BEM:BASIC — 0S/3

User Reference

@ SPERRY<FUNIVAC

UA-0140 Rev. 3

ER‘Q‘(LJNlVAC

FROM APPLICATIONS SOFTWARE

DOCUMENT UPDATE MEMORANDUM

TITLE:

DOCUMENT NUMBER:

OPERATING SYSTEM:

ABSTRACT:

December 1980
BEM:BASIC
User Reference
UA-0140 Rev. 3 — Update C
0s/3

This update package incorporates all changes made necessary
by the latest release of this program product.

Proper insertion of these pages into your current UA-0140 Rev.
3 manual will provide an accurate description of the latest re-
lease version of this applications software product.

NOTE: The application programs described in this document
are confidential information and proprietary products
of the Sperry Univac Division.

FROM APPLICATIONS SOFTWARE

DOCUMENTATION UPDATE MEMORANDUM

July 1978

TITLE: BEM:BASIC — 0S/3
User Reference

DOCUMENT NUMBER: UA-0140 Rev. 3 — Update A

ABSTRACT: This announces the release and availability of Update Package
A for the BEM:BASIC User Reference, UA-0140.

This update package includes minor changes in the text, as
well as documentation of new features such as RESE-
QUENCE, MERGE, and SYSTEM. Changes made for Level 5.0
BEM are also documented.

NOTE: The BEM:BASIC application programs described
in this document are confidential information and
proprietary products of the Sperry Univac
Division.

ORDERING PROCEDURE: The update package alone, or the manual plus the update
package may be requisitioned. To receive only the update,
order UA-0140 Rev. 3 Update A, to receive both the manual
and the update, order the current manual and the update
package.

Domestic offices order via Sales Help Requisition (form
UD1-578) from Customer Information Distribution Center
(CIDC), 555 Henderson Road, King of Prussia, Pa. 19406.
Locations outside U.S.A. order from International Distribution
in the usual manner.

PAGE STATUS SUMMARY Update C to UA-0140 Rev. 3

. Page Update : .
Section Nun?ber lf:evel Section N:?:;;:er UL’::/Ztle Section Nz:r?t?er Ulf)e(‘\j:tle
Cover Orig. A 1 Orig.
Title Orig. 2 c
Copyright C 3.4 Orig.
Preface ii-iv Orig. 5-7 A
Contents v-ix A 8 Orig.
1 1 A B 1-2 B
2 Orig. C 1-27 A
34 A
5-9 Orig.
2 1-9 Orig.
10-11 A
3 1 - Orig.
2 A
3-16 Orig.
16A A
17-20 Orig.
21 B
22 A
23 B
24 Orig.
25 A
26 Orig.
27 A
28-29 Orig.
30-31 A
32-47 Orig.
4 1-6 Orig.
7 C
8 Cc
9-19 Orig.
5 1 Orig.
2 B
3 Orig.
4 A
5 Orig.
6-7 A
6 1-11 Orig.
12 B
13 Orig.
14-16 B
17 Orig.
18 A
19-21 Orig.
7 1 A
2-3 Orig.
8 1-16 A

Ali technical changes are denoted by an arrow (—) in the margin. A downward arrow (0) next to a line
indicates that technical changes begin at this line and continue until an upward arrow (4) is found. A horizontal
arrow (—s=) pointing to a line indicates a technical change in only that line. A horizontal arrow located between
two consecutive lines indicates technical changes in both lines or deletions.

BEM:BASIC — 0S/3

User Reference

The BEM application programs described in this
document are confidential information and propri-
etary products of the Sperry Univac Division.

SPERRY<=UNIVAC

UA-0140 Rev. 3 Update C

This document contains the latest information available at the time of publication. However,
Sperry Univac reserves the right to modify or revise its contents. To ensure that you have the
most recent information, contact your local Sperry Univac representative.

SPERRY UNIVAC NEWSCOMP Newspaper Composition Program
was used by Application Services in typesetting this publication.

