP-8029 (current version).

5.6.2.1. Specification Statement Interaction

This section details the effects of listing the name of an intrinsic or standard library function in an ABNORMAL,

EXTERNAL, or type statement.

• If the generic name of an intrinsic function is specified in an EXTERNAL statement, generic reference to that
function is no longer possible, and the function is treated as a user-provided function. Members of the generic
class whose names differ from the generic name are available for specific reference. If the procedure name
appears in an actual argument list, that name is transmitted to the referenced procedure.

•

For example, if the name ABS appears in an EXTERNAL statement, any function reference to ABS, regardless
of the type or number of arguments, is presumed to be a reference to a user ABS function. An explicit reference
to DABS is still recognized as an intrinsic function reference.

When the procedure name ABS appears in an actual argument list, the name ABS is transmitted.

If a member name of an intrinsic function is specified in an EXTERNAL statement, generic reference is still
possible to the class to which it belongs, except for the cited member, which is no longer available. In all
procedure references and argument lists, the name is assumed to be a user-supplied procedure .

For example, if DABS is mentioned in an EXTERNAL statement, references to ABS with integer or real*4
arguments are still permitted. An ABS reference with a double precision argument will cause a diagnostic
message to be printed during compilation, and the function will not be evaluated. DABS is presumed to be a
user-supplied procedure.

• If the generic name or a member name of a standard library function appears in an EXTERNAL statement,
complete generic or specific reference is permitted. If the name appears in an argument list, that particular
name is transmitted. For example, if LOG is cited as EXTERNAL, LOG function references cause either ALOG,
DLOG, CLOG, or CDLOG to be invoked. When it appears as a procedure name in an actual argument list, the
name LOG is transmitted.

• If the generic name or a member name of an intrinsic or standard library function appears in a type statement
with an initial data declaration, the name is considered to be a simple variable. The name may never be
followed by a left parenthesis, as in a function reference. If it is a member name that is different from the
generic name, generic function reference is permitted to invoke all other members of the generic class.

• If the generic name or a member name of an intrinsic or standard library function appears in a type statement
without an initial data declaration and the type does not conflict with the function type of a member name in
Table 5-2 or 5-3, then the type declaration has no effect, since the types of these functions are already
known to the compiler.

• If the generic name of an intrinsic or standard library function appears in an ABNORMAL statement, or if it
appears in a type statement that conflicts with· the function type of a member name in Table 5-2 or 5-3, it is

considered to be a user-supplied function. Specific reference to other members of the same generic class is
still permitted .

• If a member name of an intrinsic or standard library function appears in an ABNORMAL statement, or if it
appears in a type statement that conflicts with its function type as specified in Table 5-2 or 5-3, it is
considered to be a user-supplied function. Generic reference to that generic class is permissible as long as it
does not cause the cited member to be invoked; a diagnostic is issued when this occurs, and no function
reference is generated.

5-17

•

Table 5-4. Standard library Functions (Part 1 of 5)

General Generic Member Mathematical
Operation Name Noma Definition

Trigonometric SIN

y=sin(x)

DSIN

SIN

CSIN

y=sin(z)

CDSIN

cos

y=cos(x)

DCOS

cos
ccos

y=cos(z)

cocos

TAN

TAN y=tan(x)

DTAN

{COT AN}
COT

{ COTAN} y=cotan(x)
COT

{ DCOTAN}
DCOT

NOTES:

1.

2.

M = 1663 ·(1-16-6) for real•4 and 1663·(1-16-14) for real•8

z is a complex number of the form x
1

+ x
2

i

Argument

Number Type Range

1 real•4 lxl<(2 18.7Tl

(in radians)

1 real•S lxl<(250.rrl

(in radians)

1 complex•S lx 11<(218 .7Tl

(in radians) 1•21.;; 174.673

1 complex•16 Ix, I< (25().m

(in radians) lx21 <;; 174.673

1 real•4 lxl<(2 18.rr1

(in radians)

1 real•8 lxl < (2 5().71")

(in radians)

1 complex•S lx11 < (2 18.rr1

(in radians) lx21 <;; 174.673

1 complex•16 lx1!<(250.m

(in radians) !x2 ! <;; 174.673

1 real•4 !xi< (218.71")

(in radians)

1 real•S Ix!< (250. rrl

(in radians)

1 real•4 !xi<!:' (21811")

(in radians)

1 real•8 !xi <(250 .71")

(in radians)

•

Function Value
Type and

Range

real•4

-1 <;;y<;;1

real•S

-l<;;y.;; 1

complex•8

-M <;;y
1

,y
2

<;;M

complex•16

-M<;;y1.v2<;;M

real•4

-1 <;;y<;;1

real•8

-1<;;y.;;1

complex•S

-M<;;y1,y2<;;M

complex•16

-M<;;y
1
,y

2
<;;M

real•4

-M <;; y <;;M

real•S
-M<;; y <;;M

reaf •4

-M <;; y <;;M

real•S

-M <;; y <;;M

I •

c co
~~ z II.)

c JJ
3:: ~
OJ •
m
JI

c
"'II
0
)>
-I
m
r
m
<
m
r
-
"'II
)>
(;)
m

(/) .,,
m
lJ
lJ
-<
c
2

<
~
0
i
~ :;·

CCI

!f s
3
'(;)

(11

!.
co

• •
Table 5-4. Standard Library Functions (Part 2 of 5)

General Generic Member Mathematical
Argument

Operation Name Name Definition
Number Type Range

Trigonometric { ASIN } 1 real•4 Ix I< 1

(cont.)

}
ARSIN

{ ASIN
ARSIN

y=arcsi n (x)

{DASIN } 1 real•B Ix I< 1

DARSIN

{ACOS } 1 real•4 Ix I< 1

{ ACOS }
ARCOS

ARCOS
y=arccos(x)

{DACOS l 1 real•B Ix I .;;; 1

DARCOS

ATAN 1 real•4 any real argument

ATAN y=arctan(x)

DA TAN 1 real•8 any real argument

ATAN2 2 real•4 any real arguments

~
y=arctan(2)

except (0,0)

ATAN2

DATAN2 2 real•8 any real arguments

except (0.0)

Hyperbolic SINH 1 real•4 lxl < 175.366

eX-e-X
y= ---

DSINH
2

1 real•S lxl < 175.366

SINH

CSINH 1 complex lx 1I'(174.673

z -z ·a lx 21<2 1B.TI
e - e

y=----
2

CDS I NH 1 complex lx 1I<174.673

•15 lx2 1 <250.TI

COSH 1 real•4
lxl < 175 366

eX+e-x

GOSH y= ---
2

DCOSH
1 real•B lxl < 175.366

t

•
Function Value

Type and

Range

real •4 (in radians)

- TI /2 ,;;;; y ,;;;; TI /2

real•S (in radians)

- TI /2 ,;;;; y <TI/2

real •4 (in radians)

o < v <TI

real •8 (in radians)

0 ,;;;; y ,;;;; TI

real •4 (in radians)

-TI /2 ,;;;; y <TI /2

real •8 (in radians)

-TI /2 ,;;;; y <TI /2

real •4 (in radians)

- 1T <: y ~'TT

real •8 (in radians)

- TI,;;;; y <TI

real•4

-M,;;;; y,;;;; M

real•S

-M,;;;; y,;;;; M

complex•B

-M,;;;; v
1

,v
2

<M

complex•16

-M <v,.Y2 <M

real•4

-M ~ y ~ M

real•B

-M ~ y ~ M

c (X)

"l' ~ z "->
c ::0
~ ~
OJ.
m
:JI

sa
m
::0
::0
-<
c z
<
~
0
i
;
r+ :;·
ca

!f en s
3
~

c
-u
a
~
-i
m
r
m
< m
r
-
-u
~
G>
m

UI

.!..
(I)

Table 5-4. Standard library Functions (Part 3 of 5)

General Generic Member Mathematical
Argument

+
Operation Name Name Definition

Number Type Range

Hyperbolic CCOSH 1 complex•8 lx 11..: 114.673
(cont.I lx2l<218•1T z -z

GOSH e + e y=---
2

lx 1i.;;;114.673 CDCOSH 1 complex•16
lx21<250 •1T

t TANH 1 real•4 any real argument

ex-e-x
TANH y= ---

eX+e~x

DTANH 1 real•B any real argument

Exponential EXP 1 real.4 x ;;. -180.218

x ..: 174.673
y=ex

DEXP 1 real•S x ;;. -180.218

x..: 174.673

EXP

CEXP 1 complex•B x 1 .,; 174.673

v=ez
lx21 < 1218.m

+
CD EXP 1 complex•16 xl .,; 174.673

lx21 < 1250.m

Base 10
EXP10 1 real•4

x;;.- 180.216/ln(lOI
Exponential x..: 174.673/ln(101

EXP10 y = 10•

DEXP10 1 real•B
x;;.- 180.216/ln(lOI

x,.; 174.673/ln(lO)

t Natural logarithm
{ ALOG}

LOG 1 real•4 x > 0

(ALOG} y=loge x or
LOG y=ln(x)

DLOG 1 real•B x>o

• •

Function Value
Type and

Range

complex•8

-M ..:v,.Y2 Q,n

complex-16

-M ..:v 1.v2 ..:M

real•4

-1 ..: y ..: 1

real•8

1 ~ y ~ 1

real•4

0..: y ._; M

real•B

0.,; y.,; M

complex.a

-M.,; v 1.v2 .,; M

complex. 16

-M.,;y1.v2 .,;M

real•4

o<>;y.,;M

real•B

QE;;y.,;M

real•4

y ;;. -180.218

y .,; 174.673

real•S

y ;;. -180.218

y .,; 174.673

•

~;
~N
~~ m·
:II -

c
"11
0
)>
-I
m
r
m
< m
r

"11
)>
Cl
m

~
m
:xJ
:xJ
-<
c:
2

~
f.
i
~

l

er
~

• •
Table 5-4. Standard Library Functions (Part 4 of 5)

General Generic Member Mathematical
Argument

Operation Name Name Definition
Number Type Range

Natural logarithm CLOG 1 complex*B z*-O+Oi

y=PV1og
0

(z)

{ ALOG}
LOG PV is principle value,

CD LOG
which means y 2 1 complex•16 z °* 0 + Oi
between -'TT and 'Tr.

Common logarithm { ALOG10} 1 real•4 x>o

LOG10

{ALOG10}
LOG10

y=log10x

DLOG10 1 real•S x > 0

Square root SORT 1 real•4 x ;;;, 0

y=JXor
DSORT y=x 1/2 1 real•S x ;;;.o

SORT
CS ORT 1 complex•S any complex argument

y=Jlor

CDSORT
y=z 1/2

1 complex•16 any complex argument

Cube root CBRT 1 real•4 any real argument

CBRT y=x 1/3

DCB RT 1 real•S any real argument

Function Value

Type and

Range

complex•8 v=v 1+v2'

y 1 ;;;, -180.218

Y1 .;;;; 175.021

-1T,.; v2 ,.;7T

complex•16y=y 1+v2i

Y1 ;;;, -180.218

Y1 .;;;; 175.021

-1T,.;; Y2,.;; 1T

real•4

y ;;;, -78.268

y .;;;; 75.859

real•8

y ;;;,-78.268

y .;;;; 75.859

real•4

0,.;; y,.;; Ml/2

real•B

0,.; y,.;; Ml/2

complex•B

0,.;; v 1 ,.;; 1.0987 !M 112l

lv2I,.; 1.0987 (M 112l

complex•16

0 ,.;; Y1 ,.;; 1.0987(M1121

lv2I,.; 1.0987 (M 112l

real•4
-M1/3 ,.;y,.;; Ml /3

real•B
-Ml/3,.;y,.;; M1/3)

• c 00

"II "' ' a>
z "' c ::0
3: ~
ID •
m
lJ

sg
m
::11
::11
-<
c z
<
~
0
i
i s·
cc

!f
i -w

c
"II
0
)>
-I
m
r
m
< m
r -
"II
)>
Cl
m

U1
I
!:::

Table 5-4. Standard Library Functions (Part 5 of 5)

General Generic Member Methematical Argument

Operation Name Name Definition
Number Type Range

Distribution ERF 1 real•4 any real argument •
2/ 2 ERF Y = Jrr .-u du

DERF 0
1 real•B any real argument

ERFC 1 real•4 any real argument

ERFC
y= J~f :-u2

du

•
DERFC y=l - erflx) 1 real•8 any real argument

GAMMA 1 real•4 x > 2-252 and

Y f u:-1.-udu

• < 57.5744

GAMMA

0

DGAMMA 1 real•B • > r-252 and

• < 57.5744

A LG AMA 1 real•4 x > 0 and

• < 4.2913 . 1073 y=log,, r !xi or
ALGAMA

y=log{u:- l .-udu LGAMMA
DLGAMA 1 real•B x > 0 and

x-< 4.2913 · 1073

.I .!

Function Value

Type and

Range

real•4

-1 ~y~l

real •8

-1 ~y~l

real •4

O~y~2

real•8

o~ v ~2

real •4

0.88560 ~ y ~ M

rea/•8

0.88560 ~ y ~ M

real•4

-0.12149~y ~M

real•S

-0.12149 ~y ~M

• I

c co
7' ~ z I\)

c JJ
s::"' m :"­
m
lJ

c
-a
c
)>
-I
m
r
m
< m
r

(/) .,,
m
:::0
:::0
-<
c z
<
)>
0
0
i
iil
!:!'.
:::J ca

~
i
3 w

--a
)>
Q
m

(J1

I
I\)
I\)

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 5-23
UPDATE LEVEL PAGE

5.6.3. Standard Library Subroutines

The standard library subroutines are procedures available in subprograms supplied with the compiler. These
subroutines are invoked by the CALL statement, and control is returned to the main program at the first executable
statement immediately following the CALL statement. All of the standard library subroutines may be overridden; a
user may supply his own routine with any of the FORTRAN names, such as OVERFL, ERROR, etc. Such routines
must be included with an INCLUDE control card at the time the program is linked. Note that each library name
has a $ generated as the second character (e.g., 0$ERFL and ESROR).

The subroutines provided by Extended FORTRAN are presented here and summarized in Table 5-5.

• Arithmetic Overflow and Underflow Test (OVERFL)

The overflow check subroutine, OVER FL, informs the program when computational results are not within the
maximum or minimum magnitude permitted for a value. A real computation always yields a correct fraction,
but the exponent is incorrect by 128 for an overflow and by -128 for an underflow. An overflow during an
integer computation yields unpredictable results. An overflow or underflow causes a program check interrupt;
when this occurs, various switches are set and program execution resumes at the next instruction, which may
be in the same FORTRAN statement. These switches are interrogated by the OVERFL subroutine:

CALL OVERFL (i)

where:

Is an integer*4 variable .

The variable is assigned a value of 1, 2, or 3 to indicate the status of the interrupt switches.

The OVERFL subroutine operates in three separate modes for compatibility with other FORTRAN systems:

Extended FORTRAN Mode

Integer and real overflow and real underflow are monitored. Only the last event, either overflow or
underflow, is reflected in the interrupt switches. The i values assigned are:

2

3

An overflow interrupt has occurred. A previous underflow interrupt will not be
reported, and the overflow/underflow interrupt switch is reset.

Neither overflow nor underflow has occurred.

An underflow interrupt has occurred. A previous overflow interrupt will not be
reported, and the overflow/underflow interrupt switch is reset.

Integer overflows are reported only if the I I OPTION BOF is in the job control stream of the
executable program.

For example, the statements

X = (10E75*10E75) + (10E-75*10E-75)
CALL OVERFL (I)
CALL OVERFL (J)

set the value of I to 3 andJ to 2, indicating, respectively, thatan underflow was the last interrupt andthat
there are no conditions to report. If the arithmetic statement is written as

X = (10E-75*10E-75)+(10E75*10E75)

I has the value 1, indicating that an overflow was the last event.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SPERRY UNIVAC Series 70 Mode

Integer and real overflow and real underflow are monitored independently. The i values assigned are:

An overflow has occurred. The overflow switch is reset. OVERFL should be entered
again to determine if an underflow has also occurred.

2 Neither overflow nor underflow has occurred.

3 An underflow has occurred. The underflow interrupt switch is reset.

The module FL$0VW70 must be included with an INCLUDE control card during linkage editing and
the I I OPTION BOF must be specified in the job control stream.

For example, the statements

X = (10E75*10E75)+(10E-75*10E-75)
CALL OVERFL (I)
CALL OVERFL (J)

CALL OVERFL (K)

set the value of I to 1, J to 3, and K to 2, indicating, respectively, an overflow, an underflow, and that there
are no conditions to report.

IBM System 360/370 Mode

5-24

•

Real overflow and underflow are monitored, but integer overflow is ignored. The i values assigned are •
identical with those for the Extended FORTRAN mode.

The desired mode of operation is selected when the executable program is linked and executed. Selection of
IBM mode causes the DVCHK subroutine to ignore integer division by 0.

• Divide Check Subroutine (DVCHK)

The divide check subroutine, DVCHK, informs the program when an integer or real division by 0 occurs or an
integer result of a division exceeds ±2, 147.483,647. In both cases, an indicator is set, and the computation
yields the original dividend. This indicator is interrogated with the statement:

CALL DVCHK (i)

where:

Is an integer*4 variable.

The values assigned to i by DVCHK are:

when a divide check has occurred. The indicator is reset.

2 when a divide check has not occurred.

Integer divide checks are reported only if the job control statement I I OPTION BOF is present in the
control stream of the executable program. •

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Example:

STATEMENT~~~~~~-~-

20 30

CALL 'DVC\-\K(1:)

llO I

10 ST O'P 'TERMINATI~N

2. 0 C~NTINUE

If a division by 0 was attempted (I= 1), program control is transferred to statement 1 O; otherwise, control goes
to statement 20.

• Error Indicator Test (ERROR)

This standard library subroutine tests an indicator to determine if a function error condition or an 1/0 ERR exit
has occurred:

CALL ERROR (i)

where:

Represents an integer*4 variable.

The integer variable is assigned the following values:

if a function error condition exists after a reference to a standard library function (Table 5-4)
or to the ERROR 1 subroutine;

2 if no function or 1/0 error exists;

3 if an ERR exit was taken from an 1/0 statement because of a data transmission error;

4 if an ERR exit was taken from an 1/0 statement because of improper data; and

5 if an ERR exit was taken because of an unrecoverable 1/0 error. No further references to the
file are permitted.

A subsequent call of the ERROR subroutine, prior to additional 1/0 or function references, always returns a
value of 2.

• Error Indicator Setting Subroutine (ERROR 1)

This subroutine is used in conjunction with the ERROR subroutine; CALL ERROR1 sets the function error
indicator tested by the ERROR subroutine. This is also performed by the standard library functions. The
reference to the ERROR 1 subroutine is:

CALL ERROR1

5-25

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

Example:

r•c• FOR COMMENT

ATEMENT ~
UMBER ~FORTRAN

5 6 7 10 20

=)(RAY (.)

(. I)

C30

ONTINUE

l

r~ut

UPDATE LEVEL PAGE

30

ne

• Indicator Setting Subroutine (SLITE)

The SLITE standard library subroutine sets or resets one or more of four indicators internal to the subprogram.
This subroutine is used with the SLITET subroutine, which tests these indicators. The format of the CALL

statement is:

CALL SLITE (e)

where:

e
Is an integer expression. The value of the expression determines the indicator settings:

0 - if all four indicators are to be reset.

1, 2, 3, or 4 - to set the corresponding sense indicator.

-1, -2, -3, or -4 - to reset the corresponding indicator.

5-26

•

•

•

•

•

8262 Rev. 1

UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Indicator Testing Subroutine (SLITET)

The SLITET subroutine tests the indicators controlled by the SLITE subroutine. The format of the CALL
statement is:

CALL SLITET (e,i)

where:

e
Is an integer expression with a value corresponding to the sense indicator to be tested.

Is an integer variable name returning the results of the test.

If the indicator specified bye is set, the integer variable i is set to 1 . If the indicator is not set, or if e is outside the
range 1 :::;; e:::;; 4, then i is set to 2. Execution of the SLITET subroutine does not affect the indicator settings.

• Control Information Check (SSWTCH)

The SSWTCH standard library subroutine allows the FORTRAN programmer to check control information
during program execution. This control information is provided prior to execution of the program on a I I
SET UPSI job control card used in the operating system.

The format of the CALL statement is:

CALL SSWTCH (e,i)

where:

e
Is an integer expression with a value of 1 through 4, representing a binary switch position.

Is the integer variable name used to return the result of the switch position test.

If the specified binary switch is set, the variable has the value 1; otherwise, its value is 2. Execution of the
SSWTCH subroutine does not alter the switch settings.

• Main Storage Dump Routines (DUMP and PDUMP)

These subroutines cause a dump or listing of the main storage assigned to the program; the subroutines are
described in Section 10.

• EXIT Subroutine

The EXIT standard library subroutine terminates the program. The CALL EXIT statement is equivalent to the
FORTRAN STOP statement (4.9) .

5-27

8262 Rev. 1
UP-NUMBER

•

t

SPERRY UNIVAC Operating System/3

FETCH Subroutine

A
UPDATE LEVEL

5-28
PAGE

The FETCH subroutine loads an executable program and transfers control to its transfer address.
Processing in the calling program is not resumed. An 1/0 error during the load causes immediate job
termination. The CALL statement has the format:

CALL FETCH (s)

where:

s
Is a load module name which must be either a 6- or 8-character name enclosed in apostrophes,
or a double precision or complex variable containing a load module name.

Examples:

~
•c• FOR COMMENT

~~E:eERNT J FORTRAN STATEMEHT--------
5 6 7 10 20 30 40

t--'--'-............. --+-+D--'-O~u"-'-=B~L----'-"'E......__._P~R~E~c~1"-=9~1=-b~N-'-'--~~~N'-"-A.:.J..:.....:~E....L...:....l/_'~~=-=O~A=U~-"-'--"·_,_/~,_.__'---'--'--'--'-'-'~·~
CALL FETCH (DNAME)

CALL. FETC.H (•·L AVM><,'), I I

The two calls of the FETCH standard library subroutine are equivalent.

• LOAD Subroutine

The LOAD standard library subroutine loads subprogram overlays. Control is not transferred to the
subprogram but returns to the statement immediately following the CALL statement requesting the overlay.
An 1/0 error during the load causes immediate job termination. The loaded subprogram cannot share the same
main storage addresses as the procedure containing this CALL statement.

The format of the CALL statement is:

CALL LOAD (s)

where:

s
Is a phase name that must be an 8-character name enclosed in apostrophes, or a double precision
or complex variable containing a phase name.

• OPSYS Subroutine

The OPSYS subroutine loads subprogram overlays and transfers control to the statement following the CALL
statement.

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The format of the CALL statement is:

CALL OPSYS ('LOAD' ,s)

where:

s
Is a phase name that must be an 8-character name enclosed in apostrophes, or a double precision
or complex variable containing a phase name.

This statement is equivalent to the CALL LOAD (s) statement.

Table 5-5. Standard library Subroutines

Subroutine Format Use

OVER FL CALL OVER FL (i) Tests for overflow or underflow.

DVCHK CALL DVCHK (i) Tests for invalid division.

ERROR CALL ERROR (i) Tests for function or 1/0 error conditions.

ERROR1 CALL ERROR1 Sets the function error indicator.

SLITE CALL SLITE (e) Sets the sense indicators specified.

SLITET CALL SLITET (e,i) Tests for the setting of specified sense indicators .

SSWTCH CALL SSWTCH (e,i) Tests the binary switch specified by the integer
expression and returns a value in the integer
variable name.

DUMP CALL DUMP (list) Dumps main storage assigned to the program;
program execution terminates.

PD UMP CALL PDUMP (list) Dumps main storage assigned to the program;
program execution continues.

EXIT CALL EXIT Terminates the program.

FETCH CALL FETCH (s) Loads and transfers control to the overlay specified
by the phase name.

LOAD CALL LOAD (s) Loads subprogram overlays and transfers control to the
program statement after the CALL statement.

OPSYS CALL OPSYS ('LOAD', s) Loads subprogram overlays and transfers control to the
program statement after the CALL statement; equivalent
to CALL LOAD statement.

5-29

t

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

6. Specification Statements

6.1. GENERAL

Specification statements are nonexecutable statements that inform the compiler about program data and main
storage allocation. See the "Specification Statements" section ofthe fundamentals of FORTRAN reference manual,
UP-7536 (current version). All statements in this section are order dependent. Refer to Table 1-2.

6.2. ARRAY DECLARATION

An array is an ordered set of elements identified by a symbolic name (2.4). An array may be declared in a DIMENSION
statement, a COMMON statement, or in an explicit type statement (INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL) .

6.2.1. Array Declarator

Format:

where:

v
Is a symbolic name identifying the array.

Is a unsigned integer constant or integer variable (for adjustable dimensions); an integer variable used to
declare an adjustable dimension must be a COMMON variable or a dummy argument of the integer*4
type; from one to seven dimensions may be declared.

Description:

The array declarator specifies the name and the dimensions of an array. If the array name is a dummy
argument, the array is a dummy array, and the dimensions may be specified as integer variables. In the
interest of efficiency, dummy arrays are proc:;essed at execution time in a special fashion. The procedure
prologue (5.5.1, 5.5.2) saves the subscripts in dimension declarators from the argument list or common
storage, and derives a partial solution to the equation used to locate array elements (Table 2-2).
Thereafter, subscript calculations in the body of the procedure can be performed more quickly. A side effect
of this technique, however, is that it is impossible to redeclare array dimensions within procedures; for
example, in the code sequence:

6-1

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

30 40

DI ENSI~N ~ (5 I 0)

CALL A lB l 0)

SUB'R~UTlNE

DIMENSI~N x DECLA ES (5

5 J = 5

I 0 I= I 0

statements 5 and 10 do not change the array from X(5, 10) to X(10,5).

6.3. DIMENSION STATEMENT

Format:

where:

v(i)

c

Is an array declarator (6.2.1).

Is an optional list of constants, each element of which is either a constant or a constant preceded by an
unsigned integer constant multiplier in the format i*C. The constants are used to initialize the array.

Description:

The DIMENSION statement declares and optionally initializes arrays. Elements in the array are initialized
starting with the first element. An array may be partially initialized, but an array that is a dummy argument may
not be initialized. COMMON arrays should be initialized only in BLOCK DATA subprograms.

The constants in the list should agree in type with the array to be initialized. The compiler will convert numeric
constants to the type of the corresponding array, but truncation may occur. In addition, the list may contain
hexadecimal and literal constants.

6-2

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Examples:

r•c• FOR COMMENT

ATEMENT ~
UMBER YFORTRAN STATEMENT

5 6 7 10 20 30 40

DI ENSI'oN lNRAY (I 0

D I ME N $ I ~ N A RR A y 2 (I 0) I I • 0 I A 'R 'R A.y 3 (\ 0 Ji_

I I I • 0 2 3 q *"O . 0 I

The first DIMENSION statement declares an integer array named INRAY, which has 10 elements. No
initialization of the array is accomplished.

The second DIMENSION statement declares two arrays containing real data elements: ARRAY2 has 10
elements, the first of which is initialized with the value 1.0; ARRAY3 has 240 elements, the first of which is
initialized with the value of 1.0, while the other elements are initialized with 0.0.

6.4. TYPE STATEMENTS

Two kinds of type statements can be used in SPERRY UNIVAC Operating System/3 Extended FORTRAN: the
explicit type statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL; and the IMPLICIT
type statement.· In the absence of typing with these statements, symbolic names starting with the letters I,
J, K, L, M, and N are considered to be interger*4 type (FORTRAN name rule); all others are considered to
be real*4.

6.4.1. Explicit Type Statements

Format:

where:

t

a

c

*S

Is the type, specified as INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.

Is a variable name, an array name, an array declarator, or a function name.

Is an optional list of constants used to initialize the immediately preceding variable name or array. When
used to initialize an array, the /cl may be a list, each element of which may be a c, or j*C when using the
multiplier constant.

Is an optional length specification (2.3); may not be specified if the type is DOUBLE PRECISION.

Description:

An explicit type statement not only specifies the data type of a name but also contains initialization values
when the /cl option is used. Numeric initialization values are converted to the type of the corresponding
variable or array, but note that truncation may occur.

6-3

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-4
UPDATE LEVEL PAGE

The length implied by type (t), with or without the option a I length specification (*s), applies to every name in the •
list unless it is specifically overridden by a specification forthe individual name. See 5.6.2.1 for a discussion of
specifying intrinsic and standard library functions in type statements.

Examples:

STATEMENT~~~~~~-••

20 30

REAL L~ F

MAT"RI)((3 5) I 60 ~o. o/

c I I

REAL c

The first statement specifies LOAF, IOTA, JOKE, and MATRIX as real types. In addition, the statement
indicates that IOTA is assigned a value of 5.2; JOKE, 7.5; and the array MATRIX consists of 60 elements
and is initialized with 0.0 in every element.

In the second explicit type statement, the variables A. B, and C all are typed as double precision due to the
length specification.

The third type statement specifies A and C as real variables; B is a double precision variable because of its
length specification.

6.4.2. IMPLICIT Statement

Format:

IMPLICIT t*s(a1,a2, ••• ,an),t*s(an+1-am•···), ...

where:

t

a

*S

Is the type, specified as INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.

Is a letter (A through Zand$) associated with the specified data type. The format of this specification may
be A,B,C, etc., with commas separating each letter, or it may be A-D, to specify a range of letters.

Is the optional length specification.

Description:

The IMPLICIT statement permits the user to specify his own implicit type conventions for each program unit.
The IMPLICIT statement types symbolic names by the first letter of the name, including the dollar sign.

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

If $ is to be included in a range specification (two letters separated by a minus sign), it must be last. The
dollar sign indicates real data by the standard typing conventions.

Symbolic names that start with a letter not covered by the IMPLICIT statement are typed according to the
standard convention in 2.3. Any implicit typing, whether standard or specified by the IMPLICIT statement, is
superseded by explicit typing.

Symbolic names that appear in the program before the IMPLICIT statement are typed by standard conventions,
except for dummy arguments in a SUBROUTINE or FUNCTION statement and the function name in a
FUNCTION statement, which are redefined by the first IMPLICIT statement, but not subsequent IMPLICIT
statements. IMPLICIT statements must appear in the specification group (Table 1-2).

Example:

r•c• FOR COMMENT

ATEMENT ~
UMBER 0 FORTRAN

5 (; 7 10 20 30 40

IM?LICIT REAL F) L~GICAL(L)

~INTEGE'R'*2.(N INTEGE'R(x-$)

After processing the IMPLICIT statement in the example, names beginning with the letters of the character set
are typed as follows:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

A through D are double precision, as specified by the IMPLICIT statement, because real*8 is the
equivalent of double precision;

E is real, because of the standard convention;

F is double precision, as specified by the IMPLICIT statement;

G and H are real because of the standard convention;

I, J, and K are integer because of the standard convention;

L is logical, as specified by the IMPLICIT statement;

M is integer because of the standard convention;

N is integer*2, as specified by the IMPLICIT statement;

0 and P are real because of the standard convention;

Q is integer*2, as specified by the IMPLICIT statement;

R through T are real because of the standard convention;

U and V are integer*2, as specified by the IMPLICIT statement;

W is real because of the standard convention; and

X through $ are implicitly typed as integer by the IMPLICIT statement .

6-5

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

6.5. EQUIVALENCE STATEMENT

Format:

EQUIVALENCE (k1),(k2) ,(knl

where:

k
Is a list of the form a1,a2, ... ,am and each a is a variable name, an array element name, or an array name.
Each name specified in the list shares assigned storage. Dummy arguments may not appear in the list.

Description:

The EQUIVALENCE statement permits sharing of a main storage unit by two or more entities specified within
parentheses. The equivalence provided by the statement is in relation to the first, or leftmost, byte of the
entities specified. (See 6.6.1 for a discussion of the effects of the interaction of EQUIVALENCE and COMMON

statements.)

Program execution time is increased whenever a variable that does not have a proper boundary alignment is
referenced. To achieve proper alignment, a variable must have an assigned main storage address that is an

integral multiple of its length. Complex*16 variables require an 8-byte (double word) and complex*B
requires a 4-byte alignment. There are no boundary requirements for the logical*1 variables.

The first variable in each EQUIVALENCE group is assigned to a main storage address that is a multiple of 8
if possible. If erroneous boundaries are present in the EQUIVALENCE group, the addresses in the group are
increased successively by 2, 4, and 6 in an attempt to correct the error. Thereafter, it is the programmer's
responsibility to ensure that the variables in the EQUIVALENCE group have the proper alignment.

A variable with incorrect boundary alignment is recognized during compilation, and a warning diagnostic is
provided. When the program is linked, a library routine is provided which receives control when the hardware
interrupt caused by a reference to a variable with an improper alignment occurs. The subroutine repeats the
instruction that caused the interrupt, after having moved the operand to the proper boundary.

6.6. COMMON STATEMENT

Format:

COMMON /x1/a1/ ... /xn1an

where:

x

a

Is an optional symbolic name identifying the COMMON block. If no symbolic name appears between the
slashes or if x1 with its associated slashes is omitted, blank COMMON is assumed.

Is a nonempty list of variable names, array names, or array declarators. No dummy arguments are
permitted.

6-6

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Description:

The COMMON statement allows sharing of a common main storage area by different program units. When
block names are specified, the compiler treats each block as a separate control section (CSECT) whose
allocation will appear separately on the linker map. When no block name is specified (blank COMMON), the
compiler uses a CSECT name that is not assigned by the programmer. It is the programmer's responsibility
to ensure that every variable and array in COMMON has the proper boundary alignment. Automatic
boundary error recovery is provided (6.5), but this increases execution time.

Every named or blank COMMON block is assigned a main storage address that is a multiple of 8. Each
COMMON variable or array is assured of proper alignment if it is placed in the block in descending length:
complex* 16 variables and double precision first, then real and complex*B, and so on until logical* 1
variables. In differing program units, when multiple definitions of a COMMON block specify different sizes
for the block, the largest definition is accepted.

6.6.1. COMMON/EQUIVALENCE Statement Interaction

The compiler does not process COMMON and EQUIVALENCE statements individually in the sequence in which they
are encountered. Instead, these statements are processed in three consecutive phases:

1. COMMON storage is allocated by processing all COMMON statements without regard to boundary
requirements.

2. EQUIVALENCE groups that do not contain COMMON variables or arrays are processed, and storage is
allocated. In any group containing improper boundaries, address adjustments are attempted .

3. EQUIVALENCE groups that contain COMMON variables or arrays are allocated storage without regard to
boundary requirements. This may have the effect of lengthening COMMON at the right end of the list;
COMMON cannot be extended at the left end of the list.

Example:

STATEMENT~~~~~~~~-

20 30

A,D)

produces a blank COMMON configuration of

D E
B c shares storage with shares storage with A(3)

A(1) A(2)

6-7

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-8
UPDATE LEVEL PAGE

The first three statements can be ordered in any arbitrary sequence with the same result. Replacement of the third
line with- •

STATEMENT ~

NUMBER R FORTRAN STATEMENT ~
5 7 10 20 30

r"C' FOR COMMENT

_1 _1 _l _j_ E}~_lV_iI1V_j_~L_j_E_j_NiC_iE_i _j_(A1(3) l'I 'B) I I I I I l_i_i_i_i

is an illegal extension of COMMON.

6.7. EXTERNAL STATEMENT

Format:

where:

v
Is the name of an external function or an external subroutine.

Description:

The EXTERNAL statement specifies function or subroutine names used as actual arguments to an external •
procedure. If an intrinsic function name appears in an EXTERNAL statement. that procedure is assumed to
have been written by the user, and no assumptions about its properties are made. This is also true with the
standard library function names. (See 5.6-2.1 for a discussion of specifying intrinsic and standard library
functions in an EXTERNAL statement.)

A procedure name can appear both as an actual argument and as a dummy argument. This can occur when the
procedure name is passed through multiple levels of procedure reference. In such a case, an EXTERNAL
statement must appear at every level of procedure call.

When the context of the program uniquely identifies a symbolic name to be a procedure name, the EXTERNAL
statement is unnecessary:

10 CALL

2.0 C LL 'B (A)

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

No EXTERNAL statement is needed, but if statements 10 and 20 were reversed in sequence, the statement

r•c• 'OR COMMEN' rl
STATEMENT -

NUMBER R FORTRAN STATEMENT ...
5 7 10 20 30

_L _j_ _j_ _j_ E_f _LT_lE.1~1'!._A L Ai_ _L l _j_ _l _L ..I. .J.. l ..I. ..1. ..I. ...I. ..1. ...I. ..I.

would be needed.

6.8. PROGRAM STATEMENT

Format:

PROGRAM s

where:

s
Is the symbolic name used to identify a main program.

Description:

The PROGRAM statement may be optionally used to identify a main program for later reference by the linkage
editor and librarian. When present, the PROGRAM statement is the first statement of the program unit. In the
absence of this statement, the compiler assumes the name $MAIN for main programs. Two main programs
cannot be compiled in the same job if this statement is not specified, since the second main program will
otherwise supersede the first.

The symbolic names is a special name that bears no relationship to any variable or array name in the program
unit. It must be unique with respect to the SUBROUTINE, FUNCTION, BLOCK DATA. and COMMON block
names in the executable program .

6-9

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 7-1
UPDATE LEVEL PAGE

7. Input and Output

7.1. GENERAL

This section describes the characteristics of the input/output system and the SPERRY UNIVAC Operating
System/3 (OS/3) Extended FORTRAN statements required for input and output control. For further information,
refer to the "Input/Output and FORMAT Statements" section of the fundamentals of FORTRAN reference
manual, UP-7536 (current version). Also see Section 11 in this manual, which describes the usage of the OS/3
data management system.

