Hardware and Software

Environment: 90/25, 30, 30B, 40 Systems

This document contains the latest information available at the time of preparation. Therefore, it may contain descriptions of functions not implemented at manual distribution time. To ensure that you have the latest information regarding levels of implementation and functional availability, please consult the appropriate release documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No contractual obligation by Sperry Univac regarding level, scope, or timing of functional implementation is either expressed or implied in this document. It is further understood that in consideration of the receipt or purchase of this document, the recipient or purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.
FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400 Text Editor. It was printed and distributed by the Customer Information Distribution Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

PAGE STATUS SUMMARY
ISSUE: Update C -
UP-8203 Rev. 3
RELEASE
LEVEL: 8.0 Forward

Part/Section	Page Number	Update Level
Cover/Disclaimer		Orig.
PSS	1 thru 3 4	c
Preface	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Orig. B
Contents	$\begin{aligned} & 1,2 \\ & 3,4 \end{aligned}$	$\begin{aligned} & \text { Brig. } \end{aligned}$
Section 1	$\begin{aligned} & \text { Title Page } \\ & 1 \text { thru } 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \text { thru } 29 \\ & 30 \end{aligned}$	Orig. Orig. B Orig. B Orig. B
Section 2	Title Page 1 2 3 4,5 6 7 thru 10 11 12 13 14 15,16 17 thru 23 24,25 26 thru 29 30,31 32 thru 68 69,70 71 thru 76 77,78 79 80 thru 83	Orig. B Orig. B

Part/Section	Page Number	Update Level
Section 2 (cont)	84, 85 86 thru 89 90 91 thru 95 96, 97 98	Orig. B Orig. B Orig. B
Section 3	Title Page 1 2 3 4 thru 8 9 10 thru 14 14a 15, 16 16a 17 18 19 thru 23 24, 25 26 thru 30 30a, 30b 30c, 30d 31 thru 36 36a, 36b 37 38 39 thru 43 44 45 46 47 48 49 50 50a 51 thru 57 58 59 thru 63 64 65 thru 70 70a 70b 71 thru 75 76 77 78 thru 82	Orig. B Orig. A B A B B B B B A B Orig. B B B B B B A B Orig. B A B Orig. B A A B Orig. B Orig. B A B B Orig. A B

Part/Section	Page Number	Update Level
Section 3 (cont)	82a thru 82c 83 thru 85 86, 87	B B Orig.
Section 4	Title Page 1 2 thru 4 5 6 thru 8 9 10 11 thru 13 14 thru 17 18, 19 20, 21 22, 23 24 25 26, 27 28 29 30, 31 32 33 thru 35 36 37 thru 39 40 41 42 43, 44 45 thru 47 48, 49 50 thru 52 53 54	Orig. B Orig. B Orig. B Orig. A B Orig. B Orig. B A 8 Orig. A Orig. B C A
Section 5	```Title Page 1 thru 51 52 53 thru 102 102a 103 thru 105 106 107 thru }11 111 thru }11 114 thru }14 142,143 144 thru 286```	B Orig. A Orig. Orig. Orig. A Orig. A Orig. B Orig.

Part/Section	Page Number	Update Level
Appendixes	Title Page	Orig.
A	1,2	Orig.
B	1	Orig.
User Comment Sheet		

Preface

This hardware and software summary is one in a series designed to be used as a quick-reference document for experienced programmers familiar with the SPERRY UNIVAC Operating System $/ 3$ (OS/3). This particular manual consists of figures and tables from the user guides and programmer reference manuals that describe the hardware and software of the SPERRY UNIVAC Series 90 Data Processing Systems operating under the $O S / 3$ operating system.

The information presented here is limited to facts; no introductory information or examples of use are provided. The descriptive information is contained in the $90 / 30$ data processing system processor programmer reference, UP. 8052 (current version) and in the following OS/3 manuals: assembler user guide, UP-8061 (current version), job control user guide, UP-8065 (current version), and supervisor user guide, UP-8075 (current version).

The information contained in this manual is placed according to the software component to which it is primarily related and is presented as follows:

- Section 1. GENERAL

Contains information of a general nature or that which is related to several OS/3 components, and includes the EBCDIC and ASCII character sets, tables for character code conversion, and tables for addressing and hexadecimal-decimal conversion.

- Section 2. ASSEMBLER (BAL)

Contains information primarily related to the $0 S / 3$ assembler, including the BAL instruction formats and the BAL instruction repertoire, arranged by application, mnemonic code, instruction name, and machine code.

- Section 3. JOB CONTROL

Contains information primarily related to $0 \mathrm{~S} / 3$ job control, including the complete list of job control statements and job control procedure call statements, each arranged in alphabetic sequence, the standard logical unit number assignments, and the canned job control stream call statements.

- Section 4. SUPERVISOR

Contains information primarily related to the $O S / 3$ supervisor, including the list of supervisor macro instructions arranged in alphabetic sequence within functional groups, a summary of job control statements and input format for the monitor and trace functions, and the layout of low-order main storage, and the condition code settings following a start input/output (SIO) instruction.

- Section 5. PIOCS

Contains information primarily related to the $0 S / 3$ physical input/output control system, including the PSW, IOST, and channel control word formats, peripheral device command codes, and I/O sense data byte definitions for all peripheral devices.

- APPENDIXES

Contain the powers of 2 and powers of 16 tables, for convenience and quick reference.

UP-8203	SPERRY UNIVAC OS/3	Preface 2
Rev. 3	HARDWARE/SOFTWARE SUMMARY	Update B

Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. GENERAL

1.1. STATEMENT CONVENTIONS 1-1
1.2. ASCII CHARACTER CODES 1-2
1.3. EBCDIC CHARACTER CODES 1-4
1.4. HEXADECIMAL CONVERSION TABLE FOR DUMP ANALYSIS 1-6
1.5. CHARACTER CONVERSION TABLE 1-13
1.6. HEXADECIMAL-DECIMAL CONVERSION TABLE 1-28
1.7. HEXADECIMAL ADDITION AND SUBTRACTION TABLE 1-29
1.8. SIGN CONVENTIONS 1-30
1.9. LINKAGE REGISTER CONVENTIONS 1-30
2. ASSEMBLER (BAL)
2.1. BAL INSTRUCTIONS 2-1
2.1.1. Instruction Formats 2-1
2.1.2. Instruction Repertoire 2-4
2.1.2.1. Instructions by Application 2-4
2.1.2.2. Instructions by Mnemonic Code 2-22
2.1.2.3. Instructions by Instruction Name 2-32
2.1.2.4. Instructions by Machine Code 2-49
2.1.3. Extended Mnemonic Codes for Branch on Condition Instructions 2-66
2.1.4. Condition Code Settings 2-68
2.1.5. Edit Instruction Settings 2-74
2.1.6. Assembler Operators 2-75
2.1.7. Assembler CNOP Alignment 2-76
2.2. DATA 2-77
2.2.1. Data Formats 2-77
2.2.2. Data Boundary Alignments 2-81
2.2.3. Data and Storage Definition Statement Conventions 2-83
2.3. DIRECTIVES 2-86
2.3.1. Basic.Assembler Directives 2-86
2.3.2. Conditional Assembler Statements 2-93
2.3.3. Macro Definition Statements (Proc Format) 2-96
2.3.4. Macro Definition Statements (Macro Format) 2-97
2.3.5. Macro Call Instruction Format 2-98

UP-8203	SPERRY UNIVAC OS/3	Contents 1
Rev. 3	HARDWARE/SOFTWARE SUMMARY	Update B

3. JOB CONTROL
3.1. JOB CONTROL STATEMENTS 3-1

> 3.1.1. Characters Used to Specify Mode Setting on VOL Statement
3.1.2. Standard Logical Unit Number Assignments 3-22
3.2. JOB CONTROL PROCEDURE CALL STATEMENTS 3-28
3.3. jûb Cûnitroul prôcedulige directives 3-4̂̀
3.4. CANNED JOB CONTROL STREAM CALL
STATEMENTS
4. SUPERVISOR

4.1.	SUPERVISOR MACRO INSTRUCTIONS	$4-1$
4.1.1.	Physical Input/Output Control System	$4-1$
4.1.2.	Space Management	$4-4$
4.1.3.	System Access Technique (SAT)	$4-8$
4.1.4.	Multitasking	$4-14$
4.1.5.	Program Management	$4-16$
4.1.6.	Diagnostic and Debugging	$4-23$
4.1.7.	Message Display, Logging, and Operator	
4.1.8.	Communication	Other Services
4.2.	MONITOR AND TRACE	$4-26$
4.2.1.	Control Stream Format for a Job to be	$4-29$
4.2.2.	Monitored from the Start of the Program	$4-30$
Monitor Input Format for Input by the		
4.2.3.	Operator after Program Execution Has Begun	$4-32$
4.2.4.	Summary Formats for Monitor Input	$4-33$
	Printed	
4.3.	LOW-ORDER MAIN STORAGE LAYOUT	$4-35$
4.4.	COMMAND CONTROL BLOCK (CCB) FORMAT	$4-42$
4.5.	SIO CONDITION CODE SETTINGS	$4-45$
4.5.1.	IPC SIO Condition Codes	$4-45$
4.5.2.	IDA SIO Condition Codes	$4-47$
4.5.3.	Multiplexer Channel SIO Condition Codes	$4-48$
4.5.4.	Selector Channel SIO Condition Codes	$4-49$
4.6.	SYSTEM DEBUGGING AIDS	$4-50$

5. PIOCS
5.1. PROGRAM STATUS WORD (PSW) FORMAT $5-1$
5.2. I/O STATUS TABLER (IOST) 5-6
5.2.1. IOST Control Word (IOSTCW) Formats 5-6
5.2.2. IOST Interrupt Word (IOSTIW) Format
for IDA and IPC
5.2.3. IOST Interrupt Word (IOSTIW) Formats for
Multiplexer and Selector Channels
$5-14$
5.2.4. Legend for IOST Interrupt Word Bits 5-16
5.3. I/O CONTROL WORDS 5—19
5.3.1. Buffer Control Word (BCW) Format for IDA 5-19
5.3.2. Buffer Control Word (BCW) Format for IPC 5-25
5.3.3. Buffer Control Word (BCW) Format for
Multiplexer Channel 5-30
5.3.4. Channel Address Word (CAW) Format (Selector Channel) 5-34
5.3.5. Channel Command Word (CCW) Format (Selector Channel) 5-35
5.4. COMMAND CODES FOR SUBSYSTEMS 5-38
5.4.1. Command Codes for IPC Devices 5-38
5.4.1.1. System Console 5-38
5.4.1.2. Workstation 5-39
5.4.1.3. 0773/0778 Printer Subsystems 5-41
5.4.1.4. $\quad 0717$ Card Reader Subsystem 5-43
5.4.1.5. $\quad 0719$ Card Reader Subsystem 5-44
5.4.1.6. 0605 Card Punch Subsystem 5-45
5.4.1.7. 8413 Diskette Subsystem 5-46
5.4.1.8. Communications Adapter 5-48
5.4.2. Command Codes for IDA Devices 5--54
5.4.2.1. IDA Channel Codes 5-54
5.4.2.2. 8415/8416/8418 Disk Subsystems 5-55
5.4.3. Command Codes for Multiplexer and Selector Channel Devices 5-56
5.4.3.1. $\quad 0768$ Printer Subsystem 5-56
5.4.3.2. $\quad 0770$ Printer Subsystem 5-57
5.4.3.3. 0776 Printer Subsystem 5-62
5.4.3.4. 0716 Card Reader Subsystem 5-64
5.4.3.5. 0604 Card Punch Subsystem 5-66
5.4.3.6. 9200/9300 Processor 5-70
5.4.3.7. 8411/8414/8424/8425 Disk Subsystems 5-71
5.4.3.8. 8430/8433 Disk Subsystems 5-75
5.4.3.9. UNISERVO 10/14 Magnetic Tape Subsystem 5-80
5.4.3.10. UNISERVO $12 / 16$ Magnetic Tape Subsystem 5-82
5.4.3.11. UNISERVO 20 Magnetic Tape Subsystem 5-85
5.4.3.12. UNISERVO VI-C Magnetic Tape Subsystem 5-88
5.4.3.13. 0920 Paper Tape Subsystem 5-90
5.4.3.14. 2703 Optical Document Reader 5-91
5.4.3.15. 2521 Channel Transfer Switch 5-94
5.4.3.16. 9000 Series Channel Adapter 5-94
5.5. I/O CHANNEL NUMBER ASSIGNMENT 5-95
5.6. IDA DEVICE ADDRESSES 5-96
5.7. IPC DEVICE ADDRESSES 5-97
5.8. STATUS BYTE FORMATS 5-99
5.8.1. Status Byte Format for System Console, Reader, and Punch 5-99
5.8.2. Status Byte Format for Workstation 5-101
5.9. I/O SENSE DATA BYTE DEFINITIONS 5-103
5.9.1. I/O Sense Data Byte Definitions for IPC Devices 5-103
5.9.1.1. System Console 5-103
5.9.1.2. Workstation 5-106
5.9.1.3. 0773/0778 Printer Subsystems 5-118
5.9.1.4 0717/0719 Card Reader Subsystems 5-122
5.9.1.5. $\quad 0605$ Card Punch Subsystem 5-126
5.9.1.6. 8413 Diskette Subsystem 5-131
5.9.1.7. Communications Adapter 5-147
5.9.2. I/O Sense Data Byte Definitions for IDA Devices 5-153
5.9.2.1. 8415/8416/8418 Disk Subsystems 5-153
5.9.3. i/O Sense Oata Byte Definitions tor Multiplexer and Selector Channel Devices 5-162

$$
5-162
$$

5-166 5.9.3.2. $\quad 0770$ Printer Subsystem
5-176
5.9.3.3. 0776 Printer Subsystem
5-188
5.9.3.4. $\quad 0716$ Card Reader Subsystem
5-192
5.9.3.5. $\quad 0604$ Card Punch Subsystem
5-196
5.9.3.6. $\quad 9200 / 9300$ Processor
5-198
5.9.3.7. 8411/8414/8424/8425 Disk Subsystems
5-205
5.9.3.8. 8430/8433 Disk Subsystems5-223
59.3.9. UNISERVO 10/14 Magnetic Tape Subsystem
5-249
5.9.3.10. UNISERVO 12/16 Magnetic Tape Subsystem 5-255
5.9.3.12. UNISERVO VI-C Magnetic Tape Subsystem 5-268
5.9.3.13. 0920 Paper Tape Subsystem 5-275
5.9.3.14. 2703 Optical Document Reader 5-279
5.9.3.15. 2521 Channel Transfer Switch 5-286
5.9.3.16. 9000 Series Channel Adapter 5-286
APPENDIXES
A. POWERS OF 2 TABLE
B. POWERS OF 16 TABLES
USER COMMENT SHEET

Capital letters, parentheses, and punctuation marks	Must be coded exactly as shown
Lowercase letters and terms	Represent information supplied by the programmer
Braces $\}$	Necessary entries from which one must be chosen
Brackets []	Optional entries
Ellipsis...	Indefinite number of entries
Shading \quad	Default option
Underlining -	Only the underlined portion of the entry need be specified.

	ASCII Character Codes									
			Bir Positions 7, 6, 5							
			000	001	010	011	100	101	110	111
	B: Positions	0000	NUL	DLE	SP	0	@	P	,	p
		0001	SOH	DC1	(1)	1	A	Q	a	q
		0010	stx	DC2	${ }^{\prime} \cdot$	2	B	R	b	r
		0011	ETX	DC3	\#	3	c	S	c	s
		0100	EOT	DC4	\$	4	D	T	d	t
		0101	Eno	NAK	\%	5	E	u	e	u
		0110	ACK	SYN	8	6	F	\checkmark	1	\checkmark
$\begin{gathered} 1 \\ \sim \end{gathered}$	4,3,2,1	0111	BEL	ETB	,	7	G	w	9	w

$\text { 뀽 } \subsetneq$	1000	BS	CAN	1	8	H	x	h	\times
¢	1001	HT	EM	1	9	1	Y	1	y
	1010	LF	SUB	-	:	J	Z	1	2
フ	1011	$V T$	ESC	$+$;	K	[k	\{
\sum_{\geq}^{2}	1100	FF	FS	,	$<$	L	1	1	1
忽	1101	CR	GS	--	$=$	M]	m	\rangle
	1110	SO	RS	.	$>$	N	^(1)	π	\sim
\cong	1111	SI	US	1	7	0	-	0	DEL

NOTES:

ASCII bits are numbered from the left in descending numerical order:

7654321

Some graphic, card code, and hexadecimal assignments may differ depending upon the device, language,
application, or installation policy.
(1) The following optional graphics can be substituted in the character set:
\square for \wedge
| for !
(2) Sixty-three printable character set
(3) Graphics available by use of the type $0768-02$ printer. which prints a 94 -character set (DEL is not a graphic).
(4) Ninety-four printabie character set.

Bit Positions 0, 1, 2, 3

NOTES:
EBCDIC bits are numbered from the left in ascending numerical order:
01234567
Some graphic, card code, and hexadecimal assignments may differ depending upon the device, language, application, or installation policy
(1) DS, SOS, FS are the control characters for the EDIT instruction and have been assigned for ASCII mode processing so as not to conflict with the corresponding character positions previously assigned in the EBCDIC chart. As these characters are not outside the range as defined in ANSI X3.4-1968, they must not appear in external storage media, such as ANS! standard tapes. This presents no difficulty due to the nature of the EDIT instruction.
(2) The following optional graphics can be substituted in the character set: \wedge for
|for!
(3) For 63-character printers, the following substitution is made.

Ifor:
4) The lowercase alphabet and indicated graphics are introduced by use of the type 0768-02 printer, which prints a 94 -character set.

	Hexadecimal Conversion Table			
	ASCII Hexadecimal	Contral Character	Symbol	EBCDIC Hexadecimal
	00	NUL		∞
	01	SOH		01
	02	STX		02
	03	ETX		03
	04	EOT		37
	05	ENO		20
	06	ACK		2 E
	07	BEL		2 F
	08	BS		16
	09	HT		05
	OA	LF		25
	OB	$V T$		OB
	OC	FF		OC
	OD	CR		OD
	OE	So		OE
	OF	SI		OF

	Hexadecimal Conversion Table (cont)			
	ASCII Hexadecimal	Control Character	Symbol	EBCDIC Hexadecimal
	25		\%	6C
	26		\&	50
	27		,	7D
	28		1	4D
	29)	5D
	2A		*	5C
	2B		+	4E
	2C		.	68
	2D		-	60
	2E		.	4B
	2 F		1	61
	30		0	FO
	31		1	F1
	32		2	F2
	33		3	F3
	34		4	F4
	35		5	F5

	Hexadecimal Conversion Table (cont)			
	ASCII Hexadecimal	Control Character	Symbol	EBCDIC Hexadecimal
	4B		K	D2
	4 C		L	D3
	4 D		M	D4
	4 E		N	D5
	4F		0	D6
	50		P	D7
	51		0	D8
	52		R	D9
	53		S	E2
	54		T	E3
	55		U	E4
	56		v	E5
	57		W	E6
	58		X	E7
	59		Y	E8
	5A		Z	E9
	5 B		[4A

Hexadecimal Conversion Table (cont)

*For edit mask conversion only.

Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
			Hexadecimal	Decimal	Hexadecimal	Decimal
Letters						
A	A	12-1	41	65	C1	193
B	B	12-2	42	66	C 2	194
C	C	12-3	43	67	C3	195
D	D	12-4	44	68	C4	196
E	E	12-5	45	69	C5	197
F	F	12-6	46	70	C6	198
G	G	12-7	47	71	C7	199
H	H	12-8	48	72	C8	200

꾼$\stackrel{c}{\dot{0}}$$\omega \stackrel{0}{\omega}$$\omega$	Character Conversion Table（cont）						
	Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
	Character			Hexadecimal	Decimal	Hexadecimal	Decimal
	1	1	12－9	49	73	C9	201
空	J	J	11－1	4A	74	D1	209
贞员	K	K	11－2	4 B	75	D2	210
	L	L	11－3	4 C	76	D3	211
象	M	M	11－4	4D	77	D4	212
$\underset{\sim}{8}$	N	N	11－5	4E	78	D5	213
－	0	0	11－6	4F	79	D6	214
$\stackrel{\rightharpoonup}{+}$	P	P	11－7	50	80	D7	215

CHARACTER CONVERSION TABLE (cont)

Character Conversion Table（cont）

	Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
				Hexadecimal	Decimal	Hexadecimal	Decimal
	a	a	12－0－1	61	97	81	129
㕣	b	b	12－0－2	62	98	82	130
忍苞	c	c	12－0－3	63	99	83	131
곡ㅊㅊㄹ	d	d	12－0－4	64	100	84	132
$\stackrel{n}{3} \frac{8}{3}$	e	e	12－0－5	65	101	85	133
离	\dagger	f	12－0－6	66	102	86	134
	g	g	12－0－7	67	103	87	135
$\stackrel{\rightharpoonup}{\sigma}$	h	h	12－0－8	68	104	88	136
	1	i	12－0－9	69	105	89	137

CHARACTER CONVERSION TABLE（cont）

	Character Conversion Table (cont)						
		Printed Symbol	Card Punches	ASCII		EBCDIC	
	Character			Hexadecimal	Decimal	Hexadecimal	Decimal
	s	s	11-0-2	73	115	A2	162
	t	t	11-0-3	74	116	A3	163
	u	u	11-0-4	75	117	A4	164
	v	v	11-0-5	76	118	A5	165
	w	w	11-0-6	77	119	A6	166
	x	x	11-0-7	78	120	A7	167
\bigcirc	V	V	11-0-8	79	121	A8	168
	z	2	11-0-9	7 A	122	A9	169

Character Conversion Table (cont)

	Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
				Hexadecimal	Decimal	Hexadecimal	Decimal
	8	8	8	38	56	F8	248
	9	9	9	39	57	F9	249
	Symbols						
	Exclamation point	$!$	$12-8-7$	21	33	4F	79
	Quotation mark, dieresis	.,	8-7	22	34	7F	127
	Number sign, pound sign	\#	8-3	23	35	78	123
	Dollar sign	\$	11-8-3	24	36	5B	91
	Percent sign	\%	0-8-4	25	37	6C	108
	Ampersand	8	12	26	38	50	80

꿍둥 $\omega \stackrel{0}{0}$ ©	Apostrophe, acute accent Opening parenthesis	1	$8-5$ $12-8-5$	27 28	39 40	70 40	125 77
	Closing parenthesis	1	11-8-5	29	41	5 D	93
\%	Asterisk	*	11-8-4	2A	42	5 C	92
$\begin{aligned} & \text { M } \\ & \stackrel{0}{0} \\ & \end{aligned}$	Plus sign	+	12-8-6	2B	43	4E	78
	Comma, cedilla	,	0-8-3	2C	44	6B	107
	Minus sign, hyphen	-	11	2 D	45	60	96
-	Period, decimal point	.	12-8-3	2E	46	48	75
$\stackrel{\square}{\square}$	Slash, virgule, solidus	1	0-1	2F	47	61	97
	Colon	:	8-2	3A	58	7 A	122

Character Conversion Table (cont)

Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
			Hexadecimal	Decimal	Hexadecimal	Decimal
Semicolon	;	11-8-6	3B	59	5 E	94
Less than	$<$	12-8-4	3 C	60	4 C	76
Equal sign	$=$	8-6	3D	61	7 E	126
Greater than	$>$	0-8-6	3 E	62	6 E	110
Question mark	,	0-8-7	$3 F$	63	$6 F$	111
Commercial at symbol	@	8-4	40	64	7C	124
Opening bracket	1	12-8-2	5B	91	4 A	74
Closing bracket	1	11-8-2	5D	93	5A	90
Reverse slash	1	0-8-2	5 C	92	EO	224

	Circumflex Underline	\wedge	$\begin{aligned} & 11-8-7 \\ & 0-8-5 \end{aligned}$	$5 E$ $5 F$	94 95	5F 60	95 109	
	Grave accent	－	8－1	60	96	79	121	$\xrightarrow{\text { P }}$
	Opening brace	1	12－0	7 B	123	CO	192	忍
䓌》	Closing brace	\}	11－0	70	125	D0	208	\％
솎률	Vertical line		12－11	7 C	124	6A	106	\％
$\begin{aligned} & \text { no } \\ & \stackrel{0}{3} \\ & \frac{\omega}{3} \end{aligned}$	Overline，tilde	\sim	11－0－－1	7E	126	A1	161	\％
\top \sim \sim								亳

Character Conversion Table (cont)

Character	Card Punches	ASCII		EBCDIC	
		Hexadecimal	Decimal	Hexadecimal	Decimal
Nonprintable Characters					
ACK (acknowledge)	0-9-8-6	06	6	2 E	46
BEL (bell)	0-9-8-7	07	7	2 F	47
BS (backspace)	11--9-6	08	8	16	22
CAN (cancel)	11-9-8	18	24	18	24
$C R$ (carriage return)	$12-9-8-5$	OD	13	OD	13
DC1 (device control 1)	11-9-1	11	17	11	17
DC2 (device control 2)	$11-9-2$	12	18	12	18
DC3 (device control 3)	11-9-3	13	19	13	19

DC4 (device control 4)	9-8-4	14	20	3C	60
DEL (delete)	12-9-7	7F	127	07	7
DLE (data link escape)	$12-11-9-8-1$	10	16	10	16
DS (digit select)	$11-0-9-8-1$	80	128	20	32
EM (end of medium)	11-9-8-1	19	25	19	25
ENO (enquiry)	0-9-8-5	05	5	2D	45
EOT (end of transmission)	9-7	04	4	37	55
ESC (escape)	0-9-7	1B	27	27	39
ETB (end of transmission block)	0-9-6	17	23	26	38

Character Conversion Table (cont)

Character	Card Punches	ASCII		EBCDIC	
		Hexadecimal	Decimal	Hexadecimal	Decimal
ETX (end of text)	12-9-3	03	3	03	3
FF (form feed)	12-9-8-4	OC	12	OC	12
FS (file separator)	11-9-8-4	1 C	28	1C	28
FS (field separator)	0-9-2	82	130	22	34
GS (group separator)	$11-9-8-5$	1 D	29	10	29
HT (horizontal tabulation)	12-9-5	09	9	05	5
LF (line feed)	$0-9-5$	OA	10	25	37
NAK (negative acknowledge)	9-8-5	15	21	3D	61
NUL (null)	$12-0-9-8-1$	00	0	00	0

	RS（record separator）	$11-9-8-6$	1E	30	1 E	30
	SI（shift in）	12－9－8－7	OF	15	OF	15
エ	SO（shift out）	12－9－8－6	OE	14	OE	14
	SOH（start of heading）	12－9－1	01	1	01	1
$\begin{aligned} & \text { N } \\ & \text { 号 } \\ & \end{aligned}$	SOS（significance start）	0－9－1	81	129	21	33
空穷	SP（space）		20	32	40	64
发	STX（start of text）	12－9－2	02	2	02	2
予	SUB（substitute）	9－8－7	1 A	26	$3 F$	63
－	SYN（synchronous idle）	9－2	16	22	32	50
0	US（unit separator）	$11-9-8-7$	1F	31	1F	31
	VT（vertical tabulation）	12－9－8－3	OB	11	OB	11

Hexadecimal-Decimal Conversion Table
Hexadecimal to Decimal:
Hexadecimal Digit Positions
Working from right to left with the hexadecimal digits to be converted, select the decimal number from the digit position column corresponding to each hexadecimal digit. Add the selected decimal numbers to complete the conversion.

Decimal to Hexadecimal:

1. Select the highest decimal number from the table that is less than the decimal number to be converted.
2. Subtract this number from the number to be converted.
3. Note the corresponding hexadecimal digit, its digit position, and the difference.
4. Substitute the difference for the decimal number to be converted and repeat steps 1 and 2 until a zero difference is obtained
5. Include a 0 for each unused digit position.

The resulting hexadecimal number is the conversion

Hexadecimal Digit Positions											
6		5		4		3		2		1	
Hex	Dec										
0	0	0	0	0	0	0	0	0	0	0	0
1	1,048,576	1	65,536	1	4.096	1	256	1	16	1	1
2	2,097,152	2	131.072	2	8,192	2	512	2	32	2	2
3	3,145,728	3	196.608	3	12,288	3	768	3	48	3	3
4	4,194,304	4	262,144	4	16,384	4	1,024	4	64	4	4
5	5,242,880	5	327.680	5	20,480	5	1,280	5	80	5	5
6	6,291.456	6	393.216	6	24.576	6	1,536	6	96	6	6
7	7,340.032	7	458,752	7	28,672	7	1,792	7	112	7	7
8	8.388.608	8	524,288	8	32.768	8	2.048	8	128	8	8
9	9.437 .184	9	589,824	9	36,864	9	2,304	9	144	9	9
A	10,485,760	A	655,360	A	40,960	A	2.560	A	160	A	10
B	11,534,336	B	720,896	B	45,056	B	2,816	8	176	B	11
C	12,582,912	C	786.432	C	49.152	C	3.072	C	192	C	12
0	13.631 .488	D	851,968	D	53.248	D	3.328	D	208	D	13
E	14,680,064	E	917.504	E	57.344	E	3.584	E	224	E	14
F	15,728,640	F	983.040	F	61.440	F	3,840	F	240	F	15

TABLE
 HEXADECIMAL-DECIMAL CONVERSION

Hexadecimal Addition and Subtraction Table

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 |
| 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 |
| 4 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 |
| 5 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 |
| 6 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 |
| 7 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 8 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 9 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| A | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| B | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 A |
| C | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 A | 1 B |
| D | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 A | 1 B | 1 C |
| E | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 A | 1 B | 1 C | 1 D |
| F | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 A | 1 B | 1 C | 1 D | 1 E |

1.7. HEXADECIMAL ADDITION AND

Sign Conventions

Hexadecimal Representation		Binary Representation	Sign	
Generation	Digit		Value	Mode
External	A	1010	Positive	ASCII
	B	1011	Negative	
Processor	C	1100	Positive	EBCDIC
	D	1101	Negative	
External	E	1110	Positive	
	F	1111	Positive	

Register	Contents
0	Reserved for system use
1	Parameter/list register
$2-12$	Free registers
13	Save area register
14	Return address register
15	Entry point register

2.1. BAL INSTRUCTIONS

2.1.1. Instruction Formats

(3) The RS shift instructions are written withoul use of the r_{3} operand, in the ferm:
(4) Some SI instructions, such as TS, SSM, and SIO, do not use an i_{2} tie id. They are written in the form

d_{1} (b_{1})

Legend for Instruction Formats

$\begin{aligned} & \stackrel{\rightharpoonup}{\top} \\ & \omega \stackrel{\rightharpoonup}{\circ} \\ & \omega \end{aligned}$	Symbol	Meaning
	opcode	The application instruction operation code
	r_{1}	The number of the general register containing operand 1
	r_{2}	The number of the general register containing operand 2
	r_{3}	The number of the general register containing operand 3
	x_{2}	The number of the general register containing an index number for operand 2 of the $R X$ instruction
	i_{1}	The immediate data used as operand 1 of the SVC instruction
	i_{2}	The immediate data used as operand 2 of an SI instruction
	1	The length of the operands as stated in source code*
$\begin{gathered} N \\ N \\ N \end{gathered}$	I_{1}	The length of operand 1 as stated in source code*
	I_{2}	The length of operand 2 as stated in source code*
	b_{1}	The number of the general register containing the base address for operand 1

2.1.2.1. Instructions by Application

$\begin{aligned} & \text { 꿍 } \\ & \stackrel{C}{D} \\ & \omega \underset{\omega}{\infty} \\ & \underset{\omega}{\circ} \end{aligned}$	Instruction	Sets Condition Code	Mnemonic Code	Op. code	Use	Type	Instruction Source Formats		Execution Time in Microseconds
							Explicit	Implicit	
	Fixed-Point Instructions								
	Add	Yes	A	5A	N	PX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Add half word	Yes	AH	4A	N,C2	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Add half word	Yes	$A H$	AA	C1	RX	$r_{1}, d_{2}\left(, b_{2}\right)$	r_{1}, s_{2}	5.4
	Add immediate	Yes	AI	9A	C2*	SI	$d_{1}\left(b_{1}\right), i_{2}$	s_{1}, i_{2}	6.0
	Add immediate	Yes	AI	A6	C1	SI	$d_{1}\left(b_{1}\right), i_{2}$	$s_{1} \mathrm{~s}_{2} \mathrm{i}_{2}$	6.0
	Add	Yes	AR	1 A	N,C2	RR	$\mathrm{r}_{1} \cdot \mathrm{r}_{2}$	$r_{1} \cdot r_{2}$	Native $=3.0(360 / 20=3.6)$
	Compare	Yes	C	59	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Compare half word	Yes	CH	49	N,C3	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Compare	Yes	CR	19	N	RR	$r_{1} \cdot r_{2}$	$r_{1} \cdot r_{2}$	3.0
	Convert to binary		CVB	4F	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	36.0
	Convert to decimal		CVD	4E	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$66.0+6.054$
	Divide		0	5D	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$65.4+1.2 \mathrm{~s} 1+0.6 \mathrm{rn}$
	Divide		DR	1D	N,F	RR	r_{1}, r_{2}	r_{1}, r_{2}	$64.8+1.2 \mathrm{~s} 1$
	Load		L	58	N	$R X$	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	4.8

Instructions by Application (cont)

	Instruction	Sets Condition Code	Mnemonic Code	Op- code	Use	Type	Instruction Source Formats		Execution Time in Microseconds
							Explicit	Implicit	
	Fixed-Point Instructions (cont)								
	Supervisor load multiple (pi)		SLM	B8	N	RS	$r_{1}, r_{3}, d_{2}\left(b_{2}\right)$	$r_{1}, r_{3}{ }^{\prime}{ }_{2}$	$4.2+1.8 \mathrm{gr}$
	Subtract	Yes	SR	1B	N.C2	RR	r_{1}, r_{2}	$r_{1} r_{2}$	Native $=3.0$ ($360 / 20=3.6$)
	Shift right single	Yes	SRA	8A	N,F	RS	$r_{1}, d_{2}\left(b_{2}\right)$	$\mathrm{r}_{1},{ }^{\prime}$	$5.4+0.6 p+0.6 q$
	Shift right double	Yes	SRDA	8E	N,F	RS	$r_{1}, d_{2}\left(b_{2}\right)$	$\mathrm{r}_{1} \mathrm{~s}^{5} 2$	$6.0+1.2 p+1.2 q$
	Supervisor store multiple (pi)		SSTM	B0	N	RS	$r_{1}, r_{3}, d_{2}\left(b_{2}\right)$	$r_{1}, r_{3}{ }^{\text {s }}$ 2	$4.2+1.2 \mathrm{gr}$
	Store		ST	50	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Store half word		STH	40	N,C3	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	4.8
	Store multiple		STM	90	N	RS	$r_{1}, r_{3}, d_{2}\left(b_{2}\right)$	${ }^{r_{1}, r_{3}, s_{2}}$	$4.2+1.2 \mathrm{gr}$
	Decimal Instructions								
듬믕 $_{\infty}^{\infty}$$\infty$$\infty$	Add decimal	Yes	AP	FA	N,C3	SS	$d_{1}\left(l_{1}, b_{1}\right) d_{2}\left(l_{2}, b_{2}\right)$	$\mathrm{s}_{1}\left(11_{1}, \mathrm{~s}_{2}\left(\mathrm{l}_{2}\right)\right.$	$36.6+0.75 n 1+0.375 n 2+6.0+1+3.055$
	Compare decimal	Yes	CP	F9	N,C3	SS	$d_{1}\left(11_{1}, b_{1}\right) d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(I_{1}\right), s_{2}\left(l_{2}\right)$	$31.8+0.375 n 1+0.375 n 2+2.456$
	Divide decimal		DP	FD	N,C3	ss	$d_{1}\left(l_{1}, b_{1}\right) d_{2}\left(l_{2}, b_{2}\right)$	$\mathrm{s}_{1}\left(11_{1}\right), s_{2}\left(l_{2}\right)$	$37.8+0.75 n 1+6.375 n 2+24.6(\mathrm{n} 1-\mathrm{n} 2)$
	Multiply decimal		MP	FC	N,C3	ss	$d_{1}\left(l_{1}, b_{1}\right) d_{2}\left(1 l_{2}, b_{2}\right)$	$\left.\mathrm{s}_{1}\left(11_{1}\right), s_{2}(1)_{2}\right)$	$36.4+0.75 n 1+14.4(\mathrm{n} 1-\mathrm{n} 2)+0.375 n 2$
	Move with offset		MVO	F1	N,C3	ss	$\mathrm{d}_{1}\left(\mathrm{I}_{1}, \mathrm{~b}_{1}\right) \mathrm{d}_{2}\left(\mathrm{I}_{2}, \mathrm{~b}_{2}\right)$	$s_{1}\left(11_{1}\right) s_{2}\left(l_{2}\right)$	$10.2+1.2 \mathrm{n} 1+1.2 \mathrm{n} 2$

	Pack Subtract decimal Unpack Zero and add	Yes Yes	PACK SP UNPK ZAP	F2 FB F3 F8	N,C3 N,C3 N,C3 N,C3	SS SS SS SS	$d_{1}\left(l_{1}, b_{1}\right) d_{2}\left(l_{2}, b_{2}\right)$ $d_{1}\left(l_{1}, b_{1}\right) d_{2}\left(I_{2}, b_{2}\right)$ $d_{1}\left(l_{1}, b_{1}\right) d_{2}\left(l_{2}, b_{2}\right)$ $d_{1}\left(I_{1}, b_{1}\right) d_{2}\left(l_{2}, b_{2}\right)$	$\begin{aligned} & s_{1}\left(I_{1}\right), s_{2}\left(I_{2}\right) \\ & s_{1}\left(I_{1}\right), s_{2}\left(I_{2}\right) \\ & s_{1}\left(I_{1}\right), s_{2}\left(I_{2}\right) \\ & s_{1}\left(I_{1}\right), s_{2}\left(I_{2}\right) \end{aligned}$	$\begin{aligned} & 12.0+1.2(n 1-1)+1.2(n 2-1) \\ & 36.6+0.75 n 1+0.375 n 2+6 t 1+3.0 s 6 \\ & 12.0+1.2(n 1-1)+1.2(n 2-1) \\ & 16.2+1.8 n 7+1.2 n 8+1.8 t 2(n 2-n 1) \end{aligned}$
	Logical Instructions								
	Add logical	Yes	AL	5 E	$\overline{N, F}$	$R X$	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Add logical	Yes	ALR	1E	C1, F	RR	r_{1}, r_{2}	r_{1}, r_{2}	3.0
	Compare logical	Yes	CL	55	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Compare logical	Yes	CLC	D5	N,C3	SS	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)^{* *}$	$\mathrm{s}_{1}(1), \mathrm{s}_{2}{ }^{* *}$	$9.6+1.2 b$
	Compare logical immediate	Yes	CLI	95	N,C3	SI	$d_{1}\left(b_{1}\right),_{2}$	s_{1}, i_{2}	4.8
	Compare logical	Yes	CLR	15	N	RR	${ }^{\prime}{ }_{1} r^{\prime}$	r_{1}, r_{2}	3.0
	Edit	Yes	ED	DE	N.C3	SS	$d_{1},\left(1, b_{1}\right), d_{2}\left(b_{2}\right) * *$	$s_{1}(1), s_{2}$	$9.0+3.0 n+0.6 n 3+3.0 n 4+0.6 n 6$
	Edit and mark	Yes	EDMK	DF	N,F	SS	$\mathrm{d}_{1}\left(1, \mathrm{~b}_{1}\right), \mathrm{d}_{2}\left(\mathrm{~b}_{2}\right)^{* *}$	$s_{1}(1), s_{2}$	$9.0+3.0 n+1.2 n 3+3.0 n 4+1.2 n 6$
	Insert character		IC	43	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1} s_{2}\left(x_{2}\right)$	4.2
N	Load address		LA	41	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	4.2
1	Move		MVC	D2	N,C3	SS	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1) . s_{2}$	$7.6+0.6 n+0.6 t 4(n-1)$
	Move immediate		MVI	92	N, C3	SI	$d_{1}\left(b_{1}\right) i_{2}$	$s_{1},{ }_{2}$	4.8
	Move numerics		MVN	D1	N,C3	SS	$d_{1}\left({ }_{1}, b_{1}\right), d_{2}\left(b_{2}\right)$	$\mathrm{s}_{1},(1), \mathrm{s}_{2}$	$10.2+2.1 n^{* * *}$

Instructions by Application (cont)

Instruction		Mnemonic Code	Op- code	Use	Type	Instruction Source Formats		Execution Time in Microseconds
	Condition Code					Explicit	Implicit	
Logical Instructions (cont)								
Move zones		MVZ	D3	N,C2	SS	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1},(1) \cdot s_{2}$	$10.2+2.1 n^{* * *}$
AND	Yes	N	54	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
AND	Yes	NC	D4	N.C1	SS	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$\mathrm{s}_{1} .(1) \mathrm{s}_{2}$	10.2+1.5n**
AND	Yes	NI	94	N.C3	SI	$d_{1}\left(b_{1}\right) i_{2}$	$\left.{ }^{s}\right)_{1} \cdot{ }_{2}$	6.0
AND	Yes	NR	14	N	RR	r_{1}, r_{2}	$r_{1},{ }^{\prime}$	3.0
OR	Yes	0	56	N	R \times	${ }^{r_{1}, d_{2}\left(x_{2}, b_{2}\right)}$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
OR	Yes	OC	D6	N,C1	SS	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$	$10.2+1.5 n^{* * *}$
OR	Yes	OI	96	N.C3	SI	$d_{1}\left(b_{1}\right) i_{2}$	${ }^{s_{1}, i_{2}}$	6.0
OR	Yes	OR	16	N	RR	$r_{1} \cdot r_{2}$	${ }^{\prime} 1{ }^{\prime}{ }_{2}$	3.0
Subtract logical	Yes	SL	57	N,F	$\mathrm{R} \times$	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1} s_{2}\left(x_{2}\right)$	5.4
Shift left double logical		SLDL	80	N,F	RS	$r_{1}, d_{2}\left(b_{2}\right)$	r_{1}, s_{2}	$4.8+1.2 p+1.2 q$
Shift left single logical		SLL	89	N	RS	$r_{1}, d_{2}\left(b_{2}\right)$	r_{1}, s_{2}	$5.4+0.6 p+0.6 q$
Subtract loaical	Yes	SLR	1F	N.F	RR	$r_{1} r_{2}$	${ }^{1} 1 r_{2}$	3.0