A User Comment Sheet is provided at the back of this publica-
tion for your comments. If the sheet has been removed, com-
ments may be mailed to Sperry Univac, Attn: Manager, Applica-
tion Services, P.O. Box 500, Blue Bell, PA. 19424.

Sperry Univac is a division of Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, and UNIVAC are registered trademarks of the Sperry
Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are additional trademarks of the Sperry
Corporation.

©1976 — Sperry Corporation Printed in U.S.A.

UA-0140 Rev.3 : BEM:BASIC — User Reference

i -

DOCUMENT NO. [: TITLE] PAGE REV [

PAGE

PREFACE

This reference manual describes .the BASIC (Beginner’'s Ali-Purpose Symbolic
Instruction Code) system which permits the user to prepare, test, and execute
programs while operating from a remote terminal. This version of BASIC operates
under the SPERRY UNIVAC Basic Editor Monitor (BEM) of the 0S/3 Operating
System.

The organization of the manual is as follows:

Section 1 — System Description — provides the reader with a general
overall knowledge of the components of the. BASIC system.

System 2 — Language Elements — discusses the elements that comprise

the language used in constructing programs.

Section 3 — Source Language Statements — describes each BASIC source
language statement that is available to the user in constructing the BASIC
program.

Section 4 — BASIC File Support — describes the file-related statements
and access methods supported under BASIC.

Section 5 — BASIC Commands — describes each BASIC edit command that
is available in preparing BASIC programs. These commands allow the user
to name a program, execute a program, manipulate the source language
statements in a program, and return control to BEM.

Section 6 — BASIC Program Techniques — contains techniques used in
constructing BASIC programs. These techniques include the hierarchy of
arithmetic operations, and the use of programming aids such as lists, tables,
matrices, built-in functions, and muiltiline functions.

Section 7 — Errors and Debugging — describes the various user errors
which may occur in preparing a BASIC program and the required correction
facilities.

Section 8 — BEM Operation — details elements of the BEM monitor, and
how to use it.

Appendix A — Summary of BASIC Statement and Command Formats with
Examples — lists statement and command formats and descriptions. Exam-
ples are provided for each entry.

Appendix B — Sample BASIC Session — shows a complete terminal
session.

Appendix C — System Error Messages — documents all of the BASIC and
BEM error messages.

v BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [racerev.] TTLE | DOCUMENT NO.

Although BASIC is a self-contained language system requiring minimal interaction
between the control program and the user, it is nevertheless advisable that the
user become acquainted with the information contained in the following
publications:

BEM — (0S/3 Basic Editor Monitar,' User Reference UA-0139
BEM:EDT — 0S/3 Interactive Editor, User Reference UA-0141
BEM:RSP — 0S/3 Remote Spoolout Processor. User Reference UA-0243

UA-0140 Rev. 3 BEM:BASIC — User Reference A v

DOCUMENT RO TITLE PAGEREV. PAGE
I l l

CONTENTS

PREFACE -
1 SYSTEM DESCRIPTION

1.1 GENERAL ...ttt ettt eeeete et et et eeneeareeneeaea 141
1.2 TERMINALS SUPPORTED BY BASIC iiiiiciiiieinnininneenn, 1-1
1.3 LOGON PROCEDURE ...\ ittt ittt ittt et e eienanannns 1-3
1.4 SOURCE PROGRAM CONSTRUCTIONiiiiiiiiiiiiiennns 1-3
1.5 BASIC SYNTAX CHECKERttt it e i ieeenneannns 1-4
1.6 BASIC COMMAND PROCESSORcivviiiiiiiiiieinneennannnns 1-5
1.6.1 Program EXeCULIONcvit ittt e rennernnecnnernenennans 1-6
1.6.2 Program LiStingcvvrieinreierinneeenneennnenneenannnnees 1-7
1.6.3 Saving @ Programot ieie it iinenienereeennesnnnnanns 1-7
1.6.4 File OrganizationofaSavedFile................c.covvunin., 1-8
1.6.5 Usinga Saved Programcoiriiiiiiniiiininnereanannans 1-8
. 1.6.6 Returning Control tothe Monitorol 1-8
1.6.7 Deleting Program Linest iiiiinniiiiiieennnnns 1-9
1.6.8 Terminating BASICottt ciiie et ieaaanaenn 1-9
1.7 LOGOFF PROCEDUREottt ittt ietiiiiieneereannnnnnnns, 1-9

