
BEM:BASIC - OS/3

Instruction Summary

Code Card

UA-0191 Rev. 1 ·

The BEM programs described in this document are confidential
information and prOprietary products of the Sperry Univac Divi­
sion.

This document contains the latest information available at the time
of publication. However, Sperry Univac reserves the right to modify
or revise its contents. To ensure that you have the most recent
information. contact your local Sperry Univac representative.

SPERRY UNIVAC NEWSCOMP Newspaper Composition Program
was used by Application Services in typesetting this publication.

Sperry Univac is a divison of Sperry Rand Corporation.

AccuScan, FA$TRAND, PAGEWRITER, SPERRY UNIVAC, UNISCOPE,
UNISERVO, and UNIVAC are trademarks of Sperry Rand Corporation.

©1976, 1977 - Sperry Rand Corporation Printed in U.S.A.

OS/3 BEM:BASIC SUMMARY

BEM COMMANDS

/DELETE (file-parameters)

/DISPLAY JOB

/DISPLAY VOLUMES

/EXEC BASIC

Deletes an element from a library file.

Displays information about currently
active batch jobs.

Displays the names of any disk pack
mounted at the main site.

Invokes the BASIC compiler; when
loaded the following is displayed:

OS/3 BASIC READY (VER n.n) BEGIN

/FSTATUS library (password),volume
- Displays the directory of the requested

file.

/HELP

/INTR

/LOGOFF

/LOGON id

/PAUSE question

/PRINT (file-parameters)

/PUNCH (file-parameters)

Displays additional information about

the previous error message.

Interrupts current command in exe­

cution.

Terminates a user's session and re­
leases all work space to the system.

Identifies the user to the system. Must
always be the first command entered.
The system will respond with a bulle­
tin followed by:

USER LOGGED ON, BEM SYSTEM READY

Displays the user's question on the
computer console and pauses the user
until the operator's reply is available
for display to the user.

Prints a library element at the central
site.

Punches a library element at the cen­
tral site.

~N Uobname] Initiates a job at the main site.

/SCREEN [~~~LOLL] [~i~oP] [he~ht x width]

/STATUS RESOURCES - -

/STATUS TERM

Defines the UNISCOPE terminal char­
acteristics.

Displays the amount of memory and
disk space available to BEM.

Displays a list of terminals rurrently in
use on the system.

~YPEmessage

/VTOC volume

Language Elements

General

1. blanks

Displays the user's message on the
computer operator's console.

Displays the names of files on a disk
volume.

The character blank, which may be used in constructing the
BASIC programs, is designated in the syntax by the symbol D..
Any spaces which appear in the syntax equations do not denote

blanks in the BASIC language. Blanks are only significant in
BASIC when they appear in a comment or in a string constant.

2. quote

The character quote (") is used to delimit the beginning and end
of a closed-string constant.

3. asterisk

Exponentiation is specified by means of a pair of asterisks. An

up-arrow(!) is also permitted, where applicable.

Constants

decimal-number

closed-string

A fraction followed by optional expo­
nent field.

Fraction:

series of 1 to 15 digits containing
optional decimal point preceding, fol­
lowing, or embedded in series of di­
gits.

Examples:

85 85. .85 85.6438

Exponent:

indicates the power of 10 by which the
fraction is to be multiplied and con­
sists of the letter E followed by option­
al sign and one or two digits. Sign is+
or -; if omitted, + is assumed.

Examples:

E5 E+14 E+B E-04 E-2

Quote followed by a series of 0 to
4095 string characters followed by a
quote.

Example: "ABZ1546.84"

open-string A character followed by a series of 0
to 4095 characters or blanks (L'.) or
quotes ("). terminated by a comma or
end of line.

Example: ABZ154L'.84

line-number Series of one to five digits, ranging
from 1 to 99999 in value. Leading
zeros are ignored. Each statement
must have a unique line-number.

Example: 01250

NOTES:

1. decimal numbers

All decimal numbers are converted and stored internally in
floating-point format. The exponent occupies seven bits and
indicates the power to which the number 16 must be raised. The
sign occupies one bit. In BASIC the mantissa occupies 24 bits,
and contains a 6 digit hexadecimal number in normalized form.
If the value of the fraction part of a decimal number, disregard­
ing the decimal point, exceeds 224 - 1, the number is rounded
and trailing digits are lost: for example:

12.3456789

is acceptable, but is (effectively) rounded to

12.345679

If the mantissa is nonzero, the magnitude of the floating-point
number has the following range:

16-" <;;;M<16 "(approximately 10-1• <OM<10")

Overflow and underflow conditions for numeric constants are
processed as errors.

