
•

•
UD1 -251 Rev_ 3113

SPE

Assembler

User Guide

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
Assembler User Guide", UP-8061 Rev. 3.

This revision provides the 8.0 release enhancements to the OS/3 Assembler. The enhancements include:

• An additional UPSI byte setting for diagnostic errors.

• The addition of STXIT island code (providing the capacity to continue job streams when program checks
occur).

• The display of error messages on the console .

• An additional warning message when using continuation characters with macroinstructions. (A comma after
the last operand is checked.)

Appendix A was also expanded to include the job control to execute the sample program. In addition, other
technical changes were made throughout the document.

Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies. If you are
not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8061 Rev. 2, UP-8061 Rev. 2-A, UP-8061 Rev. 2-B and UP-8061 Rev. 2-C will be available for 6
months after the release of 8.0. Should you need additional copies of this edition, you should order them within 90
days of the release of 8.0. When ordering the previous edition of a manual, be sure to identify the exact revision and
update packages desired and indicate that they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative .

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO.A 18, 18, 18U, 19, 19U,20, 20U,21,21 U,75,
75U,76 and 76U

(Cover and 710 pages)

Library Memo for
UP-8061 Rev. 3

RELEASE DATE:

September, 1982

•

•

•

Assembler

•

Environment: 90/25, 30, 308, 40 Systems

•
H UNIVAC UP-8061 Rev. 3

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document. the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE. UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER. PAGEWRITER. PIXIE. and UNIS
are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC). 555 Henderson Rd .. King of Prussia, Pa .. 19406.

©1974, 1975, 1976, 1977 - SPERRY CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

PSS 1

ISSUE:
RELEASE LEVEL:

PAGE STATUS SUMMARY

UP-8061 Rev. 3
8.0 Forward

Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level Part/Section
Page

Number
Update
Level

Cover/Disclaimer 19 1 thru 13

PSS

Preface

Contents

PART 1

1

2

3

4

PART 2

5

6

PART 3

7

8

9

10

11

12

13

14

PART4

15

16

17

18

1 20 1 thru 6

1, 2 21 1 thru 9

1thru17 PART 5
Title Page

Title Page 22 1 thru 4

1 thru 19 23 1 thru 10

1 thru 10 24 1 thru 11

1 thru 3 25 1 thru 11

1 thru 19 26 1 thru 7

27 1 thru 30
Title Page

PART6
1 thru 19 Title Page

1 thru 4 28 1 thru 5

PART 7

Title Page Title Page

1 thru 6 29 1 thru 21

1 thru 19 30 1 thru 5

1 thru 52 PART 8
Title Page

1 thru 63
Appendix A 1 thru 4

1 thru 94
Appendix B 1 thru 7

1 thru 72
Appendix C 1 thru 9

1 thru 20
Appendix D 1 thru 3

1 thru 53
Appendix E 1 thru 15

Title Page Appendix F 1 thru 8

1 Appendix G 1 thru 5

1 thru 3 Index 1 thru 28

1 thru 8 User Comment
Sheet

1 thru 4

All the technical changes are denoted by an arrow(-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+)is found. A horizontal arrow(-) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY UNIVAC Operating System/3 (OS/3). This manual specifically describes
the OS/3 assembler and its effective use. Its intended audience is the novice programmer
with a basic knowledge of data processing, but with limited programming experience, and
the assembler programmer whose experience is limited to non-UNIVAC systems.

Two other manuals are available that cover OS/3 assembler; one is an introductory
manual and the other is a programmer reference. The introductory manual briefly
describes OS/3 assembler and its facilities. The programmer reference provides the
characteristics of OS/3 assembler in skeletal form and is intended as a quick-reference
document for the programmer experienced in the use of OS/3 assembler .

This user guide is divided into the following parts:

• PART 1. BASIC DATA AND CONVENTIONS

Introduces you to what basic assembly language (BAL) is, how the computer stores
information (data), how to locate the data required, and what forms mathematic
notations assume in computer manipulations. The general rules that a programmer
must understand to solve simple BAL problems are stated in this part. Where the
content may seem out of context to the more experienced user, he can find such
material repeated in greater detail in the following parts of this manual. As the
manual progresses, the problems and examples become increasingly complex.

• PART 2. STORAGE AND SYMBOL DEFINITIONS

Describes and illustrates the use of storage assignments, the constants, and the rules
for symbol designations.

• PART 3. BAL APPLICATION INSTRUCTIONS

•

Presents the explicit and implicit formats for all the assembly language application
instructions, the rules of their use and illustrative examples.

PART 4. BAL DIRECTIVES

Describes and illustrates the use of all the assembler control directives.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Preface 2

• PART 5. BAL MACROS

Explains the macro facility for writing and using this time-saving feature of the
assembler.

• PART 6. ASS EMBLY LISTING

Describes what an assembly listing is, what it means, and how it is of use to the
programmer.

• PART 7. PROGRAMMING TECHNIQUES

A series of programming techniques are presented in this part.

• PART 8. APPENDIXES

The appendixes contain figures and tables for use in explaining the text and for
general programmer reference.

Each of the foregoing parts consists of one or more sections that cover the different
aspects of the subject matter covered in each part.

•

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. BASIC DATA AND CONVENTIONS

Contents 1

Contents

• 1. INTRODUCTION TO ASSEMBLER LANGUAGE PROGRAMMING

•

1.1.
1.1.1.
1.1.2.
1.1.3.
1.1.4.
1.1.5.
1.1.6.
1.1.7.

1.2.

1.3.

1.4.

CODING AN ASSEMBLER PROGRAM
Operation Field
Operand Field
Label Field
Comments Field
Sequence Numbers
Column 72
Additional Coding Rules

ASSEMBLING A PROGRAM

CREATING A LOAD MODULE

PROGRAM EXECUTION

2. DATA FORMS

2.1. DATA REPRESENTATION

2.2. BINARY REPRESENTATION

2.3. HEXADECIMAL REPRESENTATION

1-1
1-4
1-5
1-6
1-8
1-9
1-10
1-10

1-12

1-16

1-17

2-1

2-2

2-3

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

2.4. CHARACTER REPRESENTATION

2.4.1. Alphabetic Characters
2.4.2. Special Letters
2.4.3. Numeric
2.4.3.1. Unpacked Format
2.4.3.2. Packed Format
2.4.4. Special Characters

2.5. FIXED-POINT NUMBERS

2.6. FLOATING-POINT NUMBERS

3. ADDRESSING

3.1. MAIN COMPUTER STORAGE ADDRESSING
3.1.1. Instruction Addressing
3.1.2. Data Field Addressing

3.2. REGISTER ADDRESSING

4. RULES AND CONVENTIONS

4.1. READING INSTRUCTION NOTATION
4.1.1. Assembler Application Instruction Notations
4.1.2. Notation Rules and Meanings

4.2. TERMS
4.2.1. Self-Defining Terms
4.2.2. Literals
4.2.3. Symbols
4.2.4. Location Counter References
4.2.5. Length Attribute Reference

4.3. OPERATORS
4.3.1. Arithmetic Operators
4.3.2. Logical Operators
4.3.3. Relational Operators

4.4. EXPRESSIONS
4.4.1. Absolute Expressions
4.4.2. Relocatable Expressions
4.4.3. Complex Relocatable Expressions
4.4.4. Character Expressions
4.4.5. Length Attribute of Expressions
4.4.6. Character Strings

Contents 2

2-5 • 2-5
2-6
2-6
2-6
2-7
2-8

2-9

2-9

3-1
3-1
3-2

3-3

4-1 • 4-1
4-4

4-8
(SOT) 4-9

4-10
4-11
4-12
4-13

4-13
4-14
4-14
4-15

4-15
4-16
4-17
4-17
4-18

4-18
4-18

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

PART 2. STORAGE AND SYMBOL DEFINITIONS

5. STORAGE DEFINITIONS

5.1. STORAGE USAGE
5.1.1. Define Constant (DC)
5.1.2. Define Storage (OS)
5.1.3. Duplication Factor
5.1.4. Definition Type
5.1.5. Length Factor (Lnl
5.1.6. Constant Specification
5.1.7. Alignment

5.2. DEFINITION TYPES
5.2.1. Character Constants (C)
5.2.2. Hexadecimal Constants (X)
5.2.3. Binary Constants (B)
5.2.4. Packed Decimal Constants (P)
5.2.5. Zoned Decimal Constants (Z)
5.2.6. Half-Word Fixed-Point Constants (H)
5.2.7. Full-Word Fixed-Point Constants (F)
5.2.8. Half-Word Address Constants (Y)
5.2.9. Full-Word Address Constants (A)
5.2.10. Base and Displacement Constants (S)
5.2.11. External Address Constants (V)
5.2.12. Floating-Point Constants (E and D)

5.3. LITERALS

6. SYMBOL DEFINITIONS

6.1. EQUIVALENT SYMBOLS

6.2. SYMBOL APPLICATIONS

PART 3. BAL APPLICATION INSTRUCTIONS

7. INTRODUCTION TO APPLICATION INSTRUCTIONS

7.1. INSTRUCTION AND FORMAT CONVENTIONS

7.2. EXPLICIT FORMS

7.3. IMPLICIT FORMS

7.4 . DEFINITIONS OF FORMAT TERMS

Contents 3

5-1
5-4
5-5
5-5
5-6
5-6
5-7
5-8

5-8
5-8
5-9
5-9
5-10
5-10
5-11
5-12
5-12
5-13
5-13
5-14
5-15

5-18

6-2

6-3

7-1

7-5

7-6

7-6

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

8. BRANCHING INSTRUCTIONS

8.1. USE OF BRANCHING INSTRUCTIONS

8.2. EXTENDED MNEMONIC CODES

8.3. BRANCH AND STORE

8.4. BRANCH AND LINK

(BAS, BASA)

(BAL, BALA)
8.4.1. Use of the BALA Instruction in Base Register Assignment

8.5. BRANCH ON CONDITION (BC, BCR)

8.6. BRANCH ON COUNT (BCT, BCTR)

8.7. EXECUTE (EX)

9. DECIMAL AND LOGICAL INSTRUCTIONS

9.1. USING DECIMAL INSTRUCTIONS

9.2. DEFINING PACKED AND UNPACKED CONSTANTS
AND MAIN STORAGE AREAS

9.2.1. Packed Decimal Constants and Main Storage Areas
9.2.2. Unpacked Decimal Constants and Main Storage Areas

9.3. ADD DECIMAL (AP)

9.4. COMPARE DECIMAL (CP)

9.5. DIVIDE DECIMAL (DP)

9.6. EDIT (ED)
9.6.1. The Edit Pattern
9.6.2. The Resulting Condition Code
9.6.3. Examples of General Usage
9.6.4. Summary

9.7. MOVE CHARACTER (MVC)

9.8. MOVE NUMERICS (MVN)

9.9. MOVE WITH OFFSET (MVO)

9.10. MOVE ZONES (MVZ)

9.11. MULTIPLY DECIMAL (MP)

9.12. PACK DECIMAL (PACK)

9.13. SUBTRACT DECIMAL (SP)

9.14. UNPACK DECIMAL (UNPK)

9.15. ZERO AND ADD DECIMAL (ZAP)

Contents 4

• 8-1

8-2

8-5

8-6
8-8

8-10

8-14

8-16

9-1

9-3
9-4
9-6 • 9-8

9-10

9-12

9-15
9-16
9-22
9-23
9-25

9-26

9-30

9-33

9-36

9-38

9-40

9-44 • 9-47

9-50

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10. FIXED-POINT BINARY INSTRUCTIONS

10.1. USE OF FIXED-POINT BINARY INSTRUCTIONS
10.1.1. Half-Word Fixed-Point Constants
10.1.2. Full-Word Fixed-Point Constants
10.1.3. Address Constants
10.1.3.1. Full-Word Address Constants
10.1.3.2. Half-Word Address Constants
10.1.4. Representation of Positive and Negative

Fixed-Point Binary Numbers

10.2. ADD

10.3. ADD

10.4. ADD HALF WORD

10.5. ADD IMMEDIATE

10.6. COMPARE

10.7. COMPARE

10.8. COMPARE HALF WORD

10.9. CONVERT TO BINARY

10.10. CONVERT TO DECIMAL

10.11. DIVIDE

10.12. LOAD

10.13. LOAD

10.14. LOAD AND TEST

10.15. LOAD HALF WORD

10.16. LOAD MULTIPLE

10.17. MULTIPLY

10.18. STORE

10.19. STORE HALF WORD

10.20. STORE MULTIPLE

10.21 . SUBTRACT

10.22. SUBTRACT

10.23. SUBTRACT HALF WORD

Contents 5

10-1
10-3
10-3
10-4
10-4
10-5

10-5

(A) 10-7

(AR) 10-9

(AH) 10-11

(Al) 10-13

(C) 10-15

(CR) 10-17

(CH) 10-19

(CVB) 10-21

(CVD) 10-24

(D) 10-27

(L) 10-31

(LR) 10-33

(LTR) 10-35

(LH) 10-37

(LM) 10-39

(M) 10-45

(ST) 10-49

(STH) 10-51

(STM) 10-53

(SJ 10-56

(SR) 10-58

(SH) 10-61

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11. FLOATING-POINT INSTRUCTIONS

11.1. INTRODUCTION

11.2. ADD NORMALIZED, LONG FORMAT

11.3. ADD NORMALIZED, LONG FORMAT

11.4. ADD NORMALIZED, SHORT FORMAT

11.5. ADD NORMALIZED, SHORT FORMAT

11.6. ADD UNNORMALIZED. SHORT FORMAT

11.7. ADD UNNORMALIZED. SHORT FORMAT

11.8. ADD UNNORMALIZED, LONG FORMAT

11.9. ADD UNNORMALIZED. LONG FORMAT

11.10. COMPARE, LONG FORMAT

11.11. COMPARE, LONG FORMAT

11.12. COMPARE, SHORT FORMAT

11.13. COMPARE, SHORT FORMAT

11.14. DIVIDE. LONG FORMAT

11.15. DIVIDE. LONG FORMAT

11.16. DIVIDE. SHORT FORMAT

11.17. DIVIDE. SHORT FORMAT

11.18. HALVE, LONG FORMAT

11.19. HALVE. SHORT FORMAT

11.20. LOAD COMPLEMENT, LONG FORMAT

11.21. LOAD COMPLEMENT, SHORT FORMAT

11.22. LOAD, LONG FORMAT

11.23. LOAD, LONG FORMAT

11.24. LOAD, SHORT FORMAT

11.25. LOAD, SHORT FORMAT

11.26. LOAD NEGATIVE, LONG FORMAT

11.27. LOAD NEGATIVE, SHORT FORMAT

Contents 6

• 11-1

(AD) 11-3

(ADR) 11-6

(AE) 11-9

(AER) 11-12

(AU) 11-15

(AUR) 11-17

(AW) 11-19

(AWR) 11-21

(CD) 11-23

(CDR) 11-25

(CE) 11-27

(CER) 11-29 •
(DD) 11-31

(DOR) 11-33

(DE) 11-35

(DER) 11-37

(HOR) 11-39

(HER) 11-41

(LCDR) 11-43

(LCER) 11-45

(LO) 11-47

(LOR) 11-49

(LE) 11-51

(LER) 11-53 • (LNDR) 11-55

(LNER) 11-57

•

•

•

UP-8061 Rev. 3

11.28.

11.29.

11.30.

11.31.

11.32.

11.33.

11.34.

11.35.

11.36.

11.37.

11.38.

11.39.

11.40.

11.41.

11.42.

11.43.

11.44.

11.45.

SPERRY UNIVAC OS/3
ASSEMBLER

LOAD POSITIVE. LONG FORMAT

LOAD POSITIVE, SHORT FORMAT

LOAD AND TEST, LONG FORMAT

LOAD AND TEST. SHORT FORMAT

MULTIPLY, LONG FORMAT

MULTIPLY, LONG FORMAT

MULTIPLY. SHORT FORMAT

MULTIPLY, SHORT FORMAT

SUBTRACT NORMALIZED. LONG FORMAT

SUBTRACT NORMALIZED. LONG FORMAT

SUBTRACT NORMALIZED, SHORT FORMAT

SUBTRACT NORMALIZED, SHORT FORMAT

STORE. LONG FORMAT

STORE. SHORT FORMAT

SUBTRACT UNNORMALIZED. SHORT FORMAT

SUBTRACT UNNORMALIZED, SHORT FORMAT

SUBTRACT UNNORMALIZED. LONG FORMAT

SUBTRACT UNNORMALIZED, LONG FORMAT

12. LOGICAL INSTRUCTIONS

12.1. THE USE OF LOGICAL INSTRUCTIONS

12.2. AND

12.3. AND

12.4. AND

12.5. AND

12.6 . COMPARE LOGICAL

12.7. COMPARE LOGICAL CHARACTERS

12.8. COMPARE LOGICAL IMMEDIATE

Contents 7

(LPDR) 11-59

(LPER) 11-61

(LTDR) 11-63

(LTER) 11-65

(MD) 11-67

(MOR) 11-69

(ME) 11-71

(MER) 11-73

(SD) 11-75

(SOR) 11-77

(SE) 11-79

(SER) 11-81

(STD) 11-83

(STE) 11-85

(SU) 11-87

(SUR) 11-89

(SW) 11-91

(SWR) 11-93

12-1

(N) 12-2

(NC) 12-5

(NI) 12-8

(NR) 12-11

(CL) 12-14

(CLC) 12-17

(CLI) 12-20

UP-8061 Rev. 3

12.9.

12.10.

12.11.

12.12.

12.13.

12.14.

12.15.

12.16.

12.17.

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

12.24.

12.25.

12.26.

COMPARE LOGICAL

EXCLUSIVE OR

EXCLUSIVE OR

EXCLUSIVE OR

EXCLUSIVE OR

INSERT CHARACTER

LOAD ADDRESS

MOVE IMMEDIATE

OR

OR

OR

OR

SPERRY UNIVAC OS/3
ASSEMBLER

SHIFT LEFT SINGLE LOGICAL

SHIFT RIGHT SINGLE LOGICAL

STORE CHARACTER

TEST UNDER MASK

TRANSLATE

TRANSLATE AND TEST

(CLR)

(X)

(XC)

(XI)

(XR)

(IC)

(LA)

(MVI)

(0)

(QC)

(01)

(OR)

(SLL)

(SRL)

(STC)

(TM)

(TR)

(TRT)

13. PRIVILEGED AND STATUS SWITCHING INSTRUCTIONS

13.1. GENERAL

13.2. STATUS-SWITCHING PRIVILEGED INSTRUCTIONS
13.2.1. Halt and Proceed (HPR)
13.2.2. Insert Storage Key (ISK)
13.2.3. Load Control Storage (LCS)
13.2.4. Load Program Status Word (LPSW)
13.2.5. Set Storage Key (SSK)
13.2.6. Set System Mask (SSM)

Contents 8

12-25 • 12-27

12-30

12-33

12-36

12-39

12-41

12-43

12-45

12-48

12-51

12-54

12-57

12-60 • 12-62

12-64

12-67

12-70

13-1

13-1
13-2
13-3
13-4
13-5

13-6
13-7

•

•

•

•

UP-8061 Rev. 3

13.3.
13.3.1.

13.4.
13.4.1.
13.4.2.
13.4.3.

13.5.
13.5.1.

13.6.
13.6.1.
13.6.2.

13.7.

13.8.

13.9.

SPERRY UNIVAC OS/3
ASSEMBLER

INPUT/OUTPUT PRIVILEGED INSTRUCTION
Start 1/0

DIAGNOSTIC PRIVILEGED INSTRUCTIONS
Diagnose
SOFTSCOPE Forward Scan
SOFTSCOPE Reverse Scan

INTERNAL TIMER PRIVILEGED INSTRUCTION
Service Timer Register

GENERAL REGISTER PRIVILEGED INSTRUCTIONS
Supervisor Load Multiple Instruction
Supervisor Store Multiple Instruction

SET PROGRAM MASK STATUS-SWITCHING
INSTRUCTION

SUPERVISOR CALL STATUS-SWITCHING
INSTRUCTION

TEST AND SET STATUS-SWITCHING
INSTRUCTION

14. FEATURED INSTRUCTIONS

14.1. FEATURED BRANCHING INSTRUCTIONS
14.1.1. Branch on Index High
14.1.2. Branch on Index Low or Equal

14.2. FEATURED FIXED-POINT INSTRUCTIONS
14.2.1. Divide
14.2.2. Load Complement
14.2.3. Load Negative
14.2.4. Load Positive
14.2.5. Multiply
14.2.6. Multiply Half Word
14.2.7. Shift Left Double
14.2.8. Shift Left Single
14.2.9. Shift Right Double
14.2.10. Shift Right Single

14.3. FEATURED LOGICAL INSTRUCTIONS
14.3.1. Add Logical
14.3.2. Add Logical
14.3.3. Edit and Mark
14.3.4. Shift Left Double Logical

14.3.5. Shift Right Double Logical
14.3.6. Subtract Logical
14.3.7. Subtract Logical

Contents 9

13-7
(SIO) 13-8

13-8
(DIAG) 13-9
(SSFS) 13-10
(SSRS) 13-11

13-11
(STR) 13-12

• 13-13
(SLM) 13-13
(SSTM) 13-14

+
(SPM) 13-15

(SVC) 13-17

(TS) 13-19

14-1
(BXH) 14-2
(BXLE) 14-5

14-6
(DR) 14-7
(LCR) 14-9
(LNR) 14-11
(LPR) 14-14
(MR) 14-17
(MH) 14-19
(SLDA) 14-22
(SLA) 14-25
(SRDA) 14-28
(SRA) 14-31

14-33
(AL) 14-34
(ALR) 14-37
(EDMK) 14-39
(SLDL) 14-42
(SRDL) 14-45
(SL) 14-48
(SLR) 14-51

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

PART 4. BAL DIRECTIVES

15. INTRODUCTION TO DIRECTIVES

16. EQUATE AND DELETE OPERATION CODE DIRECTIVES

16.1. EQUATE (EQU)

16.2. DELETE OPERATION CODE (OPSYM)

17. ASSEMBLER CONTROL DIRECTIVES

17.1. CONDITION NO OPERATION (CNOP)

17.2. PROGRAM END (END)

17.3. GENERATE LITERALS (LTORG)

17.4. SPECIFY LOCATION COUNTER (ORG)

17.5. PROGRAM START (START)

18. BASE REGISTER ASSIGNMENT DIRECTIVES

18.1. UNASSIGN BASE REGISTER (DROP)

18.2. ASSIGN BASE REGISTER (USING)

19. PROGRAM LINKING AND SECTIONING DIRECTIVES

19.1. COMMON STORAGE DEFINITION (COM)

19.2. CONTROL SECTION IDENTIFICATION (CSECT)

19.3. DUMMY CONTROL SECTION IDENTIFICATION (DSECT)

19.4. EXTERNALLY REFERENCED SYMBOL DECLARATION (ENTRY)

19.5. EXTERNALLY DEFINED SYMBOL DECLARATION (EXTRN)

19.6. SUBROUTINE LINKAGE

Contents 10

•
16-1

16-3

17-2

17-4

17-5

17-6

17-8

•
18-2

18-3

19-2

19-5

19-7

19-9

19-10

19-11

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

20. LISTING CONTROL DIRECTIVES

20.1. ADVANCE LISTING

20.2. LISTING CONTENT CONTROL

20.3. LEAVE BLANK LINES ON LISTING

20.4. LISTING TITLE DECLARATION

21. INPUT AND OUTPUT CONTROL DIRECTIVES

21.1. INPUT FORMAT CONTROL

21.2. INPUT SEQUENCE CONTROL

21.3. REPRODUCE FOLLOWING RECORD

21.4. PRODUCE A RECORD

21.5. INCLUDE CODE FROM A LIBRARY

21.6 . CHANNEL COMMAND WORD

PART 5. BAL MACROS

22. MACRO FACILITY

22.1. THE MACRO PROCESSOR

22.2. MACRO SOURCE CODE

23. MACRO DESIGN

23.1. THE MACRO DEFINITION

23.2. MACRO DEFINITION STORAGE

23.3. THE MACRO CALL INSTRUCTION

24. TWO TYPES OF MACRO DEFINITIONS

24.1. PROCS AND MACROS

24.2 . CALL INSTRUCTION DESIGN

24.3. PASSING PARAMETERS TO THE BODY

Contents 11

(EJECT) 20-2

(PRINT) 20-3

(SPACE) 20-5

(TITLE) 20-6

(ICTL) 21-2

(ISEQ) 21-4

(REPRO) 21-5

(PUNCH) 21-6

(COPY) 21-7

(CCW) 21-8

22-1

22-3

23-1

23-3

23-6

24-1

24-2

24-6

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25. PROC FORMAT

25.1. BASIC PROC DESIGN

25.2. REFERENCING POSITIONAL PARAMETERS IN
THE CALL

25.3. REFERENCING KEYWORD PARAMETERS IN THE
CALL

25.4. REFERENCING SUBPARAMETERS IN THE CALL

25.5. MULTIPLE PROC NAMES AND POSITIONAL
PARAMETER 0

25.6. THE LABEL ARGUMENT

26. MACRO FORMAT

26.1. BASIC MACRO DESIGN

26.2. REFERENCING POSITIONAL PARAMETERS
IN THE CALL

26.3. REFERENCING KEYWORD PARAMETERS IN
THE CALL

26.4. REFERENCING SUBPARAMETERS IN THE CALL

26.5. THE LABEL A~GUMENT

27. CONDITIONAL ASSEMBLY

27.1. SET SYMBOLS
27.1.1. Local Set Symbols
27.1.2. Global Set Symbols
27.1.3. Set Symbol Value Assignment
27.1.4. SET Statement
27.1.5. SETA Statement
27.1.6. SETB Statement
27.1.7. SETC Statement
2"1.1.8. Character Expressions
27.1.9. Subscripted SET Symbols
27.1.9.1. Defining Subscripted SET Symbols

27.2. BRANCHING
27.2.1. Sequence Symbols
27.2.2. Unconditional Branch
27.2.3. Conditional Branch
27.2.4. Define Branch Destination
27.2.5. Macro Definition Exit

Contents 12

• 25-1

25-3

25-4

25-7

25-9

25-11

26-1

26-2

26-4 • 26-5

26-6

27-2
27-3
27-4
27-6
27-6
27-9
27-10
27-12
27-13
27-13
27-14

27-14
27-14

(AGO) 27-15
(Alf) 27-16
(ANOP) 27-17 • (MEXIT) 27-18

•

•

•

UP-8061 Rev. 3

27.3.
27.3.1.
27.3.2.
27.3.3.

27.4.
27.4.1.
27.4.2.
27.4.3.

27.5.
27.5.1.
27.5.2.
27.5.3.
27.5.4.
27.5.5.
27.5.6.

SPERRY UNIVAC OS/3
ASSEMBLER

ERROR MESSAGES AND COMMENTS
MNOTE Message Statements
PNOTE Message Statements
Comments Statement

REPETITIVE CODE GENERATION
Define Start of Range
Define End of Range
Conditional Assembly Control Counter

ATTRIBUTE REFERENCES
Type Attributes
Length Attributes
Scale Attributes
Integer Attributes
Count Attributes
Number Attributes

PART 6. ASSEMBLY LISTING

28. ORGANIZATION OF LISTING

28.1. HEADER LINES

28.2. PREFACE

28.3. CODEDIT

28.4. EXTERNAL SYMBOL DICTIONARY LISTING

28.5. CROSS-REFERENCE LISTING

28.6. DIAGNOSTIC LISTING

28.7. EXAMPLE OF ASSEMBLY LISTING

(MNOTE)
(PNOTE)

(DO)
(ENDO)
(ACTR)

PART 7. PROGRAMMING TECHNIQUES

29. JOB CONTROL PROCEDURES

29.1. HOW TO RUN A JOB

29.2. INTRODUCING THE SOURCE DECK
29.2.1. JOB Control Statement
29.2.2. OPTION Job Control Statement

Contents 13

27-18
27-19
27-20
27-20

27-21
27-21
27-22
27-23

27-23
27-25
27-27
27-28
27-28
27-29
27-30

28-1

28-1

28-2

28-3

28-4

28-5

28-5

29-1

29-1
29-2
29-2

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29.3. ASSEMBLE; ASSEMBLE AND LINK-EDIT;
OR ASSEMBLE LINK-EDIT AND EXECUTE

29.3.1. Assemble (ASM)
29.3.1.1. ASM Jproc Call Statement
29.3.2. Assemble and Link-Edit (ASML)
29.3.2.1. ASML Jproc Call Statement
29.3.3. Assemble. Link-Edit, and Execute (ASMLG)
29.3.3.1. ASMLG Jproc Call Statement

29.4. START-OF-DATA JOB CONTROL STATEMENT (/$)

29.5. FOLLOWING THE SOURCE DECK
29.5.1. End-of-Data Job Control Statement (/*)
29.5.2. End-of-Job Control Statement (/&)
29.5.3. Terminate-the-Card-Reader Job Control

Statement (// FIN)
29.5.4. Setting the UPSI Byte

29.6. SUMMARY OF JOB CONTROL PROCEDURE
29.6.1. Assembly
29.6.2. Assembly and Link-Edit
29.6.3. Assembly, Link-Edit, and Execution

30. EXAMPLE MACRO DEFINITIONS

30.1. SMALR/LARGR PROC (POSITIONAL PARAMTER 0)

30.2. SMALL6/LARGE6 PROC (DO LOOP)

30.3. BLANK MACRO (VARIABLE INLINE EXPANSION CODE)

PART 8. APPENDIXES

A. SAMPLE PROGRAM

B. CHARACTER CONVERSION CODES

c. MATH TABLES

C.1. HEXADECIMAL-DECIMAL INTEGER CONVERSION

C.2. HEXADECIMAL FRACTIONS (APPROXIMATE VALUES)

C.3. POWERS OF 2

C.4. POWERS OF 16

Contents 14

29-3 • 29-3
29-4
29-11
29-12
29-13
29-14

29-15

29-15
29-15
29-16

29-16
29-16

29-17
29-17
29-19
29-21

30-1 • 30-2

30-4

C-1

C-7

C-8

C-9 •

•

•

•

UP-8061 Rev. 3

D. CHECK-OFF TABLE TERMS

E. INSTRUCTION LISTINGS

F. USE OF PARAM STATEMENT

F.1. PARAM STATEMENT

F.2. SOURCE CORRECTIONS
F.2.1. SEQ Statement
F.2.2. REC Statement
F.2.3. SKI Statement

G. SYSTEM VARIABLE SYMBOLS

G.1. &SYSECT

G.2. &SYS LIST

G.3. &SYSNDX

G.4. &SYSDATE

G.5. &SYSTIME

G.6. &SYSJDATE

G.7. &SYS PARM

USER COMMENT SHEET

FIGURES

1-1. Writing and Submitting a Program
1-2. Punched Card
1-3 Assembler Coding Form

SPERRY UNIVAC OS/3
ASSEMBLER

1-4. Coding Form and Punched Card Relationship
1-5. Example of Proper Coding Techniques
1-6. COBOL Source Code
1-7. Object Code Generated from COBOL Source Code
1-8. Assembly Listing
1-9. OS/3 Object Module Format
1-10. OS/3 Load Module Format
1-11. Assemble, Link, and Go Operation

2-1. Determining Binary Values
2-2. Fixed-Point Number Formats

4-1. Assembler Format Relationships
4-2. Byte and Word Structure

Contents 15

F-1

F-5
F-6
F-7
F-7

G-1

G-1

G-2

G-2

G-3

G-4

G-4

1-1
1-2
1-3
1-4
1-11
1-13
1-13
1-14
1-16
1-18
1-19

2-3
2-9

4-5
4-7

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

5-1.

7-1.

8-1.

10-1.

22-1.

23-1.
23-2.

24-1.
24-2.
24-3.
24-4.

Floating-Point Number Formats

Instruction Formats

Program Status Word Diagram

Comparison of Binary Numbers and Values Expressed in Powers of 2

Example of lnline Macro Expansion

Accessing a Macro Definition Submitted in the Source Deck
Accessing a Macro Definition Stored in a Library

PROC and MACRO Heading
PROC, MACRO, and Call Instruction Comparison
Communication between Macro Instruction and Macro Definition
Example MACRO and PROC Definitions

TABLES

2-1.
2-2.

4-1.
4-2.

5-1.
5-2.

8-1.
8-2.
8-3.

9-1.

15-1.

17-1.

20-1.

27-1.
27-2.
27-3.
27-4.

28-1.
28-2.
28-3.
28-4.

B-1.
B-2.
B-3.

Comparison of Numeric Expressions
Hexadecimal Notation

Comparison of Terms
Summary of Operators

Characteristics of Constant and Storage Definition Types
Zero Duplication Area Examples

Extended Mnemonics and Functions
Operand 1 Mask Combinations
Branch-on-Condition Instruction by Usage

Edit Instruction Operation

Assembler Directives

Assembler Control Directives

Listing Control Directives

Conditional Assembly Language Statements
Operator Priority
Valid Attribute Reference Applications
Type Attributes of Symbols

CODEDIT Listing Content
External Symbol Dictionary (ESD) Listing Content
Cross-Reference Content
Diagnostic Listing Content

ASCII (American Standard Code for Information Interchange) Character Codes
EBCDIC (Extended Binary Coded Decimal Interchange Code) Character Codes
Punched Card, ASCII, and EBCDIC Codes

Contents 16

5-16

7-2

8-1

10-5

22-2

23-4
23-5

24-1
24-6
24-8
24-11

2-2
2-4

4-9
4-13

5-2
5-6

8-3
8-11
8-12

9-25

15-1

17-1

20-1

27-1
27-8
27-24
27-25

28-2
28-3
28-4
28-5

B-1
B-2
B-3

•

•

•

•

•

•

UP-8061 Rev. 3

E-1.
E-2.
E-3.

Mnemonic List of Instructions
Alphabetic Listing of Instructions
List of Instructions by Machine Code

SPERRY UNIVAC OS/3
ASSEMBLER

Contents 17

E-1

E-5
E-10

•

•

•

•

PART 1. BASIC DATA AND CONVENTIONS

•

•

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-1

1. Introduction to Assembler
Language Programming

1.1. CODING AN ASSEMBLER PROGRAM

An assembler language program goes through several transformations before it is actually
inside the computer and operating (Figure 1-1). The first change is from handwritten
form to punched card form. This conversion takes code that is decipherable by people and
changes it to data that can be processed by the computer. Although an assembler source
program may exist on other media, such as disk or tape, the deck of cards is almost
always the artifact of the basic assembly language (BAL) programmer. An assembler
program is built with a punched card deck .

HANDWRITTEN SOURCE CODE

SPERRY-}UNIVAC

ASSEMBLER COOING FORM

PROGRAM __

LABEL 00PERATION6.
10 16

.1 1 _1____l_ l __L .1 1 - _ _L_l_ .l i__l__J_

_L_L_J_ I l__.1 L_l_ _!___ L --1 _i L .l l j ~

_L ___l_____l___J__l_j_L_J

CARD READER

KEYPUNCH

COMPUTER

C9C6E2C1 E5C5 E2E3C1D9E3 FO

OBJECT PROGRAM IN

EBCDIC HEXADECIMAL

Figure 1-1. Writing and Submitting a Program

PUNCHED CARD
SOURCE DECK

1111 Ill I I
I I II

I I
I I II II

111

LISTING

OS/3 ASM

LOC. OBJECT CODE SOURCE

RESULTS

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-2

The punched card deck is a biform storage medium that is common to the programmer
and the computer. It contains a copy of a computer program that can be interpreted by
both man and machine. This is unlike your handwritten program, which can only be
deciphered by you and is meaningless to a digital computer. The punched card is in a form
that can be converted to computer data.

The data converter for the computer is the card reader. It is an electromechanical device
designed to read information from punched cards by detecting the presence and absence
of holes in a card. The card reader converts the holes punched in cards on a column-by
column basis to data that can be processed by the computer. Each column on a punched
card is used to represent a single unit of information and the card reader converts each
column to the character it represents.

A blank card is shown in Figure 1-2. From this figure, you can see that a card has 80
vertical columns (numbered at the bottom and near the top of the card) and each column
has 12 punch positions called rows. Rows 0 through 9 are numbered on the card, and 12
and 11 are not numbered; the 12 position is at the top of the card, and the 11 position
immediately follows it and is before the 0 row.

12 -------------- TWELVE PUNCH ---------------12

11 --------------- ELEVEN PUNCH --------------- 11

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODDDDODDODDDDDOOOODDDDODDOODDDDDDDDDOOOOOO
1 2 l 4 5 6 1I91011121J1415161711192'0212223242521272129303132JJ34353&373139404142434U54647414950515253S4SS565758596061626364656&67&1697071721374757&n71791D

11

22

33

44

55

66

77

88

9 9.9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
1 2 J • s & 1191011121J1•1s1111111t202122n242521212121J011 l2JJ3435J6l73139404t4243444546474149sos152SJ>tsssss1sas9&0s1 s2&J6465&&&1&1n7U11 nn147511n111sm

COLUMN NUMBERS

Figure 1-2. Punched Card

Different combinations of holes in a column represent different characters and numbers.
For instance, each of the decimal numbers 0 through 9 are represented by the respective
punch positions on a card. If a column has a hole punched only in row 0, then the card
reader detects a 0. If a punch is only in row 1, then the card reader detects a 1, and so on
through row 9. Everything you code in assembly language is based on the 80-column card .

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-3

• The cards that make up an assembler language program are punched on a keypunch
machine from code that is handwritten on an assembler coding form. (The Sperry Univac
assembler coding form is shown in Figure 1-3.) Each line on the assembler coding form
has 80 positions that correspond to the 80 columns on a punched card. One card is
keypunched for every line of code on the assembler coding form (Figure 1-4). The lines of
code on the assembler coding form and the cards keypunched from the form are called
source code lines. Collectively, these source lines make a source program.

•

•

A BAL source program is written with instructions, directives, conditional statements, and
macros. They are the elements of the assembler language and each is usually written on
one source line. (Sometimes it may take more than one source line to write a single
element, but most of the time it takes only one source line for one instruction, directive,
statement, or macro.) The assembler ignores the presence of any blank cards in the source
deck. A blank line will not be printed nor terminate a sequence of continuation lines. The
rules for coding assembler language source lines are reflected on the assembler coding
form. Each source line has five fields and the assembler expects specific information to be
coded in each field.

UNIVAC
ASSEMBLER COOING FORM @l•l•l•J

SERIES
PROGRAM ___ _ PROGRAMMER-- -----------·-·--DATE_ _ _ PAGE-~ OF_ PAGES

LABEL [~OPEAATIONL'i OPERAND COMMENTS
10 16 72 80

t--.l____l______l___LJ..._l____i_ L_L__L __ j _j____l____j_J.l __ • L_l___t____l__l_L L_l__l__L.L-1_.L_LL.L-.L_l_l___i_ _ _...J. .1___L_l_j__J __ L__l__1_l __ l__L_l_j_ 1_1 __ 1 i_L_l l_L l__1__1 1 i l l _ _l___l_1 i_l __ _l

J--i--_l__l.___j___l_____i____l______ _l -1 _L__j__t--i _J_ 1 L .1 [_j___L J__ l L _.l_L__l__L.J. _j___L__j__L_J_...l__ j_ _ _l___.__l l_l___l_J._ _ _l_j_ j 1 1 l_ L j_ -.I. j_ LJ__L_L 1 l 1 LL1 1) 1 l l l j_ L l 1 .L--1 1

~..1.~ .• L~ L.L..1...J....L.L1 .l .l ~....1....L..L..l...i._~.L..L...L..LL1~_.L.1...i.LL..LJJ_J __ L..L.LJ.. .. 1.Ll..1.._1_1 l

l _l_ ~ _l_ _l_ __ l_ _____L__J__j_~~---L-.L_1_l i_j____L-L...1__L_j__l_---1..-L1-_J_---L i__L1--1_L_L_L L_1 1 _J_ __ L__j__L

.l .l i i .l i i i i i i i .l i
1-'--'~~.l~_L 1--l______i______i_L ~_i____L_L__i_ _J_ _J_ _J_ _J_ L..i...__i__l__L_L_J__.L__L_j __ L_L_J.._.L 1_1_1.__j_ __ L 1 I l J.__l____j_ l _J_ Ll__l___l_____j__.i

l j ..L_l__l___l__L__L.Ll _!___L_____L____L_L ___l _L___L_l_~_l_.....L_L_l__L_l-L_L__l_j__~J_.l Ll__L l l l J L_L__Ll_l_ -L-1j_l_L_l__1

1-'--"~~J...L_L__ ~.LL_ 1--i_j_J_L L~..c..l..J.. ... L ... l L..L .. L..L.. .l. ..1 i .. L..l..iLJ->....L ... L~ J..i lJ __ J_L_L_.L..L...L.L ...l....l...Ll._L.L-'-

1--'-..1.... _l _l LL..c.J..L.L.L .l .l i ..1 .J. .l..L...L..L..L.J...L..J. .. i...LJ .. L.l .. J L.)_L_J_L...1..J.. L.Ll..i...i._,_J.

.l .l i ..1 .l i i i .l i i .l .l i
_l _l_ _l__L___j__J_____L_____i _...._ J_ __L l J_ _l_ J_l_-1...._ _l_ ._l_. __ 1__1.....i____j_____J____l__l___L__i _1.....L_l____i__l_L.....L.J ·- L_L_L_j____j______J__J_

__l _l_ _L__l._ _l_ .J.......l __ L~_l__ __ i__l____i_____i__~ . .L l -~__j____l_--L_i _.L J_l _L_J___J___J_ __ L_.l _L..L__Ll_ _L___l__l 1- L L l

~..l...j_..L..L _L__-l______J____j___L J__ .L-Ll_____i_ _ _j___J__ __ _l__j __ j_L__~-L---1-l. __ L_L __ L~-L.....L-L L_J_.L_l__l____~_L .L LJ____j__L _j___ L 1 I 1 j_ l _ _j_ 1 l _j__ 1 1 l

1-L-.L.L.L_L_L~+-+~-~++~~...L..1~~~.l~~L....1~~~i~~~.J.~~~LLLLJ....Li....i_.L c.J..J....L..L . .L.l ..J .. L.l l]_!_J_J_~.l-+-t-~.1...L....i._~ .l .l

.. l .l .l .l i .l .l .l .l .l .l .l i i

.l .l 1 1- l LJ l l_

i .l
.l .l

~-J .l ~.l~~__l_______i_____j___J___ L_j___J___j_____j__J__j___.J...-l _J____j_______j__ _ _j_ _ _(_J____J_______j__j_ 1_1 j__! J _ _J___l_l_LLL1 .l _j__ [_ _! J__(_ _j_ _j___.1 _l J-j----1 j__l__i___j___---1 J.

i .l .l i J. .l .l .l .l .l .l .l i ..1

i J. .l ~~~..l~_L__.L J_ _.L_ • .1.. __ ~__j_ L.1..__J__j _ _L___l___._ _ _J. _ _j___J___l 1 1_i~ _ ___j______J___j__j_ _ _l_ __j__1__l__l________i____

i .l

i J.

1--'-~.L_L_~+-+~-~++~~...L...L_l~~~.l~.~_l_____L___l__,___L.....L.....J...J _ _l__.L...L____j___L __ L_t.....J_~__j___l__J1 J 1 l_LL.....1ll_____l_____l _ _L1_l_t--t----'-~_l______l____j_L

1--'-~~~+-+~~++~~~.l .. c~~.l~~L...l~.L.....l.L.LL.i_____i_~ _l L1.J. _ _l_.___j_J__L_L_L.....1 _ __l_J _ _i__l__.1.._1 j 111 t l l _ _t_l_i___L__i_L

i J. f.-i-.L.L.L_L_.L_L_++-'--'-~++...L-L~-J_L_~~.l~~...L_l~_i_ _ _l____J__j________ _ __j___l_ _ _j__ __ L __ L L Li_-L___j__J_j__L i .L --'---_l L.L_i_.J l_ J_ L_.L_l i _.1_1___~

.l .l .l i J. .l i '.l i .l .l

i .l

.l. J.

.l.,-+-'-~·--J.._l_i_..L_L_.i..______l_---'-----'---L-Ll-1 J __ J_~ l__l_ __ _j_l_l_LLj_ _ _l_~-1---'--'---1-l __ J 1_L_L_t_J_1- 1 ! j: l • l j l l Ll l 1 > J 1 l I J. _l L

.l. _L---L.....J._1

.l .l i i i L ..1 i i i ..1 ..1 .l

Figure 1-3. Assembler Coding Form

UP-8061 Rev. 3

1 .1 .1. Operation Field

LABEL
1

SPERRY UNIVAC OS/3
ASSEMBLER

LlOPERATIONLl
10 16

START

START 0

I

I
0010100001100101ooooooooooon
1 2 3 4 5 6 7 a !l 10 11 12 13 14 15 16 i7 18 19 20 2! 22 23 24 25 26 27 lB

1111111111111111111111111111

221222222122222222222~22222

3 3 3 3 3 3 3 3 3 313 313 3 3 3 3 3 3 3 3 3 3 3 3 3

4444444444444444444444444444

5 5 5 5115 5 5 5 5 5 5 5 5 5 5 5 5 5 5 s 5 5 5 5 5

GI 6 6 6 6 s 6 6 5 B b 5 fi 6 6 6 6 6 6 6 6 5 6 6 5 s u

7 I 7 7 7 7 7 7 7 7 7 17 7 7 77 17 17 17 77 7 7

a s e a s a 8 a a a 2 a a a a a a a BR s s s s g s a

I~ 9 g 9 9 9 9 9 9 g 91s9 9 s 9 9 9 9 n 9 9 ry 9 s
l 2 J 4 5 b 7 11 9 i) 11 12 1'i H 15 lrl 17 18 19 20 21 l.2 i:i 24 L~ 2r, 27,

~ 00·5081

Figure 1-4. Coding Form and Punched Card Relationship

1-4

The easiest part of an assembler source code line to recognize is the operation field; it
begins in column 10 and ends in column 14. The operation field is the most restrictive
field on the coding form because you must use an established operation code. You cannot
arbitrarily assign a name of your own. The operation code you use is a mnemonic code
that relates to some function. For example, A is for add, D is for divide, and S is for
subtract. The mnemonic code must be written exactly as the instruction, directive, or
statement indicates. For example, A (not AD) causes the add operation to be performed. If
you put AD in the operation field, the assembler could not relate it to any of the assembler
functions, so this would cause an error. Each mnemonic code for instructions, directives,
statements, or macros is listed with the description of that function. The rules for using
the operation field are:

1. The operation code must not contain embedded blanks.

2. The operation code must be written exactly as shown in the list of mnemonics for
instructions, directives, statements, or macros.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-5

• 3. The operation field must be terminated by a blank.

•

•

4. The operation code must not start in column 1.

Examples:

LABEL
1

dOPERATIONA
10 16

1 . HOVEPAY MVC
2. HOVEPAY M V C
3. EOJ
4. ENJOB
5. START
6. START'8
7. USING
8. USING *,6

1. Valid

YEARPAY,WORK
YEAR,WORK

*,6

OPERAND

2. Invalid because there are embedded blanks in the operation code MVC
3. Valid
4. Invalid because there is no such mnemonic as ENJOB
5. Valid
6. Invalid because the operation code START is not followed by a blank
7. Valid
8. Invalid because the operation code starts in column 1

1 .1 .2. Operand Field

The operand field is the object of the operation code. The operand field begins in column
16 and ends in column 71. The operand field holds the data or the location of data that is
being operated on. Each item of data in the operand field is an operand, and operands are
separated by commas. For instructions, operands can be actual data - like the decimal
number 10, the name of an area where data is stored - like STORAREA, or the actual
address specifying the number of bytes the assembler must count to get to the data - like
1108(32). Operands for instructions, directives, statements, or macros are whatever
parameters are required by the particular operation that is being done. For instance, an
add immediate instruction has two operands. The first operand is a main storage location,
and the second operand is a byte of actual data. An add immediate instruction adds the
second operand to whatever data is located at the first operand's address.

LABEL 60PERATION6 OPERAND
1 10 16

Al STORAREA,1~

The add operation in this example is performed on the actual data, 10, and on whatever
data is located at an area named STORAREA.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

The rules for using the operand field are:

1-6

1. The operand field is terminated by a blank that is not enclosed by an apostrophe.

2. Operands may be continued onto the next line by placing a nonblank character in
column 72. Up to two continuation lines are permitted. Caution should be exercised
when using a nonblank character in column 72. As shown in the OUTFILE DTFMT
example (1.1.7), a comma must follow the last operand on the continued statement if
there are more operands to follow; otherwise, the operands that follow will be treated
as comments.

3. Column 16 is where a continuation line starts.

Examples:

LABEL
1

AOPERATIONA OPERAND

1. NAME
2. NAME
3.

1. Valid

10 16

DC
DC
ENTRY

CL9'REBEW R D1 NAME IN 9 BYTES
CL9 1 REBEW R D1 NAME IN 9 BYTES
ILE,AYAHC NAD,NAHS,WNS,WBE,OREG,
DNOMYAR,N4543Nll,CONST32,EQUITY,WMC,
WDR,WRD32,SGAW

2. Invalid because the operand field is not terminated by a blank
3. Invalid because the line has an embedded blank

1.1 .3. Label Field

72

x
x

As we mentioned, the operand field can contain data or the name of an area where data is
stored. You assign a name to an area in your program by coding a symbolic name in the
label field of the area to be accessed. Once a source line is given a label, it can be
referenced from any other location in the source program. For example, I can name a line
of code and use its name in the operand field of an instruction.

LABEL
1

AOPERATIONA
10 16

OPERAND

1. ROUTINE Al STORAREA, 10

2. B ROUTINE

In this example, I labeled an add instruction: ROUTINE. Then, later in my program, I used
the symbol ROUTINE to refer to that line of code. On line 2, I said, "Branch to the area
called ROUTINE, where the add instruction is located."

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-7

A symbol in the label field of a line of code can also be used as an operand to reference
data. For example, I can write a line of code to define a constant.

LABEL
1

TEN

.60PERATION.6 OPERAND
10 16

DC p I 1 !1 1

This line of code says, "Place the decimal number 10 in the location named TEN." Once
the symbol TEN is defined, it can be used as an operand to represent the value 10.

Al TEN,6

In this line of coding, I'm requesting that 6 be added to whatever data is stored at location
TEN. When you label data as I labeled the data (10), you are associating a symbol with a
value. That symbol can then be used in place of the value.

The rules for using the label field are:

1. The symbol must start in column 1.

2. The symbol must begin with an alphabetic character or special letter.

3. The symbol must not exceed eight characters in length.

4. The symbol must not contain embedded blanks or other special characters.

5. The field must be terminated by a blank.

Examples:

LABEL
1

.:lOPERAT I ON.6
10 20

1. BEGIN
2. BEGIN
3. WEEKS52
4. 52WEEKS
5. EMPLOYEE
6. EMPLOYEENO
7. BLANKNO
8. BLANK MO
9. MOVEPAYMVCYEARPAY ,WORK

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-8

1. Valid •
2. Invalid because the symbol does not start in column 1
3. Valid
4. Invalid because the symbol starts with a number
5. Valid
6. Invalid because the symbol is longer than eight characters
7. Valid
8. Invalid because the symbol contains an embedded blank
9. Invalid because the symbol MOVEPAY is not followed by a blank (There must

also be a blank after the operation code MVC.)

The three fields just discussed are essential for designing an executable BAL program. The
remaining two fields, the comment and sequence fields, don't play a role in the actual
design of a program but they are useful programming aids. The comment field is a
program documentation aid and the sequence field is a program maintenance aid. Program
documentation is as important to the programmer writing the program as it is to those
who must refer to it later. Operand specification is usually completed by column 40, thus
leaving columns 41 through 71 free for comments.

1.1.4. Comments Field

There are two ways to code comments:

1. Comments can be coded on the same line as an instruction, statement, or directive. •
There must be at least one blank between the end of the operand specification and
the start of comments. If your comments exceed one source line, place a nonblank
character in column 72 and continue the remaining comments on the next source
line (at column 16).

Examples:

LABEL AOPERATIONA OPERAND
1 10 16

OPEN
BALR

READCARD GET
MVI
MVC

CARDFLE,PRINT
14,HDRTN
CARDFLE, CARWO RK
p RI NTOUT, c I I

PRINTOUT+l(131),PRINTOUT

ACOHHENTS

OPEN FILES
GO TO HEADING ROUTINE
READ A CARD INTO WORKAREA
CLEAR PRINT AREA

72

CLC NUMBERIN(S),CUSTNO IS THE CUSTOMER NUMBER DIFFERENX
T THAN THE PREVIOUS NUMBER

BNE NEWCUST

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-9

• 2. Comments can be coded on a separate line. This is done by placing an asterisk (*) in

•

•

column 1 of a source line followed by at least one blank space. Then your comments
can be coded. If your comments exceed one full source line, place another asterisk in
column 1 of the next source line followed by at least one blank and continue coding
the remaining comments. Note that a nonblank character is not coded in column 72
for continuation when an asterisk is coded in column 1 of the next source line.
However, if your comments exceed one full source line, you can code a nonblank
character in column 72 if you continue the remaining comments on the next source
line starting in column 16. An asterisk must not be coded in column 1.

Example:

LABEL AOPERATIONA OPERAND
1 10 16

BALR 4 ,~
USING ,~,4
OPEN CARDSIN,PRINTOUT

*THIS PROGRAM PREPARES AN ACCOUNTS RECEIVABLE REPORT USING CARD INPUT
,~ AND PRI lffER OUTPUT

During assembly, comments are printed but do not affect the resulting object code. The
purpose of comments is to make the program listing easier to follow and can also highlight
certain portions of the program.

1.1.5. Sequence Numbers

Columns 73 through 80 may be used for entering sequence numbers. This is done by
assigning consecutive numbers to each line of coding and is useful for reassembling the
card deck, if it should be dropped. It is good practice to number the lines in multiples of
1 O, or even 100. This allows you to insert additional coding lines without having to
renumber the cards when they have been keypunched prior to the modification. Some
programmers use letters in addition to the numbers. This is useful in identifying the deck
from which cards have come if they have been removed for any reason. Sequence
numbers also are important in maintaining a source module. A copy of your source
module may be stored on tape or disk, and the OS/3 librarian can update and correct the
source module by using the sequence numbers. (See the current version of the system
service programs (SSP) user guide, UP-8062.)

UP-8061 Rev. 3

1.1.6. Column 72

SPERAY UNIVAC OS/3
ASSEMBLER

1-10

Another coding feature on the assembler coding form is column 72. This column separates
the sequence field from the rest of the source line and is normally blank unless you have
to continue an operand field to the next source line. If an operand specification is too
lengthy to fit into the columns provided on a single line, the field may be continued onto
the next line. An operand field can be continued by coding any nonblank character in
column 72 and then continuing the operands on the next line starting in column 16. It is
best to avoid using the comma as a continuation character when the comma is being used
to separate the operand fields. However, it can be used as a continuation character when
it is being used to separate operands. If you have coded up to column 72 and the next
character you have to code is a comma separating operands, that comma must appear in
column 16 of the next line after you code a nonblank character in column 72 (even
another comma may be used).

1.1.7. Additional Coding Rules

The operand fields of an instruction, directive, or conditional statement must completely fill
all available space on a source line, starting with the first operand specified up to and
including column 71. Then a nonblank character can be placed in column 72 and the
remainder of the operand field can be continued onto the next source line (column 16).
These operand fields in an instruction or directive can be continued for only two additional
lines.

Example:

LABEL
1

TITLE

AOPERATIONA OPERAND
10 16 72

DC

ENTRY

C'UNITED STATES GOVERNMENT PRINTING OFFICE STYLE MANUALSX
(ABRIDGED) I

I 1234567,J1234567,K1234567,L1234567,M1234567,N1234567,01X
234567

The operand fields of macros and procs can be coded in two different ways:

1. The operand fields can be coded in the same manner as instructions, directives, or
conditional statements, in which case they must completely fill all available space on
a source line, starting with the first operand specified up to and including column 71.
Then a nonblank character can be placed in column 72 and the remainder of the
operand field can be continued onto the next source line (column 16).

2. The operand fields can be coded to leave space between the last operand specified on
that line and the nonblank character in column 72. A comma must be placed
immediately following the last operand on that line, thereby separating it from the
following operand field on the next source line. However, if you omit the comma

•

•

immediately following the last operand on that line, and at least one blank exists •
between the last operand and the nonblank character in column 72, a warning
message is issued by the assembler.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-11

• The operand fields in a macro or proc can be continued for as many lines as necessary.

•

•

Examples:

LABEL
1

AOPERAT I ONA
10 16

OPERAND ACOMMENTS
72

OUTFILE DTFMT IOAREA1=0UTBUF,BLKSIZE=640,RECFORM=VARBLK,SAVAREA=COMMONX
,VARBLD=(13),IOREG=(12) ,TYPEFLE=OUTPUT

OUTF I LE DTFMT IOAREAl=OUTBUF,
BLKS I ZE=640,
RECFORM=VARBLK,
SAVAREA=COMMON,
VARBLD= (13) ,
I 0 REG= (12) ,
TYPEFLE=OUTPUT

x
x
x
x
x
x

It is wise to develop good coding habits from the start. A neatly coded program is easy to
keypunch, debug, and interpret. Figure 1-5 is an example of such a program. This
example program follows the format of the coding form, has plenty of comments, and uses
sequence numbers. Don't fall into the bad habit of jotting down instructions and
keypunching and assembling them just to see if your ideas have any substance. It is much
better to sit down and evaluate the problem. First flowchart your program, and then code it
on the coding form, using plenty of comments and sequence numbers for lengthy
programs.

LABEL ~OPERATION~ OPERAND ~COMMENTS

I 10 16 72 80

TITLE 1 FIRST PROBLEM PROGRAM' DARelel 1 elel
PROGi START 0 DARelel20el
BEGIN BALR 6,0 DARelel3elel

USING *,6 DARelel4eleJ
ZAP WORKAREA,BONUS ENTERS BONUS RATE I tlTO WORKAREA DARelfJ5elel
MP WORKAREA,WEEKS HULT BONUS BY 52 WEEKS DARf!el6elel
AP WORKAREA,YEARRATE ADD BONUS TO YEARLY RATE DARelel7elel

MOVE PAY MVC YEARPAY,WORKAREA+2 MOVE TOTAL YEARLY PAY DARelfJ8elel
DP WORKAREA, WEEKS DIVIDE TOTAL PAY BY 52 WEEKS DARelel9elel
MVC WEEKPAY,WORKAREA+I MOVE WEEKLY PAY,HOURLY RATE IS DARfl l elelel

* NOT CALCULATED IN THIS PROGRAM DARfJ 11 elel
MVC OUTPUT(29),EMPLOYEE COMPLETE RECORD MOVED DARel12elel
EOJ END OF JOB DARell 3ellll

WORKAREA OS CL6 RESERVE 6 BYTES OF STORAGE DARell 4eJ(IJ
BONUS DC PL2 1 500' PACKED VALUE OF 500 IN 2 BYTES DARllll 511llll
WEEKS DC PL2 1 52 1 PACKED VALUE OF 52 IN 2 BYTES DARel16el0
YEARRATE DC PL4' I 3111111111111111 1 PACKED 131111111110111 IH 4 BYTES DARil17il0
OUTPUT DC 23C'A' 23 BYTES OF BLANKS DARfJl 8flf1J
EMPLOYEE DS OCL23 SYMBOL FOR NEXT 23 BYTES DARill9elel
NAME DC CL9 1 REBEW~MD 1 REBEW~MD IN 9 BYTES DARel2elelel
WORKNO DC C'A1234 1 Al234 IN 5 BYTES DARel21elel
YEARPAY DC PL4'0 1 4 BYTES OF PACK ZEROS DAR(IJ220el
WEEKPAY DC PL3'0 1 3 BYTES OF PACKED ZEROS DARel230el
CG DC c·~~~· 3 BYTES OF BLAtlKS DARfJ24elel

END BEGIN END OF THE PROGRAM DARel2500

Figure 1-5. Example of Proper Coding Techniques

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-12

You can, if you wish, code your assembler program in a free-form manner. The operation, •
operand, and comments fields don't always have to start in column 10, column 16, and
column 41. These columns are shown on the coding form as preferred starting positions
for each field to promote formalized coding practices. One unbreakable rule is that label
field must always start in column 1. Each field after the label field must be separated by at
least one blank. So, if you only have a 3- character label, the operation field can be coded
starting in column 5 instead of column 10. Also note that the label, operation, and
operand fields must all be keypunched on the same card. Another restriction is that the
sequence numbers must always appear in columns 73 through 80. Some examples of
free-form coding are as follows:

LABEL AOPERATIONA
1 JO 16

TAG START 111

BEGIN BALR 111,111

USING '~,6

OPERAND

ZAP WORKAREA,BONUS ENTERS BONUS RATE INTO WORKAREA
MP WORKAREA,WEEKS, MULT BONUS BY 52 WEEKS

ACOMMENTS
72 80

DARl1lill 111111

DARilil2~il
DARl1ll1l311ll1l
DARl1lil411ll1l
DARl1ll1l511ll1l

As you can see, the free-form style of coding is much more difficult to interpret than the
formalized style.

Another option is available, if the location of the fields on the supplied coding form doesn't
suit your particular application. The assembler coding form can be changed by using the •
ICTL directive (21.2). By using this directive, you can change the location of the beginning,
ending, or continuation column.

After a BAL source program is coded and keypunched, it must first be assembled (and also
linked) before the program can be executed by the computer. These two functions are
separate operations and therefore they happen at different times under control of two
different computer elements. At assembly time, the assembler translates the source
program to machine code instructions, and at execution time, the hardware processor
performs the machine code instructions. Although you can interpret a source program as if
it can actually execute, the hardware processor is incapable of actually executing this
source program.

1.2. ASSEMBLING A PROGRAM

Before source code can be executed by a computer, it must be converted to machine code.
A BAL source program is converted by an assembler, and a higher-level language, like
COBOL or FORTRAN, is converted by a compiler. Whether a source program is assembled
or compiled, the output is always the same. An assembler or compiler produces an object
program (machine code):

SOURCE PROGRAM

ASSEMBLER

OR
COMPILER

OBJECT PROGRAM •

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

1-13

The object program is a binary program that can actuate the electronic logic circuits in the
hardware processor to perform specific functions like add, subtract, or divide. Any
computer program must be in binary form before it can be stored in the computer and
executed by the processor.

Though an assembler or compiler can produce an object program, each operates
differently. Figure 1-6 shows five source lines from a COBOL program, and Figure 1-7
shows the object source code generated from the original COBOL source lines. As you can
see from Figure 1-7, a single compiler source line produces several object code
instructions. This is not true of assembler source lines (excluding macro instructions); each
line is converted to object code on a one-for-one basis. The object code shown in Figure
1-7 is in hexadecimal as is any object code shown in printout form. This is because
hexadecimal is easier to read and binary would take up too much room on a printout.

1 DE t-1,

P RQC,lJ 1

PRQGUI

ni_1ri9n OPr"4 Tt-,PIJT ("l'lc;, PFlOGG l

OPfN r'\tJTPUT \Jf~rTL, LlC\Tt PRQGOI

n rJ n q 'J nQ~023 MOVF SPACFS TO nur, PROGOI

Figure 1-6. COBOL Source Code

l l NF" ff oA<F/ry!SpL A0nRE~S cnNTE~TS or MEM0Ry opf .. A 1·~0 AnrH~c:-Sc:;rs l"IPCnOE

'1nQ9J8 lN!TIALIZr

,.,,,0 9 3A <;A In • n•r \ " n '''[..

rinoQJC ,. ro • nr~ G"rl l OA

nno9'fO as rr 8 Al R

nf"09142 'I I 0 • no• fl n n:Joc LA
nno9't6 SB rn • no• 0.1(1L'lf(BAL L

n ri09 6f A a; rr BA l k

t:!n09'fC 00•7)--., SOURCE Oc y

OPERATION (
nl"09 'fE SB 10 • nr• (n~nOEc

Ono9;2 <;A ro • nro L.J.in l OB CODES
l'.'lno9r..6 OS Er B At R

(lf"IQ q I

r}no9r.;8 90 77 • no nr,nuco

I
ST"

r-f'n9c;C 92 •o 7 n~n ~OBJECT M ¥I
nnn9~o 02 ~2 7 nn1 7 nt..P CODE M¥C

Figure 1-7. Object Code Generated from COBOL Source Code

COMMENT<

OPEN

COBOL
SOURCE

(
) STATEMENT

OPE~ NAMES

The assembler converts each source instruction directly to a line of object code. Figure
1-8 shows a listing of an assembler program. The source code that was submitted to the
assembler is shown at the right of the listing, and the object code generated by the
assembler is shown at the left of the listing. Figure 1-8 has a BALR assembler
instruction in the second source line that uses register 6 in operand 1 and register 0 in
operand 2. As you can see, in the object code part of this listing, the assembler has
converted the BALR source instruction to 056016 . The 05 16 is the machine code for a
branch and link instruction; when the processor reads an 0516 , it will perform the BALR
instruction. For a listing of the machine codes for all instruction op codes, see Table E-1.
The register numbers for the BALR source instruction are in the second half of the object
instruction.

LUC• OBJECT CODE ADDI< I AUDR2 LINE '>nURC[STATEMENT 05/3 ASM 7b/Ul/lb
c
"'O

DOUOOD I IFSAVf '>TART I) 00
DOODOO 0560 2 tH.uJN uALR 6,U 0
OOU002 3 US I Nu • 'b

Ol
~

DUUU02 'I I DO 610l 00 I I 0 'I LA 13,SAVE :c
DUUOD6 F263 60UA 6U00 UODLlC UOOD2 s PACK PR Jr~P ,PW I NL CD

DDOOOC F212 60EI 6UO'I UIJ0l3 OIJ006 6 f'A(I(INlERP,INTl><l <

DOOOl2 F272 6DE6 6UD7 UOOE.11 00009 7 t'ACK TIMEP,TIMEL w
DDD018 'IF'ID 6DE6 ODOE8 8 CVR '1 1TIMEP
DOOOIC FC61 60DA 6U[I onouc DDDEJ 'i Au A IN MP PR Pi P , I NT Ero'
DOOD;.?2 FA61 6DOA 6UEE onooc OOOFO 10 A>' f'R I NP, RDllfiuE C
D00028 DIOO 6DuF bUEO DODE.I ODOE2 11 '1VN PRINP+Stl l,PwlNP+b
DOUD2E 0205 6DFO 6UDA OODFl DOOOC 12 MVC AR[A,Pl<INP
DDOOJ'I F865 6DOA 6Uf 0 on Doc DOOF2 I J LAP PRINP,AWEA
DOOOJA '16'10 6DIA DDOIC I 'I bCT 'I, AIOA IN
DDOOJE f 3'16 60Fo 6UOA UODFB OUDDC IS UNPK AN;,wE R ,Pt< f 1,p

16 uPEN OUT
DDOO'l'I A 17+ (NOP ll,'I
OOOD'l'I '151U 60'1• DOD'IC A I 8+ oAL 1 •• + c 't•2)

DOUD'IA so A I 9 + UC .<'t;l,)•
0Du0'19 ODUO 711 A 20+ UC ALJIOUTI
OOUD'IC OA26 A 21+ ~VC JS I SSUl 5 •C OPEDOoSO
DOUO'IE D7UU 22 C.NOP IJ,'i

DOOOSD ()201! 60f(6Uf6 OOOFL OUOF!l 23 MVC flllF { 9 I, AN5w£1l
DOU056 96FO 610'1 OOIUb 2'1 0 I flU~+A,X'fO'

l.5 PUT UUT
OOUO'>A A 26+ iJC tlY I CJ I SE. T ~L luNMlNT <.E.TUDl7D en

"'O
DD005A 5810 61 r;i. OOISA A 27+ L l 1•AIOUTI LOAD t< l I, FILEo<ArH. Alllli<l0.5 i:iE. TOD2CJO m

:c
oouo5r 92211 IDJI (JO(JJ I A 28+ MVI '19 I I I, X' 20' '>ET FUl'<CTIUN CODt. C.lTOD560)> :c
000062 5RFU IUJ'f 0003'1 A 29+ L IS ,5l I .I I LOAD AUDN Of CUMMQI; 110 \,ETOD570 en -<
DOUU66 05Ef A Jf). i:lHR l'I, I<; LINK T <J CuMMOI< C.ETDD580 en c

mz
31 CLOSE OlJT s: -

000068 A Jl.+ DC IJY I U I OPEDDU90 CJ <
r-)>

OUU06R 5810 6156 DU I SR A 33+ L 1,zA(nuTI LUAD .;I'll, FILt.NAMl AODRE.::.S 0PE.DD320 gJ (")
DOU06C D Al.7 A J'I+ SVC 39 ISSUl Svc DPEUD'ISU 0

JS £OJ en
DOUU6E A 36+ us OH EOJOD050 ---w
ODUObE OA I A A Jl+ SVC 26 EUJDDD70

3H OUT uTFPI'< bLJSJZf=lh,loANEAl•bUf
A 3'1'+• tJTFPR 75/l(l/6

'Ill+ • ti/() AW f A:, MUST BE AL I i:iNElJ ':>tl THA l THr FINST
'1 I+ • otlYTE OF u AT A 10 bl:. PWINTlu FALLS ON A

A '12+ •,HALF~ORD BOU"<lJARY •
OUUOlD A '13 + (NOP O,H DrJUbL E '" u>lD ll Dur,L) AW y ALlc.NME.NT DTF00550
oUOll70 A 'I 'I +OUT l '. lJ . UTFUD6tl0

A "fS• t.NTIO OUT UTFDD690
DUuUlll UOUOODOOUUOuooou A '16+ 0(. 7 f". ']. lJTF007UO

A '17+ D•t~FNC f,f NA'1E UTFOD75D
DOOD8C U6f 'IE3'10'1U'IU't0 A 'tB+ (;(CL 7 'u11 T' Dl'6NME tJTFOD780
OOUOYJ 'Ill A '19+ U(CL I' ' IHFUD790
1)01109'1 DOUll A 5ll+ JC H'U' OP:Of"FL(, DTFODBDO
DOD091> ODUD A '>I+ UC H 'C' nP:.PUb IJTFUDBID

A 52+ •1PRAD NOT SPECIFIEu. O.TANUAWU LINL ADVANCE SET TO I •
A 53+ • ,NECORtJ fUfiMAT KlY~uRU NOT '>PECIFIFCJ• SET TO FIXUNllo IHFDIJUO

DD0098 nDOODDDu A ':>'I+ DC 4 I u I DPiPOv UTFOl690
OOU09C DOOU A ':>5+ DC H'U' DP:Ol<LA UTFOl71D

I
-!>-

Figure 1-8. Assembly Listing

• ., •

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

1-15

• Very rarely will high-level language programmers read object code. Their concern is mostly
with the language and the compiler. While assembler language programmers not only
have the assembler and the assembler language to contend with, they also, if not just by
sheer exposure, have to tolerate reading object code. This is because the assembler is
really only one language step from the hardware processor. The only programming
language left after assembler language is the nonsymbolic machine language. Although
assembler language is closely related to the processor, it is still a symbolic programming
language.

•

•

The symbolic language for the assembler has two basic types of operation codes. Those
that are translated directly to machine codes and those that are not. The mnemonic codes
that aren't translated to machine codes are processed only at assembly time and do not
become part of the object program. Nonmachine code mnemonics are used to direct the
assembler when building an object program, while machine code mnemonics make up the
actual object program. Operations codes that are translated to machine codes are called
assembler instructions. For a complete listing of mnemonic instruction codes and their
counterpart machine codes, see Table E-1.

There are three categories of nonmachine code mnemonics in the OS/3 assembler
language: directives, conditional statements, and macros. Table 15-1 is a summary of
assembler directives; Table 27-1 is a summary of conditional statements; and information
on the macro instructions available under OS/3 is included in the applicable user guide or
programmer reference. The most commonly used macro instructions are data management
and supervisor. See the data management user guide, UP-8068 (current version); data
management programmer reference, UP-8159 (current version); supervisor user guide, UP-
8075 (current version); and supervisor programmer reference, UP-8241 (current version).
The following listing shows the four elements of the assembler language and whether or
not they are converted to executable code.

1. Instructions Machine Codes/Executable Code
2. Directives }
3. Conditional statements
4. Macros

Nonmachine Codes/Nonexecutable Code

As stated, the main function of the assembler is to produce an object program from a BAL
source program. The object program created by the OS/3 assembler is called an object
module and contains other information in addition to the machine code instructions
translated from your source program. This other information is generated by the assembler.
so that OS/3 can recognize and process the object module. Figure 1-9 shows the format
of the OS/3 object module. The shaded area indicates where the machine code program is
located in the generated object module, and the remaining unshaded areas in the object
module are used by the linkage editor, which is an OS/3 system program that creates
another module called a load module. For further details about the contents of an object
module, see the system service programs (SSP) user guide, UP-8062 (current version) .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

OBJECT MODULE HEADER RECORD

LINKAGE EDITOR CONTROL STATEMENTS
(OPTIONAL)

CONTROL SECTION RECORDS

EXTERNAL SYMBOL DICTIONARY (ESD)
RECORDS (OPTIONAL)

TEXT!RELOCATION LIST DICTIONARY
RECORDS

TRANSFER RECORD

LINKAGE EDITOR CONTROL STATEMENTS
(OPTIONAL)

MACHINE CODE

Figure 1-9. OS/3 Object Module Format

1.3. CREATING A LOAD MODULE

1-16

Assembling a program is only the first step in generating an executable BAL program. The
complete process is a 3-step sequence and is generally called an assemble, link, and go
operation. This means you must assemble an object module and create (link) a load
module before you can execute (go) a BAL program. To set up an assemble, link, and go
operation, or an assemble only (if only an assembly is required), you must use job control
statements. Section 29 gives detailed information on how to run a BAL job.

Although the object module created by the assembler contains a BAL program in machine
code form, it still isn't an executable program. To be executable (in OS/3) the object
module must be changed to a load module. After an object module is generated, the
assembler is no longer in control and the object module, left behind by the assembler, is
used as input for creating a load module. The next OS/3 system program to gain control
builds a load module from the object module. This system program is called the linkage
editor.

•

•

The format of the load module produced by the linkage editor is illustrated in Figure 1-10.
The shaded area indicates where the machine code program is located in the load module.
For detailed information about the contents of a load module see the system service
programs (SSP) user guide, UP-8062 (current version). Segments phase 1 through phase n
shown in Figure 1-10 aren't created unless you specifically do so with linkage editor
control statements. However, every load module will always have a root phase. After a
load module is created, the BAL program is ready for execution. •

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

1-17

• 1.4. PROGRAM EXECUTION

•

•

During the assemble and link phase, each type of BAL module is on disk, while during the
program execution phase, the machine program is stored in main storage as a load
module. Figure 1-11 shows the location of each module after assembly time and linkage
editor time. The source, object, and load modules are stored in a disk file called the job's
run library file (YRUN). This file is an OS/3 system file, which is used to hold each BAL
module until the assembler, link, and go job is finished.

The focal point of program execution is main storage. Once the load module is loaded from
disk to main storage, the machine instructions are fetched one at a time from main
storage by the processor. When the processor fetches an instruction, the op code is
decoded to find out which instruction is to be executed. If the instruction is legal, it is
executed and the processor fetches another. This goes on until no machine instructions
are left in the load module.

The only codes that the processor can interpret are the machine codes for assembler
instructions. Any other codes submitted to the processor will cause an error, and the
offending program is aborted. Every machine code instruction in the BAL instruction
repertoire is supported by the micro code loaded into the control storage of the system. It
is important to realize that machine codes, and only machine codes, can drive the
hardware processor. This is the key to understanding the difference between program
execution time and assembly time. At assembly time, the assembler processes the source
program; the processor cannot execute a source program and doesn't see your program
until it is in machine code form .

UP-8061 Rev. 3

ROOT
PHASE
SEGMENT

PHASE 1
SEGMENT

PHASE N
SEGMENT
(UP TO 99)

..

SPERRY UNIVAC OS/3
ASSEMBLER

PHASE HEADER RECORD

AUTOMATICALLY INCLUDED
OBJECT CODE

AUTOMATIC OVERLAY CONTROL ROUTINE
(KL$0CP OR KL$0CPR)

~--------------------------------

ENTRY POINT TABLE (NTAB)

~---------------------------

}

_ --- _____ ~H-A~~~~=~~~~~)-- _ ----- _)

REGION TABLE (RTAB)

SPECIFICALLY INCLUDED
OBJECT CODE

TRANSFER RECORD

PHASE HEADER RECORD

SPECIFICALLY INCLUDED
OBJECT CODE

TRANSFER RECORD

,_L, ,..!....
N n.J

PHASE HEADER RECORD

SPECIFICALLY INCLUDED
OBJECT CODE

TRANSFER RECORD

MACHINE CODE

Figure 1-10. OS/3 Load Module Format

1-18

ONLY PRESENT IF REQUIRED
AND AUTOMATIC INCLUSION
FEATURE IS NOT INHIBITED

ONLY PRESENT WHEN V-CON
PROCESSING IS SPECIFIED
AND VALID V-CON
REFERENCES EXIST IN
MULTIPHASE OR MULTI
REGION LOAD MODULES

•

•

•

UP-8061 Rev. 3

•
~

ASSEMBLER

LINKAGE
EDITOR

•

•

/

SOURCE
MODULE

OBJECT
MODULE

LOAD
MODULE

SPERRY UNIVAC OS/3
ASSEMBLER

MAIN STORAGE

C700 C560 4510

I MACHINE CODE I .- D219 0219 600A

61C6 OOOED 6156

FETCH NEXT
INSTRUCTION

MACHINE
INSTRUCTION

Figure 1-11. Assemble, Link, and Go Operation

1-19

PROCESSOR

ARITHMETIC UNIT
AND

CONTROL LOGIC

•

•

•

•

•

•

UP-8061 Rev. 3

2.1. DATA REPRESENTATION

SPERRY UNIVAC OS/3
ASSEMBLER

2-1

2. Data Forms

Computer data is stored in special code combinations used to represent all the characters
and numerical data needed for problem solving. The smallest area the computer can move
or manipulate is called a byte, which is composed of eight units called bits. Each bit is
either a 1 or a O; thus, a byte representing the letter M would look like this:

1 BYTE

T
1101 I 0100

I
0 314 7

Bits are numbered from left to right, with the leftmost bit referred to as the zero bit or the
most significant bit (MSB). The rightmost bit in this byte is the number seven bit. The
rightmost bit in any field, no matter how long, is also referred to as the least significant bit
(LSB). Two contiguous bytes are called a half word; four are called a full word; and eight
are a double word. When you manipulate several bytes as a string, the leftmost byte is
called the most significant byte (MSB), and the rightmost byte is the least significant byte
(LSB). Additional information on bit and byte structure is given in 4.3.2.

Table 2-1 comprises different methods of organizing and referencing numeric data as you
would use them in data processing .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Table 2-1. Comparison of Numeric Expressions

Type of Number Examples

Character form (unpacked) I F! 5 F I 0 I F l 0

I
I ! 0 I c! Zoned decimal (+) F I 5 F 0
I

Zoned decimal (-) I F ! 5 F l 0 I D l 0
I

Packed decimal (+ only) 5 ! 0 I 0 : F

Packed decimal, signed (+) 5 ! 0 I 0 i c I
! I I oj Packed decimal, signed (-) 5 0 0 I

I

Hexadecimal (+ only) 0 1 I F l 4

I 4 : ! F o! I
Floating point (+) 3 1 4 0 I 0

I

I
I

! ! 0 ! Floating point(-) c I 3 1 F 4 0 0
I

Binary(+ only) I 0000 0001 1111 ! 0100

Binary (+ only) I 1111 1110 0000 l 1100

Fixed point(+) I 0000 0001 1111 ! 0100

Fixed point(-) I 1111 1110 0000 i 1100

2.2. BINARY REPRESENTATION

2-2

Decimal
Values

500

+500

-500

+500

+500

-500

+500

+500

-500

+500

+65,036

+500

-500

In binary language, the same principles are followed as in decimal language. In decimal
language (base 10), the number 251 is a combination of three values:

50
+200

251

2

2

5

5

1

1 a value of one unit

the value of five 10's

the value of two 100's

In binary (base 2), the rightmost digit has the decimal value of 1; the digit to its left has a
decimal value of 2, the next is 4, then 8, and so on to the most significant bit, which in
one byte, has the decimal value of 128. You determine the total value of a binary number
by adding the decimal value of each "on" bit (1), as illustrated in Figure 2-1.

•

•

•

•

•

•

UP-8061 Rev. 3

I 0 0 0 0 i 0

I 0 0 0 0 ! 0

8

I 0 0 0 0 ! 1

r 1 1 1
I

1 l 1

128 J
64

32

16

8

4

2

0 0

4

0

4 2

1 1

SPERRY UNIVAC OS/3
ASSEMBLER

2-3

1 I

1 I

0 I

1 l

This has a decimal value of 1.

This equals the sum of 4 and 1 (or 5).

This equals the sum or 8, 4, and 2 (or 14).

This decimal value adds to 255, which is the maximum
value for one byte. The maximum value for a half byte
(4 bits) is 15.

Figure 2-1. Determining Binary Values

Starting with the value of zero, a full byte represents a total of 256 different codes (8.1)
and a half byte represents 16 codes. Since binary notation is unwieldy, most notations are
written and computer-printed in other forms.

2.3. HEXADECIMAL REPRESENTATION

Using base 16 values, there are 256 hexadecimal codes in one byte. The hexadecimal
notations consist of the numbers 0 through 9 and the letters A through F. In this way, we
can represent the maximum decimal value of a half byte, which is 15, by one hexadecimal
notation, which is F (Table 2-2). In B.1, the relationship of the binary, decimal, and
hexadecimal codes for a full byte is shown.

Hexadecimal representation is an outgrowth of decimal and binary representation of data.
In decimal, the base used is 10; therefore, the decimal number 251 is in actuality:

2 5 1

~~~ 
2 x 102 + 5 x 10 1 + 1 x 1 OO 

which is the same as saying: 

(2 x 100) + (5 x 10) + (1 x 1) = 251 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

2-4 

If we take this same number, 251, and show it in binary notation (that is, use the base 2), 
it would look like this for one byte: 

This is the same as: 

(1 x 27) + (1 x 26 ) + (1 x 25) + (1 x 24) + (1 x 23) + (0 x 22) + (1 x 21) + (1 x 20) 

or: 

(1 x 128) + (1 x 64) + (1 x 32) + (1 x 16) + (1 x 8) + (0 x 4) + (1 x 2) + (1 x 1) = 251 

Hexadecimal notation reduces the time and space needed to read or write the codes 
represented by a full byte of binary information. Because 16 is the base, to convert binary 
data to hexadecimal data, divide the binary representation of the decimal number into 
groups of four bits and pad to the left as necessary to obtain a full grouping of four bits. 
Thus, taking the binary representation of the decimal number 251 and breaking it up into 
groups as just described, we get: 

Binary 1 : 1 o 1 1 I =decimal value 251 

Decimal 

:s= :z 
(15 x 161)+ (11x16°) 

¥ =decimal value 251 

=decimal value 251 

Hexadecimal 

Table 2-2. Hexadecimal Notation 

Binary Decimal Hexadecimal 
Half Byte Value Code 

0000 0 0 

0001 1 1 

0010 2 2 

0011 3 3 

0100 4 4 

0101 5 5 

0110 6 6 
0111 7 7 

1000 8 8 
1001 9 9 

1010 10 A 

1011 11 B 
1100 12 c 
1101 13 D 
1110 14 E 
1111 15 F 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

2.4. CHARACTER REPRESENTATION 

2-5 

There are 256 possible bit combinations that can be stored in a byte. By convention, 
certain bit combinations are used to represent the letters, numerics, and special 
characters that are used to convey information in written form. In B.1 are listed the 
hexadecimal equivalents of the characters used to write programs. It is also pointed out in 
this document that only certain characters are used in statement formats. To aid in the 
specification of permissible characters, the overall character set of the assembler is 
divided into the following classes: 

• Alphabetic set 

Alphabetic characters: the uppercase letters A through Z 

Special letters: ? $ # @ 

• Numeric characters: 0 through 9 

• Special characters: + - * I , = 6. (blank) ( ) . & ' > < 

2.4.1. Alphabetic Characters 

The letters A through Z are alphabetic characters and part of the alphabetic set. The 
following table shows the hexadecimal representation, which is one byte long, for each of 
the uppercase letters. (Also see B.2.) 

Alphabetic Hexadecimal Alphabetic Hexadecimal 
Character (EBCDIC) Code Character (EBCDIC) Code 

A Cl N 05 

B C2 0 06 

c C3 p 07 

0 C4 Q 08 

E C5 R 09 

F C6 s E2 

G C7 T E3 

H ca u E4 

I C9 v E5 

j 01 w E6 

K 02 x E7 

L 03 y EB 

M 04 z E9 



UP-8061 Rev. 3 

2.4.2. Special Letters 

SPERRY UNIV AC OS/3 
ASSEMBLER 

2-6 

The following special letters are part of the alphabetic set and usually follow the same 
rules as the letters mentioned in 2.4.1. The hexadecimal representation for these special 
letters are listed in the following table (also see B.2): 

Special Hexadecimal 
Letters (EBCDIC) Code 

? 6F 

$ 58 

# 78 
@ 7C 

2.4.3. Numeric 

As previously noted, all characters are coded in a full byte (eight bits), and this is also true 
for the character forms (unpacked) of numbers. Numbers written in this form, just as 
letters and other characters, can be moved from one location in main storage to another 
and can be sequenced, compared, and treated in other ways; but mathematical operations 
can not be performed on unpacked numerics. To do mathematical operations, the values 
must be in binary or packed decimal form. Unpacked and packed numeric formats are 
explained in 2.4.3.1 and 2.4.3.2. All numeric forms are shown in Extended Binary-Coded 

• 

Decimal Interchange Code (EBCDIC). For the American Standard Code for Information .--
Interchange (ASCII), see B.3. 

2.4.3.1. Unpacked Format 

Unpacked (printable) numeric characters are coded in a full byte and are easily recognized 
because the first half of the coded byte is the hexadecimal code F. The decimal digit 5 is 
represented in a byte as F5. The F half of the byte (bits 0 through 3) is the zone field, and 
the 5 (bits 4 through 7) is in the digit field. Numeric data must be in this unpacked format 
to be output to a printer unit. 

1 
zone I digit 

I 
0 314 7 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

2-7 

• The following shows the hexadecimal 1-byte unpacked code for each decimal digit. 

• 

• 

Decimal Hexadecimal 
Digit (EBCDIC) Code 

0 FO 

1 F1 

2 F2 

3 F3 

4 F4 

5 F5 

6 F6 

7 F7 

8 F8 

9 F9 

Examples of decimal digits and their unpacked byte equivalents are shown here. 

52 fills 2 bytes I F ! 5 I F ! 2 I 
107 fills3 bytes I F : 1 I F ! 0 I F ! 7 I 

I ! 0 I I I ! 2 I 0024 fills 4 bytes F F I 0 F F 4 
I 

2.4.3.2. Packed Format 

As you can see, unpacked format involves a considerable waste of main storage space. 
When numbers are to be processed, they can be converted to packed format by means of 
the PACK instruction, prior to processing. In packed format, the zone fields are stripped 
away and the number is stored as follows: 

digit 
1 

byte 1 

digit 
0 

digit 
7 

byte 2 

sign 
F 

Thus, in packed format, only two bytes are needed to store the decimal number 107. This 
results in considerable savings in main storage space. After mathematical operations on a 
packed number, the sign C indicates a positive value and the sign D a negative value in 
EBCDIC. 

I 1 l 0 I 7 ! c I +107 (signed) 

I 1 l 0 I 7 ! D I -107 (signed) 

! 1 : 0 I 7 l F I unsigned (assumed positive) 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

The following program extract shows how the PACK instruction is used. (See 9.7.) 

PACK AREA1,N01 Area N01 is packed into AREA 1. 

AP AREA1,0NE A sign code is produced. 

N01 DC C'123' 

AREA1 DS CL2 

ONE DC PLT 

After these operations, the two main storage areas will look like this: 

N01 

AREA1 

IF!1IF!2IF!31 

I , ! 2 14 ! c I 

2-8 

The hexadecimal code C in AREA 1 indicates that the value is positive. If the value is to be 

• 

indicated as a negative value, a hexadecimal code of D would be in this field. • 

2.4.4. Special Characters 

The following 14 special characters are not part of the alphabetic set (2.4.1 ), special letters 
(2.4.2), nor are they numeric (2.4.3). They have special uses, and rules are covered in this 
user guide when required. Following are listed the special characters with their 
hexadecimal codes for reference. (Also see B.2.) 

Special Hexadecimal Special Hexadecimal 
Character (EBCDIC) Code Character (EBCDIC) Code 

+ 4E ( left 40 
parenthesis 

- (minus) 60 ) right 50 
parenthesis . 5C . (period) 48 

I 61 & 50 
. (comma) 66 ·(prime) 70 
= 7E > 6E 
!::. (blank) 40 < 4C 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-9 

• 2.5. FIXED-POINT NUMBERS 

• 

• 

Each fixed-point number is represented in one of three fixed-length binary formats 
composed of a single positive or negative sign bit followed by a number field (Figure 2-2). 
When the sign bit is 0, the number represents a positive value; when 1, the number 
represents a negative value. Negative numbers are represented in twos complement 
notation, which is derived by inverting each bit of the binary number and adding 1 to the 
result of the inversion. For additional information on fixed-point numbers, see 2.1, 5.2.6, 
5.2.7, and Section 10. 

HALF WORD 

NUMBER FIELD 

FULLWORD 

I ~I NUMBER FIELD 

DOUBLE WORD 

I ~ I NUMBER FIELD >Q 
'---'---~ 1 ____ ___________.) 63 

Figure 2-2. Fixed-Point Number Formats 

2.6. FLOATING-POINT NUMBERS 

The assembler provides floating-point arithmetic operations as an optional hardware 
feature. Floating-point arithmetic operations involve a fraction and an exponent. For 
example: 

217,000 can be expressed as 0.217 x 106 

296,000 can be expressed as 0.296 x 106 

In fixed-point arithmetic, add: 

217,000 

+ 296,000 

513,000 



UP-8061 Rev. 3 

In floating-point arithmetic, add: 

0.217 x 106 

+ 0.296 x 106 

0.513 x 106 

where: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

0.513 is the fraction and 106 is the exponent. 

2-10 

In floating-point notation, the fraction is added and the exponent is retained. The example 
uses decimal floating-point; the assembler uses hexadecimal floating-point. In hexadecimal 
floating-point notation, the biased exponent is expressed in excess-64 binary notation; the 
fraction is expressed as a hexadecimal number having an arithmetic point to the left of the 
most significant digit. The quantity expressed by the full floating-point number is the 
product of the fraction and the number 16 raised to the power minus 64 of the biased 
exponent (fraction x 15n-64). For additional information on floating-point numbers, see 
5.2.12 and Section 11. 

s 
I characteristic mantissa 
G (exponent) (fraction) 
N 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

3-1 

3. Addressing 

Each full byte (eight bits) of main storage is numbered in sequence starting with 000000. 
With the assembler, the address of each instruction is calculated and you can refer to it by 
its real address or by a symbolic notation assigned to it. The assembly listing shows these 
addresses in their hexadecimal form. The computer also contains 16 registers that can be 
used for addressing and storage. The many types and uses of addressing are covered in 
detail in the following parts of this user guide. 

3.1. MAIN COMPUTER STORAGE ADDRESSING 

If you wish to refer to some other part of your program, you assign a symbol to that 
location and the assembler translates this to the real main storage address . 

3. 1.1. Instruction Addressing 

Your program may contain the move instruction MVC: 

LABEL 
1 

MOVES 

AOPERATIONA OPERAND 
10 16 

MVC MYAREA,YOURAREA 

Even though the main storage for this application instruction is 00008A, you could return 
(branch) to this instruction by writing: 

B MOVES 

This type of referencing a location in a program is called symbolic addressing. It is a time 
saver and helps eliminate many errors . 



UP-8061 Rev. 3 

3.1.2. Data Field Addressing 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-2 

As noted in 1.2, storage and data areas are defined for later reference. The following list 
shows assembler-generated addresses, the symbolic addresses assigned by you, and the 
storage areas. 

Assembler-Generated Symbolic 
Address Address Definition 

000048 WKAREA1 DS CL41 

000071 WKAREA2 DS CL16 

000081 MY AREA DS OCL121 

000081 OUTPUT1 DS OCL121 

000081 NEWAREA1 DS CL41 

OOOOAA NEWAREA2 DS CL80 

OOOOFA YOURAREA DS OCL121 

OOOOFA INPUT1 DS OCL121 

OOOOFA COUNTS DS OCL3 

OOOOFA COUNT5 DC CL1'5' 

OOOOFB COUNT12 DC CL2'12' 

OOOOFD DS CL118 

The first work area shown, WKAREA 1, has the hexadecimal location 000048 and is 41 
bytes long. The hexadecimal value of 41 is 29, which added in hexadecimal produces the 
next hexadecimal location 000071. The next areas, MYAREA and OUTPUT1, show how we 
can assign different symbols to the same area. They do not take up main storage space 
and thus have the same address as NEWAREA 1, which is 16 bytes from the start of the 
last address. The hexadecimal value of 16 is 10; thus, the address of NEWAREA 1 is 
000081. This address plus 41 bytes (hexadecimal 29) produces the next address, OOOOAA. 

The use of either the symbol MYAREA or OUTPUT1 calls for the same 121 bytes following 
them in storage. The zero placed in front of the CL instructs the assembler to assign a 
location for these symbols but not to reserve any storage for them. The remaining six 
instructions show how this can be done with constants (DC) as well. The symbol COUNTS 
is an example of a symbol reference within another symbol reference. 

• 

• 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-3 

• 3.2. REGISTER ADDRESSING 

• 

• 

There are 16 general registers (0 through 15). Each register consists of 32 bits which is 
equivalent to a fullword. Any register can be used in RR, RS, or RX type instructions. Any 
register can also be used in base register assignment. However, most 1/0 operations use 
registers 14, 15, 0, and 1. So, if you use any one of these registers and then perform 
either input or output, the original data in these registers is destroyed. You can use these 
registers, though, by saving their contents prior to the execution of an 1/0 operation and 
restoring their contents after the execution of an 1/0 operation . 



• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

4-1 

4. Rules and Conventions 

4.1. READING INSTRUCTION NOTATION 

Notations are used throughout this manual to describe the general forms of programmer
written and computer-generated formats. A consolidated listing of all the notations is 
included in Figure 7-1. This section includes the definitions of terms. 

4.1.1. Assembler Application Instruction Notations 

There are six forms of assembler applications instructions: 

RR Register-to-Register 

RX Register-to-Indexed-Storage or Storage-to-Indexed-Register 

RS Register-to-Nonindexed-Storage or Storage-to-Nonindexed-Register 

SI Storage Immediate 

SS Storage-to-Storage (Type SS 1) 

SS Storage-to-Storage (Type SS2) 

Assembler application instructions provide the format for hand-written coding that, in turn, 
leads to the assembler format that generates the machine coding. The assembler 
application move instruction (MVC) illustrated is an SS 1 type. The coding is described on 
the following page. Definitions of the explicit and implicit formats are provided in Section 
7. 

Explicit Format: 

LABEL /::,.OPE RATION /::,. OPERAND 

[symbol] MVC 



UP-8061 Rev. 3 

Implicit Format: 

LABEL 

[symbol] 

l:.OPERATION 6 

MVC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

s1 (1
1 

),s
2 

On the coding sheet, it could look like this: 

OPERAND 

LABEL 
1 

LlOPERATION.1 OPERAND 
10 16 

OUT4 MVC AREA(37),NETPAY 

where: 

[symbol] 
The brackets around symbol mean OUT4 is optional. 

MVC 
Is the mnemonic opcode for the move instruction. 

AREA(37) 

4-2 

Is the first operand: d1 ( 1,b,) or s1 (I,) AREA is the address d,(b1) or symbol s1 and 
(37) is the length (1 1) of the receiving field to be filled. 

NETPAY 
Is the second operand: d2(b2) or s2. 

After this application instruction is assembled, it is in the following form: 

I, opcode ,I. 1, ,J, b, ,1 
~32 b2 

35136 
d2 .,I 

And could have the generated machine code: 

02 24 44FC 4AA6 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

where: 

02 
Is the operation (opcode) for the mnemonic MVC. 

24 

4-3 

Is the hexadecimal coding for the length (1 1), which is 37 bytes long but 
assembled as 37-1 or 36. 

4 
Is the base register b1 used for the first operand. 

4FC 
Is the displacement d1 used for the first operand. 

4AA6 
Is the base b2 and displacement d2 address of the second operand NETPAY. 

The generated machine code is expressed in hexadecimal form. Knowing the organization 
of the machine code format can help you when the written coding does not generate the 
values you intended. Such knowledge helps in finding errors in the results of a program. 
(See Figure 4-1 ). 

Consider another instruction: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] L 6,GROSSPAY(5) 

where: 

L 
Is the mnemonic opcode for the load instruction. 

6 
Is the first operand register r1 • 

GROSSPAY(5) 
Is the second operand in the form s2(x2). 

After this application instruction is assembled, it may generate the following machine 
code: 

58654012 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-4 

where: 

58 
Is the opcode for the load instruction. 

6 
Is the register r1 used for the first operand. 

5 
Is called the index register and is part of the second operand. 

4012 
Is the base b2 and displacement d2 for the second operand address GROSSPAY. 
For a discussion of how the processor uses the base register, index register, and 
displacement of an operand to form main storage addresses, refer to the current 
version of the processor programmer reference. 

The assembler places the source code, identified by the operand, immediately after the 
COPY directive. This source module may not include any COPY, END, ICTL, MACRO, or 
MEND directives. The last statement in the source module may not be continued into the 
source program being assembled. Statements included in the program by a COPY directive 
are assumed to be in standard format regardless of any ICTL directives in the program. 

• 

Figure 7-1 shows the formats of the six application instructions as generated by the • 
assembler in machine code, as well as the explicit and implicit formats for programmer 
coding. Examples of the implicit coding format using symbols and the explicit format are 
included in following sections for each assembler application instruction. More detailed 
information on the use of the assembly listing is in Section 28. 

4.1.2. Notation Rules and Meanings 

The following conventions are used in application-instruction, assembler-directive, macro
instruction, proc, and control-statement formats: 

• Optional information is enclosed in brackets [ ] and may be specified or omitted as in 
the use of [symbol]. 

• Braces { 1 indicate multiple options, at least one of which must be chosen, as in the 
following directive. 

• 

For example: 

PRINT {ON } 
OFF 

Braces within brackets signify that one of the options must be chosen if that operand 
is specified. 

For example: 

[{ }] 
• 



• 

• 

• 

UP-8061 Rev. 3 

Instruction 

Format 

Object Code 
Format 

{symbol} opcode 

opcode 

0 7 8 

SPERRY UNIVAC OS/3 
ASSEMBLER 

b, d, 

15 16 19 20 

~ 

b2 d2 

31 32 35 36 

~ 

Source Code OUT4 
Example T MVC AREAl371,NETPAY 

t: 
Object Code '---------------, 

Printout 

0003F6 02 24 44FC 4AA6 

where: 

0003F6 
Is the address of the instruction symbol, OUT4. 

02 
Is the numeric operation code for the mnemonic, MVC. 

24 
Is the 37-byte length (1 1 ), value 37-1. 

4 
Is the base register (b1) for the first operand, AREA. 

4FC 

4-5 

Is the displacement for the first operand, AREA. This displacement plus the contents of the base register yield the 
starting address of the first operand. 

4 and AA6 
Specify the base register and the displacement for the second operand, NETPAY. 

Figure 4-1. Assembler Format Relationships 

• When given a choice of multiple options, the option that is shaded is the default 
option and indicates the choice that will be made by the system if you do not specify 
one of the options. 

For example: 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-6 

• Uppercase letters, terms, and punctuation marks indicate information which must be 
coded exactly as shown. Also, mnemonic codes (such as MVN, PACK, and CLC) are in 
uppercase letters. 

• Lowercase letters and terms indicate variables (such as [symbol], r, d, b, and e) which 
are supplied by you. 

• An ellipsis, a series of three periods, indicates that a series of entries may be coded, 
as in the directive DROP r,[,r2 , ••• ,rn]. 

• Keyword parameters may be coded in any order. 

For example: 

IOROUT=LOAD,BLKSIZE=512,RECFORM=FIXBLK 
BLKSIZE=512,IOROUT=LOAD,RECFORM=FIXBLK 

• Positional parameters must be coded in the order shown. Commas are required after 
each positional parameter except the last. When a positional parameter is omitted 
from a series of positional parameters, the comma must be retained to indicate the 
omission. 

For example: 

• 

X'03',0UTP,X'OO', 132 (operand field of CCW) • 
&P,3,&KEY1 =,&KEY2=,&KEY3=(operand field of macro statement in proc format) 

• Names of directives and instructions in text are shown in lowercase italics. 

For example: 

add, move, load, branch and link, store 

• Throughout this manual, the register notations RO through R15 represent the 
registers 0 through 15. 

For example: 

BALR R2,R3 

The hand-written program, usually on the assembler coding form, is called the source 
program; the keypunched cards containing this coding are still called the source program 
or source cards or source deck. The source program is assembled, and the assembler 
usually produces a translation of the source program into machine code; this deck is called 
the object program. A printed listing of the assembled program, called the assembly listing, 
shows the source coding with its associated assembled machine coding. 

The smallest unit of information in basic assembly language (BAL) is the bit. Eight bits • 
make a byte and two bytes form a half word. Four bytes are a full word and eight bytes 
comprise a double word. Figure 4-2 shows the relationships between bits, bytes, and 
words. Bits 0 through 7 form the high-order byte or MSB, and bits 56 through 63 form the 
low-order byte or LSB in a double-word storage area. 



• 

• 

• 

UP-8061 Rev. 3 

MSB 
I 

I I I 
1 1 00 

I 
0 1 00 1101 I 1001 0 1 00 I 

I 
7 B I 15 16 

I 
0 I 

~1BYTE 1 BYTE 1 BYTE 

HALF WORD 

FULLWORD 

0000 l 1 1 0 

23 24 

HALF WORD 

i 
I 
I 

SPERRY UNIVAC OS/3 
ASSEMBLER 

I 
0 1 1 0 1 1 00 I 0101 J 1100 

3132 I 39 40 

lBYTE-

DOUBLE WORD 

Figure 4-2. Byte and Word Structure 

I I 
I 

0010 J 1100 I 

l 47 4B I 

The following short definitions should be useful for the new programmer. 

• Source program 

Programmer-produced 

• Source cards 

Keypunch output 

• Source deck 

Keypunch output 

• Machine code 

Assembler-generated 

• Object program 

Assembler output 

• Assembly listing 

Assembler output to printer 

• Bit 

One binary digit 

• Byte 

Eight binary digits 

• Half word 

Two bytes 

• Full word 

Four bytes 

4-7 

LSB 

I 

0101 J 1101 I 1001 

55 56 l 63 



UP-8061 Rev. 3 

• Double word 

Eight bytes 

• MSB 

Most significant bit or byte, 

• LSB 

Least significant bit or byte, 

• High order 

Leftmost data, byte, or bit 

• Low order 

Rightmost data, byte, or bit 

4.2. TERMS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

leftmost 

rightmost 

4-8 

• 

Terms represent values coded by the programmer or computed by the assembler. There • 
are five classes of terms recognized by the assembler: 

• Self-defining terms (SDT) 

• Literals 

• Symbols 

• Location counter references 

• Length attribute references 

Self-defining terms are fixed values the programmer codes such as 
33,P'591',X'OF',B'1110011 O', or C'EBW'. Literals can have their value specified by the 
programmer and their location decided by the assembler and could look like, 
=X'FO',=C'A',=P'-1 ', or =8'00001000' as used in storage-to-storage instructions (e.g., 
CLC TAGA,=C'A'). Symbols, location counter references,. and length attribute references 
are assigned values by the assembler. (See Table 4-1.) 

• 



• 
UP-8061 Rev. 3 SPERRY UNIVAC OS/3 

ASSEMBLER 

Table 4-1. Comparison of Terms 

Term 

SD Ts 

• Can be used in the 1st or 2nd 
operands. 

• May be used in application 
instructions and in assembler 
directives. 

Literals 

• May not be used in assembler 
directives. 

• Literals are preceded by an 
equal (;)sign. 

Symbols for constants 
• May be used in the 1st or 2nd 

• 
operands. 
May be used in application 
instructions and in assembler 
directives. 

CLI 

MVI 

MVC 

MVC 

MVC 

CLC 

AREA10 
N010 
MOVE10 

Examples 

AREA10, 10 
S5T 

AREAS, X'C2' 
Si5T 

33 (10,R5),3(R8) 

SDTSoT SOT 

AREA10,~ 

Literal 
AREA10,~1FO', 

Literal 
ONSW,;8'11111111' 

OS CL2 
DC C'10' 

Literal 

MVC AREA10,N010 ...__,..._.... 
symbols 

4-9 

• 4.2.1. Self-Defining Terms (SOT) 

• 

Self-defining terms (SOT) are terms that represent fixed values. They are presented by the 
programmer in a form that is easily recognized and its value is understood without the 
need for computation. SOTs are not relocatable; they can be used to specify immediate 
data, registers, addresses, and masks. They can be used in assembler directives as well as 
in application instructions and can be part of an expression. The size of an SOT depends 
on where it is used. When used to designate a register you cannot exceed a value of 15. 
After conversion by the assembler to a binary format, the value is right-justified and filled 
with binary zeros on the left to fit the designated field. SOTs can be represented in binary, 
hexadecimal, decimal, or character form. (See 5.2.) 

When a 24-bit hexadecimal, binary, or character SOT has a 1 in the sign bit position the 
SOT will be treated as a negative term in the evaluation of an arithmetic expression. 

• A binary SOT consists of a series of up to 24 zeros and ones enclosed in apostrophes 
and preceded by the letter 8 (e.g., 8'101',8'11110000',8'00101'). The field is filled 
with high order zeros when necessary. 

• A hexadecimal SOT consists of up to six hexadecimal digits enclosed in apostrophes 
and preceded by the letter X (e.g., X'FO', X'C1 ',X'F1 FOFO'). Each hexadecimal digit 
represents a half byte of information. 

• A decimal SOT is an unsigned decimal number consisting of up to eight digits having 
a value of 0 through 16, 777,215 (224-1) (e.g., 0, 32, 16000000). This number is 
converted by the assembler to a binary value occupying one, two, or three bytes. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-10 

• A character SOT consists of up to 3 characters of the 256 valid characters of which 
only 63 are printable. (See Appendix B, Table B-1.) The characters must be enclosed 
in apostrophes and preceded by the letter C (e.g., C'A',C'ABC', C'123', C'A 1 '). Each 
ampersand or apostrophe to be included in a character representation must be 
indicated by a double ampersand or double apostrophe, respectively. In this case there 
may be more than three characters within the apostrophes which delimit the SOT 
(e.g., C'3"S' produces 3'S;C'A&&B' produces A&B). 

The following four examples all produce the same internal bit pattern of 11110001 in the 
one byte area called AREA: 

• Decimal cu AREA, 241 

• Hexadecimal CU AREA, X'F1' 

• Character cu AREA, C'1' 

• Binary cu AREA, 8'11110001' 

4.2.2. Literals 

• 

Literals are terms that represent data in the source coding (see 5.3). The assembler 
replaces the value of the original literal in the literal table (pool) with the address of the 
main storage location. In the following example the literal =C'AA' will be replaced in this • 
instruction by the address of a 2-byte area in the literal table containing the binary value 
11000001 11000001. 

MOVEAA MVC TESTSW,=C'AA' 

When the assembler recognizes a literal in the source code, it searches the table of literals 
that have been previously encountered. If a duplicate is found, then the relocatable 
address of the literal in the table replaces the original literal in the source code. If a 
duplicate is not found, then the value of the original literal is entered into the table and its 
address replaces the source code specification. Literals are similar in form to the operands 
of DC and DS statements. 

A literal may be used in any machine instruction that specifies a storage address, except 
that the literal may not be specified as the receiving field operand of an instruction that 
modifies storage. Literals may not be specified in address constants, shift instructions, or 
1/0 instructions. Literals must always appear as the complete operand specification. They 
cannot be combined with other terms, nor with an explicit base register specification. 'S' 
type constants may not be used as literals. 

• 



• 

• 

• 

UP-8061 Rev. 3 

4.2.3. Symbols 

SPERRY UNIV AC OS/3 
ASSEMBLER 

4-11 

A symbol is a group of up to eight alphanumeric characters. The left, or leftmost, character 
must be alphabetic. Special characters or blanks may not be contained within a symbol. 
(See Section 6). The following are examples of valid symbols: 

v 
GS279 
BOB 

CAR DAR EA 
R$1NTRN 
BD#4 

The following are not valid symbols for the reasons stated: 

READ ONE 
SPEC'L 
6AGN 

Embedded blank 
Special character used 
First character not alphabetic 

Two other categories of symbols are available in the macro language and conditional 
assembly statements. They are variables symbols and sequence symbols. These categories 
of symbols are defined and discussed in detail in Section 6 and in 27.2.1. 

The assembler associates three attributes with each symbol it processes. These attributes 
are value, length, and relocatability. Symbols defined by the EOU directive adopt the 
attributes of the expression in the operand field of the statement. (See Section 16.) 

• Value Attribute 

A symbol is assigned a value, or defined, when it appears in the label field of any 
source code statement other than a comment. A symbol appearing in the label field of 
an EQU or ORG directive is assigned the value of the expression in the operand field. 
In all other cases the value assigned is the currPnt value of the location counter after 
the adjustment to a half-word, full-word, or double-word boundary (5.1.7.), if 
necessary. The value is assigned to the current label before the location counter is 
incremented for the next instruction, constant. or storage definition. Thus, if a symbol 
appears in the label field of a statement defining an instruction, constant, or storage 
area, the symbol is assigned a value equal to the storage area address of that 
instruction, constant, or storage area. 

The value of a symbol must lie in the range -223 through 223-1. 

• Length Attribute 

The length attribute of a symbol is the number of bytes assigned to the instruction, 
constant, or storage area involved. For example, the label of a 2-byte instruction has a 
length attribute of 2 and the label of a OS statement reserving 200 bytes would have 
a length attribute of 200. Symbols equated to location counter references or absolute 
value representations usually have a length attribute of 1. The duplication factor 
(constant or storage area) has no effect on the length attribute. (See 5.1.3.) 

The maximum length attribute that can be generated by the assembler is 65,536. 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

4-12 

• Relocatability Attribute 

A symbol may either be absolute or relocatable. Values which are assigned to 
symbols defined in the label field of a source code line representing an instruction, 
constant, or storage definition, are relocatable. A relocatable symbol is a symbol 
whose address would change by a given number of bytes if the program in which it 
appears is relocated the same number of bytes from its originally assigned address. 
Relocatable symbols are assigned values relative to the location counter. Decimal, 
character binary, and hexadecimal representations are all absolute terms and have a 
relocation attribute of 0. 

4.2.4. Location Counter References 

A location counter is maintained by the assembler for each control section created by the 
programmer. Each counter contains the next available location for the associated control 
section. After the assembler processes an instruction or constant, it adds the length of the 
instruction or constant processed to the correct location counter. The maximum value that 
the location counter can achieve is 223_ 1 _ 

• 

Each instruction must have an address which is a multiple of two bytes. This type of 
address is said to fall on a half-word boundary. If the value of the location counter is not a 
multiple of 2 when assembling such an instruction, a 1 is added to the location counter 
before assigning an address to the current statement. Storage locations reserved in this 
way receive binary O's when the program is loaded. Certain constants must be aligned to a • 
half-word, full-word, or double-word boundary. Again the location counter is adjusted to 
the boundary, and the storage locations which were by-passed receive binary O's when 
the program is loaded unless the adjustment occurred as a result of a DS or ORG 
directive. 

The current value of the location counter, under which the program is currently being 
assembled, is available for reference by the programmer. It is represented by the special 
asterisk character (*). If the asterisk is written as a term in an address constant or in an 
instruction operand expression, this character is replaced by the storage address of the 
leftmost byte allocated to that instruction or constant. Care must be taken to ensure that 
all such implied references are specified appropriately in individual expressions since the 
character asterisk (*) may also be used to indicate the multiply operator during the 
evaluation of expressions. 

An instruction may address data or other instructions in its immediate vicinity in terms of 
its own storage address. This is one kind of relative addressing and it is achieved by an 
expression of the form *+n or *-n where n is the difference in storage addresses of the 
referencing instruction and the instruction or data being accessed. Relative addressing is 
always in terms of bytes and not in terms of words or instructions. 

A location counter reference may not be made in a statement which requires the use of a 
predefined symbol, with the exception of the EOU and ORG directives. 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-13 

• 4.2.5. length Attribute Reference 

• 

• 

The length attribute of a symbol is referenced as a term in an expression by writing L' 
followed by the symbol. Thus, if the symbol STOREND is the name of a full-word field, 

L'STOREND 

would be considered a term and it would have a value of 4. (See 5.1.5.) 

4.3. OPERATORS 

There are 12 operators in the assembler language (Table 4-2) that designate the method 
and sequence to be employed in combining terms or expressions. Blanks are not permitted 
within an expression. Evaluation of an expression begins with the substitution of values 
for each term. The operations are then performed from left to right in hierarchical order as 
listed in Table 4-2. The operation with the highest hierarchy number is performed first; 
operations with the same hierarchy number are performed from left to right. 

Parentheses can be used to alter the hierarchy of evaluation. Multiplication by 0 equals 0. ...., 
The 12 operators are divided into three classes: arithmetic operators, logical operators, and 
relational operators. More detailed descriptions of these operators are provided in 4.3.1, 
4.3.2, and 4.3.3 . 

Table 4-2. Summary of Operators (Part 1 of 2) 

Classification Operator Description Hierarchy 

Arithmetic Operators *I A*IB is equivalent to A*28 
6 

11 Covered quotient, AllB is 5 
equivalent to (A+B-1 )IB 

I AIB means arithmetic quotient 5 
. of A and B . 

* A* B means arithmetic product 5 
of A and B. 

- A-B means arithmetic difference 4 
of A and B. 

+ A+B means arithmetic sum of 4 
A and B. 

Logical Operators ** A** B means Logical Product 3 
AND of A and B. 

++ A++B means Logical Sum OR 2 
of A and B. 

-- A--B means Logical Difference 2 
XOR of A and B. 



- --~--- --------------------------------

UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

Table 4-2. Summary of Operators (Part 2 of 2) 

Classification Ope rat or Description 

Relation Operators A=B has value 1 if true; 
has value 0 if false. 

> A>B has value 1 if true; 
has value 0 if false. 

< A<B has value 1 if true; 
has value 0 if false. 

4.3.1. Arithmetic Operators 

4-14 

Hierarchy 

1 

1 

1 

The symbols +, -, *, I, 11, *I represent the six arithmetic operators. The intrinsic 
meanings of +, -, *, and I are the usual ones; that is, + indicates addition, - indicates 
subtraction, *indicates multiplication, and I indicates division. 

,._ The operator I I denotes a covered quotient where Al IB is equivalent to (A+B-1 )IB. A 
covered quotient is equal to regular binary division except that if there is a remainder, a 1 
is added to the regular quotient. 

The operator *I denotes a binary shift left or right. A* IB indicates a left shift and is 
equivalent to A*2 8 . A* 1(-B) indicates a right shift and is equivalent to Al2 8 . 

4.3.2. Logical Operators 

The symbols **, ++, and -- are the three logical operators. The characters** represent 
the logical product (AND), and characters ++ represent the logical sum (OR), and the 
characters -- represent the symmetric difference (exclusive OR). 

Each bit of the first term is compared with its corresponding bit in the second term and 
the result of the comparison is placed in the corresponding position in the resulting term. 
(See Section 12.) The result of the bit comparison for each operator is: 

(Wm] [i] ~ 
A**B Result A++B Result A--B Result 

1 1 1 1 1 1 1 1 0 

1 0 0 1 0 1 1 0 1 

0 1 0 0 1 1 0 1 1 

0 0 0 0 0 0 0 0 0 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

4.3.3. Relational Operators 

SPERRY UNIV AC OS/3 
ASSEMBLER 

4-15 

The three relational operators are the equals operator =, the greater than operator>, and 
the less than operator <. 

The equals operator is used to compare the value of two terms or expressions. If the two 
values are equal, the assembler assigns a value of 1 to the expression; otherwise, a value 
of 0 is assigned. 

The greater than operator makes a comparison between two terms or expressions. If the 
value of the first (left) term is greater than the value of the second (right) term, than a 
value of 1 is assigned to the expression; otherwise, a value of 0 is assigned. 

The less than operator compares the value of the first (left) expression or term with the 
second (right) expression. If the value of the first expression is less than the value of the 
second one, then a value of 1 is assigned to the expression; otherwise, a value of 0 is 
assigned. 

For the expression A+B>C, if the expression A+B has a value greater than a value of C, 
then the assembler assigns a value of 1 to the expression; otherwise, a value of 0 is 
assigned. 

A relational expression consists of a relational operator and its two operands. The 
operands in a relational expression may be either two character expressions (4.4.5) or two 
arithmetic expressions. A character expression may not be compared to an arithmetic 
expression. Character expressions are valid only on conditional assembly directives. 

Since the evaluation of a relational expression yields an arithmetic result, a relational 
expression may be used as a term in an arithmetic expression. 

4.4. EXPRESSIONS 

An expression consists of one or more terms connected by operators. A leading minus 
sign is allowed to produce the negative of the first term. Each term in the expression may 
be either a relocatable term or an absolute term. A term is absolute if its value is not 
changed by program relocation. A term is a relocatable term if its value is changed by 
program relocation. Two relocatable terms may be considered to be paired if they have 
opposite signs and have the same relocatability attribute (that is, appear in the same 
control section). 

Evaluation of expressions obeys the following rules: 

• Multiplication and division of a relocatable term by an absolute 1 or multiplication of 
an absolute 1 by a relocatable term produces a relocatable term. 

• Multiplication of any term by absolute 0 yields absolute 0 as a result . 

• If a relocatable term enters any multiply or divide operation other than the above, an 
error flag is given. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-16 

• The number of unpaired relocatable terms at any point in the evaluation must not 
exceed 16. 

• Intermediate results of the expression evaluation are full 32-bit values; however, the 
final result is the truncated rightmost 24 bits. 

Three types of expressions, absolute, relocatable, and complex relocatable obtain various 
characteristics from the term or terms which compose them. These three types of 
expressions are discussed in 4.4.1 through 4.4.6. 

4.4.1. Absolute Expressions 

An absolute expression is an expression whose value is unchanged by program relocation. 
The absolute expression can be an absolute term or any combination of absolute terms. 
Arithmetic operators are permitted between absolute terms. 

Examples of absolute terms are: a symbol which has an absolute value, a self-defining 
term or a length attribute reference. 

Relocatable terms alone or relocatable terms in combination with absolute terms can be 
contained within an absolute expression. This type of absolute expression requires that 
each relocatable term be paired with another relocatable term which has the opposite sign 
and the same relocatability attribute. The paired terms need not be contiguous. 

The effect of relocation is canceled by the pairing of relocatable terms with the same 
relocatable attribute and opposite signs. The absolute expression is thereby reduced to a 
single absolute value. 

The following are examples of absolute expressions: 

A 
A+A-A 
A-A+A+A 
R+A-R 
R-R+A 
(R-R)*A 
A*A 

where: 

A 
Is an absolute term. 

R 
Is a relocatable term. 

• 

• 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-17 

• 4.4.2. Relocatable Expressions 

• 

• 

A relocatable expression is an expression whose value changes with program relocation. 
All relocatable expressions must be positive values. 

Relocatable terms alone or relocatable terms in combination with absolute terms can be 
contained within a relocatable expression. 

Either type of relocatable expression requires the following conditions: 

• All but one relocatable term must be paired. 

• A minus sign must not precede the unpaired (remaining) relocatable term. 

• Each pair of relocatable terms must have opposite signs and the same relocatability 
attribute. 

• The paired relocatable terms do not have to be contiguous. 

Using the above requirements, a relocatable expression is thereby reduced to a single 
relocatable term. The following are examples of relocatable expressions: 

R 
R/1 
R+A or A+R 
R-R+R 
R-A 
R*1 or 1*R 

where: 

A 
Is an absolute term. 

R 
Is a relocatable term. 

4.4.3. Complex Relocatable Expressions 

A complex relocatable expression is an expression that contains 2 to 16 unpaired 
relocatable terms or a negative relocatable term in addition to any absolute or paired 
relocatable terms. 

A complex relocatable expression may be written only in the operand field of either an A
type or Y-type address constant. (See 5.2.8 and 5.2.9.) 

Some examples of complex relocatable expressions are: 

A-R 
-R/1 
A-R-R+R-R 



UP-8061 Rev. 3 

where: 

A 
Is an absolute term. 

R 
Is a relocatable term. 

4.4.4. Character Expressions 

SPERRY UNIV AC OS/3 
ASSEMBLER 

4-18 

A character expression is either a character string, a character substring, or a 
concatenation of strings or substrings. Character expressions are used as the operand of a 
SET or SETC statement or as terms in a SETB, SET, AIF, or DO relational expression. Any 
character string is considered to be greater in value than any shorter character string. A 
character expression may have a length of up to 127 characters. 

4.4.5. Length Attribute of Expressions 

• 

The length attribute of a11 expression is determined by the assembler and it is a function of 
the leading term of the expression. If the first term of an expression is an absolute value, a 
length attribute of one byte is assigned to the expression. If the leading term is a symbol, 
the number of bytes attributed to the expression is the same as the length attributed to 
the symbol. Thus, if TAG appears in the label field of an LH (load half word) instruction, it • 
would have a length attribute of 4 since LH is a 4-byte instruction. In referencing the 
same label, the expression TAG+195 also has a length attribute of 4, but the expression 
195+ TAG has a length attribute of 1 because the leading term is a decimal self-defining 
term. 

4.4.6. Character Strings 

A character string is at least one of the 256 valid characters enclosed by apostrophes. A 
character string, unlike a character self-defining term, is not converted and treated as a 
binary value. The value of a character string is determined by its length. Any character 
string is greater in value than any shorter character string. Rules for writing character 
strings are: 

• Two apostrophes must be written within a character string to represent one 
apostrophe. The two apostrophes are replaced by a single apostrophe. 

• Two ampersands must be written within a character string to represent one 
ampersand. A single ampersand within the character string is interpreted as the first 
character of a variable symbol. 

A character substring is a valid character string followed by two arithmetic expressions 
separated by a comma and enclosed in parentheses. The format is: 

character string (e1 ,e2) • 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

4-19 

• where: 

• 

• 

e, 
Specifies the leftmost character of the original string to be included in the 
substring. 

Specifies the number of characters to be in the substring. 

The expressions e1 and e2 must be valid SET expressions. (See 27.1.4.) If there are fewer 
characters (than the number specified by e2) remaining after character number e1 in the 
string, the resultant substring is shortened to include only valid characters of the original 
string. A null character string results if e1 is greater than the number of characters in the 
original string. 

Example: 

'PREDEFINED' (4,6) 

will produce the character substring 

'DEFINE' 

Concatenation is the joining together of: 

• two character strings; 

• two character substrings; or 

• a character string and a character substring. 

A period designates concatenation into a string of characters. 

Example: 

'PRE'.'DEFINE' produces 

'PREDEFINE' 

When a substring is to be concatenated with a following character string, the period may 
be omitted and concatenation is assumed . 



• 

• 

• 



• 

• 

• 

PART 2. STORAGE AND SYMBOL 
DEFINITIONS 



• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

5-1 

5. Storage Definitions 

In almost all programs, inclusion of constant value is required for mathematical 
computation, headings for reports, and values or codes for comparisons. You also reserve 
storage for work areas, record keeping, and save areas. Two methods used to produce 
constants or reserve storage are: 

• define constant - DC 

• define storage - DS 

5.1. STORAGE USAGE 

There are 13 definition types used to describe the type and format of storage used. Table 
5-1 lists the characteristics of each of these storage notations. All the definition types 
shown are valid for both DC and DS statements. Except for floating-point constants (2.9, 
5.2.12, and Section 11 ), the formats of both statement operands are similar, as follows: 

LABEL t:. OPE RATION Ll 

[symbol] oc 

[symbol] OS 

where: 

[symbol] 
Is up to eight characters. 

d 

[d]t[L"1C~} 

[d)t[Ln] G~;] 

Is the duplication factor in decimal. 

t 
Is the definition type. (See Table 5-1.) 

OPERAND 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

Is the explicit length factor in decimal. 

'c' 
Is the constant specification for data. 

(c) 
Is the constant specification for an address. 

Table 5-1. Characteristics of Constant and Storage Definition Types 

Type Constant or Source Code Storage Truncation 
Alignment 

Code Storage Type Specification Format or Padding Implied 

c Character None Characters C" Character Right Variable 

x Hexadecimal None Hexadecimal x·. Hexadecimal Left Variable 
digits 

B Binary None Binary B". Binary Left Variable 
digits 

p Packed decima None Decimal P" Packed Left Variable 
digits decimal 

z Zoned decimal None Decimal Z" Character Left Variable 
digits 

H Half word, Half word Decimal H" Fixed-point Left 2 
fixed point digits binary 

F Full word, Full word Decimal F" Fixed-point Left 4 
fixed point digits binary 

y Half-word Half word Expression Y() Binary Left 2 
address 

A Full-word Full word Expression A() Binary Left 4 
address 

s Base and Half word One or two S() Base and None 2 
displacement expressions displacement 

v External Full word Relocatable V() Binary Left 4 
address symbol 

E Full word, Full word Decimal t:" Floating- Right 4 
floating point digits point binary 

normalized 

D Double word, Double word Decimal D" Floating- Right 8 
floating point digits point binary 

normalized 

5-2 

Length in Bytes 
Minimum Maximum 
Explicit Explicit* 

1 256 (DC) 
65,535 (DS) 

1 256 (DC) 
65,535 (DS) 

, 256 

1 16 

1 16 

1 8 

1 8 

, 2 

, 4 

2 2 

3 4 

, 8 

, 8 

*The maximum explicit length in bytes is that total length produced by the explicit length factor times the duplication factor 

• 

• 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-3 

• Following are DC-statement and OS-statement examples showing the use of the subfields, 
which must appear in the order stated and must not be separated by blanks. 

• 

• 

LABEL 
1 

AQPERATI ONA 
10 16 

WRD32 DC 3CL9'CONSTANTS' 
EQUITY OS 3CL9 

duplication factor _____ __,f -

definition symbol -------' 

length factor ----------' 

constant specification-----------

OPERAND 



UP-8061 Rev. 3 

DC 

5.1.1. Define Constant (DC) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5-4 

The define constant (DC) statement is processed by the assembler and the constant 
specification is translated into object code representing the required values. The maximum 
explicit length for a DC is 256 bytes. (See Table 5-1 for C, X, and B types.) 

The following five examples show the use of the subfields in i::I DC statement. 

LABEL 
1 

1. N4543 
2. NAO 
3. NAHS 
L1. WRD 
5. L59 l 

LlOPERATIONLl 
10 16 

DC 
DC 
DC 
DC 
DC 

C'4543' 
2C'4543' 
CL2'4543' 
2CL2'4543' 
5CL1'4543' 

1. Four bytes containing: I F ! 4 I F ! 51 F ! 4 I F ! 3 

OPERAND 

• 

N4543 has a length attribute of four bytes, the number of bytes assigned the value • 
'4543'. 

I I I I I I I 
Fl4 Fl5 F14 F13 F'4 F15 F1

1
4 Fl

1
3 

I I I 
2. Eight bytes containing: 

NAO also has a length attribute of four bytes, as called for by the value '4543', even 
though the duplication factor calls for two such fields of four bytes each. 

3. Two bytes containing: I F ! 41 F ! 51 

NAHS has a length attribute of two bytes, as specified by the length modifier, and 
only two bytes of storage are used. The digits 4, 3 are ignored. 

4. Four bytes containing: I F ! 4 I F ! 51 F ! 4 I F ! 5 I 
WRD also has a length attribute of two bytes, as specified by the length modifier, but 
two fields of two bytes each are used because of the duplication factor of 2. The digits 
4, 3 are ignored. 

5. Five bytes containing: I F ! 4 I F ! 4 I F ! 4 I F ! 4 I F i 4 I 
L591 has a 1 -byte length attribute, as specified by the length modifier of 1 . There are 
five 1-byte fields, as called for by the duplication factor. The digits 5, 4, 3 are ignored . 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-5 

DS 

5.1.2. Define Storage (OS) 

The define storage (OS) statement is processed by the assembler and the constant 
specification is translated into reserved storage. The maximum explicit length for a DS is 
65,535 bytes. (See Table 5-1 for C and X types.) The following five examples show the 
use of the subfields in a DS statement. Only the number, not the content. of the bytes 
reserved by a DS statement is determined by the assembler. 

1. 
2. 
3. 
4. 
5. 

LABEL AOPERATIONA OPERAND 
1 10 16 

ILE DS C'4543' 
AYAHC DS CL4 
DNOMYAR OS 2CL4 
RESEW DS sc:.. ~ 
OREG DS 3C'~N0.~ 1 

1. ILE reserves a 4-byte field with a length attribute of 4 . 

2. AYAHC produces the same result as line 1. 

3. DNOMYAR reserves eight bytes composed of two fields of four bytes each. The 
length attribute of DNOMYAR is 4. 

4. REBEW reserves five bytes of storage consisting of five fields of one byte each. 
The length attribute here is 1. 

5. OREG reserves 15 bytes of storage. The constant field defines a 5-byte field, and 
the duplication factor calls for three of these fields. The length attribute of OREG 
is 5. 

5.1.3. Duplication Factor 

The duplication factor designates the number of identical constants or areas to be 
generated. An unsigned decimal value is used to specify the duplication factor. If no 
duplication subfield is used, the assembler assumes a factor of 1. A duplication factor of 
zero generates neither a constant nor a storage area and, if no length factor is specified, 
the location counter will provide the proper boundary alignment and assign the location 
counter value to the symbol used. A duplication factor of zero is not permitted with literals. 
(See Table 5-2 for an example of the use of the zero duplication factor.) Note that, even 
though the duplication factor can change the size of the storage area used, the use of the 
duplication factor does not change the length attribute of the field. (See 5.1.5.) The 
maximum value of the duplication factor is 256. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-6 

Table 5-2. Zero Duplication Area Examples • 

Address Symbol Operation Operand 

OOOD48 WKAREA1 DS CL41 

OOOD71 WKAREA2 DS CL16 

OOOD81 WBE DS OCL121 

OOOD81 OUTPUT1 DS OCL121 

OOOD81 NEWAREA1 DS CL41 

OOODAA NEWAREA2 DS CL80 

OOODFA SGAW DS OCL 121 

OOODFA INPUT1 DS OCL121 

OOODFA COUNTS DS OCL3 

OOODFA COUNT5 DC CL1'5' 

OOODFB COUNT12 DC CL2'12' 

OOODFD DS CL118 

The first work area shown, WKAREA 1, has the hexadecimal location OOOOD48 and is 41 
bytes long. The hexadecimal value of 41 is 29, which is added in hexadecimal to produce 
the next hexadecimal location, OOOD71. (See C.1.) The next areas WBE and OUTPUT1 
show how we can assign different symbols to the same area. They do not take up storage 
space and so would have the same address of NEWAREA 1, which you can see is 16 bytes 
away from the start of the last address. The hexadecimal value of 16 is 10, making the 
address of NEWAREA 1 OOOD81. Now plus 80 bytes (hexadecimal 50) produces the 
address OOODFA. • 

5.1.4. Definition Type 

The definition-type symbol is required for both DC and DS statements to determine the 
alignment (5.1.7), padding, truncation, storage form, and implied length. (See 5.2 and 
Table 5-1 for the characteristics of the 13 types used.) 

5.1.5. Length Factor (l 0 ) 

The length factor designates the explicit value of the length attribute of a field generated 
by a DS or DC statement. The letter n represents either an unsigned decimal self-defining 
term or a positive absolute expression enclosed within parentheses. If any symbols are 
used in the expression, they must be previously defined. The length attribute of a field 
used in an assembler instruction determines the number of bytes generated for either that 
constant or reserved field. The maximum value of the length factor (n) is 65,536. Examples 
follow: 



• 

• 

• 

UP-8061 Rev. 3 

LABEL 
1 

1. ~ms 
2. VAR 
3. WDR 
4. SGAW 
5. STOR 

6.0PERAT I ONL 
10 16 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

DC 
DS 
DS 
DC 
DC 

C'LENGTH ATTRIBUTE' 
CLl 6 
2CL16 
CL16'LENGTH' 
Cll 6 

5-7 

Examples 1 through 5 all have a length attribute of 16 bytes. The length factor is not 
required in example 1 because the constant specified is 16 bytes long. The length attribute 
of the receiving field in examples 2 through 5 is a vital element of the instruction. (See 
12.12.) 

When used, the length factor must follow the character L. The maximum and minimum 
values that may be explicitly specified are shown in Table 5-1 for all definition types. 
Constants that do not agree with the specified length are padded or truncated to the left or 
right, as shown in Table 5-1. 

NOTE: 

Boundary alignment is not provided when a length factor is specified. 

5.1.6. Constant Specification 

The constant specification determines the constant, or storage to be generated. When an 
apostrophe or ampersand is included in the constant specification, double apostrophes or 
ampersands are used to indicate the inclusion of these characters in the constant. 

Examples: 

1.1 VAR 
2. LG591 

DC 
DC 

C'ENTER NUMBER 11 4N'' HERE' 
C'ENTER THE NUMBER 51&&91' 

This will produce 22 bytes as follows: 

1. ENTER NUMBER '4N' HERE 

2. ENTER THE NUMBER 51 &91 

The constant may take the form of data or an address, as shown in Table 5-1. 

Data Constant Address Constant 

'JUNE 15' (AREA1) 



UP-8061 Rev. 3 

5.1.7. Alignment 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5-8 

Machine instructions are aligned on half-word boundaries; constants may be aligned on a 
half word, full word, double word, or no boundary. (See Table 5-1 ). When a length factor 
is specified in the DC or OS statement, no alignment is provided. A duplication factor of 
zero does not generate a constant or storage area but, for some types of constants, it 
forces a boundary alignment when no length is stated. This provides a method for 
obtaining boundary alignment before generating a constant that is not automatically 
aligned by the assembler. Bytes skipped to align constants are zero filled; bytes skipped to 
align storage areas are not. 

5.2. DEFINITION TYPES 

Data definition types generate absolute values or storage through the assembler 
interaction. There are 13 types, as shown in Table 5-1 and described in more detail in 
5.2.1 through 5.2.12. (Also see 2.1.) 

5.2.1. Character Constants (C) 

The character C is used to specify character constants and can produce up to 256 bytes 
for a DC and 65,535 bytes for a OS statemnent. All of the 256 valid card punch 
combinations can be used, but only 48 or 64 characters are printable, depending on the 

• 

print set available. When the length factor does not agree with the constant specification, .~~. 
padding or truncating takes place on the right. Padding takes place with blanks. (See 2.1 
and 2.4.) 

LABEL t:.OPERATIONt:. OPERAND 
1 10 16 

1. PADD I llG DC CL1~'CONSTANT 1 

2. TRUNCAT DC CL5 1 CONSTANT 1 

3. NORMAL DC C1 COIJSTANT 1 

1. Produces: CONSTANT66 (ten bytes) 

2. Produces: CONST (five bytes) 

3. Produces: CONSTANT (eight bytes) 

A pair of ampersands is needed to specify a single ampersand constant. A pair of 
apostrophes is needed to specify a single apostrophe constant. 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-9 

• 5.2.2. Hexadecimal Constants (X) 

• 

• 

The character X is used to specify hexadecimal constants and can produce up to 256 bytes 
for a DC and 65,535 bytes for a DS statement. Each byte contains two hexadecimal digits. 
When the length factor does not agree with the constant specification, padding or 
truncating takes place on the left. Padding takes place with hexadecimal zeros. (See 2.1 
and 2.3.) 

AOPERATIONA LABEL 
1 10 16 

1. PADOi NG DC 
2. TRUNCAT DC 
3. NORMAL DC 

XL7'C4CED5F3FA 1 

XL4 1 C4CED5F3FA 1 

x I C4CE D5F3 FA I 

1 . Produces: I o l o I o o I c l 4 I c 

OPERAND 

E lo 5 I F 3 I F Al 
2. Produces: ,...I _c_,_--..-...,.---.--.---.-___,.---. 

E I I 
5 I F 3 I F Al D1 

I 

3. Produces: .... I _c_.!.__4 _.l.___c _..____._ _ _.___.___....___..____,___. E I I 

5 I F 3 I Al 01 F 
I 

5.2.3. Binary Constants (B) 

7 bytes 

4 bytes 

5 bytes 

The character B is used to specify binary constants and can produce up to 256 bytes. 
When the length factor does not agree with the constant specification, padding or 
truncating takes place on the left. Padding is done with binary zeros. The constant 
specification consists of only the numerals 0 and 1. (See 2.1 and 2.2.) 

1. PADDING DC BL2 1 0110 I 

2. TRUNCAT DC B L1 I 10001 1100 110 I 
3. NORMAL DC B I 1 11 "0110 I 

1 . Produces: 0000 0000 0000 0110 2 bytes 

2. Produces: 1110 0110 1 byte 

3. Produces: 1110 0110 1 byte 



UP-8061 Rev. 3 

5.2.4. Packed Decimal Constants (P) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5-10 

The character P is used to specify signed packed decimal constants. It can produce up to 
16 bytes. When the length factor does not agree with the constant specification, padding 
or truncating takes place on the left. Padding is done with hexadecimal zeros. The decimal 
constant is written as a signed or unsigned number. If unsigned, the number is assumed 
to be plus. A positive number is assembled with a hexadecimal C in the four least 
significant bits; a negative number has a D in this location. The maximum of 16 bytes can 
contain 31 decimal digits plus the sign. (See 2.1 and 2.4.3.) 

LABEL D.OPERAT '. .,,1,, OPERAND 
1 10 16 

1. PLUS DC p 1+4543 1 

2. NEG DC P'-4543' 
3. UNSIGNED DC P'4543' 
4. PADDING DC PL4 1 +4543 1 

5. TRUNCAT DC PL2'-4543' 
6. ODDNUN DC P' 14543' 

1 . Produces: 
o : 4 I 5 13 

I 
14 c 3 bytes 
I 

2. Produces: 
0 : 41 5 I 4 I 3 D 3 bytes 

I 

3. Produces: I I 3 bytes 
0 I 4 5 I 4 3 c 

I 

I .a 
I I 15 

4 bytes 
4. Produces: I 0 0 I 4 4 3 c 

Io I 

I 5 

2 bytes 

5. Produces: 4 3 D 
3 bytes 

I I 6. Produces: 
1 •4 5 4 3 c 

I 

5.2.5. Zoned Decimal Constants (Z) 

The character Z is used to specify zoned decimal constants. It can produce up to 16 bytes. 
When the length factor does not agree with the constant specification, padding or 
truncating takes place on the left. Padding is done with zoned zeros (FO). A plus or 
unsigned number is assembled with a C in the zone half of the rightmost byte; a negative 
number will have a D in this location. (See 2.1.) 

l. PLUS DC 
2. NEG DC 
3. UNSIGNED DC 
4. PADDING DC 
5. TRUNCAT DC 

Z 1+4543 1 

z 1 -4543 1 

Z'4543' 
ZL5'+4543' 
ZL3'-4543' 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

1. Produces: I I 
F I 4 

2. Produces: I F 4 

3. Produces: I F 4 

4. Produces: I F 0 I F 4 

5. Produces: 

NOTE: 

I 

SPERRY UNIV AC OS/3 
ASSEMBLER 

F I 5 F 4 c 3 
I 

F 5 F 4 D 3 

F 5 F 4 c 3 

F 5 F 4 C I 3 
I 

!) I F 
I 

3 I F 4 01 
I 

4 bytes 

4 bytes 

4 bytes 

5 bytes 

3 bytes 

A zoned decimal number is also known as a signed unpacked number. 
and 2.4.3.2.) 

5.2.6. Half-Word Fixed-Point Constants {H) 

5-11 

(See 2.4.3.1 

The character H is used to specify half-word fixed-point constants. It can produce up to 
eight bytes. If no length factor is specified, the length attribute equals the implied length of 
two bytes. Padding or truncating takes place on the left. Padding is done with the sign of 
the value, binary 0 for a positive number and binary 1 for a negative number. The constant 
specification may not contain over five significant decimal digits nor a value greater than 
+32767 (215- 1) or less than -32768 (-2 15). Unsigned values are treated as positive values . 
The data is aligned on a half-word boundary. (See 2.1, 2.5, and Section 10.) 

LABEL LOPE RAT I ON L OPERAND 
1 10 16 

1. PLUSl DC HL l 1 +57 1 

2. PLUS2 DC H1 57 1 

3. NEGl DC Hll'-57 1 

4. NEG2 DC H'-57 1 

(+"irB[J011 
1 . Produces: 1001 1 byte 

~ 

2. Produces: I 0000 0000 I 0011 1001 2 bytes 

(-) sign bitst 

3. Produces: I 1100 0111 1 byte 

4. Produces: 1111 1111 1100 0111 2 bytes 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5.2.7. Full-Word Fixed~Point Constants (F) 

5-12 

The character F is used to specify full-word fixed-point constants. It can produce up to 
eight bytes. If no length factor is specified, the length attribute equals the implied length of 
four bytes. Padding or truncating takes place on the left. Padding is done with the sign of 
the value, binary 0 for a positive number and binary 1 for a negative number. The constant 
specification may not contain over 10 significant decimal digits nor a value greater than 
+2, 147,483,647 (231-1) or less than -2, 147,483,648 (-231 ). Unsigned values are treated as 
positive values. The data is aligned on a full-word boundary. (See 2.1, 2.5, and Section 
10.) 

LABEL ~OPERATION~ OPERAND 
1 10 16 

1. PLUS2 DC FL2 1+271' 
2. PLUS4 DC F' 271' 
3. NEG2 DC FL2 '-271' 
4. NEG4 DC F'-271' 

Sign bits l 
1. Produces: 0000 0001 0000 1111 2 bytes 

2. Produces: 0000 0000 0000 0000 0001 0000 1111 4 bytes 

Sign bits 

l 
3. Produces: 1111 1110 1111 0001 2 bytes 

4. Produces: 1111 1111 1111 1111 1110 1111 0001 4 bytes 

5.2.8. Half-Word Address Constants (Y) 

The character Y is used to specify half-word address constants. It can produce up to two 
bytes. If no length factor is specified, the length attribute equals the implied length of two 
bytes. Padding or truncating takes place on the left. Padding is done with binary zeros. A 
length factor of one byte may be specified for absolute expressions only. The expression 
may be a positive or negative absolute value or a relocatable symbol representing the 
address of an instruction or item of data within the program. Alignment is on a half-word 
boundary. The maximum value that can be specified is 215-1 (32,767). 

1. WRD 
2. WBE 
3. \.IMC 

DC 
DC 
DC 

Y (EQUITY) 
YL 1 (9) 
Y(9) 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

1. Produces a 2-byte area containing the address of the instruction EQUITY. 

2. Produces: 0000 1001 1 byte 

3. Produces: 0000 0000 0000 1001 2 bytes 

5.2.9. Full-Word Address Constants (A) 

5-13 

The character A is used to specify full-word address constants. It can produce up to four 
bytes. If no length factor is specified, the length attribute equals the implied length of four 
bytes. Padding or truncating takes place on the left. Padding is done with binary zeros. 
Length factors of one or two bytes may be specified for positive or negative absolute 
values. The maximum value that can be specified is 231- 1 (2, 147,483,647). Alignment is 
on a full-word boundary. 

1. 
2. 
3. 

LABEL 
1 

\./RD 
WBE 
WMC 

ll.OPERATI ONll. OPERAND 
10 16 

DC A(VALLEY) 
DC AL1(9) 
DC AL2(9) 

1 . Produces a 4-byte area containing the address of the instruction VALLEY. 

2. Produces: 0000 1001 1 byte 

3. Produces: [ 0000 0000 0000 1001 2 bytes 

5.2.10. Base and Displacement Constants (S) 

The character S is used to specify base and displacement constants. It can produce a 2-
byte area. The only length factor that may be specified is 2. No padding or truncating can 
take place. Alignment is on a half-word boundary when the length factor is not used. 
Neither negative values nor literals may be used. This instruction produces a 2-byte area, 
as follows. 

1 BYTE 1 BYTE 

~ ---------------
1, J. ,I. i ,,I 
~----- "'-./'" -BASE 

REGISTER 
(4 BITS) 

DISPLACEMENT 
(12BITS) 

The first four bits (half byte) contain the number of the base register used in this constant . 
The next 12 bits contain the value of the displacement to be added to the value in the 
register to produce the full address of the constant. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-14 

In the following example, in line 1, the value 5000 will be placed into register number 9 at 
execution time. (See 18.2 for the USING directive.) In line 2, assume the program has 
produced the address of 5025 to be assigned to the instruction called ELI, and this 
instruction is 25 bytes away from the area covered by register number 9. The instruction 
CHAYA, line 3, specifies the address of ELI, which is register number 9 (value 5000) plus 
a displacement of 25 bytes to give 5025. The instruction REBEW does not use an address 
symbol but explicitly states the displacement, 25 bytes, and register number 9. 

Examples: 

LABEL 
1 

ELI 

CHAYA 
REBE\./ 

.6 OPERATION .6 
10 16 

START 

USING 

DC 

DC 
DC 

5000,9 

C1 CONSTANT 1 

S(ELI) 
S(25(9)) 

OPERAND 

The constants produced in lines 3 and 4 show the hexadecimal values of the base register 
and the displacement as follows: 

I, 9 0 ,I. 9 ,,I 3:4 
~ 

BASE DISPLACEMENT 

REGISTER 

5.2.11. External Address Constants (V) 

The character V is used to declare references to special external symbols. The constant 
must be used to reference an executable instruction which is external to the program. The 
reference symbol need not be identified by an EXTRN statement. (See 19.5.) 

Th~ only length factors that may be specified are 3 or 4. If no length factor is used, the 
length attribute equals the implied length of four bytes and alignment will be on a full
word boundary. 

• 

• 

• 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

5-15 

• Padding or truncating takes place on the left. Padding is done with hexadecimal zeros. 

• 

The specification of a symbol in the operand field of a type V constant does not constitute 
a definition of the symbol. 

Until the program containing the external symbol is linked to the program with the V type 
constant, the value of the assembled constant is composed of hexadecimal zeros. 

Example: 

LABEL 
1 

LODGE 

liOPERAT I Ot!L'.i OPERAND 
10 16 

DC V (TRAVEL) 

As the address value of this DC instruction (TRAVEL) is externally defined, the following 
constant is generated. 

o : o I o : o 1 o : o 1 o o 1 

5.2.12. Floating-Point Constants (E and D) 

• The format of floating-point constants differs from the standard format of the DC 
statement (5.1) in that an additional subfield (the scale modifier) may appear. The format 
for floating-point constants is as follows: 

LABEL 60PERATION 6 OPERAND 

[symbol] DC [d] t [Ln }[S+n] 'c [E±n]' 

where: 

d 
Is the duplication factor. 

t 
Is the definition type (E, full word; D, double word). 

Is the explicit length factor in decimal. 

S+n 
Is the scale modifier . 

• 'c[E±n]' 
Is the constant specification with optional exponent. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-16 

The subfields must be written in the order given. The d, t, and Ln subfields are discussed 
in 5.1. The scale modifier must be a positive signed or unsigned decimal number. If the 
sign is omitted, a positive value is assumed. The scale modifier is applied to a number 
after it has been converted to internal format. 

Two types of floating-point constants are available: full word (E) and double-word (D). The 
implied length of an E type constant is four bytes; if the length modifier is omitted, full
word boundary alignment is assigned. The implied length of a D type constant is eight 
bytes; if the length modifier is omitted, double-word boundary alignment is assigned. In 
either case, an explicit length modifier of from one to eight bytes may be specified. 

A floating-point number is written as a decimal number. It can be an integer (110), a 
fraction (0.75), or a mixed number (110.75). The floating-point number may be followed by 
an optional exponent represented by an E, a sign, and a decimal number, respectively. In 
the absence of a sign, a plus sign is assumed. 

The exponent for a constant is that power of 10 by which that constant will be multiplied 
before its conversion to internal format. This exponent value may range from -85 to + 
75. 

The machine representation of the constant consists of a hexadecimal fraction (mantissa) 
and a hexadecimal exponent (characteristic). The decimal point is assumed to be at the left 
of the leftmost digit of the fraction. The characteristic represents the power of 16 by which 
the fraction must be multiplied to obtain the value of the constant. The machine format is 
shown in Figure 5-1. 

s 
FULL I 
WORD G 

N 
0 

characteristic 
(exponent) 

7 8 

(SHORT FORMAT) 

mantissa 
(fraction) 

6 hexadecimal digits 

(LONG FORMAT) 

31 .. 

s 
DOUBLE I 

G 
WORD N 

0 

characteristic mantissa <C 
(exponent) (fraction) 

~_.__~~~~~~~-7~8~~~~~~~~~~~14_h_e_x_ad_e_ci_m_a_ld_ig_it_s~~~~~ 63 

where: 

SIGN 
is the 0 bit, the sign of the mantissa. 

CHARACTERISTIC 
Is a 7-bit binary number (signed and biased by the hexadecimal value 40, 6 , decimal value 64) reflecting the scaling of 
the floating-point number. 

MANTISSA 
Is the fraction after the constant has been converted to its machine representation; scaling is performed if specified. 

Figure 5-1. Floating-Point Number Formats 

---------------------------------------------------------------------~~~~~~--~~ 

• 
• 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-17 

• Example: 

• 

• 

The floating-point value is the product of the mantissa (fraction) and the base 16 
raised to the power of the biased characteristic (exponent) after the exponent has 
been reduced by 64. The decimal number 255 will generate the floating-point number 
42FFOOOO. 

LABEL t. OPERATION t. OPERAND 

[symbol] DC E'255' 

Decimal 255 =the fraction X 16. The floating-point number shown in hexadecimal form is 
42FFOOOO. 

In this example: 

n = hexadecimal 42 (decimal value 66) fraction = .FFOOOO (decimal value .9961 from 
the table in C.2). Therefore, 42FFOOOO equals: 

. 9961 x 1 666-64 
or .9961 X 152 
or .9961 X 256 
or 255 

If scaling is not specified, the fraction is hexadecimally normalized; that is, all leading 
hexadecimal zeros are removed, and the characteristic is adjusted by 1 for each zero 
removed. Rounding is then performed, and the number is assembled into the field as 
specified by the explicit or implicit length. Negative fractions are carried, not in two's 
complement, but in true representation. 

The scale modifier must be a positive value from 0 to 14. This modifier specifies the 
number of hexadecimal positions (four bits) the number is shifted to the right. Scaling 
provides an unnormalized floating-point number. The characteristic is adjusted to 
reflect the number of hexadecimal positions the number has been shifted. If any 
hexadecimal positions are lost, rounding occurs in the rightmost hexadecimal position 
retained. 

Examples: 

Normalized number, I I 
F I I 

0 I I ol value 255. 4 I 2 F I 0 I 0 I 
I I I I 

Unnormalized number, 
4 : 3 I 0 : F F : 0 I 0 : 0 I value 255. I I I I 

Unnormalized number, I I 0 0 I F F I I oj 4 : 4 Q I 

value 255 . I 

See 2.6, Section 11, and Appendix C. 



UP-8061 Rev. 3 

5.3. LITERALS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5-18 

A literal is a representation of data within a source code statement and can be coded in 
the sending field of either operand. A literal is simply a constant coded with an equal sign 
followed by a type code and a nominal value enclosed within single quotation marks. 

The method of describing and specifying a constant as a literal is almost identical to the 
method of specifying it in the operand field of a DC statement. When a literal is 
assembled, the data is stored in a "literal pool" which is a special area in main storage 
where all literals are placed. The address of that storage field in the literal pool is then 
placed in the operand field of the assembled statement. 

If two identical literals occur within one literal pool, only the first literal is stored. 

The permissible uses of literals are: 

• Any type of data can be used to specify a literal. 

• Only one reference to the same literal in a coding statement can be made. 

• A literal is always in the sending field of an operand. 

• Literals are relocatable because the address (not the literal itself) is assembled in the 
coding statement. 

• Literals can be self-defining terms which are recognized by the absence of the equal 
sign, also referred to as immediates. 

• Duplication factors can be used in the specification of literals and are expressed only 
by unsigned decimal values except zero. 

• Length attributes can be used in the specification of literals and are expressed only by 
unsigned decimal values. 

The nonpermissible uses of literals are: 

• A literal can never be used in the receiving field of an operand. 

• A literal cannot be combined with other terms. 

• It cannot be specified within the parenthesis of an address constant. 

• It cannot be specified in a shift instruction. or an 1/0 instruction (SIO). 

• A literal cannot have an explicit base or an explicit index. 

• Absolute (with all terms previously defined), relocatable, or complex relocatable 
expressions cannot be used as either duplication factors or length attributes. 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

Example: 

LOC. OBJECT CODE ADDRl 
000000 
000000 0530 
000002 
000002 58BO 3016 
000006 5ABO 301E 
OOOOOA 42BO 301A 

OOOOOE 

OOOOOE 1700 
000010 OAlB 
000014 
000018 000008BC 
OOOOlC F0404040 
000000 
000020 00000005 

SPERRY UNIVAC OS/3 
ASSEMBLER 

ADDR2 LINE SOURCE 
l STC 
2 BEGIN 
3 

00018 4 
00020 5 
OOOlC 6 

7 
A 8+ 
A 9+;, 

STATEMENT 
START 0 
BALR 3,0 
USING ,., ,3 
L l l ,AMTIN 
A l l ,=FI 5' 
STC ll ,STOR 
DUMP 
DS OH 

A 10+''' THE DUMP PARAMETER IS A l-4 
A l l+''' 
A 12+ XR 0,0 CLEAR DUMP 
A 13''' SVC 27 DUMP SVC 

14 DS F 
15 AMTIN DC F'2236' 
16 STOR DC CL4'0' 
17 END BEGIN 
18 =F'5' 

5-19 

BYTE HEX CODE 

CODE 

On line 5 of the sample program, a literal is used in the sending field of operand 2. The 
equal sign is used followed by the type code (which in this case is F, full word) and the 
nominal value enclosed in single quotation marks. Note that the object code produced 
when the literal is assembled is the address (00020) of the field in the literal pool where 
that literal was placed. Line 18, under object code, shows the literal actually generated . 



• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

6-1 

6. Symbol Definitions 

Byte locations in main storage are numbered consecutively starting with zero. Each 
number is considered the address of the byte of data stored at that location. A group of 
consecutive bytes is addressed by the leftmost byte. A symbol appearing in the label field 
of a statement defining an instruction, constant, or storage area is assigned the address 
value of the first byte of the source statement with which the symbol is associated. The 
following rules apply to the general use of symbols. 

• Must start in column 1 

• Must start with an alphabetic character or special letter 

• Must consist of only alphabetic characters, numeric characters, and special letters 

• Must not be longer than eight characters 

• Must not include a space (blank) or other special character 

• Must be followed by a blank 

Example of valid label field symbols: 

LABEL 
1 

60PERATION6 

w 
N4543 
DNOMYARD 
CASH$0UT 

10 16 

DC 
OS 
DC 
BALR 

P1 42!69 1 

PL4 
CI 521f.ll I 

RS,0 

OPERAND 



UP-8061 Rev. 3 

Examples of invalid symbols: 

LABEL 
1 

.6.0PERATI ON.6. 
10 16 

1. EQUITY DC 
2. 4543 OS 
3. READ ONE PACK 
4. CONSISTORY DC 

p I 402 I 
ZL4 
OPERl ,OPER2 
CI 81) I 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

1. Invalid because symbol does not start in column 1 

6-2 

2. Invalid because symbol does not start with an alphabetic character or special 
letter 

3. Invalid because symbol contains a special character (space) 

4. Invalid because symbol is longer than eight characters 

6.1. EQUIVALENT SYMBOLS 

To make a program more meaningful, the programmer may use more than one symbol to 
represent the same value or location. The same output area could be called NURECORD 
(in one place) and OUTPUT1 in another part of the program. The EOU directive (Section 
16) can be used, as shown in this section, to equate these symbols. An EQU may be used 
to equate any symbol to any other symbol or to a value. Only the operands may declare 
expressions. 

NURECORD EQU 
R0 EQU 
Rl EQU 
R2 EQU 
R3 EQU 

R12 
R13 
R14 
R15 

EQU 
EQU 
EQU 
EQU 

OUTPUT I 
0 
1 
2 
3 

12 
13 
14 
15 

• 

• 

• 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

6-3 

• After the EQU directive, a register instruction could be written in any of the following 
ways: 

• 

• 

LABEL ~OPERATION~ 

1 10 16 

ADD 
ADD 
LOAD 
LOAD 
MOVE 
MOVE 
MOVE 

NOTE: 

AR 
AR 
LA 
LA 
MVC 
MVC 
MVC 

1 '2 
Rl ,R2 
5,2(5} 
R5,2(R5} 
WKAREA,REC 
15(7,9} ,5(10} 
1 5 ( 7, R9) , 5 ( R 10) 

OPERAND 

Throughout, the register notations (RO through RT 5) represent the registers 0 through 15. 

6.2. SYMBOL APPLICATIONS 

Symbols are used not only to identify storage areas and constants but also to locate 
instructions in the program. In the following example, the branch instruction with the 
symbol RETURN calls for a branch to the location CONSIS32 under certain conditions. The 
branch instruction called TRAVEL branches around the nonexecutable DC constants to the 
location SQUARE. 

BEGIN 

TITLE 
START 
BALR 
USING 

CONSIS32 MVC 

TRAVEL B 
WMC DC 
WRD32 DC 

SQUARE LR 

'SYMBOL USE' 

R3 ,Rl/J 
*,R3 

VALLEY,CONSISTO 

SQUARE 
C'365' 
C1 32 1 

R2,R4 



UP-8061 Rev. 3 

LABEL ~OPERATION~ 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 
1 10 16 

RETURN BC 

MASTER CLC 

EOJ 
RO EQU 
R2 EQU 
R3 EQU 
R4 EQU 
RE BEW DC 
WEEKS52 EQU 
VALLEY OS 
CONSISTO OS 

END 

7,CONSIS32 

WEEKS52 ,=P '52 I 

f4 
2 
3 
4 
P'+52' 
RE BEW 
CL32 
XL32 
BEGIN 

6-4 

The EQU directives show how to use the symbol WEEKS52 for RESEW; also RO,R2,R3, 
and R4 for registers 0, 2, 3, and 4. 

Through the extensive use of symbols and the assembly listing cross-reference, you can 
trace every use of a data area or instruction routine. (See 28.5.) 

• 

• 

• 



• 

PART 3. BAL APPLICATION INSTRUCTIONS 

• 

• 



• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

7-1 

7. Introduction to Application 
Instructions 

7.1. INSTRUCTION AND FORMAT CONVENTIONS 

Certain conventions have been adopted in this manual for specifying instruction, directive, 
macro, proc, and control-statement formats. The following paragraphs describe these 
conventions. 

There are six types of assembler application instructions: 

RR - Register-to-register 
RX - Register-to-storage-indexed or storage-to-register-indexed 
RS - Register-to-storage-nonindexed or storage-to-register-nonindexed 
SI - Storage immediate 
SS - Storage-to-storage (Type SS 1) 
SS - Storage-to-storage (Type SS2) 

Figure 7-1 illustrates the source code and object code formats for each of these 
instruction types. (Also see Section 4.) 



Source Code Instruction Format 
Instruction 

Type 

RR 

RX 

Explicit Form 

[symbol] opcoder
1

,r
2 

Q) 

[symbol I oµc.de r 
1 
d~ (x

2 
,h

2
) 
@ 

RS 

1 

[symbol[ opcode r 
1

,r
3

.d,(b21 @ 

SI I [symbol] opcode d 1 lb1
1,i

2 
© 

!symbol] opcode d
1 

(l,b
1 

),d
2

(b 21 

SS 

(symbol! opcode d 1 0 1 ,b
1 

I ,d
2

11
2 

,b
2

1 

NOTES 

G) The RR instruction has three other forms 

[symbol) opcode 11 for the SVC instruction; 

[symbol) opcode r, for the SPM instruction; and 

[symbol] opcode m 1.fJ for the 
BCR 1nstructt0n. 

@ The RX instruction BC 1s 
written in the form· 

[symbol] opcode m,,d,(x,.b,I 

• 

Implicit Form 

(symbol] opcode r
1

,r
2 

[symbol] opcode r
1

,s
2

1x
2

) 

[symbol] opcode r 
1
,r 

3
,s

2 

(symbol] opcode s
1 

.i
2 

[symbol] opcode s, (II ,s
2 

[symbol opcode s 1 0 1 1~20 2 I 

0 .... 
: 
I 
I 

J 
' 

l 
I 

I 
I 
L 

Byte 1 

opcode 

First Half Word 

Byte 2 
7: 8 11Jl2 JlG 

] 
I 

reg 
op 1 

reg 
op 2 -- --

r, J r2 I 

Object Code Instruction Format 

19_120 

Second Half Word 

Bytes 3 and 4 312 

I reg address 
I op 1 operand 2 I 1-- I 

opcode r 1 I x2 I b2 I d2 I 

opcode ] 

reg 
op 1 

r, 1 

reg 
op 3 

I 
I 
I __ , 

rJ 1 

address I 
operand 2 I 
~I 

b2 I d2 I 

35_..l36 

Third Half Word 

Bytes 5 and 6 
47 

I I 
I : ! immediate : 

1 I operand I address t 

i------- i ~ ~ operand 1 I 

I opcode I~ I 
' I 
t length : : 
I op 1 and op 2 : address 

1 

I :~• ·-~' ' -- I ,_, 1·~; -"" I 
'Id l~I 

, b2 I I 

'2 b, I d, j 

opcode d2 

u!ST1G i~9 I 20 31 I 32 35 136 

I I 
I address I 
I operand 2 1 

1 l_b,~i~I 

I 
I 

length I 

I op 1 
I 

I 
op 2 I 

address 

718 

-- I 

opcode 1,-, I ~2_-;-
' - operand 1 

11 12 471 

® The RS shift instructions are written without use of the r3 operand, in the form. 

[symbol] opcode r,.d 2(b,) 

© Some SI instructions, such as TS, SSM, and SIO, do not use an i2 field. They are wrttten in the form: 

[symbol] opcode d,(b,) 

Figure 7-1. Instruction Formats (Part 1 of 2) 

• • 

c 
-0 
cD 
0 
O'l 

:0 
(I) 

:0:: 
w 

rn 
-0 
m 
:0 

)> :0 
rn -< 
rn c mz s: -
DJ < 
r l> 
!B (") 

0 
rn ..._ 
w 

-.J 

I 
N 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

Characters 

OPCODE The application instruction operation code. 

The number of the general register containing operand 1 

The number of the general register containing operand 2 

The number of the general register containing operand 3 

The number of the general register containing an index number for operand 2 of the RX instruction 

The immediate data used as operand 1 of the SVC instruction 

The immediate data used as operand 2 of an SI instruction 

The length of the operands as stated in source code* 

The length of operand 1 as stated in source code* 

The length of operand 2 as stated in source code* 

The number of the general register containing the base address for operand 1 

The number of the general register containing the base address for operand 2 

The displacement for the base address of operand 1 

The displacement for the base address of operand 2 

m, The mask used as operand 1 

Operand 1 

Operand 2 

Operand 3 

The symbol used to identify operand 1 in the implicit format 

The symbol used to identify operand 2 in the implicit format 

7-3 

*In source code, the length you specify is 1 greater than the object code length. The reason for this is that O is the first length 
count, not 1. For example, I can address a maximum length of 256, but in actuality, I get O through 255 bytes. The assembler 
makes a reduction of 1 in the length when converting source code to object code. 

Figure 7-1. Instruction Formats (Part 2 of 2) 

An instruction is an executable statement for operations involving data. The assembler 
instructions are two, four, or six bytes in length. (See Figure 7-1.) In a 2-byte (RR) 
instruction, the registers are referenced for both operands. A 4-byte (RS) instruction 
references a register for the first operand and main storage for the second operand. A 4-
byte (RX) instruction references registers for the first and second operands and main 
storage for the third operand. A 4-byte immediate operand (SI) instruction references main 
storage for the first operand and immediate data for the second operand. A 6-byte (SS) 
instruction references main storage for both operands . 

NOTE: 

All instructions are aligned by the assembler on a half-word boundary. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

7-4 

The implied length field may be applicable with the SS1 and SS2 type instructions. If no 
length is specified in an SS1 type instruction, the length attribute of the first operand is 
assembled into the length field of the instruction. The length attribute of an operand is the 
length attribute of the expression used to define the storage location. The SS2 type 
instruction contains a length field for each operand; however, neither, either, or both 
length fields may be implied. In every case, the assembler puts the operand lengths, 
implied or specified, into the length fields. 

The following are examples of implied and explicitly stated lengths. 

LABEL ~OPERATION~ 
1 10 16 

NUMBER12 DC 
NUMBER] DC 

1 . PAD PACK 
2. FILLUP PACK 
3. TRUNCATE PACK 

ZL12 '+0' 
Z'1234567' 
NUMBER12,NUMBER7 
NUMBER12(4),NUMBER7 
NUMBERl2(4),NUMBER7(3) 

OPERAND 

Instruction 1 (PAD) packs all seven digits and the sign of operand 2 (NUMBER7) into four 
bytes of operand 1 (NUMBER12), then zero fills the remaining eight bytes of the implied 
field of 12 bytes. Instruction 2 (FILLUP) packs all seven digits and the sign of operand 2 

• 

into the explicit four bytes of operand 1. Instruction 3 (TRUNCATE) packs:;;-,:·;~:.~ i;A.iJlicitly • 
stated three digits and the sign of operand 2 into the explicit four bytes of operand 1. 
Labeled instructions themselves are assigned implied lengths based on instruction type. 

There are six basic ways to explain how an assembler application instruction is written: 
the implicit format, the implicit source code example, the explicit format, the explicit 
source code example, the object code format, and the object code example. The first four 
methods are shown for each instruction in this part of the user guide as the subject of 
object code formats covered in 4.3.1 and are discussed again in assembly listings (Part 6). 
The fQllowing shows how the move character instruction is written. 

• Implicit source code: 

Format: 

LABEL 

[symbol] 

Example: 

MOVES MVC 
MOVE32 MVC 

~OPERATION~ 

MVC 

LODGE ,MASTER 
LODGE(32),MASTER 

OPERAND 

• 



• 

• 

• 

UP-8061 Rev. 3 

• Explicit source code: 

Format: 

LABEL b.OPERATION b. 

[symbol] MVC 

Example: 

LABEL 6.0PERATI Otl 6 
1 10 16 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

OPERAND 

MOVE32 MVC 3 2 ( 5 , R2) , 3 ( R3 ) 

• Object code: 

Format: 

I, opcode ,.I,. b, ,1 
L b2 J. .,I 
Example as shown on an assembly listing: 

OOODF5 02 1 F 20F1 30FC 

7.2. EXPLICIT FORMS 

7-5 

d, J 

The first line is how the explicit format is expressed, and the second line is an example of 
how you might write the explicit source code form of the add instruction. 

Explicit Format: 

LABEL 

[symbol] 

ADD REC 

b.OPERATION b. 

A 
A 

r 1 ,d2 (x2 ,b2) 
R2,32(R3,R5) 

OPERAND 



UP-8061 Rev. 3 

7.3. IMPLICIT FORMS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

7-6 

The first line is how the implicit format is expressed, with the following one or more lines 
being examples of how you might write the implicit source code forms of the add 
instruction using symbols to represent registers and data areas. 

Implicit Format: 

LABEL 

[symbol] 
ADD FOR 
AD DREG 

A 
A 
A 

bi OPERATION b. 

r
1 

,s
2 

(x
2

) 

R2,PAYSUM 
R2, PAYSUM(R3) 

7.4. DEFINITIONS OF FORMAT TERMS 

OPERAND 

Figure 7-1 explains all the terms used in describing the explicit and implicit forms of the 
instructions. The following additional explanations will help you to understand the implicit 
and explicit forms of programming coding. 

• The general registers r1, r2, or r3 are shown in the RO through R15 form. 

• The index register x2 and the base registers b1 and b2 are also shown in the RO 
through R 15 form. 

• The terms s1 and s2 represent the use of a symbol (4.2.1 and Section 6) in the first or 
second operand. 

• The displacement d1 or d2 is a decimal value which is combined with the value in 
some base register. 

• A checkoff table is included for each applicable instruction in the text. Explanations of 
the program exceptions are provided in Appendix D. 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-1 

8. Branching Instructions 

8.1. USE OF BRANCHING INSTRUCTIONS 

Branching instructions are used to alter the normally sequential execution of instructions 
by branching out of sequence to link to a subroutine, make a decision, or control looping. 
The operand 2 field of each branching instruction refers to the address (branch to) of the 
instruction to be executed immediately after the branching instruction. The branch-to 
address in operand 2 is stored in bits 40-63 of the current program status word (PSW) 
(Figure 8-1 ). The PSW is a double word containing the address of the next instruction 
and various other control fields. In general, the PSW is used to control instruction 
sequencing and to hold and indicate the status of the system in relation to the program 
currently being executed. (See the processor programmer reference, UP-8052 (current 
version) for a complete description of the PSW.) 

BYTE 

BYTE 

SYSTEM MASK 

I s s s s 
0 p p p p 

T s A A A A 
R R R R 

T E E E E 

0 1 2 3 4 5 

0 

PROGRAM 
MASK 

ILC cc B D 

32 33 34 35 36 37 

4 

Condition 
Code 

s 
p 
A 
R 
E 

6 

E 

38 

s: 
P: 
A 
RI 
EI 

7 : 

s 

39 

INTERRUPT 
KEY MODE CODE 

s 
p 

M 
A 

p p A M 0 
R s R N E 

8 11 12 13 14 15 16 18 19 20 23 24 31 

1 2 3 

INSTRUCTION ADDRESS 

40 63 

5 1 6 l 7 

-.........__ ______ ... ----~------------__./' 
Address of the next instruction 

to be processed (branch to) 

Figure 8-1. Program Status Word Diagram 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-2 

While the program is executing, it utilizes the PSW (called the current PSW), which is 
stored in the supervisor portion of the operating system. Before a branch out of the 
sequence of the program to a new location, the present location of the program is stored 
in the PSW. That PSW (called the old PSW) is saved, and the program uses a new PSW 
(current) to keep track of pertinent program information. In other words, the old PSW holds 
the place in the program if you want to return to where you were before branching to a 
routine or instruction in another area, and the current PSW keeps track of the running 
program regardless of where you branched to. 

There are additional branching instructions, which are part of the featured instruction set 
(Section 14). You can use the featured instructions only if the processor has the control 
feature. 

For an explanation of the checkoff table exceptions, see Appendix D. 

8.2. EXTENDED MNEMONIC CODES 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

See Table 8-1. RX& RR 

Condition Codes 

D IF RESULT= 0, SET TO 0 
01F RESULT<O.SETTO 1 
01F RESULT>O,SETT02 
01F OVERFLOW, SET TO 3 

.UNCHANGED 

2 or4 

Possible Program Exceptions 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The extended mnemonic codes are used like the branch on condition (8.5) instruction 
(checkoff table for BC instruction is shown above). Extended mnemonics are the shorthand 
version of the branch on condition (BC) instruction. They are easy to use because you do 
not need to remember the decimal value that is associated with the operand 1 mask of the 
branch on condition instruction. You merely remember the mnemonic. The extended 
mnemonics create the mask value, which tests the condition code. If the specific condition 
or conditions you want to branch on exist, a branch is made to the address specified in 
operand 2. 

Before a branch is made, the address of the running program is saved, thus enabling you 
to return to that point if desired. It is a good idea to familiarize yourself with the branch on 
condition instruction and Table 8-1 before you use the extended mnemonics. 

Table 8-1 is a listing of the extended mnemonic codes. The hexadecimal operation codes 
(with mask) and functions, categorized by instruction type, are grouped according to use. 
Also included are the branch on condition (BC) instruction equivalents. An example of a 
hand-written coding form follows. 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

Example: 

1. 
2. 
3. 

LABEL 
1 

LOW 

A 
B 

MPERATIONA 
10 16 

CP 
BE 
BL 
BH 

AP 

DC 
DC 

A,B 
EQUAL 
LOW 
HIGH 

A,B 

p 141 
p151 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

8-3 

1. The compare decimal (CP) instruction compares the packed decimal contents of A 
against the packed decimal contents of B. Based on the results, the condition 
code in the PSW is set to 1 (operand 1 < operand 2) . 

2. The next sequential instruction executed is branch if equal (BE). The mask (8) 
tests for condition code 0 (operand 1 = operand 2). Since the condition is not 0, 
no branch is made, and the next sequential instruction is executed. 

3. Since no branch was made, the next sequential instruction executed is branch if 
low (BL). The mask (4) tests for condition code 1 (operand 1 < operand 2). Since 
the condition code is 1, a branch is made to the operand 2 address (LOW). In this 
example, LOW is the address of an add decimal instruction, which is the 
instruction executed after the BL instruction. 

Note that the next sequential instruction is branch if high (BH), but it is not 
executed after the BL instruction. 

Table 8-1. Extended Mnemonics and Functions (Part 1 of 2) 

RR-Type Instructions RX-Type Instructions BC Equivalent 

Mnemonic 
Hexadecimal 

Mnemonic 
Hexadecimal 

Explicit 
Function 

Code 
Operation 

Code 
Operation 

Form 
Code/m1 Code/m1 

Used to Branch Around Nonexecutable Assembler Instructions and Directives 

BR 07 F - - BCR 15,r2 
Branch unconditionally 

NOPR 07 0 - - BCR O,r2 No operation 

- - B 47 F BC 15,d2 (x2,b21 Branch unconditionally 

- - NOP 47 0 BC 0,d2 !x2 ,b2 l No operation 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-1. Extended Mnemonics and Functions (Part 2 of 2) 

RR-Type Instructions RX-Type Instructions BC Equivalent 

Hexadecimal Hexadecimal 
Explicit Mnemonic Mnemonic 

Code 
Operation 

Code 
Operation 

Form 
Code/m

1 Code/m
1 

Used After Comparison Instructions 

BHR 07 2 BH 47 2 BC 2,d
2

(x2 ,b
2

) 

BLR 07 4 BL 47 4 BC 4,d
2

(x2 ,b
2

) 

BER 07 8 BE 47 8 BC 8,d2 (x2,b2 ) 

BNHR 07 D BNH 47 D BC 13,d2 (x
2

,b
2

) 

BNLR 07 B BNL 47 B BC 11,d
2

(x
2

,b
2

) 

BNER 07 7 BNE 47 7 BC 7 ,d
2

(x
2

,b
2

) 

Used After Test-Under-Mask Instructions 

BOR 07 1 BO 47 1 BC 1,d
2

(x
2

,b
2

) 

BZR 07 8 BZ 47 8 BC 8,d
2

(x
2

,b
2

) 

BMR 07 4 BM 47 4 BC 4,d
2

(x2,b
2

) 

BNOR 07 E BNO 47 E BC 14,d
2

(x
2

,b
2

) 

BNZR 07 7 BNZ 47 7 BC 7 ,d
2 

(x
2

,b
2

) 

BNMR 07 B BNM 47 B BC 11,d2 (x
2

,b
2

) 

Used After Arithmetic Instructions 

BOR 07 1 BO 47 1 BC 1,d
2

(x
2

,b
2

) 

BZR 07 8 BZ 47 8 BC 8,d
2

(x
2

,b
2

) 

BMR 07 4 BM 47 4 BC 4,d
2

(x
2

,b
2

) 

BPR 07 2 BP 47 2 BC 2,d
2

(x
2

,b
2

) 

BNOR 07 E BNO 47 E BC 14,d
2

(x
2

,b
2

) 

BNZR 07 7 BNZ 47 7 BC 7 ,d
2

(x
2

,b
2

) 

BNMR 07 B BNM 47 B BC 11,d2 (x
2

,b
2

) 

BNPR 07 D BNP 47 D BC 13,d2 (x
2

,b
2

) 

8-4 

• 
Function 

Branch if high 

Branch if low 

Branch if equal 

Branch if not high 

Branch if not low 

Branch if not equal 

Branch if all ones 

Branch if all zeros 

Branch if mixed 

Branch if not all ones 

Branch if not all zeros 

Branch if not mixed 

• Branch if overflow 

Branch if zero 

Branch if minus 

Branch if positive 

Branch if not overflow 

Branch if not zero 

Branch if not minus 

Branch if not positive 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-5 

BAS 
BASR 

8.3. BRA NCH AND STORE (BAS, BASR) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

BAS 4D RX 4 
BASR JiD RR 

Con dition Codes 

D IF RESULT 

D IF RESULT 

D IF RESULT 

~ 0, SET TO 0 
<o. SET TO 1 
>o. SET TO 2 

D IF OVERF LOW, SET TO 3 
ED • UNCHANG 

Possible Program Exceptions 

D ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

0 OPERATION 

D PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER D 
D OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The branc 
used only 

h and store (BAS, BASR) instructions do not exist in the native mode set and are 
when operating in the 360/20 compatibility mode. They operate in the same 
anch and link instructions (8.4) operate (i.e., operand 1 contains the address of 
m after executing the branching instruction but before executing the instruction 

way the br 
the progra 
you branch ed to). Operand 2 contains the address of the instruction executed immediately 

ranching (BAS, BASR) instruction. after the b 

-- ------~ ----------------



UP-8061 Rev. 3 

BAL 
BALR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

8-6 

8.4. BRANCH AND LINK (BAL, BALA) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

BAL 5 R 
BALR 05 RR 

Condition Codes 

01F RESULT=O,SETTOO 
01F RESULT<O,SETTO 1 
D IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

2 

Possible Program Exceptions 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The branch and link (BAL and BALR) instructions alter the normally sequential execution 
of instructions by branching to an address you specify in operand 2. The instruction 
located at that address is the next instruction executed after the branch and link 
instruction. Before the branch is made, the address of the next sequential instruction 
(current location) is saved in the operand 1 register to enable you to return to the location 
where you were before branching. 

Explicit Format: 

LABEL 

[symbol] 
[symbol] 

Implicit Format: 

LABEL 

[symbol] 

6 OPERATION 6 

BAL 
BALR 

6 OPE RATION 6 

BAL 

r 1 , d2 (x2, b2) 
r 1, r 2 

OPERAND 

OPERAND 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

Example 1 (BAL): 

SPERRY UNIVAC OS/3 
ASSEMBLER 

LABEL 
1 

MPERATI ON6 OPERAND 
10 16 

1. BAL 
2. NEXTSEQ AP 

3. BRANCHTO CP 

A 
B 

DC 
DC 

6,BRANCHTO 
A,B 

A,B 

P1 654 1 

P 1 123 I 

8-7 

1. In this coding example, the BAL instruction alters the sequential execution of 
instructions by causing a branch to an area in main storage labeled BRANCHTO. 
Before the branch, the address of the next sequential instruction is stored in 
register 6 (location of NEXTSEQ) . 

2. Since a branch took place, the normally sequential execution of the add decimal 
(AP) instruction (NEXTSEO) is skipped. 

3. This compare decimal (CP) instruction is processed immediately following the 
BAL instruction, since its label (BRANCHTO) is the branch-to address (operand 2) 
of the BAL instruction. 

Example 2 (BALR): 

1. LA 

2. BALR 
NEXTSEQ AP 

ROUTINE CP 
BL 

4 ,ROUTINE 

6,4 
A,B 

NUM,=P'l5' 
LOW 

BH HIGH 

NUM DC P'20' 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

8-8 

1. This load address (LA) instruction puts the address of an instruction labeled • 
ROUTINE (CP) into register 4. 

2. The BALR instruction stores the address NEXTSEQ in register 6, then branches 
to the branch address in register 4. Since register 4 is the address of ROUTINE, 
the instruction following the BALR instruction is compare decimal (CP). 

Operationa I Considerations: 

• You may specify any of the general registers (0 through 15) as operand 1 in both the 
BAL and BALR instructions, and any of these registers as operand 2 of the BALR 
instruction. 

• The address of the instruction following the BAL or BALR instruction is placed in the 
operand 1 register. Then the branch to the address specified in operand 2 is made. 

• If you specify 0 as operand 2 of a BALR instruction, it means you are not specifying a 
branch-to address, and, therefore, no branch takes place. The instruction executed 
after the BALR is the next instruction in sequence. 

8.4.1. Use of the BALR Instruction in Base Register Assignment 

The BALR instruction is used in conjunction with the USING directive (see 18.2) to assign • 
a base address to a register. This address becomes the starting address of your program. 
The BALR instruction and the USING directive must be coded in the following order: 

LABEL t.OPERAT I otlA OPERAND 
1 10 16 

--------·~ 

BASEREG START 0 
BEGIN BALR 3,0 

USING *,3 
OPEN INFILE,OUTFILE 

READ GET INFILE 

The BALR instruction in this example stores the address of the next sequential instruction 
(OPEN) in register 3. No branch takes place since 0 is specified as operand 2. Logically, 
the address of the USING directive should be stored in register 3, since that is the next 
instruction. However, USING is a directive and not an executable instruction. Directives 
are information to the assembler only. They do not generate any object code nor increase 
the location counter. Therefore, OPEN is the next executable instruction following the 
BALR instruction. 

The USING directive tells the assembler that register 3 is going to be used as the base 
register for this program. Register 3 can accommodate a program up to 4096 bytes in 
length. If your program is larger than this, additional base registers can be assigned. (See 
18.2.) Operand 1 tells the assembler at what point in your program your base register 
should start being used. The asterisk (*) means "start now". So, operand 1 indicates 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-9 

• starting now, all addresses of the following instructions will use the register specified by 
operand 2 (in this case, 3) as the base register. 

• 

• 

In the following printout example, an LA instruction (line 3) is coded after the BALR 
instruction, causing an addressability error. The BALR instruction (line 2) stores the 
address of the next sequential instruction (LA) in register 3. No branch takes place since O 
is specified as the operand 2 register. At location counter 000002, no object code was 
generated for the LA instruction because the assembler does not assemble an erroneous 
instruction. It does, however, increase the location counter by the number of bytes that 
that instruction occupies. Now, register 3 contains the address of the LA instruction at 
000002 but the USING directive (line 4) tells the assembler that starting at location 
counter 000006, all succeeding instructions will use register 3 as the base register. The 
USING directive assumes that register 3 contains the address at location counter 000006 
but in reality contains the address at location counter 000002. So, all the addresses of 
every instruction and label in this program will be calculated as being four bytes more 
than its actual location. Therefore, the BALR instruction and USING directive must always 
refer to the same address so that the base and displacement values can be accurately 
calculated. 

Example: 

LOC. OBJECT CODE 

000000 
000000 0530 
000002 0000 0000 

*** ERROR *'~* 
000006 

000006 0700 
000008 4510 300A 
oooooc 80 
OOOOOD 000060 
000010 OA26 

OOOOBC 

ADDRI /lDOR2 

00000 

A 
00010 /l 

A 
A 
A 

LI NE SOURCE STATEMENT 

I TSTUSING START 0 
2 BEGIN BALR 3,0 
3 LOAD LA 7, LI ST 

4 USING '~,3 

5 OPEN PRINT 
6+ CNOP 0,4 
7+ BAL l,*+(4*2) 
8+ DC X1 80 1 

9+ DC AL3(PRINT) 
10+ SVC 38 ISSUE svr: 

38 PRINT OTFPR IOAREA1=0UTPUT,BLKSIZE=l32 

90 LI ST OS OCLl2 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-10 

BC • 
BCR 

8.5. BRANCH ON CONDITION (BC, BCR) 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

BC 47 RX 4 0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

BCR 07 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

01F RESULT=O,SETTOO 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY D IF RESULT <o. SET To 1 D 
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED • NONE 

The branch on condition (BC and BCR) instructions change program sequence based on 
the condition code setting of the PSW. You specify in the operand 1 mask a decimal value 
that tests the condition code to see whether the branch-causing condition exists. If the 
condition of the branch does exist, a branch is made to the operand 2 address you specify 
in the branch on condition instruction. If the condition of the branch does not exist, no 
branch takes place, and the next sequential instruction is executed. 

Explicit Format: 

LABEL 

[symbol] 

[symbol] 

Implicit Format: 

LABEL 

[symbol) 

[symbol] 

{:,.OPE RATION {:,. 

BC 
BCR 

60PERATION {:,. 

BC 
BCR 

m1 'd2(x2, b2) 

m1, r2 

OPERAND 

OPERAND 

The condition code, bits 34-35 of the PSW, reflects the result of an instruction executed 
prior to the branch on condition instruction. There are four possible condition code 
settings: 

If result = 0, set to 0. 

If result < 0, set to 1. 

If result > 0, set to 2. 

ff overflow, set to 3. 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-11 

The decimal values that can be specified in the operand 1 mask are 0 through 15, each of 
which has a 4-bit binary representation. 

• The decimal value 8 (1000) tests for condition code 0. 

• The decimal value 4 (0100) tests for condition code 1. 

• The decimal value 2 (0010) tests for condition code 2. 

• The decimal value 1 (0001) tests for condition code 3. 

Note that only one bit is set for each condition. When more than one bit is set in the 4-bit 
binary configuration, it is possible to test for multiple conditions. 

8 4 2 decimal 

0 binary 

8 + 2 10 

The decimal value 10 tests for: 

CD condition code 0 (result is equal to zero) and 

CI) condition code 2 (result is greater than zero) 

Table 8-2 lists the 16 values and each condition code it tests. 

Table 8-2. Operand 1 Mask Combinations 

Mask 
Possible Combinations of Branches on 

Decimal Binary Condition Codes Condition Code 
Value Value 

0 0000 * no operation 

1 0001 1 = 1 3 

2 0010 2 =2 2 

3 0011 3 =2+1 2,3 

4 0100 4 =4 1 

5 0101 5 =4+1 1, 3 

6 0110 6 =4+2 1, 2 
7 0111 7 =4+2+1 1, 2, 3 

8 1000 8 =8 0 

9 1001 9 =8+1 0,3 
10 1010 10 = 8 + 2 0,2 
11 1011 11=8+2+1 0, 2, 3 
12 1100 12=8+4 0, 1 
13 1101 13=8+4+1 0, 1, 3 

14 1110 14 = 8 + 4 + 2 0, 1, 2 

15 1111 15=8+4+2+1 ** 0, 1, 2, 3 

*No condition code is tested and no branch takes place. The next 
sequential instruction is executed. 

**Unconditional branch 

Results 

Causing 
Branch 

None 
Overflow 

>o 
>o or overflow 

<o 
<o or overflow 
#:o 
:;i':o or overflow 
=O 
= 0 or overflow 
~o 
~O or overflow 
:s;;;o 
:s;;;o or overflow 
Any value 
Any value or overflow 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-12 

Table 8-3 lists the explicit format of the BC instruction with different mask values and 
their relation to the condition tested. 

Table 8-3. Branch-on-Condition Instruction by Usage 

Hexadecimal 
Mnemonic Explicit 

Operation 
Code Format 

Function 

Code m 1 

Used to Branch Around Nonexecutable Assembler Instructions and Directions 

07 F BCR 15,r2 
Branch unconditionally 

07 0 BCR O,r2 
No operation 

47 F BC 15,d
2

(x
2

,b
2

) Branch unconditionally 

47 0 BC O,d
2

(x
2

,b2 l No operation 

Used After Comparison Instructions 

47 2 BC 2,d
2

(x
2

,b
2

) Branch if high 

47 4 BC 4,d
2

(x
2

,b
2

) Branch if low 

47 8 BC 8,d2(x2,b2 l Branch if equal 

47 D BC 13,d
2

(x
2

,b2 ) Branch if not high 

47 B BC 11,d
2

(x
2

,b2 ) Branch if not low 

47 7 BC 7,d
2

(x
2

,b
2

) Branch if not equal 

Used After Test-Under-Mask Instructions 

47 1 BC 1,d
2

(x
2

,b
2

) Branch if all ones 

47 8 BC 8,d 2(x2,b2 l Branch if all zeros 

47 4 BC 4,d
2

(x
2

,b
2

) Branch if mixed 

47 E BC 14,d
2

(x
2

,b
2

) Branch if not all ones 

47 7 BC 7,d
2

(x
2

,b
2

) Branch if not all zeros 

47 B BC 11,d
2

(x
2

,b2) Branch if not mixed 

Used After Arithmetic Instructions 

47 1 BC 1,d
2

(x
2

,b
2

) Branch if overflow 

47 8 BC 8,d
2

(x
2

,b
2

) Branch if zero 

474 BC 4,d
2

!x
2

,b
2

) Branch if minus 

47 2 BC 2,d
2

(x
2

,b
2

) Branch if positive 

47 E BC 14,d
2

(x
2

,b
2

) Branch if not overflow 

47 7 BC 7,d2 tx2,b2) Branch if not zero 

47 B BC 11,d
2

(x2,b2) Branch if not minus 

47 D BC 13,d
2

(x
2

,b2) Branch if not positive 

Operationa I Consideration: 

• You can specify any of the general registers (2 through 12) as operand 2 of the BCR 
instruction. 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

Example (BC): 

1. 
2. 
3. 
4. 

LABEL 
1 

5. EQUAL 

A 
B 
c 

t.OPERATI ONA 
10 16 

CP 
BC 
BC 
BC 

AP 

DC 
DC 
DC 

A,B 
2,HIGH 
4,LOW 
8,EQUAL 

A,C 

P1 650 1 

P1 650' 
p I J 1 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

8-13 

In this example, two packed decimal values are compared. After the result is obtained, 
the condition code is stored in the PSW. The branch instructions are executed 
sequentially, and when the proper condition for the branch-on condition exists, a 
branch to the operand 2 address takes place. 

1. Operands 1 and 2 compare equally since both A and B contained the packed 
decimal 650. The condition code is set to 0. 

2. The operand 1 mask 2 tests for condition code 2. Since the condition code is not 
2 (operand 1 > operand 2), the next sequential instruction is processed. 

3. The operand 1 mask 4 tests for condition code 1. Since the condition code is not 
1 (operand 1 < operand 2), the next sequential instruction is processed. 

4. The operand 1 mask 8 tests for condition code 0. Since the condition code is 0 
(operand 1 = operand 2), a branch to the address of operand 2 (EQUAL) takes 
place. 

5. Since the add decimal instruction has the label EQUAL, that is the instruction 
executed after the branch-on condition regardless of the sequential instructions 
in between . 



UP-8061 Rev. 3 

BCT 
BCTR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

8-14 

8.6. BRANCH ON COUNT (BCT, BCTR) 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

TYPE LGTH. 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION: 

B[T ::!& RX 4 0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

BCfR 06 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 
0 IF RESULT= 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
01F RESULT>O,SETT02 D D IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED • NONE 

The branch on count (BCT and BCTR) instructions branch to the same instruction or 
routine a number of times (loop). Normally, before you execute a branch on count 
instruction, you load one of the general purpose registers with a value (the count) that 
refers to the number of times you want to loop to an instruction or routine. You specify the 
register containing the counter as operand 1 in your branch on count instruction. Each 
time the branch on count instruction is executed, the operand 1 register is decremented by 
one. Then the register is checked for a value of zero. If zero is not found, a branch to the 
instruction at the operand 2 address takes place. If the counter is 0, no additional 
branching takes place, and the next sequential instruction is executed. You can use the 
BCTR instruction to decrement the counter register (operand 1) without branching, by 
specifying the operand 2 register as 0. When BCTR is executed, the value in the operand 1 
register is decremented by 1, but since no branch address is supplied, the next sequential 
instruction is executed. 

Explicit Format: 

LABEL 

[symbol] 

[symbol] 

Implicit Format: 

LABEL 

[symbol] 

[symbol] 

6. OPERATION 6. 

BCT 
BCTR 

6. OPERATION 6. 

BCT 
BCTR 

r 
1 

, d2 (x2 , b2 ) 

r 1, r 2 

OPERAND 

OPERAND 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-15 

Example: 

LABEL 
1 

t.OPERATI ONA 
10 16 

1. SR 
2. LA 
3. BRANCHTO AP 
4. BCT 

NEXTSEQ MP 

AMOUNT 
SUM 

DC 
DC 

6,6 
6, 10 
SUM,AMOUNT 
6,BRANCHTO 
SUM,VALUE 

p I 15r6 I 

PL3 1 r6 1 

OPERAND 

This coding example adds AMOUNT (150) to SUM 10 times and stores the result in 
SUM (3-byte field). 

1. The subtract (SR) instruction subtracts the operand 2 register value from the 
operand 1 register value and puts the result in operand 1. In this case, register 6 
is subtracted from itself, thus making it 0. It is a good idea to clear a register 
before using it. 

2. The load address (LA) instruction loads a count of 10 into register 6. 

3. The add decimal (AP) instruction adds the packed decimal value in AMOUNT 
(150) to whatever is stored in SUM and stores the answer in SUM. SUM is 
defined as a packed decimal constant containing 0. After the AP instruction is 
executed once, SUM contains 150. 

4. The BCT instruction subtracts 1 from register 6. Since register 6 now contains 9, 
the AP instruction labeled BRANCHTO is executed again. After the AP is 
executed twice, SUM contains 300. The BCT instruction executes nine more 
times until the counter (register 6) is 0. On the tenth attempt, no branch takes 
place, and NEXTSEQ is executed. 

Operational Considerations: 

• The maximum value you can specify in the operand 1 counter register is 232 . 

• You can specify any of the general registers (0 through 15) as operand 1. 

• You can specify the operand 2 register of the BCTR instruction as 0 if you want to 
decrement the operand 1 counter register by 1 without causing a branch. When you 
specify O in operand 2, the next sequential instruction of your program is executed 
following the BCTR. 

• The branch-to address in operand 2 is determined before the operand 1 register is 
decremented. 



UP-8061 Rev. 3 

EX 

8.7. EXECUTE (EX) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

EX 44 RX 4 

Condition Codes 

D IF RESULT; 0, SET TO 0 
01F RESULT<O.SETTO 1 
01F RESULT>O.SETT02 
0 IF OVERFLOW, SET TO 3 
• SEE OPER. CONSIDERATIONS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

8-16 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

• EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

0 FLOATING-POINT DIVIDE 
D OP 1 NOT EVEN NUMBERED REGISTER 

D D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The execute (EX) instruction is used to branch to an instruction elsewhere in your 
program, execute it with or without having modified it temporarily, and then branch back 
to the instruction following the EX instruction. 

Explicit Format: 

LABEL 6 OPE RATION 6 OPERAND 

[symbol] EX 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] EX 

The address specified by operand 2 is the address of the instruction to which you branch 
following the EX instruction. This instruction, specified by operand 2, is called the subject 
instruction. The operand 1 register determines whether or not change will be made to the 
subject instruction before execution. If register 0 is specified as the operand 1 register, no 
change is made to the subject instruction and it is executed following the EX instruction 
as if it were the next sequential instruction. 

On the other hand, if any register other than zero is specified, bits 8 through 15 of the 

• 

• 

subject instruction are changed. This change is accomplished by the logical addition OR on • 
the contents of bits 24 through 31 of the operand 1 register that you previously loaded 
and the contents of bits 8 through 15 of the subject instruction. (See logical OR 
instruction.) The result is placed in bits 8 through 15 of the subject instruction. The 
contents of the operand 1 register remain unchanged. Moreover, the change to the subject 
instruction is temporary and effective only during this execution of the subject instruction. 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-17 

The instruction address and instruction length of the current PSW is changed by the 
execution of the EX and subject instruction. Normally, instruction sequencing continues 
with the instruction following the EX instruction. However, if the subject instruction is a 
successful branch instruction, the instruction address of the current PSW is replaced by 
the branch address and instruction sequencing resumes with the instruction address 
specified by the branch. If the subject instruction is a BAL or BALR, instruction sequencing 
resumes with the instruction address specified by the link register. 

EX Instruction: 

opcode 

0 7 8 11 12 15 16 19 20 23 

Subject instruction is RR type: 

0 7 

Subject instruction is RX type: 

0 7 16 19 20 31 

Subject instruction is RS type: 

0 7 16 19 20 31 

Subject instruction is SI type: 

0 7 16 19 20 31 

Subject instruction is SS Type 1: 

0 7 16 19 20 31 32 35 36 D 
Subject instruction is SS Type 2: 

0 7 16 19 20 31 32 35 36 D 



UP-8061 Rev. 3 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

8-18 

• It isn't a good idea to alter instructions, but if it's absolutely necessary, you can use 
the EX instruction for that purpose. 

• You can specify any of the general registers (0 through 15) as operand 1. 

• Before the EX instruction causes a branch to the address you specify in operand 2, 
the current program address is stored in the PSW. Unless the branch to instruction 
(operand 2) is a successful branch instruction, sequential instruction execution 
follows execution of the subject instruction. 

• If a program interrupt occurs after completion of the subject instruction, the old PSW 
contains either the address of the instruction following the EXECUTE or, in the case 
of a successful branch, the branch address. The current PSW contains the address of 
the instruction causing the interrupt (i.e., the operand 2 address in the EX instruction, 
or the branch-to address if a successful branch occurred before the interrupt). 

• If the subject instruction is another EX instruction, a program exception occurs. 

• A program exception can be caused by either the EX instruction itself or by the 
subject instruction. 

• The condition code can be set by the subject instruction. 

Example: 

LABEL 
1 

MOVE 

INPUT 

PRINT 

tiOPERATI ONA 
10 16 

L 4,=F'3' 
EX 4,MOVE 
PUT PRINT 

MVC 

OS 
OS 

f/J(0,5), INPUT 

"H 
CL811J 

OPERAND 

DTFPR IOAREA1=0UTPUT,BLKSIZE=l32,SAVAREA=SAVE 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

MOVE before execution 
of EX instruction and 
after execution of MVC 
instruction: 

Register 4 before and 
after execution of EX 
instruction: 

MOVE instruction during 
execution of MVC 
instruction: 

D2 0 

I 
0000 I 0000 

I 02 I 3 

SPERRY UNIV AC OS/3 
ASSEMBLER 

3 and 4 Sand 6 

3 321 

3 I 321 

8-19 

In the preceding coding example, register 4 is loaded with a value of 3. The EX instruction 
is executed. Register 4 indicates that change will be made to the subject instruction 
(MOVE). A branch is made to the subject instruction and a logical addition OR is 
performed on the contents of bits 24 through 31 of register 4 and the contents of bits 8 
through 15 of the MVC instruction. The result is placed in bits 8 through 15 of the MVC 
instruction only for the duration of this execution of the MVC instruction. After execution 
of the MVC instruction is completed, a branch is made back to the instruction following 
the EX (PUT), and processing continues . 



• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

9-1 

9. Decimal and Logical Instructions 

9.1. USING DECIMAL INSTRUCTIONS 

Decimal instructions perform arithmetic calculations on data located in main storage, 
using storage-to-storage instruction format. You must put decimal numbers into main 
storage before attempting to use them in mathematical calculations. Storage-to-storage 
instructions do not allow the use of general registers for calculations, since registers 

.handle binary, not decimal, numbers. Decimal instructions are slower than instructions 
that use general registers (binary arithmetic, floating-point, etc.), because two main 
storage locations (specified in the operand fields) are accessed each time a decimal 
instruction is executed . 

In assembly language, decimals are expressed in either unpacked or packed format. 
Format refers to the way bits represent decimal numbers. Unpacked format is the standard 
form in which numbers are brought in to the system (input), and sent out from the system 
(output). Packed format is the standard form in which numbers are used in mathematical 
calculations. 

Numbers written in unpacked format are movable from one location in main storage to 
another and are printable on input and output devices. Arithmetic operations, however, 
can only make use of packed decimal numbers. Therefore, you must pack each number 
before you use it. In turn, you must then unpack the number before you output it (either to 
a printer or any other character sensitive device). 

Unpacked format uses eight bits to represent a decimal number. The leftmost four bits are 
the zone field, and the rightmost four bits are the decimal digit in binary. 

zone digit 

0 3 4 7 

The zone portion of a number is always a binary 1111 which is a hexadecimal F. The F in 
the zone field indicates that any decimal digit (0-9) in the digit field is a numeric 
character in EBCDIC (Extended Binary Coded Decimal Interchange Code). These 
relationships are shown in the following chart. 



UP-8061 Rev. 3 

Decimal 
Digit 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

SPERRY UNIV AC OS/3 
ASSEMBLER 

Hexadecimal Binary 
(EBCDIC) Code Code 

FO 11110000 
F1 11110001 
F2 11110010 
F3 11110011 
F4 11110100 
F5 11110101 
F6 11110110 
F7 11110111 
F8 11111000 
F9 11111001 

9-2 

Since decimal operations require the number you use to be in packed format, the decimal 
numbers must be defined as packed constants or converted from unpacked to packed 
format. To convert from unpacked to packed format, use the pack decimal (PACK) 
instruction. The PACK instruction removes the zone bits of the unpacked decimal, thus 
expressing the same value in fewer bytes of main storage. 

In both unpacked and packed formats, the sign is expressed in the rightmost byte which is 
the zone portion in unpacked format and the rightmost digit portion in packed format. 

The hexadecimal numbers A through F can be sign values that are either positive or 
negative, and are used in either ASCII or EBCDIC mode. A hexadecimal A and B are used 
for output of data in ASCII mode only. A represents a positive value and B represents a 
negative value. 

A hexadecimal C, D, and F are all used for internal processing in EBCDIC mode. C 
represents a positive value, D represents a negative value, and F represents an unsigned 
number which is assumed positive. If you attempt to print an unpacked decimal number 
with hexadecimal C or D as the sign value, an alpha character is printed for the rightmost 
byte instead of a decimal digit. Hexadecimal C and D must be changed to hexadecimal F 
either through the ED or 01 instruction to print the correct value. 

A hexadecimal F is used for output of data in EBCDIC mode and represents an unsigned 
number which is assumed positive. 

The following illustrations represent a 3-digit decimal number in both packed and 
unpacked format. Notice the positions of the zone and digit portions: 

Unpacked Format: 

I zone I digit I zone I digit I sign I digit I 
-~~~ 

byte 1 byte 2 byte 3 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

Packed Format: 

digit digit digit sign 

~~ 

byte 1 byte 2 

SPERRY UNIVAC OS/3 
ASSEMBLER 

9-3 

These illustrations represent the decimal number +456 in both packed and unpacked 
format. 

Unpacked: byte 1 byte 2 byte 3 
~~~ 

Packed:
~,~

byte 1 byte 2

There is a zone portion for every digit and one sign value in unpacked format and only
digits and one sign value in packed format. Notice the number of bytes the unpacked
format occupies in contrast to the packed format. The decimal number +456 occupies
three bytes when unpacked and only two bytes when packed. The sign value hexadecimal
C indicates that 456 is a positive number.

9.2. DEFINING PACKED AND UNPACKED CONSTANTS AND MAIN STORAGE
AREAS

You can specify packed or unpacked constants and reserve areas in main storage destined
to hold packed decimal values by using the define constant (DC) and define storage (OS)
statements. Their format is:

LABEL ti OPERATION ti OPERAND

DC [d] {~} [Ln] 'c' [symbol]

[symbol] OS [d] {~} [Ln] ['c']

Duplication factor
Definition type I I

I Length factor ---------------'
Constant specification ---------------'

In this format, symbol is an optional predefined label that names the location of the
constant or main storage area. The symbol's main storage address is the address of the
leftmost byte of the constant or main storage area specified in the operand field. Relative
addressing (symbol + 4) is acceptable.

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

9-4

The duplication factor d is a decimal number that tells the assembler how many times you
want the constant reproduced or how many areas of the same length you want reserved
in main storage. Specifying the duplication factor saves you the time of defining the same
constant or area more than once.

The definition type is P for packed or Z for zoned (unpacked), which indicates the type of
constant or main storage area you are specifying. There are other definition types
available, but are used for other applications (Table 5-1).

The length factor Ln specifies the number of bytes of storage reserved for a constant (DC)
or an area to be used in your program (DS). If no length is specified, the assembler assigns
the length of the constant specified within apostrophes. By explicitly specifying a length,
you can determine the lengths of all the fields in your program regardless of how large or
small your constants are.

The constant itself (c) is enclosed in apostrophes. In the case of a DS statement, the
constant you enclose in the apostrophes is not actually generated, but its length
determines the length of the main storage area allocated. Embedded blanks cannot be
used in packed and zoned type constants.

9.2.1. Packed Decimal Constants and Main Storage Areas

When you specify packed decimal constants, the character P is the definition type in the
operand field. Packed decimal constants can be up to 31 decimal digits (16 bytes) and can
be signed or unsigned. If unsigned, the value is assumed to be positive. The address of the
symbol you put in the label field is the address of the constant you define in the operand
field. When you specify a packed decimal constant, the actual decimal value you specify is
placed into main storage.

Example:

LABEL
1

1. NUMl
2. NUM2
3. NUM3

tiOPERAT I ON ti
10 16

DC
DC
DC

P 1+4563 1

PL3 1 123 I

2PL2 I 123 I

OPERAND

1. This coding statement produces this packed decimal constant in main storage.
The 3-byte length is implied since three bytes are needed to hold the constant
and its sign.

I o i 4 I s i 6 I 3 i c

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

9-5

2. This coding statement produces this packed constant in main storage. In this
case, the 3-byte length isn't needed to hold the constant. but since a length of
three is specified, three bytes are allocated. The number is right-justified and
thus the most significant unused bytes are zero-filled.

3. This coding statement produces two consecutive, duplicate 2-byte constants in
main storage.

The character P also is the definition type for defining packed decimal storage areas (i.e.,
areas destined to hold packed decimal data). The address of the symbol you put in the
label field is the address of the constant you define in the operand field. No actual
constant is placed into the area you reserve, and the area is not cleared of any data it may
already contain. You are merely reserving a main storage area for future use.

Example:

LABEL
1

1. NUM4
2. NUM5
3. NUM6

tiOPERATION/\
10 16

OS
OS
OS

P 1+4563 1

PL2
PL 11 6 1

OPERAND

1. This coding statement reserves a 3-byte area in main storage. The statement
does not put the packed decimal +4563 into that area but merely reserves an
area large enough to hold it.

2. This coding statement reserves a 2-byte area in main storage. It does not clear
the area or put anything into it.

3. This coding statement reserves a 1-byte area in main storage.

If you intend to reserve a packed storage area for mathematical calculations in either of
these three ways, move zeros into the specified storage area to clear it of any leftover data
from another program. This will ensure that mathematical calculations are performed
correctly .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9.2.2. Unpacked Decimal Constants and Main Storage Areas

9-6

When you specify unpacked decimal constants, the character Z is the definition type in the
operand field. Unpacked decimal constants can be up to 16 decimal digits (16 bytes) and
can be signed or unsigned. If unsigned, the value is assumed to be positive. The address
of the symbol you put in the label field is the address of the constant you define in the
operand field. When you specify an unpacked decimal constant, the actual decimal value
you specify is placed into main storage as digits with zone fields of hexadecimal F.

Example:

LABEL
I

AOPERATI ONA
10 16

OPERAND

I. [symbol] DC
2. [symbol] DC
3. [symbol] DC

z1+4563 1

ZLS 1123 I

2ZL3 1 123 I

1. This coding statement produces this unpacked decimal constant in main storage.
The 4-byte length is implied since four bytes are needed to hold the unpacked
constant with zones and sign.

2. This coding statement produces this unpacked decimal constant in main storage.
In this case, the 5-byte length isn't needed to hold the constant, but since a
length of five is specified, five bytes are allocated. Note that the C in the
rightmost byte represents a signed positive value.

loiolololF!1 IFi2lc!3l

3. This coding statement produces two consecutive 3-byte constants in main
storage.

The character Z also is the definition type for defining unpacked decimal main storage
areas (i.e., area destined to hold unpacked decimal data). The address of the symbol you
put in the label field is the address of the main storage area you define in the operand
field. No actual constant is placed into the area you reserve, and the area is not cleared of
any data it may already contain. You are merely reserving a main storage area.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-7

• Example:

•

•

LABEL
1

1. ZNUM I
2. ZNUM2
3. ZNUM3

l\OPERATIONA
10 16

OS
OS
OS

z14543 1

ZL4
2ZL4

OPERAND

1. This coding statement reserves a 4-byte area in main storage. The actual
unpacked decimal constant 4543 is not placed into the reserved area by this
statement.

2. This coding statement also reserves a 4-byte area in main storage.

3. This coding statement reserves two consecutive 4-byte areas in main storage .

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

9-8

AP •

9.3. ADD DECIMAL (AP)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

• DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

AP FA SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED D NONE

The add decimal (AP) instruction algebraically adds the packed decimal contents of
operand 2 (the sending field) to the packed decimal contents of operand 1 (the receiving
field). The sum is stored in operand 1 and is filled, a byte at a time, from right to left.

Explicit Format:

LABEL 60PERATION6 OPERAND

[symbol] AP

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] AP

Operationa I Considerations:

• The value and sign of the sum are algebraically, not logically, calculated.

• Since the sum is stored in the operand 1 location and if the length of the sum is
greater than the length of operand 1, the leftmost digits of the sum are truncated.

Example:

LABEL
I

A
B

t,OPERAT I ONL\
I 0 16

AP

DC
DC

A,B

p•2•
p•9•

OPERAND

•

•

•

•

•

UP-8061 Rev. 3

A before AP execution:

B before and after AP execution:

A after AP execution:

SPERRY UNIVAC OS/3
ASSEMBLER

I

1 I C
I

9-9

As shown, the entire sum (11) does not fit into the one byte allocated in operand 1, so the
leftmost digit of the sum is lost. If the operand field of the DC statement defining A is
changed to PL2'2', two bytes are allocated for the sum, and the correct 2-byte sum fits
into the allocated area. If the sum does not fill the length specified in operand 1, zeros fill
the remaining leftmost bytes of operand 1. A zero sum is positive as long as the length of
operand 1 is large enough to hold the entire sum (i.e., no leftmost digits are lost). If the
sum is zero and the leftmost digits are lost, the sign is the sign of the sum before the
digits were lost. It is possible to double a number (add it to itself) when the rightmost bytes
of operands 1 and 2 have overlapping bytes in main storage.

Example:

LABEL
1

A

AOPERATIONA
10 16

AP A,A

DC P 1 1234 1

A before AP execution:

A after AP execution:

OPERAND

byte 1 byte 2 byte 3

~~~ 

!0!1 !2!314 cj 

: 2 
I 

The entire contents of A is extracted, doubled and the answer returned to the same field. 
This destroys the original contents of A. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-10 

CP • 

9.4. COMPARE DECIMAL (CP) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

CP F9 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF OPI = OP2, SET TO 0 
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF OPI <OP2, SET TO 1 

0 FLOATING-POINT DIVIDE 
0 OP 1 NOT EVEN NUMBERED REGISTER 

• IF OPI >oP2, SET TO 2 0 01F OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The compare decimal (CP) instruction is used to compare operand 1 to operand 2, byte-by
byte from right to left. The result determines the setting of the condition code. (See 8.1.) 

Explicit Format: 

LABEL 6. OPE RATION 6. OPERAND 

[symbol] CP 

Implicit Format: 

LABEL 6.0PERATION 6. OPERAND 

[symbol] CP 

Based on the comparison result, the condition code of the program status word (PSW) is 
set to 1 if operand 1 is less than operand 2, to 2 if operand 1 is greater than operand 2, 
and to 0 if operands 1 and 2 are equal. 

The condition code is part of the PSW, a double-word register that holds information 
pertinent to instruction execution. The instruction executed following the CP instruction 
depends on the condition code setting. The four condition code settings are as follows: 

Condition Code Bit Configuration 
(Decimal Value) (Bits 34-35 of PSW) 

0 00 = test value is bi nary 8 ( 1000) 
1 01 =test value is binary 4 (0100) 
2 10 =test value is binary 2 (0010) 
3 11 =test value is binary 1 (0001) 

• 

• 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

9-11 

• Operational Considerations: 

• 

• 

• The CP instruction compares the rightmost byte of the operands first. and then works 
to the left one byte at a time. 

• If operand 1 is shorter than operand 2, or operand 2 is shorter than operand 1, zeros 
fill the leftmost bytes of the shorter operand, thus making the operands the same 
length during the comparison. Even though zeros are added, neither operand is 
permanently changed by the instruction. 

• Any zero compares equal to another zero regardless of their signs. 

• Positive signs compared to each other compare as equal; and the same holds true for 
negative signs. 

• It is possible to compare a decimal, or part of a decimal to itself, or part of itself, by 
overlapping the location of the rightmost bytes of the operands in main storage. 

Example: 

LABEL 
1 

A 

~OPERATION/\ 

10 16 

CP A+2(2) ,A+3(1) 

DC PL4 I 1234567 I 

OPERAND 

Operand 1 -------------A before and after execution 
of CP instruction: 11 !2!3!4l5!sl1!cl 

~ 

Operand 2 

In this example, the packed decimal contents of operand 1 are compared tq the packed 
decimal contents of operand 2. Operands 1 and 2 have overlapping rightmost bytes. The 
processor temporarily adds a byte of zeros to operand 2 since operand 2 has fewer bytes 
than operand 1. After the CP instruction is executed, the condition code is set to 2 
because operand 1 is greater than operand 2 . 



~ 

..... 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-12 

DP • 

9.5. DIVIDE DECIMAL (DP) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) • DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

DP FD SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED·POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 

0 
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

Q1F OVERFLOW, SET TO 3 0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

The divide decimal (DP) instruction divides the packed decimal contents of operand 1 
(dividend) by the packed decimal contents of operand 2 (divisor). The result (quotient and 
remainder) is stored in operand 1 (the receiving field) which is filled from right to left. 

Explicit Format: 

LABEL /'-,OPERATION 6 OPERAND 

[symbol] DP d, o, ,b, ) ,d2 (12 ,b2) 

Implicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] DP s1 (1 1
) ,s2 (1 2

) 

Operationa I Considerations: 

• Operand 1 contains both the quotient and the remainder after the DP instruction is 
executed. Since operand 1 is the receiving field for the result it consists of two side
by-side fields. The remainder with sign occupies the rightmost field, and the quotient 
with sign occupies the leftmost field. The leftmost byte of the quotient is the address 
specified by operand 1, and the rightmost byte of the remainder is the rightmost byte 
specified by operand 1. 

• The quotient with sign and the remainder with sign are determined algebraically. The 
sign of the remainder takes its sign value from the sign of the dividend. 

• The length of the dividend is restricted to 16 bytes and must have at least one leading 
zero in the leftmost portion. As a result, the most significant digit is always zero. The 
length of operand 1 should be sufficient to hold the quotient, the remainder, and their 
signs. 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-13 

• The divisor length is restricted to eight bytes. The operand 2 field, which holds the 
divisor, is unchanged after the DP instruction is executed. 

• The length of the quotient is restricted to 15 bytes. This length is equal to the number 
of bytes needed to hold the dividend with sign and the divisor with sign (operand 1 + 
operand 2). 

• The length of the remainder must be at least one byte. The length of the remainder is 
the length of the divisor and is therefore restricted to eight bytes. 

• If the result is larger than the length specified for operand 1, or if you attempt to 
divide by zero, a decimal divide program exception occurs. 

• If you want to reuse operand 1 for further mathematical calculations, you must move 
a packed field of zeros into the specified area to clear it of any leftover data. 

• In fixed-point instructions, it is your responsibility to keep track of assumed decimal 
points. To add or delete decimal places, you can multiply or divide by powers of 10. 
You can also use the move with offset (MVO) instruction (see 9.9) to drop any number 
of leftmost digits you specify. 

Example: 

LABEL 
1 

tiOPERAT I Ot~Li OPERAND 
10 16 

DP NUMl ,NUM2 

NUMl 
NUM2 

DC 
DC 

PL3'234' 
p•2• 

NUM 1 before execution 
of DP instruction: 

NUM2 before and after 
execution of DP instruction: 

NUM 1 after execution 
of DP instruction: 

leading 
zeros dividend 

I 0"&rr7fTD I 
divisor 
~ 

I 2 I c I 
quotient remainder 

1~1±1 

Packed 
decimal 
number 

Packed 
decimal 
number 

Two packed 
decimal 
numbers 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

9-14 

In this example, the packed decimal content of NUM 1 is divided by the packed decimal 
content of NUM2. The result (quotient and remainder) replaces NUM1. Note the dividend is 
a 3-byte field containing leading zeros. Its length is calculated by adding the actual 
number of bytes required to hold the data in NUM1 (two bytes) and NUM2 (one byte) 
which gives a total of three bytes for the dividend. Since the divisor is one byte, the 
remainder also is one byte. Note, the remainder with sign occupies the rightmost byte of 
NUM1 and the quotient with sign occupies the remaining (leftmost) portion of NUM1. 

Example: 

LABEL 
l 

tiOPERATIONl\ OPERAND 
10 16 

DP NUM3,NUM4 

NUM3 
NUM4 

DC 
DC 

PL4'646' 
P135 1 

NUM3 before execution 
of DP instruction: 

NUM4 before and after 
execution of DP instruction: 

NUM3 after execution 
of DP instruction: 

dividend 

leading zeros 

10!01 I 
6 I 4 

I 

Packed 
decimal 
number 

Packed 
decimal 
number 

Two packed 
decimal 
numbers 

In this example, the packed decimal content of NUM3 is divided by the packed decimal 
content of NUM4. The result is placed in NUM3. The length of operand 1 is calculated by 
adding the actual number of bytes required to hold the data in NUM3 (2 bytes) and NUM4 
(2 bytes) which gives a total of four bytes for the dividend. In this example there also is a 
remainder of 16 that occupies the same number of bytes as the divisor and is located in 
the rightmost portion of operand 1. 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

9.6. EDIT (ED) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
MNEM. HEX. (BYTES) 

ED DE SS 6 

Condition Codes 

• SET TO 0 

• SET TO 1 
• SET TO 2 

D SET TO 3 

SEE OPER. CONSIDERATIONS 

SPERRY UNIV AC OS/3 
ASSEMBLER 

9-15 

ED 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE 0 SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 

D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The edit (ED) instruction unpacks and modifies packed operand 2 data so that the printed 
output received is printed the way you want it displayed. This modification is controlled by 
the operand 1 edit pattern. 

Explicit Format: 

LABEL Li OPERATION Li OPERAND 

[symbol] ED 

Implicit Format: 

LABEL Li OPERATION Li OPERAND 

[symbol] ED 

The contents of operand 2 must be a packed decimal number. Operand 1 contains the edit 
pattern which consists of EBCDIC character codes. It is the pattern of EBCDIC character 
codes you specify that determines how results are displayed. The edit pattern can 
rearrange, delete, select, or insert any needed data, symbols, or characters in the operand 
2 data. The edited result (unpacked and modified operand 2 data) replaces the operand 1 
edit pattern. 

Operational Considerations: 

• 

• 

The length of the operand 1 edit pattern is almost always longer than operand 2 
because operand 1 is in unpacked format while operand 2 is in packed format . 

The edited result replaces operand 1, thus permanently destroying the edit pattern. If 
you intend to reuse the edit pattern, then it must be saved or moved prior to the 
execution of the ED instruction. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-16 

• The total number of significance starters and digit selectors in operand 1 must equal 
the total number of digits in operand 2. 

• If there is no significance starter in operand 1, all zeros in operand 2, and the fill 
character is hexadecimal 40, the resultant field is blank. 

• The condition code reflects only the last field edited or the field after the last field 
separator. 

• The S switch reflects the sign of the last byte in operand 2. A plus sign detected as 
the least significant digit turns the S switch off. A minus sign has no effect on the S 
switch, and a plus or minus sign detected as the most significant digit causes a data 
exception. 

• The sign of operand 2 is converted to hexadecimal F when edited, regardless of 
whether it is a hexadecimal C or F (positive), or a hexadecimal D (negative). 

9.6.1. The Edit Pattern 

The operand 1 edit pattern may consist of five types of pattern characters: 

• Fill character 

• Digit selector 

• Significance starter 

• Message character 

• Field separator 

The fill character in all cases, is the leftmost byte of operand 1. It is any EBCDIC character 
code you choose. The EBCDIC character code specified is the first byte of the edited result, 
and replaces (or fills in) certain pattern characters corresponding to any nonsignificant 
operand 2 digits. (The significant digits are the digits 1 thru 9. Zero is the only 
nonsignificant digit but becomes significant when it follows a significant digit or the 
significance starter (hexadecimal 21 )). The edited result replaces the operand 1 edit 
pattern. Some of the more commonly used fill characters are hexadecimal 40 (blank), 
hexadecimal 5B (dollar sign), and hexadecimal 5C (asterisk). 

The digit selector is the EBCDIC character code 20. For every digit in operand 2, there 
must be a corresponding hexadecimal 20 in the operand 1 edit pattern. Every significant 
digit in operand 2 replaces its corresponding digit selector in operand 1. If there is a 
nonsignificant digit in operand 2, the fill character replaces its corresponding digit selector . 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

Example: 

LABEL 
1 

t.OPERATI OIL\ 
10 16 

ED PATTERN 1,ANSWER1 

PATTERNl DC 
ANSWERl DC 

X1 4f/J2f/J2f/J2f/J 1 

p 1253 I 

PATIERN1 before execution 
of ED instruction: 

ANSWER1 before and after 
execution of ED instruction: 

PATTERN 1 after execution of 
ED instruction: 

Printed edit result looks 
like this: 

fill 
character 

,,__A----.._ 

4 I 0 

I 

4 I 

OPERAND 

digit selectors 

253 

9-17 

Edit pattern 

Packed decimal number 

Edited result 

Printed output 

Note that in PATIERN1 there is a corresponding hexadecimal 20 for every digit in 
ANSWER1. The edit pattern (operand 1) is examined one byte at a time and operand 2 is 
examined one digit at a time. The fill character remains as the first byte of the edit result 
(operand 1 ), and the succeeding pattern characters (in this example, the digit selectors) are 
replaced by unpacked operand 2 digits. 

Example: 

ED 

PATTERN2 DC 
ANSWER2 DC 

PATTERN2,ANSWER2 

X 1 4f/J2f/J202f/J I 

p 1 26 1 



UP-8061 Rev. 3 

PATTERN2 before execution 
of ED instruction: 

ANSWER2 before and after 
execution of ED instruction: 

PATTERN2 after execution 
of ED instruction: 

Printed edit result looks 
like this: 

SPERRY UNIV AC OS/3 
ASSEMBLER 

fill 

character digit selectors 

26 

9-18 

Edit pattern 

Packed decimai number 

Edited result 

Printed output 

In this example, note that ANSWER2 is padded to the left with a zero. Zero is considered a 
nonsignificant digit because it precedes any significant digits. Therefore, the fill character 
hexadecimal 40 replaces the second byte of the edit result, because zero corresponds to 
the first digit selector. The other packed operand 2 digits are unpacked and replace the 
remaining digit selectors. This method of changing lead zeros to blanks is called zero 
suppression. 

The significance starter is the EBCDIC character code 21. You need to specify only one 
hexadecimal 21 for each field to be edited. Every hexadecimal 21 must correspond to a 
digit in operand 2. When a hexadecimal 21 is examined in an edit pattern, it is replaced 
with its corresponding digit in operand 2 and then turns on the significance start switch (S 
switch). The significance start switch is an internal switch that when turned on forces all 
of the following pattern characters either to remain or be replaced in the edit result. In 
effect, the only conditions that force the S switch on are a hexadecimal 21 or a significant 
digit. On the other hand, the S switch is turned off after a digit in operand 2 is examined 
whose sign is positive and located in the rightmost four bit positions of a field. A negative 
sign does not affect the S switch. Whether the sign is positive or negative, all results are 
printed as positive values. 

Example: 

LABEL 
1 

~OPERATION.ti 
10 16 

ED PATTERN3,ANSWER3 

PATTERN3 DC 
ANSWER3 DC 

X '4f/J212f/J2(}2f62f/J I 

PL3'248 1 

OPERAND 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

ANSWER3 before and after 
execution of ED instruction: 

PATIERN3 after execution 
of ED instruction: 

Printed edit result looks 
like this: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

fill 
character 

significance 
starter 

9-19 

digit selectors 

Printed output 

The fill character remains as the first byte of the edit result, and also replaces the 
significance starter because its corresponding digit in ANSWER3 is a nonsignificant zero. 
Now, the S switch is turned on and the second zero in ANSWER3 becomes significant. It 
replaces its corresponding digit selector with a zero. The succeeding operand 2 digits are 
unpacked and replace the remaining digit selectors . 

The message character can be any EBCDIC character code except hexadecimal 20, 21, or 
22. If the message character follows a significant digit or the significance start switch 
(hexadecimal 21 ), the message character remains as part of the edited result (operand 1 ). 
On the other hand, if the message character preceeds a significant digit or a hexadecimal 
21, it is replaced by the fill character. Some of the most commonly used message 
characters are hexadecimal 68 (comma) and hexadecimal 48 (decimal point). 

Example: 

i\OPERATI ONA LABEL 
1 10 16 

ED 

PATTERN4 DC 
ANSWER4 DC 

PATTERN4,ANSWER4 

X15B20206B202l211l4B2020 1 

P1 1326011l 1 

OPERAND 



UP-8061 Rev. 3 

PA TIERN4 before execution 
of ED instruction: 

ANSWER4 before 
and after 
execution of 
ED instruction: 

PA TIERN4 after 
execution of ED 
instruction: 

Printed edit result 
like this: 

fill digit 

SPERRY UNIV AC OS/3 
ASSEMBLER 

message digit significance digit 
character starter selector 

~ 

$ $ 3 6 0 0 

9-20 

message digit 

Printed output 

In this example, hexadecimal 58 (dollar sign) is used as the fill character. It remains as the 
first byte of the edited result and also replaces the second byte because the second byte's 
digit selector corresponds to a nonsignificant zero. The digit 1 in ANSWER4 replaces the 
third byte and the message character hexadecimal 68 remains because it follows a 
significant digit. The digits 3, 2, and 6 in operand 2 replace their corresponding pattern 
characters, the message character hexadecimal 48 remains and the trailing zeros in 
ANSWER4 replace their corresponding pattern characters. 

Note the position of the significance starter hexadecimal 21. In this example, the S switch 
is turned on by the first significant digit. Therefore, when this hexadecimal 21 is 
examined, it is replaced with its corresponding digit in ANSWER4. Now, suppose the edit 
pattern remains the same and operand 2 is changed to look like this example: 

Example: 

LABEL 
1 

tiOPERATIONL\ OPERAND 
10 16 

-~-----------------------------
ED 

PATTERNS DC 
ANSWERS DC 

PATTERNS,ANSWERS 

X'SB20206B2021204B2020' 
PL4'75' 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 

PATIERN5 before execution 
of ED instruction: 

ANSWER5 before 
and after 
execution of 
ED instruction: 

PATIERN5 after 
execution of ED 
instruction: 

Printed edit result looks 
like this: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

message digit significance 
character selector starter 

~ ~ ~ 

$ $ $ $ $ 0 

9-21 

digit message digit 

selector character selector 
~ 

2 I 0 

Packed decimal number 

Printed output 

The significance starter (hexadecimal 21) is placed in the sixth byte of PATTERN5 so that 
the S switch is turned on to force the display of bytes 7 through 10. As a result, the least 
significant dollar integer, the decimal point, and the cents are always represented no 
matter how small or large the value of operand 2 is. 

The field separator is the EBCDIC character code 22. It is used to separate two or more 
contiguous fields. These fields must be packed decimal numbers in operand 2 and located 
in consecutive order in main storage. The fill character you specify replaces all field 
separators. As soon as a hexadecimal 22 is examined, the S switch is turned off and the 
field separator is replaced with the fill character. 

Example: 

AOPERATIONA OPERAND LABEL 
1 10 16 

------·-----------------
ED 

PATTERN6 DC 
ANS\.JER6 DC 

PATTERN6 ,ANSWER6 

X'40202120222220212022222148202~' 
p I l 23C000C2(/j(/jC I 



UP-8061 Rev. 3 

PATTERN6 before execution 
of ED instruction: 

fill 
diaracter 

< I 0 

ANSWER6 before 
and after 
execution of 
ED instruction: 

PATTERN6 after 

d191t sigmf1cance d191t 

SPERRY UNIVAC OS/3 
ASSEMBLER 

field digit sogmhcance d191t 

9-22 

fteld significance rTle'$S.a99 

execution of '--'<--'----'<~--+~--<r~-+-~-.-~-+--~-+-~-+-~-+--~+---~+--~,__.__,~~.........,.,~., ... 

ED instruction: 

Printed edit result 
looks like this: 

In this example, ANSWER6 contains three packed contiguous fields each separated by two 
field separators (hexadecimal 22). Since the fill character specified is hexadecimal 40, that 
character is used as the fill character for all fields, and also replaces each field separator 
in the edit pattern. Remember that the S switch is turned off as soon as a hexadecimal 22 
is examined. This causes any leading zeros in succeeding fields to be nonsignificant digits. 

9.6.2. The Resulting Condition Code 

All operand 2 digits examined are tested for condition code 0. The sign of the last packed 
field edited, and whether or not all the digits in that field are zeros, are recorded in the 
condition code setting when execution of the ED instruction is completed. 

The condition code is set to 0 when: 

• all digits in the last field edited in operand 2 are zeros; 

• the edit pattern has no digit selectors or significance starters causing operand 2 digits 
not to be examined; 

• the last character in the edit pattern is a field separator; and 

• the edit pattern has no digit selectors or significance starters after the last field 
separator. 

The condition code is set to 1 when: 

• the last field edited is not all zeros but the S switch is on. This indicates the value of 
the last field edited is less than zero, because a negative sign does not affect the S 
switch. 

• 

• 

• 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

9-23 

• The condition code is set to 2 when: 

• 

• 

• the last field edited is not all zeros but the S switch is off. Thfs indicates the value of 
the last field edited is greater than zero, because a positive sign turns the S switch 
off. 

9.6.3. Examples of General Usage 

The following examples are more commonly used and can be applied in practical 
situations. The first example shows how a nonblank fill character is used. 

Example: 

AOPERAT I ON!I LABEL 
1 10 16 

ED 

PATTERN7 DC 
ANSWER7 DC 

PATTERN7 before 
execution of ED 
instruction: 

PATTERN7 ,ANSWER7 

x•sc202ra202020• 
P1 12345 1 

fill 
character 

ANSWER7 before and 
after execution of 
ED instruction: 

PA TTERN7 after 
execution of ED 
instruction: 

Printed edit result 
looks like this: 

OPERAND 

digit selectors 

Edit 
pattern 

Packed 
decimal 
number 

Edited 
result 

2 3 4 5 
Printer 
output 

All results, whether positive or negative, are printed as positive results. By using message 
characters in the edit pattern, you can indicate whether a field in operand 2 is positive or 
negative. These message characters should be the last pattern characters in the edit 
pattern for each corresponding field in operand 2. If the value of operand 2 is negative, 
message characters placed to the right of the rightmost digit selector remain as part of the 
edit result. Since a negative sign in the rightmost four bit positions does not affect the S 
switch, the message characters become significant. However, if the value of operand 2 is 
positive, the message characters are replaced by the fill character. 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-24 

Since a pos1t1ve sign in the rightmost four bit pos1t1ons turns the S switch off, the 
message characters become nonsignificant. You can specify any character or any number 
of characters to indicate a negative number, but the most commonly used are hexadecimal 
C3D9 (CR), hexadecimal C3C2 (DB), and hexadecimal 60 (-). The following example 
illustrates editing a negative number using the minus sign. 

Example: 

LABEL 
1 

AOPERATI Ol~A 
10 16 

ED 

PATTERN9 DC 
ANSWER9 DC 

PATIERN9 before 
execution of ED 
instruction: 

ANSWER9 before 
and after execution 
of ED instruction: 

PATIERN9 after 
execution of ED 
instruction: 

Printed edit result 
looks like this: 

fill 

PATTERN9,ANSWER9 

X14S2S2S2S2S2S6S 1 

P'-1234 1 

character 
,.-A--. 

4 I 0 

0 

4 I 0 

OPERAND 

message 
digit selectors character 

~ 

6 I 0 
Edit 
pattern 

Packed 
2 3 4 D decimal 

number 

Edited 
result 

2 3 4 
Printed 
output 

The following example illustrates date-field editing. Here, message characters are inserted 
into a five- or seven-digit field. The most commonly used message characters for a date 
field are hexadecimal 61 (slash), hexadecimal 60 (hyphen), and hexadecimal 40 (blank). 

Example: 

ED PATTERNA,ANS\./ERA 

PATTERNA DC 
ANSWERA DC 

X140212061202S612020' 
p 1 122576' 

• 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

PA TIER NA before 
execution of ED 
instruction: 

fill digit significance digit message digit message 
character selector starter starter character selector 
~~~~~~ 

ANSWERA before and
after execution of ED
instruction:

PA TIER NA after
execution of ED
instruction:

Printed edit result looks
like this:

9.6.4. Summary

6

9-25

digit

Prmted

output

Table 9-1 summarizes and combines the information in this section to provide a clear
and concise picture of the ED instruction and its functions .