2 LANGUAGE ELEMENTS

2.1 GENERAL . ..oviiiiiii e, P 2-1
2.2 CHARACTERS ..\t tttttit ettt it ettt iee et iae e eeans 2-1
2.3 CONSTANTS ..ottt et ettt et et 2-2
2.4 VARIABLES ...\ttt ie et et i 2-4
2.5 EXPRESSIONScvnnnnnn.. eereeieee e e ar it 2-5
2.6 FUNCTION REFERENCESccvvvnnennnn. PP 2-6
2.7 CHANNEL SETTER ...tunintiiititiieeee e etireieeeeereananns, 2-11
2.8 STATEMENTS .ttt it ettt ettt et iie e eenn, 2-11

vi A BEM:BASIC — User Reference UA-0140 Rev. 3
PAGE | Pace rev | ’ TITLE | DOCUMENT NO.
3 SOURCE LANGUAGE STATEMENTS
ST INTRODUCTION Lottt i ittt i it ettt aa e neasaananns 3-1
3.2 DECLARATION STATEMENTS...... ettt eetitenaereee e eaaeos 3-2
3.2.1 DIM Statement......... e eteaetreranantacctcenennans eeens 3-3
3.2.2 DEF StatemMeNt v ittt it iveienennrereentennnecensnrannnns 34
3.2.3 FNEND Statement ..o iviirit ittt iieesnereaaneanennacannnen 3-6
3.3 REMARK STATEMENT ..ottt ittt ittt ettt ettt eannanns 3-7
3.4 ASSIGNMENT STATEMENT ... ittt ittt et ettt eeaaannn . 37
3.5 CONTROL STATEMENTS ..ottt ittt ittt et eitereaanaannn. 3-8
3.5.1 FORANA NEXT Statements ... oovtvntrieiiinn e canreanennnss 3-8
3.5.2 GOSUB and RETURN Statementsccovettinetnnenenrnnnannss 3-11
3.8.3 GOTO Statement.....cvotiierenerieneennrreneenesenoeanneas 3-11
R T | CT - 1 =124 T-Y o | 2P 3-12
3.5.5 ON StatemMentit ittt ieiritiieetierearennnroaeronnsnnns 3-14
35,6 PAUSE Statement uvie ittt ittt iiintineeeeneerassonnananss 3-15
3.5.7 STOP Statement\ iue it ittt ieieriarrernnneennnrennns 3-15
3.5.8 END Statement i iiiei it ie et renneennsenaeennannas 3-186
3.5.9 RANDOMIZE Statementcvviriiiniinerierennoennnnnnen. 3-16
3.5.10 TIME Statementuuvuuereenennnannenesnrnnnnnnnns ... 3-16
— 3.5.11 SYSTEM StalemMent . vvit ettt it ettt teteeneceernaaenns 3-16A
3.6 INPUT/QUTPUT STATEMENT S . ittt ittt it iresteeiiinereeennn. 3-17
3.6.1 INPUT Statementvuuittiitineinorerneeneesnenenaannns 3-17
3.6.2 LINPUT Statement viriititiniiitieeereonennenonanonas 3-18
3.6.3 PRINT Statementottt ittt ittt irieeerenneeennncnsnnes 3-18
3.6.4 MARGIN Statement vvitin it imeeeasennennnennnss 3-22
3.6.5 READ and DATA Statementsovv it iieiniinenerneencnnnnnns 3-23
3.6.6 RESTORE and RESET StatementSovvtie e rnaannn. 3-24
3.6.7 USING Statement vttt iiiitieie e eteeneeneensnannnns 3-24
3.7 MATRIX OPERATION STATEMENTS .. .vi ittt e iee e, 3-31
3.7.1 Matrix Dimensioningcovtiiiriiiiiiiiiinenrierninnnnns 3-32
3.7.2 MAT Addition, Subtraction, and Multiplication Statements 3-33
3.7.3 MAT Vector Multiplicationcoiiviiiiiiin e 3-35
3.7.4 MAT Inversion Statementouvt ettt tieeieeenannennas 3-35
3.7.5 MAT Transpose Statementcviiiiereirnnerrnnnnneeennn. 3-36
3.7.6 MAT Constant Statementvitiitiiernieernnrnennsnseanns 3-36
3.7.7 MAT Zeros (O's) Statemento vt iieernnneeeennneanaannas 3-37
3.7.8 MAT identity Statementoveerininie e erneereenneeasnens 3-37
3.7.9 MAT Scalar MUItiplY .. oot it it i i e e e e e iteeeeenans 3-38
3.7.10 MAT INPUT Statement ..o in it iietineite e rnettnaeteennnnnnn 3-38
3.7.11 MAT LINPUT Statement . ..o e ittt tteeveeieneeannnnnnns 3-39
3.7.12 MAT PRINT Statement . .. ov v it in it e ieie e eeeeeeennnnnnnns 3-40
3.7.13 MAT READ Statement...... F 3-40