2. string constants

All string constants are stored in EBCDIC code. A 2-byre length
field is prefixed to each string before it is stored; 'the value of the
length byte is not included. If a given string constant contains
more than 4095 characters, it is truncated at the righL Note that
an open-string constant, as opposed to a closed-string constant
cannot begin with a quote and cannot contain a comma. More­
over, an open-string constant is permitted only as input to the
READ, and INPUT statement.

Within a closed-string constant, two consecutive ~tes arE
interpreted as a single quote.

Variables

scalar variable Defined as a numeric variable or a
string variable.

numeric variable A letter optionally followed by a single
digit.

Example: S SB

string variable A letter followed by a dollar sign($) or
a letter and single digit followed by a
dollar sign($).

Example: V$, 8$, F7$, BO$

array variable Defined as a numeric array variable or
a string array variable.

numeric array variable A letter followed by one or two sub-
script expressions enclosed in paren-
theses.

Examples: M(2) P(B,92) X(A+B)

string array variable A letter followed by a dollar sign ($)
followed by one or two subscripts en-
closed in parentheses.

Examples: M$(2) C$(20)
D$(A+B9,10)

NOTES:

1. numeric variables

Numeric variables may only be assigned decimal numeric values.
All such variables are initialized to zero (0).

2. numeric array variables

Numeric array variables may only be assigned decimal numeric
values. All such variables are initialized to zero (0).

3. subscripts

A subscript may be defined using any arithmetic expression.
During execution, the value used to locate the array element
referenced is computed by taking the integer part of the sub­
script expressions. Rounding occurs for each subscript. If the
subscript value is not within the bounds specified (or implied) for
that dimension of the referenced array, then the user is given an

error message and program execution terminates.

Two-dimensional numeric arrays are stored in row-major order.

4. string variables

String variables may only be assigned character string values.
All such variables are initialized to the null string (zero length).

5. string array variables

String array variables may only be assigned character string
values. All elements of these string array variables are initialized
to the null string (zero length).

The rules for numeric array variables regarding bounds and
subscript evaluation apply to string array variables as well.

Expressions

arithmetic-expression Defined as a term optionally preceded
by a minus (-) or plus (+); or an
arithmetic expression plus (+) or mi-
nus(-) a term.

Example: A *"*2 *B - 3

term A factor or a term multiplied(*) or di-
vided (!)by a factor.

Example: A**2*B

factor A primary or a factor raised to a power
(**)designated by_a primary.

Example: A**2

primary A decimal number, numeric reference,
function reference, or an arithmetic
expression enclosed in parentheses.

Example: 2,A,RND(X), (C - D)

string-expression String-primary or a string-expression
followed by an ampersand (&), denot-
ing concatenation. followed by another
string-expression.

Example: "ABC" & F$

string-primary A closed string, string reference. or
string function reference.

Example: A$, SEG$ (0$, 6, 8), "AB"

NOTES:

1. The exponentiation operator (**)may be written where applica­
ble as an up arrow (t).

2. A **B**C is compiled as (A **B)**C.

3. Parentheses may be used to factor subexpressions.

4. The folio wing are treated as errors:

• Mixed mode expressions and any operations on string
data

• Division by zero

• Zero to a negative power

• Overflow and underflow conditions existing during the
evaluation of arithmetic expressions.

5. A negative number can only be raised to a nonzero positive
integer number. The maximum value of this positive integer is
15. Any violation of this rule is treated as an error.

6. The concatenation operator, &, may be used to combine two or
more strings:

"ABC" & "DEF" results in "ABCDEF".

Function References

built-in-function A function name optionally followed by
a series of arguments, enclosed in

parenthesis.

function-name ABS ATN CHR$ CLK$ COS COT
DAT$ DET EXP INT LEN LOC
LOF LOG MAR MOD NUM PER
POS RND SEGS SGN SIN STR$
TAN TIM USR$ VAL

user-defined-function FN followed by a letter, an optional
dollar sign ($), and an argument list
enclosed in parentheses.

Example: FNA (A+ B, X-Y), FNC$ (BS,
A)

argument-list An expression optionally followed by
up to 15 expressions separated by
commas.

Example: A+ B, X-Y, A$, ..

NOTES:

1. SIN(x), COS(x), TAN(x), COT(x), and ATN(y) designate the func­
tions sine, cosine, tangent, cotagent and arctangent respec­
tively, and the argument x and the result of ATN are angles
measured in radians.

2. EXP(x) designates exponentiation e. Overflow occurs if x is too
large (i.e., x > 174.6)

3. LOG(x) designates the natural logarithm of x, In x. The LOG of
zero or a negative number is treated as an error.

4. ABS(x) designates the absolute value of x, lxl .

5. SQR(x) designates the square root of x. A negative argument is
treated as an error.

6. RND(x) designates a pseudo random number as follows:

a. If x > 0, then RND(x) is a function of x, whose value is in
the open interval (0, 1).

b. If x < 0, the system supplies an arbitrary random number
in the open interval (0, 1).

c. If x = 0. the system supplies a pseudo random number
which is a function of the previous random number
generated by RND. If x = 0, the first time RND is called in
a program, the system will supply a fixed number in the
open interval (0, 1 J.

d. If the argument is omitted (X
equivalent to an argument of zero.