Table 9-1. Edit Instruction Operation

Previous Decimal Sign of Least Resulting Resulting
Pattern (Operand 11 EBCDIC Switch (Operand 21 Significant Byte (Operand 11 Switch

Character Code Status Digit (Operand 2) Character Status

Fill character Any Off Not examined * Fill character Off

Digit selector 20 Off 0 * Fill character Off
Off 1-9 * Digit On
Off 1-9 Positive Digit Off
Off 1-9 Negative Digit On
On 0 * Digit On
On 1-9 * Digit On
On 1-9 Positive Digit Off
On 1-9 Negative Digit On

Significance starter 21 Off 0 * Fill character On
Off 1-9 * Digit On
On 0 * Digit On
On 1-9 * Digit On

Message character Any except Off Not examined * Fill character' Off
20,21,22 Off Not examined Positive Fill character Off

On Not examined * Message character On
On Not examined Positive Fill character Off
On Not examined Negative Message character On

Field separator 22 Off Not examined * Fill character Off
On Not examined * Fill character Off

*Not applicable

UP-8061 Rev. 3

MVC

SPERRY UNIVAC OS/3
ASSEMBLER

9-26

9.7. MOVE CHARACTER (MVC)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MVC 02 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
OtF RESULT>O,SETT02

0 01F OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The move character (MVC) instruction moves the contents of one area in main storage
(operand 2) into another area in main storage (operand 1). The length of operand 1
determines the number of bytes moved.

Explicit Format:

LABEL 60PERATION6 OPERAND

[symbol] MVC

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] MVC

The move character instruction moves data referenced by operand 2 (the sending field) to
the location referenced by operand 1 (the receiving field). Data is moved a byte at a time
from left to right. The length of operand 1 whether implied or explicit determines the
number of bytes to be moved.

Operationa I Considerations:

• The instruction moves one byte at a time, processing from left to right through each
field.

• The length of operand 1 determines the number of bytes moved. It can be either
implied or explicit.

• When using operands with overlapping bytes, the results are often unpredictable.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-27

• One character can be propagated through an entire field if the sending field begins
with the first byte of a field and the receiving field begins with the second byte of that
same field.

• Any type of data can be specified in an MVC instruction.

Example:

LABEL
1

t\OPERATIONt\
10 16

MVC RECEIVEl ,SENDl

RECEIVEl DC CL5'DIGIT'
SENDl DC CL5'SALES'

RECEIVE1 before
execution of MVC
instruction:

SEND1 before and after
execution of MVC
instruction:

RECEIVE1 after
execution of MVC
instruction:

I c

D

: 4

s
T

E I 2

i
s
T

E I 2
I

I c 9

A

T
C I 1

I

I
A

T
C I 1

I

OPERAND

G

c 7 c 9

L E

T T
D ~ 3 C I 5

I

I I
L E

T T

D : 3 c : 5

T

E 3

s
T

E I 2
I

T
s
T

E : 2

Alpha characters

Hexadecimal
(EBCDIC mode)

Alpha characters

Hexadecimal
(EBCDIC mode)

Alpha characters

Hexadecimal
(EBCDIC mode)

In this example, the content of operand 2 is moved into operand 1. Since it is an even
move (a 5-byte field to a 5-byte field), the content of SEND1 completely overlays the
content of RECEIVE1. Note that no length is specified for operand 1 and, as a result, the
implied length is applied.

Example:

MVC

RECEIVE2 DC
SEND2 DC

RECEIVE2(5),SEND2

CL7'JANUARY'
CL5'MARCH'

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-28

RECEIVE2 before
execution of MVC
instruction: ~D-J -t-c _A ----+--N -+-E_u_4--11~c-A--+1-D-R_9 -+---y --181 ::::::i:::te~

D 5 E (EBCDIC mode)
L-~~.__~~-L-~~~~~~~~~~~~~~~----

SEND2 before and aft
execution of MVC
instruction:

er

D

M

4 c

A R

1 D 9

c H

c 3 c 8

operand 1
data

Alpha characters

Hexadecimal
(EBCDIC mode) Z77"Z 7- leftover

/~

RECEIVE2 after
execution of MVC
instruction:

D

M A

4 c

R c

1 D 9 c

H R

3 c 8 D

y

9 E 8

Alpha characters

Hexadecimal
(EBCDIC mode)

In the preceding example, an explicit length of 5 is specified for operand 1. The 5
determines that RECEIVE2 will accept only five bytes from SEND2. The five bytes from
SEND2 are moved to RECEIVE2 filling operand 1 from left to right. As you can see, five
bytes of SEND2 (MARCH) are moved to the first five bytes of RECEIVE2 (JANUA). Note that
the last two bytes of RECEIVE2 still remain.

Example:

LABEL
1

l\OPERATI ON/\
10 16

MVC TOTAL(2) ,ANSWER+l

PL4'~'
PL3' 128 I

OPERAND

TOTAL DC
ANSWER DC
HEADING DC CL19'TOTAL SALES FOR MAY'

TOTAL before execution
of MVC instruction:

ANSWER before and after
execution of MVC instruction:

TOTAL after execution
of MVC instruction:

Packed decimal
number

Packed decimal
number

Two packed
decimal numbers

Since the concerned number occupies the second and third bytes of ANSWER, relative
addressing (ANSWER + 1) is used to address the second byte, and avoid the first byte of
zeros. Note the number of bytes moved is restricted to two by using an explicit length in
operand 1. If an explicit length is not specified, four bytes would be moved to TOTAL since
it is a 4-byte field. Bytes two and three of operand 2, plus the first two bytes of data
contiguous to operand 2 (in this case the letters TO of HEADING), would be moved to
TOTAL.

•

•

•

•

•

•

UP-8061 Rev. 3

Example:

SPERRY UNIVAC OS/3
ASSEMBLER

LABEL
1

AOPERAT I ON/\ OPERAND
10 16

MVC FIELD+l(3) ,FIELD

FIELD DC CL4'1234'

FIELD before execution
of MVC instruction:

FIELD after byte 1 is
moved:

FIELD after byte 2 is
moved:

FIELD after byte 3 is
moved:

F

FIELD+1

F

F

F

2 F 3 F

F 3 F

F F

final result

4

4

4

Hexadecimal
(EBCDIC mode)

Hexadecimal
(EBCDIC mode)

Hexadecimal
(EBCDIC mode)

Hexadecimal
(EBCDIC mode)

9-29

As indicated, F1 is propagated through the entire field. This can be done using any
character. If a hexadecimal 40 is used, the resultant field is EBCDIC blanks. If a
hexadecimal FO is used, the resultant field is EBCDIC zeros. To propagate one character
through an entire field, the sending field (operand 2) must begin with the first byte of that
field and the receiving field (operand 1) must begin with the second byte of that same
field. The move is processed from left to right. When operands 1 and 2 overlap, the end
result is obtained by processing the operands one byte at a time, and putting each result
byte immediately after the byte just obtained .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-30

MVN •

9.8. MOVE NUMERICS (MVN)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MVN D1 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 0 OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The move numerics (MVN) instruction moves the low order four bits (digit portion) of each
byte in operand 2 into the corresponding low order four bits of each byte in operand 1. The
high order four bits (zone portion) of each byte in operand 1 remain unchanged. This
instruction operates from left to right.

Explicit Format:

LABEL Li OPERATION Li OPERAND

[symbol] MVN

Implicit Format

LABEL Li OPERATION Li OPERAND

[symbol] MVN

Operational Considerations:

• Any type of data can be specified in both operands 1 and 2.

• The condition code remains unchanged.

• The high order bit positions of each byte in operand 1 remain unchanged.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-31

• Example:

•

•

LABEL
1

AOPERATIOUA OPERAND
10 16

MVN TOTAL1+2(3),SUBTOT1

TOTALl DC
SUBTOTl DC

TOT AL 1 before
execution of MVN
instruction:

SUBTOT1 before and
after execution of
MVN instruction:

TOTAL1 after
execution of MVN
instruction:

ZL5 I 12123 I

ZL3'345'

TOTAL1+2-----

I -r

11111"0001 1111 :0001 111110010

'.
F 11 F I 1 Fl 2

I

1111 I 0011 000010100 1111 ,0100

111110001 1111,0010 1111 I 0011
I

F I 1 F I 2 F I 3

111110010

F l 2

1111 :0100

F I 4

1111 : 0011

T
F : 3

1111 :0101

F I 5

Binary
hexadecimal
(EBCDIC mode)

Binary
hexadecimal
(EBCDIC mode)

Binary
hexadecimal
(EBCDIC mode)

In this example, the low order four bit positions of each byte in SUBTOT1 are moved into
the low order four bit positions of bytes 3, 4, and 5 of TOTAL 1. The high order bit positions
of each byte in TOTAL 1 remain unchanged.

Example:

1. .AP
2. MVN

MVC
3. MVC

RESULT .DC
BUFFER OS
SPACES DC

RESULT,=P'5f6'
RESULT+2(1),RESULT+3
BUFFER, SPACES
BUFFER(3),RESULT

PL4' 1234567 I

CLS
CL5' I

UP-8061 Rev. 3

RESULT before execution I 1 l of AP instruction:

Operand 2 before and after I 0 l execution of AP instruction:

RESULT after execution I 1 1 of AP instruction:

RESULT before execution
of MVN instruction: 1 I

I 1
RESULT after execution i of MVN instruction:

SPERRY UNIVAC OS/3
ASSEMBLER

2 I 3 l 4 I 5

5 I 0 c I
2 3 4 6

l 6

RESULT+2 (operand 1)

7 l c I

7 ! c I

RESULT+3 (operand 21

2 3 I 4 6 ! 1

2 I 3 ; 4 I 6 7 : c

9-32

Packed decimal number

Packed decimal literal

Packed decimal number

Packed decimal number

Packed decimal number

In this example, the MVN instruction is used in rounding numbers. In the first line of code,
the literal fifty (50) is added to the contents of RESULT to round the number to the first
two decimal places.

Then, the low order four bits of byte 4 in RESULT are moved to the low order four bits of
byte 3 in RESULT. When the MVN instruction is completed, the sign is moved to the right
of the first two decimal places that were just rounded. The last byte of RESULT is ignored
when the MVC instruction is executed. The location named BUFFER contains the final
result.

blanks

BUFFER before execution
I 4 : I : I 4 I 0 I l Hexadecimal

of MVC instruction: 0 4 0 0 4 4 0
(EBCDIC mode)

blank

~

BUFFER after execution I 1 i 2 I 3 ! 4 6 c I 4 0 I of MVC instruction:
Packed decimal
number

•

•

•

•
UP-8061 Rev. 3 SPERRY UNIV AC OS/3

ASSEMBLER
9-33

MVO

9.9. MOVE WITH OFFSET {MVO)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MVO F1 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 0
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

QIF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED 0 NONE

The move with offset (MVO) instruction moves the contents of operand 2 into operand 1
offsetting the data one half-byte to the left during the move.

• Explicit Format:

•

LABEL ,0, OPERATION ,0, OPERAND

[symbol] MVO

Implicit Format:

LABEL ,0, OPERATION ,0, OPERAND

[symbol] MVO

The MVO instruction operates from right to left. Data from operand 2 (the sending field) is
moved into operand 1 (the receiving field) but offset one half-byte to the left. The low order
four bits of the rightmost byte in the receiving field remain unchanged. If operand 2 data
does not completely fill operand 1, the leftmost unfilled bytes of operand 1 are padded
with zeros. However, if the operand 2 field is larger than the operand 1 field, the leftmost
bytes of operand 2 are truncated. The MVO instruction is most commonly used in
rounding packed decimal numbers to an odd number of digits.

Operationa I Considerations:

• Usually, the MVO instruction operates on packed decimal fields; however, unpacked
fields can be specified.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

• Padding of zeros to the left and truncation to the left can occur .

• Condition code remains unchanged.

Example:

LABEL
1

FIELDl
Fl ELD2

tiOPERATIONA
10 16

MVO FIELD1,FIELD2

DC
DC

XL4 1 FFFFFFFF 1

XL3'AABBCC'

FIELD 1 before execution
of MVO instruction:

111111111
I

F I F
I

OPERAND

1111i1111
I

111111111 1111, 1111

T T T
F l F F i F F : F

FIELD2 before and after
execution of MVO instruction:

1010T1010
I

101111011
I

110011100

FIELD1 after execution
of MVO instruction:

I
.,.

C I C A_!_ A B : B I

ooooi 1010 101oi 1011 1011i 1100 1100 }1111

0 I A A I B
I

C I F
l ..1 B : C I

9-34

Binary
hexadecimal
characters

Binary
hexadecimal
characters

Binary

hexadecimal
characters

In this example, the content of FIELD2 is moved (starting from right to left) into FIELD1
offset by one half-byte to the left. The low order four bits of the rightmost byte of FIELD1
(1111, or hexadecimal F) remain unchanged.

Each half-byte of FIELD2 fills its corresponding half-byte of FIELD1. The high order four
bits of the leftmost byte of FIELD1 are padded with binary zeros since the operand 1 field
is larger than operand 2.

Example:

MVO PRICE,PRICE(2)

PRICE DC p '37254'

•

•

•

•

UP-8061 Rev. 3

PRICE before execution
of MVO instruction:

PRICE after execution
of MVO instruction:

SPERRY UNIV AC OS/3
ASSEMBLER

operand 1 ------------operand 2 -----------
4 I C

5 I C

9-35

Packed decimal number

In this example, the MVO instruction is used in rounding packed decimal numbers. An
explicit length is specified for operand 2 and both operands have overlapping bytes. If all
decimal places are needed in the final result, then this rounding technique is not useful.
The purpose of this MVO instruction is to move the final result (dollars and cents) next to
the sign so that it can be edited and printed. Note the decimal number 4 in the high order
four bits of the rightmost byte of operand 1 is replaced with the decimal number 5 and
binary zeros are padded in the high order four bits of the leftmost byte of operand 1 .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-36

MVZ •

9.10. MOVE ZONES (MVZ)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

MVZ 03 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
0 IF RESULT ~ 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O.SETT02 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE
7

The move zones (MVZ) instruction moves the high order four bits (zone portion) of each
byte in operand 2 into the corresponding h~h order four bits of each byte in operand 1.

Explicit Format:

LABEL ,0, OPERATION ,0, OPERAND

[symbol] MVZ

Implicit Format:

LABEL ,0, OPERATION ,0, OPERAND

[symbol] MVZ

This instruction operates from left to right. The low order four bits of each byte in operand
1 remain unchanged. If the operand 2 field is larger than operand 1, the zone portions of
the leftmost bytes of operand 2 are truncated. On the other hand, if the operand 1 field is
larger than operand 2, the zone portions of the leftmost bytes in operand 1 remain
unchanged.

Operationa I Considerations:

• The contents of both operands should contain zoned numeric fields; however, any
type of data can be specified.

• The low order four bits of each byte in operand 1 remain unchanged.

• Operands 1 and 2 can have overlapping bytes.

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

• The condition code remains unchanged .

Example:

LABEL
1

NUMPOS
NUMNEG

/\OPERATION~

10 16

MVZ NUMPOS,NUMNEG

DC
DC

ZL3'456'
XL3'F0F0D0'

NUMPOS before execution
of MVZ instruction:

1111T0100

F I 4

OPERAND

111110101
T .

110010110
I

F l 5 c I
6 I

Binary zoned
decimal number
(positive)

9-37

In this example, the zone portions of each byte in NUMNEG are moved into the
corresponding zone portions of each byte in NUMPOS. As a result, the sign is changed
from positive to negative by moving a hexadecimal D into the high order four bits of the
rightmost byte of NUMPOS. The other two zone portions are replaced with the same
hexadecimal value .

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

9-38

MP •

9.11. MULTIPLY DECIMAL "{MP)

General Possible Program Exceptions

OBJECT • ADDRESSll'lG • PROTECTION
OPCODE FORMAT INST.

• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE
TYPE LGTH.

• .SPECIFICATION: MNEM. HEX. (BYTES) D DECIMAL DIVIDE

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

MP FC SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
D IF RESULT= 0, SET TO 0

D FIXED-POINT OVERFLOW BOUNDARY
D 1F RESULT <o. SET To 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O,SETT02
D DI F OVERFLOW, SET TO 3 .0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The multiply decimal (MP) instruction algebraically multiplies the packed decimal contents
of operand 2 (multiplicand) by the packed decimal contents of operand 1 (multiplier) and
stores the result (product) in operand 1. The receiving field (operand 1) is filled from right
to left.

Explicit Format:

LABEL £:.OPERATION£:. OPERAND

[symbol] MP

Implicit Format:

LABEL £:.OPERATION£:. OPERAND

[symbol] MP

Because the result replaces operand 1, you must ensure that the operand 1 field is large
enough to hold the product. This is determined by adding the number of bytes required to
hold the multiplicand to the number of bytes required to hold the multiplier.

length of
multiplicand

+ length of
multiplier

length of
operand 1 (product)

If you use this rule, the multiplicand will have at least as many high order zeros as the
number of digits in the multiplier. These high order zeros prevent overflow from occurring
in the final result.

The multiplier (operand 2) can be up to 8 bytes long which can consist of 15 digits and a
sign. The resultant product (operand 1) can be up to 16 bytes long which can consist of 31
digits and a sign.

•

•

•

•

•

UP-8061 Rev. 3

Example:

LABEL
1

!IOPERATI ONA
10 16

MP HOURS,RATE

HOURS
RATE

DC
DC

PL4'4(6 1

PL2 1 Sf6(6 1

HOURS before execution
of MP instruction:

RATE before and after
execution of MP instruction:

HOURS after execution
of MP instruction:

I 0

I 0

:

l

SPERRY UNIV AC OS/3
ASSEMBLER

OPERAND

0 I 0 ! 0 0 l 4 I
I 5 ! 0 0 : c I

Lassumed decimal point

0 I 2 l 0 I 0 : 0 I

0 ! c

•
0 ! c

L assumed decimal point

9-39

Packed decimal number

Packed decimal number

Packed decimal number

In this example, the length of operand 1 is determined by adding the number of bytes
required to hold the packed decimal 40 (2 bytes) to the number of bytes required to hold
the packed decimal 500 (2 bytes) which gives the total of 4 bytes. Then the multiplication
operation takes place operating from right to left. The product replaces HOURS and the
sign is determined algebraically. (In this example, positive x positive = positive.)

Operationa I Considerations:

• The operand 1 field must be large enough to hold the product.

• The operand 2 field is limited to 8 bytes in length and the operand 1 field is limited to
16 bytes in length.

• Since a symbolic name references the leftmost or high order portion of a location in
main storage, overlapping bytes can exist in the rightmost bytes only.

If overlapping bytes exist in the leftmost portion, the number of bytes required to hold the
multiplicand and the multiplier will be larger than the receiving field.

• The condition code remains unchanged.

• Multiplication by powers of 1 O adds decimal places to a specified value .

'.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-40

PACK •

9.12. PACK DECIMAL (PACK)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

PACK F2 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
0 IF RESULT= 0, SET TO 0

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O,SETT02

0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The pack decimal (PACK) instruction converts data in operand 2 from unpacked format to
packed format. (See 9.1.) The result replaces operand 1.

Explicit Format:

LABEL /':,OPERATION/':, OPERAND

[symbol] PACK

Implicit Format:

LABEL /':,OPERATION/':, OPERAND

[symbol] PACK

Any data that is to be used in decimal arithmetic must be stored in packed decimal format
before any arithmetic operations are performed. After your calculations are processed,
packed data must be changed back to unpacked (zoned decimal) format to be sent to the
printer or any other character sensitive device. Remember, when data is input from an
external device (i.e., card reader), the data is stored in zoned decimal format. Operand 2,
the sending field, is defined as a character type or zoned type field. Operand 1, the
receiving field, is defined as a packed field and should contain enough bytes to receive all
digits (plus the sign) from operand 2.

The formula for computing the number of bytes required to receive unpacked operand 2
data is:

(Number of bytes of operand 2) + 1
2

number of bytes required for
packed operand 1 field (round
upward to the nearest byte)

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-41

When the PACK instruction is executed, all zones in operand 2 are ignored except the
zone in the rightmost byte. That zone portion (the sign) and the digit portion are reversed
and placed in the rightmost byte of operand 1. Each digit in operand 2 is placed in operand
1 next to the rightmost byte, filling in from right to left. Any unfilled bytes of half-bytes
that are part of the specified length for operand 1 are zero-filled. Any unfilled bytes that
are not part of the specified length for operand 1 remain unchanged.

Operationa I Considerations:

• Operand 2 data should be in zoned decimal format.

• Operand 1 should contain enough bytes to receive all digits (plus the sign) from
operand 2.

• This instruction operates from right to left.

• Any unfilled bytes or half-bytes that are part of the specified length for operand 1 are
zero-filled.

• Any unfilled bytes that are not part of the specified length for operand 1 remain the
same.

• Specification of a length attribute for operands 1 and 2 is optional.

• The condition code remains unchanged .

Example:

LABEL
1

/\OPERATION/\
10 16

PACK AMTP(3),AMT(4)

AMT
AMTP

DC
DC

ZL4'1234'
PL3'0'

AMTP before execution I 0 of PACK instruction:

AMT before and after
execution of PACK I F l 1

instruction:

AMTP after execution zero lo
of PACK instruction:

filled

0

F

l 1

I
I
I
I

I

OPERAND

0 0 0 c Packed decimal number

I l 4
Zoned or unpacked

2 F 3 c decimal number

2 ! 3 4 l c I Packed decimal number

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-42

In this example, the content of AMT (a 4-byte zoned decimal number) is packed into AMTP •
(a 3-byte packed field of zeros). The sign and digit portions of the rightmost byte of AMT
are reversed and placed in the rightmost byte of AMTP. Then the next digit (3) is placed
next to the left of the rightmost byte. Then digit 2 is placed to the left of digit 3 and digit 1
is placed to the left of digit 2. The high order four bits of the leftmost byte are zero filled.
As you can see in this example, two decimal digits occupy a single byte with the exception
of the rightmost (sign) byte. Note that a length attribute is specified for both operands in
the examples. The length attribute can be omitted but it is suggested it be included for
clarity.

Example:

LABEL
1

tiOPE RAT I ON/\ OPERAND
10 16

PACK AMOUNTIN+1(2) ,AMOUNTIN(3)

AMOUNTIN DC C1768 1

AMOUNTIN before execution
of PACK instruction:

AMOUNTIN during execution
of PACK instruction:

AMOUNTIN after execution
of PACK instruction:

F I 7

F I 7

I
F I 7

I

I
F I 7

I

AMOUNTIN+1

7 6

Zoned decimal number

Zoned decimal number

Zoned decimal number

Part zoned and part
packed decimal number

This example shows that the content of AMOUNTIN (a 3-byte zoned decimal field) is
packed into part of itself (AMOUNTIN+1, a 2-byte zoned decimal field). The zone portion (F)
and digit portion (8) of the rightmost byte of AMOUNTIN are reversed and placed in the
rightmost byte of AMOUNTIN+1. The digits 6 and 7 are placed to the left of the rightmost
byte, 6 in the low order four bits and 7 in the high order four bits. Because the leftmost
byte of AMOUNTIN is not part of the resultant field, that byte remains unchanged. Since
AMOUNTIN is now a part zoned, part packed field, you should move the packed decimal
number to another field before performing any mathematical calculations. Note that
packing a number into itself is not considered good practice since results are often
unpredictable.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-43

• Example:

•

•

LABEL
1

MPERATI ON/\
10 16

PACK INVAMT(5) ,INVAMT(5)

INVAMT DC ZLS'-52800 1

INVAMT before execution
of PACK instruction:

INVAMT during
execution of
PACK instruction:

0 0 0 0

OPERAND

5 I 2
I

F

8

0

0

Zoned decimal
number

5 2 8 : 0 0 1 D Packed decimal INVAMT after execution
of PACK instruction: ~___._~___._~_._~_._~_._~..Jo...~~''----''----''~~ number

The content of INVAMT (a 5-byte zoned field) is packed into itself. The zone portion (D) and
the digit portion (0) of the rightmost byte are reversed and returned to the same byte. The
remaining zones are ignored. The remaining digits are placed in INVAMT starting next to
the rightmost byte and filling each half-byte from right to left. Because the full length of
operand 1 is specified, the remaining unfilled bytes are zero-filled .

UP-8061 Rev. 3

SP

SPERRY UNIVAC OS/3
ASSEMBLER

9-44

9.13. SUBTRACT DECIMAL (SP)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

• DECIMAi: OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SP FB SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DI JIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The subtract decimal (SP) instruction algebraically subtracts the packed decimal contents
of operand 2 from the packed decimal contents of operand 1 and stores the result in
operand 1.

Explicit Format:

LABEL /::,OPERATION/::, OPERAND

[symbol] SP

Implicit Format:

LABEL /::,OPERATION/::, OPERAND

[symbol] SP

Operand 1 (minuend) and operand 2 (subtrahend) must be in packed decimal format. The
operand 1 field should be equal and in most cases larger than the size of operand 2. If
operand 1 is too short to contain the result (difference), an overflow condition occurs.
Subtraction is algebraic, concerning the signs and digits of both operands. If the sign of
operand 2 is negative, it is treated as positive; if positive, it is treated as negative. Then,
both operands are added together and the result is placed in operand 1. The sign of the
difference is determined by the rules of algebra. If the result is ismaller than the operand
1 field, any unfilled leftmost bytes are zero filled. On the other hand, if the result is larger
than the operand 1 field, the leftmost bytes of the result are truncated.

Operationa I Considerations:

• Operands 1 and 2 must be in packed decimal format .

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-45

• The length of operand 1 should be equal to or larger than the length of operand 2 .

• Subtraction is algebraic.

Example:

LABEL
1

tiOPERATIONI\
10 16

SP GROSS(3),DEDUCT(3)

GROSS
DEDUCT

DC
DC

p '213fllfllfj'
P16QJ27'

GROSS before execution
of SP instruction:

DEDUCT before and after
execution of SP instruction:

GROSS after execution
of SP instruction:

I 2 l 0

I 0 l 6 I
I l 3 I

OPERAND

0 ! 0 I 0 c
Packed decimal number
(assumed decimal point)

I ! I Packed decimal number
0 2 7 c

(assumed decimal point)

9 7 3 i c I Packed decimal number
(assumed decimal point)

In this example, the content of DEDUCT is subtracted from the content of GROSS. The
result replaces GROSS and, in this example, completely fills the operand 1 field. The signs
of both operands are positive which produces a positive result.

Example:

SP FIELD,FIELD+2(2)

FIELD DC P16249311 1

operand 1

~

FIELD before execution 16 l 2 I 4 : 9 I 3 l 1 I 1 l c I Packed decimal number
of SP instruction:

operand 2

(assumed decimal point) -----FIELD after execution I 6 l 2 4 ; 9
of SP instruction: I 0 ! 0 I 0 l c Packed decimal number

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-46

Here is an example of setting the rightmost part of a field to zeros. The contents of FIELD •
+ 2 (a 2-byte field) are subtracted from the contents of FIELD (a 4-byte field). The result
replaces the rightmost two bytes of FIELD. The signs of both operands are positive and by
the rules of algebra produces a positive result. This instruction operates from right to left.
The SP instruction starts with the rightmost bytes of both operands regardless of the
differences in length. If you are concerned with whole numbers only, you may want to
zero-fill any undesired decimal places. This SP instruction is used as a method to zero-fill
any decimal places to the right of the decimal point.

Example:

LABEL
1

A OPE RAT I ONA
10 16

SP QTY, ITEMS

QTY DC P'-25'
ITEMS DC p I 12 I

QTY before execution I 0 of SP instruction:

ITEMS before and after I 0 execution of SP instruction:

QTY after execution I 0 of SP instruction:

OPERAND

: 2 I 5
: D I Packed decimal number

: 1 I 2 c I Packed decimal number

! 3 I 7 D I Packed decimal number

The SP instruction subtracts the contents of ITEMS (a 2-byte field) from the contents of
QTY (a 2-byte field). The result replaces QTY and a zero fills the leftmost unused half-byte.
The signs are different, however. Operand 2 is unsigned and assumed to be positive.
Since the sign of operand 2 is positive, it is treated as negative. Now, both operands 1 and
2 are negative and are added together. The sign of the result is negative since the rules of
algebra determine that the sign of the operand with the highest absolute value (in addition
and subtraction) determines the sign of the result.

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-47

UNPK

9.14. UNPACK DECIMAL (UNPK)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

UNPK F3 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT~O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 D D IF RESULT >o. SET To 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED D NONE

The unpack decimal (UNPK) instruction converts data in operand 2 from packed format to
unpacked (zoned decimal) format. (See 9.1.) The result replaces operand 1.

Explicit Format:

LABEL [:,OPE RATION [:, OPERAND

[symbol] UNPK

Implicit Format:

LABEL 60PERATION [:, OPERAND

[symbol] UNPK

Data that is to be printed or sent to any other character-sensitive device must be stored in
zoned decimal format. Operand 2, the sending field, is defined as a packed field. Operand
1, the receiving field, is defined as a character type or zoned type field. Operand 1 should
contain enough bytes to receive all digits, a zone for each digit, and the sign from operand
2.

The formula for computing the number of bytes required to receive packed operand 2 data
is:

(Number of bytes of operand 2) x 2 -1 number of bytes required
for unpacked operand 1

field .

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

9-48

The UNPK instruction reverses the zone and digit portion (the sign) of the rightmost byte of •
operand 2 and places it in the rightmost byte of operand 1. Each half byte of operand 2 is
moved to a digit portion and a hexadecimal F (binary 1111) fills each zone portion in
operand 1. The move takes place from right to left, consecutively. Any unfilled bytes that
are part of the specified length for operand 1 are zero-filled. If the operand 1 field is too
short, the leftmost bytes of operand 2 are truncated.

Operationa I Considerations:

• Operand 2 data should be in packed decimal format.

• Operand 1 should contain enough bytes to receive all digits, a zone for each digit, and
the sign from operand 2.

• This instruction operates from right to left.

• Any unfilled bytes that are part of the specified length for operand 1 are zero-filled.

• Specification of a length attribute for operands 1 and 2 is optional.

• The condition code remains unchanged.

Example:

LABEL
1

flOPERAT I ONA
10 16

UNPK TOTALU(3),TOTALP(2)

TOT ALU
TOTALP

OS
DC

CL3
p 1 125 1

TOT ALU before execution
of UN PK instruction:

TOTALP before and after
execution of UNPK instruction:

TOTALU after execution
of UNPK instruction:

15 : c I 7

I 1 : 2

I F l 1 I F

OPERAND

I

i 6 I D I 2 Leftover data from a previous page
I

I 5 ! c I Packed decimal number

i 2 I c l 5 I Unpacked decimal number

The UNPK instruction changes the packed format of TOTALP to unpacked format and
places the result in TOTALU. The zone (5) and digit (C) portions of TOTALP are reversed
and placed in the rightmost byte of TOTALU. The digit 2 fills the digit portion and a
hexadecimal F fills the zone portion next to the rightmost byte. Then the digit 1 fills the
digit portion and a hexadecimal F fills the zone portion to the left of the byte just filled. As
you can see, the field requiring 2 bytes to store the original packed data now requires 3
bytes to store the same data but in unpacked format. Note that a length attribute is
specified for both operands, although it can be omitted.

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-49

• Example:

•

•

LABEL
1

TOT AMT

AOPERATIONA OPERAND
10 16

UNPK TOTAMT,TOTAMT

DC p' 1234'

TOTAMT before execution
of UNPK instruction: ._I _o_....i _1___.l....._2__..l_3 ____ 4_l_c~I Packed decimal number

TOTAMT during execution I 0 l 1 I 2 i 3 c l 4 I of UNPK instruction:

I 0 i 1 I F l 3 c ! 4 I

I F l F I TOT AMT after execution F l 3 c ! 4 I of UNPK instruction:

The UNPK instruction reverses the zone (4) and digit (C) portions and returns it to the
same byte. The next half byte (3) replaces the digit portion and a hexadecimal F fills in the
'2'.one portion next to the half byte just filled. No length attributes are specified, so the
implied lengths are used. As you can see, the result received is not the result expected.
So, remember that unpacking a number into itself is not considered good practice since
some results are often unpredictable .

UP-8061 Rev. 3

ZAP

SPERRY UNIV AC OS/3
ASSEMBLER

9-50

9.15. ZERO AND ADD DECIMAL (ZAP)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE
TYPE LGTH.

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

• DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

ZAP FB SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
.IF RESULT=O,SETTOO 0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

.IF RESULT>O,SETT02 0
• IF OVERFLOW, SET TO 3 0 OPERATION

OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The zero and add decimal (ZAP) instruction moves a packed field of zeros into operand 1
and then adds the packed contents of operand 2 to the packed field of zeros in operand 1.
The result replaces operand 1.

Explicit Format:

LABEL £1 OPERATION £1 OPERAND

[symbol] ZAP

Implicit Format:

LABEL i:.OPERATION £1 OPERAND

[symbol] ZAP

This instruction operates in the same manner as the add decimal (AP) instruction except
that a packed field of zeros is moved into operand 1 before the addition occurs. The sign of
the packed field of zeros is positive. After the addition takes place the resultant sign is the
same as operand 2. If operand 2 does not have a valid sign in the low order four bits, a
data exception occurs. If an overflow condition occurs and the leftmost bytes are
truncated, a zero result still has the sign of operand 2. In effect, the ZAP instruction
replaces operand 1 with the contents of operand 2. The length of operand 1 should be the
same as, or larger than, the length of operand 2. If the operand 1 field is not sufficient to
receive all of operand 2, an overflow condition occurs. Operands 1 and 2 can have
overlapping bytes when the rightmost byte of operand 1 coincides with, or is to the right
of, the rightmost byte of operand 2, provided a valid sign exists in the low order four bits
of operand 2.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

9-51

• Operational Considerations:

•

•

• Operands 1 and 2 must be in packed decimal format.

• If the length of operand 2 is larger than the length of operand 1, the leftmost digits of
operand 2 are truncated.

• If the length of operand 1 is larger than operand 2, the leftmost digits of operand 1
are zero-filled.

• Operand 2 must have a valid sign in the low order four bits.

Example:

LABEL
1

AOPERATIONA
10 16

ZAP TOTAMT,YTDAMT

TOT AMT DC P1528416 1

YTDAMT DC P1215 1

TOTAMT before execution
of ZAP instruction: I 0

YTDAMT before and after
execution of ZAP instruction:

TOTAMT after execution [0 ! of ZAP instruction:

OPERAND

5 I 2 l 8 I 4 ! 1 I 6

I 2 l 1 I 5 l c I
0 I 0 ! 0 I 2 ! 1 I 5

! cj Packed decimal number

Packed decimal number

: c I Packed decimal number

In this example, the ZAP instruction moves a packed field of zeros into TOTAMT and then
adds the contents of YTDAMT to TOTAMT. As you can see, the contents of YTDAMT now
replaces the contents of TOTAMT. In this sample program, TOTAMT contains a year's total
amount of sales, while YTDAMT contains the accumulative amount of sales. At the end of
12 months, when the maximum amount of sales for the year is reached, TOTAMT must be
cleared to zero, so that the amount of sales for the first month of the next year can be
accumulated.

Example:

MVC CALC+l (1) ,=P 1 l 1

ZAP CALC+l (2),CALC(2)

CALC DC P125124 1

UP-8061 Rev. 3

CALC before execution
of MVC instruction:

CALC after execution
of MVC instruction:

CALC during execution
of ZAP instruction:

CALC after execution
of ZAP instruction:

I 2 5

I 2 : 5

SPERRY UNIVAC OS/3
ASSEMBLER

I 1 l 2 4 : c I
operand 1

.---.......-._-

I 1 l c I 4 ! ~ -------------operand 2

I 2 5 I 0 l 0 0 l c I
I I : : c I 2 I 5 2 5 1
I

9-52

Packed decimal number

operand 2

I 2 l 5 I 1 ! cl (stored)

Packed field of zeros

Packed decimal number

In this example, operands 1 and 2 have one overlapping byte. The rightmost byte of
CALC+1 (2) (operand 1) is to the right of the rightmost byte of CALC(2) (operand 2). When
the ZAP instruction is executed, a packed field of zeros with a positive sign is moved into
operand 1. Then, the contents of operand 2 that has been saved prior to the execution of
the ZAP instruction is now added to the packed field of zeros. In effect, the contents of
operand 2 now replace the contents of operand 1.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-1

10. Fixed-Point Binary Instructions

10.1. USE OF FIXED-POINT BINARY INSTRUCTIONS

If the fixed-point binary instruction set (RX, RR, or RS) is compared to the decimal
instruction set (SS or SI), you will discover that the difference between storage-to-storage
type instructions and register type instructions is the location of the instruction operands.
Both operands for decimal instructions are contained in main storage, while the operands
for fixed-point instructions are either both in the processor or one in the processor and
one in main storage. Any instruction operands located in main storage are transferred to
the processor before execution. In fixed-point binary instructions, the RR type requires no
transfer of operands, while the RX and RS types require transfer of only one. In decimal
instructions, both operands are always transferred. This explains why execution time of
fixed-point binary instructions is faster than execution time of decimal instructions.

Execution time gained by arithmetic binary instructions over decimal instructions is lost,
however, in the data conversion process. Both instruction sets must convert card input
data in zoned decimal format (EBCDIC) to a data format acceptable to the instruction set.
Decimal instruction input data must be converted to packed decimal format; fixed-point
binary instruction input data must be converted to binary format.

Conversion to packed format is faster than conversion to fixed-point binary format because
binary conversion requires an additional instruction that has a slower execution time. To
get input data into packed format, you use the PACK instruction; to output packed data,
you must first unpack it with the UNPK or ED instruction. When converting input data to
binary, the data must be packed first, then converted to binary (using the convert to binary
(CVB) instruction). On output, data must be converted to packed decimal (using the convert
to decimal (CVD) instruction) and then converted to unpacked or zoned decimal format. For
input conversion, fixed-point binary instructions execute slower than decimal instructions.
For a comparison of the execution times for decimal and fixed-point instructions, see the
system hardware and software summary, UP-8203 (current version).

Fixed-point instructions should be used in programs having less input data and more
arithmetic calculations, whereas decimal instructions should be used in programs having
more input data and less arithmetic calculations. This is why binary instructions are used
in the design of FORTRAN compilers and decimal instructions are used in the design of
COBOL compilers .

There are 16 general registers located inside the processor that can be used as operands
in fixed-point instructions. A decimal number (0 through 15) is used to reference a
register. This is similar to using labels when referencing main storage locations.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-2

For all fixed-point instructions, operand 1 always references a register with the exception •
of the add immediate (Al) instruction, whose operands both reference main storage
locations. The operand 1 register is usually the receiving field or resultant field after an
instruction is executed. For the store (ST) and convert to decimal (CVD) instructions,
however, operand 2 (a main storage location) is the resultant field. In fixed-point
instructions, operand 2 references either a register (RR), or a main storage location (RX or
RS). The compare instructions do not have a resultant field, since they test already existing
conditions and have no effect on operands 1 and 2.

To bring data from main storage into a register, it must be compatible with the structure of
the register. A register is four bytes in length and uses 32 binary bits to represent a
signed binary number. The high order bit position represents the sign. A binary 1 in the
high order bit position represents a negative number, whereas a binary 0 in the high order
bit position represents a positive number.

REGISTER (4 bytes)

31

There are two ways to create data in fixed-point binary format:

1. Use the convert to binary (CVB) instruction to convert a packed decimal number to a •
fixed-point binary number which is placed in a register.

2. Use the define constant (DC) statement to create a constant that is defined as a half
word, full word, or double word, or a constant that is aligned on a half-word, full
word, or double-word boundary. This constant is then placed in a register through
execution of another instruction [i.e., Add (A), Load (L), Subtract (S)].

HALF WORD (2 bytes)

FULL WORD (4 bytes)

31

DOUBLE WORD (8 bytes)

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-3

As shown, these formats are compatible with the formats of registers. Since registers are
full words (4 bytes), only full words or half words in main storage (or other registers) can
be specified as operand 2. When a half word value in main storage is specified as operand
2, a full 4 bytes are used when that instruction is executed. Operand 2 is expanded to 32
bits by propagating the sign bit value through the 16 high order bit positions. Expansion
occurs after the operand is obtained and before insertion, comparison, or any
mathematical calculations are performed with the register.

10.1.1. Half-Word Fixed-Point Constants

The character H is the definition type used for defining half-word fixed-point constants in
main storage. The constants associated with this definition type must be enclosed within
apostrophes, cannot exceed more than five decimal digits, and cannot have a value greater
than +32767 (215_1) or less than -32768 (-215). Half-word constants are two bytes in ~
length and aligned on a half-word boundary. If the constant specified does not occupy the
full two bytes, it is right-justified and the high order unused bits are filled with the sign
bit. Duplication factors can be used and the nominal value can be a signed or unsigned
decimal number. Because the length of a half word is always two bytes, no length factor is
required. If a length factor is specified, half-word boundary alignment is ignored and the
specified length is allocated.

Example:

LOC. OBJECT CODE LINE SOURCE STATEMENT

000002 39 4 PLUSl DC HL l I +57 I

000003 00
000004 0039 5 PLUS2 DC H1 57 1

000006 C7 6 NEGl DC Hll 1 -57 1

000007 00
000008 FFC7 7 NEG2 DC H'-57 1

10.1.2. Full-Word Fixed-Point Constants

The character F is the definition type used for defining full-word fixed-point constants in
main storage. The constant associated with this definition type must be enclosed within
apostrophes, cannot exceed more than 10 decimal digits, and cannot have a value greater
than +2,147,483,647 (231-1) or less than -2,147,483,648 (-231). Full-word constants are
four bytes in length and aligned on a full-word boundary. If the constant specified does not
occupy the full four bytes, it is right-justified and leftmost unused bits are filled with the
sign bit. Duplication factors can be used and the nominal value can be a signed or
unsigned decimal number. Because the length of a full word is always four bytes, no
length factor is required. If a length factor is specified, full-word boundary alignment is
ignored and the specified length is allocated .

UP-8061 Rev. 3

Example:

LOC. OBJECT CODE

OOOOOA OlOF
oooooc OOOOOlOF
000010 FEFl
000012 0000
000014 FFFFFEFl

10.1.3. Address Constants

SPERRY UNIVAC OS/3
ASSEMBLER

LINE

8 PLUS3
9 PLUS4

10 NEG3

l l NEG4

10-4

SOURCE STATEMENT

DC FL2 1+271 1

DC F1 271 1
DC FL2 I -271 1

DC F1-2711

Address constants are storage addresses that are stored as constants by using DC
statements. Address constants are used to initialize base registers; thereby, providing
communication between control sections of a multisection program. Unlike other types of
constants, an address constant is enclosed within parenthesis. If more than one address
constant is specified, they are separated by commas, and the entire sequence is enclosed
within parenthesis. There are two types of address constants: half word (Y) and full word
(A).

10.1.3.1. Full-Word Address Constants

This constant can be specified as an absolute, relocatable, or complex relocatable
expression. It has a length of four bytes and is full-word boundary aligned. You cannot

~ specify a value greater than +2, 147,483,647(231-1) or less than -2, 147,483,648 (-23 1). To
generate full-word address constants, use the DC statements with the character A as the
definition type and the expressions specified enclosed within parenthesis. You can also
generate full-word address constants as literals. The address of these expressions are
stored in consecutive full words in main storage. However, if a length factor is specified,
full-word boundary alignment is ignored and the specified length is allocated.

Example:

LOC. OBJECT CODE

000002
000005
000007
OOOOOB
OOOOOE
000014
000017
000016
00001E
000032 0000
000034 0000006A
000038 00000002
00003C 0000024A
000040
000040 00000007
000044 00000005
000048 OOOOOOOB
00004C
00004C 9858 3056
000050 OOOOOOlE

ADDRI ADDR2

00058

LINE

5 TAG
6 HOURS
7 RATE
8 PAY
9 LABEL

10 TAG!
11 BUF
12 TAG2
13 ADLIST

14 ADCONl

15 ADCON2

16 ADCON3
17 ADCON4

SOURCE STATEMENT

DS CL3
DS CL2
DS CL4
DS CL3
DS CL6
DS CL3
DS CL4
DS CL3
DS CL20

DC A(106,TAG,*+526)

DC A(RATE,HOURS,PAY)

LM 5,8, 0A{88,LABEL,TAGl-TAG2,BUF•641~
DC A(ADLIST)

- ·~ -- --~

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-5

• 10.1.3.2. Half-Word Address Constants

•

•

This constant can be specified as an absolute, relocatable, or complex relocatable
expression. It has a length of two bytes and is half-word boundary aligned. You cannot
specify a value greater than +32767 (2 15-1) or less than -32768 (-215). To generate half- .._
word address constants, use the DC statements with the character Y as the definition type
and the expressions specified enclosed within parenthesis. You can also generate half-
word address constants as literals. The addresses of these expressions are stored in
eonsecutive half words in main storage. However, if a length factor is specified, half-word
boundary alignment is ignored and the specified length is allocated.

LOC. OBJECT CODE LINE SOURCE STATEMENT

000002 sooc 5 VALUE DC PL2'500'
000004 00000001 6 NUM DC FI l'
000008 F3F6F2 7 POS DC X'F3F6F2'
OOOOOB 60 8 NEG DC CL l '-8'
oooooc F6F2F4F7CO 9 ZONE DC ZL5'62470'
000011 00
000012 OOOB 10 ADCONYl DC Y(NEG,POS)
000014 0008
000016
000016 0116 11 ADCONY2 DC Y(0'•+256,600)
000018 0258
OOOOlA 0008 12 ADCONY3 DC Y(VALUE+6)
OOOOlC
00001C 0019000A · 13 ADCONY4 DC Y(25,ZONE-VALUE,NUM,POS+4)
000020 0004
000022 oooc
000024

10.1.4. Representation of Positive and Negative Fixed-Point Binary Numbers

Binary ones and zeros, with relation to their positions in a string of bits, represent values
expressed in powers of two (see Appendix C.3). The powers of two increase from right to
left (Figure 10-1). A zero (0) bit indicates no value and a one (1) bit indicates that a value
exists. By adding all the powers of two that correspond to one bits, you can determine the
decimal equivalence for a positive binary number. A zero bit in the high order bit or any
unused high order bits signify a positive binary number.

+sign

0 7 8 15

(powers 15 3 12 1 0 9 8 7 6 5 4
of two) 2 214 21 2 2 1 21 2 2 2 2 2 2

(binary 0

configuration)

0 0 0 0 0 0 0 0

L 1 (2°)
4 (22)

64 (26)
'-------------- 128 (27)

512 (29)

-------------------- 2048 (211)

Figure 10-1. Comparison of Binary Numbers and Values Expressed in Powers of 2

4096 (216)

6853 (decimal
equivalent)

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-6

Negative binary numbers are indicated by a 1 bit in the high order bit position or any •
unused high order bit positions. The remaining portion contains the negative binary
number but in twos complement form. To change a positive binary number into twos
complement form:

reverse the bits; and
add one to the rightmost or low order bit position.

0001101011000101

1110010100111010
+1

1110010100111011

positive binary number
(decimal + 6,853)

reversed bits
add 1

binary number in twos complement form
(decimal - 6,853)

•

•

•

•

UP-8061 Rev. 3

10.2. ADD (A)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

A 5A RX 4

Condition Codes

• IF RESULT~ 0, SET TO 0
.IF RESULT<O,SETTO 1

.IF RESULT>O,SETT02
• IF OVERFLOW, SET TO 3

0 UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-7

A

Possible Program Exceptions

• ADDRESSING • PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The add (A) instruction algebraically adds the full-word main storage contents of operand 2
to the contents in the operand 1 register and stores the sum in operand 1.

Explicit Format:

LABEL [';OPERATION['; OPERAND

[symbol] A

Implicit Format

LABEL f'lOPERATION ['; OPERAND

[symbol] A

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a full word or aligned on a full-word boundary.

• If the sum exceeds 31 bit positions, an overflow condition occurs .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL ~OPERATION~

10 16

SR
A

FULLWORD DC

6,6
6,FULLWORD

F'+271'

Register 6 before execution of A instruction:

ooooioooo 000010000 0000:0000 ooooioooo
-+ ' 0 I 0 0 I 0 0 I 0 0 I 0

I __l __l I

OPERAND

binary
hex

FULLWORD before and after execution of A instruction:

0000:0000 ooooloooo oooolooo1 ooooi1111
...1 I I

0 I 0 01 0 0 I 1 01 F
__l J.

Register 6 after execution of A instruction:

ooooloooo 000010000 000010001 ooooi 1111
l

0 I 0 o I 0 01 1 0 I F
I I

binary
hex

binary
hex

10-8

In this example, the SR instruction subtracts the content of register 6 from itself, clearing
it to zero. Then the content of FULLWORD is added to the content of register 6. The result
replaces the content of the operand 1 register.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-9

AR

10.3. ADD (AR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

AR 1A RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The add (AR) instruction algebraically adds the contents of the operand 2 register to the
contents of the operand 1 register and stores the sum in operand 1.

Explicit and Implicit Format

LABEL i'.IOPERATIONL'.I OPERAND

[symbol] AR r 1 ,r 2

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• If the sum exceeds 31 bit positions, an overflow condition occurs.

Example:

LABEL
1

NUMI
NUM2

.::lOPERATION.::l
10 16

L
L
AR

DC
DC

5,NUMI
6,NUM2
5,6

F1 22 1

F 1 16 I

OPERAND

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

Register 5 before execution of AR instruction:

OOOOlOOOO ooooloooo 0000:0000 0001~0110
I _I_

T -+
0 l 0 0 I 0 o I o 1 I 6

I _J_ __l

Register 6 before and after AR instruction:

ooooioooo 000010000 ooooToooo 0001 :oooo

+ I __l

0 l 0 0 I 0 O I 0 1 I 0
__l

Register 5 after execution of AR instruction:

000010000 ooooToooo ooooToooo 0010jo110
-1.

o I 0 0 I 0 0 I 0 2 I 6
I I _l _l

binary
hex

binary
hex

binary
hex

10-10

In this example, the contents of NUM1 is loaded into register 5 and the contents of NUM2
is loaded into register 6. Then, the contents of register 6 is added to the contents of

•

register 5. The result is placed in register 5 (operand 1). Notice that both NUM1 and NUM2 .-"
are fullwords.

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-11

AH

10.4. ADD HALF WORD (AH)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

AH 4A RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED D NONE

The add half-word (AH) instruction algebraically adds the contents of operand 2 to the
contents of the operand 1 register and puts the sum in operand 1.

Explicit Format:

LABEL 6.0PERATION 6 OPERAND

[symbol] AH

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] AH

Operand 2 is two bytes in length (16-bit signed integer) and is located in main storage.
Before operand 2 is added to the operand 1 register, operand 2 is temporarily expanded to
32 bits by propagating the sign bit through the high order 16 bit positions. Then all 32 bits
of operand 2 are added to the 32 bits of operand 1. The result is placed in operand 1. If
the sum exceeds 31 bits, an overflow condition occurs.

Operationa I Considerations:

• Operand 2 must be either defined as a half word or half-word boundary aligned.

• Any of the general registers (0 through 15) can be used as operand 1 .

• A fixed-point overflow condition can occur .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

~OPERATION~

10 16

L
AH

FULLWORD DC
HALFWORD DC

5,FULLWORD
5,HALFWORD

F'32'
HI 16'

Register 5 before execution of AH instruction:

0000:0000 0000~0000 0000:0000 0010ioooo .
0 I 0 0 I 0 o I 0 2 l 0

__]_ I i

OPERAND

binary
hex

HALFWORD before and after execution of AH instruction:

before expanding to 32 bits ---------.--,-- --T- I
1000010000 000010000 000010000000110000
L _l I

I 0 0 0 I 0 0 I 0 1 I 0 I I
L--1..-_.1...._....l_ __l

after expanding to 32 bits

Register 5 after execution of AH instruction:

ooooToooo ooooToooo ooooToooo
T

l J_ ..I.
0011 :oooo

0 I 0 0 I 0 o I 0 3 : 0
_l _l _l

binary
hex

binary
hex

10-12

In this example, the content of FULLWORD is loaded into register 5. Then the content of
HALFWORD is added to the content of register 5. The result is placed in register 5
(operand 1). If the sum exceeds 31 bits, an overflow condition occurs.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-13

Al

10.5. ADD IMMEDIATE (Al)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

Al 9A SI 4 D EXECUTE • OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 D
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The add immediate (Al) instruction algebraically adds the 1-byte immediate data in
operand 2 to the half word value in operand 1. The sum is placed in operand 1.

Explicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] Al

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] Al

Operand 1 must be either defined as a half word or is half-word boundary aligned.
Operand 2 must be a 1-byte self-defining term. Before operand 2 is added to the half word
in operand 1, operand 2 is temporarily expanded to 16 bits by propagating the sign bit
through the high order 8 bit positions. Then all 16 bits in operand 2 are added to the 16
bits in operand 1. The result is placed in operand 1. If the sum exceeds 15 bit positions, an
overflow condition occurs.

Operationa I Considerations:

•
•

Operand 1 must be either defined as a half word or aligned on a half-word boundary .

During execution of the Al instruction, operand 2 is temporarily expanded to 16 bit
positions. The leftmost eight bits are the same as the sign bit.

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

• Operand 2 must be a 1-byte self-defining term (see 4.4) .

10-14

• You may not specify an immediate value greater than +127 (27-1) or less than
-128 (-27) in operand 2.

• If the sum exceeds 15 bit positions, an overflow condition can occur.

Example:

LABEL
1

~OPERATION~

10 16

Al STORAGE,1

STORAGE DC H1 3 1

STORAGE before execution of Al instruction:

0000:0000
_l

o I 0
..l.

000010011
..l.

o I 3
..l.

binary
hex

OPERAND

Operand 2 immediate before and after execution of Al instruction:

0000}0001

0 I 1
i

binary
hex

STORAGE after execution of Al instruction:

0000:0000
...1.

o I 0
...1.

0000!0100

0 I 4
...1.

binary
hex

In this example, the immediate value in operand 2 is added to the half-word value in
STORAGE. The result replaces the contents of STORAGE.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-15

c

10.6. COMPARE (C)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

c 59 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF r
1

=OPERAND 2, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF r 1 <OPERAND 2, SET TO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

• IF r, >oPERAND 2, SET TO 2
0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

The compare (C) instruction algebraically compares the contents in the operand 1 register
to the full word in operand 2. The result determines the setting of the condition code. (See
condition code settings, 8.5.)

Explicit Format:

LABEL i:IOPERATION i:I OPERAND

[symbol] c r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL i:IOPERATION i:I OPERAND

[symbol] c r 1 .S2 (x2)

The operand 1 register is compared to a 32-bit signed integer (operand 2) located on a full
word boundary in main storage. The result of the comparison determines the setting of the
condition code, bits 34 and 35 of the PSW. (See 8.1.)

If operand 1 = operand 2, set to 0.

If operand 1 <operand 2, set to 1.

If operand 1 >operand 2, set to 2.

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

10-16

Usually, a conditional branch instruction tests the resulting condition code for an equal to •
zero, less than zero, or greater than zero condition. If the condition is met, a branch takes
place. If not the program continues processing as shown in the following coding
instruction.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a full-word boundary.

• Neither operand is changed by the execution of the instruction.

Example:

LlOPERATIONLl LABEL
1 10 16

SR
L
c
BE
A

7,7
5,AMOUNT
5,FULLWORD
ROUTINE
6 ,=F 1 l 1

ROUTINE AR 7,5

FULLWORD DC
AMOUNT DC

F'32'
F'32'

OPERAND

Register 5 before and after execution of C instruction:

oooofoooo 0000~0000

O I 0 0 I 0
J. I

0000:0000

0 I 0
J

0010:0000

I

2 I 0

binary
hex

FULLWORD before and after execution of C instruction:

0000}0000
T

000010000

01 0 0 I 0
_l

0000:0000

0 I 0
J

0010:0000

2 I 0
_l

binary
hex

In this example, the full word in AMOUNT is loaded into register 5. Then, the content of
register 5 is compared to the full word in FULLWORD. Since they compare equally, the
condition code is set 0 and a branch to the instruction labeled ROUTINE takes place. If
they do not compare equally, the A instruction following the BE instruction is executed
and the program continues processing.

•

•

•
UP-8061 Rev. 3

10.7. COMPARE (CR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

CR 19 RR 2

Condition Codes

• IF RESULT= 0, SET TO 0
.IF RESULT<O,SETTO 1
.IF RESULT>O,SETT02
D IF OVERFLOW, SET TO 3
OuNCHANGED

SPERRY UNIV AC OS/3
ASSEMBLER

10-17

CR
'

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

• NONE

The compare (CR) instruction algebraically compares the contents in the operand 1 register
to the contents in the operand 2 register. The result determines the setting of the
condition code. (See condition code settings, 8.5.)

• Explicit and Implicit Format:

•

LABEL .0. OPERATION .0. OPERAND

[symbol] CR

The 32 bits of operand 1 are compared to the 32 bits of operand 2. The result determines
the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

If operand =operand 2, set to 0.

If operand 1 < operand 2, set to 1.

If operand > operand 2, set to 2.

Usually, a conditional branch instruction tests the resulting condition code for an equal to,
less than, or greater than condition. If the condition is met, a branch takes place
accordingly. If not, the program continues processing as shown in the following coding
instruction.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2 .

• Neither operand is changed by the instruction_

UP-8061 Rev. 3

Example:

LABEL
1

dOPERATIONd
10 16

SR 7,7
L 5,AMOUNT
L 6,VALUE
CR 5,6
BH ROUTINE
AR 7,5

ROUTINE Al ERCNT, 1

AMOUNT DC
VALUE DC
ERCNT DC

F'32'
F'32'
H101

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

Register 5 before and after execution of CR instruction:

ooooloooo 0000:0000
..L

0 I 0 0 I 0
L _l_

0000,0000

0 I 0

0010ioooo

2 : 0
I

binary
hex

Register 6 before and after execution of CR instruction:

000010000 000010000
...!.

0 I 0 0 I 0

0000-:-0000

0 I 0
..L

000010000

2 I 0
.i

binary
hex

10-18

In this example, the full word in AMOUNT is loaded into register 5 and the full word in
VALUE is loaded into register 6. Then the content of register 5 is compared to the content
of register 6. Since they compare equally, the condition code is set to 0. The next branch
instruction (BH) tests for a greater than (high) condition. Since both registers compare
equally, no branch is taken and the instruction following the BH instruction (AR) is
executed and the program continues processing.

•

•

•

•
UP-806 1 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
10-19

CH

10.8. COMPARE HALF WORD (CH)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

CH 49 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF r
1

=OPERAND 2, SET TOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF r 1 <OPERAND 2, SET TO 1 D
• IF r

1
>OPERAND 2, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The compare half word (CH) instruction algebraically compares the contents in the operand
1 register to the half word in operand 2. The result of the comparison determines the
setting of the condition code.

• Explicit Format:

•

LABEL ii OPERATION ii OPERAND

[symbol] CH

Implicit Format:

LABEL ii OPERATION ii OPERAND

[symbol] CH

Operand 2 is two bytes in length (16-bit signed integer) and is located in main storage.
Before operand 2 is compared with the operand 1 register, operand 2 is temporarily
expanded to 32 bits by propagating the sign bit through the high order 16 bit positions.
Then all 32 bits of operand 1 are compared to the 32 bits in operand 2. The result
determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

If operand 1 = operand 2, set to 0.

If operand 1 < operand 2, set to 1 .

If operand > operand 2, set to 2.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-20

Usually, a conditional branch instruction tests the condition code for an equal to, less •
than, or greater than condition. If the condition is met, a branch takes place accordingly. If
not, the program continues processing as shown in the following coding instruction.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a half word or aligned on a half-word boundary.

• Neither operand is permanently changed by the execution of the instruction.

Example:

LABEL ~OPERATION~ OPERAND
1 10 16

L 5,AMOUNT
CH 5,HALFWORD
BH ROUTINE
AR 8,5

ROUTINE A 6,=F'l'

AMOUNT DC F '32'
HALFWORD DC HI 16'

Hegister 5 before and after execution of CH instruction:

0000]0000 0000~0000 oooojoooo

0 I 0 0 : 0 o I 0
...L

I

001010000
_L

2 I 0
L

binary
hex

HALFWORD before and after execution of CH instruction:

r-T-- -,--

operand 2 before expansion ----------1000010000 0000110000 0000,10000 000110000
L -1. _L_

I O I 0 0 I 0 0 : 0 1 : 0
L - J_ - - ...1.. -__ _ _,___.....____.. _ ___,

--------,..-~---------
operand 2 after expansion

binary
hex

In this example, the full word in AMOUNT is loaded into register 5. Then, the content of

•

register 5 is compared to the half word in HALFWORD. Since the content of register 5 is •
greatE~r than the content of HALFWORD, the condition code is set to 2. The next branch
instruction (BH) tests for a greater than (high) condition. Since a greater than condition
exists, a branch to the instruction labeled ROUTINE taken place.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-21

eve

10.9. CONVERT TO BINARY (CVB)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION OPCODE FORMAT INST.
TYPE LGTH.

• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
CVB 4F RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
• FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
D1F RESULT<O,SETTO 1

D
D 1F RESULT >o, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED D NONE

The convert to binary (CVB) instruction converts the packed decimal contents of the double
word in operand 2 to its binary equivalent and puts the result in the operand 1 register.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] CVB

Implicit Format:

LABEL f10PERATION 6 OPERAND

[symbol] CVB

The CVB instruction converts a packed decimal number into a binary number. The operand
1 register contains the resulting binary number (4 bytes in length) and operand 2 is a
packed number (8 bytes in length) aligned on a double-word boundary. Operand 2 is
checked for a valid sign in the low order four bits. The remaining 60 bits represent a
decimal value not exceeding 15 decimal digits. The largest decimal number that can be
converted is +2,147,483,647 (231 -1) and the smallest is -2,147,483,678 (-231). Any
decimal number outside this range causes a fixed-point decimal divide. The result of the
conversion is placed in the operand 1 register. The sign value (low order four bits) of the
packed decimal number in operand 2 becomes the sign value (high order bit or bits) of the
binary number in the operand 1 register.

• Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-22

• Operand 2 must contain a packed decimal number aligned on a double-word
boundary.

• If the sign value of the packed decimal number in operand 2 is positive, the sign value
of the binary number in operand 1 is positive.

• If the sign value of the packed decimal number in operand 2 is negative, the binary
number in operand 1 is represented in two's complement form and the sign value is
negative.

• The condition code remains unchanged.

• There is no conversion between EBCDIC and binary. EBCDIC data must first be
packed, then converted to binary.

Example:

AOPERATIONA LABEL
1 10 16

SR
SR
L
PACK
CVB
CR
BH
AR

ERRTN A

DBLWDP OS
AMT DC

7,7
5,5
6,=F 1 100 1

DBLWOP,AHT(3)
5,DBLWDP
5,6
ERRTN
7,5

4 ,=FI 1 I

D
ZL3'428'

Register 5 before execution of CVB instruction:

000010000 0000:0000

0 I
l

0 0 I
J.

0

ooooToooo
_L

0 I 0
J.

0000~0000
0 I 0

.J.

binary
hex

OPERAND

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-23

• DBLWDP before and after execution of CVB instruction:

•

•

0 ! 0 o i o 1 o i o 1 o

Register 5 after execution of CVB instruction:

sign bits

~

0000~0000 ooooToooo 0000~0001
_L
T

0 I 0 o I 0 0 I 1
_l .l. .l

1010T1100
_L

T A L c
binary
hex

Packed
decimal
number

In this example, the SR instruction cleared both register 5 and 7 to zero by subtracting the
contents of the registers from themselves. Then, a full-word value of 100 is loaded into
register 6. The contents of AMT is packed into DBLWDP and the CVB instruction converts
the packed decimal value into its binary equivalent which replaces the contents of register
5. Register 5 is then compared to register 6. Since the value of the contents in register 5
is greater than that of register 6, the condition code is set to 2. The BH instruction then
tests for a greater than condition and a branch to the instruction labeled ERRTN takes
place. If the condition code is not 2, no branch takes place and the program continues
processing with the instruction following the branch .

UP-8061 Rev. 3

CVD

SPERRY UNIVAC OS/3
ASSEMBLER

10-24

10.10. CONVERT TO DECIMAL (CVD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

CVD 4E RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The convert to decimal (CVD) instruction converts the binary number in the operand 1
register into its packed decimal equivalence and stores the result in the double word in
operand 2.

Explicit Format:

LABEL .6 OPERATION .6 OPERAND

[symbol] CVD

Implicit Format:

LABEL OPERAND

[symbol] CVD

The CVD instruction converts a binary value into a packed decimal value. Operand 1
register contains the binary value (4 bytes) and operand 2 contains a double-word field in
packed decimal format (8 bytes). The largest decimal number that can be represented in
binary in the operand 1 register is +2, 147,483,647 (23 1 -1) and the smallest is
- 2, 147,483,648 (-231). Since the number to be converted is a 32-bit signed integer from
a register and there are 15 decimal digits available for its decimal equivalent, an overflow
condition cannot occur.

•

•

The sign value (high order bit or bits) of the binary number in the operand 1 register
becomes the sign value (low order four bits) of the packed decimal number in operand 2.
The result of the conversion is placed in the doubleword of operand 2. Note that the CVD •
instruction is one of the few instructions that has operand 1 as the sending field and
operand 2 as the receiving field.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-25

• Operational Considerations:

•

•

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a double word or aligned on a double-word
boundary.

• If the sign value of the binary number is positive, the sign value of the decimal
number is positive.

• If the sign value of the binary number represented in two's complement form is
negative, the sign value of the decimal number is negative.

• The condition code remains unchanged.

• The result is stored in operand 2, unlike most instructions, where operand 1 is the
receiving field.

Example:

LABEL
1

AOPERATI ONA
10 16

NOPAY

SR
PACK
CVB
AR
BZ
CVD
ZAP

A

CARDIN DC
OBLEWRD OS
TOTHRS OS

7,7
DBLEWRD,CARDIN+9{3)
4,DBLEWRD
7,4
NOPAY
4,DBLEWRD
TOTHRS,DBLEWRD

9,=F'l I

CL80'SMITH,J. 480 WKTOT
D
PL3

DBLEWRD before execution of CVD instruction:

OPERAND

EXEMPT X'

Packed
decimal

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Register 4 before execution of CVD instruction:

I
ooooioooo 000010000

-+ -1

0 1 0 OJ 0

ooooiooo1

o I ,
1110Toooo

i

Ej 0

binary
hex

DBLEWRD after execution of CVD instruction:

0 ! 0 4 8 0 c

10-26

Packed
decimal

In this example, register 7 is cleared to zero. A field from card input (CARDIN+9), which is
EBCDIC and in zoned decimal format, is packed into DBLEWRD. The CVB instruction then
converts the packed decimal number in DBLEWRD into its binary equivalent and puts the
result into register 4. The content of register 4 is added to register 7. The condition code is
set to 2, since the result of the addition is greater than zero. The next branch instruction
(BZ) tests for an equal-to-zero condition. Since that condition does not exist, no branch
takes place and the instruction following the branch instruction is executed. The CVD
instruction then converts the contents of register 4 into its decimal equivalent and puts
the result into DBLEWRD. The ZAP instruction clears TOTHRS to zero and adds the packed
decimal number in DBLEWRD to TOTHRS. (This is an example where truncation is
beneficial.)

•

•

•

•

•

•

UP-8061 Rev. 3

10.11. DIVIDE (D)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

D 50 RX 4

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1
0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-27

D

Possible Program Exceptions

• ADDRESSING • PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY • 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The divide (D) instruction algebraically divides the double word in the operand 1 register
pair (dividend) by the fullword in operand 2 (divisor) and puts the result (quotient and
remainder) in operand 1.

Explicit Format:

LABEL Ii OPERATION li OPERAND

[symbol] D

Implicit Format:

LABEL li OPERATION li OPERAND

[symbol] D

Operand 1 consists of an even-odd pair of contiguous registers, where the even-numbered
register, since it is the lower numbered register, is specified as operand 1. Every time the
even-numbered operand 1 is referenced in the D instruction, both registers are used. The
dividend occupies the register pair as a doubleword value with the high order bit or bits as
the sign value. Operand 2 must be either defined as a full word in main storage, or
aligned on a full-word boundary. The resulting quotient occupies the odd-numbered
register as a full-word value with its sign determined algebraically. The remainder
occupies the even-numbered register, also as a full-word value with its sign the same as
the dividend. If the values of the divisor and dividend cause the quotient to be larger than
a 32-bit signed integer, a fixed-point divide program exception occurs, no division takes
place, and the dividend remains unchanged.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-28

To load a value (dividend) into an even-odd register pair, use the load multiple (LM) •
instruction (see 10.16). If the value (dividend) can be contained in one register, it must be
loaded into the odd-numbered register only. This can be done through the use of the load
(L), load register (LR), or load halfword (LH) instructions. The even-numbered register must
be cleared before execution of the D instruction.

Operationa I Considerations:

• Operand 1 consists of an even-odd pair of registers located in consecutive order in
the processor.

• Operand 1 always references the even-numbered register.

• The dividend occupies both registers. After the D instruction is executed, the quotient
occupies the odd-numbered register, and the remainder occupies the even-numbered
register.

• Operand 2 must be either defined as a full word or aligned on a full-word boundary.

• If operand 1 does not reference an even-numbered register, a specification exception
occurs.

• The condition code remains unchanged.

• Division by zero causes a fixed-point divide program exception .

• Any of the even-numbered general registers (0 thru 14) can be used as the operand 1
register pair.

Example:

AOPERATIONA LABEL
1 10 16

SR
L
D

DIVIDEND DC
DIVISOR DC

6,6
],DIVIDEND
6,DIVISOR

FI 1685'
F'2'

OPERAND

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Registers 6 and 7 before execution of D instruction:

Register 6 Register 7

- -- -
0000:0000 ooooloooo 0000:0000 0000:0000 0000:0000 0000:0000 0000:0110

-+ ..L .i __I_

0 I 0 o I o 0 l 0 o I o 0 I 0 0 I 0 O I 6
_l _l J_ J_ _l

-
100110101

J

9 I 5
l

"------------------~-----.. , .. _..__.._,/ operand 1

DIVISOR before and after execution of D instruction:

0000:0000 000010000

0 : 0 0 : 0
__I_

000010000

0 l 0

0000:0010

0 l 2

binary
hex

Registers 6 and 7 after execution of D instruction:

Register 6 Register 7

sign bits sign bits

- ~ ---------------
000010000 000010000 000010000 0000Jooo1 0000:0000 0000:0000 0000:0011

__I_ __I_ __I_

0 I 0 0 I O 0 l 0 o I 1 0 I 0 o I 0 0 I 3
l _L I ..1 J_ __I_ - --

remainder quotient

010011010
..1

4 I A

-

10-29

binary
hex

binary
hex

In this example, registers 6 and 7 are the operand 1 register pair and DIVISOR (operand 2)
has been defined as a full word constant. First, the SR instruction clears register 6 to
zeros. Since the full word in DIVIDEND can be contained in one register, it is loaded into
register 7 (the odd-numbered register) through the use of the L instruction. Then, the
register pair 6-7 is divided by the full word in DIVISOR. The resulting remainder occupies
register 6 with a positive sign (the same as the dividend) and the resulting quotient
occupies register 7 with a positive sign (determined algebraically).

Example:

LABEL
1

DIVIDEND

DIVISOR

~OPERATION~ OPERAND
10 16

LM 6,7,DIVIDEND
D 6,DIVISOR

DC FI 1 I
DC FI 15 I

DC FI 1000 1

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-30

Registers 6 and 7 before execution of D instruction: •

Register 6 Register 7 ------------_ _________ _
0000~0000 ooooloooo 000010000 000010001 000010000 ooooioooo 000010000 000011111

...I. _l _J_ I _J_ I 1 _J_

0 I 0 0 I 0 o I 0 01 1 o I 0 0 I 0 0 I 0 O I F
...I. _l I _l _l

"-----~-----------~-------~ operand 1

DIVISOR before and after execution of D instruction:

ooooToooo
I

000010000
.l ...L

01 0 0 : 0

0000:0011

0 I 3
...L

T
1110,1000

E ! 8

binary
hex

Registers 6 and 7 after execution of D instruction:

Register 6 Register 7

~------------~--------------------------..... ___ _..,,-....__ ____________ ____
sign bits sign bits

.,.., - ~ --- ~

ooooToooo ooooioooo 0000:0001 001111001 ooooioooo 01ooiooo1 1oooi1001 0011 :1001
J -+ ...I. -+

0 l 0 o I o O I 1 3 l 7 0 I 0 41 1 8 I 9 3J 7
J _l _J_

-----~------~-.......,,,-~-----------------~---------~-~------------remainder quotient

binary
hex

binary
hex

In this example, the even-odd register pair is loaded with the contents of DIVIDEND. This
is done through the LM instruction because the dividend cannot be contained in one
register and has a value of +4,294,967,311 which is greater than

+2,147,483,647 (231-1)
-2, 14 7,483,648 (-231).

The content of DIVISOR is then divided into the double-word value in the even-odd
register pair. The resulting quotient with sign occupies the odd-numbered register and the
resulting remainder with sign occupies the even-numbered register.

•

•

•

•

•

UP-8061 Rev. 3

10.12. LOAD (l)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

L 58 RX 4

Condition Codes

01F RESULT~O,SETTOO
01F RESULT<O,SETTO 1

0 IF RESULT >o, SET TO 2

0 IF OVERFLOW, SET TO 3

• UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-31

L

Possible Program Exceptions

• ADDRESSING • PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The load (L) instruction places the full-word in operand 2 into the operand 1 register.

Explicit Format:

LABEL /::,.OPERATION /::,. OPERAND

[symbol] L r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL LOPERATIONL OPERAND

[symbol] L r 1 ,s2 (x2)

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a full-word boundary .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

XNUM

~OPERATION~

10 16

L

OS
DC

4,XNUM

0F
X100000018 1

OPERAND

Register 4 before execution of L instruction:

ooooioooo ooooioooo
-1. _L

0 I 0 0 I 0
__l _L

0010i1111

2 I
I F

1001i1000

9 I 8
I

binary (leftover data from
hex previous program)

XNUM before and after execution of L instruction:

0000: 0000 0000: 0000 000010000 000111000
-1.

T
0 I 0 0 I 0 0 I 0 1 I 8

.l ...I. .l I

Register 4 after execution of L instruction:

ooooioooo ooooloooo ooooloooo 0001i 1000
_I ..l

0 I 0 0 I 0 0 I 0 1 I 8
-1. _L -1 I

binary
hex

binary
hex

10-32

In this example, XNUM is defined as a hexadecimal constant aligned on a full-word
boundary and register 4 is the operand 1 register. The L instruction places the full word in
operand 2 into register 4 replacing any leftover data in register 4 with the contents of
XNUM.

•

•

•

•

•

•

UP-8061 Rev. 3

10.13. LOAD (LR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

LR 18 RR 2

Condition Codes

D IF RESULT~ o. SET TO 0
01F RESULT<O,SETTO 1
D IF RESULT >o. SET To 2

0 IF OVERFLOW, SET TO 3

.UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-33

LR

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

• NONE

The load (LR) instruction places the contents of the operand 2 register into the operand 1
register.

Explicit and Implicit Format:

LABEL 60PERATION [', OPERAND

[symbol] LR

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The contents of the register specified by operand 2 (r2) are loaded into the register
specified by operand 1 (r1).

• The contents of the register specified by operand 2 (r2) remain unchanged .

-------------------------~---- - --

UP-8061 Rev. 3

Example:

LlOPERATIONLl

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND LABEL
1 10 16

L
L
LR
LR
A
AR
CVD
CVD

FINTOT DC
SUBTOT DC
FINTOTP OS
SUBTOTP OS
INTERTOT DC

7,FINTOT
5,SUBTOT
6,5
8,7
5, INTERTOT
7,5
5,SUBTOTP
7,FINTOTP

F'5630'
F'220'
D
D
F'20'

Register 6 before execution of LR instruction:

ooooToooo ooooToooo 0000:0111 110011011
.L .L .L

0 I 0 0 I 0 0 I 7 Cl B

binary (leftover data from
hex previous program)

_l .L .J. .l.

Register 5 before and after execution of LR instruction:

0000:0000 ooooioooo
.J.

O I 0 O I 0
.L _l

ooooToooo
.L

0 I 0
.J.

1101 ~1100

o' c
.l

binary
hex

Register 6 after execution of LR instruction:

0000:0000 000010000

0 I 0 0 I 0
J_ .l_

ooooioooo

0 I 0
.l

1101-r1100
...1.

o' c
_l

binary
hex

10-34

In this example, the full word is FINTOT (FINTOT represents final total) is loaded into
register 7 and the full word is SUBTOT (SUBTOT represents subtotal) is loaded into
register 5. Then the content of register 5 is loaded into register 6 and the content of
register 7 is loaded into register 8 so it can be saved prior to the execution of the
suceeding add instructions. Then the full word in INTERTOT is added to register 5 (now
register 5 has the most-current subtotal). The content of register 5 is added to the content
of register 7 (now register 7 has the most current final total). The first CVD instruction
converts the binary number in register 5 to its decimal equivalent and puts the result into
the doubleword in SUBTOTP. The second CVD instruction converts the binary number in
register 7 to its decimal equivalent and puts the result into the doubleword in FINTOTP.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-35

LTR

10.14. LOAD AND TEST (LTR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LTR 12 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED • NONE

The load and test (L TR) instruction places the contents of the operand 2 register into the
operand 1 register. The value and sign of operand 2 determines the setting of the
condition code. The actual testing of the condition code is done through the execution of
another instruction .

Explicit and Implicit Format:

LABEL !::, OPERATION!::, OPERAND

[symbol] LTR r1 ,r2

If operand 2 = 0, set to 0.

If operand 2 < 0, set to 1.

If operand 2 > 0, set to 2.

Usually, a conditional branch instruction tests the resulting condition code for an equal to
zero, less than zero, or greater than zero condition. If the condition specified is met, a
branch takes place accordingly. If not, the program continues processing with the
following instruction.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• It is your responsibility to test the condition code setting.

UP-8061 Rev. 3

Example:

LABEL
1

AOPERATIONA
10 16

L 6,=F'25'
LTR 7,6
BC 8,ERRTN

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

ERRTN AP ERCNT,=P'1 I

ERCNT DC PL2 1 el 1

Register 7 before execution of L TR instruction:

ooooToooo OOOOlOOOO 1010:0000 0000:0000
j_ _l_

01 0 01 0 Al 0 o' 0
l _L

binary (leftover data from

hex previous program)

Register 6 before and after execution of LTR instruction:

ooooToooo ooooioooo
_l

0 I 0 0 I 0
l _l_

ooooioooo
l

0 I 0
l

000111001
l

1 I 9
l

binary
hex

Register 7 after execution of L TR instruction:

000010000
_l

0000 Toooo

0 I 0 0 I 0
l _l_

ooooioooo
l
I

0 I 0
I

0001~1001
1 I 9

_l

binary
hex

10-36

In this example, a full word containing the decimal value 25 is loaded into register 6.
Then, the LTR instruction loads the contents of register 6 into register 7. The condition
code is set to 2, since the value of register 6 (operand 2) is greater than zero. The BC
instruction tests for an equal to zero condition which is represented by the decimal value 8
in operand 1. If an equal to condition existed, a branch to the instruction labeled ERRTN
would take place. Since that condition does not exist, the program continues processing
with the instruction immediately following the BC instruction.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-37

LH

10.15. LOAD HALF WORD (LH)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LH 48 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o. SET TO 2

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The load half word (LH) instruction places the half word in operand 2 into the operand 1
register.

Explicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] LH

Implicit Format:

LABEL !::.OPERATION 6 OPERAND

[symbol] LH

Since registers only work in conjunction with full words, the half word in operand 2 is
automatically expanded to 32 bits by propagating the sign bit through the 16 high order bit
positions. Then, operand 2 is loaded into the operand 1 register.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a half word or aligned on a half-word boundary .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

AOPERATIONA LABEL
1 10 16

LH 4,PRODUCT

PRODUCT DC H1 256 1

OPERAND

Register 4 before execution of LH instruction:

000010000 0000 Toooo ooooi1100 000111010
...!. ...J. binary (leftover data from

0 I 0 0 l 0 0 I c 1 l A
I J.

hex previous program)

PRODUCT before and after execution of LH instruction:

r-,-- -,-
before expansion -----------1000010000 000010000 000010001 000010000

I 0 I 0 0 I 0 0 I 1 O I 0
.... - ...1.. - - _.J_ - _.__......__......_ __ ~

----------------....._,,.....--~------------after expansion

binary
hex

Register 4 after execution of LH instruction:

ooooToooo 0000 Toooo
...!.

01 0 0 I 0
I

0000:0001

0 I 1
.1

000010000

O I 0
.1

binary
hex

10-38

In this example, the half word in PRODUCT is expanded temporarily to a 32-bit signed
integer. Then the LH instructions loads the contents of PRODUCT (now a 32-bit signed
integer) into register 4.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

10-39

LM

10.16. LOAD MULTIPLE (LM)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE
TYPE LGTH.

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LM 98 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT~O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

01F RESULT<O,SETTO 1
0 FIXED-POINT OVERFLOW BOUNDARY

0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED 0 NONE

The load multiple (LM) instruction loads the contents of two or more consecutive registers
(operands 1 and 3) with an equal number of consecutive full words in main storage
(operand 2) .

Explicit Format:

LABEL 6 OPERATION!;, OPERAND

[symbol] LM r 1 ,r 3 ,d2 (b2)

Implicit Format:

LABEL 6.0PERATION !;, OPERAND

[symbol] LM r 1,r3 ,s2

The operand 1 register is the first register loaded and the operand 3 register is the last
register loaded. If operands 1 and 3 are not consecutive, any registers consecutive to the
operand 1 register up to and including the operand 3 register also are included. If the
address of the operand 3 register is less than the address of the operand 1 register, the
register addresses wrap around from 15 to 0. The number of full words in main storage to
be loaded is determined by the number of consecutive registers specified. The registers
are loaded in ascending sequence starting with the operand 1 register up to and including
the operand 3 register. The content of operand 2 is loaded into the registers beginning
with the byte addressed by the operand 2 label and continuing with as many full words
that are needed to fill the registers specified.

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Any of the general registers (0 thru 15) can be used as operands 1 and 3.

10-40

• Operand 2 must either be defined as a full word or aligned on a full-word boundary.

• If operand 2 does not reference the correct number of full words needed to fill all the
registers, full words consecutive to the first full word specified by operand 2 are
loaded into the registers until the operand 3 register is filled.

• When loading multiple registers, the wrap-around concept applies.

• If operand 1 and operand 3 reference the same register, only that register is loaded
with the contents of the first full word of operand 2.

Example:

LABEL
1

VALi
VAL2
VAL3

AOPERATI ONA
10 16

LM

DC
DC
DC

5, 7, VALl

FI l l?J I

F 1 21?1 I

F1 30 1

OPERAND

Registers 5, 6, and 7 before execution of LM instruction:

Register 5 Register 6

ooooloooo 0000[0000 ooooioooo ooooToooo 1111:1111 1111~1111 100011111 1000:0001
...L _I_ _I_ _l_ _J

0 I 0 0 I 0 0 I 0 0 I 0
..l. J. ...L

F I F Fl F si F 31 1
..l. _l_ _I_ J.

leftover data from previous program

Register 7

ooooToooo ooooToooo 0000: 1100 1010:0100
..l. _I_ ..l.

0 I 0 0 I 0 0 I c Al 4
..l. ..l. _I_

leftover data from previous program

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

VAL 1, VAL2, and VAL3 before and after execution of LM instruction:

VAL1 VAL2

000010000 000010000 0000:0000 000011010 000010000 0000:0000 000010000
l_ I L _l_ _l _l

o I 0 o I 0 0 I 0 0 I A 0 I 0 0 I 0 O I 0
..1. J. J. J. ..1. ..l ..l

VAL3

ooooToooo 000010000 ooooioooo 0001 :1110
I

0 I 0 0 I 0 0 I 0 1 I E
..l_ _l l J.

Registers 5, 6, and 7 after execution of LM instruction:

Register 5 Register 6

000010000 ooooioooo 0000:0000 0000: 1010 ooooioooo 000010000 0000:0000
..l _L

0 I 0 0 I 0 0 : 0 0 I A
..l

0 I 0 0 I 0 0 I 0
..1. ..1 ...1

Register 7

ooooioooo ooooioooo ooooioooo 0001i 1110
I l

0 I 0 0 I 0 0 I 0 1 J E
_l ..1 I

10-41

0001io100

1 I 4
..l

0001:0100

1 I 4
..1

In this example, operands 1 and 3 specify that registers 5, 6, and 7 are to be loaded with
three consecutive full words from main storage starting with the first full word at VAL 1
(operand 2) and continuing until register 7 is filled .

UP-8061 Rev. 3

Example:

LABEL
1

TAGI
TAG2
TAG3

dOPERATIONd
10 16

LM

OS
DC
DC
DC

5,5,TAGI

0F
XL2 I fjf!f! l I

XL2'3C0F'
XL2'00CA'

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

Register 5 before execution of LM instruction

ooooloooo 0000~0000

0 I 0 01 0
I

0000:0000

0 I 0
_l

ooooioooo

0 I 0
_l

binary
hex

TAG1, TAG2, TAG3 before and after execution of LM instruction:

TAG1 TAG2 TAG3 remaining main storage - -
000010000 000010001 0011 11100 0000:1111 0000 10000 1100:1010 ooooioooo ooooioooo

0 I 0

full-word
boundary

0 I 1 3 I C 0 I F 0 I 0

full-word
boundary

Register 5 after execution of LM instruction:

000010000 0000Tooo1
I

0 l 0 01 1

0011~1100

3 I c
-1

0000 T1111
...L

01 F

binary
hex

CI A 01 0 o I o
_l

10-42

In this example, operand 1 and operand 3 both refer to register 5. Therefore, the content
of operand 2 is loaded into register 5 (operand 1) beginning with the first byte at TAG1
and continuing with as many full words that are needed to fill register 5 (operand 3). Note
that only register 5 is filled with the first full word at operand 2.

•

•

•

•

•

•

UP-8061 Rev. 3

Example:

LABEL AOPERATIONA
1 10

LM

.
SECTOR DC

DC
DC
DC
DC

1 6

1 4,2,SECTOR

F
F
F

I 1250 1

1 4000 1

1 2300 1

1 1000 1

1 6200 1

F
F

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

Registers before execut ion of LM instruction:

Registe r14 Register 15

10-43

ooooioooo ooooioooo o 00010000 0000,0000 0000:0000 0000:0000 0000:0000 0000:0000

T
..L ..L

0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0
J J.. ..L ..L ..L__ ---------~

operand

Registe rO Register 1

ooooToooo 0000~0000 0
..1.

00010000 0000,0000 0000:0000 0000~0000 ooooioooo ooooioooo
-1. -1. +

0 I 0 0 I 0
..L ..1.

0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0
..L I _l_

Registe r2

0000:0000 0000:0000 0 00010000 0000,0000
..L

0 I 0 0 I 0 0 I 0 o I o
..L _l_

operand 3

SECTOR before and af ter execution of LM instruction:

ooooToooo
..l

O I 0
..L

ooooioooo

0 I 0
-1

[ooooloooo
0 I 0

...L

ooooToooo o 00010100 1110,0010 000010000 000010000 000011111 101010000
..L

o I 0 0 I 4 E I 2 o I o 0 I 0 0 I F A I O
J_

0000:0000 0 000,1000111111100 000010000 000010000 0000,0011 111011000
~-+-~+-~t--___,,~___,f----t~-r---+~-+~-+~-+~-t

0 I 0 0 I 8 Fl C O I O 0 I 0 0 I 3 E I 8
...L

ooooioooo o 00111000 001111000
binary
hex

...L

0 I 0 1 I 8 3 I 8
...L

binary
hex

binary
hex

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-44

Registers after execution of LM instruction: •

Register 14 Register 15

000010000 0000,0000 000010100 111010010 0000:0000 0000:0000 0000:1111 1010:0000

olo 010 014 E I 2

Register 0

000010000 000010000 000011000 111111100

o 1 o 010 01a F I C

Register 2

000010000 000010000 000111000001111000

O I O O I O

0 l 0

_L _L

0 I 0
1

0 I F
-1

Register 1

Al 0

ooooloooo ooooloooo 000010011 111011000
....I. ..I. _L -1

olo 010 013 EIS
.l ...1 _L

In this example, register 14 is the first register loaded and register 2 is the last register
loaded. Since the address of operand 2, (register 2) is less than the address of operand 1
(register 14), the register addresses wrap around from 15 to 0 up to and including 2.
Operand 2 is either defined as a full word or aligned on a full-word boundary. The
contents of operand 2 is loaded into register 14 starting with the byte addressed by
SECTOR and continuing with as many full words until register 2 is filled.

Remember that most 1/0 operations use registers 14, 15, 0, and 1. So, if you use these
registers and then perform some input or output in your program, the original contents of
these registers are destroyed. However, you can use these registers if you save the
contents prior to every 1/0 operation, and restore them after completing each 1/0
operation.

It may be helpful to note that the Supervisor usually uses the lower numbered registers
and Data Management usually uses the higher numbered registers.

•

•

•

•

•

UP-8061 Rev. 3

10.17. MULTIPLY (M)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

M 5C RX 4

Condition Codes

D IF RESULT= o. SET TO 0
01F RESULT<O.SETTO 1
0 IF RESULT >o. SET TO 2
D IF OVERFLOW, SET TO 3
.UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-45

M

Possible Program Exceptions

• ADDRESSING • PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNl,FICANCE

0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D QP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW • OP.2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

D FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION
D OP .1 NOT ODD NUMBERED REGISTER

D NONE

The multiply (M) instruction algebraically multiplies the operand 1 register pair by the full
word in operand 2. The result replaces the operand 1 register pair.

Explicit Format:

LABEL i>OPERATION 6 OPERAND

[symbol] M r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL i>OPERATION 6 OPERAND

[symbol] M r 1 ,s2 (x2)

Operand 1 must be a contiguous pair of even-odd registers. The even-numbered register,
since it is lower numbered register, is specified as operand 1. Both the multiplier (operand
2) and the multiplicand (operand 1) are 32-bit signed integers but the product is always a
64-bit signed integer. Before execution of the M instruction, the multiplicand must be
loaded into the odd-numbered register, while the content of the even-numbered register is
ignored. The multiplier must either be defined as a full word or aligned on a full-word
boundary. After execution of the M instruction, the resulting product replaces the even
odd register pair as a double-word value with the high order bits or bit as the sign value.
The sign of the product is determined algebraically; like signs produce positive results and
unlike signs produce negative results. If the product is always contained in the odd
numbered register, you can ignore the contents of the even-numbered register and store
the contents of the odd-numbered register as the product.

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-46

• Operand 1 consists of an even-odd pair of registers located in consecutive order in
the processor.

• Operand 1 always references the even-numbered register.

• The multiplicand occupies the odd-numbered register as a full-word value.

• After the M instruction is executed, the product occupies both registers as a
doubleword value.

• Operand 2 must either be defined as a full word or aligned on a full-word boundary.

• Any of the even-numbered general registers (0 thru 14) can be used as operand 1.

Example:

aOPERATIONa LABEL
1 10 16

L
M

MULTCAND DC
MULTPLYR DC

5,MULTCAND
4,MULTPLYR

F'244 1

F'22'

OPERAND

Registers 4 and 5 before execution of M instruction:

Register 4 Register 5
............... ----

ooooioooo
I

ooooioooo ooooioooo 000010000
I I

000010000 000010000 0000:0000
l I i

O I 0 o I 0 oi 0 o I 0 01 0 o I 0 0 I 0
I I .l _l

-
111110100

F l 4

'----.._ --~---------~---_.-/
operand 1

MULTPL YR before and after execution of M instruction:

000010000 ooooioooo
-t

0 I 0 0 l 0
I

ooooioooo
T

0 I 0
-1.

0001(0110
I

1 I 6
_l

binary
hex

binary

hex

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-47

• Registers 4 and 5 after execution of M instruction:

•

•

Register 4 Register 5

------------~./'-..----------------~------------~---------------
000010000 ooooToooo 000010000 0000:0000 ooooloooo 0000!0000 0001 :0100 1111~1000

J _l _J_

O I 0 0 I 0 0 I 0 0 I 0 0 : 0 0 l 0 1 I 4 F I 8
J. I I _l ...L ...L

"-------------------~-------... ------~ operand 1

binary
hex

In this example, the full-word value in MULTCAND is loaded into register 5 (odd-numbered
register). Then, the full-word value in MULTPLYR is multiplied by register 4 (the even-odd
register pair). The even-numbered register is ignored and the content of the odd-numbered
register (in this case, 5) is used in the multiplication.

The resulting product replaces the even-odd register pair as a double-word value. Since
the value of this product is less than +2, 147,483,647, it can be contained in register 5
and register 4 can be ignored.

Example:

LABEL
1

.10PERATION.1
10 16

L
M
ST

MULTCAND DC
MULTPLYR DC
HOLDAREA OS

7,MULTCAND
6,MULTPLYR
7,HOLDAREA

F 1 350 1

F 1 -5 1

F

OPERAND

Registers 6 and 7 before execution of M instruction:

Register 6 Register 7

---------------/"-..----------------------------~---------------
ooooloooo ooooioooo ooooToooo ooooloooo ooooToooo 0000~0000 0000:0001 0101 T1110

...I.

o I 0 O I 0 0 I 0 0 I 0 0 I 0 0 I 0 o I 1 5 I E
l _J_ I I l. ..l. ...I. .1

"------------------~--------------~ operand 1

binary

hex

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

MULTPLYR before and after execution of M instruction:

sign bits

----------------~----------....--.....
1111 :1111 1111:1111 1111 :1111 1111 : 1011

l _I_

~
T

F _t_ F F I F F l F F I B
j

(-5 in twos complement form)

binary
hex

Registers 6 and 7 after execution of M instruction:

sign bits

1111 :1111 1111 :1111 1111 :1111 1111 ~1111 111111111 1111i1111
I _l_ _I_

F I F Fl F F ~ F F l F F l F F I F
.l. ..1 _I_

(-1750 in twos complement form)

111111001 0010T1010
J. ..1.

F l 9 2 I A
.l.

10-48

binary
hex

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-49

• ST

-~·

•

10.18. STORE (ST)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

ST 50 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED 0 NONE

The store (ST) instruction places the contents of the operand 1 register unchanged into the
full word in operand 2.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] ST r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] ST r 1.S2 (x2)

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a full word or aligned on a full-word boundary.

• Unlike most instructions, the ST instruction has operand 1 as the sending field and
operand 2 as the receiving field .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

CHART

~OPERATION~

10 16

L 7,=F'25'

ST 7,CHART+4

DC
DC
DC

F 1 22 1

F'S~'
F 1 28 1

CHART +4 before execution of ST instruction:

0000:0000 000010000
_l

0 I 0 0 I 0
....1

000010000

o I 0

0011ioo10
...1.

3 I 2
I

binary
hex

OPERAND

Register 7 before and after execution of ST instruction:

ooooloooo 000010000 ooooioooo 0001i 1001
I _l

I
0 I O I 1J _j

0
I

0 0 I 0 9

CHART +4 after execution of ST instruction:

000010000 ooooToooo 0000 ~0000 0001T1001
~ j _j_ _J_

0 I 0 01 0 0 I 0 1 I 9
J _l __._

binary
hex

binary
hex

10-50

In this example, register 7 is loaded with a full-word value of 25. Then the content of
register 7 destroys the content of the second full word in CHART and replaces it with the
content of register 7.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-51

• STH

•

•

10.19. STORE HALF WORD (STH)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

STH 40 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The store half word (STH) instruction places bits 16 through 31 of the operand 1 register
unchanged into the half word in operand 2.

Explicit Format:

LABEL 60PERATION6 OPERAND

[symbol] STH

Implicit Format:

LABEL ti OPERATION 6 OPERAND

[symbol] STH

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a half word or aligned on a half-word boundary.

• Unlike most instructions, the STH instruction has operand 1 as the sending field and
operand 2 as the receiving field .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

ERROR

AOPERAT 10~
10 16

LA 7,HALFBUF
LH 6,=H 143 1

CH 6,CONSTANT
BNE ERROR

STH
A

6,0(7)
7,=F'2'

CONSTANT DC
DS

HALFBUF DS

H1 50 1

lrJH
CL80

OPERAND

HALFBUF (2) before execution of STH instruction:

ooooioooo oooolooo1
binary (leftover data from

o I 0 0 I 1
hex previous program)

...1 ...1

Register 6 before and after execution of STH instruction:

000010000 ooooioooo
I

o I 0 0 : 0
I

0000~0000 001011011
I

0 I 0 2 I B
_l I
~

Bits 16 - 31

HALFBUF (2) after execution of STH instruction:

I

ooooloooo

ol 0
_l

I
001011011

J

2 I B
_l

binary
hex

binary

hex

10-52

In this example, the address of HALFBUF is loaded into register 7, and the half-word
decimal value of 43 is loaded into register 6. Then, the content of register 6 is compared
to the half-word decimal value in CONSTANT. Since the value 43 is less than 50, the
condition code is set to 1 and the branch to the instruction labeled ERROR takes place.
There, bits 16 through 31 of register 6 are stored in the first two bytes of HALFBUF. A full
word of 2 is then added to the address in register 7 which increases the address by 2
bytes. This makes it possible for the next unequal condition to be stored in the succeeding
two bytes and so on.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-53

• STM

10.20. STORE MULTIPLE (STM)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

STM 90 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<o.sETTO 1 D
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED D NONE

The store multiple (STM) instruction places the contents of two or more consecutive
registers (operands 1 and 3) into an equal number of consecutive full words in main
storage (operand 2). ,.

• Explicit Format:

•

LABEL /':,OPERATION/':, OPERAND

[symbol] STM

Implicit Format:

LABEL /':,OPERATION/':, OPERAND

[symbol] STM

The operand 1 register is the first register stored and the operand 3 register is the last
register stored. If operands 1 and 3 are not consecutive, any registers consecutive to the
operand 1 register up to and including the operand 3 register are also included. If the
address of the operand 3 register is less than the address of the operand 1 register, the
register addresses wrap around from 15 to 0. The contents of the registers are stored in
ascending sequence into an equal number of consecutive full words in main storage
starting with the byte addressed by the operand 2 label, and continuing with as many full
words that are needed to receive the contents of the registers specified .

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-54

• Any of the general registers (0 through 15) can be used as operand 1 and operand 3.

• Operand 2 must be defined as a full word or aligned on a full-word boundary.

• If operand 2 does not reference the correct number of full words needed to receive
the contents of all the registers specified, full words consecutive to the first full word
specified by operand 2 are filled until the contents of the operand 3 register has been
stored.

• When storing multiple registers, the wraparound concept applies.

• If operand 1 and operand 3 reference the same register, only the contents of that
register is stored in the first full word of operand 2.

Example:

dOPERATIONd LABEL
1 10 16

ZAP
CVB
M
STM

DWORD OS
MULTPLYR DC

DWORD,=P'525'
5,DWORD
4,MULTPLYR
4,5,DWORD

D
F'26'

DWORD before execution of STM instruction:

OPERAND

Registers 4 and 5 before and after execution of STM instruction:

Register 4 Register 5
.....,,,....... ___.. __...-....._ --ooooioooo ooooioooo 0000~0000 ooooioooo ooooioooo ooooioooo 0011~0101 0101l 0010

...L -1. -1.

0 I 0 o I 0 0 I 0 O I 0 o I 0 0 I 0 31 5 5 I 2
I I ..1 ...1 ...1 l .1 -----------............... ---------------.... ,,...-._ __ _

operand 1 operand 3

binary
hex

(decimal

+13,650)

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-55

• DWORD after execution of STM instruction:

•

•

000010000
I I

000010000 000010000 000010000
..1 ..1.

0 I 0 0 I 0 O 1 O O I 0
_l J _l I

ooooioooo ooooioooo
j

0 I 0 0 I 0
I I

0011io101

3 I 5

I
010110010

+
5 I 2

binary
hex

In this example, the packed decimal number 525 is added to DWORD, which was
previously cleared to zero. Then, the double word in DWORD is converted into its binary
equivalent and the result is placed in register 5. The contents of registers 4 and 5 are then
multiplied by the full word in MULTPLYR and the result replaces registers 4 and 5 as a
double-word value. Register 4 (operand 1) and register 5 (operand 3) are stored in the first
two full words in DWORD .

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

10-56

s •

10.21. SUBTRACT (S)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

s 58 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF.WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT: 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 0
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

The subtract (S) instruction subtracts the contents of the full word in operand 2 from the
contents of the operand 1 register. The difference replaces the operand 1 register.

Explicit Format

LABEL l::.OPERATIONl::. OPERAND -
[symbol] s r 1 ,d2 (x2 ,b2)

Implicit Format

LABEL l::.OPERATION l::. OPERAND

[symbol] s r ,s (x)
1 2 2

When the actual subtraction takes place, the twos complement form of operand 2 is added
to operand 1. The sign of the result is determined algebraically.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a full-word boundary .

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

• Example:

•

•

LABEL
1

VALUE

AOPERATIONA
10 16

L
s

DC

5,=F 152 1

5,VALUE

FI 11 I

Register 5 before execution of S instruction:

0000:0000 000010000
...L

I

o I o 0 I 0
.J. -1

000010000
J.
I

0 I 0

0011~0100
J.

3 I 4
..L

binary
hex

OPERAND

VALUE before and after execution of S instruction:

ooooioooo OOOOlOOOO ooooloooo 0000I1011
.J. J.

0 I 0 o I 0 0 I 0 o I B
l -1 _l _l

Register 5 after execution of S instruction:

ooooloooo ooooloooo
T

000010000 000010000
.J. L J.

0 I 0 o I 0 01 0 2 I 9
_l _l_ _l

binary
hex

binary
hex

10-57

UP-8061 Rev. 3

SR

10.22. SUBTRACT (SR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SR 18 RR 2

Condition Codes

.IF RESULT= O,SETTOO

.IF RESULT<O.SETTO 1

• IF RESULT >o. SET TO 2
• IF OVERFLOW, SET TO 3

0 UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-58

Possible Program Exceptions

0 ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

0 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

D NONE

The subtract (SR) instruction subtracts the contents of the operand 2 register from the
contents of the operand 1 register and places the difference in the operand 1 register.

Explicit and Implicit Format:

LABEL .6. OPE RATION .6. OPERAND

[symbol] SR r 1 ,r2

When the actual subtraction takes place, the twos complement form of operand 2 is added
to operand 1. The sign of the result is determined algebraically.

Operational Considerations:

• Any of the general registers can be used as operands 1 and 2.

• This instruction can be used to clear a register by subtracting the content of the
register from itself.

• The subtraction is performed by converting the number in operand 2 (r2) into a signed
twos complement binary number and then algebraically adding it to the value in
operand 1 (r1).

• The maximum fixed-point number that can be contained in a 32-bit register is
2,147,483,647(231 -1); the minimum number is -2,147,483,648(-231). For decimal
numbers outside this range, an overflow condition is produced.

• The contents of operand 2 (r2) are not changed by the subtract (SR) instruction .

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

• Example:

•

•

LABEL
1

HRS
DEDUC
HR SOT
RATE
FLWRD

~OPERATION~

10 16

LM 5,6,HRS
SR 4,4
A 5,HRSOT
M 4,RATE
SR 5,6
ST 5,FLWRD

DC
DC
DC
DC
DS

F 1 40 1

F'2916'
F'3'
F 1 350'
F

Register 4 after execution of first SR instruction:

ooooToooo ooooToooo
..1.

0 l 0 0 I 0
l

0000:0000
...L

o I O
...L

ooooioooo

o T o

binary
hex

OPERAND

Registers 4 and 5 before execution of second SR instruction:

ooooloooo 0000:0000
I

0000~0000 ooooloooo 0000:0000 0011: 1010 000010000
...L

o I 0 0 i 0 0 I 0 01 0 0 I 0 0 : 0
l

Register 6 before and after execution of SR instruction:

000010000 ooooioooo
l

o I o o I o
...L -1

0000 T1011
+

0 I B
...L

0110 :0100
T

61 4

binary
hex

3 I A
...L

11ooi1010

C 1 A
l

10-59

binary
hex

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Registers 4 and 5 after execution of second SR instruction:

0000:0000 ooooloooo ooooloooo ooooloooo ooooloooo ooooioooo 0010T1111
l _l_ J_

0 l o I 0 I o I o I 0 l
I

0 0 0 0 0 0 21 F
l I I _l_

0·11010101

6 l 6

10-60

binary
hex

In this example, two full words (starting with the byte addressed by HRS and including the
full word in DEDUC) are loaded into registers 5 and 6. The SR instruction clears register 4
to zeros and the content of HRSOT is added to the content of register 5. Register 5 now
contains the standard 40 working hours per week plus any overtime hours. The content of
RATE is multiplied by the even-odd register pair. The product replaces registers 4 and 5 as
a double-word value. The content of register 6 is subtracted from register 5 (since the
product is contained in one register) and the difference replaces register 5. Register 5 now
contains one employee's weekly net pay. The content of register 5 is then stored in
FLWRD in main storage.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-61

• SH

•

•

10.23. SUBTRACT HALF WORD (SH)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST. D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

TYPE LGTH.

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SH 48 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• IF RESULT <o, SET TO 1 • FIXED-POINT OVERFLOW BOUNDARY

• IF RESULT> 0, SET TO 2 D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The subtract half word (SH) instruction subtracts the contents of the half word in operand
2 from the contents of the operand 1 register. The difference replaces the operand 1
register.

Explicit Format

LABEL fl OPERATION fl OPERAND

[symbol] SH

Implicit Format

LABEL fl OPERATION fl OPERAND

[symbol] SH

Operand 2 is two bytes in length (a 16-bit signed integer) and is located in main storage.
Before operand 2 is subtracted from operand 1, operand 2 is temporarily expanded to 32
bits by propagating the sign bit through the high order 16 bit positions. Then the twos
complement of operand 2 is added to operand 1. The difference replaces the content of the
operand 1 register .

UP-8061 Rev. 3

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Any of the general registers (0 through 15) can be used as operand 1.

10-62

• Operand 2 must either be defined as a half word or aligned on a half-word boundary.

• A fixed-point overflow condition can occur.

• Execution of the SH instruction sets the condition code accordingly.

Example:

LABEL
1

GDACTS

AOPERATI ONA
10 16

LA 5,2
L 9,BADACTS
CH 5,CODECD
BE GDACTS

SH
ST

9,VALUEI
9,YTDACTS

CODECD DC H'2'
BADACTS DC F'3'
VALUE I DC HI 1 I
YTDACTS OS F

Register 9 before execution of SH instruction:

T

ooooToooo ooooToooo 00001_0000

I

0 ! 0 o I o O I 0

0000 :0011

O I 3
..l.

binary
hex

OPERAND

VALUE1 before and after execution of SH instruction:

000010000 000010000

0 l 0 O_l 0

before expansion
~

ooooToooo 000010001
j_ -t

Oj_ 0 0 l 1

-------------~~-~----~-----after expansion

binary
hex

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

10-63

• Register 9 after execution of SH instruction:

•

•

T

ooooToooo 000010000
l

o I o 0 : 0

ooooToooo

0 : 0

000010010
l
T

0 I 2
..1.

binary
hex

In this example, the decimal value 2 is loaded into register 5 and the content of BADACTS
is loaded into register 9. Then the content of register 5 is compared to the half-word value
of CODECD. Since an equal to condition exists, the condition code is set to 0. As a result,
the following branch to the instruction labeled GDACTS takes place. There, the half word
in VALUE1 is expanded to a 32-bit signed integer, and the twos complement form of
VALUE1 is added to register 9. The difference occupies register 9 as a full-word value.
Finally, the ST instruction stores the contents of register 9 in YTDACTS located in main
storage .

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-1

11. Floating-Point Instructions

11.1. INTRODUCTION

The floating-point instruction set is added to the instruction repertoire as part of the
floating-point control feature. An operation exception results if a floating-point instruction
is issued to a processor in which the floating-point control feature has not been installed.

The floating-point instruction set provides for loading, adding, subtracting, comparing,
multiplying, dividing, storing, and sign control of short or long format floating-point
operands. Four double-word floating-point registers are provided to accommodate storing
and loading of results and operands. These registers are numbered 0, 2, 4, and 6. The
specification of any other register number results in a specification exception. For long
format operands, the entire double-word register is involved in the operation. For short
format operands, excluding the product in the short format multiple (ME) instruction, only
the most significant word of the double-word register is involved in the operation. The
least significant word remains unchanged. Separate instructions are provided for

. operations with long and short format operands.

Each operand is treated as a floating-point number consisting of a biased exponent
(characteristic) and a signed fraction (mantissa). The biased exponent is expressed in
excess-64 binary notation; the fraction is expressed as a hexadecimal number having an
arithmetic point to the left of the high-order digit. The quantity expressed by the full
floating-point number is the product of the fraction and the number 16 raised to the power
of the biased exponent minus 64 (fraction times 16"-64

).

A quantity may be represented with the greatest precision by a floating-point number of a
given fraction length when the number is in a "normalized" form. A normalized floating
point number has a nonzero, high-order hexadecimal fraction digit.

An exponent overflow exception develops if, in the result of a floating-point instruction,
the characteristic of the result exceeds 127 and the fraction of the result is not zero. An
exponent underflow exception develops if the characteristic is less than zero and the
fraction of the result is not zero. An exponent overflow exception causes a program
interruption. An exponent underflow exception causes a program interruption if the
exponent underflow mask bit of the current PSW is 1 .

A floating-point number having a zero characteristic, a zero fraction, and a positive (zero)
sign is said to be a "true zero" number.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-2

The floating-point instructions are available in RR and RX formats. Therefore, at least one •
of the operands is contained in one of the floating-point registers. The other operand is
located in the same or another register or in main storage. Each main storage address
may be specified as relative or absolute.

To increase the precision of certain computations, an additional least significant digit, the
guard digit, is carried within the hardware in the intermediate result of the following
operations: add-normalized, subtract-normalized, add-unnormalized, subtract
unnormalized, compare, halve, and multiply. In the execution of add-normalized, subtract
normalized, add-unnormalized, subtract-unnormalized, and compare instructions, when a
right shift of the fraction is required to equalize two exponents, the last hexadecimal digit
to be shifted out of the least significant digit position of the fraction is saved by the
processor hardware as the guard digit. The shifted fraction, including the guard digit, is
used in computing the intermediate result. In the halve instruction, the least significant bit
position of the fraction is saved as the most significant bit position of the guard digit. In
the long format multiply instruction, the guard digit is used in computing the intermediate
result. In the halve instruction, the least significant bit position of the fraction is saved as
the most significant bit position of the guard digit. In the long format multiply instruction,
the guard digit is carried as the fifteenth digit of the fraction of the intermediate product. If
the intermediate result is subsequently normalized, the guard digit is shifted left to
become part of the normalized fraction.

This section describes the operation of each floating-point instruction. The instructions are
arranged in alphabetical order according to mnemonic operation code. Each description
includes a list of the possible program exceptions and condition codes which may result.
(See 2.1, 2.3, 2.6, 5.1, 5.2.12, Appendix C, and Appendix D.) •

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-3

• AD

•

•

11.2. ADD NORMALIZED, LONG FORMAT (AD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AD 6A RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1 D
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The add normalized, long format (AD) instruction causes the contents of the double word
in storage specified by operand 2 to be algebraically added to the contents of the double
word register specified by operand 1 (r1). The sum is normalized and placed in the operand
1 (r1) register.

Explicit Format:

LABEL

[symbol]
AD LONG

Implicit Format:

LABEL

[symbol]
AD LONG

t. OPERATION t.

AD
AD

t:.OPERATION t:.

AD
AD

r 1 ,d2 (x2 ,b2)
R4,50(R7,R8)

OPERAND

OPERAND

UP-8061 Rev. 3

Operationa I Considerations:

• Floating-Point Addition

SPERRY UNIVAC OS/3
ASSEMBLER

11-4

Floating-point addition consists of exponent equalization and fraction addition. If the
exponents are equal, the fractions are added to form an intermediate sum. If the
exponents are unequal, the smaller exponent is subtracted from the larger. The
difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaller exponent. Each hexadecimal digit shift
to the right causes the exponent to be increased by 1. After equalization, the fractions
are added to form an intermediate sum.

A carry-over digit of the most significant hexadecimal digit position of the
intermediate sum causes the intermediate sum to be shifted right one digit position
and the exponent to be increased by 1. If an exponent overflow condition occurs, the
resultant floating-point number consists of a normalized and correct fraction, a correct
sign, and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most signficant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized fraction.
Vacated least significant digit positions are zero filled, and the exponent is reduced by
the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent Underflow

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the current
program status word (PSW) is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 more than the
current value. If the exponent underflow mask of the current PSW is zero, the result
is a true zero.

• Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of the
current PSW is zero and the intermediate sum is zero, the result is made a true zero.
Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result with
a zero fraction is always positive.

•

•

•

•

•

•

UP-8061 Rev. 3

Example:

LABEL .10PERATION.1
1 10

AD LONG AD
FAM DC

16

R4,FAM
D 1 100 1

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-5

Before execution of the add normalized, long format (AD) instruction, if we assume a
value of +50 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

I 4 ! 2 I 3 I 2 I 0 0 I 0 ! 0 I 0 ! 0 0 ! 0 I 0 ! 0 0 ! 0 I +50

FAM before and after execution:

I 4 ! 2 I 6 ! 4 I 0 0 I 0 i 0 I 0 ! 0 0 i 0 I 0 i 0 I 0 0 I +100

R4 after execution:

4 l 2 I 9 ! 6 I 0 0 I 0 ! 0 I 0 l 0 0 ! 0 I 0 l 0 I 0 0 I +150

UP-8061 Rev. 3

ADR

SPERRY UNIVAC OS/3
ASSEMBLER

11-6

11.3. ADD NORMALIZED, LONG FORMAT (ADR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POIN-; REGISTER

ADR 2A RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDAr-· '.'

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDA~l '(

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WOR" BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBc"RED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE
''

The add normalized, long format (ADR) instruction causes the contents of the doubl :-word
register specified by operand 2 (r2) to be algebraically added to the contents of the double
word register specified by operand 1 (r 1). The sum is normalized and placed in ~he operand
1 (r1) register.

Explicit and Implicit Format:

LABEL L'.lOPERATION Ll OPERAND

------------+------------------+---·
[symbol]
AD LONG

ADR
ADR

Operationa I Considerations:

• Floating-Point Addition

r 1'r2
R4,R6

Floating-point addition consists of exponent equalization and fraction addition. If the
exponents are equal, the fractions are added to form an intermediate sum. If the
exponents are unequal, the smaller exponent is subtracted from the larger. The
difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having a smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fraction.
are added to form an intermediate sum.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-7

• A carry-over digit of the most significant hexadecimal digit pos1t1on of the
intermediate sum causes the intermediate sum to be shifted right one digit position
and the exponent to be increased by 1. If an exponent overflow condition occurs, the
resultant floating-point number consists of a normalized and correct fraction, a correct
sign, and an exponent which is 128 less than the correct value.