$\stackrel{\rightrightarrows}{\mathbb{Q}} \mathrm{S}_{0}$	Shift right double logical		SRDL	8C	N，F	RS	$r_{1}, d_{2}\left(b_{2}\right)$	${ }_{1}{ }_{1}{ }^{5} 2$	$4.8+1.2 p+1.2 q$
\cdots	Shift right single logical		SRL	88	N	RS	$r_{1}, d_{2}\left(b_{2}\right)$	r_{1}, s_{2}	$5.4+0.6 p+0.6 q$
	Store character		STC	42	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	4.8
	Test under mask	Yes	TM	91	N，C3	SI	$d_{1}\left(b_{1}\right) i_{2}$	$\mathrm{s}_{1} \mathrm{i}_{2}$	6.0
	Translate		TR	DC	N，C3	SS	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}^{* *}$	$7.2+2.4 n$
䂞	Translate and test	Yes	TRT	DD	N	SS	$\mathrm{d}_{1}\left(1, b_{1}\right), \mathrm{d}_{2}\left(\mathrm{~b}_{2}\right)$	$s_{1}(1), s_{2}^{* *}$	$8.4+1.8 \mathrm{~b}$
需员	Exclusive OR	Yes	x	57	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
$\frac{\pi}{\infty}$	Exclusive OR	Yes	XC	D7	N	SS	$d_{1}\left(1, b_{1}\right) \cdot d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}^{* *}$	$10.2+1.5 n^{* * *}$
끅들	Exclusive OR	Yes	XI	97	N	St	$d_{1}\left(b_{1}\right) i_{2}$	${ }^{s_{1} \cdot i_{2}}$	6.0
空突	Exclusive OR	Yes	XR	17	N	RR	r_{1}, r_{2}	$\mathrm{r}_{1}, \mathrm{r}_{2}$	3.0
	Branching Instructions								
	Branch and link		BAL	45	N．C1	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	6.0
	Branch and link		BALR	05	N	RR	r_{1}, r_{2}	r_{1}, r_{2}	$3.6+0.6 \mathrm{~s}$
	Branch and store		BAS	4 D	C 2	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
	Branch and store		BASR	OD	C 2	RR	r_{1}, r_{2}	$r_{1} r^{\prime}{ }_{2}$	$3.0+0.6 s$
	Branch on condition（em）		BC	47	N，C3	RX	$m_{1}, \mathrm{c}_{2}\left(x_{2}, b_{2}\right)$	$m_{3}, s_{2}\left(x_{2}\right)$	3.6
	Branch on condition（em）		BCR	07	N，C2	RR	m_{1}, r_{2}	$m_{1} \cdot r_{2}$	3.0
	Branch on count		BCT	46	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	4.2

Instruction	Sets Condition Code	Mnemonic Code	$\begin{aligned} & \text { Op- } \\ & \text { code } \end{aligned}$	Use	Type	Instruction Source Formats		Execution Time in Microseconds
						Explicit	Implicit	

Branching Instructions (cont)

Branching Instructions (cont)								
Branch on count		BCTR	06	N	RR	$r_{1} \cdot r_{2}$	r_{1}, r_{2}	3.6
Branch on index high		$\mathrm{B} \times \mathrm{H}$	86	N,F	RS	$r_{1} \cdot r_{3}, d_{2}\left(\mathrm{~b}_{2}\right)$	${ }^{r_{1}, r_{3}, s_{2}}$	7.2-1.2s3
Branch on index low or equal		BXLE	87	N,F	RS	$r_{1} \cdot r_{3}, d_{2}\left(b_{2}\right)$	$r_{1}, r_{3}{ }^{\prime} s_{2}$	7.2-1.2s3
Execute	$\dagger \dagger \dagger$	EX	44	N	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$3.6+0.6 \mathrm{r}+0.6 \mathrm{nrr}+\mathrm{e}$

Floating-Point Instructions								
Add normalized, long	Yes	AD	6 A	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$19.2+1.2 \mathrm{ce}+1.2 \mathrm{pr}+1.2 \mathrm{t} 1+1.2 \mathrm{pp}$
Add normalized, long	Yes	ADR	2 A	N,F	RR	$r_{1} \cdot r_{2}$	r_{1}, r_{2}	$16.2+1.2 \mathrm{ce}+1.2 \mathrm{pr}+1.2 \mathrm{t} 1+1.2 \mathrm{p} p$
Add normalized, short	Yes	AE	7A	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	16.8+1.2ce+1.2pr+1.2t1+1.2rp
Add normalized, short	Yes	AER	3 A	N,F	RR	r_{1}, r_{2}	$r_{1} r_{2}$	$14.4+1.2 \mathrm{ce}+1.2 \mathrm{pr}+1.2 \mathrm{t} 1+1.2 \mathrm{rp}$
Add unnormalized, short	Yes	AU	7E	N,F	RX	$\mathrm{r}_{1}, \mathrm{~d}_{2}\left(\mathrm{x}_{2}, \mathrm{~b}_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	16.8+1.2ce+0.6rp
Add unnormalized, short	Yes	AUR	3E	N,F	RR	$r_{1} \cdot{ }^{\prime}{ }_{2}$	$r_{1} r^{\prime}$	14.4+1.2ce+0.6rp
Add unnormalized, long	Yes	AW	6 E	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	19.2+1.2ce+0.6rp
Add unnormalized, long	Yes	AWR	2E	N,F	RR	$r_{1} \cdot r_{2}$	$r_{1} r_{2}$	16.2+1.2ce+0.6rp

꾼둥	Compare，long	Yes	CD	69	N，F	RX	$r_{1}, \mathrm{~d}_{2}\left(\mathrm{x}_{2}, \mathrm{~b}_{2}\right)$	$r_{1} \cdot s_{2}\left(x_{2}\right)$	$21.6+1.2 \mathrm{ce}$
ω－	Compare，long	Yes	CDR	29	N．F	RR	r_{1}, r_{2}	r_{1}, r_{2}	$18.0+1.2 \mathrm{ce}$
	Compare，short	Yes	CE	79	N，F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$18.0+1.2 \mathrm{ce}$
	Compare，short	Yes	CER	39	N，F	RR	${ }^{1} \cdot{ }^{\text {r }}$ ，${ }^{\text {r }}$	$\mathrm{r}_{1}, \mathrm{r}_{2}$	$15.6+1.2 \mathrm{ce}$
	Divide，long		DD	6D	N，F	RX	$r_{1} \cdot d_{2}\left(x_{2}, b_{2}\right)$	$r_{1} \cdot s_{2}\left(x_{2}\right)$	$208.2+0.6 p 1+0.6 p 2+15.0 p n+0.6 r n$
砍	Divide，long		DDR	2D	N，F	RR	r_{1}, r_{2}	r_{1}, r_{2}	$205.2+0.6 p 1+0.6 p 2+15.0 p n+0.6 \mathrm{n}$
佋呙	Divide，short		DE	70	N，F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$47.4+0.6 \mathrm{p} 1+0.6 \mathrm{p} 2+15.0 \mathrm{pn}+0.6 \mathrm{rn}$
¢	Divide，short		DER	3 D	N，F	RR	r_{1}, r_{2}	r_{1}, r_{2}	$45.0+0.6 p 1+0.6 p 2+6.6 p n+0.6 \mathrm{rn}$
꿀	Halve，long		HDR	24	N，F	RR	$r_{1} \cdot r_{2}$	$r_{1} r_{2}$	$7.8+1.2 \mathrm{pr}+0.6 \mathrm{pn}+0.6$（s2）
冎号	Halve，short		HER	34	N，F	RR	r_{1}, r_{2}	r_{1}, r_{2}	$7.2+1.2 \mathrm{pr}+0.6 \mathrm{pn}$
cio	Load complement，long	Yes	LCDR	23	N，F	RR	r_{1}, r_{2}	r_{1}, r_{2}	4.8
$\overline{3}^{\omega}$	Load complement，short	Yes	LCER	33	N，F	RR	r_{1}, r_{2}	r_{1}, r_{2}	4.2
只	Load，long		LD	68	N，F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	6.6
	Load，long		LDR	28	N，F	RR	${ }^{r} r_{1} r_{2}$	$r_{1}{ }^{1} r_{2}$	4.2
	Load，short		LE	78	N，F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	5.4
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}}: \stackrel{1}{2}$	Load，short		LER	38	N，F	RR	r_{1}, r_{2}	r_{1}, r_{2}	3.6
∞	Load negative，long	Yes	LNDR	21	N，F		r_{1}, r_{2}	$r_{1} \cdot r_{2}$	4.2
	Load negative，short	Yes	LNER	31	N，F	RR	r_{1}, r_{2}	r_{1}, r_{2}	3.6

Instructions by Application (cont)

Instruction	Sets Condition Code	Mnemonic Code	Op. code	Use	Type	Instruction Source Formats		Execution Time in Microseconds
						Explicit	Implicit	
Floating-Point Instructions (cont)								
Load positive, long	Yes	LPDR	20	N,F	RR	$r_{1} r_{2}$	${ }^{r_{1}, r_{2}}$	4.2
Load positive, short	Yes	LPER	30	N,F	RR	r_{1}, r_{2}	r_{1}, r_{2}	3.6
Load and test, long	Yes	LTDR	22	N,F	RR	$r_{1} \cdot r_{2}$	r_{1}, r_{2}	4.8
Load and test, short	Yes	LTER	32	N,F	RR	r_{1}, r_{2}	r_{1}, r_{2}	4.2
Multiply, Iong		MD	6C	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$118.2+0.6 p 1+0.6 p 2+1.2 p n+0.6 r n$
Multiply, long		MDR	2C	N,F	RR	r_{1}, r_{2}	$r_{1} r_{2}$	$115.2+0.6 p 1+0.6 p 2+1.2 p n+0.6 r n$
Multiply, short		ME	7 C	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$41.4+0.6 p 1+0.6 p 2+0.6 p n+0.6 r n$
Multiply, short		MER	3C	N,F	RR	r_{1}, r_{2}	$\mathrm{r}_{1}, \mathrm{r}_{2}$	$39.0+0.6 p 1+0.6 p 2+0.6 p n+0.6 r n$
Subtract normalized, long	Yes	SD	6B	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$19.2+1.2 c e+1.2 p r+1.2 t 1+1.2 r p$
Subtract normalized, long	Yes	SDR	2B	N,F	RR	$r_{1} r^{\prime} r_{2}$	$r_{1} \cdot r_{2}$	16.2+1.2ce+1.2pr+1.2t1+1.2rp
Subtract normalized, short	Yes	SE	78	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$16.8+1.2 \mathrm{ce}+1.2 \mathrm{pr}+1.2 \mathrm{t} 1+1.2 \mathrm{rp}$
Subtract normalized, short	Yes	SER	3B	N,F	RR	r_{1}, r_{2}	r_{1}, r_{2}	$14.4+1.2 \mathrm{ce}+1.2 \mathrm{pr}+1.2 \mathrm{t} 1+1.2 \mathrm{rp}$
Store, long		STD	60	N,F	$R X$	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1} s_{2}\left(x_{2}\right)$	7.2
Store, short		STE	70	N,F	RX	$r_{1} \cdot d_{2}\left(x_{2}, b_{2}\right)$	$r_{1} \cdot s_{2}\left(x_{2}\right)$	6.0

	Subtract unnormalized, short	Yes	SU	7F	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1} s_{2}\left(x_{2}\right)$	16.8+1.2ce-0.6a
	Subtract unnormalized. shor:	Yes	SUR	3F	N,F	RR	$r_{1} \cdot r_{2}$	${ }^{1}{ }_{1} r_{2}$	14.4+1.2ce-0.6a
T	Subtract unnormalized, long	Yes	SW	6F	N,F	RX	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$	$19.2+1.2 \mathrm{ce}+0.6 \mathrm{rp}$
	Subtract unnormatized, long	Yes	SWR	2F	N,F	RR	$r_{1} r_{2}$	$r_{1} \cdot r_{2}$	$16.2+1.2 c e+0.6 r p$
끌	Status Switching Instructions								
咅	Halt and proceed (pi)		HPR	99	N,C2*	SI	$d_{1}\left(b_{1}\right) i_{2}$	$s_{1} \mathrm{i}_{2}$	3.6
\cong	Insert storage key (pi)		ISK	09	N,F	RR	r_{1}, r_{2}	$\mathrm{r}_{1} \mathrm{r}_{2}$	4.2
$\begin{aligned} & \text { 3 } \\ & \text { 首 } \end{aligned}$	Load control storage (pi)	Yes	LCS	B1	N	RS	$r_{1}, r_{3}, d_{2}\left(b_{2}\right)$	r_{1}, r_{3}, s_{2}	$5.4+24.0 w+4.858$
\bigcirc	Load program status word (pi)	Yes	LPSW	82	N	SI	$d_{1}\left(b_{1}\right) \cdot i_{2}$	$\mathrm{s}_{1}, \mathrm{i}_{2}$	11.4

Instructions by Application (cont)

Instructions by Application (cont)

SOFTSCOPE forward scan (pi) \dagger SOFTSCOPE reverse scan (pil) \dagger	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { SSFS } \\ & \text { SSRS } \end{aligned}$	$\begin{aligned} & \text { A2 } \\ & \text { A3 } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { RS } \\ & \text { RS } \end{aligned}$	(bit pattern) (bit pattern)	(bit pattern) (bit pattern)	$\begin{aligned} & 7.2 t \dagger \\ & 7.2 t \dagger \end{aligned}$
Interval Timet Instruction								
Service timer register (pi)	Yes	STR	03	N	RR	${ }_{1} \cdot{ }_{2}$	${ }^{1} \cdot{ }^{\prime}{ }_{2}$	$6.0+0.6+3$

LEGEND:

pi privileged instruction $\quad \mathrm{C} 3=\quad$ instructions used in $9200 / 9300$ or $360 / 20$ compatibility modes em = extended mnemonics
C1 = instructions used only in 9200/9300 compatibility mode
C2 = instructions used only in 360/20 compatibility mode
NOTES
F $=$ instructions added as features
$\mathrm{N}=\quad$ instructions used in 90/30 native mode

* Operation exception.
** 1 specification in operand 1 specifies length of both operands
*** Five cycles per half word : 3.0 microseconds per half word
$\dagger \quad$ These instructions are not resident at all times.
$t t \quad$ This execution time is variable.
ttt The condition code may be set by the instruction executed at the operand 2 address

Legend for Instruction Execution Time

	Symbol	Description
	a	1 if overflow adjustment is necessary; otherwise 0
	b	Number of first operand bytes processed
	ce	Number of digit shifts required to equalize the characteristics
	d1	Number of zero addresses in switch list
	d2	1 if initial rodd general register has nonzero value; otherwise 0
	d3	1 if sentinel found; otherwise 0
	d4	Number of task control blocks scrutinized
	d5	Number of linked task control blocks scrutinized
$\begin{gathered} \tilde{I} \\ \rightleftharpoons \end{gathered}$	d6	1 when exclusive search is specified; otherwise 0
	d7	1 when match is found; otherwise, 0

	Legend for Instruction Execution Time (cont)	
	Symboi	Description
	d8	Number of control blocks with absolute wait bits set
	d9	Number of control blocks with wait bits set and ICOR bit clear
	d10	1 if $\operatorname{ICOR}=1$: otherwise 0
	d11	1 if $1 C O R=0$ and no wait bits set; otherwise 0
	e	Execution time of subject instruction
	gr	Number of general registers loaded or stored
	Π	Number of bytes in first operand (for instructions with a single field length)
	n1	Number of operand 1 bytes
$\underset{\infty}{N}$	n2	Number of operand 2 bytes
	n3	Number of field separator characters in pattern

	n4	Number of digit select or significance starter characters in pattern
	n6	Number of significant digits detected when significance indicator is not set before digit is examined
	n7	Lowest number of bytes specified by L1 or L2
	n8.	0 if L1 $\leqslant \mathrm{L} 2$ (number of bytes in L1 exceeds L2)
	nrr	1 if subject instruction of execute instruction is not RR type; otherwise 0
	p	Number of 4-place shifts
	p1	Number of digit shifts required to prenormalize operand 1
	p2	Number of digit shifts required to prenormalize operand 2
	pn	1 if the result requires post-normalization; otherwise 0
$\frac{N}{\omega}$	pr	Number of digit shifts required for post-normalized result
	q	Number of 1-place shifts

	egend for Instruction Execution Time (cont)	
	Symbol	Description
	r	1 if $\mathrm{r} 1 \neq 0$; otherwise 0
	rn	1 if result (product or quotient) is negative; otherwise 0
	rp	1 if recomplementing without post-normalization is required; otherwise 0
	s	1 if branch is successful; otherwise 0
	s1	1 if sign of op 1 is negative; otherwise 0
	s2	1 if sign of op2 is negative; otherwise 0
	s3	1 if sum of first and third operand equal to comparand; otherwise 0
	s4	1 if result is greater than one word (8 decimal digits) ; otherwise 0
$\begin{aligned} & \tilde{1} \\ & \tilde{0} \end{aligned}$	s5	1 if signs of op 1 and op2 are the same; otherwise 0
	s6	1 if signs of op 1 and op2 are different; otherwise 0

	s8	1 if sentinel detected; otherwise 0
	$t 1$	1 if result is recomplemented; otherwise 0
	$t 2$	1 if $n 2>n 1$; otherwise 0
	t3	1 if timer stored; otherwise 0
	14	1 if one operand address is even and other is odd; otherwise 0
	w	Number of control storage words loaded
	w1	Number of channel status words
	y	0 for byte count $=0$
	y1	1 for byte count $\neq 0$
	z	Number of half words in sum

2．1．2．2．Instructions by Mnemonic Code

	Mnemonic	Instruction Name	Machine Code	Byte Length	Source Code Format	
					Explicit	Implicit
	A	Add	5 A	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1} s_{2}\left(x_{2}\right)^{*}$
宍	$A D$	Add Normalized，Long	6 A	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* *}$
考号	ADR	Add Normalized，Long	2A	2	$r_{1} \cdot r_{2}$	r_{1}, r_{2}
历	AE	Add Normalized，Short	7 A	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right) *$	$r_{1}, s_{2}\left(x_{2}\right) *$
	AER	Add Normalized，Short	3A	2	r_{1}, r_{2}	r_{1}, r_{2}
㸗	AH	Add Half Word	4A	4	$r_{1}, \mathrm{~d}_{2}\left(x_{2}, \mathrm{~b}_{2}\right)^{* * *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* * *}$
$\frac{\sim}{5}$	AI	Add Immediate	9 A	4	$d_{1}\left(b_{1}\right), i_{2}$	s_{1}, i_{2}
$\frac{3}{3}$	AL	Add Logical	5 E	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right) *$
\sim	ALR	Add Logical	$1 E$	2	r_{1}, r	r_{1}, r_{2}
N	$A P$	Add Decimal	FA	6	$d_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(l_{1}\right), s_{2}\left(l_{2}\right)$
	AR	Add	1 A	2	r_{1}, r_{2}	r_{1}, r_{2}
	$A \cup$	Add Unnormalized，Short	$7 E$	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right)^{*}$

	AUR	Add Unnormalized, Short	3 E	2	r_{1}, r_{2}	r_{1}, r_{2}
	AW	Add Unnormalized, Long	6E	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* *}$
	AWR	Add Unnormalized, Long	2E	2	r_{1}, r_{2}	r_{1}, r_{2}
	BAL	Branch and Link	45	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$
	BALR	Branch and Link	05	2	r_{1}, r_{2}	r_{1}, r_{2}
	BAS	Branch and Store	4D	4	\{compatibility $\}$	
	BASR	Branch and Store	OD	2	$\{$ mode only $\}$	
	BC	Branch on Condition	47	4	i, $\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{~b}_{2}\right)$	i, $\mathrm{s}_{2}\left(x_{2}\right)$
	BCR	Branch on Condition	07	2	i, r_{2}	i, r_{2}
	BCT	Branch on Count	46	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$
	BCTR	Branch on Count	06	2	r_{1}, r_{2}	$\mathrm{r}_{1}, \mathrm{r}_{2}$
	BXH	Branch on Index High	86	4	$r_{1}, r_{3}, d_{2}\left(b_{2}\right)$	r_{1}, r_{3}, s_{2}
	BXLE	Branch on Index Low or Equal	87	4	$r_{1}, r_{3}, d_{2}\left(b_{2}\right)$	$\mathrm{r}_{1}, \mathrm{r}_{3}{ }^{\prime} \mathrm{s}_{2}$
N	C	Compare Algebraic	59	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$ *	$r_{1}, s_{2}\left(x_{2}\right)^{*}$
	CD	Compare, Long	69	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* *}$
	CDR	Compare, Long	29	2	r_{1}, r_{2}	r_{1}, r_{2}
	CE	Compare, Short	79	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$\mathrm{r}_{1}, s_{2}\left(x_{2}\right)^{*}$

Instructions by Mnemonic Code (cont)

澪 $¢$	DER	Divide，Short	30	2	r_{1}, r_{2}	r_{1}, r_{2}
ω ¢	DIAG	Diagnose	83	4	（Privileged）	（Privileged）
	DP	Divide Decimal	FD	6	$d_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(1, s_{2}(1)_{2}\right)$
	DR	Divide	10	2	r_{1}, r_{2}	r_{1}, r_{2}
픚	ED	Edit	DE	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$
号号	EDMK	Edit and Mark	DF	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$
为䍖	EX	Execute	44	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right){ }^{* * *}$	$r_{1}, s_{2}\left(x_{2}\right) * * *$
욱들	HDR	Halve，Long	24	2	r_{1}, r_{2}	${ }^{r_{1} \cdot r_{2}}$
为品	HER	Halve，Short	34	2	$\mathrm{r}_{1} \mathrm{r}^{\text {r }}$	r_{1}, r_{2}
co	HPR	Halt and Proceed	99	4	（Privileged）	（Privileged）
${ }_{\text {줄 }}$	IC	Insert Character	43	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$\mathrm{r}_{1}, \mathrm{~s}_{2}\left(\mathrm{x}_{2}\right)$
－	ISK	Insert Storage Key	09	2	（Privileged）	（Privileged）
	L	Load	58	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right)^{*}$
듬	LA	Load Address	41	4	$r_{1} \cdot d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$
$\begin{aligned} & \frac{w}{\sigma} \\ & \infty \\ & \infty \end{aligned}$	LCDR	Load Complement，Long	23	2	r_{1}, r_{2}	$\mathrm{r}_{1} \mathrm{r}_{2}$
	LCER	Load Complement，Short	33	2	$r_{1} \cdot r_{2}$	r_{1}, r_{2}
	LCR	Load Complement	13	2	$r_{1} r_{1} r_{2}$	$r_{1} \cdot r_{2}$

Mnemonic	Instruction Name	Machine Code	Byte Length	Source Code Formet	
				Explicit	Implicit
LCS	Load Control Storage	B1	4	(Privileged)	(Privileged)
LD	Load, Long	68	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$\mathrm{r}_{1}, s_{2}\left(x_{2}\right)^{* *}$
LDR	Load, Long	28	2	r_{1}, r_{2}	$\mathrm{r}_{1}, \mathrm{r}_{2}$
LE	Load, Short	78	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right) *$
LER	Load, Short	38	2	$r_{1} \cdot r_{2}$	r_{1}, r_{2}
LH	Load Half Word	48	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right) * *$	$r_{1}, s_{2}\left(x_{2}\right) * * *$
LM	Load Multiple	98	4	$r_{1}, r_{3}, d_{2}\left(b_{2}\right) *$	$r_{1}, r_{3} r_{2}{ }^{*}$
LNDR	Load Negative, Long	21	2	r_{1}, r_{2}	r_{1}, r_{2}
LNER	Load Negative, Short	31	2	$r_{1} \cdot r_{2}$	r_{1}, r_{2}
LNR	Load Negative	11	2	$r_{1} \cdot r_{2}$	r_{1}, r_{2}
LPDR	Load Positive, Long	20	2	r_{1}, r_{2}	$r_{1} \cdot r_{2}$
LPER	Load Positive, Short	30	2	$r_{1} \cdot r_{2}$	r_{1}, r_{2}
LPR	Load Positive	10	2	$r_{1} \cdot r_{2}$	$r_{1} \cdot r_{2}$

꿍딩	LPSW	Load Program Status Word	82	4	（Privileged）	（Privileged）
$\omega \stackrel{\text { ¢ }}{\text { ¢ }}$	LR	Load	18	2	r_{1}, r_{2}	$r_{1} r_{2}$
	LTDR	Load and Test，Long	22	2	r_{1}, r_{2}	r_{1}, r_{2}
	LTER	Load and Test，Short	32	2	$r_{1} \cdot r_{2}$	$r_{1} r^{\prime} r_{2}$
폻	LTR	Load and Test	12	2	r_{1}, r_{2}	r_{1}, r_{2}
员 n	M	Multiply	5C	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right) *$	$r_{1}, s_{2}\left(x_{2}\right) *$
甬芴	MD	Multiply，Long	6C	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* *}$
¢	MDR	Multiply，Long	2C	2	r_{1}, r_{2}	r_{1}, r_{2}
洨䢒	ME	Multiply，Short	7 C	4	$\mathrm{r}_{1}, \mathrm{~d}_{2}\left(\mathrm{x}_{2}, \mathrm{~b}_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right){ }^{*}$
mo	MER	Multiply，Short	3 C	2	r_{1}, r_{2}	r_{1}, r_{2}
＜＜ω	MH	Multiply Half Word	4C	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* * *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* * *}$
号	MP	Multiple Decimal	FC	6	$d_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(1,1, s_{2}\left(l_{2}\right)\right.$
	MR	Multiply	1 C	2	r_{1}, r_{2}	r_{1}, r_{2}
N	MVC	Move Characters	D2	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$
$\stackrel{\sim}{3}$	MVI	Move Immediate	92	4	$d_{1}\left(b_{1}\right), i_{2}$	$\mathrm{s}_{1}, \mathrm{l}_{2}$
	MVN	Move Numerics	D1	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$
	MVO	Move With Offset	F1	6	$d_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}(1)_{1}, s_{2}\left(l_{2}\right)$

Instructions by Mnemonic Code (cont)

Mnemonic	Instruction Name	Machine Code	Byte Length	Source Code Format	
				Explicit	Implieit
MVZ	Move Zones	D3	6	$\mathrm{d}_{1}\left(1, \mathrm{~b}_{1}\right), \mathrm{d}_{2}\left(\mathrm{~b}_{2}\right)$	$s_{1}(1), s_{2}$
N	AND Logical	54	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right)^{*}$
NC	AND Logical	D4	6	$d_{1}\left(i, b_{1}\right), d_{2}\left(b_{2}\right)$	$\mathrm{s}_{1}(\mathrm{l}), \mathrm{s}_{2}$
NI	AND Logical Immediate	94	4	$d_{1}\left(b_{1}\right), i_{2}$	s_{1}, i_{2}
NR	AND Logical	14	2	$r_{1} r_{2}$	$r_{1} \cdot r_{2}$
0	OR Logical	56	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right)^{*}$
OC	OR Logical	D6	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$
OI	OR Logical Immediate	96	4	$d_{1}\left(b_{1}\right), i_{2}$	$s_{1} \cdot i_{2}$
OR	OR Logical	16	2	r_{1}, r_{2}	$\mathrm{r}_{1}, \mathrm{r}_{2}$
PACK	Pack	F2	6	$\mathrm{d}_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(1, l_{1}, s_{2}\left(l_{2}\right)\right.$
S	Subtract	5B	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right) *$	$r_{1}, s_{2}\left(x_{2}\right)^{*}$
SD	Subtract Normalized, Long	6 B	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* *}$
SDR	Subtract Normalized, Long	2B	2	$r_{1} \cdot r_{2}$	r_{1}, r_{2}

꾼둔	SE	Subtract Normalized，Short	78	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right)^{*}$
$\omega{ }_{0}^{0}$	SER	Subtract Normalized，Short	3B	2	r_{1}, r_{2}	$r_{1} \cdot r_{2}$
	SH	Subtract Half Word	4 B	4	$\mathrm{r}_{1}, \mathrm{~d}_{2}\left(x_{2}, \mathrm{~b}_{2}\right)^{* * *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* * *}$
	SIO	Start 1／0	9C	4	（Privileged）	（Privileged）
퐂	SL	Subtract Logical	5 F	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$\mathrm{r}_{1}, s_{2}\left(\mathrm{x}_{2}\right)^{*}$
\％	SLA	Shift Left Single Algebraic	8B	4	$r_{1}, d_{2}\left(b_{2}\right)$	r_{1}, s_{2}
㶨荿	SLDA	Shift Left Double Algebraic	8 F	4	$r_{1}, d_{2}\left(b_{2}\right)$	$\mathrm{r}_{1} \cdot \mathrm{~s}_{2}$
盗号	SLDL	Shift Left Double Logical	8D	4	$r_{1}, d_{2}\left(b_{2}\right)$	$\mathrm{r}_{1} \mathrm{~s}_{2}$
촞ㅊㄹ	SLL	Shift Left Single Logical	89	4	$r_{1}, d_{2}\left(b_{2}\right)$	r_{1}, s_{2}
mo	SLM	Supervisor Load Multiple	B8	4	（Privileged）	（Privileged）
$\stackrel{5}{3}^{\underline{3}}$	SLR	Subtract Logical	1 F	2	r_{1}, r_{2}	$r_{1} \cdot{ }^{\prime}{ }_{2}$
促	SP	Subtract Decimal	FB	6	$d_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(1 l_{1}\right) s_{2}\left(l_{2}\right)$
	SPM	Set Program Mask	04	2		
	SR	Subtract	1B	2	r_{1}, r_{2}	$r_{1} \cdot r_{2}$
\bigcirc	SRA	Shift Right Single Algebraic	8A	4	$r_{1}, d_{2}\left(b_{2}\right)$	$r_{1}{ }^{\prime} s_{2}$
	SRDA	Shift Right Double Algebraic	8E	4	$r_{1}, d_{2}\left(b_{2}\right)$	r_{1}, s_{2}
	SRDL	Shift Right Double Logical	8C	4	$r_{1}, d_{2}\left(b_{2}\right)$	$\mathrm{r}_{1}, \mathrm{~s}_{2}$

	Instructions by Mnemonic Code (cont)					
	Mnemonic	Instruction Name	Machine Code	Byte Length	Source Code Format	
					Explicit	Implicit
	$\begin{aligned} & \text { SRL } \\ & \text { SSFS } \end{aligned}$	Shift Right Single Logical SOFTSCOPE Forward Scan	$\begin{aligned} & 88 \\ & \text { A2 } \end{aligned}$	4 4	$r_{1}, d_{2}\left(b_{2}\right)$	r_{1}, s_{2}
	SSFS	SOFTSCOPE Forward Scan	A2	4	(Privileged)	(Privileged)
	SSK	Set System Key	08	2	(Privileged)	(Privileged)
	SSM	Set System Mask	80	4	(Privileged)	(Privileged)
	SSRS	SOFTSCOPE Reverse Scan	A3	4	(Privileged)	(Privileged)
	SSTM	Supervisor Store Multiple	B0	4	(Privileged)	(Privileged)
	ST	Store	50	4	$\mathrm{r}_{1}, \mathrm{~d}_{2}\left(\mathrm{x}_{2}, \mathrm{~b}_{2}\right)$	$\mathrm{r}_{1}, s_{2}\left(x_{2}\right)^{*}$
	STC	Store Character	42	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)$	$r_{1}, s_{2}\left(x_{2}\right)$
	STD	Store Long	60	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$r_{1} \cdot s_{2}\left(x_{2}\right)^{* *}$
\qquad	STE	Store Short	70	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right) *$	$r_{1}, s_{2}\left(x_{2}\right)$
	STH	Store Half Word	40	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* * *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* * *}$
	STM	Store Multiple	90	4	$r_{1}, r_{3}, d_{2}\left(b_{2}\right)^{*}$	$r_{1}, r_{3}, s_{2}{ }^{*}$
	STR	Service Timer Register	03	2	(Privileged)	(Privileged)
	SU	Subtract Unnormalized, Short	7 F	4	$r_{1}, d_{2}\left(x_{2}, \mathrm{~b}_{2}\right)^{*}$	$\mathrm{r}_{1}, s_{2}\left(\mathrm{x}_{2}\right)^{*}$

苞	SUR	Subtract Unnormalized，Short	3F	2	r_{1}, r_{2}	${ }_{1} 1^{\prime} r_{2}$
ω	SVC	Supervisor Call	OA	2	r	
	SW	Subtract Unnormalized，Long	6F	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{* *}$	$r_{1}, s_{2}\left(x_{2}\right)^{* *}$
	SWR	Subtract Unnormalized，Long	2F	2	r_{1}, r_{2}	r_{1}, r_{2}
T	TM	Test Under Mask	91	4	$d_{1}\left(b_{1}\right), i_{2}$	$s_{1} \mathrm{i}_{2}$
号号	TR	Translate	DC	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$\mathrm{s}_{1}(1), \mathrm{s}_{2}$
页哥	TRT	Translate and Test	DD	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$
号亭	TS	Test and Set	93	4	$d_{1}\left(b_{1}\right)$	
	UNPK	Unpack	F3	6	$d_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(l_{1}\right), s_{2}\left(l_{2}\right)$
m응	X	Exclusive OR	57	4	$r_{1}, d_{2}\left(x_{2}, b_{2}\right)^{*}$	$r_{1}, s_{2}\left(x_{2}\right)^{*}$
${ }_{\text {予 }}{ }^{\text {c }}$	XC	Exclusive OR	D7	6	$d_{1}\left(1, b_{1}\right), d_{2}\left(b_{2}\right)$	$s_{1}(1), s_{2}$
只	XI	Exclusive OR，Immediate	97	4	$d_{1}\left(b_{1}\right), i_{2}$	s_{1}, i_{2}
	$\times \mathrm{R}$	Exclusive OR	17	2	$\mathrm{r}_{1}, \mathrm{r}_{2}$	$r_{1} \cdot r_{2}$
	ZAP	Zero and Add Decimal	F8	6	$d_{1}\left(l_{1}, b_{1}\right), d_{2}\left(l_{2}, b_{2}\right)$	$s_{1}\left(I_{1}\right), s_{2}\left(I_{2}\right)$

＊Operand 2 must be aligned on a full－word boundary．
＊＊Operand 2 must be aligned on a double－word boundary
＊＊＊Operand 2 must be aligned on a half－word boundary．

T>0	Add Logical	5E	AL (1)
¢	Add Normalized, Long	2A	ADR ${ }^{(1)}$
	Add Normalized, Long	6A	$A D \bigcirc$
풍	Add Normalized, Short	3A	AER (1)
$\begin{aligned} & \text { 뀸 } \\ & \stackrel{y}{8} \end{aligned}$	Add Normalized, Short	7 A	AE (1)
	Add Unnormalized, Long	2 E	AWR (1)
	Add Unnormalized, Long	6E	AW (1)
帝	Add Unnormalized, Short	3 E	AUR (1)
	Add Unnormalized, Short	7E	$A \cup{ }^{(1)}$
$\underset{\omega}{\omega}$	AND	14	NR
	AND	54	N

Instructions by Instruction Name (cont)

06	BCTR
46	BCT
86	BXH ${ }^{(1)}$
87	BXLE ${ }^{(1)}$
19	CR
59	c
F9	$C P$ (2)
49	$\mathrm{CH}{ }^{(2)}$
15	CLR
55	CL
95	CLI (2)

	Divide
	Divide
	Divide Decimal
	Divide, Long
	Divide, Long
	Divide, Short
	Divide, Short
	Edit
$\stackrel{\sim}{4}$	Edit and Mark
	Exclusive OR
	Exclusive OR

1D	DR ${ }^{(1)}$
5D	D
FD	DP (2)
2D	DDR ${ }^{(1)}$
6D	DD ${ }^{(1)}$
3D	DER ${ }^{(1)}$
7D	de ${ }^{(1)}$
DE	ED ${ }^{(2)}$
DF	EDMK (1)
17	XR
57	X

Instructions by Instruction Name (cont)

	Instruction Name	Machine Code	Mnemonic
	Exclusive OR	97	XI
	Exclusive OR	D7	XC
	Execute	44	EX
	Halt and Proceed - Privileged	99	HPR
	Halve, Long	24	HDR (1)
	Halve, Short	34	HER (1)
	Insert Character	43	IC
	Insert Storage Key - Privileged	09	ISK (1)
	Load	18	LR

Instructions by Instruction Name (cont)

Instructions by Instruction Name (cont)

	Instruction Name	Machine Code	Mnemonic
	Load, Long	68	LD ${ }^{(1)}$
	Load Multiple	98	LM
	Load Negative	11	LNR (1)
	Load Negative, Long	21	LNDR (1)
	Load Negative, Short	31	LNER (1)
	Load Positive	10	LPR (1)
N	Load Positive, Long	20	LPDR (1)
古	Load Positive, Short	30	LPER (1)
	Load PSW - Privileged	82	LPSW

	Load Register		18	LR
	Load, Short		38	LER (1)
	Load, Short		78	LE ${ }^{(1)}$
	Move		92	MVI (2)
	Move		D2	MVC (2)
	Move Numerics		D1	MVN (2)
	Move With Offset		F1	MVO (2)
	Move Zones	(Native and 360/20 modes)	D3	$M V Z$ (2)
$\stackrel{N}{\sim}$	Multiply		1C	MR (1)
	Multiply		5C	M
	Multiply Decimal		FC	MP (2)

	Instructions by Instruction Name (cont)		
	Instruction Name	Machine Code	Mnemonic
	Multiply Half Word	4 C	MH (1)
	Multiply, Long	2C	MDR (1)
	Multiply, Long	6C	MD (1)
	Multiply, Short	3C	MER (1)
	Multiply, Short	7 C	ME (1)
	OR	16	OR
$\underset{N}{N}$	OR	56	0
	OR	96	018

	OR
	Pack
	Service Timer Register - Privileged
	Set Program Mask
	Set Storage Key - Privileged
	Set System Mask - Privileged
	Shift Left Double
	Shift Left Double Logical
T	Shift Left Single
	Shift Left Single Logical
	Shift Right Double

Instruction Name	Machine Code	Mnemonic
Shift Right Double Logical	8C	SRDL (1)
Shift Right Single	8A	SRA ${ }^{(1)}$
Shift Right Single Logical	88	SRL
Softscope Forward Scan - Privileged	A2	SSFS
Softscope Reverse Scan - Privileged	A3	SSRS
Start 1/O - Privileged	9 C	SIO
Store	50	ST
Store Character	42	STC
Store Half Word	40	STH (2)

	Store, Long		60	STD (1)
	Store Multiple		90	STM
	Store, Short		70	Ste (1)
	Subtract	(Native and 360/20 modes)	1B	SR
	Subtract		5B	S
	Subtract Decimal		FB	SP (2)
	Subtract Half Word	(Native and 360/20 modes)	4B	SH (2)
	Subtract Half Word	(9200/9300 mode only)	$A B$ (3)	SH (2)
$\stackrel{N}{N}$	Subtract Logical		1 F	SLR (1)
	Subtract Logical		5F	SL (1)
	Subtract Normalized, Long		2B	SDR ${ }^{(1)}$

Instructions by Instruction Name (cont)

Supervisor Load Multiple - Privileged
Supervisor Store Multiple - Privileged
Test and Set
Test Under Mask
Translate
Translate and Test
Unpack
Zero and Add

B8	SLM
B0	SSTM
91	TS (1)
DC	TM (2)
DD (2)	
F3	TRT
F8	UNPK (2)
ZAP (2)	

NOTES:
(1) Indicates instructions that are added as features.
(2) Indicates instruction available in native mode and in 9200/9300 and 360/20 compatibility modes, unless indicated otherwise by notes. The absence of (2) indicates instruction available in native mode only.
(3) Indicates instructions that execute in 9200/9300 compatibility mode only.