The FORTRAN input and output statements are READ and WRITE. These statements designate an 1/0 device
and reference an 1/0 list; they may reference a FORMAT statement. The input and output devices, that may be
used in FORTRAN for sequential files include: card reader, printer, card punch, magnetic tape, and disc
subsystems used sequentially. Direct access processing is also possible with disc subsystems. The peripheral
devices are assigned unit numbers within the user's system where the unit number is a unique integer constant
(k) in the range between 1 and 99.

7.2. INPUT /OUTPUT LIST

The purpose of an 110 list is to identify variables, arrays, and array elements so that they may be transferred to and
from external devices. The 1/0 list is an ordered set of items with the format:

where:

a
Is a simple 1/0 list which may be a variable, array element, or array name;

Is two simple lists separated by a comma;

Is a simple 1/0 list in parentheses; or

Is a DO-implied list (7.2.1) .

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Example:

V2.ARRAY,MATRIX(5)

This 1/0 list consists of a variable, an array name, and an array element.

In an unformatted input/output statement, the 1/0 list directly determines record length; in a formatted
statement, record length is determined by the interaction between the list and the FORMAT specifications.
Section 11 discusses record length limitations with regard to various devices and file access methods.

7.2.1. DO-Implied List

Format:

(k,d)

where:

k

d

Is an 1/0 list (7.2).

Is a DO specification with the form: i=m 1, m2, m3 where parameter interpretation is identical with the DO

statement (4. 7).

Description:

The DO-implied list allows the transfer of list elements in the sequence specified by the DO parameters. DO­
implied lists may be nested to a maximum of seven levels.

Example:

(((AX(l,J,K),1=1,5),J=1,5),K=1,5)

If the 3-level DO-implied list in the example is used in a WRITE statement. the group of 125 elements of array
AX is transferred to the specified external medium. The transfer would be to storage if the list were used in a
READ statement. See 2.4.1 for the general expression to determine the location of array elements.

7.3. SEQUENTIAL FILES

The use of the American National Standard FORTRAN 1/0 statements READ, WRITE, BACKSPACE, REWIND,
and ENDFILE is defined in the following paragraphs. The FORMAT statement, used for editing values
represented by character strings on the external media, is also described.

Files referenced with the standard statements are always treated as sequential, even when they reside on disc

storage.

7-2

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7.3.1. Unformatted 1/0 Statements

An entire list of variables, arrays, and array elements transferred to an external device by an unformatted WRITE
statement exists as a single logical record for a subsequent unformatted READ or BACKSPACE order. The formats
are:

WRITE (u) k

READ (u,EOF=label1,ERR=label2) k

READ (u,END=label1,ERR=label2) k

where:

u

Is a constant or integer variable designating an 1/0 device.

EOF=label
Is an optional specification denoting the statement label of the statement to receive control if an end of
file condition occurs;

END=label

May be substituted for the EOF=label specification.

ERR=label

k

NOTE:

Is an optional specification denoting the statement label of the statement to receive control if an error
condition occurs.

Is an 1/0 list, which may be empty for a READ statement to indicate the record is to be skipped.

If both the EOF and ERR specifications, or both the END and ERR specifications, are present, their order may be
interchanged.

Description:

The unformatted 1/0 statements initiate and control the transfer of unformatted data between a designated
peripheral device and main storage.

Unformatted 1/0 is designed -for high efficiency data transfer and, consequently, no data conversion
operations take place; the variables are in the representation specified in 2.2 and 2.3. Only minor input validity
checking is performed in keeping with this emphasis on throughput.

If the list for a WRITE statement consists of two integers followed by three double precision values, the only
valid READ statements for that record are:

READ (u) ; bypass the record
READ (u) I

READ (u) 1,1
READ (u) 1.1.D
READ (u) 1,1,D,D
READ (u) 1.1,D,D,D

7-3

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 A 7-4

UPDATE LEVEL PAGE

Even more efficiency can be achieved by reducing a list to a single element. Compare the following program
segments:

20 30 40

DIMENSI~ A (l O) c (3 0)

DbVBLE ?RECISl~N

A B C

PREcISI.bN B
EQU! VALENCE CD UMMY Y (I I))

I (C)

WRITE('{) nv MY

The contiguous ascending storage addresses implied by DUMMY in the second segment allow greater
efficiency in the data transfer.

7.3.1.1. END and ERR Clauses

The END and ERR specifications may appear in any order after the integer unit designation. EOF is an alternate
form for END and is identical in function in Extended FORTRAN. If the END parameter is not present in a READ
statement, the program is terminated with an informational message if the end of data is encountered. If either
the END or EOF specif1cation is present, control is transferred to the specified statement label when the end of
data is encountered.

The ERR parameter specifies a statement label to · which control is passed when it is impossible to completely
process the current list. Other records in the file might still be available for processing. To describe the situation,
the indicators tested by the ERROR subroutine (5.6.3) are set. If the ERR parameter is not specified, the program
is terminated with an informational message when a record cannot be processed. Refer to 11.3.1.4.

7.3.2. Formatted READ/WRITE Statements

Formats:

READ (u,a) k

READ (u.a,EOF=label 1) k

READ (u,a,END=label1) k

READ (u,a,END=label 1,ERR=label2) k

WRITE (u,a) k

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 A 7-5

where:

u

a

UPDATE LEVEL PAGE

Is a constant or an integer variable designating an input or output device, and has a value of from 1
to 99.

Is an array name, an integer variable (3.3.2), a NAMELIST name (7.3.5.1), the label of a FORMAT
statement (7.3.3), or the asterisk character (7.3.5.2).

EOF=label
Is an optional specification indicating that if an end offile condition is encountered on input the program
is to branch to the label specified.

END=label
Accomplishes the same as EOF=label.

ERR=label
Is the optional specification of a label to which control is passed on encountering an error condition.

k
Is an optional 1/0 list.

Description:

The formatted READ/WRITE statements initiate and control the transfer of formatted data between
designated peripheral device and main storage. Data is always converted from and to character strings on
external media and the internal representations specified in 2.2 and 2.3 as specified by the format
indicator, a. If the format indicator is an array name, the array must contain a legal FORMAT descriptor
from opening to closing parenthesis. An integer variable format indicator must contain a FORMAT
statement label from an ASSIGN statement. An asterisk character specifies list-directed formatting. A
COMPLEX item always requires two FORMAT editing codes.

7.3.2.1. 1/0 Compatibility Statements

The following FORTRAN II statements are accepted by the Extended FORTRAN processor:

READ a.k

PUNCH a,k

PRINT a.k

where:

a

k

NOTE:

Is the statement label of a FORMAT statement, an array name, an integer variable name (3.3.2), or

the asterisk character (7.3.5.2).

Is an 1/0 list .

No unit specification is made because it is unnecessary; the compiler addresses the appropriate device in the user's

system configuration.

t

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7.3.3. FORMAT Statement

Format:

where:

q

t

z

Is the label of the FORMAT statement.

Is an optional group of one or more slashes; each time a slash appears in the FORMAT statement, it
signals the end of a logical record.

Is a field descriptor (7 .3.3.1) or a group of field descriptors specifying the data conversion or the action to
be executed.

Is a.field separator (either a slash or a comma) required when more than one field descriptor is used;
commas are not required when they follow fields described by blank (wX}, Hollerith (wHc1c2 ... ew) and
literal ('c1c2 ... cn'l descriptors; slashes end a logical record.

Description:

The FORMAT statement specifies editing information for transforming formatted data (character strings}, from
and to internal representations. The FORMAT statement descriptors are described in the following
paragraphs.

Examples:

r•c• rnR COMMEN'
STATEMENT ..

NUMBER R FORTRAN STATEMENT ...
5 7 10 20 30

.L -1 l.L0-10 F .L~.LR}'/\1,c\, T.L C '-1)=.Li)<-1S11.L .L? _A-1G-1E.L' .L/) l .L .L .L -1 .J. .J. _l

\ l 0 F~ 'RM!.Ai,T.L .J.(.L/.J./.L/ I.Ll.J.2.b..i.2.L><.LI-1\.J.2.L/_).L .L l
I

.L .L .J. .L .J.

If referenced by a WRITE statement. the first FORMAT statement ca uses the transfer of the literal FIRST PAGE
and provides an additional blank logical record. The second format statement skips three logical records and
then describes a record with a 12-byte integer field, two blanks and another 12-byte integer field, plus another
blank record.

7-6

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

7.3.3.1. Field Descriptors

UPDATE LEVEL PAGE

The field descriptors specify the kind of 1/0 data conversion or action to be executed. Extended FORTRAN
allows the descriptors listed in Table 7-1.

Table 7-1. FORMAT Statement Field Descriptors

Classification Field Descriptor

Integer rlw

Real (E conversion) srEw.d

Real (F conversion) srFw.d

Double precision srDw.d

Logical rLw

General srGw.d

Hollerith (A conversion) rAw

Hollerith (H conversion) wHc1c2 ..• cw

Hexadecimal rZw

Literal 'c1c2 ... cn'

Blank wX

Record position Tp

LEGEND:

r = a repeat count (0 < r ~ 255)

w the field width (0 < w~ 255)

s = the scale factor nP (-128 < n < +127)

d decimal positions (0~ d ~ w)

c = character

p character position in the external record (0 < p ~ 32767)

7-7

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 7-8
UPDATE LEVEL PAGE

The specifications within the field descriptors are explained below, and the input and output actions •
accomplished by the descriptors are described in 7 .3.3.1.1 through 7 .3.3.1.12.

• Repeat Count

The repeat count allows a field descriptor to be repeated a maximum of 255 times. The repeat count
specification must be an unsigned integer constant. The field descriptor 5L3 is the same as L3,L3,L3,L3,L3.

• Field Width

The field width specification is an unsigned integer constant indicating the number of character positions the
data occupies, or will occupy, in the external medium. The specification must not exceed 255.

• Scale Factor

Input and output using the E, F, D, and G conversion codes can be scaled up or down (multiplied or divided) by
the specified power of 10, when the scaling specification in the format nP is included in the field descriptor. A
complete description is available in the fundamentals of FORTRAN reference manual, UP-7536 (current
version). Refer also to 7.3.3.1.13 in this manual.

• Decimal Positions

The specification describes the number of digits to the right of the decimal point; if none exist, a zero must be
specified.

• Character

Any character of the Extended FORTRAN character set is permissible.

• Character Position

See 7.3.3.1.12.

Field descriptors may be grouped by using parentheses. The left parenthesis may be preceded by a group repeat
count indicating the number of times the enclosed descriptors are to be repeated. The maximum is 255. Nesting to

three levels is permitted. The result of the basic group and repeat count 2(2X,215,F10.0) is
2X, 15, 15,Fl 0.0\2X,15,15,F10.0.

7.3.3.1.1. Integer Descriptor (rlw)

On input operations, if the value exceeds the range, only the least significant digits are stored with the sign, if any. An
integer, which consists of a signed integer constant where the positive sign is optional, may contain, or be preceded
by, embedded zeros or blanks. Blanks are interpreted as zeros.

If the value exceeds the permissible range of ±32,768 for integer*2 or ±2, 147,483,647 for integer*4, the list
element is defined to be the least significant 16 or 32 bits.

On output, the external field is preceded by a minus sign if the value is negative, and may be preceded by blanks,
space permitting, if the value is positive. If the internal value cannot be converted intothewcharacters specified, the
output field is set to w asterisks.

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

7.3.3.1.2. Real Descriptor - E Conversion (srEw.d)

A 7-9
UPDATE LEVEL PAGE

On input, the external field consists of a string of digits optionally preceded by blanks or zeros preceded by an optional
sign. Blanks are interpreted as zeros. The digit string may specify a decimal point, which overrides the d specification
in the descriptor. The digit string may be followed by exponent notation, E or D followed by an optionally signed
integer constant. If the integer constant is signed, the E or D may be omitted. If the number of significant digits
exceeds the precision of the list element, the value will be rounded to the correct size. If the value is too small or
too large for the range, a zero will be substituted.

On output, the external field has the following format:

where:

s,
Is the sign of the value, either blank or -.

n
Is a decimal digit.

Is the sign of the exponent, either blank or -.

ee
Is the 2-digit exponent .

Note the decimal point preceding the digits.

For a complete representation of all values, the w specification should provide at least seven more additional
field positions than the d specification.

The rules governing the output form when w is not at least 7 greater than d are:

• If (w-d) is 6, the zero character preceding the decimal point is deleted from the output form.

• If (w-d) is 5 and the value is nonnegative, both the s1 and the zero characters preceding the decimal point are

deleted from the output form.

• If neither of the above conditions holds, the entire output field is set to asterisks.

7.3.3.1.3. Real Descriptor - F Conversion (srFw.d)

For input action, refer to the E conversion description (7.3.3.1.2). On output, the external field has the following form:

where:

s
Is the sign of the value, either blank or - .

Is a digit within the integer portion of the output value.

8262 Rev. 1
UP-NUMBER

f

SPERRY UNIVAC Operating System/3 UPDATE LEVEL PAGE

Is a digit within the fractional portion of the output value.

Sufficient space must be provided for a minus sign if the value is negative. If the integer part of the value is
nonnegative and requires more than (w-d-1) character positions for its representation, or is negative and requires
more than (w-d-2) character positions, then the E conversion is used instead of the F conversion specified by the
descriptor. If neither F nor E conversions suffice to represent the value, the entire field is set to asterisks.

7.3.3.1.4. Double Precision Descriptor (srDw.d)

For input action, refer to the E conversion description in 7.3.3.1.2. On output, also discussed in 7.3.3.1.2, the

external field has the following form:

7.3.3.1.5. Logical Descriptor (rlw)

The logical field descriptor allows the input or output of logical values. On input, the field is scanned until a Tor an Fis
encountered; if no Tor Fis found, the list element is set to .FALSE .. On output, a Tor an F is inserted in the record. The
character is right-justified and is preceded by w-1 blanks.

7.3.3.1.6. General Descriptor (srGw.d)

This descriptor provides the capabilities of the E, F, I and the L conversion codes. During an input operation, this
descriptor accepts any real data form with or without an exponent. During an output operation, the F conversion code
is automatically selected if sufficient field width is specified in the descriptor; if not, the standard E or D exponential
form is selected for output. The G descriptor may also be used to transfer integer, double precision, and logical data
fields. For double precision data, the G descriptor is, in effect, the same as a D descriptor. For integer and logical data,
the G descriptor is interpreted as an I or an L descriptor, respectively. The d ands editing information in the format
may be omitted when transferring integer or logical data; it is ignored wher:i present.

7.3.3.1.7. Hollerith Descriptor - A Conversion (rAw)

This descriptor requires a corresponding variable or array element name in the 1/0 list. The maximum number of
characters that can be transmitted to a variable or array element is equal to the length, in bytes, of the variable or
array element.

On input, if the descriptor specifies fewer than the maximum number of characters, the data field is transferred to
main storage and left-justified; blanks are inserted in the remaining storage positions. If the descriptor specifies
more than the maximum number of characters. only the rightmost characters of the data field are transferred to main
storage. The remaining characters are skipped.

On output, if the descriptor specifies fewer characters than can be represented in the variable type, the leftmost

characters of the data field are transferred from main storage. lfthe descriptor specifies more characters than can be
represented in the variable type, the data field, right-justified and preceded by blanks, is transferred from main
storage to the external field.

7.3.3.1.8. Hollerith Descriptor - H Conversion (wHc1c2 ••• ew)

On input, the next w characters transferred from the external device replace the current Hollerith data specified in
the format statement. On output, the Hollerith data currently contained in the FORMAT statement is transferred to
an external device.

7-10

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7.3.3.1.9. Hexadecimal Descriptor (rZw)

This descriptor is used to transfer hexadecimal digits, any two of which may be stored in one byte in the list item. The
number of digits associated with the data types are:

Number of
Type Hexadecimal Digits (k)

Logical*1 2

Logical*4 8

lnteger*2 4

lnteger*4 8

Real*4 8

Double precision 16

Complex*8 16

Complex*16 32

On input, the hexadecimal digits are stored two to a byte, right-justified and zero filled; blanks are interpreted as
zeros. If a minus sign precedes the value, the leftmost bit of the variable is set to 1 .

On output, a sign position is never produced, and when w is less than k in the above table, hexadecimal digits are
truncated on the left. When w exceeds k, (w-k) blanks precede the value.

7.3.3.1.10. Literal Descriptor ('c1c2 ... cn')

This format code, similar in function to the H conversion, causes alphanumeric information to be read into or written
from the literal data in the FORMAT statement. It is not necessary to specify an external field width. No 1/0 list item in
a READ or WRITE statement is associated with this form of alphanumeric transmission. If an apostrophe is required
in a Hollerith string, two successive apostrophes must be specified. For example, the characters DON'T are
represented as 'DON'T. The effect of the literal format code depends on whether it is used with an input or an output
statement.

• Input

The characters in the external field replace the literal data in the FORMAT specification in main storage.
Contiguous inner apostrophes in the FORMAT specification are consolidated into a single apostrophe. Field
width is determined by the literal length after contiguous apostrophes are eliminated. For example, the
FORMAT descriptor 'A" "B' causes the next four characters to be input. Each apostrophe in the external field is
treated as a separate character.

For example, if the input data in positions 1 through 10 is COUNTERLLL and the following statements are
used, the READ statement causes the 10 characters specified COUNTER666 to be transferred, replacing the
characters HEADINGLLL in the FORMAT statement .

7-11

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

r~· '0" CO""'"' rl .
STATEMENT c FORTRAN STATEMENT ... NUMBER f

5 7 10 20

RE A 'D1 (
l '" 2 0) l

20 F b~tv_LA T (I HEAD IJN 6 I)

UPDATE LEVEL PAGE

30 40

l ..I. ..I. .l-.J.. l _J_ ..I. _J_

l I

• Output

All characters, including blanks, within the apostrophes and the characters representing the literal constant
are written as part of the output data. The descriptor 'DON'T causes the five characters DONTto be written.

Example:

(3 0 10)

10 AT (I 1 1-\ Es E E: g AM 'P LE l' 'R'O LE M $ I

Execution of the WRITE statement causes the following record to be written:

THESE ARE SAMPLE PROBLEMS

7.3.3.1.11. Blank Descriptor (wX)

This descriptor omits the next wconsecutive characters on input. On output, the blank descriptor skips w positions in
the output record. At the time each output formatted record is started, it is filled with blanks.

7.3.3.1.12. Record Position Descriptor (Tp)

This descriptor specifies the position in a FORTRAN record where data transfer is to begin. Input and output may
begin at any position by using the Tp descriptor. The value of p represents the start position. As noted for the X
descriptor, each output formatted record is blank filled at the time it is started. For example, the format
specification {T7, 13HEMPLOYEE~NAME,T100,9HTELEPHONE,T40, 12HHOMEMDDRESS) causes record
positions not specified in the field specification to be filled with blanks. However, for print records, the position
specified becomes print column t-1, because the first character of a print record is interpreted as the carriage
control character (Table 7-2), which is not printed. Thus, a print record for the format shown in the example
would be:

EMPLOYEE NAME HOME ADDRESS TELEPHONE

_PRINT ______.__L__-----1.-7_----J/
LOCATION

The following statements cause the 10 characters starting from position 20 of the record to be converted according
to the F10.3 code and stored in Y, and the 5 characters starting from position 1 to be converted according to the F5.1
specification and stored in B.

7-12

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

r•c• •OA COMMEN>
ATEMENT i

STATEMENT UMBER f FORTRAN
5 7 10 20

'REA1) (3 B
2 F 'O'R AT (T20 F\0.3

UPDATE L.EVEL. PAGE

...
30

T\ F . \)

7.3.3.1.13. Scale Factor Effects

Scale factors have the form nP, where n is an optionally signed integer constant, and affect only D, E, F, and G format
codes. Scale factors associated with other format codes are not meaningful.

READ and WRITE statements set an effective oP at their outset. By using an nP directly preceding either a format
code or its associated repeat specification (if any), all the following D, E, F, and G format codes will be treated as
though each were preceded by nP until a new scale factor is encountered. This rule applies even when a rescan of
the entire FORMAT statement is required. For variables of type real or complex, a scale factor will either shift the
decimal point n positions or have no effect, according to the following rules:

• Scaling has no effect when an input field contains an exponent or, for G output, when the internal value is
within the range of effective F conversion.

•

•

When an exponent is produced by a D, E, F, orG output conversion, scaling multiplies the basic real number by
1 On and reduces the produced exponent by n. Thus, external value = internal· value .

In all other cases, the scale factor implies a change of value according to the rule: external value= internal
value· 10n.

7.3.3.2. Multiple Record Format Specification

The slash (/) is a record delimiter and a field separator. If a list of field specifications is followed by a slash, the
remainder of the record being edited is ignored on input or filled with spaces on output. Any editing codes following
the slash are used to edit the next record. The outer right parenthesis of the FORMAT statement is also a record
delimiter if 1/0 list elements of the corresponding 1/0 statement remain at the time it is scanned.

7.3.3.3. Carriage Control Conventions

The first position of a printer output record does not print, but determines the action of the printer carriage. The
action executed for a given carriage control symbol is described in Table 7-2 .

7-13

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table 7-2. Carriage Control Conventions

Symbol Meaning

!:::. 1-line advance

0 2-line advance

+ No advance

1 Skip to top of next page

- 3-line advance

NOTE:

All actions take place before printing.

7.3.3.4. Format Interaction With the 1/0 List

UPDATE LEVEL PAGE

During the execution of an 1/0 statement, the FORMAT specification is scanned from left to right. Editing codes of
the form wH, 'h1 ... hn'. wX andTp, as well as slashes, are interpreted and acted upon without reference to the 1/0 list.
When any other editing code is encountered, one of two possible actions is taken:

1. if a list element remains to be transmitted, it is converted and transmitted, and the FORMAT scan continues; or

2. if no list elements remain, both the current external record and the READ or WRITE statement are terminated.

A maximum of three levels of parentheses is permitted in a FORMAT statement:

LABEL FORMAT (.. (.. (..) ..) .. (.. (..) ..) ..)
1233223321

When the right parenthesis at level 1 is encountered and a list element remains to be transmitted, a new record is
started and one of two possible actions is taken:

1. if level 2 parenthetical groups exist, the FORMAT scan is resumed at the repeat count preceding the rightmost
level 2 grouping; or

2. the scan is resumed at the beginning of the FORMAT.

An occurrence of a complex variable in an 1/0 list requires two real editing codes, and complex* 16 variable requires
two double precision editing codes.

List items must be associated as shown in Table 7-3.

7-14

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table 7-3. Permissible Associations of List Items

Descriptor Data Types of List Items

Integer lnteger*2, integer*4

Real (E conversion, Real*4, real*S, the real or

F conversion), imaginary part of complex*S or complex*16

double precision types

Logical Logical*1, logical*4

General, lnteger*2, integer*4, real*4, real*S

Hollerith logical*1, logical*4, the real or

(A conversion), imaginary part of complex*S or

hexadecimal complex*16 types

A 7-15
UPDATE LEVEL PAGE

7.3.4. Reread

Format:

READ (u,a)k

where:

u
Is a constant or integer variable designating the reread unit.

a
Is the statement label of a FORMAT statement, an integer*4 variable (3.3.2), or an array name.

k
Is an 1/0 list.

Description:

The reread form of the READ statement allows the previous record transferred to main storage to be reedited
using a different FORMAT statement. This order neither selects nor initiates action on a peripheral device.

The Extended FORTRAN library contains a unit table that associates unit numbers with files. In this
discussion, it is assumed that unit 29 has been associated with the reread feature; actually, any one or
more units can be designated (Section 11).

The reread feature is used when the program must determine the kind of information in a record. For instance,
both header and detail records may be intermixed, and each kind of record may require different editing
information in a FORMAT statement. After a READ order transfers a record to main storage, the record is
identified by the program. If the correct format was applied, the program performs the necessary action on the

data; if not, the program may execute a

READ (29,a) k

in conjunction with the desired FORMAT statement.

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 7-16

UPDATE LEVEL PAGE

No ERR return is allowed with a reread. If an END or EOF label is specified and the previous read encountered an •
end of file, control is returned to the specified label. An unformatted record may not be reread.

Example:

8

l.D.
characters

DATE

10
characters

2
DATA
FIELD1

8

TIME

10

DATA
FIELD2

r•c• FOR COMMENT

ATEMENT ~
UMBER ofORTRAN STATEMENT~~~~~~--<-

5 r: 7 10 20

8

PLACE

30

Heading Card

10

DATA
FIELDS

Detail Card

40

DDVBL PRECISION ~ATA TIME ~LAC~ U(5)

C EAU "RECbRD
TI c t:

c IDE NTIF ~ECbR"D

IF C I - I) Gt Gt 'Gb 'PRbCESS H E AD :t 1N1G1 I C1A1'Ril> I

c CA"R IS 1>E.TAI L SD F~R AT EDIT AG A J.

READ (2. ~ 30 D

30 F~R AT x 5DIO· 4-

7.3.5. List-Directed Input/Output

Two classes of list-directed input/output statements are provided in Extended FORTRAN. Both classes process
only formatted records, with the Extended FORTRAN system automatically supplying the necessary FORMAT
specifications.

• Namelist input/output records contain variable or array element names with their associated values. The
entire list is named, and on input the file is automatically searched to locate the name (7.3.5.1).

• Simple list-directed input/output records contain values without variable or array names. The statements are
syntactically simple and require less main storage during program execution (7.3.5.2).

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7.3.5.1. NAMELIST Statement

Format:

where:

n

a

Rules:

Is a namelist name of from one to six characters, beginning with a letter and enclosed in slashes, used to
identify the set of data names that follow.

Is a simple list of variables or arrays of any type representing the data to be transferred; array element
names are not permitted.

1. Once the namelist name is defined by its appearance in a NAME LIST statement, it cannot be redefined in
any other statement and can appear only in 1/0 statements.

2. The list of variables and array names belonging to the specified namelist ends with the specification of
another namelist name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or array name may be associated with more than one namelist name .

Description:

The NAMELIST statement is a nonexecutable statement that permits formatted data transfer operations
without either a FORMAT statement or a list of names in an 1/0 statement.

To use this statement, symbolic data set names are specified in the NAMELIST statement and also in the record
of data to be transferred. No data type is implied by the data set name; for example, a NAMELIST statement
specifying two sets of data may appear as:

30 40

NA E L 'I Si I GR V 'P I I A Ai 'R 'I X I GR u 1> 2 I ,X, 1 I J,

DI ENSibN ATRIX (2.0

GRUP1 contains the variable names A and I and the array MATRIX. GRUP2 contains the variable names X
and J.

An 1/0 statement can specify a namelist name in place of the usual reference to a format specification. The
name specified identifies the record to be transferred. Data in a record is preceded by a variable or array
element name and an equals symbol. To ensure transfer of the correct data, the object program compares the
data name associated with a namelist with those in the record .

7-17

8262 Rev. 1
UP-NUMB EA

SPERRY UNIVAC Operating System/3 7-18
UPDATE LEVEL PAGE

READ (unit, namelist-name,END=label1,ERR=label2) • The general formats of 1/0 statements used in conjunction with the NAMELIST statement are:

WRITE (unit,namelist-name)

Note that the END and ERR clauses are optional and that no list is present.

The general form of data for input is:

where:

n

Is a namelist name, a name identical with the name specified in the NAMELIST statement.

a
Is a variable, array element or array name of any data type.

c
Is a single, optionally signed, constant of the same type as the associated name; or; if the name
is an array name, c is a list of one or more elements, each element separated by a comma, •
where an element is either an optionally signed constant or a list of identical, optionally signed,
constants preceded by an unsigned integer repeat count of the form k*

The following rules pertain to input data:

1. The first character in a logical record must be blank. The second must be an ampersand immediately
followed by the namelist name without any embedded blanks. The namelist is separated from the
succeeding symbolic name by a blank or blanks. A comma after the last data unit is optional. The end of
the NAMELIST record is signaled by &END.

2. When an array element or an array occurs in a NAMELIST record, the data is an optionally signed
constant of the same type as its associated name. The constants can be preceded by an unsigned integer
and an asterisk to indicate repetition. An array need not be filled by its data list.

3. No blanks may be embedded in constants.

4. If logical constants are used, the acceptable values are T, or .TRUE .. and F, or .FALSE ..

5. Literal constants can be transferred on input by using either apostrophes or the wH field descriptor.
Literal constants may appear on an input record as TITLE='DON"T' or TITLE=5HDON'T.

A READ statement referencing a namelist name causes the next record to be read and tested for the proper
namelist name. If the name is found, the first variable or array name is read and compared with the list of
names defined in the NAMELIST statement. If the variable or array name is found in the list, the data value or
values are assigned, and the next name is accessed. If the record does not contain the namelist name,
subsequent records are read from the external medium until the record containing the name is found. If, after
the proper record is found, a variable or array name that is not in the list of names appears in the input record,
an error message is produced and the program is terminated. •

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Output data contains the namelist name followed by variables, array elements, and/or array names and their
corresponding values. An array is written out by columns. Data fields are large enough to contain all the
significant digits. Output data can be read by an input statement referencing the name list name. Literal data is
never produced as output.

7.3.5.2. Simple List-Directed Input/Output

List-directed 1/0 statements are identical in concept with formatted READ and WRITE statements except for the
lack of a specific FORMAT statement reference. They are distinguished by the presence of the character asterisk
(*) in place of the usual FORMAT reference, as in:

READ (10,*,END=30) A,B,C

These statements initiate and control the transfer of formatted data between a designated unit and main storage.
Format control is provided by the Extended FORTRAN system based on the types of the list items and the record
length associated with the unit. When preparing input data, the programmer must ensure that it conforms to the
requirements of this list-directed format, specifically in regard to the use of the comma, slash, and blank
characters. List-directed output records are, of course, acceptable as list-directed input.

• Input Data Format

An input record consists of a list of constants, each demarcated by a separator. Separators are the characters:

blank (or a series of blanks)

comma (preceded and followed by zero or more blanks)

end-of-record

slash (preceded by zero or more blanks)

Since the blank is considered a separator, no embedded blanks may appear in arithmetic constants; blank,
comma, or slash may appear within a literal constant enclosed within apostrophes, and end-of-record forces a
read of the next sequential record. For card input, end-of-record is determined by the fixed length of 80
positions. For other input, such as tape or disc, the length specification given at the time the record was written
is the determining factor. The slash separator causes termination of the READ statement. Real constants
must be associated with real list items; integer and literal constants may have any association. The
exponent identifiers E and D are considered equivalent. The real and imaginary parts of a COMPLEX
constant must be separated by a comma and enclosed in parentheses. A repeat count may precede a
constant using the form:

Two or more consecutive comma separators (with any number of blanks or end of records intervening)
indicates that the corresponding list items are not to be redefined. Multiple numbers of these "null items" may
be indicated by:

(separator)r*(separator)

7-19

8262 Rev. 1
UP-NUMBER

•

SPERRY UNIVAC Operating System/3

Example:

r•c• FOR CO~IMENT

ATEMENT c FORTRAN
UMBER V STATEMENT~~~~~~~~-

5 6 7 10 20

INTEGE

C:.~::,::7, 12,2• ,'HE''S'

After the READ statement is executed, the values of the list items will be:

A 17.2396 (or 17.23961727 if real*8)

B 12.0

C,D unchanged

E HE'S

F 12

G 14

H,I unchanged

Output Data Format

UPDATE LEVEL PAGE

30

F G H

The output records consist of a list of constants, each separated by a comma. Output records never contain
repeat items (r*constant) or literals. The maximum precision commensurate with the list item will be
represented.

7.3.6. Auxiliary 1/0 Statements

Auxiliary 1/0 statements control the demarcation of files and the positioning of files to desired points of reference.

7.3.6.1. REWIND Statement

Format:

REWIND u

7-20

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 7-21
UPDATE LEVEL PAGE

where:

u

Represents an integer constant or variable designating a sequential file on tape or disc.

Description:

The REWIND statement positions the file to a point immediately preceding all records of the file. The file is
closed before a rewind operation. A REWIND statement issued to an unopened file is a null operation. A
REWIND statement issued after an ENDFILE statement is issued allows the file to be reopened at the time of
the next READ or WRITE statement.

7.3.6.2. BACKSPACE Statement

Format:

BACKSPACE u

where:

u
Is an integer constant or variable designating an 1/0 device.

Description:

The BACKSPACE statement activates the designated unit and causes a backspace of one logical record.

A record for a formatted file is defined by the termination of a WRITE statement, a slash encountered during
format control, or the last parenthesis encountered in the format when other list items exist in the
corresponding READ or WRITE statement. It is illegal for a format to demand a record longer than is present at
the current file position.

In an unformatted environment, a record is defined by a single WRITE statement. The BACKSPACE statement
has no effect if the file associated with a unit is currently positioned immediately preceding the first record.
This statement should not be used when the file was used for list-directed input/output.

A BACKSPACE statement issued to an unopened file is a null operation. Logically, a BACKSPACE statement
can follow only a READ statement or a WRITE statement to that file. A BACKSPACE statement after a WRITE
statement closes and positions the file; the file is open after a legal BACKSPACE statement.

The BACKSPACE statement cannot be used with disc files under any conditions, with a file of blocked
records, nor with a file having two 1/0 areas or a work area. However, these restrictions do not apply when
backspacing over a file"s end-of-file record.

7.3.6.3. ENDFILE Statement

Format:

ENDFILE u

where:

u
Is an integer constant or variable designating a card, tape, or sequential disc output file.

8262 Rev, 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Description:

The ENDFILE statement closes the file specified by the unit number. Only a REWIND statement is allowed after
an ENDFILE statement is issued; all other commands produce error messages. An ENDFILE statement issued
to an unopened file is a null operation physically.

7.3.7. Sequential File Considerations

The 1/0 statements may not be executed in arbitrary sequences; the following table shows instances where
specific commands are prohibited or ignored.

N indicates that the operation is noted, but the file is still positioned following
the last logical record. A second BACKSPACE must be issued to position the

file in front of the last logical record in the file.

7-22

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A
UPDATE LEVEL PAGE

Further, not all operations are permitted on all devices; the following table shows prohibited combinations .

~ e READ WRITE ENDFILE BACKSPACE REWIND

TAPE * *

DISC * * p

CARD READ p p p p

CARD PUNCH p p p

PRINTER p p p

REREAD p p p p

*This operation may be prohibited when the files are defined as input onlyoroutputonly.
See 11.3.1.4forfurtherdetails.

Formatted and unformatted records may be freely intermixed on output tape and disc files, but it is a user
responsibility to read these records in the same mode as they were written.

7.4. DIRECT ACCESS FILES

Extended FORTRAN direct access statements are used to control disc subsystems. The term "direct access"
refers to the ability of the disc to access a specified record of a file without accessing all preceding records. Disc
subsystems need not be accessed directly; these devices may be used with sequential files in the same manner
as for tape units. In this case, the only 1/0 statements required are those described in 7.3.

The direct access 1/0 statements are DEFINE FILE, FIND, READ, and WRITE. The direct access 1/0 statements can
transmit either formatted or unformatted records.

7.4.1. DEFINE FILE Statement

Format:

where:

u

m

Is a file identifier or an integer constant designating an 1/0 device.

Is an integer constant specifying the number of records in the file.

Is an integer constant specifying the maximum size of a record in the file in terms of characters (bytes),

main storage locations (bytes), or main storage units (words), depending on the specification for x .

7-23

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 1-24
UPDATE LEVEL PAGE

x
Is one of three possible code letters to indicate an option of format control: •

v

L, to transfer either formatted or unformatted data, where the specification form determines the number

of bytes;

E, to transfer formatted data, where the specification form determines the number of bytes;

U, to transfer unformatted data, where the specification of m designates main storage units.

Is the associated variable for the file, which must be an unsubscripted integer*4 variable. After execution
of a READ or WRITE statement, the variable is assigned a value in the range (1 ~ v ~ r) indicating the
sequential position of the next record in the file; after execution of a FIND statement. it is assigned a value
indicating the position of the desired record. It is not defined (i.e .. set to a value) by the DEFINE FILE

statement.

Description:

A DEFINE FILE statment is executable, and it dynamically describes one or more files that may be
referenced during program execution. At the start of execution of a FORTRAN program, all direct access
units are considered to be undefined, and no READ, WRITE, or FIND references are permitted. When a
DEFINE FILE is executed, the characteristics of one or more units are registered with the Extended
FORTRAN system, and the units are made available for use. Thereafter, further definitions of previously

defined units are ignored.

The associated variable v should not be passed indiscriminately between subprograms or used for purposes •
other than a file pointer, since the compiler has no syntactic clues as to its usage when the DEFINE FILE
statement is absent in a subprogram. When an associated variable must be transmitted to a subprogram, it
should be passed in COMMON storage or, less preferably, associated with a dummy argument called by name.

To calculate the record size in storage units (when using the U specification for parameter x): determine the
total number of bytes required for all the items of the 1/0 list, and divide this by 4. If the quotient is not an
integer, round it to the next highest integer. There is no restriction on the transmission of multiple records by
FORMAT /list interaction, but unformatted lists cannot specify more than one disc record.

Example:

STATEMENT~~~~~~--~

20 30

I= ILE 3 (IO 0 '
seq 20 u FI LE 5

File 3 is composed of 100 records, the maximum size of which is 120 bytes. L indicates that the record size is
specified in bytes. If the 1/0 statement contains a reference to a format. 120 bytes of formatted data are
transferred; if not, unformatted data is transferred. File 5 contains 98 records, each 80 bytes in length .

7.4.2. Disc READ Statement

Format:

READ (u'p,a.ERR=label1.END=label2)k

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A
UPDATE LEVEL PAGE

where:

u

p

a

Is a constant or integer variable designating an 1/0 device, followed by an apostrophe.

Is an integer expression designating the position of the record in the file, which should be in the range
(1~ p~ r), where r is the number of records in the file.

Is an optional label of a FORMAT statement, an array name, an integer variable (3.3.2), or the
character asterisk (7.3.5.2).