-

UA-0140 Rev. 3 BEM:BASIC — User Reference - A vii

DOCUMENT NO. | TITLE | PageREv. | PAGE
3.8 PROGRAM SEGMENTATION .« .ottt it i er et i rinenenns 3-40
3.8.1 CHAIN Statementoiiiiitiiiitit it iietnnenenasncnnnnnns 3-41
3.8.2 LIBRARY Statement .. v v ittt it iriieivneerrerineererenennnes 342
3.8.3 CALL Statement .. cuvvirii e rirnnerrrnennerroonieennanens 3-43
3.8.4 SUB Statement . ..uuuuerenenreneeennnseaneenneensenaeasnns 3-44
3.8.5 SUBEND Statement............ e eeeteaeaete e enaae e 3-46
3.8.6 SUBEXIT Statementc.itinirtrinrerrernnnnacrrsnnnsonannes 3-46
3.9 CHANGE STATEMENTottt ittt ittt eteetieaneneannenns 3-47

4 FILE SUPPORT
4.1 INTRODUCTION ... ittt it iereiiarenennnnans eeeeeenean 4.1
4.2 FILE DESCRIPTIONcovvvvnennnnn e teeeredter e, 4.1
4.3 FILE STATEMENT S ittt ittt ittt trittiaererinenrasnenneens 4-4
4.3.1 FILE Statement . ..ivvt it ietiieee e ernnneecsensnesneennes 4-6
4.3.2 MARGIN Statementcoceiitrinnrnnernneeneeenanennens 4-8
4.3.3 PRINT Statementttt ittt iittireaterernneneeansnsnns 4-9
4.3.4 INPUT Statementcoiiiiiiieiiiiiereeranrenensaneeananans 4-10
4.3.5 LINPUT Statementcvviervnrinernnnrnnrnarensonnenns 4-12
4.3.6 RESET Statementcciveiieernrenrrensereeneneannnen ee.. 4-13
4.3.7 READ StatBmMentitiiiiertrernnnrnnenenansesenneannes 4-14
4.3.8 WRITE Statementc.ccvviiverinrernerennenns e eereeaees 4.15
4.3.9 RENAME Statement L.....ovvrrrerinnirrrnrnnsenrnnnerennnes 4-16
4.3.10 SCRATCH Statementvvitriieriinernerenneenenennnns 4-17
4.3.11 Matrix {/0O Statements ettt t ettt aeeaaen 4-17
5 BASIC COMMANDS