Instructions by Machine Code (cont)

Machine Code	Mnemonic	Instruction Name	
OD	BASR (2)	Branch and Store	(360/20 mode only)
10	LPR (1)	Load Positive	
11	LNR (1)	Load Negative	
12	LTR	Load and Test	
13	LCR (1)	Load Complement	
14	NR	AND	
15	CLR	Compare Logical	
16	OR	OR	

꿍둥	17	XR	Exclusive OR	
	18	LR	Load	
	19	CR	Compare	
褭	1A	$A R$（2）	Add	（Native and 360／20 modes）
矛另	1B	SR（2）	Subtract	（Native and 360／20 modes）
	1 C	MR ${ }^{(1)}$	Muitiply	
第号	10	DR ${ }^{(1)}$	Divide	
予	1 E	ALR ${ }^{(1)}$	Add Logical	
	1F	SLR ${ }^{(1)}$	Subtract Logical	
¢	20	LPDR ${ }^{(1)}$	Load Positive，Long	
	21	LNDR ${ }^{(1)}$	Load Negative，Long	

疮둔	20 $2 E$	DDR ${ }^{(1)}$ AWR ${ }^{(1)}$	Divide，Long
	2 F	SWR（1）	Subtract Unnormalized，Long
砍	30	LPER ${ }^{(1)}$	Load Positive，Short
而式	31	LNER ${ }^{(1)}$	Load Negative，Short
	32	LTER ${ }^{(1)}$	Load And Test，Short
	33	LCER ${ }^{(1)}$	Load Complement，Short
尔	34	HER（1）	Halve，Short
T	38	LER ${ }^{(1)}$	Load，Short
$\stackrel{\sim}{4}$	39	CER ${ }^{(1)}$	Compare，Short

	Machine Code	Mnemonic	Instruction Name
	3A	AER (1)	Add Normalized, Short
	3B	SER ${ }^{(1)}$	Subtract Normalized, Short
	3 C	MER ${ }^{(1)}$	Multiply, Short
	3D	der ${ }^{(1)}$	Divide, Short
	3E	AUR ${ }^{(1)}$	Add Unnormalized, Short
	3F	SUR ${ }^{(1)}$	Subtract Unnormalized, Short
!	40	STH (2)	Store Half Word
	41	LA	Load Address

矿亏	42	STC	Store Character	
	43	IC	Insert Character	
	44	EX	Execute	
	45	BAL（2）	Branch and Link	（Native and 9200／9300 modes）
忍另	46	BCT	Branch on Count	
$\sum_{x}^{\infty} \sum_{i}^{\infty} \sum_{i}^{c}$	47	BC（2）	Branch on Condition	
	48	$\mathrm{LH}^{(2)}$	Load Half Word	
$\stackrel{\stackrel{\rightharpoonup}{\mathbf{T}}}{\underset{\sim}{\boldsymbol{T}}}$	49	CH （2）	Compare Half Word	
	4A	$\mathrm{AH}^{(2)}$	Add Half Word	（Native and 360／20 modes）
G	4B	SH （2）	Subtract Half Word	（Native and 360／20 modes）
	4C	MH （1）	Multiply Half Word	

	Instructions by Machine Code (cont)			
	Machine Code	Mnemonic	Instruction Name	
	4D	BAS (2)	Branch and Store	(360/20 mode only)
	4E	CVD	Convert to Decimal	
	4F	CVB	Convert to Binary	
	50	ST	Store	
	54	N	AND	
	55	CL	Compare Logical	
ভ	56	0	OR	
	57	x	Exclusive OR	

	58	L	Load
	59	C	Compare
	5A	A	Add
	5B	S	Subtract
	5 C	M	Multiply
	5D	D	Divide
	5E	$A L$ (1)	Add Logical
	5F	SL (1)	Subtract Logical
	60	STD (1)	Store, Long
	68	LD (1)	Load, Long
	69	co (1)	Compare, Long

	79	CE ${ }^{(1)}$	Compare, Short
	7A	AE ${ }^{(1)}$	Add Normalized, Short
	7B	SE (1)	Subtract Normalized, Short
	7C	ME (1)	Multiply, Short
	70	DE (1)	Divide, Short
	7E	AU (1)	Add Unnormalized, Short
	7F	Su (1)	Subtract Unnormalized, Short
	80	SSM	Set System Mask - Privileged
T 0	82	LPSW	Load PSW - Privileged
	83	DIAG	Diagnose - Privileged
	86	BXH ${ }^{(1)}$	Branch on Index High

Instructions by Machine Code (cont)

뀬 $¢$	8F	SLDA ${ }^{1}$	Shift Left Double
	90	STM	Store Multiple
	91	TM (2)	Test Under Mask
	92	MVI (2)	Move Immediate
	93	TS (1)	Test and Set
	94	NI (2)	AND
	95	CLI (2)	Compare Logical
	96	$01(2)$	OR
$\stackrel{\sim}{\sim}$	97	XI	Exclusive OR
	98	LM	Load Multiple
	99	HPR	Halt and Proceed - Privileged

중두	structions by Mach		
	Machine Code	Mnemonic	Instruction Name
	9A	Al	Add Immediate
	9 C	SIO	Start I/O-Privileged
	A2	SSFS	Softscope Forward Scan - Privileged
	A3	SSRS	Softscope Reverse Scan - Privileged
	$A 6{ }^{(3)}$	AI (2)	Add Immediate (9200/9300 mode only)
	$A A^{(3)}$	$A H^{(2)}$	Add Half Word (9200/9300 mode only)
$\begin{aligned} & N \\ & \underset{N}{N} \end{aligned}$	$A B \text { (3) }$	$\mathrm{SH}^{(2)}$	Subtract Half Word (9200/9300 mode only)
	BO	SSTM	Supervisor Store Multiple - Privileged

	Extended Mnemonic Codes for Branch on Condition Instructions						
	RR-Type Instructions		RX-Type Instructions		BC Equivalent		Function
	Mnemonic Code	Hexadocimal Operation Code m_{1}	Mnemonic Coda	Hexadecimal Operation Code m_{1}		plicit orm	
	BR NOPR --	$\begin{aligned} & 07 \mathrm{~F} \\ & 070 \\ & - \\ & - \end{aligned}$	- B NOP	$\begin{aligned} & - \\ & - \\ & 47 \mathrm{~F} \\ & 470 \end{aligned}$	$\begin{aligned} & \mathrm{BCR} \\ & \mathrm{BCR} \\ & \mathrm{BC} \\ & \mathrm{BC} \end{aligned}$	$\begin{aligned} & 15, r_{2} \\ & 0, r_{2} \\ & 15, d_{2}\left(x_{2}, b_{2}\right) \\ & 0, d_{2}\left(x_{2}, b_{2}\right) \end{aligned}$	Branch unconditionally No operation Branch unconditionally No operation
	Used After Comparison Instructions						
空	BHR BLR BER BNHR BNLR BNER	$\begin{aligned} & 072 \\ & 074 \\ & 078 \\ & 07 \mathrm{D} \\ & 07 \mathrm{~B} \\ & 077 \end{aligned}$	BH BL BE BNH BNL BNE	472 474 478 47 D 47 B 477	$\begin{aligned} & \mathrm{BC} \\ & \mathrm{BC} \end{aligned}$	$\begin{aligned} & 2, \mathrm{~d}_{2}\left(x_{2}, b_{2}\right) \\ & 4, \mathrm{~d}_{2}\left(x_{2}, b_{2}\right) \\ & 8, \mathrm{~d}_{2}\left(x_{2}, b_{2}\right) \\ & 13, \mathrm{~d}_{2}\left(x_{2}, \mathrm{~b}_{2}\right) \\ & 11, \mathrm{~d}_{2}\left(x_{2}, b_{2}\right) \\ & 7, \mathrm{~d}_{2}\left(x_{2}, b_{2}\right) \end{aligned}$	Branch if high Branch if low Branch if equal Branch if not high Branch if not low Branch if not equal

$\underset{\infty}{0}$	Used After Test－Under－Mask Instructions						
	BOR BZR BMR BNOR BNZR BNMR	071 078 074 07 E 077 07 B	B0 BZ BM BNO BNZ BNM	471 478 474 47 E 477 47 B	BC BC BC BC BC BC	$\begin{aligned} & 1, d_{2}\left(x_{2}, b_{2}\right) \\ & 8, d_{2}\left(x_{2}, b_{2}\right) \\ & 4, d_{2}\left(x_{2}, b_{2}\right) \\ & 14, d_{2}\left(x_{2}, b_{2}\right) \\ & 7, d_{2}\left(x_{2}, b_{2}\right) \\ & 11, d_{2}\left(x_{2}, b_{2}\right) \end{aligned}$	Branch if all ones Branch if all zeros Branch if mixed Branch if not all ones Branch if not all zeros Branch if not mixed
$\frac{7}{3} \overline{ }$	Used After Arithmetic Instructions						
而 co延 ω范	BOR BZR BMR BPR BNOR BNZR BNMR BNPR	071 078 074 072 07 E 077 07 B 07 D	$B 0$ BZ BM BP BNO BNZ BNM BNP	471 478 474 472 47 E 477 47 B 47 D	BC BC	$\begin{aligned} & 1, d_{2}\left(x_{2}, b_{2}\right) \\ & 8, d_{2}\left(x_{2}, b_{2}\right) \\ & 4, d_{2}\left(x_{2}, b_{2}\right) \\ & 2, d_{2}\left(x_{2}, b_{2}\right) \\ & 14, d_{2}\left(x_{2}, b_{2}\right) \\ & 7, d_{2}\left(x_{2}, b_{2}\right) \\ & 11, d_{2}\left(x_{2}, b_{2}\right) \\ & 13, d_{2}\left(x_{2}, b_{2}\right) \end{aligned}$	Branch if overflow Branch if zero Branch if minus Branch if positive Branch if not overflow Branch if not zero Branch if not minus Branch if not positive

Floating-Point Instructions

Add norm, long (AD, ADR) and short (AE, AER)	$=0$	<0	>0	No cc
Add unnorm, long (AW, AWR) and short (AU, AUR)	$=0$	<0	>0	No cc
Compare, long (CD, CDR) and short (CE, CER)	op $1=o p 2$	<op2	$>\mathrm{op} 2$	No cc
Load complement, long and short (LCDR, LCER)	$=0$	<0	>0	No cc
Load negative, long and short (LNDR, LNER)	$=0$	<0	No cc	No cc
Load positive, long and short (LPDR, LPER)	$=0$	Nocc	>0	Nocc
Load and test, long and short (LTDR, LTER)	$=0$	<0	>0	No cc
Sub norm, long (SD, SDR) and short (SE, SER)	$=0$	<0	>0	No cc
Sub unnorm, long (SW, SWR) and short (SU, SUR)	$=0$	<0	>0	No cc
Logical Instructions				
Add logical (AL, ALR)	$\begin{aligned} & =0, \text { no } \\ & \text { carry } \end{aligned}$	$\neq 0, \text { no }$ carry	$\begin{aligned} & =0, \\ & \text { carry } \end{aligned}$	$\neq 0$ carry
Compare logical (CL, CLC, CLI, CLR)	op1=op2	<op2	>op2	Nocc

*Carry is out of the most significant bit position.

Condition Code Settings (cont)

	Exclusive OR (X, XC, XI, XR)	$=0$	$\neq 0$	Nocc	Nocc
	Status Switching Instructions				
폼	Load control storage (LCS)	=incomplete data transfer	=complete data transfer	No cc	=complete data transfer hash total error
	Load program status word (LPSW)	Set=bit positions 34 and 35 of op1			
	Set program mask (SPM)	Set=bit positions 2 and 3 of op 1			
交	Supervisor call (SVC)	Set=bit positions 34 and 35 of SVC new PSW			*
I	Test and set (TS)	$=0$	$=1$	No cc	No cc

	Condition Code Settings (cont)				
	- Condition Codes	0	1	2	3
	Binary Mask	1000	0100	0010	0001
	Diagnostic Instructions				
剖亭	Diagnose (DIAG)	$=0$	No cc	No cc	No cc
$\sum_{i}^{2} \underset{\sim}{2}$	Soft scope forward scan (SSFS)	SYNC detected	No ce	No cc	SYN not detected
$\xrightarrow{\sim}$	Soft scope reverse scan (SSRS)	$0=S Y N C$ detected 1st buffer iteration	$1=S Y N C$ not detected 1st buffer iteration	$2=S Y N C$ detected subsequent iteration	3=SYNC not detected subsequent iteration

保宁	Edit Instruction Settings															
	Mask（Operand 1） Character	EbCDIC／ASCII	S Switch Status	Data（Operand 2） Character	Resulting （Operand 7） Character	Resulting S Switch Status	Mark（Operand 1） Character	EBCDIC／ASCII	S Switch Status	Dats（Operand 2） Character	Resulting （Operand 1） Character	Resulting S Switch Status				
宍	Fill character	Any	Off	Not examined	Remains same	Off	Message character	Any except 20， 21 22	On	Not examined	Mes sage character	On＊				
号心	Digit select byte	20	On	Nonzero	Digit	On＊				Not examined						
			On	Zero	Oigit	On＊			Off		Fill character	Off＊				
$\frac{8}{7} \underset{\underline{y}}{\underline{\Sigma}}$			Off	Nonzero	Digit	On＊	Field separator byte	22	On	Not examined	Fill character	Off				
盆感 $\check{\circ}$			Off	Zero	Fill character	Off			Off	Not examined	Fill character	Off				
\mathfrak{z}	Significance start byte	21	On	Nonzero	Digit	On＊	＊Sign detection（examined simultaneousiy with operand 2 digit）affects the S switch as follows：									
覀			On	Zero	Digit	On＊										
			Off	Nonzero	Digit	On＊	A plus or minus sign detected as most significant digit causes data exception． A plus sign detected as a least significant digit causes S switch to be turned off． A minus sign has no effect on the S switch．									
$\underset{N}{N}$			Off	Zero	Fill character	On＊										

Assembler Operators

	Class	Operator	Description	Hierarchy
	Arithmetic	$\begin{aligned} & * / \\ & 1 / \\ & \text { / } \\ & \text { * } \end{aligned}$ $+$	A^{*} / B is equivalent to $A * 2^{B}$. Covered quotient; $A / / B$ is equivalent to $(A+B-1) / B$. A / B means arithmetic quotient of A and B. $A * B$ means arithmetic product of A and B. $A-B$ means arithmetic difference of A and B. $A+B$ means arithmetic sum of A and B.	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$
	Logical	++	A**B means logical product AMB of A and B. $A++B$ means logical sum OX of A and B. $A--B$ means logical differences $X \operatorname{COn}^{2}$ of A and B.	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$
	Relational	$\begin{aligned} & > \\ & < \end{aligned}$	$A=B$ has value 1 if true; has value 0 if false. $A>B$ has value 1 if true; has value 0 if false. $A<B$ has value 1 if true; has value 0 if false.	1 1 1

NOTE:
The hierarchy numbers mean that operations with the higher numbers are performed first. Operations are performed from left to right.

2.2.1. Data Formats
Fixed-Point Numbers

Floating-Point Numbers

FULL WORD

S*	1	CHARACTERISTIC (exponent)	7	8	MANTISSA (fraction) 6 hexadecimal digits	1

DOUBLE WORD
 8
(LONG FORMAT)
MANTISSA
(fraction) 14 hexadecimal digits

UNPACKED NUMBERS
(HIGH ORDER) \quad (LOW ORDER)

BYTE 1
BYTE 2
BYTE n

PACKED NUMBERS

(HIGH ORDER)

Logical Information

FULL WORD

VARIABLE-LENGTH DATA

Data Boundary Alignments (cont)

To align data on double-word, full-word, and half-word main storage boundaries, use the following source code statement formats:

To align data or instructions on double-word, full-word, or half-word main storage boundaries, use the following directive formats:

Data and Storage Definition Statement Conventions

Operation	Operand	Comments
Fixed Point		
DC	$[d] t\left[L_{n}\right]\left\{\begin{array}{l}c^{\prime} \\ (c)\end{array}\right\}$	d $=$ duplication factor in decimal \mathbf{t} $=$ definition type constant ${ }^{*}$ $\mathbf{L}_{\mathbf{n}}$ $=$ explicit length factor in decimal \mathbf{n}^{\prime} $=$ the constant specification for data (c) $=$ the constant specification for an address
DS	$\text { [d] }\left[\left[L_{n}\right]\left[\begin{array}{c} c^{\prime} \\ (c) \end{array}\right]\right.$	
Floating Point		
DC	$[d] t\left[L_{n}\right][S+n] \prime c[E \pm n]$,	$\begin{aligned} S+n= & \text { scale modifier } \\ & \mathrm{c}[\mathrm{E} \pm n] \text { ' }= \\ & \text { the constant specification with } \\ & \text { optional exponent } \end{aligned}$

*See assembler DEFINE CONSTANT (DC) and DEFINE STORAGE (DS) types.

Data and Storage Definition Statement Conventions (cont)

	Type Code	Constant or Storage Type	Alignment	Source Code Specification		Storage Format	Truncation or Padding	Length in Bytes			
						Implied		Minimum Explicit	Maximum Explicit*		
폮	C	Character	None	Characters	C^{\prime}		Character	Right	Variable	1	$\begin{aligned} & 256 \text { (DC) } \\ & 65,535 \text { (DS) } \end{aligned}$
	x	Hexadecimal	None	Hexadecimal digits	X^{\prime}	Hexadecimal	Left	Variable	1	$\begin{aligned} & 256 \text { (DC) } \\ & 65.535 \text { (DS) } \end{aligned}$	
	B	Binary	None	Binary digits	$B^{\prime \prime}$	Binary	Left	Variable	1	256	
	P	Packed decimal	None	Decimal digits	$\mathrm{P}^{\prime} \cdot$	Packed decimal	Left	Variable	1	16	
\sim	z	Zoned decimal	None	Decimal digits	z^{\prime}	Character	Left	Variable	1	16	
\pm	H	Half word, fixed point	Half word	Decimal digits	H^{\prime}	Fixed-point binary	Left	2	1	8	

	F	Full word. fixed point	Full word	Decimal digits	F^{\prime}	Fixed-point binary	Left	4	1	8
	Y	Half-word address	Half word	Expression	Y()	Binary	Left	2	1	2
퐁	A	Full-word address	Full word	Expression	A()	Binary	Left	4	1	4
$\begin{aligned} & \text { 觮 } \\ & 0 \end{aligned}$	S	Base and displacement	Half word	One or two expressions	S()	Base and displacement	None	2	2	2
	v	External address	Full word	Relocatable symbol	V()	Binary	Left	4	3	4
䂇	E	Full word, floating point	Full word	Decimal digits	E'	Floatingpoint binary normalized	Right	4	1	8
$$	D	Double word floating point	Double word	Decimal digits \qquad	D'	Floatingpoint binary normalized	Right	8	1	8

*Maximum explicit lengths consider duplication factors.

	Label	Operation	Operand	Description
	[symbol]	CCW	$\mathrm{op}_{1}, \mathrm{op}_{2}, \mathrm{op}_{3}, \mathrm{op}_{4}$	Initiates 1/O operations
	unused	CNOP	a_{1}, a_{2}	Adjusts the location counter to a half-word, full-word, or doubleword main storage boundary
	[symbol]	COM	unused	Defines a control section that is a main storage area common to two or more separately assembled routines
	unused	COPY	symbol	Source module, identified by the operand field symbol, is taken from a library and included in the source program being assembled.
$\begin{aligned} & \text { 듬 } \\ & \text { 룷 } \\ & \infty \\ & \infty \end{aligned}$	[symbol]	CSECT	unused	Indicates to the assembler the initiation or continuation of a control section

	unused	DROP	$r_{1}\left[\ldots, r_{n}\right]$	Informs the assembler that the specified registers are not available for base register assignment
	[symbol]	DSECT	unused	Defines a data storage area permitting one or more programs to use indirect symbolic addressing for the same record
	unused	EJECT	unused	Advances the printer form to the next page for continued listing
	[symbol]	END	[e]	Indicates the end of a source module or a macro definition being assembled
	unused	ENTRY	symbol [,symbol,...,symbal]	Declares the symbols defined within the module to which reference is made by other modules

	Basic Assembler Directives (cont)			
	Label	Operation	Operand	Description
	symbol	EQU	$\mathbf{e}[$, a]	Defines symbols (primarily length and value of a symbol)
	unused	EXTRN	$\begin{aligned} & \text { symbol [,symbol,..., } \\ & \text { symbol] } \end{aligned}$	Specifies symbols referred to in the module being assembled but defined in some other module
	unused	ICTL	[beginning column] [,ending column] [,continuation column]	Specifies new values for the beginning, ending, and continuation coding columns
	unused	ISEQ	$\left[\begin{array}{l}\text { leftmost column } \\ \text {,rightmost column }\end{array}\right]$	Specifies the columns of the source statement that contain the field used for checking the sequence of statements

Basic Assembler Directives (cont)

Labei	Operation	Operand	Description
unused	PRINT	$\left[\begin{array}{l}\left\{\begin{array}{l}\text { ON } \\ \text { OFF }\end{array}\right\}\end{array}\right]$	Enables the programmer to control the contents of the assembly listing
	$\left[\begin{array}{l}\left\{\begin{array}{l}\text { GEN } \\ \text { NOGEN }\end{array}\right\}\end{array}\right]$		
	$\left[\begin{array}{l}\left\{\begin{array}{l}\text { DATA } \\ \text { NODATA }\end{array}\right\}\end{array}\right]$		
	$\left[\begin{array}{l}\left\{\begin{array}{l}\text { SINGLE } \\ \text { DOUBLE }\end{array}\right\}\end{array}\right]$		

	sic Assembler unused	ives（cont） PUNCH	${ }^{\prime} \mathrm{c}_{1}, \ldots, \mathrm{c}_{80}{ }^{\prime}$	Produces a record at assembly time and is used to produce job control card images to precede or follow the object module
	unused	REPRO	unused	Reproduces a record in its entirety（columns 1 through 80）at assembly time；the record precedes or follows the object module．
	unused	SPACE	［i］	Advances the paper in the printer a specified number of lines
$\begin{aligned} & \text { 듬 } \\ & \text { ⿳亠口冋口灬刂灬 } \\ & \infty \\ & \infty \end{aligned}$	［symbol］	START	［a］	Defines the name of the first control section，the program name，and the initial value of the location counter

Basic Assembler Directives (cont)

Label	Operation	Operand unused TITLE unused ' c^{\prime}	Description Provides data for the heading which appears at the top of each page of the assembler listing and advances the printer form to a new page
USING	$v, r_{1}\left[, \ldots, r_{n}\right]$	Informs the assembler that a specified register is available for base register assignment and that it will contain a specific value at execution time	

Legend:
$a=a n$ absolute or relocatable expression
$e=a$ relocatable expression
$c=$ a character string
$\mathrm{i}=$ an unsigned decimal integer
$r=a \operatorname{register}$
$v=a$ relocatable or absolute value

Conditional Assembler Statements

Label	Operation	Operand	Description
unused	ACTR	SETA expression	Used to limit the number of AGO, AIF, GOTO, AGOB, AIFB, and GO statements that may be processed by the assembler within a macro definition or source program
$\left[. s_{1}\right]$	$\left\{\begin{array}{l} A G O \\ A G O B \\ G O T O \end{array}\right\}$	s_{2}	Unconditionally alters the sequence of source statement processing
$\left[. s_{1}\right]$	$\left\{\begin{array}{l} \text { AIF } \\ \text { AIFB } \end{array}\right\}$	(b) s_{2}	Conditionally alters the sequence of source statement processing
. S	$\left\{\begin{array}{l} \text { ANOP } \\ \text { LABEL } \end{array}\right\}$	unused	Facilitates branching to a point in a program when a statement is unavailable to define the branch destination
[8varisymb]	DO	aa	Defines the start of a range of code to be generated repetitively and specifies the number of times it is to be generated
unused	ENDO	unused	Signals the end of range of a DO statement

	Conditional Assembler Statements (cont)			Description
	Label	Operation	Operand	
	unused	$\left\{\begin{array}{l}G B L \\ G B L A \\ G B L B \\ G B L C\end{array}\right\}$	$s_{1}\left[, s_{2}, \ldots, s_{n}\right]$	Deciares general-purpose, arithmetic, Boolean, or character global set symbols, respectively
	unused	$\left\{\begin{array}{l} \mathrm{LCL} \\ \mathrm{LCLA} \\ \mathrm{LCLB} \\ \mathrm{LCLC} \end{array}\right\}$	$s_{1}\left[, s_{2}, \ldots, s_{n}\right]$	Declares general-purpose, arithmetic, Boolean, or character local set symbols, respectively
	unused	MEXIT	unused	Indicates to the assembler that the processing of a macro definition should be terminated before ending normally with a MEND statement
$\begin{aligned} & \text { 듬 } \\ & \frac{1}{0} \\ & \stackrel{0}{\sigma} \\ & \infty \end{aligned}$	unused	MNOTE	$\left\{\begin{array}{l} \prime m^{\prime} \\ \triangle, ' m^{\prime} \\ \mathrm{S}, \mathrm{~m}^{\prime} \\ { }^{\prime}, \mathrm{m}^{\prime} \end{array}\right\}$	Generates error message or comments on assembly listing
	unused	PNOTE	$\left\{\begin{array}{l} * \\ e^{*} e^{\prime} \end{array}\right\}, ' m '$	Generates error message or comments on assembly listing

Conditional Assembler Statements (cont)
$\left.\left.\begin{array}{|c|l|l|l|}\hline \& s & \text { SET } & \begin{array}{l}\text { ae } \\ \text { ce }\end{array}\end{array}\right\} \begin{array}{l}\text { Assigns arithmetic or character-string value to variable } \\ \text { symbol declared by LCL or GBL statement }\end{array}\right\}$

LEGEND:

$a=a$ valid SETA term or arithmetic combination of valid SETA terms $b=a$ valid logical expression, a 0 , or a 1, which must be enclosed in parentheses
(b) = a SETB logical expression enclosed in parentheses
$c=a$ valid SETC operand
' e ' = a character expression
$a a=$ a valid SETA expression or a valid SET expression written in a macro definition $a e=a$ valid arithmetic expression ce $=$ a valid character expression
' \mathbf{m}^{\prime} = a message
$\mathrm{s}=\mathrm{a}$ sequence symbol
$._{1}=$ a sequence symbol
$s_{2}=$ a sequence symbol defined in a following source code statement $S=$ a severity code
$s_{1}, s_{2}, \ldots, s_{n}=$ set symbol names
$\boldsymbol{Q}_{\mathrm{s}}=$ set symbol deciared by the appropriate local or global set symbol (i.e., LCL, GBL, LCLA, GBLA, etc)
\& varisymb = an optional variable symbol

* = indicates that the message that follows is informational and not an error $\Delta=$ blank
Macro Definition Statements (Proc Format)
Proc Construction

	Label	\triangle Operation \triangle	Operand	Description
HEADING	[\&symbol]	PROC	[\&pos,n] [,\&key ${ }_{1}=, \ldots$, \&key $_{m}=$]	Signals start of procedure definition
	call-name	NAME	[pos-0]	Names the procedure called
BODY	$\left.\left[\begin{array}{l}\text { symbol } \\ \text { \&symbol } \\ \text { symbol }\end{array}\right\}\right]$	mnemonic-code mnemonic-code	operands operands	
TRAILER	unused	END	unused	Indicates end of procedure definition

Macro Definition Statements (Macro Format)
Macro Construction

	Label	\triangle Operation \triangle	Operand	Description
HEADING	unused	MACRO	unused	Signals start of procedure definition
	[\&symbol]	call-name	$\left[\right.$ \&pos $_{1}, \ldots$, \&pos $\left._{n}\right]\left[, \& k e y_{1}=, \ldots\right.$, \&key $\left._{m}=\right]$	Names the procedure called
BODY	$\left[\left\{\begin{array}{l}\text { symbol } \\ \text { gsymbol } \\ \text { symboi }\end{array}\right\}\right]$	mnemonic-code mnemonic-code	operands operands	
TRAILER	unused	MEND	unused	Indicates end of procedure definition

2.3.5. Macro Call Instruction Format

	Job Control Statements	
	Labet \triangle Operation \triangle Operand	Description
	//[symbol] ALTER [phase-name] [،address] [,change] [, $\left.\left.\begin{array}{l}\text { RESET } \\ \text { ORG }\end{array}\right\}\right]$	Introduces load module alterations at execution time
	$/ /\left[\right.$ symbol] ALTJCS [file-label-id] $\left[\cdot\left(\begin{array}{l}\text { vol-ser-no } \\ \text { RES } \\ R U N\end{array}\right\}\right]\left[\right.$ rpw] $\left.\left[\begin{array}{l}\text { FREE } \\ \text { ONLY } \\ \text { OFF } \\ \text { OLI }\end{array}\right\}\right]$ [,LUN=nnn]	Specifies an alternate library file (one other than \$Y\$JCS) to be searched for jprocs
		Causes a file to be cataloged
	$/ /\left[\right.$ symbol] CC $\left\{\begin{array}{l}\text { command } \\ \text { 'command and parameters' }\end{array}\right\}$	Allows OS/3 system console and workstation commands to be issued from control stream

Job Control Statements (cont)

Label \triangle Operation \triangle Operand	Description
//[symbol] CR	Allows input from card reader to be inserted in control stream
// DATA FILEID=file-identifier[,RETAIN] [,IGNORE]	Loads card data to a spool file
// DATASTEP=nnn	Allows you to replace embedded data sets for one run of a job
$\begin{aligned} / /[\text { symbol] DD } & {\left[\left\{\begin{array}{l} \text { RCFM } \\ R C F M n \end{array}\right\}=\right.} \\ & {\left.\left.\left[\begin{array}{l} \text { FIXBLK } \\ \text { FIXUNB } \\ \text { UNDEF } \\ \text { VARBLK } \\ \text { VARUNB } \end{array}\right\}\right]\right\} } \\ & {\left[\cdot\left\{\begin{array}{l} \text { BKSZ } \\ B K S Z n \end{array}\right\}=n\right]\left[\cdot\left\{\begin{array}{l} \text { RCSZ } \\ R C S Z n \end{array}\right\}=n\right] } \end{aligned}$	Allows changes to certain DTF keywords at run time

JOB CONTROL STATEMENTS (cont)

$\left[\cdot\left\{\begin{array}{l}\text { LACE } \\ \text { LACEn }\end{array}\right\}=n\right]\left[\left\{\begin{array}{l}\text { SIZE } \\ \operatorname{SIZEn}\end{array}\right\}=\left\{\begin{array}{l}n \\ \text { AUTO }\end{array}\right\}\right]$
$\left[\left\{\begin{array}{l}\text { UOS } \\ \text { UOSn }\end{array}\right\}=n\right]$
$\left[\cdot\left\{\begin{array}{l}\text { KLEN } \\ \text { KLENn }\end{array}\right\}=n\right]\left[\cdot\left\{\begin{array}{l}\text { KLOC } \\ \text { KLOCn }\end{array}\right\}=n\right]$
[.INDS=n]
$\left[, A C C E S S=\left\{\begin{array}{l}\text { EXC } \\ \text { EXCR } \\ \text { SRDO } \\ \text { SRD } \\ \text { SADD }\end{array}\right\}\right]$
$\left[\right.$,REWIND $\left.=\left\{\begin{array}{l}\text { NORWD } \\ \text { UNLOAD }\end{array}\right\}\right]$

Job Control Statements (cont)

Label \triangle Operation \triangle Operand	Description
$\begin{aligned} & \left.[, O P R W=\text { NORWD }], C L R W=\left\{\begin{array}{l} \text { NORWD } \\ R W D \end{array}\right\}\right] \\ & \left., F I L A B L=\left\{\begin{array}{l} \text { NO } \\ \text { NSTD } \\ \text { STD } \end{array}\right\}\right][, T P M A R K=N O]\left[, R E C V=\left\{\begin{array}{l} \text { YES } \\ \text { FCE } \end{array}\right\}\right] \\ & {\left[, V S E C=\left\{\begin{array}{l} \text { YES } \\ n \end{array}\right\}\right]\left[, V M N T=\left\{\begin{array}{l} O N E \\ N O \end{array}\right\}\right]\left[, R C B=\left\{\begin{array}{l} \text { NO } \\ \text { YES } \end{array}\right\}\right][, O F F S E T=1]} \end{aligned}$	
$/ /\left[\right.$ symbol] DECAT Ifdname[,catpw] [,SCR] $\left[,\left\{\begin{array}{c}\text { GEN } \\ \text { ROL }\end{array}\right\}\right]$	Causes a file to be removed from the catalog
//[symbol] DST dest-1 [,dest-2,...,dest-16]	Supplies the destination identification of a remote device for spool output

 	$/ /\left[\text { symbol] DVC }\left\{\begin{array}{l} \text { nnn }[(n)] \\ R E S \\ R U N \end{array}\right\}\left[\left\{\begin{array}{l} \text { addr } \\ \text { ALT } \\ \text { IGNORE } \\ \text { OPT } \\ 1 \\ O \\ \operatorname{REQ}[(n)] \\ \operatorname{REAL} \end{array}\right\}\right]\right.$	Requests assignment of peripheral devices to a job
	//[symbol] DVC PROG [.program-name] [,label] [,HOST=host-id]	Used in place of // DVC when the device assignment set is for a program-to-program type file
-		Equates logical unit numbers to specific code for device type
		Provides the name of the load module to be executed

Job Control Statements (cont)

꾼둥	//[symbol] FIN	Terminates card reader operation
	//[symbol] FREE Ifdname-1 [(DEV)] ,..., Ifdname-n[(DEV)]	Releases peripheral devices assigned to job and not required in later job steps
	//[symbol] GBL set-id-1 [=init-1][,set-id-2[=init-2],set-id-n [=init-n]]	Assigns global status to a set symbol
	//[symbol] GO destination	Causes an unconditional branch, in a foward direction, to another job control statement
	//[symbol] IF (a op b) destination	Causes a conditional branch, in a forward direction, to another job control statement
	//[symbol] JNOTE comment-line [,destination-1,..., destination-n] ${ }^{(3)}$	Used to communicate with the system console operator, specific workstations identified by user-id, or the originating workstation

ω ¢	Label \triangle Operation \triangle Operand	Description
		Indicates the beginning of control information for a job
	//symbol JSET value	Assigns local status to a set symbol
	//[symbol] LBL $\left.\left\{\begin{array}{l}\text { file-identifier } \\ \text { 'file-identifier' }\end{array}\right\}\left[\begin{array}{l}\text { file-serial-number } \\ \text { VCHECK }\end{array}\right\}\right]$	Supplies label information for files on disk and tape volumes for use by data management

	$/ /[$ symbol $]$ LFD $\left.\left\{\begin{array}{l}\text { filename } \\ * \text { filename }\end{array}\right\}\left[\cdot\left\{\begin{array}{c}n \\ 8\end{array}\right\}\right]\left[\begin{array}{l}\text { ACCEPT } \\ \text { EXTEND } \\ \text { INIT } \\ \text { RELOD } \\ \text { PREP }\end{array}\right\}\right]$	Links file information in control stream with data management file definition
荋官 co $\sum_{\substack{\sum_{0}^{2}}}^{\substack{2}}$	$/ / \text { [symbol] MTC Ifdname, }\left\{\begin{array}{l} B B, n n \\ B M, n n \\ F B, n n \\ F M, n n \\ W M, n n \\ R L \\ R U \end{array}\right\}$	Positions tape volumes before or after the execution of a job step
∞	//[symbol] NOP [QUERY]	Inserts labels to be used as targets of branch or SKIP statements

	//[symbol PARAM operand-1[,..,operand-n]	Used to submit information to a program during its execution
	//[symbol] PAUSE comment-line ${ }^{(1)}$ [,destination-1,...destination-n (3)	Displays messages at the system console, the master workstation, or other workstations identified by user-id, and halts the job until the appropriate response is made

	Job Control Statements (cont)	
	Label \triangle Operation \triangle Operand	Description
	//[symbol] QGBL set-id-1[=init-1] [, set-id-2[=init-2],..., set-id-n[=init-n]]	Allows you to change the value of global set symbols at run time from the workstation
	//[symbol] QUAL [qualifier]	Appends a qualifier to subsequent file identifiers in the job
	//[symbol] REN Ifdname, $\left\{\begin{array}{l}\text { new-label } \\ \text { 'new-label' }\end{array}\right\}$ [,NTERM]	Permanently changes (renames) the label of a disk file
	//[symbol] ROUTE destination-1 [...., destination-8]	Routes spooled output (print or punch) to DDP sites and auxiliary workstation printers
$\begin{aligned} & \text { 드무 } \\ & \text { 总 } \\ & \underset{\sim}{\square} \\ & \infty \end{aligned}$	//[symbol] RST filename,checkpoint-id,number [jobname[(rename)] [,pri] $[$, key $-1=$ val $-1, \ldots$, key-n=val-n] $]$	Restarts a program from a checkpoint

\bullet

	$/ /[$ symbol $]$ SCR Ifdname $\left[,\left\{\begin{array}{l}\text { DATE [,vyddd] } \\ \text { PRE [,aaaa] }\end{array}\right\}\right]$	Scratches unwanted files
	//[symbol] SET DATE,yy/mm/dd[.yyddd] [.yyddd] //[symbol] SET UPSI,switch-setting //[symbol] SET COMREG,char-string	Sets or modifies date field, user program switch indicator, or communications region in the job preamble
	$/ /[\text { symbol }] \text { SFT }\left\{\begin{array}{l} \text { module- } 1[, \ldots, \text { module }-n]\left[\text { DLOAD }=\left[\left([\text { calls }],\left[\left\{\begin{array}{l} \text { expansion-limit } \\ \text { MAX } \end{array}\right\}\right]\right)\right]\right] \\ \text { DLOAD }=\left[\left([\text { calls }],\left[\left\{\begin{array}{l} \text { expansion-limit } \\ \text { MAX } \end{array}\right\}\right]\right)\right] \end{array}\right\}$	Identifies shared-code data management modules required by user job, overrides SYSGEN limits for dynamic expansion of the user job region, and allows dynamic expansion of the user job region for externally referenced program modules
	//[symbol] SKIP target-label [,mask]	Identifies the target control statement of a branch control statement

Job Control Statements (cont)

Label \triangle Operation \triangle Operand	Description
	Controls the spooling environment
$\text { //[symbol] UID }\left\{\begin{array}{l} \text { user-id-1 } \\ \text { (addr-1) } \\ \text { user-id-1 (addr-1) } \end{array}\right\}\left[\ldots,\left\{\begin{array}{l} \text { user-id-255 } \\ \text { (addr-255) } \\ \text { user-id-255 (addr-255) } \end{array}\right\}\right]$ //[symbol] USE DP, dialog-name[printer-Ifd] [,new-audit-lfd] [,old-audit-Ifd]	Allows you to specify a workstation by user-id, or the system master workstation by specifying \$Y\$MAS Used as part of a workstation device assignment set; calls the dialog processor

\bullet

		Used as part of a workstation device assignment set; calls screen format services
		Overrides system vertical format buffer

	Characters Used to Specify Mode Setting on VOL Statement					
	Used with UNISERVO 12／16 and 10／14 Magnetic Tape Votumes					
	Tape	ce	Bytes per Inch	Parity	Translate Feature	Convert Feature
	7－track	10	200	Odd	Off	On
퐂		20	200	Even	Off	Off
宕か		28	200	Even	On	Off
贾吊		30	200	Odd	Off	Off
T		38	200	Odd	On	Off
¢令		50	556	Odd	Off	On
号릋		60	556	Even	Off	Off
盛贾		68	556	Even	On	Off
m0		70	556	Odd	Off	Off
¢		78	556	Odd	On	Off
亥		90	800	Odd	Oft	On
$\underset{\sim}{\sim}$		AO	800	Even	Off	Off
		A8	800	Even	On	Off
		80	800	Odd	Off	Off
		B8	800	Odd	On	Off
	9．rack	C8	800	Odd	Off	Off
		$\mathrm{CO}{ }^{-}$	1600	Odd	Off	Off

Statement (cont)
Characters Used to Specify Mode Setting on VOL

Standard Logical Unit Number Assignments

	Device Type Code	Logical Unit No．	Device Type and Features
	$\begin{aligned} & 08020000 \\ & 02020000 \end{aligned}$	$\begin{array}{r} 1,2 \\ 3,4 \end{array}$	Reader of 0920／0930 paper tape subsystem Punch of 0920／0930 paper tape subsystem
勇	08010000	5， 6	2703 optical document reader
忍另	04080000	7	9200／9300 printer
－	08080000	8	9200／9300 card reader
幸気	02080000	9	9200／9300 card punch
	FFFFFFFF	10－17	Spare
冬 ${ }^{\text {c }}$		18， 19	Reserved
－	04F80000	20， 21	Any printer，no features specified
	04400000	22， 23	0773／0778＊＊printer，no optional features
	04100000	24， 25	0776 printer，no optional features
亜	04200000	26， 27	0768 printer，no optional features
∞	04800000＊	28， 29	0770 printer，no optional features

뀽뒤	08F80000	30, 31	Any card reader subsystem, no features specified
\%	08200000	32, 33	0717/0719** card reader, no features specified
	08800000	34, 35	0716 card reader, no features specified
	08400000	36, 37	Reserved
		38, 39	Reserved
퐁	$02 F 80000$	40,41	Any card punch subystem, no features specified
\%	02200000	42, 43	0605 card punch, no features specified
盛品	02400000	44, 45	0604 card punch, no features specified
¢ ${ }^{2}$		46, 47	Reserved
꿀	FFFFFFFF	48,49	Spare
cor	20FF0000	50-59	Any disk
\%	20100000	60-63	8416 disk subsystem
	20020000	64-66	8418 MODI disk subsystem (low density)
	20020004	67-69	8418 MODII disk subsystem (high density)

*Device type code changed to 04100000 during supervisor initialization if 0776 printer used in place of 0770 **Configured with the 90/25 System

	Standard Logical Unit Number Assignments (cont)		
	Device Type Code	Logical Unit No.	Device Type and Features
	$\begin{aligned} & 20200000 \\ & 20200004 \end{aligned}$	$\begin{aligned} & 70-74 \\ & 75-79 \end{aligned}$	8430 disk subsystem 8433 disk subsystem
砍00	20400000	80-85	8414 disk subsystem
¢	20800000	86-89	8411 disk subsystem
	$10 F F 0000$	90-99	Any tape, no features specified
들	10FF000A	100-102	Any tape, 9-track phase encoded
冎	1 OFF00006	103-105	Any tape, 9-track NRZI
ω	$10 F F 00005$	106-109	Any tape, 7-track NRZI
$\stackrel{\sim}{+}$	10C8000A	110-112	Slow tape, 9-track phase encoded

$10 C 80006$	$113-115$	Slow tape, 9-track NRZI
$10 \mathrm{CBOOO5}$	$116-119$	Slow tape, 7-track NRZI
1034000 A	$120-122$	Fast tape, 9-track phase encoded
10340006	$123-125$	Fast tape, 9-track NRZI
	126,127	Fast tape, 7-track NRZI
10340005	128,129	Reserved $40 F F 0000$
40800000	$130-133$	Any diskette
$400 F 0001$	134,135	8413 diskette
$400 F 0002$	140,141	Any diskette, 128 byte Any diskette, 256 byte

*Device type code changed to 04100000 during supervisor initialization if 0776 printer used in place of 0770.
**Configured with the 90/25 System

Device Type Code	Logical Unit No.	Device Type and Features
400F0004	142, 143	Any diskette, 512 byte
400F0008	144, 145	Any diskette, 1024 byte
FFFFFFFF	146, 147	Spare
40 FF0020	148, 149	Double-density diskette
$40 F F 0100$	150, 151	Any diskette, autoload
40FF0040	152, 153	Any diskette, double-sided
	154-159	Reserved
20086004	160	8415 disk subsystem-fixed
20088000	161	8415 disk subsystem-removable
2008 C004	162	8415 disk subsystem-fixed
	163-179	Reserved
20400004	$\begin{aligned} & 180-185 \\ & 186-199 \end{aligned}$	8424/8425 disk subsystem Reserved

	01FF0000 01FF0004 FFFFFFFF	$\begin{aligned} & 200-215 \\ & 216-219 \\ & 220-254 \\ & 255,256 \end{aligned}$	Any workstation Any workstation with 24 by 80 screen Spare Reserved

*Device type code changed to 04100000 during supervisor initialization if 0776 printer used in place of 0770.
**Configured with the 90/25 System

$\begin{array}{ll} \text { To } \\ \stackrel{0}{0} \\ \omega \\ \omega \\ 0 \\ \hline 0 \end{array}$	Job Control Procedure Call Statements	
	Label \triangle Operation \triangle Operand	Description
	//[symbol] procname [$p_{1}, p_{2}, \ldots, p_{n}, k_{i}=v_{i}, k_{j}=v_{j}, \ldots, k_{m}=v_{m}$]	Format of all user job control procedure call statements
		Generates the job control statements required to assign a device to a job step so that the file on that device can be accessed at job execution time
		Generates job control statements required to assign a disk to a job step and allocates space on that disk for the file

JOB CONTROL PROCEDURE CALL STATEMENTS (cont)

JOB CONTROL PROCEDURE CALL STATEMENTS

 (cont)

$$
[, L S T=\text { option }][, M A P=(S, A, L)]
$$

$[, O P T=(S, N, X)][$ LIN $=$ filename $]$ [.LST=option] [,MAP=(S,A,L)] $\left[S I Z E=\left\{\begin{array}{l} L \\ S \end{array}\right\}\right]$	
	Generates the job control statements needed to execute the linkage editor

$$
\left[. S I Z E=\left\{\begin{array}{l}
L \\
S
\end{array}\right\}\right]
$$

cont)
 JOB CONTRO

for the device assignment set nea or compare a disk file to a tape file

OUT=(vol-ser-no,label)
OUT=(vol-ser-no,label)
[PRNTR = {lun[,dest]}{\mp@code{N[,dest]}\mp@code{20[dest]}}}
[PRNTR = {lun[,dest]}{\mp@code{N[,dest]}\mp@code{20[dest]}}}
[,PUNCH={$$
\begin{array}{c}{\mathrm{ YES NO}}\\{\mathrm{ NO }}\end{array}
$$][,COMPARE ={$$
\begin{array}{l}{\mathrm{ YES }}\\{\mathrm{ MO}}\end{array}
$$}]
[,PUNCH={$$
\begin{array}{c}{\mathrm{ YES NO}}\\{\mathrm{ NO }}\end{array}
$$][,COMPARE ={$$
\begin{array}{l}{\mathrm{ YES }}\\{\mathrm{ MO}}\end{array}
$$}]
Generates the job control
statements for the device assignment set needed by the UTS 400 upline conversion routine or upline linker routine
Generates the job control statements for the device assignment set needed by the data utility routine to copy or compare a tape file to a disk file
Job Control Procedure Call Statements (cont)

Label \triangle Operation \triangle Operand	Description
//ignored $\left\{\begin{array}{l}\text { UPLCNV } \\ \text { LNKUPL }\end{array}\right\}\left[\right.$ PRNTR $\left.=\left\{\begin{array}{c}n \\ \text { s. }\end{array}\right\}\right]$, FILn $=\left\{\begin{array}{l}\text { vsn,label, filename } \\ \text { RES,label, filename } \\ \text { RUN,label, filename }\end{array}\right\}$	Generates the job control statements for the device assignment set needed by the UTS 400 upline conversion routine or upline linker routine
//ignored UTD IN =(vol-ser-no, label) $. \text { OUT }=\left(\left\{\begin{array}{l} \text { vol-ser-no } \\ \text { RES } \\ \text { RUN } \end{array}\right\} \text {, label }\left[.\left\{\begin{array}{c} \text { noext } \\ \text { 竞 } \end{array}\right\}\right]\left[\left\{\begin{array}{l} \text { ACCEPT } \\ \text { EXTEND } \\ \text { INIT } \\ \text { RELOD } \end{array}\right\}\right]\right)$	Generates the job control statements for the device assignment set needed by the data utility routine to copy or compare a tape file to a disk file

\section*{| UP- 8203 | SPERRY UNIVAC OS/3 | $3-46$ |
| :--- | :--- | :--- |
| Rev. 3 | HARDWARE/SOFTWARE SUMMARY | Update A |}

Job Control Procedure Call Statements (cont)

	anned Job Control Str	Call Statements
	Job Name	Function
	ADD1KCOS	Adds 1 K COS to $\$ Y \$ S R C$ on SYSRES．
	ADD2KCOS	Adds 2 K of COS to $\$ Y \$$ SRC on SYSRES．
宍	ADD3KCOS	Adds 2 K of fast COS to \＄Y\＄SRC on SYSRES．
$\begin{aligned} & \sum_{i}^{n} \\ & \text { 突另 } \\ & \text { nop } \end{aligned}$	CGV／CHGVSN	Changes a volume serial number on a previous prepped disk pack．CGV is used at the console；CHGVSN is used for card streams．
$\begin{aligned} & \stackrel{D}{3} \\ & \stackrel{D}{3} \end{aligned}$	COPYREL	Copies RELEASE／SYSRES files from an existing SYSRES to a new SYSRES volume．
	COPY\＄10	Creates a backup copy of an 8410 disk．
	COPY\＄11	Creates a backup copy of an IBM 2311 disk onto a Series 90 supported disk．Note that the 8411 and 8414 disks may not be used as output devices．
宕	DCOP	Copies SYSRES from one disk file to another．
	DRDP	Prints directory partition of a librarian disk file．
	DUMPLOG	Dumps job or console log records to disk．
	DUMPLOGT	Dumps job or console log records to tape．
	DUMP20	Dumps the image of an IBM 360／20 disk pack．

Canned Job Control Stream Call Statements (cont)

	Job Name	Function
	ECDC	Feeds in cards with names for an emulation carriage tape loops display program.
	ECDK	Keys in names for an emulation carriage tape loops display program.
	JBLOG	Produces a job accounting report with SYSLOG residing on disk.
	JBLOGT	Produces a job accounting report with SYSLOG residing on tape.
	LISTRES	Prints directory for SYSRES modules.
	MODLST	Lists the contents of the system libraries.
$\sum_{\gg}^{n} \sum_{\leq}$	ONUERL	Prints error log report.
冎号	PACKRES	Compresses all modules on SYSRES and prints directory of compressed modules.
	PIMAGE	Creates a copy of an 8410 disk image onto a Series 90 supported disk. (Note that an input tape must be mounted when PIMAGE creates a pack file but not when it creates a workfile. The logical unit number for the disk must be provided.)
$\begin{aligned} & \text { 듬 } \\ & \frac{1}{2} \\ & \stackrel{y}{\omega} \\ & i \\ & > \end{aligned}$	PNCH9300	Punches card deck to use 9300 as peripheral device.
	PRNT9300	Prints source module needed to use 9300 as a peripheral device.
	PRP1KCOS	Repositions 1K COS from \$Y\$SRC on SYSRES for COS-IPL.
	PRP2KCOS	Repositions 2K COS from \$Y\$SRC on SYSRES for COS-IPL.
	PRP3KCOS	Repositions 2 K of fast COS from SY\$SRC on SYSRES for COS-IPL.