ERR=label1

Optionally specifies the label of a statement to which control is to be transferred when an error condition
occurs.

END=label2

Optionally specifies the label of a statement to which control is to be transferred when an ENDFILE
record is encountered, or when p is outside the file limits.

k
Is an 1/0 list.

Example:

r'C' FOR COMMENT

STATEMENT
gFORTRAH STATEMENT ... NUMBER

I;' 7 10 5 20 30 40 50

DEFI1NE l="J: L,E 3 (I I 0 0' ~ 5 I 2 ~ IL,. IF ! L E .3') I l

I N,T,E1G,E,'R, ,F ,I,L,E,3,/11, I I I I I I I I I I I I I I I I I ' I I I I I I ' I ' ' I I

: . J_ I I I l

JR,E.Ap1 (3' F IL E 3 ! , 8 7 , E"R"R = I 110) ,A I , ,BI ' I (I c ,(I I) I' I I I= I J I, ,3 ,0,) I I

87 I= :0 R lv\iAtli (3 2 F 1 b1· ,1.U _l I .i J
I

The first record in file 3 is transferred to main storage when the READ statement is first executed. Each
subsequent execution of the READ statement transfers the next record in the file to main storage, unless
the associated variable FILE3 is explicitly redefined. The descriptor 32F16.4 indicates that each unit of data
consists of 16 bytes and 32 such units of data are to be transferred. Thus, the 512 bytes (16x32) of the

record are transferred to main storage.

The slash in a FORMAT specification can control the starting point of data transfer in a file. If the FORMAT

statement in the example were:

FORMAT (//32F16.4)

the first execution of the READ statement would transfer the third record in the file; the second execution
would transfer the sixth record .

7-25

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 7-26
UPDATE LEVEL PAGE

7.4.3. Disc WRITE Statement

Format:

WRITE (u'p,a) k

where:

u

p

a

k

Example:

Is a constant or integer variable designating an 1/0 device, followed by an apostrophe.

Is an integer expression designating the position of the record in the file.

Is an optional FORMAT statement label, an array name, an integer variable to which the statement
label of a FORMAT statement has been assigned (3.3.2), or the character asterisk (7.3.5.2).

Is an 1/0 list.

STATEMENT~~~~~~--~

20 30

l>E'F='INE FILE FILEa+)

L~GI AL L

D~UBLE ?REC S~~N D

l=ILEIJ. = 2

WRITE lt.l- 1 FILE:4-+\ L

2 f ~RW\AT (IS F12.2 L I)

Thirty-six bytes (8 + 12 + 15 + 1) are transferred from storage to the third record in the file. The format
specification indicates the number of bytes for the integer, real, double precision, and logical values
transferred. If the WRITE statement does not specify a format label, an unformatted WRITE statement is
executed. In this case, 20 bytes are transferred.

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

Variable Name Type Number of Bytes

Integer 4

R Real 4

D Double precision 8

L Logical 4

20 Total

A
7-27

UPDATE LEVEL PAGE

7.4.4. Disc FIND Statement

Format:

FIND (u'p)

where:

u
Is a constant or integer variable designating an 1/0 device, followed by an apostrophe.

p

Is an integer expression designating the position of a record in the file.

Description:

The FIND statement can decrease the time required to execute an object program requiring records from disc.
This statement positions the access arms to a disc address specified by a file identifier and a record position.
During the time the arms are being positioned, execution ofthe object program can continue. After positioning,
a READ statement accessing the record addressed in the FIND statement may be executed, and the record is
transferred to main storage; thus, data transfer is completed more quickly when the arms are pre-positioned to
a required track address prior to the execution of a READ statement. The FIND statement is never logically
required in a program.

Example:

30

~IND Lj. I 20)

RE A"D (lf I 20) c

This example shows the relationship between a READ statement and a FIND statement. While the access arms
are being positioned, the statements between the FIND statement and the READ statement are executed.

--------------- - ---------- -------------~--~~---1

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

8. Data Initialization

8.1. GENERAL

Data initialization for SPERRY UNIVAC Operating System/3 (OS/3) Extended FORTRAN programs is described in
this section. For more information, refer to the fundamentals of FORTRAN reference manual, UP-7536 (current
version). See the DIMENSION and type statements (6.3 and 6.4.1), which have an initialization capability. In the
absence of initialization, variables and array elements must be defined prior to reference.

8.2. DATA Statement

Format:

where:

k

d

Is a list of variable names, array names, array element names, or implied DO lists separated by

commas.

Is a list of constants, any of which may be preceded by r* to specify a repeat count, where r is an unsigned
integer constant; items in the list are separated by commas.

Description:

The DATA statement initializes values represented by a variable, an array, and specified array elements. None
of these items should be in blank COMMON; they should be in labeled COMMON only if the DATA statement
appears in a block data subprogram.

Array element names may appear in DATA statements iftheirusageconformstothefollowingconventions:

• Subscript expressions are restricted to the standard American National Standard forms: c, v, cw, C*
v+k, c*v-k, and v-k, where c and k are positive integer constants and v is an integer variable.

• When v appears in a subscript, the array element name must be within the range of an implied DO list in

which v is the control variable .

• The initial, terminal, and incrementa-1 values of the control variable of any implied DO list must be

specified as positive integer constants.

8-1

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

8-2

Constants may be of the integer, real, double precision, complex, hexadecimal, logical, or literal type. When the •
corresponding variable is of a differing type (except for logical or literal), the constant will be converted,

possibly causing truncation.

The DATA statement may be used to initialize arrays and variables with literal data. When initializing an array
element or variable, a long literal string is truncated on the right to the correct size and a shorter string is
filled with blanks on the right to the correct size.

Several consecutive elements of an array may be initialized with a single literal constant by using the array
name without a subscript or by using an array element as the last item in the list. The long literal constant is
placed in as many consecutive array elements as needed to contain it. If the last used position is only partially
filled, that element is padded on the right with blanks. Truncation occurs if the literal string exceeds the limit of
the array.

Example:

DIMENSION ARR(6)
DATA ARR/'ABCDEFGHIJKLM'/

produces

ARR(1) contains 'ABCD'
ARR(2) contains 'EFGH'
ARR(3) contains 'IJKL'
ARR(4) contains 'M.6..6.L.'
ARR(5) not initialized
ARR(6) not initialized

A long literal may be overlaid if the constant list contains more than one constant.

Example:

DIMENSION ARR(6)
DATA ARR,VAR/'ABCDEFGHIJKLM',99/

produces

ARR(1) contains 'ABCD'
ARR(2) contains 99.0
ARR(3) contains 'IJKL'
ARR(4) contains 'M.6..6..6.'
ARR(5) not initialized
ARR(6) not initialized
VAR not initialized

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

Initialization may commence at any point in the array .

Example:

DIMENSION ARR(6)
DATA VAR,ARR(3)/17, 1 OHABCDEFGHIJ/

produces

VAR
ARR(1)
ARR(2)
ARR(3)
ARR(4)
ARR(5)
ARR(6)

contains 17.0
not initialized
not initialized
contains 'ABCD'
contains 'EFGH'
contains 'IJLL'
not initialized

8.3. BLOCK DATA SUBPROGRAM

8-3
UPDATE LEVEL PAGE

A block data subprogram is an independently compiled specification subprogram. It is used to initialize values in
labeled common blocks. The subprogram can contain only DATA, EQUIVALENCE, COMMON, DIMENSION, type, and
IMPLICIT statements. The block data subprogram is headed by the BLOCK DATA statement. The order of statements
is governed by the rules shown in Table 1-2.

8.3.1. BLOCK DATA Statement

Format:

BLOCK DATA s

where:

s
Is an optional symbolic name used to identify the BLOCK DATA subprogram.

Description:

The BLOCK DATA statement is the first statement in a block data subprogram, the statement indicating the
beginning of a block data subprogram to the compiler. For a discussion of the effects of s, see the PROGRAM
statement (6.8). In the absence of s, the compiler supplies the name $BLOCK .

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

9.1. GENERAL

SPERRY UNIVAC Operating System/3 A 9-1
UPDATE LEVEL PAGE

9. Compilation

The SPERRY UNIVAC Operating System/3 (OS/3) Extended FORTRAN compiler accepts source programs from
card or disc files. Programs may be placed in disc files for storage and maintenance by using the SPERRY ~
UNVIAC OS/3 system service programs. Refer to the current versions of OS/3 system service programs (SSP)
programmer reference (UP-8209), introduction to the SSP (UP-8043), and SSP user guide (UP-8062).

The Extended FORTRAN compiler is named FOR and requires one work file, allocated in the job control stream.
The compiler requires CC0016 (X'CCOO') bytes of main storage plus space for the prologue. Additional storage is
utilized to increase compiler capacity. See Appendix D for examples of compilations using FOR .

9.2. PARAMETER STATEMENT FORMAT

Parameter statements for the compiler appear as punched cards in the job control stream.

Format:

1

I ~ PARAM~ I :: =d1 ·"2=d2, ... II

The I I sequence must be in columns 1 and 2; columns 73 through 80 are not used. One or more blanks are
required before and after PARAM, and one or more blanks are permitted after a comma. Each argument consists
of a name (n), an equal sign, and a compiler directive (d). An argument may not contain embedded blanks.
Multiple PARAM statements are permitted, but continuation is not. An argument may not continue on another
card. For an explanation of statement conventions that apply to this section, refer to 1.3 .

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 9-2
UPDATE LEVEL PAGE

t

9.2.1. Compiler Arguments

A list of arguments provided by the compiler follows. Descriptions of the arguments follow the list. Refer to
Appendix D for additional compilation options for users experienced in assembly language.

Format:

1 10

II t.PARAMt. OUT=filename,
LIN=filename,LST=option,OPT=(D,N,X),NXT=LNK,CNL=K,
MDE=l ,STX=option, I N=module-name/filename

The occurrence of an IN argument signals the end of the scanning for PARAM statements in each set of
program units to be compiled. Arguments following an IN argument on a given I I PARAM card are
ignored. Subsequent I I PARAM statements may contain IN arguments to allow for stacked compilations.
(See 9.3.)

Output Argument:

OUT=filename
Specifies the file in which the compiler is to place object modules.

A one to eight alphanumeric character identifier is specified by filename. If OUT is not specified, the
compiler places all object modules in the temporary scratch file YRUN.

Library Input Argument:

LIN=filename
Specifies the name of the default file in which the source modules reside.

A one to eight alphanumeric character identifier is specified by filename. If LIN is not specified, the
compiler assumes the default filename of LIB1. This argument is used in conjunction with the IN
argument.

Listing Argument:

LST=option

N

Specifies the quantity of listings produced by the compiler.

One option may be chosen. The options include:

Specifies an abbreviated listing consisting of only the compiler identification, parameters, error
counts, and termination conditions.

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER

s

M

w

0

SPERRY UNIVAC Operating System/3 B 9-3
UPDATE LEVEL PAGE

Specifies, in addition to the N listing, the source code listing with any serious diagnostics.

Specifies, in addition to the S listing, a storage map showing the addresses assigned to variables and
arrays.

Specifies, in addition to the M listing, academic and warning diagnostics.

Specifies, in addition to the W listing, an object code listing showing the SPERRY UNIVAC 90
instructions generated for the executable statements.

The LST argument remains in effect for succeeding compilations until another LST argument is
encountered. If no LST PARAM is specified, the M option is assumed.

Options Argument:

OPT=(D. N. X)
Specifies compilation options.

One or all options may be chosen. The options include:

D

N

x

Specifies double spacing of the compiler listing .

Specifies that no object program is to be generated. The program units are merely compiled and

cannot be executed.

Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments (10.2).

The default for the OPT argument is single spacing with the absence of the N and X specifications. All OPT
options remain in effect until another OPT specification is encountered. If only one OPT argument is

specified, the parentheses are optional.

Automatic Linker Call Argument:

NXT=LNK
Specifies the execution of the OS/3 linkage editor will automatically be invoked after the compilation

of all program units in the next data set.

For card compilations, the linkage editor begins reading the PARAM statements immediately
following the /* which terminated the FORTRAN source card input.

For a disc compilation, the linkage editor begins reading the PARAM statements immediately
following the I I PARAM card containing the IN argument which specified the disc file to be
compiled and its associated correction file.

There is no default for the NXT argument. NXT can be used to simplify the job control stream and improve

performance.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Compiler Termination Argument:

CNL=k
Specifies compiler termination if a diagnostic with a severity level k is generated.

The values for k are:

• 2, which indicates academic messages, e.g., a truncated constant;

• 4, which indicates warning diagnostics, e.g., an extraneous comma in a list;

• 6, which indicates serious diagnostics, e.g., an array reference without a preceding array declarator;
or

• 8, which indicates fatal errors, e.g., insufficient storage to complete the compilation.

If the CNL argument is not specified, the compiler processes all program units in the control stream,
regardless of errors encountered. When specified, the CNL argument remains in force until redefined.

Mode Argument:

MDE=I
Specifies that the compiler is to evaluate expressions in a strict left-to-right order when there is a
choice, and that storage is to be allocated for variables and arrays in the sequence in which they
were encountered.

This argument is recommended for use when compiling programs originally developed under the IBM
System/360 Disc Operating System. When specified, the MDE argument remains in force for all remaining
compilations.

STXIT Macro Instruction Argument:

When the Extended FORTRAN Compiler generates code for a main program, a call to a FORTRAN IV library
subprogram is produced. This causes the execution of two STXIT macro instructions, locates the diagnostic
device, and sets up the program mask in the program status word (PSW).

The two STXIT macro instructions, for program checks and abnormal termination enable the library to:

• maintain switches for the OVERFL and DVCHK subroutines;

• recover boundary alignment errors caused by COMMON and EQUIVALENCE statements and
argument substitution; and

• provide for orderly shutdown of the program when fatal errors occur.

The STX argument for the compiler paramete(statement provides user control of the execution of STXIT
macro instructions:

STX=Y

Causes the execution of two STXIT macro instructions at the beginning of a SUBROUTINE or a
FUNCTION subprogram.

9-4

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 9-5
UPDATE LEVEL PAGE

STX=N
Suppresses the execution of two STXIT macro instructions at program initiation. STX=N is used only
for main programs.

If the STX argument is not specified, a specification of Y is assumed for main programs, and a
specification of N is assumed for SUBROUTINE or FUNCTION subprograms.

The STX argument is operative only for the current subprogram to be compiled. This argument is
useful when integrating COBOL and assembler object modules with FORTRAN object modules.

Input Argument:

IN=module-name/filename
Specifies compilation of source programs residing in disc files.

Module-name is a one to eight alphanumeric character identifier indicating the name of a source
module to be compiled. Filename is a one to eight alphanumeric character identifier indicating the
name of a file in which the module resides. If /filename is not specified, a default name is assumed
and is described via the LIN argument.

9.3. STACKED COMPILATION

The compiler is capable of processing arbitrary numbers of source program units during a single execution.
When the source programs are on punched cards, one or more units may be placed between the /$ and /* data
set delimiters. The data set is preceded by compilation I I PARAM statements. Some compiler parameters are
global and apply to all programs compiled. When a global parameter is to be changed, the job control stream
should be organized into two or more data sets, each preceded by the required parameters. For example:

30

I . .
I$

(one or more program units)

17'1:.

I 'PA 'R A I I •

I

(one or more program units)

I''*' I I
: ; : :

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE l_EVEL PAGE

t

When the source programs are on disc files, the programs are identified by using a librarian module name. A
source module consists of one or more FORTRAN program units. The IN compiler parameter is used to identify
source files to the compiler. Global parameters can be redefined in the same way as for cards. For example:

30

I I 'PA AM . . '

I I 'PA R AM IN :: A/FILEB

I I 'PA R AM • • •

I I 'PA 'R AM

9.4. SOURCE CORRECTION FACILITY

When source programs reside on disc, it is possible to change the source as it is read into the compiler. If a 1$
and I* data set immediately follow the I I PARAM statement with the IN argument, the compiler assumes that
the data set contains correction cards to the source file. The method of correction is the same for the 0513
system librarian's COR function. Refer to the current versions of 0513 system service programs (SSP)
programmer reference (UP-8209), introduction to the SSP (UP-8043), and SSP user guide (UP-8062). The
corrections apply only to this compilation and the original source is not changed. When the compilation is
complete, the next card available in the control stream immediately follows the I* card. For example:

I I PARAM IN=MODAIFILEA

1$

update of correction cards

I*

II PARAM ...

NOTE:

A data set to be compiled from cards may not immediately follow an IN card because it will be mistaken for a
correction deck.

9.5. CREATING A JOB CONTROL STREAM

The problem of creating a legal job control stream is greatly simplified by using the proper jproc (job control

procedure). How to use the jprocs is described in Appendix D. However, if you wish to create your own job
control stream, the followig rules must be observed.

• The FORTRAN compiler requires one work file. The jproc WORK 1 will supply this file.

• If the IN or OUT options are specified, the appropriate disc files must be defined .

9-6

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 A 9-7
UPDATE LEVEL PAGE

A printer device is required and must be defined by the I I DVC 20 and I I LFD PRNTR job control
statements.

• Because of the stacked compilation feature (9.3), the // OPTION REPEAT feature of job control is not
required and, in fact. must not be used.

• If the I I OPTION LINK or the I I OPTION LINK.GO job control statement is specified, no linkage editor
control cards or control stream data for the program is allowed; the source correction facility (9.4) or the
stacked compilation feature (9.3) would mistake the data sets for FORTRAN source code.

t

--~-~-----------

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

10.1. GENERAL

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

10. Debugging

Debugging aids are provided with the SPERRY UNIVAC Operating System/3 (OS/3) Extended FORTRAN
compiler. These debugging aids consist of the standard 1/0 statements (especially list-directed statements
described in 7.3.5), conditional compilation, the DEBUG statement and its associated packets, and the DUMP and
PDUMP standard library subroutines for formatted main storage dumps.

10.2. CONDITIONAL COMPILATION

The compiler accepts a parameter which enables conditional compilation of any line which contains the
character X in position 1 of the line. When this parameter is enabled, the line will be compiled; otherwise, the
line is treated as a comment .

Example:

STATEMENT .
NUMBER R FORTRAN STATEMENT ...

5 7 10 20 30

~·c• •OR COMMEN'

x.l. ...I.. ...I.. ...I.. '? ...1.'R..1.IJ41T..1. ..1. \...1.0...1.~ ..1.A.J.t:... B~...1. ...1..C ...I.. ...I. l _l _L _L _L _l l
' I •

X...1. ...I.. ...1..l...1..0 F.Lt9R Mi_AT C3F\ 5. bl) ...I.. l ...I.. _l_ _l_

This coding would be used to print intermediate results during the debugging of a program. When debugging is
complete, these statements can remain dormant in the source to be used at a later date if necessary. See
Section 9 for the format of the PARAM statement.

10.3. DEBUG STATEMENT

Format:

DEBUG o, ... ,o

10-1

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

where:

0

Is an option and may be any of the following:

n specifies a variable or array name whose new value is to be displayed when the value is
changed. If name refers to an array, the changed element is output; if the list of names, with
its associated parenthesis, is omitted, a display is performed every time any array element or
variable has a value change. When the INIT option is omitted, changes of value are not
reflected in the output of the debugging operations.

n specifies an array name, identifying the array where subscript validity is to be checked. If the
list of names, with its associated parenthesis, is omitted, all arrays are checked by comparing
the total subscript value and array size, and a message is produced for each failure. When the
SUBCHK option is omitted, no subscript checking occurs.

SUBTRACE

TRACE

UNIT(i)

Specifies that the name of the subroutine, function, or entry being debugged is to be
displayed each time the subprogram is entered; notification is also given when execution

of the subprogram is complete.

Specifies the display of the program flow by statement label within the program being
debugged. A TRACE ON statement must appear in the debugging packet.

specifies an integer constant specifying the output unit for the debugging information. The
debugging information consists of the displays produced by the DEBUG and DISPLAY
statements and the DUMP and PDUMP subroutines. If a debug unit is not specified in the
main program, this information will be displayed on the standard diagnostic device until a
subprogram that defines the debug unit is executed. Subsequent definitions of the debug
unit are ignored.

Description:

The DEBUG statement is a specification statement informing the compiler that the debugging aids are to be
used and specifies the debugging operations to be performed. One DEBUG statement is permitted for each
program unit, as shown in Table 1-2.

An example of the DEBUG statement is given in Figure 10-1.

10.4. DEBUGGING PACKET

10-2

•

•

One or more debugging packets can be included for each program unit to be examined. These packets begin with the
AT statement and end with another AT statement specifying a new packet or with the program unit's END statement. •
The debugging packet consists of an AT statement, debugging statements as required (TRACE ON, TRACE OFF, and
DISPLAY), and other FORTRAN source statements, as required.

•
8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

General rules for using debugging packets are:

1. DO loops must not extend beyond the originating packet.

2. Only executable statements may appear in a debugging packet.

A simple debugging packet is illustrated in Figure 10-1.

10.4.1. AT Statement

Format:

AT a

where:

a

UPDATE LEVEL PAGE

Is the statement label of an executable statement in the program unit to be debugged.

Description:

The AT statement, the first statement of a debugging packet, specifies the point in the program unit at which
debugging starts. The debugging operations specified in the packet beginning with the AT statement are
performed before the statement in the program unit referenced by the AT statement is executed.

• 10.4.2. TRACE ON Statement

Format:

TRACE ON

Description:

The TRACE ON statement allows the tracing of the program flow by statement number. When a statement with
a label is executed in the main program unit, the statement number is displayed in the debugging information.

The TRACE ON statement takes effect as specified by the AT statement, and the trace operates through any
level of subprogram call and return.

The TRACE option in the DEBUG statement must have been specified to use the TRACE ON statement. If
control in the program unit is transferred to a program unit for which the TRACE option in a DEBUG statement
was not specified, no trace output within that unit is made.

10.4.3. TRACE OFF Statement

Format:

TRACE OFF

• Description:

The TRACE OFF statement stops the tracing operations initiated by the TRACE ON statement.

10-3

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

10.4.4. DISPLAY Statement

Format:

DISPLAY k

where:

k
Is a list of variable and/or array names separated by commas.

Description:

UPDATE LEVEL PAGE

The DISPLAY statement is used in a debugging packet to display data in a NAME LIST format (7 .3.5.1). The
specification

DISPLAY k

has the same effect as the statements:

NAMELIST /n/k

WRITE (u,n)

Array elements may not appear in the list.

30 50

Db \0 10

D~ I 0 10

Y(I J)=

I~ C.YC.l J)). \0 20

20

10 CbNTINUE

'/.. 'DEBUG !NIT C.Y) Su TRACE TRACE

)o(I IJ N (. 3)

x AT

x TRACE ~N

x AT
T

)o('D I J

END

Figure 10-1. DEBUG Statement and Packet

10-4

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

10.5. FORMATTED MAIN STORAGE DUMP

Two Extended FORTRAN standard library subroutines, DUMP and PDUMP, are provided to display variables or
arrays. These two subroutines are identical, except that DUMP terminates the calling program and PDUMP does
not.

Format:

where:

p

Is either DUMP or PDUMP.

u

Is a variable or array element name indicating the upper address boundary for the display.

Is a variable or array element name indicating the lower address boundary for the display.

f
Is an integer indicating the desired interpretation of the storage area.

The u and I specifications may be interchanged; their positions in the CALL statement do not influence the dump.
The argument list enclosed in parentheses is optional.

The codes used for the format specification f are:

Display Interpretation

0 Hexadecimal

Logical*1

2 Logical*4

3 lnteger*2

4 lnteger*4

5 Real*4

6 Real*8

7 Complex*8

8 Complex*16

9 Literal

The output of these subroutines is directed to the debug unit or to the standard diagnostic unit. If no argument
list is present, the dump is for the entire program and is in hexadecimal format.

10-5

• ~

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

11. Configuration of the Execution Environment

11.1. DATA MANAGEMENT INTERFACE

This section describes the interface between SPERRY UNIVAC Operating System/3 (OS/3) Extended FORTRAN
and the OS/3 data management system, including:

• the relationships between unit numbers and external files;

• the kinds of devices supported;

• performance considerations, such as record blocking and buffering; and

• system defaults, that is, assumptions made by the system when specific directions are not provided .

Default actions taken when various errors are detected during program execution and how these defaults are
changed to suit application requirements are also described. An example of a complete execution environment is
given in 11.3.6.

An executable program requires a group of subroutines to support the FORTRAN 1/0 statements and to provide
an interface to the data management system. These subroutines, individually called by the compiler, are
automatically placed in the executable program by the linkage editor. One module, the control module, is central
to the entire 1/0 scheme, because it contains the following tables:

• a unit table containing a unit number and FORTRAN control information and having an entry for each unit
number implicit in the FORTRAN source program;

• a unit control table (a DTF in data management terminology) required bythedatamanagementsystem;and

• buffers and work areas for record processing.

A few control modules suitable for many application programs are contained in the Extended FORTRAN library
(11.2). For more complex programs, the control module must be configured, using the Extended FORTRAN unit
definition procedures (UNITs). Only one control module can exist in an executable program.

11.2. CONFIGURATIONS SUPPLIED

The following configurations are supplied by Sperry Univac for general use in simple applications. The unit
numbers selected are industry standard .

11-1

8262 Rev. 1

UP-NUMBER

•

•

SPERRY UNIVAC Operating System/3 c 11-2
UPDATE LEVEL PAGE

Control Module FL$10

Unit Device Notes ---
1 Card read Cards in control stream
3 Printer Also used for diagnostics
5 Card read Equivalent to unit 1
6 Printer Equivalent to unit 3
29 Reread

Control Module FL$101

Unit Device Notes

Card read Cards in control stream
2 Card punch
3 Printer Also used for diagnostics
5 Card read Equivalent to unit 1
6 Printer Equivalent to unit 3
11, 12 Tapes 508-byte variable unblocked

records, no labels, workfile
29 Reread To reread cards, but not tapes

When additional configurations are being generated for general use at a site, it is suggested that module names
FLS 102, FL$103, etc., be used.

11.3. PROGRAMMER-DEFINED CONFIGURATIONS

The execution environment is configured using an assembly language source module with the form:

1

name

10

START
file initialization
file definition1
file definition2

file definition"
file termination
error definition
END

Continuation It
72

Each element of the preceding assembly module is discussed in detail in this section. For an explanation of the
statement conventions applicable to this section, refer to 1 .3.

11.3.1. File Definition Conventions

Basic information about various arguments specified in defining a file is presented in the following paragraphs. This
information applies to all files for which these features are specified.

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 11-3
UPDATE LEVEL PAGE

11.3.1.1. Device Type

The device type is specified by the FD EV ICE argument. This required argument is the basic criterion against which all
other arguments are validated. For example, if the device is specified as a printer, the specification of a 5000-
character record is rejected.

The specification for FDEVICE is one of the primary considerations in selecting default values for other
arguments. For example, if the device is specified as card input, the Extended FORTRAN system assumes the
card length to be 80, unless the user specifies otherwise.

File support provided by Extended FORTRAN is largely device independent. The user need not be concerned with
whether the device is a UNISERVO Vl-C, Vlll-C, 12, 16, or 20 Magnetic Tape Unit. for example, because the
system dynamically adapts itself to the varying requirements of these devices. The few features that cannot be
supported in a device-independent fashion are noted in this section.

11.3.1.2. Record and Block Sizes

Record and block sizes are specified by the two optional arguments FRECSIZE, which specifies the record size,
and FBKSZ, which specifies the block size.

The default value for FRECSIZE is selected by the FORTRAN system, based on the device type specified. For
FBKSZ, the default value is computed from the record size.

FBKSZ is associated with the tape and disc devices and must always be greater than or equal to the record size .

11.3.1 .3. Record Formats

Four different record forms are available, including,variable-length unblocked, variable-length blocked, fixed­
length unblocked, and fixed-length blocked records, and are specified by the FRECFORM argument.

• Variable-Length Records

Formats for variable-length unblocked and blocked records follow.

Variable-Length Unblocked Records (VARUNB)

5 block
I
I

BCW RCW
I record I

15

Variable-Length Blocked Records (VARBLK)

5

i I
I

BCW RCW
I

record 1 RCW I record2 I I

15 i 1 I i2 1 1 15

I
I
I

RCW I record

15
i

1 n

8262 Rev. 1
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

For both unblocked and blocked records, i specifies record size, j specifies block size, BCW specifies a data
management block control word, and RCW specifies a data management record control word.

The FORMAT statement (7.3.3.) may not specify a record larger than i-4 for variable-length records. For
unformatted input/output, no size limitation exists, since large FORTRAN records are automatically
segmented into multiple data management records, using the record control words to identify beginning,
middle, and end segments of the 1/0 list.

The BCW and RCW are controlled by Extended FORTRAN and the data management system and are not
accessible through the FORTRAN language. The FBKSZ and FRECSIZE arguments are interpreted as
maximums; shorter records will be accepted, and generated if possible, to save space on the external file
and to reduce channel contention for main storage access.

• Fixed-Length Records

Formats for fixed-length unblocked and blocked records follow.

Fixed-Length Unblocked Records (FIXUNB)

Format:

block j

c:J
Fixed-Length Blocked Records (FIXBLK)

Format:

block i

'--'---r-ec-o-rd_1 __ _.i..__
1
__ re_c_o_rd_2 __ _._-~~ ~ ~ ~ c:J

For both unblocked and blocked records, i is the size specified for the FRECSIZE argument. and j is the size
specified for the FBKSZ argument. For unblocked records, i and j must be equal. For blocked records, j is an
integral multiple of i. The last block of the file may be less than j bytes, but it is always a multiple of i.

The FORMAT statement may not require more than i character positions for fixed-length records. In an unformatted
1/0 list, no more than i bytes may be required for a record.

11.3.1.4. Buffer Allocation

The amount of main storage used to support a unit is controlled by three interacting optional arguments:
FBUFPOOL, which specifies buffer pooling; FNUMBUF, which specifies the number of buffers to be allocated to a
unit; and FWORKA, which specifies whether a work area is to be allocated.

Buffer pooling must be used with discretion, or unpredictable results will occur. When multiple units with pooled
buffers are active, only unblocked records may be processed, and only one buffer can be used. The term active covers
the time period from the first reference to the unit until termination, which, on input, means an END clause
return, and on output, means the execution of an ENDFILE statement. If only one unit using buffer pooling is
active at a given time, record blocking and double buffering can be used.

11-4

•

•

•

•

•

8262 Rev. 1
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

During the processing of each unit definition procedure, a data management control block (DTF) is generated .
Then, assuming buffer pooling is not requested, one or two buffers are allocated, using the FBKSZ value or its
default to determine the block size. After the last unit definition procedure is processed, space for a work area is

allocated.

Work area size is determined by the largest record for which work area processing was requested.

Similarly, one or two buffers are allocated for units using pooled buffers. The largest blocksize specified for such use

is selected.

A work area is automatically assumed for output variable length blocked files.

For any application, a tradeoff can be made between main storage economy and program performance by use of
these arguments and blocksize adjustments. This is especially useful when the program processes large tape or
sequential disc files and is to be executed relatively often. In other cases, the system defaults are generally best.

Of the eight possible combinations, the following four are generally of greatest utility.

• One buffer, no work area, buffer pooling

This configuration gives greatest main storage economy. There is no overlap between computational and 1/0
activity, and blocked files cannot be processed if more than one file is using pooled buffers.

• One buffer, no work area, no buffer pooling

•

This configuration requires more main storage, but allows unrestricted use of blocked files

There is no overlap between computational and 1/0 activity.

One buffer, work area, no buffer pooling

This is the usual Extended FORTRAN default. This requires slightly more main storage, but allows overlap
between computational and 1/0 activity. The central processor loading is slightly increased because of
record movement, but overall performance is usually improved.

• Two buffers, no work area, no buffer pooling

This configuration requires a still greater amount of main storage, provides overlap, and reduces
computational loading due to the absence of record movement.

There is no requirement to allocate buffers for all units in the same fashion. The most attention should be given to the
highest activity files.

11.3.1.5. File Type

The type of file- input. output, or work- is specified by the FTYPEFLE argument. This argument is not necessary for
most devices. A printer, for example, is incapable of performing input functions and is always classified as an output
device.

For tape and disc devices, the specification of an input or an output file permits the system to eliminate support
coding and reduce the size of the executable program. The specification of a work file causes support coding for both

• input and output functions to be included.

11-5

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

11.3.2. START Statement

UPDATE LEVEL PAGE

The START statement, a subprogram declarator statement required by the assembler, is the first statement of the
configuration definition.

Format:

1

1 •• name START

A 1- to 8-character symbolic name used to reference the control module on a linkage editor INCLUDE statement
is specified by name. START is coded as shown.

This statement is always followed by the FUNTABL procedure call.

11.3.3. FORTRAN Initialization Procedure (FUNTAB)

The FUNTAB statement follows the START statement and precedes all other statements. It initializes either
Basic FORTRAN or Extended FORTRAN parameters needed by statements which follow. To initialize the
Extended FORTRAN parameters, the FUNTAB statement is coded as follows:

Format:

1 10 17

FUNT AB SYS= FOR

NOTE:

Omitting the SYS=FOR operand from the FUNTAB call initializes Basic FORTRAN parameters.

11.3.4. FORTRAN Unit Definition Procedure (UNIT)

Each file definition consists of a call on the FORTRAN unit definition procedure (UNIT), with arguments

specifying characteristics of the file.

There are major syntactical differences between FORTRAN and assembly language:

• In the assembler, the statement continuation character is required for lines 1 through (n-1) in column 72,
whereas in FORTRAN it is required in lines 2 through n in column 6.

• No embedded blanks are permitted, and all continuation lines must start in column 16, as is illustrated in
subsequent examples.

11-6

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Format:

1 10

UNIT

16

Continuation 1
72

x
x

x

Each argument consists of an identifying name (n), an equal sign, and a particular characteristic (c) of the
file being defined. All arguments must start in column 16. If an argument is not required, it is omitted,
and the comma is deleted.

11.3.4.1. Printer File Definition

A single printer file is defined by using the UNIT procedure call presented in this paragraph. Following is a
listing, in order of relative importance and utility, of the arguments that may appear on this UNIT procedure call.
Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

Work areas and buffer pooling are not supported for printers. The default number of buffers is 2.

Format:

1 10

UNIT

16

FDEVICE=PRINTER

FUNIT={~RINT }
PUNCH

[{

filename ~] FORTk; if FUNIT = k
FFILEID= PRNTR; if FUNIT =PRINT

PUNCH; if FUNIT =PUNCH

[FRECSIZE= { ~21 } J

[FNUMBUF={~} J

[FDIAGNOS='=YES]

[FPRINTOV={~~l:KIP}]

[FCHAR={~F}]
[FOPTION=YES]

11-7

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Device Identification Argument:

FDEVICE=PRINTER
Specifies that this is a printer file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1~k~99.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified
by a control module.

The identifiers PRINT and PUNCH are provided for reference by the FORTRAN II statements PRINT and
PUNCH, respectively, since these statements contain no specific unit identification. When a FORTRAN II
statement is executed and one of these special identifiers has not been provided in the control module, the
first printer device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=EQ!!Th
Specifies the file name as FORTk, where 1 ~k~99. lfthe FFILEID argument is not specified, and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=PRNTR
Specifies the file name as PRNTR. If the FFILEID argument is not specified and FUNIT=PRINT has been
specified, PRNTR is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has been
specified, PUNCH is the default file name.

Record Size Argument:

FRECSIZE={ ~21 }
Specifies a positive integer constant (k), in the range 1~k~161. If this argument is omitted, 121 is the
default record size. This accommodates a 120-character SPERRY UNIVAC 0773 Printer, with one
additional character for carriage control. Other printers may specify up to 160 print positions.

11-8

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to a unit.

FNUMBUF=g
Specifies two buffers to be allocated to a unit.

Diagnostic Messages Argument:

The Extended FORTRAN runtime environment always requires a device for diagnostic purposes.

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (9.3). This argument is not available for
input files.

Printer Forms Control Argument:

This argument specifies whether the forms control loop (or an electronic equivalent) contained in the
printer device for locating the top and bottom of the page is to cause automatic skipping across the seam of
the paper.

FPRINTOV=SKIP
Specifies that the printer is to skip to the top of the next page (home paper) when the bottom of the current
page (forms overflow) is detected .

FPRINTOV=NOSKIP
Specifies that no automatic forms control is desired. Spacing is then under sole control of the carriage
control characters (7.3.3.3.).

Invalid Character Processing Argument:

This argument specifies the action to be taken when a character with no corresponding printer graphic is
encountered.

FCHAR=OFF
Specifies that a blank is to be substituted for the character and that the line is to be written to the printer
with no error notification.

FCHAR=ON
Specifies that a device error is to be generated and the program is to be terminated.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified, and the file has not been allocated by job control statements, WRITE
statements are effectively ignored. A unit need not be declared as optional if the logic of the program does not
cause a reference to the unit .

11-9

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

Example:

r"C" FOR COMMENT

ATEMENT i
UMBER 0 FORTRAN

5 f 7 10
STATEMENT~~~~~~--~

20 30

UN IT F CE-=PR1~:TE

I I !l=)V,N.I,T!=,1,0,?, I I I I I

FRECSit.E.= IO I

l='P RI NT tJ V ~ N ~SK I 'P

UPDATE LEVEL PAGE

72

1
I I I x
__L__j__ _ _j_~

-~ _ _J

A printer is defined, unit 10, with 100 printable characters per line, which is to be used also for diagnostic
purposes. No automatic forms overflow is to take place, and device error recovery is requested. The
FORTRAN system assumes defaults of:

• file name is FORT1 O;

• two buffers;

• substitution of blanks for nonprinting characters; and

• file is required if a reference occurs .