•

•

• Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most significant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized fraction.
Vacated least significant digit positions are zero filled, and the exponent is reduced by
the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent Underflow

•

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the current
program status word (PSW) is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 more than the
correct value. If the exponent underflow mask of the current PSW is zero, the result is
a true zero.

Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of the
current PSW is zero and the intermediate sum is zero, the result is made a true zero.
Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result with
a zero fraction is always positive.

Example:

LABEL
1

AD LONG

AOPERATIONA OPERAND
10 16

ADR R4,R6

UP-806 1 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-8

Before execution of the add normalized, long format (ADR) instruction, if we assume a
value of +50 in R4 and +100 in R6, the contents of the R4 and R6 will be:

R4 before execution:

I 4 ! 2 I 3 ! 2 I o o!o!+so

R6 before and after execution:

~' -4~!_2_._l_s~!_4_.__l_o_._o_._l_o~i_o_.__o~i_o_.__l_o__._o_._l_o~!-o_.__l_o__._o_,l+100

R4 after execution:

o ! o I +150

•

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
11-9

AE

11.4. ADD NORMALIZED, SHORT FORMAT (AE)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AE 7A RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 0
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The add normalized, short format (AE) instruction causes the contents of the full word in
storage specified by operand 2 to be algebraically added to the contents of a full word in
the register specified by operand 1 (r1). The sum is normalized and placed in the full word

• in the operand 1 (r1) register.

•

Explicit Format:

LABEL

[symbol]
ADSHORT

Implicit Format:

LABEL

[symbol
ADSHORT

fl OPERATION fl

AE
AE

fl OPERATION b,

AE
AE

r 1 ,d2 (x2 ,b2)
R4,50(R7,R8)

OPERAND

OPERAND

UP-8061 Rev. 3

Operational Considerations:

• Floating-Point Addition

SPERRY UNIVAC OS/3
ASSEMBLER

11-10

Floating-point addition consists of exponent equalization and fraction addition. If the
exponents are equal, the fractions are added to form an intermediate sum. If the
exponents are unequal, the smaller exponent is subtracted from the larger. The
difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaller exponent. Each hexadecimal digit shift
to the right causes the exponent to be increased by 1. After equalization, the fractions
are added to form an intermediate sum.

A carry-over of the most significant hexadecimal digit pos1t1on of the intermediate
sum causes the intermediate sum to be shifted right one digit position and the
exponent to be increased by 1. If an exponent overflow condition occurs, the resultant
floating-point number consists of a normalized and correct fraction, a correct sign,
and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most significant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized fraction.
Vacated least significant digit positions are zero filled and the exponent is reduced by
the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent Underflow

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the current
program status word (PSW) is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 more than the
correct value. If the exponent underflow mask of the current PSW is zero, the result is
a true zero.

• Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of the
current PSW is zero and the intermediate sum is zero, the result is made a true zero.
Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result with
a zero fraction is always positive.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-11

• Example:

•

•

AOPERATIONA LABEL
1 10 16

ADSHORT AE
FAM DC

R4,FAM
E' l 00'

OPERAND

Before execution of the add normalized, short format (AE) instruction, if we assume a
value of +50 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

1·4 ! 2 I 3 l 2 I 0 0 I 0 ! 0 I +50

FAM before and after execution:

I 4 ! 2 I 6 ! 4 I 0 0 I 0 i 0 I +100

R4 after execution:

4 ! 2 I 9 l 6 I 0 0 I 0 l 0 I +150

UP-8061 Rev. 3

AER

SPERRY UNIVAC OS/3
ASSEMBLER

11-12

11.5. ADD NORMALIZED, SHORT FORMAT (AER)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE L.GTH.
D DATA (INVAL.ID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL. DIVIDE D SPECIFICATION:

D DECIMAL. OVERFL.OW • NOT A FL.GATING-POINT REGISTER

AER 3A RR 2 D EXECUTE D OP 1 NOT ON HAL.F-WORD BOUNDARY

• EXPONENT OVER FL.OW D OP 2 NOT ON HAL.F-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFL.OW D OP 2 NOT ON FUL.L.-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The add normalized, short format (AER) instruction causes the contents of a full word in
the register specified by operand 2 (r2) to be algebraically added to a full word in the
register specified by operand 1 (r1). The sum is normalized and placed in the operand 1 (r 1)

register.

Explicit and Implicit Format:

LABEL

[symbol]
ADSHORT

b.OPERATION b.

AER
AER

Operationa I Considerations:

• Floating-Point Addition

OPERAND

r 1,r2
R2,R4

Floating-point addition consists of exponent equalization and fraction addition. If the
exponents are equal, the fractions are added to form an intermediate sum. If the
exponents are unequal, the smaller exponent is subtracted from the larger. The
difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaller exponent. Each hexadecimal digit shift
to the right causes the exponent to be increased by 1. After equalization, the fractions
are added to form an intermediate sum.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-13

•

A carry-over digit of the most significant hexadecimal digit pos1t1on of the
intermediate sum causes the intermediate sum to be shifted right one digit position
and the exponent to be increased by 1. If an exponent overflow condition occurs, the
resultant floating-point number consists of a normalized and correct fraction, a correct
sign, and an exponent which is 128 less than the correct value.

Norma I ization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most significant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized fraction.
Vacated least significant digit positions are zero filled and the exponent is reduced by
the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent Underflow

•

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the current
program status word (PSW) is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 more than the
correct value. If the exponent underflow mask of the current PSW is zero, the result is
a true zero.

Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of the
current PSW is zero and the intermediate sum is zero, the result is made a true zero.
Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result with
a zero fraction is always positive.

Example:

LABEL
1

AOPERATIONA
10 16

ADSHORT AER R2,R4

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-14

Before execution of the add normalized, short format (AER) instruction, if we assume
a value of +50 in R2 and +100 in R4, contents of R2 and R4 will be:

R2 before execution:

I 4 l 2 I 3 i 2 I 0 ! 0 I 0 ! 0 I +50

R4 before and after execution:

I 4 ! 2 I 6 ! 4 I 0 0 I 0 : 0 I +100

R2 after execution:

4 ! 2 I 9 I 6 I 0 0 I 0 ! 0 I +150

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-15

AU

11.6. ADD UNNORMALIZED, SHORT FORMAT (AU)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AU 7E RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The add unnormalized, short format (AU) instruction causes the contents of the full word
in storage specified by operand 2 to be algebraically added to the contents of a full word in
the register specified by operand 1 (r1). The sum is placed in the operand 1 (r 1) register .

Explicit Format:

LABEL

[symbol]
ADSHORT

Implicit Format:

LABEL

[symbol]
AD SHORT

t. OPERATION t.

AU
AU

t.OPERATION t.

AU
AU

Operationa I Consideration:

r 1 ,d2 (x2 ,b2)

R4,50(R7,R8)

OPERAND

OPERAND

• The execution of the AU instruction is identical to the AE instruction (11.4) except
that the sum is not normalized before being placed in operand 1 .

UP-8061 Rev. 3

Example:

AOPERATIONA LABEL
1 10 16

ADSHORT AU
FAM DC

R4,FAM
E' 100'

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-16

Before execution of the add unnormalized, short format (AU) instruction, if we assume
a value of +900 in R4, the contents of R4 and main storage area FAM will be:

R4 before execution:

I 4 I 4 I 0 ! 3 I 8 I 4 0 I 0 I +900

FAM before and after execution:

I 4 I 2 I 6 i 4 I 0 i 0 0 i 0 I +100

R4 after execution:

4 ! 4 0 I 3 I E l 8 0 ! 0 I +1000

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-17

AUR

11.7. ADD UNNORMALIZED, SHORT FORMAT (AUR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AUR 3E RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The add unnormalized, short format (AUR) instruction causes the contents of a full word in
the register specified by operand 2 (r2) to be algebraically added to a full word in the
register specified by operand 1 (r1). The sum is placed in the operand 1 (r1) register .

Explicit and Implicit Format:

LABEL

[symbol]
AD SHORT

~OPERATION~

AUR
AUR

Operational Consideration:

OPERAND

r 1,r2
R2,R4

• The execution of the AUR instruction is identical to the AER instruction (11.5), except
that the sum is not normalized before being placed in operand 1.

Example:

LABEL
1

D.OPERATI ON.::l
10 16

ADSHORT AUR R2,R4

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-18

Before execution of the add unnormalized, short format (AUR) instruction, if we
assume a value of +900 in R2 and +100 in R4, the contents of R2 and R4 will be:

R2 before execution:

R4 before and after execution:

R2 after execution:

4 4 0 3
I

E I 8
I

0 0 +1000

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-19

• AW

11.8. ADD UNNORMALIZED, LONG FORMAT (AW)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AW 6E RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED D NONE

The add unnormalized, long format (AW) instruction causes the contents of a double word
in storage specified by operand 2 to be algebraically added to the contents of the double
word in the register specified by operand 1 (r 1). The sum is placed in the double word in

• the register specified by operand 1 (r 1).

•

Explicit Format:

LABEL

[symbol]
AD LONG

Implicit Format:

LABEL

[symbol]
AD LONG

fl OPERATION fl

AW
AW

fl OPERATION fl

AW
AW

Operational Consideration:

r 1 ,d2 (x2 ,b2)
R4,50(R7,R8)

OPERAND

OPERAND

• The execution of the AW instruction is identical to the AD instruction (11.2) except
that the sum is not normalized before being placed in operand 1 (r,) .

UP-8061 Rev. 3

Example:

LABEL
1

AD LONG
FAM

.::lOPERATIONd
10 16

AW
DC

R4,FAM
D 1 100'

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-20

Before execution of the add unnormalized, long format (AW) instruction, if we assume
a value of +900 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

'~4~!_4~1_o~!_3~l_s_._i_4~1_o_.._! _o~l_o __ o~l_o~!_o_._l_o~j-o_._l_o~o-l~oo

FAM before and after execution:

I~ -4~!_2~1.__s~j_4__,_I _o~!_o_._l_o~!_o__,_I _o_,_o~l.__o~!_o~l.__o~!_o_,_l_o_.._o_l+100

R4 after execution:

'~4__.__4~1_o___._!_3~1.__E~!_s_.._I _o~!_o_l.__o~!_o_,__o~!_o~l.__o~!_o_._I _0~0!+1000

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

11-21

AWR

11.9. ADD UNNORMALIZED, LONG FORMAT (AWR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AWR 2E RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT; 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

The add unnormalized, long format (AWR) instruction causes the contents of the double
word register specified by operand 2 (r2) to be algebraically added to the double-word
contents of operand 1 (r1). The sum is placed in the operand 1 (r1) register .

Explicit and Implicit Format:

LABEL

[symbol]
AD LONG

!:; OPERATION !:;

AWR
AWR

Operational Consideration:

OPERAND

• The execution of the AWR instruction is identical to the ADR instruction (11.3) except
that the sum is not normalized before being placed in operand 1 (r1).

Example:

LABEL
1

AD LONG

~OPERATION~ OPERAND
10 16

AWR R4,R6

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-22

Before execution of the add unnormalized, long format (AWR) instruction, if we
assume a value of +900 in R4 and +100 in R6, the contents of R4 and R6 will be:

R4 before execution:

~'-4__.!.__4__..l~o__.!.__3__..l~s~~4~-o~,__o~.__o__..__o__..~o_,_l~o__._l~o__.__o~~'-o__..__o__.l+900

R6 before and after execution:

.._I _4 _._l _4__._l_o__._i _o _._I _s~!,__4____._l _o__..!_o__,_I _o __._i _o__.__o__._i _o _._I _o____.__! _o _._I _o___.__o__,I +loo

R4 after execution:

4 4 0 3 E 8 0 0 0 0 0 0 0 0 o ! o I +1000

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

11-23

• CD

•

•

11.10. COMPARE, LONG FORMAT {CD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CD 69 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPI = OP2, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OPI <oP2, SET TO 1 0
• IF OPI >oP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

The compare, long format (CD) instruction causes the contents of a double word in the
register specified by operand 1 (r1) to be algebraically compared with the contents of a
double word in storage specified by operand 2. The condition code is set by this
instruction .

Explicit Format:

LABEL

[symbol]
COMP AR

Implicit Format:

LABEL

[symbol]
COMPAR

.6. OPERATION .6.

CD
CD

.6.0PERATION .6.

CD
CD

r 1 ,d2 {x2 ,b2)
R2,50{R7,R9)

OPERAND

OPERAND

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

11-24

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents
a re different.

• The condition code is set:

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less then operand 2; and

to 2 when operand 1 is greater than operand 2.

Code 3 is not used.

Examples:

AOPERATI ONA LABEL
1 10 16

COMPARl CD
COMPAR2 CD
COMPAR3 CD
FAM3 DC
FAM32 DC
FAM33 DC

R2,FAM3
R2,FAM32
R2,FAM33
D1 3 1

D'32 1

D1 33 1

OPERAND

Before execution of the compare, long format (CD) instruction, if we assume a value
of +32 in R2, then:

• Example 1 will set a condition code of 2.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 1.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-25

CDR

11.11. COMPARE, LONG FORMAT (CDR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CDR 29 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPI = OP2, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF OPI <oP2, SET TO 1 D
• IF OPI >oP2, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The compare, long format (CDR) instruction causes the contents of a double word in the
register specified by operand 1 (r 1) to be algebraically compared with the contents of a
double word in the register specified by operand 2 (r2). The condition code is set by this
instruction.

Explicit and Implicit Format:

LABEL

[symbol]
COMP AR

fl OPERATION fl

CDR
CDR

Operationa I Considerations:

OPERAND

r 1,r2
R2,R6

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents
are different.

• The condition code is set:

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less than operand 2; and

to 2 when operand 1 is greater than operand 2.

Code 3 is not used.

UP-8061 Rev. 3

Examples:

LABEL AOPERATIONA
1 10 16

COMPAR1 CDR
COMPAR2 CDR
COMPAR3 CDR

R2,R6
R2,R4
R2, R~

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-26

Before execution of the compare, long format (CDR) instruction, if we assume values
of +32 in R2, +33 in R6, +32 in R4, and +o in RO, then:

• Example 1 will set a condition code of 1.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 2.

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

11-27

• CE

•

•

11.12. COMPARE, SHORT FORMAT (CE)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CE 79 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPI = OP2, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF OPI <oP2, SET TO 1 D
• IF OPI >oP2, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The compare, short format (CE) instruction causes the contents of a full word in the
register specified by operand 1 (r1) to be algebraically compared with the contents of a full
word in storage specified by operand 2. The condition code is set by this instruction .

Explicit Format:

LABEL

[symbol]
COMP AR

Implicit Format:

LABEL

[symbol]
COMP AR

6 OPERATION 6

CE
CE

60PERATION 6

CE
CE

Operational Considerations:

r 1 ,d2 (x2 ,b2)
R2,50(R5,R7)

OPERAND

OPERAND

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero .

• Operands with zero fractions compare as equal even when their signs or exponents
are different.

UP-8061 Rev. 3

• The condition code is set:

SPERRY UNIVAC OS/3
ASSEMBLER

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less than operand 2; and

to 2 when operand 1 is greater than operand 2.

Code 3 is not used.

Examples:

AOPERATIONA LABEL
1 10 16

COMPARl CE
COMPAR2 CE
COMPAR3 CE
FAM3 DC
FAM32 DC
FAM33 DC

R2,FAM3
R2,FAM32
R2,FAM33
E13 1

E132 1

E 1 33 1

OPERAND

11-28

•

Before execution of the compare, short format (CE) instructions, if we assume a value •
of +32 in R2, then:

• Example 1 will set a condition code of 2.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 1.

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-29

CER

11.13. COMPARE, SHORT FORMAT (CER)

General Possible Program Exceptions

OBJECT 0 ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CER 39 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPI = OP2, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OPI <oP2, SET TO 1 0
• IF OPI > OP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

The compare, short format (CER) instruction causes the full-word contents of the register
specified by operand 1 (r1) to be algebraically compared with the contents of a full word in
the register specified by operand 2 (r2). The condition code is set by this instruction .

Explicit and Implicit Format:

LABEL

[symbol]
COMP AR

!.:.OPERATION/:::,

CER

CER

Operational Considerations:

OPERAND

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents
are different.

• The condition code is set:

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less than operand 2; and

to 2 when operand 1 is greater than operand 2;

Code 3 is not used.

UP-8061 Rev. 3

Examples:

LABEL ~OPERATION~
1 10 16

COMPAR1 CER
COMPAR2 CER
COMPAR3 CER

R4,Rr3
R4,R2
R4,R6

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-30

Before execution of the compare, short format (CER) instructions, if we assume values
of +32 in R4, +3 in RO, +32 in R2, and +33 in R6, then

• Example 1 will set a condition code of 2.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 1.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-31

• DD

11.14. DIVIDE, LONG FORMAT (DD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

DD 6D RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

• FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O,SETT02
0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED 0 NONE

The divide, long format (DD) instruction causes the double-word contents of the operand 1
(r1) register to be divided by the contents of the double word in storage specified by
operand 2. The normalized quotient is placed in the register specified by operand 1 (r 1).

• Any remainder is not preserved.

•

Explicit Format:

LABEL

[symbol]
DIV LONG

Implicit Format:

LABEL

[symbol]
DIV LONG

t:. OPERATION t:.

DD
DD

t:. OPERATION t:.

DD
DD

Operational Considerations:

r 1 ,d2 (x2 ,b2)
R4,33(R7,R10)

OPERAND

OPERAND

• Floating-point division consists of exponent subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64.

-- - -- ---- --------------------------------

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-32

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift of one digit position may be required.
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r,) fraction digits are used in forming the quotient, even if the normalized
operand 1 fraction is larger than the normalized operand 2 fraction.

• If the final quotient exponent exceeds 127, an exponent overflow exception results.
The quotient consists of the correct and normalized fraction, a correct sign, and an
exponent which is 128 less than the correct value.

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a
program interrupt if the exponent underflow mask bit of the current PSW is 1.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged,
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

Example:

LABEL
1

.£l0PERATI ON.£l
10 16

DIVIDLG DD
FAM DC

R4,FAM
D'S'

OPERAND

Before execution of the divide, long format (DD) instruction, if we assume a value of
+1000 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

I I +1000 I 4 : 3 I 3 ! E I 8 ! 0 I 0 I 0 I 0 0 0 0 0 0 0 0
I

FAM before and after execution:

1+5 I 4 l I l I
1 5 0 0 0 0 0 0 0 0 0 0 0 0 I 0

I

R4 after execution:

I 4 2 I c ! 8 I 0 ! 0 I 0 ! 0 I 0 i 0 0 ! 0 I 0 ! 0 I 0 o I +200

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-33

• DOR

11.15. DIVIDE, LONG FORMAT (DOR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

DDR 20 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O,SETT02 • FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The divide, long format (DDR) instruction causes the double-word contents of the operand
1 (r1) register to be divided by the double-word contents of the operand 2 (r2) register. The
normalized quotient is placed in the operand 1 (r1) register. Any remainder is not

• preserved.

•

Explicit and Implicit Format:

LABEL

[symbol]
DIV LONG

t.OPERATION t.

DOR
DOR

Operational Considerations:

OPERAND

r 1 ,r2
R2,R6

• Floating-point division consists of exponent subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64.

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift or one digit position may be required.
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r 1) fraction digits are used in forming the quotient even if the normalized
operand 1 (r1) fraction is larger than the normalized operand 2 (r2) fraction .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-34

• If the final quotient exponent exceeds 127, an exponent overflow exception results .
The quotient consists of the correct and normalized fraction, a correct sign, and an
exponent which is 128 less than the correct value.

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged,
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

Example:

LABEL
1

.:10PERATI ONA
10 16

DIVIDLG DOR R2,R6

OPERAND

Before execution of the divide, long format (DOR) instruction, if we assume values of
+1000 in R2 and +5 in R6, the contents of R2 and R6 will be:

R2 before execution:

I 4 ! 3 I 3 ! E I s l 0 I 0 i 0 I 0 i 0 0 i 0 I 0 ! 0 I 0 o I +1000

R6 before and after execution:

I 4 i 1 I 5 ! 0 I 0 i 0 I 0 i 0 I 0 ! 0 0 i 0 I 0 ! 0 I 0 l 0 I +5

R2 after execution:

! I o I +200 I 4 2 c ! 8 I 0 I o I 0 i 0 0 i 0 0 0 0 ! 0 0
I

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-35

• DE

•

•

11.16. DIVIDE, SHORT FORMAT (DE)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
DE 70 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 D D 1F RESULT >o. SET TO 2 • FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODO NUMBERED REGISTER

.UNCHANGED D NONE

The divide, short format (DE) instruction causes the full-word contents of the operand 1 (r 1)

register to be divided by the full-word contents of a full word in storage specified by
operand 2. The normalized quotient is placed in a full word in the operand 1 (r 1) register.
Any remainder is not preserved .

Explicit Format:

LABEL fl OPE RA Tl ON fl

[symbol] DE
DIVSHORT DE

Implicit Format:

LABEL fl OPERATION fl

[symbol] DE
DIVSHORT DE

Operationa I Considerations:

r 1 ,d2 (x2 ,b2)
R4,32(R8,R9)

OPERAND

OPERAND

• Floating-point division consists of exponent subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-36

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift of one digit position may be required.
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r,) fraction digits are used in forming the quotient even if the normalized
operand 1 (r1) fraction is larger than the normalized operand 2 fraction.

• If the final quotient exponent exceeds 127, an exponent overflow exception results.
The quotient consists of the correct and normalized fraction, a correct sign, and an
exponent which is 128 less than the correct value.

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

Example:

AOPERATIONA LABEL
1 10 16

DIVIDESH DE
FAM DC

R4,FAM
E1 51

OPERAND

Before execution of the divide, short format (DE) instruction, if we assume a value of
+1000 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

I 4 i 3 I 3 l E I 8 l 0 I 0 l 0 I +1000

FAM before and after execution:

o I o

R4 after execution:

I
I 0
I

+5

+200

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

11-37

• DER

•

•

11.17. DIVIDE, SHORT FORMAT (DER)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

DER JD RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
01F RESULT=O,SETTOO

D FIXED-POINT OVERFLOW BOUNDARY
D IF RESULT <o. SET To 1

• FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
OIF RESULT>O.SETT02 0 DI F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED D NONE

The divide, short format (DER) instruction causes the full-word contents of the operand 1
(r1) register to be divided by the full-word contents of the operand 2 (r2) register. The
normalized quotient is placed in a full word in the operand 1 (r1) register. Any remainder is
not preserved .

Explicit and Implicit Format:

LABEL .6. OPERATION fl OPERAND

[symbol] DER r 1,r2
DIVSHORT DER R4,R6

Operational Considerations:

• Floating-point division consists of exponent subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64.

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift of one digit position may be required.
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r,) fraction digits are used in forming the quotient even if the normalized
operand 1 (r 1) fraction is larger than the normalized operand 2 (r 2) fraction .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-38

• If the final quotient exponent exceeds 127, an exponent overflow exception results .
The quotient consists of the correct and normalized fraction, a correct sign, and an
exponent which is 128 less than the correct value.

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

Example:

LABEL
1

AOPERATIONA
10 16

DIVIDESH DER R4,R6

OPERAND

Before execution of the divide, short format (DER) instruction, if we assume values of
+1000 in R4 and +5 in R6, the contents of R4 and R6 will be:

R4 before execution:

I 4 l 3 I 3 i E I 8 ! 0 I 0 ! 0 +1000

R6 before and after execution:

+5

R4 after execution:

+200

•

•

•

•

•
~

UP-80 61 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-39

HOR

11.1 8. HALVE, LONG FORMAT (HOR)

General Possible Program Exceptions

OBJECT 0 PROTECTION
OPC ODE FORMAT INST.

D ADDRESSING

D SIGNIFICANCE

• SPECIFICATION:
TYPE LGTH.

MNEM HEX. (BYTES)

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

• NOT A FLOATING-POINT REGISTER

HOR 24 RR 2
0 DECIMAL OVERFLOW

D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

01F
01F

01F
01F

Condition Codes
0 EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

• OPERATION

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

RESULT= 0, SET TO 0
RESULT<O.SETTO 1
RESULT> 0, SET TO 2
OVERFLOW, SET TO 3
CHANGED .UN D NONE

The halve, long format (HOR) instruction causes the double-word contents of the operand
register to be divided by 2. The normalized quotient is placed in the double-word

nd 1 (r 1) register.
2 (r2)

opera

Exp Ii cit and Implicit Format:

LABEL

[symbol]
HALVE

fl OPERATION Ll

HOR
HOR

OPERAND

r 1,r2
R4,R6

Oper ational Considerations:

•

•

•

The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit
of the fraction is placed into the most significant bit position of the guard digit, and
he vacated fraction bit position is filled with zero. The intermediate result is

normalized and placed in the operand 1 (r1) location.
t

When normalization causes the exponent to become less than zero, an exponent
underflow condition exists. If the exponent underflow mask bit of the current program
status word (PSW) is 1, the exponent of the result is 128 greater than the correct
value. If the exponent underflow mask bit of the current PSW is zero, the result is
made true zero.

When the fraction of operand 2 (r2) is zero, the result is made a true zero, a
normalization is not attempted, and a significance exception does not occur.

UP-8061 Rev. 3

Example:

LABEL
1

HALF

AOPERATIONA
10 16

HOR R4, R6

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-40

Before execution of the halve, long format (HOR) instruction, if we assume values of
+o in R4 and +1000 in R6, the contents of R4 and R6 will be:

I I I +O 0 0 0 I 0 0 0 0 I 0 0 0 0 0 0 0 0 0
I I

R6 before and after execution:

I 4 l 3 I 3 i E I 8 ! 0 I 0 ! 0 I 0 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I +1000

R4 after execution:

I 4 I 3 I 1 i F I 4 i 0 I 0 i 0 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 I o l+soo

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-41

HER

11.19. HALVE, SHORT FORMAT (HER)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

HER 34 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED D NONE

The halve, short format (HER) instruction causes the full-word contents of the operand 2
(r2) register to be divided by 2. The normalized quotient is placed in the full word in the
operand 1 (r 1) register .

Explicit and Implicit Format:

LABEL

[symbol]
HALVE

fl OPERATION fl

HER
HER

Operational Considerations:

OPERAND

r 1,r2
R4,R6

• The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit
of the fraction is placed into the most significant bit position of the guard digit, and
the vacated fraction bit position is filled with zero. The intermediate result is
normalized and placed in the operand 1 (r,) location.

• When normalization causes the exponent to become less than zero, an exponent
underflow condition exists. If the exponent underflow mask bit of the current program
status word (PSW) is 1, the exponent of the result is 128 greater than the correct
value. If the exponent underflow mask bit of the current PSW is zero, the result is
made true zero.

• When the fraction of operand 2 (r2) is zero, the result is made a true zero,
normalization is not attempted, and a significance exception does not occur.

UP-8061 Rev. 3

Example:

LABEL
1

HALF

AOPERATIONA
10 16

HER R4,R6

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-42

Before execution of the halve, short format (HER) instruction, if we assume values of
+1000 in R4 and +o in R6, the contents of R6 and R4 will be:

R4 before execution:

I 0 i 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 +O

R6 before and after execution:

I 4 I 3 I 3 ! E I 8 0 I 0 : 0 +1000

R4 after execution:

I 4 ! 3 I 1 i F I 4 0 I 0 : 0 +500

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-43

• LCDR

•

•

11.20. LOAD COMPLEMENT, LONG FORMAT (LCDR)

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LCDR 23 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O.SETT02 0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The load complement, long format (LCDR) instruction causes the sign of the double-word
contents of the operand 2 (r2) register to be reversed. The result is placed in the double
word in the operand 1 (r 1) register .

Explicit and Implicit Format:

LABEL

[symbol]
SIGN

ti OPERATION t.

LCDR
LCDR

Operationa I Considerations:

r 1,r2
R6,R4

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set:

to zero if result is zero;

to 1 if result is less than zero; and

to 2 if result is greater than zero .

/ Code 3 is not used.

OPERAND

UP-8061 Rev. 3

Example:

LABEL
1

SIGN

d0PERATl0Nd
10 16

LCDR R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-44

Before execution of the load complement, long format (LCDR) instruction, if we
assume values of +1000 in R4 and +O in R6, the contents of R6 and R4 will be:

R6 before execution:

I ! 0 l+o I l 0 I ! 0 I 0
I

0 I 0 ! 0 ! 0 I 0 ! 0 0 0 I 0 0 0 I 0
I

R4 before and after execution:

I I +1000 I 4 ! 3 I 3 l E I 8 0 I 0 0 0 0 0 0 0 0 0 I 0
I

R6 after execution:

c i 3 I 3 I E I 8 0 I 0 ! 0 0 I 0 I 0 ! 0 I 0 l 0 I 0 ! 0 1-1000

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-45

• LCER

11.21. LOAD COMPLEMENT, SHORT FORMAT (LCER)

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
LCER 33 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT = 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
• IF RESULT >o, SET TO 2 0 D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The load complement, short format (LCER) instruction causes the sign of the full-word
contents of the operand 2 (r2) register to be reversed. The result is placed in the full word
in the operand 1 (r1) register.

• Explicit and Implicit Format:

•

LABEL

[symbol]
SIGN

60PERATION 6

LCER
LCER

Operationa I Considerations:

r1 ,r2
R6,R4

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set:

to zero if result is zero;

to 1 if result is less than 0; and

to 2 if result is greater than zero .

Code 3 is not used.

OPERAND

UP-8061 Rev. 3

Example:

LABEL
1

SIGN

.aOPERATI ON.a
10 16

LCER R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-46

Before execution of the load complement, short format (LCER) instruction, if we
assume values of +1000 in R4 and +O in R6, the contents of R6 and R4 will be:

R6 before execution:

+0

R4 before and after execution:

I 4 ! 3 I 3 ! E I 8 ! 0 I 0 ! 0 +1000

R6 after execution:

-1000

•

•

•

•

•

•

UP-8061 Rev. 3 ~PERRY UNIVAC OS/3
ASSEMBLER

11-47

LO

11.22. LOAD, LONG FORMAT (LO)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA {INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. {BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LO 68 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
0 IF RESULT >o. SET TO 2

0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The load, long format (LO) instruction causes the contents of a double word in storage
specified by operand 2 to be placed in the double word in the operand 1 (r 1) register.

Explicit Format:

LABEL

[symbol]
LOAD

Implicit Format:

LABEL

[symbol]
LOAD

b.OPERATION 6

LD
LD

b.OPERATION 6

LO
LO

Operationa I Consideration:

r 1 ,d2 (x2 ,b2)
R4,33(R8,R9)

r 1 's2 (x2)
R4,FAM

• The contents of operand 2 remain unchanged .

OPERAND

OPERAND

UP-8061 Rev. 3

Example:

LABEL
I

LOAD
FAM

_60PERATI ON.6
10 16

LO
DC

R4,FAM
DI l 50 I

SPERRY UNIV AC OS/3
ASSEMBLER

OPERAND

11-48

Before execution of the load, long format (LO) instruction, if we assume a value of +O
in R4, the contents of R4 and main storage area FAM will be:

R4 before execution:

I 0 ; I I 0 ! 0 I ! I l I 0 I I ! 0 ! I +o
I

0 0 I 0 0 0 0 0 0 0 0 0
I

FAM before and after execution:

1 +150 I 4 i I I I I I
2 9 I 6 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0

I I I I

R4 after execution:

I 4 i 2 I 9 ! 6 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 l 0 I 0 i 0 I 0 ; 0 I +150

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-49

• LOR

11.23. LOAD, LONG FORMAT (LOR)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LOR 28 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0
01F RESULT>o.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The load, long format (LOR) instruction causes the contents of the double word in the
operand 2 (r2) register to be placed in the double word in the operand 1 (r1) register.

• Explicit and Implicit Format:

•

LABEL

[symbol]
LOAD

I::, OPERATION /:i

LOR
LOR

Operationa I Consideration:

r 1,r2
R6,R4

• The contents of operand 2 (r2) remain unchanged.

Example:

LABEL
1

LOAD

aOPERATION.!l
10 16

LOR R6,R4

OPERAND

OPERAND

-- -------- --------------------------.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-50

Before execution of the load, long format (LOR) instruction, if we assume values of
+150 in R4 and +o in R6, the contents of R6 and R4 will be:

R6 before execution:

I 0 ! I ! 0 I I
0 I ! I l I 0 l I +o 0 0 0 I 0 0 0 0 0 0 : 0 0 l 0

I

R4 before and after execution:

I 4
I I I I 0 ! I i I ! I 0 ! I : 0 I ! I +150 I 2 9 I 6 0 0 0 0 0 0 0 0 0
I I

R6 after execution:

I
4 I 2 9 6 o I 0 0 0 0 ! 0 0 0 I 0 ! 0 0 ! 0 I +150

I I

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-51

• LE

11.24. LOAD, SHORT FORMAT (LE)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LE 78 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o, SET TO 2
0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The load, short format (LE) instruction causes the contents of a full word in storage
specified by operand 2 to be placed in a full word in the operand 1 (r 1) register.

• Explicit Format:

•

LABEL

[symbol]
LOAD

Implicit Format:

LABEL

[symbol]
LOAD

Li OPERATION Li

LE
LE

Li OPERATION Li

LE
LE

Operational Consideration:

r 1 ,d2 (x2 ,b2)
R6,33(R8,R9)

• The contents of operand 2 remain unchanged .

OPERAND

OPERAND

UP-8061 Rev. 3

Example:

LABEL
1

LOAD
FAM

.!lOPERATION.!l
10 16

LE
DC

R6,FAM
E 1 150 1

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-52

Before execution of the load, short format (LE) instruction, if we assume a value of +O
in R6, the contents of R6 and main storage area FAM will be:

R6 before execution:

o I o
I
I 0
I

FAM before and after execution:

R6 after execution:

4 l 2
I

0

I
I 0
I

I
0 I 0

I

0 0

+0

+150

+150

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-53

• LER

11.25. LOAD, SHORT FORMAT (LER)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LER 38 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O,SETT02
0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The load, short format (LER) instruction causes the contents of a full word in the operand
2 (r2) register to be placed in a full word in the operand 1 (r1) register.

• Explicit and Implicit Format:

•

LABEL

[symbol]
LOAD

60PERATION 6

LER
LER

Operational Consideration:

r 1,r2
R6,R4

• The contents of operand 2 (r2) remain unchanged.

Example:

LABEL
1

LOAD

.6.0PERATIONLi
10 16

LER R6,R4

OPERAND

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-54

Before execution of the load, short format (LER) instruction, if we assume values of •
+150 in R4 and +o in R6, the contents of R6 and R4 will be:

R6 before execution:

I
0 I 0

I

R4 before and after execution:

R6 after execution:

4 2

I
0 I 0

I

I o
I

+O

+150

+150

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-55

• LNDR

•

•

11.26. LOAD NEGATIVE, LONG FORMAT (LNDR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LNDR 21 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
• IF RESULT~ 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O.SETT02 D Q1F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The load negative, long format (LNDR) instruction causes the sign of the double word in
the operand 2 (r2) register to be made negative. The result is placed in the double-word
register specified by operand 1 (r1) •

Explicit and Implicit Format:

LABEL

[symbol]
LOAD

t:, OPERATION t:,

LNDR
LNDR

Operationa I Considerations:

OPERAND

r 1,r2
R2,R6

• Operand 2 (r2) is made negative even if the fraction is zero.

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set:

to zero if result is zero; and

to 1 if result is less than zero .

Codes 2 and 3 are not used.

~ --------------------------.

UP-8061 Rev. 3

Example:

LABEL .AOPERATION.A
1 10

LOAD LNDR

16

R2,R6

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-56

Before execution of the load negative, long format (LNDR) instruction, if we assume
values of +150 in R6 and +O in R2, the contents of R2 and R6 will be:

R2 before execution:

I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 I 0 0 ! 0 I +O

R6 before and after execution:

I 4 I 2 I 9 ! 6 I 0 ! 0 I 0 l 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 0 ! 0 1 +150

R2 after execution:

I 9 1-150 I c ! ! 6 0 ! 0 I I I I I 0 ! I 0 ! 0 ! 0 2 0 I 0 0 I 0 0 0
I I

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-57

• LNER

•

•

11.27. LOAD NEGATIVE, SHORT FORMAT (LNER)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LNER 31 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D D 1F RESULT>o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The load negative, short format (LNER) instruction causes the sign of a full word in the
operand 2 (r2) register to be made negative. The result is placed in a full word in the
register specified by operand 1 (r1) •

Explicit and Implicit Format:

LABEL

[symbol]
LOAD

t:.OPERATION t:.

LNER
LNER

Operationa I Considerations:

OPERAND

r 1 ,r2
R6,R4

• Operand 2 (r2) is made negative even if the fraction is zero.

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set:

to zero if result is zero; and

to 1 if result is less than zero .

Codes 2 and 3 are not used.

UP-8061 Rev. 3

Example:

LABEL
1

AOPERATIONA
10 16

LOADNEG LNER R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-58

Before execution of the load negative, short format (LNER) instruction, if we assume
values of +150 in R4 and +O in R6, the contents of R6 and R4 will be:

R6 before execution:

I 0 l 0 I 0 i 0 I 0 0 I 0 ! 0 +O

R4 before and after execution:

I 4 i 2 I 9 ! 6 I 0 ! 0 I 0 l 0 +150

R6 after execution:

I c I ! 2 I 9 ! 6 0 ! 0 0 I 0
I

-150

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-59

LPDR

11.28. LOAD POSITIVE, LONG FORMAT (LPDR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LPDR 20 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The load positive, long format (LPDR) instruction causes the sign of the double word in the
operand 2 (r2) register to be positive, and the result is placed in the double word of the
operand 1 (r,) register .

Explicit and Implicit Format:

LABEL

[symbol]

LOADN

t:.OPERATION t:.

LPDR
LPDR

Operational Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set:

to zero if result is zero; and

to 2 if result is greater than zero.

Codes 1 and 3 are not used .

OPERAND

UP-8061 Rev. 3

Example:

LABEL
1

AOPERATIONA
10 16

LOADPOS LPDR R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-60

Before execution of the load positive, long format (LPDR) instruction, if we assume
value of -150 in R4 and +o in R6, the contents of R6 and R4 will be:

R6 before execution:

I l I I I I I I l+o 0 0 0 I 0 0 I 0 0 0 0 0 0 I 0 0 0 0 I 0
I I I I

R4 before and after execution:

I 1-150
I

I l I I I
c I 2 9 6 0 I 0 0 0 0 0 0 I 0 0 I 0 0 0

I I I I

R6 after execution:

I I I I o 1+150 4 I 2 9 6 0 0 0 I 0 0 0 0 I 0 0 0 0
I I I I

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-61

• LPER

•

•

11.29. LOAD POSITIVE, SHORT FORMAT (LPER)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LPER 30 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY D IF RESULT <o. SET To 1
D FLOATING-POINT DIVIDE

D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The load positive, short format (LPER) instruction causes the sign of a full word in the
operand 2 (r2) register to be positive. The result is placed in a full word of the operand 1
(r1) register .

Explicit and Implicit Format:

LABEL

[symbol]
LO ADP

t. OPE RA Tl ON t.

LPER
LPER

Operationa I Considerations:

r 1,r2
R6,R4

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set:

to zero if result is zero; and

to 2 if result is greater than zero.

Codes 1 and 3 are not used .

OPERAND

UP-8061 Rev. 3

Example:

LABEL
1

AOPERATIONA
10 16

LOADPOS LPER R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-62

Before execution of the load positive, short format (LPER) instruction, if we assume
values of -150 in R4 and +o in R6, the contents of R6 and R4 will be:

R6 before execution:

R4 before and after execution:

R6 after execution:

I
4 I 2

I
9

0 0

6 0 0

I
0 I 0

I

I
0 I 0

I

-150

+150

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-63

• LTDR

•

•

11.30. LOAD AND TEST, LONG FORMAT (LTDR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LTDR 22 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT = 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 D QIF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The load and test, long format (L TDR) instruction causes the double-word contents of the
operand 2 (r2) register to be placed in the double-word operand 1 (r 1) register. The
condition code is set by this instruction .

Explicit and Implicit Format:

LABEL

[symbol]
TEST

/::,OPERATION/::,

LTDR
LTDR

Operational Considerations:

r 1,r2
R2,R6

• The contents of operand 2 (r2) remain unchanged.

OPERAND

• When the same register is specified by operand 1 (r1) and operand 2 (r2), the
operation is equivalent to a test without data movement.

• The condition code is set:

to zero if result is zero;

to 1 if result is less than zero; and

to 2 if result is greater than zero .

Code 3 is not used.

UP-8061 Rev. 3

Example:

LABEL

TEST

AOPERATI ONA
10 16

LTDR R2,R6

SPERRY UNIV AC OS/3
ASSEMBIER

OPERAND

11-64

Before execution of the load and test, long format (LTDR) instruction, if we assume
values of +150 in R6 and +o in R2, the contents of R6 and R2 will be:

R2 before execution:

I I I 0
I I I i 0 ! 1~ 0 I 0 I o 0 I 0 0 0 0 0 0 I 0 0 0 0

I I I

R6 before and after execution:

I ! 2 I 9
I I o I I

1+150 4 I 6 0 0 0 0 I 0 0 I Q 0 0 0 0
I I I I

R2 after execution:

I I I 9 I s I I 0 I 0 ! I ! I 0 ! I I 0 ! 1+150 4 I 2 0 0 0 0 0 0 I 0 0
I I I

The condition code is set to 2 because the result is greater than zero.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-65

• LTER

•

•

11.31. LOAD AND TEST, SHORT FORMAT (LTER)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LTER 32 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The load and test, short format (LTER) instruction causes the contents of a full word in the
operand 2 (r2) register to be placed in a full word in the operand 1 (r1) register. The
condition code is set by this instruction .

Explicit and Implicit Format:

LABEL

[symbol]
TEST

/:,.OPERATION b,

LTER
LTER

Operationa I Considerations:

r 1 ,r 2
R6,R4

• The contents of operand 2 (r2) remain unchanged.

OPERAND

• When the same register is specified by operand 1 (r 1) and operand 2 (r2) the operation
is equivalent to a test without data movement.

• The condition code is set:

to zero if result is zero;

to 1 if result is less than zero; and

to 2 if result is greater than zero .

Code 3 is not used.

UP-8061 Rev. 3

Example:

LABEL
1

TEST

~OPERATION~

10 16

LTER R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-66

Before execution of the load and test, short format (LTER) instruction, if we assume
values of +150 in R4 and +o in R6, the contents of R4 and R6 will be:

R6 before execution:

,_

I 0 i 0 I 0
I

0 I 0 ! 0 I 0 i 0 I
I

+o

R4 before and after execution:

I ! 2 I 9 I I ! 0 I 0
I

4 6 0 I 0
I

+150

R6 after execution:

I ! 2 I 9 I I I I
4 6 0 I 0 0 I 0

I I
+150

The condition code is set to 2 because the result is greater than zero.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-67

• MD

•

•

11.32. MULTIPLY, LONG FORMAT (MD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

MD 6C RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT: 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The multiply, long format (MD) instruction causes the contents of the double word in the
operand 1 (r1) register to be multiplied by the contents of a double word in main storage
specified by operand 2. The normalized product is placed in the double word of the
operand 1 (r1) register .

Explicit Format:

LABEL

[symbol]
MULT

Implicit Format

LABEL

[symbol]
MULT

t.OPERATION t.

MD
MD

t.OPERATION t.

MD
MD

Operational Considerations:

r, ,d2 (x2 ,b2)
R4,32(R9,R10)

r 1 ,s2 (x2)
R4,FAM

OPERAND

OPERAND

• Floating-point multiplication consists of exponent addition and fraction multiplication .
The exponent of the intermediate product is obtained by adding the exponents of the
two operands and reducing the sum by 64.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-68

• Both operands are normalized before multiplication and the intermediate product is
normalized after multiplication. The intermediate product fraction is truncated to 14
digits and a guard digit before normalization.

• If the exponent of the final product exceeds 127, an exponent overflow condition
exists. The resultant floating-point number consists of a correct and normalized
fraction, a correct sign, and an exponent which is 128 less than the correct value.
The overflow condition does not occur for an intermediate product exponent
exceeding 127 if. the final exponent is brought within range during normalization.

• If the final product exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the resultant
floating-point number has a correct and normalized fraction, a correct sign, and an
exponent which is 128 greater than the correct value. If the exponent underflow mask
bit of the current PSW is zero, the result is made a true zero. When an underflow
characteristic becomes less than zero during normalization before multiplication, an
underflow exception is not recognized.

• When all digits of the intermediate product are zero, the result is made a true zero.

• When the resulting fraction is zero, a program exception for exponent underflow or
overflow does not occur.

Example:

LABEL
1

MULTLG
FAM

.10PERATION.1
10 16

MD
DC

R4,FAM
D1 50 1

OPERAND

Before execution of the multiply, long format (MD) instruction, if we assume a value
of -100 in R4, the contents of R4 and main storage area FAM will be:

R4 before execution:

I I 0 ! I ! 0 I 0 ! I 0 ! 0 I 0 1-100 c l 2 I 6 : 4 I 0
I

0 0 0 0 0 I
I I I

FAM before and after execution:

j+so I I 2 I 3 : I I I I
4 2 0 I 0 0 I 0 0 0 0 0 0 0 0 I 0

I I I

R4 after execution:

I ! 1-5000 c ! 4 I 1
I

3 I 8 ! 8 I 0 i 0 I 0 ! 0 I 0 0 I 0 l 0 I 0 0 I
I

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-69

• MOR

11.33. MULTIPLY, LONG FORMAT (MOR)

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
MDR 2C RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D D 1F RESULT>o. SET To 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The multiply, long format (MOR) instruction causes the contents of the double word in the
operand 1 (r1) register to be multiplied by the contents of the double word in the operand 2
(r2) register. The normalized product is placed in the double word of the operand 1 (r1)

• register.

•

Explicit and Implicit Format:

LABEL

[symbol]
MULT

.6. OPERATION .6.

MOR
MOR

Operational Considerations:

OPERAND

r 1,r2
R4,R6

• Floating-point multiplication consists of exponent addition and fraction multiplication.
The exponent of the intermediate product is obtained by adding the exponents of the
two operands and reducing the sum of 64.

• Both operands are normalized before multiplication and the intermediate product is
normalized after multiplication. The intermediate product fraction is truncated to 14
digits and a guard digit before normalization .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-70

• If the exponent of the final product exceeds 127, an exponent overflow condition
exists. The resultant floating-point number consists of a correct and normalized
fraction, a correct sign, and an exponent which is 128 less than the correct value.
The overflow condition does not occur for an intermediate product exponent
exceeding 127 if the final exponent is brought within range during normalization.

• If the final product exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the resultant
floating-point number has a correct and normalized fraction, a correct sign, and an
exponent which is 128 greater than the correct value. If the exponent underflow mask
bit of the current PSW is zero, the result is made a true zero. When an underflow
characteristic becomes less than zero during normalization before multiplication, an
underflow exception is not recognized.

• When all digits of the intermediate product are zero, the result is made a true zero.

• When the resulting fraction is zero, a program exception for exponent underflow or
overflow does not occur.

Example:

LABEL
1

AOPERATIONA
10 16

HULTREG HOR R4,R6

OPERAND

Before execution of the multiply, long format (MOR) instruction if we assume values
of -100 in R4 and +50 in R6, the contents of R4 and R6 will be:

R4 before execution:

I ! 2 I 6 ! 4
I

l-100 c 0 0 0 0 0 0 0 0 0 0 0 I 0
I

R6 before and after execution:

I 4 ! 2 I 3 l 2 I 0 ! 0 I 0 i 0 I 0 ! 0 I 0 ! 0 I 0 l 0 I 0 0 I +50

R4 after execution:

1-5000
I

! 8 I 0
I

0 ! 0 I 0 0 c 4 1 I 3 8 0 0 0 0 I 0
I I

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

11-71

• ME

•

•

11.34. MULTIPLY, SHORT FORMAT (ME)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

ME 7C RX

Condition Codes

01F RESULT=O,SETTOO
01F RESULT<O.SETTO 1

01F RESULT>O.SETT02
0 IF OVERFLOW, SET TO 3

.UNCHANGED

4

Possible Program Exceptions

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

• EXECUTE

• EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The multiply, short format (ME) instruction causes the contents of a full word in the
operand 1 (r1) register to be multiplied by the contents of a full word in main storage
specified by operand 2. The normalized product is placed in a full word of the operand 1
(r1) register.

Explicit Format:

LABEL

[symbol]
MULT

Implicit Format:

LABEL

[symbol]
MULT

ti OPERATION t:.

ME
ME

t:. OPERATION 6

ME
ME

Operationa I Considerations:

r 1 ,d2 (x2 ,b2)
R6,32(R8,R12)

OPERAND

OPERAND

• Floating-point multiplication consists of exponent addition and fraction multiplication .
The exponent of the intermediate product is obtained by adding the exponents of the
two operands and reducing the sum by 64.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-72

• Both operands are normalized before multiplication and the intermediate product is
normalized after multiplication. The intermediate product fraction is truncated to 14
digits, the two least significant digits of which are zero, before normalization.

• If the exponent of the final product exceeds 127, an exponent overflow condition
exists. The resultant floating-point number consists of a correct and normalized
fraction, a correct sign, and an exponent which is 128 less than the correct value.
The overflow condition does not occur for an intermediate product exponent
exceeding 127 if the final exponent is brought within range during normalization.

• If the final product exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the resultant
floating-point number has a correct and normalized fraction, a correct sign, and an
exponent which is 128 greater than the correct value. If the exponent underflow mask
bit of the current PSW is zero, the result is made a true zero. When an underflow
characteristic becomes less than zero during normalization before multiplication, an
underflow exception is not recognized.

• When all digits of the intermediate product are zero, the result is made a true zero.

• When the resulting fraction is zero, a program exception exponent underflow or
overflow does not occur.

Example:

LABEL LlOPERATIONLl OPERAND

JO 16

MULT ME R6,FAM
FAM DC E15kj1

Before execution of the multiply, short format (ME) instruction, if we assume a value
of -100 in R6, the contents of R6 and main storage area FAM will be:

R6 before execution:

-100

FAM before and after execution:

0 ! 0 +50

R6 after execution:

0 i 0 -5000

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-73

• MER

•

•

11.35. MULTIPLY, SHORT FORMAT (MER)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

MER 3C RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY D 1F RESULT <o, SET TO 1
D FLOATING-POINT DIVIDE

D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o, SET TO 2 D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The multiply, short format (MER) instruction causes the contents of a full word in the
operand 1 (r,) register to be multiplied by the contents of a full word in the operand 2 (r2)

register. The normalized product is placed in a full word in the operand 1 (r 1) register .

Explicit and Implicit Format:

LABEL

[symbol]
MULT

LlOPERATION L'l

MER
MER

OPERAND

r 1 ,r 2
R6,R4

Operational Considerations:

• Floating-point multiplication consists of exponent addition and fraction multiplication.
The exponent of the intermediate product is obtained by adding the exponents of the
two operands and reducing the sum by 64.

• Both operands are normalized before multiplication and the intermediate product is
normalized after multiplication. The intermediate product fraction is truncated to 14
digits, the two least significant digits of which are zero, before normalization.

• If the exponent of the final product exceeds 127, an exponent overflow condition
exists. The resultant floating-point number consists of a correct and normalized
fraction, a correct sign, and an exponent which is 128 less than the correct value.
The overflow condition does not occur for an intermediate product exponent
exceeding 127 if the final exponent is brought within range during normalization.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-74

• If the final product exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the resultant
floating-point number has a correct and normalized fraction, a correct sign, and an
exponent which is 128 greater than the correct value. If the exponent underflow mask
bit of the current PSW is zero, the result is made a true zero. When an underflow
characteristic becomes less than zero during normalization before multiplication, an
underflow exception is not recognized.

• When all digits of the intermediate product are zero, the result is made a true zero.

• When the resulting fraction is zero, a program exception for exponent underflow or
overflow does not o~cur.

Example:

LABEL
1

MULT

AOPERATIONA OPERAND
10 16

MER R6,R4

Before execution of the multiply, short format (MER) instruction, if we assume values
of -100 in R6 and +50 in R4, the contents of R6 and R4 will be:

R6 before execution:

R4 before and after execution:

R6 after execution:

I

C I 4
I

I
1 I 3

I
8 8

I o
I

I
0 I 0

I

-100

-500

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

11-75

SD

11.36. SUBTRACT NORMALIZED, LONG FORMAT (SD)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE

MNEM. HEX,

SD 68 RX

Condition Codes

• IF RESULT= 0, SET TO 0
.IF RESULT<O,SETTO 1

.IF RESULT>O,SETT02

0 IF OVERFLOW, SET TO 3

QUNCHANGED

LGTH.
(BYTES)

4

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

• SIGNIFICANCE

0 SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

• OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER D
D OP 1 NOT ODD NUMBERED REGISTER

D NONE

The subtract normalized, long format (SD) instruction causes the contents of a double
word in main storage, specified by operand 2, to be algebraically subtracted from the
contents of the double word register specified by operand 1 (r 1). The normalized difference
is placed in the operand 1 (r 1) register.

Explicit Format:

LABEL

[symbol]
SUB

Implicit Format:

LABEL

[symbol]
SUB

/::,OPERATION/::,

SD
SD

/::,OPERATION/::,

SD
SD

r, ,d2 (x2 ,b2)
R4,32(R7,R8)

OPERAND

OPERAND

UP-8061 Rev. 3

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

11-76

• The execution of the SD instruction is identical to that of the AD instruction (11.2),
except that the sign of operand 2 is reversed before addition.

• The condition code is set:

to zero if result fraction is zero;

to 1 if result fraction is less than zero; and

to 2 if result fraction is greater than zero.

Code 3 is not used.

Example:

AOPERATIONA LABEL
1 10 16

SUBLONG SD
FAM DC

R4,FAM
D' 1121121'

OPERAND

•

Before execution of the subtract normalized, long format (SD) instruction if we •
assume a value of +250 in R4, the contents of R4 and main storage area FAM will
be:

R4 before execution:

I I I i I i I 4 I 2 F A 0 0
I

FAM before and after execution:

I 4 l 2 I 6 ! 4

R4 after execution:

4 2
I

9 I 6
I

I 0 i 0 I

0 0

I
0 I 0

I

0
I
I 0
I

o I o
I

I 0 ! 0

I 0 : 0

0 0

I I
0 I 0

I

I 0 : 0

0 0 0 0 o : o I +150

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-77

SOR

11.37. SUBTRACT NORMALIZED, LONG FORMAT (SOR)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SOR 28 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

.IF RESULT>O,SETT02 0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The subtract normalized, long format (SDR) instruction causes the contents of the double
word register, specified by operand 2 (r2) to be algebraically subtracted from the contents
of the double-word register, specified by operand 1 (r,). The normalized difference is
placed in the operand 1 (r1) register .

Explicit and Implicit Format:

LABEL

[symbol]
SUBTR

l, OPERATION l,

SDR
SDR

Operationa I Considerations:

OPERAND

r 1,r2
R6,R4

• The execution of the SDR instruction is identical to that of the ADR instruction (11.3),
except that the sign of operand 2 (r2) is reversed before addition.

• The condition code is set:

to zero if result fraction is zero;

to if result fraction is less than zero; and

to 2 if result fraction is greater than zero .

Code 3 is not used.

UP-8061 Rev. 3

Example:

LABEL.
1

SUBTR

AOPERATI ONA
10 16

SOR R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-78

Before execution of the subtract normalized, long format (SOR) instruction, if we
assume values of +250 in R6 and +100 in R4, the contents of R6 and R4 will be:

R6 before execution:

I 4 ! 1+250 I ! I I I I 0 ! 2 F A 0 0 0 I 0 0 0 0 I 0 0 0 0
I I

R4 before and after execution:

I 4 l 2 I 6 ! 4 I 0 i 0 I 0 i 0 I 0 i 0 I 0 l 0 I 0 ! 0 I 0 0 1+100

R6 after execution:

1+150
I I 0 ! 4 2 9 6 0 0 0 0 0 0 0 I 0 0 0 0
I

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-79

• SE

•

•

11.38. SUBTRACT NORMALIZED, SHORT FORMAT (SE)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SE 78 RX

Condition Codes

• IF RESULT~ 0, SET TO 0
• IF RESULT <a. SET TO 1

.IF RESULT>O.SETT02
0 IF OVERFLOW, SET TO 3

0 UNCHANGED

4

Possible Program Exceptions

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

• SIGNIFICANCE

0 SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The subtract normalized, short format (SE) instruction causes the contents of a full word in
main storage, specified by operand 2, to be algebraically subtracted from a full word in the
register specified by operand 1 (r1). The normalized difference is placed in the operand 1
(r1) register .

Explicit Format:

LABEL

[symbol]
SUB

Implicit Format:

LABEL

[symbol]
SUB

ilOPERATION 6

SE
SE

60PERATION 6

SE
SE

r 1 ,d2 (x2 ,b2)
R2,32(R9,R10)

OPERAND

OPERAND

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

11-80

• The execution of the SE instruction is identical to that of the AE instruction (11.4),
except that the sign of operand 2 is reversed before addition.

• The condition code is set:

to zero if result fraction is zero;

to 1 if result fraction is less than zero; and

to 2 if result fraction is greater than zero.

Code 3 is not used.

Example:

LlOPERATIONLl LABEL
l 10 16

SUBSHORT SE
FAM DC

R2,FAM
E' 1 l?Jl?J I

OPERAND

•

Before execution of the subtract normalized, short format (SE) instruction, if we •
assume a value of +250 in R2, the contents of R2 and main storage area FAM will
be:

R2 before execution:

I 4 ! 2 I F i A I 0 ! 0 I 0 ! 0 +250

FAM before and after execution:

I 4 : 2 I 6 i 4 I 0 ! 0 I 0 0 I +100

R2 after execution:

! ! I 9
I

6 I 0 0 I 0 ! 0 4 2 I
I

+150

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-81

SER

11.39. SUBTRACT NORMALIZED, SHORT FORMAT (SER)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SER 38 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

DI F OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The subtract normalized, short format (SER) instruction causes the contents of a full word
in the operand 2 (r2) register to be algebraically subtracted from a full word in the operand
1 (r 1). The normalized difference is placed in a full word in the operand 1 (r 1) register.

Explicit and Implicit Format:

LABEL

[symbol]
SUB

6. OPERATION 6.

SER
SER

Operational Considerations:

OPERAND

• The execution of the SER instruction is identical to that of the AER instruction (11.5),
except that the sign of operand 2 is reversed before addition.

• The condition code is set:

to zero if result fraction is zero;

to 1 if result fraction is less than zero; and

to 2 if resu It fraction is greater than zero.

Code 3 is not used.

UP-8061 Rev. 3

Example:

LABEL

1

SUB

AOPERATIONA

10 16

SER R2,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-82

Before execution of the subtract normalized, short format (SER) instruction, if we
assume values of +250 in R2 and +100 in R4, the contents of R2 and R4 will be:

R2 before execution:

R4 before and after execution:

0

R2 after execution:

I
0 I 0

I
+100

+150

•

•

•

UP-8061 Rev. -3 SPERRY UNIVAC OS/3
ASSEMBLER

11-83

• STD

11.40. STORE, LONG FORMAT (STD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

STD 60 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER J
.UNCHANGED 0 NONE

The store, long format (STD) instruction causes the contents of the register, specified by
operand 1 (r 1), to be placed in a double word in main storage, specified by operand 2.

• Explicit Format:

•

LABEL

[symbol]
STORE

Implicit Format

LABEL

[symbol]

STORE

6.0PERATION 6.

STD
STD

6.0PERATION 6.

STD
STD

Operational Consideration:

r, ,d2 (x2 ,b2)
R4,32(R5,R6)

r, ,s2 (x2)

R4,FAM

OPERAND

OPERAND

• The contents of the operand 1 (r 1) register remain unchanged .

UP-8061 Rev. 3

Example:

LABEL AOPERATIONA

1 10 16

STORELG STD
FAM DC

R4,FAM
D'~'

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-84

Before execution of the store, long format (STD) instruction, if we assume a value of
+500 in R4, the contents of R4 and main storage area FAM will be:

FAM before execution:

0 I +o I I I : I I i I l I ! I ! I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I

R4 before and after execution:

! I +500 I l I I I 4 I I I i I I o 4 3 1 I F 0 0 I 0 0 0 0 0 0 0 0
I I I

FAM after execution:

I I I I 0
I I i I ! 0 I l+soo 4 I 3 F 4 I 0 0 I 0 I 0 0 0 0 0 0

I I I I

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-85

STE

11.41. STORE, SHORT FORMAT (STE)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

STE 70 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
D IF RESULT <o. SET TO 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT> 0, SET TO 2 D 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The store, short format (STE) instruction causes the contents of a full word in the register,
specified by operand 1 (r1) to be placed in a full word in main storage, specified by operand
2 .

Explicit Format

LABEL

[symbol]
STORE

Implicit Format

LABEL

[symbol]
STORE

b:. OPERATION b:.

STE
STE

b:. OPERATION b:.

STE
STE

Operationa I Consideration:

r 1 ,d2 (x2 ,b2)
R4,32(R5,R6)

OPERAND

OPERAND

• The contents of the operand 1 (r,) register remain unchanged .

UP-8061 Rev. 3

Example:

LABEL

1

STORE
FAM

AOPERATIONA

10 16

STE
DC

R4,FAM
EleJI

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-86

Before execution of the store, short format (STE) instruction, if we assume a value of
+500 in R4, the contents of R4 and main storage FAM will be:

FAM before execution:

R4 before and after execution:

FAM after execution:

4 3 1 : F 4 0
I

0 : 0
I

I
I 0
I

I
0 I 0

I

+o

+500

+500

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-87

SU

11.42. SUBTRACT UNNORMALIZED, SHORT FORMAT (SU)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SU 7F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT: 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1 0
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The subtract unnormalized, short format (SU) instruction causes the contents of a full
word in main storage specified by operand 2 to be algebraically subtracted from the
contents of a full word in the register specified by operand 1 (r,). The difference is placed
in a full word in the operand 1 (r1) register.

Explicit Format:

LABEL t:. OPE RATION t:. OPERAND

[symbol] SU r 1 ,d2 (x2 ,b2)
SUB SU R6,32(R7,R9)

Implicit Format:

LABEL L\OPERATION L\ OPERAND

[symbol] SU r 1 ,s2 (x2)
SUB SU R6,FAM

Operationa I Considerations:

• The execution of the SU instruction is identical to that of the AU instruction (11.6),
except that the sign is reversed before addition .

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

11-88

• The condition code is set:

to zero if result fraction is zero;

to 1 if result fraction is less than zero; and

to 2 if result fraction is greater than zero.

Code 3 is not used.

Example:

LABEL ~OPERATION~

1 10 16

SUBUNNOR SU
FAM DC

R6,FAM
E1 900 1

OPERAND

Before execution of the subtract unnormalized, short format (SU) instruction, if we
assume a value of +1000 in R6, the contents of R6 and main storage area FAM will
be:

R6 before execution:

I 4 l 3 I 3
I

E I 8 ! 0 I 0 l 0 I
I

+1000

FAM before and after execution:

I I I I I
4 I 3 3 I 8 4 0 0 I 0

I I I
+900

R6 after execution:

I
4 3 0 6 4 0 0 I 0 +100

I

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-89

SUR

11.43. SUBTRACT UNNORMALIZED, SHORT FORMAT (SUR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SUR JF RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT~O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

The subtract unnormalized, short format (SUR) instruction causes the contents of a full
word in the operand 2 (r2) register to be algebraically subtracted from a full word in the
operand 1 (r1) register. The difference is placed in a full word in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL

[symbol]
SUB

/j. OPERATION /j.

SUR
SUR

Operational Considerations:

OPERAND

r 1,r2
R6,R4

• The execution of the SUR instruction is identical to that of the AUR instruction (11.7),
except that the sign is reversed before addition.

• The condition code is set:

to zero if result fraction is zero;

to 1 if result fraction is less than zero; and

to 2 if result fraction is greater than zero.

Code 3 is not used .

UP-8061 Rev. 3

Example:

LlOPERATI ONLl LABEL

1 10 16

SUBSHORT SUR R6,R4

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-90

Before execution of the subtract unnormalized, short format (SUR) instruction, if we
assume values of +1000 in R6 and +900 in R4, the contents of R6 and R4 will be:

R6 before execution:

a I o
I

R4 before and after execution:

R6 after execution:

I
0 I 0

I

I
0 I 0

I

: 6
I

o I o I o
I

+1000

+900

+100

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-91

• SW

•

•

11.44. SUBTRACT UNNORMALIZED, LONG FORMAT (SW)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SW 6F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
.IF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The subtract unnormalized, long format (SW) instruction causes the contents of a double
word in main storage specified by operand 2 to be algebraically subtracted from the
contents of the double word in the register specified by operand 1 (r 1). The difference is
placed in the double word operand 1 (r1) register .

Explicit Format:

LABEL

[symbol]
SUB

Implicit Format:

LABEL

[symbol]
SUB

/),,OPERATION /),,

SW
SW

/),,OPE RATION /),,

SW
SW

Operationa I Considerations:

r 1 ,d2 (x2 ,b2)

R4,32(R5,R9)

r 1 ,s2 (x2)
R4,FAM

OPERAND

OPERAND

• The execution of the SW instruction is identical to that of the AW instruction (11.8),
except that the sign is reversed before addition .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-92

• The condition code is set:

to zero if result fraction is zero;

to 1 if result fraction is less than O; and

to 2 if result fraction is greater than zero.

Code 3 is not used.

Example:

L\OPERATIONL\ LABEL

1 10 16

SUBUNNOR SW
FAM DC

R4,FAM
0'9£10'

OPERAND

Before execution of the subtract unnormalized, long format (SW) instruction, if we
assume a value of +1000 in R4, the contents of R4 and main storage area FAM will
be:

R4 before execution:

I I I ! I
0 I I I o ! I o ! I ! 0 I 0 4 I 3 3 E 8 I 0 I 0 0 0 0

I I I

FAM before and after execution:

I 4 ! 3 I 3 ! 8 I 4 ! 0 I 0 i 0 I o : 0 I 0 ! 0 I 0 ! 0 I 0

R4 after execution:

...._4~...._3__.~o__.!~s~~4---o~...._o~...._o~...._o__.~o~~o~~o---o~~!-o~j..._o__...__o__,j+100

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

11-93

SWR

11.45. SUBTRACT UNNORMALIZED. LONG FORMAT (SWR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SWR 2F RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

The subtract unnormalized, long format (SWR) instruction causes the contents of the
double word in the operand 2 (r2) register to be algebraically subtracted from the double
word contents of the operand 1 (r1) register. The difference is placed in the double word
operand 1 (r1) register .

Explicit and Implicit Format:

LABEL

[symbol]
SUB

LlOPERATION Ll

SWR
SWR

Operational Considerations:

OPERAND

r 1,r2
R4,R6

• The execution of the SWR instruction is identical to that of the AWR instruction
(11.9), except that the sign is reversed before addition.

• The condition code is set:

to zero if result fraction is zero;

to 1 if result fraction is less than zero; and

to 2 if result fraction is greater than zero.

Code 3 is not used .

UP-8061 Rev. 3

Example:

LABEL
1

SUBLONG

dOPERATIONA
10 16

SWR R4,R6

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-94

Before execution of the subtract unnormalized, long format (SWR) instruction, if we
assume values of +1000 in R4 and +900 in R6, the contents of R4 and R6 will be:

R4 before execution:

I 4 I 3 0 I I ! E I 8 I : 0 I 0 i 0 I 0 : 0 I 0 ! 0 I 0 I 3 0 0 +1000
I I

R6 before and after execution:

0 I i 0 l 0 0 I I 4 ! 3 I 3 l 8 4 ! 0 ! 0 I 0 : 0 I 0 I 0 I 0 +900
I

R4 after execution:

! 0 I 0 0 I I s I

0 I ! 0 I 0
I I 0 l 0 I 0 +100 4 3 0 4 I 0 I 0

I I I

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-1

12. Logical Instructions

12.1. THE USE OF LOGICAL INSTRUCTIONS

All operations performed by logical instructions are executed according to the rules of
logic. Unlike decimal and fixed-point binary instructions, logical instructions disregard
arithmetic signs. Most of these instructions manipulate data bit by bit and operate from
left to right.

This section contains the set of logical instructions that are standard. Section 14 contains
the set of logical instructions that are featured. If your processor has the control feature,
the featured instruction set is available for your use .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-2

N •

12.2. AND (N)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

N 54 RX

Condition Codes

.IF RESULT=O,SETTOO
• IF RESULT -::f=o, SET TO 1
01F RESULT>O.SETT02
01F OVERFLOW, SET TO 3
OuNCHANGED

4

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The and (N) instruction performs a logical AND operation on the contents of the operand 1
register and the contents of the full word in operand 2. The result is placed in the operand
1 register.

Explicit Format:

LABEL 6 OPE RATION 6 OPERAND

[symbol] N

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] N

When the N instruction is executed, a logical AND operation is performed on a bit in
operand 1 and a bit in operand 2. The result of the AND operation replaces the bit just·
accessed in operand 1. This instruction operates from left to right starting with the logical
AND operations of bit 0 in both operands up to and including the logical AND operation of
bit 31 in both operands.

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
12-3

The N instruction is used to turn off selected bits in the receiving field. The procedure is
shown in the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0
0 1 0
1 0 0
1 1 1

When coding patterns used as operands in AND instructions, code a 0 in all bit positions
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0),
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

After the N instruction is executed, the condition code is set to 0 if the result is all O's; or
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's.

Operational Considerations:

• • Any of the general registers (0 through 15) can be used as operand 1.

•

• Operand 2 must be defined as either a full word or aligned on a full-word boundary.

• The logical AND operation executes upon all 32 bit positions of operands 1 and 2.

• A 0 in a bit position in operand 2 sets its corresponding bit position in operand 1 to 0.

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to
remain the same.

• The condition code is set accordingly.

Example:

LABEL
I

t.OPERATI ON t.
10 16

L
ti

DS
AtlDPATRtl DC
HEXVALUE DC

8,HEXVALUE
8,ANDPATRN

,,,F
X1 000000FF 1

X1 00F0007D 1

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Register 8 before execution of N instruction:

0000 0000 1111 0000

0 0 F 0

0000 0000

0 0

0111

7

1101

D

binary
hex

ANDPATRN before and after execution of N instruction:

0000 0000 0000 0000 0000 0000 1111 1111

0 0 0 0 0 0 F F

Register 8 after execution of N instruction:

0000 0000 0000 0000 0000 0000 0111 1101

0 0 0 0 0 0 7 D

--..-
only bits actually changed

binary
hex

binary
hex

12-4

In this example, the hexadecimal value in HEXVALUE is loaded into register 8. Then a
logical AND operation is performed on the hexadecimal pattern in ANDPATRN (operand 2)
and the contents of register 8. Ones in bit positions 24 through 31 of ANDPATRN allow
the corresponding bit positions in register 8 to remain the same. Zeros in bit positions 0
through 23 of ANDPATRN set the corresponding bit positions in register 8 to 0. Since the
high order four bit positions of byte 2 in register 8 are all 1 's, they are set to 0; and since
the remaining bit positions are already 0, they remain 0. The condition code is set to 1
because the result is a combination of 1 's and O's.

•

•

•

•
UP-8061 Rev. 3

12.3. AND (NC)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

NC 04 SS 6

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT -:/=o, SET TO 1
01F RESULT>O.SETT02

0 IF OVERFLOW, SET TO 3

QUNCHANGED

SPERRY UNIV AC OS/3
ASSEMBLER

12-5

NC

Possible Program Exceptions

• ADDRESSING • PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0
0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The and (NC) instruction performs a logical AND operation on the contents of operand 1
and the contents of operand 2 which are both located in main storage. The result is placed
in operand 1.

• Explicit Format:

•

LABEL i:.OPERATION f:. OPERAND

[symbol] NC

Implicit Format:

LABEL f:. OPERATION f:. OPERAND

[symbol] NC

When the NC instruction is executed, a logical AND operation is performed on a bit in
operand 1 and a bit in operand 2. The result of the AND operation replaces the bit
accessed in operand 1. This instruction operates from left to right. The length of operand
1, whether implied or explicit, determines the length of operand 2. Therefore, when the
NC instruction is executed, the lengths of operands 1 and 2 are the same .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-6

The NC instruction is used to turn off selected bits in the receiving field. The procedure is
shown in the following truth table:

Result
Operand 1 Operand 2 (Operand 1)

0 0 0
0 1 0
1 0 0
1 1 1

When coding patterns used as operands in AND instructions, code a 0 in all bit positions
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0),
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

After the NC instruction is executed, the condition code is set to 0 if the result is all O's; or
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's.

Operationa I Considerations:

• Operands 1 and 2 must be main storage locations.

• The length of operand 1, whether implied or explicit, determines the length of
operand 2.

• A 0 in a bit position in operand 2 sets its corresponding bit position in operand 1 to 0.

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to
remain the same.

• The condition code is set accordingly.

• Operands 1 and 2 can have overlapping bytes.

Example:

LABEL
l

LOCATl
LOCAT2

.6.0PERATI ON .6.
l 0 16

NC LOCAT1,LOCAT2

DC
DC

PL2'-217'
x I FFFC I

OPERAND

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

LOCAT1 before execution of NC instruction:

0010 0001 0111 1101
binary

2 1 7 D
packed decimal

LOCAT2 before and after execution of NC instruction:

1111 1111

F F

1111

F

1100

c

binary
hex

LOCAT1 after execution of NC instruction:

0010 0001

2 1

0111

7

1100

c

binary
hex

12-7

In this example, LOCAT1 is defined as a negative packed decimal number and LOCAT2 is
defined as a field containing a hexadecimal value. A logical AND operation is performed on
the contents of LOCAT1 and LOCAT2. The result is placed in LOCAT1. The 1 's in bit
positions 0 through 13 of LOCAT2 allow the corresponding bit positions in LOCAT1 to
remain the same. Zeros in bit positions 14 and 15 of LOCAT2 set the corresponding bit
positions in LOCAT1 to 0. Since the low order bit position of LOCAT1 is 1, it is set to O;
and the bit position adjacent to the low order bit position remains 0, since it is already 0.
The condition code is set to 1 because the result is a combination of 1 's and O's. Note the
sign value is changed from negative to positive .

UP-8061 Rev. 3

NI

12.4. AND (NI)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

NI 94 SI

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT *o, SET TO 1
01F RESULT>O,SETT02
0 IF OVERFLOW, SET TO 3
OuNCHANGED

4

SPERRY UNIVAC OS/3
ASSEMBLER

12-8

Possible Program Exceptions

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

D EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The and (NI) instruction performs a logical AND operation on the contents of operand 1
located in main storage and the one byte of immediate data in operand 2. The result is
placed in operand 1 .

•

Explicit Format: •

LABEL .6 OPERATION .6 OPERAND

[symbol] NI

Implicit Format:

LABEL .60PERATION .6 OPERAND

[symbol] NI

When the NI instruction is executed, a logical AND operation is performed on a bit in
operand 1 and a bit in operand 2. The result of the AND operation replaces the bit just
accessed in operand 1. This instruction operates from left to right. The length of operand 1
can vary but the length of operand 2 is always one byte. Although operands 1 and 2 may
have differing lengths, only one byte in operand 1 is used in conjunction with the one byte
of immediate data in operand 2. The result replaces the one byte in operand 1 that was
just accessed. If you do not specify the exact byte in operand 1 you want used in the
execution with the one byte of data in operand 2, the first byte of operand 1 is used.

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-9

• The NI instruction is used to turn off selected bits in the receiving field. The procedure is
shown in the following truth table:

•

•

Result
Operand 1 Operand 2 (Operand 1)

0 0 0
0 1 0
1 0 0
1 1 1

When coding patterns used as operands in AND instructions, code a 0 in all bit positions
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0),
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

After the NI instruction is executed, the condition code is set to 0 if the result is all O's, or
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's.

Operationa I Considerations:

• Operand 1 must be a main storage location .

• Operand 2 must be a 1-byte, self-defining term .

• The length of operand 1 can vary.

• A 0 in a bit position in operand 2 sets its corresponding bit position in operand 1 to 0.

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to
remain the same.

• The condition code is set accordingly.

• You can specify the exact byte in operand 1 you want used in the execution with the
one byte in operand 2 through relative addressing.

Example:

LABEL 60PERATION6 OPERAND

1 10 16

ti I RESULT+l ,8 1 10001011 1

RESULT DC BL2I0000111101101100 I

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

RESULT before execution of NI instruction:

oooor1111

0 I F
l

RESULT+ 1
~

011011100
I

6 •C

0 78 15

binary
hex

Operand 2 immediate before and after execution of NI instruction:

100011011

8 I B
l

0 7

binary
hex

RESULT after execution of NI instruction:

RESULT+ 1
~

000011111 000011000
l

0 I F 0 '8
I I

0 7 8 15

binary
hex

12-10

In this example, the content of RESULT is a 2-byte binary string of O's and 1 's and the
operand 2 immediate is a 1-byte binary string of O's and 1 's. A logical AND operation is
performed on the contents of the second byte of RESULT and the one byte in operand 2.
The result replaces the second byte of RESULT. The 1 's in bit positions 0, 4, 6, and 7 of
the operand 2 immediate allow the corresponding bit positions in the second byte of
RESULT to remain the same. Zeros in bit positions 1, 2, 3, and 5 of the operand 2
immediate set the corresponding bit positions in the second byte of RESULT to 0. As a
result, the second byte of RESULT has been changed from a hexadecimal 6C to a
hexadecimal 08.

•

•

•

•

•

•

UP-8061 Rev. 3

12.5. AND (NR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

NR 14 RR 2

Condition Codes

• IF RESULT= 0, SET TO 0

.IF RESULT<O.SETTO 1

D IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3

D UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

12-11

NR

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

• NONE

The and (NR) instruction performs a logical AND operation on the contents of the operand
1 and operand 2 registers. The result is placed in the operand 1 register.

Explicit and Implicit Format:

LABEL 60PERATION [:, OPERAND

[symbol] NR r 1,r2

When the NR instruction is executed, a logical AND operation is performed on a bit in the
operand 1 register and a bit in the operand 2 register. The result replaces the bit accessed
in operand 1. This instruction operates from left to right starting with the logical AND
operation of bit 0 in both registers up to and including the logical AND operation of bit 31
in both registers.

The NR instruction is used to turn off selected bits in the receiving field. The procedure is
shown in the following truth table:

Result
Operand 1 Operand 2 (Operand 1)

0 0 0
0 1 0
1 0 0
1 1 1

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-12

When coding patterns used as operands in AND instructions, code O's in all bit positions •
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0),
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

After the NR instruction is executed, the condition code is set to 0 if the result is all O's or
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The logical AND operation executes upon all 32 bit positions of the operand 1 and 2
registers.

• A 0 in a bit position in operand 2 sets its corresponding bit position in operand 1 to 0.

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to
remain the same.

• The condition code is set accordingly.

Example:

LABEL
1

INFOIN

6.0PE RATION 6.
10 16

LM 5,6,INFOIN
tlR 5 ,6

DS
DC
DC

0F
X'FFCCBBAA'
X'CCBBEEDD'

Register 5 before execution of NR instruction:

1111 :1111 1100:1100
.l.

F I F C I C
.l. .1

1011 : 1011

B l B

1010T1010

A I A
l

binary
hex

OPERAND

Register 6 before and after execution of NR instruction:

110011100 1011 i1011
_l

c I C B I B
J.

111oi1110
...1.

E l E

1101i1101

D I D
J

binary
hex

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-13

• Register 5 after execution of NR instruction:

•

•

'T
1000~1000 110011100

__L

C I C 8 I 8
I ...1

1010 '1010

+
A I A

I

1000T1000

8 18
J

binary
hex

In this example, the LM instruction loads the two consecutive hexadecimal values aligned
on a full-word boundary in main storage into registers 5 and 6. Then, a logical AND
operation is performed on all 32 bits of registers 5 and 6. The result replaces register 5.
The 1 's in respective bit positions in register 6 allow the corresponding bit positions in
register 5 to remain the same. The O's in the remaining bit positions in register 6 set the
corresponding bit positions in register 5 to 0. In effect, the content of register 5 is
completely changed .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-14

CL •

12.6. COMPARE LOGICAL (Cl)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

CL 55 RX 4

Condition Codes

• IF r
1

=OPERAND 2, SET TO 0
• IF r

1
<OPERAND2, SET TO 1

• IF r 1 >OPERAND2, SET TO 2
0 IF OVERFLOW, SET TO 3
0UNCHANGED

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The compare logical (CL) instruction logically compares the contents of the operand 1
register to the full word in operand 2. The result of the comparison determines the setting
of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

Explicit Format:

LABEL L"--OPERATION 6 OPERAND

[symbol] CL

Implicit Format:

LABEL L"--OPERATIONL':'- OPERAND

[symbol] CL

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That is,
the comparison takes place regardless of data format. This instruction operates from left to
right starting with the logical comparison of bit 0 in both operands and ending as soon as
an inequality is reached, or the logical comparison of bit 31 in both operands is reached.

After execution of the CL instruction, the condition code is set:

To 0 if operand operand 2

To 1 if operand < operand 2

To 2 if operand 1 > operand 2

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-15

Usually, a conditional branch instruction tests the resulting condition code for an equal to,
less than, or greater than condition. If the condition is met. a branch takes place
accordingly. If not, the program continues processing as shown in the following coding
instruction.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a full word or aligned on a full-word boundary.

• Both operands 1 and 2 are considered unsigned binary values.

• The condition code is set accordingly.

• Condition code 3 is not used.

• Operands 1 and 2 remain unchanged after execution of this instruction.

Example:

LABEL
1

l1 OPE RAT I ON l1
10 16

SR If, 4
L 8,=F'75'
CL 8,FULVAL
BH LOOPl
ST 8,LOW

LOOPl AR 4,8

FULVAL DC
LOW DS

F1 64 1

F

OPERAND

Register 5 before and after execution of CL instruction.

T I
000010000 000010000

J

0 I 0 o I o
J ..l

' 000010000
..l.

0 1 0

0100 :1011

4 I B
.l.

binary
hex

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

FULVAL before and after execution of CL instruction:

000010000 0000:0000

0 I 0 0 I 0
.1

ooooToooo

0 I 0
...1

010010000

4 I 0
...1

binary
hex

12-16

In this example, register 4 is cleared to 0 and the full-word value coded as a literal is
loaded into register 8. Then the content of register 8 is logically compared to the full-word
value in FULVAL. Since the content of register 8 is greater than the content of FULVAL,
the condition code is set to 2 and the branch to the instruction labeled LOOPl takes place.
If the result of the comparison was other than a greater than condition, no branch takes
place and the ST instruction following the branch instruction is executed.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-17

CLC

12.7. COMPARE LOGICAL CHARACTERS (CLC)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

CLC 05 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OP1 = OP2, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OP1 < OP2, SET TO 1 0
• IF OP1 > OP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The compare logical characters (CLC) instruction logically compares the contents of
operand 1 located in main storage to the contents of operand 2 located in main storage.
The result of the comparison determines the setting of the condition code, bits 34 and 35
of the PSW. (See 8.1.)

Explicit Format:

LABEL i0.0PERATION ,0. OPERAND

[symbol] CLC

Implicit Format:

LABEL ,0. OPERATION 6. OPERAND

[symbol] CLC

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That is,
the comparison takes place regardless of data format. This instruction operates from left to
right starting with the logical comparison of bit 0 in both operands and ending as soon as
an inequality is reached (or the end of the field is reached). The length of operand 1,
whether implied or explicit, determines the length of operand 2. Therefore, when the CLC
instruction is executed, the length of operands 1 and 2 are the same.

After execution of the CLC instruction, the condition code is set:

To 0 if operand 1 = operand 2

To 1 if operand 1 < operand 2

To 2 if operand 1 > operand 2

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-18

Usually, a conditional branch instruction tests the resulting condition code for an equal to, •
less than, or greater than condition. If the condition is met, a branch takes place
accordingly. If not, the program continues processing as shown in the following coding
instruction.

Operational Considerations:

• Operands 1 and 2 must be located in main storage.

• Both operands 1 and 2 are considered unsigned binary values.

• The length of operand 1 whether implied or explicit determines the length of operand
2.

• The condition code is set accordingly.

• Operands 1 and 2 remain unchanged after the execution of this instruction.

• Condition code 3 is not used.

Example:

LABEL
1

.60PERAT I ON.6
10 16

CLC MONTH1(8),MONTH2
BE ADRTN
MVC MONTH1(8),MONTH2

ADRTN AP

MONTH! DC
MONTH2 DC
TOTAL DC
MTD DC

TOTAL,MTD

CL8 1 NOVEMBER 1

CL8 1 DECEMBER 1

PL3' 2800'
P'524'

OPERAND

MONTH 1 before and after execution of CLC instruction:

N 0 v E M B E

1101io101 1101i 0110 1110~ 0101 1100:0101 1101 :0100 1100:0010 11oolo101

•
D I 5 D 1 6 E I 5 c I 5 D I 4 c 12 C I 5

J _J_ _j_ ...1

R

110111001
-1

D l 9

binary
hex

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-19

• MONTH2 before and after execution of CLC instruction:

•

•

D E c E

1100To100 11ooio101
T

1100 To101 110010011

+ .L

C I 4
I

c : 5 c I 3 c I 5
l_ i .L

M B

110110100
T

110010010
.L

D I 4 C I 2
..1.. .L

E

T
110010101

+
c 15

R

T
110111001

+
D t 9

binary
hex

In this example, the content of MONTH 1 is logically compared to the content of MONTH2.
Since the content of MONTH1 (its binary value) is greater than the contents of MONTH2,
the condition code is set to 2. The following branch instruction tests for an equal to
condition (condition code of 0). Because that condition does not exist, no branch is taken,
the MVC instruction following the BE branch instruction is executed, and the program
continues processing .

UP-8061 Rev. 3

CLI

SPERRY UNIVAC OS/3
ASSEMBLER

12-20

12.8. COMPARE LOGICAL IMMEDIATE (CU)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

CLI 95 SI 4

Condition Codes

• IF OPERAND 1 = i
2

, SET TO 0
• IF OPERAND 1 < i2 , SET TO 1
• IF OPERAND 1 >i

2
, SET TO 2

0 IF OVERFLOW, SET TO 3
0UNCHANGED

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The compare logical immediate (CU) instruction logically compares the content of operand
1 located in main storage to the 1-byte immediate data of operand 2. The result of the
comparison determines the setting of the condition code, bits 34 and 35 of the PSW. (See
8.1.)

Explicit Format:

LABEL /::,OPE RATION /::, OPERAND

[symbol] cu

Implicit Format:

LABEL /::,OPERATION 6 OPERAND

[symbol] cu

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That
is, the comparison takes place regardless of data format. The length of operand 1 can vary
in length but the length of operand 2 is always one byte. Although the lengths of operands
1 and 2 differ, only one byte of operand 1 is compared to the one byte of immediate data
in operand 2. If you don't specify the exact byte in operand 1 you want logically compared
to the one byte of data in operand 2, the first byte of operand 1 is used. This instruction
operates from left to right starting with the logical comparison of bit 0 of the byte specified
in operand 1 and bit 0 of operand 2, and ending as soon as an inequality is found, or the
logical comparison of bit 7 of the byte specified in operand 1 and operand 2 is reached .

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-21

• After the execution of the CU instruction, the condition code is set:

To 0 if operand 1 = operand 2

To 1 if operand 1 < operand 2

To 2 if operand 1 > operand 2

Usually, a conditional branch instruction tests the condition code for an equal to, less
than, or greater than condition. If that condition is met, the branch takes place. If not, no
branch takes place and the program continues processing as shown in the following
coding instruction.

Operational Considerations:

• Operand 1 must be located in main storage.

• Operand 2 must be a 1-byte, self-defining term.

• You can specify the exact byte in operand 1 you want logically compared to the one
byte in operand 2 through relative addressing.

• Operands 1 and 2 remain unchanged after the execution of this instruction.

• • The condition code is set accordingly.

•

• The length of operand 1 can vary.

• Condition code 3 is not used.

Example:

LABEL
1

b.OPERATI ONb.
10 16

CLI
BE
PACK

EQUALITY MVC

BUF DC
STORAGE DC
STORAGEP DC

STORAGE+l ,X' F7'
EQUALITY
STORAGEP(2),STORAGE(3)

BUF(l),STORAGE+I

CL2 'fll'
X'F6F7F2 1

PL2 'fll'

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

STORAGE before and after execution of CU instruction:

STORAGE+ 1 ,
1111~0110 111110111 1111~0010

F ~ 6
_L

.l.
T

F I 7 F I 2
.l. .l.
~

Byte to be compared
with operand 2

binary
hex

Operand 2 immediate before and after execution of CU instruction:

1111 :0111

F I 7
.l.

binary
hex

12-22

In this example, the second byte in STORAGE is compared to the 1-byte immediate data in
operand 2. Since the content of the second byte of STORAGE is equal to operand 2, the
condition code is set to 0, and the branch to the instruction labeled EQUALITY takes place.
If the result of the comparison is not equal, no branch takes place, the PACK instruction
following the branch instruction is executed, and the program continues processing.

Example:

LABEL
1

b.OPERAT I ON.6.
10 16

LA 8,526
CLI AREA,C'T'
BE TOOL Rm
MVI HOLD,C'T'

TOOLRTN S 8,=F'l'

AREA DC
HOLD DC

CL3'T12'
CL 11 I

OPERAND

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

AREA before and after execution of CU instruction:

1110(0011 1111 i 0001
,.

E I 3 F I 1
.J. __l

~

Byte to be compared
with operand 2

1111i0010

F I 2
..l

binary
hex

Operand 2 immediate before and after execution of CU instruction:

111oloo11
__l

E I 3
__l

binary
hex

12-23

In this example, register 8 is loaded with a value of 526. Then the contents of the first
byte of AREA is logically compared to operand 2. Because no one byte is specified in
AREA, the first byte is used. Since the content of byte 1 of AREA is equal to the content of
operand 2, the condition code is set to 0, and the branch to the instruction labeled
TOOLRTN takes place. If the result of the comparison is not equal, no branch takes place,
the MVI instruction following the branch instruction is executed, and the program
continues processing .

Example:

LABEL
1

t.OPERATI ONt.
10 16

LH 3,4,LOADREG
CLI NUMIN,X 1 C1 1

BE STOCKNO
HVI NEWHOLD,NUMIN

STOCKtlO AR 3,4

NEWHOLD DC
NUMIM DC
LOADREG DC

DC

Cll I I

CL4 1A256 1

F'5264 1

FI 11

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

NUMIN before and after execution of the CU instruction:

C I 1 F l 2 F I 5
__l

F
1

6 l

binary
hex

Operand 2 immediate before and after execution of the CU instruction:

1100 I 0001

c 1 1

binary
hex

12-24

In this example, two consecutive full words in main storage are loaded into registers 3
and 4. The first byte of NUMIN is logically compared to the 1-byte immediate in operand 2.
Because no one byte is specified in NUMIN, the first byte is moved. Since the content of
byte 1 of NUMIN is equal to the content of operand 2, the condition code is set to 0, and
the branch to the instruction labeled STOCKNO takes place. If the result of the comparison
is not equal, no branch takes place, the MVI instruction following the branch instruction is
executed, and the program continues processing.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-25

• CLR

12.9. COMPARE LOGICAL (CLR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

CLR 15 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.1Fr
1

=r
2
,SETTOO

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF r

1
<r

2
,SETTO1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.1Fr1 >r

2
,SETT02 D 01F OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED • NONE

The compare logical (CLR) instruction logically compares the content of the operand 1
register to the content of the operand 2 register. The result of the comparison determines
the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

• Explicit and Implicit Format:

•

LABEL [::,OPERATION[::, OPERAND

[symbol] CLR r 1,r2

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That
is, the comparison takes place regardless of data format. This instruction operates from
left to right starting with the logical comparison of bit 0 in both operands and ending as
soon as an inequality is found, or the logical comparison of bit 31 in both operands is
reached.

After execution of the CLR instruction, the condition code is set:

To 0 if operand 1 operand 2

To 1 if operand 1 < operand 2

To 2 if operand 1 > operand 2

Usually, a conditional branch instruction tests the resulting condition code for an equal to,
less than, or greater than condition. If the condition is met, a branch takes place
accordingly. If not, the program continues processing as shown in the following coding
instruction.

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• Both operands 1 and 2 are considered unsigned binary values.

• The condition code is set accordingly.

• Operands 1 and 2 remain unchanged after the execution of this instruction.

• Condition code 3 is not used.

Example:

LABEL ~OPE RAT I ON~
1

COMPARE

ADD2

END

DBLWD
BUF

10

SR
L
A
CR
BH
CVD
B
AH
B
MVC

DS
oc

16

7,7
S,=F 1 1250 1

7,=F'875'
5,7
ADD2
7,DBLWD
END
7,=H'375'
COMPARE
BUF,DBLWD+S

D
PL3'0'

OPERAND

12-26

In this example, register 7 is cleared to 0. A full word containing the decimal value 1250
is loaded into register 5. Another full word containing the decimal value 875 is added to
register 7. Then the content of register 5 is logically compared to the content of register 7.
Since the content of register 5 is greater than the content of register 7, the condition code
is set to 2, and the branch to the instruction labeled ADD2 takes place. There, a half word
containing the decimal value 375 is added to register 7. An unconditonal branch to the
instruction labeled COMPARE takes place and registers 5 and 7 are logically compared
again. This time, the content of register 5 is equal to the content of register 7. Since an
equal to condition exists, the condition code is set to 0, and no branch takes place. The
CVD instruction following the branch instruction is executed and the program continues
processing.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-27

• x

•

•

12.10. EXCLUSIVE OR (X)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

x 57 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT =Fo, SET TO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The exclusive or (X) instruction performs an exclusive OR operation on the content of the
operand 1 register and the full word in operand 2. The result is placed in operand 1 and
also determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

Explicit Format

LABEL l.OPERATION 6. OPERAND

[symbol] x r 1 ,d2 (x2 ,b2)

Implicit Format

LABEL 6.0PERATION L OPERAND

[symbol] x r 1 ,s2 (x2)

When the X instruction is executed, an exclusive OR operation is performed on a bit in
operand 1 and a bit in operand 2. The result of the exclusive OR operation replaces the bit
just accessed in operand 1. This instruction operates from left to right starting with the
exclusive OR operation of bit 0 in both operands up to and including the exclusive OR
operation of bit 31 in both operands .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-28

The X instruction is used to modify bits in the receiving field. The procedure is shown in •.. ·
the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0
1 0 1
0 1 1
1 1 0

When coding patterns used as operands in exclusive OR instructions, the following codes
are set:

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in
operand 1 that you want set to 1.

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in
operand 1 that you want set to 0.

After the X instruction is executed, the condition code is set as follows:

To 0 if result is all O's.

To 1 if result is a combination of 1 's and O's.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a full-word boundary.

• The condition code is set accordingly.

• Condition code 2 and 3 are not used.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-29

• Example:

•

•

LABEL
1

ti OPE RAT I ON ti
10 16

L
x

OS
VAL DC
XPATTERN DC

6,VAL
6,XPATTERN

0F
X'000QJCAF2 1

X'09100C50D'

Register 6 before execution of X instruction:

oooojoooo 0000:0000 1100 :1010 1111I0010
_l

O I O 0 I O c IA F I 2
_l _i .J. l

binary
hex

OPERAND

XPATTERN before and after execution of X instruction:

I
0000:0000 110010101 0000T1101 000010000

...!. ...!. ...!.

0 10 0 10 c ls o I D
_l _l .1.

Register 6 after execution of X instruction:

0000:0000 ooooloooo 0000T1111 1111T 1111

+ ...!.
T

l F F IF 0 lo 0 I o 0
.l. .i

binary
hex

binary
hex

In this example, the content of VAL is loaded into register 6. Then the exclusive OR
operation is performed on the contents of register 6 and the contents of XPATTERN. The
resultant modified binary string is placed in register 6. Since the result is a combination of
O's and 1 's, the condition code is set to 1 .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-30

xc •

12.11. EXCLUSIVE OR (XC)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

xc 07 SS

Condition Codes

.IF RESULT= O,SETTOO
• IF RESULT*O.SETTO 1

0 IF RESULT >o. SET TO 2

0 IF OVERFLOW, SET TO 3

OuNCHANGED

6

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF.WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The exclusive or (XC) instruction performs an exclusive OR operation on the contents of
operand 1 and operand 2, both located in main storage. The result is placed in operand 1
and also determines the setting of the condition code, bits 34 and 35 of the PSW. (See
8.1.)

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] xc

Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] xc

When the XC instruction is executed, an exclusive OR operation is performed on a bit in
operand 1 and a bit in operand 2. The result of the exclusive OR operation replaces the bit
ac_cessed in operand 1. This instruction operates from left to right. The length of operand
1, whether implied or explicit, determines the length of operand 2. Therefore, when the XC
instruction is executed, the lengths of operands 1 and 2 are the same.

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
12-31

The XC instruction is used to modify bits in the receiving field. The procedure is shown in
the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0
1 0 1
0 1 1
1 1 0

When coding patterns used as operands in exclusive OR instructions, the following codes
are set:

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in
operand 1 that you want set to 1.

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in
operand 1 that you want set to 0.

• After the XC instruction is executed, the condition code is set as follows:

To 0 if result is all O's.

To 1 if result is a combination of 1 's and O's.

Operationa I Considerations:

• Operands 1 and 2 must be located in main storage.

• The condition code is set accordingly.

• Operands 1 and 2 can have overlapping bytes.

Example:

LABEL .0.0PERAT I ON .0. OPERAND
1 10 16

xc A,B
xc B,A

• A DC B LI I 0001 Ull 1 I
B DC BL 1 I 0'6010001 '

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

A before execution of first XC instruction:

0001i1011
-I

I B
I

binary
hex

B before and after execution of first XC instruction:

000110001

I 1

binary
hex

A after execution of first XC instruction:

T
0000 I 1010

+
0 I A

I

binary
hex

B before execution of second XC instruction:

000110001
l

1 J 1

binary
hex

A before and after execution of second XC instruction:

000011010
__[_

O I A
l

binary
hex

B after execution of second XC instruction:

I
000111011

i

I B
_J

binary
hex

12-32

In this example, the exclusive OR operation is performed on the contents of A and B. The
resultant modified binary string of 1 's and O's is placed in A. Then another exclusive OR
operation is performed on the contents of B and A (now modified). That resultant modified
binary string of 1 's and O's is placed in B. Note that the sequence of executions of the
exclusive OR operation on A and B, then B and A results in A containing the resultant
modified binary string and B containing the original contents of A. Note that the original
contents of A is saved without use of another area in main storage.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-33

• XI

•

•

12.12. EXCLUSIVE OR (XI)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX, (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

XI 97 SI 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT=FO,SETTO 1 0
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

DI F OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The exclusive or (XI) instruction performs an exclusive OR operation on the contents of
one byte of operand 1 located in main storage and the one byte of immediate data in
operand 2. The result is placed in operand 1 and also determines the setting of the
condition code, bits 34 and 35 of the PSW. (See 8.1.)

Explicit Format

LABEL .0.0PERATION !::, OPERAND

[symbol] XI

Implicit Format

LABEL !::, OPE RATION !::, OPERAND

[symbol] XI

When the XI instruction is executed, an exclusive OR operation is performed on a bit in
operand 1 and a bit in operand 2. The result of the exclusive OR operation replaces the bit
accessed in operand 1. This instruction operates from left to right. The length of operand 1
can vary but the length of operand 2 is always one byte. Although operands 1 and 2 may
have differing lengths, only one byte in operand 1 is used in the exclusive OR operation.
The result replaces the one byte in operand 1 that was accessed. If you do not specify the
exact byte in operand 1 you want used in the exclusive OR operation, the first byte of
operand 1 is used .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-34

The XI instruction is used to modify bits in the receiving field. The procedure is shown in •
the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0
1 0 1
0 1 1
1 1 0

When coding patterns are used as operands in exclusive OR instructions, the following
codes are set:

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in
operand 1 that you want set to 1.

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in
operand 1 that you want set to 0.

After the XI instruction is executed, the condition code is set as follows:

To 0 if result is all O's.

To 1 if result is a combination of 1 's and O's.

Operational Considerations:

• Operand 1 must be a main storage location.

• Operand 2 must be a 1-byte self-defining term.

• The length of operand 1 can vary.

• The condition code is set accordingly.

• You can specify the exact byte in operand 1 you want used with the one byte in
operand 2 through relative addressing.

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

L'lOPERAT I ON fl
10 16

CLC ITEMNO(l),STNDNO
BE SWTCHON

SWTCMON XI
HVC

ITEl-INO DC
STNDNO DC
PROCESS DS

ITEMNO+l, 'fill'
PROCESS,ITEMNO

X'F2!1l!ll'
X' F2 1

CL2

ITEMNO before execution of XI instruction:

111110010
l

F l 2

0000:0000

0 I 0

binary
hex

OPERAND

Operand 2 immediate before and after execution of XI instruction:

0000~0001
0 I 1

_l

binary
hex

ITEMNO after execution of XI instruction:

1111: 0010

F I 2
__]_

0000~0001
L

' O I 1
_.1

binary
hex

12-35

In this example, the first byte of ITEMNO is logically compared to the content of STNDNO.
Since they compare equally, the condition code is set to 0 and the branch to the
instruction labeled SWTCHON takes place. There, the exclusive OR operation is performed
on the first byte of ITEMNO and the one byte of data in operand 2. The result replaces the
first byte in ITEMNO. The only change to the content of ITEMNO is the setting of the low
order bit. This is an example of how the XI instruction can be used in setting programmed
binary bit switches that are useful in testing for existing conditions within the logic of the
program.

UP-8061 Rev, 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-36

XR •

12.13. EXCLUSIVE OR (XR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH,
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM, HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

XR 17 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT i=o, SET TO 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED • NONE

The exclusive or (XR) instruction performs an exclusive OR operation on the contents of
the operand 1 register and operand 2 register. The result is placed in the operand 1
register and also determines the setting of the condition code, bits 34 and 35 of the PSW.
(See 8.1.)

Explicit and Implicit Format:

LABEL t.OPERATION t. OPERAND

[symbol] XR r 1,r2

When the XR instruction is executed, an exclusive OR operation is performed on a bit in
the operands of 1 and 2 registers. The result of the exclusive OR operation replaces the bit
just accessed in operand 1. This instruction operates from left to right starting with the
execution of the exclusive OR operation on bit 0 in both registers up to and including bit
31 in both registers.

The XR instruction is used to modify bits in the receiving field. The procedure is shown in
the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0
1 0 1
0 1 1
1 1 0

•-

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
12-37

When coding patterns are used as operands in exclusive OR instructions, the following
codes a re set:

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in
operand 1 that you want set to 1 .

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in
operand 1 that you want set to 0.

After the XR instruction is executed, the condition code is set as follows:

To 0 if result is all O's.

To 1 if result is a combination of 1 's and O's.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The condition code is set accordingly.

• Example:

•

LABEL
1

~OPE RAT I ON~
10 16

SR
L
A
CVD
MVC
XR

4,4
7,CONTENTS
7,=F'25'
7, DBLWD
AREA,DBLWD+5
7,7

CONTENTS DC F' 50'

DBLWD
AREA

DS
DS

D
PL3

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Register 7 before execution of XR instruction:

oooof oooo 0000!0000
T

000010000 0011 :0010

0 J 0 0 1 0 0 I o 4 : B
..J. ..J.

Register 7 after execution of XR instruction:

000010000 0000 I 0000 0000 10000 000010000
..J. -t -t

0 I 0 0 l 0 0 I O 0 10
__l

binary
hex

binary
hex

12-38

In this example, the full word in CONTENTS is loaded into register 7. A full word
containing the decimal value of 25 is added to register 7, and that result is converted into
its decimal equivalent and placed in DBLWD in main storage. Then the content of the last
three bytes of DBLWD are moved into a smaller field, and the exclusive OR operation is
performed on the contents of register 7 and itself. The result is a field of O's. This is
another method of clearing a field to O's.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-39

• IC

•

•

12.14. INSERT CHARACTER (IC)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

IC 43 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3 0 OPERATION

0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The insert character (IC) instruction places one byte of data from operand 2 into the
rightmost byte of the operand 1 register.

Explicit Format:

LABEL .0.0PERATION 6 OPERAND

[symbol] IC

Implicit Format:

LABEL .0.0PERATION 6 OPERAND

[symbol] IC

The data in operand 2 can be defined in any format. The length of operand 2 can vary but
the length of operand 1 is always four bytes. Although operands 1 and 2 can have
differing or equal lengths, only one byte of operand 2 is inserted into the rightmost byte of
the operand 1 register. The remaining three bytes of operand 1 remain the same. If you do
not specify the exact byte in operand 2 you want inserted into operand 1, the first byte of
operand 2 is used.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1 .

• The length of operand 2 can vary .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-40

• You can specify the exact byte in operand 2 you want inserted into the rightmost byte •
of operand 1 through relative addressing.

• The condition code remains unchanged.

Example:

LABEL
1

INSERT

HEXVAL
NEWVAL

.6.0PERATION.6.
10 16

L 4,HEXVAL
CLC HEXVAL+3(1),NEWVAL
BNE INSERT

IC

•
DS
DC
DC

4,NEWVAL

'1F
x I f1Jf1JQJfJ64A2 I

X'F4 1

Register 4 before execution of IC instruction:

000010000 000010000
""T

0 l 0 0 l 0

HEXVAL+3

1

0110:0100 101010010
...I.

6 I 4 A I 2
.l. I

binary
hex

OPERAND

NEWVAL before and after execution of IC instruction:

111110100

F I 4

binary
hex

Register 4 after execution of instruction:

000010000 0000,0000 011010100 111110100

0 10 0 10 6 14 F 14

binary
hex

In this example, the content of HEXVAL is loaded into register 4. Then the fourth byte of
HEXVAL is logically compared to the one byte in NEWVAL. Since the content of
HEXVAL +3 is greater than NEWVAL, the condition code is set to 2 and the branch to the
instruction labeled INSERT takes place because a not equal to condition exists. There, the
1-byte field in NEWVAL is inserted into the rightmost byte of register 4.

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

12-41

• LA

•

•

12.15. LOAD ADDRESS (LA)

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LA 41 RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT= O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

01F RESULT<O,SET TO 1
0 FIXED-POINT OVERFLOW BOUNDARY

D 1F RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER

QIF OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

The load address (LA) instruction places the address of the main storage location of
operand 2 into bit positions 8 through 31 (rightmost 3 bytes) of the operand 1 register. Bits
0 through 7 (leftmost byte) of the operand 1 register are set to O's .

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] LA r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] LA r1 ,s2

Operand 2 can be any byte in main storage and does not have to be aligned on a full-word
boundary. Operand 2 can also be a self-defining term. The three rightmost bytes of
operand 1 are filled and the leftmost byte of operand 1 is set to O's.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Any of the general registers (1 through 15) can be used as operand 2. These registers
are used as self-defining terms.

• Operand 2 can be any label in main storage.

UP-8061 Rev. 3

Example:

SPERRY UNIV AC OS/3
ASSEMBLER

LABEL
I

aOPERAT I ONA OPERAND
10 16

SR
LA
ZAP

ADDLOOP PACK
AP
A
A
c
BL

CARDIN OS
WKLYHRS OS
CONJ DC
CON3 DC
CON7 DC

4,4
6,CARDIN+38
WKLYHRS,=P 18 1

8(3,6) ,8(3,6)
WKLYHRS,8(3,6)
4,CONI
6,CON3
4,CON7
ADDLOOP

CL88
PL3
F' I'
F'3'
F'7'

12-42

In this example, register 4 is cleared to 0. Then the LA instruction loads the address of
CARDIN+38 into register 6. The ZAP instruction sets the field labeled WKL YHRS to a
packed field of O's. Since the address of the byte located at card column 39 is in register
6, the PACK instruction packs the 3-byte field (defined in explicit format) into itself. Note
that there is a displacement value of 0. Therefore, the base address is not modified
through displacement values. The 3-byte packed field is now added to WKLYHRS which
will eventually contain the total number of hours an employee works in one week. A full
word containing the decimal value of one is added to register 4 each time a 3-byte field is
packed and added to WKLYHRS. Register 4 acts as a counter to keep track of the number
of times the ADDLOOP routine has been executed. A full word containing the decimal
value of three is added to register 6 modifying the address by increasing it three bytes
each time the A instruction is executed. This allows the successive fields on the input card
to be processed. Then the content of register 4 is compared to the decimal value of 7 in
CON7. The branch if low (BL) instruction tests the condition code for a less than condition.
Since the content of register 4 is less than the content of CON7, a branch to the
instruction labeled ADDLOOP takes place. The ADDLOOP routine is executed seven times.
After the seventh execution, the content of register 4 is not less than CON7 and the
instruction following the BL instruction is executed.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-43

• MVI

•

•

12.16. MOVE IMMEDIATE (MVI)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

MVI 92 SI 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D D IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The move immediate (MVI) instruction places the one byte of immediate data in operand 2
into one byte of operand 1 located in main storage.

Explicit Format:

LABEL fl OPERATION t:. OPERAND

[symbol] MVI

Implicit Format:

LABEL fl OPERATION t:. OPERAND

[symbol] MVI

The data in operands 1 and 2 can be defined in any format. The length of operand 1 can
vary but the length of operand 2 is always one byte. Although operands 1 and 2 can have
differing lengths, only one byte in operand 1 receives the immediate data from operand 2.
If you do not specify the exact byte in operand 1 you want to receive the operand 2 data,
the first byte of operand 1 is used.

Operational Considerations:

• Operand 1 must be a main storage location.

• Operand 2 must be a 1-byte, self-defining term .

• The length of operand 1 can vary.

• You can specify the exact byte in operand 1 you want to receive the immediate data
in operand 2 by relative addressing.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

t.OPE RAT I ON t.
10 16

OPERAND

MVI OUTPUT,X'4~'
MVC OUTPUT+1(7),0UTPUT

•

OUTPUT OS CL8

OUTPUT before execution of MVI instruction:

000010000 000010000 000010000 000010000 000010000 001111101 110011010 010011100
I

010 010 010 olo olo 310 CIA 4IC

'----------------~------------~._./ leftover data from previous program

Operand 2 immediate before and after execution of MVI instruction:

~
~

binary
hex

OUTPUT after execution of MVI instruction:

010010000 000010000 000010000 000010000 000010000 001111101 110011010 010011100

410 010 010 OIO olo 310 CIA 41C

~

only byte changed

OUTPUT after execution of MVC instruction:

010010000 010010000 010010000 010010000 010010000 010010000 010010000 010010000

4 10 4 10 4 IO 4 lo 4 10 4 lo 4 10 4 IO

12-44

binary
hex

binary
hex

binary

hex

In this example, the one byte of immediate data in operand 2 is placed in the first byte of
OUTPUT since no exact byte is specified. Then that first byte of OUTPUT is propagated
through that entire field. The length attribute (in this example, 7) can be either implied or
explicit and determines the number of bytes that the first byte is propagated through.

•

•

•
UP-8061 Rev. 3

12.17. OR (0)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

0 56 RX 4

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT =1:-o, SET TO 1
01F RESULT>O,SETT02
0 IF OVERFLOW, SET TO 3
0UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

12-45

0

Possible Program Exceptions

• ADDRESSING • PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D NONE

The or (0) instruction performs a logical OR operation (sometimes referred to as an
inclusive OR operation) on the contents of the operand 1 register and the full word in
operand 2. The result is placed in the operand 1 register.

• Explicit Format:

•

LABEL b.OPERATION t:. OPERAND

[symbol] 0

Implicit Format:

LABEL OPERAND

[symbol] 0

When the 0 instruction is executed, a logical OR operation is performed on a bit in
operand 1 and a bit in operand 2. The result of that OR operation replaces the accessed bit
in operand 1. This instruction operates from left to right starting with the logical OR
operation of bit 0 in both operands up to and including the logical OR operation of bit 31
in both operands .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-46

The 0 instruction is used to modify bits in the receiving field. The procedure is shown in •
the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0
1 0 1
0 1 1
1 1 1

When coding patterns are used as operands in logical OR instructions, the following codes
are set:

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to set to 1.

After the 0 instruction is executed, the condition code is set as follows:

To 0 if result is all O's

To 1 if result is a combination of 1 's and O's.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a ful-word boundary.

• The condition code is set accordingly.

Example:

LABEL t.OPERATI ON ti
1 10 16

L
0

•

OS
NUHX DC
PATRNO DC

11,NUHX
11,PATRNO

~F
x I flflflflFfJ F0'
X'fJllJFFfJFflF'

OPERAND

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Register 11 before execution of 0 instruction:

ooooToooo
T

000010000
l

T

0 l 0 o to

1111ioooo
l

F : 0

1111 :oooo

F I 0
l

binary
hex

PATRNO before and after execution of 0 instruction:

ooooToooo 1111 T1111

T

0 lo F I F

0000T1111

+
0 ! F

0000T1111
l

0 I F
.l.

binary
hex

Register 11 after execution of 0 instruction:

ooooioooo 111111111
__j_

T
0 I 0 F I F

I

111111111

F I F
I

111111111
.1

F I F
.l.

binary
hex

12-47

In this example, the content of NUMX is loaded into register 11 and then a logical OR
operation is performed on the content of register 11 and the content of PATRNO. The
resultant modified binary string replaces register 11 .

UP-8061 Rev. 3

oc

12.18. OR (QC)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

DC 06 SS 6

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT =/=o, SET TO 1
D IF RESULT >o. SET TO 2
01F OVERFLOW, SET TO 3
0UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

12-48

Possible Program Exceptions

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The or (QC) instruction performs a logical OR operation (sometimes referred to as an
inclusive OR operation) on the contents of operands 1 and 2 located in main storage_ The
result is placed in operand 1.

Explicit Format:

LABEL t. OPERATION t. OPERAND

[symbol] oc

Implicit Format

LABEL t.OPERATION t. OPERAND

[symbol] oc

When the QC instruction is executed, a logical OR operation is performed on a bit in
operand 1 and a bit in operand 2. The result of the logical OR operation replaces the
accessed bit in operand 1. This instruction operates from left to right. The length of
operand 1, whether implied or explicit, determines the length of operand 2. Therefore,
when the OC instruction is executed, the lengths of operands 1 and 2 are the same .

•

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
12-49

The OC instruction is used to modify bits in the receiving field. The procedure is shown in
the following truth table:

Result
Operand 1 Operand 2 (Operand 1)

0 0 0
1 0 1
0 1 1
1 1 1

When coding patterns are used as operands in logical OR instructions, the following codes
are set:

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to set to 1.

After the OC instruction is executed, the condition code is set as follows:

• To 0 if result is all O's.

•

To 1 if result is a combination of 1 's and O's.

Operational Considerations:

• Operands 1 and 2 must be located in main storage.

• The condition code is set accordingly.

• Operands 1 and 2 can have overlapping bytes.

Example:

LABEL
1

t.OPERATIONt.
10 16

OC CONSTANT,CONDITl
OC CONSTANT,CONDIT2
•

CONSTANT DC
CONDITl DC
CONDIT2 DC

BI 9J9J9Jelel9Jf'6eJ I

B I f'61'6elelelf'611 I

BI f'69J 1el1 eJeleJ I

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

•

CONSTANT before execution of OC instruction:

000010000

0 I 0
__l

binary
hex

Before and after execution of OC instruction:

CONDIT1

~
~

CONDIT2
'T

001011000
I

'T
2 I a

binary
hex

CONSTANT after execution of first QC instruction:

0000 :0011

0 I 3
I

binary
hex

CONSTANT after execution of second OC instruction:

0010i1011

2 1 B

binary
hex

12-50

In this example, a logical OR operation is performed on the contents of CONSTANT and
CONDIT1 and the result is placed in CONSTANT. Then, another logical OR operation is
performed on the contents of CONSTANT (now modified) and CONDIT2 .. That result
replaces the contents of CONSTANT. This is an example of the way programmed switches
can be used to set several conditions.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-51

• 01

•

•

12.19. OR (01)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

01 96 SI 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT =/=o, SET TO 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The or immediate (01) instruction performs a logical OR operation on the contents of
operand 1 located in main storage and the one byte of immediate data in operand 2. The
result replaces one byte in operand 1 .