	SYSDUMP	Prints a complete system dump from SYSRES or another system disk．
	SYSDUMPO	Prints a complete system dump or a portion of a system dump from SYSRES or another system disk．
	UPLDELT	Deletes the specified UTS 400 upline dump file．
	UPLDMPN	Prints the specified UTS 400 upline dump file．
	UPLDUMP	Prints and deletes the specified UTS 400 upline dump file．
$\begin{aligned} & \text { T } \\ & \text { 空 } \\ & \sum_{i=1}^{n} \\ & \text { 另 } \end{aligned}$	VTOC20	Prints a volume table of contents listing of an IBM 360／20 disk pack image．
	WRT	Creates files on a diskette．

－Add COS to $\$ Y \$ S R C$ on SYSRES．
System Console：RU $\left\{\begin{array}{l}\text { ADD1KCOS } \\ \text { ADD2KCOS } \\ \text { ADD3KCOS }\end{array}\right\}$
Card Reader：COS deck followed by／／FIN job control statement

Canned Job Control Stream Call Statements (cont)

- Change a volume serial number on a previously prepped disk pack. Parameters may be entered at the console using the CGV command or the CHGVSN command with input cards.

System Console Keyin: RV CGV, $0=0$ old-vsn, $N=$ new-vsn,T=disk-type
System Console with Cards: RU CHGVSN
Card Reader:

- Copy RELEASE/SYSRES files from an existing SYSRES to a second disk pack of any type.

System Console Keyin: RV COPYREL, $[\mathrm{I}, \mathrm{V}=\mathrm{vsn}][\mathrm{T}=$ disk-type $[[, \mathrm{S}=$ first-file][, $\mathrm{E}=$ =last-file]
Disk type values are:

Value	Disk Type	Value		Disk Type
		8411	$18 B$	8418 high density
11	8414	24	8424	
14	8415 fixed	25	8425	
15 F	8415 removable	30	8430	
$15 R$	8416	33	8433	
16	8418 low density			

Canned Job Control Stream Call Statements (cont)

where:

$S=$ first-file
Indicates the first file to be copied, according to the code letter specified. If omitted, copying begins with S.
$E=$ last-file
Indicates the last file to be copied, according to the code letter specified. If omitted, copying ends with A.
The first file and last file code letters are:

Copy Order	Code	File Name
1	S	\$Y\$SRC
2	0	$\$ Y \$ 0 B J$
3	L	\$Y\$LOD
4	M	\$Y\$MAC
5	J	$\$ Y \$ J C S$
6	G	SG\$JCS
7	SGMAC	SG\$MAC
8	SGOBJ	SG\$OBJ
9	SGLOD	SG\$LOD
10	SCLOD	$\$ Y \$ S C L O D$

Copy Order	Code	File Name
11	MIC	\$Y\$MIC
12	IVP	IVPLIB
13	SMCFILE	SMCFILE
14	FMT	\$Y\$FMT
15	SAVE	\$Y\$SAVE
16	DIALOG	\$Y\$DIALOG
17	SDF	\$Y\$SDF
18	HELP	\$Y\$HELP
19	T	\$Y\$TRAN
20	A	\$Y\$TRANA

System Console Keyin with Cards: RU COPYREL
Card Reader for All Disk Types Except 8415 Removable:

$\angle / I_{1} N_{1} V 1 O_{1} L_{1}$	JSIEIL	
	JTS E1T1	
1, MOUTIV	JS, E_{1}	¢
$1,0,0$ 1.1 .1	$\begin{aligned} & 15 \\ & 1.1 \end{aligned}$	$11,1,1+1,1111,1814,2,4,1814,2,5,1,814,3,0,8,814,3,31)$
$11_{1} S_{1}$	J1S	
$1 L_{1} E_{1}+1$	JIS, E,	
MWEIN1	11.1	1

When using cards, only the following code letters can be used to specify first and last files: $S, 0, L, M, J, G, T$, or A.

Card Reader for 8415 Removable Disk（must be run once for each volume）
Run 1 （primary disk）：

1，IIN，VIOL		
LISNTTY，PIE	JSETI．	
111	1111	$1.111111111 .8,4 \mid 251,8.4130,8143131) 11$
$1_{1} l_{1} V_{1} S_{1} N_{1} l_{1}$	JS，ET，	
1，100UTIY，	$\left.1 J_{1} S_{1}, E_{1}\right]$	$1814 L_{1} 51 R^{\prime}$
1， $1_{1} S_{1} 1$	$J_{1 S} \mathrm{E}_{1} T_{1}$	
$1_{1} 1_{1} \mathrm{E}_{1}, L_{1}$	$J_{1} S_{1} E_{1} T_{1}$	
$1_{1} /_{1} F_{1}$ In $_{1} N_{1}$	1.	
＋1，1．1．		

CANNED JOB CONTROL STREAM CALL STATEMENTS (cont)
Run 2 (secondary disk):

M/INivionta	TSIETI	Simipiultavsinl
C,INMTIV, PIE	JSLETTI	
- - L1.	+1	
h/visnl2.	SIETI	
Limumitip	TSSET	
	TSUET	
WhE14	TSSES	
Le. FIIN,		111.1.1.11-1

Canned Job Control Stream Call Statements（cont）
－Create a backup copy of an 8410 disk．
System Console Keyin：RV COPY $\$ 10, \quad\left[, L=\left\{\begin{array}{l}0 \\ 1-9\end{array}\right\}\right]\left[, L L=\left\{\begin{array}{l}\text { 共 } \\ \text { input－label }\end{array}\right\}\right]$

$$
\begin{aligned}
& {\left[, L O=\left\{\begin{array}{l}
\text { 輀 } \\
\text { output-label }
\end{array}\right\}\right]\left[, R=\left\{\begin{array}{l}
\text { I } \\
Y
\end{array}\right\}\right]}
\end{aligned}
$$

- Create a backup copy of an IBM 2311 disk onto a Series 90 supported disk.

System Console Keyin: RV COPY\$11, $\left[, D=\left\{\begin{array}{l}N \\ Y\end{array}\right\}\right]\left[, L=\left\{\begin{array}{l}3 \\ 0-9\end{array}\right\}\right]\left[, L=\left\{\begin{array}{l}X \\ \text { input-label }\end{array}\right\}\right]$
$\left[, L O=\left\{\begin{array}{l}\boldsymbol{x} \\ \text { output-label }\end{array}\right\}\right]\left[M=\left\{\begin{array}{l}1 \\ 2\end{array}\right\}\right]\left[, R=\left\{\begin{array}{l}N \\ Y\end{array}\right\}\right]$
$\left[, V I=\left\{\begin{array}{l}X \\ \text { input-vsn }\end{array}\right\}\right]\left[, V O=\left\{\begin{array}{l}\boldsymbol{X} \\ \text { output-vsn }\end{array}\right\}\right]$

System Console Keyin with Cards: RU COPY\$11

Card Reader:

- Copy SYSRES from one disk pack to another disk of the same type.

System Console Keyin: RV DCOP, $\quad\left[, T=\left\{\begin{array}{l}\text { disk-type } \\ 16\end{array}\right\}\right]\left[, N=\left\{\begin{array}{l}\text { number } \\ \mathbf{1}\end{array}\right\}\right]\left[\begin{array}{l}, V=\left\{\begin{array}{l}\text { YES } \\ \text { NO }\end{array}\right\}\end{array}\right]$

- Print directory partition of librarian disk file.

File-identifier names of up to 11 characters:
System Console Keyin: RV DRDP,,V=vsn,L=file-identifier
Card Reader: No input required

File identifier names of 12 or more characters:
System Console: No entry required

Card Reader:

Canned Job Control Stream Call Statements (cont)

- Dump job or console log records to disk.

- Dump job or console log records to tape.

System Console Keyin: RV DUMPLOGT $\left[,\left[, D=\left\{\begin{array}{c}\text { mer } \\ \mathbf{L 0 e} \\ C O N\end{array}\right\}\right]\left[, V=\left\{\begin{array}{l}\text { vsn } \\ \text { SYsLGG }\end{array}\right\}\right]\left[, C=\left\{\begin{array}{l}Y \\ N\end{array}\right\}\right]\right]$

Dump the image of an IBM 360/20 disk pack.
System Console Keyin: RV DUMP20,,V=nnnnnn,L=dump-pack-filename

- Feed in cards with record names for an emulation carriage tape loops display program.

System Console Keyin: RU ECDC

Card Reader:

Canned Job Control Stream Call Statements (cont)

For alternate file search: $\mathrm{RU} E C D C,, F=(v s n,|b|$-name $)$
For RUN command keyins when alternate file id entry is more than 28 characters:
System Console Keyin: RU ECDC,,F=(CR)
Card Reader:

For alternate file search: RV ECDC,F=(vsn,|bl-name)
－Key in record names for an emulation carriage tape loops display program．
System Console Keyin：RV ECDK
（message requests record name） record name keyin

EOJ

Canned Job Control Stream Call Statements (cont)

For alternate file search:
System Console Keyin: RV ECDK,,F=(vsn,Ibl-name)
For RUN command keyins when alternate file id entry is more than 28 characters:
System Console Keyin: RV ECDK,,F=(CR)
Card Reader:

- Produce a job accounting report with SYSLOG residing on disk.

System Console Keyin: RUN JBLOG $\left[, V=\left\{\begin{array}{l}\text { vsn } \\ \text { RES }\end{array}\right\}, L=\left\{\begin{array}{l}\text { vsn } \\ \text { SYSLOG }\end{array}\right\}, S=\left\{\begin{array}{l}A \\ \mathbf{D} \\ C\end{array}\right\}\right]$
Card Reader: No input required.

- Produce a job accounting report with SYSLOG residing on tape.

System Console Keyin: RUN JBLOGT $\left[, V=\left\{\begin{array}{l}\text { vsn } \\ \text { SrsLoe }\end{array}\right\}, S=\left\{\begin{array}{c}A \\ B \\ C\end{array}\right\}\right]$
Card Reader: No input required.

- Print directory for SYSRES modules.

System Console Keyin: RV LISTRES,[,F=file-name $[[, V=v s n]$

Canned Job Control Stream Call Statements (cont)

- List contents of the system libraries.

System Console Keyin: RV MODLST [,VSN=vsn]

- Print error log report.

System Console Keyin: RV ONUERL
With this keyin, all options are set to their default values.

STATEMENTS (cont) CANNED JOB

System Console Keyin with Cards: RU ONUERL,,CARD=YES

Card Reader:

Where parameters may include:

$\left[/ /\right.$ PARAM ELOG $\left.=\left\{\begin{array}{l}\text { ON } \\ \text { OFI }\end{array}\right\}\right]$

[// PARAM TRACE=YES]

- Compress all modules on SYSRES and print directory of compressed modules.
Create a copy of an 8410 disk image onto a Series 90 supported disk.
System Console Keyin: RV PIMAGE
Card Reader:

Where parameters are:
V0L9030=vvvvv
$\left[\right.$, DISCDRV $\left.=\left\{\begin{array}{c}\text { ddd } \\ 050\end{array}\right\}\right]$

$$
\left[\left\{\begin{array}{l}
\text { INPUT=CARD } \\
\text { TAPEDRV }=\left\{\begin{array}{l}
\mathrm{ttt} \\
090
\end{array}\right\}
\end{array}\right\}\right]
$$

$$
[, C N T R L=\text { NOINPT] }
$$

$$
\left[\text {,PACKNAME }=\left\{\begin{array}{l}
\text { aaaaaaaa } \\
\text { DISC8410 }
\end{array}\right\}\right]
$$

$$
\left[, R E R U N=\left\{\begin{array}{l}
\text { NO } \\
Y E S
\end{array}\right\}\right]
$$

$$
[, I N \mid T=O N L Y]
$$

For running the PIMAGE program with spooling:

[^0]
Canned Job Control Stream Call Statements (cont)

Card Reader:

- Punch card deck to use 9300 as peripheral device.

System Console Keyin: RV PNCH9300
Card Reader: No input required.

- Print source module needed to use 9300 as a peripheral device.
System Console Keyin: RV PRNT9300
Card Reader: No input required.
Reposition COS from \$Y\$SRC for COS-IPL.
System Console Keyin: RV $\left\{\begin{array}{l}\text { PRP1KCOS } \\ \text { PRP2KCOS } \\ \text { PRP3KCOS }\end{array}\right\}$ "V=vsn, $T=$ disk-type

Canned Job Control Stream Call Statements (cont)
Where disk-type values are:

Value	
11	
14	8411
14	8414
15 F	
$15 R$	8415 fixed Type
16	8415 removable
18 A	8416
18 B	8418 low density
24	8418 high density
25	8424
30	8425
33	8430
	8433

System Console Keyin with Cards: RU $\left\{\begin{array}{l}\text { PRP1KCOS } \\ \text { PRP2KCOS } \\ \text { PRP3KCOS }\end{array}\right\}$
Card Reader:

$L_{1}, V_{1} S_{1} N_{1}$	JS, ET,	1 c	
LI,T,YPPIE,	TSUETI	d	
$1+1$	1		L
1/1_EIIN1,	11.1		

Canned Job Control Stream Call Statements (cont)

- List all shared code modules in SYSRES.

System Console Keyin: RV SCLIST

- Prep and allocate RELEASE/SYSRES files.

System Console Keyin: RV SETREL,, $V=$ vsn, $T=$ disk-type, $\mathrm{P}=$ prep-type
Where disk-type values are:

Value	Disk Type	Value	Disk Type
11	8411	18	8418 high and low density
14	8414	24	8424
15F	8415 fixed	25	8425
15R	8415 removable	30	8430
16	8416	33	8433

NOTE：

If you are prepping a 8415 removable disk with both a primary and secondary volume，SETREL must be performed on both volumes．See the following description of using SETREL with cards for further details．

Where prep－type values are：

Code
N
F
P

Meaning
No prep performed，assign files only Full prep，with surface analysis
Partial prep，without surface analysis（If omitted，P is assumed）

Canned Job Control Stream Call Statements (cont)
Card Reader for all Disk Types (except 8415 Removable) Specifying Partial Prep

label	${ }_{10} \triangle$	OPERATION ${ }_{20}$	\triangle		operand	${ }_{40}{ }^{\triangle}$		comments	60		80

NOTE:

To prep a selector channel device disk pack with no defective tracks, omit the INSERT $\triangle \triangle \triangle$ NONE statement but include the second // FIN statement.

Card Reader for 8415 Removable (must run once for each volume):
Run 1 (primary disk):

label	${ }_{10} \triangle$	OPERATION 20	\triangle		operand	40^{\triangle}	50	comments	60	70	80
MVSSNL	JSE	$V \leq n^{\prime}$		VOLUME SERIAL NUMBER OF PRIMARY DISK .PACK							
WJYPE JSET: 4 HISR											

Canned Job Control Stream Call Statements (cont)
Run 2 (secondary disk):

label	${ }_{10} \triangle$	OPERATION 20	Δ	30	operand	${ }_{40}{ }^{\triangle}$	50	COMmENTS	60	70	80
//PREP	JSE	'D		PARTIAL PREP WITH NO SURFACE ANALYSIS							
$\angle V S N 2$	J.SE	$\cdots v \leq n^{\prime}$..VOLUME SERIAL NUMBER OF SECONDARY DISK PACK							
LLTYPE	JSE	18415									
LLEFN											

NOTE:

This example shows SETREL performing a partial prep of an $8415 R$ disk pack. A full prep can be accomplished by changing the statements in the manner previously described for the other disk types.

- Install a software maintenance change (SMC).

- Run SMC installation program to perform additional tasks.

System Console Keyin: RV SMC,,INPUT $=\left\{\begin{array}{l}C \\ C R \\ (C R, v s n) \\ \left.\left.\begin{array}{l}(D K D, v s n) \\ (T, v s n)\end{array}\right\}, C H G=Y\left[B A C K O U T=\left\{\begin{array}{l}\text { DRES } \\ (D, R U N)\end{array}\right\}\right] .\right] .\end{array}\right.$

Canned Job Control Stream Call Statements (cont)

- Print SMC log.

System Console Keyin: RV SMCLIST, $\left[\right.$ FMT $=\left\{\begin{array}{l}\mathbf{F} \\ C\end{array}\right]\left[\right.$,SEQ1 $\left.=\left\{\begin{array}{l}\text { COMP } \\ \text { SMCH } \\ \text { PP-TYPE } \\ \text { DATE }\end{array}\right\}\right]$

- Install a software maintenance package (SMP).

- Print a complete system dump from SYSRES or another system disk. System Console Keyin: RV SYSDUMP,,[,V=vsn]
- Print a system dump from SYSRES or another system disk after an HPR.

System Console Keyin: RV SYSDUMP0,,	$\left[\begin{array}{l} \mathrm{D} 0 \end{array}=\left\{\begin{array}{l} \text { ALL }\left[\begin{array}{l} \text { NOSHARE }] \\ \text { DUMP }\left[\left\{\frac{\text { NOSHARE }}{\text { SELECT }}\right\}\right. \end{array}\right] \\ \text { TRANSLATED }\left[\begin{array}{l} \text { NOSHARE }] \end{array}\right. \\ \text { JOBS }\left[\left\{\begin{array}{l} \text { NOSHARE } \\ \text { SELECT } \end{array}\right]\right] \\ \text { SAVE } \\ \text { RESTORE } \\ \text { NONE } \end{array}\right\}\right.$	[, $\mathrm{V}=\mathrm{vsn}$] [, $\mathrm{P}=\mathrm{did}$]

1. After an HPR has occurred, the system must be brought back up and the IPL performed before the RV SYSOUMPO command can be entered.
2. The options and suboptions of the $D O=$ parameter allow for a more specific dump. The use of these options is described in the dump analysis user guide/programmer reference, UP-8837 (current version).
3. If the command is entered without a $D O=$ parameter entry, the following message is displayed:

SDO1 DUMP OPTION (ALL,NONE,DUMP,TRANSLATED,JOBS,RESTORE,SAVE)
An option can be entered at this time, or, by leaving it blank, a default of All is assumed and a complete system dump is produced.

- Delete specified UTS 400 upline dump file.

System Console Keyin: RV UPLDELT,, $\left\{\begin{array}{l}\text { ALL } \\ 1 D=\text { file-id }\end{array}\right\}$

- Print specified UTS 400 upline dump file.

System Console Keyin: RV UPLDMPN,,ID=file-id

- Print and delete specified UTS 400 upline.

System Console Keyin: RV UPLDUMP,,ID=file-id

- Print a volume table of contents listing of an IBM 360/20 disk pack image.

System Console Keyin: RV VTOC20,,V=nnnnnn,L=disk-pack-filename

Canned Job Control Stream Call Statements (cont)

- Create files on a diskette.

System Console Keyin: RV WRT, $\left[\mathrm{D}=\left\{\begin{array}{l}\text { did } \\ \text { sed }\end{array}\right\}\right], V=\mathrm{vsn}\left[\mathrm{F}=\left\{\begin{array}{l}\text { filename } \\ \text { Imce }\end{array}\right\}\right]\left[, \mathrm{B}=\left\{\begin{array}{l}\text { sectors } \\ \text { se }\end{array}\right\}\right]$

$$
\left[, 0=\left\{\begin{array}{l}
Y \\
W
\end{array}\right\}\right]\left[, S=\left\{\begin{array}{l}
Y \\
z
\end{array}\right\}\right]\left[, E=\left\{\begin{array}{l}
Y \\
W
\end{array}\right\}\right]\left[, R=\left\{\begin{array}{l}
Y \\
\hline
\end{array}\right\}\right]\left[, A=\left\{\begin{array}{l}
Y \\
\text { w }
\end{array}\right\}\right]
$$

Where the functions that may be performed on a file are:
0 Opens an existing file
S Scratches all or part of a file
E Extends (adds to) an existing file
R Recreates (overwrites) an existing file
A Sorts the file in numeric order

Diskette utility commands and their meanings:
A Inserts a record into a file
C Identifies a line to be changed
R Changes an identified line
1 Ignores an issued C command
$L \quad$ Lists the contents of a file
F Closes a file
E Terminates utility processing
D Displays the available commands

	Physical Input/Output Control System			
	Label	Operation	Operand	Description
	Physical Input/Output Control			
	symbol	BCW	device-cmd-code [,data-addr] [,data-flag] [,data-byte-count] [,repl-addr] [,repl-flag] [,repl-byte-count] [,control-flag]	Generates buffer control word
	symbol	CCB	$\begin{aligned} & \text { PIOCB-name, }\left\{\begin{array}{l} \text { BCW-name } \\ \text { CCW-name } \end{array}\right\} \\ & {\left[\cdot\left\{\begin{array}{c} \text { PUB-entry } \\ 0 \end{array}\right\}\right]\left[\cdot\left\{\begin{array}{c} \text { error-option } \\ x 00 \end{array}\right\}\right]} \end{aligned}$	Generates command control block
	symbol	CCW	[device-cmd-code] [,data-addr] [,flag] [,data-byte-count]	Generates channel command word
	[symbol]	EXCP	$\left\{\begin{array}{l}\text { CCB-name } \\ (1)\end{array}\right\}[, C]$	Executes channel program

Physical Input/Ouput Control System (cont)

Label	Operation	Operand	Description
Physical Input/Output Control (cont)			
symbol	PIOCB	$\left[\left\{\begin{array}{l}\text { FCB-length } \\ \text { MAX } \\ 16\end{array}\right\}\right]$	Generates input/output control block
[symbol]	RDFCB	$\begin{aligned} & \left\{\begin{array}{l} \text { PIOCB-name } \\ (1) \end{array}\right\} \\ & {\left[\cdot\left\{\begin{array}{l} \text { error-addr } \\ (r) \end{array}\right\}\right]} \end{aligned}$	Reads file control block

	Space Management			
	Label	Operation	Operand	Description
	Disk			
	[symbol]	ALLOC	$\left.\begin{array}{l} \left\{\begin{array}{l} \text { FCB-name } \\ \text { filename-addr } \end{array}\right\} \\ (1) \end{array}\right\} \begin{aligned} & {\left[\cdot\left\{\begin{array}{l} \text { error-addr } \\ (r) \end{array}\right\}\right.} \\ & {\left[\cdot\left\{\begin{array}{l} \text { vol-seq-no,OLD,NOFCB } \\ (0) \end{array}\right\}\right]} \end{aligned}$	Assigns space to a new disk file or to an existing disk file
	[symbol]	EXTEND	$\left.\left.\begin{array}{l} \left\{\begin{array}{c} \text { FCB-name } \\ \text { filename-addr } \\ (1) \end{array}\right\}\left[\cdot\left\{\begin{array}{c} \text { error-addr } \\ (r) \end{array}\right\}\right] \\ {\left[\left\{\left\{\begin{array}{c} 01 \\ 80 \end{array}\right\},\left\{\begin{array}{c} \text { vol-seq-no } \\ 3 \end{array}\right\}[, \text { FCBCORE }]\right.\right.} \end{array}\right\}\right] .$	Assigns additional space to an existing disk file

폭	[symbol]	OBTAIN	$\begin{aligned} & \left\{\begin{array}{c} \text { param-list } \\ (1) \end{array}\right\}\left[\prime\left\{\begin{array}{c} \text { error-addr } \\ (r) \end{array}\right\}\right] \\ & {\left[,\left\{\begin{array}{c} \text { vol-seq-no } \\ 1 \end{array}\right\}\right][\text { [FCBCORE] }} \end{aligned}$	Accesses VTOC user block
	[symbol]	RENAME	$\begin{aligned} & \left\{\begin{array}{l} \text { param-list } \\ (1) \end{array}\right\} \\ & {\left[,\left\{\begin{array}{l} \text { error-addr } \\ (r) \end{array}\right\}\right]\left[\left\{\begin{array}{l} \text { vol-sea-no } \\ 1 \end{array}\right\}\right]} \\ & {[, \text { FCBCORE }]} \end{aligned}$	Renames a disk file
	[symbol]	SCRTCH	$\begin{aligned} & \left\{\begin{array}{c} \text { FCB-name } \\ (1) \end{array}\right\}\left[\left\{\begin{array}{l} \text { PREFIX } \\ \text { ALL } \\ (0) \end{array}\right\}\right] \\ & {\left[\cdot\left\{\begin{array}{c} \text { error-addr } \\ (r) \end{array}\right\}\right]} \end{aligned}$	Deallocates one or more disk files

Space Management (cont)

	[symbol]	OPEN	$\left\{\begin{array}{l}\text { filename-1 }[\ldots, \text { filename-n] } \\ (1)\end{array}\right\}$	Opens disk file
	partition-name	PCA	$\begin{aligned} & \text { BLKSIZE=n } \\ & \text { lOAREA }=\text { symbol } \\ & {[\text { [,EODADDR=symbol }]} \\ & {[, F O R M A T=N O]} \\ & {[, K E Y L E N=n][, L A C E=n]} \\ & {[, L B L K=n][, S E Q=Y E S]} \\ & {[, S I Z E=n][, U O S=n]} \\ & {[, V E R I F Y=Y E S]} \\ & \hline \end{aligned}$	Defines partition control appendage
	[symbol]	PUT	$\left\{\begin{array}{l}\text { filename } \\ (1)\end{array}\right\} \cdot\left\{\begin{array}{l}\text { PCA-name } \\ \text { (0) }\end{array}\right\}$	Outputs logical block
	[symbol]	$\left\{\begin{array}{l} R E A D E \\ R E A D H \end{array}\right\}$	$\left\{\begin{array}{l} \text { filename } \\ (1) \end{array}\right\}\left\{\begin{array}{l} \text { PCA-name } \\ 10) \end{array}\right.$	Searches track by key, equal Searches track by key, equal or higher
	[symbol]	SEEK	$\left\{\begin{array}{l}\text { filename } \\ (1)\end{array}\right\} \cdot\left\{\begin{array}{l}\text { PCA-name } \\ \text { (0) }\end{array}\right\}$	Accesses physical block
	[symbol]	WAITF	$\left\{\begin{array}{l} \text { filename } \\ 11) \end{array}\right\}$	Waits for block transfer

System Access Technique (SAT) (cont)

Label	Operation	Operand	Description
Tape SAT			
[symbol]	CLOSE	$\left\{\begin{array}{c} \text { filename-1 }[, \ldots, \text { filename-n }] \\ (1) \end{array}\right\}$	Closes tape file
[symbol]	CNTRL	$\left\{\begin{array}{c} \text { filename } \\ (1) \end{array}\right\} \text {,code }$	Initiates nondata operations on a tape unit
[symbol]	GET	$\left\{\begin{array}{c} \text { filename } \\ (1) \end{array}\right\} \cdot\left\{\begin{array}{c} \text { TCA-name } \\ (0) \end{array}\right\}$	Gets next logical block
[symbol]	OPEN	$\left\{\begin{array}{c} \text { filename-1 }[, \ldots, \text { filename-n }] \\ (1) \end{array}\right\}$	Opens tape file

	System Access Technique (SAT) (cont)			
	Label	Operation	Operand	Description
	Tape SAT (cont)			
	TCA-name	TCA	IOAREA1=area-name ,BLKSIZE=n [,BKNO=YES] [,CKPTREC=YES] $\left[, C L R W=\left\{\begin{array}{l} \text { NORWD } \\ \text { RWD } \end{array}\right\}\right]$ [,EOFADDR=end-of-data-addr] $\left[, F I L A B L=\left\{\begin{array}{l} \text { STD } \\ \text { NSTD } \\ \text { NO } \end{array}\right\}\right]$ [, LBLK=n] [,OPRW=NORWD] $\left.\begin{array}{l} {\left[, R E A D=\left\{\begin{array}{l} \text { FORWARD } \\ \text { BACK } \end{array}\right\}\right.} \end{array}\right] .$	Defines the logical attributes of a magnetic tape file to be processed by TSAT

			[,TPMARK=NO] [,TYPEFLE=OUTPUT]	
	[symbol]	WAITF	$\left\{\begin{array}{c} \text { filename } \\ (1) \end{array}\right\}$	Waits for block transfer

Multitasking

Label	Operation	Operand	Description
Task Management			
［symbol］	ATTACH	$\begin{aligned} & \left\{\begin{array}{l} \text { ECB-name } \\ (1) \end{array}\right\},\left\{\begin{array}{l} \text { entry-point-name } \\ (0) \end{array}\right\} \\ & {\left[\cdot\left\{\begin{array}{c} \text { error-addr } \\ (r) \end{array}\right\}\right] \quad[, n]} \end{aligned}$	Creates and activates additional tasks
［symbol］	AWAKE	$\left[\left\{\begin{array}{l}\text { ECB－name } \\ (1)\end{array}\right\}\right]$	Reactivates existing，nonactive task
［symbol］	CHAP	$\left\{\begin{array}{l}n \\ (1)\end{array}\right\}$	Changes priority of task
［symbol］	DETACH	$\left[\left\{\begin{array}{l}\text { ECB－name } \\ (1)\end{array}\right\}\right]\left[\left\{\begin{array}{c}\text { error－addr } \\ (r)\end{array}\right\}\right]$	Terminates task normally
［symbol］	ECB		Generates event control block

	[symbol]	TYIELD		Deactivates a task
	Task Synchronization			
	[symbol]	POST		Activates waiting task
	[symbol]	TGO	$\left\{\begin{array}{l} \text { ECB-name } \\ \text { ALL } \\ (1) \end{array}\right\}\left[\cdot\left\{\begin{array}{c} \text { error-addr } \\ (r) \end{array}\right\}\right]$ [,TYIELD]	Reactivates a task or tasks deactivated by previous TPAUSE macro instruction
	[symbol]	TPAUSE	$\left.\left\{\begin{array}{l}\text { ECB-name } \\ \text { ALL } \\ (1)\end{array}\right\}\left[\begin{array}{c}\text { error-addr } \\ (r) \\ \end{array}\right\}\right]$	Deactivates task or tasks until a subsequent TGO macro instruction is issued to reactivate the task or tasks
	[symbol].	WAIT	$\left\{\begin{array}{c}\text { ECB-name } \\ (1)\end{array}\right\}$	Waits for task request to complete
$\begin{aligned} & \text { 悥p } \\ & \text { 总 } \\ & \text { © } \end{aligned}$	[symbol]	WAITM	$\left\{\begin{array}{l} \text { ECB-name-1,ECB-name-2 } \\ \text { [,...ECB-name-n] } \\ \text { list-name } \\ (1) \end{array}\right\}$	Waits for one of several task requests to complete

	Program Management			
	Label	Operation	Operand	Description
	Program Loader			
	[symbol]	FETCH	$\begin{aligned} & \left\{\begin{array}{l} \text { phase-name } \\ (1) \end{array}\right\} \\ & {\left[\cdot\left\{\begin{array}{l} \text { entry-point-name } \\ (0) \end{array}\right\}\right][, R][, D A]} \end{aligned}$	Loads program phase and branches
	[symbol]	LOAD	$\begin{aligned} & \left\{\begin{array}{l} \text { phase-name } \\ (1) \end{array}\right\}\left[\cdot\left\{\begin{array}{l} \text { load-addr } \\ (0) \end{array}\right\}\right] \\ & {\left[,\left\{\begin{array}{l} \text { error-addr } \\ (r) \end{array}\right\}\right][, R][, D A]} \end{aligned}$	Loads program phase and returns control
	[symbol]	LOADI	$\left\{\begin{array}{l}\text { phase-name } \\ (1)\end{array}\right\} \cdot\left\{\begin{array}{l}\text { work-area-addr } \\ (0)\end{array}\right\}$	Locates program phase and stores its phase header in work area

			$\begin{aligned} & {\left[\cdot\left\{\begin{array}{l} \text { work-area-length } \\ 13 \end{array}\right\}\right]} \\ & {\left[\cdot\left\{\begin{array}{l} \text { error-addr } \\ (\mathrm{r}) \end{array}\right\}\right][, \mathrm{R}]} \end{aligned}$	
	[symbol]	LOADR	$\begin{aligned} & \left\{\begin{array}{l} \text { phase-name } \\ (1) \end{array}\right\}\left[\begin{array}{l} \left\{\begin{array}{l} \text { load-addr } \\ (0) \end{array}\right\} \end{array}\right] \\ & {\left[\cdot\left\{\begin{array}{l} \text { error-addr } \\ (r) \end{array}\right\}\right][, R][, D A]} \end{aligned}$	Loads program phase, relocates address constants, and returns control
	Job and Task Termination			
	[symbol]	CANCEL	$\left[\left\{\begin{array}{c}\text { error-code } \\ 100 \\ 0 \\ 0\end{array}\right\}\right]$ [.NODUMP]	Terminates job abnormally
닥	[symbol]	EOJ		Terminates job step normally

Program Management (cont)

Label	Operation	Operand	Description
Timer Services			
[symbol]	GETIME	$\left.\left[\begin{array}{l}M \\ S\end{array}\right\}\right]$	Obtains current time and date
[symbol]	SETIME	$\begin{aligned} & {\left[\left\{\begin{array}{c} \{\text { time-interval } \\ (1) \end{array}\right\}\right][\text { WAIT] }} \\ & {\left[\cdot\left\{\begin{array}{c} \text { M } \\ S \end{array}\right\}\right]} \end{aligned}$	Sets elapsed time counter for the requesting task
Program Linkage			
symbol	ARGLST	param-1,...param-n	Generates an argument list as required by the CALL/VCALL macro. This is a declarative macro and must not appear in executable code.

	[symbol]	$\left\{\begin{array}{l}\text { CALL } \\ \text { VCALL }\end{array}\right\}$	$\begin{aligned} & \left\{\begin{array}{c} \text { entry-point } \\ (15) \end{array}\right\} \\ & {\left[:\left\{\begin{array}{l} \text { (param-1, ,., param-n) } \\ \text { list-address } \\ (1) \end{array}\right\}\right]} \end{aligned}$	Pass control from a program to a specified entry point in another program
	[symbol]	RETURN	$\begin{aligned} & {[(\mathrm{r} 1, \mathrm{r} 2)][\mathrm{T}]} \\ & {\left[, \mathrm{SA}=\left\{\begin{array}{l} \text { savearea-name }\} \\ * \end{array}\right]\right.} \end{aligned}$	Marks the exit point of the called program
	[symbol]	SAVE	$\begin{aligned} & {[(\mathrm{r} 1, \mathrm{r} 2)][, \mathrm{T}]} \\ & {\left[, \text { COVER }=\left\{\begin{array}{l} \mathrm{r} \\ (\mathrm{r} 1, \mathrm{r} 2, \ldots \mathrm{rn}) \\ \mathrm{s} \end{array}\right\}\right.} \\ & {\left[, \text { COVADR }=\left\{\right]\right.} \\ & {[, \text { SA }=\text { savearea-name }]} \end{aligned}$	Marks the entry point of the called program

	Program Management (cont)			
¢	Label	Operation	Operand	Description
	Island Code Linkage			
	[symbol]	EXIT	$\left\{\begin{array}{l}\overline{O C} \\ P C\end{array}\right\}$	Exits from unsolicited operator communications, or program check island code routine
	[symbol]	EXIT	IT $\left[.\left\{\begin{array}{c}\text { timer-interval } \\ (1)\end{array}\right\}\right]\left[,\left\{\begin{array}{c}M \\ S\end{array}\right\}\right]$	Exits from interval timer island code routine
	[symbol]	STXIT	$\left\{\begin{array}{l}A B \\ I T \\ O C \\ P C\end{array}\right\}$	Terminates linkage with abnormal termination, interval timer, unsolicited operator communications, or program check island code routine
$\begin{aligned} & \text { 듬 } \\ & \text { D } \\ & \text { 뭏 } \\ & \infty \\ & \infty \end{aligned}$	[symbol]	STXIT	$\left\{\begin{array}{l}A B \\ I T \\ P C\end{array}\right\}\left[,\left\{\begin{array}{c}\text { entry-point } \\ (1)\end{array}\right\} \cdot\left\{\begin{array}{c}\text { save-area } \\ (0)\end{array}\right\}\right]$	Links island code routine when used for abnormal termination, interval timer island code linkage, or program check.

Label	Operation	Operand	Description
Control Stream Reader			
[symbol]	GETCS	$\begin{aligned} & \left.\left\{\begin{array}{l} \text { input-area } \\ (1) \end{array}\right\}\left[\begin{array}{l} \left\{\begin{array}{l} \text { number-of-records } \\ 0 \\ \vdots \end{array}\right. \\ {[} \end{array}\right\}\right] \\ & {\left[\left\{\begin{array}{l} \text { error-addr } \\ (r) \end{array}\right\}\left[.\left\{\begin{array}{c} n \\ \infty s \end{array}\right\}\right]\right.} \end{aligned}$	Retrieves embedded data file submitted in job control stream
[symbol]	SETCS	$\begin{aligned} & \left\{\begin{array}{l} \left.\begin{array}{l} \text { NEXT } \\ \text { data-set-no } \\ \text { pointer } \end{array}\right\}\left[\cdot\left\{\begin{array}{l} R \\ S \end{array}\right\}\right. \end{array}\right] \\ & (1) \end{aligned}$	Resets pointer to embedded data file

Storage Displays			
[symbol]	DUMP	$\left[\begin{array}{l}\left\{\begin{array}{l}\text { identification code } \\ \text { (0) } \\ 0\end{array}\right. \\ \text { [symbol] }\end{array}\right.$	$\left\{\begin{array}{l}\text { SNAP } \\ \text { SNAPF }\end{array}\right.$

*SNAP or SNAPF macro is also a debugging aid. See 4.6.