RND), then this is

To generate a sequence of pseudo random numbers, the
user would call any of these options followed by repeated
calls to option (c).

7. INT(x) designates the largest integer not exceeding x.

For example: INT(2.985) = 2.

8. SGN(x) designates the sign of x.

{

+1,ifx>O}
SGN = 0, if x = 0

-1, if x<O

INT(-2.015) = -3.

9. DET returns the value of the determinant of the last matrix
inverted.

10. TIM designates the current running time in seconds for the
program.

11. LEN(xSJ returns the length in characters of string xS.

12. VAL(xSJ returns the numeric value of the decimal number which
is in string x$.

13. MOD(x,y) returns the modulus remainder of X MOD Y This is
similar to X-Y* JNT (XIY).

14. POS(xS, yS,z) begins searching string xS at position z attempting
to find string yS. This will return the starting position at which
yS is found within x$, or zero if not found.

15. CHRS {x) designates the one character EBCDIC string with a
character value equal to x.

16. CLKS designates the current time of day in the form
"HH:MM:SS".

17. DAT$ designates the current date in the form "MMIDDIYY".

18. SEGS(xS,y,z) returns the substring of xS from character position
y to position z.

19. STRS(x) returns the character string representation of the num·
berx.

20. USRS returns the /ogon-id of the terminal user.

21. LOC(#n) returns the current location of the file pointer for the file
assigned to channel #n.

22. LOF(#n) returns the current end-of-file (number of records) for
the file specified by #n.

23. MAR(#n) returns the current margin setting for the file #n.

24. PER(#n,a$) returns +1 if the operation specified for file # n is
valid, 0 if not, and -1 if a$ is not one of the operations: INPUT.
LINPUT, PRINT, READ, RENAME, RESET, SCRATCH, WRITE, or
MARGIN.

25. TYP(#n, a$) returns +1 if the type specified by a$ corresponds to
the file type of file #n, 0 if not, and -1 if a$ is not one of the
types: ANY, LIBRARY. NUMERIC, PERM, RANDOM, STRING,
TERMINAL, TTY. or WORK.

26. NUM returns the count of values inputted by the last MAT
INPUT.

27. FNA to FNZ designates one of the 26 user-defined numeric
functions (see the DEF statement).

28. FNA$ to FNZ$ designate one of the 26 user-defined string
functions.

29. EBC (string) converts a string of from one to three characters in
length to its EBCDIC value. The argument may be a letter.
number, character, etc., or a 2 - 3 letter mnemonic such as
ETX, DEL, etc.

Statements

statement Line-number followed by an execut-
able statement or nonexewtable-
statement. A comment may be added
to any statement by prefixing it with
an apostrophe n.

executable-statement Assign, control, input-output, matrix.
data file.

nonexecutable-statement Declaration or remark statement.

NOTES:

1. Each BASIC statement entered into a program must be prefixed
with a line number. These line numbers determine the logical
order of statements within a program. They are used in several
of the control statements to effect transfers of control.

2. Each BASIC statement is summarized in the reference and
described in deta11 in the BASIC reference manual UA-0140
(current version).

Syntax Conventions

In describing the statements, the following conventions are used:

file-params:

program:

file:

password:

volume:

line-number:

list-item:

search-string:

channel-setter:

NOTES:

format 1:

program, file [(password)][, volume]

Formst 2:

{
SQ} ,file [ireadpass/writepass)] [,vo-
DA lume]

1 to 8 character program name to be
located or saved.

1 to 44 character file name of the file
containing the program to be located
or saved.

Is the cataloged password for the file,
if any. The read password must be
supplied for an "OLD" and the write
password for "SAVE". This entry is
optional.

6 character volume name. If the file is
listed in the catalog with a volume,
this field may be omitted.

A series of one to five digits.

line number
line number-line number

list-item [,list-item ...]
"characters"

Identifies the file on which an opera­
tion is performed. This has the form:

#expression

1. A line-number-list may contain list-items which reference single
lines and others which reference a sequence of lines (all lines
between the first and second line numbers specified, inclusive).

Example:

120, 200 - 250, 300

This list references those lines numbered 120, 200 to 250
inclusive, and 300.

2. A channel-setter must result in a value between 0 and 4095.
Channel zero, the terminal, may only be referenced by certain
statements.

Statement Formats

Format

CALL closed-string {:param-list]

CHAIN {5!~:~~·.~:::t:~n}
(WITH channel"setter.