Explicit Format

LABEL 6. OPE RATION 6. OPERAND

[symbol] 01 d, (b,) ,i2

Implicit Format

LABEL 6.0PERATION 6. OPERAND

[symbol] 01 s, ,i2

When the 01 instruction is executed, a logical OR instruction is performed on a bit in
operand 1 and a bit in operand 2. The result of the logical OR operation replaces the
accessed bit in operand 1. This instruction operates from left to right. The length of
operand 1 can vary but the length of operand 2 is always one byte. Although operands 1
and 2 may have differing lengths, only one byte in operand 1 is used in the logical OR
operation. The result replaces the one byte in operand 1 that was accessed. If you do not
specify the exact byte in operand 1 you want used in the logical OR operation, the first
byte of operand 1 is used .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-52

The 01 instruction is used to modify bits in the receiving field. The procedure is shown in
the following truth table.

Operand 1 Operand 2
Result

(Operand 1)

0 0 0
1 0 1
0 1 1
1 1 1

When coding patterns are used as operands in logical OR instructions, the following codes
are set:

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to set to 1.

After the 01 instruction is executed, the condition code is set as follows:

To 0 if result is all O's.

To 1 if result is a combination of 1 's and O's.

Operational Considerations:

• Operand 1 must be a main storage location.

• Operand 2 must be a 1-byte self-defining term.

• The length of operand 1 can vary.

• The condition code is set accordingly.

• You can specify the exact byte in operand 1 you want used in the logical OR
operation through relative addressing.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-53

• Example:

•

•

LABEL
t

AMTP
VAL
AMT

liOPERATI ONli
to t6

AP AMTP,VAL
UNPK AMT(S),AMTP
01 AMT+4,X'F0'

•
DC
DC
OS

PL3'652'
p•522 1

ZLS

AMT before execution of 01 instruction:

AMT+4 ,
T T

111110001
T

110010100 111110000 1111I0001 111110111

T T

: 1 F l 7 C I 4 F I 0 F I 1 F
...L _l

OPERAND

binary
hex

Operand 2 immediate before and after execution of 01 instruction:

111110000
..1

F I O

binary
hex

AMT after execution of 01 instruction:

111110000 1111 :0001
I I

1111 I 0001 11111 0111
. _._ ...L
I

F I 0 F I 1 I 7 F I 1 F
-1 _l ...L

1111jo100

F I 4
__L

binary
hex

In this example, the packed decimal contents of AMTP and VAL are added together and
the result is placed in AMTP. Then the UNPK instruction changes the packed format of
AMTP to the zoned decimal format and puts the result in AMT. In order to print a decimal
number, it must be in zoned decimal format and each number must be preceded by a
hexadecimal F. Otherwise, an alpha character will be printed as the rightmost byte. Note
that the last byte in AMT has a hexadecimal C in its zone portion. The 01 instruction
allows a logical OR operation to be performed on the contents of byte 5 in AMT and the
one byte of data in operand 2. The result replaces byte 5 of AMT. Now the decimal
number in AMT can be printed.

UP-8061 Rev. 3

OR

12.20. OR (OR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

OR 16 RR

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT #:o, SET TO 1
0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
OuNCHANGED

2

D
D
D
D
D
D
D
D
D
D
D

SPERRY UNIVAC OS/3
ASSEMBLER

12-54

Possible Program Exceptions

ADDRESSING

DATA (INVALID SIGN/DIGIT)

DECIMAL DIVIDE

DECIMAL OVERFLOW

EXECUTE

EXPONENT OVERFLOW

EXPONENT UNDERFLOW

FIXED-POINT DIVIDE

FIXED-POINT OVERFLOW

FLOATING-POINT DIVIDE

OPERATION

D PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WOAD BOUNDARY

0 OP 2 NOT ON FULL-WOAD BOUNDARY

D OP 2 NOT ON DOUBLE-WOAD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

The or (OR) instruction performs a logical OR operation on the contents of the operand 1
register and operand 2 register The result is placed in the operand 1 register and also
determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

Explicit and Implicit Format:

LABEL t.OPERATION t, OPERAND

[symbol] OR r1 ,r2

When the OR instruction is executed, a logical OR operation is performed on a bit in the
operand 1 and operand 2 registers. The result of the logical OR operation replaces the
accessed bit in operand 1. This instruction operates from left to right starting with the
execution of the logical OR operation on bit 0 in both registers up to and including bit 31
in both registers.

The OR instruction is used to modify bits in the receiving field. The procedure is shown in
the following truth table:

Operand 1

0
1
0
1

Operand 2

0
0
1
1

Result
(Operand 1)

0
1
1
1

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-55

• When coding patterns are used as operands in logical OR instructions, the following codes
are set:

•

•

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to remain the same.

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that
you want to set to 1.

After the OR instruction is executed, the condition code is set as follows:

To 0 if result is all O's.

To 1 if result is a combination of 1 's and O's.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The condition code is set accordingly.

Example:

LABEL ~OPERATION~
1 10 16

L
L
OR
•
•
•
OS

HEX#1 DC
HEX#2 DC

4,HEX#l
8,HEX#2
4,8

!if F
x I fJIJfJ H'1 CfJ I
X'fJCIJAfJFF5 1

Register 4 before execution of OR instruction:

0000:0000 000010001
.l. ..1.

0 l 0 0 11
000010001

0 I 1
.l.

1100~0000

c i 0

binary
hex

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Register 8 before and after execution of OR instruction:

r
000011100 000011010 0000,1111 111110101

0 I C 0 I A O I F F I 5

binary
hex

Register 4 after execution of OR instruction:

I

000011100 000011011 000011111 111110101
..l

olc ols OIF FjS

binary
hex

12-56

In this example, the content of HEX#1 is loaded into register 4 and the content of HEX#2
is loaded into register 8. Then a logical OR operation is performed on the contents of
registers 4 and 8. The result replaces the content of register 4.

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
12-57

SLL

12.21. SHIFT LEFT SINGLE LOGICAL (SLL)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SLL 89 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01FRESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
D IF RESULT <o. SET To 1 D
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

The shift left single logical (SLL) instruction shifts all of the 32 bits in the operand 1
register to the left the number of bits specified by the low order six bits of the operand 2
address.

• Explicit Format

•

LABEL t:.OPERATION t:. OPERAND

[symbol] SLL

Implicit Format

LABEL t:. OPERATION t:. OPERAND

[symbol] SLL

The operand 2 address is not used to address data. The low order six bits are used as the
shift count and the remainder of the address is ignored. When the SLL instruction is
executed, the high order bits that are shifted out of the register are lost and replaced with
subsequent bits within the register also being shifted. Zeros fill the vacated low order bit
positions.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1 .

• If you already know the displacement value associated with a label in your program,
you can use the low order six bits as the shift count.

• A self-defining term can be specified for operand 2.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

• Zeros fill the vacated low order bit positions in the operand 1 register .

• The condition code remains unchanged.

• A length attribute cannot be specified for operand 2.

12-58

• The shift count cannot exceed 32 bits because the highest value that can be
represented in the low order six bits is +32 (25).

Example:

LABEL
1

t.OPERATI ONt.
10 16

L 4,FLWRD
SLL 4,STORAGE

•
OS (6 F

FLWRD DC X' 89ABCDEF 1

8 STORAGE EQU

Register 4 before execution of SLL instruction:

100011001 101oi1011
I

8 1 9 A j B
.l

110011101

C ID
I

111011111

E I F
_l

binary
hex

OPERAND

STORAGE before and after execution of SLL instruction:

low order six bits

ooooToooo ooooioooo 0000T1000
..L

T
0 I 0 0 lo 0 la _l_

location counter (address)
not contents

binary
hex

Register 4 after execution of SLL instruction:

T
110011101 101011011

1

A l B c ID

1110T1111
..L

E l F

ooooioooo

0 I 0
..1

binary
hex

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-59

In this example, the content of FLWRD is loaded into register 4. Then the SLL instruction
uses the low order six bits of the address of STORAGE (not content) as the shift count. In
this case, STORAGE has no content but has been equated with or contains the address of
the absolute value of 8. When the SLL instruction is executed, eight high order bits of
register 4 are shifted out of the register, and replaced with subsequent bits within the
register also being shifted. Zeros fill the vacated eight low order bit positions.

Example:

LABEL
1

'10PERATI ON.1.
10 16

SR 4,4
L 4,=F'250~ 1

L 5,=F 1 10 1

SLL 4 ,~(5)

Register 4 before execution of SLL instruction:

0000}0000 ooooroooo

0 I 0 0 I 0
...1. _l

0000: 1001
...1.

0 I 9
.l

1100:0100
I

C I 4
.l

binary
hex

OPERAND

Register 5 before and after execution of SLL instruction:

ooooloooo 0000:0000 0000:0000 000011010
...1.

0 ~ 0 0 I 0 0 I 0 0 I A
l .1 __l

-------------------...........,,--~--------~act u a I contents

binary
hex

Register 4 after execution of SLL instruction:

ooooioooo 0010~0111

0 IO 2 I 7
...1. .l.

0001loooo
...1.

1 10
l

ooooToooo

0 l 0

binary
hex

In this example, register 4 is cleared to 0. The decimal value of 2500 is loaded into
register 4, and the decimal value of 10 is loaded into register 5. The actual content of
register 5 is used (not its address) because register 5 is being used as a base register. So,
the value loaded into register 5 is treated as an address. This can only be done in the
explicit format.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-60

SRL

12.22. SHIFT RIGHT SINGLE LOGICAL (SRL)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SRL 88 RS

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1

01F RESULT>O,SETT02
0 IF OVERFLOW, SET TO 3
.UNCHANGED

4

0 ADDRESSING

D DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

0 PROTECTION

D SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• NONE

The shift right single logical (SRL) instruction shifts all of the 32 bits in the operand 1
register to the right the number of bits specified by the low order six bits of the operand 2
address.

Explicit Format:

LABEL £'.}.OPERATION£'.}. OPERAND

[symbol] SRL

Implicit Format:

LABEL £'.}.OPERATION£'.}. OPERAND

[symbol] SRL

The operand 2 address is not used to address data. The low order six bits are used as the
shift count and the remainder of the address is ignored. When the SRL instruction is
executed, the low order bits that are shifted out of the register are lost and replaced with
subsequent bits within the register also being shifted. Zeros fill the vacated high order bit
positions.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Using a label as operand 2 can cause unpredictable results.

• A self-defining term can be used as operand 2 .

• Zeros fill the vacated high order bit positions in the operand 1 register.

• The condition code remains unchanged.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-61

• • A length attribute cannot be specified for operand 2.

•

•

• The shift count cannot exceed 32 bits because the highest value that can be
represented in the low order six bits is +32 (25).

Example:

LABEL
1

WORD
LABEL

.t:.OPERATIONL'l
10 16

L 4,WORD
SRL 4,LABEL

OS
DC
DC

e!F
X'3A6f/Jf/JriJf/JfiJ'
PL2'fiJ'

Register 4 before execution of SRL instruction:

T T
000010000 0000:0000 001111010 011010000

__l_
I

3 IA 6 I 0 0 I O o Io
J __l_ _J_ ..l.

Address of LABEL:
low order six bits

ooooioooo 0000:0000 0000:0000 0001 !0100
__l_ _J_ ..i.

0 I 0 0 l 0 o I o 1 14
l _J_ _J_

location counter

binary
hex

binary
hex

Register 4 after execution of SRL instruction:

0000:0000 0000:0000
__l_

0 I o 0 lo
_l _l

000010011
j_

0 I 3
__l_

1010:0110
__l_

A I 6
l

binary
hex

OPERAND

In this example, the content of WORD is loaded into register 4. Then the SRL instruction
uses the low order six bits of the address location counter of LABEL as the shift count.
You should already know the displacement value of LABEL. That value should be the
number of bits you want to shift to the right. When the SRL instruction is executed, 20
low order bits of register 4 are shifted out of the register, and replaced with subsequent
bits within the register also being shifted. Zeros fill the vacated 20 high order bits. This is
what LABEL looks like when assembled:

LOC. OBJECT CODE LINE SOURCE STATEMENT

000014 oooc 14 LABEL DC PL2'0'

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

12-62

STC

12.23. STORE CHARACTER (STC)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

STC 42 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 0
0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The store character (STC) instruction places the low order eight bits (bit pos1t1ons 24
through 31) of the operand 1 register into one byte of operand 2 that is located in main
storage.

Explicit Format:

LABEL Do OPERATION Do OPERAND

[symbol] STC

Implicit Format:

LABEL Do OPERATION Do OPERAND

[symbol] STC

The data in operand 2 can be defined in any format. The length of operand 2 can vary but
the length of operand 1 is always four bytes. Although operands 1 and 2 can have the
same or differing length, only one byte in operand 2 receives the rightmost byte from the
operand 1 register. If you do not specify the exact byte in operand 2 to receive the operand
1 data, the first byte of operand 2 is used.

Operationa I Considerations:

• Any of the general iegisters (0 through 15) can be used as operand 1.

• Operand 2 must be a main storage location.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-63

• • The length of operand 2 can vary.

•

•

• You can specify the exact byte in operand 2 to receive the rightmost byte of the
operand 1 register through relative addressing.

• This instruction is one of the few in which operand 1 is the sending operand.

Example:

LABEL
1

AMTIN
STOR

6.0PERATI ON6.
10 16

L 11,AMTIN
A 11,=F'S'
STC 11,STOR

•

DC
DC

F1 2236 1

CL4 1 riJ 1

STOR before execution of STC instruction:

1111:0000 01ooloooo 0100:0000 0100!0000

+ .l. i
F I 0 4 I O 4 I 0 4 l 0

.l. .l. ..!

binary
hex

OPERAND

Register 11 before and after execution of STC instruction:

000010000 000010000 000011000 110010001

STOR after execution of STC instruction:

110010001 010010000 010010000 010010000

C I 1 4 10 4 lo 4 10

binary
hex

binary
hex

In this example, the content of AMTIN is loaded into register 11. Then a decimal value of 5
is added to the value already in register 11. This is a method of rounding numbers located
in registers that will eventually be printed. The STC instruction then places the content of
the rightmost byte in register 11 into the first byte of STOR. Since the exact byte of STOR
that is to receive the data from register 11 is not specified, the first byte is used .

UP-8061 Rev. 3

TM

SPERRY UNIVAC OS/3
ASSEMBLER

12-64

12.24. TEST UNDER MASK (TM)

General Possible Program Exceptions

OPCODE FORMAT
TYPE

MNEM. HEX.

TM 91 SI

Condition Codes

• SET TO 0
• SET TO 1
D SET TO 2
• SET TO 3

OB JECT
IN ST.
LG TH.
(B YTES)

4

SEE OPER. CONSIDERATIONS

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The test under mask (TM) instruction uses the 1-byte mask in operand 2 to test the bit
pattern of one byte in operand 1 that is located in main storage. The result of the test
determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

Explicit Format

LABEL [',OPERATION[', OPERAND

[symbol] TM

Implicit Format:

LABEL [',OPERATION l':. OPERAND

[symbol] TM

Operand 2 is one byte of immediate data that is used as the mask. Within that byte is an
8-bit binary testing pattern. The bits of the mask correspond one for one to bits in one byte
of operand 1. The length of operand 1 can vary but the length of operand 2 is always one
byte. Although the lengths of operands 1 and 2 can differ, only one byte of operand 1 is
used. If you do not specify the exact byte of operand 1 you want tested, the first byte is
used.

A mask bit of one in operand 2 tests its corresponding bit position in operand 1 for the
presence of one bit or a 0 bit.

A mask bit of 0 in operand 2 causes its corresponding bit position in operand 1 not to be
tested. If the mask pattern is all O's, no testing takes place; whereas, if the mask pattern is
all 1 's, every corresponding bit position in operand 1 is tested.

•

•

•

•

•

•

UP-8061 Rev. 3

The condition code is set as follows:

SPERRY UNIVAC OS/3
ASSEMBLER

12-65

To 0 if the mask pattern is all O's; or all the corresponding tested bit positions in
operand 1 are O's.

To 1 if all the corresponding tested bit positions in operand 1 are a combination of O's
and 1 's.

To 3 if all the corresponding tested bit positions in operand 1 are 1 's

Some of the more common uses of the test under mask instruction are in checking the
setting of program switches and checking for valid characters. These switches are usually
set by one of the logical OR instructions. After the switches are set, the TM instruction
uses the mask to test the bit pattern in operand 1 and set the condition code. Then the
resulting condition code can be used to alter the processing sequence of a program by
using one of these branch instructions:

Mnemonic Code Branches on
Meaning Remarks Condition

RR-Type RX-Type Code
Instruction Instruction

BOR BO Branch if 1 's. The branch is taken if all 3
the bits tested are on.

BMR BM Branch if mixed. The branch is taken if some 1
of the bits tested are on, some off.

BZR BZ Branch if O's. The branch is taken if all of the 0
bits are off, or the mask is 0.

BNOR BNO Branch if not The branch is taken if at least 0,1
all 1 's. one of the bits tested is not on.

BNZR BNZ Branch if not The branch is taken if at least 1,3
all O's. one of the bits tested is not off.

BNMR BNM Branch if not The branch is taken if all the bits 0,3
mixed. tested are off or if all are on.

Operationa I Considerations:

• Operand 1 must be a main storage location.

• Operand 2 is the mask and is a 1-byte self-defining term.

• The condition code is set accordingly but condition code 2 is not used.

• The length of operand 1 can vary but a length attribute cannot be specified.

• You can specify the exact byte in operand 1 you want the operand 2 mask to test
through relative addressing .

• The contents of operand 1 and operand 2 remain unchanged after the execution of
the TM instruction.

......

UP-8061 Rev. 3

Example:

SPERRY UNIVAC OS/3
ASSEMBLER

LABEL D.OPERAT I OND. OPERAND
1 10 16

LA 5,PAYHRS
TH (If (5) ,XI F0 1

BNO ERRORl
TH 1 (5) 'x I Frlf I

BNO ERROR2

•
•
•

ERRORl HVC OUTPUT(2rlf) ,HSGl
•

•
ERROR2 HVC OUTPUT(21),HSG2

•

•
PAYHRS DC CL2 1 4A 1

OS !ilH
OUTPUT OS Cll 32
HSGl DC CL2rlf'FIRST NUMBER INVALID'
HSG2 DC CL21'SECOND NUMBER INVALID'

PAYHRS before and after execution of first and second TM

111110100
I

F _l 4

1010Tooo1
j_
I

C I 1
J

binary
hex

12-66

instruction:

Operand 2 mask before and after execution of first and second TM instruction:

F I 0
-1

binary
hex

In this example, the address of PAYHRS is loaded into register 5. The TM instruction then
uses the mask in operand 2 to test the first byte in operand 1. The four high order bits of
the mask test the four high order bits of operand 1 . (The low order four bits of the mask
cause no testing of the low order four bits of operand 1 to take place.) Since the result of
the test is all 1 's, the condition code is set to 3 and no branch takes place.

•

•

The second TM instruction uses the mask in operand 2 to test the second byte in operand
1. The four high order bits of the mask test the four high order bits of the second byte in •
operand 1. (The low order four bits of the mask cause no testing of the low order four bits
of operand 1 to take place.) Since the result of the test is a combination of O's and 1 's, the
condition code is set to 1 and the branch to the instruction labeled ERROR2 takes place.
There, an error message is moved to the output area for printing.

•

•

•

UP-8061 Rev. 3

12.25. TRANSLATE (TR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

TR DC SS 6

Condition Codes

01F RESULT=O,SETTOO
D 1F RESULT <o. SET TO 1
D 1F RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

12-67

TR

Possible Program Exceptions

• ADDRESSING • PROTECTION

0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

0 DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER

D 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The translate (TR) instruction gets a byte from a table of characters in operand 2 and
places it in its corresponding byte of operand 1.

Explicit Format:

LABEL L OPERATION L OPERAND

[symbol] TR

Implicit Format:

LABEL .6.0PERATION L OPERAND

[symbol] TR

The translate instruction can translate the bit pattern of each byte in a field (operand 1) to
any other bit pattern. This instruction works in conjunction with a table (operand 2) that
has been previously defined within the program, and contains the bit patterns that
correspond to each byte in operand 1. This instruction operates from left to right, starting
with the replacement of the leftmost byte in operand 1, and ending with the replacement
of the rightmost byte in operand 1. To find the appropriate code in the table (operand 2),
each byte in the operand 1 field is used as an unsigned binary value that is added to the
address of the first byte in the table. (The sum of the addition is similar to the addition of
base register and displacement values.)

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

12-68

The result of the addition is another address which should be somewhere within the table. •
The one byte of data that is located at that address replaces the 8-bit binary value of
operand 1 that was used in the addition to arrive at that location. After the first byte is
replaced, the second byte is operated upon and replaced, and so on until the end of the
operand 1 field is reached.

Since there are 256 different combinations of an 8-bit byte (EBCDIC), the maximum size of
the translate table is 256 bytes. However, you can define a table smaller than that
because input data is normally restricted to a smaller range.

The translate instruction can be used to convert data from one code to another code (i.e.,
octal to hexadecimal) or it can be used to rearrange data to be stored in a specific
sequence.

Operationa I Considerations:

• Operand 1 must be a main storage location and can be defined in any format.

• Operand 2 must be a table that is previously defined within the program.

• Operand 2 cannot exceed 256 bytes in length.

• One byte in operand 2 replaces one byte in operand 1.

• Each byte in operand 1 is treated as an unsigned binary value which is added to the •
address of the first byte in operand 2.

Example:

LABEL t:.OPE RATION t:.
1 10 16

TR
•
•
•

FIELD DC
TABLE OS

DC
DC
DC
DC
DC
DC
DC
DC
DC

Fl ELD, TABLE

X'66A4C5F7'
!aCL256
HIJrlX 1 ftf/J I

X'f/J1ft2ft3f/J4f/J5f/J6f/J7ft8f/J9f/JA'
51/JX 1 1/Jft I

X11/JBr6Cf/JDf/JEr6Flf/J111213 1

U.IX'f/Jf/J' .
X1 1415161718191A1B1C'
sex• f/Jft •
X1 1D1E1F2ft212223242526'
4X'f/Jf/J 1

OPERAND

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-69

• FIELD before execution of TR instruction:

•

•

011ojo110 101010100
T T

1100 I 0101 1111 I 0111
-1. ..l I

6 I 6 Al 4 cl 5 F ! 7 ..I.

FIELD after execution of TR instruction:

000010011 ooooi1111 000010000 0010}0110

0 I 3 0 I F 0 I 0 2 I 6
I .1. ...L .1.

binary
hex

binary
hex

In this example, FIELD (operand 1) contains four addresses to be added to the address of
the first byte of TABLE (operand 2), one at a time, to access a specific byte within the
table. The table with the label TABLE is defined as part of this program.

The first byte in operand 1, a hexadecimal 66, has a decimal equivalence of 102. When a
decimal value of 102 is added to the address of the first byte in TABLE, the 103rd byte in
the table (a hexadecimal 03), is accessed. That byte replaces the hexadecimal 66 and the
second byte in operand 1 is processed.

The second byte in operand 1 (a hexadecimal A4) has a decimal equivalence of 164. When
a decimal value of 164 is added to the address of the first byte in TABLE, the 16Sth byte
in the table (a hexadecimal OF) is accessed. That byte replaces the hexadecimal A4 and
the third byte in operand 1 is processed.

The third byte in operand 1 (a hexadecimal CS) has a decimal equivalence of 197. When a
decimal value of 197 is added to the address of the first byte in TABLE, the 198th byte in
the table (a hexadecimal 00) is accessed. That byte replaces the hexadecimal CS and the
fourth byte in operand 1 is processed.

The fourth byte in operand 1 (a hexadecimal F7) has a decimal equivalence of 247. When
a decimal value of 247 is added to the address of the first byte in TABLE, the 248th byte
in the table (a hexadecimal 26) is accessed. That byte replaces the hexadecimal F7 and the
TR instruction terminates .

UP-8061 Rev. 3

TRT

SPERRY UNIVAC OS/3
ASSEMBLER

12-70

12.26. TRANSLATE AND TEST (TRT)

General Possible Program Exceptions

OPCODE FORMAT
TYPE

MNEM. HEX.

TRT DD SS

Condition Codes

• SET TO 0
• SET TO 1
• SET TO 2

0 SET TO 3

OBJECT
INST.
LGTH.
(BYTES)

6

SEE OPER. CONSIDERATIONS

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The translate and test (TRT) instruction gets a byte from a table of characters in operand 2
and examines it for the presence of a hexadecimal 00. If found, it continues processing
with the next byte in operand 1. If not found, execution of the TRT instruction is
terminated and the address of that byte in operand 1 and the nonzero byte in the table are
saved. The result of the byte examination in the table determines the setting of the
conditon code, bits 34 and 35 of the PSW. (See 8.1.)

Explicit Format:

LABEL f,. OPERATION f,. OPERAND

[symbol] TRT

Implicit Format:

LABEL f,. OPERATION f,. OPERAND

[symbol] TRT

This instruction works in conjunction with a table (operand within the program and
contains bit patterns that correspond to each byte in operand 1. This instruction operates
from left to right starting with the first byte in operand 1 and ending with the last byte in
operand 1 or, when a nonzero byte is found in the table. To find the appropriate code in
the table (operand 2), each byte in the operand 1 field is used as an unsigned binary value
which is added to the address of the first byte in the table. This method of accessing a
byte from a table is performed in the same manner as the translate (TR) instruction.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

12-71

The result of the addition of an unsigned binary value to the address of the first byte is
another address which should be somewhere within the table. The one byte of data that is
located at that address is examined for the presence of a hexadecimal 00. If found,
processing continues with the next byte in operand 1. If a hexadecimal 00 is not found,
execution of the TRT instruction is terminated.

The address of that byte in operand 1 is inserted in the low order 24 bits of register 1,
with the high order eight bits remaining unchanged. The nonzero byte from the table is
inserted in the low order eight bits of register 2, with the high order 24 bits remaining
unchanged.

The condition code is set as follows:

To 0 if all the bytes examined in the table are 0

To 1 if a nonzero character is found in the table before the last byte in operand 1 is
processed

To 2 if a nonzero character is found in the table that corresponds to the last byte in
operand 1

The translate and test instruction is used to find certain characters in an input stream. You
can set up operand 2 (table) with all 0 bytes for those characters to be skipped over and all
nonzero bytes for those characters to be detected and used .

Operational Considerations:

• Operand 1 must be a main storage location and can be defined in any format.

• Operand 2 must be a table that is previously defined within the program.

• Operand 2 cannot exceed 256 bytes in length.

• Each selected byte in the table (operand 2) is examined for the presence of a
hexadecimal 00.

• Each byte in operand 1 is treated as an unsigned binary vlaue which is added to the
address of the first byte in operand 2.

• The condition code is set accordingly .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

LOPERAT I ONL
10 16

TRT

AREAIN DC
TRTTABLE OS

DC
DC
DC

AREAIN,TRTTABLE

X1 324f/J48 1

fJCL256
64X 1 f/Jf/J 1

X'4f/J'
191 XI f/Jf/J I

Register 1 after execution of TRT instruction:

0000:0000 000010000
T

010oioooo 000010000
-l- _l_

0 I 0 0 I o 0 I 0 4 10
I I I

~
address of
second byte
in operand 1

binary
hex

Register 2 after execution of TRT instruction:

ooooioooo 0000 loooo

0 I 0 0 io
--1 I

I
000010000

I

0 I 0
_l

01ooioooo
I

4 1 0
~

nonzero byte
in table that
corresponds to
second byte in
operand 1

binary
hex

OPERAND

12-72

In this example, the only nonzero byte in the table is the 65th byte which is the address of
the first byte in the table +64. The hexadecimal 40 at that location causes the TRT
instruction to terminate. Then the address of the blank, also a hexadecimal 40, is put into
register 1. The nonzero character in the table, a blank, is put in the rightmost byte of
register 2. The condition code is set to 1 since a nonzero character is found in the table
before the last byte in operand 1 has been processed.

•

•

•

•

•

•

UP-8061 Rev. 3

13.1. GENERAL

SPERRY UNIVAC OS/3
ASSEMBLER

13-1

13. Privileged and Status Switching
Instructions

A privileged instruction is an instruction used by the operating system. A privileged
instruction cannot be used in a program operating under the SPERRY UNIVAC Operating
System/3 (OS/3). If a program operating under OS/3 uses a privileged instruction, a
privileged operation program exception causes the program to terminate without
executing.

The privileged instructions are included in this book because they can be assembled under
OS/3 even though they can't be executed.

The checkoff table used with each instruction is explained in Appendix D.

Some of the status-switching instructions are also privileged, but three are not. These
instructions are set program mask (SPM), supervisor call (SVC), and test and set (TS).

Since the status switching instructions manipulate portions of the program status word
(PSW), it might be helpful to read the PSW field description in 8.1.

13.2. STATUS-SWITCHING PRIVILEGED INSTRUCTIONS

The status-switching instructions can change the program status word (PSW), the
contents of the protect key storage, and the current relocation register .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-2

HPR •

13.2.1. Halt and Proceed (HPR)

G eneral Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

HPR 99 SI

Cond ition Codes

D IF RESULT~ 0, SET TO 0
D1F RESULT<O.SETTO 1

D1F RESULT>O.SETT02
D1F OVERFLOW, SET TO 3

.UNCHANGED

4

~~~~~~~-J 

Explicit Format: 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

• OPERATION 

LABEL 60PERATION 6 

[symbol] 
HAL THERE 

Implicit Format: 

LABEL 

[symbol] 

HPR 
HPR 

60PERATION 6 

HPR 
HPR 

d, (b, ), i2 
0(5), 81 

s, ,i2 
TAG, X'FF' 

D PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF·WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER D 
D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

OPERAND 

OPERAND 

• 

• 



• 

• 

• 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-3 

ISK 

13.2.2. Insert Storage Key (ISK) 

General Possible Program Exceptions 

OBJECT • ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

ISK 09 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT ; 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 

0 
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

• UNCHANGED 0 NONE 

Explicit and Implicit Format: 

LABEL L'l OPERATION ['., OPERAND 

[symbol] 
INKEY 

ISK 
ISK 

r,, r2 
3,4 



t 

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-4 

LCS • 

13.2.3. Load Control Storage (LCS) 

General 

OPCODE FORMAT 

TYPE 

MNEM. HEX. 

LCS 81 RS 

Condition Codes 

.SET TO 0 
• SET TO 1 
0 SET TO 2 

• SET TO 3 

0UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
LOO 

Implicit Format: 

LABEL 

[symbol] 
LOO 

Possible Program Exceptions 

OBJECT 

INST. 
LGTH. 
(BYTES) 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

~OPERATION~ 

LCS 
LCS 

~OPERATION~ 

r 1 , r 3, s2 

• PROTECTION 

CJ SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

LCS 
LCS 5, 3, TAG4 (2) 

• 

• 



UP-8061 Rev. 3 SPERRY UNIV AC OS/3 
ASSEMBLER 

13-5 

• LPSW 

• 

• 

13.2.4. load Program Status Word (LPSW) 

General 

OPCODE FORMAT 

TYPE 

MNEM. HEX. 

LPSW 82 SI 

Condition Codes 

• SET TO 0 
• SET TO 1 
• SET TO 2 

• SET TO 3 

D UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 

LODSTAT 

Implicit Format: 

LABEL 

[symbol] 

LODSTAT 

Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
INST. 
LGTH. 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

(BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE • OP 1 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

D 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

[';OPERATION['; OPERAND 

LPSW 

LPSW 

[';OPERATION['; 

LPSW 

LPSW 

d1 (b1 ), i2 
32(16), 00 

s1 , i2 
STORAGE, 00 

OPERAND 

+ 



UP-8061 Rev. 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-6 

SSK • 

13.2.5. Set Storage Key (SSK) 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HE x. (BYTES) 

SSK 08 RR 

Condition Codes 

D IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 

01F RESULT>O.SETT02 

D IF OVERFLOW, SET TO 3 
• UNCHANGED 

2 

~~~~~~~~~-' 

Explicit and Implicit Format:

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

• OPERATION

LABEL !:::. OPERATION!:::.

[symbol]

SETKEY
SSK
SSK

r,' r2
2,3

D PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER D
D OP 1 NOT ODD NUMBERED REGISTER

D NONE

OPERAND •

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-7

SSM

13.2.6. Set System Mask (SSM)

General Possible Program Exceptions

OBJECT • ADDRESSING
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

SSM 80 SI 4 0 EXECUTE

0 EXPONENT OVERFLOW

Condition Codes 0 EXPONENT UNDERFLOW

01F RESULT=O,SETTOO
0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW
01F RESULT<O,SETTO 1

01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE

0 IF OVERFLOW, SET TO 3

.UNCHANGED

Explicit Format:

LABEL

[symbol]

SETSM

Implicit Format:

LABEL

[symbol]

SETSM

• OPERATION

.6 OPERATION .6

SSM

SSM

.60PERATION .6

SSM

SSM

d, (b,)
6(32)

s,
SYSMASK

13.3. INPUT /OUTPUT PRIVILEGED INSTRUCTION

• PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

• OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

OPERAND

OPERAND

There is one privileged instruction that initiates input and output: the start 110 (SIO)
instruction. When the SIO instruction is executed, the processor stops executing
instructions and waits while input and output routines are using the processing time .

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-8

SIO •

13.3.1. Start 1/0 (SIO)

General Possible Program Exceptions

OPCODE FORMAT
TYPE

MNEM. HEX.

SID 9C SI

Condition Codes

• SET TO 0
• SET TO 1
• SET TO 2

• SET TO 3

OuNCHANGED

Explicit Format:

LABEL

[symbol]

INOUT

Implicit Format:

LABEL

[symbol]

INOUT

OBJECT D ADDRESSING
INST.
LGTH.

D DATA (INVALID SIGN/DIGIT)

(BYTES) D DECIMAL DIVIDE

D DECIMAL OVERFLOW

4 D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

f'i OPERATION /'i

SIO
SIO

f'i OPERATION f'i

SIO

SIO

d,(b,)
32(5)

s,
STORE

13.4. DIAGNOSTIC PRIVILEGED INSTRUCTIONS

D PROTECTION

D SIGNIFICANCE

0 SPECIFICATION:

D NOT A FLOATING-POINT REGISTER

D OP 1 NOT ON HALF-WORD BOUNDARY

D OP 2 NOT ON HALF-WORD BOUNDARY

D OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

D OP 1 NOT EVEN NUMBERED REGISTER

D OP 1 NOT ODD NUMBERED REGISTER

D NONE

OPERAND

OPERAND

The diagnostic instructions are diagnose (DIAG), SOFTSCOPE forward scan (SSFS), and
SOFTSCOPE reverse scan (SSRS). The SOFTSCOPE instructions select and monitor any
bus wire carrying information to or from a byte of main storage. The diagnose
instruction resets the processor to 0 after control storage is loaded.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-9

• DIAG

•

•

13.4.1. Diagnose (DIAG)

General Possible Program Exceptions

OBJECT D ADDRESSING
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW
OIAG 83 SI 4 0 EXECUTE

0 EXPONENT OVERFLOW

Condition Codes 0 EXPONENT UNDERFLOW

.• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW 0 IF RESULT <o. SET TO 1
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE

0 IF OVERFLOW, SET TO 3
OuNCHANGED

Explicit Format

LABEL

[symbol]

SETZERO

Implicit Format

LABEL

[symbol]

SETZERO

• OPERATION

fl OPERATION fl

DIAG
DIAG

fl OPERATION fl

DIAG
DIAG

d1 (b1), i2
32(6), 00

s1, i2
STORAGE, 00

0 PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

D NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

OPERAND

OPERAND

t

UP-8061 Rev. 3

SSFS

SPERRY UNIVAC OS/3
ASSEMBLER

13-10

13.4.2. SOFTSCOPE Forward Scan (SSFS)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SSFS A2 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY 0 SET TO 1 • 0 SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Explicit and Implicit Format:

The bit pattern is the format of the instruction.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-11

SSRS

13.4.3. SOFTSCOPE Reverse Scan {SSAS)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. .(BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SSRS A3 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 2 • • SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED D NONE

Explicit and Implicit Format:

The bit pattern is the format of the instruction .

13.5. INTERNAL TIMER PRIVILEGED INSTRUCTION

The OS/3 hardware contains an internal timer register that is controlled by the service
timer register (STR) instruction .

t

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-12

STR •

13.5.1. Service Timer Register (STR)

General Possible Program Exceptions

OBJECT 0 ADDRESSING
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

STR 03 RR 2 0 EXECUTE

0 EXPONENT OVERFLOW

Condition Codes 0 EXPONENT UNDERFLOW

.SET TO 0
0 FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW
• SET TO 1
• SET TO 2 0 FLOATING-POINT DIVIDE

.SET TO 3 • OPERATION
OuNCHANGED

Explicit and Implicit Format:

LABEL

[symbol]

TIM REG

!::, OPERATION!::,

STR
STR

D PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

OPERAND

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-13

• SLM

•

•

13.6. GENERAL REGISTER PRIVILEGED INSTRUCTIONS

These instructions operate on the problem general register set.

13.6.1. Supervisor Load Multiple (SLM) Instruction

General Possible Program Exceptions

OBJECT • ADDRESSING
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW
SLM 88 RS 4 0 EXECUTE

0 EXPONENT OVERFLOW

Condition Codes 0 EXPONENT UNDERFLOW

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW 01F RESULT<O,SETTO 1

01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE

0 IF OVERFLOW, SET TO 3
.UNCHANGED

Explicit Format:

LABEL

[symbol]
LOAD36

Implicit Format:

LABEL

• OPERATION

fl OPERATION fl

SLM
SLM

60PERATION 6

r1 ,r3 ,s2

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY • OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

OPERAND

OPERAND

[symbol]
LOAD36

SLM
SLM 3,6,DATAFIVE

t

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-14

SSTM

13.6.2. Supervisor Store Multiple (SSTM) Instruction

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SSTM BO RS

Condition Codes

0 IF RESULT~ 0, SET TO 0
01F RESULT<O,SETTO 1
01F RESULT>O,SETT02

0 IF OVERFLOW, SET TO 3
.UNCHANGED

Explicit Format:

4

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

LABEL 60PERATION 6

[symbol]
STORE47

Implicit Format:

LABEL

[symbol]
STORE47

SSTM
SSTM

60PERATION6

SSTM
SSTM

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

OPERAND

OPERAND

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-15

SPM

13.7. SET PROGRAM MASK (SPM) STATUS-SWITCHING INSTRUCTION

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SPM 04 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

.IF RESULT>O.SETT02
0 .IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED • NONE

The set program mask (SPM) instruction replaces bits 34 through 39 of the current PSW
with bits 2 through 7 of the operand 1 register.

Explicit and Implicit Format:

LABEL

[symbol]

SETM

!:::. OPERATION !:::.

SPM
SPM

Operational Considerations:

r,
3

OPERAND

• Bits 0, 1, and 8 through 31 of the operand 1 register are ignored by the OS/3
hardware.

• The condition code is set equal to bit positions 2 and 3 of operand 1 .

UP-8061 Rev. 3

Example:

LABEL AOPERATIONA
1 10 16

LO DREG
SETM

MASK

L
SPM

DC

3 ,MASK
3

F' 11

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

13-16

In this example, I loaded register 3 with the contents of a main storage area called
MASK. MASK contains a full word of binary 1 's. When the SPM instruction is
executed, bits 34 through 39 of the PSW are replaced with bits 2 through 7 of
register 3.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-17

SVC

13.8. SUPERVISOR CALL (SVC) STATUS-SWITCHING INSTRUCTION

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SVC OA RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 0
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 SEE OPER. CONSIDERATIONS • NONE

The supervisor call (SVC) instruction causes an interrupt and replaces bits 24 through 31
of the current PSW with the 1-byte contents of operand 1.

Explicit and Implicit Format:

LABEL

[symbol]

SUPCALL

Li OPERATION 6

SVC
SVC

Operationa I Considerations:

i,
38

OPERAND

• The operand you specify is an immediate byte of data, which is a 1-byte absolute
term.

• Once the SVC instruction is executed, the PSW with its new contents is stored, and a
new PSW is controlling your program.

• The condition code is equal to bits 34 and 35 of the PSW after the supervisor call is
granted .

t

UP-8061 Rev. 3

Example:

LABEL
1

CALL

AOPERATIONA
10 16

SVC X'OF 1

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

13-18

A supervisor call interrupt is generated, and the value x·oooo1111 · is stored in the
old PSW.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

13-19

TS

13.9. TEST AND SET (TS) STATUS-SWITCHING INSTRUCTION

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

TS 93 s 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
• SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER D SET TO 2 D D SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS D NONE

The test and set (TS) instruction tests the zero bit of the operand 1 main storage area for a 1
or a 0 and sets the condition code according to the result.

NOTE:

TS is a featured instruction. If you attempt to issue this instruction to a processor that does
not have the control feature installed, you cause an operation program exception.

Explicit Format:

LABEL

[symbol]

TEST

Implicit Format:

LABEL

[symbol]

TEST

fl OPERATION L

TS
TS

6.0PERATIONfl

TS
TS

s2
STORAGE

OPERAND

OPERAND

UP-8061 Rev. 3

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

13-20

• Only the leftmost bit of the operand is tested to determine the condition code setting.

• All eight bits of the operand byte are set to 1 after the condition code is set.

• The condition code is set as follows:

to 0 if the tested bit is O; or

to 1 if the tested bit is 1 .

• This instruction can be used by two programs referencing the same main storage byte.
A condition code setting of 0 indicates that the area is available for use by the testing
program. A condition code setting of 1 indicates that the area is not available.

Example:

LABEL
1

TESTSW

BYTE

.60PERAT I ON .6 OPERAND
10 16

TS BYTE

DC B I 1111 (}J(}J(}J(}J I

When the TS instruction is executed, the leftmost bit of BYTE is tested. Since the bit is
1, the condition code is set to 1.

•

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
14-1

14. Featured Instructions

This section contains the instructions that are featured. You cannot use a featured
instruction unless your processor has the control feature. If you attempt to use these
instructions without the control feature, you cause an operation program exception.

Within this section, the instructions are grouped alphabetically by instruction category.
Within each category, they are grouped alphabetically by instruction name.

The explanation of the checkoff table used for each instruction in this section is included
in Appendix D.

• 14.1. FEATURED BRANCHING INSTRUCTIONS

•

The featured branching instructions are described in 14.1.1 and 14.1.2. (See Section 8 for
descriptions of the remaining branching instructions.)

UP-8061 Rev. 3

BXH

SPERRY UNIVAC OS/3
ASSEMBLER

14-2

14.1.1. Branch on Index High (BXH)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

BXH 86 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
D IF RESULT= 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER D IF RESULT >o. SET TO 2 D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The branch on index high (BXH) instruction algebraically compares the sum of the operand
1 register and operand 3 register to either the operand 3 register or one greater than the
operand 3 register (comparand register). If the sum is greater than the content of the
comparand register, a branch to the instruction located at the operand 2 address takes
place. If a greater than condition does not exist, your program continues processing with
the instruction following the BXH instruction. The sum is always placed in the operand 1
register after the comparison.

Explicit Format

LABEL !:::. OPE RATION£:::. OPERAND

[symbol] BXH

Implicit Format:

LABEL !:::.OPERATION£:::. OPERAND

[symbol] BXH r 1' r 3' s2

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

14-3

• This instruction algebraically adds the content of the operand 1 register to the content of
the operand 3 register. The sum is algebraically compared to the content of an odd
numbered register (which can be the same as the operand 3 register) or a register that is
one larger than the operand 3 register. If the sum is greater than the content of the odd
numbered register it is being compared to, a branch to the instruction located at the
operand 2 address takes place. If the sum is less than or equal to the content of the odd
numbered register it is being compared to, the program continues processing with the
instruction following the BXH instruction. Following the comparison, the sum is placed in
operand 1. Usually, the BXH instruction is executed several times (depending on program
logic) until the content of the operand 1 register is greater than the odd-numbered register
it is being compared to. Then the branch to the instruction located at the operand 2
address takes place.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 3.

• Any odd-numbered register either equal to operand 3 or one greater than operand 3
can be used as the comparand register.

• Operand 2 can be any location in main storage.

• The rules of algebra apply to both the addition and the comparison operations.

• • The condition code remains unchanged.

•

Example:

LABEL
1

.::lOPERATIONA
10 16

LA 3,4
LA 4, UJ
LA 5, 11
BXH 3,4,LOOP
AP CARDIN,=P'500'

LOOP CP CARDIN,MAXIMUM

CARDIN DC
MAXIMUM DC

PL3'0'
PL3' 10000'

OPERAND

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

Registers 3 and 4 before execution of BXH instruction:

0000:0000 000010000 0000:0000 0000 :0100
l I

I I

I I
I '

0 I 0 0 l 0 0 : 0 0 I 4
-1 j_ l

0000:0000 ooooloooo
_l I

0 :
I

0 0 I 0 l I

0000:0000
I ooooj1010
I I
I I

0 I 0 0 I A I
J.

Register 5 (comparand register) before and after execution of BXH instruction:

I
I

ooooToooo
!

0000:0000 0000:0000 0000 :1011 binary

T I
I I
I I 0 I 0 0 l 0 0 ' 0 0 B I l hex

Registers 3 and 4 after execution of BXH instruction:

ooooloooo ooooToooo
!

0000:0000 0000:1110
I

I '

I

000010000
!

0000 :1010 000010000 0000:0000
I j_ I I

0 :
I ' I

0 0 _:_ 0 0 I 0 0 I E
l

I ' I '
0 I 0 0 I 0 0 I 0 0 I

A I I l l '

14-4

binary

hex

binary

hex

In this example, the decimal value 4 is loaded into register 3, the decimal value of 10 is
loaded into register 4, and the decimal value of 11 is loaded into the comparand register 5.
When the BXH instruction is executed, the contents of registers 3 and 4 are algebraically
added together, the sum being decimal value 14 (hexadecimal E). The sum is algebraically
compared to the content of register 5 and then placed in register 3. Since the sum is
greater than the content of register 5, a branch to the instruction labeled LOOP takes
place. There, the content of CARDIN is compared to the content of MAXIMUM.

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-5

BXLE

14.1.2. Branch on Index Low or Equal (BXLE)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

BXH 87 RS I 4 I 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 IF RESULT <o. SET TO 1
0 FIXED-POINT OVERFLOW BOUNDARY

01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED 0 NONE

The branch on index low or equal (BXLE) instruction algebraically compares the sum of the
operand 1 register and operand 3 register to either the operand 3 register or one greater
than the operand 3 register (comparand register). If the sum is less than or equal to the
content of the comparand register, a branch to the instruction located at the operand 2
address takes place. If a less than or equal to condition does not exist, the program
continues processing with the instruction that follows the BXLE instruction. The sum is
always placed in the operand 1 register after the comparison.

Explicit Format

LABEL L'IOPERATION L'I OPERAND

[symbol] BXLE

Implicit Format

LABEL L'IOPERATION f'I OPERAND

[symbol] BXLE r 1 , r
3

, s
2

This instruction algebraically adds the content of the operand 1 register to the content of
the operand 3 register. The sum is algebraically compared to the content of an odd
numbered register, which can be the same as the operand 3 register, or a register that is
one larger than the operand 3 register. If the sum is less than or equal to the content of
the odd-numbered register it is being compared to, a branch to the instruction located at
the operand 2 address takes place. If the sum is greater than the content of the odd
numbered register it is being compared to, the program continues processing with the

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-6

instruction following the BXLE instruction. Following the comparison, the sum is placed in
operand 1. Usually, the BXLE instruction is executed several times (depending on program
logic) until the content of the operand 1 register is less than or equal to the odd-numbered
register to which it is being compared. Then the branch to the instruction located at the
operand 2 address takes place.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 3.

• Any odd-numbered register either equal to operand 3 or one greater than operand 3
can be used as the comparand register.

• Operand 2 can be any location in main storage.

• The rules of algebra apply to both the addition and the comparison operations.

• The condition code remains unchanged.

Example:

AOPERATIONA LABEL
1 10 16

L
L
BXLE

NEXTSEQ AP
BRANCHTO CP

VALUEl
VALUE2
A
B

DC
DC
DC
DC

4,VALUEl
5,VALUE2
4,5,BRANCHTO
A,B
A,B

F'-3'
F' UJ'
PL4 '2'!J6 I

PL2 I 16 I

OPERAND

In this example, the values -3 and +10 are loaded into registers 4 and 5,
respectively. The BXLE instruction compares the sum of the content of registers 4 and
5 (+ 7) to the content of the com pa rand register, register 5. Since + 7 is less than 10,
the branch is taken. The next instruction executed (CP) is located at BRANCHTO.

14.2. FEATURED FIXED-POINT INSTRUCTIONS

The featured fixed-point instructions are described in 14.2.1 through 14.2.10. (See Section
10 for descriptions of the remaining fixed-point instructions.)

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-7

• DR

•

•

14.2.1. Divide (DR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

DR 10 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

DI F RESULT= 0, SET TO 0
• FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 • 01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The DIVIDE (DR) instruction algebraically divides the contents of the double word in the
operand 1 register pair (dividend) by the full word in the operand 2 register. The result
(quotient and remainder) is placed in operand 1 .

Explicit and Implicit Format:

LABEL £1 OPERATION ,6 OPERAND

[symbol] DR

Operationa I Considerations:

• Operand 1 consists of a pair of contiguous registers (64 bits) containing a fixed-point
binary value. The registers are even-odd numbered, the lower numbered register
being even. You must specify the even-numbered register as operand 1. The odd
numbered registers must contain the dividend before you can use this instruction.
You may specify any of the general registers (0 through 15).

• Operand 2 is a 32-bit register (0 through 15) containing a fixed-point binary value
(dividend). Operand 2 is not changed by the execution of this instruction.

• After the instruction is executed, the quotient with sign is put into the odd-numbered
register, and the remainder with the same sign occupies the even-numbered register.
If the quotient and remainder do not fill their respective 32-bit fields, leftmost bit
positions are filled by bits having the same value as the sign .

UP-806 1 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-8

• If you attempt to divide by zero, or if the quotient does not fit into the 32-bit odd
numbered register in operand 1, a fixed-point divide program exception occurs.

• The DR instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature.

Example:

LABEL
1

DI VEND
DIVISOR

.10PERATION.1
10 16

LM 6,8,DIVEND
DR 6,8

DC
DC

D'+64'
F'+32'

OPERAND

In this example, registers 6, 7, and 8 are loaded with the main storage contents of
DIVEND and DIVISOR, respectively. Then, divide the contents of registers 6 and 7 by
the contents of register 8 and placed the result (quotient with sign) in register 7.

Note that the use of the LM instruction eliminates the writing of three separate load
instructions but still loads three registers. Also note that the quotient and its sign are
loaded into register 7 and and the remainder with the same sign value as the
quotient that occupies register 6.

Registers 6 and 7 before execution of DR instruction:

0000:0000 0000:0000 0000:0000 0000;0000 0000~0000 ooooioooo ooooioooo 010oioooo binary

I 1
o I o o I o

, i I I
o I o o I o o I o o I o o I o 4 I 0

...i j I .l I j I
hex

Register 8 before and after execution of DR instruction:

ooooioooo 000~ 0000 000~0000 I
001010000 binary

I
I I I

o I o 0 I 0 o I o 2 I O hex
.l l J. I

Registers 6 and 7 after execution of DR instruction:

hex

0000:0000 000010000
I

0000:0000
! I

ooootoo10 0000:0000 oooo:oooc 000010000 0000;0000
I

' I

I i I

0 1 0 ' I i I

0 ! oj
I 0 : 0 0 : 0 0 0 01 0 0 0 0 I 2 I I

binary

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-9

LCR

14.2.2. Load Complement (LCR)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LCR 13 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

The load complement (LCR) instruction places the twos complement form of the contents
of operand 2 register into the operand 1 register .

Explicit and Implicit Format:

LABEL ti OPERATION t, OPERAND

[symbol] LCR

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• If operand 2 is a positive value, the twos complement of that value is placed into
operand 1 when the instruction is executed. If the value in operand 2 is negative, the
positive value is placed in operand 1 when the instruction is executed. The maximum
value you can specify in operand 2 is +2, 147,483,647 (23 ,_ 1) or -2, 147,483,647
(-231_1).

• A zero value in operand 2 is not changed when complemented.

• Operand 2 is not changed by the execution of the instruction.

• The LCR instruction is a featured instruction. An operation program exception is caused
if you use this instruction and your processor does not have the control feature .

UP-8061 Rev. 3

Example:

LABEL
1

AOPERATIONA
10 16

L 5,FULLWORD
LCR 6,5
LTR 6 ,6

FULLWORD DC F' 1 f/Jf/J I

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

Register 5 before and after execution of LCR instruction:

T
0000:0000

I I
000010000 000010000 011010100

..1 ..1
binary

I
o I o 6 : 4 0 I 0 0 l 0 I ..l

hex

Register 6 after execution of LCR instruction:

I
111~ 1111 111111111 1001:1100 111111111 binary

• • ""T

Fl F F l F Fl F 9 I C
I

hex

14-10

In this example, the contents of FULLWORD is loaded into register 5 and the LCR
instruction loads the complement of the content of register 5 into register 6. Since the
result is less than zero, the condition code is set to 1 and the load and test (LTR)
instruction (see 10.14) loads the content of register 6 into itself and tests the condition
code. Because the registers of operands 1 and 2 in the LTR instruction are the same,
the operation is performed as a test without data movement.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-11

LNR

14.2.3. Load Negative (LNR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LNR 11 RR 2 D EXECUTE D OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WOAD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WOAD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 D D IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The load negative (LNR) instruction places the twos complement of the content of the
operand 2 register into the operand 1 register. If operand 2 contains a negative value or a
value of zero, the instruction places that value unchanged into operand 1 .

Explicit and Implicit Format:

LABEL /::,OPERATION/::, OPERAND

[symbol] LNR

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The LNR instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature .

---------- -~--------------------------------.

UP-8061 Rev. 3

Example:

LABEL
1

AOPERATIONA
10 16

LM 5,7,NUMBERSI
LNR 5,5
LNR 6,6
LNR 7,7

NUMBERSl DC F14 1

NUMBERS2 DC F'S'
NUMBERS3 DC F1 6 1

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

14-12

In this example registers 5, 6, and 7 are filled with contents of NUMBERS1,
NUMBERS2, and NUMBERS3, respectively. Then the series of three LNR instructions
place the twos complement form of the three full words in registers 5, 6, and 7 back
into themselves.

Register 5 before execution of the LNR instruction:

000010000 000010000 ooooToooo 0000To100 binary
_L _l_
T

o I o o I o olo o_:4 hex

Register 6 before execution of LNR instruction:

0000,0000 000010000 0000:0000 0000~0101
I

o I o o I O o I o o I 5
I I

binary

hex

Register 7 before execution of LNR instruction:

000010000 000010000 oooJoooo 000010110 binary
_l _L

0 I 0 0 I 0 hex

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

Register 5 after execution of LNR instruction:

I
111J 1111

I
111111100 111111111 111111111 binary

I I I I

F I
F l Fl F

,.
J

F F Fl C
hex

Register 6 after execution of LNR instruction:

1111 j 1111 1111 I 1111 111111111 1111 I 1011 binary

F I F F I F F I F F I B hex

Register 7 after execution of LNR instruction:

111111111 11111 1111 1111 j1111 1111 f1010 binary

F I F F I F F I F F I A hex

14-13

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-14

LPR •

14.2.4. Load Positive (LPR)

General Possible Program Exceptions

OBJECT 0 ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LPR 10 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

The load positive (LPR) instruction places the positive value of the content of the operand 2
register in the operand 1 register. If operand 2 contains a positive value or zero, that same
value is placed unchanged in operand 1. If operand 2 contains a negative number, the
twos complement of that number (its positive value) is loaded into operand 1.

Explicit and Implicit Format

LABEL /'1 OPERATION /'1 OPERAND

[symbol] LPR

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1 and 2.

• The maximum negative value you can specify in operand 2 is -2, 147,483,657
(-231 -1). Otherwise, a fixed-point overflow program exception occurs.

• Operand 2 is not changed by the execution of the instruction.

• The LPR instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature.

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-15

• Example:

•

•

LABEL
1

AOPERATIONA
10 16

LM 5,7,NUMBERSl
LPR 5, 5
LPR 6,6
LPR 7,7

NUMBERSl DC
NUMBERS2 DC
NUMBERS3 DC

F'-4'
F'-5'
F'-6'

OPERAND

In this example, registers 5, 6, and 7 are filled with the contents of NUMBERS1,
NUMBERS2, and NUMBERS3, respectively. Then the series of three LPR instructions
place the twos complement form of the three full words in registers 5, 6, and 7 back
into themselves. The result is their positive values.

Register 5 before execution of LPR instruction:

T l
1111i 1111

T
111111111 111111111 111111100

I I
binary

,.
F I F F I F F I F F I C hex

l I I I

Register 6 before execution of LPR instruction:

111111111 111111111 111111111 111111011 binary

F I F F I F F I F F I B hex

Register 7 before execution of LPR instruction:

111111111 11111 1111 111111111 111111010 binary

F I F F I A hex

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-16

Register 5 after execution of LPR instruction: •

000010000 OOOO!OOOO 000010000 000010100 binary

o I o o I o o I o o I 4 hex

Register 6 after execution of LPR instruction:

0000,0000 000010000 000010000 000010101
I

binary

hex

Register 7 after execution of LPR instruction:

000010000 000010000 000010000 000010110 binary
I

o I o o I o o I o 0 6 hex

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-17

• MR

•

•

14.2.5. Multiply (MR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MR 1C RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
D IF RESULT= 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
D 1F RESULT <o. SET To 1 • 01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The multiply (MR) instruction algebraically multiplies the content of the operand 1 register
pair (multiplicand) by the content of the operand 2 register (multiplier). The result (product)
is placed in operand 1 .

Explicit and Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] MR

Operationa I Considerations:

• Operand 1 consists of a pair of even-odd registers (64 bits). You must specify the
even-numbered register as operand 1, and you must load the odd-numbered operand
1 register with the multiplicand before using this instruction.

• The product fills the odd-numbered register first and then, if necessary, the even
numbered register.

• Any of the general registers (0 through 15) can be used as operands 1 and 2.
Operand 2 is not changed by the execution of this instruction.

• The MR instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature .

UP-8061 Rev. 3

Example:

LABEL
l

NEWBUY
PRICE

~OPERATION~
10 16

LH 8,PRICE
LH 7,NEWBUY
MR 6,8

DC
DC

H'73'
HI 10 I

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

14-18

In this example, place the contents NEWBUY and PRICE into registers 7 and 8,
respectively. Then, multiply the content of the even-odd register-pair 6 and 7 by
register 8. (You address the pair of registers by using register 6.) The result is placed
in register 7. If, however, the result of the multiplication exceeds the capacity of
register 7, register 6 is filled with the remainder of the result.

Registers 6 and 7 before execution:

6 7

OOOOIOOOO OOOOjOOOO 000010000 OOOOIOOOO OOOOjOOOO 000010000 000010000 010011001 binary

o I o o I o o I o o I o o I o o I o 0 I 0 4 I 9 hex

double word

Register 8 before execution:

000010000 000010000 0000,00000000,1010 binary

0 I 0 0 I 0 0 I 0 0 l A hex

Registers 6 and 7 after execution:

6 7

000010000 000010000 000010000 000010000 000010000 000010000 000010010 110111010 binary

o I o o I o o I o o I o o I o o I A hex

double word

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-19

• MH

•

•

14.2.6. Multiply Half Word (MH)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MH 4C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
01F RESULT~O.SETTOO

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<o.SETTO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The multiply half word (MH) instruction algebraically multiplies the content of the operand
1 register by the half word operand 2. The result is placed in the operand 1 register.

Explicit Format:

LABEL l10PERATION l1 OPERAND

[symbol] MH

Implicit Format

LABEL f10PERATION £1 OPERAND

[symbol] MH

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Any of the general registers (0 through 15) can be used as operand 1.

14-20

• Before execution of the MH instruction, operand 2 is expanded from 16 to 32 bits.
The 16 high order bits are propagated with the sign bit value. The contents of
operand 2 before the 16-high order bits are propagated with the sign bit value.

sign bit

OOOOjOOOO OOOOj1010 binary

0 I 0 0 I A hex

half word

The contents of operand 2 after the 16 high order bits are propagated with the sign
bit value.

sign bit

0000 I 0000 0000 I 0000 0000 I 0000 0000 I 1010 binary

o I o o I o o I o 0 I A hex

sign bits

full word

Operand 2 is not permanently changed by the execution of the instruction.

• The result (product) fills the 32-bit operand 1 register from right to left. If the product
does not fit into the operand 1 field, extra leftmost bits are truncated and the result or
sign may be incorrect.

• The MH instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-21

• Example:

•

•

LABEL
1

NEWBUY
PRICE

AOPERATIONA
10 16

L 7,NEWBUY
MH 7,PRICE

DC
DC

F'73'
HI 1 ~I

OPERAND

In this example, load the contents NEWBUY into register 7 and multiply the halfword
of PRICE by the content of register 7. The product is placed in register 7.

Register 7 before execution of MH instruction:

OOOOIOOOO OOOOIOOOO 000010000 010011001 binary

0 I 0 0 I 0 0 I 0 4 I 9 hex

PRICE before and after execution of MH instruction:

sign bit

OOOOIOOOO OOOOIOOOO 000010000 000011010 binary

o I o o I o

sign bit value
propagated through
16-high order bit
positions

0 I 0 0 I A hex

Register 7 after execution of MH instruction:

000010000 OOOOIOOOO 000010010 110111010 binary

o I o o I o o I 2 D I A hex

UP-8061 Rev. 3

SLDA

SPERRY UNIVAC OS/3
ASSEMBLER

14-22

14.2.7. Shift Left Double (SLDA)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SLDA BF RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 D • 1 F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

The shift left double (SLDA) instruction shifts all of the 63 bits of the operand 1 even-odd
register pair to the left the number of bits specified by the low order six bits of the operand
2 address.

Explicit Format:

LABEL /:::,,OPERATION/:::,, OPERAND

[symbol] SLDA r 1' d2 (b2)

Implicit Format:

LABEL /:::,,OPERATION/:::,, OPERAND

[symbol] SLDA r 1' s2

Operational Considerations:

• Any pair of general registers (0 through 15) can be used as operand 1. Operand 1 is
an even-odd-numbered register pair. You must specify the even-numbered register of
the pair as operand 1.

• The main storage address or label you specify in operand 2 is not changed by the
SLDA instruction execution. Notice the formats indicate that you cannot specify a
length in operand 2.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

14-23

• The sign bit (leftmost bit) of the even-numbered operand 1 register pair is not moved
or changed by the execution of this instruction. Only the 63 remaining bits can be
shifted by this instruction.

• After the requested number of bits are shifted out of the operand 1 register pair,
zeros fill the rightmost bit positions of the register pair that were emptied.

• During the instruction execution, each bit being shifted out is checked when it is the
bit adjacent to the sign bit. If the bit differs from the sign, it cannot be shifted out
without causing a fixed-point overflow program exception.

•

•

•

Before shifting two bits left:

sign bit

third bit to be shifted

After shifting two bits left:

Shifting left three bits in this register pair causes a fixed-point overflow program
exception, since the third bit being shifted is not the same value as the sign bit. In
this example, two bits are successfully shifted out, but when the third bit is moved
adjacent to the sign bit and tested, it is not like the sign.

Each time you shift one digit left, it is the same as multiplying by a power of 2. If you
shift one bit left, you multiply by 2, two bits left, you multiply by 22, three bits by 23,

and so forth.

When the shift value is zero, it causes a double-length sign and magnitude test, and
the condition code is set.

The SLDA instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature .

UP-8061 Rev. 3

Example:

LABEL
1

AOPERATIONA
10 16

L 9,FULLWORD
SLDA 8,4

FULLWORD DC F'4543'

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

14-24

In this example, registers 8 and 9 are shifted four bit positions left. Before the SLDA
instruction, the content of FULLWORD is placed into register 9. Operand 2 is
expressed in explicit format with 4 as the displacement (d2) and no base register (b2)

representation. Consequently, the addition of base register and displacement values is
not performed by the assembler and the operand 2 displacement value becomes the
absolute value.

Before execution of SLDA instruction:

Register 8 Register 9

zero
filled

Note that the content of register 9 before the shift is 4543, and after shifting four bits
left, it contains 72,688 (4543 multiplied by 24(16)).

•

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
14-25

SLA

14.2.8. Shift Left Single (SLA)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SLA 88 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT = 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The shift left single (SLA) instruction shifts the 31 bits of the operand 1 register to the left
of the number of bits specified by the low order six bits of the operand 2 address. The sign
bit (the leftmost high order bit) of register 1 remains unchanged, and zeros fill the vacated

• positions of the register.

Explicit Format:

LABEL 60PERATION 6

I
[symbol] SLA r 1' d2 (b2)

OPERAND

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] SLA r 1' s2

•

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Any of the general registers (0 through 15) can be used as operand 1.

14-26

• The main storage address or label you specify in operand 2 is not changed by the SLA
instruction execution. Notice the formats indicate that you cannot specify a length in
operand 2.

• The sign bit (leftmost bit) of the operand 1 register is not shifted or changed by the
execution of this instruction. Only the 31 remaining bits can be shifted by the
execution of this instruction.

• After the requested number of bits are shifted out of the operand 1 register, zeros fill
the vacated rightmost bit positions.

• During the instruction execution, each bit being shifted out is checked when it is the
bit adjacent to the sign bit. If the bit differs from the sign, it cannot be shifted out
without causing a fixed-point overflow program exception.

Before shifting two bits left:

lost
bits

sign bit

third bit to be shifted

After shifting two bits left: zero
filled

Shifting left three bits in this register causes a fixed-point overflow program
exception, since the third bit being shifted is not the same value as the sign bit. In
this example, two bits are successfully shifted out, but when the third bit is moved
adjacent to the sign bit and tested, it is not like the sign.

• For numbers with a value of less than 230(1,073,741,824), each time you shift one
digit left, it is the same as multiplying by a power of 2. If you shift one bit left, you
multiply by 2 1; two bits left, you multiply by 22 ; three bits by 23; and so forth.

• The SLA instruction is a featured instruction. An operation exception is caused if you
use this instruction and your processor does not have the control feature.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-27

• Example:

•

•

LABEL
1

..1.0PERATION..1.
10 16

L 8,FULLWORD
SLA 8, 1

FULLWORD DC F' 4543'

OPERAND

In this example, the content of main storage location FULLWORD is placed in register
8. Register 8 is then shifted one bit position left.

Register 8 before execution of SLA instruction:

After SLA instruction execution:

oiooo:oooo 0000:0000 0010:0011

Note that register 8 contains 4543 before the SLA instruction and 9086 afterwards.
By shifting one bit left, the content of register 8 is multiplied by 2 .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-28

SRDA •

14.2.9. Shift Right Double (SADA)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SRDA BE RS

Condition Codes

• IF RESULT= 0, SET TO 0
.IF RESULT<O,SETTO 1
• IF RESULT >o, SET TO 2
0 IF OVERFLOW, SET TO 3

0UNCHANGED

4

D ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

• OPERATION

D PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER • D OP 1 NOT ODD NUMBERED REGISTER

D NONE

The shift right double (SRDA) instruction shifts the 63 bits of operand 1 to the right the
number of bits specified by the low order six bits of the operand 2 address. You cannot
shift the sign bit. Specify the even-numbered register of the pair as operand 1.

Explicit Format:

LABEL /::,.OPERATION/::,. OPERAND

[symbol] SRDA

Implicit Format:

LABEL 6. OPERATION/::,. OPERAND

[symbol] SRDA

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-29

• Operational Considerations:

• Any pair of general registers (0 through 15) can be used as operand 1, which is an
even-numbered register pair. You must specify the even-numbered register of the pair
as operand 1.

• The main storage address or label you specify in operand 2 is not changed by the
SRDA instruction execution. Notice the formats indicate that you cannot specify a
length in operand 2.

• The sign bit (leftmost bit) of the even-numbered operand 1 register pair is not moved
or changed by the execution of this instruction. Only the 63 remaining bits can be
shifted by this instruction.

• After the requested number of bits are shifted-out of the operand 1 register pair, the
vacated leftmost bit positions are filled with bits that have the same value as the sign
bit.

• For pos1t1ve values, each time you shift one bit pos1t1on right, it is the same as
dividing by a power of 2. If you shift one bit right, you divide by 21; two bits right, you
divide by 22; three bits by 23; and so forth. When the value is negative, shifting right
causes a divide by 2 on a value one less than the value in the register. For examples,
see SRA instruction.

• • When the shift value is zero, it causes a double-length sign and magnitude test, and
the condition code is set.

•

• The SRDA instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature.

Example:

LABEL
1

AOPERATIONA
10 16

L 9,FULLWORD
SRDA 8,4

FULLWORD DC F1 72688 1

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-30

In this example, registers 8 and 9 are shifted four bit positions right. Before the SRDA •
instruction, the contents of FULLWORD are placed into register 9.

Before SRDA instruction execution:

Notice that the contents of register 9 before the shift are 72,688, and after shifting
four bits right, it contains 4543 (72,688 divided by 24(16)).

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-31

• SRA

•

•

14.2.10. Shift Right Single (SRA)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SRA BA RS 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The shift right single (SRA) instruction shifts the 31 bits of the operand 1 register to the
right the number of bits specified by the low order six bits of the operand 2 address. You
cannot shift the sign bit .

Explicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] SRA r 1' d2 (b2)

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] SRA r1, s2

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Any of the general registers (0 through 15) can be used as operand 1.

14-32

• The main storage address or label you specify in operand 2 is not changed by the
SRA instruction execution. Notice the formats indicate that you cannot specify a
length in operand 2.

• The sign bit (leftmost bit) of the operand 1 register is not shifted or changed by the
execution of this instruction. Only the 31 remaining bits can be shifted by the
execution of this instruction.

• After the requested number of bits are shifted out of the operand 1 register, the
vacated leftmost bits are filled with bits that have the same value as the sign bit.

• If the contents of the operand 1 register are a positive value, shifting right one bit
divides the value of the register by 2. Any remainders are rounded downward. For
example, a value of +5 shifted right one bit produces a +2 in the register after the
shift.

Before one bit shift right:

0:000:0000 0000:0000 0000:0000 0000:0101

After one bit shift right:

0:000:0000 0000:0000 0000:0000 000010010

When contents of the operand 1 register are negative, shifting right one bit causes a
divide by 2 on a value one less than the value in the operand 1 register. For example,
a value of -5, when shifted right one bit produces a -3 in the register (-6 divided
by 2).

Before one bit shift right:

1111 :1011

After one bit shift right:

l

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-33

Note that a negative is expressed in twos complement notation. After the shifting
operation, you can determine the- positive value in the register by taking the twos
complement of a negative number.

-3 (twos complement of +3)

o:oooloooo 000010000 ooooloooo 000010011 +3 (twos complement of -3)

• The SRA instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature.

Example:

LABEL
1

FULLWORD

l\OPERAT I ON.:l
10 16

L
SRA

DC

8,FULLWORD
8,1

F'4543'

OPERAND

In this example, the content of main storage location FULLWORD is placed in register
8. Register 8 is then shifted one bit position right.

Register 8 before SRA instruction execution:

Register 8 after SRA instruction execution:

Note that register 8 contains 4543 before the SRA instruction and 2271 afterwards.
By shifting one bit right, the content of register 8 is divided by 2.

• 14.3. FEATURED LOGICAL INSTRUCTIONS

The featured logical instructions are described in 14.3.1 through 14.3. 7. (See Section 12
for descriptions of the remaining logical instructions.)

UP-8061 Rev. 3

AL

SPERRY UNIVAC OS/3
ASSEMBLER

14-34

14.3.1. Add Logical (AL)

General

OPCODE FORMAT
TYPE

MNEM. HEX.

AL 5E RX

Condition Codes

• SET TO 0
• SET TO 1
• SET TO 2
• SET TO 3

OBJECT
INST.
LGTH.
(BYTES)

4

Possible Program Exceptions

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

SEE OPER. CONSIDERATIONS

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The add logical {AL) instruction logically adds the content of operand 2 to the content of
the operand 1 register and places the sum in operand 1.

Explicit Format

LABEL fl OPERATION fl OPERAND

[symbol] AL

Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] AL

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-35

• Operational Considerations:

•

•

• Any of the general registers (0 through 15) can be used as operand 1.

• The main storage location you specify in operand 2 must refer to a main storage area
that is on a full-word boundary. Operand 2 is not changed by the execution of this
instruction.

• The addition is performed by logically adding the 32 bits of operand 2 to the 32 bits of
operand 1.

• Neither operand has a sign bit.

• The condition code of the program status word (PSW) is set as follows:

to 0 if result is 0 (no carry of most significant bit);

to 1 if result is not 0 (no carry of most significant bit);

to 2 if result is 0 (carry of most significant bit); or

to 3 if result is not 0 (carry of most significant bit).

• The AL instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature.

Example:

LABEL
l

AOPERATIONA
10 16

L 3,HEXVALU
AL 3,FULLWORD

OS
HEXVALU DC
FULLWORD DC

0F

x I """""" J 9 I x I 0000079C I

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-36

In this example, the main storage content of HEXVALU is placed into register 3. The
AL instruction logically adds the full-word content of main storage location
FULLWORD to the content of register 3 and places the sum in register 3.

Register 3 before execution of AL instruction:

: """!
ooooioooo 0000:0000 0000:00000001:1001 binary

-1 i

0 I 0
I o I o 0 : 0

-1

I
1 I 9

i
hex

FULLWORD before execution of AL instruction:

o I o 0 : 0 0 I 7
l

I
9 I C

i

binary

hex

Register 3 after execution of AL instruction:

0 : 0 0 : 0
I

0 I 7
j_

binary

B I 5
l hex

•

•

•

•

•

•

UP-8061 Rev. 3

14.3.2. Add Logical (ALR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SPERRY UNIVAC OS/3
ASSEMBLER

Possible Program Exceptions

0 ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE 0 SPECIFICATION:

14-37

ALR

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

ALR 1E RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• 0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY • SET TO 1 0

• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS 0 NONE

The add logical (ALR) instruction logically adds the content of the operand 1 register to the
content of the operand 2 register and places the sum in operand 1 .

Explicit and Implicit Format:

LABEL 6 OPE RATION 6 OPERAND

[symbol] ALR

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The addition is performed by logically adding the 32 bits of operand 2 to operand 1.

• Neither operand has a sign bit.

• The condition code of the program status word (PSW) is set as follows:

to 0 if result is 0 (no carry of most significant bit);

to 1 if result is not 0 (no carry of most significant bit);

to 2 if result is 0 (carry of most significant bit); or

to 3 if result is not 0 (carry of most significant bit).

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-38

• The ALR instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature installed.

Example:

LABEL
1

VALUl
VALU2

ilOPERATIONA
10 16

L 3,VALUl
L 4,VALU2
ALR 3,4

DS
DC
DC

~F
x 'f.lf.lf.lf.lf.11319'
X 1 f.lf.lf.lf3f.l79C 1

OPERAND

In this example, the hexadecimal contents of main storage locations VALU1 and
VALU2 are placed in registers 3 and 4, respectively. Then, the contents of registers 3
and 4 are added and the sum placed in register 3.

Register 3 before execution of ALR instruction:

!
0000:0000 0000:0000 0000:00000001:1001 binary

0 : 0 0 : 0 0 l 0
I

1 I 9
I

hex

Register 4 before execution of ALR instruction:

ooooloooo oooolo
~

0000:0000 I
111 1001:1100 binary

I I I !
0 0 0 0 0 7 9 I C I I I l hex

Register 3 after execution of ALR instruction:

T

0000:0000 0000:0000 0000:0 111 1011lo101 binary
j_

I I I I
0 I 0 0 I 0 0 I 7 B I 5 hex

.l.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-39

EDMK

1 4.3.3. Edit And Mark (EDMK)

General Possible Program Exceptions

OPCODE FORMAT
TYPE

MNEM. HEX.

EDMK DF SS

Condition Codes

.SET TO 0
• SET TO 1
• SET TO 2
0 SET TO 3

OBJECT
INST.
LGTH.
(BYTES)

6

0 SEE OPER. CONSIDERATIONS

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The edit and mark (EDMK) instruction operates like the edit (ED) instruction except that it
also saves the address of the first significant byte and places it in register 1 .

Explicit Format:

LABEL .6.0PERATION .6 OPERAND

[symbol] EDMK

I mplicit Format:

LABEL .6 OPERATION .6 OPERAND

[symbol] EDMK

Operationa I Considerations:

• The EDMK instruction operates like the ED instruction (see 9.6). After the packed
content of operand 2 is edited and the unpacked result stored in operand 1, the
address of the first nonzero character is placed in general register 1.

• The condition code is set in the same manner as the ED instruction .

• If the field to be edited contains no significant digits until after the significance
starter, no address is moved into register 1, and the move instruction following the
EDMK instruction will be using the incorrect address (or whatever value) that is in
register 1.

• To avoid having an incorrect address in register 1 because no significant digits exist
before the significance starter, load register 1 with the address of the position where
you want the insert character to be placed.

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-40

• If a field to be edited contains multiple fields, the address of the first significant byte
in each field replaces the one before. So in effect, the address of the first significant
byte in the last field is the final result.

• The EDMK instruction is a featured instruction. An operation program exception is
caused if you use this instruction and the processor does not have the control feature
installed.

• This instruction is used to insert a character in several places throughout the output
display. For example:

$6.25
$86.00

$2.34
$724.11

The location of the dollar sign is predicatable in that it appears at the left of the first
significant digit on each line. The decimal point position also is predictable as the
third character from the right. The proper positioning of a dollar sign or other
message character is ensured by using the EDMK instruction.

Example:

AOPERATIONA LABEL
1 10 16

MVC
LA
EDMK
s
MVI

PATTERN OS
MASK DC
DATA DC

PATT ERN,MASK
1 ,PA TTERN+7
PATT ERN,DATA
I ,=F 'I'
S (I) ,c I$ I

CllS
X'4S2S2S6B2S2S214B2S2S'
P'024571S'

OPERAND

Register 1 before execution of EDMK instruction:

0000 10000 0000 I 0000 ooooT 0000 11 oo ~oooo
o 1 o o•o olo clo

---------....... ----------~~ address of PATTERN+7

binary

hex

•

•

•

•

•

•

UP-806 1 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-41

Register 1 after execution of EDMK instruction:

00001 0000 0000 I 0000 0000 I 0000 1011 11011 binary

O I O O I O 0 I 0 B I B hex

address of 1st significant digit

Register 1 after execution of S instruction:

ooooioooo 0000:0000
I I

000010000 101111010

o_io olo o I o B I A

-.;;;:;::: .l l l
'/

address of byte to the left of
1st significant digit

binary

hex

Edited result after execution of MVI instruction:

1st
significant

$ digit
~ ..----.----.--

0100 :oooo 010111010 111110010011011011 111110100 111110101 111110111 010011011 111110001 1111 10000 binary

410 SIB Fi2 6IB F14 FIS Fl7 41B Fl1 FIO hex
l

In this example, the edit mask is moved into a 10-byte field labeled PATTERN. The
address of the position where the insert character is to be placed (in the absence of
significant digits before the significance starter) is loaded into register 1. Then DATA,
containing the packed number, is edited and the result is placed in PATTERN. The
address of the first significant byte (in this example, 2 is significant) replaces the
content of register 1. Then a full word containing the decimal value 1 is subtracted
from the content of register 1, therefore moving one byte to the left. The MVI
instruction moves the dollar sign into the byte addressed by the content of register 1 .

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

14-42

SLDL •

14.3.4. Shift Left Double Logical (SLDL)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

SLDL 80 RS

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1

01F RESULT>O,SETT02
DI F OVERFLOW, SET TO 3
.UNCHANGED

4

D ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

D PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER • 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The shift left double logical (SLDL) instruction shifts all of the 63 bits of operand 1 to the
left the number of bits specified by the low order six bits of the operand 2 address. Specify
the even-numbered register of the pair as operand 1.

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] SLDL

Implicit Format:

LABEL fl OPE RATION fl OPERAND

[symbol] SLDL

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-43

• Operational Considerations:

•

•

• Any pair of general registers (0 through 15) can be used as operand 1, which is an
even-odd-numbered register pair. You must specify the even-numbered register of the
pair as operand 1.

• The main storage address or label you specify in operand 2 is not changed by the
SLDL instruction execution. Notice the formats indicate that you cannot specify a
length in operand 2.

• After the requested number of bits are shifted out of the operand 1 register pair,
zeros fill the rightmost bit positions of the register pair.

• The SLDL instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not hav~ the control
feature.

Example 1:

LABEL
1

VALUE

AOPERATIONA
10 16

LM
SLDL

DS
DC
DC

4,5,VALUE
4,32

0F
X1 FFFFFFFF'
X'FFFFFFFF'

OPERAND

In this example, register 4 is loaded with the content of main storage location VALUE.
Register 5 is loaded with the next 32 bits of main storage following VALUE. The SLDL
instruction causes the contents of the registers to be shifted left 32 bits.

Registers 4 and 5 before execution of SLDL instruction:

Register 4 Register 5

I I : I : ! I I
F l F F I F F I F F I F F I F F : F F l F F I F

_l
hex

I
1111I1111 1111l1111

r
1111i1111

T :
1111 : 1111 1111 11111 1111 : 1111 1111: 1111 1111 : 1111

.L .L i j_ j_ j_ _i .L
binary

Registers 4 and 5 after execution of SLDL instruction:

I : T T T : 1 r
F : F F I F F I F F I F 0 : 0 0 : 0 0 I 0 0 I 0

I hex

1111: 1111 1111 : 1111 1111 : 1111 0000: 0000 0000: 0000
T r

1111 : 1111 0000: 0000 0000! 0000
..i ..i .L i _L j_ j_ J.

binary

UP-8061 Rev. 3

Example 2:

SPERRY UNIVAC OS/3
ASSEMBLER

14-44

This example using the SLDL has the same shift result except that a label is used as
operand 2 of the SLDL instruction.

LABEL
1

VALUE
STORAGE

AOPERATIONA
10 16

LH 4,5,VALUE
SLDL 4,STORAGE

DS
DC
EQU

9JF
2XL4 1 FFFFFFFF 1

x '2'!l'

OPERAND

In this example, the absolute value of the main storage location STORAGE determines
the number of bits that operand 1 should be shifted left. The operand 2 label is
equated (EOU instruction) with a hexadecimal value that indicates how many bit
positions you want to move. This is necessary so that the assembler takes the
absolute value that you equated with your label and not its relocatable address. Note
that a hexadecimal 20 is equivalent to a decimal 32.

Registers 4 and 5 before execution of SLDL instruction:

I I I I I : F I F F I F F I F F I F F I F F I F

1111 :1111
I

1111I1111 1111: 1111
I

1111 (1111 1111: 111 1 111111111
i

STORAGE before and after SLDL instruction execution:

""!"
2 1 O hex I

0010:0000 binary
.i

Registers 4 and 5 after SLDL instruction execution:

F I F F I F F I F F I F 0 I 0 0 I 0 I I I I I I

1111 11111 1111 :1111 1111 i 1111 1111: 1111 0000 I ooo o 0000 loooo
.l.

I I
F I F F I F hex

-t I
1111l1111 111il 1111 binary

.i
J

0
I

0 T 0 hex I 0 I

0000: 0000
I

0000 I 0000 binary
_L l

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-45

SRDL

14.3.5 Shift Right Double Logical (SRDL)

General Possible Program Exceptions

OBJECT
OPCO DE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SRDL BC RS 4

Condition Codes

0 IF RE
0 IF RE

01F RE

SULT= 0, SET TO 0
SULT<O,SETTO 1

SULT >o. SET TO 2
ER FLOW, SET TO 3
ANGED

Q1F OV
.UNCH

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

0 PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

• OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The sh ift right double logical (SRDL) instruction shifts the 64 bits of operand 1 to the right
mber of bits specified by the low order six bits of the operand 2 address. You specify
en-numbered register of the pair as operand 1.

the nu
the ev

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] SRDL

Implicit Format:

LABEL 6 OPERATION£:, OPERAND

[symbol] SRDL

UP-806 1 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

14-46

• Any pair of the general registers (0 through 15) can be used as operand 1. Operand 1
is an even-odd-numbered register pair. You must specify the even-numbered register
of the pair as operand 1.

• The main storage address or label you specify in operand 2 is not changed by the
SRDL instruction execution. Notice the formats indicate that you cannot specify a
length in operand 2.

• After the requested number of bits are shifted out of the operand 1 register pair, O's
fill the leftmost bit positions of the register pair.

• The SRDL instruction is a featured instruction. An operation program exception
results if you use this instruction and the processor does not have the control feature.

Example 1:

LABEL
1

VALUE

~OPERATIO~
10 16

LM 4,5,VALUE
SRDL 4,32

DS
DC

0F
2XL4, 1 FFFFFFFF 1

OPERAND

In this example, registers 4 and 5 are loaded with the content of main storage
location VALUE. The SRDL instruction causes the content of a register to be shifted
right 32 bits.

Registers 4 a nd 5 before execution of SRDL instruction:

! I 1 : T I T F I F F I F F F F I F F I I F I F F I F l F F I F hex I
-1

I

1111 :1111 1111 : 1111
i

1111:1111 1111: 1111
I

1111: 1111 1111 : 1111 1111 , 1111 111111111 binary
i. i. i .i .1. _i i.

J

Registers 4 a nd 5 after SRDL instruction execution:

I ! ! ! I ~ !
0 I 0 0 0 0 : 0 0 I 0 F I F F I F F I F F : F hex I I I I

0000 :oooo
I ~

0000: 0000 1111: 1111
: : .

111 d 1111 0000: 0000 0000 loooo 1111 I 1111 1111 : 1111 binary
_l i l l .1. i. .1.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-47

• Example 2:

•

•

This example using the SRDL instruction has the same shift result, but a label is used
as operand 2 of the SRDL instruction.

LABEL
1

VALUE
STORAGE

AOPERATIONA
10 16

LM 4,5,VALUE
SRDL 4,STORAGE

.
DS
DC
EQU

0F
2XL4 1 FFFFFFFF'
X'2"'

OPERAND

In this example, the absolute value of the main storage location STORAGE determines
the number of bits that operand 1 should be shifted right. The operand 2 label is
equated (EQU instruction) with a hexadecimal value that indicates how many bit
positions you want to move. This is necessary so that the assembler takes the
absolute value that you equated with your label and not its relocatable address. Note
that a hexadecimal 20 is equivalent to a decimal 32 .

Registers 4 and 5 before execution of SRDL instruction:

1 T -r T I
: T T F F I F F F I F F F F I F F I F F F I I F I l I 1 J_ F I

I :
1111: 1111 1111 I 1111 1111i1111

I I I
11111 1111 1111 : 1111 111111111 1111 I 1111 111111111

i I j_ j_ .J. i J. ..l

hex

binary

STORAGE before. and after SRDL instruction execution:

2 1 0 hex
I

0010: 0000 binary

Registers 4 and 5 after instruction execution:

l
a T a

I I l I l !
0 : 0 I o I o 0 : 0 F I F F I F F I F F I F hex

T
0000 loooo

I

0000 loooo I
1111 I 1111 1111 : 1111 1111 : 1111 0000: 0000 0000 loooo 1111 11111

J_ .J. j_ J. j_ j_ ..l
binary

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-48

SL •

14.3.6. Subtract Logical (SL)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

SL 5F RX 4

Condition Codes

D SET TO 0
• SET TO 1
• SET TO 2
• SET TO 3
SEE OPER. CONSIDERATIONS

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER D
0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The subtract logical (SL) instruction logically subtracts the content of operand 2 from the
content of the operand 1 register and places the result in operand 1.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] SL

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] SL

•

•

•

•

•

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Any of the general registers (0 through 15) can be used as operand 1.

14-49

• The label or address you specify in operand 2 must refer to a main storage location
that is on a full-word boundary. Operand 2 is not changed by the execution of this
instruction.

• The logical subtraction is performed by adding the twos complement of operand 2 to
operand 1. All 32 bits of each operand are used.

• Neither operand has a sign bit.

• The condition code of the program status word (PSW) is set as follows:

•

to 1 if result is not 0 (no carry of most significant bit);

to 2 if result is 0 (carry of most significant bit); or

to 3 if result is not 0 (carry of most significant bit).

Zero code is not used.

The SL instruction is a featured instruction. An operation program exception is caused
if you use this instruction and your processor does not have the control feature.

Example:

t10PERATION.:l LABEL
1 10 16

L 3,HEXVALU
SL 3,FULLWORD

OS
HEXVALU DC
FULLWORD DC

~F
x 'ftft11JllJllJFF8 I

x 'llJft11JftllJEllJ8 I

OPERAND

UP-8061 Rev. 3 SPERRY Ul\JIVAC OS/3
ASSEMBLER

14-50

In this example, the hexadecimal content of HEXVALU is placed in register 3. Then •
the twos complement of the content of main storage location FULLWORD is added to
the content of register 3.

FULLWORD before twos complement:

! i I 0 I 0 I 0 0 0 E 8
l I 0 I I

..l.. .l.

hex

ooooloooo
! !

000010000 oooob110 0000:1000
J_ j_ _l _l_

binary

Twos complement of FULLWORD:

I

1111 l1111
T :

1111:1111 1111 :0001 1111:1000

i + F I 1 I F I F F 8 F I F l l l j

binary

hex

Register 3 before execution of SL instruction:

! I : :
0 I 0 0 0 0 I F F I 8

I I I I
.i. :

ooooloooo 0000: 1111
·~

000010000 111111000
i l 1. .i.

hex

binary

Register 3 after execution of SL instruction:

: ! I
F I 0 O I O 0 I 0 0 I 1 I I

..l.. l
hex

ooooloooo
I

000010001
I

000010000 1111 loooo
.i i ..i

binary

The twos complement of FULLWORD is added to the content of register 3. The result
replaces the content of register 3. The condition code is set to 3, since the result is
not 0, and there is carryout (leftover 1 bit) of the leftmost bit. The carryout does not
cause an overflow condition as would the subtract {S) instruction.

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-51

• SLR

14.3.7. Subtract Logical (SLR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SLR 1F RR 2

Condition Codes

D SET TO 0
• SET TO 1
• SET TO 2
• SET TO 3
SEE OPER. CONSIDERATIONS

Possible Program Exceptions

D ADDRESSING

D DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

• OPERATION

D PROTECTION

0 SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The subtract logical (SLR) instruction logically subtracts the content of the operand 2
register from the content of the operand 1 register and places the result in operand 1.

• Explicit and Implicit Format:

•

LABEL fl. OPERATION fl. OPERAND

[symbol] SLR r 1,r2

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The logical subtraction is performed by adding the two's complement of operand 2 to
operand 1. All 32 bits of each operand are used.

• Neither operand has a sign bit.

• The condition code of the program status word (PSW) is set as follows:

- to 1 if result is not 0 (no carry of most significant bit);

- to 2 if result is 0 (carry of most significant bit); or

- to 3 if result is not 0 (carry of most significant bit) .

Zero code is not used.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

14-52

• The SLR instruction is a featured instruction. An operation program exception is
caused if you use this instruction and your processor does not have the control
feature.

Example:

LABEL
1

VALU1
VALU2

~OPERATIO~

10 16

L 3,VALU1
L 5,VALU2
SLR 3,5

DS
DC
DC

0F
x I 00000FF8 I

x '"""(/J(l.IE(i.18 I

OPERAND

In this example, the hexadecimal contents of main storage locations VALU1 and
VALU2 are loaded into registers 3 and 5, respectively. Then, the SLR instruction
logically subtracts the content of register 5 from the content of register 3.

Register 5 before twos complement:

T T T
0 1

1
0 0 I 0 0 I E 0 I 8 hex l I

0000 I 0000 0000 I 0000 0000 I 1110 0000 I 1000 binary
~~-~-..1 ...1. j_

Twos complemen t of register 5:

1111 :1111 ! 1111
r !

1111 111110001 111111000 binary

F I F F l F I 1 F I 8 hex I I F I l ...l _L

Register 3 before execution of SLR instruction:

! !
0 I 0 0 : 0 0 : F F l 8 hex

!
0000:0000 0000:0000 0000:1111 1111: 1000 binary

.___,_ _ _,__J_ i l

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Register 3 after execution of SLR instruction:

! I T !
0 : 0 0 I O 0 : 1 F I 0

I I hex

I T I T

0000:0000 0000:0000 000010001 1111i0000
j _l_ i

binary

14-53

The twos complement of register 5 is added to the content of register 3. The result
replaces the content of register 3. The condition code is set' to 3, since the result is
not zero and there is a carryout (leftover 1 bit) of the leftmost bit. The carryout does
not cause an overflow condition as would the subtract (SR) instruction .

•

•

•

•

PART 4. BAL DIRECTIVES

•

•

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

15-1

15. Introduction to Directives

The OS/3 assembly language includes assembler directives (Table 15-1) that enable the
user to control assembler operation. Assembler directives control the assembler at assembly
time just as application instructions control the processor at execution time. Housekeeping,
program organization, assembly listing modification, and 1/0 control are the tasks of the
directives.

The assembler application instructions the programmer uses to control the processor
operation are discussed in Part 3 of this manual. The major portion of the program
statements consists of these instructions. Just as there are mnemonics to direct the
generation of the instructions, there are directives to control the operation of the software
language processor (the assembler). These are called assembler directives .

Table 15-1. Assembler Directives

Types of Basic Function Where
Directives Discussed

EQUATE Symbol definitions Section 16
OPSYM Delete operation code

ASSEMBLER Control program name and Section 17
CONTROL organization

BASE REGISTER Directs registers to be Section 18
ASSIGNMENT used and when

LINKING AND Control of modules to be Section 19
SECTIONING linked

LISTING CONTROL Control of the assembly listing Section 20

1/0 CONTROL Control of input/output data Section 21

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

16-1

16. Equate and Delete Operation
Code Directives

EQU

16.1. EQUATE (EQU)

The equate (EQU) directive defines the length and value of a symbol using another symbol
as all or part of the definition .

The format is as follows:

LABEL 60PERATION 6 OPERAND

symbol EOU e[,a]

where:

e
Is an absolute or relocatable expression.

a
Is an absolute expression.

All symbols must be predefined.

The symbol in the label field is defined as the value of the first expression in the operand.
The maximum values are -223 to 223-1. The length attribute of the symbol is equal to the
second expression (a) if explicitly stated. If the second expression (a) is omitted, the symbol
will have the length attribute of the first term in the first expression (e). If the first term is an
* or a self-defining term, the length attribute of the symbol is 1. (See coding examples on
following page.)

UP-8061 Rev. 3

Examples:

SPERRY UNIVAC OS/3
ASSEMBLER

LABEL AOPERATIONA OPERAND
I 10 16

I. TAG
2. HIDE
3. SEEK
4. GO
5. R1
6. RI

OS
EQU
EQU
EQU
EQU
EQU

25CL10
100+TAG,150
TAG+12Ul-*
TAG+1270-*,200

" 1

16-2

If the value of the location counter is 2000 when instructions 1 through 4 are
encountered, the symbols have the following location counter values:

1. TAG has a relocatable value of 2000 and a length attribute of 10. The location
counter is advanced to 2250.

2. HIDE has a relocatable value of 2100 (100 + 2000) and a length attribute of 150.
The location counter remains at 2250.

3. SEEK has an absolute value of 1020 (2000 + 1270- 2250) and a length attribute
of 10 (same as length of first term).

4. If line 4 is substituted in place of line 3, then GO has an absolute value of 1020
(2000 + 1270 - 2250) and a length attribute of 200. (The 200 overrides the
length of TAG.)

5. The registers 0 and 1 are equated to RO and R 1. (See 6.1.)
and
6.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

16.2. DELETE OPERATION CODE (OPSYM)

16-3

OPSYM

The delete operation code (OPSYM) directive allows you to tell the assembler not to accept a
certain mnemonic operation code.

The format is as follows:

LABEL

mnemonic
operation
code

.0.0PERATION.0.

OPSYM

OPERAND

unused

After you use the OPSYM directive to declare a mnemonic code as unacceptable, the
assembler will not generate the normal object code for that mnemonic if it appears after the
OPSYM. You are then free to use the declared mnemonic another way, for example, as the
mnemonic code of a macro prototype statement.

Examples:

LABEL .0. OPERATION .0. OPERAND
1 10 16

-·-----·--------------·
1. MACRO
2. A &QUANT ,&Q2 ,&SUM
3. L 13 ,&QUANT
4. A 13 ,&Q2
s. ST 13,&SUM
6. MEND
]. START fr5
8. A OPSYM

9. CALCU A PAY,RAISE,TOTAL

10. END

In this example, the program is preceded by a macro definition which is used in my program.
Line 2 contains the mnemonic code A, which is the mnemonic operation code for an add full
word instruction. Before I can call the A macro into my program, I must use an OPSYM
directive to tell the assembler not to recognize A as the add full word mnemonic. The
OPSYM directive must code before the line of code which references the macro, that is, line

• 8 must precede line 9.

The OPSYM directive cannot be used from within a PROC/MACRO or from within code
generated as a result of conditional assembly statements.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

17-1

17. Assembler Control Directives

Assembler control directives are available to name the program and specify an initial
location counter, section the program, alter the location counter to a specified value,
indicate the end of a program, and designate the instruction the program will begin with.
Table 17-1 is a summary of the assembler control directives available to the user of the
OS/3 assembler.

Table 17-1. Assembler Control Directives

Directives Basic Function Where
Discussed

CNOP Condition no operation 17.1

END Program end 17.2

LTORG Generate literal pool 17.3

ORG Specify location counter 17.4

START Program start 17.5

UP-8061 Rev. 3

CNOP

SPERRY UNIV AC OS/3
ASSEMBLER

17.1. CONDITION NO OPERATION (CNOP)

17-2

The condition no operation (CNOP) directive adjusts the location counter to a half-word, full
word, or double-word storage boundary. The format of the CNOP directive is:

LABEL ~OPERATION~ OPERAND

unused CNOP

where:

a1 and a2
Are absolute expressions consisting of predefined terms.

The first expression in the operand field indicates a byte to which the location counter must
be 'set. Legal values for the first expression are 0 and 2 for full-word boundary alignment,
and 0, 2, 4, and 6 for double-word boundary alignment.

• 0 indicates a full-word or double-word boundary;

• 2 indicates the second byte (first half word) past the boundary;

• 4 indicates the fourth byte (second half word) past a double-word boundary; and

• 6 indicates the sixth byte (third half word) past a double-word boundary.

Permissible values for the second expressions are 4 and 8, indicating that the adjustment is
relative to a full-word or double-word boundary, respectively.

If the location counter is already set to the indicated byte, the CNOP has no effect. When
alignment is needed, one, two, or three no-operation instructions are generated to
increment the location counter to the proper half-word boundary and to ensure correct
instruction processing. All terms must be predefined.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

17-3

Examples:

1.
2.

LABEL
1

AOPERATIONA
10 16

CNOP
CNOP

Ill, 8
2,4

OPERAND

1. The current location counter is advanced, if necessary, to the first byte of the next
double-word boundary. A legal double-word boundary is any address value
divisible by 8.

2. The current location counter is advanced, if necessary, to the second byte (first
half word) past the next full-word boundary. A legal full-word boundary is any
address value divisible by 4 .

UP-8061 Rev. 3

END

17.2. PROGRAM END (END)

SPERRY UNIVAC OS/3
ASSEMBLER

17-4

The program end (END) directive indicates the end of a source program or macro definition
written in PROC format. (See Appendix A and Section 25.)

The format of the END directive is:

LABEL fl OPERATION fl OPERAND

[symbol] END (e]

where:

e
Is a relocatable expression.

The END directive must be the last statement in the source program. An expression in the
operand field designates the point in the program where control may be transferred after
the program is loaded. If the END directive is missing, an END directive with a blank operand
field is supplied by the assembler. If the END directive terminates a proc, the label and
operand fields are not used.

Examples:

LABEL t.OPERAT I ONL'.l OPERAND
1 10 16

i.fox
2.
3.

END
END
END

BEGN
G0+324

All three of the END statements halt assembly, but each transfers control to a different
address in the program.

1. Control is transferred to a statement labeled BEGN in the program. The label FOX
is assigned the address associated with the last byte of the assembly.

2. If GO has a value of 1000, control is transferred, and the next instruction to be
processed is located at address 1 324.

•

•

3. If no operand is specified, control is transferred to the first address of the program •
loaded.

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

17.3. GENERATE LITERALS (LTORG)

17-5

LTORG

The generate literal pool (LTORG) directive generates all literals previously defined into a
data pool within the source program. The format of the LTORG directive is:

LABEL ti OPERATION ti OPERAND

[symbol] LTORG unused

The literals are pooled following the occurrence of the LTORG directive. A symbol in the
label field represents the first byte of the generated literal pool and is assigned a length
attribute of 1. LTORG directives may not appear within a dummy control section (19.3) or in
a blank common storage area. If there are no LTORG statements in a program and literals
are specified, or if any literals are specified after the last LTORG directive in a program,
these literals are pooled at the end of the first control section. The programmer then must
ensure that a valid base register is available to address the locations in the literal pool.

Literals are placed in the literal pool according to their total length (duplication factor
multiplied by the length of the constant). The literal pool consists of four sections:

1. Literals with total lengths that are multiples of double words (eight bytes)

2. Literals with total lengths that are multiples of full words (four bytes)

3. Literals with total lengths that are multiples of half words

4. Any remaining literals

Within each pool section, the literals are stored in order of occurrence. Before the literal
pool is generated, the location counter is adjusted to a double-word boundary. If two control
sections are assembled together and a LTORG is not included in the second or following
sections, then all the literals defined in all the sections will be pooled in the first control
section and may subsequently be available only to that first section. To ensure that each
linked control section can use the literals declared by it, an LTORG should be used within
each control section .

UP-8061 Rev. 3

ORG

SPERRY UNIVAC OS/3
ASSEMBLER

17.4. SPECIFY LOCATION COUNTER (ORG)

17-6

The specify location counter (ORG) directive sets or resets the location counter to a specified
value. The format of the ORG directive is:

LABEL bi OPERATION 6 OPERAND

[symbol] ORG [e]

where:

e
Is a relocatable expression.

•

The location counter is set to the value of the expression in the operand field. When no
expression is present, the location counter is set to the highest location previously assigned
in that control section. A symbol in the label field has the same value as the expression in
the operand field and is assigned a length attribute of 1. The expression in the operand field •
must be relocatable. Its value must represent an address in the same control section in
which the ORG occurs. This address value must be equal to or greater than the initial
setting of the current location counter. If the expression is in error, the ORG directive is
ignored, and the line is flagged. All terms in the expression must be predefined.

The ORG directive permits the location counter to be set to a value not on a half-word
boundary.

Bytes of storage reserved with an ORG directive are not set to zero or cleared when the
program is loaded.

Example:

LABEL
1

AREA

t.OPERA Tl ON t. OPERAND
10 16

ORG *+A+B

This statement reserves A plus B bytes of storage, where A and B are previously defined
symbols with absolute values. If A = 80, B = 160, and the value of the location counter is
1048, then 240 bytes are reserved beginning at the location 1048.

Additional examples of the ORG directive are included on the following page. •

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

17-7

Examples:

I.
2.

3.

4.

LABEL
l

INPUT

RECl
FLDl

REC2
FLD2
FLD22

REC3
FLD3
FLD33

.6.0PERAT ION.6.
10 16

OS CL80
ORG INPUT
DS CL20
DS C L6@
ORG INPUT
OS CL3'6
DS CL3'6
OS CL20
ORG INPUT
OS Cll5
DS CL25
DS CLl1{6

OPERAND .6.COMMENTS

INPUT FIELD 80 BYTES
INPUT FOR RECl

INPUT FOR REC2

INPUT FOR REC3

1. An input area for an 80-byte card is defined with no subfields.

2. The input field is redefined in place to show two subfields.

3 .
and
4. Redefine INPUT for different organizations of the field.

Instructions 1 through 4 define four different types of cards or other 80-byte records .

UP-8061 Rev. 3

START

17.5. PROGRAM START (START)

SPERRY UNIVAC OS/3
ASSEMBLER

17-8

The program start (START) directive defines the program name, the name of the first control
section, and the initial location counter value. The format of the START directive is:

LABEL ~OPERATION~ OPERAND

[symbol] START [a]

where:

a
Is an absolute expression.

A symbol in the label field becomes the name of the first or only control section in the
program. If the label field is blank, an unnamed control section is begun. All statements
following the START directive are assembled as part of the control section until another
unique control section definition is encountered.

The label field of a CSECT directive, which can contain the same name as the label field of
the START directive, identifies the continuation of the control section. A blank label field in
the CSECT directive identifies the continuation of an unnamed control section that began
with an unnamed START directive.

The symbol in the label field of the START directive also identifies or names the object
program. If the START directive is unnamed, the object module is assigned the name
ASMOBJ. The symbol must be a valid symbol. It is an automatic entry point and has a
length attribute of 1. The START directive must not be preceded by any statements which
would initiate a control section.

The self-defining term in the operand field of the START directive establishes the initial
location counter value for the first control section. If the self-defining term represents a
value which is not a multiple of 8, the START directive is flagged and the location counter
set to the next higher multiple of 8. If the operand is omitted, the initial control section is
assigned a location counter value of zero.

Examples:

LABEL
1

TEST
TEST

~OPERATION~

10 16

START
START

Jfl63
X1 427 1

OPERAND

The location counter contents for either of these statements would be 1064, which is the
next higher multiple of 8 from 1063.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

18-1

18. Base Register Assignment Directives

The OS/3 assembler converts storage addresses to base register and displacement values
for insertion into instructions being assembled. To do this, the assembler must be informed
of the available registers and the values assumed to be in those registers. The assembler
directives USING and DROP are available for this purpose.

• The unassign base register (DROP) directive informs the assembler that certain
registers are no longer to be used for base registers.

• The assign base register (USING) directive informs the assembler that the specified
registers are available for use as base registers .

UP-8061 Rev. 3

DROP

SPERRY UNIVAC OS/3
ASSEMBLER

18.1. UNASSIGN BASE REGISTER (DROP)

18-2

The unassign base register (DROP) directive informs the assembler that the registers
specified are no longer available for base register assignment. The format of the DROP
directive is:

LABEL f). OPERATION f). OPERAND

unused DROP r1 [, ... ,rn]

where:

r1[, ••• ,rnl
Specifies that the declared registers (0 through 15) are no longer available for
base register assignment.

Registers previously made available for base register assignment may be dropped and made
available again in a USING directive. (See 18.2.) The value assumed to be in a base register
may be changed by coding another USING directive without an intervening drop of that
register.

Examples:

f). OPE RAT I ON f). LABEL
1 10 16

1.~0P 2.I ~~oP 1'3 ,4

OPERAND

1. This directive specifies that register 1 is no longer available to the assembler for
base register assignment.

2. This directive specifies that registers 1, 3, and 4 are no longer available for base
registers.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

18-3

USING

18.2. ASSIGN BASE REGISTER (USING)

The assign base register (USING) directive informs the assembler that a specified register is
available for base register assignment and will contain a specific value at execution time.
The value must be loaded by the program into the base register that the USING directive
specifies. The assembler maintains a USING table of the specified registers. The format of
the USING directive is:

where:

v

LABEL ~OPERATION~ OPERAND

unused USING

Is the value assumed to be in the first specified register at execution time. This
value may be relocatable or absolute. Literals are not permitted .

r,[, ... ,r 0]

Specifies that the declared registers (0 through 15) will be used as base registers
loaded at execution time. These register numbers do not necessarily have to be
assigned in ascending sequence.

The first register specified after v is assigned the value of v; the next register is assigned the
value of the first register plus 4096; the next register is assigned the value of the second
register plus 4096; and so on through all the registers specified. A USING directive may
specify a single register or a group of registers, or the registers may be specified by
individual USING directives.

Register 0 may be specified as a valid base register; however, the assembler assumes that it
always contains the value 0 and calculates displacements as if the operands were zero.
Register 0 must be the operand specified by r1, and any registers specified in the operand
field following register 0 are assumed to contain increments of 4096 from zero.

When v is absolute, the indicated registers may be used to process only absolute effective
addresses.

When v is relocatable, the indicated registers can be used to process only relocatable
effective addresses. The registers r1, ••• ,rn are used to process only those addresses in the
same control section as the address represented by v.

The value specification in a USING directive sets the lower limit of an address range; the
upper limit is automatically set 4095 bytes above the lower limit. The upper limit of a
USING directive may be set less than 4095 bytes by being overlapped by the lower limit of
another USING directive.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

18-4

The range specified by a USING directive is used by the assembler to assign base register
and displacement values to those effective operand addresses that fall within that range.

If an operand address is specified as an effective address instead of a base register and
displacement specification, the assembler searches the USING table for a value yielding a
displacement of 4095 or less; if there is more than one such value, the value that yields the
smallest displacement is chosen. If no value yields a valid displacement, the operand
address is set to zero, and the line is flagged with an error indication. If more than one
register contains the value yielding the smallest displacement, the highest numbered
register is selected.

Examples:

l.
2.
3.
4.

LABEL
1

t.OPERAT IONL'.i
10 16

US I NG
USING
USING
USING

4000,8
8000, 1,2,3,6,7,8,12
*,5
TAG,R9

OPERAND

1. A range of 4096 bytes is covered by register 8 at location 4000 through 8095. The
value 4000 is assumed to be stored in register 8.

2. The value 8000 is assumed to be in register 1, 12096 in register 2, 16192 in
register 3, 20288 in register 6, 24384 in register 7, 28480 in register 8, and
32576 in register 12. These register numbers and their assumed values are
entered into the USING table in the orde~ specified.

3. Register 5 is used as the base register, with the value of the location counter
contained in register 5.

4. The register declared by the symbol R9 is assumed to contain the base address
of the symbol "TAG".

••

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

19-1

19. Program Linking and
Sectioning Directives

A program or a portion of a program assembled as a single unit is called a module. A
complex program may consist of many modules; some may be standard subroutines that
can be used in any program.

The assembler provides, as part of its output, information that allows modules to be linked
together, loaded and then executed as a single program. Proper partitioning or sectioning
reduces the execution time required to make changes to an existing program. If a change is
required, only the module that is changed must be reassembled. The output is then linked
with the remaining parts to produce the altered program. Proper partitioning of a program
also reduces the number of symbols required in each of the separate assemblies .

A symbol defined in the label field of module A and addressed in module B must be
externally defined by an ENTRY directive in module A and defined by an EXTRN directive
in module B. By using the ENTRY and EXTRN directives, proper linkage is supplied when
the separate modules are assembled. This information is passed to the linkage editor by
the external definition records and the external reference records, which are outputs of
the assembler.

The assembler also provides an optional capability of dividing one module into different
sections. A control section is a group of instructions, constants, and storage areas, the
positions of which, relative to each other, are fixed and must remain fixed to ensure proper
coding. Proper execution of instructions and data in one control section must not depend on
their positions relative to instructions or data in any other control section. Because the
assembler maintains a separate location counter for each section, control sections may
appear in any order for input to the assembler. Statements belonging to one control section
may be intermixed with statements belonging to one or more other sections. If the first
statement of a control section is a START directive, its label names the control section.

Each module may have a maximum of 255 external symbol identification (ESID) items. An
ESID item contains special information used by the linkage editor in relocating modules and
module sections and in resolving references between modules. The following items cause
the assembler to generate an ESID item:

• Each unique symbol used in a V-type address constant

•
•

Each symbol used in a V-type address constant

Each control section

• Each dummy control section

• Each common storage definition section

UP-8061 Rev. 3

COM

SPERRY UNIVAC OS/3
ASSEMBLER

19.1. COMMON STORAGE DEFINITION (COM)

19-2

The common storage definition (COM) directive enables the programmer to define a control
section which is a common storage area for two or more separately assembled routines. The
format of the common section may be described by OS and DC directives. Labels appearing
within the sections are defined. Like a dummy control section, no data or instructions are
assembled in a common section. It has a separate location counter with an initial value of
zero. Data may be entered into a common section only by execution of a program which
refers to it, or by loading a control section of the same name. Such CSECTS are called block
data sections. DC instructions act as OS instructions in the COM area because neither
instructions nor constants in a common storage area are assembled. Labels defined in a
common section are not subject to the restrictions imposed on dummy section labels.

One assembly can define only one blank (unnamed) common section. Several like-named
COM directives may appear among the source statements. Each COM directive after the
first defines a continuation of the common section previously described. When several
routines defining like common storage are linked, the resulting module contains only one
section corresponding to the like common sections in the input modules. The length of this
section is the length of the largest like common section in the input modules. The format of
the COM directive is:

LABEL t.OPERATION t. OPERAND

[symbol] COM unused

If the common section is unlabeled, the area is addressed by referencing the label of a
statement within the common section with a USING directive. (See 18.2.)

Examples:

MODULE 1 :

LABEL
1

t.OPE RAT I ONt.

1. MODI

2. ACOM
RE BEW
CHAYA

I 0 16

CSECT

COM
DS
DS
END

CL125
CL8f6

OPERAtW

•

•

•
.. _. ------------------~-~~~~~~~~~~-

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

19-3

• MODULE 2:

•

•

LABEL
1

3. MOD2

4. ACOM
ELI

L'iOPERAT IONt-
10 16

CSE CT

COM
OS
END

CL260

OPERAND

1. When module 1 is assembled, it uses the common storage area defined by line 2.

2. The common storage area used by module 1 and module 2

3. When module 2 is assembled, it also uses the common storage area defined by
line 2

4. The common storage area used by module 1 and module 2

The common storage area for these examples is 260 bytes long (see following listing).
The fields REBEW and CHAYA are the same storage area as the first 205 bytes of the
field ELI .

Byte Hexadecimal Module 1
Hexadecimal

Module 2
Number Address Address

ACOM COM ACOM COM
0 00000 REBEW OS CL125 00000 ELI OS CL260

125 00070 CHAYA OS CL80

205 END

260 00104 END

If more than one object module element refers to a common storage area with the
same name, the references are to the same storage area. Only one common storage
area is allocated within a load module to satisfy all object module requests for common
storage areas with the same name. The size of a common storage area in a load
module is determined by the maximum size requested by any object module for
common storage with that name. Blank common storage areas are allocated in the
same way.

In a multiphase load module, common storage areas are not normally overlaid .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

The following rules apply to the use of common storage:

19-4

• An entry point cannot have the same name as a labeled common storage area
included in the load module.

• When the linkage editor includes module elements (CSECT or COM) with the same
name as a labeled common storage area, that section is treated as a block data
subprogram (i.e., to initialize values of labeled common blocks) and is loaded into
all or a portion of the common storage area. A block data subprogram is loaded
when the phase in which it was included is loaded. Blank common cannot be
initialized during loading unless the text encountered is for that COM ESD.

• If an object module has requested common storage, the partial inclusion of a
single control section from that object module will cause the common storage area
defined to be included also, regardless of whether or not the included control
section refers to that common storage name. For further information, see the
linkage editor portion in system service programs (SSP) user guide, UP-8062
(current version).

•

•

•
--------------------------------------~~-·--···- ·--·-----------

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER

19.2. CONTROL SECTION IDENTIFICATION (CSECT)

19-5

CSE CT

The control section identification (CSECT) directive indicates to the assembler the initiation
or continuation of a control section. The format of the CSECT directive is:

LABEL ti OPERATION 6 OPERAND

[symbol] CSE CT unused

The symbolic name of the control section defines an entry point of the program being
assembled. This symbol must not appear as a symbol for any other source statement except
the START directive of its control section or another CSECT directive to indicate
continuation of the coding in the same control section.

Each control section is adjusted to begin on a double-word boundary. The value of the
symbol is the address of the first byte of the control section and has a length attribute of 1.

• If the symbol is blank, the CSECT directive is a continuation of coding for an unnamed
control section. If the symbol is blank and is not preceded by an unnamed control section,
the CSECT initiates an unnamed control section. Only one unnamed control section is
permitted in a module.