Diagnostic and Debugging (cont)

Label	Operation	Operand	Description
Checkpoint Facility			
[symbol]	CHKPT	filename [,restart-addr] [,list-name] [,error-addr]	Writes a series of checkpoint records to a specified checkpoint file
list-name	DCFLT	$\left.\left.\begin{array}{c} \left\{\begin{array}{l} \text { (disk-PiOCB-1) } \\ (\text { tape-PIOCB-1,tmc-1 }, \text { bc-1) } \end{array}\right\} \end{array}\right] \begin{array}{l} (\ldots . .),(\text { disk-PIOCB-n) } \\ (\ldots, \ldots, \ldots),(\text { tape-PIOCB-n,tmc-n,bc-n) }\} \end{array}\right] .$	Generates a table of PIOCS files
[symbol]	DCPCLS	$\left\{\begin{array}{c} \text { filename } \\ (1) \end{array}\right\}$	Closes a SAT checkpoint file defined by a DDCPF macro instruction

	[symbol]	DCPOPN	$\left\{\begin{array}{c} \text { filename } \\ (1) \end{array}\right\}$	Opens a SAT checkpoint file defined by a DDCPF macro instruction
	filename	DDCPF		Defines a SAT file to which checkpoint records are to be written
$\begin{aligned} & \text { 듬 } \\ & \text { 悉 } \\ & \text { D } \end{aligned}$				

Message Display. Logging. and Operator Communication

Label	Operation	Operand	Description
[symbol]	GETMSG	$\begin{aligned} & \left\{\begin{array}{c} \text { buff-addr-1 } \\ (1)^{2} \end{array}\right\}\left[\cdot\left\{\begin{array}{c} \text { msg-length } \\ (0) \\ 60 \end{array}\right\}\right] \\ & {\left[\cdot\left\{\begin{array}{c} \text { error-addr } \\ (r)_{3} \end{array}\right\}\right][,]} \\ & {\left[\cdot\left\{\begin{array}{c} \text { buff-addr-2 }^{(r)_{4}} \end{array}\right\}\right]\left[\cdot\left\{\begin{array}{c} \text { buff-length-2 } \\ (r) \end{array}\right\}\right]} \end{aligned}$	Retrieves message from canned message file
[symbol]	WTL	$\begin{aligned} & \left\{\begin{array}{c} \text { buff-addr } \\ (1) \end{array}\right\}\left[\left\{\begin{array}{c} \text { msg-length } \\ (0) \\ \text { ev } \end{array}\right\}\right] \\ & {\left[\cdot\left\{\begin{array}{c} \text { error-addr } \\ (r)_{3} \end{array}\right\}\right]} \end{aligned}$	Writes message to the system log file

[symbol]	wTLD

$\begin{aligned} & \text { D } \\ & \text { © } \\ & \omega \underset{\sim}{0} \\ & \omega \end{aligned}$	Message Display, Logging, and Operator Communication (cont)			
	Label	Operation	Operand	Description
	[symbol]	OPR		Displays message on system console or workstation for reply or information

	Spooling		
[symbol]	BRKPT	$\left\{\begin{array}{l}\text { CCB-name } \\ \text { filename } \\ (1)\end{array}\right\}$	

Control Stream Format for a Job to be Monitored From the Start of the Program

Control Stream Format for a Job to be Monitored From the Start of the Program (cont)

4.2.2. Monitor Input Format for Input by the Operator After Program Execution has Begun

Statement Formats for Monitor Input

2. action by a semicolon. If no optio
3. If no action is specified, the monitor routine produces a default display.

Low－Order Main Storage Layout

Byte Address (Hexadecimal)	012	3	4	5	6	7	8		A	B	c	D	E	F
$09 \times$	(Reserved)						(Reserved)							
OAX	CAW		$\begin{gathered} \mathrm{MM} \\ (1) \end{gathered}$	LL	$\begin{aligned} & \text { RR } \\ & \text { (3) } \end{aligned}$	(4)	(Reserved)							
OBX	Rel. Reg. 0		Rel. Reg. 1				Rel. Reg. 2				Rel. Reg. 3			
	Rel. Reg. 4		Rel. Reg. 5					Reg. 6			Rel. Reg. 7			
$00 x$	(Reserved)						(Reserved)							
OEX	IOST BCSW						IOST BCSW							
OFX	Int. Disk BCWO		Int. Disk BCW1				Int. Disk BCW2				Int. Disk BCW3			
10x	Console BCWO		Console BCW 1				Console BCW2				Console BCW3			

	11X	Reader BCWO	Reader BCW1	Reader BCW2	Reader BCW3
	12 x	Printer BCWO	Printer BCW1	Printer BCW2	Printer BCW3
	$13 x$	Punch BCWO	Punch BCW1	Punch BCW2	Punch BCW3
	$14 \times$	LAO BCWO*	LA0 BCW1*	LAO BCW2*	LAO BCW3*
	15X	LA6 BCWO*	LA6 BCW1*	LA6 BCW2*	LA6 BCW3*
	$16 x$	LA1 BCWO*	LA1 BCW ${ }^{*}$	LA1 BCW2*	LA1 BCW3*
	17x	LA7 BCWO*	LA7 BCW1*	LA7 BCW2*	LA7 BCW3*
	18x	LA2 BCW0*	LA2 BCW1*	LA2 BCW2*	LA2 BCW3*
$\underset{\sim}{+}$	19X	LA8 BXWO*	LA8 BCW1*	LA8 BCW2*	LA8 BCW3*
	1 AX	LA3 BCWO*	LA3 BCW ${ }^{*}$ *	LA3 BCW2*	LA3 BCW3*

	Low-Order Main Storage Layout (cont)				
	Byte Address (Hexadecimal)	0120	45067	$8 \quad 9 \quad$ A B	C D E F
	1 BX	LA9 BCW0*	LA9 BCW1*	LA9 BCW2*	LA9 BCW3*
	$1 C x$	LA4 BCWO*	LA4 BCW ${ }^{*}$	LA4 BCW2*	LA4 BCW3*
	1DX	LA10 BCWO*	LA10 BCW ${ }^{*}$	LA10 BCW2*	LA10 BCW3*
	1EX	LA5 BCW0*	LA5 BCW ${ }^{*}$	LA5 BCW2*	LA5 BCW3*
	1FX	LA11 BCW0*	LA11 BCW ${ }^{*}$	LA11 BCW2*	LA11 BCW3*
	20x	Mux. Subch. 0 BCW0	Mux. Subch. 0 BCW1	Mux. Subch. 0 BCW2	Mux. Subch. 0 BCW3
$\underset{\infty}{\underset{\infty}{\infty}}$	21X	Mux. Subch. 1 BCW0	Mux. Subch. 1 BCW1	Mux. Subch. 1 BCW2	Mux. Subch. 1 BCW3
	22X	Mux. Subch. 2 BCW0	Mux. Subch. 2 BCW1	Mux. Subch. 2 BCW2	Mux. Subch. 2 BCW3
	23x	Mux. Subch. 3 BCWO	Mux. Subch. 3 BCW1	Mux. Subch. 3 BCW2	Mux. Subch. 3 BCW3

ω	24X	Mux. Subch. 4 BCW0	Mux. Subch. 4 BCW1	Mux. Subch. 4 BCW2	Mux. Subch. 4 BCW3
	25x	Mux. Subch. 5 BCWO	Mux. Subch. 5 BCW1	Mux. Subch. 5 BCW2	Mux. Subch. 5 BCW3
	26x	Mux. Subch. 6 BCW0	Mux. Subch. 6 BCW1	Mux. Subch. 6 BCW2	Mux. Subch. 6 BCW3
	27X	Mux. Subch. 7 BCWO	Mux. Subch. 7 BCW1	Mux. Subch. 7 BCW2	Mux. Subch. 7 BCW3
	28X	(Unused)			
	29x				
	2AX				
	2BX				
$\begin{gathered} \stackrel{\rightharpoonup}{1} \\ \underset{心}{2} \end{gathered}$	2CX				
	2DX				

Low-Order Main Storage Layout (cont)

3BX	LA9**/WS4	BCWO	LA9**/WS4	BCW1	LA9**/WS4	BCW2	LA9**/WS4	BCW3
3CX	LA4**/WS5	BCWO	LA4**/WS5	BCW1	LA4**/WS5	BCW2	LA4**/WS5	BCW3
30x	LA10**/WS6	BCWO	LA10**/WS6	BCW1	LA10**WS6	BCW2	LA10**WS6	BCW3
3EX	LA5**/WS7	BCWO	LA5**/WS7	BCW1	LA5**/WS7	BCW2	LA5**/WS7	BCW3
3FX	LA11**WS8	BCWO	LA11**/WS8	BCW1	LA11**WS8	BCW2	LA11**WS8	BCW3

*Communication adapter-1
**Communications adapter- 2 (mutually exclusive with workstations)
NOTES:
(1) $M M=$ machine microcode ID field
(3) RR $=$ revision level microcode ID field
(2) LL $=$ load microcode ID field
(4) $00=$ zero filler

	Command Control Block (CCB) Format (cont)		
	Bvis	Leneth	Content
	8-11	4 $?$	During I/O commend execution, tult-word sadress of next cce or Artio command termination, bytos remaining in CCW byte ccuint when I/O commend was terminated
	12-15	4	Fuil-mord address of first CCW
	16-19	4	Address of PIOCE entry which contains the half-word eddrats of PUB astocisted with this CCB
	20-23	4	Sonse bytes 0 trrough 3
	24,25	2	Sonse bytos 4 and 5
	${ }^{26}$	1	Device status
$\underset{+}{+}$	${ }^{27}$	1	Channel status

IPC SIO Condition Codes

Condition Code	Peripheral Control State	Peripheral Subsystem State	Command Disposition	Interrupt Disposition	Destination of Status Byte in IOSTIW
$\mathbf{0 0}$	Available 01 104	Run 11	Available Busy Not operat- ional	-	Stop

NOTES:
(1) Interrupt word is stored in the BCSW by a status sequence subsequent to the exit from the SIO sequence.
(2) The interrupt word normally contains device status and is stored at the completion of the operation.
(3) Sense command is not to be rejected by the integrated peripheral control when the associated peripheral subsystem is in stop state.
(4) The addressed integrated peripheral control is also considered busy if there is a pending status condition in the subchannel or control.

(01) 2Error Condition Code	Detected by	Location of IOSTiW Status Byte
Invalid Command	Peripheral controI	Peripheral subsystem
Protection exception on command reference	IPC	Channel
Address check on command reference	IPC	Channel
Storage parity check on command reference	IPC	Channel
Addressing exception on command reference	IPC	Channel

IDA SIO Condition Codes

Condition Code	IDA State	Device State	Command Action	Interrupt Word Stored	Applicable Status Field in IOSTIW
00	Available	Run	Accepted	Yes (1)	Device (2)
01	Available	Busy	Rejected (3)	Yes	Device
01	Available	Stop	Rejected (3)	Yes	Device
10 (4)	Busy	--	Rejected	No	--

NOTES:
(1) IOSTIW is stored in the BCSW at completion of command.
(2) Device status is stored if no other errors occur (such as channel status).
(3) Sense, ECC sense, diagnostic, or ECC diagnostic commands are not rejected. Condition code $=00$.
(4) Integrated disk adapter (IDA) is considered busy if pending status condition prevails.

Multiplexer Channel sio Condition Codes

Condition cod	Susen ${ }^{(4)}$			$\underset{\text { Actiond }}{\text { Command }}$	$\begin{aligned} & \text { IOSTIW } \\ & \text { Storen } \end{aligned}$	Applicrablo Status Fiadd iostiw	Enibis Smbetion Saqumice
	$\begin{aligned} & \underset{E}{E} \\ & \underset{\delta}{2} \end{aligned}$	T E $\frac{1}{4}$ $\frac{3}{3}$ 3	E				
-	A	A	A	Accepted	Yes (1)	Device	Yes
01	A	A	P	Rejecred	$Y_{\text {es }}$ (2)	Denice	Yes
10	p	x	x	Rejected	$Y_{e s}{ }^{(3)}$	-	No
	A	A	w	Rejocted	No	-	Atrempled (immedate busy)
11	N	\times	x	Rejecred	No	-	No
	\times	\times	N	Rejecrea	No	-	Antermpted

notes:
(1) Refer to the AAA state
(2) The COMmAND OUT response to a STATUS IN is given when the busy bit is set in the control unit位sent status is acepopted by the channel, it possible, and a STATUS SERVICE REOUEST is generated
(3) A STATUS SERVICE REQUEST has been previously generated.
(4) $A=A v a z a t h e$

W - Working
$\mathrm{p}=$ Status pencing
$\mathrm{N}=$ Nonogeration
$\mathrm{X}=$ Amy state

Selector Channel SIO Condition Codes

Condition	Store ${ }^{(4)}$	Commend Aetion	iostiw Stored	Applicable Status Field in IOSTIW	Initial Selection Sequerse
00	A A A	Accepted	Yes (1)	Device	Yes
01	$\begin{aligned} & A A P \\ & P P X \end{aligned}$	Rejected Aejected	$\begin{aligned} & \text { Yes }^{(2)} \\ & \text { Yys }^{2} \text { (3) } \end{aligned}$	Device Device andor channel	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$
10	w w x A A w	Rejected Rejected	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$		No Altempted (immediare busy)
11	$\begin{aligned} & N \times X \\ & A A N \end{aligned}$	Rejected Rejected	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$		No Attemoted

notes:
(1) Refer to AAA slare.
(2) The COMMAND OUT signal response to a STATUS IN sigral is given when the control unit status has the busy bit se A subsequent control unit request to present starus is acceppled by the channel, if possibre, and a SIATUS SERVICE REOUEST signat is generated.
(3) A STATUS SERVICE REOUEST Signal nas ben generated as a result of a previous operation. An IOSTIW containing STATUS signals if both weve stored in the chasnel and the device contains both CHANNEL STATUS and DEVICE STATUS sigrals if both mere stored in the channel and the device address pertains to both. No new status results from
ine sto instruetion.
(4) $A=$ avaitable
$\mathrm{W}=$ working
$\mathrm{X}=$ - any state
$\mathrm{p}=$ status pendin
$N=$ nonoperational

	Summary of System Debugging Aids			
	Function	Use	Console Command	Results
	Pseudo monitor*	To identify the routine changing a particular byte	SET HA,PM,address [.job-name]	HPR code 99130202 (Press RUN to continue.)
	Resident monitor*	To identify the instruction changing a particular byte	SET HA,RM,address [job-name]	HPR code 99130404 (Press RUN to continue.)
	Mini monitor	To identify the instruction changing a particular byte	MM value,address, RIJE	HPR code 991200 (Press RUN to continue.)
	Verify bytes 0-B*	To identify the routine destroying low-order storage	Included in supervisor debug option	HPR code 99130303 (Press RUN to continue.)
	History tables*	To provide some recent history in SYSDUMPs	Included in supervisor debug option	Continuous updating of resident tables
	Halt on transient load	To halt if and when a particular transient is loaded	SET HA, TL, hex-id	HPR code 990C0C (Press RUN to continue.)

$\begin{aligned} & \text { 忍受 } \\ & \text { co } \end{aligned}$	Halt on transient call**	To halt if and when a particular transient is called	SET HA,IC,hex-id	HPR code 990C0D (Press RUN to continue.)
	Halt on transient exit*	To halt if and when a particular transient is exited	SET HA, TE, hex-id	HPR code 990COE (Press RUN to continue.)
	Halt on shared code call*	To halt if and when certain (or all) shared code modules are called	$\text { SE HA, }\left[\left\{\begin{array}{l} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right]$	HPR code 991D01 (Press RUN to continue.)
	Hait on shared code return*	To halt if and when certain (or all) shared code modules return	$\operatorname{SE~HA}_{\text {SR }}\left[\left\{\begin{array}{l} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right]$	HPR code 991D02 (Press RUN to continue.)
	Halt on shared code return with error*	To halt if and when certain (or all) shared code modules return with error	$\text { SE } \underset{\text { SE }}{H A_{1}}[\{\text {, module-name }\}]$	HPR code 991003 (Press RUN to continue.)
	Pause on shared code call*	To pause a task if and when certain (or all) share code modules are called	$\left.\begin{array}{l} \text { SE PA, } \\ \text { SC } \end{array}\left\{\begin{array}{l} \text {, module-name } \\ \text { prefix. } \end{array}\right\}\right]$	SE25 console message (Enter 'C' to continue.)

	Summary of System Debugging Aids (cont)			
	Function	Use	Console Command	Results
	Pause on shared code return*	To pause a task if and when certain (or all) shared code modules return	$\underset{S R}{S E}\left[\left\{\begin{array}{c} \text { PRodule-name } \\ \text { prefix. } \end{array}\right\}\right]$	SE25 console message (Enter 'C' to continue.)
	Pause on shared code return with error*	To pause a task if and when certain (or all) shared code modules return with error	$\begin{gathered} \text { SE PA, } \\ \text { SE }\left[\left\{\begin{array}{c} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right] \end{gathered}$	SE25 console message (Enter ' C ' to continue.)
	Halt on symbiont load	To halt if and when a particular symbiont (or symbiont phase) is loaded	SEI HA,SY, idnn	HPR code 997C (Press RUN to continue.)
	PIOCS debug option	To identify checksum errors or internal PIOCS problems	SEI DE, 10	HPR code 990F
듬	Transient debug option	To halt on transient errors (100-1FF)	SET DE,TR	HPR code 99080800

	Loader debug option	To halt on loader errors (52-5F)	SET DE,LD	HPR code 991500 (Press RUN to continue.)
	Shared code debug option	To halt on error during execution of shared code	SET DE,SC	HPR code 990809 on shared code errors (Press RUN to take a SYSDUMP and to continue.) HPR code 99130A when dynamic buffer pool links are destroyed.
	Dynamic buffer debug option*	To halt on dynamic buffer overflow	SET DE,DB	HPR code 991300
	Screen format coordinator input/output debug option	To take a snapshot dump of all input and output buffer blocks when using the screen format coordinator	SET DE,INO	Writes snapshot dump to job log
	Screen format coordinator input/output debug option	To take diagnostic snapshot if screen format coordinator error occurs	SE DE,SF	Causes snapshot to be taken

Function	Use	Console Command	Results
Screen format coordinator format/input/output debug option	To take a snapshot dump of the format block; the input buffer (on input operations;; the output buffer (on output operations) blocks; and, if errors occur, the screen format coordinator blocks	SET DE,FS	Writes snapshot dump to job log or system printer
Reset pause options	Resets all SE PA commands	SE PA,OFF	None
Reset halts	Resets all SE HA commands	SE HA,OFF	None
Reset debug options	Resets all SE DE commands	SE DE,OFF	None

Program Status Word (PSW) Format (cont)

Bits	Allocation	Function
14	Problem mode selection	$\begin{aligned} & \text { ps }=1 \text { (problem mode) } \\ & \text { ps }=0 \text { (supervisor mode) } \end{aligned}$
15	Not used; must be zero	
16-18	Mode	$\begin{aligned} & 000=90 / 30 \text { native mode } \\ & 001=9200 / 9300 \text { compatibility mode } \\ & 010=1 \mathrm{BM} 360 / 20 \text { compatibility mode } \end{aligned}$
19	Monitor mode	$\begin{aligned} & \text { mon }=1 \text { (monitor mode) } \\ & \text { mon }=0 \text { (normal execution) } \end{aligned}$
20-23	Not used; must be zero	
24-31	Interrupt code*	

*Refer to Program Exception Interrupt Codes and Machine Check Level Interrupt Codes.

	Program Status Word (PSW) Format (cont)		
	Bits	Allocation	Function
	32, 33	Instruction length code	$\begin{array}{ll} 00 & =\text { instruction suppressed } \\ 01 & =\text { one half word (RR) } \\ 10 & =\text { two half words (RX, RS, SI) } \\ 11 & =\text { three half words (SS) } \end{array}$
	34, 35	Condition code**	$\begin{array}{ll} 00 & =\text { test value is binary } 8(1000) \\ 01 & =\text { test value is binary } 4(0100) \\ 10 & =\text { test value is binary } 2(0010) \\ 11 & =\text { test value is binary } 1(0001) \end{array}$
	36 37 38 39	b $=$ fixed-point overflow d $=$ decimal overflow Program mask bits \quad $e=$ exponent underflow s	$\begin{array}{ll} 1 & =\text { interrupt-allowed } \\ 0 & =\text { interrupt-inhibited } \end{array}$
	40-63	Instruction address	At interrupt, contains address of instruction following instruction causing interrupt

[^1]Program Exception Interrupt Codes

Code		Condition
Binary	Hex.	
00000001	01	Operation exception
00000010	02	Privileged operation exception
00000011	03	Execute exception
00000100	04	Protection exception
00000101	05	Addressing exception
00000110	06	Specification exception
00000111	07	Data exception
00001000	08	Fixed-point overflow exception*
00001001	09	Fixed-point divide exception
00001010	OA	Decimal overflow exception*
00001011	OB	Decimal divide exception
00001100	OC	Exponent overflow exception
00001101	OD	Exponent underflow exception*
00001110	OE	Significance exception*
00001111	OF	Floating-point divide exception

*Interrupt can be masked

Machine Check Level Interrupt Codes

Code		Condition
Binary	Hex.	
Processor Machine Check Class		
11100101	E5	Addressing or protection exception
11100110	E6	Control storage write bus check
11100111	E7	Storage parity check
11101000	E8	Address check
11101100	EC	Program exception interrupt request
11101111	EF	Processor stall timer
IOST Machine Check Class		
00000101	05	Addressing or protection exception on accessing IOSTCW
00001000	08	Address check or storage parity check on accessing IOSTCW
00001111	OF	Processor stall timer

	IOST Control Word (IOSTCW) Formats (cont)		
	48-63	Active address	Points to most significant byte of next IOSTIW location
	64-79	Replacement address	Address written into active portion of address field when active count becomes zero
	80-84	Set to zero	
	85-87	Channel number	Channel being serviced by IOST when error condition occurred
	88-90	Not used; must be zero	
$\begin{gathered} 0 \\ 1 \\ \infty \end{gathered}$	91	Interrupt word error	Protection or addressing exception error detected by IOST
	92	Interrupt data error	Address or data parity check error detected by IOST

	93	Channel time-out	CTO bit set when selected channel fails to respond to status service request acknowledge (SSRA) signal within specified time.
	94	Channel buffer word	Error detected by selected channel
	95	Status table full	Status table location when IOSTIW to be stored is full

	12-15	Device address		4-bit field identifying subchannel and/or device to which channel and/or device status applies
	16	Attention	One of attached disk drives affected by operator-initiated transition from stop state to run state	Same as IDA
	17,18		Set to zero by IDA	
	17-20			Set to zero by IPC
	19	Busy	Addressed device completing previously initiated seek order, programmed offset, or has pending gated attention.	
	20	Channel end	IDA able to accept another command	
	21	Device end	With channel end = normal end of all commands except the seek (08) Alone $=$ accessor movement complete, disc accessible	Completion of previously initiated command by subsystem and readiness to accept new command

	28	Channel data check	Detection of storage parity check on data access to or from main storage	Same as IDA
	29		Set to zero by IDA	Set to zero
	30	Channel control check	Address check occurred during IPC operation with main storage excluding IOSTIW references	Bit set when storage parity check, addressing exception, or protection exception is detected when accessing portion of BCW; set on address check on BCW
	31	Buffer terminate	Set to zero by IDA	IPC performed replacement operation required in data chaining operations

Multiplexer Channel

chan.
no.

2324

Bits	Allocation	Function
$\begin{aligned} & \text { bits } 0,32 \\ & 64,96 \end{aligned}$	Validation bit (V)*	$V=0$ (before storing IOSTIW in BCSW) $V=1$ (after processing status)
$\begin{aligned} & \text { bits } 1, \\ & 33,65 \end{aligned}$	Continuation bit**	Length of IOSTIW $C=0 \cdot$ (last full word of status presented) $\mathrm{C}=1$ (more than 1 full word of status is to be presented)
2-4		Not used: must be zero
5-7	Channel numbert	Number of channel presenting status
8-15	Device address	Address of device or subsystern active on channel at time status is generated

**Bit 1 , set to 1 by selector channel and zero by multiplexer channel;
bits 33 and 65 , set to 1 and zero, respectively, by selector channel
tSet to 100 (channel 4) or 110 (channel 6) by selector channel and 001
(channel 1) by multiplexer channel

[^2]| $\begin{aligned} & \text { 刃刃 } \\ & \text { 웅 } \\ & \omega \underset{0}{\infty} \\ & \hline \end{aligned}$ | Legend for IOST Interrupt Word Bits (cont) | | |
| :---: | :---: | :---: | :---: |
| | Bits | Allocation | Function |
| | 34-44 | | Set to zero by channel |
| | 45-63 | Next CCW address | Value of next channel command word address present in internal hardware when status word written |
| | 66-79 | | Set to zero by channel |
| | 80-95 | Remaining byte count | Value of byte count present in internal channel hardware when status word written |
| | 34-63 | Status 1 | Additional 30 bits of status may be presented by a channel |
| | 64-95 | Status 2 | Additional 30 bits of status may be presented by a channel |
| $\stackrel{1}{\infty}$ | 96-127 | Status 3 | Additional 30 bits of status may be presented by a channel |

6[-9	$\varepsilon / S 0$ כVAINก ㅅyy	$\begin{array}{r} \text { E лау } \\ \text { ع0z8-dn } \end{array}$

Buffer Control Word (BCW) Format for IDA

Bits	Allocation	Function
0-7	Command	Command code to be executed by IDA; bits $0-3$ must be zero
8		Unassigned; must be set to zero
9-11	Key	3-bit field containing storage protection key
12		Unassigned; must be set to zero
13-31	Address	Storage address on which command operates
32-47		Unassigned; must be set to zero
48	Skip sentinel	Set with read data command to indicate data transfers inhibited to main storage; set with search/read commands to indicate search begins at index

Bits	Allocation	Function
49	Multitrack sentinel	Set to 1 with search/read command to indicate search limited to cylinder boundaries rather than single track
50	Direction sentinel	If 1, specifies accessor moves in direction of decreasing cylinder numbers
51	Stop read	Stop read command on record which causes error

	64-69		Unassigned; must be zero
	70-79	Seek difference magnitude	During seek operation, specifies magnitude of difference between accessor present position and desired position
	80-83		Unassigned; must be set to zero
	84-87	Head address	4-bit field specifying current operation head address
	88,89	Track condition	Condition of track where operation acts
	90-95		Unassigned; must be set to zero
	96	Recalibrate	Set to 1 = accessor reoriented and moved to cylinder 0 ; overrides bits 71-79 and 50
$\underset{\sim}{1}$	97-101		Unassigned; must be set to zero
	102-111	Absolute cylinder address	Final position of accessor after completed seek or recalibrate

Bits	Allocation	Function
112-119	Record number	Number of record where operation is performed or initiated
120-124		Unassigned; must be set to zero
125-127	Programmed offset	Bit $125=1$ programmed offset used for command Bit $125=0$ programmed offset not used; bits 126 and 127 ignored Bit $126=1$ major offset Bit $126=0$ minor offset Bit $127=1$ offset away from hub Bit $127=0$ offset toward hub

Buffer Control Word (BCW) Format for IPC

	32 and 48	$c(r, a)$	Specifies data chaining operations when set to 1
	33		Unassigned; must be set to zero
	34 and 50	$t(r)$ and $t(a)$	Single control bit used with c(a) bit:

Buffer Control Word (BCW) Format for IPC (cont)

¢	Bits	Allocation	Function
	0-7	command code*	Specifies operation to be performed by device and channel
	8		Unassigned; must be set to zero
	9-11	key	Contains 1/O storage protection key
	12		Unassigned; must be set to zero
	13-31	data address	Allows multiplexer channel to reference any byte in main storage during data transfer sequences
	32-47		Unassigned; must be set to zero
	48	w	$w=0 \quad$ input operation (read) $w=1 \quad$ output operation (write)

Buffer Control Word (BCW) Format for Multiplexer Channel (cont)

*Command Codes:

Code Bits								Command
0	1	2	3	4	5	6	7	
M	M	M	M	0	1	0	0	Sense
M	M	M	M	M	M	0	1	Write
M	M	M	M	M	M	1	0	Read
M	M	M	M	1	1	0	0	Read backward
M	M	M	M	M	M	1	1	Control
M	M	M	M	0	0	0	0	Test
M	M	M	M	1	0	0	0	Transfer in channel (TIC)

Channel Address Word (CAW) Format (Selector Channel)

Bits	Allocation	Function
$0-2$	Key	I/O storage protection key used by channel for all storage accesses of data and CCWs
$3-12$	First CCW address instruction	Controls $1 / O$ operation initiated by SIO
$13-31$		

Channel Command Word (CCW) Format (Selector Channel) (cont)

Bits	Allocation	Function
0-7	Command code*	Specifies operation to be performed by device and channel
8-12		Bits set to zero
13-31	Data address	Address of location in main storage into or from which first byte of data is transferred
32		Bit set to zero
33	CC (chain command flag)	When valid ending device status received, new CCW fetched and operation specified by new command code initiated
34	SLI (suppress length indication flag)	If set to 1 , incorrect length condition not indicated to program; if $\mathrm{CC}=1$ also, command chaining not suppressed

System Console

Device	Command Byte	Bit Position							
		0	1	2	3	4	5	6	7
UNISCOPE 100 console	Read	A	x	x	X	x	F	1	0
	Write	A	B	C	x	x	F	0	1
	Sense	X	X	X	x	0	1	0	0

LEGEND:

Read command
A (modifier bit)
$0=$ normal read operation
1 = diagnostic use only
F (modifier bit)
$0=$ read in translate mode; all data transferred to processor in EBCDIC
1 = read in ASCII mode; all data to processor in ASCII code
X (bit ignored by console control unit)

LEGEND (cont):
Write command
A (modifier bit)
$0=$ normal write operation
1 = diagnostic use only
B (modifier bit)
$0=$ keyboard lock at completion of write sequence
1 = keyboard unlock at completion of write sequence
C (modifier bit)
$0=$ data transfer to UNISCOPE 100 terminal only
1 = data transfer to UNISCOPE 100 terminal and COP
F (modifier bit)
$0=$ write in translate mode; EBCDIC data from processor translated to ASCII
$1=$ write in ASClI mode; all data from processor in ASCII

5.4.1.2. Workstation

Device	Command Byte	Bit Position							
		0	1	2	3	4	5	6	7
Workstation	System message write	0	0	0	0	0	0	0	1
	Diagnostic write	1	0	0	0	0	0	0	1
	User write	0	0	0	0	1	0	0	1
	System message read	0	0	0	0	0	0	1	0
	User read	0	0	0	0	1	0	1	0
	Diagnostic read	1	0	0	0	0	0	1	0
	NO-OP	0	0	0	0	0	0	1	1
	Enter work area mode	0	0	1	0	0	0	1	1
	Enter system response mode	0	1	0	0	0	0	1	1

Workstation (cont)

	Device	Command Byte	Bit Position								
			0	1	2	3	4	5	6		7
		Sense	0	0	0	0	0	1	1		0
		Workstation reset	0	0	0	0	1	0	1		1
		Read event	0	0	1	1	0	0	1		0
		Load RAM	0	0	0	0	0	1	0		1
		Message waiting	0	0	0	0	0	1	1		1
		Diagnostic read*	0	1	1	0	0	0	1		0
		Diagnostic write*	0	1	1	0	0	0	1		1
		Device halt	0	0	0	1	0	0	1		1

*Commands for IPCA rather than the WSC

	$\lambda \forall \forall W W \cap S ~ J Y \forall M L J O S / \exists Y \forall M O Y \forall H$	$\varepsilon \cdot n \partial y$
It-G	$\varepsilon / S O$ JVAINO $1 \forall Y \exists \mathrm{dS}$	$\varepsilon 0 Z 8 \cdot d \cap$

5.4.1.3. 0773/0778 Printer Subsystems

Device	Command Byte	Bit Position							
		0	1	2	3	4	5	6	7
0773/0778 Printer	Load vertical format buffer	0	1	1	0	0	0	1	1
	Load code buffer	1	1	1	1	1	0	1	1
	Print-advance	A	C	D	E	F	0	0	1
	Advance	A	C	D	E	F	1	1	1
	Load print line buffer*	1	1	1	0	0	0	1	1
	Read print line buffer*	X	x	X	0	0	0	1	0
	Read load code buffer*	x	x	X	0	1	0	1	0
	Read vertical format buffer*	A	\times	\times	1	0	0	1	0
	Diagnostic*	x	x	x	x	X	1	0	1
	Sense	x	\times	\times	x	0	1	0	0

Detail Forms Advance Bits					
Bit A		Bits			
$A=0$	$\mathrm{A}=1$	C	D	E	F
Advance 8 lines	Filler code*	1	0	0	0
Advance 9 lines	Form overfiow	1	0	0	1
Advance 10 lines Advance 11 lines Advance 12 lines Advance 13 lines Advance 14 lines	Program selectable skip codes	1 1 1 1 1 1	0 0 1 1 1	1 1 0 0 1	0 1 0 1 0
Advance 15 lines	Home paper/end of forms	1	1	1	1

*This code should not normally be specified in the command.
5.4.1.4. 0717 Card Reader Subsystem

Device	Command Byte	Bit Position							
		0	1	2	3	4	5	6	7
0717 Reader	Read control	A	B	x	D	E	F	1	0
	Sense*	X	x	x	x	0	1	0	0

*As a result of sense command, reader control transfers two sensebytes to main storage.

A

LEGEND:

(modifier bit)
$0=$ normal read operation
$1=$ diagnostic use only

LEGEND (cont):

D \& E
$\left.\begin{array}{l}\left.\begin{array}{l}\text { (modifier bits) } \\ D=\text { ignored } \\ E=0\end{array}\right\} \\ \left.\begin{array}{l}D=0 \\ E=1\end{array}\right\} \quad \text { short-column read } \\ \end{array}\right\} \quad$ shm (51 column) read
$\left.\begin{array}{l}D=1 \\ E=1\end{array}\right\}$
short-column (66 column) read

F
(modifier bit)
$0=$ read in translate mode
$1=$ read in image mode
(bit ignored by 0717 card reader)

5.4.1.6. 0605 Card Punch Subsystem

Device	Command Byte	Bit Position							
		0	1	2	3	4	5	6	7
0605 Punch	Punch control	A	B	X	x	E	F	R	P
	Sense*	x	x	X	X	0	1	0	0

*Reader control transfers two sense bytes to main storage.

LEGEND:

A (modifier bit)
$0=$ normal punch/read operation
1 = diagnostic use only
LEGEND (cont):
E (modifier bit normally for diagnostic use)
$0=$ normal punch operation
$1=$ select reject stacker, terminate data transfers, and eject the card based on the punch data
(modifier bit)
$\mathbf{0}=$ normal punch operation
1 = punch and/or read in image mode
P\&R (modifier bits)
$P=0$ and Invalid code results in a command reject
$R=0$
$P=0$ and
$R=1$
Read operation specified with no punch operation
$P=1$ and
$R=0$
Punch operation specified with no read operation
$P=1$ and \quad Punch and read operation specified
$R=1$

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\text { Write } & W & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline \text { Write deleted } & \text { WD } & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline \text { Diagnostic read } & \text { DR } & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \text { to }\end{array}\right] *$
*Any hexadecimal value within the stated ranges will execute the command.
**Any hexadecimal value may be used for the first digit (bit $0-3$); the second value ${ }^{(4}{ }_{16}$) is the significant value for the sense command.

		Send mark	OD	0	0	0	0	1	1	0		1
		Send idle	09	0	0	0	0	1	0	0		1
		Enable data input	02	0	0	0	0	0	0	1		0
		New sync	OA	0	0	0	0	1	0	1		0
		Look for sync	06	0	0	0	0	0	1	1		0
		Turn off	03	0	0	0	0	0	0	1		1
		Clear active	OE	0	0	0	0	1	1	1		0
		Disconnect	13	0	0	0	1	0	0	1		1
		Sense	04	0	0	0	0	0	1	0		0
		Set busy	1F	0	0	0	1	1	1			1

	Device	Command	Hex	Bits							
				0	1	2	3	4	5	6	7
	Communications Adapter (cont)	LA clear	OF	0	0	0	0	1	1	1	1
		Enable data set ready monitor	17	0	0	0	1	0	1	1	1
		Set full duplex	1B	0	0	0	1	1	0	1	1
		Load control bytes:									
		Byte 1, 2, 3, 4	15	0	0	0	1	0	1	0	1
		Byte 2, 3, 4	55	0	1	0	1	0	1	0	1
		Byte 3, 4	95	1	0	0	1	0	1	0	1
		Byte 4	D5	1	1	0	1	0	1	0	1

Communications Adapter (cont)

Device	Command	Hex	Bits							
			0	1	2	3	4	5	6	7
Communications Adapter (cont)	LA test (diagnostic)	OB	0	0	0	0	1	0	1	1
	Modem test (diagnostic)	07	0	0	0	0	0	1	1	1
	Read port control word (diagnostic)	16	0	0	0	1	0	1	1	0

$\varepsilon \cdot n \partial y$
ع0z8-d
SPERRY UNVAC
HARDWARE/SOFTWARE SUMMARY

5.4.2.2. 8415/8416/8418 Disk Subsystems

Command	Bit Positions							
	0	1	2	3	4	5	6	7
Format write	0	0	0	0	0	0	0	1
Write data	0	0	0	0	0	1	0	1
Search/read equal	0	0	0	0	1	0	0	1
Search/read high or equal	0	0	0	0	1	1	0	1
Read ID	0	0	0	0	1	1	1	0
Diagnostic	0	0	0	0	0	1	1	0
ECC diagnostic	0	0	0	0	0	1	1	1
Read data	0	0	0	0	0	0	1	0
Seek	0	0	0	0	1	0	0	0
Sense	0	0	0	0	0	1	0	0
ECC sense	0	0	0	0	0	0	1	1

Subsystem

LEGEND:

Bit position 7 is the least significant bit.
X may be a 1 or 0 bit and is ignored.
C D E F (detail bits)

0000 = no advance
0001 = advance 1 line
0010 = advance 2 lines
under program control
0011 = advance 3 lines
$0100=$ paper advanced under control of form control tape to the line corresponding to the thru same hole combination punched in the tape. Skip may be from 1 to 132 lines.
111 Y
$Y=0$ or 1
$111 \mathrm{Y}=$ home form and line selection code
when Y is $0=6 \mathrm{LP}$
when Y is $1=8 \mathrm{LPI}$

1001 = form overflow

	Command	Bit Positions								
		P	0	1	2	3	4	5	6	7
	Test 1/O	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	X 0	1 0	1 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 0	0 0	0 0
	Set inhibit status	X	X	X	0	1	0	0	0	0
	Reset inhibit status	x	x	x	1	0	0	0	0	0
	Sense 1/0	0	0	0	0	0	0	1	0	0
	Print advance*	X	A	C	D	E	F	0	0	1
	Diagnostic write	0	1	1	1	0	0	0	1	1
	Advance only*	x	A	C	D	E	F	1	1	1

Raise cover*	0	0	1	1	0	1	0	1	1
No operation (No-op)	1	0	0	0	0	0	0	1	1
Read load code buffer	\times	x	x	x	0	1	0	1	0
Read vertical format buffer*	\times	x	x	x	1	0	0	1	0
Check read	1	0	0	0	0	0	1	1	0
Diagnostic gate	0	1	0	1	0	1	0	1	1

*I/O channel cannot initiate these commands when printer is in stop mode, having bit 1 set in sense byte 0 (intervention required). All other commands are sent by the channel and executed normally.

LEGEND:
\mathbf{P} is an odd parity bit.
Bit position 7 is the least significant bit.
X may be a 1 or 0 bit and is ignored.
ACDEF detailed advance bits are as follows:

0770 Printer Subsystem (cont)

Bit A	Bits				
A = 0	A = 1	C	D	E	F
Space 0 line (note 1)	Advance repeat	0	0	0	0
Space 1 line	Skip to code 1	0	0	0	1
Space 2 lines	Skip to code 2	0	0	1	0
Space 3 lines	Skip to code 3	0	0	1	1
Space 4 lines	Skip to code 4	0	1	0	0
Space 5 lines	Skip to code 5	0	1	0	1
Space 6 lines	Skip to code 6	0	1	1	0
Space 7 lines	Skip to code 7	0	1	1	1
Space 8 lines	Skip to code 8	1	0	0	0
Space 9 lines (note 2)	Skip to code 9	1	0	0	1

¢	Space 10 lines	Skip to code A	1	0	1	0
	Space 11 lines	Skip to code B	1	0	1	1
	Space 12 lines (note 3)	Skip to code C	1	1	0	0
폭	Space 13 lines	Skip to code D	1	1	0	1
	Space 14 lines	Skip to code E	1	1	1	0
	Space 15 lines	Skip to code F	1	1	1	1

NOTES:

1. Code $\mathrm{ACDEF}=100000$ causes an advance in accordance with the ACDEF detail bits of the last ACDEF not equal to 100000 advanceonly, print-advance, or advance-print command.
2. Code $A C D E F=01001$ is reserved for use with code 9 (sense byte 2 bit 4) and causes a unit check status when detected in the vertical format buffer.
3. Code $A C D E F=01100$ is reserved for use with unit exception status (forms overflow) when detected in the vertical format buffer.
5.4.3.3. 0776 Printer Subsystem

Command	Bit Position and Setting							
	0	1	2	3	4	5	6	7
Load Vertical Format Buffer ${ }^{(1)}$	0	1	1	0	0	0	1	1
Load Code Buffer (1)	1	1	1	1	1	0	1	1
Print Advance (1)	A	C	D	E	F	0	0	1
Form Advance ${ }^{(1)}$	A	C	D	E	F	1	1	1
Diagnostic Write (1) (2)	1	1	1	0	0	0	1	1
Read Print Line Buffer (1) (2)	\times	x	x	0	0	0	1	0
Read Load Code Buffer (1) (2)	X	x	X	0	1	0	1	0
Read Vertical Format Buffer (1)	X	X	X	1	0	0	1	0
Sense I/O	0	0	0	0	0	1	0	0

LEGEND:
X bits are ignored by printer control. A, C, D, E, F are modifier/detail bits.