11.3.4.2. Card Input Files

Two methods, the operating system spooling facility and the data management card read procedures, are provided to
read data cards. The operating system spooling facility reads cards and transcribes them to a disc file before the
executable program is activated. When a card image is requested by the program, the operating system reads the
card image from disc and delivers it to the program. The data management card read procedures require the
allocation of a card reader device to the executable program and activate the device in synchronization with program
requests for card images. This method requires more main storage and is most suited to high volume applications.

The two methods are described in the following paragraphs.

11.3.4.2.1. Spooled Card Input File Definition

A spooled card input file is defined by using the UNIT procedure call presented in this section. Following is a
listing, in order of their relative importance and utility, of the arguments that may appear on the UNIT procedure
call. Following the listing, descriptions of UNIT arguments, programming considerations, and a UNIT example are

presented.

Only one spooled card input file is permitted for a given application.

11-10

•

•

•

•

•

•

8262 Rev: 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 c 11-11

UPDATE LEVEL PAGE

Format:

1 10

UNIT

Device Identification Argument:

FDEVICE=SPOOLIN

16

FDEVICE=SPOOLIN

FUNIT={~EAD}
[FREREAD=YES]

[FBKSZ={~oo}]
[FBUFPOOL=YES]

[FRECSIZE = { ~}]

Specifies that this is a spooled card input file (embedded data set).

Unit Identifier Argument:

FUNIT=k

Specifies a unique integer constant in the range 1,;:;;;k,;:;;;99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ.PRINT, and PUNCH) may be specified
by a control module.

The identifier READ is provided for reference by the FORTRAN II READ statement, since this statement
contains no specific unit identification. When a FORTRAN II statement is executed and one of these special
identifiers has not been provided, the first spool in device specified is used. The units are searched in the order
in which they are defined. In an executable program, only one such unit may be defined.

Reread Argument:

FREREAD=YES

Specifies that the unit is to participate in the reread feature (7 .3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Block Size Argument:

FBKSZ={:oo}

Specifies a positive integer constant (k) that is an integral multiple of FRECSIZE. A large multiple of
FRECSIZE reduces operating system overhead. If a number is specified that is not an integral multiple
of FRECSIZE, the block size is rounded downward to the nearest multiple. The default block size is the
largest integral value of FRECSIZE that is less than or equal to 400.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A
UPDATE LEVEL PAGE

t

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which means an
END clause return. If only one unit using buffer pooling is active at a given time, record blocking can be
used.

Record Size Argument:

FRECSIZE= { ~O}
Specifies the record size for a spooled card input file, where k may have a value from 1 to 128. The
default record size of the spooled card input file is 80.

Programming Considerations:

Spooled input consists of one or more sets of cards, each headed with a card containing

/$

in columns 1 and 2 and terminated with a card containing

/*

in columns 1 and 2.

The /$ card is always bypassed by the Extended FORTRAN library and is not accessible as a data card; the
/* card causes control to be transferred to the label specified in the END clause or, in the absence of an
END clause, causes program termination.

Example:

"C" FOR COMMENT rTEMENT ~
UMBER 0 FORTRAN

5 (; 7 10
STATEMENT---- -------.

20 30

' _j__-.-J....~...._ __ J.. _ _L __ J...__L __ __L_____l _ _L__i_ __ L_l

]:
. ,_Y.1

.x
,xi

I

l +

This UNIT procedure call defines a spooled card input file, unit 2, that participates in the reread feature.
Three cards (240 characters) at a time are read into the buffer to reduce operating system overhead. As a
default, the FORTRAN system assumes a unique, nonpooled buffer.

11.3.4.2.2. Data Management Card Input File Definition

A single data management card input file is defined by using the UNIT procedure call presented in this
paragraph. Following is a listing, in the order of this relative importance and utility, of the arguments that may
appear on the UNIT procedure call. Following the listing, descriptions of the UNIT arguments and a UNIT example
are presented.

11-12

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 11-13
UPDATE LEVEL PAGE

The only limitation on the number of data management card input files is the system configuration and the number of
devices that can be allocated to the application. Cards may be read from a card punch if the device is equipped with
the optional read feature.

Format:

1 10

UNIT

Device Identification Argument:

FDEVICE=CARDIN

16

FDEVICE=CARDIN

FUNIT={~EAD}

[{
filename }]

FFILEID= FORTk; if FUNIT=k
READER; if FUNIT=READ

[FREREAD=YES]

[FBUFPOOL=YES]

[FNUMBUF={ ~} J

[FWORKA={YES; if FNUMBUF=1 }]
NO; if FNUMBUF=2

[FRECSIZE= { ~O} J

[FBKSZ= {~RECSIZE} J

[FSTUB={~!} J

[FOPTION=YES]

[FAUE=YES]

Specifies that this is a card input file.

Unit Identifier Argument:

FUNIT=k
Specifies a unrque integer constant in the range 1:!(k:!(99 .

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified
by a control module.

t

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The identifier READ is provided for reference by the FORTRAN II READ statement, since this statement
contains no specific unit identification. When a FORTRAN II statement is executed and this special identifier
has not been provided, the first card in device specified is used. The units are searched in the order in which
they are defined. In an executable program, only one such unit may be defined.

File Name Argument:

FFI LE I D=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename)

FFILEID=FORTk
Specifies the file name as FORTk, where 1 ~k.:;;99. If the FF I LEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=R EADER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has been
specified, READER is the default file name.

Reread Argument:

FREREAD=YES
The reread unit consists of a single buffer to which each formatted input record is transferred. To
conserve central processor time, this data movement is inhibited unless specifically requested.

Buffer Pooling Argument:

FBUFPOOL= YES
The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed, and only
one buffer can be used. A unit is active from the first reference to the unit until termination, which means
an END clause return. If only one unit using buffer pooling is active at a given time, double buffering can
be used.

Buffer Allocation Argument:

FNUMBUF=l
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved from a work
area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO
Specifes that no space for a work area is to be allocated. If this argument is omitted and FNUMBUF=2 is
specified, the default is that no space is allocated for a work area.

11-14

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 11-15
UPDATE LEVEL PAGE

Record Size Argument:

This argument specifies record size.

FRECSIZE= {:o}
Specifies a positive integer constant (k) in the range 1 ::;;k::;;128.

If 96-column cards are to be read, 96 must be specified. If this argument is omitted, 80 is the default record

size.

If an 8413 diskette is to be read, the record size specified must be that actually recorded on the diskette.

If the rightmost columns of an 80-column card are not meaningful to the program, this argument may be
used to save main storage space by specifying a shorter record size.

Block Size Argument:

This argument specifies the 8413 diskette block size.

FBKSZ= {~RECSIZE}
Specifies a positive integer constant (k::;;1024) that should be an integral multiple of FRECSIZE. A
large multiple of FRECSIZE will reduce overhead. The default value is the FRECSIZE specification.

If a number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward to
the nearest multiple.

Stub Card Argument:

This argument specifies cards physically shorter than 80 columns.

FSTUB=51
Specifies a 51-column card.

FSTUB=66
Specifies a 66-column card.

The card reader must be equipped with the proper optional feature if this argument is specified. If stub
cards are to be read, FSTUB must be specified. FSTUB is completely independent of the record size.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statements, the first READ
reference causes an end-of-file condition to occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit .

t

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL PAGE

Rejection of Mispunched Cards Argument:

FAUE=YES
Specifies that cards with an illegal hole combination in a column are to be bypassed and will not be
delivered to the program.

When the device being used is a SPERRY UNIVAC 0716 Card Reader. the erroneous card is also sorted
into a unique error stacker.

If this argument is not specified, the card reader is stopped, and operator intervention is sought when an illegal

hole combination is detected.

Example:

r"C" FOR COMMENT

ATEMENT i
UMBER µFORTRAN STATEMENT

5 0 7 10 20 30

UNIT F EVICE-::CAR IN

FNUMBvF=z

,FJ~.,E,C1SII,~,E,=,5,b, 7 ,_J_...._--'----'--~~...__.._

i:AvE='<ES

72

___J\

x _J

1 __ ..i

.L ---15._ -~

This UNIT procedure call defines a card reader device, or a card punch device with the optional read
feature, to be referenced by using the FORTRAN II READ statement. Two buffers are allocated for
efficiency, and only the first 56 characters on each card are to be transferred to main storage. Cards with
erroneous punches are ignored. The defaults assumed are:

• file name is READER;

• records will not be reread;

• nonshared buffers with no work area;

• no stub cards; and

• file required if a reference occurs.

11-16

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

11.3.4.3. Card Output File Definition

A 11-16a
.UPDATE LEVEL PAGE

A single card or 8413 diskette output file is defined by using the UNIT procedure calls presented in this ~
paragraph. Following is a listing, in the order of their relative importance and utility, of the arguments that may
appear on the UNIT procedure call. Following the listing, descriptions of UNIT arguments and a UNIT example are
presented.

Format:

1 10

UNIT

16

FDEVICE=CARDOUT

FUNIT={~UNCH}

[{
filename }]

FFILEID= FORTk; if FUNIT=k
PUNCH; if FUNIT=PUNCH

[FBUFPOOL=YES]

[FNUMBUF={~ }]

[FWORKA={YES; if FNUMBUF=1 }]
NO; if FNUMBUF=2

[FRECSIZE={ ~O} J

[FBKSZ={:RECSIZE} J
[FCRDERR=RETRY]

[FOPTION=YES]

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 11-17
UPDATE LEVEL PAGE

Device Identification Argument:

FDEVICE=CARDOUT
Specifies that this is a card output file.

Unit Identification Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1 :::;;k:::;;99.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified
by a control module.

The identifier PUNCH is provided for reference by the FORTRAN II PUNCH statement, since this statement
contains no specific unit identification. When a FORTRAN II statement is executed and this special identifier
has not been provided, the first cardout device specified is used. The units are searched in the order in which
they are defined. In an executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename) .

FFILEID=FORTk
Specifies the file name as FORTk where 1 :::;;k:::;;99. If the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has been
specified, PUNCH is the default file name.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used. The buffers are to be logically equivalent with all other units
for which buffer pooling is specified.

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the
first reference to the unit until termination, which means the execution of an ENDFILE statement. If only
one unit using buffer pooling active at a given time, double buffering can be used.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit .

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDAT: LEVEL I PAGE

t

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved from a work
area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and FNUMBUF=2 is
specified, the default is that no space is allocated for a work area.

Record Size Argument:

FRECSIZE= { :o}
Specifies a positive integer constant (k) in the range 1~k~128.

If this argument is omitted, 80 is the default record size.

Block Size Argument:

This argument specifies the 8413 diskette block size.

FBKSZ= {~RECSIZE}
Specifies a positive integer constant (k~1024) that should be an integral multiple of FRECSIZE. A
large multiple of FRECSIZE will reduce overhead. The default value is the FRECSIZE specification.

If a number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward to
the nearest multiple.

Device Error Recovery Argument:

FCRDERR=RETRY
Specifies that error recovery coding is included in the executable program.

If this argument is not specified or if the recovery attempt is unsuccessful, program termination is initiated
when device errors occur. Mispunched cards are automatically segregated into an error card stacke1r. This
argument is not meaningful if card output is spooled (transmitted to disc for later transcription to 3 card

punch).

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statement. WRITE
statements are effectively ignored.

A unit need not be declared as optional if the logic of the program does not cause a reference to th13 unit .

11-18

•

•

•

•

•

A 11-19 8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Example:

STATEMENT c FORTRAN STATEMENT ... NUMBER 0

5 f 7 10 20 30 72

J U 1N,I_J_1_J__L_E1D1E 1V 1I 1C1E 1= C.1A,R ~ ~ 1Ll 1T I I I I I I I

l F VNI1J= 3 2 l _J_ _J. _j

__]__ _J_ _J_ I _J_ F- 13 U l'.= P1" 0 L _J_.:: __]__ Y): _J_ S -1..4-1- __1_l__i____i_ _J_ _J_ _J_ _J_ x _j

__]__ _J_ _J_ __]__ __l__.L__j_J _ __j___J__j__L_J:.,_~ IR 11) IE IR 1 'R I = 1 'R1 £IT 1R I y I I l _J_ _J_ -1 L_J__j_ __j

I

This FUN DEF procedure call defines a card punch device, unit 32, with a pooled buffer. In the event of a device
error, automatic retry is to be attempted. The defaults assumed are:

• file name is FORT32;

• one buffer and one work area;

• record size of 80; and

• file is required if a reference occurs.

11.3.4.4. Tape File Definition

A single tape file is defined by using the UNIT procedure call presented in this paragraph. Following is a listing,
in the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

Format:

1 10

UNIT

16

FDEVICE=TAPE

FUNIT={~EAD l
PUNCH)

[1
filename 'l J FORTk; if FUNIT=k

FFILEID= READER; if FUNIT=READ
PUNCH; if FUNIT=PUNCH

_ WORK;if FUNIT=k
FTYPEFLE- INPUT; if FUNIT=READ

•
[1

INOUT ~]
OUTPUT; if FUNIT=PUNCH

[1
VARUNB 1]

FRECFORM= VARBLK
Fl XU NB
FIXBLK

8262 Rev. 1
UP-NUMBER

1 10

UNIT
(cont)

SPERRY UNIVAC Operating System/3

16

[FNUMBUF={l} J

[FWORKA={YES; if FNUMBUF=1 }]
NO; if FNUMBUF=2

[FBUFPOOL=YES]

[FRECSIZE={ ~OS} J

UPDATE LEVEL PAGE

[{

k
IFRECSIZE I; if FRECFORM=FIXUNB

FBKSZ= IFRECSIZE+41; if FRECFORM=VARUNB I]
!FRECSIZE*41; otherwise ~

[FREREAD=YES]

[FDIAGNOS=YES]

[FBKNO=YES]

[FERROPT= { ~~~~RE} J

[FCKPT=YES]

[FFILABL={~6°} J
[FCKPTR EC=Y ES]

[FCLRW={~~~WD }]
UNLOAD

[FOPRW=NORWD]

[FOPTION=YES]

11-20

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

A 11-21

UPDATE LEVEL PAGE

•

•

•

Device Identification Argument:

FDEVICE=TAPE
Specifies that this is a tape file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant in the range 1 !(k!(99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ.PRINT, and PUNCH) may be specified
by a control module.

The identifiers READ and PUNCH are provided for reference by the FORTRAN II statements READ and PUNCH,
respectively, since these statements contain no specific unit identification. When a FORTRAN II statement is
executed and one of these special identifiers has not been provided, the applicable device specified is used.
The units are searched in the order in which they are defined. In an executable program, only one such
unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1 !(k!(99. If the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has been
specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has been
specified, PUNCH is the default file name.

Type-of-File Argument:

FTYPEFLE=WORK or FTYPEFLE=INOUT
Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE default. FTYPEFLE=WORK should be specified if the tape is to be read and written. WORK
files are limited to a single volume (reel).

FTYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT is
the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the tape is to be read but never written .

FTYPEFLE=OUTPUT
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified, OUTPUT
is the FTYPEFLE default. FTYPEFLE=OUTPUT should be specified if the tape is to be written but never
read.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A
UPDATE LEVEL PAGE

Record Format Argument:

FRECFORM=VARUNB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records. If this option is chosen, BACKSPACE is not allowed.

FRECFORM=FIXUNB
Specifies fixed-length unblocked records.

FRECFORM=FIXBLK
Specifies fixed-length blocked records. If this option is chosen, BACKSPACE is not allowed.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to l:>e allocated to a unit. This argument is required if BACKSPACE is to be
allowed.

FNUMBUF=2
Specifies two buffers to be allocated to a unit.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved to and from a work
area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and
FNUMBUF=2 is specified, the default is that no space is allocated for a work area. This argument is
required if BACKSPACE is to be allowed.

Buffer Pooling Argument:

FBUFPOOL= YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed, and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input means
an END clause return and on output means the execution of an ENDFILE statement. If only one unit using
buffer pooling is active at a given time, record blocking and double buffering can be used.

Record Size Argument:

FRECSIZE= {~OS}

11-22

•

•

Specifies a positive integer constant (k) in the range 18~k~32767 if fixed records are specified and •
14o(ko(32767 if variable records are specified. If this argument is omitted, 508 is the default record size.

Extended FORTRAN pads out all variable-length records to 18 bytes if necessary. This implies that it is
impossible to detect all instances when the program requests records longer than the length written.
Fixed-length records must be at least 18 bytes.

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size. The
default values for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record

form used.

FBKSZ=k
Specifies the block size (k) as a positive integer constant in the range 18~k~32767.

FBKSZ=i FRECSIZEI
Indicates the blocksize is equal to the record size. If this argument is not specified, and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=i FRECSIZE+~
Indicates the block size is four more than the record size. If this argument is not specified, and
variable unblocked records have been specified, this is the default block size.

FBKSZ=j FRECSIZE*~

Example:

Indicates the block size as four times the record size. If this argument is not specified and blocked
records have been specified, this is the default. Files containing blocked records cannot be
backspaced.

i="RE:CF~'RM=YAR LK

F"RE CS!cE= \ 8 00

In this example FBKSZ is not specified. Since FRECFORM=VARBLK is specified, the default value for
FBKSZ is equal to four times the value of FRECSIZE.

Reread Argument:

FREREAD= YES

Specifies that a unit is to participate in the reread feature (7 .3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Diagnostic Messages Argument:

FDIAGNOS=.YrS
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (9.3). This argument is not available for
input files.

The Extended FORTRAN run-time environment always requires a device for diagnostic purposes.

• Block Numbering Argument:

FBKNO=YES
Specifies that sequence numbers are to be encoded in each block before it is written and checked after
each block is read. These block numbers are not visible to the FORTRAN programmer.

11-23

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Device Error Processing Arguments:

Two arguments are used to specify device error processing.

• FERRO PT

Specifies action to be taken when an erroneous data block is encountered.

If omitted, specifies that control is to be transferred to the ERR clause of the READ statement;
abnormal termination procedures are to be initiated if the ERR clause is not present.

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SKIP
Specifies that the erroneous block is to be bypassed by reading the next block.

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted files
and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3) should be
referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced again.
Unrecoverable errors can be caused by severe device failure, parity errors that cause inconsistent
control information, or any error on a list-directed statement, which always implies loss of position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver

11-24

•

subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a •
blocked file causes an ERR return for every logical record in the erroneous block. The term "logical
record" is interpreted identically with the BACKSPACE statement (7.3.6.2).

• FR EC ERR

FRECERR=YES
Specifies that formatted records in-blocks with parity or wrong length errors are to be moved to the
reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or
more erroneous bits. The next reference to the unit in error delivers the next record or causes
another ERR return. A reread unit must be defined to access the reread buffer (11.3.4.7). Refer also
to the ERRDEF procedure (11.3.6).

Tape Label Checking Argument:

FFILABL=STD
Specifies that system standard labels are assumed.

FFILABL=NO
Specifies that tapes are to be read and written without labels.

Checkpoint Processing Argument:

FCKPT=YES
Specifies that an input tape file contains operating system checkpoint dumps used to restart programs
after a catastrophic failure. •

•

•

8262Rev.1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The block size must be 20 bytes or larger when this argument is used. FCKPT must be specified when
checkpoint dumps are present.

Tape Rewind Arguments:

Two arguments may be used to specify tape rewinding. They have no effect on the FORTRAN REWIND
command.

• FCLRW

FCLRW=RWD
Specifies that the tape is to be rewound to loadpoint when the STOP statement is executed.

FCLRW=NORWD
Specifies that there is to be no rewind when the STOP statement is executed.

FCLRW=UNLOAD
Specifies that there is to be rewind with interlock when the STOP statement is executed and that
the tape is inaccessible to subsequent steps in the job without operator intervention.

• FOPRW

FOPRW=NORWD
Specifies that the tape is not to be rewound to load point when it is first referenced.

Optional Units Argument:

FOPTION=: YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statements, WRITE
statements are effectively ignored, and the first READ reference will cause an end-of-file condition to occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

11-25

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL PAGE

Example:

30

U ~IT

FRECFD'R.M=VA"R.'BLK

40 72

x
)(

Th is example defines a tape file, unit 7, used for input only. The records are variable in length, with a
maximum size of 400 bytes, and blocked into a maximum blocksize of 1000 bytes. The file is processed by
using a work area, and checkpoint records are present and are to be bypassed when encountered.

The assumed defaults are:

• file name is FORT7;

• no buffer pooling, one unique buffer;

• no reread;

• not the diagnostic device;

• no block numbering;

• device errors to be returned to ERR labels with the record bypassed and not made available to reread;

• no labels;

• rewinds at start and end of processing; and

• file is required if a reference occurs.

• BACKSPACE is not allowed because a work area is requested.

11.3.4.5. Sequential Disc Files

A single sequential disc file is defined by using the UNIT procedure call presented in this paragraph. Following is

11-26

•

•

a listing, in the order of their relative importance and utility, of the arguments that may appear on the UNIT •
procedure call. Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

~ Sequential disc files are conceptually identical with tape files, except that BACKSPACE is not allowed. Most
arguments are treated identically with tape file arguments.

•

•

•

8262 Rev. 1
UP-NUMBER

Format:

1

SPERRY UNIVAC Operating System/3

10 16

A

UPDATE LEVEL

UNIT FDEVICE=SDISC

FUNIT={ ~EAD l
PUNCH)

[FSECTOR~~~S} J

[1
filename t J FORTk; if FUNIT=k

FFILEID= READER; if FUNIT=READ
PUNCH; if FUNIT=PUNCH

[1
1NOUT tJ _ WORK; if FUNIT=k

FTYPEFLE- INPUT; if FUNIT=READ
OUTPUT; if FUNIT=PUNCH

[1
VARUNBtJ

FRECFORM= VARBLK
Fl XU NB
FIXBLK

[FNUMBUF= {}} J
[FBUFPOOL=YES]

[FWORKA={YES; if FNUMBUF=1 }]
NO; if FNUMBUF=2

[FRECSIZE= {~OS} J

I FRECSIZE I; if FRECFORM=FIXUNB

[f k tJ FBKSZ= I FRECSIZE + 4 I; if FRECFORM=VARUNB
I FRECSIZE * 4 I; otherwise

[FREREAD=YES]

[FDIAGNOS=YES]

[FERROPT={IGNORE
SKIP }]

[FRECERR=YES]

[FOPTION=YES]

[FVERIFY=YES]

11-27
PAGE

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
A

UPDATE LEVEL PAGE

t

Device Identification Argument:

FDEVICE=SDISC
Specifies that this is a sequential disc file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1:::-;;k:::-;;99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN II
statements READ and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN II statement is executed and one of these special identifiers has not been provided, the
applicable device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

Sector Processing Argument:

FSECTOR=YES
Specifies that processing on a sectorized disc is expected (e.g., an 8416). FSECTOR parameter is valid
for all file types: input, output, or work. The Extended FORTRAN 1/0 system ensures that all 1/0
areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length. This is necessary to
prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disc is expected. This argument is used to conserve
space in main storage.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1 :::;;k:::-;;99. If the FFILEID argument is not specified and FUNIT=k
has been specified, FORTk is the default file name.

FFILEID=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has
been specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FF I LEID argument is not specified and FUNIT=PUNCH has been
specified, PUNCH is the default file name.

Type of File Argument:

~ FTYPEFLE=WORK or FTYPEFLE=INOUT
Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE default. FTYPEFLE=WORK should be specified if the disc is to be read and written.

11-28

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

FTYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT is
the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the disc is to be read but never written.

FTYPEFLE=OUTPUT
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified, PUNCH
is the default file name. FTYPEFLE=OUTPUT should be specified if the disc is to be written but never

read.

Record Format Argument:

FRECFORM=VARUNB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records.

FRECFORM=FIXUNB

11-29

Specifies fixed-length unblocked records. If specifying a FIXBLK file (read to end-of-file and then ~
write), FSECTOR=YES should be specified since 1/0 on system sectorized discs must be done to
prepare for extension.

FRECFORM=FIXBLK
Specifies fixed-length blocked records.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to a unit.

FNUMBUF=2
Specifies two buffers to be allocated to a unit.

Buffer Pooling Argument:

FBUFPOOL= YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input means
an END clause return and on output means the execution of an ENDFILE statement. If only one unit using
buffer pooling is active at a given time, record blocking and double buffering can be used.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved to and from a work
area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and FNUMBUF=2 is
specified, the default is that no space is allocated for a work area.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Record Size Argument:

FRECSIZE= {~OS }

Specifies the record size as a positive integer constant (k). If this argument is omitted, 508 is the
default record size. See the specific disc subsystem reference manuals for maximum and minimum
record size specifications.

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size.

The default value for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k

Specifies the block size as a positive integer constant in the range 3::::;k::::;3625. The upper limit can
be increased to 7294 bytes for SPERRY UNIVAC 8414/8424/8425 Disc Drive Units and to 13030
bytes for SPERRY UNIVAC 8430 Disc Drive Units.

FBKSZFJ FRECSIZ~
Indicates the block size is equal to the record size. If this argument is not specified and fixed unblocked
records have been specified, this is the default block size.

FBKSZ=j FRECSIZE+~
Indicates the block size is four more than the record size. If this argument is not specified and
variable unblocked records have been specified, this is the default block size.

FBKSZ=j FRECSIZE*~

Indicates the block size is four times the record size. If this argument is not specified and blocked
records have been specified, this is the default block size.

Example:

LK.

In this example, FBKSZ is not specified, Since FRECFORM=VARBLK is specified, the default value for
FBKSZ is equal to four times the value of FRECSIZE.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

11-30

•

•

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve •
central processor time, this data movement is inhibited unless specifically requested.

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Diagnostic Messages Argument:

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (9.3). This argument is not available for
input files.

The Extended FORTRAN runtime environment always requires a device for diagnostic purposes.

Device Error Processing Arguments:

Two arguments are used to specify device error processing.

• FERRO PT

Specifies action to be taken when an erroneous data block is encountered.

If omitted, specifies that control is to be transferred to the ERR clause of the READ statement;
abnormal termination procedures are to be initiated if the ERR clause is not present.

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SKIP
Specifies that the erroneous block is to be bypassed by reading the next block .

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted files
and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3) should be
referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced again.
Unrecoverable errors can be caused by severe device failure, parity errors that cause inconsistent
control information, or any error on a list-directed statement, which always implies loss of position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a blocked
file causes an ERR return for every logical record in the erroneous block. The term "logical record" is
interpreted identically to the BACKSPACE statement (7 .3.6.2).

• FRECERR

FRECERR=YES
Specifies that formatted records in blocks with parity or wrong length errors are to be moved to the

reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or
more erroneous bits. The next reference to the unit in error delivers the next record or causes
another ERR return. A reread unit must be defined to access the reread buffer (11.3.4.7). Refer also
to the ERRDEF procedure (11.3.6).

Optional Units Argument:

FOPTION= YES
Specifies an optional unit, a unit not always required during program execution.

11-31

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 A 11-32

t

UPDATE LEVEL PAGE

When this argument is specified and the file has not been allocated by job control statements, WRITE

statements are effectively ignored, and the first READ reference will cause an end-of-file condition to

occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

Sector Processing Argument:

FSECTOR=YES
Specifies that processing on a sectorized disc is expected (e.g., an 8416 or 8418). FSECTOR
parameter is valid for all file types: input, output. or work. The Extended FORTRAN 1/0 system
ensures that all 1/0 areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length.
This is necessary to prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disc is expected. This argument is used to conserve
space in main storage.

Write Verification Argument:

FVERIFY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper
recording on the disc surface.

This increased reliability necessarily causes some performance degradation.

Example:

20 30 40 72

ONIT F ;n 1:-:V l _J<.

FUNI"T=Gt)(

FiY'PEFLE=f>vT1'U x _J

l='RECS1~E::.1000 x
FVERIFY=YES

This FUNDEF procedure call specifies a sequential disc file, unit 9, intended for output of variable

unblocked records with a maximum size of 1000 bytes. Each record is read checked after it is written. The
defaults assumed are:

• file is named FORT9;

• variable unblocked records and one unique 1004-byte buffer with a work area;

• not a diagnostic device and not optional to the program;

• records never reread and not available in the reread buffer after ERR returns.

11.3.4.6. Direct Access Disc File Definition

A direct access disc file is defined by using the UNIT procedure call presented in this paragraph. Following is a .
listing, in the order of their relative importance and utility, of the arguments that may appear on the FUNDEF
procedure call. Following the listing, descriptions of FUNDEF arguments, programming con~iderations, and a
.FUNDEF example are presented.

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

Direct access disc file options are treated identically with sequential disc file options.

A
UPDATE LEVEL PAGE

Format:

1 10

UNIT

16

FDEVICE=DISC

FUNIT=k

[FSECTOR={~~S} J

[{
filename } J

FFILEID= FORTk; where k = FUNIT

[FTYPEFLE={6Ni~PTUT} J
[FBUFPOOL=YES]

[FRECSIZE={~12 } J
[FREREAD=YES]

[FRECERR=YES]

[FVERI FY=YES]

Device Identification Argument:

FDEVICE=DISC
Specifies that this is a direct access disc file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant(k) in the range 1~k~99.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT and PUNCH) may be specified
by a control module.

Sector Processing Argument:

FSECTOR=YES
Specifies that processing on a sectorized disc is expected (e.g., an 8416). FSECTOR parameter is valid
for all file types: input, output, or work. The Extended FORTRAN 1/0 system ensures that all 1/0
areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length. This is necessary to
prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disc is expected. This argument is used to conserve
space in main storage .

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name.

11-33

t

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

FFILEID=FORTk
Specifies the file name as FORTk, where 1 ~k~99. If the FFILEID argument is not specified and FUNIT=k

has been specified, FORTk is the default file name.

Type of File Argument:

FTYPEFLE=INPUT
Specifies an input file.

FTYPEFLE=OUTPUT
Specifies an output file.

See Programming Considerations.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the
first reference to the unit until termination, which on input means an END clause return and an output

means the execution of an ENDFILE statement.

Record Size Argument:

FRECSIZE= { ~12 }

Specifies the record size as a positive integer constant. If this argument is omitted, 512 is the default
record size. See the specific disc subsystem reference manuals for maximum and minimum record
size specifications.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Device Error Processing Argument:

FRECERR=YES
Specifies that formatted records in blocks with parity errors or wrong length errors are to be moved to the
reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR
return. A reread unit must be defined to access the reread buffer (11.3.4.7). Refer also to the ERRDEF
procedure (11.3.6).

11-34

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Write Verification Argument:

FVERIFY= YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper
recording on the disc surface.

This increased reliability causes some performance degradation.

Programming Considerations:

The TYPEFLE specification does not restrict the use of READ and WRITE statements. The only implication
of TYPEFLE is that for INPUT, label checking is performed and, for OUTPUT, labels are written. When the
associated DEFINE FILE statement is executed, it must specify a record size less than or equal to FRECSIZE.
The Extended FORTRAN system thereafter enforces the record size specified on the DEFINE FILE
statement, but always transfers records of FRECSIZE bytes to and from the disc.

Example:

20 30 40 72

UNI :T FDEVICE=Dl5C

l=UNIT=13

FIY'PEFLE= :t:N?VT

FREC Srl.E-=34-

This UNIT procedure call specifies a direct access disc file, unit 13, which is to be read only. The record
size is 348. The defaults are:

• file name is FORT13;

• no buffer pooling;

• buffer size is 348;

• no reread and records not available in the reread buffer after ERR returns; and

• no verification.

11-35

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

11.3.4.7. Reread Unit Definition

The reread unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing, in
the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, description of UNIT arguments, programming considerations, and a UNIT example are

presented.

A single VARUNB buffer is automatically constructed with a size equivalent to the largest record size of all the

units in the reread feature.

Format:

1 10 16

UNIT FDEVICE=REREAD

FUNIT={ ~EAD}

Device Identification Argument:

FDEVICE=REREAD
Specifies that this is the reread unit.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1~k~99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT and PUNCH) may be specified
by a control module. The identifier READ is provided for reference by the FORTRAN II READ statement,
since this statement contains no symbolic unit identification. When a FORTRAN II statement is executed
and this special identifier has not been provided, the applicable unit specified is used. The units are
searched in the order in which they are defined. In an executable program, only one such unit may be
defined.

Programming Considerations:

The record in the reread buffer is redefined only after a formatted READ statement is issued to a unit
specified with FREREAD=YES or FRECERR=YES.

Example:

STATEMENT

R FORTRAN STATEMENT ... NUMBER
5 1 10 20 30 72

J. J. .ttJ f'J _l_I .tT J. _J_ f _J_DJ. E _l_ VJ.I lC .tEJ.::. J."R_J_E_J< _J_E J.A .tD.t...1 _J_ _J I I I I
I

..l. l .I. F V N..l.I Tl= ..1. 2 'I ..l. l .I.

The reread unit is defined to be unit 29.

11-36

•

•

•

•

•

8262 Rev. 1
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

11.3.4.8. Equivalent Unit Definition

An equivalent unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing,
in the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

The function of an equivalent unit is to provide another reference number for a file. For example, an input file
might be referenced with both an extended FORTRAN statement with a unit number and FORTRAN II statement
that implies the special name READ. An equivalent unit can be used to resolve conflicts of this type.

Format:

1 10 16

UNIT FDEVICE=EQUIV

{
k t READ

FUNIT= PRINT

PUNCH

{
k t READ

FEQUIV= PRINT

PUNCH

Device Identification Argument:

FDEVICE=EQUIV
Specifies that this is an equivalent unit.

Unit Identifier Argument:

FUNIT=k

Specifies a unique integer constant (k) in the range 1 <(k.(99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ, PRINT, and PUNCH are provided for reference by the FORTRAN
II statements READ, PRINT, and PUNCH, respectively, since these statements contain no specific unit
identification. When a FORTRAN II statement is executed and one of these special identifiers has not been
provided, the applicable device specified is used. The units are searched in the order in which they are
defined. In an executable program, only one such unit may be defined.

11-37

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Establishing Equivalence Argument:

This argument is used to specify the unitthat is to be treated as equivalent to the unit specified for FUNIT. When

a file reference to the unit specified for FUNIT occurs, device action takes place on the unit specified for

FEQUIV.

FEOUIV=k

Specifies a unique integer constant (k) in the range 1:::;;k:::;;99.

FEOUIV=READ
Specifies READ as the equivalent unit.

FEQUIV=PRINT
Specifies PRINT as the equivalent unit.

FEQUIV=PUNCH
Specifies PUNCH as the equivalent unit.

Examples:

STATEMENT~~~~~~---1••

20 30 72

UNIT FD E:V 1 E = E Q U

x
FE U1V=5

This UNIT procedure call specifies an equivalent unit that has no number; it can be referenced only by
using a FORTRAN II PRINT statement. When referenced, unit 5 is activated; unit 5 must be defined by
using another UNIT procedure call.

Circular equivalences, such as the following, are not permitted.

UNIT FDEVIC =EQUIV x
FUN IT= x

I I ,F,E,Q,V,Ii~,= ,2,

UNIT FDE~

FVNIT=2.. x
FE vrv-:::.

11-38

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

11.3.5. FORTRAN Unit Definition Termination Procedure (FUNEND)

B

UPDATE LEVEL PAGE

The list of units specified with UNIT procedure calls is terminated by the FUNEND procedure call. The FUN END
procedure call:

•

•

•

•

•

terminates the unit list;

generates a work area large enough to accommodate any unit for which FWORKA=YES is specified;

generates one or two buffers large enough to accommodate any unit for which FBUFPOOL=YES is specified;

generates a reread buffer large enough to accommodate any unit for which FREREAD=YES or FRECERR=YES
is specified; and

guarantees the presence of a diagnostic unit.

If FDIAG NOS=YES was specified for a unit, no action takes place. If a unit was specified as, or defaulted to,
FFILEID=PRNTR, that unit is specified as the diagnostic device. If neither of the preceding conditions holds, a
UNIT procedure call with the following form is generated, and a warning diagnostic is issued.

"C" FOR COMMENT

30 72

UNIT FDEVI cE::.PRit-.iJ ER

!=UNIT= "PRINT x
FDIAGN~S=YES

FRECSI:ZE.=- IOI

Format:

1 10

FUN END

11.3.6. Error Environment Definition Procedure (ERRDEF)

During the execution of the object program, the Extended FORTRAN system monitors program operations for

consistency and legality, insofar as it is practical. The errors detected are grouped into seven classes, each
having a limit on the number of times the error is to be accepted before program termination and on the number
of diagnostic messages to be produced. The seven error classes include program, arithmetic, argument,
alignment, read, and data errors, explained in the following paragraphs, and fatal errors, which are catastrophic
errors forcing immediate program termination. A table in the library contains the limit information for each class.
This table is automatically included in the executable program if the table is not explicitly redefined by the
programmer. For this purpose, the error definition procedure (ERRDEF) is provided.

Treatment of nonfatal errors can be controlled by using the ERRDEF procedure call. Following is a listing, in order of
relative importance and utility, of the arguments that may appear on the ERRDEF procedure call. Following the
listing, descriptions of ERRDEF arguments and an ERRDEF example are presented. The ERRDEF procedure call
should follow the FUNEND procedure call in the configuration module.

11-39

8262 Rev. 1

UP-NUMBER

Format:

1

where:

ALL

SPERRY UNIVAC Operating System/3

10

ERRDEF

16

[FPROG=({+}, {+})]
- -

[FAR ITH·({AiLL} , fal})]

[FARG= ({A~L} ·{ ~~L})]
(FUNDFLO=YES]

[FALIGN=({A~L H1~L})]

[FREAO=({ A~d ·{ ~~L})]

[FOATA=u~LLH~~L })]

FERROPT=

NONE
READ
READ,DATA
READ,UNREC
READ,DATA,UNREC
DATA
DATA,UNREC
UN REC

UPDATE LEVEL
' 11-40

PAGE

Is a positive integer constant less than 32,768, with i;;;.j, specifying the number of times the error is to be

accepted before program termination. For a fatal error, i is assumed to be 1.

Is a positive integer constant less than 32, 768, with j!(i, specifying the number of diagnostic messages to
be produced. For a fatal error, j is assumed to be 1.