5.1 INTRODUCTION ittt ittt it ittt et taeetneennnns 5-1
5.2 COMMANDS ..ttt i ittt ittt te et e essnenenennas 5-2
=370 N - & 4 =S A 5-2
S B | =2 = 5-3
B.2. 3 HELP .ttt ettt ettt tteneseernaenennnnnanes 5-3
5.2.4 LIST, PRINT L.ttt ittt ittt teereeteenaannanens 5-3
B 2.8 NEW ittt ittt te ittt e 5-3
B 2.8 MODIFY i it ittt it e ittt anar e 5-4
L O 1 8 5-4
B.2.8 RUN Lt ittt it ittt ettt teunnenrennneseennnnnnes 5-4
.20 SAVE i it it ettt ta et 5-5
5. 2.10 RUNOLD ..ttt ittt et itiet ettt treenenrnneerennnenenns 5-5
L0 B B 0 I =1 5-6

8,212 MERGE ... e e e 5-6
5,213 RESEQUENCE ... i e e e 5-6

viil A : BEM:BASIC — User Reference UA-0140Rev. 3

PAGE |paceRev.| TITLE | DOCUMENT NO.

6 BASIC PROGRAM TECHNIQUES

6.1 INTRODUCTION ...t iiiivinennn, ettt 6-1
6.2 HIERARCHY OF ARITHMETIC OPERATIONS iinnen.. 6-1
6.3 USE OF LOOPS .. iiiitiiie ittt ittt einrnneeceennnnnnns 6-3
6.4 USE OF LISTS AND TABLES ... ittt it e it it iteniinnnnenns 6-6
6.5 USEOQF BUILT-IN FUNCTIONS ...ttt ieiieeivenens 6-7.
6.5.1 Mathematical FUNCLIONSciiiitiveenniveanennnannnns. 6-8
6.5.2 Specialized FUNCLIONScvvtiiiieirrerernereennrnnnnness 6-8
6.5.3 String FUNCHIONS iiiiir ittt iietienieriaaeinnnnnns 6-13
6.5.4 File FUNCHIONSt iiitiieirniineerrernnoeronnnnsannnns 6-15
6.6 USE OF MULTILINE FUNCTIONS T 6-17
6.7 USE OF SUBPROGRAMS P 6-18
8.8 USE OF FILES ... ittt iinniinnnennns e, 6-19
6.9 HINTSFORMOREEFFICIENTCODEciiiiiiiiiiiieiiininnnn, 6-21

7 ERRORS AND DEBUGGING

7.1 INTRODUCTION .ottt ittt ie i iai e cinannaannes 7-1

7.2 ERRORS PREVENTING RUNNING OF PROGRAMcoivivnat 7-1
. 73 LOGICERRORS ..ottt i sere et 7-2

8 BEM OPERATION

8.1 INTRODUCTION ittt it ittt ittt ettt eeeneossenanarana. 8-1
8.2 COMMAND FORMAT L.ttt ittt ittt i it erieneieenaennnns, 8-2
B.2.1 LOGON Commandcvititiiiiniinitreternreneatannnnnnes 8-2
8.2.2 HELP Commandoviiiin it iieiie e enranraenans 8-2
8.2.3 TYPE ComMmMaAndvveiviierennenseroneeneransennnennas - 8-3
8.2.4 PAUSE Command Vet eeereeeene et 8-3
8.2.5 STATUS Commandsovtiiiiiiniennnennennenennnnnn. 8-3
8.2.6 EXECUTE Commandooviviniinerrenrenneenneonnonnns 8-5
8.2.7 LOGOFF Commandovieiiiinerieereneeennennnnnneennes 8-5
828 FILESTATUS Command ...ttt ittt eeienannnn, 8-5
8.2.9 PRINT and PUNCH Commandsu.vvviirienrennnnnnannn. 8-6
8.2.10 DELETE Commandovviit ittt it et ee e aeraanannns 8-7
8.2.11T RUN Commandovti ittt sttt et e i, 8-7
8.2.12 DISPLAY Commandvinniriti et eteeereneaeeannnnns, 8-8
8.2.13 SCREEN Commandooviuirniiiie e eieeaannnnnn. 8-9
8.2.14 VTOC Command ..ottt ittt et e e, 8-10