Examples:

LABEL D.OPERATIOND. OPERAND
l 10 16

1. GROSS START

2. DEDUCT C SECT

3. GROSS CSECT

•
END

UP-8061 Rev. 3

LABEL ~OPERATION~

1 10 16

4. GROSS2X CSECT

5. DEDUCTX CSECT

6. GROSS2X CSECT

END

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

1. The first control section of coding is labeled GROSS.

2. The second control section of coding is labeled DEDUCT.

19-6

3. The coding beginning at line 3 is a continuation of the section labeled GROSS.

4. The first control section of coding is labeled GROSS2X.

5. The second control section of coding is labeled DEDUCTX.

6. The coding beginning at line 3 is a continuation of the section labeled GROSS2X .

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

19.3. DUMMY CONTROL SECTION IDENTIFICATION (DSECT)

19-7

DSECT

A program may contain references to areas that have been defined in other modules.
Addressing such areas is facilitated by describing the area and its format to the assembler
as a dummy control section. Any statement following a dummy control section identification
(DSECT) directive is identified as belonging to the dummy control section. The format of the
DSECT directive is:

LABEL b. OPERATION b. OPERAND

[symbol] DSECT unused

Storage is not reserved by a DS directive within a dummy control section, and the data and
instructions appearing in a dummy control section do not become part of the assembled
program. A separate location counter with an initial value of zero is kept for each dummy
control section. More than one DSECT directive with the same symbol may appear in a
module. The first DSECT directive initiates the dummy control section; the remaining DSECT
directives continue it.

Symbols of statements in a dummy control section are called dummy section symbols. The
following rules must be observed in using and assigning dummy section symbols:

• An unpaired dummy section symbol may appear only in an expression defining a
storage address for a machine instruction or an S-type constant.

• A base register may not be specified for an address field containing an unpaired
dummy section symbol.

• The programmer must ensure that the appropriate value is loaded into the register
specified in the USING statement.

To guarantee alignment between the actual storage area and the dummy control section,
the user should align the storage area to a double-word boundary.

Coding examples utilizing the DSECT directive are included on the following page .

UP-8061 Rev. 3

Examples:

SPERRY UNIVAC OS/3
ASSEMBLER

LABEL t.OPERATI ON t. OPERAND

I.

2.

I 10 16

BEGIN

MOVE

AREA
SECTION
NAME
NUMBER
CODE
WORK
WORK!

TABLE

BALR
USING
L
USING

MVC
MVC
DC
DSECT
OS
OS
OS
OS
OS
CSECT
OS
END

R3,'6
}~ 'R3
R4,AREA
SECTION,R4

WORK(3),CODE
WORKl(28),NAME
A(TABLE)

CL28
CLIS
CL3
CL3
CL28

CL5'6

19-8

t.COHMENTS

REGISTER 4 FOR DSECT

1. The coding following DSECT is assigned to a dummy control section.

2. CSECT begins a new control section or continues the current control section.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

19.4. EXTERNALLY REFERENCED SYMBOL DECLARATION (ENTRY)

19-9

ENTRY

Each module must declare to the assembler the symbols defined within the module to
which reference is made by other modules. Each symbol is referred to as being externally
referenced and is declared by the ENTRY directive. The format of the ENTRY directive is: ~

LABEL A OPERATION b. OPERAND

unused ENTRY symbol [,symbol, ... ,symbol]

Each symbol in the operand field is declared to be defined in this module. Their name and
assigned values are included in the output of the assembler as external reference records. ~
(See 19.5.)

Example:

LABEL b.OPERATIONb. OPERAND
1 10 16

ENTRY WRD32,REBEW,ILE,CHAYA

WRD32, REBEW, ILE, and CHAYA are symbols defined in module 1 for the use of other
modules. ENTRY permits other modules to reference the symbol defined by the ENTRY
directive declaring it.

UP-8061 Rev. 3

EXT RN

SPERRY UNIVAC OS/3
ASSEMBLER

~ 19.5. EXTERNALLY DEFINED SYMBOL DECLARATION (EXTRN)

19-10

The assembler must be informed of all symbols used in the module being assembled that
are defined in some other module. References to these symbols are called external

~ definitions; these symbols are declared in the externally defined symbol declaration
(EXTRN) directive. The format of the EXTRN directive is:

LABEL .6. OPE RATION .6. OPERAND

unused EXTRN symbol [,symbol, ... ,symbol]

Each symbol in the operand field is declared to be a symbol defined in some other module.
(See 19.4.) The symbolic name and the external symbol identification assigned by the

•

~ assembler are input to the linkage editor as an external definition record. Each reference
to the externalized symbol creates an appropriate relocation mask to allow reference
resolution at linkage editor time. When an EXTRN and a definition for an identical symbol
appear in the same assembly, the EXTRN reference is discarded automatically, and the •
definition is accepted regardless of the order of appearance of either item.

Examples:

MODULE A:

LABEL ~OPERATION~

1 10 16

FOX

JOE

MAT

MVO
DC
DC
BC

BCT
DC

ENTRY
EXT RN

DEST (5) , OR I G (3)
A(CAT)
A(DOG)
8, H~48

1{6, SET
A(PIG}

FOX,JOE,t1AT
CAT,DOG,PIG

OPERAND

•

•

•

•

UP-8061 Rev. 3

MODULE B:

LABEL t,OPERATIONLl
1 10 16

CAT

DOG

PIG

DC A(FOX)

PRltff
DC
MVC
DC

AU

ENTRY
EXT RN

DATA
A (JOE)
NAHS,NAD
A(MAT)

6,UNOR

CAT,DOG,PIG
FOX,JOE ,MAT

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

19-11

In module A, the symbols FOX, JOE, and MAT are specified with the ENTRY directive so that
they may be used in module B as specified by EXTRN.

In module B, the symbols CAT, DOG, and PIG are specified with the ENTRY directive so that
they may be used in module A as specified by EXTRN.

19.6. SUBROUTINE LINKAGE

In addition to writing the code in your external subroutines, you must provide for certain
conventions that link your subroutines to your program. The conventions are:

• Saving and restoring the contents of the registers

• Establishing a new base register

• Branching back to the program

Each of these conventions uses a specific register. The table that follows lists the registers
and their use .

UP-8061 Rev. 3

Register Use

SPERRY UNIVAC OS/3
ASSEMBLER

19-12

1 Contains the address of the table holding variables being passed to the
subroutine.

13 Contains the address of an 18-word area that will save the contents of the
registers as they were before your subroutine began execution.

14 Contains the address that your program branches to after it finishes its
execution.

15 Used as the base register

The format that follows shows how you should use these registers to meet these
conventions.

LABEL

1. symbol·
2.
3.
4.

5.
6.

L°lOPERATIONL°l

CSE CT
STM
BALA
USING

processing code here

LM
BR

storage definition (if any)

7. END

14,12,12(13)
15,0
*,15

14,12,12(13)
14

OPERAND

1. This line uses the CSECT directive to name the subroutine.

2. This line saves the contents of the registers in an 18-word save area located at
the address stored in register 13.

3. These two lines establish register 15 as the base register for the execution of the
and subroutine.
4.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

19-13

• 5. This line restores the contents of the registers from an 18-word save area

•

•

located at the address stored in register 13.

6. This line returns control to your program by branching to the address stored in
register 14.

7. This statement must be the last line in the subroutine .

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
20-1

20. Listing Control Directives

One of the outputs of the assembler process is a listing of source and object codes. The
assembler directives that control the format of the listing have the following functions:

• Provide headings for each page

• Eject or skip to a new page

• Space for extra blank lines

• Provide for printing or nonprinting of the output

• Table 20-1 is a summary of the assembler listing control directives available to the user
OS/3 assembler.

Table 20-1. Listing Control Directives

Directives Basic Function
Where

Discussed

EJECT Advance listing 20.1

PRINT Listing content control 20.2

SPACE Leave blank lines on listing 20.3

TITLE Listing title declaration 20.4

•

UP-8061 Rev. 3

EJECT

20.1. ADVANCE LISTING (EJECT)

SPERRY UNIVAC OS/3
ASSEMBLER

20-2

The advance listing (EJECT) directive causes the assembler to continue the assembly listing
(Part 6, Section 28) on the top of the next printout page. The format of the EJECT directive
is:

LABEL ~OPERATION~ OPERAND

unused EJECT unused

If the next line of the listing causes a page change, the EJECT directive has no effect.

When the EJECT directive is encountered, the printing form is skipped to the next page. If a
title has been previously specified, the title is printed on the new page. An EJECT directive
appearing in a source code macro definition causes the form to be skipped whenever the
definition is listed and each time the macro is generated.

The assembler will advance the assembly listing to a new sheet whenever a sheet is full.
However, if the programmer would like each new logical part or subroutine to start at the
top of a new sheet, he can use the EJECT directive whenever he wants a new sheet to start.

The EJECT directive itself is never printed.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

20.2. LISTING CONTENT CONTROL (PRINT)

20-3

PRINT

The listing content control (PRINT) directive enables the programmer to control the contents
of the assembly listing. The format of the PRINT directive is:

LABEL fl OPERATION fl OPERAND

unused PRINT fj{QN }]f{f&·E~ }] [{DATA }] [{SINGLE }j
~OFF [NOGEN ' •Ill~· ' DOUBLE

where:

ON
Specifies the listing is to be printed.

OFF
Specifies that no listing is printed.

GEN
Specifies that lines generated by a macro instruction are printed.

NOGEN
Specifies that lines generated by a macro instruction are not printed, except that
the macro instruction and any MNOTE or PNOTE messages generated are printed.

DATA
Specifies that all characters of each constant representation are printed.

NO DATA
Specifies that only the first eight characters of each constant representation are
printed.

SINGLE
Specifies that the source listing is single-spaced.

DOUBLE
Specifies that the source listing is double-spaced .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

20-4

If a PRINT dfrective specifies OFF plus other parameters, the other specifications are not
effective until a PRINT directive is encountered that specifies the listing is to be turned ON.
The options provided by the PRINT directive are keyword and not positional parameters;
therefore, the comma is not required if a parameter is omitted. The initial print condition of
assembly printing is ON, GEN, NODATA, SINGLE. This condition remains until the first
PRINT directive changes it. PRINT directives may change from only one to all of the
parameters; any unspecified parameters remain in their previous condition. A PRINT
directive may not appear in a macro definition.

Examples:

LABEL
1

.AOPERATIONA
10 16

OPERAND

.. r 2.
3.

PRINT
PR I NT
PRINT

·-----------------------·--------
DATA
OFF
ON,GEN,DATA

1. Data is printed in full.

2. Assembly listing is suppressed.

3. Assembly list printing is restored with complete printing of data constants.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

20.3. LEAVE BLANK LINES ON LISTING (SPACE)

20-5

SPACE

The leave blank lines on listing (SPACE) directive causes the assembler to advance the
paper in the printer a specified number of lines. The operand field contains an unsigned
decimal integer specifying the number of lines the paper is to be advanced. If no operand is
coded, one line will be spaced.

LABEL ~OPERATION~

unused SPACE

where:

Is an unsigned decimal integer.

Examples:

LABEL
l

1.1
2. I

AOPERATIONA
l 0 16

SPACE
SPACE

6
22

OPERAND

[i]

OPERAND

1. The assembler advances the print form six lines before printing the next line.

2. The assembler advances the print form 22 lines before printing the next line .

UP-8061 Rev. 3

TITLE

SPERRY UNIVAC OS/3
ASSEMBLER

20.4. LISTING TITLE DECLARATION (TITLE)

20-6

The listing title declaration {TITLE) directive provides data for the heading of each page of
the assembler listing and advances the printer form to a new page. The format of the TITLE
directive is:

LABEL !::. OPERATION !::. OPERAND

unused TITLE 'c'

where:

c
Is a heading of up to 100 characters enclosed in apostrophes.

The following conditions apply to characters in the operand field:

• Any character may be specified, including spaces, within the defining apostrophes.

• An apostrophe within the operand must be specified as a pair of apostrophes.

• An ampersand within the operand must be specified as a pair of ampersands.

• Spaces may be specified freely to separate heading words.

More than one TITLE directive is permitted in a program. A TITLE directive provides the
heading for all pages in the listing which succeed it.

Examples:

LABEL !::.OPERATION!::. OPERAND !::.COMMENTS
l 10 16 72

1. TITLE 1 WEEKLY PAYROLL SOURCE AND OBJECT LISTING -- ASSEMBLED Z
ON &SYSDATE AT &SYSTIME 1

2. TITLE 1 PAYROLL SUBSECTION -- &SYSDATE 1

1. The Z in column 72 specifies that the title is continued on the next line. At
assembly time, the assembler replaces the system variable symbols &SYSDATE
and &SYSTIME with the current date and time, respectively. (See Appendix G.)

2. The assembler puts the system date in &SYSDATE at assembly time.

-----------------------------------~----···

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

21-1

21. Input and Output Control Directives

The OS/3 assembler input and output control directives provide the necessary control for
sequence checking, formatting, and reproducing data. The directives in this section help you
in writing the source code program and controlling the source code punched cards. The six
directives are:

• ICTL

Controls the format of the program instructions.

• ISEO

Controls the sequence of the punched cards in the source deck.

• REPRO

Controls the production of linkage editor control statements in the object module.

• PUNCH

Produces a specified record at assembly time.

• COPY

Controls the inclusion of prefiled source statements into your source programs.

• ccw

Initiates input and output operations .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

21-2

ICTL

21.1. INPUT FORMAT CONTROL (ICTL)

The input format control (ICTL) directive specifies new values for the begin, end, and
continue columns. Normally, a source statement begins in column 1 of the coding form and
ends in colum 71. If a continuation statement is needed, a character is written in column
72, and the statement continues in column 16 of the following line. The format of the ICTL
directive is:

where:

b

e

c

LABEL /Cl OPERATION /Cl OPERAND

unused ICTL [b] [,e] [,c]

Is an unsigned decimal integer specifying the beginning column. It must be
between 1 and 75.

Is an unsigned decimal integer specifying the ending column. It must be greater
than or equal to b+5 and less than or equal to 80.

Is an unsigned decimal integer specifying the continuation column. It must be
greater than b and less than e. The line is continued starting in the column
specified by c.

If b is omitted, it is assumed to be 1. If e is omitted, it is assumed to be 71. If c is omitted
or if e equals 80, continuation records are not allowed. If e is specified and e is less than
80, a continuation statement is signalled by putting a nonblank character in column e+1
of the line to be continued.

There can be only one ICTL directive in a source code module and it must immediately
precede or follow any program-defined macro definitions. The ICTL directive applies only to
those source statements that follow it. All library macro definitions are assumed to have
normal output format. If the ICTL appears before the START card and it is incorrect, the
assembly is terminated. When an ICTL appears out of sequence (must be first card
following START card), the ICTL terminates the assembly.

•

•

•

•

•

•

UP-8061 Rev. 3

Examples:

LABEL ~OPERATION~

1 10 16

1.l
2.

ICTL 2 '79, u
ICTL 2" 16

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

21-3

1. Coding is to follow a new format by starting in column 2, ending in column 79, and
continuing on the following line in column 10.

2. Coding is to follow standard format except that it is to start in column 2 .

UP-8061 Rev. 3

ISEQ

SPERRY UNIVAC OS/3
ASSEMBLER

21.2. INPUT SEQUENCE CONTROL (ISEQ)

21-4

The input sequence control (ISEQ) directive informs the assembler which columns of the
source statement contain the field used for checking the sequence of statements and
controls the initiation and termination of sequence checking. The format of the ISEQ
directive is:

LABEL t.OPERATION t. OPERAND

unused ISEO l,r

where:

r

Is a decimal integer specifying the left-most column of the field to be used for the
sequence check.

Is a decimal integer specifying the right-most column of the field to be used for the
sequence check; r must be greater than or equal to I.

Columns to be checked should not fall between the beginning and ending input columns
specified for the program.

The sequence check begins with the first source statement after the first ISEQ directive and
is terminated by an ISEQ directive with a blank or invalid operand field.

Sequence checking is not performed on statements generated from macro definitions or on
statements inserted into the source code via a COPY directive.

If no ISEQ directive is supplied, no sequence checking occurs.

Example:

LABEL
1

AOPERATIONA OPERAND
10 16

ISEQ 75,79

•

•

Input record sequence is to be checked using the sequence numbers found in columns •
75 through 79.

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

21.3. REPRODUCE FOLLOWING RECORD (REPRO)

21-5

RE PRO

The reproduce following record (REPRO) directive is used to reproduce a record in its
entirety (columns 1 through 80) during assembly time. This directive is used to produce
statements to precede or succeed the object module and eliminates the necessity of
manually inserting them. The format of the REPRO directive is:

LABEL i'lOPERATION Ll OPERAND

unused REPRO unused

This directive causes the contents of the following source record to be reproduced as a
record in the assembler output. Each REPRO directive produces one record; up to 80 bytes
are reproduced.

A REPRO directive prior to the first control section of the program produces records prior to
the first control section.

All REPRO directives following the declaration of the first CSECT (START) produce records
which appear after the object module transfer record. Although this directive may be
included anywhere in the program, it cannot be used before a macro definition.

No substitution for variable symbols occurs in the record thus produced.

Example:

LABEL
1

ilOPERATIONil OPERAND
10 16

RE PRO
INCLUDE XYZ,USERLIB

START

END BEG ltJ

UP-8061 Rev. 3

PUNCH

SPERRY UNIVAC OS/3
ASSEMBLER

21.4. PRODUCE A RECORD (PUNCH)

21-6

The produce a record (PUNCH) directive produces a record at assembly time. This directive is
used to produce job control card images to precede or succeed the object module; it
eliminates the necessity of manually inserting them. The format of the PUNCH directive is:

LABEL fl OPERATION fl OPERAND

unused PUNCH 'c1 , ... ,cso'

where:

c,, ... ,Cao
Represents a string of up to 80 characters produced as a record in the object code
output.

The following conditions apply to the characters specified in the operand field:

• Up to 80 characters, including spaces, may be specified within the apostrophes .

• An apostrophe within the operand must be specified as a pair of apostrophes.

• An ampersand within the operand must be specified as a pair of ampersands.

• Spaces must be used to separate fields.

• In counting characters for the limit of 80, a pair of apostrophes or ampersands written
to express a single apostrophe or ampersand counts as one character.

A PUNCH directive prior to the first control section of the program produces records prior to
the first control section, and all others produce records after the last control section.

Although this directive may be included anywhere in the program, it cannot be used before
a macro definition.

Variable symbol substitution is performed within the operand field.

Example:

LABEL
1

..:10PERATION..:1 OPERAND
10 16

PUtJCH 1 INCLUDE XYZ,USERLIB'

The record XYZ is included from USERLIB at assembly time.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

21.5. INCLUDE CODE FROM A LIBRARY (COPY)

21-7

COPY

The include code from a library (COPY) directive causes the source module identified in the
operand field of the COPY directive to be included directly into the source program being
assembled. The format of the COPY directive is:

LABEL fl OPERATION fl OPERAND

unused COPY symbol

where:

symbol
Identifies the source module to be copied by the assembler. Only one symbol may
be used .

The assembler places the source code, identified by the operand, immediately after the
COPY directive. This source module may not include any COPY, END, ICTL, MACRO, or
MEND directives. The last statement in the source module may not be continued into the
source program being assembled. Statements included in the program by a COPY directive
are assumed to be in standard format regardless of any ICTL directives in the program.

Example:

LABEL
1

.10PERATION.1 OPERAND
10 16

COPY SUB RUT

SUBRUT is copied from a source library and placed into the calling program .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

21-8

ccw

21.6. CHANNEL COMMAND WORD (CCW)

The channel command word (CCW) defines an 8-byte field aligned on a double word
boundary and is located in main storage. The CCW is used to initiate 1/0 operations such
as reading and writing. It has four operands which specify the contents of the channel
command word. Each operand is separated by a comma and all four operands must appear
in the operand field.

Format:

where:

op,

LABEL t::.OPERATIONt::. OPERAND

[symbol] ccw op 1 ,op2 ,op3 ,op 4

Is an absolute expression that specifies the command code. The command code
defines the 1/0 operation to be performed. This value is right-justified in byte 1.

Is an expression that specifies the address of the first byte of data in main storage
to be controlled. This value is located in bits 13 through 31. Bits 8 through 12 are
set to zero.

Is an absolute expression that specifies the flags for bits 33 and 34, and zeros for
bits 32 and 35 through 47. Flag bits are set if a specific option is being used.

Is an absolute expression representing the byte count which specifies the number
of bytes to be controlled. This value is right justified in bytes 7 and 8.

•

•

•

•

•

•

UP-8061 Rev. 3

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

21-9

• If a symbol is used in the label field, it references the address of the leftmost byte of
the CCW. Its length attribute is eight.

• All four operands must be specified.

• For more detailed information on the use of the CCW, see the processor programmer
reference manual, UP-8052 (current version).

Example:

LABEL AoPERATIO~
1 10 16

CCWl
ccw
ccw
ccw

2,INAREA,X 1 80',80
X'03' ,LOC+24,X'90' ,55
5,8,X'00', 128

OPERAND

•

•

•

•

PART 5. BAL MACROS

•

•

•

•

•

•

•

•

UP-8061 Rev. 3

22.1. THE MACRO PROCESSOR

SPERRY UNIV AC OS/3
ASSEMBLER

22-1

22. Macro Facility

The OS/3 macro facility processes macro call instructions. This macro processor functions
somewhat like a compiler and provides BAL users with a higher level basic assembler
language. The OS/3 macro call instructions that make up this language are stored in the
macro library file (YMAC). Each macro call instruction provided by Sperry Univac (data
management, sort/merge, etc.) generates an open subroutine each time it is used in a
program. An open subroutine is a set of BAL source instructions, designed to perform a
particular function, that must be inserted into a program at each place desired. (The set of
BAL instructions that make up an open subroutine is also called inline expansion code). The
macro facility expands the OS/3 macro definitions from YMAC and inserts them into a
program in place of a macro call instruction.

Although the macro processor is far from being a high-level language compiler like COBOL
or FORTRAN, it has language statements that must be interpreted and reduced to machine
instructions just like any compiler. We no longer have an assembler that just converts one
source instruction to one machine instruction. We now have an assembler that accepts one
source statement in the form of a macro call instruction and converts this one statement
into as many BAL source instructions as required to perform the particular function.

The macro processor is a valuable tool for the BAL programmer. Any programmer who
writes his programs in assembly language quickly discovers the existence of macro
instructions (colloquially known as macros). Most programmers use data management
macros to define their files (DTFs) and to process them (OPEN, GET, PUT, etc). These macros
were created for a specific reason. For example, to open a file might take 15 instructions in
a particular sequence. If you want to open five files, you have to code this 15-instruction
sequence five times. The only differences in these instructions that you would have to code
would be the instruction parameters that generally vary from file to file. To avoid this boring
and repetitive process, which also provides opportunity for making coding errors, data
management macro instructions are provided for your use to define and process the
necessary instruction sequences. These sequences are known to be error free, and you can
generate your specific instruction sequences merely by filling in parameters in two or three
lines of coding.

If you are an experienced BAL programmer, you should be familiar with
macroprogramming because, to write any type of worthwhile BAL program, you have to
use data management macro instructions. This means you've studied the data
management instructions, and possibly others, and used them when writing BAL
programs. You know what inline expansion code looks like because you are a user of
macro calls and have seen inline code in your source listings.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

22-2

For instance, look at the listing shown in Figure 22-1. This program has five macro call
instructions, and the inline code that immediately follows each call instruction is marked
with a plus sign. The inline code shown in this listing is generated via macro call
instructions designed by Sperry Univac. Each call is designed to produce a sequence of
source instructions that will perform a specific function. The DTFPR macro instruction,
shown in Figure 22-1, is designed to generate all the DC statements required to define a
printer file for data management. If a DTFPR didn't exist, you would have to code all the
DC statements needed to create a printer file. The purpose of this part of the user guide is
to teach you how to become more proficient at using macro call instructions. We are going
to teach you how to design your own macros, not how to call macros. You can learn about
the macro instructions Sperry Univac provides by reading the related user guides. If you
are experienced in macro design, you would be better off referring to the assembler
programmer reference, UP-8227 (current version), and not this user guide because the
discussion in this part is meant for novice macro designers.

L OC, OBJECT CODE AOOR l AOOR2 LH<E SOUR CE STATEMENT

000000
000000 OS60
000002
000002 0C06 60Eb 60EO OOOE8 OOOEF
000008 0006 60Eb 60[0 000[8 OOOEF

OOOOOE 0700
000010 •SI 0 6016 00018
00001q 80
00001 s OOOOqO
000018 CA26
OOOOlA 0206 6112 60[6 OOlJq OOOE 8

000020
00 0020 S810 6126 0012 8
00002q n2o 1031 00031
000028 58F 0 lOH 0003q
00002C 05EF

00002E
00002E 5810 6126 00128
000032 OA27

OOOOH

OOOOH 1711
000036)700
000038 OAl B

00003A 070007000700
DDDO•O

DODO•O COODOOOOOOODCOOO
DO 005 C D6E•Elqoqoqo•o
00 D063 •o
OOD06" 0000
000066 0000

000068 CDOOOOOD
DO 006C 0000
00006[O•FO
000070 FO
D00071 00
00 007 2

000072 cooo

1 START D
2 BEGIN BALR 6,0
3 USING •,6
q EXAMPLE TR INDEX, TABLE
5 EXAMPLE2 TRT INOEX,TABLE

"---:-6~~~~0~P~EN,.--.,O~U~T~I MACRO INSTRUCTION
7+ CNOP O,q
8+ BAL l,•+lq•zt
9• oc X'80'

10• DC 1L3IOUTI
11• SVC 38 ISSUE SVC
12 MVC BUF171,INOEX

I 13 PUT OUT I
14• DC OYIOI SET ALIGNMENT
15• L J.=AIOUTI LOIO RlSt FILENAME ADDRESS
16• MVI q91J 1,X'2D' SET FUNCTION CODE
17• L 1s,s21,11 LOAD IODR OF COMMON I/0
18+ BALR 1"1lS LINK TO COMMON

1~1~9:--~~~----=c~L~OS~E,........,O~U~T-'-->I

lO+ OC OYIOI
21• L 1,=11our1 LOAD RJS1 FILENAME ADDRESS
22• SVC 39 ISSUE SVC

I 23 0 UMP I
2q+ OS OH
25••
2&••
27••
28•

I 31 OUT
32+o
33•
3q+OU T
35•
36•
37•
38+
39•
.. o.
41
.. 2
q]+
qq+
qS+

"6•
q7+
"8+0U TC
.. 9.
SO+

THE DUMP PARAMETER IS I 1-q BYTE HEX CODE TD BE DISPLAYED BY OUPIP

).R

XR
SVC
0 TFPR
DTFPR
CNOP
EQU
ENTR1
DC
oc
oc
oc
oc

oc
oc
oc
oc
oc
EQL
ENTRV
DC

l ,J CLEAR OUllP INDICATOR
O,O CLEAR DUii' CODE
2 7 DUMP SVC
BLK SIZE-l 61 I OAR El 1 =BUF ,SI v AREA =sav E I

EXEC93 12119/74
D,8 DOUBLE WORD BOUNDARY ALIGNMENT

•
OUT
lF•O•
CL7'0Ul' OCSNME
CLJ• •
H'O' OPSPIFLG
H'O' OPSPUB
•,PRIO NOT SPECIFIED. STANDARD LINE ADVANCE SET TO l•
•,RECORD FORMAT KEYWORD NOT SPECIFIED. SET TO FlXUNB,
A IC I OPSPOV
H 'O' OPSRLA
XL2 •oqro• OPSOTF
CL J •a•
XLl •oo• OPSREQS
• ERROR FLAG LABEL
CUT C
H'O' OPSEFG

Figure 22-1. Example of lnline Macro Expansion (Part 1 of 2)

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

L OC. OBJECT CODE AOOR I AOOR 2 LINE SOUR CE STATEMENT

00 007 4 0000000 0 51+ oc AIOPSCOMOI OPUOCS
52+ EXTRN 0 PS COMO
53 •,NO ERROR ROUTINE. ERRORS RETURN

000078 0000000 0 54+ oc AIOI DPS ERR
00007C 00 55+ oc HL J •o' OPSCWIC
000070 000114 Sb+ oc AUIBUFI OPSCWID

57+ EXT RN BUF
000080 0000 58+ DC H•O• OP,CWIF
000082 0000 59+ DC H'o• OPSCWIB
00008, 00 bD+ DC HU •o' OPSR EC
000085 co bl+ DC YLHOI OPSIRG
00008b 04 b2+ oc Yll 141 OPSF GI
000087 00 b3+ DC 1Llf01 OPSFG2
000088 qo b4+ DC YLl(64J OPSFG3
00 0089 GO b5+ DC YLI COi OPSFG4
00008A 00 bb+ DC YLIIOI OPSFGS
000088 04 b1+ oc Yll I 4 I OPSRFPI
00008(001 0 b8+ oc H'Ol6' OP SB KS
00008E 00 b9+ DC YLJ I 0 l OPSCCS
00008F C9 70+ oc YLJ C 91 OPsPRA
000090 OOOOOODO 11+ DC A I 0 I OPSBAS
00 D09 4 OOOODOAO 72+ oc AISAVEJ OPSSAV

13+ EXlRN SAVE
00 009 8 00000000 74+ ·DC AIOI DPS SAVR
00009C 75 OS F
OOOOAO 1b SA V£ OS Cl12
00 OOE 8 t410000COFOBC4 17 IN DEX DC X '0410 OOOCDFOB 0 4'
ODOOEF CIC2C3C4C5CbC7C8 18 TABLE DC CLI6'ABCOEFGHIJKLMNOP'
ODO Off FOFOFOFOFOF 00809 19 oc CLlb'OOOOOOQRSTUVWXYZ'
000110 80 OS F
000114 81 BUF OS Zll b
000000 82 ENO BEUN
00 Dl 2 8 0000004 0 83 =AIOUTJ

Figure 22-1. Example of lnline Macro Expansion (Part 2 of 2)

22.2. MACRO SOURCE CODE

22-3

INLINE.

Although you've probably seen a lot of inline expansion code, chances are you have
probably never seen macro source code. lnline expansion code originates from macro
source code. Whenever you use an OS/3 macro call instruction, the macro facility retrieves
the macro source code from YMAC, which contains a macro definition for each macro call
instruction provided by Sperry Univac. Each macro definition holds the BAL source
instructions that are to be generated inline. If you have a BAL program that has become
popular and is recurring in other programs and you want to make this code available via a
macro call instruction, you have to design a macro definition. You use the statements
provided with the assembler macro faciity to transform your BAL program into a macro
definition. It is the responsibility of the macro facility, which is part of the assembler, to
process your macro definition. The macro facility works entirely with macro source code
while a conventional assembly recognizes and processes program source code. Macro
source code consists of macro facility source statements and BAL source statements.

There are three types of source code that are always associated with the macro facility:

1. Macro source code

2. Macro call instruction

3 . lnline expansion code

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

22-4

The order in which these different types of source code are listed is the order of their
evolution. First, you must have a macro definition (macro source code) before you can use a
macro call instruction to generate inline expansion code. An important fact to keep in mind
is that all of this code is source code. The macro facility works entirely at the source code
level, from the macro call instruction, to the YMAC, to the inline expansion code. The
following diagram shows the interactions of each type of code when a macro call instruction
is used.

PROGRAM SOURCE CODE MACRO SOURCE CODE

START 0
BEGIN BALA 6,0

USING *,6
macro definition

macro call instruction

inline expansion code

macro definition

LA 13,SAVE
END BEGIN

The macro facility performs preassemble processing. It has nothing to do with turning
source code into object code. The basic function of the macro facility is to search for the
proper macro definition when a macro call instruction is used in a program, and generate
the requested inline expansion code. This is done before the assembler starts creating an
object module. When the assembler detects a pseudo-operation code (a mnemonic code that
is not a machine instruction), that code is turned over to the macro facility. Each macro
definition has a unique call-name that is identified in the operation field of the macro call
instruction. The macro facility searches for the macro definition that matches the ca/I-name
and generates the requested inline expansion code. The macro facility expands the code
inline before the assembler starts converting the program source code to object code.

The macro facility has capabilities other than just inserting the BAL source instructions that
are contained inside a macro definition inline in place of the macro call instruction. There
are other elements of the expansion that you can control. You can use the macro facility to
perform variable parameter replacement and variable inline expansion code. If you've used
macro call instructions supplied by Sperry Univac, then you are familiar with positional and
keyword parameters. The values you code as positional or keyword parameters in the call
instruction replace variable symbols coded in the macro definition. Using variable parameter
replacement, you can use the values given in the call instruction to replace variable symbols
coded in the label, operation, or operand field of any BAL instruction in the macro definition.

Variable inline expansion code is another level of control that allows you to design a macro
definition that will vary the pattern of BAL instructions generated from within the macro
definition. Conditional assembly language statements are used to design the logic for
variable inline expansion code. Variable parameter replacement and variable inline
expansion code allow you to give the user of your macro call instruction more control over
the code that is generated. If you use these coding techniques when designing macro
definitions, the user can control calculations performed by the open subroutine and select
the functions that are to be performed.

•

•

•

•

•

•

UP-8061 Rev. 3

23.1. THE MACRO DEFINITION

SPERRY UNIVAC OS/3
ASSEMBLER

23-1

23. Macro Design

You can define your own macro call instructions by using the statements provided with the
assembler macro facility. When you define a call, it must be in a formalized pattern called a
macro definition. Each macro definition is organized into the following parts:

HEADING

BODY

TRAILER

The two major areas to consider when designing a macro definition are the heading and the
body; the trailer is merely a single statement indicating the end of the macro definition. The
heading is always the first part of the macro, and it consists of statements you use to design
the macro call instruction. The body, which immediately follows the heading, is where you
design the inline expansion code. Model statements are used in the body to construct a
model of the inline expansion code you want generated by the macro call instruction. If
you design a basic macro definition, the model statements are merely a copy of the BAL
source instructions that are to be expanded inline. A basic macro definition is one that does
not require any parameters from the macro call instruction and will generate the same
sequence of source instructions, with no modifications, each time it is called. The following
diagram shows the operation of a basic macro definition .

UP-8061 Rev. 3

MACRO DEFINITION

HEADING

L 13,PAY
A 13,RAISE
ST 13,TOTAL

TRAILER

SPERRY UNIVAC OS/3
ASSEMBLER

MACRO CALL INSTRUCTION

ADD1

INLINE EXPANSION CODE

L 13,PAY
A 13,RAISE
ST 13,TOTAL

23-2

The only real design consideration for the basic macro definition is the ca/I-name, which is
the mnemonic that appears in the operation field of the macro call instruction. You must
give the call-name in the heading.

If you want variable parameter replacement in the body, you must give further
consideration to coding the heading and body. Variable parameter substitution is
substituting parameter values coded in the macro call instruction in place of arguments
given in the label, operation, or operand fields of model statements. The following diagram
shows the operation of a macro definition designed to perform parameter substitution.

MACRO DEFINITION MACRO CALL INSTRUCTION

HEADING ADD2 450,40,TOTAL

L 13,=F'argument'
A 13,=F'argument' INLINE EXPANSION CODE

ST 13,argument

L 13,=F'450'
A 13,=F'40'

TRAILER ST 13,TOTAL

You must design the body to indicate where the arguments are and design the heading to
indicate how the parameter values are to be coded in the macro call instruction and how the
body is to reference the parameter values in the macro call instruction.

If you want variable inline expansion code, you must include model statements other than
the BAL source statements that you want expanded inline. These other model statements
are called conditional assembly language statements, and they enable you to vary the
pattern of the inline expansion code produced by the macro definition. The pattern of code
generated depends on a value given in the macro call instruction. The following diagram
shows the operation of a macro definition designed to perform variable inline expansion
code.

•

•

•

•

•

•

UP-8061 Rev. 3

MACRO DEFINITION

HEADING

L 13,=F'argument'
advance to STORE if P2=1

A 13,=F'argument'
STORE ST 13,argument

TRAILER

SPERRY UNIV AC OS/3
ASSEMBLER

MACRO CALL INSTRUCTION 1

PAY1 530,1,SAVE=TOTAL

MACRO CALL INSTRUCTION 2

PAY1 530, 2,SAVE=TOTAL,RAISE=40

INLINE EXPANSION CODE 1

L 13,=F'530'
ST 13,TOTAL

INLINE EXPANSION CODE 2

L 13,=F'530'
A 13,=F'40'
ST 13,TOTAL

23-3

Parameter 2 in the call indicates which pattern of inline expansion code is to be
generated. The second statement in the body is a conditional assembly that tests the value
of parameter 2. If the value of parameter 2 is 1, then a branch is made to STORE and the
A instruction is not included in the inline expansion code. If the value of parameter 2 is 2,
no branch is made and all of the instructions are generated.

23.2. MACRO DEFINITION STORAGE

After you've designed a macro definition there are several things you can do with it. If it is
for your program and not to be used by anyone else, you can put it in your source program
when it is assembled. A macro definition is placed in the source program immediately
following the start-of-data (/$) job control statement and before the START assembler
directive (Figure 23-1). The macro definition is stored in the temporary job run library file
(YRUN), and it is only available during execution of the current job. To make a macro
definition available to anyone at anytime, it must be stored in a library other than YRUN
(either YMAC or your own library). Figure 23-2 shows how a macro definition is
obtained from YMAC. To add a macro definition from cards to a disk file, you can use
the ELE librarian control statement. (For more information on the system library and
creating library files, see the system service programs (SSP) user guide, UP-8062 (current
version)). Whether a macro definition is stored in a library or is part of a source program
depends on whether you want the macro to be temporary or permanent .

SOURCE DECK

•

BAL PROGRAM SOURCE CODE

START 0

MACRO DEFINITION

STORE is the name

1$

II ASM

II JOB CALLMAC .. 5COO

II I

II

II

I

II

II

I

II I

I I

I

II

I

Ill
I

I I

SYSRES DISK PACK

YRUN
BEFORE INLINE EXPANSION

END

OF
STORE

pl ,p2,p3,p4
p1,p2
p1,p3
p1,p4

0
6,0
*,6
5,RAG,BAG,SAG

BEGIN

YRUN
AFTER INLINE EXPANSION

OF

START 0
BALR 6,
USING ::4

5,RAG,BAG,SAG

{~
5,RAG
5,BAG
5,SAG

END BEGIN

Figure 23-1. Accessing a Macro Definition Submitted in the Source Deck

•

YLOD

OS/3 ASSEMBLER
WITH

•

c
"ti
cD
0
O>

:::0
CD
:c:.
w

en
"ti
m
:::0

)> :::0
en -<
enc
~~
Ill <
r-)>
gi (")

g
..._
w

N w
I

"""

•
SOURCE DECK

II FIN

BAL PROGRAM SOURCE CODE

/$

,--
II ASM

II JOB CALLMAC.,5COO

II I II I

II

II

II I I

II I

I I II

•

I

Ill

I

I I

SYSRES DISK PACK

YRUN

BEFORE INLINE EXPANSION
OF

STORE

START 0
BALR 6,0
USING
STORE

*,6
5,RAG,BAG,SAG

END BEGIN

YRUN
AFTER INLINE EXPANSION

START
BALR
USING
STORE

L
A
ST

OF
STORE

0
6,0
*,6
5,RAG,BAG,SAG

5,RAG
5,BAG
5,SAG

END BEGIN

Figure 23-2. Accessing a Macro Definition Stored in a Library

YLOD
OS/3 ASSEMBLER

WITH
ACRO FACILITY

YMAC

STORE p1,p2,p3,p4
p1,p2

'{~
ST

p1,p3
p1,p4

END

THIS CODE COULD
ALSO EXIST IN

A USER LI BRA RY

•
c
"'ti
00
0
O>

::0
(t)

:-::
w

en
~
::0

> ::0
en -<
en c
~~
OJ <
r}>
~("')

0
en -...
w

N
w
I

(11

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

23.3. THE MACRO CALL INSTRUCTION

23-6

The macro call instruction has two functions: to call a macro definition and to pass
parameters to the macro definition, if required. The label and operand fields of the macro
call instructions are used for passing parameters, and the operation field is used to call the
macro definition:

LABEL fl OPERATION fl OPERAND

[symbol] call-name

Just as the inline expansion code originates from the macro definition body, the macro call
instruction originates from the heading. The contents of the label, operation, and operand
fields of the macro call instruction are specified in the heading of the macro definition.
You actually use the heading of the macro definition as a dummy call line to design the
format of the macro call instruction. The following diagram shows an abstract
representation of how the heading represents each field of the macro call instruction. (The
fields shown in the diagram of the heading do not necessarily appear exactly where they
are shown; the diagram is provided to illustrate the association the heading has with the
call; the exact format of the heading is described in the following discussion.)

HEADING l
symbol

label
argument

call-name

call-name

parameter-list

parameter
specifications

...._~-.-~~~,L...,.-~~~--..,_,.~........_~~~~~---t

BODY

TRAILER

MACRO
DEFINITION

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

23-7

• Everything you want the user to code in the macro call instruction must be represented in
the heading. If you design a basic macro definition, the only thing that you require from the
macro call instruction is the call-name in the operation field. The call-name that you want
the user to use to call your basic macro definition is duplicated in the heading. All cal/
names:

•

•

1. Must begin with an alphabetic character or special letter.

2. Must not exceed eight characters in length.

3. Must not contain embedded blanks or other special characters.

4. Must not be the same name as any of the Sperry Univac mnemonic operation codes or
any mnemonic operation codes you have in your library. This restriction is normally
true unless you use the OPSYM directive to override a valid mnemonic code (16.2).

A macro definition that is designed to perform variable parameter replacement must
indicate, in the heading, the type and number of parameters to expect from the macro call
instruction. Values may be passed to the macro definition from the label field or the operand
field of a macro call instruction. If you want to use the symbol in the label field of a call
instruction, you must have a label-argument in the heading. Before the macro definition can
pick up the values from the parameter-list in the macro call instruction, they must be coded
according to the parameter-specifications given in the heading. You use the heading to
specify how many parameters are to be coded in the macro call instruction and whether the
parameters are keyword or positional, or both. The macro call instruction must be coded in
accordance with the heading before the values in the parameter-list can properly replace
the arguments in the body.

The heading can specify a parameter-list of up to 252 parameters. All parameters must be ..
separated by commas and each parameter can be from 0 to 127 characters in length. In
order to be properly picked up by the macro definition, the string of characters comprising
a macro instruction operand must satisfy the following conditions:

• May include one or more sequences of characters enclosed in single apostrophes. The
apostrophes enclosing each character sequence are paired. Paired apostrophes may
appear within paired apostrophes.

• May include a single apostrophe outside paired apostrophes if written as part of the
following sequence: any special character except an ampersand, the letter L, an
apostrophe, and a letter.

• May include an ampersand as the first character of a variable symbol if the ampersand
is a single ampersand or the last ampersand of a string containing an odd number of
ampersands.

• May include paired parentheses outside paired apostrophes. To determine pairing, a
left parenthesis is paired with the immediately following right parenthesis (that is, no
parentheses between them). Additional pairs are determined by ignoring the first pair
and reapplying the rule.

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

23-8

• May include an equal sign only as the first character of an operand or within paired
parentheses or paired apostrophes.

• May include a comma as a character in a string if the comma is enclosed in paired
parentheses or paired apostrophes. A comma standing alone is interpreted as the end
of an operand.

• May include a blank within paired apostrophes. A blank not enclosed in apostrophes
terminates the operand field.

NOTE:

Operands can be coded on more than one line through the use of a continuation character
in column 72. If a line is to be continued, the last operand on that line must be followed
by a comma. A warning message is issued if a comma is not included.

The specifications for the parameter-list of a macro call instruction should be thoroughly
documented for the user of the macro. He should know the range of values each parameter
is to have and the type of parameters.

There are two ways the macro definition can recognize values in the parameter-list: by the
position of the value in the list or by the name associated with the value in the list. A value
identified by the position it holds in the list is called a positional parameter, and one that is

•

identified by a name is called a keyword parameter. When the parameter specifications in •
the heading indicate that the parameter-list is to contain only positional parameters, the
corresponding values in the operand field of the macro call instruction must appear in the
same operands each time the call is used. If any positional parameters are omitted in the
call, this omission must be indicated by retaining the comma in the parameter's place. For
instance, if a macro has the capacity to accept four positional parameters, the call doesn't
necessarily have to give all the parameters because some of the parameters may be optional
to the macro's function. The proper coding of some of the possible combinations for four
positional parameters is:

60PERATIONt. LABEL
1 10 16

NAHEl
NAME2
NAME3
NAME4
NAME5
NAME6
NAME7

CALL
CALL
CALL
CALL
CALL
CALL
CALL

P 1 , P2, P3, P4
,P2,P3,P4
Pl,,P3,P4
Pl , P2,, P4
Pl ,P2,P3,
PI , , , P4
Pl

OPERAND

It is not necessary to retain the commas for trailing positional parameters; if you are not
going to code any of the remaining positional parameters in a call line, you do not have to
code the commas for those parameters. But it doesn't matter if you do code the commas. I
could have left out the last comma for CALL in NAME5 or I could have left the commas in •
for CALL in NAME7.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

23-9

• The following are typical examples of positional parameters with their calls:

•

•

READ IN
WRITl
ENDIN
ACTION

OPEN
GET
PUT
CLOSE
QPR

INFILE
INFILE,WORKl
PRINTER,HEDR
INFILE
TEXT,,,REPLY,AREA

Keyword parameters, unlike positional parameters, are not referenced by the position they
hold in the call line but by the name of the keyword in the call line. A keyword parameter
consists of three parts: a keyword, an equal sign, and a value:

keyword=value

The keyword is an alphanumeric string from one to seven characters in length. Actually, a
keyword may be longer than six, but the macro facility recognizes only the first seven
characters as the true name and truncates the remaining characters. The value is
dependent upon the arguments in the macro.

Keyword parameters, like positional parameters, must be separated by commas but aren't
restricted to being in the same position each time they are coded. This nonpositional
characteristic eliminates the inconvenience of comma counting because keyword
parameters can be coded in any order and, when a keyword is omitted, a comma does not
have to be retained in the parameter's place. Keyword parameters also provide another
coding choice: default values for omitted parameters. The macro may be designed to
automatically provide a preselected value for a keyword parameter that is omitted from a
call line. To illustrate, suppose we had a keyword parameter called CHOICE. This parameter
could be assigned optional values, such as ONE, NONE, or ALL. We could then write the
parameter in the macro with a default value equal to ALL. Now when we call the macro, the
ALL option is used unless the call specifically states another parameter such as
CHOICE=ONE or CHOICE=NONE. This is true even if we omit the keyword parameter in the
call. However, if a keyword is not given a default value within a macro and it is omitted in
the call, it receives the value of a null character string.

Following are examples of typical macros with keyword parameters:

LABEL fl OPERATION fl

TAPOUT DTFMT

PRINTR DTFPR

OPERAND

TYPE=OUTPUT,FLBL=STD,RCFM=FIXBLK,
BKSZ=2200,RCSZ=220,IOA 1=TAPAR EA,
WORK=YES

RCFM=FIXED,BKSZ=132,I OA 1=LIST,WOR K=YES,
PRAD=2,PRTOV=YES,ERROR=RECOVR

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

23-10

Both positional and keyword parameters may appear in the same call line. This is known as •
a mixed-mode macro call. In a mixed mode macro call, the positional parameter string must
be coded before the keyword parameter string:

LABEL fl OPERATION fl OPERAND

[symbol] call-name P1 , ... ,pn ,k1 , ... ,kn

Positional and keyword parameters may have a subordinate list of parameters called
subparameters. This sublist of parameters permits the macro call line to provide more than
one value in a single parameter position. A sublist for positional parameters is coded as
follows:

LABEL to OPERATION to OPERAND

[symbol] call-name (p1, 1 ,p1 ,2 , •.• ,p, ,n) , ... ,(pn, 1 , ... ,pn ,n)

A sublist for keyword parameters is coded as follows:

LABEL to OPERATION to OPERAND

[symbol] call-name k, =(p, , ... ,pn) , ... ,kn =(p, , ... ,pn)

The parameter sublist must always be enclosed by parentheses, and the subparameters are
coded as positional parameters (parameter omission is indicated by retaining commas).

When you design a macro definition that requires parameters from the macro call
instruction, the heading is the means to pass values from the call to the body. There are
two methods available for designing the call-to-heading-to-body communications cycle that
generates inline expansion code. You can use a macro definition in PROC format or a
macro definition in MACRO format. Each uses a different technique in the heading for
designing the call instruction. If a SET symbol appears in the operand entry of a macro
instruction, attribute information is not provided and the operand may not be accessed as
a sublist.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

24-1

24. Two Types of Macro Definitions

24.1. PROCS AND MACROS

The OS/3 macro facility can process two types of macro definitions. One type is called a
procedure (PROC) and has been the standard type of macro definition for Sperry Univac
systems for many years. The other type is called a macro (MACRO) and is available primarily
to be compatible with the IBM 360/20 system. You can design a macro definition in PROC
format or MACRO format; the OS/3 macro facility will accept and process either one.
Although the statements inside a PROC are a little different from those inside a MACRO,
both types of definitions will always have a heading, a body, and a trailer and will always be
in that order. Actually, the only differences between the two types of definitions occur in the
heading and the trailer. The body which contains the model statements, is the same for both
PROCs and MACROs. Let's take a look at a macro definition heading in MACRO format and
compare it to the same macro definition heading in PROC format and discuss their
differences without going into a lot of detail about the operation of each. Look at Figure
24-1 and you'll see the differences between the headings for the PROC and the MACRO.

PROC HEADING

LABEL L OPERATION L OPERAND

PROC STATEMENT label-argument PROC parameter-specifications

NAME STATEMENT call-name NAME pos-0

MACRO HEADING

LABEL L OPERATION L OPERAND

MACRO STATEMENT unused MACRO unused

PROTOTYPE STATEMENT label-argument call-name parameter-specifications

CALL INSTRUCTION

LABEL L OPERATION L OPERAND

symbol call-name parameter-list

Figure 24-1. PR OC and MACRO Heading

UP-8061 Rev. 3

24.2. CALL INSTRUCTION DESIGN

SPERRY UNIVAC OS/3
ASSEMBLER

24-2

Even through the format for the PROC and MACRO headings is different, it doesn't affect
the coding rules for the call instruction format. When a user issues a call instruction, he is
completely unaware of whether the call communicates with a PROC or MACRO. This is
because both headings have the same counterpart fields that represent each field of the
call. The label-argument in each heading represents the symbol in the label field of the call
instruction, the call-name in each heading is the call-name used in the call instruction, and
the parameter-specifications in each heading define the specifications for the parameter-list
in the call. The fields representing the call instruction are in different positions in the
heading for the PROC and MACRO, but they serve the same function for each.

Variable symbols are used to create the label-argument and parameter-specifications in
the PROC and MACRO heading. The variable symbol is a macro language symbol used as
a dummy argument in a macro definition. It's a dummy argument because the variable
symbol will be replaced with a value when the macro definition is called by the macro call
instruction. Since a variable symbol is recognized and processed only by the macro facility,
it is distinct from the symbols used in program source code. The macro facility requires
that any symbol to be used as a variable symbol must have an ampersand (&) as an
identifier in the first character position. There are seven character positions after the
ampersand that are used to construct the variable symbol. Because a variable symbol must
always be identified with an ampersand in the first character position, a variable symbol
will always be at least two characters in length (an ampersand and a character) and eight
characters at the most (an ampersand and seven characters). The character position after
the ampersand can contain a letter (A through Z) or a special letter (?$#@) and each of the
remaining seven positions can contain a letter, special character (see 2.4 for character
types), or a digit (0 through 9):

~ ~ ~ [~letter ~] [~ letter ~] & # s~~cial character ... s~~cial character
@ d1g1t d1g1t
A thru Z

1 6

Some examples of legal variable symbols are:

&ABCDEFG
&#BCDE67
&$6
&@

Illegal variable symbols:

ABCDEFGHI
&&CD EFG HI
&=KEY
&95&95
&

•

•

•

•

•

•

UP-806 i Rev. 3 SPERRY UN!V l'IC OS/3
ASSEMBLER

When variable symbols are used, the following restrictions must be considered:

24-3

• A variable symbol may not be used to generate a new sequence symbol, a SET symbol,
a parameter, or a system variable symbol.

• A variable symbol may not be used in the label or operand field of an END, ICTL, ISEQ,
COPY, or PRINT directive.

• A variable symbol may not be used in the operation field of a statement.

• No variable symbol replacement is performed on the line following a REPRO directive.

• Variable symbol replacement must not produce leading blanks in the label or operand
fields.

The OS/3 assembler provides system variable symbols. When a system variable symbol is
used in a model statement, a value is automatically provided by the macro facility. The
system variable symbols available with the macro facility are given in Appendix G.

Both the PROC and the MACRO use two statements in the heading; the PROC may have
more than two but must have at least two. When designing a MACRO, you use the first
statement strictly for indicating MACRO format; the entire second statement, called the
prototype statement, is used to design the call instruction. In a PROC, the first statement is
not only used to indicate a PROC format but is also used, along with the second statement,
for call instruction design. The heading of the PROC consists of the PROC and NAME
statement, and the heading of a macro consists of a MACRO and prototype statement.

In MACRO format, each field of the prototype statement is used for designing each
corresponding field in the macro call instruction. If you want to reference the label field in
the call instruction, you must indicate a variable symbol for the label-argument in the label
field of the prototype statement. The call-name for the call instruction is indicated in the
operation field of the prototype statement, and the parameter-specifications for the
parameter-list to be coded in the call instruction are indicated by variable symbols in the
operand field of the prototype statement. The variable symbols for indicating a label
argument and for specifying positional and keyword parameters are coded in the prototype
statement as follows:

PROC &symbol PROC &pos,m,&key=,&key m =
STATEMENT

T ------
CALL symbol call-name p

1
, ... ,p

0
,key

1
=value,. . ., key m =value

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

24-4

If you want the call instruction to pass values as positional parameters, variable symbols
representing these positional parameters are coded starting in operand 1 of the prototype
statement and are separated by commas. Each positional parameter is represented by a
unique variable symbol that must be coded in the prototype statement in the same position
its corresponding values are to be coded in the operand field of the call. If you want a mixed
mode call instruction, you must code variable symbols representing the keyword parameters
immediately following the variable symbols for positional parameters. The format of the
keyword parameter variable symbol is:

&key=

where key is a 1- to 6-character keyword to be used in the call. The keyword in the call may
be longer than six characters, but the macro facility will only use the first six characters as
the keyword name. If you want the call to pass values using only keyword parameters, then
you code only keyword parameter variable symbols starting in operand 1 of the prototype
statement. When designing a call instruction from a prototype statement, you can match
each field fo the statement with each field of the call, and you can also match value in the
parameter-list of the call with each variable symbol in the operand field of the prototype
statement. The prototype statement is the dummy call instruction used for designing the
macro call instruction.

Even though you can compare the prototype statement with the call instruction on a field
by-field basis, you cannot use a single statement in the PROC heading for a similar
comparison. This is because you must use both the PROC and the NAME statement to
design the call instruction. The label field of the PROC statement is used to indicate the
variable symbol for referencing the symbol in the label field of the call instruction, and the
operand field of the PROC statement is used to indicate the variable symbols used for
referencing the parameter-list in the operand field of the call. The coding of parameter
specifications in the operand field of the PROC statement is different from the coding in
the prototype statement:

PROTOTYPE &symbol call-name &pos1, •.. ,&posm,&key 1=, •.. ,&key m =

CALL symbol call-name p1, •.. ,pn,key 1=value, ••• ,keym=value

You specify positional parameters by indicating a variable symbol in operand 1, and you
indicate the number of positional parameters to appear in the call in operand 2. If you
want a mixed mode call, the keyword parameters are indicated by coding keyword variable
symbols starting in operand 3. You specify keyword-parameters only, by coding commas in
operand 1 and 2 and then coding the keyword parameter variable symbols. The PROC
statement is used to indicate the label-argument and the parameter-specifications, and the
NAME statement is used for specifying the call-name.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

24-5

In effect, what the NAME statement does is to make the call-name an independent entity in
the PROC heading. Since the call-name is disassociated from the parameter-specifications,
it becomes easy to introduce another method of parameter submission without having any
effect on the variable symbols in the heading. This order parameter is positional parameter
zero and is submitted in the operand field of the NAME statement. Each value you want
positional parameter zero to have must be coded in the operand field (pos-0) of a separate
NAME statement. And each NAME statement must have a different call-name in the label
field. Thus, you can vary the value of positional parameter zero by varying the call-name
used in the call instruction. At any point in time, positional parameter zero has the value of
the pos-0 coded in the operand field of the NAME statement that matches the call-name
used in the call instruction. The PROC makes positional parameter zero possible through
efficient use of two fields that are unused in the MACRO heading. These two fields are used
in the PROC to disassociate the ca/I-name from the parameter-specifications and split the
call design responsibility between the two heading statements.

So, where the MACRO uses one statement in the heading to communicate directly with the
call line, the PROC uses both statements, one statement for associating parameter
replacement and another for naming the call-name. Using the one statement in the heading
to interface the call-line instead of two, as the PROC does, seems like a straight-forward
way of doing things. But when you read about how to use the PROC. you'll find the split
heading characteristic of the PROC heading works to your advantage. The PROC offers one
more additional parameter reference (positional parameter zero) and intrinsically allows the
body to reference the parameters in the call line by the number of the position and not by
the symbolic name of the position .

A complete picture of the PROC and MACRO construction compared with the call
instruction format is shown in Figure 24-2. It shows the format of the heading, body, and
trailer for each type of macro definition. The rules for coding the model statements in the
body are the same for the PROC and MACRO. These rules are:

•

•

•

•

•

The label field may contain a symbol, a variable symbol, or a sequence symbol,
depending on the operation defined. Comments statements may not be created by
substitution for variable symbols.

The operation field may contain any machine, assembler, or macro instruction
mnemonic code except END, ICTL, or ISEO.

Either ordinary symbols or variable symbols may be written in the operand field. The
size of this field may not exceed 240 characters after substitution.

The comments field may contain any combination of characters; however, substitution
for variable symbols is not performed on this field by the assembler. Comments are
written in the format of the statement the model represents.

A macro instruction that is a model statement within a macro definition is called an
inner macro instruction, while a macro instruction in the program source module is
called an outer macro instruction. A macro instruction that appears in a macro
corresponding to an outer macro instruction is called a second-level macro instruction .
Macro instructions within macro definitions are nested. The number of levels to which
macro instructions may be nested in an assembly depends upon the amount of main
storage available to the assembler.

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

24-6

• Because COPY statements within a macro definition are processed prior to the
generation of code from a macro definition, they are not considered to be model
statements nor are they ever processed as such.

The trailer indicates the end of a macro definition. The mnemonic code END is used in the
PROC and MEND is used in the MACRO. The label and operand fields are not used.

PROC CONSTRUCTION

LABEL OOPERATIONLI OPERAND

HEADING [~] PROC f&lxlt.111 [;~1·; loty ... ·]
·Ull~ NAME [pos-0]

BODY

[tmbol }]

mnemonic-code operands
&symbol
.symbol

mnemonic.-code operands

TRAILER unused END unused

MACRO CONSTRUCTION

LABEL OOPERATIONLI OPERAND

unused MACRO unused
HEADING

BODY

[

(symbol I]
)

&symbol\
.symbol\

mnemonic-code operands

mnemonic-code operands

TRAILER unused MEND unused

CALL INSTRUCTION FORMAT

LABEL LI OPERATION LI OPERAND

symbol) call-name

Figure 24-2. PROC. MACRO. and Cal/ Instruction Comparison

24.3. PASSING PARAMETERS TO THE BODY

The discussion of the heading thus far has been from the call instruction design point of
view, but the heading also establishes a homologous relationship between the call
instruction and the body. Body references to the values in the call instruction stern from
the variable symbols used for designing the call instruction. The variable symbols used in
the heading to represent the label and operand fields of the call instruction are used as
arguments in the body to reference the values in the call instruction. Variable symbols in
the body that directly reference values in the call instruction are called symbolic
parameters. When you use a symbolic parameter in the body, you are directly referencing
its associated value in the call instruction and, when you call the definition, the values in
the call are substituted in place of the symbolic parameters. This call-to-body

•

•

communications cycle is as follows: •

•
UP-8061 Rev. 3

e for valu
referenc ed label

symbol

1
HEADING)

label
argument

l
&symbol

SPERRY UNIVAC OS/3
ASSEMBLER

MACRO CALL INSTRUCTION

call-name parameter-list

I I
parameter

call-name
specifications

symbolic parameter specifications J
I

BODY

TRAILER

24-7

J--,

&pos(n)
or &key

va lue for
reference d parameter

~

• The heading of the macro definition thus serves not only as the design medium for the
macro call instruction but also dictates how the arguments in the body are to reference the
values in the call instruction. Coordination of values and arguments is accomplished by
using variable symbols in the label-argument and parameter-specifications fields of the
heading. The variable symbols used in the heading to represent the symbol, and the values
in the parameter-list, are the variable symbols used in the body to reference the label and
operand fields of the macro call instruction. Communications between a macro call
instruction and a macro definition that is capable of variable parameter replacement is
shown in Figure 24-3.

•

The following sequence of events occurs when a macro call is issued: The macro facility
finds the macro definition called upon, matches the parameters given in the call to the
variable symbols in the heading, and (wherever the body references a variable symbol in the
heading), plugs the matched value into the body. Then, the body, with the substituted
parameters, is put in the source program where the macro call instruction appeared. A
variable symbol in a macro definition body represents either the label in an issued macro
call instruction or one of the operands in that macro instruction .

UP-8061 Rev. 3

PROGRAM SOURCE CODE

CALLMAC START 0

BEGIN BALR 6,0

USING *,6 CD
STORE/ 5, RAG, BAG, SAG

@ L
5,RAG J

A 5, BAG

ST 5,SAG

LA 13, SAVE

PACK AB, CD

PACK EF, GH

END BEGIN

CD Call the macro.

@ Substitute the parameters.

@ lnline expansion

p Variable symbol

SPERRY UNIVAC OS/3
ASSEMBLER

MACRO DEFINITION

MACRO

p1, p2,

\
[~

p1, p2

p1, p3

p1, p4

MEND

@

p3, p4

Figure 24-3. Communication between Macro Instruction and Macro Definitfon

24-8

} heading

} bOOy

} trailer

When a variable symbol appears as a symbolic parameter in a model statement, it may be
concatenated (joined) with other variable symbols or characters. Some combinations of
variable symbols and characters require a period as a separator between the variable
symbol and the joined character to distinguish where the variable symbol stops and the
concatenation begins. Other combinations do not require a period as a connector because
the concatenation is implied by certain characters that are recognized as character string
terminators. When the period is properly used as a concatenator, it will not appear in the
generated inline expansion code. The replacement value for the variable symbol and the
concatenated string appear as one string in the inline expansion code.

The period must be used to concatenate a character string that immediately follows a
variable symbol if that character string starts with a letter, digit, left parenthesis, or period.
Some examples of this are:

&Z.BC
&Z.12
&Z.(5,6)
&Z .. BC

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

24-9

If the replacement value for the variable symbol &Z is 12, the values generated in the inline
expansion code would be:

12BC
1212
12(5,6)
12.BC

The opposite combination reproduces the intended concatenation period in the inline
expansion code. If you code a character before a variable symbol, don't use a period to
concatenate the character with the variable symbol. The period, in this particular
combination, is not considered to be a concatenator. A character coded before a variable
symbol does not have to be concatenated with the variable symbol; the period is considered
to be part of the character code and is generated as such. Take each previous example and
switch the variable symbol and the characters:

BC.&Z
12.&Z
(5,6).&Z
BC .. &Z

If &Z has a replacement value of 12, the following would be generated inline:

BC.12
12.12
(5,6).12
BC .. 12

The period will not be generated, however, if the character coded before the variable symbol
is contained within quotes. The following is the proper way to concatenate a variable symbol
prefixed with a character string if the period is used:

'BC'.'&Z'
'12'.'&Z'
'{5,6)'.'&Z'
'BC'.'&Z'

However, it isn't necessary to concatenate a variable symbol with a prefixed character. If
you code:

BC&Z
12&Z
(5,6)&Z
BC.&Z

and &Z equals 12, then the following would be generated:

BC12
1212
(5,6)12
BC.12

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

24-10

You do not need a period after a variable symbol to indicate concatenation, if the variable •
symbol is followed by another variable symbol or a special character other than a left
parenthesis or a period. Some examples of this are:

&A&B
&A+23
&A6B
&A=23

You could use periods as concatenators in these examples with no adverse side effects.

If &A equals TAG and &B equals 1, then the following is generated inline:

TAG1
TAG+23
TAG6B
TAG=23

There are really only two items that you can concatenate with variable symbols: characters
and other variable symbols. When concatenating variable symbols with variable symbols,
the period is optional and, when certain combinations of characters are concatenated with a
variable symbol, the period is necessary.

Each format uses a different method for coding symbolic parameters to reference positional
parameters, and this relates back to differences in the parameter-specifications between the •
PROC and MACRO. The PROC specifies positional parameters by indicating a variable
symbol in operand 1 and the number of positional parameters in the call in operand 2. The
variable symbol in operand 1 of the PROC statement is the symbolic parameter used in the
body to reference positional parameters in the call. In addition to coding the symbolic
parameters, you must also give the position of the parameter in parentheses immediately
following the symbolic parameter: &pos(n). You do not give a positional reference after the
symbolic parameter when referencing positional parameters in a MACRO body. The MACRO
works differently because the prototype statement has to give a different variable symbol for
every positional parameter in the call. To reference a positional parameter from a MACRO
body, the symbolic parameter that you use is the variable symbol in the prototype statement
that represents the desired positional value. This means you must keep track of all the
variable symbols used to represent positional parameters, while with the PROC. you only
require one variable symbol for the symbolic parameter. However, you can use the system
variable symbol (&SYSLIST) in a macro to reference by position. (See 26.2.)

Symbolic parameter references to keyword parameters and symbolic parameter references
to the label field of the call are the same for the PROC and MACRO. The symbolic parameter
used to reference a keyword parameter in the call is the &key portion of the variable symbol
used in the heading to represent the keyword parameter. And the symbolic parameter used
to reference the label field of a call instruction is the variable symbol used as a label
argument in the heading. These symbolic parameters are used the same way for both
formats because the mechanics for coding them in each heading are the same.

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

24-11

• The details of how to use symbolic parameters in model statements in the PROC and the
MACRO are given in Sections 25 and 26. PROC design of call instructions is encouraged
because it is easier and because most of the call instructions designed by Sperry Univac are
PROCs. Model statements using symbolic parameters are shown in Figure 24-4. More
detailed examples of PROCs and MACROs are given in Section 30.

PROC Format

To write the macro in PROC format:

Statements LABEL 60PERATION6 OPERAND

Pree

~ Heading
&N01 PROC &TAG,3

Name ADD1 NAME
Model } &N01 L 13,&TAG(1)
Model Body A 13,&TAG(2)
Model ST 13,&TAG(3)
End } Trailer END

To call the macro (macro call instruction):

CAL1 I ADD1 I PAY,RAISE,TOTAL

Generates this pattern of coding:

CAL1 L 13,PAY
A 13,RAISE • ST 13,TOTAL

MACRO Format

To write the macro in MACRO format:

Statements LABEL llOPERATION 6 OPERAND

Macro

~ Heading
MACRO

Prototype &N02 ADD2 &TAG1,&TAG2,&TAG3
Model

}
&N02 L 13,&TAG1

Model Body A 13,&TAG2
Model ST 13,&TAG3
Mend } Trailer MEND

To call the macro (macro call instruction):

CAL2 I ADD2 I PAY,RAISE,TOTAL

Generates this pattern of coding:

CAL2 L 13,PAY
A 13,RAISE
ST 13,TOTAL

• Figure 24-4. Example MACRO and PROC Definitions

•

•

•

•

•

•

UP-8061 Rev. 3

25.1. BASIC PROC DESIGN

SPERRY UNIVAC OS/3
ASSEMBLER

25-1

25. PROC Format

The most basic type of PROC that you can design is one that requires no parameters from
the call, no label, and no positional or keyword parameters in the operand field. All that is
required is a mnemonic in the operation field.

LABEL 6. OPERATION 6. OPERAND

ADD1

When this type of call is used, it generates the same sequence of instructions with no
parameter replacement. The call instruction ADD1 is designed to generate the following
code every time it is used in a source program:

LABEL 6.0PERATION 6.

L
A
ST

13,PAY
13,RAISE
13,TOTAL

OPERAND

The design structure of a PROC that accomplishes this type of basic inline expansion is:

LABEL

call-name

6.0PERATION 6.

PROC
NAME

mnemonic-code

mnemonic-code
END

OPERAND

operands

operands

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25-2

The PROC and NAME statements make up the heading of the PROC and must always be •
coded in the order shown. You use the PROC statement to identify the beginning of a macro
definition in PROC format and the NAME statement to assign a call-name to the PROC. The
call-name is coded in the label field of the NAME statement and is a 1- to 8-character
symbol (it cannot be a variable symbol) defining the mnemonic operation code by which the
macro defintiion may be referenced. The call-name must be unique. It may not be the same
as any Sperry Univac mnemonic operation code or any call-name in your own library. (The
only way that you can duplicate a call-name is if you override the established ca/I-name
with the OPSYM directive. See 16.2.)

After the NAME statement is the body that contains the model statement and then the
trailer, an END statement that indicates the end of the PROC. The model statements in the
body are the source code statements that are generated when you use the call-name in your
program. If you don't require parameter replacement, the model statements could be any
BAL instruction, assembler directive, or call instruction except END, ICTL, or ISEQ.

The model statements for the ADD1 call are the BAL instructions that are generated every
time ADD1 is used. A completely designed ADD1 PROC is as follows:

LABEL

ADD1

6 OPERATION 6

PROC
NAME
L
A
ST
END

13,PAY
13,RAISE
13,TOTAL

OPERAND

Although the basic PROC design that accomplishes direct instruction substitution saves the
programmer time and effort, the most valuable role of the macro definition in BAL is
variable parameter replacement. Variable parameter replacement allows you to vary the
value of the label, operation, or operand field of any model statement by using the
parameters submitted with each call. This means that you can design the ADD1 example
PROC so that it accepts values from the call line and replaces the PAY, RAISE, and TOTAL
operands of the model statemens with the call line values. To accomplish parameter
replacement in model statements, you indicate the fields that are variable by using symbolic
parameters.

The symbolic parameter is the type of variable symbol used to indicate variable parameter
replacement directly from the call line to the body. You can use symbolic parameters in the
label, operation, or operand field of model statements to indicate parameter replacement. If
you wanted the PAY. RAISE, and TOTAL operands of the ADD1 example to be variable, you
would code symbolic parameters for those operands. The symbolic parameters in the model
statements reference the values in the call through the PROC statement, and no symbolic
parameter may be used in a model statement unless it also appears in the PROC statement.
The value referenced in the call line replaces the symbolic parameter, and the manner in
which you reference the parameters in the call depends on the kinds of parameters you
design the call to have.

As shown in Figure 22-1, comments or instructions within a PROC call will be shifted
one space beyond the last operand when they are assembled. This permits a maximum
amount of space for comments on instructions that generate variable symbols.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25.2. REFERENCING POSITIONAL PARAMETERS IN THE CALL

25-3

You can define the call to submit values to the PROC body via positional parameters. This is
done by indicating a variable symbol in operand 1 of the PROC statement and by indicating
the total number of positional parameters that can appear in the call in operand 2 of the
PROC statement:

LABEL /::,.OPERATION /::,. OPERAND

PROC &pos,n

The &pos variable symbol is the symbolic parameter used in the body of the PROC to
reference positional parameters in the call instruction. Following the symbolic parameter is
a decimal number in parentheses (&pos(n)) that references the positional parameter in the
call. For instance:

&pos(1) references positional parameter 1 in the call.

&pos(2) references positional parameter 2 in the call.

&pos(3) references positional parameter 3 in the call.

You can reference a positional parameter from the label, operation, or operand field of a
model statement, and the value coded in the referenced position in the call line is
generated in place of the symbolic parameter. If an omitted positional parameter is
referenced, a null character string is generated in place of the symbolic parameter that
made the reference. The following example shows the PROC source code and inline
expansion code for an ADD2 call instruction that is designed to submit three positional
parameters.

PROC SOURCE CODE CALL INSTRUCTION

PROC &TAG,3 ADD2 450,40,TOTAL

ADD2 NAME

L 13,=F'&TAG(1)'
INLINE EXPANSION CODE

A 13,=F'&TAG(2)'
ST 13,&TAG(3) L 13,=F'450'

A 13,=F'40'
ST 13,TOTAL

END

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

25-4

Operand 1 of the PROC statement indicates the variable symbol &TAG is used as the •
symbolic parameter reference in the body, and operand 2 indicates that there can be three
positional parameters in the call. The NAME statement assigns the call-name ADD2 as the
mnemonic to call the PROC. The body is a model for a procedure that adds two numbers and
stores the ·result in a main storage location. The two numbers are picked up from positional
parameter 1 of the call instruction, which is someone's pay, and positional parameter 2,
which is their raise. The main storage location is picked up from positional parameter 3 of
the call instruction. (One of the requirements for using this call instruction is that the user
supply a OS statement with a symbol the same as that of positional parameter 3 for the
PROC to store the result.) The first model statement is a load instruction that uses a variable
symbol in operand 2 to reference positional parameter 1 in the call instruction. The PROC
generates the load instruction with a full-word fixed-point literal value of 450 in operand 2.
The add instruction is generated with a 40 in operand 2, and the main storage address
TOTAL is generated in operand 2 of the store instruction.

25.3. REFERENCING KEYWORD PARAMETERS IN THE CALL

Instead of having the call submit values to the PROC body via positional parameters, you
can use keyword parameters. This is done by using keyword parameter variable symbols
starting in operand 3 of the PROC statement. Commas are used in operands 1 and 2 to
indicate there are no positional parameters in the call (and key is the keyword name):

LABEL ti OPE RATION ti OPERAND

PROC ,,&key 1 =, ... ,&key m =

Since a variable symbol can only be eight characters long and we've used two positions
with the ampersand and equal sign, the keyword name portion of the variable symbol can
only be six characters long. But the keyword name in the call can exceed six characters and
still be accepted by the PROC. However, anything after six characters is ignored by the
PROC; it recognizes only the first six characters as the true keyword name.

The symbolic parameter used in the body of the PROC to reference keyword parameters in
the call is the variable symbol indicated in the PROC statement, without the equal sign
(&key).

For instance:

&PAY references keyword parameter PAY=value in the call.

&RAISE references keyword parameter RAISE=value in the call.

&SAVE references keyword parameter SAVE=value in the call.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25-5

You can reference a keyword parameter from the label, operation, or operand field of a
model statement, and the value after the equal sign in the call line will be generated in
place of the symbolic parameter. The following example shows the PROC source code and
inline expansion code for an ADD3 call instruction that is designed to submit three keyword
parameters:

PROC SOURCE CODE CALL INSTRUCTION

PROC .,&PAY=,&RAISE=,&SAVE=----! ADD3 PAY=450,RAISE=40,SAVE=TOTAL

ADD3 NAME

L 13,=F'&PAY'
INLINE EXPANSION CODE

A 13,=F'&RAISE'
ST 13,&SAVE L 13,=F'450'

A 13,=F'40'
ST 13,TOTAL

END

Operands 3 through 5 of the PROC statement indicate that there can be three different
keyword parameters in the call with the keyword names of PAY, RAISE, and SAVE. The
NAME statement assigns the call-name ADD3 as the mnemonic to call the PROC. (The body
of this PROC is designed to perform the same function as the ADD2 example PROC.) The
symbolic parameter &PAY in operand 2 of the first model statement references the keyword
parameter PAY in the call, and since PAY=450, the value 450 is substituted in operand 2 of
this model statement. The same processing takes place with symbolic parameters &RAISE
and &SAVE.

You can design a PROC so that a preselected value is generated for a symbolic parameter
that references an omitted keyword parameter in the call. Otherwise, symbolic parameters
that reference omitted keyword parameters receive the value of a null character string. The
default value for a keyword parameter is coded after the equal sign of the variable symbol in
the PROC statement.

The following example shows a PROC with a default value indicated in the PROC statement:

PROC SOURCE CODE CALL INSTRUCTION

PROC .. &PA Y=,&RAISE=40,&SAVE=----! ADD4 PAY=490,SAVE=TOTAL

ADD4 NAME

L 13,=F'&PAY' INLINE EXPANSION CODE

A 13,=F'&RAISE'

ST 13,&SAVE L 13,=F'490'
A 13,=F'40'
ST 13,TOTAL

END

The call instruction doesn't use the RAISE keyword parameter so the default value of 40
indicated in the PROC statement is generated in the inline expansion code.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25-6

Another type of PROC is one with mixed-mode parameters. This PROC is designed to accept
both positional and keyword parameters from the call. The format of the PROC statement for
designing mixed-mode calls is:

LABEL ti OPERATION ti OPERAND

PROC &pos,n,&key1 =, ... ,&keym =

We could design the ADD4 example PROC to have the call submit the &PAY symbolic
parameter as a positional parameter and the &SAVE and &RAISE symbolic parameters as
keyword parameters, with RAISE having a default value of 40:

PROC SOURCE CODE CALL INSTRUCTION

PROC &PAY,1,&SAVE=,&RAISE=40 ~ ADD5 530,SAVE=TOTAL

AD05 NAME

L 13,=F'&PAY(l)' INLINE EXPANSION CODE

A 13,=F'&RAISE'
ST 13,&SAVE L 13,=F'530'

A 13,=F'40'
ST 13,TOTAL

END

The following example shows what happens if you have a default value indicated in the
PROC statement and submit a value for the keyword in the call instruction; the value in the
call overrides the value in the PROC heading:

PROC SOURCE CODE CALL INSTRUCTION

PROC &f>AY,1,&SAVE=,&RAISE=40 ~ ADD5 530,SAVE=TOTAL,RAISE=GO

A005 NAME

L 13,=F'PAY(l)' INLINE EXPANSION CODE

A 13,=F'&RAISE'
ST 13,&SAVE L 13,F'530'

A 13,=F'GO'
ST 13,TOTAL

END

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

25-7

• 25.4. REFERENCING SUBPARAMETERS IN THE CALL

•

•

Another way to generate values in a field of a model statement is by referencing values in
a parameter sublist. The parameter sublist is a list of subparameters that are subordinate
to either a positional or keyword parameter. When you use a sublist, you can submit
multiple parameter values from a single operand in the call. No coding is required in the
PROC statement to support a sublist in a call line. It is a matter of referencing the sublist
from a model statement by using a symbolic parameter with a sublist reference. The
symbolic parameter reference to a subparameter in a positional parameter sublist is:

&pos(n,x)

where:

&pos

n

x

Is the variable symbol used in operand 1 of the PROC statement to represent
positional parameters.

Is the number of the positional parameter in the call.

Is the pos1t1on of the subparameter in the sublist. (All subparameters are
referenced by position.)

Sublists for positional parameters must be coded within parentheses in the operand field of
the call:

(P1, 1, P1.2, ... , P1,n), ... ,(Pn, 1, ... , Pn,x)

The following example shows a PROC referencing a positional parameter sublist in the call
line:

PROC SOURCE CODE CALL INSTRUCTION

PROC &TAG,2 ADD7 450, (40,TOTALI

ADD7 NAME

L 13,=F'&TAG(1)' ------------
A 13,=F'&TAG(2,1 l' ------+--------'
ST 13,&TAG(2,21-------+--------

END INLINE EXPANSION CODE

L 13,=F'450'

A 13,=F'40'
ST 13,TOTAL

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25-8

The symbolic parameter reference to a subparameter in a keyword parameter sublist is:

&key(x)

where:

&key
Is the variable symbol in the PROC statement.

x
Is the number of the position of the subparameter in the sublist.

Sublists for keyword parameters must be coded within parentheses after the equal sign in
the operand field of the call:

k,=(p,,. .. ,p x), ... ,k n=(p,. ... ,p x)

The following example shows a PROC referencing a keyword parameter sublist in the call
line:

PROC SOURCE CODE CALL INSTRUCTION

PROC ,,&PA YRAS=,&SAVE= ADDS PAYRAS=(450,40),SAVE=TOTAL

•

ADDS NAME •

L 13,=F'&PAYRAS(1)'-----------
A 13,=F'&PAYRAS(2)'-----+-------'

ST 13,&SAVE --------+---------'

END INLINE EXPANSION CODE

L 13.= F'450'
A 13,=F'40'
ST 13,TOTAL

In addition to having the individual subparameters in a call generated in model statements,
you can have the entire sublist generated. You do this by referencing the positional or
keyword parameter with no reference to its subparameters. Simply use the symbolic
parameter as you normally would reference a keyword or positional parameter; and its
associated sublist, including the parentheses, will be generated. If a SET symbol appears
in the operand entry of a macro instruction, attribute information is not provided and the
operand may not be accessed as a sublist.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25-9

• 25.5. MULTIPLE PROC NAMES AND POSITIONAL PARAMETER 0

•

•

The split heading characteristic of the PROC permits another means of parameter
modification. The parameter value is submitted by varying the mnemonic name in the
operation field of the call. You can design a PROC so it may be called by many mnemonic
names, and each name represents a different parameter value. This is easily done in the
PROC because the NAME statement separates the call-name from the parameters in the
PROC statement and therefore leaves the operand field of the NAME statement open for
use. The PROC utilizes the operand field of the NAME statement for assigning a value to the
call-name:

LABEL /:::,.OPERATION 6. OPERAND

call-name NAME pos-0

pos-0 can be a decimal or alphanumeric value but it cannot be a variable symbol. The
value in the operand field of the NAME statement is referenced as positional parameter 0
by using the same symbolic parameter you indicated in operand 1 of the PROC statement
(&pos(O)). You can vary the value for positional parameter 0 by using multiple NAME
statements. Each NAME statement has a different call-name and a value in the operand
field for positional parameter 0. A symbolic parameter referencing positional parameter 0
receives the pos-0 value from the NAME statement whose call-name is used in the
operation field of the call. All NAME statements must appear directly after the PROC
statement and before any model statements, including comments .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25-10

We could design the ADD2 example PROC to have to have several different call-names and,
each time a different call-name is used, the register number for operand 1 of the model
statements is changed:

CALL INSTRUCTION 1

ADD9 450,40,TOTAL

INLINE EXPANSION CODE

L 13,;F'450'

PROC SOURCE CODE
A 13,;F'40'
ST 13,TOTAL

PROC &TAG,3

ADD9 NAME 13
ADD10 NAME 12 CALL INSTRUCTION 2
ADO 11 NAME 11

ADD10 450,40,TOTAL

L &TAG(O),;F'&TAG(1)'
A &TAG(O),;F'&TAG(2)'
ST &TAG(O),&TAG(3)

INLINE EXPANSION CODE

L 12,;F'450'
END A 12,;F'40'

ST 12,TOTAL

CALL INSTRUCTION 3

ADD11 450,40,TOTAL

INLINE EXPANSION CODE

L 11,;F'450'
A 11,;F'40'
ST 11,TOTAL

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

25-11

• 25.6. THE LABEL ARGUMENT

•

•

The label-argument is used to reference the symbol coded in the label field of a call
instruction. To establish a label-argument, you must code a variable symbol in the label field
of the PROC statement. The format of the PROC statement with a label-argument is as
follows:

LABEL /::,OPERATION ti OPERAND

&symbol PROC &pos,n,&key1 =, ... ,&keym =

The variable symbol that is coded in the label field of the PROC statement is used as the
reference to the symbol in the label field of the call instruction. This variable symbol is used
to take the label field from a call instruction and generate it in a model statement. Any
model statement can have a label-argument. A label-argument is useful when you use a
label in a PROC and you expect several copies of the inline expansion code to be in one
program. The user can change the name of the label by changing the symbol in the label
field of the call.

The following PROC uses a label-argument. The purpose of this PROC is to add the number
of salaries indicated in positional parameter 1 and located where indicated by keyword
parameter RAISE. The results are stored in the location indicated by keyword parameter
TOTAL, and control is returned to the user program at the location indicated by keyword
parameter OUT.

CALL INSTRUCTION

l GROUP1 J PLUS I 4,PAY=PAY1,RAISE=RAISE1,TOTAL=TOTAL 1,0UT=EXEMPT

PROC SOURCE CODE l
&LABEL PROC &COUNT, 1,&PAY• ,&RAtSE= ,&TOTAL= ,&OUT"'

PLUS NAME INLINE EXPANSION CODE

LA 8,&PAY LA 8,PAY1
LA 9,&RAISE LA 9,RAISE1
LA 10,&TOTAL LA 10,TOTAL 1

&LABEL L 13,0(8) GROUP1 L 13,0(8)
A 13,0(9) A 13,0(9)
ST 13,0(10) ST 13,0(10)
A 12,=F'1' A 12,=F'1'
c 12,= F' &COUNT' c 12,=F'4'
BC 8,&0UT BC 8,EXEMPT
A 8,=F'4' A 8,=F'4'
A 9,=F'4' A 9,=F'4'
A 10,=F'4' A 10,=F'4'

B &LABEL B GROUP1

END

•

•

•

•

•

UP-8061 Rev. 3

26.1. BASIC MACRO DESIGN

SPERRY UNIVAC OS/3
ASSEMBLER

26-1

26. MACRO Format

A basic MACRO does not perform variable parameter substitution and, therefore, does not
require any values to be passed from the call instruction. The design structure of a MACRO
that accomplishes this type of basic inline expansion is:

LABEL fl OPERATION fl

MACRO
call-name
mnemonic-code

mnemonic-code
MEND

OPERAND

operands

operands

The statements in a MACRO must always be coded in the order shown. First is the MACRO
statement which indicates the beginning of a macro definition in MACRO format. Next is the
prototype statement, which is where you code the call-name. Then, you code the model
statements, which can be any BAL instruction, assembler directive, or call instruction
except END, ICTL, or ISEQ. The last statement in a MACRO is the MEND statement, which
indicates the end of the definition.

If we take the ADD1 PROC shown in Section 25 and design an ADD1 MACRO, it appears as
follows:

LABEL fl OPERATION Ll

MACRO
ADD1
L
A
ST
MEND

13,PAY
13,RAISE
13,TOTAL

OPERAND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

26-2

The ADD1 example MACRO produces the same inline expansion code as the ADD1 example •
PROC:

LABEL i'.lOPERATIONi'.l

l
A
ST

13,PAY
13,RAISE
13,TOTAL

OPERAND

As shown in Figure 22-1, comments on instructions within a MACRO call will be shifted
one space beyond the last operand when they are assembled. This permits a maximum
amount of space for comments on instructions that generate variable symbols.

26.2. REFERENCING POSITIONAL PARAMETERS IN THE CALL

Designing a MACRO to reference positional parameters in the call is a little different from
the way it is done in the PROC. In MACRO design, the prototype statement must indicate a
variable symbol for each positional parameter to be coded in the call. Positional parameter
variable symbols are coded in the prototype statement as follows:

LABEL i'.lOPERATION 6 OPERAND

call-name &pos1 , ••• ,&posn

The variable symbol representing a positional parameter in the call is used as the symbolic
parameter to reference that positional parameter. You can reference a positional parameter
from the label, operation, or operand field of a model statement, and the value coded in the
referenced position in the call is generated in place of the symbolic parameter. If an omitted
positional parameter is referenced, a null character string is generated in place of the
symbolic parameter that made the reference.

The following example shows the ADD2 example PROC given in Section 25 recoded in
MACRO format:

MACRO SOURCE CODE CALL INSTRUCTION

i----M_A_c_R_o __________---1 ADD2 450,40,TOTAL

ADD2 &PAY,&RAtSE,&TOTAL
... '

L 13,=F'&PAY'
INLINE EXPANSION CODE

A 13,=F'&RAISE
ST 13,&TOTAL L 13,=F'450'

A 13,=F'40'
ST 13,TOTAL

MEND

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

26-3

• You can also reference the positional parameter values in the call by position rather than by
using the symbolic parameters coded in the prototype statement. To do this, you must use
the system variable symbol &SYSLIST. Instead of coding the positional parameter variable
symbol for the symbolic parameter reference, you code:

&SYSLIST(n)

where:

n
Is the number of the positional parameter in the call and can be an expression that
is a self-defining term or a SETA symbol. (SETAs are discussed in Section 27.)

If you miscount the positional parameter string in the call and n is greater than the actual
number of parameters that are supposed to be in the call, then a null character string is
generated in place of &SYSLIST(n). When you use &SYSLIST, it isn't necessary to have
positional parameter variable symbols in the heading. &SYSLIST references the call
instruction, not the heading. The function of &SYSLIST is to provide the MACRO designer
with the option to reference positional parameters by position, similar to the way it is done
in the PROC. However, &SYSLIST does not allow you to reference keyword parameters by
position as you could do in the PROC. In the PROC, you could use &pos(n+1) and continue
right on through into the keyword parameters in the parameter-list. This won't work with
&SYSLIST because &SYSLIST only references positional parameters.

• The following example shows the ADD2 example MACRO redesigned with &SYSLIST
symbolic parameter references:

MACRO SOURCE CODE CALL INSTRUCTION

MACRO ADD2 450,40,TOTAL

ADD2

L 13,=F'&SYSLIST(1)' I~
INLINE EXPANSION CODE

A 13,=F' &SYSLIST(2)'
ST 13,&SYSLIST(3) L 13,=F'450'

A 13,=F'40'
11 ST 13,TOTAL

MEND

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

26.3. REFERENCING KEYWORD PARAMETERS IN THE CALL

26-4

The MACRO references keyword parameter values in the call in the same way as the PROC.
A keyword parameter reference is made by a symbolic parameter that consists of the &key
portion of the keyword variable symbol. If the call is to have only keyword parameters, the
prototype statement is coded as follows:

LABEL ~OPERATION~ OPERAND

call-name &key 1 =, ... ,&key m =

You can reference a keyword parameter from the label, operation or operand field of a
model statement and the value after the equal sign in the call will be generated in place of
the symbolic parameter.

The following is the ADD3 example PROC, shown in Section 25, recoded in MACRO format:

MACRO SOURCE CODE CALL INSTRUCTION

,__ __ M_A_C_A_O--....--~---------~ ADD3 PAY=450,RAISE=40,SAVE=TOTAL

A003 &PAY=,&RAISE=,&SAVE=

INLINE EXPANSION CODE
L 13,=F'&PAY'
A 13,=F'&RAISE'
ST 13,&SAVE L 13,=F'450'

A 13,=F'40'
ST 13,TOTAL

MEND

If you want any of the keyword parameters in the call to have a default value, you code that
value after the equal sign of the keyword variable symbol in the prototype statement.
Whenever a keyword parameter in the call is omitted, the symbolic parameter receives the
value given the keyword variable symbol. A symbolic parameter referencing a keyword
parameter that doesn't have a default value receives the value of a null character string.

To design a MACRO that references positional and keyword parameters in the call, you code
the positional symbolic parameters before the keyword symbolic parameters in the prototype
statement. The prototype statement for a mixed-mode MACRO is as follows:

LABEL ~OPERATION~ OPERAND

call-name &pos, , ... ,&posn ,&key 1 =, ... ,key m =

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

26-5

The following example shows the ADD5 example PROC. shown in Section 25, redesigned in
MACRO format:

MACRO SOURCE CODE CALL INSTRUCTION

MACRO----1 ADD5 530,SAVE=TOTAL

A005 &PA Y,&SAVE" ,&RAISE=40

INLINE EXPANSION CODE
L 13=F'&PAY'
A 13,=F'&RAISE'
ST 13,&SAVE L 13,=F'530'

A 13,=F'40'
ST 13,TOTAL

MEND

26.4. REFERENCING SUBPARAMETERS IN THE CALL

Like the PROC. the MACRO does not require support from the heading to use sublists in the
call. It is a matter of referencing the sublist from a model statement by using a symbolic
parameter or &SYSLIST with a sublist reference. The &SYSLIST reference to a
subparameter in a positional parameter sublist is:

&SYSLIST(n,x)

where:

n
Is the number of the positional parameter in the call.

x
Is the number of the subparameter in the sublist.

The following example shows the ADD7 example PROC. shown in Section 25, recorded in
MACRO format:

MACRO SOURCE CODE CALL INSTRUCTION

MACRO----1 ADD7 450, (40,TOTAL)

ADD7 &PAY,&RAISETOT

L 13,=F'&PAY' INLINE EXPANSION CODE

A 13,=F'&SYSUST(2, 1)'

ST 13,&SYSLI ST(2,2) L 13,=F'450'
A 13,=F'40'
ST 13,TOTAL

MEND

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

26-6

The symbolic parameter reference to a subparameter in a keyword parameter sublist for a •
MACRO is the same as for the PROC:

&key(x)

where:

&key
Is the variable symbol in the prototype statement.

x
Is the number of the subparameter in the sublist.

The following example shows the ADDS example PROC, shown in Section 25, redesigned in
MACRO format:

MACRO SOURCE CODE CALL INSTRUCTION

MACRO ----1 ADDS PAYRAS=(450,40),SAVE=TOTAL

ADOS &PA YRAS= ,&SAVE"

L 13,F'&PAYRAS(l)'
INLINE EXPANSION CODE

A 13,F'&PAYRAS(2)'
ST 13,&SAVE L 13,= F'450'

A 13,=F'40'
ST 13,TOTAL

MEND

If you reference a positional or keyword parameter with a sublist and do not include a
reference to a subparameter within the list, you will generate the entire sublist, including
parentheses, in place of the symbolic parameter. The same thing happens in a PROC. If a
SET symbol appears in the operand entry of a macro instruction, attribute information is
not provided and the operand may not be accessed as a sublist.

26.5. THE LABEL ARGUMENT

The label argument for a MACRO is used the same way it is used in the PROC. To
establish the label argument, you must code a variable symbol in the label field of the
prototype statement. The format of the prototype statement with a label argument is as
follows:

LABEL !:::. OPERATION!:::. OPERAND

&symbol call-name &pos, , ... ,&posn ,&key 1 =, ... ,&key m =

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

26-7

The following MACRO uses a label argument. This example MACRO is the PLUS example
PROC recoded in MACRO format (25.6).

CALL INSTRUCTION

[GROUP1 1 PLUS 14,PAY=PAY1,RAISE=RAISE1,TOTAL=TOTAL1,0UT=EXEMPT

7 PROC SOURCE CODE

MACRO

&LABEL PLUS &COUNT,&PAY=,&RAISE=,&TOTAL=,&OUT= INLINE EXPANSION CODE

LA 8,&PAY LA 8,PAY1
LA 9,&RAISE LA 9,RAISE1
LA 10,&TOTAL LA 10,TOTAL1

&LABEL L 13,0(8) GROUP1 L 13,0(8)
A 13,0(9) A 13,0(9)
ST 13,0(10) ST 13,0(10)
A 12,=FT A 12,=F' 1'
c 12,=F'&COUNT' c 12,=F'4'
BC 8,&0UT BC 8,EXEMPT
A 8,=F'4' A 8,=F'4'
A 9,=F'4' A 9,=F'4'
A 10,=F'4' A 10,=F'4'
B &LABEL B GROUP1

MEND

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-1

27. Conditional Assembly

Conditional assembly statements are used to control the pattern of coding generated within
a macro definition, and to define and assign values to set symbols that can be used to vary
parts of generated statements. Conditional assembly statements are used by the
programmer to direct the asssembler to:

• exclude lines of code from the assembler output;

• include a set of lines more than once in the assembly output; or

• establish and alter values to determine whether a set of lines should be included in the
output listing .

Table 27-1 lists the function of each conditional assembly statement.

Table 27-1. Conditional Assembly language Statements (Part 1 of 2)

Statement Function General Usage

ACTR Sets a conditional assembly loop counter Branching

AGO An unconditional branch
*AGOB
*GOTO

AIF A conditional branch
*AIFB

ANOP Provides a branch destination point for a location
*LABEL that already contains a symbol or variable symbol

MEXIT Stops processing of macro definitions

DO Defines starting point of the code and the number of Used for defining the range
times it is to be generated for repetitive code

ENDO Defines the end of the code to be repeated

MNOTE Generates messages in macro definitions or program Used for generating messages
PNOTE source code

*Alternate mnemonic

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Table 27-1 Conditional Assembly Language Statements (Part 2 of 2)

Statement Function General Usage

LCL Declares a general-purpose local set symbol Used for declaring set symbols
that are to be used only inside

LCLA Declares an arithmetic local set symbol the macro definition that is
declaring the set symbol

LCLB Declares a Boolean local set symbol

LCLC Declares a character local set symbol

GBL Declares a general-purpose global set symbol Used for declaring set symbols
that are to be used not only in

GBLA Declares an arithmetic global set symbol the macro definition in which
the set symbol is declared, but

GBLB Declares a Boolean global set symbol also outside the macro definition
in other macro definitions

GBLC Declares a character global set symbol

SET Assigns an arithmetic or character string value Used to assign values to arithmetic,
to a set symbol Boolean, or character set symbol

SETA Assigns an arithmetic value to a set symbol

SETB Assigns a binary value of 0 (false) or 1 (true)
to a set symbol

SETC Assigns a character value to a set symbol

*Alternate mnemonic

27.1. SET SYMBOLS

27-2

Set symbols are a type of variable symbol (Appendix G). The rules for writing set symbols
are the same as for other variable symbols:

• An ampersand (&) is followed by an alphabetic character followed by up to six
additional characters (total maximum characters is eight)

• If the ampersand is omitted, the assembler interprets the character string as a symbol
and not as a set symbol.

The following are valid set symbols:

&C
&A1
&PARAM

The following are not valid set symbols for the reasons stated:

CAT
Valid for an ordinary symbol but not as a set symbol; no leading ampersand.

&1
First character after & is not alphabetic.

•

•

•

•

•

UP-8061 Rev. 3

&S12345678

SPERRY UNIVAC OS/3
ASSEMBLER

27-3

There are too many characters in the string (maximum length, including&, is eight
characters).

Because set symbols are evaluated in the macro generation phase of the assembler, they
may be used as counters, switches, or values to control the sequence of code generated.
Unlike an ordinary symbol, the value assigned to a set symbol may be altered during
assembly.

A set symbol may be either global or local. A global set symbol, once declared and given a
value by a SET statement, retains the same value until that value is changed by another SET
statement. A local set symbol is defined only within the macro definition in which it is
declared. The value of a local set symbol within one macro definition is not affected by the
declaration of either a global or local set symbol with the same name in another macro
definition.

Set symbols must be declared after macro prototype or NAME statements and before being
referenced.

27 .1 .1 . Local Set Symbols

. A local set symbol is available for use only in the macro definition in which it is declared.
Four statements are available for declaring local set symbols. The declarative chosen
determines the values to which the set symbol may be set and the type of SET statement
used to assign the values.

The basic format for a local set symbol declaration is:

LABEL

unused

where:

LCL

ti OPERATION ti

{

LCL 1 LCLA
LCLB
LCLC

Declares a general-purpose local set symbol.

LCLA
Declares an arithmetic local set symbol.

LCLB
Declares a Boolean local set symbol.

LCLC
Declares a character local set symbol.

OPERAND

-----~------------------------

UP-8061 Rev. 3

51 ,52,. .. ,Sn

Are set symbol names.

SPERRY UNIVAC OS/3
ASSEMBLER

27-4

The operand field of the local set declaration may contain one or more set symbol names. A
local symbol is considered defined when declared. A set symbol declared by an LCLA or
LCLB statement is assigned an initial value of zero.

A set symbol declared by an LCLC or LCL statement is assigned an initial value of a null
character string.

Examples:

LABEL ~OPERATIO~
1 10 16

1.1 2.
3.

LCLA
LCLB
LCLC

&A,&B
&BIG
&BIG3

OPERAND

1. Declares arithmetic local set symbols &A and &B.

2. Declares a Boolean local set symbol &BIG.

3. Declares a character local set symbol &BIG3.

27.1.2. Global Set Symbols

Global set symbols are initialized only once and are used to pass values back and forth
between macro definitions. A global set symbol is available to all macro definitions in which
it is also declared.

Four statements are available for declaring global set symbols. The declarative chosen
determines the range of values to which the set symbol may be set and the type of set
statement used to assign the values.

The basic format for a global symbol declaration is:

LABEL

unused

/::,,OPERATION/::,,

1
GBL ~ GBLA
GBLB
GBLC

OPERAND

•

•

•

•

•

•

UP-8061 Rev. 3

where:

GBL

SPERRY UNIVAC OS/3
ASSEMBLER

Declares a general-purpose global set symbol.

GBLA
Declares an arithmetic global set symbol.

GBLB
Declares a Boolean global set symbol.

GBLC
Declares a character global set symbol.

S1 ,S2, ... ,Sn

Are set symbol names.

27-5

The operand field of the global set declaration may contain one or more set symbols. A
global set symbol is considered defined when declared. It is initialized only once; that is, the
first time it is declared. With subsequent declarations in other contexts, the global set
symbol is available for use but is not reinitialized. A set symbol must be declared before it is
available for use. A set symbol declared by a GBLA or GBLB statement is assigned an initial
value of zero. A set symbol declared by a GBLC or GBL statement is assigned an initial value
of a null character string .

If a set symbol is declared as a global set symbol in more than one macro definition, it must
be declared with the same statement code in each macro definition.

Examples:

LABEL
1

~OPERATION~

10 16

r

1. GBL &BR
2. GBLA &SET1,&SET2
3. GBLB &BUT
4. GBLC &GLB

OPERAND

1. Declares a general-purpose global set symbol.

2. Declares arithmetic global set symbols.

3. Declares a Boolean global set symbol.

4. Declares a character global set symbol.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27.1.3. Set Symbol Value Assignment

27-6

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET.
The statement used depends on the statement chosen to declare the set symbol.

• SETA

Assigns values to set symbols declared in either LCLA or GBLA.

• SETB

Assigns values to set symbols declared in either LCLB or GBLB.

• SETC

Assigns values to set symbols declared in either LCLC or GBLC.

• SET

Assigns values to set symbols declared in either LCL or GBL.

27.1.4. SET Statement

The SET statement can be used to assign either an arithmetic or character string value to a
variable symbol declared by an LCL or GBL statement.

The format of the SET statement is:

LABEL t.OPERATION t. OPERAND

&s SET
{~}

where:

&s
Is a set symbol declared by LCL or GBL.

SET
Defines the operation.

a
Is a valid arithmetic expression.

c
Is a valid character expression.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-7

When the operand of the SET statement contains an arithmetic expression, the value of the
expression may range from -1 oa-1 to + 1 oa-1 . When the operand of the SET statement
contains a character expression, the maximum length that may be specified is eight
characters.

If a SET variable symbol is assigned a character value, a reference to the SET symbol yields
the same result as a reference to a SETC symbol assigned the same character value.
Similarly, if a SET variable symbol is assigned an arithmetic value, a reference to the SET
symbol yields the same result as a reference to a SETA symbol assigned the same value. A
SET variable symbol with a character value may be reassigned an arithmetic value, and vice
versa.

A SET expression is a SETA expression allowing the use of the operators>.<.*/,//,=,**,
- -, and ++ in the SET expression when an arithmetic operator is valid. The two
characters ** represent the logical product AND, the two characters ++ represent the
logical sum OR, and the two characters - - represent the logical difference XOR.

Each bit of the first term is compared with its corresponding bit in the second term, and the
result of the comparison is placed in the corresponding position in the resulting term. The
result of the bit comparison for each operator is:

AND OR XOR

A**B Result A++B Result A--B Result

1 1 1 1 1 1 1 1 0

1 0 0 1 0 1 1 0 1

0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0

The three relational operators are the equal (=) operator, the greater than (>) operator, and
the less than (<) operator.

where:

>

Compares the value of two terms or expressions. If the two values are equal, the
assembler assigns a value of 1 to the expression. If the values are not equal, a
zero value is assigned.

Compares two terms or expressions. If the value of the first (left) term is greater
than the value of the second (right) term, a value of 1 is assigned to the
expression. If the value of the second term is greater than the value of the first
term, a zero value is assigned.

UP-8061 Rev. 3

<

SPERRY UNIVAC OS/3
ASSEMBLER

27-8

Compares the value of the first (left) expression or term with the second (right)
expression or term. If the value of the first expression or term is less than the
value of the second, a value of 1 is assigned to the expression. If the value of the
second expression or term is less than the value of the first, a zero value is
assigned.

Given the expression A+B>C, if the expression A+B has a greater value than the value of
C, the assembler assigns a value of 1 to the expression. If the value of C is greater than the
value of A+B, a zero value is assigned.

Since the value of a relational character or logical expression is arithmetic, the expression
may be used as a term in an arithmetic expression.

Operator priority is shown in Table 27-2.

Examples:

LABEL
1

1 ·I &ARK
2. &NUM

.AOPERATI ON.A
10 16

SET
SET

1AN IM I

6

Table 27-2. Operator Priority

Operator Hierarchy

*/ 6

//, *,I 5

+,- 4

** 3

--,++ 2

<>= 1

OPERAND

11· The SET symbol &ARK is assigned the value of ANIM.

2. The SET symbol &NUM is assigned the value of 6.

•

•

,--
!

•
UP-8061 Rev. 3

27.1.5. SETA Statement

SPERRY UNIVAC OS/3
ASSEMBLER

27-9

The SETA statement assigns an arithmetic value to a variable symbol that was declared by
an LCLA or GBLA statement.

The format of the SETA statement is:

LABEL D.. OPERATION D.. OPERAND

&s SETA a

where:

&s
Is a set symbol declared by either LCLA or GBLA.

SETA
Defines the operation.

a
Is a valid SETA term or an arithmetic combination of valid SETA terms.

• A valid SETA term is:

•

• a self-defining term;

• a variable symbol with an arithmetic value; or

• a character value consisting of one to eight decimal digits.

The arithmetic operators used in writing SETA expressions are +, -, *, and /. The
expression may not begin with an operator. Two operators or two terms may not succeed
one another.

The rules of precedence for the evaluation of a SETA arithmetic expression are the same as
stated in Table 27-2. The value of a SETA expression may range from -223 to 223-1.

When the SETA symbol is used in an arithmetic expression, the arithmetic value of the
symbol is substituted for the symbol. If the SETA symbol is used in another context, the
arithmetic value of the SETA symbol is converted to an unsigned decimal integer with
leading zeros removed. This decimal value is then substituted for the SETA symbol. If the
value of the SETA symbol is zero, a single zero is substituted .

UP-8061 Rev. 3

Examples:

LABEL
1

~OPERATIO~
10 16

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

27-10

l.l:AR~--SETA

2. &LOC SETA
3. &HER SETA

5
7
&ART+&LOC

1. The SETA symbol &ART is assigned a value of 5.

2. The SETA symbol &LOC is assigned a value of 7.

3. The SETA symbol &HER is assigned a value of 12.

27.1.6. SETB Statement

The SETB or set Boolean value statement may be used to assign a binary value of zero or
one to a variable symbol which was declared by an LCLB or GBLB statement. The format of
the SETB statement is:

LABEL I ii OPE RATION ii

SETB

OPERAND

&s

where:

&s
Is a set symbol declared in either LCLB or GBLB.

SETB
Defines the operation.

b
Is a valid logical expression that must be enclosed in parentheses or a 0 or 1
enclosed in parentheses.

The logical expression in the operand field may have a value of either 0 (false) or 1 (true),
and the set symbol specified in the name field of the set statement is assigned the resultant
binary value. The logical expressions may consist of a single term or logical combination of
terms.

The permissible terms are:

• a SETB arithmetic relational expressions;

• a SETB character relational expression; and

•

•

•

•

•

•

UP-8061 Rev. 3

• a SETB symbol.

SPERRY UNIVAC OS/3
ASSEMBLER

27-11

The SETB logical operators that may be used to combine the terms are AND, OR, and NOT.
The logical expression must not contain two terms in succession. Two operators may appear
in succession if the first operator is either AND or OR, and the second operator is NOT. Only
the operator NOT is allowed prior to the first term of the expression.

A SETB arithmetic relational expression consists of two arithmetic expressions connected
by a SETB relational operator. A SETB character relational expression consists of two
character strings connected by a SETB relational operator. The SETB relational operators
are:

• NE

Not equal

• EQ

Equal

• LT

Less than

• LE

Less than or equal

• GT

Greater than

• GE

Greater than or equal

The arithmetic expression that may be used as a term in the SETB arithmetic relational
expression is defined under the SETA statement. The rules under the SETC statement
define the format of the character string that may be used in a SETB character relational
expression. If two character strings are of unequal length, the shorter will always compare
less than the longer, regardless of actual value. The maximum length of character strings
that may be compared is 127 characters.

In writing SETB expressions, the SETB relational or logical operators must be preceded and
followed by at least one blank or other special character. The relational expression may be
optionally enclosed in parentheses.

The procedure for evaluating a SETB expression is:

• Each term (SETB symbol, SETB arithmetic expression, or SETB character expression) is
evaluated and given a value of either 1 (true) or 0 (false).

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

• Evaluation is from left to right. The weight of the logical operators is:

OR = 1

AND= 2

NOT= 3

Therefore, NOT is performed prior to AND, and AND is performed prior to OR.

27-12

If a SETB variable symbol is used in the operand field of a SETA or DO statement, or in an
arithmetic relation (in either a SETB or AIF term), the binary values 0 and 1 are converted to
the arithmetic value +o and +1.

If the SETB variable symbol is used in the operand field of a SET statement, the value
substituted is dependent on the context. In an arithmetic expression, +1 or +O are
substituted. In a character expression, the character values 1 and 0 are substituted.

Examples:

AOPERAT I ONA LABEL
I I 0 16

1.r &CONT-- SETB
2. &EXP SETB

(L '&TO EQ 4)
(I)

OPERAND

1. If the expression L'&TO EO 4 is true, the symbol &CONT is assigned a value of 1;
otherwise, it is assigned a value of 0.

2. The symbol &EXP is assigned a value of 1.

27 .1 . 7. S ETC Statement

The SETC statement may be used to assign a character value to a variable symbol that was
declared by an LCLC or GBLC statement.

The format of the SETC statement is:

LABEL I ii OPERATION ii OPERAND

&s SETC

where:

&s
Is a set symbol declared by either LCLC or GBLC.

•

•

•

•

•

UP-8061 Rev. 3

SETC
Defines the operation.

c
Is a valid SETC operand.

SPERRY UNIV AC OS/3
ASSEMBLER

A SETC operand must be a character expression. (See 27.1.8.)

27-13

The maximum length of the value that may be specified for a SETC symbol is eight
characters. If more than eight characters are specified, only the left-most eight characters
are used by the assembler.

Examples:

LABEL
1

AOPERATIONA
10 16

......-----------------·----
1. &TYPE
2. &CITY

SETC
SETC

'&&AID'
'CINN'

OPERAIW

1. The symbol &TYPE is assigned the value of &AID.

2. The symbol &CITY is assigned the value of CINN .

27.1.8. Character Expressions

A character expression is either a character string, a character substring, or a concatenation
of strings or substrings. Character expressions are used as the operand of a SET or SETC
statement or as terms in a SETS, SET, AIF, or DO relational expression. Any character string
is considered to be greater in value than any shorter character string. A character
expression may have a length of up to 127 characters.

27.1.9. Subscripted SET Symbols

Subscripted SET symbols may be defined as both global and local SET symbols. The local
SET symbols previously defined were all nonsubscripted SET symbols. Subscripted SET
symbols provide you with a convenient way to use a SET symbol plus a subscript to refer
to many binary, arithmetic, or character values. The subscript may be any arithmetic
expression that is allowed in the operand of a SETA statement in the range of 1 to the
specified dimension. The subscripted SET symbol consists of a SET symbol immediately
followed by a subscript enclosed in parentheses.

A SETA or SETB operand permits only five levels of parentheses.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

The following are valid subscripted SET symbols:

&INPUT(30)
&B45723(&A 1)
&A6B9(2+&B 1)

The following are invalid subscripted SET symbols:

&AB No subscript
(300) No SET symbol

27.1.9.1. Defining Subscripted SET Symbols

27-14

To use a subscripted SET symbol, you must write in a GBLA, GBLB, GBLC, LCLA, LCLB, or
LCLC instruction with a SET symbol immediately followed by an unsigned decimal integer
enclosed in parentheses. The number of SET variables associated with the SET symbol is
indicated by the decimal integer and is called the dimension. Every variable associated
with a SET symbol is assigned an initial value that is the same as the initial value
assigned to the corresponding type of nonsubscripted SET symbol. If a subscripted SET
symbol is defined as global, the same dimension (decimal integer) must be used with the
SET symbol each time it is defined as global.

The maximum dimension of 255 can be used with a SETA, SETB, or SETC statement. A

•

subscripted SET symbol may be used only if the declaration was subscripted, while a •
nonsubscripted SET symbol may be used only if the declaration had no subscript.

27.2. BRANCHING

The sequence of processing macro source code statements may be altered by branching.
The assembler provides for conditional and unconditional branching.

27.2.1. Sequence Symbols

A sequence symbol is used to define a branch destination point. A sequence symbol may
appear in the label field of any statement that does not contain a symbol or a set symbol,
except for a macro prototype statement, a local or global symbol declaration statement (LCL,
LCLA, LCLB, LCLC, GBL, GBLA, GBLB, GBLC), or MACRO, PROC, NAME, ICTL, or ISEQ
statement.

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

27-15

A sequence symbol is written in the following form: a period followed by at least one
alphabetic character followed by up to six alphaunumeric characters. The following are valid
sequence symbols:

.D

.D3

.BRNCPNT

When a sequence symbol is written in the label field of a macro instruction, statement, and
the prototype (MACRO format) or PROC statements (PROC format) for that macro definition
that contain a variable symbol in their label fields, the sequence symbol does not replace the
variable symbol.

27.2.2. Unconditional Branch (AGO)

The unconditional branch (AGO) statement unconditionally alters the sequence of source
statement processing. The format is:

LABEL [';OPERATION ['; OPERAND

{
AGO }
AGOB
GOTO

Ls1 1

where:

AGO
Defines the operation .

. 51

Is a sequence symbol.

Is a sequence symbol defined in a source code statement.

The label field of the AGO statement may contain a sequence symbol. AGOB or GOTO may
be used in lieu of AGO in the operation field. The sequence symbol in the operand field is
the symbol of the next statement to be processed. Branching forward or backward from the
AGO statement is permitted.

When an AGO statement is used in a macro definition, the sequence symbol specified in the
operand field must appear in the label of another statement in that macro definition .

UP-8061 Rev. 3

Examples:

~OPERATION~ LABEL
1 10 16

1.1 AGO
2.I .BRANCH AGO

.STOP

.BUG

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

27-16

1. An unconditional branch is made to another statement in the source code labeled
.STOP.

2. An unconditional branch is made to an instruction labeled .BUG somewhere else
in your program. Notice a sequence symbol is used in the label field.

27.2.3. Conditional Branch (Alf)

The conditional branch (AIF) statement conditionally alters the sequence of source
statement processing. The format is:

LABEL Li OPERATION Li OPERAND

[.s,] {
Alf }
AlfB

where:

.s,
Is a sequence symbol.

Alf
Defines the operation.

(b)
Is a SETB logical expression enclosed in parentheses.

Is a sequence symbol defined in a source code statement.

The label field of the AIF statement may contain a sequence symbol. AIFB is permitted in
lieu of AIF in the operation code field.

Any logical expression permitted in the operand field of a SETB statement (27.1.6) is valid in

•

•

the operand field of the AIF statement except a 0 or a 1 enclosed in parentheses. The •
sequence symbol in the operand field must be written immediately after the parenthesis
terminating the logical expression.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-17

• If, after the logical expression has been evaluated, the condition is true (a value of 1), you
branch to the statement specified by the operand. If the condition is false (a value of 0),
the statement in the source code following the AIF statement would be the next statement
to be processed. Branching either forward or backward from the AIF statement is
permitted. When an AIF statement is written in a macro definition, the sequence symbol
specified in the operand field must appear in the label field of another statement within
that macro definition.