Specifies that there is no limit on the number of times the error is to be accepted before program
termination or that there is no limit on the number of diagnostic messages to be produced.

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

During execution, the first j errors cause diagnostic messages to be produced; when the ith error occurs, a
diagnostic is issued, and program termination is initiated.

Program Error Argument (FPROG):

This argument is used to control system action when the flow of execution encounters a statement for which
code cannot be generated because of a syntax or other error or when an error occurs in FORMAT-1/0 list
interaction.

Arithmetic Error Argument (FARITH):

This argument is used to control system action when a program check interrupt occurs for overflow,
underflow, or divide check. The standard library functions (Table 5-4) cannot cause this error.

Argument Error Argument (FARG):

This argument is used to control system action when an out-of-range argument is transmitted to a standard
library function (Table 5-4).

Improper argument values can cause error reporting by the standard library functions (Table 5-3) because:

•

•

•

the function is mathematically undefined for the argument, as SQRT (-10);

the function value is insignificant, as SIN (1 OE60); or

the function value is too large to be represented, as 1 OE50** 1 OE50. This is analogous to an overflow
condition.

As a default, a function value too small to be represented (an underflow) is approximated by 0 and is not
reported or considered on the FARG counts.

Underflow Error Argument (FUNDFLO):

FUNDFLO=YES
Used to control system action when underflows occur. This argument indicates that underflow will
be reported and counted.

Alignment Error Argument (FALIGN):

This argument is used to control system action when a program check interrupt occurs for an instruction
referencing an illegal main storage boundary. This can occur because of improper COMMON and
EQUIVALENCE statements and during argument substitution in prologues and epilogues.

Read Error Argument (FREAD):

This argument is used to control system action when an input device error occurs. The error counts associated
with FREAD are meaningful only when an ERR clause is present in the referencing statement. If no ERR clause
is present, the program is immediately terminated, regardless of the specifications forthe number of times the
error may be accepted or the number of diagnostic messages that may be produced.

Data Error Argument (FDATA):

This argument is used to control system action when the input data contains illegal characters. The error
counts associated with FDATA are meaningful only when an ERR clause is present in the referencing
statement. If no ERR clause is present, the program is immediately terminated, regardless of the
specifications for the number of times the error may be accepted or the number of diagnostic messages
that may be produced.

11-41

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Error Options Argument (FERROPT):

This argument specifies the meaning of the ERR clause. The Extended FORTRAN default is to pass control
to the ERR label only for parity or wrong length errors. The ERROR subroutine (5.6.3) is used to determine
the error type. Eight possible combinations of the following FERROPT specifications are available.

Example:

NONE

Used to control system action when the ERR clause feature is to be disabled.

READ

Used to control system action when control is to be passed to the ERR label for parity or wrong
length errors only.

DATA

Used to control system action when control is to be passed to the ERR label for data errors; this
class is composed of invalid input characters.

UN REC

Used to control system action when control is to be provided at the ERR clause for
unrecoverable device errors only. No further references to the unit are permitted.

ERRDEF FPR0G=-(IOO

!=ALIGN::. (ALL

F E "R "R~ PT = (1> AT

30

00)

72

_ix .J

-1.x ~

This ERRDEF procedure call indicates that if a program error occurs, the error may be accepted 1 OOtimes, and
100 diagnostic messages may be produced. If an alignment error occurs, there is no limit on the number of
times the error may be accepted, and 50 diagnostic messages may be produced. DATA, specified for error
options, indicates that control is to be passed to the ERR label if data errors occur. The standard defaults are
taken for all arguments not specified.

11.3.7. END Statement

The END statement, a source program terminator statement required by the assembler, indicates the end of the
definition of the execution environment.

11-42

•

•

•

8262 Re.v. 1 ,, SPERRY UNIVAC Operating System/3 B 11-43
UP-NUMBER UPDATE LEVEL PAGE

•

•

•

Format:

1 I ..
~ND

The END statement, coded as shown, follows the ERRDEF procedure call, or if the ERRDEF procedure call
is not present, the FUNEND procedure call.

Example:

An example of a complete execution environment follows.

STATEMENT c FORTRAN STATEMENT ... NUMBER 0

5 f 7 10 20 30 72

lMXIi~i ..i i ..iSJY iA..iRT l _l _l l _l _j_ _J_ _j_ _l_ _l L i i _l_ _l_ I

l ..1 _l 1FP1~1T 1A!B1 1S1Y 1S1-=- E1'l91R1 L J_L__L _ __i___l__J__j__j___l___J_L__L_ _ _L _l

l _l_ _J_ _l_ _l_ ..iUl~}_l_T I rP1Ev J.11c_j_EJ.=-..1-PJ.RJ.1J.N-1.TJ.EJ.R_i_.__i J. J. _l. _l. j ,
.J. ...l. _j_ J. .J. _LF_[U NcI.J. TJ. = 1i2 __.,_

'
.J. _L l _l .J.

..l ..l _L .J. _l l _l_ I FDIAG1Nl9.S..l=_l_Y_lE_lS..1 _l_ i l _l _j_ _l ..1 I I _ _l__

..l ...l. ..l. LJ1N..ll...i.T 1 i 1 FDE 1V_lI1CE_l=TA PE-1.Jl
7

_l l _l ..l

_L l ..l _l_ _l_ F_iV N1 I..1T_i= 1\ 1 l 1., 1 I I I I I I ___L___l___l J. l _l

j _L _l I _i .J. _l J _i ..l 1-' ,l=_iT1Y1'P1EiF1L-1E1=1I1N1'P1U1T1~! I I I I I I x

_L J I I I FIRIEICIS1I1~1E1=1210101 I I i I I I I I I

l ..l~ _l t=J V N_iE1N,]l, I I I I I I I I I I _l ..l _l ..l J _l ...l. _L I

l _j_ .J.EJR 'RD E' F _l_ I FiE "R 'R ©. 'P.L i = (_i1)JA..1. T A.J. L -1

.L ..l I 1E1N1D1 I I I I L -1. l _l_ -1 -1 l_ _l_. _j_ _ _ _l

•

•

•

•

•

•

11-43 8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Format:

1

END

The END statement, coded as shown, follows the ERRDEF procedure call, or if the ERRDEF procedure call
is not present, the FUNEND procedure call.

Example:

An example of a complete execution environment follows.

"C" FOR COMMENT

30

START

_l_____L__I F p ,"1,T ,A181 ,s 1Y S, ':" F 10 1R I L J_L_L Ll J_l___l _ __j__J _ _l__l_

uf\JrTI I rP1EY111c,E1=-PiR1I1N1T1EiR1,1 I I I I I

FUNIT=\2

UNIT FDEVICE-=TAPE

l---l....-L.---'-_l__.j..-.-4~--L.._J__J__L___l.___L.__J_-L.:1:.l_r I y 11' IE I F I L- I E I =I I I N, l> I u IT I 'I I

! l I F,RIEICIS:I1~1E1=121010

l-l--'--1.-'--+-+--'---'---'-~__,_\LN~~,N~,DLJ._,_...L_...L-L._L__ij__J,__,,__,,__..1_,_,_._-'-_.___.____..___..___,___.___.__.__._

F 1R"RDEF

72

x

J _l

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

12. Program Collection and Execution

12.1. GENERAL

Before a set of program units compiled by the SPERRY UNIVAC Operating System/3 (OS/3) Extended
FORTRAN can be executed, they must be collected and the necessary FORTRAN supporting routines made
available to them. The OS/3 linkage editor performs this task.

After the program units are link edited, all physical devices required for execution are assigned via OS/3 job
control statements.

12.2. LINK EDITING FORTRAN PROGRAMS

Several special interfaces of the OS/3 linkage editor are used by Extended FORTRAN and described in this
section. The user should be aware of these interfaces to use the linkage editor successfully with FORTRAN
compiled programs. The linkage editor options listed in the system service programs programmer reference
manual, UP-8209 (current version) can be used only if they do not conflict with requirements of Extended
FORTRAN.

12.2.1. FORTRAN Supplied Modules

After programs are compiled by the FORTRAN compiler, various mathematical functions, service routines, and
system routines may have to be connected to the programs. This entire group of modules must then be
converted into executable format. The functions SIN, ALOG, and CBRT, the subroutines DUMP and DVCHK, and
the service routines read-write, integer editing, and error detection are examples of the services which may need
to be supplied before a FORTRAN program is executable.

A complete list of functions and services supplied with Extended FORTRAN may be found in Appendix F .

12-1

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

t

12.2.2. Overlay and Region Structures

Sometimes the executable program created as linkage editor output is too large to fit into the required main
storage limits. The OSl3 linkage editor provides overlay and region segmentation methods to assist in creating

smaller executable load modules.

Programs compiled by the Extended FORTRAN compiler reference each subprogram with the automtaic overlay
feature of the OSl3 system. Thus, an overlay structure may be used with no changes to the FORTRAN programs.
A few restrictions should be observed, however, so that the FORTRAN service routines operate correctly:

• The root phase of the overlay structure should contain the following:

All common areas

The execution environment module

The modules FL$10COM, FL$ABTRM, FL$ERCTL

The main program of the execution

• Any direct access associated variables should be in a common area.

• If the explicit overlay control statements CALL LOAD, CALL FETCH, or CALL OPSYS are used, the
automatic overlay feature will not operate correctly. The linkage editor option, NOV, must be specified to
suppress normal V-CON processing.

• Local variables become undefined upon exit from a subprogram if the subprogram is in an overlay.

The user should take care when building overlay structures since program execution speed can be seriously

affected.

12.2.3. Linkage Editor Output

The executable module created by the linkage editor is placed in the system file, YRUN. The program may be
executed directly from this file, or it may be saved with the OSl3 system service routines.

In addition to load modules, the linkage editor produces a listing and a storage map for each load module. All
linkage editor errors should be resolved before attempting to execute the program. The storage maps should be
saved to aid in debugging the program.

The following example causes a FORTRAN program ($MAIN) and an execution environment module (MYIO) to be
linked to an executable module (TEST). All supporting FORTRAN run-time modules needed by $MAIN and MYIO
programs are automatically included into TEST from the system object module library, Y0BJ.

II WORK 1

I I EXEC LNKEDT

/$

LOADM TEST

INCLUDE $MAIN

INCLUDE MYIO

/*

12-2

•

•

•

•

•

•

SPERRY UNIVAC Operating System/3 12-3 8262 Rev. 1
UP-NUMBER UPDATE LEVEL PAGE

12.3. Execution FORTRAN Programs

The Extended FORTRAN compiler uses the OS/3 Operating System and Data Management System to execute its
compiled programs. The following information describes the various OS/3 interfaces that FORTAN requires.

12.3.1. FORTRAN 1/0 Units

The FORTRAN 1/0 unit module that is linked to the executable program specifies which units and devices may
be used during this execution. The user is responsible for supplying the actual devices which connect to the
units in the 1/0 unit module.

To connect an actual device to an executable program, the user supplies appropriate JCL statements which
allocate the device for this job or job step. He must assign a file on the device via the LFD job control statement
where the filename on the LFD statement is the same as the FFILEID parameter described in Section 11.

The FORTRAN diagnostic device must always be allocated to the executing program. In all Extended FORTRAN
default 1/0 configurations, this device is a printer with the FFILEID=PRNTR. When a device is not used during an
execution of a program, the device need not be assigned.

12.3.2. Pause Messages

If a PAUSE statement is executed, the text of the PAUSE message is displayed on the system console. The
program then waits for a response from the operator.

There are three allowable responses to a PAUSE message:

• CONT - continue the program execution.

• STOP - terminate the program normally.

• DUMP - terminate the program with a dump.

If any other response is made, the PAUSE message is reissued.

12.3.3. Diagnostic Messages

The FORTRAN run-time system has many diagnostic messages which may be displayed during execution.
These messages are output to the FORTRAN unit assigned for diagnostic information (11.3.4.1,
FDIAGNOS=YES).

The amount of information output by the FORTRAN run-time system may be controlled by the error definition
procedure (11.3.6); however, the STOP message and execution summary information are always output.
Therefore, when using preprinted forms or when printing final draft output, the user should assign the
diagnostic device separate from his good copy printer. For a complete list of run-time diagnostics, refer to the
system messages programmer/operator reference, UP-8076 (current version).

Diagnostic messages that can be generated during compilation are listed and described in Appendix E .

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Appendix A. Character Set

A.1. SOURCE PROGRAM AND INPUT DATA CHARACTERS

Table A-1 shows the EBCDIC input character set for Extended FORTRAN. The table indicates, in the upper
portion of each square, the card punches used to represent the hexadecimal value and, in the lower portion of
the square, the corresponding character on the keyboard of a SPERRY UNIVAC 1700 Series keypunch. The
SPERRY UNIVAC 1004 Card Processor changes to the character blank (hexadecimal Z40) all card punch
combinations marked with a dagger. For example, the hexadecimal value C1 is encoded with the keyboard
character A, 12-1 hole combination on the punched card.

TableA-1. EBCDIC Input Character Set (Part 1 of 4)

~ 0

f
0, 1, 8, 9 12, 1, 9 12, 2, 9 12, 3, 9 12, 4, 9 12, 5, 9 12, 6, 9 12, 7, 9

12, 11, 1, 8,9 11, 1,9 11, 2. 9 11, 3, 9 11, 4, 9 11, 5, 9 11, 6, 9 11, 7, 9

11, 0, 1, 8, 9 0, 1,9 o. 2. 9 0, 3, 9 0, 4, 9 0, 5, 9 o. 6. 9 0, 7, 9

12, 11, 0, 1, 8, 9 1 1,9 2, 9 3, 9 .. 9 5, 9 6, 9 7, 9

(space) 12, 0, 1, 9 12, 0, 2, 9 12, 0, 3, 9 12, o. 4, 9 12, 0, 5, 9 12, 0, 6, 9 12, 0, 7, 9 t

12 12, 11, 1, 9 12. 11, 2, 9 12, 11, 3, 9 12, 11, 4, 9 12, 11, 5, 9 12, 11, 6, 9 12, 11, 7, 9 t

&

11 0, 1 11, 0, 2, 9 11, 0, 3, 9 11, o. 4, 9 11, 0, 5, 9 11, 0, 6, 9 H,0, 7,9 t

- (minus)

12, 11, 0 12, 11, 0, 1, 9 12, 11, 0, 2. 9 12, 11, 0, 3, 9 12, 11, 0, 4, 9 12, 11, 0, 5, 9 12, 11, 0, 6, 9 12,11,0,7,9t

A-1

8262 Rev. 1

UP-NUMBER

~ _i

12, 8,9

11, 8, 9

0, B, 9

8, 9

12. 0, 8, 9

12, 11, 8, 9

11,0,8, g-

12,11,0,8,9

~ 0

I
12, 0, 1, 8

8

9
12, 11, 1, 8

11, 0, 1,8
A

12, 11, 0, 1, 8
B

12, 0
c

12-0

11,0
D

11-0

o. 2. 8
E

0-2-8

0
F

0

12, 1, 8. 9

11, 1,8,9

0, 1,8,9

1, 8, 9

12, 1, 8

11, 1, 8

0, 1, 8

"8

1

t 12. 0, 1

t 12, 11, 1

t 11,0, 1

t 12, 11, o. 1

12, 1

A

11,1

J

11, 0, 1, 9

1

1

SPERRY UNIVAC Operating System/3

TableA-1. EBCDIC Input Character Set (Part 2 of 4)

A B c D

12, 2, B, 9 12, 3, 8, 9 12, 4, 8, 9 12, 5, 8, 9

11, 2, 8, 9 11, 3, 8, 9 11, 4, 8. 9 11, 5, 8, 9

0, 2, 8, 9 0, 3, 8, 9 0, 4, 8, 9 o. s. e. s

2, 8, 9 3, 8, 9 4, 8, 9 5, 8, 9

12, 2, 8 12, 3, 8 12, 4, 8 12, 5, 8

<
11, 2, 8 11, 3, 8 11,4,8 11, 5, 8

.,,

12, 11 0,3, 8 0, 4, 8 0, 5, 8

, (comma) %
lunderline I

2, 8 3, 8 •. 8 5, 8

@
' (apostrophe)

Table A-1. EBCDIC Input Character Set (Part 3 of 4)

2 3 4 5

t 12, 0, 2 t 12, 0, 3 t 12, 0, 4 t 12, 0, 5

t 12, 11, 2 t 12, 11, 3 t 12, 11, 4 t 12, 11, 5

t 11, 0, 2 t 11, 0,3 t 11, 0,4 t 11, 0, 5

t 12, 11, 0, 2 t 12, 11, o. 3 t 1~. 11, 0, 4 t 12, 11, 0, 5

12. 2 12, 3 12, 4 12, 5

B c D E

11, 2 11,3 11,4 11, 5

K L M N

0, 2 0, 3 0, 4 0, 5

s T u v

2 3 4 5

2 3 4 5

A-2

UPDATE LEVEL PAGE

•
12, 6, 8, 9 12, 7, B, 9

11, 6, 8, 9 11, 7, 8, 9

0, 6, 8, 9 0, 7, 8, 9

6, 8, 9 7, 8, 9

12, 6, 8 12, 1, 8

J (vertical bar)

11, 6, 8 11, 7, 8

--,

0, 6, 8 0, 7, 8

>
6, 8 7.8

" (quote mark)

6 7

t 12, 0, 6 t 12, 0, 7 t •
t 12, 11, 6 t 12, 11, 7 t

t 11, 0, 6 t 11, 0, 7 t

t 12, 11, 0, 6 t 12, 11, 0, 7 t

12, 6 12, 7

F G

11, 6 11, 7

0 p

0, 6 0, 7

w x

6 7

6 7

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

Table A-1 . EBCDIC Input Character Set (Part 4 of 4)

~ A e c D

i:
12, 0, 8 12, 0, 9 12, 0, 2, 8 12, 0, 3, 8 12, 0, 4, 8 12, o. 5, 8

12, 11, 8 12, 11, 9 12, 11, 2, 8 12, 11, 3, 8 12, 11, 4, 8 12, 11, 5, 8

11,0,8 11, 0, 9 11, 0, 2, 8 11, 0, 3, 8 11, 0, 4, 8 11, 0, 5, 8
A

12, 11, 0, 8 12, 11, 0, 9 12, 11, 0, 2, 8 12, 11, 0, 3, 8 12, 11. o. 4, a 12, 11, 0, 5, 8

12, 8 12, 9 12, 0, 2, 8, 9 12, 0, 3, 8, 9 12, 0, 4, 8, 9 12, 0, 5, 8, 9
c

H

11,8 11,9 12, 11, 2, 8, 9 12. 11, 3, 8, 9 12, 11, 4, 8, 9 12. 11, 5, 8, 9
D

a R

0, 8 0,9 11, 0, 2, 8, 9 11. 0, 3, 8, 9 11. 0, 4, 8, 9 11. o. 5, 8, 9

y

12, 11, 0, 2, 8, 9 t 12, 11, 0, 3, 8, 9 t 12, 11, 0, 4, 8, 9 t 12.11. 0, 5, 8, 9

A.2. PRINTER GRAPHICS

UPDATE LEVEL PAGE

12, 0, 6, 8 12, 0, 7, 8

12, 11, 6, 8 12, 11, 7, 8

11, 0, 6, 8 11, 0, 7, 8

12, 11, 0, 6, 8 12, 11, 0, 7, 8 t

12, o. s. a. s 12, 0, 7, 8, 9 t

12, 11, 6, 8, 9 12, 11, 7, 8, 9 t

11, 0, 6, 8, 9 11, o. 7, 8, 9 t

t 12, 11, 0, 6, 8,9 t 12, 11, 0, 7, 8, 9 t

The SPERRY UNIVAC Operating System/3 (OS/3) supports many different printer devices, each with subtly
different character sets. The character sets vary in size from 16 to 94 characters to accommodate differing
national languages and the needs of various applications. Internal representations of the character set may differ
due to translations performed by using a load code, a translation table within the printer control unit.

Table A-2 shows a representative character set and its internal hexadecimal representation. Special characters
and lowercase alphabetics may differ due to the printer model, the features installed, and the load code in use. These
features should be checked to ensure availability, and the table should be updated to reflect installation usages.

Table A-2. Representative Character Set (Part 1 of 4)

~ 0 1 2 3 4 5 6 7

1
T

0

1

2

3

(blank)
4

&
5

- (mmus) I
6

7

A-3

8262 Rev. 1
UP-NUMBER

~
0

1

2

3

4

5

6

7

~
8

9

..
B

c

D

E

F

8 9

0 1

a

j

-(tilde)

{ A

} J

0 1

SPERRY UNIVAC Operating System/3

TableA-2. Representative Character Set (Part 2 of 4)

A 8 c D

• . (period) < I

! $ " I

\ , (comma) % - (underline)

@ ' (apostrophe)

TableA-2. Representative Character Set (Part 3 of 4)

2 3 4 5

b c d '

k I m n

' t u '

B c D E

K L M N

s T u v

2 3 4 5

A-4
UPDATE LEVEL PAGE

• E F

+ I

; ----,

> '
= .. (quote mark)

• 7

I g • 0 p

w x

F G

0 p

w x

6 7

•

•

•

•

8262 Rev. 1
UP-NUMBER

~
8

9

A

B

c

D

E

F

h

q

v

H

Q

y

B

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

A-5

Table A-2. Representative Character Set (Part 4 of 4)

8 A B c D

R

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Appendix B. Summary of
UNIT Options

Summaries of UNIT arguments and the types of files they are used to define are presented in Tables B-1
through B-8.

Table 8-1. Summary of UNIT Arguments for Printer File

Argument Use

FDEVICE=PRINTER Specifies the device to be used for the file.

FUNIT=PRINT ~ Specifies Extended FORTRAN unit
reference number or FORTRAN 11

PUNCH statement reference .

[f ""'m' }]
Specifies job control file reference name

FORTK; if FUNIT = k (LFD). Defaults PRNTR and PUNCH
FF I LEID= PRNTR; if FUNIT =PRINT taken only for FORTRAN 11 FUNIT.

PUNCH; if FUNIT =PUNCH

[FRECSIZE= ~ ~ 21 ~ J Specifies logical record size.

[FNUMBUF= ~ ~ ~ J Specifies number of input/output buffers.

[FDIAGNOS=YES] Specifies the unit as the diagnostic device.

[FPRINTOV= ~ ~~l;KIP f J Specifies printer action when bottom of
page is encountered.

[FCHAR= ~~~Ff J Specifies printer action for illegal characters.
OFF causes blank substitution; ON causes
program termination.

[FOPTI ON= YES] Specifies a file not logically required. If the

file is not allocated, output is ignored .

B-1

A B-2 8262 Rev. 1
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 8-2. Summary of UNIT Arguments for Spooled Card Input File

Argument Use

FDEVICE=SPOOLIN Specifies the device to be used for the file.

FUNIT= ~ ~EAD ~ Specifies Extended FORTRAN unit reference number
or FORTRAN 11 statement reference.

[FREREAD=YES) Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

[FBKSZ= ~ ~oof J Specifies size of unit buffer.

[FBUFPOOL=YES) Specifies that the buffer for the unit is to be pooled.

[FRECSIZE = ~ ~o~] Specifies card size to be read.

Table 8-3. Summary of UNIT Arguments for Card Input File

Argument Use

FDEVICE=CARDIN Specifies device to be used for the file.

FUNIT=~~EAD ~ Specifies Extended FORTRAN unit reference number
or FORTRAN 11 statement reference.

~ r·••m• !] Specifies job control file reference name (LFD).
FFILEID= ~;if FUNIT=k Default READER taken only for FORTRAN II

READER; if FUNIT=READ FUNIT.

[FREREAD=YES) Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

[FBUFPOOL=YES) Specifies that buffers for the unit are to be pooled, or
shared, with all other units so specified.

[FNUMBUF= ~ t ~ J Specifies number of input buffers.

~WORKA= ~ YES; if FNUMBUF=1 f J Specifies that logical records are to be processed in a
NO; if FNUMBUF=2 work area rather than in the buffer.

~RECSIZE= ~~of J Specifies logical record size.

rsTUB= l ~~ ~ J Specifies that cards shorter than 80 columns are to
be processed.

[FOPTION=YES) Specifies a file not logically required. If the file is

not allocated, and input causes an end return.

[FAUE=YES) Specifies that mispunched cards are to be ignored.

~BKSZ= ~ ~RECSIZE ~ J Specifies the block size for the 8413 diskette.

•

•

•

•

•

•

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL

Table 8-4. Summary of UNIT Arguments for Card Output Fife

Argument Use

FDEVICE=CARDOUT Specifies device to be used for the file.

FUN IT= 1 ~UNCH ~ Specifies Extended FORTRAN unit reference number
or FORTRAN 11 statement reference.

~ l"''"'m' \]
Specifies job control file reference name (LFD).

FFILEID= FORTk; if FUNIT=k Default PUNCH taken only for FORTRAN 11
PUNCH; if FUNIT=PUNCH FUNIT.

[FBUFPOOL=YES] Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.

~NUMBUF= nn Specifies number of input buffers.

~WORKA= ~YES; if FNUMBUF=1 f J Specifies that logical records are to be processed in a
NO; if FNUMBUF=2 work area rather than in the buffer.

rRECSIZE= { ~o ~] Specifi?.s logical record size.

[FCRDERR=RETRY] Specifies that automatic error recovery is to be
attempted for mispunched cards.

[FOPTION=YES] Specifies a file not logically required. If the file is
not allocated, output is ignored .

~BKSZ= 1 ~RECSIZE~J
Specifies the block size for the 8413 diskette.

Table 8-5. Summary of UNIT Arguments for Tape File (Part 1 of 2)

Argument Use

FDEVICE=TAPE Specifies device to be used for the file.

FUNIT={~EAD }

Specifies Extended FORTRAN unit reference number
or FORTRAN 11 statement reference.

PUNCH

{"''"'~ } Specifies job control file reference name (LFD).
FORTk; if FUNIT=k Defaults READER and PUNCH taken only for

rFILEID• READER' if FUNIT•READ] FORTRAN II FUNIT.
PUNCH; if FUNIT=PUNCH

~ {'"OUT }]
Specifies level of data management support.

WORK; if FUNIT=k
FTYPEFLE= INPUT; if FUNIT=READ

OUTPUT; if FUNIT=PUNCH

t , n VARUNB Specifies records as variable or fixed and blocked

RECFORM='VARBLK or unblocked.

JFIXUNB •
FIXBLK

~NUMBUF= it~] Specifies number of input/output buffers .

~WORKA= 1 YES; if FNUMBUF=1 ~] Specifies that logical records are to be processed in a
NO; if FNUMBUF= 2 work area rather than in the buffer.

..

B-3
PAGE

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 8-5. Summary of UNIT Arguments for Tape File (Part 2 of 2)

Argument Use

[FBUFPOOL=YES) Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.

~RECSIZE= ~ ~08 ~ J Specifies logical record size. Taken as maximum for
variable records.

tBKSZ• f }]
Specifies the size of the unit buffer.

IFRECSIZEI; if
FRECFORM=FIXUNB
IFRECSIZE+4[; if
FRECFORM=VARUNB
If R ECSIZE*4 I; otherwise

[FREREAD=YES) Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

[FDIAGNOS=YES) Specifies the unit as the diagnostic device

[FBKNO=YES) Specifies that output tape blocks are to be sequentially
numbered and input tape blocks are to be checked.

~ERROPT= ~IGNORE~] Specifies action for device errors. IGNORE and SKIP
SKIP disable the ERR clause for parity/length.

[FRECERR=YES) Specifies that records with bad parity or wrong length
are to be moved to the reread buffer.

rFILABL= ~ ~~ ~] Specifies standard or missing labels on magnetic tape.

[FCKPT=YES) Specifies checkpoint dumps used to restart programs after
a catastrophic failure are present on input tapes.

rCLRW= { ~~~WD } J Specifies positioning at end of program execution for
input and output tapes.

UNLOAD

[FOPRW=NORWD) Specifies that rewind is disabled at first reference to
tape file.

[FOPTION=YES) Specifies a file not logically required. If the file is

not allocated, output is ignored, and input causes an
end return.

B-4

•

•

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 A B-5

UPDATE LEVEL PAGE

Table 8-6. Summary of UNIT Arguments for Sequential Disc Files

Argument Use

FDEVICE=SDISC Specifies device to be used for the file.

FUNIT=l ~EAD 1 Specifies Extended FORTRAN unit reference number
or FORTRAN 11 statement reference.

PUNCH

[FsECTOR= ~~~s~ J Specifies processing on a sectorized disc expected.

t f'"'m' } J
Specifies job control file reference name (LFD).

FFILEID= FORTk; if FUNIT=k Defaults READER and PUNCH taken only for
READER; if FUNIT=READ FORTRAN II FUNIT.
~;if FUNIT=PUNCH

[rOUT }]
Specifies level of data management support. WORK; if FUNIT=k

FTYPEFLE= INPUT; if FUNIT=READ
OUTPUT; if FUNIT=PUNCH

[C""""}] Specifies records as variable or fixed and blocked or
RECFORM= VARBLK unblocked.

FIXUNB
FIXBLK

[FBUFPOOL=YES] Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.

rNUMBUF= ~ ~ ~ J Specifies number of input/output buffers .

~WORKA= {YES; if FNUMBUF=1 l J Specifies that logical records are to be processed in a
NO; if FNUMBUF=2 r work area rather than in the buffer.

~RECSIZE= ~ ~OB f J Specifies logical record size. Taken as maximum for
variable records.

t· KSZ, {':RECS IZE '' ;1 FR ECFORM•FI XUNB } J Specifies the size of the unit buffer.

IFRECSIZE + 4 j; if FRECFORM=VARUNB
IFRECSIZE * 4 j; otherwise

[FREREAD=YES] Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

[FDIAGNOS=YES] Specifies the unit as the diagnostic device.

~ERROPT= ~IGNORE G Specifies action for device errors. IGNORE and

SKIP SKIP disable the ERR clause for parity/length.

[FRECERR=YES] Specifies that records with bad parity or wrong
length are to be moved to the reread buffer.

[FOPTION=YES] Specifies a file not logically required. If the file is
not allocated, output is ignored,and input causes
an end return.

[FVERIFY=YES] Specifies a reread of each written block to ensure
proper parity .

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A B-6
UPDATE LEVEL PAGE

Table 8-7. Summary of UNIT Arguments for Direct Access Disc Files

Argument Use

FOEVICE=DISC Specifies device to be used for the file.

FUNIT=k Specifies Extended FORTRAN unit reference number.

[FsECTOR= 1 ~~s f J Specifies processing on a sectorized disc expected.

~ {filename } J FFILEID= FORTk;where k=FUNIT
Specifies job control file reference name (LFD).

~TYPEFLE= {INPUT } J Specifies level of data management support. (11 .3.3.6).

OUTPUT

[FBUFPOOL=YES) Specifies that buffers for the unit are to be pooled,
or shared, with all other units so specified.

[FRECSIZE= ~ ~12 f J Specifies logical record size.

[FRECERR=YES] Specifies that records with bad parity or wrong length
are to be moved to the reread buffer.

[FREREAD=YES) Specifies that a copy of each formatted input record
is to be transferred to the reread buffer.

[FVERIFY=YES) Specifies a reread of each written block to ensure
proper parity.

Table 8-8. Summary of UNIT Arguments for Reread Unit

Argument Use

FDEVICE=REREAD Specifies device to be used for the file.

FUNIT= ~~EADf Specifies Extended FORTRAN unit reference number
or FORTRAN 11 statement reference.

Table 8-9. Summary of UNIT Arguments for Equivalent Unit

Argument Use

FDEVICE=EQUIV Specifies device to be used for the file.

FUNIT={~EAD }

Specifies Extended FORTRAN unit reference number
or FORTRAN 11 statement reference.

PRINT
PUNCH

FEQUIV= { ~EAD }

Specifies the unit to be activated.

PRINT
PUNCH

•

•

•

•
8262 Rev. 1
UP-NUMBER

C.1. GENERAL

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Appendix C. Additional
UNIT Options

Additional options for execution environment configuration not presented in Section II are described in this
appendix. Users familiar only with FORTRAN, however, should ignore this entire appendix, since it requires detailed
knowledge of both assembly language and the data management system.

In the following descriptions of options for the various devices, a symbol required by an argument must be provided in
assembler language following the FUN END procedure call or be defined in another module. If it is defined in another
module, the symbol must be named on an EXTRN statement in the UNIT module and on an ENTRY statement in
the module defining the symbol. For further information, refer to the data management reference manual, UP-
8068 (current version). For an explanation of the statement conventions applicable to this appendix, refer to 1.4.

• C.2. PRINTER OPTIONS

•

Extended FORTRAN Printer Device Control Subroutines:

FORTRAN language rules require an advance and print sequence, but many printers accept only print and
advance sequences. To prevent significant loss of performance, a print line is not delivered to the data
management system until the spacing requirements of the next line are known. This requires special coding if
the executable program contains assembly language procedures that deliver images to any printer defined by a
UNIT procedure call.

Two subroutines are available for Extended FORTRAN printer device control.

• FL$PRNT

CALL FL$PRNT i,j,k
Used by the assembly language procedure to write a print line.

The address of the unit number, an INTEGER*4 variable, is specified by i. When i is negative, the

Extended FORTRAN unit PRINT is assumed. The address of the line length, an INTEGER*4 variable, is
specified by j. The address of the output line, the first character of which is a device independent
control character, is specified by k.

A save area must previously have been specified in register 13 .

C-1

8262 Rev. 1
UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

FL$CLS

CALL FL$CLS i
Used to close the printer file if it is desirable for the assembly language procedure to perform
standard PUT macro instructions.

The address of the unit number is specified by i.

The DTF may now be opened and standard data management processing continued, using register 3 as
the IOREG. The automatic skip to home paper position may be lost if the file is closed immediately after
forms overflow is detected.

C.3. CARD READER OPTIONS

Additional options for the card reader are described in the following paragraphs.

Binary Card Input Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BINARY

Specifies binary translation mode. Binary card input defines two bytes for each card column. Holes
12 through 3 are mapped onto bits 25 through 2° of byte 1; holes 4 through 9 are mapped onto bits 25

through 2° of byte 2, etc. Bits 27 and 26 of each byte are set to 0. When the BINARY option is

C-2

•

specified, the default value for FRECSIZE is changed from 80 to 160. •

Binary cards should be read by using an unformatted statement or an A FORMAT code; 96-column
cards can not be read with BINARY mode.

ASCII Character Set Argument:

FASCll=YES
Specifies the ASCII character set.

If this argument is not specified, the EBCDIC character set is used. If FMODE=BINARY is specified,
FASCll cannot be specified. ASCII does not imply a larger character set than EBCDIC, but is the accepted
standard for information interchange.

•

•

•

•

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

C.4. CARD PUNCH OPTIONS

Additional options for the card punch are specified in the following paragraphs.

Binary Card Output Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BINARY
Specifies binary translation mode. Binary card output defines two bY1es for each card column. Holes 12
through 3 are mapped onto bits 25 through 20 of byte 1; holes 4 through 9 are mapped onto bits 25 through
2° of byte 2, etc. Bytes 27 and 2s of each byte are not transmitted to the unit. When the BINARY option is
specified, the default value for FRECSIZE is changed from 80 to 160.

ASCII Character Set Argument:

FASCll=YES
Specifies the ASCII character set.

If this argument is not specified, the EBCDIC character set is used. If FMODE=BINARY is specified, FASCll
cannot be specified. ASCII does not imply a larger character set than EBCDIC, but is merely the accepted
standard for information interchange.

C.5. TAPE FILE OPTIONS

Additional options for magnetic tape are specified in the following paragraphs.

User Header and Trailer Labels Arguments:

The FFILABL and FLABADDR arguments are used to specify user header and trailer labels.

• FFILABL

This argument specifies the type of labels to be used. In addition to the STD and NO options presented in
Section 11, a third option is available.

FFILABL=NSTD
Specifies nonstandard labels.

A nonstandard labeled tape with user trailer labels cannot be extended or backspaced after ENDFILE has
been encountered.

• FLABADDR

FLABADDR=symbol
Specifies that user header and trailer labels are to be processed.

The address of the user label routine is specified by symbol. This argument should be specified if
FFILABL=NSTD is specified .

C-3

8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

ASCII Tape Files Arguments:

• FASCI!

FASCll=YES
Specifies ASCII files.

• FBUFOFF

FBUFOFF=k
Specifies that a block length field of 0 to 99 bytes is to be prefixed on each block. FBUFOFF may
be specified only if FASCll=YES has been specified. A value of 0-99 is specified by k.

If a value other than 4 is specified fork, the block length field is assumed to be destined for, or
received from, an alien operating system and is ignored. If the block size is determined by default,
FBUFOFF is added afterward.

• FLENCHK

FLENCHK=YES

Specifies that, for variable length records, the block length field is automatically set on output and
checked on input. FLENCHK may be specified only if FASCll=YES and FBUFOFF=4 have been
specified.

C.6. SEQUENTIAL DISC FILE OPTION

An additional option for sequential disc follows.

User Header and Trailer Argument:

FLABADDR=symbol

Specifies that the user header and trailer labels are to be processed. The address ofthe user label routine
is specified by symbol.

C.7. DIRECT ACCESS DISC FILE OPTIONS

Additional options for direct access disc are specified in the following paragraphs.

• FLABADDR

FLABADDR=symbol
Specifies that user header labels are to be processed. The address of the user label routine is
specified by symbol.

• FTRLBL

FTRLBL=YES

Specifies that user trailer labels are to be processed. This argument may be specified only if the
FLABADDR argument has been specified.

C-4

•

•

•

•

•

•

8262 Rev. 1
UP·NUMBEA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

C.8. ADDITIONAL DATA MANAGEMENT DEVICES

Files for sequential devices supported by the SPERRY UNIVAC Operating System/3 (OS/3) Data Managment
System and not presented in Section 11, such as optical document readers, paper tape, etc., are defined by using
the following UNIT procedure call. A listing, in the order of their relative importance and utility, of the arguments
that may appear on this UNIT procedure call is followed by descriptions of the arguments.