NOTES

(1) Channel cannot initiate command when printer is in STOP state. Intervention is required. (Sense byte 0 bit 1 is set to 1.) all other commands can be sent by the channel and are executed normally.
(2) Diagnostic use only

LEGEND:

Bit position, 7 is the least significant bit position.
X may be a 1 or 0 bit and is ignored by control unit.
A (read bit)
$0=$ read data

B
$0=$ stop on errors
1 = sort errors
$\left.\begin{array}{l}D=0 \\ E=0\end{array}\right\}$
80-column read
$\left.\begin{array}{l}D=0 \\ E=1\end{array}\right\} \quad$ short card 51 -column read
$\left.\begin{array}{l}D=1 \\ E=1\end{array}\right\} \quad$ short card 66-column read
$\left.\begin{array}{l}C=1 \\ F=0\end{array}\right\} \quad$ dual translate feature
$\left.\begin{array}{l}C=0 \\ F=0\end{array}\right\} \quad$ read in translate mode

F (detail bit)
0 = read in translate mode
1 = read in image mode
$\left.\begin{array}{l}A=1 \\ F=1\end{array}\right\} \quad$ maintenance mode read
Cards are advanced but data is not read. Two bytes containing the 16 special diagnostic status bits are sent to the multiplexer channel for maintenance purposes.

To read 96 -column cards, use the normal 80-column card read commands with the 96 -column card adapter installed.
5.4.3.5. 0604 Card Punch Subsystem

LEGEND
X may be a 1 or 0 bit and is ignored.
A, C, D, E, F modified/detail bits are as follows.

A, C, D, E	Detail Bits for Control Command Interpretation
$A=0$	Denotes normal operation
$\mathrm{A}=1$	Indicates transfer postpunch read data to the punch buffer (this function is a maintenance feature only)
$\mathrm{C}=1$	Functions to advance the cards one station (feed a card) and to place the card punched on the previous punch order into the select stacker
$\mathrm{D}=1$	Functions to feed and punch a card
$E=1$	Functions to feed a card

A, B, C, D, E, F Detail Bits for Load Buffer Command Interpretation | $A=0$ | Functions to load the punch buffer |
| :--- | :--- |

$A=1 \quad$ Functions to load the read buffer (read buffer test function)
$C=1$
$D=1$
$E=1$
$F=0$
$F=1$
Functions to advance the cards one station (feed a card) and to place the card punched on the previous punch order into the select stacker

Functions to feed and punch a card

Functions to feed a card

Functions to cause cards to be punched in compress mode

Functions to cause cards to be punched in image mode

A, F	Detail Bits for Control Command Interpretation
$A=0$	Functions to unload the read buffer
Functions to unload the punch buffer	
$F=0$	Functions to read data punched in the compressed mode
Functions to read data punched in the image mode	

Command codes for the printer, card reader, and card punch are the same as shown in 5.4 .1 for these devices on the Integrated Peripheral Channel
5.4.3.7. 8411/8414/8424/8425 Disc Subsystems

Command	Bit Positions							
	0	1	2	3	4	5	6	7
SEEK								
Seek	0	0	0	0	0	1	1	1
Seek-head	0	0	0	1	1	0	1	1
Seek-cylinder	0	0	0	0	1	0	1	1
WRITE								
Write-home-address	0	0	0	1	1	0	0	1
Write-TD-record	0	0	0	1	0	1	0	1
Write-count-key-and-data	0	0	0	1	1	1	0	1
Write-special-count-key-and-data	0	0	0	0	0	0	0	1
Write-data	0	0	0	0	0	1	0	1
Write-key-and-data	0	0	0	0	1	1	0	1

8411/8414/8424/8425 Disk Subsystems (cont)

SEARCH

Search-home-address-equal
Search-ID-equal
Search-ID-high
Search-ID-equal-or-high
Search-key-equal
Search-key-high
Search-key-equal-or-high
Search-key-and-data-equal
Search-key-and-data-high
Search-key-and-data-equal-or-high
Continue-scan-equal
Continue-scan-high
Continue-scan-equal-or-high
Continue-scan-no-compare
Continue-scan-set-compare
Continue-scan-set-compare

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| M | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| M | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| M | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| M | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| M | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| M | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| M | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| M | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| M | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| M | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| M | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| M | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| M | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| M | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| M | 0 | 1 | 1 | 0 | 1 | 0 | 1 |

8411/8414/8424/8425 Disk Subsystems (cont)

Command	Bit Positions							
		0	1	2	3	4	5	6

LEGEND:
Bit positions in a byte, position 7 being the least significant bit position.

The M bit, when 0 , establishes normal operation mode. The M bit, when 1, establishes multiple-track mode. This bit is ignored by the control unit on an initial-program-load command. When the M bit is set to 1 in the command, the disk unit upon encountering the index mark, increments the head register to switch to the next head. This M bit when set to 1 in a search-truncated command, and the track descriptor record (TDR) is used as a data record, enables the program to cascade down the cylinder switching to the next head after reaching the index mark. If the track descriptor record is not used as a data record, and the data length is 0 along with external interrupt status containing unit exception, disk transfer terminates. If the TDR does not have a data length of 0 , the data within the TDR will then be presented, and the read/write, search-truncated, jump, and chain continue.

5．4．3．8．8430／8433 Disk Subsystems

ω	Command	Command Code															
		Multiple Track OFF								Multiple Track ON （if applicable）							
另		Bit Positions								Bit Positions							
员皿		0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
¢	CONTROL																
吾方	Seek	0	0	0	0	0	1	1	1								
\ldots	Seek cylinder	0	0	0	0	1	0	1	1								
ミֹ	Seek head	0	0	0	1	1	0	1	1								
予	Set sector	0	0	1	0	0	0	1	1								
－	Seek and set sector	0	0	1	0	0	1	1	1								
	Recalibrate	0	0	0	1	0	0	1	1								
	Set file mask	0	0	0	1	1	1	1	1								
1	Space count	0	0	0	0	1	1	1	1								
$ज$	Retry restart（1）	0	0	1	1	1	0	1	1								
	No operation	0	0	0	0	0	0	1	1								
	Restore	0	0	0	1	0	1	1	1								

$$	8430/8433 Disk Subsystems (cont)																
	Command	Command Code															
		Multiple Track OFF								Multiple Track ON (if applicable)							
-		Bit Positions								Bit Positions							
		0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
\bigcirc	READ																
空务	Home address	0	0	0	1	1	0	1	0	1	0	0	1	1	0	1	0
$\ldots 8$	Count	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0
든	Record 0	0	0	0	1	0	1	1	0	1	0	0	1	0	1	1	0
5	Data	0	0	0	0	0	1	1	0	1	0	0	0	0	1	1	0
$\underset{\sim}{0}$	Key and data	0	0	0	0	1	1	1	0	1	0	0	0	1	1	1	0
	Count, key and data	0	0	0	1	1	1	1	0	1	0	0	1	1	1	1	0
$\stackrel{c}{c}$	Multiple count, key and data	0	1	0	1	1	1	1	0								
	IPL	0	0	0	0	0	0	1	0								
	Sector	0	0	1	0	0	0	1	0								

 NOTES:
Implemented on SPERRY UNIVAC 1100 Series systems only.
Implemented on SPERRY UNIVAC Series 90 systems only.

Command	Bit Positions							
	0	1	2	3	4	5	6	7
Test	x	x	0	0	0	0	0	0
0	x	\times	1	1	0	0	0	0
Set inhibit status	x	x	0	1	0	0	0	0
Reset inhibit status	x	x	1	0	0	0	0	0
Sense	0	0	0	0	0	1	0	0
Sense/reserve	1	1	1	1	0	1	0	0
Sense/release	1	1	0	1	0	1	0	0
Write	0	0	0	0	0	0	0	1
Read	0	0	0	1	0	0	1	0

Command	Bit Positions							
	0	1	2	3	4	5	6	7
Read/backward	0	0	0	1	1	1	0	0
Control	0	0	c	C	c	1	1	1
Mode set	D	D	M	M	M	0	1	1

LEGEND

X may be a 1 or 0 bit and is ignored.
$1=1$ - Set unit check status if bit 4 of sense data byte 3 is set.
$1=0-$ Do not set unit check status if bit 4 of sense data byte 3 is set
CCC (control command code) :
000
001
010
011
100
$=$ rewind
$=$ rewind with interlock
$=$ erase
$=$ write tape mark
= backspace block

EGEND: (cont)

101	$=$ backspace file
110	$=$ forward space block
111	$=$ forward space file

DDMMM (density set, mode modifier)
$00011=$ request TIE (9-track NRZI)
$11000=$ set 1600 -bpi mode (This mod
$11001=$ set 800 -bpi mode for 9 -track
$00000=$ no operation
$00001=$ reset simulate mode
$01001=$ set simulate mode
10001 = set monitor mode
01011 = set low gain (The gain condition applies to a read or space operation immediately following the mode-set command. At the end of the operation, the mode is reset to high gain.)
OOMMM $=$ set 200 -bpi mode for 7 -track
$01 \mathrm{MMM}=$ set 556 -bpi mode for 7-track Applies only for certain values of MMM.
10MMM $=$ set 800 -bpi mode for 7-track
Nine-track operation overrides, but does not reset, a 7 -track mode setting. Seven-track operation overrides, but does not reset, a 9 -track mode setting. Nine-track operation mode settings apply only to write, write-tape mark, or erase commands executed from load point.

LEGEND:

Bit position 7 is the least significant bit position.
X may be either a 1 or 0 bit and is ignored.
CCC (control code):
$000=$ rewind
001 = rewind-with-interlock
$010=$ erase
011 = write tape mark
100 = backspace block
101 = backspace file
110 = forward space block
111 = forward space file
MMM (mode modifier):
$000=$ no operation, 1600 bpi if $D D=11$
$001=$ failure-finding mode (maintenance personnel only), 800 bpi if $D D=11$
$010=$ odd parity recording, data converter ON, translator OFF, density per DD
011 = low gain (applies only to read or space operation immediately following mode set command;

UNISERVO 12/16 Magnetic Tape Subsystem (cont)

LEGEND:

Ording, data converter OFF, density per DD, translator OFF
101 = 7-track, even parity, translator ON, data converter OFF, density per DD
110 = odd parity recording, data converter OFF, translator OFF, density per DD
111 = 7-track, odd parity, translator ON, data converter OFF, density per DD

[^3]
UNISERVO 20 Magnetic Tape Subsystem (cont)

LEGEND:
X may be a 1 or 0 bit and is ignored
$1=1$ - Set unit check status if bit 4 of sense data byte 3 is set.
$1=0-$ Do not set unit check status if bit 4 of sense data byte 3 is set.
CCC (control code):
$000=$ rewind
001 = rewind with interlock
$010=$ erase
011 = write tape mark
100 = backspace block
101 = backspace file
110 = forward space block
111 = forward space file
DDMMM (density set, mode modifier)

LEGEND: (cont)

$00001=$ reset simulate mode
$01001=$ set simulate mode
$10001=$ set monitor mode
01011 = set low gain (The low gain condition applies to a read or space operation immediately following the mode-set command. At the end of the operation, the mode is reset to high gain.)

```
\(00 \mathrm{MMM}=\) set 200 -bpi mode for 7 -track
\(01 \mathrm{MMM}=\) set 556-bpi mode for 7-track \(\}\) applies only for certain values of MMM
\(10 \mathrm{MMM}=\) set 800 -bpi mode for 7 -track
```

	5.4.3.12. UNISERVO VI-C Magnetic Tape Subsystem								
	Command	Bit Positions							
		0	1	2	3	4	5	6	7
	Test	x	$\begin{gathered} x \\ x \end{gathered}$	0 1	$\begin{gathered} 0 \\ 0 \\ 1 \end{gathered}$	0 0	0 0	0 0	0 0
	Set inhibit status	x	\times	0	1	0	0	0	0
	Reset inhibit status	x	x	1	0	0	0	0	0
	Sense	0	0	0	0	0	1	0	0
	Write	0	0	0	0	0	0	0	1
$\begin{aligned} & 0 \\ & 1 \\ & \infty \\ & \infty \end{aligned}$	Read	0	0	0	X	0	0	1	0
	Read backward	0	0	0	x	1	1	0	0
	Control	0	0	c	c	c	1	1	1

Command	Bit Positions								
		0	1	2	3	4	5	6	7
Mode set		D	D	M	M	M	0	1	1

MMM (mode modifier)
$000=$ no operation
001 = reserved for failure-finding mode (maintenance personnel only)
010 = odd parity recording, data converter ON, density per DD
011 = low gain (applies only to read or space operation immediately following mode set command; gain is reset to normal gain at end of operationl. DD must be 01
$100=$ even parity recording, data converter OFF, density per DD
$101=$ invalid
110 = odd parity recording, data converter OFF, density per DD
$111=$ invalid

DD (density set), applicable to 7-track operation only:
$00=200 \mathrm{bpi}$
$01=556 \mathrm{bpi}$
$10=800 \mathrm{bpi}$
$11=$ not used (invalid command)

Nine-track operation forces 800 bpi and odd vertical parity recording
Nine-track operation overrides but does not reset 7-track mode setting

LEGEND

Bit position 7 is the least significant bit position.
X may be a 1 or 0 bit and is ignored.

Test-input/output-status (TIO) instruction is used with 9200/9200 11/9300/9300 II Systems only.
$A=0$ indicates character recognition is operative.
$A=1$ indicates operation in binary mode.
5.4.3.14. 2703 Optical Document Reader

Command Byte	Bit Positions							
	0	1	2	3	4	5	6	7
Operational								
Test I/O	x	x	x	\times	0	0	0	0
Set inhibit status	x	x	0	1	0	0	0	0
Reset inhibit status	x	x	1	0	0	0	0	0
Sense	\times	x	\times	\times	0	1	0	0
Read 1 backward	\times	x	0	1	1	1	0	0
Read 2 backward	\times	x	1	x	1	1	0	0
Read 0 backward	x	x	0	0	1	1	0	0
Stacker 2 immediate	x	x	1	0	0	0	1	1
Stacker 3 immediate	\times	x	1	1	0	0	1	1
Noop	\times	x	0	\times	0	0	1	1
Read Select								
OCR read	x	0	0	0	0	1	7	1
No OCR read	\times	0	0	1	0	1	1	1
OCR and mark read	0	0	1	0	0	1	1	1
Mark read	0	0	1	1	0	1	1	1

2703 Optical Document Reader（cont）

	Command Byte	Bit Positions							
		0	1	2	3	4	5	6	7
	OCR and card read	0	1	\times	0	0	1	1	1
	Card read	0	1	X	1	0	1	1	1
	OCR read and card read translate	1	1	X	0	0	1	1	1
	Card read transiate	1	1	\times	1	0	1	1	1
	Mark read translate	1	0	1	1	0	1	1	1
	OCR read and mark read translate	1	0	1	0	0	1	1	1
골	Mode								
宍安	Stacker 2 mode preselect	0	1	0	0	1	0	1	1
号官	Stacker 3 mode preselect	0	1	0	1	1	0	1	1
¢0	Stacker 2 preselect and modulus 10 check digit mode	1	1	0	0	1	0	1	1
$\underset{\mathbb{K}}{\mathbf{K}} \omega$	Stacker 3 preselect and modulus 10 check digit mode	1	1	0	1	1	0	1	1
突	Modulus 10 check digit select mode	1	0	0	X	1	0	1	1
	Stacker preselect mode reset	0	0	\times	0	1	0	1	1
\prod_{0}^{0}	Document length								
	Document length 3.00 to $\mathbf{3 . 3 0}$	1	1	1	x	1	0	1	1
	Document length 3.31 to 4.00	1	0	1	x	1	0	1	1
	Document length 4.01 to 5.90	0	1	1	x	1	0	1	1
	Document length 5.91 to 8.75	0	0	1	X	1	0	1	1

Mark read stacker
Mark read stacker, row 0-1
Mark read stacker, row 2-3
Mark read stacker, row 4-5
Mark read stacker, row 6-7
Mark read stacker reset
Diagnostic
Set diagnostic
Read diagnostic
Write diagnostic
Reset diagnostic
NOTE:
Bit position 7 is least significant bit position. X may be either a 1 or 0 bit.

LEGEND:
$\mathrm{D}=$ Command detail bit $X=$ Ignored by adapter

I/O Channel Number Assignment

Channel $0=$	Integrated Peripheral Channel (IPC)	Channel $4=$	Selector channel 1
			Communications
Channel 1 =	Multiplexer channel	Channel $5=$	Intelligence Channel (CIC)
Channel $2=$	Unnassigned	Channel 6 =	Selector channel 2
Channel $3=$	Integrated Disc Adapter (IDA)	Channel $7=$	I/O Status tabler

ders
————

Device	Address Field Bits*						
	24	25	26	27	28	29	30

Address field bits correspond to bits 24-31 of SIO
instruction.

* * Requires expansion feature for eight disk drives.

Devica	Addreas Field Bits*							
	24	25	26	27	28	29	30	31
Console (UNISCOPE 100)	0	0	0	0	0	0	0	0
Workstation 1	0	0	0	1	1	0	0	0
Workstation 2	0	0	0	1	1	0	0	1
Workstation 3	0	0	0	1	1	0	1	0
Workstation 4	0	0	0	1	1	0	1	1
Workstation 5	0	0	0	1	1	1	0	0
Workstation 6	0	0	0	1	1	1	0	1
Workstation 7	0	0	0	1	1	1	1	0
Workstation 8	0	0	0	1	1	1	1	1
Workstation 9	0	0	0	1	0	1	0	0

Device	Address Field Bits*							
	24	25	26	27	28	29	30	31
Workstation 10	0	0	0	1	0	1	0	1
Workstation 11	0	0	0	1	0	1	1	0
Workstation 12	0	0	0	1	0	1	1	1
8413 diskette 0	0	0	0	1	0	0	0	0
8413 diskette 1	0	0	0	1	0	0	0	1
8413 diskette 2	0	0	0	1	0	0	1	0
8413 diskette 3	0	0	0	1	0	0	1	1
0717 reader	0	0	0	0	0	0	0	1
0719 reader	0	0	0	0	0	0	0	1
0773 printer	0	0	0	0	0	0	1	0
078 printer	0	0	0	0	0	0	1	0

Device	Address Fiold Bits*							
	24	25	26	27	28	29	30	31
0605 punch	0	0	0	0	0	0	1	1
LA-O(CA-1)	0	0	0	0	0	1	0	0
LA-6 (CA - 1)	0	0	0	0	0	1	0	1
$L A-1(C A-1)$	0	0	0	0	0	1	1	0
LA - 7 (CA - 1)	0	0	0	0	0	1	1	1
LA - 2 (CA - 1)	0	0	0	0	1	0	0	0
LA - 8 (CA - 1)	0	0	0	0	1	0	0	1
LA-3 (CA - 1$)$	0	0	0	0	1	0	1	0
LA - $9(C A-1)$	0	0	0	0	1	0	1	1
LA - $4(C A-1)$	0	0	0	0	1	1	0	0

Device	Address Field Bits*							
	24	25	26	27	28	29	30	31
LA - 3 (CA - 2)	0	0	0	1	1	0	1	0
LA - 9 (CA - 2)	0	0	0	1	1	0	1	1
LA - 4 (CA - 21	0	0	0	1	1	1	0	0
LA - $10(C A-2)$	0	0	0	1	1	1	0	1
LA - $5(C A-2)$	0	0	0	1	1	1	1	0
LA - 11 (CA - 2)	0	0	0	1	1	1	1	1

* Address field bits correspond to bits 24-31
of SIO instruction.
LEGEND:
LA $=$ line adapter
$\mathrm{CA}=$ communication adapter

Status Byte Format for System Console, Printer, Diskette, Reader, and Punch

Status Byte Format for System Console, Printer, Diskette, Reader, and Punch (cont)

Bit	Condition Which Sets Bits	Meaning
$7^{* *}$		Set to zero by reader control (applies to system console, reader, and punch)
	Unit exception	Indicates an abnormal condition occurred during operation (applies to diskette only)
	Indicates forms overflow. (Applies only to 0778 printer and is presented with device end status of print-advance or advance command.) Paper advances the number of positions specified by the command.	

*Refer to conditions listed in 5.9, 1/O sense data byte definitions.
Device status byte corresponds to bits 16-23 of IOSTIW.
**Status byte information in bits 0-6 applies to 8413 diskette and 0778 printer subsystems, as well as to the system console, readers, and punches. Bit 7 is an exception which is interpreted differently for system console, readers, and punches, than for 8413 diskette and 0778 printer subsystems.

Bit	Condition Which Sets Bits	Meaning
0	Attention	Indicates that one of the following occurred at the workstation: operator activation of the transmit key; an implied transmit function (DC1, ESC DC1) contained in a write command; operator activation of any one of 23 function keys; operator activation of a mode change request from workstation mode to system mode or vice versa; a RAM parity error occurred at the device; a power condition occurred at the device; or when presented with status bit 2 indicates catastrophic failure.

	Status Byte Format for Workstation (cont)		
	Bit	Condition Which Sets Bits	Meaning
	1	Status modifier	Set if sense byte 0 , bit 2 , sense byte 0 , bit 6 , or the contents of sense bytes 3 through 5 are nonzero.
	2	Control unit end	Indicates the first SIO returned with a busy condition code causing the IPCA to store this device address. When not busy, the IPCA generates a status interrupt with the stored address and sets this bit. Status is generated only for the first SIO. When presented with status bit 0 , it indicates catastrophic failure.
	3	Busy	Indicates addressed workstation is executing previous command.
	4	Channel end	Indicates completion of the outstanding command.
	5	Device end	Indicates successful completion of command and readiness to accept a new command.

山	Bit	Condition Which Sets Bits	Meaning
포	6	Unit check	Indicates some condition that prevented successful command completion occurred at the device or the workstation controller or the IPCA. Unit check implies that at least one bit in sense byte 0 or sense byte 6 is set to 1 .
$\begin{aligned} & \text { B } \\ & \text { Bo } \\ & \hline 1 \end{aligned}$	7	N/A	Always set to zero; not used

\bullet
\bullet

5.9.1.1. System Console

Sense Data Byte 1

0	Console power off	Set to 1 if the system console power has not sequenced up.
1	COP no response	Set to 1 if the auxiliary interface cannot perform print sequences because the COP is in a power-off state or is nonexistent. Always 0 if the auxiliary interface feature is not installed.
2	Operator print	Set to 1 if the auxiliary interface indicates a print sequence is in progress. Always 0 if the auxiliary interface feature is not installed.
3	Wait active	Set to 1 if the operator presses the WAIT switch, or power is turned on at the system console.
4	Transmit active	Set to 1 if the operator presses the TRANSMIT key or the text data contained a DC1 code.
5	Auxiliary interface feature	Set to 1 if the auxiliary interface feature is installed; otherwise always 0 .
6	Print-time-out	Set to 1 if the 1-second interface timer expired during a print sequence.
7	N/A	Set to 0 by the system console control.

5.9.1.2. Workstation

SENSE


```
WORKSTATION CONTROLLER DETECTED COMMUNICATION ERROR LOG COUNTER
```


(

Workstation (cont)

Bit Position	Bit Designation	Definition
7	Program alert	Set to indicate one or more of the following: a user write command was issued in system mode; operator pressed unlock key while command was outstanding: workstation reports an out-of-bounds vector address during a load RAM comand; message waiting command was issued in system mode; or load RAM command was issued in system mode. Bit is set with intervention if an invalid device address was received (out-ofrange). Bit is set with command reject if a user read command was issued to the workstation in system mode or if a system message read was issued to the workstation in workstation mode.

Sense Data Byte 1

0	Invalid device address	Set to indicate that a portion of the DA/FC byte was invalid during a command sequence
1	WS not ready	Sets bit if the workstation does not respond when a workstation reset message results from D bus reset; or if the workstation controller gets no response from the workstation during a command (other than sense or NO-OP).
2	WS RAM not loaded	Set to indicate that the system should load RAM. No operator action required. (offline)
4	Load error at WS	Set to indicate that the appropriate device must be online before any processing can be performed on that device.
3	Bit is set with equipment check if the workstation reports a text record check-sum error during a load RAM command. Bit is set with program alert if the workstation reports a RAM vector address (contained in the initial record) that exceeds the RAM limits.	

	Workstation (cont)		
	Bit Position	Bit Designation	Definition
	5	Read/write contention	Set to indicate that a READ and WRITE were issued concurrently. READ takes precedence. WRITE is aborted.
	6	WS peripheral not available	Set to indicate that device is not available.
	7	Invalid command at WS	Set to indicate that a user write command was sent to the workstation in system mode
	Sense Data Byte 2		
	0	WSC RAM error	Set to indicate a parity error was detected in the workstation controller during RAM access
	1	NRE PIU error	Set to indicate a nonrecoverable D bus error occurred related to the PIU device
	2	Power on	Set to indicate that the workstation successfully completed power on and the associated confidence test

	3	RAM parity error	Set to indicate that the workstation reported a parity error
	4	Transmit	Set to indicate that the transmit key on the workstation has been depressed since the last command
	5	Function code	Set to indicate that the operator pressed either the message waiting key or one of the function keys
	6	Mode change request	Set to indicate the operator changed the mode of the workstation from workstation mode to system mode or vice versa
	7	System mode	Sets bit to 1 when the workstation is in system mode. Sets bit to zero when the workstation is in workstation mode.
	Sense Data Byte 3		
	0-7		A binary count of the number of times communication errors were detected by the workstation controller (WSC) on the workstation controlter/workstation interface since last command

	Workstation (cont)		
	Bit Position	Bit Designation	Definition
			Sense Data Byte 4
	O-7		A binary count of the number of times communication errors were detected by the workstation at the workstation/workstation controller interface since the last command
	Sense Data Byte 5		
	0-7		A binary count of the number of times keyboard parity errors occurred at the workstation/keyboard interface since the last command
			Sense Data Byte 6
$\stackrel{u}{\stackrel{u}{\Delta}}$	0	Command reject	Set to indicate a parity error on the command issued or an invalid command
	1	Intervention required	Set to indicate that the device is not ready, not online, or the device address issued is out of range for the devices available (hardware failure).

	2	Bus out check	Set to indicate a parity error occurred while transferring data between the IPCA and control unit
	3	Equipment check	Set to indicate one or more of the following: D bus error nonrecoverable PIU error on IPCAs internal data bus IPCA RAM parity error
	4	D bus flag check	Set to indicate that an illegal combination of flag bits occurred on the D bus. (IPCA received bits from the workstation controller.)
	5	D bus interface check	Set to indicate that the D-bus timer elapsed before the IPCA received the device address or was issued a control unit address error. (Workstation controller did not get off the D bus soon enough). IPCA terminates the halt device or read event commands with OA status (catastrophic error).
	6	Bus in check	Set to indicate that a parity error occurred while transferring data between the control unit and the IPCA on the D bus.

	Workstation (cont)		
	Bit Position	Bit Designation	Definition
	7	Early terminate	Set to indicate that the IPCA terminated data sequences before completion of a data transfer through IPC channel (problem between main storage interface and (PC).
	Sense Data Byte 7		
	0	IPCA RAM parity error	Set to indicate termination of data transfer from IPCA and issued a reset to the control unit. RAM parity error detected by IPCA (catastrophic error). Coupled with equipment check.
	1	IPCA NRE PIU error	IPCA PIU error. Coupled with equipment check.
$\begin{gathered} 0 \\ 1 \\ \vdots \\ \hline \end{gathered}$	2	N / A	Always set to zero; not used
	3	N/A	Always set to zero; not used
	4	Bus reset	Set to indicate that a D-bus reset was issued by the IPCA.

Set to indicate that D-bus timer elapsed before the IPCA received the device address, an error in the control unit occurred or the control unit did not disconnect from the D bus within timer time range.
Devices (cont)

LIT-G

5	Control units to channel check	Set to indicate that D-bus timer elapsed before the IPCA received the device address, an error in the control unit occurred or the control unit did not disconnect from the D bus within timer time range.
6	N/A	Always set to zero; not used
7	N/A	Always set to zero; not used

	Bit Position	Bit Designation	Definition
	Sense Data Byte 0		
	0	Command reject	This sense bit indicates a command reject. This bit is generated during an SIO sequence whenever output of the command register is not decoded as a valid command. Unit check status is set and printer control becomes active.
	1	Intervention required	This sense bit indicates that an operator intervention is required.
	2	Bus out check	Not used; set to 0 .
	3	Equipment check	This sense bit indicates a print check. It is set if an actuator circuit check or band check $(S B 1,4)$ error is detected and also if either fuse check or latch check is detected.
$\underset{\sim}{1}$	4	Data check	This sense bit indicates a parity error detected in the vertical format buffer (SB1,6).
	5	Overrun	This sense bit indicates an overrun condition. It is generated when there is one or mare unprintable characters in the print line buffer; no matching code is found in the code buffer.
	6	Stop state	This sense bit indicates that the printer is in the stop state. The printer enters the stop state V ia the STOP switch or an error condition.

Bit Position	Bit Designation	Definition
Sense Data Byte 0 (cont)		
7	Device check	This sense bit indicates a device check is required. It is generated when one of the following errors occurs and causes printer control to enter the stop state: blower or ribbon check interlock active If device check status occurs during a print or advance command, the command is immediately terminated.
Sense Data Byte 1		
0	Forms out	This sense bit indicates that the printer is out of paper. It is generated when an advance to or past-home-paper position has occurred after a forms-low indication. Setting this bit causes entry into the stop mode and cannot be cleared until paper has been loaded in the printer.
1	Forms low	This sense bit is set if less than 6 inches of paper remains in the paper supply for the 0773 printer, and 4.7 inches of paper remains in the paper supply for the 0778 printer. The lower tractors may no longer contain paper. Setting this bit causes entry into the stop state; the run mode can be reentered until a forms out (SB1,0) is generated. Unit check status is only generated when this condition (forms low) is first detected.
2	VFB check	This sense bit indicates a paper runaway was detected during an advance setup sequence. It is set if an advance command is issued and the sk ip code, specified by the C, D, E, and F bits ($A=1$), is not present in the vertical format buffer. No paper advance tak es place.

3	Forms check	This sense bit indicates a forms check. It is set if any indlvidual paper advance exceeds 1.1 secands or a forms-jam condition was detected.
4	Band check	This sense bit is set if no timing marks are detected within 1 milisecond, or an incorrect number of timing marks is detected between 2 font marks. Detection of timing marks begins 5 seconds after power is applied to the print band motor.
5	Print line buffer parity error	This sense bit is set if a parity error is detected when reading the print line buffer or during a print setup sequence.
6	Vertical format request/parity error	This sense bit is set if one of the following conditions is present: 1. A parity error is detected when accessing the vertical format buffer. 2. A print-advance or advance command was received after power turn on, system reset, or operator initialization of VFB, and no load-verticai-format-buffer command was issued.
7	Load code request/ parity error	This sense bit is set if one of the following conditions is present: 1. A parity error is detected when accessing the load code buffer. 2. A print-advance or dlagnostic command was received after power turn on, system reset, or operator initlalization of VFB, and no load-code-buffer command was issued.

0717/0719 Card Reader Subsystems (cont)

Bit Position	Bit Designation	Definition
Sense Data Byte 0 (cont)		
4	Data check	Set to 1 if any of the following conditions are detected: column 0 error (SB1,0) - validity check error (SB1,1) - - compare error (SB1,2) - resync error (SB1,3)
5	Overrun	Set to 1 If an overrun condition on data transfer is detected.
6	Stop state	Set to 1 If the card reader is in the stop state. The card reader may enter the stop state by way of the STOP switch or an error condition.
7	Device check	Set to 1 If the card reader detects an interlock actlve. If device check occurs during a command, the command is terminated Immediately.
		Sense Data Byte 1
0	Column 0 error	Set to 1 if all 12 read amplifiers are not off midway between the leading edge of a card and column 1.

	1	Validity check error	Set to 1 if the command specified translate and the card reader control detected multiple punches in rows 1 through 7 for any individual column.
	2	Compare error	Set to 1 if for any given column the data read in read station 1 does not compare when read in station 2.
	3	Resync error	Set to 1 if the card reader control does not detect a punch hole after the read strobe has been synchronized. A read strobe is performed on every column. A resync is performed only when the leading edge of a hole is detected. If a resync occurs, a check is made to verify if the hole still exists (properly centered). The error occurs when the hole does not register properly.
	4	Transfer check	Set to 1 if a card is fed from the hopper and detected by the read station photocells or the card patch sensor when a feed was not issued by the card reader control. The motors are turned off immediately and the stop state entered. No status indication is presented to the IPC until the next $S 1 O$ sequence to the card reader control.
	5	N/A	Set to 0 by the card reader control.
$\frac{0}{1}$	6	51-column feature	Set to 1 if $F 1627-00$ is installed for 0717 card reader, or if $\mathrm{F} 2324-00$ is installed for 0719 card reader; otherwise 0.
	7	66-column feature	Set to 1 if F 1627-01 is installed for 0717 card reader, or if F2324-01 is installed for 0719 card reader; otherwise 0.

	Bit Position	Bit Designation	Definition	
	Sense Data Byte 0			
	0	Command reject	Set to 1 if an invalid command is issued. Unit check status is set and the control is not active.	
	1	Intervention required	Set to 1 if a condition is detected which requires manual intervention.	$\stackrel{\sim}{0}$
	2	N/A	Not applicable. Set to 0 by the control.	\bigcirc
				荢
cin				$\stackrel{\text { O }}{\text { - }}$

0605 Card Punch Subsystem (cont)

Bit Position	Bit Designation	Definition

Sense Data Byte 0 (cont)

Set to 1 if a card transport error has occurred. The following conditions can cause thls error:

- The advance wait station light sensor indicated a lit condition prior to feeding the card from the advance station to the punch station.
- A card was fed through the read station, but the leading edge failed to be detected by the pre-punch sensor.
- A card was pushed through the punch station, but the leading edge of the card failed to be detected by the post punch light sensor after the card was pushed 34 columns.
- The eject card rollers were activated to transport a card to the output stacker but the post punch light sensor did not switch from dark to light within 250 milliseconds.
- A card is in the read station for more than 150 milliseconds or any read station sensor (if F1617-00 is installed) is dark at column 84,
- A card was fed from the advance station through the punch station, but the prepunch sensor did not switch from dark to light after the fifth push on the card.
strobe error (SB1,2)
punch check error (SB1,4)

5	Overrun	Set to 1 if an overrun condition on punch or read data transfers is detected. Data transfers for the current operation are terminated.
6	Stop state	Set to 1 if the subsystem is in the stop state. The subsystem may enter thls state vla the STOP switch, or an error condition.
7	Device check	Set to 1 if the subsystem has detected interlock active. If device check occurs during a command, the command is immedlately terminated.

	0605 Card Punch Subsystem (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 1		
	0	Column 0 error	Sat to 1 if the read station is installed, and any 1 of the 12 read stations detect a hole between the leading edge of a card and column 1.
	1	Valldity check error	Set to 1 while operating in the translate mode and more than one punch per column was detected in rows 1 through 7.
	2	Strobe error	Set to 1 if the read station feature is installed and a stroke signal detected incorrect data.
	3	Misfeed error	Set to 1 if a card falled to feed from the card reader hopper.
	4	Punch check error	Set to 1 if a mismatch occurs during the punch cycle, when the punch check performs an accuracy check.
	5	N/A	Not applicable. Set to 0 by the control.
年	6	Read station feature	Set to 1 if read station feature is installed; otherwise set to 0 by the control.
	7	N/A	Not applicable. Set to 0 by the control.

	SENSE DATA BYTE	8413 Diskette BIT 0	system 1	2	3	4	5	6	7
$\frac{7}{5}$	0	COMMAND	INTER- VENTION REQUIRED	BUS OUT CHECK	EQUIPMENT CHECK	DATA CHECK	NOT USED (0)	STOP STATE	DEVICE CHECK
	1	10 FIELD CHECK	SN CHECK	TRACK/ SECTOR ADDRESS CHECK	TRACK MISMATCH	NO SECTOR FOUND	WRITE PROTECT CHECK	NO DATA SEPARATOR LOCK	CRC CHECK
	2	DELETED DATA ADDRESS MARK	INVALID DATA SET LABEL	FDC PARITY ERROR	EOD/EOE	END OF VOLUME	NOT USED	RETRY	INVALID COMMAND SEQUENCE
-	3	DIRECT ACCESS MODE	FEATURE INSTALLED	HARDWARE WRITE PROTECT	SNR 0	SNR 1	SNR 2	SNR 3	SNR 4
$\stackrel{\sim}{\omega}$	4	NOT USED	TAR 0	TAR 1	TAR 2	TAR 3	TAR 4	TAR 5	TAR 6
	5	NOT USED	NOT USED	NOT USED	SAR 0	${ }_{1}^{\text {SAR }}$	SAR 2	SAR 3	SAR 4

uTu visnerte sudsystem (cont)

- Write protect check (SB1, bit 5)
- Invalid data set label (SB2, bit 1)
- Hardware write protect (SB3, bit 2)

3. A DW (E1) command was issued without an enabling (F1) command immediately preceding it. This error condition results in a device-end and unit-check status to the IPC.
4. While in DAM (SB4, bit 0 is set), the following commands were issued: R1, RID,WI WID, LTS 21 with track 0 , or LTS 21 with track 0 but no sector number specified. This error causes device-end with unit-check status presentation to the IPC.
5. An SIO sequence that caused the FDC to reject all commands except sense, DR, or DW because the addressed diskette drive was in stop state or is not installed. This

Bit Position	Bit Designation	Intervention required
1	Set by FDC to indicate that an RI, RID, R, RD, WI, WID, or LTS command was issued to a diskette drive that was in stop state (SBO, bit 6). This bit is also set when the FDC presents device-end and unit-check status to the IPC.	
2	This bit is set when: 2. An incorrect parity in a command byte is detected during an SIO sequence. the take-4 sequence, the FDC, presents device	

	3	Equipment check	This bit is set when: 1. The diskette drive enters stop state (SBO, bit 6) while an RI, RID, R, RD, WI, WID, W, WD, or LTS command is being executed in that diskette drive. 2. The FDC sets the device-check (SBO, bit 7) sense bit. 3. The FDC sets the track-mismatch (SB1, bit 3) sense bit because a retry was unsuccessful. 4. The FDC sets the FDC parity error (SB2, bit 2) sense bit. For each of these errors, the FDC terminates the current command and presents device-end and unit-check status. For item 3, the FDC also sets unit-exception status.
	4	Data check	This bit is set for various data errors related to the diskette or diskette drive. If a retry is unsuccessful, the same errors will also set the following sense bits: 1. 10 field check (SB1, bit 0) 2. No data separator lock (SB1, bit 6)

8413 Diskette Subsystem (cont)

Bit Position	Bit Designation	Definition
Sense Data Byte 0 (cont)		
4 (cont)	Data check (cont)	3. CRC check (SB1, bit 7) 4. No sector found (SB1, bit 4) For each of these error conditions, the IPC terminates the current command and presents device-end, unit-check and unit-exception status to the IPC.
5		Not used; aiways set to 0 .
6	Stop state	This bit is set when the addressed diskette drive is not ready for a command. A diskette drive is ready when the DRIVE SELECT signal is true, a diskette is inserted, the diskette door is closed, and two index pulses have been detected. If the diskette drive is not in use, the stop-state setting does not occur for any status presentations.

			When stop-state causes command-reject or equipment-check setting, the device-end and unit-check status is also presented to the IPC.
	7	Device check	This bit is set when the FDC is executing the RI, RID, R, RD, WI, WID, W, or WD command but no index pulse is detected. With this condition, the FDC terminates the command and presents device-end and unit-check status to the IPC. In addition, the equipment-check and intervention-required sense bits are set when the device-check bit is set.
勇罹			Sense Data Byte 1
	0	10 field check	This bit is set when the FDC detects an error in the ID field of any sector while read and write operations are being performed. The ID field includes address marks, track and sector identification, and CRC bytes that precede each data record. This sense bit is set when the FDC cannot read the ID field for a required sector. The errors may be caused by a CRC check, or a no-data-separator lock condition. The FDC attenpts 12 retries on a given ID field before declaring an error condition. Device-end and unit-check status is presented whenever the ID field check sense bit is set and retry is unsuccessful.

o413 Liskerte Subsystem (cont)

Bit Position	Bit Designation	Definition
Sense Data Byte 1 (cont)		
1	SN check	This bit is set when the FDC encounters an invalid sector number during execution of any command that references a sector number register (SNR). One of 26 sectors on the index track of the diskette must be addressed by the SNR. If contents of the addressed SNR equal 0 , or if the addressed value is higher than 26, the SN-check sense bit is set. Detection of the error causes termination of the command, the command-reject sense bit (SBO, bit 0) is set, and device-end and unit-check status is presented to the IPC.
2	Track or sector address check	This bit is set when software loads a track and/or sector address that is outside the range permitted for the diskette or data set described by the current data set label. When this bit is set, the FDC also sets the command-reject sense bit (SBO, bit 0), terminates the current command, and presents device-end and unit-check status to the IPC.

	8413 Diskette Subsystem (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 1 (cont)		
	6	No data separator lock	A no-clocks condition encountered in the ID field of any sector addressed by the current command while processing an RI, RID, WI, WID, R, RD, W, or WD command causes the FDC to set this bit. The ID-field check sense bit (SB1, bit 0) is also set, the current command is terminated, and device-end and unit-check status is presented.
co 﨎 ~	7	CRC check	A CRC error detected during an RI, RID, WI, WID, R, RD, W, or WD command causes the FDC to set this bit. The CRC may pertain to the data record or ID fieid of the associated sector. If the CRC error pertains to the IO field, the FDC also sets the ID-field-check sense bit (SB1, bit 0). When CFAC-check sense bit is set but a retry is unsuccessful, the data-check sense bit (SBO, bit 4) is also set, the current command is terminated, and device end, unit-check, and unit-exception status is presented to the IPC.