Examples:

LABEL ~OPERATION~

1 10 16

1.r--
2 .I . IF

AIF
AIF

(&BRO NE 0).SIS
(L'&TO EQ L'&FROM) .END

OPERAND

1. If the value of the symbol &BRO is zero, the next statement to be processed is &IF.

2. If the length attributes of the symbols & TO and &FROM are equal, a true (1)
results and a branch is made to a statement in the source code labeled .END.

• 27.2.4. Define Branch Destination (ANOP)

•

The define branch destination (ANOP) statement is provided to facilitate branching. If a
branch is necessary and no statement within the source code supplies the branch
destination in its label field, an ANOP statement can be coded to provide a label to which to
branch. The format is:

LABEL 6. OPERATION 6. OPERAND

{
ANOP }
LABEL

unused .s

where:

.s
Is a sequence symbol.

ANOP
Defines the operation.

The label field must contain a sequence symbol.

When the label field of a statement which is desired as a branch destination point already
contains a symbol or variable symbol, the branch destination is indicated by preceding the
statement by an ANOP statement.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

LABEL is an acceptable synonym for ANOP in the operation field.

Example:

LABEL
l

.DEST
&STATE

~OPERATIONd
l 0 16

A IF (&TYPE NE L) . DEST

ANOP
SETC 'PENN'

OPERAND

27-18

If the Boolean expression in the AIF operand is true, a branch is made to the ANOP
statement with the label .DEST. Since no operations are performed by ANOP, control
passes immediately to the following statement, a SETC whose label field is already
occupied by the variable symbol &STATE.

27.2.5. Macro Definition Exit (MEXIT)

•

The macro definition exit (MEXIT) statement is used when it is necessary to process only •
one section or operation of a macro definition rather than the entire macro definition. This
statement indicates to the assembler that the processing of a macro definition should be
terminated before ending normally with a MEND statement.

The format of the MEXIT statement is:

LABEL fl OPERATION fl OPERAND

unused MEXIT unused

When MEXIT is used, the assembler terminates processing the macro definition and
processes the statement in the source program following the macro call instruction that
called the macro definition containing the MEXIT. A coding example of the MEXIT statement
is included in 27.3.1.

27.3. ERROR MESSAGES AND COMMENTS

PNOTE or MNOTE statements are used to generate error messages or comments in a macro
definition or in source code statements.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27.3.1. MNOTE Message Statements (MNOTE)

27-19

A MNOTE message statement is used to generate an error message. It indicates how
dangerous the error is or generates a comment that supplies information. A MNOTE
statement is used in a macro definition or in source code statements.

The MNOTE statement source code statement format is:

LABEL fl OPERATION fl

unused MNOTE

1
'm' ~ D., 'm'

S, 'm'
*, 'm'

OPERAND

This format can be used to specify a message enclosed in apostrophes, a comma followed
by a message enclosed in apostrophes, a severity code followed by a message, or an
asterisk followed by a message. In all cases, the message is printed in the assembly listing
source code. The severity code indicates the danger of the error that occurred. The severity
code is a decimal value of zero to 255 .

If you want to indicate a severity code of 1, you leave a blank space (.6.) followed by the error
message enclosed in apostrophes. An asterisk used as the severity code indicates that the
message following it is informational and not an error. Any of these specifications causes
the message to be printed in the assembly listing. Also, MNOTE lines are flagged as errors
and listed in the diagnostics portion of the assembly listing if they do not have an asterisk in
operand 1. Messages which are preceded by an asterisk are not flagged or listed in the
diagnostics because they are not errors.

Variable symbols can be used as operands in a MNOTE statement.

The following example contains a MNOTE statement that generates a message in the
source code of the assembly listing, and causes the line of code to be flagged in error. The
error also is listed in the diagnostics portion of an assembly listing produced by this code.

Example:

LABEL
1

.TAG

.1.0PERATION.1. OPERAND
10 16

MACRO
MOVE
AIF
MNOTE
MEXIT
MVC
MEND

&A,&B,&C
(&A GT 0 AND &A LT 257) .TAG
1 INVALID LENGTH SPECIFIED'

&B(&A),&C

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27.3.2. PNOTE Message Statements (PNOTE)

27-20

A PNOTE message statement is used to generate an error message or a comment. A PNOTE
statement is used in a macro definition or a source code statement.

The PNOTE source code statement format is:

LABEL fl OPERATION fl OPERAND

unused PNOTE
{ ,;, } , 'm'

In this. format, there are two operand fields. In the first field, you can specify an asterisk to
indicate that the message is informational and not an error; or you can specify a character
expression containing up to six characters. The second operand field contains the message.
It can contain up to 79 characters. Regardless of the choice you make for the first operand,
the message is printed in the assembly listing source code. If it does not contain an asterisk
as operand 1, a PNOTE statement is flagged as an error and listed in the diagnostics portion
of the assembly listing. If there is an asterisk in the first operand field, the line is not flagged
or listed in diagnostics. This is done because the asterisk indicates that the message is not
an error.

Variable symbols can be used as operands in a PNOTE statement.

27.3.3. Comments Statement

A comments statement written within a macro definition causes the assembler to generate
comments on the output listing. This type of comments statement is written with an asterisk
in column 1 of the assembler coding form followed by the comment.

A special form of the comments statement also is available for use within macro definitions.
It is used to include comments in a macro definition that are not to be generated in the
output listing. This comments statement is written with a period in column 1 of the
assembler coding form, followed by an asterisk (*) in column 2, followed by the comment.

Neither comments statement form can be created by substitution for variable symbols.
Substitution for variable symbols is not performed on comment lines.

Examples:

LABEL
1

* ;':

.dOPERAT I ON.d
10 16

MACRO
GEN

OPERAND

THIS COMMENT WILL BE GENERATED ON THE LISTING
TH IS COMt1ENT IS FOR INTERNAL USE, NOT GENERATED
MEND

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-21

• 27.4. REPETITIVE CODE GENERATION

•

•

A section of code can be generated one or more times. The statements DO and ENDO
specify the code you want and the number of times you want it to be generated.

27 .4.1. Define Start of Range (DO)

The define start of range (DO) statement defines the starting point of the code and the
number of times it is to be generated. The format is:

LABEL /::,.OPERATION/::,. OPERAND

[&varisymb] DO a

where:

&varisymb
Is an optional variable symbol.

DO
Defines the operation.

a
Is a valid SET expression (27.1) written in a macro definition.

The expression in the operand field indicates the number of times the source code
statements following the DO statement are produced in the object code. All lines of coding
appearing between a DO statement and its associated ENDO statement (27.4.2) are
generated. The value of the expression in the operand field may be any value from 0 to
223-1. If the value of the expression is negative, the DO statement is flagged and ignored
(that is, treated as if the value has been 1).

The set of statements between the DO statement and its associated ENDO statement are
said to be within the range of the DO statement. Any valid source code statement may be
within the range of a DO statement including other DO statements with their corresponding
ENDO statements. DO statements may be nested up to 10 levels.

A variable symbol may be declared in the label field of the DO statement. The rules for
writing variable symbols are described in Section 26. When the variable symbol in the
label field is specified, it is used as a counter for the number of times a set of lines within
the range of a DO statement has been generated. The value of this variable symbol is 1
the first time through the set of statements; 2 the second time through; and so forth. It is
referenced in the same manner as a SETA symbol (27.1.5). An example of a DO statement
is shown in 27.4.2 .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-22

27.4.2. Define End of Range (ENDO)

The define end of range (ENDO) statement is used to indicate the end of the range of a DO
statement. The format is:

LABEL b. OPERATION b. OPERAND

unused ENDO unused

DO and ENDO statements must be paired. For every DO statement, there must be an ENDO
statement to define the end of the range.

Examples:

l.
2.
3.
4.
s.
6.
7.
8.
9.

10.
1 l •
12.
1 3.
14.
15.
16.
17.
I 8.
19.
20.
21.
22.

LABEL ~OPERATIONA OPERAND
l 10 16

-----~·--,------- --·-----
&001 DO 5

ENDO

&002 DO 10

&D03 DO 3

&D04 DO 5

ENDO
ENDO

ENDO

Lines 2, 3, and 4 are produced in the assembler output five times.

Lines 9, 10, 11, 21, and the lines produced by the operation of the DO directives on
lines 12 and 15 are produced in the assembler output 10 times.

Within each of the 10 sets of code produced by the DO directive on line 8, lines 13, 14,

•

•

and the lines produced by the operation of the DO directive on line 15 are generated in •
the assembler output three times.

Within each of the 30 sets of code produced by the DO directives on lines 8 and 12,
lines 16, 17, and 18 are generated in the assembler output five times.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-23

• 27.4.3. Conditional Assembly Control Counter (ACTA)

•

•

You use the ACTR statement to limit the number of AGO, AIF, GOTO, AGOB, AIFB, and GO
statements that may be processed by the assembler either within a macro or within the
source program.

The ACTR statement source code format is:

LABEL /::,.OPERATION/::,. OPERAND

unused ACTR SETA expression

The ACTR statement must be written immediately following the local and global symbol
declarations in either the source program or in a macro definition. There can be a separate
ACTR statement in the source program and in each macro definition.

The value of the expression in the operand field may be any positive value from 1 to 223_ 1.
The value specified in the operand field causes a counter to be set to that value. This
counter is decremented by 1 for each AGO, AGOB, or GOTO statement that is processed for
each AIF or AIFB statement whose evaluation resulted in a true condition and for each time
that the range of a DO statement is generated.

If the counter is zero prior to decrementing, the following occurs. If a macro is being
processed, its processing and that of any macros above it in a nest are terminated. The next
statement to be processed is in the source code following the macro instruction that
initiated the nest. If the source code is being processed (outside a macro definition), an END
directed is generated. The assembly continues with only that portion of the program
generated thus far.

If an ACTR statement is not written, the value of the counter is 409610 .

27.5. ATTRIBUTE REFERENCES

The assembler assigns certain attributes to symbols and macro call operands that you may
refer to in conditional assembly statements. These attributes are type (T), length (L), scale
(S), integer (I), count (K), and number (N).

You can specify attributes in conditional assembly statements to control logic, which in turn
can control the sequence and contents of the inline expansion code generated from model
statements. Each kind of attribute has a specific purpose, which determines when you use
it. The format of an attribute reference is as follows:

LABEL

[symbol]

60PERATION 6

conditional
assembly
operation
code

{ T I

\ ~ I

~ k (
! N 1
\

OPERAND

{
symbol }
&symbol

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-24

The attribute notation (T, L, S, I, K, or N) denotes which attribute of a symbol or parameter •
you are using. The symbol or parameter is a reference to the data or field which possesses
the attribute. The operation code must be a conditional assembly operation code except
when you are using the length attribute. (See 4.4.5. for a discussion of the use of length-
attribute references in program source code.)

The origin of an attribute value is always either a symbol or a parameter. Table 27-3 gives
the restrictions for using a symbol or parameter as the reference to obtain a particular data
attribute. Whether a symbol or parameter can be used in an attribute reference depends on
where it is referenced. If an attribute reference is made in macro source code (from inside a
macro definition), a symbol may be referenced for any data attribute except Kor N. A symbol
cannot be used in a count or number attribute reference in macro source code because,
when K or N is used inside a macro definition, the only data that can be referenced is an
operand field in the macro instruction call. Any one of the valid attributes can be acquired
for a symbol or &SYSLIST. A SET symbol and the system variable symbols listed in Table
27-3 can only be used in the T and K attribute references when in macro source code. You
can get all but Kor N attributes of a symbol in program source code by using the symbol in
the attribute reference. Macro instruction operands cannot be referenced from program
source code so a symbolic parameter or a &SYSLIST cannot be part of an attribute reference
in program source code. However, a SET symbol and the system variable symbols listed in
Table 27-3 can be used in an attribute reference in program source code.

Table 27-3. Valid Attribute Reference Applications

Attribute

Reference Location
T L s I K N

.J .J .J .J Symbol

.J .J Set symbol

.J .J .J .J .J .J Symbolic parameter Macro
source

.J .J .J .J .J .J &SYS LIST code

.J .J &SYSNDX,&SYSPARM,
&SYSJDATE, &SYSECT,
and &SYSTIME

.J .J .J .J Symbol

.J .J SET symbol
Program
source

.J .J &SYSPARM, &SYSDATE,
code

&SYSJDATE, and &SYSTIME

.J; valid application

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-25

• There are two requirements that must be met before using symbols in attribute references.

•

First, the symbol must appear either in the operand field of an EXTRN directive used outside
of a macro or in the label field of at least one assembler directive or instruction outside a
macro. Second, there must not be any variable symbol in the source line in whose label field
the symbol appears. In regard to the call operand attributes, you must abide by the same
criteria in addition to the following. The operand must be a symbol and it may not be one
generated by variable symbol replacement. The attributes of the operand are really the
attributes of the symbol itself. A nested call operand may be a symbolic parameter whose
attributes are then the same as the corresponding outer operand. You cannot use a length
attribute if the type attribute is J, M, N, 0, T, or U (see 27.5.1.).

Since a call operand may be a sublist, you can also refer to attributes of a sublist or each
individual parameter in the sublist. When you refer to these attributes, they will be assigned
the same value as the first parameter in the sublist.

You can refer to attributes on conditional directives both inside and outside of macros.
Symbols that appear in the label field of instructions generated by a macro are not
assigned attributes. If a SET symbol appears in the operand entry of a macro instruction,
attribute information is not provided and the operand may not be accessed as a sublist.

27.5.1. Type Attributes

You can use the type attribute to test for the characteristic of the operand or symbol. This is
done by writing a T followed by the symbol or symbolic parameter to be tested. This can also
be used in SETC directive operand fields or as character expressions in SETS and AIF
directive operand fields. Table 27-4 summarizes the type attributes and the circumstances
under which they are produced.

Table 27-4. Type Attributes of Symbols (Part 1 of 2)

Type Symbol Length
Alignment

Definition Specification

A Type A address Implied Full-word

constant

B Binary constant Implied or Not applicable
explicit

c Character Implied or Not applicable
constant explicit

D Double-word Implied Double-word
floating-point
constant

E Full-word Implied Full-word

floating-point

constant

F Full-word Implied Full-word

fixed-point
constant

G Fixed-point Explicit Not applicable

constant

UP-8061 Rev. 3

Type

H

I

J

K

M

N CD
0 CD
p

R

s

T

u @

v

w

x

y

z

SPERRY UNIV AC OS/3
ASSEMBLER

Table 27-4. Type Attributes of Symbols (Part 2 of 2)

Symbol Length
Alignment

Definition Specification

Half-word Implied Half-word
fixed-point

constant

Machine instruction Implied Half-word

Control section Not applicable Double-word
name

Floating-point Explicit Not applicable

constant

Macro instruction Not applicable Not applicable

Self-defining term Not applicable Not applicable

Omitted operand Not applicable Not applicable

Packed decimal Implied or Not applicable
constant explicit

Unaligned address Explicit Not applicable

constant (A, S, V, or Y)

Type S address Implied Half-word
constant

External symbol Not applicable Not applicable

Type not available Not applicable Not applicable

Type V address Implied Full-word
constant

CCW statement Implied Double-word

Hexadecimal Explicit or Not applicable
constant implied

Type Y address Implied Half-word
constant

Zoned decimal Explicit or Not applicable
constant implied

CD This type attribute is produced only for macro instruction operands.

@ Type cannot be assigned. It is produced for inner and outer macro instruction operamJs that

27-26

cannot be assigned any other attribute, as well as for I iterals appearing as macro instruction operands,
symbols appearing in the label field of LTORG, ORG, or EQU directives, symbols appearing more than
once in a source statement label field, and symbols appearing in the label field of DC or OS
directives containing expressions or variable symbols in the modifier subfields. The latter is
true even if the modifier subfield expression consists solely of self-defining terms.

•

•

--~-------------------"

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

27-27

• 27.5.2. Length Attributes

•

•

You can reference the length attribute by writing an L' followed by the symbol or parameter
whose attribute you want. The length attribute has a numeric value, which refers to the
number of bytes assigned by the assembler to a data field. If the length-attribute value is
required for conditional preassembly processing, the symbol you specify in the attribute
reference must appear in the label field of a statement in open source code. The operand
field of that statement must contain a self-defining term.

The length modifier or length field must not be coded as a multiterm expression because the
assembler does not evaluate this expression until assembly time.

LABEL LOPERAT I ONL OPERAND
1 10 16

DATA DC FL7 1 7E+9 1

When the length attribute is used in conditional assembly statements, it can be specified
only within an expression. Examples: L'&P(4),L'&VARY(1,2),L'&SYSLIST(5). These could be
written in conditional statements such as:

AIF (L 1 &P(l1) LT &P(3)).PE

&LBL SETA L 1 &TAG

DO L 1 &NAME=6

An L' cannot be generated directly by a macro/proc; it can be done indirectly as follows:

&A
&B

LCLC
SETC
SETC
MVC

&A,&B
I Z I
IL I II

&A. (&B&A) ,X

After generation this would result in:

MVC Z(L'Z),X

UP-8061 Rev. 3

27.5.3. Scale Attributes

SPERRY UNIVAC OS/3
ASSEMBLER

27-28

You can reference scale attributes of variable symbols by coding an S' followed by the
desired symbol. Scaling attributes are available only for labels of statements defining fixed
point constants. This restricts them to H, F, D, E, P, type Z, type K, and type G constants in
the OS/3 assembler. The scaling attribute is the value you have assigned for the scale
modifier of a fixed-or floating-point constant. This modifier is an integer used to assign a
number of bits in an unnormalized constant for the fractional portion of the constant. For
example, the scale modifier of a DC statement such as HF86'-19.788' would be 8, since it
is specifying 8 bits for the fractional part of the number. For decimal type constants the
scaling attribute is the number of decimal digits to the right of the decimal point.

The following examples illustrate typical usages of scale attributes:

LABEL ~OPERATION~ OPERAND
l 10 16

AIF (S 1&S(1) EQ S1&S(2)).Sl

&SCALE SET S'&P(l)

DO S'&VARY 6

27.5.4. Integer Attributes

An integer attribute can be written with an I' followed by the symbol you wish. An integer
attribute is computed from length and scaling attributes and is thus also applicable only to
a symbol which is the label of a statement defining a fixed-point or floating-point constant
(F, H, D, E, P, type Z, type K, and type G). A fixed-point integer attribute is equal to 8 times
the length attribute, minus the scaling attribute, minus 1 (1'=8*L-S'-1). For floating
point, you obtain the integer attribute, multiplying by 2, and subtracting the scaling
attribute 1'=2*(L'-1)-S'. Typical fixed-point constants and their computed integer
attributes are:

HLFWRD DC
FULLWRD DC

HS4'97.65 1

FS12'47.8959'

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

27-29

A half-word fixed-point constant (H) would have a length attribute of 2 (L'=2) and a scale
attribute specified as 4 (S'=4). Therefore, the integer attribute would be (8x2)-8-1 =7. A
full-word fixed-point constant would have a length of 4 (L'=4) and a scale attribute specified
here as 12 (S'=12). The integer attribute in this case would be (8x4)-12-1 =19.

Some floating-point constants and their computed integer attributes are:

60PERAT I ON6 LABEL
l l 0 16

FLTHFWRD DC
FLTFLWRD DC

ES3'64.495'
DS6 I l 7. 99. 2 I

OPERAND

Since E is a floating-point full word, its length attribute is 4 (L'=4). The scale attribute is
specified to be 3 (S'=3). Thus, the integer attribute is 2 (4-1)-3=3. When we have a
floating-point double-word constant (0), its length attribute is 8 (L'=8). The scale attribute is
shown to be 6. We can then compute the integer attribute to be 2(8-1)-6=8. For decimal
constants, the integer attribute is the number of decimal digits to the left of the decimal
point .

27.5.5. Count Attributes

You can use the count attribute of a call operand to reference the number of characters in
the operand, excluding commas. This attribute is determined after substitution of any
variable symbols; that is, it uses the replacement characters rather than the variable
symbol to determine the count attribute. You can use the count attribute in SETA or DO
operand fields, and in relational expressions of SETB and AIF operands that are within a
macro.

If the operand selected is a sublist, the count attribute will include the parentheses and
commas within the sublist. Examples using count attribute references in statements are:

OPCT SETA K'&SYSLIST(l)

&GBLB SETB (K 1&P(3) NE ~)

AIF (K'&P{2) EQ ~).NG

UP-8061 Rev. 3

27.5.6. Number Attributes

SPERRY UNIVAC OS/3
ASSEMBLER

27-30

For call operands you can also reference the number of operands in an operand sublist. You
reference the number attribute by writing an N' followed by the symbol or parameter whose
attribute you want. This number is equal to 1 plus the number of commas separating or
indicating the omission of operands in the sublist. This attribute is available in SETA, DO,
SETB, or AIF directives.

Examples of number attribute usage are:

LABEL ~OPERATIC~~

1 10 16

&NUM SETA
&COUNT SETB

AIF
DO
DO

N1 &P
(N 1 &SYSLIST NE 2)
(N 1 &SYSLIST NE 3).ERRl
N'&SYSLIST-2
N1 &P>2

OPERAND

•

If an operand is not a sublist, the number attribute is 1. If an operand is omitted, its value is •
0.

The following is an example showing all the attribute references available, along with the
related constants and local directives that a SET directive requires in a program
environment.

PROC &PARAM, 1
DATTR NAME
*DISPLAY ATTRIBUTES OF MACRO INSTRUCTION OPERAND
* THIS COMMENT IS NOT GENERATED

LCLA &SQ,&10,&KQ,&NQ,&LQ

&10
&SQ
&KQ
&NQ
&LQ
&TQ

LCLC &TQ
SETA I 1 &PARAM (1)
SETA S 1&PARAH{1)
SETA K'&PARAM{l)
SETA N '&PARAH (1)
SETA L'&PARAH{l)
SETC T'&PARAM(l)
DC C'&PARAH{l) I

DC Y{&LQ)
DC Y{&KQ)
DC Y{&IO)
DC Y{&SQ)
DC Y {&NQ)
DC c 1&TQ I

END

THIS IS THE OPERAND
LENGTH ATTRIBUTE OF PARAM
COUNT ATTRIBUTE OF PARAH
INTEGER ATTRIBUTE OF PARAM
SCALE ATTRIBUTE OF PARAM
NUl1BER OF OPERANDS IN SUBLIST
TYPE ATTRIBUTE OF PARAM •

•

PART 6. ASSEMBLY LISTING

•

•

•

•

•

•
UP-8061 Rev. 3

28.1. HEADER LINES

SPERRY UNIVAC OS/3
ASSEMBLER

28-1

28. Organization of Listing

The assembly listing produced by the OS/3 assembler consists of five sections, each with
its own headings. The five sections are:

• PREFACE

Lists of options and assembler identification.

• CODEDIT

• Object code and source code entries

•

• EXTERNAL SYMBOL DICTIONARY LISTING

• CROSS-REFERENCE LISTING

• DIAGNOSTIC LISTING

28.2. PREFACE

The first section or preface section identifies the assembler variant (if any), its version and
update number, and the time and date of the assembly. The formats:

UNIVAC OS/3 ASSEMBLER

DATE yy/mm/dd TIME - hh.mm

The preface also lists parameters indicating the assembler options selected in the job
control stream, if any .

UP-8061 Rev. 3

28.3. CODEDIT

SPERRY UNIVAC OS/3
ASSEMBLER

28-2

In this section, source coding is printed beside the object code generated for it. The first
header line in this section contains the operand field used in the TITLE statement. The
header, except for the page number, will be blank. The headings in the second line are
shown in Table 28-1.

Table 28-1. CODEDIT Listing Content

Second Heading Line Field Contents

LOC Assembler address of the object code in hexadecimal.

OBJECT CODE Contains the object code produced from the source statement.
This field is left-justified and is in hexadecimal. Machine
instructions are printed in the format:

mmmmmmmmm:nmm

Constants are printed in the form:

C--C

ADDR1 Contains the effective address in hexadecimal for the first
operand of an instruction referencing main storage.

ADDR2 Contains the effective address in hexadecimal for second
operand of an instruction referencing main storage.

LINE Contains the sequential record number in decimal. If the
statement is macro-generated, each line of generated code
indicates its nest level in the leftmost portion of the
column containing the line number. This macro level indicator
is an alphabetic character (A through Z) that represents the
nest level at which the coding was generated. If more than 26
levels are nested, the indicator wraps around from Z to A. The
line counter columns can record 10,000 lines of code (from 0
to 9999). If line 10,001 of code is nested, the line number
will wrap around from 9999 to 0000. The next level indicator
enables you to see the nest level on any line of source code.

SOURCE Contains the source program statement. The listing also contains
STATEMENT any macro-generated statements, following the source statement

that called it. The assembly listing also prints embedded macro or
proc call lines when one macro or proc calls another into the
program. The embedded lines contain the original keyword and
positional parameters supplied by the caller.

Although a sequence heading does not print in the assembly listing, you are permitted to
have a sequence field that does print. Lines of code generated by a macro or proc call line
retain any sequence number they had when they were originally coded. That is, the original
sequence number is printed in the assembly listing on the same line as the generated
statement.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

28-3

• 28.4. EXTERNAL SYMBOL DICTIONARY LISTING

•

•

This section is optional; you can request its omission at assembly time. Entries are
generated in the external symbol dictionary listing for named and unnamed section
definitions (defined by CSECT statement), entry points (defined by an ENTRY statement),
external symbols (EXTRN statement and type V constants), and common sections (COM
statement). A description of the information which is contained in this section is given in
Table 28-2.

Table 28-2. External Symbol Dictionary (ESD} Listing Content

Second Heading Line Field Comments

SYMBOL Contains the symbol that caused the ESD entry to be generated.

TYPE Defines the type of entry:

CSE CT Section definition (CSECT or START)

ENTRY Symbol appeared in operand field of
ENTRY statement.

EXTRN External reference (symbol appeared in
EXTRN operand field or defined as type
V address constant)

COM Common control section definition

ESID Two-digit external symbol identification number (in hexadecimal)
of item.

ADDRESS Contains the address of the symbol in hexadecimal for ENTRY
ESDS, the starting address of the control section for CSECT
and COM items, and blank for EXTRN ESDS.

LENGTH Contains a hexadecimal value which is the assembled length
(in bytes) of control on common section. Blank for ENTRY
and EXTRN ESD items .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

28.5. CROSS-REFERENCING LISTING

28-4

This section is optional, you can request its omission at assembly time. When this section is
included, each symbol in the object program is listed in alphanumeric sequence with the
statement number of the statement defining it, and the statement numbers of all references
to it. Also included in the data for the symbol are the length attribute of the symbol and the
value assigned to the symbol in the assembly.

The first heading line of every page contains the following:

CROSS REFERENCE

The information on each page of the cross-reference listing appears in one column on the
left half of the page. If more space is needed, the assembler prints a second column of
cross-reference data on the right half of the page. Each column has a heading line
followed by one or more data lines. The formats of the column heading and data lines are
given in Table 28-3.

Table 28-3. Cross-Reference Content

Second Heading Line Field Comments

SYMBOL Symbol to which cross-reference data pertains.

LENGTH Length (in decimal) of data associated with symbol (i.e., implied
length of symbol).

VALUE Hexadecimal value of symbol.

DEFN Statement number of statement in which symbol is defined.

(Actual line May contain from 0 to 5 entries of the form nnnnLl.LI., where nnnn
numbers of is a statement number, and LI.LI. represents two blanks. Each entry
reference) represents a statement number of a line in which the symbol

is referenced. Succeeding lines will be used as necessary to
list all the references or duplicate definitions. Leading zeros
are suppressed.

Printing of the symbol cross-reference listing is in double-column
format. Continuation occurs from the bottom of the left-hand
column to the top of the right-hand column and from the bottom of
the right-hand column to the top of the left-hand column on the
next page. The last page of the listing may contain any part of a
partial page.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

28-5

• 28.6. DIAGNOSTIC LISTING

•

•

Statements containing errors are flagged and appear in the diagnostic listing. The
diagnostic listing follows the assembly listing and contains a detailed accounting of any
errors that occurred in the assembly. The listing contains the line number of the statement
in which the error occurred, the error code, and a message indicating the cause of the
error. The messages are listed in the order in which they occurred. A diagnostic listing is
optional and can be suppressed by using the PARAM statement (Appendix F) with the
LST=ND option in its operand field. The PARAM statement also provides the LST=DBG
option, for debugging a macro definition.

When a macro definition is retrieved from a library, those of its statements that contain
errors are listed and flagged immediately after the END statement. To obtain a listing of
the macro statement containing the diagnostic error, you must use the LST=DGB option. If
the macro definition is part of your source program, actual source statements are flagged
if they contain errors. Each error is then listed in the diagnostic listing.

The first heading line contains the following:

DIAGNOSTICS

The format of the second heading line and the data line contents are given in Table 28-4 .

Table 28-4. Diagnostic Listing Content

Second Heading Line Field Contents

STMT May contain from 1 to 10 entries of the form nnnnL\.L\., where
nnnn represents a statement number of a line in which the error
occurred and LI.LI. represents two leading blanks. Leading zeros
are suppressed.

ERROR CODE Error code of the error in form annn.

MESSAGE An actual error message giving details about the error.

After the listing of the diagnostics, the assembler prints the total number of statements that
were in error as follows:

nnnn STATEMENTS FLAGGED IN THE ASSEMBLY - yy/mm/dd hh.ss

The final error statement message is also displayed on the console upon completion of the
assembly. This lets you know immediately if there are any diagnostic errors in your source
program .

28.7. EXAMPLE OF ASSEMBLY LISTING

Section 29 contains a sample assembly listing.

•

•

•

•

PART 7. PROGRAMMING TECHNIQUES

•

•

•

•

•

•

•

•

UP-8061 Rev. 3

29.1. HOW TO RUN A JOB

SPERRY UNIVAC OS/3
ASSEMBLER

29-1

29. Job Control Procedures

To assemble, link edit, and execute your program, you must tell the computer what you
want it to do for you. You assign peripheral devices and then request other programs and
routines for use in your program. Job control is your means of communicating with the
computer. Job control procedures are designed to enable you to get your program into the
computer in the most efficient way. These procedures are similar to macro definitions. They
generate a series of job control statements by using one calling line of code. This section
includes the job control procedures you need to assemble your program into an object
module, to link-edit your program into a load module, and finally, to execute it. There are job
control procedures available for many other functions but they are not discussed here. The
minimum number of job control statements needed to run your program are provided. For
additional information on job control, refer to the current version of the job control user
guide, UP-8065.

When using a multisectioned program or unfamiliar instructions, assemble the program and
correct any syntax, addressability, or other errors. Then, add the job control cards needed to
link-edit and execute, and resubmit the job. Assemble your program and store the object
module in a private library for execution at another time or store the object module and link
it to another object module for combined execution. The current version of the system
service programs user guide, UP-8062, contains information about link-editing and how to
create and access files of stored information.

29.2. INTRODUCING THE SOURCE DECK

To assemble your source program into an object code module, you need to surround your
source code deck with job control statements. The job control statements needed to
introduce the source deck are discussed in 29.2.1 and 29.2.2 .

UP-8061 Rev. 3

29.2.1. JOB Control Statement

SPERRY UNIVAC OS/3
. ASSEMBLER

29-2

The first job control statement in your deck is the JOB control statement, which assigns a
unique name to your job. It is the only required parameter, as you can see from the
format. See the current version of the job control user guide, UP-8065, for an explanation
of the other parameters.

The jobname can have up to eight alphanumeric characters. The name you specify on the
JOB control statement has no bearing on the name you assign on the START card (see 17.5)
within your assembly program. The jobname parameter distinguishes one job from another.
Use a unique name, since only one job can be scheduled for processing by the operating
system under a name. (If two jobs have the same name, the second job would replace the
first job.)

29.2.2. OPTION Job Control Statement

Following the JOB control statement, you can include an OPTION job control statement to
cause a program dump at the end of your assembly listing. There are three kinds of dumps
you can request, depending on the parameter you choose:

LABEL AOPERATIONA OPERAND
1 10 16

1. //OPTION DUMP

2. // OPTION JOBDUMP

3. // OPTION SYSDUMP

These dumps are explained in the current version of the system service programs user
guide, UP-8062. When a program terminates normally, the OPTION job control statement
alone does not produce a dump. You must have a corresponding DUMP or SNAP card
within your assembly program. DUMP and SNAP are supervisor macros created to dump
portions or all of your assembly program. DUMP and SNAP are explained in the current
version of the supervisor user guide, UP-8075.

If your program terminates abnormally and you've included an OPTION job control
statement, you'll get a dump following the assembly listing.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-3

• If an OPTION job control statement is not present in the control stream, the DUMP macro
instruction acts as an EOJ macro instruction. The OPTION job control statement must also
be in the job step in which you want the dump to occur. For example, if you assemble, link
edit, and execute your load module, and you want the dump to occur when you execute your
load module, you place the OPTION job control statement in the job step that executes your
load module, not in the one that assembles or link-edits.

•

•

29.3. ASSEMBLE; ASSEMBLE AND LINK-EDIT; OR ASSEMBLE, LINK-EDIT, AND
EXECUTE

You can assemble, link-edit, and execute your program in steps or do it a// at once. Each of
these functions requires a different job control procedure (jproc) call statement. You can use
any one of these jproc call statements, depending on what you want to do:

• ASM - Assembles your source deck.

• ASML - Assembles and then link-edits.

• ASMLG - Assembles, link-edits, and then executes the generated load module.

29.3.1. Assemble (ASM)

When you assemble, you create and name (either directly or indirectly) an object module.
Errors incurred during assembly are flagged and listed on the printout in the diagnostics
following the assembly listing. Once you have an error-free assembly, you are ready to
execute. To execute, you must add the job control statements to your deck (and ASM jproc
call statement) that link-edit and execute your program. Or, you can replace the ASM jproc
call statement with the jproc call statement to assemble and link-edit (ASML) or assemble,
link-edit, and execute (ASMLG). The latter approach is suggested. It is more practical to let
the prewritten job control procedures do the work rather than having to keypunch the
additional cards. If you do not use ASML or ASMLG jprocs, you will have to consult the
current version of job control user guide, UP-8065 for the additional cards needed.

Remember, the object module you produce during assembly is not saved (unless you say
so with a parameter). After the assembly is complete, the object module is removed from
the temporary job YRUN file. If you want to save it for later use, you must store it in a
system library, or a library of your own. The librarian portion of the current version of
system service programs user guide, UP-8062, describes system and user libraries .

t

t

UP-8061 Rev. 3

29.3.1.1. ASM Jproc Call Statement

SPERRY UNIVAC OS/3
ASSEMBLER

29-4

The format of the jproc call statement that generates only an assembly follows. Except for
the OUT parameter, the format also applies to the ASML and ASMLG statements
discussed in 29.3.2 and 29.3.3.

//[symbol] MSM~
[{

lun [,dest] }]

PRNTR= •.••.·.··N ". [,dest]
·• [,dest]

[~
(vol-ser-no,label)~l
(RES)

,IN= (RES,label)
(RUN,label)
(*,label)

,OUT=

,LIN=:

,COPY=

(vol-ser-no,label)
(RES.label)
(RUN.label)
(*,label)
(N) ••1-•

vol-ser-no-1,label-1
R ES,label-1
RUN,label-1

vol-ser-no-1,label-1
RES,label-1
RUN,label1
*,label-1
N

,d,.¥Lm•M•Jfl

[
,LST= { option }]

(opt-1, ... ,opt-n)

vol-ser-no-2,label-2
RES,label-2
RUN,label-2

vol-ser-no-2,label-2
R ES,label-2
RUN,label-2
*,label-2
N

IJl[[li&.I

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-5

The symbol field of the ASM jproc call statement is an optional field. There is no space
between the I I and the symbol. Normally, your input (the source module) is in the form of
punched cards. But, possibly, you may have stored the source module in a library. The
symbol field supplies the name of the source module (one to eight alphanumeric
characters). (The symbol field is only needed when you use the IN parameter.)

If no name is specified on the START directive, ASMOBJ is assigned. You can have only one
unnamed assembly (the default, ASMOBJ) within a job unless all other assemblies are
continuations of the first. For example, if performing two individual assemblies within the
same job, proceed as follows:

LABEL
1

AOPERATIONA OPERAND
10 16

II JOB COMSTOR
II ASM
1$
PRO GA START

I'~
II ASH
1$

END

PROGB START

END

I&
II FIN

In this example, the first assembly is named PROGA, and the second is named PROGB. The
jobname is COMSTOR. When you use the IN keyword parameter, you must also use the
symbol field. (This is discussed when the IN keyword parameter is discussed.)

The keyword parameters of the ASM jproc call statement are optional. The shaded areas
indicate the default values generated if you do not use the parameter. You can use
statement continuation to contain all the parameters you want to specify. Following are
examples of correct and incorrect coding:

Correct Example:

II JOB ASSEMBLE
llPROGNM ASM
Ill
112
I&

PRNTR=21,IN=(DSC1,U$SRC),
OUT=(DSC2,U$0BJ),
LIN=(DSC1,U$MAC1,DSC2,U$MAC2)

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-6

Incorrect Example:

You cannot break a parameter specification. The keyword and its value must be on the same
card. You can not code the IN parameter as follows:

LABEL
1

LlOPERAT I ONLl OPERAND
10 16

I I JOB ASSEMBLE
//PROGNM ASM

This coding would cause an error. To continue on another card you need a nonblank
character (we used X) in 72, and, in the next card, a I I in columns 1 and 2 followed by a
number in column 3 as shown in the correct example. The column 3 numbers must be in
ascending order in the deck, in the range of 1 through 9, or they can all have the same
number. If there are two continuation cards, as shown in the correct example, the first card
cannot be I 12 and the second card 111. But it could be I 12 and 112.

The parameter definitions are as follows:

PRNTR=
Allocates a specific printer for the assembly listing.

N

lun

20

If you specify N, the device assignment set for the printer is not generated
by the jproc. Instead, the device assignment set for the printer is manually
inserted by the user in the control stream (prior to the placement of the
jproc call). This allows for the creation of specific load code and vertical
format buffers (the LCB and VFB job control statements) by the user.

For example:

I IDVC 26 I I VFB LENGTH=66,DENSITY=6
11 LFD PRNTR
I I ASM PRNTR=N

NOTE:

When this parameter is used, the file name for the device assignment set
for the printer must be PRNTR.

If you want a logical unit number other than 20, you must specify the logical
unit number associated with the printer you select.

If you specify 20 as the logical unit number, you will get the next available
printer. This parameter is optional because 20 is the default value.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-7

IN=

dest
If you spool the printed output and want to send it to a device at a remote
site, you use this parameter to specify the device's 1- to 6-alphanumeric
character destination identifier as it is defined by remote batch processing.

You only use the IN keyword parameter when the source program is not on
cards. If you have stored your unassembled program on a disk, you use the IN
parameter to retrieve it for assembly. When using this parameter, you must have
the name of the source program you are retrieving in the symbol field of the
ASM jproc call statement. The options are:

(vol-ser-no,label)
Specifies the volume serial number and the file identifier where the source
module is located. For example, it could be on a disk whose volume serial
number is DSC1. The disk is assigned that number. On the disk, the source
program, named PROGNM, is stored in a library called US$SRC. To
assemble the source program, specify the IN keyword parameter to define
the input. (This parameter must be used when making source corrections via
the SKI, REC, and SEO statements; see F.2.)

AOPERATIONA LABEL
1 10 16

II JOB ASSEMB2A
llPROGNM ASM

(RES)

IN=(DSCl ,U$SRC)

OPERAND

Indicates you want to retrieve a source program from the system resident
device (SYSRES) in the source library file (YSRC).

(RES,label)
Indicates you want to retrieve your source program from SYSRES. But it is
not in YSRC; it is in a file identified by the label.

(RUN,label)
Indicates you want to retrieve a source program from the volume containing
the job's run library file (YRUN). The label is the file identifier.

(*,label)
Indicates you want to retrieve a source program from a cataloged file. The
label is the file identifier, which is all that is necessary to identify the file to
the system .

UP-8061 Rev. 3

OUT=

SPERRY UNIV AC OS/3
ASSEMBLER

29-8

You use this parameter to store assembled object modules in a library other than
the job's YRUN file to save your assembly. Remember that the ASM jproc only
stores your program until the job is complete. To permanently save an object
module, you must put it somewhere with the OUT parameter. This also
generates a PARAM OUT job control statement. The options are:

(vol-ser-no,label)
Specifies the volume serial number and file identifier where you want to
store the object module. It is assumed that this file has been already
allocated. If it is not, you have to supply a device assignment set to allocate
this file.

(RES,label)
Indicates that you put your object module on SYSRES, but you didn't use the
reserved YSRC file; you named your own file. The label is the file
identifier.

(RUN,label)
Indicates you put the object module on the volume containing the job's
YRUN file in the file identified by label.

(*,label)

(N)

LIN=

Indicates you want to store the object module in a cataloged file. The label is
the file identifier, which is all that is necessary to identify the file to the
system.

Indicates you do not want the object module stored in your own file or
retrieved from YRUN.

You can use the macro library file (YMAC) to store the macro definitions or
you can use a nonsystem library. The LIN keyword parameter identifies the
library you want searched. If you do not specify this parameter, YMAC is
searched. The options are:

(vol-ser-no-1,label-1 [,vol-ser-no-2,label-2])
Provides the volume serial numbers and file identifiers. You can specify up
to two volumes and files where macros are stored. YMAC is searched if
the desired macros are not found elsewhere.

(RES,label-1 [,R ES,label-2])
Specifies two library files to be searched for macros; both are files on
SYS RES.

(RUN,label-1 [,RUN,label-2])
Specifies two library files to be searched for macros; both are files on the

•

•

volume containing the job's run library file (YRUN). •

•

•

•

UP-806 1 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-9

(* ,label-1 [, * ,label-2])

(N)

COPY=

Specifies two library files to be searched for macros; use this format when
the files are cataloged, so you need only specify the file identifiers.

Indicates that no macros should be retrieved.

Identifies library files containing stored source programs that are to be copied
into another source program. You can specify two volumes and two files. If you
do not specify this parameter, YSRC is searched for any source programs
named in an assembler COPY directive. This parameter works with the COPY
directive, which names the source programs you want to copy into your program.
The options are:

(vol-ser-no-1,label-1 [,vol-ser-no-2,label-2])
Provides the volume serial numbers and file identifiers. You can specify up
to two volumes and files where source programs are stored.

(RES,label-1 [,R ES,label-2])
Specifies two library files containing stored source programs; both files are
on SYSRES .

(RUN,label-1 [,RUN,label-2])
Specifies two library files containing stored source programs; both files are
on the volume containing the job's run library file (YRUN).

(* ,label-1 [, * ,label-2])

(N)

LST=

Specifies two library files containing stored source programs; you use this
format when the files are cataloged, so you need only specify the file
identifiers.

Specifies that no source programs should be copied.

Alters the normal assembly listing and generates a PARAM LST job control
statement. If you do not use this keyword parameter, the assembly listing
contains a source, object, cross-reference, and diagnostic listing. You can specify
LST options in either of two ways:

The options are:

option
Specifies a single option .

(opt-1 ... ,opt-n)
Specifies more than one option. The parentheses are required.

t

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3 29-10

N

NC

ND

NR

ASSEMBLER

Specifies that no assembly listing is produced.

Specifies that no cross-reference listing is produced.

Specifies that no diagnostic listing is produced.

Specifies that the cross-reference listing is to contain only symbols that
each have at least one reference. The NC option, if specified with NR,
always overrides it.

DBG
Specifies a proc or macro debug mode feature within the OS/3 assembler.
When the feature is selected, the output listing shows the following:

• Results of the expansion of any proc or macro called within the user
program, including any conditional assembly directives processed as the
result of the expansion itself. Source coding (constants, directives, and
instructions) is listed twice and shows any appropriate substitutions.
Any statements causing error diagnostics show the exit line in error.

•

• A proc or macro which produces error diagnostics at the time it is •
encoded is listed following the END directive; e.g., system errors. A proc
or macro is encoded once, but may be called multiple times.

• If an error is detected at both expansion and encoding time, it appears
two or more times. Errors detected only at encoding time appear once
following the END directive.

• All lines flagged (regardless of their order of appearance) are shown in
the diagnostic summary list. Lines flagged at encoding time may or may
not be fla_gged at expansion time.

When this feature is not selected, any errors detected during proc or macro
expansion may not show the exact line in error, but rather the vicinity of the
item which is flagged.

SCR1= and SCR2=
The assembler needs two scratch work areas to perform its calculations.
Normally, the SYSRES device is used for one file and the volume containing the
job YRUN file for the other file. This is what is generated by default. But, you
can use a different volume if desired.

SCR1=vol-ser-no and SCR2=vol-ser-no
Specify the volume serial numbers of the work files. The default for SCR1 is
SYSRES, and the default for SCR2 is the volume containing the job's
YRUN file. •

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-11

ALTLOD=
Identifies the file from which the assembler will be loaded.

(vol-ser-no,label)
Provides the volume serial number of the pack from which the assembler
will be loaded and the name of the file that contains the assembler.

(RES,label)
Indicates that the assembler is to be loaded from the file identified by label
on SYSRES.

(RUN,label)
Indicates that the assembler is to be loaded from the file identified by label
on the volume containing the job's run library file (YRUN).

(*,label)
Indicates that the assembler is to be loaded from a cataloged file specified
by label.

(RES,YLOD)
Indicates that SYSRES is the volume from which the assembler will be
loaded and that YLOD is the file that contains the assembler. This is the
default .

29.3.2. Assemble and Link-Edit (ASML)

When you assemble and link-edit your program, you create and name an object module and
a load module. The load module is temporarily stored in the job's YRUN file. The job is not
executed. You only assemble and link-edit without executing if you are referencing
something in your program that is defined in another program. For example, you may have
external references (EXTRN), data management routines (DTFPR), supervisor routines
(DUMP), etc. At link-edit time, cross-referencing between object modules is completed and
loose ends are tied together. If you can link-edit without error, you are one step closer to
completing the job.

The load module is saved temporarily in the job YRUN file, thus enabling all separate
object modules to communicate while the job is being run. Once the link edit is complete,
the load module is removed from YRUN. The load module can be stored permanently as
discussed in the current version of the linkage editor portion of the system service programs
user guide, UP-8062. It is important to realize you are using more main storage, for a longer
period of time, when you assembly and link than when you just assemble. When you use
the ASML jproc call statement, you cannot use the OUT parameter to define an output
library and save the generated object module .

t

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29.3.2.1. ASML Jproc Call Statement

29-12

The format of the ASML jproc call statement generates an assembly and then automatically
link-edits the object module. The options shown are described in 29.3.1.1. Again note that
the OUT option is not included.

[symbol] MSML~ [1
lun [,dest] ~]

PRNTR= ····.N [,dest]
• [,dest]

~
(vol-ser-no,label) ~]
(RES)
(RES,label) ,
(RUN,label)
(*,label)

,LIN=

,COPY=

vol-ser-no-1,label-1
RES,label-1
RUN,label-1
*,label-1
N

11.IHU'•
vol-ser-no-1,label-1
RES,label-1
RUN,label-1

[
LST={ option ll

' (option-1, ... 'opt-n)u

[,SCR1={ v~-no } J
[~SCR2= { v~-o } J

vol-ser-no-2,label-2
RES,label-2
RUN,label-2
*,label-2
N
r1i· 11 . I J .!

vol-ser-no-2,label-2
R ES,label-2
RUN,label-2
*,label-2
N

U! .•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-13

• This jproc call statement is useful when you are still testing your program, since it lets you
see the output of your job without reserving a file for it. Once the job is executing properly,
you can allocate a file and store the load module by using the linkage editor. This jproc call
statement is also useful for infrequently run jobs.

•

•

The functions and use of the linkage editor are explained in the current version of the
system service programs user guide, UP-8062. There also is a jproc for executing the
linkage editor, just as there is one for executing the assembler. This jproc call allows you to
do more with the generated load module than either the ASML or ASMLG jprocs, such as
storing the load module in a library. (This does not mean you cannot store your load module
when you use either the ASML or ASMLG jproc call statements; it only means you cannot
do it by the jproc call itself). You also can use the LINKOP linkage editor control statement
but this involves more coding, and the jprocs are designed to reduce coding. The jproc call
statement for the linkage editor is included in the current version of the job control user
guide, UP-8065.

29.3.3. Assemble, link-Edit, and Execute (ASMLG)

When you use the ASMLG jproc call statement, you create and name both an object
module and a load module, temporarily store it in the job YRUN file, and then execute it.
The load module is stored in the job YRUN until execution of the job is completed. You
cannot use the ASMLG jproc call when the system has the shared data management
feature because job control must first scan the load modules in YLOD for this feature .
The GO option associated with the ASMLG jproc call cannot be used. If you use the ASM
jproc call with a separate LINK jproc call or the ASML jproc call and want to execute the
program using the shared data management feature, you must provide a separate EXEC
statement .

t

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29.3.3.1. ASMLG Jproc Call Statement

29-14

The format of the ASMLG jproc call statement generates an assembly, creates a load
module, and executes your program. The options shown in this format are described in
29.3.1.1. Notice, however, that the default value of the ALTLOD parameter is
RUN,YRUN when using the ASMLG jproc call statement. The OUT keyword parameter
does not apply to the ASMLG jproc call statement; only to the ASM jproc call statement.

(>ymbol] MSMLM [PRNTR= {~ !:~l}]

[IN=

,LIN=

~
(vol-ser-no,label) ~J
(RES)
(RES.label)
(RUN.label)
(*,label)

vol-ser-no-1,label-1
RES,label-1
RUN,label-1

,COPY=

vol-ser-no-1,label· 1
R ES,label-1
RUN,label-1

[
,LST={ opti~n }]

. (optron-1, ... , opt-n) ~

[
_ { vol-ser-no } J

,SCR1- I.HI

[,SCR 2={ vol-ser-no } J

[(~
vol-ser-no,label ~J~ RES.label

,AL TLOD= RUN,label

~:i1;1~ ''l . v

vol-ser-no-2,label-2
R ES,label-2
RUN,label-2

vol-ser-no-2,label-2
RES,label-2
RUN,label-2

' *,label-2
N

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-15

• NOTE:

•

•

Calling the ASML or ASMLG jproc more than once in a single job may create
unpredictable results. As called by either of these jprocs, the linkage editor includes all
object modules currently residing in the job YRUN file, even those modules generated
by ASML or ASMLG jprocs called earlier in the job. In this way, you may accidentally
include object code that has no place in your intended program. To avoid this problem you
should:

1. call only one ASML or ASMLG jproc per job; or

2. assemble individual object modules separately using the ASM jproc, then link the
modules together with one of the linkage editor jprocs described in the current
version of the system service programs and job control user guides; these linkage
editor jprocs give you more control over the generated load module.

29.4. START-OF-DATA JOB CONTROL STATEMENT (/$)

A start-of-data job control statement must precede the first card of the source program or
any macros being submitted with the source program.

LABEL b.OPERATIONb.
1 10 16

II JOB HYPROG
II ASH

END
I*

29.5. FOLLOWING THE SOURCE DECK

OPERAND

Following the END card in the source deck, you need job control cards to tell the computer
that you have completed part or all of your job.

29.5.1. End-of-Data Job Control Statement (/*)

An end-of-data job control statement follows the END directive of the source program.

II JOB MYPROG
II ASMLG
1$
PROGNM START

END
I*

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-16

29.5.2. End-of-Job Control Statement (/&)

An end-of-job control statement terminates the job which was started by the last JOB
control statement. It indicates that all job steps have been completed.

LABEL
1

II JOB
II ASM
1$
PRO GA

I*
II ASM
1$
PROGB

I*
I&
II FIN

b.OPERAT IONb. OPERAND
10 16

COMSTOR

START

END

START

END

29.5.3. Terminate-the-Card-Reader Job Control Statement (//FIN)

A terminate-the-card-reader job control statement ends a card reader operation. This
statement follows the end-of-job control statement as shown in the coding form in 29.5.2.

29.5.4. Setting the UPSI Byte

If any errors are detected in your program while it is being assembled, the assembler sets
the User Program Switch Indicator (UPSI) byte according to OS/3 system standards to
indicate the type of errors that occurred.

UPSI Byte Setting

Bit 0 1 (X'80')

0

Bit 1 1 (X'40')

0

Meaning

Catastrophic errors were detected in the source program
that prevented completion of the requested function. An
object module was not generated.

No catastrophic errors were detected.

Serious errors were detected that may have affected (but
not prevented) the completion of the requested function.
An object module was generated but the results could be
unpredictable.

No serious errors were detected.

•

•

•

•
UP-8061 Rev. 3

Bit 2 1 (X'20')

0

NOTE:

SPERRY UNIVAC OS/3
ASSEMBLER

29-17

Diagnostic errors were detected but the completion of the
requested function was not affected. The source program
contains a legal but potentially undesirable situation. An
object module was generated.

No diagnostic errors were detected.

In the event of a program check, the UPS/ byte setting X'BO', in combination with a
supervisor macro (STXIT}, provides continuation to the next job step rather than complete
termination of the job stream. The job step that resulted in the program check is cancelled
and a dump is produced. For further details about STXIT, see the supervisor user guide,
UP-8075 (current version).

29.6. SUMMARY OF JOB CONTROL PROCEDURE

The following card deck and sample printouts demonstrate the difference in an output
listing when the same source program is assembled; assembled and link-edited; and
assembled, link-edited, and executed in three separate steps.

29.6.1. Assembly

• The following source desk requests an assembly:

•

my

source

program

II FIN

END BEGIN

PROG START 0

II JOB ASSEMBLE

The listing produced by the assembly source deck is as follows. The headings are explained
in Section 28.

UNIVAC SYSTEM OS/3 AS:>EMBLER VER7SD3Zb
DATE- 75/08/27 TIME- 19,51

ASSE~BLER CONTqQL STATLMENTS ENCOUNTERLO ANO PROCE~SEO AS roLLOWS-

"
lXTERNAL SYMBOL DICTIONARY PAG!:

SYMB~L. TYP[, rsro. ADORE SS. LENGTH.

PROG CSE CT 01 00000 o oou1oq
OUT ENT RY 01 ooooqo
OUTC ENT RY 01 000072
DPSC OMO EXT RN 02

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29-18

LOC. OBJECT COOE ADDRl ADDR2 LINE 05/3 ASN 75/DB/27

0560
0000 00
000000
ocoo 02
0000 02
0000 06
0000 OE
ocoo 12

47f'O bOlO 00ll12
CIC2C3C•4C4040•0
C5C6C 7C8
0203 60G8 6JOC UOOOA OOOOE

000018
000018
0000 1 C
0000 I 0
0000 20
0000 22

4510 601[00020
80
000040
OA26
D207 60EA 600• OOOEC 00006

OOOD 28
0000 28
ocoo 2C
DODO 30
DODO Jq

DOOO 36

58 ID 60FE
922D 1031
58f0 l 034
05Ef'

OOOil 36 58 IO 60H
00003A OA27

0000 3C
0000 3C OAIA

0000 3E 0700
0000 40

DD03l

0000 40 00000 OODDODODOOO
ooDo5c 06E•EJ•04D•040
0000 63 40
0000 64 OOOD
0000 66 aooo

OCOO 68 00000 OOU
oooo6c ooao
OCOQb[04f'O
00007C f'O
000071 00
0000 72

ocoo 72 0000
0000 1" o·oooo ooo

LOC. OBJECT CODE

0000 78 onooo coo
OOU07C 00
0000 70 OOOOE C

0000 80 onoo
0000 82 0000
0000 84 00
000085 OD
OOJD 86 00
ocoo 8 7 on
0000 88 4)
orno ~9 00
OGJO SA 00
0000 88 04
DOJO SC 0010
0000 BE oO
DOOJ Bf 09
OC0090 ooooaoou
oooa 94 OOOJOOAO

0000 98 00000000
0000 9C
OOJO AO
0000 EB
0000 EC
DOOO 00
0001 00 OODOO 000

SYKB OL LENG TH VALUE

BEG! N 000 J2 OOOJOO
BRANCH 0000• o 00002
BUf' 000 16 OUOuEC
oPsc Ol'IO
OUT 000 01 QQ0040
OUTC OJO 01 o ura12
PR06 00001 OlJOJOO
SAVE 000 72 O~OC.AO

A00Rl

LINE

00002
0000-.
J0075

~0031

00045
C.0001
00073

00100

OQOH

00100

AODR2

0076
JG07
uOI•
OO•B
J012
OOOb

00&9

l PROG
2 BEGIN
3
4 BRANCH
5
b
1

9•
IL•
11•
12•
13+
H
15
16•
17•
18•
J9•
2U•
21
22+
23•
24•
25
2b•
21•
2b OUT
29••
30•
3J+OUT
34:'.'•

33•
34+
35+
36+
31+
36
39

•w•
41+
42+

•J•
•••
•5•0UTC
4b+
•1•
•a•
0•
SU

LINE SOURCE

51 +
52+
53+
5••
55+
So+
57•
Sa+
59•
bi)+
61+
bi.
6 3•
64•
6:.+
b&+
6 7•
68+
69•
70+
11+
7;:
73 SAVE
74
75 BUf'
1b
17

START 0
BALR
USING

6 .o
•• 6

B
QC
cc
"VC
OPEN
CNOP
BAL
oc
QC
s~c

"VC
PUT
DC

"VI
L
BALR
CLOSE
o~

L
SVC
[OJ
D~
svc
OHPR
DHPR
Cl<OP
E~U

ENTRY

DC
DC
oc
DC
oc

• •?b
cLe•1aco•
CLq'[f"'GH•
BP.ANCH+&l4i 0 BRANCH•l2
OUT
o,•
1 ,••l4•2i
X 'bO•
AL3lOUTo
36 ISSUE SVC
BUF'Zbi,BRANCH••
OUT
ov,oa SET ALIGNNENT
l ofAlOUTi LOAC RJS, f'ILENA"l ADDRESS
49tlm,X'20' SET FUNClION COO[
15,52t,li LOAD ADDR Of' co""ON !/O
lOolS LlNM TO COMNON
OUT
0 YtOi
l olAlOUTi LOAD RlS, f'ILENA"[ADllR[SS
3 9 :ssuL svc

OH
26
BLMS!ZE#lb,lOAREAJIBUF,SAVAkEAtSAV[

EXEC 9 3 I ZI 19/H
0,6 OOUBLE llORO BOUNDARY ALIGNMENT

•
OUT

1 r •o •
CL7'CUT' DCSN"E
CLJ' '
H "Ci' OPS"FLG
H'~' OPSPUB

DC

o,PRAu NOT SP[Clf'l[D, STANOAkD LlNE ADVAhCE SET TO 1,
•,kECORO FORMAT •EYllORO NOT SPEClf'llO· SEl TO r1xUNB.
Atril DPSPOV

DC
DC
DC
DL
[OU
ENTRY
DC
oc
ExTRN

H 'O' !JPS.ALA
XL2'0•FC• DPsOTF
C LI 'O'
XLl'OO' OPSHEQS
• ERROR FLAG LABEL
OUlC
H 'G' DPS.E.FG
AtOPSCOMOi DPSIOCS
OPsCOM
•,NL ERROR ROUTINE. ERRORS kETURN INLINE.

STATEMENT

oc A tOii OP SERR
DC Hll '0' OPSClllC
De Al3l8Uf'li DPSClllO
ExTRN BUf'
DC H 'O' DPSCllIF
DC 1-1 •c• OPSCll!a
DC Hll '0' OPSREC
De YLUO;J DPSIR&
DC YlllOi uPSf'Gl
QC y L no il DPSFG2
DC Y L U6 411 ClPSf'G 3
oc V LI 'J ii DPSF'G4
DC YLIXJil OPSf b5
DC Ylll4il DPSRFK
DC H 'Olb' OPSBKS
QC YLllOil OPSCCS
DC YLU9il DPSPHA
[)C A %0" 0PS8A S
DC At: s.;:.v :a DPSSAV
EXTRN SAVl
oc A %Oil OPSSAVR
o~ f'
o:, Cl7Z
OS f'
Os Z LJ&
ENO BEGIN

I UOU Tii

OS/J

CROSS-REFERENCE

00U7 u014
0053 oo~•

0017 0023 0032 0077

0070

~O SHTE~ENTS f'LAGi>EO IN THIS ASSE"t!LY -75/U8/27 19.53-

PAGE

ISN 75/08/27

PAGE

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

29.6.2. Assembly and Link-Edit

The following source deck requests an assembly and link-edit:

my

source
program

II FIN

END BEGIN

PROG START 0

II JOB ASSMBLL

The listing produced by this deck is as follows:

UNIVAC SYSTE" OS/3 AS'iE"BLER
DATE - 75/08/ 27 TI"E- 19, 53

ASSE"BLER CONTROL STATEMENTS ENCOUNHRt:O AND PROCESSED A'i FOLLOWS-

SY"BOL.

PROG
OUT
OUTC
DPSC OMO

IS

TYP L,

CSE CT
ENT RY
ENT RY
EXT RN

ESlO.

01
01
01
02

ADORE SS,

a Joooo
ooooqo
J00072

[XTERNAL SYMBOL OlCTIONARY
LENGTH,

LOC, OBJECT CODE ADORl AODR2 Ll~E SOURCE STA TE "ENT

OOOODO 1 PROG SlART 0
ODDO OD 051>0 ' BEGIN BALR &,c
ocoo 02 USI"G •• 6
0000 02 4 7FQ 6010 00012 • BRANCH B • •lb
000006 CIC2C3C••o•o•o•J oc CLP'ABCO'
0000 OE C5CbC 7C8 L oc Clll'ErGH'
ocoo 12 D203 b008 6GOC OQOQA OOOOE 1 "VC BRANCH•Bl•a,BRANCH•lz

OPEN OUT
000018 9+ CNOP u,•
000018 4510 1>01£ 00020 Ill• BAL 1 , •• ,,.2.
OOQO IC 80 11• oc x '80.
0000 ID 00004 o l.i+ o~ AL3l0Uli
000020 OA21> 13+ SVC 3 8 lSSUE SVC
0000 2 2 D207 l>OE A l>OO• OOOEC 00006 14 MVC B UF\Bil,BRANCH+4

15 PUT OUT
0000 28 lb• oc a vzo;i SET All GNNENT
ODDO 28 5810 l>OFE 00100 17• l 1,IA~CUTii LOAD RJS, F ILlNAl!l
0C002C 9220 1031 00031 18• MVI '19Uil,l':10' SET FUNCTION CODE

ADDRESS

oouo 30 5ero 1034 0003" 19+ l 15,52%,li LOAD AODR CF CON~ON I/O
0000 34 .05EF 2.i+ BALR 10,1; LINK TO COMMON

21 CLOSE OUT
0000 36 2.:• Ot UYi.Oi
0000 36 5810 60FE 001~0 23• l I ,tUOUTii LOAD RlS, F ILENAP'E AOCRES~
OOD03A OA27 2•• !VC 39 ISSUE SVC

2~ EOJ
OOUO 3C 2b• D~ OH
DOUD 3C OAlA 27+ SVC 26

n OUT OTFPR SLMSIZEIJ6,IOAREAllBUF,SAVIRElfSAVE
29•• QTFPR l XEt 93 12119/H

0000 3E 0700 30+ CNOP o,e DOUBLE WORD BOUNDARY AllGNPENT
DODO •O 31 •OUT EwU •

32• ENTRY OUT

29-19

YER750321>

PAGE

OS/3 AS" 75/08/27

UP-8061 Rev. 3

0000-0 0000000000000000 33• DC
oooosc D6EH HOq0-040 H• DC
DODD 63 -0 35+ DC
DODO 6- ODDO 36• cc
000066 DODD 37• DC

3•
39

DODD 68 DODODODO qo• DC
0000 6C 0000 H• DC
0000 6E DUO '14::+ DC
0000 70 FD -3· DC
DODD 71 OD 44• DC

SPERRY UNIVAC OS/3
ASSEMBLER

1r•o •
CL7'0UT' DCSNME
Cl!' .
H 'O' DPUIFLG
H 'G' DPS PUB
•,PWAD NOl SPECIFIED, STANDARI• LINE Al'YANCC SET TO 1,
•,p[CORD FORMAT KEYWORD NOT SPEClFlEO. SCT TO flXUNB.
A iOil DPSPOV
H 'O' DPSPLA
Xl2'04ro• DPsOTf
Cll '0'
XLl'DO' DPSREOS

29-20

DOOO 72 lf!.i•OUTC EQU • ERR OR FL AG LABEL
qb+ ENTRY OUTC

ODDO 72 DODD 07• DC H 'O' DPSEF6
000074 DODOO OOil 48• GC A Xl)PSCOMDil OPUOCS

49• HTRN DPSCOltD
SU * .~o ERROR kOUTlNE, ERRORS RETURN

0

INLIN[,

PA6E

LDC, OBJECT CODE ADDRl ADDR2 LIN[SOURCE STATE ME NT OS/l ASM 7S/08127

OOJO 78 01)000 OOrJ 51• DC A 'lO~ OP SERR
OOOD 7C 00 5Z• DC fill 'O' DPSCWl C
OOJO 7C Ql)QOE C S3• DC AL3X8UFil DPSCWID

sq• EXTRN BUF
DODD 80 0000 SS• DC H '0' DPSCWIF
0000 a2 0000 Sb• DC H 'O' OPS CW I~
0000 84 00 51+ DC HLl'O' DPSREC
OOOD 85 oD sa. oc Y LlXOil OPSIRG
OOJO 86 0- 59• DC Y LUq ii DPSFGl
ooao a1 00 60+ DC YLnoa DPSF62
OOQO ,8 40 61+ DC Y L h6qjl DPSFG 3
0000 89 OD b2+ DC Y LIXO ii DPSFGq
0000 8A DO 63• DC Y LUDil UPSFGS
0000 88 Qq f,q+ DC YLl'4il UPSRf"M
0000 SC DOID 6!>+ De H '016' DPSBKS
OOJO aE oo 66• DC YLIXDil DPSCCS
0000 aF 09 67• DC YLh9il lJPSPRA
0000 90 ooo.Jo oao 68• oc AlOa OPSdlS
::1030 9q 00000 OAO 6-;• DC A lSAVEil OPs~AV

70• EXTRN SAVE
oo..i098 oooaoaoo 71< D~ A •Od OPSSAVR
00009C n OS F
OOJOAO 7.l SAYE as CL7l
OOOOE8 7• D~ F
OOOOEC 1~ BUF D~ l Llb
000000 7b END BEGIN
000100 00000 0-0 17 IUOUTi

CROSS-~EFER£NCE PAGE

SYMBOL LENG Tfl VALUE LINE

BEGIN 00002 000000 00002 0076
BRAN CM 0000- 000002 ooooq 0007 00()7 OOH
BUF 00016 0 OOOEC 00075 OQlq C0!.3 005q
DPSC OMO 0048
OUT 00001 aoo::iqo 00031 0012 0017 0023 00.!2 00 77
OUTC 00001 000072 0004S OQq6
PROG 00001 000000 00001
UVE 00072 OOOOAD aoon 0069 0070

NO STATEMENTS f"LA66ED IN THIS ASSEltBLY -75/()8/2 7 19,SS-

•DEF INI TIO NS DIC TIONARYO

SYHB OL. TYPE. PHASE, ADORE SS, SYltBOL. IYPE. PHASE, ADDRESS, SY~BaL. TY?E. P>IA SE, AODRESS •

OPSCOMO EN TRY ROOT J~OOOOOO OPSCOltl t.NTR Y ROOT OOllOJOJU OPSC0~2 C:NT~Y qao T 00000000
OPSC OM3 ENTRY ROOT ,JQJOOOOO DPSCOMq ENTRY ROOT 00000000 :JPSCIJ"~ f.NTRY ROOT aooaJooa
OPSCOM& EN TRY ROOT 00000000 DPSC.Olt7 ENTRY ROOT oaoaooJo KESALP ENTRY ABS JODODSB'
KESR ES EN TRY ABS 0000058- OUT ENTRY ROOT ~OJO:Jqfo ourc ENTRY ~OOT lOOO~S22
PRSl OE CSECT ROOT 00000000 PROD CSE CT ROOT 003001180

.. PHASE STRUCTURE•• HEX BYlES REPR[S[NIEO RY EACH DASH -

I JO• 584 •

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

•• ALLOCATION "lP ••

LOAD KODULE - L~KLOO SIZE - 0000058•

PHASE NAKE TRANS AODR
LN~LODOO NOOE - ROOT
••• START OF AUTO-INCLUDED

- DJ/2bJ7q Dl.D9 -

FLAG LAB[L

ELEMENTS -
PRSIOE
PRS1 OE
0P>C0~7

OP.COHO
OP>COKI
DP>COKb
OP~COH;.

OPSCOH5
OPHOKq
OPHOM3

••• ENO OF AUTO-INCLUOEO ElEKENTS -
- 75/08/27 19.Sq - PROb

ouooo•so

UNIVAC SYSTEK OS/3 LlNKAGl EDITOR
DATE- 75/08/ 27 T IKE- 19. 55

PROG
OUT
OUTt

TYPi

OEJ
CSE CT

ENTRY
ENTRY
ENTRY
(~TRY

ENrnY
E NTilY
ENTRY
EN my

OeJ
CSE CT

ENTRY
ENTRY

CONTROL STREAK ENCOUNTLREO AND PROCLSSlu AS FOLLOWS-

•GENERATED• LUAOH
PROG •RUN LIBE KOOULE•
OP$CO~O *AUTO-INCLUDED•

J2
~2

U2
J;:
DL
U'-'
02
u2
Ll2

01
01
01

LNK Otf:)
OJiLJDDOO

00000000
OOOJOOOG
00000000
00000000
00000000
OOOOOOJO
00000000
OOU;JOOOO
00000000

0QJQ04 BO
O!J.lu04f O
OOOJOS22

HilQDq
00000583

000011583

LENS Ttl
OOOOOS&q

OOOO'l•AA

'llJOOO Joq

OBJ ORG

!JO!JO!JOOO
1000'l000
00000000
'lOOOOOOO
00000000
JOOOOOOO
00000000
!JOOOOOOO
1oaooooo

110000000
'lOOOIJOqO
!JOOOO!J72

29-21

VEROl!BH

The definitions dictionary, phase structure, and allocation map are explained in the current
version of the system service programs user guide, UP-8062.

29.6.3. Assembly, Link-Edit, and Execution

The following source deck requests an assembly, link-edit, and execution:

my

source

program

II FIN

END BEGIN

PROG START 0

II ASMLG

II DVC 20 II LFD OUT

II JOB ASSMBLG

The listing produced by this service deck is the same as the assembler and link listing, but it
includes the results of the execution. This program moved letters and printed out the field
containing ABCDEFGH .

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

30-1

30. Example Macro Definitions

This section gives examples of both PROCs and MACROs. The explanation of these
examples places the primary emphasis on the macro source code instead of on the resulting
inline expansion source code. Descriptions of the macro definitions resolve around variable
parameter replacement and variable inline expansion code caused by conditional assembly
statements. Each description is accompanied by the macro source code and an example call
with the inline expansion code.

30.1. SMALR/LARGR PROC (POSITIONAL PARAMETER 0)

The following example PROC selects either the smallest or largest of three positional
parameters submitted in the call instruction. Two different mnemonics are provided for
indicating whether the smallest or largest value is selected. The call SMALR is used for
smallest value selection and the call LARGR is used for largest value selection. This PROC is
a good example of using positional parameter 0.

PROC Source Code:

£.OHY
SHAL R
LA RGR

£.OHY

PROC
N A11E
P1i A11E
A If
ZAP
CP

r.. , ,.
i:INH
BNL
IN'&• NE 'ti.ERR
tl&ll ,£.11 ZI
tll 11, U l 31
••10
Ulll,£.lt3J
u111,&•11t1
••10
f.#lll1t•1111

Test for 4 parameters. Branch to print error message if untrue.

Select first value.
Compare to next value.
BNH or BNL or
Select next value.
Compare to next value.
BNH or BNL or
Select next value

.ERR

t #ca I
ZAP
CP
£.#ca I
ZAP
ME.XIT
MNOTE
ENO

'IMPROPER PARAMETERS--NO GENERATION'

lnline Expansion Code (smallest value):

S"ALR
ZAP
CP
B NH
ZAP
CP
BNH
ZAP

5ELECT 1 VAL1 1 VAL2 1 VAL3
SELECT, VALl
SEUCT,VAL2
••JO
SELECT 1 VAL2
SELECT, VAL3
••10
SELECT 1 VA L3

UP-8061 Rev. 3

lnline Expansion Code (largest value):

LARGR
ZAP
CP
BNL
ZAP
CP
BNL
ZAP

SELECT 1 VAL11VAL2 1 VAL3
SELECT 1 VA ll
SELECT 1 VA lZ
*•10
SELECT1VAL2
SELECT 1 VA L3
••10
SE LE CT 1 VA L 3

SPERRY UNIVAC OS/3
ASSEMBLER

30-2

Operand 2 of the PROC statement indicates there are four positional parameters that can be
passed from the call instruction, and &# is the symbolic parameter that references the
positional parameters. This PROC requires all four positional parameters from the PROC.
Otherwise, no inline expansion takes place and the message coded in the MNOTE is printed.

The AIF conditional assembly statement tests to see whether the four parameters are
present. Whether the smallest or largest value is selected from the call instruction is
dependent upon generation of the BNH or BNL instruction in the inline expansion code. This
is controlled by the call-names SMALR or LARGR used in the two NAME statements.
SMALR implements BNH for positional parameter 0 and LARGR implements BNL.

The two model statements referencing positional parameter 0 (&#(0)) are the instructions
that determine smallest or largest value selection. The inline expansion code shows that the
SMALR call instruction generates BNH in place of &#(0) and the LARGR call instruction

•

generates BNL. The SMALR call instruction generates BNH in place of &#(0) and the LARGR •
call instruction g~nerates BNL.

Positional parameter 1 of the call instructions indicates an area to receive the selected
value. It is referenced in the model statements (&#(1)) in operand 1 of the add instructions
and compare instructions. Positional parameters 2 through 4 of the call instructions are the
values to be selected. The model statements that perform the calculations for finding the
smallest or highest value have references to positional parameters 2 through 4 (&#(2)
through &#(4)).

The MEXIT statement ends PROC processing at this point in the PROC, so the message isn't
printed. The MNOTE is printed only if there aren't four positional parameters in the call
instruction.

30.2. SMALL6/LARGE6 PROC (DO LOOP)

The following example PROC selects either the smallest or largest of the positional
parameters in the call instruction, just like the SMALR/LARGR PROC. This PROC broadens
the usage range by allowing the caller to specify from 3 to 100 values instead of limiting the
caller to only 3 as did the SMALR/LARGR example PROC. There are two call mnemonics
provided: the SMALL6 is used for small value selection and the LARGE6 is used for large
value selection. The two mnemonics are provided via positional parameter O. The
SMALL6/LARGE6 PROC shows a design using DO loops to provide variable inline
expansion code. The DO range is determined by the number of values in the call instruction; •
the more values in the call, the more lines of source code generated.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

PROC Source Code:

&OHY
SH AL Lb
LA RGEb

&OHY
&CT

PROC
NAHE
NAHE
DO
ZAP

&P, 100
fll'.IH
BNL
N'&P>Z
C.Ptll,&PlZI

00
CP
&P 101
ZAP

N'&P-2 }
C.Plll,&PHCT+ZI
••10
&Plll,&PlC.CT•ZI

Inner DO loop. The instructions CP, BNH/BNL,
and ZAP will be generated the number of positional
parameters in the call instruction minus two.

N'tP<3

E NOO
E NOO
DO
PNOTE
ENDO
END

'NOGEl'.l'1'HINil'1Ul'1 OF THREE PARAMETERS REQUIRED'

lnline Expansion Code (smallest value):

SHALL& SELECT 1 VAL1 1 VALZ 1VAL3 1 VALq 1VALi Number of parameters = 6
ZAP SELECT 1 VAL1
CP SELECT,VALZ }
B NH it+ l O First inner DO generation

ZAP SELECT,VALZ
CP SELECT,VAL3 }
B NH •• 1 O Second inner DO generation

ZAP SELECT,VAL3
DO iteration = 6-2 = 4

CP SELECT 1 VALii }
B NH it+ IO Third inner DO generation

ZAP SELECT,VALll

DO N'&P-2

CP SELECT 1 VALS }
B NH it+ lo Fourth inner DO generation

ZAP SELECT,VALS

lnline Expansion Code (largest value):

LARGE& SELECT 1VAL1 1 VAL2 9 VAL3 1 VAL11 1 VAL>
ZAP SELECT,VALl
CP SELECT,VAL2
BNL ••10
ZAP SELECT 1 VALZ
CP SELECT 1 VAL3
BNL it+lO
ZAP SELECT 1 VAL3
CP SELECT,VALll

Outer DO processed because number of parameters
are more than 2 (DO N'&P > 2).

B NL it+IO
Z~P SELECT,VALll
CP SELECT,VALS
BNL
ZAP

30-3

Operand 2 of the PROC statement indicates that the user can code up to 100 parameters in
the call instruction while the symbolic parameter is &P. Two mnemonic codes can be used
to call this PROC. as coded in the label field of the two NAME statements. Each is used to
implement different BAL instruction codes via positional parameter 0 (&P(O)). In this PROC.
positional parameter 0 is referenced only one time, while in SMALR/LARGR it was
referenced twice. This is because the inner DO loop generates the required number
BNH/BNL instructions to process the number of values coded in the call instruction. Of
course, the inner DO is never processed unless the outer DO is.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

30-4

In order for the outer DO to be processed, there must be more than two positional
parameters in the call (DO N'&P>2). If there are two parameters or less, a zero is generated
in the outer DO operand and the DO with the PNOTE is generated.

A 1 is generated in the operand field of the PNOTE DO because there are less then three
parameters (DO N'&PL3), and the message in the PNOTE is generated. The call instruction
for the SMALL6/LARGE6 example PROC must have a minimum of 3 positional parameters
and can have a maximum of 100. This gives a range of 1 to 98 values to be tested for the
highest or lowest value. If you compare this with the SMALR/LARGR example PROC, you
can see that the SMALL6/LARGE6 PROC provides much more than SMALR/LARGR and
has only one more line of code.

30.3. BLANK MACRO (VARIABLE INLINE EXPANSION CODE)

The following example MACRO blanks (X'OO') the content of a specified number of bytes.
There are only two positional parameters that can be submitted with the BLANK call
instruction, and one is optional. Positional parameter 1 indicates the starting address of the
area to be cleared, and positional parameter 2 specifies the number of bytes to be cleared. If
the number of bytes in the area is less than 257, parameter 2 is optional. The BLANK
MACRO is an example of variable inline expansion code. There are three basic sets of code
that can be generated from this MACRO. Positional parameter 2 is used to determine which
set is generated.

MACRO Source Code:

&OHY

&OHY

oAl

f..LAl
t.OHY

tLAl

.A2

HACRO
BLANK
LCLl
00
HNOTE
HEXIT
ENDO

tll,f.12
l.LAl
tN'&SYSLIST>2 l++IN't.SYSLlST<l J
7 1 'IHPROPER PARAMETERS - ~O GEN~RATION'

00 N't.SYSLIST=l
AIF tL'f..#1 GT ZS&J.U
xc u1,u1
HEXIT .
HNOTE b 1 'LENGTH Of &111>25& - PARAH: Z HUST BE USED•
HEXIT
E NOO
Alf
SETA
L
00
xc
LA
SETA
ENDO
00
xc
ENDO
HEXI T
HNOTE
HENO

CT'f.IZ NE •N• J .AZ
t.12
l5 1 =Al&ll J
t.12/2Sb
012 56 t l 5 l I 011 5 l
15,25&t15,0J
f.LA1-Z5b

tLAl>J
OC&LA1 1 15J 1 0C151

8 1 'PARA11ETER Z NOT t<.IU'fERIC'

Code generated if
positional parameter 2
is omitted

l Code generated for
~ more than 256 bytes

f
Code generated for less
than 256 bytes

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

lnline Expansion Code:

BLAlllK PRTBF 1 80
l l 5 1 =A I P RT Bf I These two instructions were generated from the last DO because
x c 0 r 80 I 15 I I a 115 I positional parameter 2 is less than 256.

30-5

The prototype statement establishes the call mnemonics as BLANK and indicates there
can be two positional parameters in the call that are referenced in the body as and
. The LCLA declares &LA 1 as an arithmetic set symbol. Set symbols must be declared
following the heading and preceding any other model statements.

The rest of the body of this MACRO is sectioned by four DO statements. The first DO is an
error exit. If either or both expressions on each side of the OR (++) operator are true, than
no code is generated and the MNOTE message is printed. That is, the numeric attribute of
the parameter list (N'&SYSLIST) is anything other than 1 or 2, then the blank MACRO will
not work.

The second DO is processed only if there is one parameter in the parameter list
(N'&SYSLIST=l). And if the area indicated by positional parameter 1 is greater than 256,
the AIF statement will shunt the generation of the XC instruction (the blanking operation)
and print the MNOTE message. If the numeric attribute of the parameter list is 2, then the
second DO loop is not processed and the AIF after this DO is processed. This AIF tests
positional parameter 2 () for a self-defining term; if it isn't, no code is generated and the
MNOTE is printed .

The &LA 1 set symbol is set to the value of positional parameter 2, which is the number of
bytes to be cleared. Register 15 is loaded with the address of area (). The next DO loop
is processed once for every multiple of 256 bytes indicated in positional parameter 2 (DO
/256). If positional parameter 2 is less than 256, the next DO is processed and the last
one is not.

There are three sets of codes that can be generated from the BLANK example MACRO. One
set is generated if positional parameter 2 is omitted; another if positional parameter 2 is
more than 256; and another if positional parameter 2 is less than 256 .

•

•

•

•

PART 8. APPENDIXES

•

•

•

•

•

•

•

•

UP-806 1 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Appendix A.

A-1

Sample Program

The following list illustrates the steps taken to create, code, and execute a simple
assembler program. The sample problem is designed to calculate the effect of a $5.00 a
week bonus on an employee's yearly, weekly, and hourly pay.

• Flowchart

The flowchart provides a graphic representation of the logic steps used to solve the
problem .

1 thru 4
HOUSEKEEPING

10
STORE WEEKLY

SETUP PAY

1
MULTIPLY BONUS DIVIDE WEEKLY

BY 52 11 and 12
PAY BY 40 HOURS

5 thru 6

T
ADD TOTAL

STORE HOURLY BONUS TO 13
PAY YEARLY PAY

7

1
STORE TOTAL MOVE TOTAL

14 RECORD TO OUTPUT YEARLY PAY
AREA

8

T
DIVIDE THE

9 TOTAL YEARLY I- 15 EOJ
PAY BY 52 WEEKS

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

A-2

•

STMT

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20

21
22

23

24
25
26
27
28

29

Source Code

Source code is created to implement the logic flow set forth in the flowchart. In the
following list, comments have been included to explain what each source statement
does.

SYMBOL

PROGRAM1
BEGIN

WORKAREA

BONUS
HOURS
WEEKS
YEARRATE

OUTPUT
EMPLOYEE

NAME

WORKNO
YEARPAY
WEEKPAY
HOURPAY
R6

OPERATION
CODE

TITLE

START
BALA
USING
ZAP
MP
AP
MVC
DP
MVC
ZAP
DP
MVC
MVC
EOJ
OS

DC
DC
~c

DC

DC
OS

DC

DC
DC
DC
DC
EQU

END

STATEMENT OPERANDS

'FIRST SAMPLE PROGRAM'

0
R6,0
*,R6
WORKAREA,BONUS
WORKAREA,WEEKS
WORKAREA,YEARRATE
YEARPAY,WORKAREA+2
WORKAREA,WEEKS
WEEKPAY,WORKAREA+1
WORKAREA,WEEKPAY
WORKAREA,HOURS
HOURPAY,WORKAREA+2
OUTPUT(23),EMPLOYEE

CL6

PL2'500'
PL2'40'
PL2'52'
PL4' 1 300000'

23C''
OCL23

CL9'REBEW R D'

C'N4543'
PL4'0'
PL3'0'
PL2'0'
6

BEGIN

COMMENTS

Provides the assembler listing with a
heading.
Provides a starting point for the program.
Assigns a base address to the register.
Assigns a base register to the program.
Enter bonus rate into work area.
Multiply bonus rate by 52 weeks.
Add yearly rate to total bonus.
Move calculated total to yearly pay area.
Divide total pay by 52 weeks.
Move results to weekly pay area.
Move weekly pay into work area.
Divide by 40 hours week.
Move results to hourly pay area.
Completed record moved to output area.
End of job.
Reserve 6 bytes of storage, contents
unknown.
Place value 5.00 in two bytes of storage.
Place value 40 in two bytes of storage.
Place value 52 in two bytes of storage.
Place value 13000.00 in four bytes of
storage.
Produces 23 bytes of blanks only.
Symbol "EMPLOYEE" represents next 23
bytes.
Produces nine bytes containing
"REBEWRD".
Produces five bytes containing "N4543".
Produces four bytes of zeros.
Produces two bytes of zeros.
Produces two bytes of zeros.
This instruction equates register 6 with
R6.
THIS IS THE END OF THE PROGRAM.

• Job Control Procedure to Assemble

The following job control statements assemble the source code into an object code
module.

Job Control Statements Comments

II JOB ASSEMBLE Assigns a unique name to the program.
II ASM Assembles the source code.
1$ Signifies the start of the source statements.

Assembler
source
code

1~·~ Signifies the end of the source statements.
I& Signifies the end of the job.
II FIN Terminates card reader operation.

•

•

•

•

•

•

UP-8061 Rev. 3

• Output Generated by Assembly

SPERRY UNIVAC OS/3
ASSEMBLER

A-3

The program is now assembled and an assembly listing is generated. The assembly
listing contains warning messages if any errors are detected in the source code.

UNIVAC SYSIEH OS/3 ASSEMBLE~
DATE- 81/lZ/30 TIME- 23.09

ASSE"BLER CONTROL STATEHENIS ENCOUNTERED ANO POOCESSEO AS FOLLOWS-

IS

SYMBOL. TYPE. ES!O. ADDRESS. LE~GTH.

PROGRAHl CSECT 01 OOOOJU C.ClJJ 7E

FIRST SA H~LE PRO GR A~

LOC, OBJECT CODE AOORI A JO RZ LINE SOUwCE STATE,..E.~T

DDDDOO >wOGOAMI S, T AOJ c
000000 0560 3ESIN OAL~ i: 6 t '.."'

000002 "SJ~G ,,_, Wb
000002 F851 60.!E 6044 00040 UJ046 z ·~ .o~KAPEA ,30•1us
000008 FCSI 603E 604 8 00040 OJD4A MP ltl~RKAPEA ,WEEKS.
DODO OE F ASJ 603E 604A '.JODI.ID O;JOitC AP ~o~~APEA,VtAHPAT~
DO OOH OZOJ 6073 6040 J0075 OJ04Z M VC YfAPPAY,•CRKA~EA•2
DODDlA FUSl 603E 6048 00040 OJD •A a• .O~Kt.Qt.A ,WEEKS
OODOZO DZOl 6077 603F OOC79 QDO•l I~ HVC .~E~Ptv,.o~KARLA•l
000026 FBSZ 603E 6077 00040 UJ079 11 ZAP Olli".:;:?KA?(A ,WEE'KPAV
00002C F 051 603E 6046 00040 OJ04B 12 cP .C~KA PEA ,HCUWS
000032 0201 6 07 A 6040 0007C OJC•Z l! ... VC H0JQPAY,.ORKA~EA•2

000038 0Zl6 604E 6065 00050 00067 14 •vc OUTPUTC~3) 1 ~HPLOYEE
15 E OJ

OODOJE lb• GS c~

OOOOJE O•lA I 7 • SVC 2~
000011,0 IB ltriOPt<AREA JS LL e
000046 SDOC 19 30~US LC ~L2'5~C'
000048 O•Oc 2 :'.) ~OUwS cC ~L 2 'i.. C'
00000 052C 21 JEE KS cC ¥L 2' 5 2'
00004C 1 JOUOOOC zz YEAR~ATE ur f.-L 4' l :rn~G:!O'
000050 qoqo4o•o•oqo•o•J 23 OUTPUT ~c 23C'
00006 7 24 EMPLOYEE SS cr._2 3
00006 7 09C~CZC5E6qOD940 C:5 '\IA ~l .c C.l~'~E3f111 ::;; .
000070 O~F4FSF4F .S 26 JOOKNO cC c' ~ ... 5 ti3'
DODO 75 ooouoooc 27 VEARPAY :c ~L 4 '::, •

000079 ooouoc 29 W[(~PAY ~c ~l 3. ~ •
0000 7C ouoc 29 ..fOUKPAY ~c f.L 2' J'
000006 3 :i Ob l~t.,

000000 31 ['J~ 5f j I\

CROSS-REH~ENCE

SYMBOL LE~STH VALUE JEFN SY•oOL LE'JGTH

BEG1'1 OUOD2 ouoooo OOOOJ 0031
BONUS ouooz 000046 00019 DOCS
E"PLOYEE OUOZ3 000067 JDr.24 0014
HOURPIY 00002 00007C 00029 0013
HOURS 00002 ooooqs DDC20 0012
NA!.[00009 000067 JOO ZS
OUTPUT OUOOI OUOOSD 0002 3 0014
PROGIU"l 00001 ouoooo oocoz
R6 00001 000006 00030 0003 0004
llEEKPIY 00003 000079 00028 0010 ODii
WEEKS ooooz 00004A 00:::!2 J 0006 JOJ9
llORKAREA 00006 OU0040 00018 DDJS DC Ob ~G07 none cue•

OGIO 0011 ~DIZ 0013
llORKNO ouoos 000070 00026
YEARPAY ooooq 000075 00027 0(;08
YE ARIU TE ooooq 00004C JOOZZ OOJ7

I"' HGNOSTICS
LINE ERROR coot MESSAGE

NO SfATE"ENTS FLAGGED I~ TMIS ASSEM2LY -Sl/12/30 23,09-

VER800922

PASE 2

OS/3 ASH 81/12/30

EOJOOOSO
EOJ00070

PAGE

~ALUE OE<N

PAGE

t

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

A-4

• Job Control Procedure to Assemble, Link-edit, and Execute

After the errors in the source code are corrected, the following job control statements
are added to assemble the code, create a load module, and execute the program.

Job Control Statements

II JOB ASSEMBLE
II ASMLG
1$

1~~

I&
II FIN

Assembler
source
code

Comments

Assigns a unique name to the program.
Assembles, link-edits, and executes the program.
Signifies the start of the source statements.

Signifies the end of the source statements.
Signifies the end of the job.
Terminates card reader operation.

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

B-1

Appendix B. Character Conversion
Codes

Table 8-1. ASCII (American Standard Code for Information Interchange) Character Codes

0 1 2 3 4 5 6 1

0 NUL OLE SP 0 @ p ' p

1 SOH DCl ,CD 1 A Q a q

2 STX DC2 .. 2 B R b r

3 ETX DC3 # 3 c s c s

4 EOT DC4 $ 4 D T d t

5 ENO NAK % 5 E u e u

6 ACK SYN & 6 F v I v

1 BEL ETB 1 G w g w

8 BS CAN (8 H x h x

9 HT EM) 9 I y i y

A LF SUB * J z j z

B VT ESC + K [k I
\

c FF FS < L \ I I
I

D CR GS - ~ M l m)

E so RS > N /\G) n -
F SI us I 7 0 - 0 DEL

NOTES:
@

Some graphic card code and hexadecimal assignments may differ depending on the device, language, application,
and installation policy.

The following optional graphics can be substituted @
in the character set:

I for/\

I for 1

Graphics available by use of the 0768-02
printer which prints a 94-character set (DEL is
not a graphic)

Ninety-four printable character set .

@ Sixty-three printable character set.

t

t

+

UP-8061 Rev. 3 SPERRY UNIVAC OS/3

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

ASSEMBLER

Table B-2. EBCDIC (Extended Binary Coded Decimal Interchange Code} Character Codes

0 1 2 3 4 5 6 7 8 9 A B c D E

NUL DLE Ds© SP & - J@)
I

1©
I \©

SOH DC1 sos(j) I a© j -© A J

STX DC2 FS© SYN b k s B K s

ETX DC3 c I t c L T

® d m u D M u

HT LF e n v E N v

BS ETB f 0 w F 0 w

DEL ESC EOT g p x G p x

CAN h q y H 0 y

EM ·© i r z I R z

[1© :®

VT $:t

FF FS© DC4 < . % @

CR G<j) ENO NAK () -
so®jRs© ACK + ; > :

G) © G) SUBJ~© -,® ? " SI us BEL

NOTES:

Some graphic card code and hexadecimal assignments may differ depending on the device, language,
application, and installation policy.

F

0

1

2

3

4

5

6

7

8

9

B-2

OS, SOS, FS are the control characters for the
EDIT instruction and have been assigned for
ASCII mode processing so as not to conflict
with the corresponding character positions
previously assigned in the EBCDIC chart. As
these characters are not outside the range as
defined in American National Standard
Institute X3.4 - 1968, they must not appear
in external storage media, such as American
National Standard Institute standard tapes.
This presents no difficulty due to the nature
of the EDIT instruction.

© The lowercase alphabet and indicated graphics are
introduced by use of the 0768-02 printer, which
prints a 94-character set.

@ The following optional graphics can be substituted
in the character set:

/\ for I

I for !

@ For 63-character printers, the following substitution
is made:

\ for :

®

®

The following substitutions are made for the
UTS 400 handler:

SPROT for SO
EPROT for SI
SB for FS
EB for GS
SOE for RS
FCC for US
MW for BEL
l for !

for]

DC4 for the UTS 400 handler.

•

•

UP-8061 Rev. 3

•
Character

A

B

c

0

E

F

G

H

I

J

K

• L

M

N

0

p

Q

R

s

T

u

v

w

x

y

z

• a

b

c

SPERRY UNIVAC OS/3
ASSEMBLER

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 1 of 5)

Printed Card ASCII

Symbol Punches Hexadecimal Decimal

Letters

A 12-1 41 65

B 12-2 42 66

c 12-3 43 67

0 12-4 44 68

E 12-5 45 69

F 12-6 46 70

G 12-7 47 71

H 12-S 4S 72

I 12-9 49 73

J 11-1 4A 74

K 11-2 4B 75

L 11-3 4C 76

M 11-4 40 77

N 11-5 4E 7S

0 11-6 4F 79

p 11-7 50 so

Q 11-S 51 S1

R 11-9 52 S2

s 0-2 53 S3

T 0-3 54 S4

u 0-4 55 S5

v 0-5 56 S6

w 0-6 57 S7

x 0-7 5S SS

y 0-S 59 S9

z 0-9 5A 90

a 12-0-1 61 97

b 12-0-2 62 9S

c 12-0-3 63 99

B-3

EBCDIC

Hexadecimal Decimal

C1 193

C2 194

C3 195

C4 196

C5 197

C6 19S

C7 199

cs 200

C9 201

01 209

02 210

03 211

04 212

05 213

06 214

07 215

OS 216

09 217

E2 226

E3 227

E4 22S

E5 229

E6 230

E7 231

ES 232

E9 233

S1 129

S2 130

S3 131

UP-8061 Rev. 3

Character

d

e

f

g

h

i

j

k

I

m

n

0

p

q

r

s

t

u

v

w

x

y

z

0

1

2

3

4

5

6

SPERRY UNIVAC OS/3
ASSEMBLER

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 2 of 5)

Printed Card ASCII
Symbol Punches Hexadecimal Decimal

d 12-0-4 64 100

e 12-0-5 65 101

f 12-0-6 66 102

g 12-0-7 67 103

h 12-0-8 68 104

i 12-0-9 69 105

j 12-11-1 6A 106

k 12-11-2 68 107

I 12-11-3 6C 108

m 12-11-4 60 109

n 12-11-5 6E 110

0 12-11-6 6F 111

p 12-11-7 70 112

q 12-11-8 71 113

r 12-11-9 72 114

s 11-0-2 73 115

t 11-0-3 74 116

u 11-0-4 75 117

v 11-0-5 76 118

w 11-0-6 77 119

x 11-0-7 78 120

y 11-0-8 79 121

z 11-0-9 7A 122

Numerals

0 0 30 48

1 1 31 49

2 2 32 50

3 3 33 51

4 4 34 52

5 5 35 53

6 6 36 54

B-4

•
EBCDIC

Hexadecimal Decimal

84 132

85 133

86 134

87 135

88 136

89 137

91 145

92 146

93 147

94 148

95 149

96 150

97 151 • 98 152

99 153

A2 162

A3 163

A4 164

A5 165

A6 166

A7 167

A8 168

A9 169

FO 240

F1 241

F2 242

F3 243

F4 244 • F5 245

F6 246

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 3 of 5)

Character
Printed Card ASCII
Symbol Punches Hexadecimal Decimal

7 7 7 37 55

8 8 8 38 56

9 9 9 39 57

Symbols

Exclamation point ! 12-8-7 21 33

Quotation mark, dieresis " 8-7 22 34

Number sign, pound sign # 8-3 23 35

Dollar sign $ 11-8-3 24 36

Percent sign % 0-8-4 25 37

Ampersand & 12 26 38

Apostrophe, acute accent 8-5 27 39

Opening parenthesis (12-8-5 28 40

Closing parenthesis) 11-8-5 29 41

Asterisk * 11-8-4 2A 42

Plus sign + 12-8-6 28 43

Comma, cedilla 0-8-3 2C 44

Minus sign, hyphen - 11 2D 45

Period, decimal point 12-8-3 2E 46

Slash, virgule, solidus I 0-1 2F 47

Colon : 8-2 3A 58

Semicolon 11-8-6 38 59

Less than < 12-8-4 3C 60

Equal sign = 8-6 30 61

Greater than > 0-8-6 3E 62

Question mark ? 0-8-7 3F 63

Commercial at symbol @ 8-4 40 64

Opening bracket [12-8-2 58 91

Closing bracket I 11-8-2 50 93

Reverse slash \ 0-8-2 5C 92

Circumflex /\ 11-8-7 5E 94

B-5

EBCDIC
Hexadecimal Decimal

F7 247

F8 248

F9 249

4F 79

7F 127

78 123

58 91

6C 108

50 80

70 125

40 77

50 93

5C 92

4E 78

68 107

60 96

48 75

61 97

7A 122

5E 94

4C 76

7E 126

6E 110

6F 111

7C 124

4A 74

5A 90

EO 224

5F 95

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Table B-3. Punched Card, ASCII, and EBCDIC Codes (Part 4 of 5)

Printed Card ASCII
Character

Symbol Punches Hexadecimal Decimal

Underline - 0-8-5 5F 95

Grave accent
\

8-1 60 96

Opening brace { 12-0 7B 123

Closing brace } 11-0 70 125

Vertical line
I

12-11 7C 124 I

Overline, tilde - 11-0-1 7E 126

Card ASCII
Character Punches Hexadecimal Decimal

Nonprintable Characters

ACK (Acknowledge) 0-9-8-6 06 6

BEL (Bell) 0-9-8-7 07 7

BS (Backspace) 11-9-6 08 8

CAN (Cancel) 11-9-8 18 24

CR (Carriage return) 12-9-8-5 OD 13

DC1 (Device control 1) 11-9-1 11 17

DC2 (Device control 2) 11-9-2 12 18

DC3 (Device control 3) 11-9-3 13 19

DC4 (Device control 4) 9-8-4 14 20

DEL (Delete) 12-9-7 7F 127

OLE (Data link escape) 12-11-9-8-1 10 16

DS (Digit select) 11-0-9-8-1 80 128

EM (End of medium) 11-9-8-1 19 25

ENO (Enquiry) 0-9-8-5 05 5

EQT (End of transmission) 9-7 04 4

ESC (Escape) 0-9-7 1B 27

ETB (End of transmission block) 0-9-6 17 23

ETX (End of text) 12-9-3 03 3

FF (Form feed) 12-9-8-4 oc 12

FS (File separator) 11-9-8-4 1C 28

B-6

•
EBCDIC

Hexadecimal Decimal

60 109

79 121

co 192

DO 208

6A 106

A1 161

EBCDIC
Hexadecimal Decimal

2E 46

2F 47 • 16 22

18 24

OD 13

11 17

12 18

13 19

3C 60

07 7

10 16

20 32

19 25

20 45

37 55

27 39

26 38

03 3 •
oc 12

1C 28

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 5 of 5)

Character Card ASCII
Punches Hexadecimal Decimal

FS (Field separator) 0-9-2 82 130

GS (Group separator) 11-9-8-5 1D 29

HT (Horizontal tabulation) 12-9-5 09 9

LF (Line feed) 0-9-5 OA 10

NAK (Negative acknowledge) 9-8-5 15 21

NUL (Null) 12-0-9-8-1 00 0

RS (Record separator) 11-9-8-6 lE 30

SI (Shift in) 12-9-8-7 OF 15

SO (Shift out) 12-9-8-6 OE 14

SOH (Start of heading) 12-9-1 01 1

SOS (Significance start) 0-9-1 81 129

SP (Space) 20 32

STX (Start of text) 12-9-2 02 2

SUB (Substitute) 9-8-7 lA 26

SYN (Synchronous idle) 9-2 16 22

US (Unit separator) 11-9-8-7 1 F 31

VT (Vertical tabulation) 12-9-8-3 OB 11

B-7

EBCDIC
Hexadecimal Decimal

22 34

10 29

05 5

25 37

30 61

00 0

lE 30

OF 15

OE 14

01 1

21 33

40 64

02 2

3F 63

32 50

lF 31

OB 11

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

C-1

Appendix C. Math Tables

C.1. HEXADECIMAL-DECIMAL INTEGER CONVERSION

The following table provides for conversion of hexadecimal and decimal numbers in the
range:

Hexadecimal Decimal

000 to FFF 0000 to 4095

In the table, the decimal value appears at the intersection of the row representing the most
significant hexadecimal digits (162 and 161) and the column representing the least
significant hexadecimal digit (16°).