Format:

1 10

UNIT

Device Identification Argument:

16

FDEVICE=DMS
FUNIT=k
FWORKA=YES

[FFILEID= {filename} J
FORTk

[
FRECFORM= { ~~~~~: 1 J

FIXUNB
FIXBLK

[FRECSIZE= {~OS} J
[FREREAD=YES]

Specifies that this file is for a sequential device supported by the OS/3 data management system.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant in the range 1~k~99.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified
by a control module.

Work Area Allocation Argument:

FWORKA=YES
Specifies that records are to be moved to and from a work area for processing. Space for a work area is to

be allocated .

C-5

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1 ~k~99. If the FFILEID argument is not specified, FORTk is the
default file name.

The UNIT procedure call generates an address constant that references the specification for FFILEID. A
define the file (DTF) macro instruction labeled with the file name must be provided. An EXTRN statement is
automatically generated for the label specified in FFILEID.

Record Formats Argument:

FRECFORM=VARUNB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records.

FRECFORM=FIXUNB
Specifies fixed-length unblocked records.

FRECFORM=FIXBLK
Specifies fixed-length blocked records.

Record Size Argument:

This argument specifies the record size and is used only to ensure that the common work area is large enough
for all units using it. No 1/0 areas are allocated; these must be defined by the user.

(k } FRECSIZE= l S08

Specifies a positive integer constant.

If this argument is omitted, 508 is the default record size.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7 .3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

C-6

•

•

•

•
8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 C D-1

UPDATE LEVEL PAGE

Appendix D. FORTRAN Sample
Job Streams

0.1. JOB CONTROL PROCEDURE

The FOR procedure call statement generates the necessary job control statements to compile an Extended
FORTRAN program. Optionally, it can generate job control statements that specify the following:

• input - source library;
• output - object library;
• PARAM control statements defining the compiler processing logic; and
• automatically link and/or execute the program.

The input may be embedded data cards, (/$, source deck, /*) immediately after the FOR procedure call, or a
module in any library as defined by the IN parameter. This results in the appropriate DVC-LFD control statement
sequence with an LFD name, LIB 1, and the PARAM control statement. PARAM IN=module-name/LIB 1, unless

• the PARAM LIN statement is specified.

•

The object code is written in YRUN by default. but a specific output library can be specified by the OUT
parameter. This results in the appropriate DVC-LFD control statement sequence with an LFD name, OUTFPUT,
and the PARAM control statement, PARAM OUT=OUTFPUT.

The ALTLOD parameter generates the necessary DVC-LFD control statement with an LFD name, ALTLOD, and
the appropriate EXEC control statement to load and execute the FORTRAN compiler from a private library other
than YLOD.

Format:

//[symbol] {
FOR }
FORL
FOR LG l ~ N lJ [~ (vol-ser-no,label)tJ

PRNTR= ({~"} [,vol-ser-no]) ,IN= ~=~~~label) >

20 (RUN,label) (
(*,label) i

[

OUT=) ~~o~~~~~:l·)label) {] [SCR i= { vol-ser-no }]
' (RUN,label) ' RES

(*,label) ·
(RUN,YRUN) I

[ALTLOD
= ~ (vol-ser-no,label) ~] [OPT=(D N X)] ' (RES,label) ' ' '

(RUN,label)
(*,label)
(RES,YLOD) J

[,MDE=I] [,STX=option] [,CNL=option]

[,LIN= { ~:~n,ame} J [,LST=option] t

8262 Rev. 1
UP-NUMBER

Label:

SPERRY UNIVAC Operating System/3 A D-2
UPDATE LEVEL PAGE

symbol
Specifies the 1- to 6-character source module name; only needed when the IN parameter is used.

Operation:

FOR

This form of the procedure call statement is used to compile an Extended FORTRAN source program.

FORL

This form of the procedure call statement is used to compile an Extended FORTRAN source program
and link-edit the object modules.

FOR LG
This form of the procedure call statement is used to compile an Extended FORTRAN source program,
link-edit the object modules, and execute the load module.

Keyword Parameter PRNTR:

PRNTR~ l({~~} [.vol-m-no])}
Specifies the logical unit number of the printer, and, optionally, the destination-id (vol-ser-no). If a
printer device assignment set is not to be generated, the value N is coded, and the printer device

•

assignment set must be manually inserted in the control stream. •

t

PRNTR=(lun[,vol-ser-no])
Specifies the logical unit number (20-29) of the printer device. Optionally, the destination-id (vol­
ser-no) can be specified.

PRNTR=(N[,vol-ser-no])
Indicates that a device assignment set for the printer must be manually inserted in the control
stream. This permits LCB and VFB job control statements to be used in the control stream. The
volume serial number can also be specified.

Keyword Parameter IN:

This parameter specifies the input file referenced by the PARAM IN control statement. If omitted, the
source input is assumed to be embedded data cards (/$, source deck, /*).

IN=(vol-ser-no,label)
Specifies the volume serial number (vol-ser-no) and the file identifier (label) where the source input
is located.

IN=(RES)
Specifies that the source input is located on the SYSRES device in YSRC.

IN=(RES,label)

Specifies that the source input is located on the SYSRES device, in the file identified by the file
identifier (label).

IN=(RUN,label)

Specifies that the source input is located on the job's $YSRUN file with the file identifier (label)
specified by the user.

•

•

•

•

..
8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 C D-2a
UPDATE LEVEL PAGE

IN=(*,label)
Specifies that the source input is located on a catalog file identified by the file identifier (label).

Keyword Parameter OUT:

This parameter specifies the output file definition. If omitted, the object code is located on the job's

YRUN file.

OUT=(vol-ser-no.label)
Specifies the volume serial number (vol-ser-no) and the file identifier (label) of the file where the

object code is to be located.

OUT=(RES.label)
Specifies that the object code is to be located on the SYSRES device, within the file specified by the

label parameter.

OUT=(RUN,label)
Specifies that the object code is to be located on the job's YRUN file identified by a user specified

file identifier (label).

OUT=(*.label)
Specifies that the object code is to be located on a catalog file identified by the file identifier (label).

Keyword Parameter SCR1:

SCR1 = { v;~~er-no}
Specifies the volume serial number of the work file labeled $SCR1. If omitted, the work file is .

assumed to be on the SYSRES device.

Keyword Parameter ALTLOD:

This parameter specifies the location of the alternate load library. If omitted, the compiler is loaded from

YRUN.

AL TLOD=(vol-ser-no.label)
Specifies the volume serial number (vol-ser-no) and file identifier (label of an alternate load library

that contains the Extended FORTRN compiler.

AL TLOD=(RES,label)
Specifies that the alternate load library is located on the job's SYSRES device, in the file identified by

the file identifier (label).

AL TLOD=(RUN,label)
Specifies that the alternate load library is located on the job's YRUN file with the file identifier

(label) specified by the user.

AL TLOD=(* ,label)
Specifies that the alternate load library is located on a catalog file identified by the file identifier

(label). t

. ..

•

•

•

•

•

•

•
8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 C D-3

UPDATE LEVEL PAGE

Keyword Parameter OPT:

OPT=(D, N, X)
Specifies one or all of the following compilation options.

D Specifies double spacing of the compiler listing.

N Specifies that no object program is to be generated. The program units are merely compiled and
cannot be executed.

X Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments.

The default for the OPT argument is single spacing with the absence of the N and X specifications. All OPT
options remain in effect until another OPT specification is encountered. If only one OPT argument is
speci!ied, the parentheses are optional.

Keyword Parameter MDE:

MDE=I
Specifies that the compiler is to evaluate expressions in a strict left-to-right order when there is a
choice, and that storage is to be allocated for variables and arrays in the sequence in which they
were encountered.

This parameter is recommended for use when compiling programs originally developed under the IBM
System/360 Disc Operating System. When specified, the MDE parameter remains in force for all
remaining compilations.

Keyword Parameter STX:

When the Extended FORTRAN compiler generates code for a main program, a call to a FORTRAN IV library
subprogram is produced. This causes the execution of two STXIT macro instructions, locates the diagnostic
device, and sets up the program mask in the program status word (PSW).

The two STXIT macro instructions, for program checks and abnormal termination enable the library to:

• maintain switches for the OVERFL and DVCHK subroutines;

• recover boundary alignment errors caused by COMMON and EQUIVALENCE statements and
argument substitution; and

• provide for orderly shutdown of the program when fatal errors occur.

The STX parameter provides user control of the execution of STXIT macro instructions.

STX=Y
Causes the execution of two STXIT macro instructions at the beginning of a SUBROUTINE or a
FUNCTION subprogram.

STX=N
Suppresses the execution of two STXIT macro instructions at program initiation. STX=N is used only
for main programs .

If the STX parameter is not specified, a specification of Y is assumed for main programs, and a specification of N
is assumed for SUBROUTINE or FUNCTION subprograms.

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 C * D-4
UPDATE LEVEL PAGE

The STX parameter is operative only for the current subprogram to be compiled. This argument is useful when
integrating COBOL and assembler object modules with FORTRAN object modules.

Keyword Parameter CNL:

CNL=option
Specifies compiler termination if a diagnostic with a severity level is generated.

The values are:

2, indicates academic messages, e.g., a truncated constant;

4, indicates warning diagnostics, e.g., an extraneous comma in a list;

6, indicates serious diagnostics. e.g., an array reference without a preceding array declarator; or

8, indicates fatal errors. e.g., insufficient storage to complete the compilation.

If the CNL parameter is not specified, the compiler processes all program units in the control stream.
regardless of errors encountered. When specified, the CNL parameter remains in force until redefined.

Keyword Parameter LIN:

LIN=filename
Specifies the name of the default filename in which the source modules reside.

•

A 1- to 8-alphanumeric-character identifier is specified by filename. If the LIN parameter is not specified, the •
compiler assumes the default filename of LIB1. This parameter is used in conjunction with the IN parameter.

Keyword Parameter LST:

LST=option
Specifies the quantity of listings produced by the compiler. One of the following options may be
chosen.

N Specifies an abbreviated listing consisting of only the compiler identification, parameters. error
counts, and termination conditions.

•

•

•

•

D-5 8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

s Specifies, in addition to the N listing, the source code listing with any serious diagnostics.

M Specifies, in addition to the S listing, a storage map showing the addresses assigned to
variables and arrays.

W Specifies, in addition to the M listing, academic and warning diagnostics.

0 Specifies, in addition to the W listing, an object code listing showing the SPERRY UNIVAC
90/30 instructions generated for the executable statements.

The LST parameter remains in effect for succeeding compilations until another LST parameter is
encountered. If no LST PARAM is specified, the M option is assumed.

Example 1a:

The following example illustrates the use of the FOR procedure call statement in its basic form:

LABEL ~OPERATION~ OPERAND
10 16

51-1-..J.:.S~o~~..:..i.:...Jr~c~e+-1.;..;.i.;;~...:..i..._~...l....J"--"-.J..-l-L-..l........L---L-..L.......l..-1-.__._....__L.......L......1-1-1-..1........L---L-..L.......l..-'-.__.__._L.......L...
61--l~-1....._l_L...l-l.:.::..t--l---L--1-L-1.....-l---1-'---'-_J__J_L_L_J__J__J_L_l_L....J_J....._J'--1.-'-....J_.L....JL...J...-'-....J_.L....J'--'--'----'--'-J'--l...
7 I;

Line Explanation

Indicates that the name of the job is FRTRN1A.

2 Indicates the name of the procedure being called (FOR). No keyword parameters specifying
special options for this compile are used.

3 Indicates start of data.

4-6 Represents the source deck to be compiled.

7 Indicates end of data.

t

t

D-6 8262 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Example 1 b:

The basic form generates the following control stream:

I I!
l I I
3 I I
If I I
S 11
b IJ
7 I

LABEL 60PERATION6 OPERAND
10 16

I I

8._._.~~~,____._._~4----1--~~~~~~~~~~~~~~

q~-"""-=""'-'---'--~-+="'-=-"'..=..<-..+-1-i-L---'-_L_L-'----'------'----'----'---'------'-----'----'-----L---'-_L_L---'-_L_L-'----'------'----'------'---'------'--~~

Line Explanation

Indicates that the name of the job is FRTRN1 B.

2 Indicates the default logical unit number and LFD name of the printer.

72

LI l

I i l

. I I

il

il

il

il

_..1_J

l

I

I I l

3-5 Indicates that the work file needed for compiling is, by default, on the SYSRES device, has both
a file-label and LFD name of $SCR1, and uses the sequential access technique; that allocation
is contiguous; that three cylinders are allocated for the secondary increment; and that one
cylinder is allocated for the first extent.

6 Loads the Extended FORTRAN compiler from YLOD.

7 Indicates start of data.

8-10 Represents the source deck to be compiled.

11 Indicates end of data.

Example 2a:

The following example illustrates the use of a FOR procedure call statement that defines all the keyword
parameters:

•

•

•

•

•

•

D-7 8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Line Explanation

Indicates that the name of the job is FRTRN2A.

2 Indicates the name of the procedure being called (FOR). The source module name is PROGNM.
The logical unit number of the printer is 21, and the input file has a volume serial number of
DSC1. with a file-label of U$SRC.

3 Indicates that the output file volume serial number is DSC2, with a file-label of U$08J. The
format of the compiler listing is supplied by the LST parameter.

4 Indicates that the work file needed for compiling has a volume serial number of DSC2. The
Extended FORTRAN compiler is located on the device with a volume serial number of DSC3 in
the file labeled ALTLODLIB.

5 End of job.

Example 2b:

By using the keyword parameters in example 2a, the following control stream is generated.

I I/
'l I I
3 ~I
'f I I
5 I I
II

LABEL L'IOPERATIONL'I OPERAND
10 16

Line Explanation

2

Indicates that the name of the job is FRTRN28.

Indicates that the printer is to be assigned to the logical unit number 21, with an LFD name of
PRNTR. This was obtained from line 2 in example 2a.

t

8262 Rev. 1

UP-NUMBER

t

0-8 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Line

3

4

5

6

Explanation

Indicates that the input file volume serial number is DSC1. This was obtained from the IN
parameter of line 2 in example 2a. It is assigned to the device with a logical unit number of 50,
which was the first available number in the range of 50-54.

Indicates that the input file is labeled USSRC with an LFD name of LIB1. This was obtained
from the IN parameter of line 2 in example 2a.

Indicates that the output file volume serial number is DSC2. This was obtained from the OUT
parameter of line 3 in example 2a. It is assigned to the device with a logical unit number of 51,
which was the next available number in the range of 50-54. Logical unit number 50 was
already assigned to the device with a volume serial number of DSC1 (line 3).

Indicates that the output file is labeled USOBJ with an LFD name of OUTFPUT. This was
obtained from the OUT parameter of line 3 in example 2a.

7-9 Indicates the work file for the compiler has a volume serial number of DSC2. Because this
volume serial number was already used, this work file uses the same device logical unit
number of 51. This work file has both a file-label and LFD name of SSCR1 and uses the
sequential access technique; allocation is contiguous; three cylinders are allocated for the
secondary increment; and one cylinder is allocated for the first extent. This was obtained from
line 4 in example 2a.

10

11

12

13-15

16

Indicates that the alternate load library for the compiler has a volume serial number of DSC3. It
is assigned to the device with a logical unit number of 52, which was the next available number
in the range of 50-54. This was obtained from the ALTLOD parameter of line 4 in example 2a.

Indicates that the alternate load library has a label of ALTLODLIB with an LFD name of
ALTLOD. This was obtained from the ALTLOD parameter of line 4 in example 2a.

Loads the Extended FORTRAN compiler from the file labeled ALTLOD.

PARAM control statements, which identify the processing options for the FORTRAN compiler.
These are generated in the following manner:

Line 13 - The filename OUTFPUT is generated automatically when the OUT parameter is used.

Line 14 - Indicates that compiler identification, parameters, error counts, termination
conditions. source code, and diagnostics will be listed. This was obtained from the LST
parameter in line 3 of example 2a.

Line 15 - The filename LIB 1 is generated automatically when the IN parameter is specified.
The module name PROGNM is generated from the label field in line 2 of example 2a.

End of job.

•

•

•

•

•

•

0-9 8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

0.2. SAMPLE COMPILE-LINK-EXECUTE

The following job control stream example illustrates a simple compilation from cards, linking the program EX1,
and execution of the bound program TEST1 from YRUN.

Example:

LABEL OOPERATIONt. OPERAND COMMENTS
10 16

Line Explanation

Indicates the job name, EXAMPLE1

2 Indicates the printer· device number for all processors

3 Specifies one work file for Extended FORTRAN compiler execution

4 Begins compilation

5 Adds parameters here as per job requirements

6 Start of data to compiler (source program)

7 End of source data

8 End of compilation

9 Specifies one work file for the linkage editor

D-10 8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Line Explanation

10 Begins the link edit

11 Start of data to linkage editor

12 Names new load module TEST1

13 Links source module named EX1

14 Ends link edit

15 Begins program execution

16 End of job

D.3. SOURCE FROM DISC LIBRARY - STACKED COMPILATION

This job control stream represents the source module from the disc library for a stacked compilation. Source
programs on disc files are identified using a librarian module name. Each source module consists of one or more
FORTRAN program units.

Example:

LABEL OOPERATIONL'i OPERAND COMMENTS
to 16

Line Explanation

Indicates job name, EXAMPLE2

2 Indicates the printer device number

3 Specifies one work file for Extended FORTRAN compiler

4 Specifies that the file, FORSOURCE, on disc DISCOO, device 50, is the INPUT file.

5 Begins compilation

•

•

•

•

•

•

SPERRY UNIVAC Operating System/3 c D-11 8262 R:v. 1
UP-NUMBER UPDATE LEVEL PAGE

Line Explanation

6-7 Identifies the first and second source programs' module names/filenames to the compiler

8-10 Identifies all succeeding and last source program module names/filenames to the compiler

11 End of job

D.4. COMPILE-ASSEMBLE-LINK-EXECUTE

This example shows the user-specified execution environment. spoolin input, and print and tape output.

Example:

I. II
z.. I I
3.11
~.I I
6. /$

LABEL ~OPERATION~
10 16

OPERAND
72

'PRNT'R

.(

>

8262 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 c .. 0-12

UPDATE LEVEL PAGE

Example: (cont)

LABEL OPERAND

Z1. ,__..._._...._._.___._.._.-+-....._..._.,_._-+-i,_..._._ _._ _.__._ _.__._......_._._....._._.._._.....__ _._

'JB If
2., I I

II
31. / $

.~__..___._ -+--+-........... -'--'--I-+--"-....__._.___._ __.__._ _,__._..__.__.__.__~__._....__._.___._~

32_.__ __, __ _._ _._........_ _._ _._ _._ ... _._.._
3~~~~~+-+-~~-+-+~~~~~~~~~~~~~~

31-1.
.~__..__._ -+--+-"'---1.-'--'--l-+-'-...L.-l--'--'--"---'--'--'-.1-....1.---'--'--'--'--'--'-~-'--'--'--'--'-~