UA-0140 Rev. 3 BEM:BASIC — User Reference A ix

OOCUMENT NO. [TITLE l PAGE REV l PAGE

8.2.15 Disk Space ManagementCommandscovvvnnnnn. 8-11

8.2.16 ENTER Command . ..ottt ittt ettt it iaaan. 8-12

8.2.17 COMMENT Commanduitriirmiin it inienietinenanenns, 8-13

8.2.18 BULLETIN Commandcviiiitiriit it i iinieennennnnns 8-14

8.2.19 RECOVER Command iueriirieiiittiieieiteinennennnns 8-15
8.3 BATCH SUBMISSION .ttt ittt et et ittt i aii e 8-16 T
APPENDIXES

A SUMMARY OF BASIC STATEMENT AND COMMAND FORMATS
B SAMPLE BASIC SESSIONS

C SYSTEM ERROR MESSAGES

UA-0140 Rev.3 BEM:BASIC — User Reference A

1-1

| - TITLE | Pagerev. |

PAGE

DOCUMENT NO.
1.1
1.2

1 SYSTEM DESCRIPTION

GENERAL

The SPERRY UNIVAC Basic Editor Monitor (BEM) system provides the remote
terminal user with the capability of generating, modifying, and executing programs
written in Beginner's All-Purpose Symbolic Instruction Code {BASIC). The BASIC
system also provides the user with the capability of saving the programs m 0s/3
Library files for subsequent processing and updating.

Figure 1-1 shows an overview of the BASIC system. After logging on, the BASIC
system is invoked by typing the /EXEC BASIC command at the remote terminal. The
system then loads the BASIC compiler, responds with READY, and the user begins
to construct or modify his source program. Each BASIC statement that is entered is
immediately analyzed by a Syntax Checker for syntax errors such as invalid
constants, expressions, and construction. |f an error is detected, BASIC types a
question mark {?) and the statement in error up to the first character where the error
occurred. The user may then correct the error and proceed to the next statement.

After the user has completed his program or part of a program, he may issue the
RUN command to instruct the BASIC system to compile and execute the sequence
of statements. The BASIC compiler performs a second syntax check for global
errors during object code generation. These errors are detected when the source
program is analyzed in its entirety rather than on an individual source line basis.
Exampiles are illegal nesting, undefined function references, and illegal line-num-
ber references. (Refer to 1.6.1, “Program Execution.”) If an error is detected,
BASIC returns the line number of the source statement in error and appropriate
diagnostic message to the user. (Refer to Section 7, “"Errors and Debugging’’ and
Appendix C, System Error Messages.) .

After compilation and execution of the program, the results are returned to the
user’s terminal. The user may then use the SAVE command to save a copy of the
current program in a library file. The program is stored using the program name
supplied by the user.

TERMINALS SUPPORTED BY BASIC

The BASIC system supports all terminals supported by BEM.

Lines of source text and editing commands must be constructed using only the
minimum UNISCOPE character set with the following exceptions for

teletypewriters:

1. A vertical arrow (1) is accepted as a substltute for **, which denotes
exponentiation.

2. .The designation TRANSMIT is used to show the UNISCOPE terminal TRANS-
MIT KEY. This is equivalent to the ETX key on a DCT terminal (CTRL “C").

1-2

BEM:BASIC — User Reference

UA-0140 Rev.3

PAGE | PaGEREV. TITLE DOCUMENT NO.
REMOTE
TERMINALS
) (el)
DATA TERMINAL /- TERMINAL
y Y
/LOGON
JEXEC BASIC
0S/3 BASIC READY (VER 4.0)
>

SOURCE PROGRAM CONSTRUCTION
SOURCE PROGRAM MODIFICATION -t

SOURCE PROGRAM LISTING

Y

? >{STATEMENT)

L; /

!