	Sense Data Byte 2		
	0	Deleted data address mark	A deleted record encountered during execution of an RID or RD command causes the FDC to set this bit. The deleted record, consisting of a data set label or record in the data set, is transferred to the IPC. Deviceend and unit-exception status is presented to the IPC as an ending status. The FDC does not terminate data transfers after it transfers a deleted record to the IPC. Status is presented after all bytes specified by the command are transferred to the IPC.
	1	Invalid data set label	An invalid data set label encountered during execution of an R, RD, W, or WD command causes this bit to be set. The FDC also sets command-reject sense bit (SBO, bit O), terminates the current command, and presents device-end and unit-check status to the IPC.
	2	FDC parity error	Detection of a read-only-memory (ROM) or read-and-write-memory (RAM) parity error causes any of the following conditions: A RAM parity error occurring during execution of a cormmand causes this bit to be set, and device-end and winit-exception status is presented.

Bit Position	Bit Designation	Definition
Sense Data Byte 2 (cont)		
2 (cont)	FDC parity error (cont)	- A recoverable ROM parity error during execution of a command causes this bit to be set, and device-end and unit-check status is presented. - A nonrecoverable ROM parity error during a command causes either device-end and unit-check status or only unit-check status to be presented. Sense bits cannot be set with this type of error. If a subsequent command is required, it is presented with the not-operational condition code (11_{2}).
3	EOD/EOE	Encountering an EOD record during R and RD commands or an EOE record during W and WD commands causes the FDC to set this bit. The EOD/EOE record is transferred to or from the IPC, and subsequently the FDC presents device-end and unit-exception status to the IPC.

	4	End of volume	An EOD/EOE condition encountered while the FDC is reading or writing a multivolume data set when another volume is required causes the FDC to set this bit. The EOD/EOE sense bit (SB2, bit 3) is not set when this bit is set. The FDC presents device-end and unit-exception to the IPC as ending status.
長	5		Not used, always set to 0 .
	6	Retry	When the FDC rereads a data set label or data set record during an RI, R, RID, or RD command, this bit is set. The bit is also set if the FDC is to re-initialize an implied seek operation because a track mismatch condition is detected. If a retry is successful, the FDC presents device-end and unit-exception status upon normal completion of the command. If a retry is unsuccessful, the command is terminated and device-end, unit-check, and unit-exception status are presented to the IPC.
	7	Invalid command sequence	Indicates that software has issued an illegal command sequence to the 8413 diskette subsystem. Device-end and unit-check status will be presented. The command reject sense bit (SBO, bit 0) will also be set. The following invalid command sequences can occur: 1. A read command is issued when TAR and SAR values are equal to or greater than the EOD value.

Bit Position	Bit Designation	Definition
Sense Data Byte 2 (cont)		
$\begin{aligned} & 7 \\ & (\text { cont }) \end{aligned}$	Invalid command sequence (cont)	2. An LTS 21 with a track value of 1-74 was issued after a power-up or door-closure condition.
Sense Data Byte 3		
0	Direct access mode	This bit is set when the FDC is operating in direct access mode (DAM). When the bit is not set, the FDC is operating in data set mode (DSM).
1	Feature installed	This bit is self-setting when the diskette expansion drive 3 to the subsystem. No status presentation is made when this bit is set. The bit may be tested by addressing any diskette drive.

	2	Hardware write protect	Detection of an uncovered diskette write-protect hole causes this bit to be set by the FDC. If a W, WD, WI, or WID command addresses a diskette that is hardware-write protected, regardless of the command sequence, the sense bit is set and the command is terminated. In addition, the command-reject (SBO, bit 0) and write-protect-check (SB1, bit 5) sense bits are set, and device-end and unit-check status is presented to the IPC.
	3-7	Sector number register (SNR)	The five sector number register bits 0 through 4 (SNRO through SNR4) of the sector number register (SNR) addressed by the sense command are stored in the corresponding bit positions of sense byte 3 . SNRO is the highest-order bit. The SNR is used as a pointer to a specific sector of the index track.
			Sense Data Byte 4
	0		Not used
$\begin{aligned} & c \\ & 1 \\ & \frac{1}{e} \end{aligned}$	1-7	Track address register (TAR)	The seven track access register bits 0 through 6 (TAO through TA6) of the track address register (TAR) addressed by the sense command are stored in the corresponding bit positions of sense byte 4. TAO is the high-order bit. TA0 through TA6 reference the track where a given R, RD, W, or WD command began. These seven bits are loaded when an LTS 21 with TT=0 is issued, or when an R or W command is executed.

5.9.1.7. Communications Adapter

Bit	Designation	Definition
Sense Byte 0		
0	Command reject	A valid command was presented to the CA. Condition code 012 is set.
1	Idle overrun or idle check	An input data overrun or an input data error occurred while the port was in an inactive state. This bit is set if a break, disconnect, or open line condition occurs while the port is inactive.
2	Bus out check	a. A parity error was detected on a command code. Unit-check bit is set. Condition code ${ }^{01} 2$ is set; or b. A data parity error on data was received from the IPC. Output data transfer on the affected port is halted immediately on detection of the error. The CA time fills in with SYNs (nontransparent synchronous), or marking (asynchronous) until a new command is received.

Bit	Designation	Sense Byte 0 (cont)
3	Abort	An input message ended with an abort sequence (a character with CI bit $5=1$, preceded by a start character). Unit-check bit and device-end bit are set.
4	Data check	An input LRC/CRC error, character parity error, or a missing stop bit error (asynchronous) has occurred on an input block, message, or supervisory sequence. Unit- check bit and device-end bit are set upon termination. Data-check bit is set for break, disconnect, or open line conditions if the port is active.
5	Overrun	Input data was late in being acknowledged by the IPC. Unit-check and device-end check bits are set upon termination.

6	Ring indicator or data set status	A ringing signal is being received from a modem, or a dialed connection has been successfully established by an automatic calling unit. The LA ring inhibit flip-flop must be cleared with an LA-clear command before ring status can be reported again. An enable-data-input, enable-data-output, or turn-off command should be sent to the CA in order to turn on data-terminal-ready sequence for a modem, or an LA-clear command should be sent to clear a call request to an automatic calling unit (ACU).
7	Carrier off or abandon call and retry	Loss of a carrier on a modem-equipped LA, or a connection was not established after a dial command.

	4	-	Set to 0 by the CA.
	5	Space to mark	Occurs when the space-to-mark transition occurs, provided the spacing exceeds 180 microseconds duration. NOTE: The space-to-mark sense bit is set concurrently with the break and disconnect sense bits. The space-to-mark bit may be set at some indeterminate point in time relative to the open-line indication. Break, disconnect, and open line are mutually exclusive.
	6	Data set ready off	The data-set-ready bit has turned off, but data-terminal-ready bit is still on. Software should interrogate the terminal to ensure proper terminal identity when this condition occurs. Also, an enable-DSR-monitor command or LA-clear command must be issued so tha the DSR monitor is again in effect. If the DSR monitor is not in effect, no data can be transferred.

Bit	Designation	Definition
7	Monitor	A monitor character has been detected. Normally used to indicate that an illegal char- acter was detected in an output message. Transmission is automatically stopped until a new command is received. If an error occurs on a BCC following ITB, this bit becomes set.

5.9.2.1. 8415/8416/8418 Disk Subsystems

8415/8416/8418 Disk Subsystems (cont)
Equipment check

3	Equipment check
4	Data check

This bit is set to indicate that a serious hardware malfunction has occurred within the subsystem. If set alone, it indicates that the adapter control logic contains an error If set with ECC check (SB2,6) it indicates a malfunction in the ECC logic during a write or format-write-command. It may also set with device check (SBO,7) to indicate that the device selected has a serious hardware failure (see device check listed separately), with seek incomplete|(SB2,0) to indicate that a selected device was not able to complete a seek within a specified period of time, or with unselected status (SB2,5) to complete a seek within a specified period of time, or with unselected status (SB2,5) to indicate that status has been received from a device not selected. It may also set
track overrun (SB1,1) to indicate that indexing occurred while a record was being processed. This implies that the disk is rotating too fast relative to the write oscillator.
Set with no-clocks (SB2,7) to indicate that no clocks have occurred for 10 ms while reading or writing, or with comparison parity check (SB2,1) to indicate a parity bit miscompare was detected at the comparator. It will also set with head/cylinder miscompare (SB2,2), with record number miscompare (SB2,3) or flag byte miscompare (SB2,4) to signify difficulty with a seek operation, difficulty in maintaining orientation in the read circuitry, or an incorrect flag byte, respectively, and no ECC check error was detected.
Data check will also set with ID field check (SB1,0) or data fieid check (SB1,7) together with either sync region error (SB1,6) or ECC check (SB2,6). These'bit combinations will indicate either that an error (such as an Improperly detected index mark or an incorrect sync byte) has been detected in the sync region, or that an ECC check error was detected. They will also indicate whether the error was detected in an D field or a data field.

$\begin{aligned} & \text { B } \\ & \stackrel{\sim}{\infty} \\ & \stackrel{c}{0} \\ & \omega \stackrel{0}{0} \\ & \omega \end{aligned}$	8415/8416/8418 Disk Subsystems (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
	5	Overrun	Indicates during a write or search operation that main storage has not supplied data at a sufficient rate to satisfy the data rate of the device. Sets when the output queue is empty and a request is made of the queue for more data. It also sets during a read operation if main storage accepts information too slowiy. Overrun sets when the input data register is full and the shifter is ready to transfer a full byte to it.
	6	Stop state	Sets with intervention required (SBO,1) if an operation was attempted on a device nonexistent or in the stop state. It will be set alone if the device addressed by the sense command is nonex istent or in the stop state, but no operation was attempted on the device.
-	7	Device check	Sets with equipment check (SBO,3) to indicate that the device selected has a serious hardware error requiring malntenance and/or operator intervention. If conditions in the device prevail that cause device check to set when the device is not selected, device check may be presented alone; this occurs only if no atternpt has been made to use that device. Some examples of errors that may cause this are: multiple head selection, write current on without having been selected, etc. Note that device check can be set if a seek (implied or seek command) is issued to a nonex istent cylinder (>410 for 8416).

	8415/8416/8418 Disk Subsystems (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 1 (cont)		
	4	No record found	Sets alone, during a search/read command to indicate that the search conditions were not satisfied after two passes of index if the multitrack blt is not set in the buffer control word. If the multitrack bit is set, it will be set in conjunction with eylinder end (SB1,2) if the search conditions were not satisfied by the end of the cylinder. No-record-found will also set in conjunction with sync region error (SB1,6) if no data was found on the selected track (1.e., two passes of index occurred without an intervening ID preamble.) It also sets alone on read-data or write-data commands if the record number specified in the BCW cannot be found.
	5	Flle protect	Sets if the device selected is in file protect mode. Command reject ($\mathrm{SBO}, 0$) will also be set if a write operation were attempted on the device.
	6	Sync region error	Sets with data check (SB0,4) and elther ID fleld check (SB1,0) or data field check (SB1,7) to indicate that an error was detected in the preamble of either the ID field or the data field of a record, respectively.
	7	Data field check	Sets with data check (SB0,4) and either sync region error (SB1,6) or ECC check (SB2,6) to indicate either that an error was encountered in the data field preamble or in the data field ECC bytes, respectively.

	Sense Data Byte 2		
	0	Seak incomplete	Sets with equipment check (SBO,3) to indicate that a seek operation could not be completed within a specified time, or that the positioner on a drlve drifted off track while the drive was selected, but no head had yet been selected. Seek incomplete can only be cleared by issuing a recalibrate command to the drive that caused the error.
	1	Comparison parity check	Indicates parity blts associated with bytes found to be identical by the comparator, are not identical.
	2	Head/cylinder miscompare	Sets with data check (SBO,4) to indicate that the head and/or cylinder number specified in the BCW does not match the corresponding bytes on a record read from the disk and no ECC check error occurred.
	3	Record number miscompare	Sets with data check (SBO,4) to indicate that the record number read from the disk is not the one expected after a string of records has begun to be processed. This bit implies that one or more records has accidentally been skipped.
	4	Flag byte miscompare	Indicates that the flag bits read from the disk did not match those in the BCW. Data check (SBO,4) is also set when this bit is set.
	5	Unselected status	Sets with equipment check (SBO,3) to indicate that a device has raised a status line when no device was selected.
	6	ECC check	Sets with data check (SBO,4) and either ID field check (SB1,0) or data field check (SB1,7) to indicate that an ECC error was detected in either the ID field or the data field, respectively. It may also set with equipment check (SBO,3) to indicate an ECC malfunction during a write-or-format-write command.
	7	No clocks	Sets with data check (SBO,4) to indicate that no clocks have occurred within 10 ms ($\pm \mathbf{3 0 \%}$) while reading or writing.

Bit Position	Bit Designation	Definition
Sense Data Byte 3		
0-3	N/A	Set to zero by the IDA.
4-7	Head address	Indicates which head was last selected.
Sense Data Byte 4		
0-1	N/A	Set to zero by the IDA.
2-7	Record number	Indicates the last record number partially or completely processed at the time of termination of the operation.

	Bit Position	Bit Designation	Definition
	Sense Data Byte 0		
	0	Command reject	When set, this bit indicates that an invalid command was issued by the multiplexer channel.
	1	Intervention required	When set, this bit indicates forms out or forms runaway.
	2	Bus out check	When set, this bit indicates a parity error in a command or data transfer to the control unit. A parlty error detected during a command causes immediate termination; on data transfers, there is no immediate termination.
	3	Equipment check	When set, this bit indicates that a print hammer fuse fault slgnal was generated during the last printing operation.
	4	Data check	When set, this bit indicates a parity error in either the print line or code drum buffer.
	5	Overrun	When set, this bit indicates that the print line was not completed during one revolution of the print drum. This condition can be caused by a hardware error or by a character code placed in the print line buffer and no corresponding code in the code drum buffer.
	6	Inhibit status	When set, this blt indicates that the inhibit status in flip-flop is set, preventing a status byte from being sent to the multiplexer channel.
	7	Not ready	When set, this bit indicates a ribbon out or carriage out condition.

	Bit Position	Bit Designation	Definition
	Sense Data Byte 1		
	0	Code buffer parity error	When set, this bit indicates a parity error in the code drum buffer.
	1	Data buffer parity error	When set, this bit indicates a parity error in the print line buffer.
	2	Once per revolution error	When set, this bit indicates that the sprocket code counter did not contain a count of 63 when the once-per-revolution pulse occurred. (This indicates a hardware error.)
	3	Sprocket error	When set, this blt indicates identical data pulses on two consecutive sprocket pulses. (This condition is a hardware fault, which requires corrective action.)
$\stackrel{\square}{1}$	4	Scan error	When set, this bit indicates that a sprocket pulse occurred before the scan cycle was completed. (This condition is a hardware fault, which requires corrective action.)
¢	5	Early terminate	When set, this bit indicates that the multiplexer channel terminated the transfer of data to the code drum buffer before 63 characters had been stored. This bit will be set onfy during a load code command.

	6	Stop	Pressing the STOP switch/indicator causes this bit and the unit check bit (bit 6) of the status bit to be set. This is an operator action stop. It is set at the completion of the current operation, (An error condition causing thePRINT CHECK,FORMS RUNAWAY,FORMS OUT, or RIBBON CHECK indicators on the upper row of indicators on the right-hand controi panel to light, sets this bit, unit check bit (bit 6), and the appropriate bits in the sense byte.) The test, sense, read, and load code commands can be performed when in the stop mode (and not offline). The read and load code commands cannot be executed during a power check, interlock, or temperature check alarm condition.
	7	Selective reset/ interface disconnect	When set, this bit indicates that a selective reset/interface disconnect sequence occurred since the last sense command was issued.

줒둔				$\stackrel{\sim}{3}$
W000	Bit Position	Bit Designation	Definition	$\stackrel{\infty}{\infty} \stackrel{\infty}{=} \stackrel{\infty}{\infty}$
I	Sense Data Byte 0			\bigcirc
晜	0	Command reject	This bit is set when an invalid command was issued by the channel．	$\begin{aligned} & \stackrel{\Omega}{\square} \\ & \stackrel{0}{0} \mathbf{0} \end{aligned}$
	1	Intervention required	This bit is set when operator action is required because the printer is in the stop mode due to any of the following．	$\underset{D}{\vec{D}}$
			out of forms－forms low（sense data byte 2，bit 1）has been detected and the	
			－forms check（bit 5 of sense data byte 2）；	
			stacker full；	
			STOP switch activated；	
$\frac{c}{c}$			ribbon check（bit 6 of sense data byte 2）；	
			－Interlock	三
			－power check	产

0770 Printer Subsystem (cont)

\section*{| UP-8203 | SPERRY UNIVAC OS/3 | $5-168$ |
| :--- | :--- | :--- |
| Rev. 3 | HARDWARE/SOFTWARE SUMMARY | |}

Bit Position	Bit Designation	Definition
Sense Data Byte 0 (cont)		
1	Intervention required (cont)	forms position check (bit 2 of sense data byte 2); type speed check (bit 7 of sense data byte 2); or advance check (bit 0 of sense data byte 2).
2	Bus out check	This bit is set when a parity error is detected on the channel during a transfer to the printer. A parity error detected in a command code causes an immediate termination. A parity error detected in a data transfer causes termination of the command following the data transfer sequence.
3	Equipment check	This bit is set when any of the following occurs: actuator check (bit 4 of sense data byte 3); advance check (bit 0 of sense data byte 2); parity error in - load code buffer (bit 0 of sense data byte 3) - print line buffer (bit 1 of sense data byte 3) - vertical format buffer (bit 2 of sense data byte 3)

Bit Position	Bit Designation	Definition
Sense Data Byte 0 (cont)		
7	Command retry (cont)	When this bit is set, the advance portion of a print-advance command is not executed. If a faulty print-advance command was issued, the form advances in accordance with the successful retried command or according to the ACDEF detail bits of the advance-only command; however, if $A C D E F=10000$ the form is advanced in accordance with the ACDEF detail bits of the faulty print-advance command that caused command retry. A successful retry or issuing an advance-only command resets the command retry bit.
Sense Data Byte 1		
0	Early terminate	This bit is set when: less than 50 (59*) characters were transferred during loading of the load code buffer on a printer without expanded character feature ($F 1534-00$); - less than $26\left(35^{*}\right)$ characters were transferred during loading of the load code buffer on a printer with expanded character feature (F1534-00); end of form was not detected by the printer during load-vertical-format command. NOTE: If end of form is not detected by the 192 nd byte, the data transfer sequence is terminated.

*If dualing is active.

	1	Inhibit data check	This bit indicates inhibit-data-check flip-flop is set.
	2	Inhibit status in	This indicates inhibit-status-in flip-flop is set.
	3	Fold data	This bit indicates fold flip-flop is set.
	4	Diagnostic gete	This bit indicates the printer is in diagnostic timing mode.
	5	Interface disconnect/ selective reset	This bit indicates interface disconnect or selective reset occurred during the data transfer sequence. If this bit is set, it indicates the command was not executed.
	6	Vertical format request	This bit indicates the vertical format buffer has not been properly loaded; that is, the buffer was not loaded, loaded with an early terminate (blt 0 of sense data byte 1), or bus out check (bit 2 of sense data byte 0) indication was present during loading. NOTE: The printer cannot execute an advance because the 6/8 Ipl criterion for advancing has not been received.
	7	Load code request	This bit Indicates the load code buffer has not been properly loaded.

| Bit |
| :---: | :---: |
| Position |\quad Bit

0	Advance check	This bit is set when the forms advance operation was not completed within： 700 ms for type 0770－00／01 printer； － 500 ms fer type 0770－02／03 printer；or E 400 ms for type 0770－04／05 printer． This condition could occur for any of the following： －stalled advance mechanism； －slow advance；or －forms runaway． This condition prevents the current print－advance，advance－print，or advance－only command from being executed．
1	Forms low	This bit is set when approximately 2.5 inches（ $8,35 \mathrm{~cm}$ ）of the last form remains．When this bit is set it causes unit check bit to be set only once．
2	Forms position check	This bit is set when the forms advance operation detects the form did not stop in proper position．This condition prevents the current print－advance，advance－print，or advance－ only command from beling executed．

	0770 Printer Subsystem (cont)		
¢	Bit Position	Bit Designation	Definition
	Sense Data Byte 3		
	0	Load code buffer parity check	This bit is set when a parity error is detected in the load code buffer. If the error is detected during the print-compare sequence, it causes the command retry bit (bit 7 of sense data byte 0) to be set.
	1	Print line buffer parity check	This bit is set when a parity error is detected in the print line buffer. If the error is detected during the print-compare sequence, it causes the command retry blt (bit 7 of sense data byte 0) to be set.
	2	Vertical format buffer parlty check	This bit is set when a parity error is detected In the vertical format buffer. If the parity error is detected with an advance-print or advance-only command, the command is not to be executed. If the error is detected with a print-advance command, the line is printed but the form is not advanced.
	3	Unassigned	
	4	Actuator check	This bit is set when an actuator falls to fire due to a malfunction of the actuator clrcuitry. When this condition is detected, all columns are printed except those with a malfunction.
	5	Unassigned	
	6	Unassigned	
	7	Unassigned	

$\omega \underset{\sim}{\sim}$	Sense Data Byte 4		
	0-8		This byte contains diagnostic information during execution of a prin when diagnostic mode is set.
	Sanse Data Byte 5		
	0	Expanded font	This bit is set to indicate printer F $1534-00$ is installed.
	1	160 position	This bit is set to indicate printer F1533-00 is installed.
	2	Low speed	This bit is set when the printer is operating with the print band SPEED SELECT switch in LOW position.
	3	Unassigned	
	4	Unassigned	
	5	Unassigned	
c	6	Diagnostic	Used to store overflow bits of the print harnmer flight time in sense data byte 4.
	7	Diagnostic	

5.9.3.3. 0776 Printer Subsystem

Sense Data Byte	Bit 0	1	2	3	4	5	6	7
0	Command Reject	Intervention Required	Bus Out Check	Equipment Check	Data Check	Vertical Format Buffer Check	Buffer Load Check	Command Retry
1	Unassigned	Inhibit Data Check*	Inhibit Status In *	Fold Data*	Unassigned	Interface Disconnect and Selective Reset	Vertical Format Buffer Request	Load Code Buffer Request
2	Unassigned	Forms Low	Unassigned	Cartridge Code check	Unassigned	Forms Check	Unassigned	Type Speed Check
3	Load Code Buffer Parity Check	Print Line Buffer Parity Check	Vertical Format Buffer Parity Check	Unassigned	Actuator Check	Unassigned	Unassigned	Unassigned
4	Unassigned							
5	Expanded Font	Unassigned						

*Bit does not cause unit check status when set. NOTE: An area without an entry indicates an unassigned bit position, always reset to 0 .

Bit Position	Bit Designation	Definition
Sense Data Byte 0		
0	Command Reject	Set if an invalid command is issued, and causes unit check status to be set.
1	Intervention Required	Set if a condition is detected requiring manual intervention.
2	Bus Out Check	Set if a parity error is detected during a transfer from the channel to the printer. A parity error on a command code causes an immediate termination. A parity error on a data transfer causes termination of the command following the data transfer sequence.
3	Equipment Check	Set when any of the following occur: Actuator check (byte 3, bit 4)

퐁	5	VFB Check	Set when a noncompare is detected between the skip code ($A=1$), in a print advance, an advance only command, and the codes in the vertical format buffer. When set, advance is not executed.
	6	Buffer Load Check	Set with either of the following: Vertical format request (SB1,6) Load code request (SB1,7)
㔻	7	Command Retry	Set during the print-compare sequence of a print advance command if two once-per-font signals have occurred and either of the following conditions are present:

Bit Position	Bit Designation	Command Retry (cont)
Not all "printed" bits are set. Print-compare-match counter has not counted up to full count (136). Unit check is set and the advance portion of the command is not executed. Reset if the print advance command is reissued and is successful. May also be reset by an advance only command.		

		Sense Data Byte 1
0	Unassigned	Always reset to 0
1	Inhibit Data Check	When set, indicates inhibit data check is active
2	Inhibit Status In	When set, indicates inhibit status in is active
3	Fold Data	When set, indicates fold data is active
4	Unassigned	Always reset to 0

Bit Position	Bit Desigliation	Definition
5	Selective Reset/ Interface Disconnect	When sei, indicaies inierface disconnect or selective reset occurred during the daia craister sequence and command was not executed.
6	VFB Request	When set, incicaies vercicar format bufier is not properiy ioaded. Unit cnelk is serii to the charirei and a prini-advance or advance oniy cornmand is issutu to the prinier. Command is not executed.
7	LCB Request	When set, ingicates tine ioad code buifer is not properiy ioaded. Unit check is sent to the channei and a print-advance or diagnostic write commana is issued to the prinier. Cornmana is not exacuted.

Sense Data Byte 2		
0	Unassigned	Always reset to 0
1	Forms Low	Set if less than 7 inches (17.78 cm) of form remain below the bottom tractor of the printer. Causes unit check to be set only once.
2	Unassigned	Always reset to 0
3	Cartridge Code Check	When set, indicates the print cartridge identification code does not agree with the cartridge verification code issued with the load command. Causes immediate termination of a load code command. Causes immediate termination of a print advance command if the stored verficiation code does not agree with the identification code when the command is initiated.
4	Unassigned	Always reset to 0

LCB Parity Check		Set when a parity error is detected when reading the load code buffer. PLB Parity Check
VFB Parity Check	Set when a parity error is detected when reading the print line buffer. 2 detected with a print-advance command, the line is printed but the form is not advanced. If the parity error is detected with an advance only command, the command is not executed.	
3	Ulways reset to 0	

쥼ㄷ	0776 Printer Subsystem (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 3		
	4	Actuator Check	Set when an actuator circuit malfunction is detected. All columns are printed except those with a malfunction. Actuator power may be removed.
	5	Unassigned	Always reset to 0
	6	Unassigned	Always reset to 0
-	7	Unassigned	Always reset to 0

and Selector Channel Devices (cont)

Bit Position	Bit Designation

Definition

Sense Data Byte 0 (cont

5	Overrun	Set to indicate that a new data byte is read before the channel acknowledges recelpt of the previously transmitted data byte still stored in the control unit data register.
6	Inhibit status in	Set to indicate that the inhlbit-status-in condition is set.
7	Nonrepeat abnormal	This bit is set to Indicate that one of the following conditions was detected during the previous operation: hopper empty stacker full Interlock error stacker jam
Sense Data Byte 1		
0	Stop	Set when the stop flip-flop is set.
1	Validity check	Set when a validity check error has been detected.
2	Resyme error	Set if the reader does not detect a hole after the read strobe has been synchronlzed.

Bit Position	Bit Designation	Definition
Sense Data Byte 0 (cont)		
3	Card jam	Set to indicate that a card transport error has occurred. A jam in the prepunch station causes the A JAM half of the MAN FEED A JAM/B JAM switch/indicator on the operator's control panel to light. A jam in the postpunch station causes the B JAM half of the MAN FEED A JAM/B JAM switch/Indicator on the operator control panel to light.
4	Data check	Not used. This bit position contains a 0 .
5	Data late	Set to Indicate that the punch buffer has not been loaded prior to the initiation of a punch operation.
6	Nonrepeat abnormal	Set to indicate that one of the following conditions was detected during the previous operation: - hopper empty - chlps (box full or not in place) - stacker jam - stacker full - interlock error

7	Inhibit		Set to Indicate that the inhlbit status bit in flip-flop is set (prevent a status byte from being sent to the multiplexer channel).
Sense Data Byte 1			
0	Not used		Sense data byte 2 is used for malntenance analysls functlons in conjunction with failure routines. The status of varlous flip-flops in the control unit is transferred to this byte.
1	Not used		
2	HCRPA	Punch hole counter	
3	HCRPB		
4	HCRPC		
5	HCR2A	Post-read hole counter	
6	HCR2B		
7	HCR2C		

Set to Indicate that the inhibit status bit in flip-flop is set (prevent a status byte from being sent to the multiplexer channel).
Sense Data Byte 1

5-195

	I/O Device/Status Indication*			
	Bit Position	Printer $(D A=3)$	Card Punch or Read Punch ($D A=2$)	Card Reader (DA=1)
	0	Abnormal or Not Ready	Stacker Jam, Interlock, Punch Entry, or Exit Check Error	Stacker Jam, Control Parity Error, or Photocell Check Error
	1	Paper Runaway		Misfeed, Not Ready, Hopper Empty, or Stacker Full
8	2	Storage Overload	Punch Check Error	

I/O Sense Data Byte Definitions for Multiplexer
and Selector Channel Devices (cont)

	Bit Position	Bit Designation	Definition
	Sense Data Byte 0		
	0	Command reject	This bit is set: - when an Invalid command, an invalid sequence of commands, or a command for a feature not installed is recelved; when the command received is one restricted by set-file-mask; when two set-flle-mask commands are sent in the same command chain; when a second disk drive unit is addressed during a command chain.
	1	Intervention required	This bit is set when a nonexistent (either physically or electrically) disk drive unit is addressed.
	2	Bus out check	This bit is set: when a command or data arrives on the bus out lines with even (incorrect) parity; when even parity is detected in the 03 register during data and command transfers; when even parity is detected in the shift register during a write data transfer, or on the input bus lines for a read transfer.
	3	Equipment check	This bit is set to indicate an equipment fault within the subsystem and is set with bit 0 of sense data byte 2 .
	4	Data check	This bit is set when an error is detected in the information transferred from a disk drive to the control unit.

	8411/8414/8424/8425 Disk Subsystems (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
	5	Overrun	This bit is set: when the control unit does not receive data bytes within the prescribed time; when data is recelved too late to be properly written and the remaining record area is filled with $\mathrm{O}^{\prime} \mathrm{s}$; when a subsequent command in a chain is recelved too late to be properly executed.
	6	Track condition check	This bit is set when a read, write, or search command is attempted on a defective track (bit 6 of the flag byte on the recard is set if the track is defective). These commands are inhibited for all data records but are permitted for home address and track descriptor records.
$\begin{aligned} & \text { u } \\ & 1 \\ & 0 \\ & 8 \end{aligned}$	7	Seek check	This bit is set when an invalid address is sent for a seek command or if less than six address bytes are sent.
	Sense Data Byte 1		
	0	Count area check	This bit is set as the result of an error in the count area transferred from a disk drive to the control unit.

Bit Position	Bit Designation	Definition
Sense Data Byte 1 (cont)		
6	Missing address marker (cont)	Two successive records are read in which the bit 0's of the flag bytes are equal (indicating that both records are odd or even), and there was no intervening Index marker; thus an address marker was missed. An exception is when the command issued is a search-ID, and the error indication would be no record found.
7	Overflow incomplete	This bit is set when an overflow record is not completed because overflow came elther from a defective track or from an alternate track. Bit 6 (defective track check) of sense data byte 0 also is set for these conditions.
Sense Data Byte 2		
0	Unsafe	This bit is set when a disk file malfunction is detected.
1	N/A	This bit is not used and is always 0 .
2	N/A	This bit is not used and is always 0 .
3	N/A	This bit is not used and is always 0 .
4	N/A	This bit is not used and is always 0 .
5	Unselected status	This bit is set when a file status line is active with no device selected.

				$\stackrel{0}{\partial}$
	6, 7	N/A	These bits are not used and are always 0.	$\underset{\Phi}{\mathscr{O}}$
	Sense Data Byte 3			$\stackrel{\Phi}{\square} \text { ఠ }$
	0	Ready	This bit is set when the disk file is ready for operation.	宁
	1	Online	This bit is set when the disk file is online.	O
	2	Unsafe	This bit is set when a disk file malfunction is detected.	¢
	3	N/A	This bit is not used and is always 0 .	\% \square_{0}
	4	N/A	This bit is not used and is always 1.	$\stackrel{\text { S }}{\text { ¢ }}$
	5	End of cylinder	This bit is set along with bit 7 of sense data byte 1 when a seek command is not successfully completed.	
	6	N/A	This bit is not used and is always 0 .	$\stackrel{0}{9}$
$\begin{aligned} & \text { r } \\ & 1 \\ & \widetilde{\omega} \\ & \hline \end{aligned}$	7	Seek incomplete	This bit is set when the end of a cylinder is detected.	3
	Sense Data Byte 4			릉
	0-8		The bits of sense data byte 4 are always 0 .	¢

Bit Position	Bit Designation	Definition

This byte contains all 0 's at all times except when the overflow incomplete bit is set (byte 1 , bit 7). The codes in byte 5 indicate the type of command belng executed when an overflow incomplete occurs. The codes and their meanings are:

Code In
Hex adecimal
06
05
25
45
65
55

75

Meaning

 point.A read command is in progress.
A write command is in progress.
A search-kev-and-data-equal command is in progress, and the comparison is equal to this point.
A search-key-and-data-high command is in progress, and the comparison is equal to this polnt.
A search-key-and-data-equal-or-high command is in progress, and the comparison is equal up to this
Any search-key-and-data operation is in progress, and the comparison is low; or a search-key-and-dataequal is in progress, and the comparison is high.

A search-key-and-data-high command or a search-key-and-data-equal-or-high command is in progress, and the comparison is high.

5.9.3.8. 8430/8433 Disk Subsystems

and Selector Channel Devices (cont)
 I/0 Sense Data Byte Definitions for Multiplexer

1/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)

8430/8433 Disk Subsystems (cont)
note: bytes 0 thru 6 are the same for all formats

```
BYTE 7 - FORMAT AND MESSAGE DECODE
```

BITS 0-3 = FORMAT DECODE
BITS 4-7 = MESSAGE DECODE

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)

8430/8433 Disk Subsystems (cont)

FORMAT 1 - DEVICE ERRORS

BYIE 8 - FILE SIATUS	
P	
0	INDEX ERROR
1	OFFSEI ACTIVE
2	SEEK INCOMPLETE
3	SEEK/FORMAT COMPLETE
4	ONIJNE
5	PACK CHANGE
6	BUSY
7	RECORD SEARCH IN PROGRESS
BYIE 9	
ZERO	
BYIE 10 - CONDITION AT UNSAFE	
	8430-00\%01
P	
0	LINEAR MODE
1	FIRST CYLINDER AND LINEAR MODE
2	ACCESS READY
3	ODD CYLINDER
4	ORIVE TO INNER GUARD BAND I (NOT EVEN CYLINDER)=0
5	DRIVE FORWARD $20 \mid$ PSS. 1 (NOT DIFFERENCE-1) $=0$
6	DRIVE FORWARD 5 IPS-1
	(NOT DIFFERENCE-1) $=0$
7	HEAD LOAD
	8433 - 00/01, 02/03
P	
0	LINEAR MODE
1	FIRSt CYLINDER AND LINEAR MODE
2	ACCESS READY
3	guard band detected
4	DRIVE TO INNER GUARD BAND 1
5	DRIVE FORWARD 20 IPS (DIFFERENCE=0)
6	DRIVE FORWARD 5 IPS-1
	(OIFFERENCE =1)
7	HEAD LOAD

BYTE 11 - SERVO UNSAFE
8430-00/01
SERVO UNSAFE
ANY UNSAFE EXCEPT R/W
PACK SPEED UNSAFE
VELOCITY UNSAFE
30 VOLTS DC UNSAFE
8433-00/01. 02/03
PERMANENT ERROR
MODULE SELECT GATE
TAG GATE
ENABLE TAG VALID CHECK
DECODE 8 BIT
DECOOE 4 BII
DECODE 2 BIT
DECODE 1 BII

BYIES 16 to 20

ZERO
BYTE 21 - CUDI (IS REG)
P
DRIVE SELECTION ERROR
tag not valid at device
DEVICE CHECK
FILE BUS OUT PARITY ERROR
FILE BUS IN PARITY ERROR
TAG BUS OUT PARITY ERROR
BYIE 22
SECTOR DECREMENT
BYTE 23
STAT INTEGRATOR

SERVO/SEQ UNSAFE

PS UNSAFE EXCEPT 30 VDC
PACK SPEED UNSAFE
VELOCITY UNSAFE
30 VOLTS DC UNSAFE

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)

8430/8433 Disk Subsystems (cont)

FORMAT 2 - CONTROL UNIT ERRORS

BYTE 8 - CONTROL CHECK (CE REG)	
P	
0	CHANNEL BUS IN PARITY ERROR A B
1	CHANNEL A INTERFACE CHECK
2	CHANNEL B INTERFACE CHECK
3	DATA TRANSFER CHECK
4	SERDES, CUDI, ECC CHECK
5	CHANNEL C INTERFACE CHECK
6	CHANNEL D INIERFACE CHECK
7	
BYTE 9 - SERDES (SE REG)	
P	
0	CUDI UNSAFE
	SERDES WRITE PARITY CHECK
2	SERDES READ PARITY CHECK
3	BIT RING
4	
5	ECC ERROR
6	
7	
BYTE $10-$ ECC (EE REG)	
P	
0	NO ONES FROM SERDES SINCE LAST ECC RESET
1	PO OR WRITE ERROR
2	P1 or P3 ERROR
3	P2 ERROR
4	Pl ERROR
5	P3 ERROR
6	
7	
BYTES 11-12	
ZERO	
BYTES 13 - FC REG	
CONTENTS OF CUDI BUS OUJT	
BYTE 14 - FB REG	
CONTENTS OF CUDI BUS IN	
BYTE 15 - FT REG	
P	
0	MODULE SElect gate
,	TAG GATE
2	ENABLE TAG VALIO CHECK
3	
4	DECODE 8 BIT
5	OECODE 4 BIT
6	DECODE 2 BIT
7	DECODE 1 BII
BYTES 16 to 20	
	ZER0

BYIE 21 - CUDI (IS REG)	
P	
0	DRIVE SELECTION ERROR
1	TAG NOT VALID AT DEVICE
2	DEVICE CHECK
3	FILE BUS OUT PARIIY ERROR
4	FIEE BUS IN PARITY ERROR
5	TAG BUS OUT PARITY ERROR
6	
7	
BYIE 22	

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)

8430/8433 Disk Subsystems (cont)
format 3 - SELECtive reset
BYTE 8 - FAILING ADDRESS (AD REG)
1 MEMORY ADDRESS PARITY
MEMORY ADDRESS BII 0
MEMORY ADDRESS BIT 1
MEMORY ADDRESS BII 2
MEMORY ADDRESS BIT 3
MEMORY ADDRESS BIT 4
BYTE 9 - FAILING ADDAESS (AD REG)
P
MEMORY ADDRESS BII 5
MEMORY ADDRESS BIT 6
MEMORY ADDRESS BIT 7
MEMORY ADDRESS BIT 8
MEMORY ADDRESS BII 9
MEMORY ADDRESS 10
MEMORY ADDRESS BII 11
MEMORY ADDRESS BIT 12
BYTE $10-$ CU ERROR 1 (ET REG)
P
MICRO PROGRAM FORCED ERROR
FLAG
CLOCK ERROR
PC, CONTROL FIELD PARITY ERROR
PA, MEMORY ADORESS PARITY ERROR
A BUS PARITY ERROR
B BUS PARITY ERROR
ALU COMPARE ERROR
PN CONIROL MEMORY ADORESS
PARITY ERROR
BYIES $11-12$
ZERO
BYTE 13 - IG REG
WRITE LATCH
READ LATCH
LAST BYTE REQUEST
OPERATIONAL IN
AODRESS IN
STATUS IN

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)

8430/8433 Disk Subsystems (cont)

FORMAT 4 - ECC UNCORRECTABLE

BYTES 8.9 - CYLIHDER	
(LAST SEEK ADORESS)	
8 - HIGH ORDER BYTE	
9 - LOW ORDER BYTE	
BYTES 10-11 - HEAD	
(LAST SEEK ADDRESS)	
10 - HIGH ORDER BYTE	
11 - LOW OROER BYTE	
BYTE 12 - RECORD	
RECORD NUMEER OF RECORD IN ERROR	
BYTE 13 - SECTOR	
SECTOR Number OF START OF RECORD IN ERROR	
$\frac{\text { BYTE } 14}{8433-00 / 01}$	
P	
0	
1	
2	400μ INCHES
3	300μ INCHES
4	100μ INCHES
5	50μ INCHES
6	25μ INCHES
7	12.5μ INCHES
	8430. 8433-02/03
P	
0	
1	
2800μ INCHES	
3	$3 \quad 400 \mu$ INCHES
4	$4 \quad 200 \mu$ INCHES
5	$5 \quad 100 \mu$ INCHES
6	50μ NCHES
$7 \quad 25 \mu$ INCHES	
BYIE 15 - RETRY COUNI	
NUMBER OF RETRYS REQUIRED IO RECOVER FROM THE ERROR	
BYIE 16 - SOURCE PHYSICAL ADDRESS	
	READ FROM ID BYTE XXX ITEM BEFORE EACH RECORD, IDENIIFES CU AND DRIVE THAT WROTE THE RECORD
	$\begin{array}{ll} A=111000 & E=011100 \\ B=110001 & F=010101 \\ C=101010 & G=001110 \\ D=100011 & H=000111 \end{array}$
BYTE 17-23	
ZERO	

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)
8430/8433 Disk Subyystems (cont)
format 5 - éc correctable
$\frac{\text { BYTES } 8-9-\text { CYLIMDER }}{\text { (LAST SEEK ADDRESS) }}$

8 - HIGH ORDER BYTE
9 - LOW ORDER BYTE
BYTES 10-11 - HEAD
(LAST SEEK ADDRESS)
10 - HIGH ORDER BYTE
11 - LOW ORDER BYTE
BYTE 12 - RECORD
RECORD NUMBER OF RECORD IN ERROR
BYTE 13 - SECTOR
SECIOR NUMBER OF START OF RECORD IN ERROR
BYTE 14 - ACCESS OFFSET
8433-00/01
P
$\begin{array}{ll}1 \\ 1 & \\ 2 & 400 \mu \text { INCHES }\end{array}$
200μ INCHES
100μ INCHES
50μ INCHES
25μ INCHES
12.5μ INCHES
8430. 8433-02/03
p
0
1
$2 \quad 800 \mu$ INCHES
400μ INCHES
200μ INCHES
100μ INCHES
50μ INCHES
25μ INCHES
BYIE 15 to 17 - RESTART DISPLACEMENT
15 - HIGH ORDER BYTE
17 - IOW ORDER BYTE
COUNT OF TOTAL NUMBER OF BYTES READ IN record can incluoe overflow segments

BYTE 18-19 - ERROR DISPLACEMENT
18 - HIGH ORDER BYTE
19 - LOW ORDER BYTE
COUNT OF NUMBER OF BYTES
FROM FIRST ECC BYTE TO
START OF DATA IN ERROR
BYTES 20 to 22 - PATTERN
20 - HIGH ORDER BYTE
22 - LOW ORDER BYTE
ECC generated pattern to correct DATA N ERROR INCLUDES ALL THREE BYTES

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)

8430/8433 Disk Subsystems (cont)

FORMAT 6 - USAGE/ERROR COUNT

BYIES 8 to ll - BYTES READ
$8-$ HIGH ORDER BYTE
$9-$ LOW ORDER BYTE
TOTAL NUMBER OF BYIES READ UNDER
THIS LOGICAL ADDRESS

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont)

8430/8433 Disk Subsystems (cont)
format f - inline sense data

BYTE 8 - FILE STATUS 1	
P	
0	INDEX ERROR
1	OFFSET ACTIVE
2	SEEK INCOMPLETE
3	SEEK/FORMAT COMPLEIE
4	ONLINE
5	PACK CHANGE
6	BUSY
7	RECORD SEARCH IN PROGRESS
BYTE 9 - FILE STATUS 2	
	8430-00\%1
	8433-00/01, 02/03
p	
0	INOEX ERROR
1	OFFSET ACTIVE
2	
3	READ ONLY
4	WRIIE READY
5	INDEX
6	END OF CYL
7	WR CURR SENSE
BYTE 10 - SERVO STATUS	
	8430-00/01
P	
0	LINEAR MODE
1	IST CYL AND LINEAR MODE
2	ACCESS READY
3	OD CYL
4	DRIVE TO INNER GUARD BAND EVEN CY:
5	DRIVE FORWARD 20 IPS-1
	(DIFFERENCE=0)
6	DRIVE FORWARD 5 IPS
	(DIFFERENCE=1)
7	HEAD LOAD
	8433-00/01.02/03
P	
0	LINEAR MODE
1	IST CYL AND LINEAR MODE
2	ACCESS READY
3	GUARD BAND DETECTED
4	DRIVE TO INNER GUARD Band
5	DRIVE FORWARD 20 IPS
	(DIFFERENCE $=0$)
6	DRIVE FORWARD 5 IPS
	(DIFFERENCE=1)
7	HEAD LOAD
BYTE 11 - SERVO UNSAFE	
	8430-00/01
P	
0	
1	
2	
3	SERVO UNSAFE
4	ANY UNSAFE EXCEPT R/W
5	PACK SPEED UNSAFE
6	VELOCITY UNSAFE
7	30 VOC UNSAFE

I/O Sense Data Byte Definitions for Multiplexer and Selector Channel Devices (cont) 8430/8433 Disk Subsystems (cont)

	4	Data check	The processing of ECC bytes following a field indicated a data error. When posted with byte 1 , bit 0 (permanent error) the data check is uncorrectable and byte 7 indlcates the nature of the error. Permanent error is not set until the SCU has exhausted its error recovery procedures (27 retries at various offsets). There is no further recovery to be performed. When posted with by te 2, bit 1 (correctable) It indicates a correctable data error in a data field. Sense bytes 15 through 22 contain sufficient information to correct the error in main storage. There is one instance where data check can be posted on a write command. If an update write is performed on an overflow record in which the second or subsequent segment of the record has a data error in the home address or count field, data check and correctable are posted. The data error can be serviced in the normal manner (the error pattern is zero).
	5	Overrun	The channel was late, in relation to the drive, to present a command or data byte or late in accepting a data byte. Overrun may appear with byte 1 , bit 0 (permanent error) in which case, recovery attempts have been made by the SCU and there is nothing further to be done. Overrun without permanent error should be retried 10 times.
$\underset{\sim}{\sim}$	6		Alwavs 0.
	7		Always 0.