I

~o./*
~~~~ ............. --r;-~-'-....__,t-T~~~~ ............. _,__._ ............. _,__.__..__.__.__.__~~-'--'-'--'-~ 

4~~/&___.__._.L.-L-~__,__._._-'--+-+-"--''---'-'----L...J..___._._~.1-J.-J--L-L-'-'----'-'-~L___i_;--"-

Line Explanation 

Indicates job name, EXAMPLE3 

2 Indicates the printer device number 

3 Specifies one work file for Extended FORTRAN compiler 

4 Begins FORTRAN compilation 

5 Start of data to compiler (source program) 

6 End of data 

7-8 Specifies two work files for the assembler 

9 Begins Assembler execution 

10 Specifies no cross-reference listing 

72 
• 

• 

• 



• 

• 

• 

8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 D-13 

UPDATE LEVEL PAGE 

Line Explanation 

11 Start of data to the Assembler 

12 Start of execution environment module (MYIO) 

13 Initializes file for Extended FORTRAN 

14-15 Defines first file (UNIT definition procedure) specifying a printer file 

15 Specifies printer unit number 1 

16-18 Defines second file (UNIT definition procedure) specifying a spooled input file 

17 Identifies the reader as input device 

18 Indicates input blocksize 

19-23 Defines third file (UNIT definition procedure) specifying a tape file 

20 Specifies tape unit number 10 

21 Indicates the tape filename, XYZ 

22 Specifies fixed-length blocked records 

23 Specifies a tape record length of 256 bytes 

24 Terminates UNIT procedure calls 

25 File termination 

26 Includes library table of error information in executable program 

27 Terminates source program 

28 End of data to Assembler 

29 Specifies one work file for the linkage editor 

30 Begins link edit 

31 Start of data to linkage editor 

32 Names the new load modules TEST3 

33-34 Links the modules $MAIN and MYIO to TEST3 

35 End of data to linkage editor 

36-37 Connects devices assigned before execution of TEST3 to the FORTRAN unit table via their 
LFD names 

38 Executes load module TEST3 from $Y$RUN 



D-14 8262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

Line Explanation 

39 Start of spoolin data 

40 End of spoolin data 

41 End of job 

NOTE: 

The default FF/LEID for the printer is FORT1. 

0.5. COMPILATIONS WITH PARAM OPTIONS 

The following example illustrates the use of special options specified via the I I PARAM statement: 

Example: 

I. I I 
2. I I 
a// 
14./ / 
5.1/ 
ro. If 

1.~1 ..................... _..._._._+-+ ......... _..._'-+-+-'-......... _._ .................................. ---............ _._.._._..._._..._._ ........... _._..._._ ..................... _._._._ .......... _._.'-'-.................................. .__._ 

a./$ 
q_t--'-~~~J__L-+-1~~-'-+-f---'-~~~-'-.l--L-'-~-'--'---'--'---'~IL-"-~J__L~J__L-'-~-'--'-'--'--'---'-~---'-~~ 
101--'---'-'L-'---'-''--'-+-+---'--'-'----'-+-+-'-L--L-'-L...L-'---'--'--'---'---'--'--'-_._-'---'--4..___.__._L...L--'-'--'--'---''--'--'--'----'-~_._..___.__._J__L_.__._-'-
ll. I• 
12. / / 
I?> I 

Line Explanation 

Names job EXAMPLE4 

2 Assigns device 20 to printer 

3 Specifies one work file for the Extended FORTRAN compiler and the linkage editor 

4 Begins compilation 

5 Specifies a double-spaced object code listing. Also indicates that cards with X in column 1 will 
be accepted for compilation as FORTRAN statements. 

6 Start of program data 

• 

• 

• 



• 

• 

• 

8262 Rev. 1 
UP-NUMBER 

Line 

7 

8 

9 

10 

11 

12 

13 

SPERRY UNIVAC Operating System/3 D-15 

UPDATE LEVEL PAGE 

Explanation 

End of program data 

Linkage editor is called directly from the compiler and this is start of linkage editor data 

Names new load module TEST4 

Links $MAIN module to TEST4 

End of data to linkage editor 

Executes load module TEST4 from $Y$RUN 

End of job 



• 

• 

• 



• 

• 

• 

8262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 A E-1 

UPDATE LEVEL PAGE 

Appendix E. Compile-Time Diagnostic 
Messages 

The compile-time diagnostics are listed and described in Table E-1. All messages are prefixed with FC to 
identify them as being generated by the FORTRAN compiler. The 3-digit number following FC in the Message 
Number column explicitly identifies the diagnostic. The degree of severity is shown in the Severi!y Code column, 
where: 

2 =academic 

4 =warning 

6 =serious 

8 =fatal 

The Diagnostic Message column shows the message as it appears when printed. The cause of the message and 
the action to be taken are described in the remaining columns. 

For each diagnostic message issued, the source statement is marked by a dollar sign($) below the column where 
the error was first recognized. When a long statement consisting of multiple continuation cards is diagnosed, the 
dollar sign occasionally appears under the wrong card, but flags the proper column. To locate the error, check 
the flagged column on each card of the statement. 

t 



Message Severity 
Number Code 

FCOOO 6 

FC001 6 

FC002 6 

FC003 2 

FC004 2 

FC005 4 

FC006 4 

FC007 6 

FCOOB 4 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 1 of 22) 

Explanation 

Diagnostic Message 
Reason Recovery 

ERROR Error in source code. Also the compiler Attempt to locate error by using diagnostic 
and message file are incompatible .. Submit marker$ which points to the error. 
a Software User Report (SUR). 

- ERROR An obsolete diagnostic that is incompatible Attempt to locate error by using the 
with the message file has been issued by the diagnostic marker $. 
compiler. Submit a SUR. 

- DIMENSIONED VARIABLE A valid subscript is an integer or real Correct source code. 
HAS INVALID SUBSCRIPT. arithmetic expression. Complex and 

logical expressions are invalid. 

variable NEVER Cited variable defined but not referenced Check for misspelling. 
REFERENCED in the program. 

variable NEVER Cited variable is not defined by an assignment Check for misspelling. 
DEFINED statement READ. It does not appear in an 

argument list to a subroutine or abnormal 
function, or is not in a COMMON statement. 

variable WILL CAUSE Variable specified is on improper main If the program is to be executed often, 
BOUNDARY ERROR storage boundary. Execution can proceed but COMMON and EQUIVALENCE statements should 

efficiency is compromised. be reorganized. 

EQUIVALENCE STATEMENT EQUIVALENCE statement contains dummy Correct source program. 
HAS INVALID VARIABLE argument name or procedure name. 
NAME 

VARIABLE USED AS Program context indicates that the array Provide a dimension declarator or 
ARRAY BUT NEVER name indicated by the diagnostic marker $ correct misspelling of the 
DIMENSIONED should have been preceded by a dimension symbolic name. 

declarator in a DIMENSION, 
COMMON or TYPE statement. 

ARRAY WITH INCORRECT Any array declared with K dimension declarator Correct source program. 
NUMBER OF SUBSCRIPTS subscripts may be referenced in an 

EQUIVALENCE statement with either one 
or K reference subscripts. 

• • 

c 00 
"'II N ' m 
Z N 
c :D 
s: ~ 
OI • 
m 
:ti 

~ 
m 
:IJ 
:IJ 
< 
c 
2 
< 
)> 
C') 

0 
"C 
CD 
Cil 
..+ s· 

CQ 

!R 
i 

c 
"'II 
0 
l> 
-! 
m 
r 
m 
< 
m 
r 

"'II 

3 w-

l> m 
o I 
m N 



• 
Message Severity 

Diagnostic Message 
Number Code 

FC009 6 EQUIVALENCED 
VARIABLE HAS INVALID 
SUBSCRIPT 

FC010 4 SAME VARIABLE 
REPEATED IN GROUP 

FC011 4 GROUP HAS ONLY 
ONE VARIABLE 

FC012 6 DIFFERENT COMMON 
BLOCK EQUIVALENCED 
TOGETHER 

FC013 6 VARIABLES WITHIN 
SAME COMMON BLOCK 
EQUIVALENCED 

FC014 4 COMMON BLOCK 
EXTENDED BACKWARD 

FC015 6 INCONSISTENT 
EQUIVALENCE 
STATEMENT 

FC016 6 EQUIVALENCE 
CLASS TOO LARGE 

FC018 2 STATEMENT LABEL 
NEVER REFERENCED 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 2 of 22) 

Explanation 

Reason Recovery 

In an EQUIVALENCE statement, subscripts Correct source program. 
must be constants and within th!! 
boundaries of the array. 

Same entity need not be mentioned more Check for possible misspelling 
than once in an equivalence group or and correct source code. 
an equivalence set (one or more interacting 
groups). 

Equivalence group is not meaningful since a Correct source code. 
given entity is to share storage with an 
unknown number of associates. 

Common blocks must be unique entities which Correct source program, correcting 
cannot be associated via EQUIVALENCE possible misspelling in either COMMON 
statements. or EQUIVALENCE statements. 

Common block entities must be allocated in Delete common entities from the 
ascending address sequence. EQUIVALENCE EQUIVALENCE statement and correct 
statements are not permitted to violate this possible misspelling in the COMMON 
basic rule. statements. 

Violation of a basic ANS/ECMA rule. Unless Change EQUIVALENCE statements 
this diagnostic appears in every program unit in the source code. 
referencing the block program execution, 
results will be incorrect in the source code. 

Equivalence set is attempting to distort the Correct EQUIVALENCE statement. 
structure of an array which demands the 
contiguity of successive array elements. 

Excessive number of equivalence sets in the Reduce number of equivalence groups. 
program unit. The compiler can address only 
65K in the equivalence table. 

Label on this statement is meaningless; Check program logic to determine 
control can never be transferred directly to if a GO TO reference is needed. 
this label. 

• c 
"lJ 00 z !)ol 
C N 
s: ::0 
IJJ ~ 
m· 
ll 

c 
"lJ 
0 
)> 
-l 
m 
r 
m 
< 
m 
r -
"lJ 
)> 

(/) .,, 
m 
:D 
:D 
-< 
c 
z 
< 
)> 
(') 

0 
i 
DJ 
r+ 
:r 
cc 

!f 
~ 
3 
~ 

Gl m 
m I w 



Severity Message 
Diagnostic Message 

Number Code 

-- -- -

FC019 6 LABEL NOT DEFINED 
ON EXECUTABLE 
STATEMENT 

FC020 4 CONTROL CANNOT 
REACH THIS 
STATEMENT 

FC021 6 END OF DO BLOCK 
CANNOT BE REACHED 

FC022 4 MULTIPLY DEFINED 
LABEL 

FC023 4 ASSIGNED GO TO 
LABEL NEVER 
ASSIGNED 

FC024 4 RECURSIVE BRANCH 

FC025 2 ILLEGAL BRANCH 
INTO DO LOOP 

FC026 6 ILLEGAL BRANCH 
INTO DEBUG REGION 

FC027 2 ARITHMETIC 
CONSTANT 
INITIALIZES 
LOGICAL VARIABLE 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 3 of 22) 

Explanation 

Reason Recovery 

Transfer of control to nonexecutable statement Change label. 
not permitted. 

This statement is preceded by an unconditional Check other diagnostics produced 
transfer of control and should be labeled. by this compilation and correct 

the program; the block of code is 
either unnecessary or missing a 
reference label. 

An unconditional transfer of control Correct source program. 
has been used as the terminal statement 
of a DO loop. The DO terminal block is 
inaccessible and only one iteration 
of the DO is possible. 

Statement labels must be unique within Change label and all references 
a program unit. to it. 

Possible destination label did not appear Check for keypunch or logic 
in an ASSIGN statement. errors. 

A block jumps only to itself. No other Correct source program. 
exit exists so the loop never terminates. 

A DO loop has been entered without executing Correct source program. 
the DO statement, which sets the control 
variable to its initial value. 

It is illegal to branch into a debug packet Correct branch logic. 
from outside the packet and illegal to branch 
out of the packet to another packet or the 
main program. 

DAT A statement processor cannot perform Correct DATA statement. 
a meaningful conversion. 

• • 

c 00 
7' !l! z ,_, 
c ::0 
:s: "' al ::: 
m 
JJ 

(/) 
'"ti 
m 
:lJ 
:lJ 
-< 
c 
2 

< 
)> 
0 
0 
i .., 
Ill 
r+ :;· 

CCI 

!f s 
3 

c 
'iJ 
0 
)> 
-i 
m 
r 
m 
< m 
r 

'iJ 
)> 
Gl 

-w 

m m 
I 
~ 



• 
Message Severity 

Diagnostic Message 
Number Code 

FC028 2 LOGICAL CONSTANT 
INITIALIZES NON 
LOGICAL VARIABLE 

FC029 2 LITERAL TRUNCATED 
ON RIGHT 

FC030 6 INSUFFICIENT 
NUMBER OF 
SUBSCRIPTS 

FC031 6 ILLEGAL VARIABLE 
IN SUBSCRIPT 

FC032 4 INSUFFICIENT 
NUMBER OF CONSTANTS 

FC033 6 CONTROL VARIABLE 
OF IMPLIED DO IS 
DUPLICATED 

FC034 2 TOO MANY 
CONSTANTS 

FC035 6 FORMAT STATEMENT 
LABEL label-name 
IS UNDEFINED 

FC036 6 LABEL label-name IS 
UNDEFINED. USED IN 

t ASSIGN STATEMENT 

FC037 4 FORMAT STATEMENT 
LABEL label-name 
NEVER REFERENCED 

+ FC051 8 NO STATEMENTS IN 
PROGRAM UNIT 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 4 of 22) 

Explanation 

Reason Recovery 

DATA statement processor cannot perform Correct DATA statement. 
a meaningful conversion. 

Character string length exceeded length Correct DATA statement. 
of variable, example: A/'ABCDE' 

Except in an EQUIVALENCE statement, Add missing subscripts. 
an array element reference must contain 
the same number of subscripts as the 
array declarator. 

Variable is not the induction variable of Correct subscript. 
a controlling implied DO loop. 

DATA statement has more variables than Correct DATA statement. 
constants. 

Control variable appears twice in a nest Correct statement. 
or is itself initialized within the loop. 

More constants than variables appear in the Correct DAT A statement. 
DATA statement. 

The FORMAT statement label was referenced Provide FORMAT statement 
in a READ/WRITE statement but not defined or correct the READ/WRITE. 
in the source program. 

The label specified was not defined. Either define the label or 
correct the ASSIGN statement. 

As stated. Correct the format label 
or remove the unnecessary 
FORMAT statement. 

Null data set or only comments in source Correct job control, or correct 

module. source module. 

• c 00 
~ II.) z m c II.) 

s: :D 
m ~ m . 
:II 

c ..., 
0 
)> 
-I 
m 
r 
m 
< 
m 
r 

..., 
)> 
Gl 

(/) 
""D 
m 
:::0 
:::0 
-< 
c 
z 
< 
)> 
0 
0 
i 
jjJ 

=· ::I 
CCI 

!f s 
3 -w 

m m 
I 

(J1 



Message Severity 
Number Code 

FC052 8 

FC053 6 

FC054 6 

FC055 6 

FC056 6 

FC057 6 

FC058 6 

FC059 4 

FC060 6 

FC061 6 

FC062 6 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 5 of 22) 

Explanation 

Diagnostic Message 
Reason Recovery 

PROGRAM CONTAINS A main program, subroutine, or function contains Correct subprogram. 
NO USABLE no executable statements or a block subprogram 

STATEMENTS contains no initial block declarations. 

END STATEMENT IS End of file encountered on data set but no Provide END statement. 

MISSING. END statement detected. 

STATEMENT CANNOT Compiler cannot identify the statement. For Correct or compress the statement. 

BE CLASSIFIED. large statements containing keywords such as 
FORMAT, COMMON, etc, the keyword 
must be within the first 3 lines. 

STATEMENT IS OUT OF See ordering requirements in Section 1. Place statement in proper sequence. 

ORDER 

MISSING AT STATEMENT. Debug packet not preceded by an AT Provide AT statement or change source sequence. 
statement has been encountered. 

STATEMENT INVALID A block data subprogram may only contain Remove statement. 

FOR BLOCK DATA specification and data initialization 

SUBPROGRAM statements. 

MISSING EQUAL SIGN No recognizable keyword, and syntax invalid Correct statement. 

OR UNCLASSIFIABLE for arithmetic assignment, logical assignment, 

STATEMENT or statement function. 

REDUNDANT RIGHT No corresponding left parenthesis for marked Check statement. 

PARENTHESIS delimiter. 

MISSING OPERATOR. An arithmetic or logical operator was expected Correct statement. 

REMAINDER OF STATEMENT where indicated. 
IGNORED 

STATEMENT NOT Statement cannot be classified because of Correct statement. 

CLASSIFIABLE misspelled keyword or unrecognizable syntax. 

RETURN STATEMENT A RETURN statement should only appear in a Change statement to STOP or 

IN MAIN PROGRAM. subroutine or function subprogram. CALL EXIT. 

• • 

C CIO 
7' I\.) z m c I\.) 

s: ::0 
ID CD 
m ~ 
Jl 

en 
""C 
m 
::xJ 
::xJ 
< 
c: 
z 
< 
)> 
(") 

0 
"i ... 

Cl) 

!:t. 
::II 

CCI 

!f 
~ 

c 
"V 
0 
l> 
--1 
m 
r 
m 
< 
'Tl 
r 

"V 
l> 
Gl 
m 

3 -w 

m 
6, 



• 
Message Severity 

Diagnostic Message 
Number Code 

FC063 6 MISSING ( AFTER 
KEYWORD 'IF'. 

FC064 6 MISSING ) AFTER 
KEYWORD 'IF'. 

FC065 6 INVALIO EXPRESSION 
IN ARITHMETIC IF 

FC066 6 COMPLEX EXPRESSION 
NOT PERMITTED IN 
ARITHMETIC IF 

FC067 6 STATEMENT NOT 
SCANNED AFTER 
KEYWORD 

FC068 6 ILLEGAL CONVERSION 
IN ASSIGNMENT 
statement 

FC069 4 SCAN TERMINATED. 
REMAINDER OF 
EXPRESSION IGNORED 

FC070 6 THE OBJECT STATEMENT 
OF THIS LOGICAL IF 
IS ILLEGAL 

FC071 6 ILLEGAL DESTINATION 
LABEL(S) FOR 
ARITHMETIC IF 

FC072 6 INVALID SYNTAX IN 
NAMELIST STATEMENT 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 6 of 22) 

Explanation 

Reason Recovery 

An IF statement is of the form Correct source program. 
IF ( ). 

An IF statement must be of the Correct source program. 
form IF ( ). 

The expression cannot be evaluated as Correct statement. 
negative, zero, or positive. 

As stated. Correct program. 

Keyword is not acceptable; Correct statement. 
statement scanning is discontinued. 

In an ASSIGNMENT statement of the Correct statement or specify 
form V=E, when V is logical, E must additional data typing. 
also be logical. When V is arithmetic, 
E must also be arithmetic. 

Compiler could not recover from syntax Correct statement. 
error. 

A DO or logical IF cannot be the Correct statement. 
object statement of a logical IF. 

The labels are for nonexecutable statements Correct flow of control. 
or constitute an illegal entry into 
a DO nest. 

Array element names and implied DO loops Correct syntax of statement. 
are not permitted. 

• c ,, 00 

' "' z Ol 

c "' s:: JJ 
m ~ 
m· 
]l 

sg 
m 
JJ 
JJ 
-< 
c 
z 
< 
)> 
n 
0 
i 
ii1 
r+ :;· 
cc 

!f s 

c ,, 
0 
)> 
-! 
m 
r 
m 
< 
m 
r 

,, 
)> 
Gl 
m 

3 -w 

m 
I 

-..I 



Severity Message 
Diagnostic Message 

Number Code 

FC073 6 NAMELIST NAME HAS 
BEEN PREVIOUSL V 
DEFINED 

FC074 6 INVALID DELIMITER 

FC075 6 EXTERNAL STATEMENT 
REDEFINES USAGE OF 
NAME 

FC076 6 COMMON BLOCK NAME 
ALSO USED AS 
SUBPROGRAM NAME 

FC077 4 EQUIVALENCE GROUP 
NOT FOUND 

FC078 6 SUBSCRIPT ILLEGAL 
OR NOT ALLOWED 
HERE 

FC079 4 SUBSCRIPT ON NON 
ARRAY IGNORED 

FCOSO 4 LABEL ON 
SPECIFICATION 
STATEMENT IGNORED 

FC081 6 MORE THAN SEVEN 
SUBSCRIPTS 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 7 of 22) 

Explanation 

Reason Recovery 

Namelist names must be unique within a Change name. 
program unit. 

The character indicated by the marker is Correct statement. 
invalid, example is '5(' in an 
expression. 

The name is being declared to be a procedure Correct program to use name 
name, but is used in a different context in consistently. 
another statement. 

The linker requires that all procedure and Change one of the names. 
common block names must be unique. 

Empty parenthetical grouping. Correct source statement. 

A subscript in an EQUIVALENCE Correct statement. 
statement must be an integer constant. 

In a data statement, a variable name Either remove the extraneous 
followed by a left parenthesis has been parenthesis or dimension the array. 
found. Since the variable was not declared 
previously in a dimension statement the 
name is flagged as a nonarray. Recovery 
is made to the next name in the variable 
list. 

Label is not accepted as the Warning only. 
destination point of a control 
transfer. 

An array may have from one to seven Correct statement. 
dimensions. 

• • 

C C10 
"D ...., 
• O'l 2 ...., 
c ::0 
s:: "' m < 
m -
:D 

c 
"D 
0 
)> 
-I 
m 
r 
m 
< 
m 
r 

"D 
)> 
G> 
m 

(/) 
"ti 
m 
::IJ 
::IJ 
-< 
c 
:z 
< 
)> 
0 
0 
i 
iil ..... s· 

CCI 

!f s 
3 -w 

m 
I 

CIO 



• • 
Table E-1. Compile-Time Diagnostic Messages (Part 8 of 22) 

Message Severity 
Explanation 

Diagnostic Message 
Number Code 

Reason Recovery 

FC082 4 MORE THAN ONE The dimensions of this array have been Delete declarator. Do not delete 
DIMENSION declared previously. the array name if a type or 
DECLARATOR FOR COMMON statement. 
THIS ARRAY 

FC083 4 NO CONSTANTS IN As stated. Problem may be due to Correct the statement by 
DATA CONSTANT mispunched constant or extraneous inserting the constant list 
LIST delimiter in list. or correcting punctuation. 

FC084 6 ILLEGAL FORM FOR A dimension declarator must be a constant Correct subscript. 
DIMENSION DECLARATOR or integer variable. 

FC085 4 ONLY ONE EXPLICIT A symbolic name may appear only once in Remove second declaration. 
TYPE DECLARATOR an explicit type statement. 
ALLOWED 

FC086 6 NAME ILLEGAL FOR NAME is not a variable or array name, Correct statement. 
DATA or is a dummy argument, or a blank 

common. 

FC087 6 ADJUSTABLE DIMENSIONS As stated. Correct program logic. 
PROHIBITED IN MAIN 
PROGRAMS 

FC088 6 NON-LOGICAL USED Improper formation of logical expression. Correct expression. 
IN LOGICAL 
EXPRESSION 

FC089 6 LOGICAL PRIMARIES Operators GT, GE, EQ, NE, LT, LE Correct expression. 
USED WITH cannot be used with logical entries. 
RELATIONAL 
OPERATORS 

FC090 6 LOGICAL PRIMARY As stated. Correct expression. 
DETECTED IN 
ARITHMETIC 
EXPRESSION 

• c 00 
"'D ~ 
' O> z ~ 
c :D s: (1) 

Ill ~ 
m 
:II 

sg 
m 
:::0 
:::0 
-< 
c 
z 
< 
)> 
(") 

0 
i ... 
~ :;· 
cc 

!f s 

c 
"'D 
0 
)> 
-I 
m 
r 
m 
< 
m 
r 

"'D 
)> 
G) 
m 

3 
"W 

m 
I 

<D 



Message Severity 
Diagnostic Message 

Number Code 

FC091 6 ILLEGAL 
EXPRESSION 

FC092 6 MISSING RIGHT 
PARENTHESIS 

FC093 4 SCAN RESUMED AT 
THIS POINT 

FC094 6 LEFT PARENTHESIS 
MISSING AFTER 
UNIT NUMBER 

FC095 6 MISSING COMMA 
BETWEEN LIST 
ITEMS 

FC096 4 MISSING RIGHT 
PARENTHESIS IN 
READ/WRITE 

FC097 4 1THROUGH99 
ARE ONLY VALID 
UNIT NUMBERS 

FC098 6 UNIT MUST BE 
INTEGER CONSTANT 
OR VARIABLE 

FC099 4 FILE SIZE 
TOO LARGE 

FC100 6 FILE SIZE MUST 
BE INTEGER 4 
CONSTANT 

FC101 4 RECORD SIZE IN 
DEFINE FILE 
STATEMENT IS TOO 
LARGE 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 9 of 22) 

Explanation 

Reason Recovery 

Expression is malformed. Correct expression. 

Right parenthesis missing or redundant; Add or delete a parenthesis. 
left parenthesis present. 

As stated. Correct statement. 

DEFINE FILE should have Correct statement. 
a parenthesis after the unit number. 

1/0 list does not have a comma Correct statement. 
between the two symbolic names. 

A right parenthesis must be present Correct statement. 
following the format reference or 
END/ERR clauses. 

Unit number out of range. Change unit reference. 

Non integer data types not permitted as Change unit reference. 
unit number reference. 

File size must be less than 25 bits. Reduce size. 

The file size specified in a DEFINE Correct size specification. 
Fl LE statement must be an integer 
4 type. 

Record size exceeds 13030 bytes. Reduce record size. 

• • 

c .., Cl) 
' N 2 O> 
C N 
s: :D 
OJ CD 
m ::: 
JJ 

c .., 
Cl 
)> 
-l 
m 
r 
m 
< 
m 
r 

.., 
)> 

Cl) 
"ti 
m 
::0 
::0 
-< 
c 
2 

< 
)> 
n 
0 

"C 
CD 
Q1 
...+ :s· 
cc 

!R 
~ 
3 
w-

Gl m 
m .!_. 

0 



• 
Message Severity 

Diagnostic Message 
Number Code 

FC102 6 MAX RECORD MUST 
BE 14 CONSTANT 

FC103 6 TRANSFER LETTER 
MUST BE 'L'. 'U', 
OR 'E' 

FC104 6 MISSING UNIT 
SPECIFICATION 

FC105 6 ILLEGAL SYNTAX 
IN DATA 
STATEMENT 

FC106 6 BAD SUBSCRIPT 
FORMAT FOR 
DATA ARRAY 

FC107 6 RECORD POINTER 
MUST BE INTEGER 
EXPRESSION 

FC108 6 BAD NESTING OF 
IMPLIED DO IN 
DATA STATEMENT 

FC109 6 NAME LIST 
INCOMPATIBLE 
WITH FORTRAN 
II STATEMENTS 

FC110 6 ILLEGAL 
IMPLIED DO 
SPECIFICATION 
IN DATA 
STATEMENT 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 10 of 22) 

Explanation 

Reason Recovery 

Max record size specified in a DEFINE Correct size specification. 
FILE statement must be an integer 
4 constant. 

As stated. Correct DEFINE FILE statement. 

The unit specification on a DEFINE Supply missing integer constant 
Fl LE statement is missing. unit number. 

As stated. Correct statement. 

Subscripted arrays in the variable list Correct subscript. 
of a DAT A statement must be of the form 
'C * V + K' where: 
C and K are positive integer constants, 
V is an integer variable. 

Record pointer in a DAM statement must Use IF IX function or 
be of type integer greater than zero ASSIGNMENT statement 

and less than or equal to the number to correct expression type. 
of records in the file. 

As stated. An implied DO list must be Change statement. 
completely enclosed in any surrounding 
implied DO list. 

A namelist may be referenced only with Correct statement. 
the FORTRAN IV statements READ/ 
WRITE (unit, namelist). 

As stated. Correct statement. 

• c 
"11 00 
' I'.) z O'l c I'.) 

~ JJ 
OJ !l! m • 
JI 

c 
"11 
0 
)> 
-i 
m 
r 
m 
< 
m 
r 

"11 
)> 

en 
-g 
m 
::XJ 
::XJ 
-< 
c 
z 
< 
)> 
n 
0 
"i ... 
~-
::I 

CQ 

~ s 
3 -w 

G> m 
ml -



Message Severity 
Number Code 

Diagnostic Message 

FC111 4 DUPLICATE END 
CLAUSE 

FC112 4 END CLAUSE 
NOT VALID 
FOR WRITE 
STATEMENT 

FC113 6 MULTIPLY DEFINED 
FORMAT STATEMENT 
LABEL 

FC114 6 MISSING OR 
INVALID LABEL 

FC115 4 DUPLICATE ERR 
CLAUSE 

FC116 6 INVALID EDITING 
CODE 

FC117 4 NO 1/0 LIST 
ALLOWED WITH 
NAME LIST 

FC118 6 ILLEGAL 1/0 
LIST ITEM 

FC119 6 REPEAT COUNT 
ONT 

FC120 4 SCALE FACTOR 
OUT OF RANGE 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 11 of 22) 

Explanation 

Reason Recovery 

Two END clauses in one statement. Probably intended to be an ERR 
clause. 

Not a supported feature of FORTRAN Change program logic. 
IV. 

Format labels must be unique. Change label and all references. 

END/ERR clause has no transfer label, Change destination label. 
contains the label of a nonexecutable 
statement, or has an illegal transfer 
of control. 

Two ERR clauses. Correct statement. Probably 
should be END clause. 

Edit code cannot be recognized. Correct statements. 

The variable list must appear in the Correct both statements. 
NAME LIST statement and not in 
the READ/WRITE statement. 

The symbolic name indicated by the Correct statement. 
marker cannot appear in an 
1/0 list. 

No repeat count is permitted on a format Remove repeat count. 
'T' field descriptor. The legal form 
of this descriptor is 'Tp' where p 
is an inteter such that 0 < p,;;;; 32767. 

The absolute value of the scale factor Correct scale factor. 
cannot exceed 127. 

• • 

c 
~ ~ 
c "' s: ::u 
m ~ m . 
::0 

c 
-0 
0 
)> 
-I 
m 
r 
m 
< 
m 
r 

sg 
m 
:ti 
:ti 
-< 
c: 
z 
< 
)> 
n 
0 
i 
Dl 
r+ 
:r 
cc 

!f 
~ 
3 
"(;) 

-
-0 
)> 
Gl 
mm 

I -"' 



• 
Severity Message 

Diagnostic Message 
Number Code 

FC121 2 INVALID USAGE 
OF SCALE FACTOR 

FC122 4 FIELD WIDTH OR 
GROUP COUNT MUST 
BE LESS THAN 256 

FC123 6 MISSING GROUP 
OR FIELD 

FC124 6 ILLEGAL SYNTAX 
IN FIND 
STATEMENT 

FC125 6 ITEM NOT 
PERMITTED ON 
LEFT SIDE OF 
EQUALS OPERATOR 

FC126 6 ITEM ILLEGALLY 
REFERENCED 

FC127 6 ITEM ILLEGAL 
FOR 1/0 LIST 

FC128 6 NAME IS NOT A 
SUBROUTINE NAME 

FFC129 6 ITEM NAMED NOT 
ARITHMETIC 
ARGUMENT 

FC130 6 FUNCTION OR 
UNDECLARED ARRAY 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 12 of 22) 

Explanation 

Reason Recovery 

Scale factor on a nonreal editing Correct statement. 
code. 

As stated. Reorganize format. 

As stated. Correct statement where 
indicated by marker. 

As stated. Correct statement. 

Item is not a variable or array Correct statement. 
element name or function name. 

Name indicated is not a legal Check other diagnostics in 
primary. program. 

Name in an 1/0 list must be either Correct statement. 
an array element, array name, or a 
variable name. 

Conflict in usage of th is name. The name was used in different 
context earlier in the program. 
Correct one of the usages. 

An invalid name has been scanned in Correct argument. 
a function argument list. Valid arguments 
are constants, variables, arrays, or 
procedure names. 

Statement function out of sequence Correct sequence or supply 
or undeclared array. array declarator. 

• c 
"tl 00 
' I'.) z Ol c I'.) 

s: :Il 
(D "' m ~ 
lJ 

(I) 
"l:J 
m 
:IJ 
:::0 
-< 
c 
z 
< 
)> 
C') 

0 
i 

c 
"tl 
0 
)> 
-I 
m 
r 
m 
< m 
r -
"tl 

... 
Cl 
!:!'. 
::I 

CQ 

!R 
~ 
3 -w 

)> 
Gl m 
m .!.. 

w 



Message Severity 
Diagnostic Message 

Number Code 

FC131 6 UNDECLARED ARRAY 
OR REPEATED 
STATEMENT 
FUNCTION 

FC132 6 UNDECLARED 
ARRAY NAME 

FC133 6 SYMBOLIC NAMES 
CANNOT EXCEED 
SIX CHARACTERS 

FC134 6 DO PARAMETER 
MUST BE A 
CONSTANT OR 
SIMPLE VARIABLE 

FC135 6 VARIABLE MUST 
BE OF TYPE 
INTEGER 

FC136 6 ITEM NOT A 
SIMPLE 
VARIABLE 

FC137 6 CONTROL VARIABLE 
SHOULD FOLLOW 
LOOP LABEL 

FC138 6 VALUE WITH T 

ILLEGAL OR TOO 
LARGE 

FC139 6 MISSING EQUAL 
SIGN FOLLOWING 
DO CONTROL 
VARIABLE 

FC140 6 ILLEGAL FORMAT 
DESCRIPTOR 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 13 of 22) 

Explanation 

Reason Recovery 

Appears in a context such as A(I) Correct program. 
=2.1, X=10, A(I) • .... where 
the compiler assumed the first 
statement was a statement function. 

This array name did not appear in a Correct spelling or insert 
dimension declarator. the declarator. 

As stated. Shorten name. 

Array element names, procedure names, Correct statement and rerun 
etc, not acceptable as DO parameters. job. 

As stated. Correct statement and rerun job. 

Array element encountered in improper Move array element to a simple 
context. variable (scalar) in a previous 

statement. 

Control variable missing from DO Correct statement. 
statement. 

The record position cannot exceed Correct format. 

32767. 

As stated. Correct DO statement. 

The format code is not recognizable. Correct statement. 

• • 

c 
"'D 00 
' N z en 
C N 
s: ::0 
OJ CD 
m ~ 
Jl 

c 
"ti 
0 
)> 
-I 
m 
r 
m 
< m 
r -
"ti 

C/) 
"'C 
m 
:::0 
:::0 
< 
c 
z 
< 
)> 
(") 

0 
i .., 
I» 
r+ s· 

CCI 

!f 
ii 
3 -w 

)> m 
Gl I 
m -
~ 



• 
Severity Message 

Diagnostic Message 
Number Code 

FC141 6 MISSING OR 
ILLEGAL SUB-
ROUTINE NAME 

FC142 6 MISSING OPERATOR 
OR UNDECLARED 
ARRAY 

FC143 6 A SUBSCRIPT 
EXPRESSION MAY 
ONLY BE INTEGER 
OR REAL 

FC144 6 TOO FEW 
SUBSCRIPTS FOR 
THIS ARRAY 

FC145 6 MISSING FORMAT 
LABEL 

FC146 2 WARNING-REPEATED 
SCALE FACTOR 

FC147 6 ACTUAL AND DUMMY 
ARGUMENTS ARE OF 
DIFFERING TYPES 

FC148 6 TOO MANY 
ARGUMENTS FOR 
THIS FUNCTION 

FC149 6 TOO FEW ARGU-
MENTS FOR THIS 
FUNCTION 

FC150 6 MISSSING LEFT 
PARENTHESIS 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 14 of 22) 

Explanation 

Reason Recovery 

As stated. Name is illegal if used in a 
differing context in prior 
statements. 

Left parenthesis encountered after a Correct source statement. 
name known to be a scalar. 

Complex and logical expressions may Correct subscript. 
not be used as subscripts. 

Array element reference contains fewer Correct either the declarator 
subscripts than the array declarator. or the reference. 

The label on the format statement is Supply a label. 
missing. Labels on format statements 
are mandatory. 

Previous scale factor cannot take effect. Correct source statement. 

In a statement function reference, Correct either the reference 
the actual and dummy arguments must be or statement function, or insert 
of the same type. a type statement. 

As stated. This diagnostic is for implicit Correct function reference. 
and basic external functions only. 

As stated. Add missing argument. 

As stated. Add a parenthesis. 

• c -a 00 z ~ 
c l>J 
s: ]J 
CD <1> 
m ~ 
lJ 

c 
-a 
0 
)> 
-I 
m 
r 
m 
< m 
r 

en 
'"ti 
m 
:0 
:0 
< 
c 
z 
< 
)> 
(') 

0 
'i 
; 
~. 
::I 

CCI 

!f s 
3 -w 

-
-a 
)> 
Gl m 
m .!.. 

(11 



Severity Message 
Diagnostic Message 

Number Code 

FC151 6 DO LIST 
TOO SHORT 

FC152 4 SUBCHK LIST MAY 
ONLY CONTAIN 
ARRAY NAMES 

FC153 6 CONTROL VARIABLE 
OF DO MUST BE 
INTEGER TYPE 

FC154 6 ARGUMENT TYPE 
CONFLICT 

FC155 6 IMPROPERLY 
NESTED DO 
LOOPS 

FC156 6 LABEL FOR DO 
MISSING OR BAD 

FC157 4 DUPLICATE AT 
STATEMENT 
IGNORED 

FC158 6 RECURSIVE 
STATEMENT FUNCTION 
OR UNDECLARED 
ARRAY 

FC159 6 UNDECLARED ARRAY 
OR BAD STATEMENT 
FUNCTION 

FC160 6 REPEATED DUMMY 
ARGUMENTS IN 
STATEMENT 
FUNCTION 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 15 of 22) 

Explanation 

Reason Recovery 

In scanning the DO statement list, the Supply terminal parameter. 
terminal parameter has not been found. 
Consequently, the DO range is undefined. 

Simple variable or procedure name encountered. Delete or correct symbolic name. 
Subscript checking is only meaningful for 
arrays. 

As stated. Change variable to integer. 

The argument specified is illegal for the Correct function reference. 
(generic) function specified. 

A DO loop must be completely enclosed by Correct structure of loops. 
any surrounding DO loop. See fundamentals 
of FORTRAN reference manual, 
UP-7536 (current version). 

Error in processing label designating Fix label in DO statement. 
DO loop terminator. 

Two AT statements specify the same Select proper debug packet. 
statement label. 

Occurs for statement such as Correct program. 
A(l)=A(l)+1.0 when A does not appear 
in a dimension declarator. 

Statement cannot be classified either Correct statement or add 
as a statement function or an dimension declarator. 
assignment statement. 

Each dummy argument name must be unique. Correct statement. 

• • 

c .,, co . "' z m 
c "' s: ::D 
ID ~ m . 
:D 

(I) 
"ti 
m 
:::0 
:::0 
-< 
c 
z 
< 
)> 
(") 

0 
i 
01 
r+ s· 
cc 

:f 
s 

c .,, 
CJ 
)> 
-i 
m 
r 
m 
< m 
r 
-.,, 

3 
(;;, 

)> 
G'l m 
m .!. 

m 



• 
Message Severity 
Number Code 

Diagnostic Message 

FC161 2 EXTRANEOUS DATA 
AFTER CLOSING 
PARENTHESIS 

FC162 6 ILLEGAL 
STATEMENT FUNCTION 
DEFINITION 

FC163 6 A DEBUG 
STATEMENT OUT 
OF ORDER 

FC164 6 ENTRY STATEMENT 
NOT PERMITTED 
INA MAIN 
PROGRAM 

FC165 6 ILLEGAL LIST 
SYNTAX FOR 
DISPLAY 
STATEMENT 

FC166 6 ENTRY NAMED USED 
IN ANOTHER 
CONTEXT 

FC167 6 DUPLICATE DUMMY 
ARGUMENTS 

FC168 6 CALL BY NAME/ 
VALUE CONFLICT 
FOR THIS 
ARGUMENT 

FC169 6 NO LABEL 
SPECIFIED IN 
AT STATEMENT 

FC170 6 DUPLICATE ENTRY 
NAME 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 16 of 22) 

Explanation 

Reason Recovery 

As stated. Check that right parenthesis 
is not in an NH string with an 
improper N. 

Statement function argument not a simple Correct statement function. 
variable. This diagnostic can also occur 
for an undeclared array. 

AT.TRACE ON,TRACE OFF, and Correct order of statements. 
DISPLAY statements may only occur after 
the DEBUG statement. 

These statements are permitted only in Remove statement and associated 

subroutine and function subprograms. program logic. 

The list may contain only variable and Correct statement. 
array names (without subscripts). 
Dummy arguments called by name are 
not permitted. 

As stated. Correct misspelling or program 
logic. 

Dummy argument names must be unique. Correct statement. 

The method of argument processing for Select either CALL by NAME or 
this argument is different in a previous CALL by VALUE and use 
entry, subroutine, or function statement. consistently throughout 

program. 

The debug packet has no reference point Provide label after AT statement. 

(entry label) in the source code and 
cannot be executed. 

As stated. Entry names must be unique. Change entry name. 

• c 
""C 00 

' "' Z CD 

c "' s: Jl 
CD a> 
m ~ 
JJ 

en 
-g 
m 
::XJ 
::XJ 
-< 
c 
z 
< 
)> 
n 
0 
i 
@ ... :;· 
cc 

ff s 
3 -w 

c 
""C 
0 
:r> 
-I 
m 
r 
m 
< m 
r -
""C 
:r> 
Gl m 
m .!. 

-.J 



Message Severity 
Diagnostic Message 

Number Code 

FC171 6 FUNCTIONS MAY 
NOT USE 
LABELS AS 
ARGUMENTS 

FC172 6 FUNCTIONS MUST 
HAVE AT LEAST 
ONE ARGUMENT 

FC173 6 ILLEGAL LIST 
SYNTAX FOR 
DUMMY ARGUMENT 
LIST 

FC174 4 MISSING NAME ON 
PROGRAM STATEMENT 

FC175 4 EXTRANEOUS DATA 
AFTER PROGRAM 
NAME 

FC176 4 EXTRANEOUS DATA 
AFTER VALID 
DEBUG OPTION 

FC177 4 ONLY ONE DEBUG 
STATEMENT ALLOWED 

FC178 6 ILLEGAL LIST 
SYNTAX 

FC179 4 LABELS NOT 
ALLOWED ON AT 
STATEMENTS 

FC180 4 NON ARRAY OR 
VARIABLE INIT 

• 

Table E-1. Compile-Time Diagnostic Messages (Part 17 of 22) 

Explanation 

Reason Recovery 

As stated. Add a status variable to argument 
list, or use the ERROR/ERROR1 
subroutines for control purposes. 

As stated. For functions such as random 
number generators, an argument 
must be present even if it is 
never referenced. 

A dummy argument list may consist only of Correct list. 
simple variable names which are unique 
in the list. 

As stated. Provide a name; system default 
is $MAIN_ 

As stated. Remove extraneous characters. 

As stated. Remove extraneous characters. 

As stated. Convert to a continuation of the 
previous debug statement. 

Improper debug statement list. Correct statement at the point 
indicated by the marker. 

AT is a nonexecutable statement. A Remove label from statement. 
label is not allowed. 

An attempt has been made to specify the Either correct or remove the name. 
Debug I nit option on an item which 
is neither an array or simple variable 
name. 

• ., 

c ..., 00 
' I\.) z (J) 
c I\.) 

s: :0 
t:ll CD 
m ~ 
:lJ 

c ..., 
0 
l> 
-I 
m 
r 
m 
< 
m 
r -..., 

en ,, 
m 
:0 
:0 
-< 
c 
2 

< 
)> 
C') 

0 
i 
D1 .... 
:r 
cc 

!f s 
3 
t;) 

l> 
Gl m 
m .!.. 

00 



• 
~ 

Message Severity 
Diagnostic Message 

Number Code 

FC181 6 COMMON VARIABLE 
MULTIPLY DEFINED 

FC200 4 RECOVERED MISSING 
FIELD WIDTH TO 

t 
10 

FC201 2 WARNING SCALE 
OUT OF RANGE 

FC202 2 IGNORED DIGITS 
AFTER FIFTH 
IN STOP OR PAUSE 

FC203 2 HEXADECIMAL 
CONSTANT 
CONTAINS 
INVALID HEX DIGIT 

FC204 4 WARNING INSERTED 
LEFT PAR EN 
TO START 
GROUP 

FC205 4 WARNING INSERTED 
RIGHT PAREN 
TO CLOSE 
GROUP 

FC206 2 WARNING INSERTED 
MISSING COMMA 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 18 of 22) 

Explanation 

Reason Recovery 

A variable may only occur in one common As stated. 
block. 

Field width in the format specification Define width of field. 
is missing. The compiler substitutes a 
value of 10 and continues scanning. 

The absolute value of the scale factor Correct the scale factor. 
cannot exceed 127. 

A maximum of 5 digits may be specified Truncate the number or change it 
on a STOP or PAUSE statement. to a literal. 
All excess digits were ignored. 

A hexadecimal constant may only contain Correct constant. 
the digits 0 through 9 and A through F. 
The constant may be a maximum of 32 
characters in length. 

The opening parenthesis denoting an Correct statement. 
implicit, equivalence or format list 
is missing. The compiler inserts the 
parenthesis and continues scanning the statement. 

The closing parenthesis denoting the Correct statement. 
end of an implicit, equivalence, or 
format group is missing. The compiler 
inserts the parenthesis and continues scanning. 

A comma necessary to syntax is missing. Correct list. 
If syntax has been acceptable up to this 
point, the compiler inserts the comma 
and continues scanning. Commas will 
be inserted between multiple data lists 
in data statements, multiple equivalence 
groups, debug options or elements 
in an 1/0 list. 

• c 
.,, 00 

' "' z O> 

c "' s: :II 
OJ "' m := 
lJ 

en ..,, 
m 
:::0 
:::0 
-< 
c 
z 
< 
)> 
(') 

0 
"C 
CD ... 
~ :;· 
cc 

!f 
i 
3 -w 

c .,, 
a 
> 
-l 
m 
r 
m 
< 
m 
r 
-.,, 
> m 
Q I 
m~ 

lO 



Message Severity 
Diagnostic Message 

Number Code 

FC207 2 WARNING INTEGER 
TOO BIG USED 
7FFFFFFF' 

FC208 4 RECOVERED BAD 
SUBSCRIPT TO '1' 

FC209 4 RECOVERED MISSING 
FRACTION WIDTH 

. TOO 

FC210 4 RECOVERED MISSING 
SLASH TO 
BLANK COMMON 

FC211 4 RECOVERED AND 
RESTARTED SCAN 
AT THIS NAME 

FC212 4 RECOVERED WRITE 
NO PAR EN 
TO PRINT 

FC213 6 SYNTAX 
UNRECOGNIZED 

FC214 2 WARNING COMPLEX 
TYPE CONFLICT 

• 