CHANGE {~::;:~:~:? T~~t~~~~--~•::;}
(BIT expression]

OAT A datum[.datum

DEF FNletter ($] [(param-l1st)]
(,local-list]{= expression]

DIM letter [SJ {integer{, integer]),

END

FILE channel-setter:string-expression

FNEND

FOR numeric-variable=anthmetic-expression
TO arithmetic-expression
(STEP arithmetic-expression)

GOSUB line number

GOTO

{

GOTO}
If condition THEN line number

GOSU8

INPUT {channel-setter:] variable, variable

{

numeric-lei}
[LEn string-let

function-let

LIBRARY closed-string,

LINPUT [channel-setter:] string-variable,

MARGIN [channel-setter:) expression

MAT letter=letter+letter

MAT letter= CON [(trimmer)]

MAT letter= tON ((trimmer)]

MAT letter=INV(letter)

Example

17 CALL "SUBR": 3+4, B (), #4

4197 CHAIN #4 WITH #1,#J
4522 CHAIN A$ WITH #3
9223 CHAIN "PAOG, CATUS"

512CHANGEA$TOV
675 CHANGE B TO A5$ BIT 4

330DATA4,2,1.7
340 DATA "YES", "NO", 3

30 DEF FNE (X)=EXP (-X .. 2)

1 DIM A(5), 8$(6,3)

995 END

174 FILE #3 "MYFILE,MYLIB"
190 FILE #I: """

37 FNEND

30 FOR X=O TO 3 STEP D
80 NEXTX

90 GOSUB 210

20 GOTO 25

40 IF SIN(Xi=M THEN 80
41 IF AS = 'YES" GOSUB 79
42 IF END #I GO TO 4178

40 INPUT 8(5), C7$
41 INPUT #3:K

259 LET W7 = X4 **2
260 LET FNSS = C$
270 LET 89$ = X$(5)

47 LIBRARY "SUBLIB, PACK22 ..

195 LINPUT LS, M5$, KS (6)
423 UNPUT #7: ZS

2 MARGIN 120
4 MARGIN #6:64

615 MAT H=A + 8

100 MAT C=CON

20MAT B=IDN

550 MAT K=INV(L)

For""'1

MAT INPUT [channel-setter:} letter [SJ,

MAT LINPUT [channel-setter;] letter S,

MAT letter=letter*letter

MAT PRINT {channel-setter:]
letter[&][;]

MAT READ [channel-setter:] letter($),

MAT letter=(arithmet1c-express1on)"letter

MAT letter= letter-letter

MAT letter=TRN(letter)

MAT tetterS=NULS

MAT WRITE [channel-setter:] letter [SJ,

MAT letter= ZEA ((trimmer))

NEXT numeric-variable

{

THEN }
ON arithmetic-expression GOTO

GOSUB
line-number,

PAUSE

PRINT (channel-setter·] [item[) 1

RANDOMIZE

READ [channel-setter:} variable,

REM [character

Example

7 MAT INPUT #3: A, BS

8 MAT LINPUT L$, VS

612 MAT H=A"B

140 MAT PAINT M,N;

159 MAT READ M,N

10 MAT F~ 12.33 + M)"O

615MATH=A-B

300 MAT G~TRN(H)

47 MAT BS=NULS

19 MAT WRITE #I: 0, V, WS

412 MAT X =ZER {5,3)

80 NEXT X

150 ON X+Y GOTO 575, 490, 650

9SO PAUSE

20 PRINT I;
27 PRINT #27: AS, "FILE"

10RANDOMIZE

150 READ X, Y, ZS, V (5)
2144 READ #44: J,K

200 REM THIS SUBROUTINE
201 REM SOLVES EQUATIONS

580 RESTORE

{::;~~RE} (channel-setter: [record-numberD 517 RESET #1:4
BOS RESET #3

RETURN

SCRATCH channel-setter

STOP

SUB closed-string (:param-hst]

SUBEND

SUB EXIT

TIME integer

WRITE channel-setter :expression,

USING string-expression, expression. [;)

3SORETURN

1900 SCRATCH #4

40 STOP

9000 SUB "INTEGRAL":A, FNC, J
1000 SUS "FINDSPAC"

9999 SUBENO

9510SUBEXIT

10TIME30

1445 WRITE #7. At. B. C

145 MAT PRINT USING AS, B, C
170 PRINT #5: USING"#.##", A (1), B (2)

Command Formats

Format Example

BYE BYE

DELETE (line-number-list] [search-string] DELETE 1-200 "REM"

HELP HELP

{~~l~T} [line-number -list] {search-string]
LIST110-150
LIST "FOR"
PRINT 10,50

NEW NEW

OLD file-params OLD SORT, FILE, DISKOl

RUNOLD file-params RUNOLD PRINTIT, BASICLIB. PACK21

RUN RUN

SAVE file-para'Tls SAVE LOG. SRCE. DISKOl