	8430/8433 Disk Subsystems (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 1		
	0	Permanent error	Permanent error indicates the SCU internal error recovery facilities are exhausted and there is nothing further to be done. Permanent error is always a modifier bit for other error indications: equipment check data check overrun
	1	Invalid track format	A write command has been specified to write past index. There is no recovery as this is a programming error.
	2	End of cylinder	End-of-cylinder indicates that a multitrack-read or search or an overflow-record operation has attempted head switching beyond the highest head address. End-of-cylinder is a programming condition. End-of-cylinder is presented for an attempted swltch at head 11 for any cylinder.
	3		Always 0.
	4	No record found	No-record-found is posted after index has been encountered twice in the same chain without:

	8430/8433 Disk Subsystems (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 2		
	0		Always 0.
	1	Correctable	This blt is a modifier for data checks and indicates that data check is correctable.
	2		Always 0.
	3	Environmental data present	Indicates that usege or error count information is present in sense bytes 7-24.
	4		Always 0.
	5		Always 0.
	6		Always 0.
$\begin{aligned} & v \\ & 1 \\ & N \\ & 0 \end{aligned}$	7		Always 0.
	Sense Data Byte 3		
	Restart command		The restart command is valid only for operation-incomplete.

Bit Position	Bit Designation	Definition

Sense Data Byte 7

Sense byte 7 indicates the format of the sense bytes $8-23$ and indicates a message number indicating the error type. Bits $0-3$ of byte 7 indicate the format:

Format	Description
0	Programming and SCU errors
1	Device checks
2	SCU checks
3	Selective reset
4	ECC uncorrectable data errors
5	ECC correctable data errors
6	Error and usage counts
$X^{\prime} F^{\prime}$	Inline sense

Bits 4-7 of byte 7 indicate a message number. The meaning of each message number varies by the format number.

R/W VRC	MDT CHECK TRACK START FAILURE/ LRC	SKEW	POSTAMBLE CHECK/CRC	W/VRC DEAD TRACK	TAPE UNIT 1600 BPI*	BACK- WARD*	NOT USED; ALWAYS O

| RUNAWAY
 CHECK | TAPE
 MOTION
 FAULT | SPEED
 CHECK
 (UNSERVO)
 ZOONLY) | TEST | STALL | TAPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FAULT | TEST | | | | |

NOTE:

Asterisk (*) indicates a bit that is conditioned by current status of tape unit. LEGEND:

LRC - Longitudinal redundancy check
R/W - Read/write
VRC - Vertical redundancy check

Bit Position	Bit Designation	Definition	
		Phase Encoding Mode	NRZI Mode
Sense Data Byte 0			
0	COMMAND REJECT	This bit is set if a write, write-tape-mark, or erase operation was attempted on a file protected tape unit or if an invalid command was received by the control unit (in the latter case, the bit is not set if the bus out check bit is set). Also, this bit is set if the tape unit incompatibility bit (bit 7, sense byte 1) is set.	Same as phase encoding mode.
1	INTERVENTION REQUIRED	When set, this bit indicates that a nonexistent or nonready tape unit was addressed by a command other than a sense command. If this bit is set, the tape unit status A bit (in sense data byte 1) is set.	Same as phase encoding mode.

	UNISERVO 10/14 Magnetic Tape Subsystem (cont)			
	Bit Position	Bit Designation	Definition	
			Phase Encoding Mode	NRZI Mode
茳	Sense Data Byte 0 (cont)			
	2	BUS OUT CHECK	When set, this bit indicates that a command or data was received with even parity on the interface busout lines. If this condition is set on a data transfer during a write operation, the operation is terminated and the faulty byte is not written. If the parity error is detected on a first data transfer, this bit and the word count 0 bit (bit 6) will both be set.	Same as phase encoding mode. If this condition is detected during the data transfer on a request-TIE command, the operation terminates but the information received is ignored. Any TIE information already stored is not affected.
$\begin{aligned} & 0 \\ & 1 \\ & N \\ & 0 \end{aligned}$	3	EOUIPMENT CHECK	When set, this bit indicates an equipment fault. It is set whenever bit 0 (runaway check), bit 1 (tape motion fault), or bit 5 (stall) of sense data byte 4 is set.	Same as phase encoding mode.

	4	DATA CHECK	When set, this bit indicates a data fault. It is set whenever bit 0 (noise) of sense data byte 1 is set, or bit 0 (read VRC error), bit 2 (skew), bit 3 (postamble check/CRC) or bit 4 (write VRC error) of sense data byte 3 is set.	Same as phase encoding mode.
	5	OVERRUN	This bit is set if service is requested on the interface lines but data cannot be transferred because of a late SERVICE OUT signal from the I/O channeI. This bit is not set on the sense or request-TIE commands. If this condition occurs on the first data transfer of a write operation, word count zero will be set in conjunction with this bit.	Same as phase encoding mode.
	6	WORD COUNT ZERO	This bit is set if data transfer is prevented during a write operation when the first data byte is requested. This can be due to a command out response to a data byte request, even parity detected for the data byte transfer, or a channel overload. No tape motion occurs when this condition is detected. If nonstop operation is indicated, the previous operation will terminate	Same as phase encoding mode.

[^4]$$
82 z-9
$$

UNISERV0 10/14 Magnetic Tape Subsystem (cont)

Bit Position	Bit Designation	Definition	
		Phase Encoding Mode	NRZI Mode

6	WORD COUNT ZERO (cont)
7	DATA CONVERTER CHECK

Sense Data Byte 0

Sense Data Byte 1			
0	NOISE	When reading or read checking data from phase encoded tapes, the checks performed to set the noise bit are essentially the same as those performed for NRZI recorded tapes. The variation in the checks are as follows:	When set, this bit indicates one of the following: Tape hash - During write

- When checking for tape hash, the outputs of the block detector circuits for each track are monitored. Since these circuits tend to reject noise, a single bit pickup would not activate the block detector outputs and the noise bit would not be set. In NRZI recording, the noise bit would be set, since the data lines are monitored directly.
- When checking for gaps in the data, or data dropouts, all block detector outputs must be deactivated together, before the noise bit is set. In phase encoding recording, a signal results from writing either a 1 bit or a 0 bit. Therefore, within the block, a signal is normally present in all tracks, and only a relatively serious condition could cause the noise bit to be set (that is, a lateral crease in the tapel. In NRZI recording, however, a signal is present only when 1 bits are written. Thus, a small defect in one track, when recording 1 bits only in that track, causes the noise bit to be set.
or write-tape-mark operations, data (or noise due to tape defects) was detected on read check sooner then was expected.
- During erase operations, data (or noise due to tape defects) was detected on read check while the tape was being erased.
- During write or write-tapemark operations, while read checking the recorded data, a gap detected in the data was not long enough to set the end-of-block condition.
- During read, read-backward, forward-space-block, and backspace-block operations,

$\omega \stackrel{(0)}{\text { ¢ }}$	Bit Position	Bit Designation	Definition	
			Phase Encoding Mode	NRZI Mode
	Sense Data Byte 1 (cont)			
	0	NOISE (cont)	The noise bit, should be set relatively infrequently, as compared to the NRZI mode.	a data drop out which occurred on read was not long enough for the end-of-block condition to be detected. For above conditions, tape motion does not cease in the middle of the block. Writing or erasing continues until the normal termination point. Bit 6 of sense byte 4 was set (tape fault).
¢	1*	TAPE UNIT STATUS A	When set, this bit indicates that the tape unit is selected and ready.	Same as phase encoding mode.

UNISERVO $10 / 14$ Magnetic Tape Subsystem (cont)

	6*	FILE PROTECT	When set, this bit indicates that the tape reel on the selected unit does not have a write enable ring.	Same as phase encoding mode.
	7	TAPE UNIT INCOMPATIBILITY	When set, this bit indicates one of the following conditions is present: Addressed tape unit is a 7-track unit and is indicating the phase encoding mode of operation. Tape motion does not occur as a result of attempted operation. Addressed tape unit is a 9-track unit and failed to reset to 1600 -bpi mode lload point only). Tape motion does not occur as a result of attempted operation. - Tape unit is selected for a read operation from load point and addressed tape unit is a 9 -track unit and failed to set to 800 -bpi mode when the tape was written in the 800 bpi NRZI mode.	Same as phase encoding mode. Tape unit is selected for write operation from load point and unit addressed is a 9 -track unit and failed to set to 800 -bpi mode. A rewind command must be executed before issuing a write-type command.

isk (*) indicates a bit that is conditioned by current status of tape unit.

	1	LRC/MULTIPLE DEAD TRACK/ TRACK START FAILURE	When set, indicates one of the following conditions: A marginal signal occurred in more than one track on a read or read-backward operation (uncorrectable). Valid information was not detected in at least one track while read checking the preamble during a write operation. This indicates a track start failure, possibly indicating the track was never written on the tape. This check is performed only during the preamble before the circuits that detect marginal signal are operable. Normally bit 4 of sense byte 3 is set in conjunction with this bit if the track is missing entirely.	When set, this bit indicates that a longitudinal redundancy check occurred during a write, write-tape-mark, read, or read-backward operation.
$\begin{gathered} 0 \\ 1 \\ \underset{U}{3} \end{gathered}$	2	SKEW	When set, this bit indicates that excessive skew was detected during a write, read, or read-backward operation (deskew register overflow).	Excessive skew detected while read checking data on write or write-tape-mark operation.

			Tape motion stopped independently of the control unit during an operation requiring tape movement. (This condition will occur if a backward operation extends motion into the load point.) This bit sets in conjunction with bit 2, sense byte 4 .	
	2, 3, 4, and 7	TEST	These bits are not used, are always 0 , and are reserved for the failure finding mode used by customer engineer.	Same as phase encoding mode.
	5	STALL	When set, this bit indicates that the control unit is 'hung up" for more than 2.5 seconds. Stall sense bit will not set if either bits 0 or 1 of sense byte 4 is set.	Same as phase encoding mode.
$$	6	TAPE FAULT	When set, this bit indicates that during a write or write-tape-mark operation an end-of-block gap was detected sooner than expected. This false end of block may be due to a loss of data for more than 1.35 usec on a UNISERVO 10, or 560 usec on a UNISERVO 14.	Same as phase encoding mode.

[^5]

Bit Position	Bit Designation	Definition	
		Phase Encoding Mode	NRZI Mode
Sense Data Byte 0 (cont)			
3	Equipment check	When set, this bit indicates an equipment fault. It is set whenever bit 0 (runaway check), bit 1 (tape motion fault), or bit 5 (stall) of sense data byte 4 is set.	Same as phase encoding mode.
4	Deta check	When set, this bit indicates a data fault. It is set whenever bit 0 (noise) of sense data byte 1 is set, or bit 0 (read VRC error), blt 2 (skew), or bit 4 (write VRC error) of sense data byte 3 is set.	Same as phase encoding mode with blt 1 and bit 3 of sense byte 1 set.
5	Overrun	This bit is set if service is requested on the interface lines but data cannot be transferred because of a late SERVICE OUT signal from the selector channel. This bit is not set on the sense- or track-in-error commands. If this condition occurs on the first data transfer of a write operation, word count zero will be set in conjunction with this bit.	Same as phase encoding mode.
6	Word count zero	This bit is set if during a write operation data transfer is prevented when the first data byte is requested. No tape motion occurs when this condition is detected. This bit is set if end of block is detected on a read or read back ward operation prior to detecting data.	Same as phase encoding mode.
7	Data converter check	This blt is not used and is alwars 0 .	Set on 7-track operations only.

Sense Data Byte 1			
0	Noise	When reading or read checking data from phase encoded tapes, the checks performed to set the noise bit are essentially the same as those performed for NRZI recorded tapes. The variation in the checks are as follows: When checking for tape hash, the outputs of the block detector circuits for each track are monitored. Since these circuits tend to reject noise, a single "bit-plck-up" would not activate the block detector outputs and the noise bit would not set. In NRZ\| recording, the noise bit would set, since the data lines are monitored directly. When checking for gaps in the data, or data "dropouts", all block detector outputs must be deactivated together, before the noise bit sets. In phase encoding recording, a signal results from writing either a 1 bit or a 0 bit. Therefore, within the block, a signal is normally present in all tracks, and only a relatively serious condition could cause the noise bit to set (that is, a lateral crease in the tape). In NRZI recording, however, a signal is present only when 1 bits are written. Thus, a small defect in one track, when recording 1 bits only in that track, causes the noise bit to set.	When set, this bit indicates one of the following: Tape mark - Durlng write or write-tape-mark operations, data (or noise due to tape defects) was detected on read check sooner then was expected. During erase operations, data (or noise due to tape defects) was detected on read check while the tape was being erased. During write or write-tape-mark operations, while read checking the recorded data, a gap detected in the the data was not long enough to set the end-of-block condition.

	UNISERVO 12/16 Magnetic Tape Subsystem (cont)			
	Bit Position	Bit Designation	Definition	
			Phase Encoding Mode	NRZI Mode
	Sense Data Byte 1 (cont)			
	0	Noise (cont)		During read, read-backward, forward-spaceblock, and backspaceblock operations, a data "dropout" which occurred on read was not long enough for the end-ofblock condition to be detected. For above conditions, tape motion does not cease in the middle of the block. Writing or erasing continues until the normal termination point.
$\begin{gathered} \text { N} \\ \stackrel{1}{0} \end{gathered}$	1	Tape unit status A	When set, this bit indlcates that the tape unit is selected and ready.	Same as phase encoding.
	2	Tape unit status B	When set, this bit indicates that the tape unit is rewinding, not ready, or under control of another control unit.	Same as phase encoding mode.

			Tape Unit Status	Tape Unit Status	Status Definition	Bit Set In Status Byte	
			A	B			
			0	0	Nonexistent	Unit check	
$\begin{aligned} & \frac{T}{7} \\ & \text { 号 } \end{aligned}$			0	1	Not ready	Unit check	
			1	0	Ready and not busy	\square	
			1	1	Ready and busy, that is, rewinding or under control of other control unit	Unit check	
$<$	3	7-Track	When set, this bit indicates that the selected tape unit is a 7 -track unit.				The selected unit has a 7-track head installed.
$\begin{aligned} & u \\ & 1 \\ & \underset{\sim}{\sim} \end{aligned}$	4	Load point	When set, this bit indicates that the selected unit is positioned at load point. NOTE: Reading backward over the first block on a tape does not put the tape at load point.				Same as phase encoding mode.

	Bit Position	Bit Designation	Definition	
			Phase Encoding Mode	NRZI Mode
	Sense Data Byte 1 (cont)			
퐂	5	End-of-tape	When set, this bit Indicates that the selected tape unit is positloned in the end-of-tape area.	Same as phase encoding mode.
즐	6	Flie protect	When set, this bit indicates that the tape reel on the selected unit does not have a write enable ring.	Same as phase encoding mode.
	7	Tape unit Incompatibility	When set, this bit indicates one of the following conditions is present: 1. Addressed tape unit is a UNISERVO 12 or $\mathbf{1 6}$ 7-track tape unit and is indicating the phase encoding mode of operation. 2. Addressed tape unit is a UNISERVO 12 or 16 9 -track tepe unlt and falled to reset to 1600-bpl mode (lasd point only). 3. Tape unlt is selected for a read operation from load polnt and addressed tape unlt is a 9 -track UNISERVO 12 or 16 tape unit and falled to set to 800-bpl mode when the tape was wrltten in the 800-bpl mode. 4. A write operation was attempted with a UNISERVO 12 tape unit on the second control unit.	Seme as phase encoding mode. Tape unit is selected for "write-type" operation from load point and unit addressed is a UNISERVO 12 or UNISERVO 16 9-track tepe unit and falled to set to 800-bpl mode.

	1	LRC/multiple dead track/ track start fallure	When set, indicates one of the following conditions has occurred: - A marginal signal occurred in more than one track on a read or read-back ward operation. Valld information was not detected in at least one track while read checking the preamble during a write operation. This indicates a track start fallure, possibly indicating the track was never written on the tape. This check is performed only during the preamble before the circults. Normally bit 4 of sense byte 3 is set in conjunction with this bit if the track is missing entirely.	When set, this bit indicates that a longitudinal redundancy check occurred during a write, write-tapemark, read, or read-backward operation.
	2	Skew	When set, this bit indicates that excessive skew was detected during the automatic readback for a write or write-tape-mark operation.	Excessive skew detected while read checking during write or write-tape-mark operation.
	3	Postamble check/CRC	Set when the postamble following the data is not read correctly.	A CRC occurred during a read or read-backward operation (9 -track only).
$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	4	Dead track check/W VRC	When set, this bit indicates one of the following conditions has occurred: At least one track with marginal signal during write or write-tape-mark operations.	A vertical redundancy check occurred on a data frame or CRC frame during a write or write-tape-mark operation.

			- During a write or wrlte-tape-mark operatlon, the end of block was not detected under the read head within at least 8.3 ms (UNISERVO 12) or 2.1 ms (UNISERVO 16) after writing ceased. - During all read operations, If data is not detected within at least 7.0 seconds (UNISERVO 12) or 2.5 seconds (UNISERVO 16).	
	1	Tape motion fault	This bit is set by any of the following conditions: The tape unit failed to respond to a start command. Tape motion may or may not have occurred. - Tape motion stopped independently of the control unit during an operation requiring tape movement. (This condition will occur if a backward operation extends motion into the load point.)	Same as phase encoding mode.
	$\begin{aligned} & 2,3, \\ & \text { and } 4 \end{aligned}$		These bits are not used, are always 0 , and are reserved for the fallure finding mode used by malntenance personnel.	Same as phase encoding mode.
$\begin{gathered} u \\ 1 \\ 0 \\ \hline N \end{gathered}$	5	Stall	When set, this bit indicates that the control unit is "hung up" for more than 2.5 seconds. The unit check blt (status byte) is set, and the control unit terminates the operation by initiating a status request.	Same as phase encoding mode.

UNISERVO 12/16 Magnetic Tape Subsystem (cont)

	Bit Position	Bit Designation	Definition	
			Phase Encoding Mode	NRZI Mode
	Sense Data Byte 4 (cont)			
	6	Tape fauit	When set, this bit indicates that during a write or write-tape-mark operation an interblock gap was detected sooner than expected. This false end of block may be due to a loss of data for more than 790 microseconds on a UNISERVO 12 or UNISERVO VI-C, or more than 280 microseconds on a UNISERVO 16 or UNISERVO VIII-C (if this is the case, a backspace may not re-position the tape to the beginning of the written block).	Same as phase encoding mode.
	7		This bit is not used and is always 0 . It is reserved for the failure finding mode used by maintenance personnel.	Same as phase encoding mode.

> When set, this bit indicates that during a write or write-tape-mark operation an interblock gap was detected sooner than expected. This false end of block may be due to a loss of data for more than 790 microseconds on a UNISERVO 12 or UNISERVO VI-C, or more than 280 microseconds on a UNISERVO 16 or UNISERVOVII-C (if this is the case, a backspace may not re-position the tape to the beginning of the

This bit is not used and is always 0 . It is reserved personnel.

	UNISERVO 20 Magnetic Tape Subsystem (cont)			
	Bit Position	Bit Designation	Definition	
			Phase Encoding Mode	NRZI Mode
	Sense Data Byte 0			
	0	Command reject	This bit is set if a write, write-tape-mark, or erase operation was attempted on a file protected tape unit or if an invalid command was received by the control unit (in the latter case, the bit is not set if the bus out check bit is set). Also, this bit is set if the tape unit incompatibility bit (bit 7 , sense byte 1) is set.	Same as phase encoding mode.
	1	\|ntervention required	When set, this bit indicates that a nonexistent or nonready tape unit was addressed by a command other than a sense command. If this bit is set, the tape unit status A bit (in sense data byte 1) is not set.	Same as phase encoding mode.
	2	Bus out check	When set, this bit indicates that a command or data was received with even parity on the interface busout lines. If this condition is set on a data transfer during a write operation, the operation is terminated and the faulty byte is not written, If the parity error is detected on a first data transfer, this bit and the word count 0 bit (bit 6) will both be set.	Same as phase encoding mode. If this condition is detected during the data transfer on a request-TIE command, the operation terminates but the information received is ignored. Any TIE information already stored is not affected.
	3	Equipment check	When set, this bit indicates an equipment fault. It is set whenever bit 0 (runaway check), bit 1 (tape motion fault), or bit 5 (stall) of sense data byte 4 is set.	Same as phase ericoding mode.

			In NRZI recording, however, a signal is present only when 1 bits are written. Thus, a small defect in one track, when recording 1 bits only in that track, causes the noise blt to be set. The noise bit, should be set relatively infrequently, as compared to the NRZI mode.	the end-of-block condition. During read, read-backward, forward-space-block, and backspace-block operatlons, a data drop out which occurred on read was not long enough for the end-of-block condition to be detected. For above conditions, tape motion does not cease in the middle of the block. Writing or erasing continues unti! the normal termination polnt. Bit 6 of sense byte 4 was set (tape fault).
	1*	Tape unit status A	When set, this bit indicates that the tape unit is selected and ready.	Same as phase encoding mode.
	2*	Tape unit Status B	When set, this bit indicates that the tape unit is rewinding, not ready, or under control of another control unit.	Same as phase encoding mode.

	4*	Load point	When set, this bit Indicates that the selected unit is positioned at load point. NOTE: Reading backward over the first block on a tape does not put the tape at load point.	Same as phase encoding mode.
T	5*	End of tape	When set, this bit indicates that the selected tape unit is positioned in the end-of-tape area.	Same as phase encoding mode.
$\begin{aligned} & \text { 劭 } \\ & \text { 员 } \\ & \hline 0 \end{aligned}$	6*	File protect	When set, thls blt indicates that the tape reel on the selected unit does not have a write enable ring.	Same as phase encoding mode.
	7	Tape unit Incompatibility	When set, this bit indicates one of the following conditions is present: Addressed tape unit is a 7-track UNISERVO 12 or 16 and is indicating the phase encoding mode of operation. Addressed tape unit is a 9-track UNISERVO 12, 16 , or 20 and failed to reset to 1600 -bpi mode (load polnt only). - Tape unit is selected for a read operation from load point and addressed tape unit is a 9-track UNISERVO 12, 16, or 20 and failed to set to 800-bpi mode when the tape was written in the 800 -bpl mode.	Same as phase encoding mode. Tape unlt is selected for write operation from load polnt and unit addressed is a 9 -track UNISERVO 12,16 , or 20 and failed to set to $800-\mathrm{bpi}$ mode. NOTE: Tape motion does not occur as a result of attempted operation.

[^6]UNISERVO 20 Magnetic Tape Subsystem (cont)

Bit Position	Bit Designation	Definition	
		Phase Encoding Mode	NRZI Mode
Sense Data Byte 1 (cont)			
$\begin{aligned} & 7 \\ & \text { (cont) } \end{aligned}$		This condition is detected after the first read operation is inltiated. If a read command is to be attempted again, a rewlnd command is required to reposition the tape.	

$0-7$
Track in error

> This byte is utilized to indicate track errors when a data check has occurred at the conclusion of a read or read-backward operation. A single $1-b i t$ in any track indicates a single track in error; the bit position indicates the track in error.
> A 1 -bit in bit positions 6 and 7 indicates that a multiple track
> error has occurred and no track
> error identification has been made. Binary 0 's in bits 07 Imply bit P.
> At the completion of a properly executed read or read-backward
operation with no data check, sense byte 2 contains at least bits 6 and 7 set to 1's. No error correction is attempted when operating with 7-track tape units. Bits 6 and 7 are set to 1 's in sense byte 2.

Sense Data Byte 3

0	R/W VRC speed check	When set, this bit indicates the following: Vertical redundancy check (VRC) has occurred on a data frame without a dead track indication during a write, read, or read-backward operation. Excessive amount of speed variation occurred during a write operation. Set in conjunction with bit 2 of sense byte 4 for UNISERVO 20 control unit only.	When set, this bit indicates the following: A vertical redundancy check occurred on a data frame or CRC frame during a read or read backward operation. This indicator is not set after an overrun indication. - A speed check error occurred during a write or write-tapemark operation.
1	LRC/multiple dead track/ track start fallure	When set, indicates one of the following conditions: A marginal signal occurred in more than one track on a read or read-backward operation.	When set, this bit indicates that a longitudinal redundancy check occurred during a write, write-tape-mark, read, or readbackward operation.

[^7]UNISERVO 20 Magnetic Tape Subsystem (cont)

Bit Position	Bit Designation	Dofinition	
		Phase Encoding Mode	NRZI Mode
Sense Data Byte 3 (cont)			
1 (cont)		Valld information was not detected in at least one track while read checking the preamble during a write operation. This indicates a track start failure, possibly indicating the track was never written on the tape. This check is performed only during the preamble before the circults that detect marginal signal are operable. Normally bit 4 of sense byte 3 is set in conjunction with this bit if the track is missing entirely.	
2	Skew	When set, this bit indicates that excessive skew was detected during a write, read, or read-backward operation (deskew register overflow).	Excessive skew detected while read checking data on write or write-tape-mark operation.
3	Postamble check/CRC	Set when the postamble following the data is not read correctly or is recognized before the actual end of data (early stop sentinel).	A CRC error was detected during a read or read-backward operation (9-track only).
4	Dead track check/W VRC	When set, this bit indicates one of the following conditions: At least one track with marginal signal during write or write-tape-mark operations.	A vertical redundancy check occurred on a data frame or CRC frame during a write or write-tape-mark operation.

A marginal signal In only one track during a read or read-backward operation (correctable error). This bit does not set if a multipletrack error occurs. (See bit 1.) If $\mid=1$ in the read command code and this bit is set, unit check is set. However, If this blt is set and $\mid=0$ in the read command code, unit check is not set. In either case, the data is correct.

- Indicates that a tape mark was not properly detected on the read check of a write-tape-mark opetected o

5*	Tape unit-1600 bpi 6^{*}	When set, this bit indicates the selected tape unit is set to 1600-bpi mode.
7	Backward 0	When set, this bit indicates the selected tape unit is conditioned for backward tape motion.

the control unit during an operation
requiring tape movement. (This condition will occur if a backward operation extends motion into the load point.)
This bit sets in conjunction with bit 2, sense byte 4 .

	2	Speed check (UNISERVO 20 control unit only)	This bit is set by any of the following conditions: An excessive amount of speed variation during a write operation. Set in conjunction with bit 0 of sense byte 3 . During a write operation, the tape unit fails to: - accelerate to specified speed, or - achieve minimum interblock gap spacing. Set in conjunction with bit 1 of sense byte 9 .	Always set to 0 ,
	$3,4, \text { and }$	Test	These bits are not used, are always 0 , and are reserved for the failure finding mode used by customer engineer.	Same as phase encoding mode.
$\begin{array}{r} \lambda \forall \forall W W \cap S \\ \varepsilon / S(\end{array}$	5	Stall	When set, this bit indicates that the control unit is "hung up" for more than 2.5 seconds. Stall sense bit will not set if either bits 0 or 1 of sense byte 4 is set.	Same as phase encoding mode.
$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	6	Tape fault	When set, this bit Indicates that during a write or write-tape-mark operation an end-of-block gap was detected sooner than expected. This false end of block may be due to a loss of data for more than 790 microseconds on a UNISERVO 12, more than 280 microseconds on a UNISERVO 16, or 2 bit times for a UNISERVO 20.	Same as phase encoding mode.

	Bit Position	Bit Designation	Definition
	Sense Data Byte 0		
	0	I nvalid function	This bit is set if a write, write-tape-mark or erase operation was attempted on a file protected tape unlt or if an invalid function was recelved by the control unit (in the second case, the bit will not be set if the bus out check bit is set).
	1	Intervention required	Indicates that a nonexistent or nonready tape unit was addressed by a function other than a sense function. If this blt is set, the tape unit status A bit is not set (sense data byte 1).
	2	Bus out check	Indicates that a function or data arrived with even parity on the bus out lines. If this condition is set on a data transfer during a write operation, the operation is terminated and the faulty byte is not written. If the parity error is detected on a first data transfer, the word count zero bit is also set. if the bus out check blt is set, the invalid function bit will not be set for a function transfer.
0100	3	Equipment check	This bit indicates an equipment fault and is set whenever bit 0,1 , or 5 of sense data byte 4 is set.
	4	Data check	This bit indicates a fault in data and is set whenever bit 0 of sense data byte 1 is set, or bit $0,1,2,3$, or 4 of sense data byte 3 is set.

Bit Position	Bit Designation	Definition
Sense Data Byte 0 (cont)		
5	Data late	This bit is set if service is requested on the interface lines but data cannot be transferred because of a late SERVICE OUT signal from the multiplexer channel. This bit is not set for the sense function.
6	Word count zero	This bit is set if during a write operation a data transfer is prevented when the first data byte is requested. No tape motion occurs when this condition is detected.
7	Data converter check	This bit, together with the unit check bit, (of the status bytes) indicates the number of bytes read during data conversion (where the data conversion feature is present) was incorrect.

Sense Data Byte 1

$0 \quad$ Noise
For a write or write-tape-mark operation, an unsuccessful write occurred.
because data (or electrical nolse) was detected in the area allotted to the
interblock gap. interblock gap.

For a write or tape mark operation a tape fault occurred. In this case, the noise bit will be accompanied by the tape fault bit In sense data byte 4.

중 \rightarrow い 			For a read, read-backward, forward-space-block, or backspace-block operation, this bit indlcates that data was detected in the interblock gap. Data after the longitudinal parity character turns on the noise bit and maintains tape motion but is not transferred. This condition may also be caused by a "dropout" of data in the biock, causing faise detection of longitudinal parity character. Such a dropout can be caused by bad tape (for example, wrinkled tape). This indication can usually be ignored on a space operation. If noise is detected after a true longitudinal parity character, successful completion of the operation is indicated; however, in most cases, the longitudinal parity error bit (sense data byte 3) will be set. Note that the dropout of two identical frames cannot be detected by the longitudinal parity character.
	1	Tape unit status A	This bit indicates that the tape unit is selected and ready. If th is bit is not set, the settings of bits $3-6$ in sense data byte 1 are unreliable.
	2	Tape unit status B	This bit indicates that the tape unit is rewinding, not ready, or under control of the other control unit.
	3	7-Track	This bit indicates that the selected tape unit is a 7-track unit.
	4	Load point	This bit indicates that the selected unit is positioned at load point. NOTE: Reading backward over the first block on a tape will not put the tape at load point.
	5	End-of-tape	This bit indicates that the selected unit is positioned in the end-of-tape area.
	6	File protect	This bit indicates that the tape on the selected unit does not have a write enable ring installed.

0	READ VP error	A vertical parity (VP) error is detected on a cyclic redundancy check character (9-track only) or on a data cheracter during a read or read-backward operation. The data late bit in sense data byte o (If set) wlll inhiblt setting of this bit for the parity error condltion. Data was not detected at the read head within 10 milliseconds after data recording commenced for a write or write-tapemark operation.
1	Read LP error	This bit indicates that a longitudinal parity error was detected during a read or read backward operation, or during the automatic readback for a write or write-tape-mark operation.

UNISERVO VI-C Magnetic Tape Subsystem (cont)

Bit Position	Bit Designation	Definition
Sense Data Byte 4 (cont)		
2, 3, 4		Always zero and reserved for the fallure finding mode using by maintenance personnel.
5	Stall	This bit indicates that the control unit is "hung-up" for more than 20 seconds. The unit check bit is set and the channel terminates the operation by initlating a status request.
6	Tape fault	This bit indicates that during a write or write-tape-mark operation an interblock gap was detected sooner than expected. This false end-of-block may be due to a loss of data for more than 800 microseconds (if this is the case, a backspace may not reposition the tape to the beginning of the written block).
7		Always zero and reserved for the fallure finding mode used by maintenance personnel.

			8. punch in stop mode.
	2	Bus out check	Set when a command byte or data byte parity error is detected during the initial selection sequence. A command byte parity error causes the control unit to terminate operation Immediately and to suppress the invalid command. If the control unit is holding a pending status when the command byte parity error is detected, the command byte is disregarded and the stored status is transferred to the multiplexer channel during the status transfer sequence. Neither the channel end nor the device end bit in the status byte is set for this condition. A data byte parity error during data transfer causes the control unit to terminate operation immediately. The channel end bit and the device end bit in the status byte are set.
	3	Equipment check	Set to indicate that a reader overshoot condition is detected (reader stopped, paper moved).
	4	Data check	Set to indicate that a read parity error exists,
	5		Not used.
$\begin{gathered} c \\ 1 \\ N \\ \vdots \end{gathered}$	6	Inhibit status in set	Set to indicate that the inhibit-status-in flip-flop is set and to prevent a status byte from being sent to the multiplexer channel.
	7	EOT reader or low tape on punch	Set to indicate an end-of-tape condition on the reader or low tape supply on punch.

0920 Paper Tape Subsystem (cont)

Bit Position	Bit Designation	Definition
		Sense Data Byte 1
0	Reader stop FF set	The status of various flip-flops in the contral unlt is transferred to this byte, which is used to indicate that an abnormal condition was detected during the previous operation. In all cases, manual intervention is required to correct such abnormal conditions.
1	Punch stop FF set	
2	Program connector not inserted	
3	Not used	
4	Punch take-up reel full	
5	Low tape on punch	
6	Broken read tape	
7	Normal EOT on reader	

5.9.3.14. 2703 Optical Document Reader

Bit Position	Bit Designation	Definition
Sense Data Byte 0		
0	Command reject	This bit is set when an invalid command is issued or a command requires an uninstalled feature. Neither the channel end or device end bit in the status bytes is set for this condition.
1	Intervention required	This bit is set when an abnormal condition was detected or if a command could not be executed. In all cases the ODR has gone out of the ready state, and manual intervention is required.
2	Bus out check	This bit is set for an Invalid parity in command or data.
3	Equipment check	This bit is set when: document spacing is Incorrect; document is directed to stacker reject; the time for issuing a stacker command has expired.
4	Data check	This bit is set to indicate that one of the following conditions was detected during the previous operation: multiple read error feed modulus 10 check digit error

2703 Optical Document Reader (cont)

Bit Position	Bit Designation	Definition
		Sense Data Byte 1 (cont)
6	Stacker mode, stacker 3	This bit is set when the ODR is in the stacker mode and stacker 3 is selected.
7	Diagnostic mode	This bit is set to indicate that the ODR is in the diagnostic mode.
*This bit is usable only when the applicable feature has been installed.		
Sense Data Byte 2 (Not Maintenance Mode)		
The following bits are set with the data check bit:		
0	Multiple read	This bit is set if more than one character was identified in a single character space. Example: A 3 was identified as an 8 as well as a 3 ; the multiple read bit is set, and the character is not accepted.
1	Modulus 10 check digit error	This bit is set when a modulus-10-check-digit error is detected.

	2	Column 81 test	This bit is set when a mark is detected by the photocells in the margin of the card (column 81).
	3	Validity check error	This bit is set when a validity check error is detected; more than one mark or punch per column on the document.
	4	Multiple strobe error	This bit is set to indicate an error in reading the punched card.
	The following bits are set with the equipment check bit:		
	5	Multiple feed	This bit is set when more than one document is fed from the input hopper.
	6	Documents too close	This bit is set when the spacing between documents is incorrect. The document is rejected.
	The following bits are set with the unit check bit:		
	7	Blank document	This bit is set when a blank document has been detected. The document is rejected.
			Sense Data Byte 2 (Maintenance Mode)
	0	Document primed	These bits are set when the ODR is in the maintenance mode.
	1	Feed flip-flop	These bits are set when the ODR is in the maintenance mode.
$\begin{gathered} 0 \\ 1 \\ \infty \\ \infty \end{gathered}$	2	Feed cell 1	These bits are set when the ODR is in the maintenance mode.
	3	Feed cell 2	
	4	Feed cell 3	

	2703 Optical Document Reader (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 2 (Not Maintenance Mode) (cont)		
	5	Feed cell 4	These bits are set when the ODR is in the maintenance mode.
	6	Document presence	
	7	Diverter gate	
	Sense Data Byte 3		
	0	Character 0	Character 0 was recognized by the recognition logic.
	1	Character 1	Character 1 was recognized by the recognition logic.
	2	Character 2	Character 2 was recognized by the recognition logic.
	3	Character 3	Character 3 was recognized by the recognition logic.
$\underset{\sim}{\infty}$	4	Character 4	Character 4 was recognized by the recognition logic.
	5	Character 5	Character 5 was recognized by the recognition logic.
	6	Character 6	Character 6 was recognized by the recognition logic.
	7	Character 7	Character 7 was recognized by the recognition logic.

	Sense Data Byte 4			
	0	Character 8	Character 8 was recognized by the recognition logic.	
	1	Character 9	Character 9 was recognized by the recognition logic.	
	2	Character $\\|^{\top}$ or N	Symbol Jof the USASCOCR font selection or symbol N of the UNIVAC H-14 font selection was recognized by the recognition logic.	
	3	$\begin{aligned} & \text { Symbol } \\ & \text { or F } \end{aligned}$	Symbol Ψ of the USASCOCR font selection or symbol F of the UNIVAC H-14 font selection was recognized by the recognition logic.	
	4	Symbol -1 or \backslash	Symbol H of the USASCSOCR font selection or symbol \of the UNIVAC H-14 font selection was recognized by the recognition logic.	
	5		Not used. Bit always 0.	
	6	Ivm	The long vertical mark of the UNIVAC H-14 or USASCSOCR font selections was recognized by the recognition logic.	
	7	Multiple	A multiple character was detected by the recognition logic.	

[^8]| Bit
 Position | Bit
 Designation | Command reject |
| :---: | :---: | :---: |

POWERS OF 2 TABLE (cont)
$\begin{array}{ll}\text { UP-8203 } & \\ \begin{array}{ll}\text { SPERRY UNIVAC OS/3 } \\ \text { Rev. } 3\end{array} & \text { HARDWARE/SOFTWARE SUMMARY }\end{array}$

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

	2^{n}				
8	576				
7	152				
4	304				
8	608				
7	216				
4	432				
8	864				
7	728				
5	456				
0	912				
1	824				
3	648				
7	296				
4	592				
9	184				
8	368				
6	736				
3	472				
6	944				
3	888				
7	776		n	2^{-n}	
:---	:---	:---			
20	0.000	000			

20	0.000
21	0.000
22	0.000
23	0.000
24	0.000
25	0.000
26	0.000
27	0.000
28	0.000
29	0.000
30	0.000
31	0.000
32	0.000
33	0.000
34	0.000
35	0.000
36	0.000
37	0.000
38	0.000
39	0.000
40	0.000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

953
476
238
119
059
029
014
007
003
001
000
000

000
000
000
000

000
000
000
000
316

406	25
203	125

25	
125	
562	5

\bullet
$-$

[^0]: System Console Keyin

[^1]: **Refer to CONDITION CODE SETTINGS.

[^2]: *Bits 24-26 set to zero by multiplexer channel; bit 31 set to zero by selector channel

[^3]: Channel Devices (cont)

[^4]:

[^5]: and Selector Channel Devices (cont)

[^6]: *Indicates bit that is conditioned by current status of the tape unit.

[^7]: and Selector Channel Devices (cont) I/O Sense Data Byte Definitions for Multiplexer

[^8]: $\varepsilon \cdot n \partial y$
 $c 0 z 8 \cdot d \cap$
 5.9.3.15. 2521 Channel Transfer Switch

 1/0 sense data byte information for the channel transfer switch is transparent to you.
 5.9.3.16. 9000 Series Channel Adapter