Table E-1. Compile- Time Diagnostic Messages (Part 19 of 22) 

Explanation 

Reason Recovery 

An integer constant exceeds one full Examine constant for correctness. 
word. Binary bits were truncated on the A precision or type change may 
left, and a maximum positive value of be appropriate. 
'7FFFFFFF' was substituted. 

An array declarator or array element Correct subscript. 
reference contains an invalid or 
unrecognizable expression as a subscript. 
The compiler substitutes the value '1' 
for the subscript and closes the current 
array. Scanning continues with the next 
array, if present. 

Fraction width in the format specification Define format width. 
is missing. The compiler substitutes the 
value 0 and continues scanning . 

In a COMMON statement, either the Put in missing delimiter or name. 
slash delimiting the common block name is 
missing or the name itself is 
unrecognizable. 

Recovery was made to the next valid name Correct statement. 

encountered after the bad data. The scan 
resumes at this point. All unidentifiable 
data prior to this point was ignored by the 
compiler. 

A WRITE statement has a left parenthesis Add missing delimiter. 

missing. The compiler therefore treats 
the statement as a PRINT statement. 

The compiler has not encountered any Correct statement. 

acceptable keywords or syntax and 
cannot identify the statement. Scanning 
is terminated. 

The real and imaginary components of a Correct constant so that both 
complex constant do not agree in type. components have the same type. 
The compiler converts the component of 
lower type to the higher type . 

• • 

c co 
7l I\) z en c I\) 

~ JJ 
m CD 
m :-:: 
JJ 

c ,, 
Cl 
)> 
-i 
m 
r 
m 
< m 
r 

en 
""CJ 
m 
::0 
::0 
-< 
c 
2 

< 
)> 
n 
0 
i 
ii1 
~ :;· 
cc 

!f 
~ 
3 -w 

,, 
)> 
Gl m 
ml 

I\) 
0 



• 
Message Severity 

Diagnostic Message 
Number Code 

FC215 2 WARNING 
CONSTANT 
TRUNCATED 

FC216 4 WARNING FINAL 
PERIOD INSERTED 

FC217 4 WARNING INITIAL 
PERIOD INSERTED 

FC218 2 WARNING NOT 
AN IMPLIED 
DO 

FC219 4 WARNING PERIOD 
CHANGED TO 
ASTERISK 

FC220 2 REAL EXPONENT 
DIGITS MISSING 

FC221 4 ERROR HEX 
TRUNCATED 

FC222 2 IGNORED COMMA 

• 
Table E-1. Compile-Time Diagnostic Messages (Part 20 of 22) 

Explanation 

Reason Recovery 

For an integer constant, binary bits were Examine constant for correctness; 
truncated on the left, which may affect its a precision change may be 
sign. For a double precision constant, decimal appropriate. 
digits on the right were discarded. For a 
single precision real constant, right 
hexadecimal digits from its preliminary 
internal representation were discarded. 

The final period that delimits a relational Correct statement. 
or logical operator is missing. The compiler 
inserts the missing delimiter and continues 
scanning. 

The initial period that delimits a relational Correct statement. 
or logical operator is missing. The compiler 
inserts the period if the following syntax 
appears correct. 

A parenthesized expression lias been encountered Correct parenthesized expression 
in an 1/0 list. The compiler is anticipating if it is intended to be an 
an implied DO loop, but the format of the implied DO. 
expression is not of the form (NAME (I), 

l=M1,M2,M
3

). 

The compiler has encountered a period Correct statement. 
which does not delimit a logical constant 
or a logical or relational operator. The 
compiler interprets the period as a 
mispunched asterisk and continues scanning. 

The exponents on a real or double precision Correct constant. 
constant are missing. 

A hexadecimal constant may be a maximum of Correct or shorten hexadecimal 
32 characters in length. Truncation occurs constant. 
on the leftmost digits. 

An extraneous comma has been encountered in a Correct the statement by removing 
define file list, an 1/0 list, or a the comma or inserting the 
format descriptor list. missing list item it delimits. 

• c 00 
.,, I\) , en z I\) 

c JJ 
:5:: CD 
Ill < m· 
:D 

c .,, 
0 
)> 
-I 
m 
r 
m 
< 
m 
r -.,, 

(I) 
"'O 
m 
:xJ 
:xJ 
< 
c 
2 

< 
)> 
C') 

0 
"'C 
CD ., 
II) 

~­
:I 
cc 

!f s 
3 -w 

)> m 
Gl I 
m~ 



Message Severity 
Diagnostic Message 

Number Code 

FC223 2 IGNORED LABEL 
OUT OF RANGE 
AS DUMMY 

FC224 4 IGNORED 
UNRECOGNIZED 

FC225 4 WARNING POSSIBLE 
MISSING ASTERISK 

FC226 2 IGNORED BAD 
LENGTH 
SPECI Fl CATION 

FC227 2 DO WARNING 

FC228 2 MISSING 
APOSTROPHE 

FC229 4 TRUNCATED 
LITERAL 

FC230 4 BAD LABEL 

FC901 8 COMPILER NEEDS 
MORE SPACE FOR 
THIS PROGRAM 

•• 

Table E-1. Compile-Time Diagnostic Messages (Part 21 of 22) 

Explanation 

Reason Recovery 

A statement label has been found which exceeds Correct label. 
the maximum value of 99999. 

In scanning, the compiler has encountered invalid Correct statement. 
data which it cannot identify. Recovery is made 
to the next valid name found and all else in 
between is ignored. 

The compiler has encountered two apparently Correct statement. 
valid variable names or constants not 
separated by an operator, and assumes 
multiplication was intended. 

The length specification on implicit or explicit Correct length specification or 
type statement is either an invalid constant decrease its value. 
or the value exceeds 32. 

The compiler has encountered a variable name Check statement. 
of the form 

'DO NNN NAME =' 
which looks like a DO statement. 

The closing apostrophe of a literal constant Close I iteral string. 
is missing. 

A Hollerith constant or literal constant Shorten character string. 
has exceeded the maximum length of 255 
characters. 

The statement label is either an invalid Correct statement label. 
constant or it exceeds the maximum label 
value of '99999'. 

The main memory is insufficient to Allocate more storage to the job, 

compile this program unit. or segment the program into 
smaller units. 

• • 

c 00 

"'C "' ' Cl 
z "' c :0 
s: "' CD ~ 
m 
JJ 

(I) 
~ 
m 
:::c 
:::c 
-< 
c 
z 
< 
)> 
n 
0 
'tl 
CD 

c 
"'C 
Cl 
)> 
-I 
m 

~ 
:::!'. 
:::s 

CQ 

!f s 
3 w 

r 
m 
< m 
r 

"'C 
l> m 
Gl I m...., 

"' 



• 
Message Severity 

Diagnostic Message 
Number Code 

FC902 8 STACK OVERFLOW. 
SIMPLIFY THIS 
STATEMENT 

FC903 8 1/0 ERROR ON 
COMPI LEA'S WORK 
FILE 

~ 
FC904 8 SOURCE PROGRAM 

NOT FOUND 

FC910 8 FORTRAN REQUIRES 
MICROLOGIC EXPANSION 

FC940 8 INTERNAL COMPILER 
ERROR IN PHASE N, 

t 
CODE NN, CARD 
NUMBER NNNN. 

+ 

t 

• • 
Table E-1. Compile-Time Diagnostic Messages (Part 22 of 22) 

Explanation 

Reason Recovery 

The compiler control stack has become Check program for excessively 

too large. The compilation cannot be complex statements and simplify. 

completed. If problem persists, submit a SUR. 

The scratch files the compiler uses Make certain that the correct 
have had a hardware error. It is number of work files are allocated 

impossible to complete compilation. and available. 

Module name on the PARAM IN Display contents of input file to 
card was not found on the input disc file. be certain the source program is there. 

The compiler requires the extended instruction Load the 2K COS and a 
set which is available only if the micrologic supervisor which supports 
expansion has been loaded. floating-point features. 

As indicated. Submit a SUR. The code is for maintenance purposes only and is 
not meaningful to users. The card number is not 
always present.,but can be useful, since the source 
code may be changed to get around the problem. 
The phase number may be useful in determining 
where the compiler is processing erroneously: 

• Phase 1 reads the source program, performs 
syntax analysis and builds various tables 
for later use. 

• Phase 2 processes COMMON and EQUIVAL-
ENCE statements, performs preliminary storage 
allocation, processes and generates label tables, 
and prints the source program and any 
diagnostics. 

• Phase 3 processes subscripts, performs constant 
arithmetic, processes constants and argument 
lists, and symbolically expands statement 
function references. 

• Phase A performs storage allocation compilation 
and prints the related map. 

• Phase 5 generates preliminary code and processes 
common subexpressions. 

• Phase 6 generates the object module and ex-
ecutable code and prints it. 

c 
"ti 00 

' "' z Ol 

c "' s: :D 
OJ "' m::: 
:ll 

Cl) 
-g 
m 
::n 
::n 
< 
c 
z 
< 
)> 
n 
0 
i ... 
II) 

z. 
~ 

CCI 

ff s 

c 
"ti 
0 
)> 
-l 
m 
r 
m 
< 
m 
r 

"ti 

3 -w 

l> m 
Gl I 
m"' w 



• 

• 

• 



• 

• 

• 

8262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 F-1 

PAGE UPDATE LEVEL 

Appendix F. Run Time 
Modules 

Table F-1. Extended FORTRAN Run-Time Modules (Part 1of10) 

Module 
CSECTor 

Entry Name Function 

FL$ABS FL$ABS Integer and real absolute value 
ABS 
DABS 
IABS 
JABS 

FL$ABTRM FL$ABTRM Abnormal termination code 

FL$ARFOR FL$ARFOR Array FORMAT processor 

FL$ASIN FL$ASIN Arcsine/arccosine functions 
ACOS 
ARCOS 
ARSIN 
ASIN 

FL$ATAN FL$ATAN Arctangent functions 
ATAN 
ATAN2 

FL$BCKSA FL$BCKSA BACKSPACE processor 

FL$CABS FL$CABS Complex absolute value function 
CABS 

FL$CBRT FL$CBRT Cube root 
CBRT 

FL$CC$ FL$CC$ Complex exponential functions: 
FL$CC C**C 
FL$CI C**l4 
FL$CJ C**l2 
FL$CR C**R4 
FL$1C 14**C 
FL$JC 12~*C 

FL$RC R4**C 

FL$CDABS FL$CDABS Complex*16 absolute value function 
CDABS 

t 



8262 Rev. 1 

UP-NUMBER 

t 

SPERRY UNIVAC Operating System/3 F-2 

UPDATE LEVEL PAGE 

Table F-1. Extended FORTRAN Run-Time Modules (Part 2of10) 

CSECTor 
Module 

Entry Name 
Function 

FL$CDD$ FL$CDD$ Complex* 16 exponential functions: 
FL$CD C8**R8 
FL$CDC C8**C16 
FL$CDD C16**C16 
FL$DC R8**C8 
FL$DCC C16**C8 
FL$DCD C16**R8 
FL$DCI C16**14 
FL$DCJ C16**12 
FL$DCR C16**R4 
FL$DDC R8**C16 
FL$1DC 14**C16 
FL$JDC 12**C16 
FL$RDC R4**C16 

FL$CDEXP FL$CDEXP Complex*16 exponential functions 
CDEXP 

FL$CDLOG FL$CDLOG Complex*16 logarithm function 
CD LOG 
FL$CDLG 

FL$CDMPY FL$CDMPY Complex*16 multiply/divide 
COD VD# 
CDMPY# 

FL$CDSIN FL$CDSIN Complex*16 sine/cosine and hyperbolic sine/cosine 
cocos functions 
CDCOSH 
CDSIN 
CDSINH 

FL$CDSQT FL$CDSQT Complex*16 square root function 
CDS ORT 

FL$CEXP FL$CEXP Complex exponential function 
CEXP 

FL$CLNRW FL$CLNRW File close routine (no rewind) 

FL$CLOG FL$CLOG Complex logarithm function 

CLOG 

FL$CLOSE FL$CLOSE Final file close 

FL$CMPLX FL$CMPLX Complex intrinsic functions: 
CMPLX cs 
DCMPLX C16 

FL$CMPY FL$CMPY Complex multiply /divide 
CDVD# 
CMPY# 

FL$CNFLT FL$CNFLT 

FL$COLUM FL$COLUM 

• 

• 

• 



• 

• 

• 

B262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 F-3 

UPD.ATE LEVEL PAGE 

Table F-1. Extended FORTRAN Run-Time Module (Part 3of10) 

CSECTor 
Module 

Entry Name Function 

FL$CONJG FL$CONJG Conjugate intrinsic functions 
CON JG Single-precision conjugate function 
DCONJG Double-precision conjugate function 

FL$CSIN FL$CSIN Complex sine/cosine and hyperbolic sine/cosine 
ccos functions 
CCOSH 
CSIN 
CSINH 

FL$CSQRT FL$CSQRT Complex square root function 
CSQRT 

FL$DASIN FL$DASIN Real *B arcsine/arccosine functions 
DA COS 
DAR COS 
DARSIN 
DASIN 

FL$DATAN FL$DATAN Real *B arctangent functions 
DA TAN 
DATAN2 

FL$DBLE FL$DBLE Single to double intrinsic functions: 
COBLE CB to C16 
DBLE R4 to RB 

FL$DBOUT FL$DBOUT Debug 1/0 routines 
FL$DBCL 
FL$DBOP 
FL$FLSH 
FL$STKR 

FL$DCBRT FL$DCBRT Real *B cube root function 
DCB RT 

FL$DDPOW FL$DDPOW Real*B power functions 
DEXP 

DEXP10 
DLOG 
DLOG10 
FL$DD RB**RB 
FL$DEXP$ 
FL$DI RB**l4 
FL$DJ RB**l2 
FL$DLOG$ 
FL$DR RB**R4 
FL$1D 14**RB 
FL$JD 12**RB 
FL$RD R4**RB 
FP$DTD RB**RB (basic FORTRAN) 
FP$DTH RB**l2 (basic FORTRAN) 
FP$DTI R8**14 (basic FORTRAN) 
FP$DTR RB**R4 (basic FORTRAN) 
FP$HTD 12**RB (basic FORTRAN) 
FP$1TD 14**RB (basic FORTRAN) 
FP$RTD R4**RB (basic FORTRAN) 

t 



8262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

Table F-1. Extended FORTRAN Run-Time Module (Part4of10) 

CSECTor 
Module 

Entry Name 
Function 

FL$DEBUG FL$DEBUG Debug control routines: 
FL$DARI array INIT 
FL$DBGUN UNIT value 
FL$DCHK SUBCHK 
FL$DELI array element INIT 
FL$DINT variable INIT 
FL$DRTN RETURN 
FL$DSBT SUBTRACE 
FL$DTOF TRACE OFF 
FL$DTON TRACE ON 
FL$DTRC TRACE 
FL$DUNT UNIT 

FL$DEFIL FL$DEFIL DEFINE FILE statement processor 

FL$DERF FL$DERF Real *8 error function 
DEAF 
DERFC 

FL$DFNDB FL$DFNDB FIND statement processor 

FL$DGAMA FL$DGAMA Real *8 distribution function 
DGAMMA 
DLGAMA 

FL$DHPER FL$DHPER Real *8 hyperbolic sine/cosine 
DCOSH 
DSINH 

FL$DHYPT FL$DHYPT Real *8 hyperbolic tangent 
DTANH 

FL$DIM FL$DIM Positive difference intrinsic functions 
DDIM 
DIM 
IDIM 
JDIM 

FL$DMAX FL$DMAX Rea1*8 maximum/minimum intrinsic functions 
DMAX1 
DMIN1 

FL$DOPNA FL$DOPNA Direct access READ/WRITE processor 
FL$DFNDA Direct access FIND processor 

FL$DSIN FL$DSIN Real *8 sine/cosine function 
DCOS 
DSIN 
FL$DCOS$ 
FL$DSIN$ 

FL$DSQRT FL$DSQRT Real *8 square root function 
DSQRT 

FL$DTAN FL$DTAN Real *8 tangent/cotangent function 
DCOT 
DCOTAN 
DTAN 

F--4 

UPDATE LEVEL PAGE 

• 

• 

• 



• 

• 

• 

8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 F-5 
UPDATE LEVEL PAGE 

Table F-1. Extended FORTRAN Run-Time Module (Part 5of10) 

Module 
CSECTor 

Entry Name Function 

FL$DUMP FL$DUMP DUMP/PDUMP processor 
DUMP 
FL$DUMPD 
PDUMP 

FL$DVCHK FL$DVCHK Divide check subroutine 
DVCHK 

FL$EDTAI FL$EDTAI A edit - input 

FL$EDTAO FL$EDTAO A edit - output 

FL$EDTCI FL$EDTCI Complex input 

FL$EDTCO FL$EDTCO Complex output 

FL$EDTEO FL$EDTEO E edit - output 
FL$EDTDO D edit - output 

FL$EDTFI FL$EDTFI F edit - input 
FL$EDTEI E edit - input 
FL$EDTDI D edit - input 

FL$EDTFO FL$EDTFO F edit - output 

FL$EDTGI FL$EDTGI G input 

FL$EDTGO FL$EDTGO G output 

FL$EDTll FL$EDTll I edit - input 

FL$EDTIO FL$EDTIO I edit - output 

FL$EDTLI FL$EDTLI L edit - input 

FL$EDTLO FL$EDTLO L edit - output 

FL$EDTZI FL$EDTZI Z edit - input 

FL$EDTZO FL$EDTZO Z edit - output 

FL$ENDFA FL$ENDFA ENDFI LE processor 

FL$ERCTL FL$ERCTL Error control and traceback routine 
FL$SWTERR 
FL$WTMSG 

FL$ERE FL$ERE Syntax error CALL subroutine 

FL$ERF FL$ERF Real error function 
ERF 
ERFC 

FL$ERRN FL$ERRN Error message setup 

FL$ERTST FL$ERTST ERROR/ERROR1 subroutines 
ERROR 
ERROR1 

t 



t 

8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 F-6 
UPDATE LEVEL PAGE 

Table F-1. Extended FORTRAN Run-Time Module (Part 6of10) 

CSECT or 
Module 

Entry Name 
Function 

FL$FLOAT FL$FLOAT Float intrinsic functions 
DFLOAT 
DH FLOT 
FLOAT 
HFLOAT 

FL$FORMT FL$FORMT FORMAT processor _____, 
FL$FTCH FL$FTCH FETCH subroutine 

FETCH 

FL$GAMMA FL$GAMMA Real gamma function 
AL GAMA 
GAMMA 

FL$GDIRI FL$GDIRI List-directed input processor 

FL$GDIRO FL$GDIRO List-directed output processor 

FL$GTMS3 FL$GTMS3 OS/3 GET message processor 

FL$GTMSG 

FL$HXCVD FL$HXCVD Binary to decimal conversion 

FL$HYPER FL$HYPER Real hyperbolic functions 

COSH 
SINH 
TANH 

FL$1FIX FL$1FIX Fix intrinsic function 
HFIX 
IFIX 

FL$1MAG FL$1MAG Imaginary part of complex intrinsic function 

AIMAG 
DIMAG 
IMAG 

FL$1NFL3 FL$1NFL3 Set file to input mode for OS/3 
FL$1NFL 

FL$1NITL FL$1NITL Program initialization routine 

FL$1NT FL$1NT Integer intrinsic functions 
AINT 
DINT 
IDINT 
INT 

FL$10 FL$10 Standard 1/0 configuration 
FL$ERRCT 
FL$FUNTB 
FL$RERDB 
FL$WORKA 
FL$1 
FL$3 
PRNTR 
PRNTRC 

• 

• 

• 



• 

• 

• 

8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 F-7 
UPDATE LEVEL PAGE 

Table F-1. Extended FORTRAN Run-Time Module (Part 7 of 10) 

Module 
CSECTor 

Entry Name Function 

FL$10ARA FL$10ARA Dummy 1/0 common (basic FORTRAN) 

FL$10CLS FL$10CLS 1/0 statement termination 
FL$DCLSE direct access 1/0 
FL$FCLS formatted 1/0 
FL$NMLCL namelist 1/0 
FL$SCLSE sequential I /O 

FL$10COM FL$10COM 1/0 control common 
FL$ERBYT 
FL$ERR error control routine 
FL$GTSAV 
FL$1FSAV 
FL$10SAV 
FL$0FSAV 
FL$ROSAV 
FL$RWSAV 
FL$SKADR 
FL$TBSAV 
FL$WTSAV 

FL$10ERR FL$10ERR Data management fatal error processor 

FL$10LST FL$10LST 1/0 list item processor 
FL$10LS 

FL$10PEN FL$10PEN 1/0 argument I ist processor 
FL$BCKSP 
FL$DFIND for FIND statement 
FL$DOPEN for direct access 1/0 
FL$ENDFL 
FL$REWND 
FL$SOPEN for sequential I /0 

FL$101 FL$101 Alternate 1/0 configuration 
FL$ERRCT 
FL$FUNTB 
FL$RERDB 
FL$WORKA 
FL$1 
FL$2 
FL$3 
FL$11 
FL$12 
FORT11 
FORT11C 
FORT11 E 
FORT12 
FORT12C 
FORT12E 
FORT2 
FORT2C 
PRNTR 
PRNTRC 

t 



8262 Rev. 1 
UP-NUMBER 

t 

SPERRY UNIVAC Operating System/3 

Table F-1. Extended FORTRAN Run-Time Module (Part 8 of 10) 

CSECTor 
Module Entry Name 

Function 

FL$1XPI FL$1XPI Integer power functions: 
FL$11 14**14 
FL$1J 14**12 
FL$JI 12**14 
FL$JJ 12**12 
FP$HTH 12**12 (basic FORTRAN) 
FP$HTI 12**14 (basic FORTRAN) 
FP$1TH 14**12 (basic FORTRAN) 
FP$1TI 14**14 (basic FORTRAN) 

FL$LOAD FL$LOAD LOAD and OPSYS subroutines 
LOAD 
OPSYS 

FL$MAX FL$MAX Max/min intrinsic functions 
AMAXO 
AMAX1 
AMINO 
AMIN1 
JMAXO 
JMINO 
MAX 
MAXO 
MAX1 
MIN 
MINO 
MIN1 

FL$MOD FL$MOD Modulo arithmetic intrinsic functions 
AMOD 
DMOD 
JMOD 
MOD 

FL$NAMEI FL$NAMEI NAME LIST input 

FL$NAMEO FL$NAMEO NAME LIST output 

FL$0UTF3 FL$0UTF3 Set file to output mode for OS/3 
FL$0UTFL 

FL$0VRFL FL$0VRFL Overflow subroutine 
OVER FL 

FL$0VW70 FL$0VW70 Series 70 overflow subroutine 
OVER FL 

FL$POWER FL$POWER Real*4 power functions 
ALOG 
ALOG10 
EXP 
EXP10 
FL$ALOG$ 
FL$EXP$ 
FL$1R 14**R4 
FL$JR 12**R4 
FL$RI R4**14 
FL$RJ R4**12 

F-8 
UPDATE LEVEL PAGE 

• 

• 

• 



• 

• 

• 

8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 F-9 
UPDATE LEVEL PAGE 

Table F-1. Extended FORTRAN Run-Time Module (Part 9of10) 

CSECT or 
Module 

Entry Name 
Function 

FL$POWER FL$RR R4**R4 
(cont) FP$EXP$ 

FP$HTR 12**R4 (basic FORTRAN) 
FP$1TR 14**R4 (basic FORTRAN) 
FP$RTH R4**12 (basic FORTRAN) 
FP$RTI R4**14 (basic FORTRAN) 

FP$RTR R4**R4 (basic FORTRAN) 

LOG 
LOG10 

FL$READ FL$READ Input file processor 
FL$EOF 
FL$ERROA 

FL$REAL FL$REAL Real part of complex intrinsic function 
DR EAL 
REAL 

FL$REOPN FL$REOPN Reopen closed file 

FL$RWNDA FL$RWNDA REWIND statement processor 

FL$SCNUM FL$SCNUM 

FL$SIGN FL$SIGN Sign intrinsic functions 
DSIGN 
FL$DSIGN 
FL$1SIGN 
FL$JSIGN 
ISIGN 
JSIGN 
SIGN 

FL$SIN FL$SIN Sine/cosine functions 
cos 
FL$COS$ 
FL$SIN$ 
SIN 

FL$SLITE FL$SLITE SLITE/SLITET subroutines 
SLITE 
SLITET 

FL$SNGL FL$SNGL Single from double intrinsic functions 
CSNGL 
SNGL 

FL$SOPNA FL$SOPNA 

FL$SQRT FL$SORT Real *4 square root function 
SORT 

FL$SSWTH FL$SSWTH System switch subroutines 
SSWTCH 

FL$STOP FL$STOP STOP/PAUSE processor 
FL$PAUSE 

t 



t 

8262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

Table F-1. Extended FORTRAN Run-Time Module (Part 10 of 10) 

CSECTor 
Module 

Entry Name Function 

FL$STXIT FL$STXIT STXIT control routine 
FL$STXTA 

FL$TAN FL$TAN Real *4 tangent/contangent functions 
COT 
COT AN 
TAN 

FL$UNFOR FL$UNFOR Unformatted 1/0 processor 

FL$WRITE FL$WRITE Output file processor 

F-10 
UPDATE LEVEL PAGE 

• 

• 

• 



• 

• 

• 

8262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 G-1 

UPDATE LEVEL PAGE 

Appendix G. Subroutine Linkage 

G.1. CALLING FORTRAN SUBPROGRAMS 

All OS/3 language processors, including Extended FORTRAN, generate and expect standard subprogram 
linkages in their generated programs. These linkage conventions are defined in the supervisor user guide, UP-
8075 (current version). In addition, special FORTRAN conventions and considerations are required (suggested) 
for successful operation of the run-time system. 

G .1 .1 . Save Area 

A FORTRAN subprogram requires a 72-byte, word-aligned save area, supplied by .the calling program. Table 
G-1 illustrates the format of a save area . 

Table G-1. Save Area Format (Part 1 of 2) 

Word Byte Content 

1 0 RESERVED FOR SYSTEM USE 

2 4 SAVE AREA BACKWARD LINK ADDRESS 

3 8 SAVE AREA FORWARD LINK ADDRESS 

4 12 CALLING PROGRAM RETURN ADDRESS 

5 16 CALLED PROGRAM ENTRY POINT ADDRESS 

6 20 REGISTER 0 

7 24 REGISTER 1 

8 28 REGISTER 2 

9 32 REGISTER 3 

10 36 REGISTER 4 

11 40 REGISTER 5 

12 44 REGISTER 6 

13 48 REGISTER 7 

t 



8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 G-2 

UPDATE LEVEL PAGE 

t 

Table G-1. Save Area Format (Part 2 of 2) 

Word Byte Content 

14 52 REGISTER 8 

15 56 REGISTER 9 

16 60 REGISTER 10 

17 64 REGISTER 11 

18 68 REGISTER 12 

NOTE: 

Each word in the save area is aligned on a full-word boundary. 

Word 1 of the save area contains the epilogue address for the entry point. Words 2 and 4 through 18 are 
initialized according to standard linking conventions. 

During execution of a FORTRAN subprogram, register 13 contains the address of this program's save area. Word 
2 contains the pointer to the save area supplied to the program. Just before returning to the calling program, 
register 13 is restored to the calling program's save area and a X'FF' is put into byte 12 of the save area as a 
termination indicator. 

G.1.2. Required Entry Conditions 

The following entry conditions are required: 

• Register 13 must contain the save area address. 

• Register 14 must contain the return address. 

• Register 15 must contain the entry point address. 

• If parameters are passed, register 1 must contain the address of a word-aligned parameter list. The 
compiler-generated program requires that the actual arguments specified in the parameter list conform in 
type and number with the dummy arguments. Each word in the parameter list contains the address of the 
actual argument. If the dummy argument is: 

a simple variable, the parameter list contains the address of the actual value being passed; 

an array name, the parameter list contains the address of the first element in the array; 

a subprogram name, the parameter list contains the address of a word containing the address of the 
subprogram's entry point. 

G.1 .3. Exit Conditions 

When a FORTRAN subprogram returns to the calling program. registers 2 through 14 are restored to their 
original contents and the contents of all call-by-value actual arguments are set to the value of the corresponding 
local dummy argument. If a subroutine is exiting, register 1 5 contains the K value of the RETURN K statement. A 
simple RETURN is equivalent to RETURN 0. 

• 

• 

• 



• 

• 

• 

8262 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 G-3 

UPDATE LEVEL PAGE 

A function returns its value in a register depending on its type. The function types and corresponding registers 
are illustrated in Table G-2. 

Table G-2. Function Types and Corresponding Registers 

Function Type Register Containing Value 

{ INTEGER*2 } 
INTEGER(*4] 

General register 0 

{ REAL(*4] } 
REAL*8,DOUBLE PRECISION 

Floating point register 0 

{COMPLEX [*8] } Real part in floating register 0 

COMPLEX*16 Imaginary part in floating register 2 

{LOGICAL *1 } 
LOGICAL[*4] 

General register 0 

NOTE: 

Registers 0, 1, and 15 and all floating-point registers are not preserved over a subprogram reference. 

G.1.4. Mathematical Library 

The mathematical functions supplied by Extended FORTRAN are available to programs written in other 
languages. Tables 5-3 and 5-4 specify the functions available and Appendix F lists the actual modules 
containing these functions. 

The mathematical library is entirely self-contained except for one external reference. If an error condition is 
possible, the function uses the first word of FLSIOARA (1/0 area) to get to an error control routine. The error 
routine FLSERR is required for Extended FORTRAN. If a FORTRAN-compiled program is also included in the 
executable module, FORTRAN automatically supplies the common area, FLSIOARA. However, if FORTRAN­
ccmpiled subprograms are not included in the load module, the user must supply the FLSIOARA module. An 
assembly language routine to accomplish this follows: 

LABEL i:'..OPERATIONL:'.. OPERAND 
10 16 

More complicated routines may be substituted when required. However, the first word at FLSIOARA must be an 
address constant containing the address of the processing routine. 

t 



t 

SPERRY UNIVAC Operating System/3 G-4 8262 Rev. 1 

UP-NUMBER UPD.ATE LEVEL PAGE 

G.1.5. Compiled Subprograms 

Other language programs may use FORTRAN-compiled subprograms. FORTRAN subprograms assume 
availability of a complete FORTRAN run-time library for support. However, if only a subprogram is used and the 
FORTRAN library support is not available, then OVERFL, DVCHK, and orderly termination on fatal errors are not 
normally supported. 

To use the complete FORTRAN run-time library, the PARAM option STX=YES is available. A subprogram 
compiled with this option calls the FLSINITL routine to provide full support. 

The FL$1NITL routine uses both the program check and abnormal termination island code services of the OS/3 

supervisor. In addition, the program mask bits in the PSW are set to allow exponent overflow and underflow 
interrupts. A complete FORTRAN 1/0 environment is required for printing diagnostic information. 

A subprogram may use FORTRAN 1/0 to process data files. However, a FORTRAN STOP statement must be used 
to terminate job step processing. An ENDFILE statement should be used for any active sequential 1/0 unit before 
the final exit from the FORTRAN routine. The ENDFILE statement ensures that the file is closed by data 
management with all 1/0 activity completed. 

G.2. CALLING FROM FORTRAN PROGRAMS 

When a FORTRAN-compiled program references a subprogram: 

• register 1 contains the address of a parameter list; 

• register 13 contains the address of an 18-word save area; 

• register 14 contains the return address; and 

• register 15 contains the subprogram's entry address. 

The four bytes at the address in register 14 is a NOP with the FORTRAN source line number in hexadecimal as 
the second half word. An equivalent assembly language calling sequence would be as follows: 

LABEL l:iOPERA TIONl:i OPERAND 
10 16 

G.2.1. Parameter List Formats 

If the subprogram reference has an actual argument list, register 1 contains the address of the parameter list. 
The parameter list is a sequence of words containing the addresses of the actual arguments. The last word in the 
parameter list is identified with bit 0 of the first byte of the word set to 1. 

If the actual argument is a variable, array element reference, or constant, the parameter list points to the 
appropriate location containing the value. An actual argument that is an array name is equivalent to passing the 
first element in the array. Label arguments (G.2.2) are not passed in the parameter list. 

• 

• 

• 



• 

• 

• 

G-5 8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

NOTE: 

Logical constants are always passed as LOGICAL *4 values and integer constants are always passed as 
INTEGER*4 values. 

G.2.2. Label Arguments 

Labels may be passed in an actual argument list in a CALL statement. When labels occur, they are not explicitly 
passed in the parameter list, but immediately following the CALL statement, they are converted to a form similar 
to a computed GOTO. Upon return, the compiler expects register 15 to contain a value indicating how to process 
the labels. For n labels, if register 15 contains a value i with 1 ~i~n. control passes to the statement at the i th 
label. Any other values in register 15 cause control to pass to the next sequential statement. 

G.2.3. Conventions 

A FORTRAN-compiled program assumes that registers 2 through 14 are not modified during a subprogram 
reference. Register 13 contains a save area address for the called subprogram to save any needed registers. The 
called subprograms should conform to the standard usage of this save area through normal linkage conventions. 
Words 1 and 2 must not be modified; they contain required FORTRAN system information. Registers 0, 1, 15, 
and the four floating-point registers may be modified by the called program. 

If the subprogram is a function, it must return a value. The location of this value is specified in Table G-2. 

G.3. TRACEBACK INTERFACE 

When the FORTRAN run-time system prints a diagnostic, a traceback of the current subprogram linkage is 
attempted. Beginning with the current save area, indicated by register 13, the traceback routine uses the 
backward link, word 2, of each save area to determine the sequence of calls and then prints this information. 
Observing the following conventions will avoid any possible problems with the traceback routines. 

1. During subprogram execution, point register 13 to a local save area. This ensures a correct beginning for 
the traceback. 

2. Fill the backward link address, word 2, in every save area with the appropriate address. The main program 
must have a zero in this field. 

3. The traceback routine assumes the module name is located 72 bytes from the beginning of a save area. 
The form is a 1-byte length, followed by one to eight bytes containing the module name. It would appear as 
follows in assembly language: 

LABEL LOPERATIONL OPERAND 
10 16 

SAYE 

• 
• t 



t 

8262 Rev. 1 
UP-NUMBER 

4. 

5. 

SPERRY UNIVAC Operating System/3 G-6 
UPDATE LEVEL PAGE 

The traceback routine assumes the entry name is located four bytes after the entry point. The form is a 1-
byte length, followed by one to six bytes containing the entry name. In assembly language, the normal 
entry point is coded as follows: 

LABEL L°lOPERATIONL°l OPERAND 
1 10 16 

The traceback routine assumes that a half-word line number is located two bytes after the return point 
(specified in register 14). Refer to G.2 for an assembly language example of this. 

• 

• 

• 



• 

• 

• 

8262 Rev. 1 

UP-NUMBER 

Term 

ABNORMAL statement 

Argument substitution 
call by name 
call by value 
description 
symbolic 

Arguments 
compiler 
description 
forms 
UNIT 

Arithmetic assignment statements 

Arithmetic expressions 

Arithmetic IF statement 

Arithmetic, mixed mode 

Arithmetic operations 
implementation 
user checks 

A 

Arithmetic underflow and overflow 

Arrays 
declaration 
declarator 
description 
element position location 
element reference 

ASCII character set arguments 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Index 1 

Index 

Reference Page Term Reference Page 

ASSIGN statement 3.3.2 3-4 

Assigned GO TO statement 4.6 4-4 

5.4.1.3 5-7 
Assignment statements 

arithmetic and logical 3.3.l 3-5 
5.5.2 5-13 conversion Table 3-3 3-5 

5.5.l 5-13 description 3.3 3-4 
5.5 5-12 
5.5.3 5-14 AT statement 10.4.l 10-3 

9.2.l 9-2 B 
5.1 5-2 
Table 5-2 5-2 BACKSPACE auxiliary 1/0 
See UNIT arguments. statement 7.3.6.2 7-21 

3.3.1 3-5 Binary arguments 
card input C.3 C-2 

3.2.l 3-1 card output C.4 C-3 
3.2.6 3-3 

Blank descriptor 7.3.3.1.11 7-12 

4.1 4-1 
BLOCK DATA statement 8.3.l 8-3 

3.2.5 3-3 
Block sizes 11.3.1.2 11-3 

3.2.7 3-4 Buffer allocation 11.3.1.4 11-4 
3.2.6 3-3 

5.6.3 5-23 c 
Call by name, argument substitution 5.5.2 5-13 

6.2 6-1 
6.2.1 6-1 Call by value, argument substitution 5.5.l 5-13 
2.4 2-6 
2.4.2 2-7 CALL statement 
2.4.l ·2-6 description 5.2.2 5-3 

standard library subroutines 5.6.3 5-23 

C.3 C-2 
C.4 C-3 



8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 Index 2 
UPDATE LEVEL PAGE 



8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 Index 3 
UPDATE LEVEL PAGE 



8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 Index 4 
UPDATE LEVEL PAGE 

Term Reference Page Term Reference Page 

Error environment definition double precision 7.3.3.1.4 7-10 
procedure &ERRDEF? 11.3.6 11-39 general 7.3.3.1.6 7-10 

hexadecimal 7.3.3.1.9 7-11 
Error indicator set subroutine 5.6.3 5-25 Hollerith &A conversion? 7.3.3.1.7 7-10 

Hollerith &H conversion? 7.3.3.1.8 7-10 
Error indicator test subroutine 5.6.3 5-25 integer 7.3.3.1.1 7-8 

literal 7.3.3.1.10 7-11 
ERROR subroutine call statement 5.6.3 5-25 logical 7.3.3.1.5 7-10 

real &E conversion? 7.3.3.1.2 7-9 
ERROR! subroutine call statement 5.6.3 5-25 real &F conversion? 7.3.3.1.3 7-9 

record position 7.3.3.1.12 7-12 
Evaluation order, expressions 3.2.4 3-2 

Table 3-1 3-3 File definition 
card output 11.3.4.3 11-16 

Execution environment data management card input 11.3.4.2.2 11-12 
configurators supplied 11.2 11-1 direct access disc 11.3.4.6 11-32 
data management interface 11.1 11-1 printer 11.3.4.1 11-7 
error environment definition 11.3.6 11-39 sequential disc 11.3.4.5 11-26 
file definition conventions 11.3.1 11-2 spooled card input 11.3.4.2.1 11-10 
program mer-defined configurations 11.3 11-2 tape 11.3.4.4 11-19 
START statement initialization 

&FUNTAB? 11.3.2 11-6 File definition conventions 
11.3.3 11-6 buffer allocation 11.3.1.4 11-4 

unit definition 11.3.4 11-6 device type 11.3.1.1 11-3 
unit definition termination &FUNEND? 11.3.5 11-39 file type 11.3.1.5 11-5 

record and block sizes 11.3.1.2 11-3 
Exit conditions, subprogram G.1.3 G-2 record formats 11.3.1.3 11-3 

EXIT subroutine 5.6.3 5-27 File type 11.3.1.5 11-5 

Explicit type statement 6.4.1 6-3 FIND statement 7.4.4 7-27 

Expressions FOR call statement D.l D-1 
arithmetic 3.2.1 3-1 
evaluation order 3.2.4 3-2 FORMAT statement 

Table 3-1 3-3 carriage control conventions 7.3.3.3 7-13 
logical 3.2.3 3-2 Table 7-2 7-14 
relational 3.2.2 3-1 description 7.3.3 7-6 

field descriptors 7.3.3.1 7-7 
Extensions 1.1.2 1-2 Table 7-1 7-7 

interaction with 1/0 list 7 .3.3.4 7-14 
External functions multiple record format specification 7.3.3.2 7-13 

ABNORMAL statement 5.4.1.3 5-7 permissible associations of list 
description 5.4.1 5-6 items Table 7-3 7-15 
FUNCTION statement 5.4.1.1 5-6 
RETURN statement 5.4.1.2 5-7 Formatted READ/WRITE statements 7.3.2 7-4 

EXTERNAL statement 6.7 6-8 FRECSIZE 11.3.4.1 11-7 

F 
Function reference 5.2.1 5-3 

FUNCTION statement 5.4.1.1 5-6 
FETCH subroutine call statement 5.6.3 5-28 

Function subprograms, multiple entry 5.4.3 5-11 
Field descriptors, FORMAT statement 

blank 7.3.3.1.11 7-12 
description 7 .3.3.1 7-7 

Table 7-1 7-7 

• 

• 

• 



8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 A Index 5 
UPDATE LEVEL PAGE 



8262 Rev. 1 
UP-NUMBER 

Term 

Library subroutines 
DUMP 
DVCHK 
ERROR 
ERROR! 
FETCH 
LOAD 
OPSYS 
OVER FL 
PD UMP 
SLITE 
SLITET 
SSWTCH 

Link editing 
description 
FORTRAN supplied modules 
linkage editor output 
overlay and region structures 

Linkage, subroutine 

List-directed input/output 
description 
NAMELIST statement 
simple 

Literal constants 

Literal descriptor 

LOAD subroutine call statement 

Logical assignment statements 

Logical constants 

Logical descriptor 

Logical expressions 

Logical IF statement 

M 
Main storage dump 

torn 1tted 
routines 

Mathematical library 

Mixed-mode arithmetic 
description 
result types and lengths 

Multiple record format specification 

SPERRY UNIVAC Operating System/3 Index 6 
UPDATE LEVEL PAGE 

Reference Page Term Reference Page • 
N 5.6.3 5-27 

5.6.3 5-24 
5.6.3 5-25 NAMELIST statement 7.3.5.1 7-17 
5.6.3 5-25 
5.6.3 5-28 
5.6.3 5-28 0 
5.6.3 5-28 
5.6.3 5-23 Operators, evaluation order Table 3-1 3-3 
5.6.3 5-27 
5.6.3 5-26 OPSYS subroutine call statement 5.6.3 5-28 
5.6.3 5-27 
5.6.3 5-27 Output file definition, card 11.3.4.3 11-16 

12.2 12-1 
OVERFL subroutine call statement 5.6.3 5-23 

12.2.1 12-1 Overlays 5.6.3 5-28 
12.2.3 12-2 12.2.2 12-2 
12.2.2 12-12 

Appendix G p 

PARAM statement 
7.3.5 7-16 arguments 9.2.1 9-2 
7.3.5.1 7-17 format 9.2 9-1 
7.3.5.2 7-19 special options D.5 D-14 • 2.2.7 2-5 Parameter list formats G.2.2 G-5 

7.3.3.1.10 7-11 Pause messages 12.3.2 12-3 

5.6.3 5-28 PAUSE statement 4.10 4-7 

3.3.l 3-5 
12.3.2 12-3 

2.2.6 2-4 
PDUMP subroutine call statement 5.6.3 5-27 

7.3.3.1.5 7-10 
Printer files 

arguments Table B-1 B-1 

3.2.3 3-2 
definition 11.3.4.1 11-7 

Printer graphics A.2 A-3 
4.3 4-2 Table A-2 A-3 

Printer options C.2 C-1 

Procedures 
argument substitution 5.5 5-12 

10.5 10-5 description 5.1 5-1 5.6.3 5-27 Table 5-1 5-1 
function reference 5.2.1 5-3 

G.1.4 G-3 initialization (FUNTAB) reference 11.3.3 11-6 
library 5.6 5-14 
statement function definition 5.3 5-4 

3.2.5 3-3 subprogram definition 5.4 5-5 
Table 3-2 3-4 subroutine reference 5.2.1 5-3 • unit definition 11.3.4 11-6 
7.3.3.2 7-13 



8262 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 Index 7 
UPDATE LEVEL PAGE 



8262 Rev. 1 
UP-NUMB EA 

SPERRY UNIVAC Operating System/3 Index 8 
UPDATE LEVEL PAGE 

Term Reference Page Term Reference Page 

STOP command 4.9 4-6 Unformatted 1/0 statements 7.3.l 7-3 

Subprogram definition UNIT arguments 
external functions 5.4.l 5-6 card input files Table B-3 B-2 
multiple entry 5.4.3 5-11 card output files Table B-4 B-3 
subroutines 5.4.2 5-8 direct access disc files Table B-7 B-6 

equivalent unit Table B-9 B-6 
Subprograms printer Table B-1 B-1 

calling G.l G-1 reread unit Table B-8 B-6 
compiled G.1.5 G-4 sequential disc files Table B-6 B-5 
entry conditions G.1.2 G-2 spooled card input files Table B-2 B-2 
exit conditions G.1.3 G-2 tape files Table B-5 B-3 
function types and corresponding 

registers Table G-2 G-3 Unit definition procedure (UNIT) 
mathematical library G.1.4 G-3 card input files 11.3.4.2 11-10 

card output files 11.3.4.3 11-16 
Subroutines description 11.3.4 11-6 

description 5.4.2 5-8 direct access disc files 11.3.4.6 11-32 
linkage Appendix G equivalent 11.3.4.8 11-37 
reference 5.2.2 5-3 printer files 11.3.4.l 11-7 
RETURN statement 5.4.2.2 5-9 reread 11.3.4.7 11-36 
subprograms, multiple entry 5.4.3 5-11 sequential disc files 11.3.4.5 11-26 
SUBROUTINE statement 5.4.2.2 5-9 tape files 11.3.4.4 11-19 

Symbolic names 1.2.4 1-5 Unit definition termination procedure 
(FUN END) 11.3.5 11-39 

Symbolic substitution 5.5.3 5-14 
UNIT options 

additional data management devices C.8 C-5 
T card punch C.4 C-3 

card reader C.3 C-2 
T format cod es 7.3.3.1.12 7-12 direct access disc file C.7 C-4 

printer C.2 C-1 
Tape files sequential disc files C.6 C-4 

arguments Table B-5 B-3 summary Appendix B 
definition 11.3.4.4 11-19 tape files C.5 C-3 
options C.5 C-3 

UNIT procedure call 11.3.4 11-6 
TRACE OFF statementl0.4.3 10-3 

TRACE ON statementl0.4.2 10-3 v 
Traceback interface G.3 G-5 Variables 2.3 2-5 

Type statements w description 6.4 6-J. 
explicit 6.4.l 6-3 
IMPLICIT 6.4.2 6-4 WRITE statement 

disc 7.4.3 7-26 
formatted 7.3.2 7-4 u unformatted 7.3.l 7-3 

Unconditional GO TO 4.4 4-3 

• 

• 

• 



I 
I 
I 
I ., 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.u I 
.£ 
gi I 

·~I ul 

• 

I 
I 
I 
I 

.. 

J 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

• 

• 

• 



• 

l 
I 
I 
I 
I 
I 
I 
I 

i- I 
Bl .I 

• 

Comments concerning this manual may be made in the space provided below. Please fill in the requested information. 

Manual Title:--------------------------------------------

UP No:-------- Revision No:-------- Update:--------

Name of User:------------------------------------------~ 

Address of User: __________________________________________ _ 

Comments: 



FOLD 

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY 

UNIVAC 
P.O. BOX 500 
BLUE BELL, PA. 

19422 
ATTN: SYSTEMS PUBLICATIONS DEPT. 

I 

I 
I 
I 
I 
I 
I 

le' 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(") 
c 
-I i. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

---------------------------------------------------! 
FOLD I 

I 

• 