Example:

hexadecimal C21 = decimal 3105

~1
3072
3088
3104
3120

3073
3089
3105
3121

2

3074
3090
3106
3122

For numbers outside the range of the table, add the following values to the table figures:

Hexadecimal

1000
2000
3000
4000
5000
6000
7000
8000
9000
AOOO
8000

Decimal

4,096
8, 192

12,288
16,384
20,480
24,576
28,672
32,768
36,864
40,960
45,056

Hexadecimal

cooo
DOOO
EOOO
FOOO

10000
20000
30000
40000
50000
60000
70000

Decimal

49, 152
53,248
57,344
61,440
65,536

131,072
196,608
262,144
327,680
393,216
458,752

UP-8061 Rev. 3

Example:

BC21 16 = 48,161 10

Hexadecimal

C21
+BOOO
+BC21

Decimal

3,105
+45,056

48, 161

SPERRY UNIVAC OS/3
ASSEMBLER

C-2

•

•

•

UP-8061 Rev. 3

• 0 1 2

00 0000 0001 0002
01 0016 0017 0018
02 0032 0033 0034
03 0048 0049 0050
04 0064 0065 0066
05 0080 0081 0082
06 0096 0097 0098
07 0112 0113 0114
08 0128 0129 0130
09 0144 0145 0146
OA 0160 0161 0162
OB 0176 0177 0178
oc 0192 0193 0194
OD 0208 0209 0210
OE 0224 0225 0226
OF 0240 0241 0242

0 1 2

10 0256 0257 0258
11 0272 0273 0274
12 0288 0289 0290
13 0304 0305 0306
14 0320 0321 0322
15 0336 0337 0338
16 0352 0353 0354
17 0368 0369 0370
18 0384 0385 0386
19 0400 0401 0402
1A 0416 0417 0418

• 18 0432 0433 0434
1C 0448 0449 0450
1D 0464 0465 0466
1 E 0480 0481 0482
1F 0496 0497 0498

0 1 2

20 0512 0513 0514
21 0528 0529 0530
22 0544 0545 0546
23 0560 0561 0562
24 0576 0577 0578
25 0592 0593 0594
26 0608 0609 0610
27 0624 0625 0626
28 0640 0641 0642
29 0656 0657 0658
2A 0672 0673 0674
28 0688 0689 0690
2C 0704 0705 0706
2D 0720 0721 0722
2E 0736 0737 0738
2F 0752 0753 0754

0 1 2

30 0768 0769 0770
31 0784 0785 0786
32 0800 0801 0802
33 0816 0817 0818
34 0832 0833 0834
35 0848 0849 0850
36 0864 0865 0866
37 0880 0881 0882
38 0896 0897 0898 • 39 0912 0913 0914
3A 0928 0929 0930
38 0944 0945 0946
3C 0960 0961 0962
3D 0976 0977 0978
3E 0992 0993 0994
3F 1008 1009 1010

SPERRY UNIV AC OS/3
ASSEMBLER

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Part 1 of 4)

3 4 5 6 7 8 9 A B

0003 0004 0005 0006 0007 0008 0009 0010 0011
0019 0020 0021 0022 0023 0024 0025 0026 0027
0035 0036 0037 0038 0039 0040 0041 0042 0043
0051 0052 0053 0054 0055 0056 0057 0058 0059
0067 0068 0069 0070 0071 0072 0073 0074 0075
0083 0084 0085 0086 0087 0088 0089 0090 0091
0099 0100 0101 0102 0103 0104 0105 0106 0107
0115 0116 0117 0118 0119 0120 0121 0122 0123
0131 0132 0133 0134 0135 0136 0137 0138 0139
0147 0148 0149 0150 0151 0152 0153 0154 0155
0163 0164 0165 0166 0167 0168 0169 0170 0171
0179 0180 0181 0182 0183 0184 0185 0186 0187
0195 0196 0197 0198 0199 0200 0201 0202 0203
0211 0212 0213 0214 0215 0216 0217 0218 0219
0227 0228 0229 0230 0231 0232 0233 0234 0235
0243 0244 0245 0246 0247 0248 0249 0250 0251

3 4 5 6 7 8 9 A B

0259 0260 0261 0262 0263 0264 0265 0266 0267
0275 0276 0277 0278 0279 0280 0281 0282 0283
0291 0292 0293 0294 0295 0296 0297 0298 0299
0307 0308 0309 0310 0311 0312 0313 0314 0315
0323 0324 0325 0326 0327 0328 0329 0330 0331
0339 0340 0341 0342 0343 0344 0345 0346 0347
0355 0356 0357 0358 0359 0360 0361 0362 0363
0371 0372 0373 0374 0375 0376 0377 0378 0379
0387 0388 0389 0390 0391 0392 0393 0394 0395
0403 0404 0405 0406 0407 0408 0409 0410 0411
0419 0420 0421 0422 0423 0424 0425 0426 0427
0435 0436 0437 0438 0439 0440 0441 0442 0443
0451 0452 0453 0454 0455 0456 0457 0458 0459
0467 0468 0469 0470 0471 0472 0473 0474 0475
0483 0484 0485 0486 0487 0488 0489 0490 0491
0499 0500 0501 0502 0503 0504 0505 0506 0507

3 4 5 6 7 8 9 A B

0515 0516 0517 0518 0519 0520 0521 0522 0523
0531 0532 0533 0534 0535 0536 0537 0538 0539
0547 0548 0549 0550 0551 0552 0553 0554 0555
0563 0564 0565 0566 0567 0568 0569 0570 0571
0579 0580 0581 0582 0583 0584 0585 0586 0587
0595 0596 0597 0598 0599 0600 0601 0602 0603
0611 0612 0613 0614 0615 0616 0617 0618 0619
0627 0628 0629 0630 0631 0632 0633 0634 0635
0643 0644 0645 0646 0647 0648 0649 0650 0651
0659 0660 0661 0662 0663 0664 0665 0666 0667
0675 0676 0677 0678 0679 0680 0681 0682 0683
0691 0692 0693 0694 0695 0696 0697 0698 0699
0707 0708 0709 0710 0711 0712 0713 0714 0715
0723 0724 0725 0726 0727 0728 0729 0730 0731
0739 0740 0741 0742 0743 0744 0745 0746 0747
0755 0756 0757 0758 0759 0760 0761 0762 0763

3 4 5 6 7 8 9 A B

0771 0772 0773 0774 0775 0776 0777 0778 0779
0787 0788 0789 0790 0791 0792 0793 0794 0795
0803 0804 0805 0806 0807 0808 0809 0810 0811
0819 0820 0821 0822 0823 0824 0825 0826 0827
0835 0836 0837 0838 0839 0840 0841 0842 0843
0851 0852 0853 0854 0855 0856 0857 0858 0859
0867 0868 0869 0870 0871 0872 0873 0874 0875
0883 0884 0885 0886 0887 0888 0889 0890 0891
0899 0900 0901 0902 0903 0904 0905 0906 0907
0915 0916 0917 0918 0919 0920 0921 0922 0923
0931 0932 0933 0934 0935 0936 0937 0938 0939
0947 0948 0949 0950 0951 0952 0953 0954 0955
0963 0964 0965 0966 0967 0968 0969 0970 0971
0979 0980 0981 0982 0983 0984 0985 0986 0987
0995 0996 0997 0998 0999 1000 1001 1002 1003
1011 1012 1013 1014 1015 1016 1017 1018 1019

C-3

c D E F

0012 0013 0014 0015
0028 0029 0030 0031
0044 0045 0046 0047
0060 0061 0062 0063
0076 0077 0078 0079
0092 0093 0094 0095
0108 0109 0110 0111
0124 0125 0126 0127
0140 0141 0142 0143
0156 0157 0158 0159
0172 0173 0174 0175
0188 0189 0190 0191
0204 0205 0206 0207
0220 0221 0222 0223
0236 0237 0238 0239
0252 0253 0254 0255

c D E F

0268 0269 0270 0271
0284 0285 0286 0287
0300 0301 0302 0303
0316 0317 0318 0319
0332 0333 0334 0335
0348 0349 0350 0351
0364 0365 0366 0367
0380 0381 0382 0383
0396 0397 0398 0399
0412 0413 0414 0415
0428 0429 0430 0431
0444 0445 0446 0447
0460 0461 0462 0463
0476 0477 0478 0479
0492 0493 0494 0495
0508 0509 0510 0511

c D E F

0524 0525 0526 0527
0540 0541 0542 0543
0556 0557 0558 0559
0572 0573 0574 0575
0588 0589 0590 0591
0604 0605 0606 0607
0620 0621 0622 0623
0636 0637 0638 0639
0652 0653 0654 0655
0668 0669 0670 0671
0684 0685 0686 0687
0700 0701 0702 0703
0716 0717 0718 0719
0732 0733 0734 0735
0748 0749 0750 0751
0764 0765 0766 0767

c D E F

0780 0781 0782 0783
0796 0797 0798 0799
0812 0813 0814 0815
0828 0829 0830 0831
0844 0845 0846 0847
0860 0861 0862 0863
0876 0877 0878 0879
0892 0893 0894 0895
0908 0909 0910 0911
0924 0925 0926 0927
0940 0941 0942 0943
0956 0957 0958 0959
0972 0973 0974 0975
0988 0989 0990 0991
1004 1005 1006 1007
1020 1021 1022 1023

UP-8061 Rev. 3

0 1 2

40 1024 1025 1026
41 1040 1041 1042
42 1056 1057 1058
43 1072 1073 1074
44 1088 1089 1090
45 1104 1105 1106
46 1120 1121 1122
47 1136 1137 1138
48 1152 1153' 1154
49 1168 1169 1170
4A 1184 1185 1186
48 1200 1201 1202
4C 1216 1217 1218
4D 1232 1233 1234
4E 1248 1249 1250
4F 1264 1265 1266

0 1 2

50 1280 1281 1282
51 1296 1297 1298
52 1312 1313 1314
53 1328 1329 1330
54 1344 1345 1346
55 1360 1361 1362
56 1376 1377 1378
57 1392 1393 1394
58 1408 1409 1410
59 1424 1425 1426
5A 1440 1441 1442
58 1456 1457 1458
5C 1472 1473 1474
5D 1488 1489 1490
5E 1504 1505 1506
5F 1520 1521 1522

0 1 2

60 1536 1537 1538
61 1552 1553 1554
62 1568 1569 1570
63 1584 1585 1586
64 1600 1601 1602
65 1616 1617 1618
66 1632 1633 1634
67 1648 1649 1650
68 1664 1665 1666
69 1680 1681 1682
6A 1696 1697 1698
68 1712 1713 1714
6C 1728 1729 1730
6D 1744 1745 1746
6E 1760 1761 1762
6F 1776 1777 1778

0 1 2

70 1792 1793 1794
71 1808 1809 1810
72 1824 1825 1826
73 1840 1841 1842
74 1856 1857 1858
75 1872 1873 1874
76 1888 1889 1890
77 1904 1905 1906
78 1920 1921 1922
79 1936 1937 1938
7A 1952 1953 1954
78 1968 1969 1970
7C 1984 1985 1986
7D 2000 2001 2002
7E 2016 2017 2018
7F 2032 2033 2034

SPERRY UNIV AC OS/3
ASSEMBLER

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Part 2 of 4)

3 4 5 6 7 8 9 A 8 c

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
1203 1204 1205 1205 1207 1208 1209 1210 1211 1212
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

3 4 5 6 7 8 9 A 8 c

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

3 4 5 6 7 8 9 A 8 c

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

3 4 5 6 7 8 9 A 8 c

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

C-4

• D E F

1037 1038 1039
1053 1054 1056
1069 1070 1071
1085 1086 1087
1101 1102 110~
1117 1118 111~
1133 1134 113~
1149 1150 1151
1165 1166 116~
1181 1182 118~
1197 1198 119~
1213 1214 121~
1229 1230 1231
1245 1246 124~
1261 1262 1263
1277 1278 1279

D E F

1293 1294 1295
1309 1310 1311
1325 1326 1327
1341 1342 1343
1357 1358 1359
1373 1374 1375
1389 1390 1391
1405 1406 1407
1421 1422 1423
1437 1438 1439
1453 1454 1455
1469 1470 1471
1485 1486 1487
1501 1502 1503 • 1517 1518 1519
1533 1534 1535

D E F

1549 1550 1551
1565 1566 1567
1581 1582 1583
1597 1598 1599
1613 1614 1615
1629 1630 1631
1645 1646 1647
1661 1662 1663
1677 1678 1679
1693 1694 1695
1709 1710 1711
1725 1726 1727
1741 1742 1743
1757 1758 1759
1773 1774 1775
1789 1790 1791

D E F

1805 1806 1807
1821 1822 1823
1837 1838 1839
1853 1854 1855
1869 1870 1871
1885 1886 1887
1901 1902 1903
1917 1918 1919
1933 1934 1935
1949 1950 1951
1965 1966 1967
1981 1982 1983 • 1997 1998 1999
2013 2014 2015
2029 2030 2031
2045 2046 2047

UP-8061 Rev. 3

• 0 1 2

80 2048 2049 2050
81 2064 2065 2066
82 2080 2081 2082
83 2096 2097 2098
84 2112 2113 2114
85 2128 2129 2130
86 2144 2145 2l46.
87 2160 2161 2162
88 2176 2177 2178
89 2192 2193 2194
SA 2208 2209 2210
BB 2224 2225 2226
BC 2240 2241 2242
80 2256 2257 2258
BE 2272 2273 2274
BF 2288 2289 2290

'--·
0 1 2

90 2304 2305 2306
91 2320 2321 2322
92 2336 2337 2338
93 2352 2353 2354
94 2368 2369 2370
95 2384 2385 2386
96 2400 2401 2402
97 2416 2417 2418
98 2432 2433 2434
99 2448 2449 2450
9A 2464 2465 2466
9B 2480 2481 2482
9C 2496 2497 2498
90 2512 2513 2514 • 9E 2528 2529 2530
9F 2544 2545 2546

0 1 2

AO 2560 2561 2562
A1 2576 2577 2578
A2 2592 2593 2594
A3 2608 2609 2610
A4 2624 2625 2626
A5 2640 2641 2642
AS 2656 2657 2658
A7 2672 2673 2674
AB 2688 2689 2690
A9 2704 2705 2706
AA 2720 2721 2722
AB 2736 2737 2738
ACO 2752 2753 2754
ADO 2768 2769 2770
AEO 2784 2785 2786
AFO 2800 2801 2802

0 1 2

BO 2816 2817 2818
81 2832 2833 2834
B2 2848 2849 2850
B3 2864 2865 2866
84 2880 2881 2882
85 2896 2897 2898
B6 2912 2913 2914
B7 2928 2929 2930

• BB 2944 2945 2946
B9 2960 2961 2962
BA 2976 2977 2978
BB 2992 2993 2994
BC 3008 3009 3010
BO 3024 3025 3026
BE 3040 3041 3042
BF 3056 3057 3058

SPERRY UNIVAC OS/3
ASSEMBLER

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Part 3 of 4)

3 4 5 6 7 8 9 A . 8

2051 2052 2053 2054 2055 2056 2057 2058 2059
2067 2068 2069 2070 2071 2072 2073 2074 2075
2083 2084 2085 2086 2087 2088 2089 2090 2091
2099 2100 2101 2102 2103 2104 2105 2106 2107
2115 2116 2117 2118 2119 2120 2121 2122 2123
2131 2132 2133 2134 2135 2136 2137 2138 2139
2147 2148 2149 2150 2151 2152 2153 2154 2155
2163 2164 2165 2166 2167 2168 2169 2170 2171
2179 :mio 2181 2182 2183 2184 2185 2186 2187
2195 2196 2197 2198 2199 2200 2201 2202 2203
2211 2212 2213 2214 2215 2216 2217 2218 2219
2227 2228 2229 2230 2231 2232 2233 2234 2235
2243 2244 2245 2246 2247 2248 2249 2250 2251
2259 2260 2261 2262 2263 2264 2265 2266 2267
2275 2276 2277 2278 2279 2280 2281 2282 2283
2291 2292 2293 2294 2295 2296 2297 2298 2299

3 4 5 6 7 8 9 A B

2307 2308 2309 2310 2311 2312 2313 2314 2315
2323 2324 2325 2326 2327 2328 2329 2330 2331
2339 2340 2341 2342 2343 2344 2345 2346 2347
2355 2356 2357 2358 2359 2360 2361 2362 2363
2371 2372 2373 2374 2375 2376 2377 2378 2379
2387 2388 2389 2390 2391 2392 2393 2394 2395
2403 2404 2405 2406 2407 2408 2409 2410 2411
2419 2420 2421 2422 2423 2424 2425 2426 2427
2435 2436 2437 2438 2439 2440 2441 2442 2443
2451 2452 2453 2454 2455 2456 2457 2458 2459
2467 2468 2469 2470 2471 2472 2473 2474 2475
2483 2484 2485 2486 2487 2488 2489 2490 2491
2499 2500 2501 2502 2503 2504 2505 2506 2507
2515 2516 2517 2518 2519 2520 2521 2522 2523
2531 2532 2533 2534 2535 2536 2537 2538 2539
2547 2548 2549 2550 2551 2552 2553 2554 2555

3 4 5 6 7 8 9 A B

2563 2564 2565 2566 2567 2568 2569 2570 2571
2579 2580 2581 2582 2583 2584 2585 2586 2587
2595 2596 2597 2598 2599 2600 2601 2602 2603
2611 2612 2613 2614 2615 2616 2617 2618 2619
2627 2628 2629 2630 2631 2632 2633 2634 2635
2643 2644 2645 2646 2647 2648 2649 2650 2651
2659 2660 2661 2662 2663 2664 2665 2666 2667
2675 2676 2677 2678 2679 2680 2681 2682 2683
2691 2692 2693 2694 2695 2696 2697 2698 2699
2707 2708 2709 2710 2711 2712 2713 2714 2715
2723 2724 2725 2726 2727 2728 2729 2730 2731
2739 2740 2741 2742 2743 2744 2745 2746 2747
2755 2756 2757 2758 2759 2760 2761 2762 2763
2771 2772 2773 2774 2775 2776 2777 2778 2779
2787 2788 2789 2790 2791 2792 2793 2794 2795
2803 2804 2805 2806 2807 2808 2809 2810 2811

3 4 5 6 7 8 9 A B

2819 2820 2821 2822 2823 2824 2825 2826 2827
2835 2836 2837 2838 2839 2840 2841 2842 2843
2851 2852 2853 2854 2855 2856 2857 2858 2859
2867 2868 2869 2870 2871 2872 2873 2874 2875
2883 2884 2885 2886 2887 2888 2889 2890 2891
2899 2900 2901 2902 2903 2904 2905 2906 2907
2915 2916 2917 2918 2919 2920 2921 2922 2923
2931 2932 2933 2934 2935 2936 2937 2938 2939
2947 2948 2949 2950 2951 2952 2953 2954 2955
2963 2964 2965 2966 2967 2968 2969 2970 2971
2979 2980 2981 2982 2983 2984 2985 2986 2987
2995 2996 2997 2998 2999 3000 3001 3002 3003
3011 3012 3013 3014 3015 3016 3017 3018 3019
3027 3028 3029 3030 3031 3032 3033 3034 3035
3043 3044 3045 3046 3047 3048 3049 3050 3051
3059 3060 3061 3062 3063 3064 3065 3066 3067

C-5

c D E F

2060 2061 2062 2063
2076 2077 2078 2079
2092 2093 2094 2095
2108 2109 2110 2111
2124 2125 2126 2127
2140 2141 2142 2143
2156 2157 2158 2159
2172 2173 2174 2175
2188 2189 2190 2191
2204 2205 2206 2207
2220 2221 2222 2223
2236 2237 2238 2239
2252 2253 2254 2255
2268 2269 2270 2271
2284 2285 2286 2287
2300 2301 2302 2303

c D E F

2316 2317 2318 2319
2332 2333 2334 2335
2348 2349 2350 2351
2364 2365 2366 2367
2380 2381 2382 2383
2396 2397 2398 2399
2412 2413 2414 2415
2428 2429 2430 2431
2444 2445 2446 2447
2460 2461 2462 2463
2476 2477 2478 2479
2492 2493 2494 2495
2508 2509 2510 2511
2524 2525 2526 2527
2540 2541 2542 2543
2556 2557 2'558 2559

c D E F

2572 2573 2574 2575
2588 2589 2590 2591
2604 2605 2606 2607
2620 2621 2622 2623
2636 2637 2638 2639
2652 2653 2654 2655
2668 2669 2670 2671
2684 2685 2686 2687
2700 2701 2702 2703
2716 2717 2718 2719
2732 2733 2734 2735
2748 2749 2750 2751
2764 2765 2766 2767
2780 2781 2782 2783
2796 2797 2798 2799
2812 2813 2814 2815

c D E F

2828 2829 2830 2831
2844 2845 2846 2847
2860 2861 2862 2863
2876 2877 2878 2879
2892 2893 2894 2895
2908 2909 2910 2911
2924 2925 2926 2927
2940 2941 2942 2943
2956 2957 2958 2959
2972 2973 2974 2975
2988 2989 2990 2991
3004 3005 3006 3007
3020 3021 3022 3023
3036 3037 3038 3039
3052 3053 3054 3055
3068 3069 3070 3071

UP-8061 Rev. 3

0 1 2

co 3072 3073 3074
Cl 3088 3089 3090
C2 3104 3105 3106
C3 3120 3121 3122
C4 3136 3137 3138
cs 3152 3153 3154
C6 3168 3169 3170
C7 3184 3185 3186
ca 3200 3201 3202
C9 3216 3217 3218
CA 3232 3233 3234
CB 3248 3249 3250
cc 3264 3265 3266
CD 3280 3281 3282
CE 3296 3297 3298
CF 3312 3313 3314

0 1 2

DO 3328 3329 3330
01 3344 3345 3346
02 3360 3361 3362
03 3376 3377 3378
04 3392 3393 3394
05 3408 3409 3410
06 3424 3425 3426
07 3440 3441 3442
08 3456 3457 3458
09 3472 3473 3474
DA 3488 3489 3490
DB 3504 3505 3506
DC 3520 3521 3522
DD 3536 3537 3538
DE 3552 3553 3554
OF 3568 3569 3570

0 1 2

EO 3584 3585 3586
El 3600 3601 3602
E2 3616 3617 3618
E3 3632 3633 3634
E4 3648 3649 3650
E5 3664 3665 3666

: E6 3680 3681 3682
: E7 3696 3697 3698

EB 3712 3713 3714
E9 3728 3729 3730
EA 3744 3745 3746
EB 3760 3761 3762
EC 3776 3777 3778
ED 3792 3793 3794
EE 3808 3809 3810
EF 3824 3825 3826

0 1 2

I FO
3840 3841 3842

Fl 3856 3857 3858
F2 3872 3873 3874

, F3 3888 3889 3890
F4 3904 3905 3906
F5 3920 3921 3922
F6 3936 3937 3938
F7 3952 3953 3954
F8 3968 3969 3970
F9 3984 3985 3986
FA 4000 4001 4002
FB 4016 4017 4ffl8
FC 4032 4033 4034
FD 4048 4049 4050
FE 4064 4065 4066
FF 4080 4081 4082

SPERRY UNIVAC OS/3
ASSEMBLER

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Part 4 of 4)

3 4 5 6 7 8 9 A 8

3075 3076 3077 3078 3079 3080 3081 3082 3083
3091 3092 3093 3094 3095 3096 3097 3098 3099
3107 3108 3109 3110 3111 3112 3113 3114 3115
3123 3124 3125 3126 3127 3128 3129 3130 3131
3139 3140 3141 3142 3143 3144 3145 3146 3147
3155 3156 3157 3158 3159 3160 3161 3162 3163
3171 3172 3173 3174 3175 3176 3177 3178 3179
3187 3188 3189 3190 3191 3192 3193 3194 3195
3203 3204 3205 3206 3207 3208 3209 3210 3211
3219 3220 3221 3222 3223 3224 3225 3226 3227
3235 3236 3237 3238 3239 3240 3241 3242 3243
3251 3252 3253 3254 3255 3256 3257 325& 3259
3267 3268 3269 3270 3271 3272 3273 3274 3275
3283 3284 3285 3286 3287 3288 3289 3290 3291
3299 3300 3301 3302 3303 3304 3305 3306 3307
3315 3316 3317 3318 3319 3320 3321 3322 3323

3 4 5 6 7 8 9 A B

3331 3332 3333 3334 3335 3336 3337 3338 3339
3347 3348 3349 3350 3351 3352 3353 3354 3355
3363 3364 3365 3366 3367 3368 3369 3370 3371
3379 3380 3381 3382 3383 3384 3385 3386 3387
3395 3396 3397 3398 3399 3400 3401 3402 3403
3411 3412 3413 3414 3415 3416 3417 3418 3419
3427 3428 3429 3430 3431 3432 3433 3434 3435
3443 3444 3445 3446 3447 3448 3449 3450 3451
3459 3460 3461 3462 3463 3464 3465 3466 3467
3475 3476 3477 3478 3479 3480 3481 3482 3483
3491 3492 3493 3494 3495 3496 3497 3498 3499
3507 3508 3509 3510 3511 3512 3513 3514 3515
3523 3524 3525 3526 3527 3528 3529 3530 3531
3539 3540 3541 3542 3543 3544 3545 3546 3547
3555 3556 3557 3558 3559 3560 3561 3562 3563
3571 3572 3573 3574 3575 3576 3577 3578 3579

3 4 5 I 6 7 8 9 A B

3587 3588 3589 3590 3591 3592 3593 3594 3595
3603 3604 3605 3606 3607 3608 3609 3610 3611
3619 3620 3621 3622 3623 3624 3625 3626 3627
3635 3636 3637 3638 3639 3640 3641 3642 3643
3651 3652 3653 3654 3655 3656 3657 3658 3659
3667 3668 3669 3670 3671 3672 3673 3674 3675
3683 3684 3685 3686 3687 3688 3689 3690 3691
3699 3700 3701 3702 3703 3704 3705 3706 3707
3715 3716 3717 3718 3719 3720 3721 3722 3723
3731 3732 3733 3734 3735 3736 3737 3738 3739
3747 3748 3749 3750 3751 3752 3753 3754 37E5
3763 3764 3765 3766 3767 3768 3769 3770 3771
3779 3780 3781 3782 3783 3784 3785 3786 3787
3795 3796 3797 3798 3799 3800 3801 3802 3803
3811 3812 3813 3814 3815 3816 3817 3818 3819
3827 3828 3829 3830 3831 3832 3833 3834 3835

3 4 5 6 7 8 9 A B

3843 3844 3845 3846 3847 3848 3849 3850 3851
3859 3860 3861 3862 3863 3864 3865 3866 3867
3875 3876 3877 3878 3879 3880 3881 3882 3883
3891 3892 3893 3894 3895 3896 3897 3898 3899
3907 3908 3909 3910 3911 3912 3913 3914 3915
3923 3924 3925 3926 3927 3928 3929 3930 3931
3939 3940 3941 3942 3943 3944 3945 3946 3947
3955 3956 3957 3958 3959 3960 3961 3962 3963
3971 3972 3973 3974 3975 3976 3977 3978 3979
3987 3988 3989 3990 3991 3992 3993 3994 3995
4003 4004 4005 4006 4007 4008 4009 4010 4011
4019 4020 4021 4022 4023 4024 4025 4026 4027
4035 4036 4037 4038 4039 4040 4041 4042 4043
4051 4052 4053 4054 4055 4056 4057 4058 4059
4067 4068 4069 4070 4071 4072 4073 4074 4075
4083 4084 4085 4086 4087 4088 4089 4090 4091

C-6

• c D E F

3084 3085 3086 3087
3100 3101 3102 3103
3116 3117 3118 3119
3132 3133 3134 3135
3148 3149 3150 3151
3164 3165 3166 3167
3180 3181 3182 3183
3196 3197 3198 3199
3212 3213 3214 3215
3228 3229 3230 3231
3244 3245 3246 3247
3260 3261 3262 3263
3276 3277 3278 3279
3292 3293 3294 3295
3308 3309 3310 3311
3324 3325 3326 3327

c D E F

3340 3341 3342 3343
3356 3357 3358 3359
3372 3373 3374 3375
3388 3389 3390 3391
3404 3405 3406 3407
3420 3421 3422 3423
3436 3437 3438 3439
3452 3453 3454 3455
3468 3469 3470 3471
3484 3485 3486 3487
3500 3501 3502 3503
3516 3517 3518 3519
3532 3533 3534 3535
3548 3549 3550 3551 • 3564 3565 3566 3567
3580 3581 3582 3583

c D E F

3596 3597 3598 3599
3612 3613 3614 3615
3628 3629 3630 3631
3644 3645 3646 3647
3660 3661 3662 3663
3676 3677 3678 3679
3692 3693 3694 3695
3708 3709 37t0 3711
3724 3725 3726 3727
3740 3741 3742 3743
3756 3757 3758 3759
3772 3773 3774 3775
3788 3789 3790 3791
3804 3805 3806 3807
3820 3821 3822 3823
3836 3837 3838 3839

c D E F

3852 3853 3854 3855
3868 3869 3870 3871
3884 3885 3886 3887
3900 3901 3902 3903
3916 3917 3918 3919
3932 3933 3934 3935
3948 3949 3950 3951
3964 3965 3966 3967
3980 3981 3982 3983
3996 3997 3998 3999
4012 4013 4014 4015
4028 4029 4030 4031 • 4044 4045 4046 4047
4060 4061 4062 4063
4076 4077 4078 4079
4092 4093 4094 4095

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

C-7

• C.2. HEXADECIMAL FRACTIONS (APPROXIMATE VALUES)

•

•

First Digit Second Digit Third Digit Fourth Digit

Hex. Decimal Hex. Decimal Hex. Decimal Hex . Decimal

.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 . 0000 .0000 0000 0000

.1 .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 .0000 1525 8789

.2 .1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 .0000 3051 7578

.3 .1875 .03 .0117 1875 .003 .0007 3242 1875 .0003 .0000 4577 6367

.4 .2500 .04 .0156 2500 .004 .0009 7656 2500 .0004 .0000 6103 5156

.5 .3125 .05 .0195 3125 .005 .0012 2070 3125 .0005 .0000 7629 3945

.6 .3750 .06 .0234 3750 .006 .0014 6486 3750 .0006 .0000 9155 2734

.7 .4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .0001 0681 1523

.8 .5000 .08 .0312 5000 .008 .0019 5312 5000 .0008 .0001 2207 0313

.9 .5625 .09 .0351 5625 .009 .0021 9726 5625 .0009 .0001 3732 9102

.A .6250 .OA .0390 6250 .OOA .0024 4140 6250 .OOOA .0001 5258 7891

.B .6875 .OB .0429 6875 .OOB .0026 8554 6875 .0008 .0001 6784 6680

.c .7500 .OC .0468 7500 .ooc .0029 2968 7500 .oooc .0001 8310 5469

.D .8125 .OD .0507 8125 .000 .0031 7382 8125 .0000 .0001 9836 4258

.E .8750 .OE .0546 8750 .OOE .0034 1796 8750 .OOOE .0002 1362 3047

.F .9375 .OF .0585 9375 .OOF .0036 6210 9375 .OOOF .0002 2888 1836

To convert a 4-digit (2-byte) hexadecimal fraction to a decimal fraction, add the values
shown in the above table for each of the hexadecimal digits to be converted as illustrated
below. The hexadecimal fraction .B5A 1 equals the approximate decimal fraction . 70948791
from the above table .

.B

.05

.OOA

.0001

.B5A1

from the table equals .6875
from the table equals .01953125
from the table equals .002441406250
from the table equals .000015258789

equals the sum . 70948791 5039

UP-8061 Rev. 3

C.3. POWERS OF 2

1
2

4
8

17
34

68
137
274
549

099

1
2
4
8

16
33
67

134

268
536
073
147

294
589
179
359

719
438
877
755

511

1

2

4
8

16
32

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

0 1.0
2 1 0.5
4 2 0.25

8 3 0.125

16 4 0.062 5
32 5 0.031 25
64

128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776

6 O.Q15 625
7 0.007 812

8 0.003 906
9 0.001 953

10 0.000 976
11 0.000 488

12 0.000 244
13 0.000 122
14 0.000 061
15 0.000 030

16 0.000 015
17 0.000 007
18 0.000 003
19 0.000 001

20 0.000 000
21 0.000 000
22 0.000 000
23 0.000 000

24 0.000 000
25 0.000 000
26 0.000 000
27 0.000 000

28 0.000 000
29 0.000 000
30 0.000 000
31 0.000 000

32 0.000 000
33 0.000 000
34 0.000 000
35 0.000 000

36 0.000 000
37 0.000 000
38 0.000 000
39 0.000 000

40 0.000 000

5

25
125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

SPERRY UNIVAC OS/3
ASSEMBLER

5
25

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

5
25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

5
25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

5

25
125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

5
25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

5
25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

5
25

625
812

906
453
226
613

806
903
951
475

237

25
125
562
281

640
320
660
830

915

C-8

5
25

625
312
156
078

039

5
25
125

062 5

•

•

•

•

•

UP-8061 Rev. 3

C.4. POWERS OF 16

4
68

1 099
17 592

281 474
4 503 599

72 057 594
152 921 504

SPERRY UNIVAC OS/3
ASSEMBLER

16"

16
256

4 096
65 536

1 048 576
16 777 216

268 435 456
294 967 296
719 476 736
511 627 776
186 044 416
976 710 656
627 370 496
037 927 936
606 846 976

C-9

n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

These powers of 16 are especially useful in determining the value of floating-point
numbers .

•

•

•

•

•

•

UP-8061 Rev. 3

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

Condition Codes

D IF RESULT~ 0, SET TO 0
D IF RESULT <o. SET TO 1
D 1F RESULT >o. SET TO 2
01F OVERFLOW, SET TO 3

D UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

D-1

Appendix D. Check-Off Table Terms

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D
0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

D NONE

The check-off table is a fast reference source for its associated instruction. The table points
where to look for possible errors when writing your programs and helps you debug your
program when it does not run correctly. A program interrupt occurs when the hardware
detects an improper specification, use of instructions or data. Interrupt requests of this type
cause the instruction currently being executed to be suppressed or terminated. When a
table is used with an instruction, the checked (•) condition codes and program exceptions
are the only ones that apply to that instruction. The program exceptions are explained in the
following list, as well as the instruction to which it applies.

• Addressing

A storage location outside the range of the installed storage is referenced by a
program-specified address.

• Data

An invalid sign or digit code is detected in decimal operands.

Fields in decimal arithmetic overlap incorrectly.

The first operand of the multiply decimal instruction does not have a sufficient
number of high-order zero digits.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

D-2

• Decimal Divide

The quotient of a divide decimal instruction exceeds the capacity of the quotient part of
the first operand field.

• Decimal Overflow

The result of an add decimal, subtract decimal, or zero and add instruction exceeds the
capacity of the first operand location.

• Execute

The subject instruction of an execute instruction is an execute instruction.

• Exponent Overflow

The final characteristic resulting from a floating-point arithmetic operation exceeds
127.

• Exponent Underflow

•

The final characteristic resulting from a floating-point arithmetic operation is less than
zero.

Fixed-Point Divide

The quotient of a fixed-point divide operation exceeds the capacity of the first operand
(including division by zero) by the result of a convert to binary instruction exceeds 31
bits.

• Fixed-Point Overflow

A fixed-point add or subtract operation exceeds the capacity of the first operand field.

• Floating-Point Divide

The divisor fraction in a floating-point divide operation is equal to zero.

• Operation

An illegal operation has been attempted or an operation using a noninstalled processor
feature has been attempted.

• Protection

•

A storage protection violation occurs on a program-generated address when the
protection feature is installed.

Significance

The final fraction resulting from a floating-point addition or subtraction is equal to zero.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

D-3

• Specification

The unit of information referenced is not on an appropriate boundary.

An invalid modifier field is specified in the STR instruction.

The R1 field of an instruction which uses an even/odd pair of registers (64-bit
operand) does not specify an even register.

A floating-point register other than 0, 2, 4, or 6 is specified.

A multiplicand or divisor in decimal arithmetic exceeds 15 digits and sign.

The first operand field is shorter than, or equal in length to, the second operand in
decimal multiply and decimal divide instructions .

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Appendix E.

E-1

Instruction Listings

Included in this appendix are alphabetic listings of the mnemonic codes (Table E-1) and
instruction names (Table E-2) and a numeric list of the machine codes (Table E-3). In
Tables E-2 and E-3, unless otherwise indicated, mnemonic instructions are available in
native mode only.

Table E-1. Mnemonic List of Instructions (Part 1 of 4)

Machine Byte Source Code Format
Mnemonic Instruction Name

Code Length Explicit Implicit

A Add SA 4 r 1 'd2(x2,b2) r
1
s
2

(x2)

AD Add Normalized, Long 6A 4 r 1 'd2(x2,b2) r 1 's2 (x2)

ADR Add Normalized, Long 2A 2 r 1,r 2 r
1

,r
2

AE Add Normalized, Short 7A 4 r 1 'd2(x2,b2) r 1 '52(x2)

AER Add Normalized, Short 3A 2 r 1,r
2 r

1
,r

2
AH Add Half Word 4A 4 r

1
,d

2
(x

2
,b

2
) r 1 '52(x2)

Al Add Immediate 9A 4 d1 (b1),i2 51,i2
AL Add Logical SE 4 r 1 'd2(x2,b2) r 1 '52(x2)

ALR Add Logical 1E 2 r
1

,r r 1,r
2

AP Add Decimal FA 6 d 1 o1.b1 l.d202.b2 l 51 01),52
0

2
)

AR Add 1A 2 r 1,r 2 r 1,r
2

AU Add Unnormalized, Short 7E 4 r
1

,d
2

(x
2

,b
2

) r 1 '52(x2)

AUR Add Unnormalized, Short 3E 2 r 1,r 2 r
1

,r
2

AW Add Unnormalized, Long 6E 4 r 1 'd2 (x2,b2) r 1 '52(x2)
AWR Add Unnormalized, Long 2E 2 r 1 'r2 r 1,r

2
BAL Branch and Link 4S 4 r 1 ,d2 (x2,b2) r 1 ·52(x2)

BALR Branch and Link OS 2 r 1,r 2 r 1,r 2
BAS Branch and Store 4D 4 ~ compatibility ~
BASR Branch and Store OD 2 mode only

BC Branch on Condition 47 4 i,d
2

(x
2

,b
2

) i,5
2

(x
2

)

BCR Branch on Condition 07 2 i,r
2 i,r2

BCT Branch on Count 46 4 r 1 'd2(x2,b2) r 1 '52(x2)

BCTR Branch on Count 06 2 r 1,r 2 r1 ,r2
BXH Branch on Index High 86 4 r1,r3,d

2
(b

2
) r1,r3,52

BXLE Branch on Index Low or Equal 87 4 r
1
,r

3
,d

2
(b

2
) r 1 'r3,52

c Compare Algebraic S9 4 r 1 'd2(x2,b2) r 1 '52 (x2)

CD Compare, Long 69 4 r 1 •d2(x2,b2) r 1,52(x2)

CDR Compare, Long 29 2 r 1,r 2 r 1,r 2
CE Compare, Short 79 4 r 1 'd2(x2,b2) r 1 '52(x2)

CER Compare, Short 39 2 r
1
,r

2
r 1,r 2

CH Compare Half Word 49 4 r
1

,d
2

(x
2

,b
2

) r 1 '52(x2)

CL Compare Logical SS 4 r 1 'd2(x2,b2) r 1 '52(x2)

CLC Compare Logical DS 6 d1 ,(l,b1),d2(b2) 51 (I) ,52

CLI Compare Logical Immediate 9S 4 d1(b,),i2 s1,i2 -------

UP-8061 Rev. 3

Mnemonic

CLR

CP

CR

CVB

CVD

D

DD

DOR

DE

DER

DIAG

DP

DR

ED

EDMK

EX

HOR

HER

HPR

IC

ISK

L

LA

LCDR

LCER

LCR

LCS

LD

LOR

LE

LER

LH

LM

LNDR

LNER

LNR

LPDR

LPER

LPR

LPSW

LR

LTDR

LTER

LTR

M

MD

MOR

SPERRY UNIVAC OS/3
ASSEMBLER

E-2

Table E-1. Mnemonic List of Instructions (Part 2 of 4)

Source Code Format

Instruction Name Machine Byte
Code Length Explicit Implicit

Compare Logical 1S 2 r
1
,r

2
r
1
,r

2
Compare Decimal F9 6 d 1 o1,b1 l,d2

02,b2l s1 01
),s

2
0

2
)

Compare Algebraic 19 2 r 1,r
2

r 1,r 2
Convert to Binary 4F 4 r 1 'd2(x2,b2) r 1 's2(x2)

Convert to Decimal 4E 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Divide SD 4 r 1 'd2(x2,b2) r 1 's2(x2)

Divide, Long 60 4 r 1 'd2(x2,b2) r 1 's2(x2)

Divide, Long 20 2 r 1,r 2 r 1 'r2

Divide, Short 70 4 r 1 'd2(x2,b2) r 1 's2(x2)

Divide, Short 30 2 r 1,r
2

r 1,r 2

Diagnose 83 4 (Privileged) (Privileged)

Divide Decimal FD 6 d1 o1.b1, ,d
2
0

2
,b

2
l s

1
(1

1
),,s

2
(1

2
)

Divide 1D 2 r
1
,r

2 r1,r
2

Edit DE 6 d1 (l,b,),d2(b2) s, (I) ,s2

Edit and Mark DF 6 d1 (l,b,),d2(b2) s1 (I) ,s2

Execute 44 4 r 1 'd2(x2,b2) r 1 's2(x2)

Halve, Long 24 2 r 1,r 2 r 1,r 2
Halve, Short 34 2 r 1,r

2 r 1,r
2

Halt and Proceed 99 4 (Privileged) (Privileged)

Insert Character 43 4 r 1 'd2(x2,b2) r 1 's2 (x2)

Insert Storage Key 09 2 (Privileged) (Privileged)

Load S8 4 r 1 'd2 (x2,b2) r
1

,s
2

(x
2

)

Load Address 41 4 r 1 'd2(x2,b2) r 1 's2(x2)

Load Complement, Long 23 2 r 1,r 2 r 1,r 2
Load Complement, Short 33 2 r 1,r 2 r 1,r

2
Load Complement 13 2 r 1,r

2 r 1,r
2

Load Control Storage 81 4 (Privileged) (Privileged)

Load, Long 68 4 r 1 'd2(x2,b2) r 1 's2(x2)

Load, Long 28 2 r1,r
2 r 1,r

2
Load, Short 78 4 r

1
,d

2
(x

2
,b

2
) r 1 's2 (x2)

Load, Short 38 2 r
1
,r

2 r
1
,r

2
Load Half Word 48 4 r 1 'd2(x2,b2) r 1 's2 (x2)
Load Multiple 98 4 r 1,r 3 ,d2 (b2) r1,r3,s

2
Load Negative, Long 21 2 r 1,r 2 r 1,r 2
Load Negative, Short 31 2 r 1,r 2 r 1,r

2
Load Negative 11 2 r 1,r 2 r 1,r

2
Load Positive, Long 20 2 r 1,r

2 r 1 'r2
Load Positive, Short 30 2 r 1,r 2 r 1,r

2
Load Positive 10 2 r 1,r

2 r 1,r
2

Load Program Status Word 82 4 (Privileged) (Privileged)

Load 18 2 r 1,r 2 r 1,r
2

Load and Test, Long 22 2 r 1,r 2 r 1,r
2

Load and Test, Short 32 2 r 1.r 2 r 1,r 2
Load and Test 12 2 r 1,r 2 r 1 'r2
Multiply SC 4 r 1 'd2(x2,b2) r

1
,s

2
(x

2
)

Multiply, Long 6C 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Multiply, Long 2C 2 r 1 'r2 r 1,r
2

•

•

UP-8061 Rev. 3

• Mnemonic

ME

MER

MH

MP

MR

MVC

MVI

MVN

MVO

MVZ

N

NC

NI

NR

0

oc
01

OR

PACK

s • SD

SOR

SE

SER

SH

SIO

SL

SLA

SLDA

SLDL

SLL

SLM

SLR

SP

SPM

SR

SRA

SADA

SRDL

SRL

SSFS

SSK

SSM

• SSAS

SSTM

ST

STC

STD

SPERRY UNIVAC OS/3
ASSEMBLER

E-3

Table E-1. Mnemonic List of Instructions (Part 3 of 4)

Source Code Format
Machine Byte

Instruction Name Code Length
Explicit Implicit

Multiply, Short 7C 4 r 1 'd2(x2,b2) r 1 's2(x2)
Multiply, Short 3C 2 r1 ,r2 r

1
,r

2
Multiply Half Word 4C 4 r 1 'd2 (x2,b2) r 1 's2(x2)
Multiple Decimal FC 6 d1 o1,b1 i ,d202.b2l s1 (1 1),s2

(1
2

)

Multiply 1C 2 r
1

,r
2 r 1,r 2

Move Characters 02 6 d1 (l,b,),d2(b2) s, (I). 52
Move Immediate 92 4 d1 (b1 l.i2 s1,i2
Move Numerics 01 6 d1 (l,b,),d2(b2) s

1
(l),s

2
Move With Offset F1 6 d1 o1.b1 l.d2(1 2,b2 l s1 (1 1),s2

U
2

l

Move Zones 03 6 d1 (l,b,),d2(b2) s, (I) ,52
AND Logical 54 4 r 1 'd2(x2,b2) r 1 's2 (x2)
AND Logical 04 6 d1 (l,b1),d2(b2) s1 (ll,s2
AND Logical Immediate 94 4 d, (b, l.i2 s, ,i2
AND Logical 14 2 r 1 'r2 r 1,r

2
OR Logical 56 4 r 1 'd2(x2,b2) r

1
,s

2
(x

2
l

OR Logical 06 6 d1 (l,b,),d2(b2) s, (I) ,52

OR Logical Immediate 96 4 d1(b1).i2 s, ,i2
OR Logical 16 2 r 1,r

2 r
1
,r

2
Pack F2 6 d1 o1.b1 l,d2112.b

2
l s

1
(1

1
),s

2
(1

2
)

Subtract 58 4 r 1 'd2(x2,b2) r 1 ,52 (x2)
Subtract Normalized, Long 68 4 r

1
,d

2
(x

2
,b

2
) r

1
,s

2
(x

2
)

Subtract Normalized, Long 28 2 r1 ,r2 r1,r
2

Subtract Normalized, Short 78 4 r 1 'd2(x2,b2) r
1

,5
2

(x
2

)

Subtract Normalized, Short 38 2 r 1,r 2 r 1,r 2
Subtract Half Word 48 4 r 1 'd2(x2,b2) r

1
,s

2
(x

2
)

Start 1/0 9C 4 (Privileged) (Privileged)

Subtract Logical SF 4 r1,d2(x
2

,b
2

) r
1

,s
2

(x
2

)

Shift Left Single Algebraic S8 4 r 1 'd2(b2) r1 ,52
Shift Left Double Algebraic SF 4 r 1 'd2(b2) r 1,s2
Shift Left Double Logical SD 4 r 1 'd2(b2) r

1
,s

2
Shift Left Single Logical S9 4 r 1'd2(b2) r 1,s2
Supervisor Load Multiple 8S 4 (Privileged) (Privileged)

Subtract Logical 1F 2 r 1,r 2 r 1,r 2
Subtract Decimal F8 6 d1 o1,b1 l.d202,b

2
l s

1
(1

1
),s

2
(1

2
)

Set Program Mask 04 2 r 1 r 1
Subtract 18 2 r

1
,r

2 r 1,r
2

Shift Right Single Algebraic SA 4 r
1

,d
2

(b
2

) r 1,s
2

Shift Right Double Algebraic SE 4 r 1 'd2(b2) r 1,s2
Shift Right Double Logical SC 4 r 1 'd2(b2) r 1,5

2
Shift Right Single Logical 88 4 r

1
,d

2
(b

2
) r 1,s2

SOFTSCOPE Forward Scan A2 4 (Privileged) (Privileged)

Set System Key OS 2 (Privileged) (Privileged)

Set System Mask so 4 (Privileged) (Privileged)

SOFTSCOPE Reverse Scan A3 4 (Privileged) (Privileged)

Supervisor Store Multiple BO 4 (Privileged) (Privileged)

Store 50 4 r 1 'd2(x2,b2) r
1

,s2(x
2

)

Store Character 42 4 r
1

,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

)

Store Long 60 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

UP-8061 Rev. 3

Mnemonic

STE

STH

STM

STA

SU

SUR

SVC

SW

SWR

TM

TR

TAT

TS

UNPK

x
xc
XI

XR

ZAP

SPERRY UNIVAC OS/3
ASSEMBLER

Table E-1. Mnemonic List of Instructions (Part 4 of 4)

Source Code Formet
Instruction Name Machine Byte

Code Length
Explicit Implicit

Store Short 70 4 r 1 'd2(x2,b2) r 1,s2 (x
2
1

Store Half Word 40 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Store Multiple 90 4 r 1,r 3,d2 (b2
1 r 1'r3,s2

Service Timer Register 03 2 (Privileged) (Privileged)

Subtract Unnormalized, Short 7F 4 r 1 'd2(x2,b2) r1 ,s2
(x

2
)

Subtract Unnormalized, Short 3F 2 r 1,r2 r 1,r
2

Supervisor Call OA 2 i i

Subtract Unnormalized, Long 6F 4 r 1 'd2(x2,b2) r 1,s2 (x21
Subtract Unnormalized, Long 2F 2 r 1,r2 r 1,r 2
Test Under Mask 91 4 d, lb, l.i2 s1,i2
Translate DC 6 d, (l,b,),d2(b2) s1 (I) ,s2
Translate and Test DD 6 d1 (l,b,),d2(b2) s1 (l),s2
Test and Set 93 4 d 1lb1 I s,

Unpack F3 6 d111, .b,),d2(12,b2) s1111),s2
(1

2
)

Exclusive OR 57 4 r 1 'd2 (x2,b2) r 1,s2 (x
2
1

Exclusive OR D7 6 d1 (l,b,).d2(b2) s1 (l),s2
Exclusive OR, Immediate 97 4 d,lb,l,i2 s1,i2
Exclusive OR 17 2 r 1,r2 r1,r

2
Zero and Add Decimal FS 6 d, 11, .b,),d2(12,b2) s101),s211

2
1

E-4

•

•

•

•

•

•

UP-8061 Rev. 3

Add

Add

Add Decimal

Add Half Word

Add Half Word

Add Immediate

Add Immediate

Add Logical

Add Logical

Add Normalized, Long

Add Normalized, Long

Add Normalized, Short

Add Normalized, Short

Add Unnormalized, Long

Add Unnormalized, Long

Add Unnormalized, Short

Add Unnormalized, Short

AND

AND

AND

AND

Branch and Link

Branch and Link

Branch and Store

Branch and Store

Branch on Condition

Branch on Condition

Branch on Count

Branch on Count

Branch on Index High

SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 1 of 6)

Instruction Name Machine
Code

(Native and 360/20 modes) 1A

5A

FA

(Native and 360/20 modes) 4A

(9200/9300 mode only) AAt

SA

(9200/9300 mode only) A6t

1E

SE

2A

6A

3A

7A

2E

6E

3E

7E

14

54

94

(Native and 9200/9300 modes) D4

05

(Native and 9200/9300 modes) 45

(360/20 mode only) 4D

(360/20 mode only) OD

(Native and 360/20 modes) 07

47

06

46

86

Branch on Index Low or Equal 87

E-5

Mnemonic

AR*

A

AP*

AH*

AH*

Al

Al*

ALR**

AL**

ADR**

AD**

AER**

AE**

AWR**

AW**

AUR**

AU**

NR

N

NI*

NC*

BALA

BAL*

BAS*

BASA*

BCR*

BC*

BCTR

BCT

BXH**

BXLE**

UP-8061 Rev. 3

Compare

Compare

Compare Decimal

Compare Half Word

Compare Logical

Compare Logical

Compare Logical

Compare Logical

Compare, Long

Compare, Long

Compare, Short

Compare, Short

Convert to Binary

Convert to Decimal

Diagnose - Privileged

Divide

Divide

Divide Decimal

Divide, Long

Divide, Long

Divide, Short

Divide, Short

Edit

Edit and Mark

Exclusive OR

Exclusive OR

Exclusive OR

Exclusive OR

Execute

SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 2 of 6)

Instruction Name Machine
Code

19

59

F9

49

15

55

95

D5

29

69

39

79

4F

4E

83

10

50

FD

20

60

30

70

DE

OF

17

57

97

07

44

I' I

E-6

•
Mnemonic

CR

c

CP*

CH*

CLR

CL

CLI*

CLC*

CDR**

CD**

CEA**

CE**

CVB

CVD •
DIAG

DR**

D

(C)DP

DOR**

DD**

DER**

DE**

ED*

EDMK**

XA

x

XI

XC

EX

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 3 of 6)

Instruction Name Machine
Code

Halt and Proceed - Privileged 99

Halve, Long 24

Halve, Short 34

Insert Character 43

Insert Storage Key - Privileged 09

Load 18

Load 58

Load Address 41

Load and Test 12

Load and Test, Long 22

Load and Test, Short 32

Load Complement 13

Load Complement, Long 23

Load Complement, Short 33

Load Control Storage - Privileged Bl

Load Half Word 48

Load, Long 28

Load, Long 68

Load Multiple 98

Load Negative 11

Load Negative, Long 21

Load Negative, Short 31

Load Positive 10

Load Positive, Long 20

Load Positive, Short 30

Load PSW - Privileged 82

Load, Short 38

Load, Short 78

f.-7

Mnemonic

HPR

HDR**

HER**

IC

ISK**

LR

L

LA

LTR

L TDR**

LTER**

LCR**

LCDR**

LCER**

LCS

LH*

LDR**

LD**

LM

LNR**

LNDR**

LNER**

LPR**

LPDR**

LPER**

LPSW

LER**

LE**

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

Table E-2. Alphabetic listing of Instructions (Part 4 of 6)

Instruction Name Machine
Code

Move 92

Move 02

Move Numerics 01

Move With Offset Fl

Move Zones (Native and 360/20 modes) 03

Multiply 1C

Multiply 5C

Multiply Decimal FC

Multiply Half Word 4C

Multiply, Long 2C

Multiply, Long 6C

Multiply, Short 3C

Multiply, Short 7C

OR 16

OR 56

OR 96

OR (Native and 9200/9300 modes) 06

Pack F2

Service Timer Register - Privileged 03

Set Program Mask 04

Set Storage Key - Privileged 08

Set System Mask - Privileged 80

Shift Left Double SF

Shift Left Double Logical SD

Shift Left Single 88

Shift Left Single Logical 89

Shift Right Double SE

Shift Right Double Logical BC

Shift Right Single SA

Shift Right Single Logical 88

E-8

•
Mnemonic

MVI*

MVC*

MVN*

MVO*

MVZ*

MR**

M

MP*

MH**

MOR**

MO**

MER**

ME** • OR

0

01*

OC*

PACK*

STA

SPM

SSK**

SSM

SLDA**

SLDL**

SLA**

SLL

SADA**

SRDL**

SRA**

SAL

•

•

•

UP-8061 Rev. 3

Table E-2.

SPERRY UNIVAC OS/3
ASSEMBLER

Alphabetic Listing of Instructions (Part 5 of 6)

Instruction Name Machine
Code

SOFTSCOPE Forward Scan - Privileged A2

SOFTSCOPE Reverse Scan - Privileged A3

Start 1/0 - Privileged 9C

Store 50

Store Character 42

Store Half Word 40

Store, Long 60

Store Multiple 90

Store, Short 70

Subtract (Native and 360/20 modes) 1B

Subtract 5B

Subtract Decimal FB

Subtract Half Word (Native and 360/20 modes) 4B

Subtract Half Word (9200/9300 mode only) AB

Subtract Logical 1F

Subtract Logical 5F

Subtract Normalized, Long 2B

Subtract Normalized, Long 6B

Subtract Normalized, Short 3B

Subtract Normalized, Short 7B

Subtract Unnormalized, Long 2F

Subtract Unnormalized, Long 6F

Subtract Unnormalized, Short 3F

Subtract Unnormalized, Short 7F

Supervisor Call QA

Supervisor Load Multiple - Privileged BS

Supervisor Store Multiple - Privileged BO

E-9

Mnemonic

SSFS

SSRS

SIO

ST

STC

STH*

STD**

STM

STE**

SR* ~

s

SP*

SH*

SH* ~

SLR**

SL**

SOR**

SD**

SER**

SE**

SWR**

SW**

SUR**

SU**

SVC

SLM

SSTM

UP-8061 Rev. 3

Test and Set

Test Under Mask

Translate

Translate and Test

Unpack

Zero and Add

NOTE:

SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 6 of 6)

Instruction Name Machine
Code

93

91

DC

DD

F3

F8

Unless otherwise indicated, mnemonic instructions are available in native mode only.

*Available in native mode and 9200/9300 and 360/20 compatibility modes except as noted.

**Added as a feature.

tExecutes machine code in 9200/9300 compatibility mode only.

Table E-3. List of Instructions by Machine Code (Part 1 of 6)

Machine Code Mnemonic Instruction Name

03 STR Service Timer Register - Privileged

04 SPM Set Program Mask

05 BALR Branch and Link

06 BCTR Branch on Count

Mnemonic

TS**

TM*

TR*

TRT

UNPK*

ZAP*

07 BCR* Branch on Condition (Native and 360/20 modes)

08 SSK** Set Storage Key - Privileged

09 ISK** Insert Storage Key - Privileged

OA SVC Supervisor Call

OD BASR* Branch and Store (360/20 mode only)

10 LPR** Load Positive

11 LNR** Load Negative

12 LTR Load and Test

E-10

•

•

•

UP-8061 Rev. 3

•
Machine Code

13

14

15

16

17

18

19

1A

18

1C

10

1E

• 1F

20

21

22

23

24

28

29

2A

28

2C

20

2E

2F

30

• 31

32

SPERRY UNIVAC OS/3
ASSEMBLER

Table E-3. list of Instructions by Machine Code (Part 2 of 6)

Mnemonic Instruction Name

LCR** Load Complement

NR AND

CLR Compare Logical

OR OR

XR Exclusive OR

LR Load

CR Compare

AR* Add (Native and 360/20 modes)

SR* Subtract (Native and 360120 modes)

MR** Multioly

DR** Divide

ALA** Add Logical

SLR** Subtract Logical

LPDR** Load Positive, Long

LNDR** Load Negative, Long

LTDR** Load And Test, Long

LCDR** Load Complement, Long

HOR** Halve, Long

LOR** Load, Long

CDR** Compare, Long

ADA** Add Normalized, Long

SOR** Subtract Normalized, Long

MOR** Multiply, Long

DOR** Divide, Long

AWA** Add Unnormalized, Long

SWR** Subtract Unnormalized, Long

LPER** Load Positive, Short

LNER** Load Negative, Short

LTER** Load And Test, Short

E-11

UP-8061 Rev. 3

Machine Code

33

34

38

39

3A

38

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

54

55

SPERRY UNIVAC OS/3
ASSEMBLER

Table E-3. List of Instructions by Machine Code (Part 3 of 6)

Mnemonic Instruction Name

LCER** Load Complement, Short

HER** Halve, Short

LER** Load, Short

CER** Compare, Short

AER** Add Normalized, Short

SER** Subtract Normalized, Short

MER** Multiply, Short

DER** Divide, Short

AUR** Add Unnormalized, Short

SUR** Subtract Unnormalized, Short

STH* Store Half Word

LA Load Address

STC Store Character

IC Insert Character

EX Execute

BAL* Branch and Link (Native and 9200/9300 modes)

BCT Branch on Count

BC* Branch on Condition

LH* Load Half Word

CH* Compare Half Word

AH* Add Half Word (Native and 360/20 modes)

SH* Subtract Half Word (Native and 360/20 modes)

MH** Multiply Half Word

BAS* Branch and Store (360/20 mode only)

CVD Convert to Decimal

CVB Convert to Binary

ST Store

N AND

CL Compare Logical

E-12

•

•

•

UP-8061 Rev. 3

•
Machine Code

56

57

58

59

5A

58

5C

50

5E

5F

60

68

• 69

6A

68

6C

60

6E

6F

70

78

79

7A

78

7C

70

7E

• 7F

80

82

SPERRY UNIVAC OS/3
ASSEMBLER

Table E-3. List of Instructions by Machine Code (Part 4 of 6)

Mnemonic Instruction Name

0 OR

x Exclusive OR

L Load

c Compare

A Add

s Subtract

M Multiply

D Divide

AL** Add Logical

SL** Subtract Logical

STD** Store, Long

LO** Load, Long

CD** Compare, Long

AD** Add Normalized, Long

SD** Subtract Normalized, Long

MD** Multiply, Long

DD** Divide, Long

AW** Add Unnormalized, Long

SW** Subtract Unnormalized, Long

STE** Store, Short

LE** Load, Short

CE** Compare, Short

AE** Add Normalized, Short

SE** Subtract Normalized, Short

ME** Multiply, Short

DE** Divide, Short

AU** Add Unnormalized, Short

SU** Subtract Unnormalized, Short

SSM Set System Mask - Privileged

LPSW Load PSW - Privileged

E-13

UP-S061 Rev. 3

Machine Code

S3

S6

S7

SS

S9

SA

SB

SC

SD

SE

SF

90

91

92

93

94

95

96

97

9S

99

9A

9C

A2

A3

A6t

AAt

ABt

BO

B1

SPERRY UNIV AC OS/3
ASSEMBLER

Table E-3. list of Instructions by Machine Code (Part 5 of 6)

Mnemonic Instruction Name

DIAG Diagnose - Privileged

BXH** Branch on Index High

BXLE** Branch on Index Low or Equal

SRL Shift Right Single Logical

SLL Shift Left Single Logical

SRA** Shift Right Single

SLA** Shift Left Single

SRDL ** Shift Right Double Logical

SLDL ** Shift Left Double Logical

SADA** Shift Right Double

SLDA** Shift Left Double

STM Store Multiple

TM* Test Under Mask

MVI* Move Immediate

TS** Test and Set

NI* AND

CLI* Compare Logical

01* OR

XI Exclusive OR

LM Load Multiple

HPR Halt and Proceed - Privileged

Al Add Immediate

SIO Start 1/0 - Privileged

SSFS SOFTSCOPE Forward Scan - Privileged

SSAS SOFTSCOPE Reverse Scan - Privileged

Al* Add Immediate (9200/9300 mode only)

AH* Add Half Word (9200/9300 mode only)

SH* Subtract Half Word (9200/9300 mode only)

SSTM Supervisor Store Multiple - Privileged

LCS Load Control Storage - Privileged

E-14

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIV AC OS/3
ASSEMBLER

Table E-3. list of Instructions by Machine Code (Part 6 of 6)

Machine Code Mnemonic Instruction Name

BS SLM Supervisor Load Multiple - Privileged

D1 MVN* Move Numerics

D2 MVC* Move

D3 MVZ* Move Zones (Native and 360/20 modes)

D4 NC* AND (Native and 9200/9300 modes)

D5 CLC* Compare Logical

D6 OC* OR (Native and 9200/9300 modes)

D7 xc Exclusive OR

DC TR* Translate

DD TRT Translate and Test

DE ED* Edit

DF EDMK** Edit and Mark

F1 MVO* Move With Offset

F2 PACK* Pack

F3 UNPK* Unpack

FS ZAP* Zero and Add

F9 CP* Compare Decimal

FA AP* Add Decimal

FB SP* Subtract Decimal

FC MP* Multiply Decimal

FD DP* Divide Decimal

NOTE:

Unless otherwise indicated, mnemonic instructions are available in native mode only.

*Available in native mode and 9200/9300 and 360/20 compatibility modes except as noted.

**Added as a feature.

tExecutes machine code in 9200/9300 compatibility mode only .

E-15

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

F-1

Appendix F. Use of PARAM Statement

This appendix describes the use of the PARAM statement and the option-specifying
operands supported by the SPERRY UNIVAC Operating System/3 (OS/3) Assembler. These
options permit you to identify library files, to access source or copy modules and macro
definitions from these libraries, to select assembler listings, and to control object module
output. Also included in this appendix is the source module correction routine.

F.1. PARAM STATEMENT

The PARAM statement specifies the assembler processing options in effect at assembly
time and alters the standard default options. If you don't specify assembler options in the
control stream of your job, the assembler functions as follows:

• The assembler searches only the system source library file (YSRC) for any source
module or copy code referenced.

• It also searches only the system macro library file (YMAC) for any macro references.

• It stores the object module produced in the job run library file (YRUN).

• It prints the soruce code, object code, cross-references, and diagnostic listings.

• The value of &SYSPARM is equal to a null string.

• Columns 1 and 2 of the coding form must contain slashes, followed by at least one
blank column, and then PARAM followed by at least one blank column (see following
page). Multiple options are supported for each option separated by commas. The end of
selected options is indicated by a blank column following the last option. All options
selected are printed preceding the assembly listing .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

F-2

Format:

1 10

II tJ. PARAM!J.
[{

filename1} ~{filename2}]]
COPY= (N) I (N)

IV:•Ac $Y'U1:11:

[[{ filename }] J ,I N=modulename I lt'ISIC.

[LST=

[,RO= {Bji}]

[,SYSPARM= {l•:~Uil:} J

COPY Keyword Parameter:

Enables up to two files to be identified as source code module libraries or specifies that
no files are to be searched for source code modules. If this option is omitted, YSRC is
assumed and is the only file searched for source code module references. Only source
modules can be copied; the source code must be in the standard format and may not
contain any COPY, ICTL, MACRO, PROC, or MEND directives.

COPY=filename1
Specifies that the file identified as filename1 is searched first for source code
modules referenced and, if not found there, then YSRC is searched: filename is
any name you specify or the system source library. If filename1 = filename2, then
copy = filename1 will generate the same files to be searched as copy =
/filename2, except that in the first case the order in which the files are to be
searched will be filename1 and then YSRC, whereas in the second case, the
order will be YSRC and then filename2.

COPY=filename1 /filename2

Specifies that the file identified as filename1 is searched first. Then, the file
identified as filename2 is searched for source code modules referenced. When
two filenames are specified for this parameter, the YSRC file is not searched.

•

•

•

•

•

•

UP-8061 Rev. 3

COPY=filename1 /(N)

SPERRY UNIVAC OS/3
ASSEMBLER

F-3

Specifies only the file identified as filename1 is searched for source code modules
referenced. As stated previously, if filename1 = filename2, then copy =
filename1 /(N) is the same as copy = (N)/filename2, with only one file to be
searched in either case.

COPY=(N)
Specifies no files, not even YSRC, are searched for source code modules
referenced. COPY=(N)/(N) is the same as COPY=(N).

IN Keyword Parameter:

Identifies the name of the source module that is to be assembled and the file in which
it resides. If this option is omitted, the source code must be in the control stream.

I N=modulename
Specifies the name of the source module and directs the assembler to search the
YSRC file for the module; modulename is the name of the source module and is
up to eight characters.

IN=modulename/filename
Specifies the name of the source module and the file in which it resides; filename
is any name you supply or the system source library .

LIN Keyword Parameter:

Enables up to two files to be identified as macro source files or no files to be searched
for macro references. If this option is omitted, YMAC is assumed and is the only file
searched.

LIN=filename1
Identifies the file that is searched for macro references and, if not found there,
then YMAC is searched; filename is any name or the name of the system macro
library.

LIN=filename1 /filename2
Identifies the two files that are searched for macro references. The file identified
as filename1 is searched first, followed by the file identified as filename2. The
YMAC file is not searched.

LIN=filename1 /{N)
Specifies only the file identified as filename1 is searched for macro references.

LIN=(N)
Specifies no files, not even YMAC, are searched for macro references .

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

F-4

LST Keyword Parameter:

Indicates the type of listing desired. If this option is omitted, source, object, cross
reference, and diagnostic listings are printed.

LST=s
A single specification requiring no parentheses.

LST=([s1] ••• [,s4])

Any s in the series is one of the following:

NC

ND

NR

N

DBG

Specifies that the cross-reference listing is suppressed.

Specifies that the diagnostic listing is suppressed.

Specifies that the cross reference listing is to contain only those symbols
that have at least one reference each.

Specifies that all output listings are suppressed.

Specifies a proc or macro debug mode feature within the OS/3 assembler.
When the feature is selected, the output listing shows the following:

• Results of the expansion of any proc or macro called within the user
program, including any conditional assembly directives processed as the
result of the expansion itself. Source coding (constants, directives, and
instructions) is listed twice and shows any appropriate substitutions. Any
statements causing error diagnostics show the exit line in error.

• A proc or macro which produces error diagnostics at the time it is
encoded is listed following the END directive; e.g., system errors. A proc
or macro is encoded once, but may be called multiple times.

• If an error is detected at both expansion and encoding time, it appears
two or more times. Errors detected only at encoding time appear once
following the END directive.

• All lines flagged (regardless of their order of appearance) are shown in
the diagnostic summary list. Lines flagged at encoding time may or may
not be flagged at expansion time.

When this feature is not selected, any errors detected during proc or macro
expansion may not show the exact line in error, but rather the vicinity of the
item which is flagged.

•

•

•

•
UP-8061 Rev. 3

OUT Keyword Parameter:

SPERRY UNIVAC OS/3
ASSEMBLER

F-5

Enables you to specify the file that is to be used to store the object module output by
the assembler. If this option is omitted, the object module is generated and stored in
YRUN, the system-run library.

OUT=filename
Identifies the file that is used as the output file by the assembler; filename is any
name or the job run library.

OUT=(N)
Specifies that no output file is used by the assembler and, thus, no object module
is generated.

RO Keyword Parameter:

Permits you to optionally flag all absolute/base displacement fields of instructions
that yield values less than 4096. Each statement is flagged with an
'ADDRESSABILITY' error flag. For example, if you wanted to code MVI TAG,X'40' but
coded MVC TAG,X'40' by mistake, the latter instruction would be flagged, since the
displacement field is less than 4096.

SYSPARM Keyword Parameter:

• Specifies the equivalent of a global SETC symbol, with the value specified in this
option. If this option is omitted, the value of &SYSPARM is a null string.

•

Operational Consideration:

The value established by SYSPARM is available within the assembly, both outside of
and within macro definitions. This parameter is referenced as &SYSPARM within
assembly statements. Any error in this specification directs the assembler to ignore the
specification, and an appropriate error message is printed on the output printer.

SYSPARM='string'
Specifies a string of one to eight characters enclosed in apostrophes. An
apostrophe within the string is represented by two apostrophes but only counts as
one in determining the length of the string.

F.2. SOURCE CORRECTIONS

The OS/3 assembler supports a source module correction routine. This routine is the same
as the one used in the librarian. The correction deck is interchangeable between the
assembler and the librarian except that the librarian also uses the added COR control
statement. The corrections made to the source module are temporary. The corrections are
specified by the presence of both the source module input (/I t:.PARAMt:.IN=modulename
or the IN=(vol-ser-no,label) for the jproc call) and the correction records in the job control
stream. These records must be with the data delimiters(/$ and /*). If there are no records
between the data delimiters, no source correction is performed.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

F-6

There are three control statements associated with the correction routine: sequence (SEQ),
recycle (REC), and skip (SKI). To make the source module corrections, the actual source
record to be inserted is used as the correction card with the same sequence number as the
record to be replaced. Insertions are performed by using at least one correction card (always
the first) card with a sequence number falling between the sequence numbers of the
records between which the insertion is to be made. Any number of unsequenced correction
cards may then follow the first sequence card. Deletions are performed by bypassing one or
more original source module records in the old data set, thus eliminating them from being
written on the new data set. The SKI and REC statements are used for this function.

F.2.1. SEQ Statement

Function:

Specifies the starting position and the length of the sequence field. If the sequence file
is omitted, column 73 is assumed to be the first column of the sequence field and
continues to the maximum of eight characters.

Format:

LABEL LlOPERATION Ll OPERAND

SEQ
{ column ... ·.·•• .. ·.·.·.· .. ·•· .. po.· .. •.• .. ••.·.· ..•. ·· sition } { content } ,, , .,, , 00000000

unused

Specifications:

column position
Is the first column position in the source record where the sequence field begins.
If omitted, column 73 is assumed to be the first column of the sequence field.

content
Is one to eight characters. The length determines the length of the sequence field.

Operational Considerations:

• Card column 1 must be blank if the sequence field does not start in card column 1.

• The SEQ card is always the first card in the correction routine.

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

F-7

• F.2.2. REC Statement

•

•

Function:

Causes the record pointer for the input module to be repositioned to the first record in
the module. In conjunction with the SKI control statement, it allows the rearranging of
major segments of the input module. When a REC control statement is processed,
records are read from the input module up to and including the record whose sequence
number matches the sequence number in the REC control statement field. Then, the
second pointer for the input module is reset to the first record in the module. If the
sequence field of the REC control statement is blank, repositioning of the record pointer
takes place immediately.

Format:

LABEL t:. OPERATION t:. OPERAND SEQUENCE

unused REC unused [last-sequence no.]

Specification:

last sequence no .
Is one to eight alphanumeric characters that identify the sequence number of the
last input record to be read from the input module. If omitted, the repositioning
function takes place immediately.

Operational Considerations:

• Records are replaced one at a time by writing a source statement with a sequence
number matching the sequence number of the record to be replaced.

• Records are inserted by writing source correction statements with sequence numbers
that fall between the sequence numbers of the input records between which insertion
is to take place. Blank sequence fields cause an insertion to take place immediately.

F.2.3. SKI Statement

Function:

Allows one or more original input module records to be bypassed. Records are read
from the input module until a sequence number is detected that matches the sequence
number of the SKI command. The skip operation is started and continues until a
sequence number that matches the operand field of the SKI command is detected. If
the sequence field of the skip command is blank, the function is started immediately .

UP-8061 Rev. 3

Format

LABEL 6. OPERATION 6.

ignored SKI

Specifications:

last-sequence-no.

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

[last-sequence no.]

F-8

SEQUENCE

[starting-sequen~e no.]

Is one to eight alphanumeric characters that identify the sequence number of the
last input module record to be bypassed.

starting-sequence-no.
Is one to eight alphanumeric characters that identify the sequence number of the
first source module record to be bypassed.

Operationa I Consideration:

• If omitted, the skip operation starts immediately with the input module record that
follows the last record operated on.

•

•

•

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

G-1

Appendix G. System Variable Symbols

System variable symbols automatically generate values or character strings at assembly
time. There are seven system variable symbols: &SYSECT, &SYSLIST, &SYSNDX,
&SYSDATE, &SYSTIME, &SYSJDATE, and &SYSPARM. The following paragraphs contain
the functions of each of the seven system variable symbols.

G.1. &SYSECT

&SYSECT is a system variable symbol used to represent the name of the control section
containing a macro instruction .

&SYSECT is assigned a value for each inner and outer macro instruction processed by the
assembler. This value is the name of the control section containing the macro instruction. If
&SYSECT is referenced in a macro definition, its substituted value is the name of the last
CSECT, DSECT, or START directive that occurred prior to the macro instruction. If a named
CSECT, DSECT, or START directive did not appear prior to the macro instruction, &SYSECT
is assigned a null character value during the processing of the macro definition called by the
macro call instruction.

Any CSECT or DSECT directives processed within a macro definition affect the value of
&SYSECT for any subsequent inner macro instructions in the definition and for any outer
and inner macro instructions that occur outside the current nest of macro definitions.
However, the value of &SYSECT remains constant during the processing of a given macro
instruction, and is not affected by CSECT or DSECT directives or inner macro instructions
occuring in that macro definition.

G.2. &SYSLIST

Within a macro definition in macro format, each positional parameter may be referenced by
a name; however, each positional parameter need not be named in the macro prototype
statement and may be referenced in terms of its position within the macro instruction
operand field by wiring the system variable symbol &SYSLIST followed by an expression in
parentheses. The value of the expression identifies the position of the parameter in the
operand field. The expression may be a SETA symbol or a self-defining term. Therefore, if a
macro definition prototype statement has the operand field:

&A,&B,&C

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

G-2

the first positional parameter is referenced either as &A or &SYSLIST(l), the second is
referenced either as &B or &SYSLIST(2), and the third positional parameter is either &C or
&SYSLIST(3), and so on. This capability, which is used to index through the positional
parameters, treats each parameter in the same way.

A null character string is generated in place of &SYSLIST(m) if m is zero or greater than the
number of positional parameters supplied in the macro instruction.

The system variable &SYSLIST may not be used in a mixed-mode (positional and keyword
parameters included) macro definition.

G.3. &SYSNDX

The assembler maintains a counter that is incremented by 1 each time the assembler
encountered a macro instruction. The value of this counter within the first macro is 1. The
current value of this counter is supplied as the 4-digit character value of the system variable
symbol &SYSNDX each time a macro instruction is encountered. A macro definition that
defines labels within the code it generates, and that may be called more than once in a
single assembly, generally creates duplicate definitions of the same label. To avoid this
problem, the system variable symbol &SYSNDX may be used as a suffix on the labels
defined by the macro definition, so that each time the macro definition is called, it will
define a different set of labels.

G.4. &SYSDATE

&SYSDATE is a system variable symbol, which you can reference in your program text or
within a macro definition, to generate the date your program is assembled. The date is
produced in your assembly listed as a character string representing the month, day, and
year (mm/dd/yy) the program was assembled. If you

1. assemble your program,

2. store it in a library, and

3. retrieve the assembled program for execution at a later date,

any &SYSDATE reference in your program references the original assembly date, not the
current date when your program is executed.

You specify &SYSDATE as either an operand in a source code statement, which defines a
constant (DC), or an operand field literal.

LABEL
1

ASMDATE

l\OPERATI Oii/\ OPERAND
10 16

DC C'&SYSDATE'

•

•

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

G-3

• When this line of source code is assembled, the object code contains the current date.

You can also use the &SYSDATE system variable symbol as a literal.

LABEL
1

tiOPE RATI OIU1
10 16

MVC BUF,=C'&SYSDATE'

OPERAND

When this line of source code is executed, the assembly date is moved into a main storage
area called BUF.

G.5. &SYSTIME

&SYSTIME is a system variable symbol, which you can reference either in your program text
or within a macro definition, to generate the time of day your program is assembled. The
time is produced in your assembly listing as a character string representing the hour,
minute, and second (hh.mm.ss) the assembly was run. If you

• 1 . assemble your program,

2. store it in a library, and

•

3. retrieve the assembled program for execution at another time,

any &SYSTIME reference in your program references the original assembly time, not the
current time of execution.

You specify &SYSTIME as either an operand in a source code statement, which defines a
constant (DC), or an operand field literal.

ASMTIHE DC C'&SYSTIME'

When this line of source code is assembled, the object code contains the current time.

You can also use the &SYSTIME system variable symbol as a literal.

MVC BUF,=C'&SYSTIME'

When this line of source code is executed, the assembly time is moved into a main storage
area called BUF.

UP-8061 Rev. 3

G.6. &SYSJDATE

SPERRY UNIVAC OS/3
ASSEMBLER

G-4

&SYSJDATE is a system variable symbol, which you can reference either in your program
text or within a macro definition, to generate the Julian date when your program is
assembled. The date is produced in your assembly listing as a character string representing
the month, day, year, and Julian value - day of the year (mmddyjjj) the assembly was run. If
you

1. assemble your program,

2. store it in a library, and

3. retrieve the assembled program for execution at another time,

any &SYSJDATE reference in your program references the Julian date of the original
assembly.

You specify &SYSJDATE as either an operand in a source code statement, which defines a
constant (DC), or an operand field literal.

LABEL
l

JUL DATE

.LOPERATI ONL OPERAND
10 16

DC C1 &SYSJDATE 1

When this line of source code is assembled, the object code contains the Julian date.

You can also use the &SYSJDATE system variable symbol as a literal.

MVC BUF,=C 1 &SYSJDATE 1

When this line of source code is executed, the Julian date is moved into a main storage area
called BUF.

G.7. &SYSPARM

&SYSPARM is a system variable symbol, which you can reference either in your program
text or within a macro definition, to generate an 8-byte null character string at assembly
time. The string is initially null but can be varied by using the PARAM statement as follows:

LABEL 6. OPERATION 6. OPERAND

//6.PARAM6. SY SPAR M::'string'

•

•

•
UP-8061 Rev. 3 SPERRY UNIVAC OS/3

ASSEMBLER
G-5

By using the PARAM statement, you can specify a string of up to eight characters, enclosed
in apostrophes. Once you've altered the value of &SYSPARM, any reference to &SYS PARM
produces the character string you specified in the PARAM statement, not a null character
string.

To reference the &SYSPARM system variable symbol, you specify &SYSPARM as either an
operand in a source code statement, which defines a constant (DC), or an operand field
literal.

6 OPE RAT I OH 6 LABEL
1 10 16

NULSTRNG DC C'&SYSPARH'

OPERAND

When this line of source code is assembled, the object code contains an 8-byte null
character string.

• You can also use the &SYSPARM system variable symbol as a literal.

•

HVC BUF.=C'&SYSPARM'

If you don't precede this source code statement with a PARAM statement when this line of
source code is executed, an 8-byte null character string is moved into a main storage area
called BUF .

•

•

•

UP-·8061 Rev. 3

•

Term

A

A instruction
examples
formats
function
operational considerations

A, type constant

• Absolute expression
definition
examples
relocatable terms

A~solute term
examples
expression
relocatable expression

ACTR statement
format
function

AD instruction
example
formats
function
operational considerations

Add (A) instruction

Add (AR) instruction

Add decimal (AP) instruction

• Add half word (AH) instruction

SPERRY UNIVAC OS/3
ASSEMBLER

Reference Page Term

Add immediate (Al) instruction

10.2 10-8 Add logical (AL) instruction

10.2 10-7
10.2 10-7
10.2 10-7 Add logical (ALR) instruction

5.2.9 5-13
Add normalized, long format (AD) instruction

4.4.l 4-16
4.4.1 4-16 Add normalized, long format (ADR)

4.4.l 4-16 instruction

4.4.l 4-16 Add normalized, short format (AE)

4.4 4-15 instruction

4.4.2 4-17

Add normalized, short format (AER)

27.4.3 27-22 instruction

27.4.3 27-22

Add unnormalized, long format (AW)

11.2 11-5 instruction

11.2 11-3
11.2 11-3
11.2 11-4 Add unnormalized, long format (AWR)

instruction

See A
instruction.

Add unnormalized, short format (AU)

See AR
instruction

instruction.

See AP
Add unnormalized, short format (AUR)

instruction .
instruction

See AH
instruction.

Index 1

Index

Reference Page

See Al
instruction.

See AL
instruction.

See ALR
instruction.

See AD
instruction.

See ADR
instruction.

See AE
instruction.

See AER
instruction.

See AW
instruction.

See AWR
instruction.

See AU
instruction.

See AUR
instruction.

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 2

UP-8061 Rev. 3

• Term

AP instruction
examples
formats
function
operational considerations

Apostrophe, character representation

Application instructions
explicit length
formats
implicit length
types

AR instruction
example
format
function
operational considerations

Arithmetic operators
absolute terms
description

ASCII

• ASM Jproc call statement
examples
format
function

ASML Jproc call statement
format
function

ASMLG Jproc call statement
format
function

Assemble and link-edit
ASML Jproc call statement
function

Assemble, link-edit, and execute
ASMLG jproc call statement

Assembler application instruction
notations

assembled example
explicit format
implicit format
machine code

•

Reference

9.3
9.3
9.3
9.3

4.4.6

7.1
Fig. 7-1
7.1
7.1

10.3
10.3
10.3
10.3

4.4.1
4.3.1

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

Assem bier coding form
9-8 additional coding rules
9-8 column 72
9-8 comments field
9-8 continuation field

description
4-18 example

label field
7-4 operand field
7-2 operation field
7-4 sample
7-1 sequence field

Assembler control directives
10-9 basic functions
10-9 condition no operation (CNOP)
10-9 generate literal pool (L TORG)
10-9 program card (END)

program start (START)
specify location counter (ORG)

4-16
4-14 Assembling

assemble, link-edit, and execute
Table B-1 B-1 coding

job control procedures

29.3.1.1 29-5 Assemble listing
29.3.1.1 29-4 definition
29.3.1 29-3 example

organization

29.3.2.1 29-12 sample
29.3.2 29-12

Assign base register (USING) directive

29.3.3.1 29-14 Attribute references, conditional assembly
29.3.3 29-14 applications

count
example

29.3.2.1 29-12 format
29.3.2 29-11 function

integer
length

29.3.3.1 29-14 number
scale

Attributes of symbols
4.1.1 4-1 length
4.1.1 4-1
4.1.1 4-2 relocatability
4.1.1 4-2 type

value

Index 3

Reference Page

1.1.7 1-10
1.1.6 1-10
1.1.4 1-8
1.1.2 1-6
1.1 1-1
1.1 1-2
Fig. 1-5 1-11
1.1.3 1-6
1.1.2 1-5
1.1.1 1-4
Fig. 1-3 1-3
1.1.5 1-9

Table 17-1 17-1
17.1 17-2
17.3 17-5
17.2 17-4
17.5 17-8
17.4 17-6

29.3 29-3
1.1 1-1
29.1 29-1

4.1.2 4-6
29.6 29-17
See organization
of listing.
Fig. 1-8 1-14

See USING directive.

Table 27-3 27-24
27.5.5 27-29
27.5.6 27-30
27.5 27-23
27.5 27-23
27.5.4 27-28
27.5.2 27-27
27.5.6 27-30
27.5.3 27-28

4.2.3 4-11
4.2.5 4-13
4.2.3 4-12
Table 27-4 27-25
4.2.3 4-11

UP-8061 Rev. 3

Term Reference

AU instruction
example 11.6
formats 11.6
function 11.6
operational consideration 11.6

AUR instruction
example 11.7
formats 11.7
function 11.7
operational consideration 11.7

AW instruction
example 11.8
formats 11.8
function 11.8
operational consideration 11.8

AWR instruction
example 11.9
formats 11.9
function 11.9
operational consideration 11.9

B

B, type constant 5.2.3

BAL
general description 1.1
sample program Appendix A

BAL instruction
example 8.4
formats 8.4
function 8.4

BALR instruction
example 8.4
format 8.4
function 8.4

BAS and BASR instructions
format 8.3
function 8.3

Base and displacement constants (S)
examples 5.2.10
function 5.2.10

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

Base register assignment directives
11-16 assign base register (USING)
11-15 unassign base register (DROP)
11-15
11-15 Basic Assembly Language (BAL)

BC instruction
11-17 formats
11-17 function
11-17 operational consideration
11-17

BCR instruction
formats

11-20 function
11-19 operational consideration
11-19
11-19 BCT instruction

example
formats

11-21 function
11-21
11-21 BCTR instruction
11-21 format

function

Binary constants (B)
function
padding
truncating

5-9 Binary representation

BLANK macro example
1-1

Braces within brackets

Branch and link (BAL) instruction
8-7
8-6
8-6 Branch and link (BALR) instruction

8-7 Branch and store (BAS and BASR)
8-6 instructions
8-6

Branch on condition (BC) instruction
8-5
8-5

Branch on condition (BCR) instruction

5-13
5-13 Branch on count (BCT) instruction

Index 4

Reference Page •
18.2 18-3
18.l 18-2

See BAL

8.5 8-10
8.5 8-10
8.5 8-12

8.5 8-10
8.5 8-10
8.5 8-12

8.6 8-15
8.6 8-14
8.6 8-14

8.6 8-14
8.6 8-14

5.2.3 5-9 • 5.2.3 5-9
5.2.3 5-9

2.2 2-2

30.3 30-4

4.1.2 4-4

See BAL
instruction.

See BALR
instruction.

See BAS and
BASR instructions.

See BC
instruction.

See BCR
instruction.

See BCT
instruction.

UP-8061 Rev. 3

• Term

Branch on count (BCTR) instruction

Branch on index high (BXH)
instruction

Branch on index low or equal
(BXLE) instruction

Branching
conditional branch (AIF)
define branch destination (ANOP)
function
macro definition exit (MEXIT)
sequence symbols
unconditional branch (AGO)

Branching instructions
BAL
BALR
BAS and BASR
BC
BCR • BCT
BCTR
EX
extended mnemonic codes

function

BXH instruction
examples
formats
function

BXLE instruction
formats
function

byte
definition
word structure

•

SPERRY UNIVAC OS/3
ASSEMBLER

Reference Page Term

See BCTR
instruction.

c instruction
examples

See BXH formats
instruction. function

operational considerations

See BXLE C, type constant
instruction.

CCW instruction
examples

27.2.3 27-16 format
27.2.4 27-17 function
27.2 27-14 operational considerations
27.2.5 27-18
27.2.1 27-14 CD instruction
27.2.2 27-15 examples

formats
function

8.4 8-6 operational considerations
8.4 8-6
8.3 8-5 CDR instruction
8.5 8-10 examples
8.5 8-10 formats
8.6 8-14 function
8.6 8-14 operational considerations
8.7 8-16
8.2 8-2 CE instruction
Table 8-1 8-3 examples
8.1 8-1 formats

function

14.1.1 14-3
operational considerations

14.1.1 14-2 CER instruction
14.1.1 14-2 examples

formats
function

14.1.2 14-5 operational considerations
14.1.2 14-5

CH instruction
examples

2.1 2-1 formats
Fig. 4-2 4-7 function

operational considerations

Channel command word (CCW)

Character constants (C)
function
padding
truncation

Index 5

Reference Page

c

10.6 10-16
10.6 10-15
10.6 10-15
10.6 10-16

5.2.1 5-8

21.6 21-9
21.6 21-8
21.6 21-8
21.6 21-9

11.10 11-24
11.10 11-23
11.10 11-23
11.10 11- :4

11.11 11-26
11.11 11-25
11.11 11-25
11.11 11-25

11.12 11-28
11.12 11-27
11.12 11-27
11.12 11-27

11.13 11-30
11.13 11-29
11.13 11-29
11.13 11-29

10.8 10-20
10.8 10-19
10.8 10-19
10.8 10-20

See CCW instruction.

5.2.1 5-8
5.2.1 5-8
5.2.1 5-8

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 6

•

UP-8061 Rev. 3

• Term

Compare decimal (CP)
instruction

Compare half word (CH)
instruction

Compare logical (CL)
instruction

Compare logical (CLC)
instruction

Compare logical (CU)
instruction

Compare logical (CLR)
instruction

Complex relocatable expressions • definition
examples
restrictions

Condition no operation (CNOP)
directive

Conditional assembly
attribute references
branching
error messages and comments
repetitive code generation
set symbols
summary

Conditional assembly control counter
(ACTR) statement

Conditional branch (AIF)
statement

Continuation column, coding form

Control section identification
(CSECT) directive

e

SPERRY UNIVAC OS/3
ASSEMBLER

Reference Page Term

Convert to binary (CVB)
See CP instruction
instruction.

Convert to decimal (CVD)
See CH instruction
instruction.

COPY directive
See CL example
instruction. format

function

See CLC Correction deck
instruction.

Count attributes

See CU CP instruction
instruction. examples

formats
function

See CLR operational considerations
instruction.

CR instruction
examples

4.4.3 4-17 format
4.4.3 4-17 function
4.4.3 4-17 operational considerations

Cross-reference section, listing
See CNOP content
directive.

CSECT directive
27.5 27-23 examples
27.2 27-14 format
27.3 27-18 function
27.4 27-21
27.l 27-2 CVB instruction
Table 27-1 27-1 examples

formats
function

See ACTR operational considerations
statement.

CVD instruction
example

See AIF formats
statement. function

operational considerations
1.1.4 1-8

See CSECT
directive.

Index 7

Reference Page

See CVB
instruction.

See CVD
instruction.

21.5 21-7
21.5 21-7
21.5 21-7

F.2 F-5

27.5.5 27-29

9.4 9-11
9.4 9-10
9.4 9-10
9.4 9-11

10.7 10-18
10.7 10-17
10.7 10-17
10.7 10-17

28.5 28-4
Table 28-3 28-4

19.2 19-5
19.2 19-5
19.2 19-5

10.9 10-22
10.9 10-21
10.9 10-21
10.9 10-21

10.10 10-25
10.10 10-24
10.10 10-24
10.10 10-25

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 8

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 9

UP-8061 Rev. 3

Term Reference

EDMK instruction
example 14.3.3
formats 14.3.3
function 14.3.3
operational considerations 14.3.3

EJECT directive
format 20.l
function 20.l

Ellipsis 4.1.2

END directive
examples 17.2
format 17.2
function 17.2

End-of-data job control statement
(/*) 29.5.l

ENDO statement
examples 27.4.2
format 27.4.2
function 27.4.2

ENTRY directive
example 19.4
format 19.4
function 19.4

EQU directive
examples 16.l
format 16.l
function 16.l

Equate (EQU) directive See EQU
directive.

Error messages and comments
MNOTE message statements 27.3.1
PNOTE message statements 27.3.2

EX instruction
example 8.7
formats 8.7
function 8.7
operational considerations 8.7
program exception Appendix D

Exclusive or (X) instruction See X
instruction.

Exclusive or (XC) instruction See XC
instruction.

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

Exclusive or (XI) instruction
14-40
14-39
14-39 Exclusive or (XR) instruction
14-39

Execute (EX) instruction
20-2
20-2

Execution
4-6

Explicit formats

17-4 Explicit source code
17-4 examples
17-4 format

Exponent overflow, program exception
29-15

Exponent underflow
AD instruction

27-22 ADR instruction
27-22 AE instruction
27-22 AER instruction

program exception

19-9 Expressions
19-9 absolute term
19-9 character

complex relocatable
declaration

16-2 definition
16-1 evaluation
16-1 final result

intermediate results
length attribute
relocatable term

External address constants (V)
27-19 function
27-20 padding

truncating

8-18 Externally defined symbol declaration
8-16 (EXTRN) directive
8-16
8-18

Externally referenced symbol declaration
(ENTRY) directive

EXTRN directive
examples
format
function

Index 10

Reference Page •
See XI
instruction.

See XR
instruction.

See EX
instruction.

1.4 1-17

7.2 7-5

7.2 7-5
7.2 7-5

Appendix D

11.2 11-3
11.3 11-6
11.4 11-9
11.5 11-12
Appendix D • 4.4 4-15
4.4.4 4-18
4.4.3 4-17
6.2 6-3
4.4 4-15
4.4 4-15
4.4 4-15
4.4 4-15
4.4.5 4-18
4.4.2 4-17

5.2.11 5-14
5.2.11 5-15
5.2.11 5-15

See EXTRN
directive.

See ENTRY
directive.

19.5 19-10
19.5 19-10 • 19.5 19-10

•

•

•

UP-8061 Rev. 3

Term

F, type constant

Field separator byte, ED instruction

Fill character, ED instruction

Fixed-point divide, program exception

Fixed-point instructions
add (A)
add (AR)
add half word (AH)
add immediate (Al)
compare (C)
compare (CR)
compare half word (CH)
convert to binary (CVB)
convert to decimal (CVD)
divide (D)
divide (DR) - featured
general discussion
load (L)
load and test (L TR)

F

load complement (LCR) - featured
load half word (LH)
load (LR)
load multiple (LM)
load negative (LNR) - featured
load positive (LPR) - featured
multiply (M)
multiply half word (MH) - featured
multiply (MR) - featured
shift left double (SLDA) - featured
shift left single (SLA) - featured
shift right double (SRDA) - featured
shift right single (SRA) - featured
store (ST)
store half word (STH)
store multiple (STM)
subtract (S)
subtract halt word (SH)
subtract (SR)

Fixed-point numbers
description
formats

Fixed-point overflow, program exception

Floating-point addition
AD instruction
ADR instruction
AE instruction
AER instruction

SPERRY UNIV AC OS/3
ASSEMBLER

Index 11

Reference

5.2.7

9.6.1

9.6.1

Appendix D

10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
14.2.1
10.1
10.12
10.14
14.2.2
10.15
10.13
10.16
14.2.3
14.2.4
10.17
14.2.6
14.2.5
14.2.7
14.2.8
14.2.9
14.2.10
10.18
10.19
10.20
10.21
10.23
10.22

2.5
Fig. 2-2

Appendix A

11.2
11.3
11.4
11.5

Page

5-12

9-16

9-16

10-7
10-9
10-11
10-13
10-15
10-17
10-19
10-21
10-24
10-27
14-7
10-1
10-31
10-35
14-9
10-37
10-33
10-39
14-11
14-14
10-45
14-19
14-17
14-22
14-25
14-28
14-31
10-49
10-51
10-53
10-56
10-61
10-58

2-9
2-9

11-3
11-6
11-9
11-12

Term Reference

Floating-point constants (E and D)
example 5.2.12

5.2.12
Fig. 5-1
5.2.12

formats

function

Floating point divide, program exception Appendix D

Floating-point instructions
add normalized, long format (AD) 11.2
add normalized, long format (ADR) 11.3
add normalized, short format (AE) 11.4
add normalized, short format (AER) 11.5
add unnormalized, short format (AU) 11.6
add unnormalized, short format (AUR) 11.7
add unnormalized, long format (AW) 11.8
add unnormalized, long format (AWR) 11.9
compare, long format (CD) 11.10
compare, long format (CDR) 11.11
compare, short format (CE) 11.12
compare, short format (CER) 11.13
divide, long format (DD) 11.14
divide, long format (DDR) 11.15
divide, short format (DE) 11.16
divide, short format (DER) 11.17
general description 11.1
halve, long format (HDR) 11.18
halve, short format (HER) 11.19
load, long format (LD) 11.22
load, long format (LDR) 11.23
load, short format (LE) 11.24
load, short format (LER) 11.25
load and test, long format (LTDR) 11.30
load and test, short format (L TER) 11.31
load complement, long format (LCDR) 11.20
load complement, short format (LCER) 11.21
load negative, long format (LNDR) 11.26
load negative, short format (LNER) 11.27
load positive, long format (LPDR) 11.28
load positive, short format (LPER) 11.29
multiply, long format (MD) 11.32
multiply, long format (MDR) 11.33
multiply, short format (ME) 11.34
multiply, short format (MER) 11.35
store, long format (STD) 11.40
store, short format (STE) 11.41
subtract normalized, long format (SD) 11.36
subtract normalized, long format (SDR) 11.37
subtract normalized, short format (SE) 11.38
subtract normalized, short format (SER) 11.39
subtract unnormalized, long format (SW) 11.44
subtract unnormalized, long format (SWR) 11.45
subtract unnormalized, short format (SU) 11.42
subtract unnormalized, short format (SUR) 11.43

Page

5-17
5-15
5-16
5-15

11-3
11-6
11-9
11-12
11-15
11-17
11-19
11-21
11-23
11-25
11-27
11-29
11-31
11-33
11-35
11-37
11-1
11-39
11-41
11-47
11-49
11-51
11-53
11-63
11-65
11-43
11-45
11-55
11-57
11-59
11-61
11-67
11-69
11-71
11-73
11-83
11-85
11-75
11-77
11-79
11-81
11-91
11-93
11-87
11-89

UP-8061 Rev. 3

Term Reference

Floating-point numbers
description 2.6
format 2.6

Full word 2.1

Full-word address constants (A)
function 5.2.9
padding 5.2.9
truncating 5.2.9

Full-word fixed-point constants (F)
function 5.2.7
padding 5.2.7
truncating 5.2.7

G

General register privileged instructions 13.6

General registers 3.2

Generate literal pool (LTORG)
directive See L TORG

directive.

Global set symbols
examples 27.1.2
format 27.1.2
function 27.1.2

H

H, type constant 5.2.6

Half word 2.1

Half-word address constants (Y)
function 5.2.8
padding 5.2.8
truncating 5.2.8

Half-word fixed-point constants (H)
function 5.2.6
padding 5.2.6
truncating 5.2.6

Halve, long format (HDR) instruction See HDR
instruction.

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

Halve, short format (HER) instruction
2-9
2-9

HDR instruction
2-1 example

formats
function

5-13 operational considerations
5-13
5-13 HER instruction

example
formats

5-12 function
5-12 operational considerations
5-12

Hexadecimal constant (X)
function
padding
truncating

13-13 Hexadecimal-decimal integer conversion

3-3 Hexadecimal fractions (approximate values)

Hexadecimal representation
description
notation

HPR instruction
27-5
27-4
27-4

ICTL directive
5-11 examples

format
2-1 function

Implicit format
5-12 coding
5-12 examples
5-12

Implicit source code
examples

5-11
5-11 format
5-11

Include code from a library
(COPY) directive

Index 12

Reference Page • See HER
instruction.

11.18 11-40
11.18 11-39
11.18 11-39
11.18 11-39

11.19 11-42
11.19 11-41
11.19 11-41
11.19 11-41

5.2.2 5-9
5.2.2 5-9
5.2.2 5-9

C.l C-1

C.2 C-7

2.3 2-3 • Table 2-2 2-4

13.2.1 13-2

21.1 21-2
21.1 21-2
21.1 21-2

7.3 7-6
7.3 7-6

7.1 7-4
7.3 7-6
7.3 7-6

See COPY
directive. •

UP-8061 Rev. 3

• Term

lnline expansion code
BLANK macro
function
generation
variable

Input and output control directives
basic functions
include code from a library (COPY)
input format control (ICTL)
input sequence control (ISEQ)
produce a record (PUNCH)
reproduce following record (REPRO)

Input format control (ICTL directive)

Input sequence control (!SEQ) directive

Insert character (IC) instruction
examples
formats
function • operational considerations

Insert storage key (ISK) instruction

Instruction
aligning
application
branching
decimal
definition
featured
fixed-point
floating-point
logical
privileged
RR
RS
RX
SI
SS
status switching

Instruction listings
alphabetic
machine code
mnemonics

•

SPERRY UNIVAC OS/3
ASSEMBLER

Reference Page Term

ISK instruction
30.3 30-4
22.1 22-1 ISEQ directive
23.1 23-1 example
23.1 23-2 format
30.3 30-4 function

Integer attributes
Table 21-1 21-1 examples
21.5 21-7 function
21.1 21-2
21.2 21-4 Italics
21.4 21-6
21.3 21-5

See ICTL
directive.

See !SEQ
directive.

J

12.14 12-40 Job control cards
12.14 12-39 end-of-data job control statement
12.14 12-39 (/*)

12.14 12-39 end-of-job control statement (/ &)
terminate-the-card-reader job

13.2.2 13-3 control statement (//FIN)

Job control procedures
7.1 7-3 running an assembler program
7.1 7-1 source deck introduction
8.1 8-1
9.1 9-1 JOB control statement
7.4 7-6 format
14.1 14-1 function
10.1 10-1
11.1 11-1
12.1 12-1
13.1 13-1
7.1 7-3
7.1 7-3
7.1 7-3
7.1 7-3
7.1 7-3
13.1 13-1 K

Keyword parameters
Table E-2 E-5 coding
Table E-3 E-10 referencing in the call
Table E-1 E-1

Index 13

Reference Page

13.2.2 13-3

21.2 21-4
21.2 21-4
21.2 21-4

27.5.4 27-28
27.5.4 27-28

4.1.2 4-6

29.5.1 29-15
29.5.2 29-16

29.5.3 29-16

29.1 29-1
29.2 29-1

29.2.1 29-2
29.2.1 29-2

4.1.2 4-4
25.3 25-4
26.3 26-4

UP-8061 Rev. 3

Term Reference

L

L instruction
example 10.12
formats 10.12
function 10.12
operational considerations 10.12

LA instruction
examples 12.15
formats 12.15
function 12.15
operational considerations 12.15

Label argument, PROC format 25.6

Label field, coding form 1.1.3

LCOR instruction
example 11.20
formats 11.20
function 11.20
operational considerations 11.20

LCER instruction
example 11.21
formats 11.21
function 11.21
operational considerations 11.21

LCR instruction
example 14.2.2
format 14.2.2
function 14.2.2
operational considerations 14.2.2

LCS instruction 13.2.3

LO instruction
example 11.22
formats 11.22
function 11.22
operational considerations 11.22

LOR instruction
example 11.23
formats 11.23
function 11.23
operational considerations 11.23

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

LE instruction
example
formats

10-32 function

10-31 operational considerations

10-31
10-31 Least significant bit (LSB)

Leave blank lines on listing

12-42 (SPACE) directive

12-41
12-41
12-41 Length attribute

application instruction

25-11 conditional assembly
duplication factor

1-6 examples
expressions
referencing

11-44 terms

11-43
11-43 Length factor

11-43 boundary alignment
L character

11-46 LER instruction

11-45 example

11-45 formats

11-45 function
operational consideration

14-10 Less than operator

14-9
14-9 LH instruction

14-9 example
formats

13-4 function
operational considerations

11-48 Linkage editor

11-47 creating a load module

11-47 functions

11-47
Listing contents control (PRINT)

directive

11-49
11-49
11-49 Listing control directives

11-49 advance listing (EJECT)
basic functions
introduction
leave blank lines on listing (SPACE)
listing content control (PRINT)
listing title declaration (TITLE)

Index 14

Reference Page •
11.24 11-52
11.24 11-51
11.24 11-51
11.24 11-51

See LSB.

See SPACE
directive.

5.1.5 5-6
27.5.2 27-27
4.2.3 4-11
5.1.5 5-7
4.4.4 4-18
4.2.5 4-13
4.2 4-8

5.1.5 5-7
5.1.5 5-7

• 11.25 11-53
11.25 11-53
11.25 11-53
11.25 11-53

4.3 4-13

10.15 10-38
10.15 10-37
10.15 10-37
10.15 10-37

1.3 1-16
29.3.3 29-13

See PRINT
directive.

20.l 20-2
Table 20-1 20-1
20.1 20-1
20.3 20-5
20.2 20-3
20.4 20-6 •

UP-8061 Rev. 3

• Term

Listing title declaration (TITLE)
directive

Literals
defined

examples
restrictions
source code
specification

LM instruction
examples
formats
function
operational considerations

LNDR instruction
example
formats
function
operational considerations

• LNER instruction
example
formats
function
operational considerations

LNR instruction
example
format
function
operational considerations

Load (L) instruction

Load (LR) instruction

Load, long format (LD) instruction

Load, long format (LDR) instruction

Load, short format (LE) instruction

Load, short format (LER) instruction •

SPERRY UNIVAC OS/3
ASSEMBLER

Reference Page Term

Load address (LA) instruction
See TITLE
directive.

Load and test, long format (L TOR)
instruction

4.2 4-8
4.2.2 4-10 Load and test (LTR) instruction
5.3 5-18
5.3 5-19
5.3 5-18 Load and test, short format (LTER)
4.2.2 4-10 instruction
4.2.2 4-10

Load complement, long format (LCDR)
10.16 10-40 instruction
10.16 10-39
10.16 10-39
10.16 10-40 Load complement, short format (LCER)

instruction

11.26 11-56
11.26 11-55 Load complement (LCR) instruction
11.26 11-55 - featured
11.26 11-55

Load control storage (LCS) instruction
11.27 11-58
11.27 11-57 Load half word (LH) instruction
11.27 11-57
11.27 11-57

Load module, creating

14.2.3 14-12 Load multiple (LM) instruction
14.2.3 14-11
14.2.3 14-11
14.2.3 14-11 Load negative, long format (LNDR)

instruction
See L
instruction.

Load negative, short format (LNER)
See LR instruction
instruction.

See LD Load negative (LNR) instruction
instruction.

See LDR Load positive (LPR) instruction
instruction.

See LE Load positive, long format (LPDR)
instruction. instruction

See LER
instruction. Load positive, short format (LPER)

instruction

Index 15

Reference Page

See LA
instruction.

See LTDR
instruction.

See LTR
instruction.

See LTER
instruction.

See LCDR
instruction.

See LCER
instruction.

See LCR
instruction.

13.2.3 13-4

See LH
instruction.

1.3 1-16

See LM
instruction.

See LNDR
instruction.

See LNER
instruction.

See LNR
instruction.

See LPR
instruction.

See LPDR
instruction.

See LPER
instruction.

UP-8061 Rev. 3

Term Reference

Load program status word (LPSW) instruction 13.2.4

Local set symbol
examples 27.1.1
format 27.1.1
function 27.1.1

Location counter
adding 1 4.2.4
asterisk 4.2.4
definition 4.2.4
restrictions 4.2.4
values 4.2

Logical instructions
add logical (AL) - featured 14.3.1
add logical (ALR) - featured 14.3.2
and (N) 12.2
and (NC) 12.3
and (NI) 12.4
and (NR) 12.5
compare logic I (CL) 12.6
compare logic I (CLC) 12.7
compare logic I (CU) 12.8
compare logic I (CLR) 12.9
edit (ED) 9.6
edit and mark (EDMK) - feature 14.3.3
exclusive or () 12.10
exclusive or (C) 12.11
exclusive or (I) 12.12
exclusive or (R) 12.13
general descri ion 12.1
insert characte (IC) 12.14
load address (A) 12.15
move characte (MVC) 9.7
move immediat (MVI) 12.16
move numerics (MVN) 9.8
move zones (VZ) 9.10
or (0) 12.17
or (QC) 12.18
or (OI) 12.19
or (OR) 12.20
shift left doubl logical (SLDL)

- featured I 14.3.4
'

shift left single logical (SLL) 12.21
shift right dou le logical (SRDL)

- featured 14.3.5
shift right sing logical (SRL) 12.22
store character (STC) 12.23
subtract logical (SL) - featured 14.3.6
subtract logical (SLR) - featured 14.3.7
test under mas (TM) 12.24
translate (TR) '

1

12.25
translate and tels! (TRT) 12.26

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

13-5 Logical operators

Low order
27-4
27-3 Lowercase letters and terms, coding
27-3

LPDR instruction
example

4-12 formats
4-12 function
4-12 operational considerations
4-12
4-8 LPER instruction

example
formats

14-34 function
14-37 operational considerations
12-2
12-5 LPR instruction
12-8 example
12:.11 format
12-14 function
12-17 operational considerations
12-20
12-25 LPSW instruction
9-15
14-39 LR instruction
12-27 example
12-30 format
12-33 function
12-36 operational considerations
12-1
12-39 LSB
12-41
9-26
12-43 L TOR instruction
9-30 example
9-36 formats
12-45 function
12-48 operational considerations
12-51
12-54 L TER instruction

example
14-42 formats
12-57 function

operational considerations
14-45
12-60 L TORG directive
12-62 format
14-48 function
14-51
12-64 L TR instruction
12-67 example
12-70 format

function
operational considerations

Index 16

Reference Page • 4.3.2 4-14

4.1.2 4-8

4.1.2 4-6

11.28 11-60
11.28 11-59
11.28 11-59
11.28 11-59

11.29 11-62
11.29 11-61
11.29 11-61
11.29 11-61

14.3.4 14-15
14.3.4 14-14
14.3.4 14-14
14.3.4 14-14

13.2.4 13-5

10.13 10-34 • 10.13 10-33
10.13 10-33
10.13 10-33

2.1 2-1
4.1.2 4-7

11.30 11-64
11.30 11-63
11.30 11-63
11.30 11-63

11.31 11-66
11.31 11-65
11.31 11-65
11.31 11-65

17.3 17-5
17.3 17-5

10.14 10-36
10.14 10-35 • 10.14 10-35
10.14 10-35

UP-8061 Rev. 3

• Term

M

M instruction
example
formats
function
operational considerations

Machine code
assembler format relationships
definition
instruction listing
purpose

Macro call instruction
call-names
format
functions

keyword parameter
parameter-list
positional parameter

MACRO definition

• accessing in library
accessing in source deck
body
call-name
call instruction design
examples

general
heading

macro instruction and definition,
communication

operation
parameter substitution
PROC and MACRO instructions

compared
prototype statement
storage
trailer
variable inline expansion code
variable symbol

Macro definition exit (MEXIT)
statement

•

SPERRY UNIVAC OS/3
ASSEMBLER

Reference Page Term

Macro design
macro call instruction
macro definition

10.17 10-46
macro definition storage

10.17 10-45
10.17 10-45

Macro facility

10.17 10-46
processor
source code

Fig. 4-1 4-5
MACRO format

4.1.1 4-3
basic design

Table E-3 E-10
label argument

1.2 1-15
referencing keyword parameters

in the call
referencing positional parameters in

23.3 23-7
the call

23.3 23-6
referencing subparameters in the call

22.2 22-3
23.3 23-6

Macro (MACRO) defini~ion

23.3 23-8
23.3 23-7
23.3 23-8

Macro processor
function
inline macro expansion

Fig. 23-2 23-5
YMAC

Fig. 23-1 23-4
23.l 23-1

Macro source code

23.1 23-2
example

24.2 24-2 function

Fig. 24-4 24-11
macro facility

Section 30
types

24.l 24-1
YMAC

23.l 23-1
Fig. 24-1 24-1

Main computer storage addressing
data field

Fig. 24-3 24-8
instruction

23.l 23-1
symbolic

23.l 23-2
Math tables

Fig. 24-2 24-6
hexadecimal-decimal integer

24.2 24-2
conversion

23.2 23-3
hexadecimal fractions (approximate

23.l 23-1
values)

23.l 23-2
powers of 2

24.2 24-2
powers of 16

MD instruction

See MEXIT
example

statement.
formats
function
operational considerations

Index 17

Reference Page

23.3 23-6
23.1 23-1
23.2 23-3

22.1 22-1
22.2 22-3

26.1 26-1
26.5 26-6

26.3 26-4

26.2 26-2
26.4 26-5

See MACRO
definition.

22.1 22-1
Fig. 22-1 22-2
22.1 22-1

30.3 30-4
22.2 22-3
22.2 22-3
22.2 22-3
22.2 22-3

3.1.2 3-2
3.1.1 3-1
3.1.1 3-1

C.l C-1

C.2 C-7
C.3 C-8
C.4 C-9

11.32 11-68
11.32 11-67
11.32 11-67
11.32 11-67

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 18

UP-8061 Rev. 3

• Term Reference

MVI instruction
examples 12.16
formats 12.16
function 12.16
operational considerations 12.16

MVN instruction
examples 9.8
formats 9.8
function 9.8
operational considerations 9.8

MVO instruction
examples 9.9
formats 9.9
function 9.9
operational considerations 9.9

MVZ instruction
examples 9.10
formats 9.10
function 9.10
operational considerations 9.10

• N

N instruction
examples 12.2
formats 12.2
function 12.2
operational considerations 12.2

NC instruction
example 12.3
formats 12.3
function 12.3
operational considerations 12.3

NI instruction
examples 12.4
formats 12.4
function 12.4
operational considerations 12.4

Normalization
AD instruction 11.2
ADR instruction 11.3
AE instruction 11.4
AER instruction 11.5

•

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

NR instruction
12-44 example
12-43 formats
12-43 function
12-43 operational considerations

Number attributes
9-31 example
9-30 function
9-30
9-30 Numeric data, comparison

Numeric representation
9-34 packed format
9-33 unpacked format
9-33
9-33

9-37 0 instruction
9-36 example
9-36 formats
9-36 function

operational considerations

Object code
example
format

12-3
12-2 Object module format
12-2
12-3 Ob1ect program

definition
general

12-6
12-5 QC instruction
12-5 example
12-6 formats

function
operational considerations

12-9
12-8 01 instruction
12-8 examples
12-9 formats

function
operational considerations

11-3
11-6 Operand field, coding form
11-9
11-12 Operand length, ED

instruction

Index 19

Reference Page

12.5 12-12
12.5 12-11
12.5 12-11
12.5 12-12

27.5.6 27-30
27.5.6 27-30

Table 2-1 2-2

2.4.3.2 2-7
2.4.3.1 2-6

0

12.17 12-46
12.17 12-45
12.17 12-45
12.17 12-46

1.2 1-13
1.2 1-12

Fig. 1-9 1-16

4.1.2 4-6
1.2 1-12

12.18 12-49
12.18 12-48
12.18 12-48
12.18 12-49

12.19 12-53
12.19 12-51
12.19 12-51
12.19 12-52

1.1 1-4

9.6 9-15

UP-8061 Rev. 3

Term Reference

Operation, program exception Appendix D

Operation field, coding form 1.1.1

Operators
arithmetic 4.3.1
description 4.3
logical 4.3.2
priority Table 27-2
relational 4.3.3
summary Table 4-2

OPSYM directive
example 16.2
format 16.2
function 16.2

OPTION job control statement
examples 29.2.2
function 29.2.2

Option-specifying operands F.1

Optional information, coding 4.1.2

OR, bit comparison 4.3.2

OR instruction
example 12.20
formats 12.20
function 12.20
operational considerations 12.20

Or (0) instruction See 0
instruction.

Or (QC) instruction See OC
instruction.

Or (01) instruction See 01
instruction.

ORG directive
examples 17.4
format 17.4
function 17.4

Organization of listing
CODEDIT 28.3
cross-reference 28.5
diagnostic 28.6
example 29.6
external symbol dictionary (ESD) 28.4
preface 28.2

OS/3 Assembler 1.1

Output, assembly listing Section 28

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

1-4 P type constant

Pack decimal (PACK)
4-14 instruction
4-13
4-14
27-8 PACK instruction
4-15 examples
4-13

formats
function

16-3 operational considerations
16-3 packed format conversion
16-3

Packed decimal constant (P)
function

29-2 padding
29-2 truncation

F-1 PARAM statement
format

4-4 functio1

4-14
operational considerations

PNOTE message statement
format

12-55 function
12-54
12-54 Positional parameter 0
12-55 description

example

Positional parameters
coding
comma
referencing in the call

Powers
of 2

17-6
of 16

17-6 Preface section of listing
17-6

PRINT directive
format

28-2 examples
28-4 function
28-5
29-17 Privileged instructions, status
28-3
28-1

1-1

Index 20

Reference Page • p

5.2.4 5-10

See PACK
instruction.

2.4.3.2 2-7
9.12 9-41
9.12 9-40
9.12 9-40
9.12 9-41
2.4.3.2 2-7

5.2.4 5-10
5.2.4 5-10
5.2.4 5-10

F.l F-2
F.l F-1
F.1 F-5

27.3.2 27-20 • 27.3.2 27-20

25.5 25-9
30.1 30-1

4.1.2 4-6
4.1.2 4-6
25.2 25-3
26.2 26-2

C.3 C-8
C.4 C-9

28.2 28-1

20.2 20-3
20.2 20-4
20.2 20-3

13.1 13-1

•

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 21

UP-8061 Rev. 3

Term Reference

Relocatable expression
absolute terms 4.4.2
definition 4.4.2
examples 4.4.2
relocatable term 4.4.2
requirements 4.4.2

Relocatable term
absolute expression 4.4.l
division 4.4
expression 4.4
multiplication 4.4

Repetitive code generation statements
conditional assembly control

counter (ACTR) 27.4.3
define end of range (ENDO) 27.4.2
define start of range (DO) 27.4.1

REPRO directive
example 21.3
format 21.3
function 21.3

Reproduce following record
(REPRO) directive See REPRO

directive.

RR instruction 7.1

RS instruction 7.1

Running an assembler program
examples 29.6.l
using job control 29.l

RX instruction 7.1

s
S instruction

example 10.21
formats 10.21
function 10.21
operational considerations 10.21

S switch, ED instruction 9.6

S, type constant 5.2.10

Sample program Appendix A

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

Scale attribute
4-17 example
4-17 function
4-17
4-17 SD instruction
4-17 example

formats
function

4-16 operational considerations
4-15
4-15 SOR instruction
4-15 example

formats
function
operational considerations

27-23
27-22 SDT
27-21 binary conversion

character
decimal

21-5 hexadecimal
21-5 meaning
21-5

negative term
use

SE instruction
example

7-1 formats
function

7-1 operational considerations

Self-defining terms (SOT)
29-17
29-1 SEQ statement

format
7-1 function

operational considerations
specifications

Sequence field, coding form

10-57 Sequence symbols
10-56
10-56 SER instruction
10-56 example

formats
9-16 function

operational considerations
5-13

Service timer register
(STR) instruction

Index 22

Reference Page •
27.5.3 27-28
27.5.3 27-28

11.36 11-76
11.36 11-75
11.36 11-75
11.36 11-76

11.37 11-78
11.37 11-77
11.37 11-77
11.37 11-77

4.2.l 4-9
4.2.1 4-10
4.2.l 4-9
4.2.l 4-9
4.2 4-8
4.2.l 4-9
4.2.l 4-9
4.2.1 4-9

11.38 11-80 • 11.38 11-79
11.38 11-79
11.38 11-80

See SOT.

F.2.1 F-6
F.2.1 F-6
F.2.1 F-6
F.2.1 F-6

1.1 1-8

27.2.l 27-14

11.39 11-82
11.39 11-81
11.39 11-81
11.39 11-81

13.5.l 13-12

•

UP-8061 Rev. 3

• Term

Set program mask (SPM)
instruction

SET statement
examples
format
function

operator priority

Set storage key (SSK) instruction

SET symbols
character expressions
function
global
local
SET statement
SETA statement
SETB statement
SETC statement
subscripted
value assignment

• Set system mask (SSM) instruction

SETA statement
examples
format
function

SETB statement
examples
format
function

SETC statement
examples
format
function

Setting of UPSI byte

SH instruction
examples
formats
function
operational considerations

Shaded option

•

Reference

See SPM
instruction.

27.1.4
27.l.4
27.1.3
27.l.4

SPERRY UNIV AC OS/3
ASSEMBLER

Page Term

Shift left double
instruction

(SLDA)

Shift left double logical
27-8 instruction
27-6
27-6
27-6 Shift left single (SLA)

(SLDL)

Table 27-2 27-8 instruction

13.2.5 13-6
Shift left single logical

(SLL) instruction
27.l.8 27-13
27.l 27-2
27.1.2 27-4 Shift right double (SRDA)
27. l.l 27-3 instruction
27.l.4 27-6
27.l.5 27-9
27.l.6 27-10 Shift right double logical (SRDL)
27.1.7 27-12 instruction
27.1.9 27-13
27.1.3 27-6

Shift right single logical (SRL)
13.2.6 13-7 instruction

27.1.5 27-10 Shift right single (SRA)
27.1.5 27-9 instruction
27.1.5 27-9

SI instruction
27.1.6 27-12
27.1.6 27-10 Sign consideration for operand 2,
27.1.6 27-10 ED instruction

Signed unpacked number
27.1.7 27-13
27.1.7 27-12
27.1.7 27-12 Significance, program exception

29.5.4 29-16 Significance start byte, ED
instruction

10.23 10-62 SID instruction
10.23 10-61
10.23 10-61 SKI statement
10.23 10-62 format

function
4.1.2 4-5 operational considerations

specifications

Index 23

Reference Page

See SLDA
instruction.

See SLDL
instruction.

See SLA
instruction.

See SLL
instruction.

See SRDA
instruction.

See SRDL
instruction.

See SRL
instruction.

See SRA
instruction.

7.1 7-1

9.6.l 9-16

See zoned
decimal constants.

Appendix D

9.6 9-16

13.3.l 13-8

F.2.3 F-8
F.2.3 F-7
F.2.3 F-8
F.2.3 F-8

UP-8061 Rev. 3

Term Reference

SL instruction
example 14.3.6
formats 14.3.6
function 14.3.6
operational considerations 14.3.6

SLA instruction
example 14.2.8
formats 14.2.8
function 14.2.8
operational considerations 14.2.8

SLDA instruction
example 14.2.7
formats 14.2.7
function 14.2.7
operational considerations 14.2.7

SLDL instruction
example 14.3.4
formats 14.3.4
functions 14.3.4
operational considerations 14.3.4

SLL instruction
example 12.21
formats 12.21
function 12.21
operational considerations 12.21

SLM instruction
example 3.6.1
format 3.6.1

SLR instruction
example 14.3.7
formats 14.3.7
function 14.3.7
operational considerations 14.3.7

SOFTSCOPE forward scan (SSFS)
instruction 13.4.2

SOFTSCOPE reverse scan (SSRS)
instruction 13.4.3

Source cards
definition 4.1.2
general 1.1

Source code
literals 4.2.2
PROC (DO loop) 30.2
PROC (positional parameter 0) 30.1

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

Source deck

14-49 definition

14-48 job control cards

14-48 requesting an assembly

14-49
Source deck introduction

JOB control statement

14-27 OPTION job control statement

14-25
14-25 Source module correction routine

14-26 control statements
correction deck
REC statement

14-24 SEQ statement

14-22 SKI statement

14-22
14-22 Source program

general
meaning

14-43
14-42 SP instruction

14-42 examples

14-43 formats
function
operational considerations

12-58
12-57 SPACE directive

12-57 examples

12-57 format
function

13-13 Special characters

13-13
Special letters

14-52 Specification, program exceptions

14-51
14-51 Specify location counter

14-51 (ORG) directive

13-10 SPM instruction
example
formats

13-11 function
operational considerations

4-6 SR instruction

1-1 examples
format
function

4-10 operational considerations
30-2
30-1 SRA instruction

examples
formats
function
operational considerations

Index 24

Reference Page •
4.1.2 4-6
29.5 29-15
n6 29-17

29.2.1 29-2
29.2.2 29-2

F.2 F-5
F.2 F-5
F.2.2 F-7
F.2.1 F-6
F.2.3 F-7

1.2 1-12
4.1.2 4-4

9.13 9-45
9.13 9-44
9.13 9-44
9.13 9-44

20.3 20-5 • 20.3 20-5
20.3 20-5

2.4.4 2-8

2.4.2 2-6

Appendix D

See ORG
directive.

13.7 13-15
13.7 13-15
13.7 13-15
13.7 13-15

10.22 10-59
10.22 10-58
10.22 10-58
10.22 10-58

14.2.10 14-33 • 14.2.10 14-31
14.2.10 14-31
14.2.10 14-32

UP-8061 Rev. 3

• Term Reference

SRDA instruction
examples 14.2.9
formats 14.2.9
function 14.2.9
operational considerations 14.2.9

SRDL instruction
example 14.3.5
formats 14.3.5
function 14.3.5
operational considerations 14.3.5

SRL instruction
example 12.22
formats 12.22
function 12.22
operational considerations 12.22

SS instruction 7.1

SSFS instruction 13.4.2

SSK instruction 13.2.5

SSM instruction 13.2.6

• SSRS instruction 13.4.3

SSTM instruction
example 13.6.2
formats 13.6.2

ST instruction
example 10.18
formats 10.18
function 10.18
operational considerations 10.18

START directive
examples 17.5
format 17.5
function 17.5

Start 1/0 (SIO) instruction 13.3.1

Start-of-data job control
statement(/$) 29.4

Status switching instructions
general discussion 13.1
set program mask (SPM) 13.7
supervisor call (SVC) 13.8
test and set (TS) - featured 13.9

• STC instruction
example 12.23
formats 12.23
function 12.23
operational considerations 12.23

SPERRY UNIV AC OS/3
ASSEMBLER

Page Term

STD instruction

14-29 example

14-28 formats

14-28 function
14-29 operational considerations

STE instruction

14-46 example

14-45 formats
14-45 function

14-46 operational consideration

STH instruction

12-61 example

12-60 formats

12-60 function

12-60 operational considerations

7-1 STM instruction
examples

13-10 formats
function

13-6 operational considerations

13-7 Storage, type characteristics

13-ll Store (ST) instruction

13-14 Store, long format (STD)
13-14 instruction

10-50 Store, short format (STE)
10-49 instruction
10-49
10-49

Store character (STC) instruction

17-8
17-8
17-8 Store half word (STH) instruction

13-8
Store multiple (STM) instruction

29-15
STR instruction

13-1 SU instruction
13-15 example
13-17 formats
13-19 function

operational considerations

12-63
12-62
12-62
12-62

Index 25

Reference Page

11.40 11-84
11.40 11-83
ll.40 ll-83
11.40 11-83

11.41 11-86
11.41 ll-85
11.41 ll-85
11.41 11-85

10.19 10-52
10.19 10-51
10.19 10-51
10.19 10-51

10.20 10-54
10.20 10-53
10.20 10-53
10.20 10-54

Table 5-1 5-2

See ST
instruction.

See STD
instruction.

See STE
instruction.

See STC
instruction.

See STH
instruction.

See STM
instruction.

13.5.1 13-12

11.42 11-88
11.42 ll-87
ll.42 ll-87
11.42 11-87

UP-8061 Rev. 3

Term Reference

Subparameters
referencing in the call (macro) 26.4
referencing in the call (proc) 25.4

Subroutine lir.kage 19.6

Subscripted SET symbols 27.1.9

Subtract (S) instruction See S
instruction.

Subtract decimal (SP) instruction See SP
instruction.

Subtract half word (SH)
instruction See SH

instruction.

Subtract logical (SL) instruction See SL
instruction.

Subtract logical (SLR) instruction See SLR
instruction.

Subtract normalized, long format
(SD) See SD

instruction.

Subtract normalized, long format
(SOR) instruction See SOR

instruction.

Subtract normalized, short
format (SE) instruction See SE

instruction.

Subtract normalized, short
format (SER) instruction See SER

instruction.

Subtract (SR) instruction See SR
instruction.

Subtract unnormalized, long format
(SW) instruction See SW

instruction.

Subtract unnormalized, long format
(SWR) instruction See SWR

instruction.

Subtract unnormalized, short
format (SU) instruction See SU

instruction.

Subtract unnormalized, short
format (SUR) instruction See SUR

instruction.

SPERRY UNIVAC OS/3
ASSEMBLER

Page Term

Supervisor call (SVC)
26-5 instruction
25-7

19-11 Supervisor load multiple (SLM)
instruction

27-13

Supervisor store multiple (SSTM)
instruction

SUR instruction
example
formats
function
operational considerations

SVC instruction
example
formats
function
operational considerations

SW instruction
example
formats
function
operational considerations

SWR instruction
example
formats
function
operational considerations

Symbol
applications
definition

equivalent
invalid examples
valid examples

values

Symbol attributes
length
relocatability
value

System variable symbols
&SYSDATE
&SYSECT
&SYSJDATE
&SYSLIST
&SYSNDX
&SYS PARM
&SYSTIME

Index 26

Reference Page •
See SVC
instruction.

13.6.1 13-13

13.6.2 13-14

11.43 11-90
11.43 11-89
11.43 11-89
11.43 11-89

13.8 13-17
13.8 13-17
13.8 13-17
13.8 13-17

11.44 11-92
11.44 11-91
11.44 11-91 • 11.44 11-91

11.45 11-94
11.45 11-93
11.45 11-93
11.45 11-93

6.2 6-3
4.2.3 4-11
Section 6
6.2 6-3
6.1 6-2
4.2.3 4-11
6.1 6-1
4.2.3 4-11

4.2.3 4-11
4.2.3 4-12
4.2.3 4-11

G.4 G-2
G.l G-1
G.6 G-4
G.2 G-1 • G.3 G-2
G.7 G-4
G.5 G-3

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 27

UP-8061 Rev. 3 SPERRY UNIVAC OS/3
ASSEMBLER

Index 28

•

Q)

c:

.....
:i

(.)

•

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

--FOLD

•

•