«DROR SYNTAX

CHECKER

COMPILER
PROGRAM
EXECUTION

STATEMENT
DIAGNOSTIC

MESSAGE

u— CHECKER

__ERROR COMPILER
- SYNTAX

SAVED
PROGRAM
FILE

A
Y

LOGOFF PROCEDURE

Figure 1-1 BASIC System Overview

UA-0140 Rev.3 BEM:BASIC — User Reference A 1-3
DOCUMENT NO. i TITLE 7 | PacERev. | PAGE
1.3 LOGON PROCEDURE
In order to be initially connected to the operating system, the user must enter the
/LOGON command from his terminal. This command identifies the user to the
operating system and initiates the user task. The format of the LOGON command is:
/LOGON userid, account, password
where
LOGON specifies that the user wants to log on and
initiate a task.
userid specifies the user identification (one to four al-
phanumeric characters).
account is the optional account id for this user {one to
four alphanumeric characters).
password is the optional user-id/account-id protection
password (one to four alphanumeric characters).
For a more detailed discussion of the LOGON command, refer to the BEM — 0S/3
Basic Editor Monitor User Reference UA-0139.
1.4

SOURCE PROGRAM CONSTRUCTION

The user invokes BASIC by issuing the following Executive command:
/EXEC BASIC .

Control is transferred to BASIC which immediatel.y responds

0S/3 BASIC READY (VER 5.0) BEGIN

At this time, the user is at the command level in BASIC. if a command other than
NEW or OLD is entered, the Syntax Checker is called immediately to process the
user'’s first source statement.

After the compiler is invoked, the system responds with an asterisk which requests
source input. A line of input consists of a single BASIC source language or a BASIC
editing command, followed by the TRANSMIT function. The BASIC source lan-
guage statements and editing commands are described in detail in Sections 3, 4,
and 5 respectively. Input lines may not be continued beyond one terminal line.

BASIC distinguishes program source statements from editing commands by
requiring that the source statements be prefixed by a line number. A line number
consists of one to five digits of a value between 1 and 99998. Line numbers are
used to determine the logicai sequence of statements. In a BASIC program file,
lines of source text may be entered in an arbitrary sequence.

1-4 A BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [Pacerev | - TITLE | oocumentno.

The lines of source text are processed by the BASIC Syntax Checker and syntacticai-
ly correct statements are added in source form to the user’s program file. This
program file, which is built up in the user’s work space, is not saved uniess the user
issues a SAVE command. Statements entered at the terminal, which have a syntax
error, initiate diagnostics and are not addedto the user’s program file.

BASIC editing commands are executed immediately and are not included in the
user’s program file. The user’s program file is compiled and executed when the RUN
command is issued.

After a line of input is processed, the sysiem responds with an asterisk on a new line
requesting another line of input from the terminal.

The maximum acceptable input line is 128 characters including any backspaces,
carriage returns, or other non-BASIC characters. However, only the first 80
> columns will be scanned for source lines.

Since source statements are cataloged by line number in a user’s program file, no
more than one statement can have the same specific line number. Therefore:

1. i the line number of a syhtactically correct source statement matches the line
number of a statement in the current user’s program file, the new statement
replaces the old statement.

2. A null statement such as 140 TRANSMIT deletes a statement with matching
line number in the current user’s program file.

Section 6 describes the techniques that a BASIC user can employ in constructing

his program. Techniques for formatting formulas, using loops, formatting lists and
tables, and using specialized functions are described with appropriate examples.

1.5 BASIC SYNTAX CHECKER

The BASIC Syntax Checker analyzes single BASIC source language statements. If a
syntax error is detected, the system responds with a question mark {?) followed by a
copy of the incorrect statement up to the first character in error. The user may then
retype the remainder of the source statement followed by TRANSMIT as the next
line of input.
Example:

The user types in the line.

24 IF A=BTHEN GOTO 41 TRANSMIT
The system responds

?24 IF A=BTHEN

since the GOTO following THEN is incorrect.

The user may then type in

41 TRANSMIT

UA-0140 Rev.3

BEM:BASIC — User Reference

1-5

DOCUMENT NO

| TITLE | PageRev. |

PAGE

1.6

and the complete statement
24 IF A=8THEN 41
is processed by BASIC.
The following types of errors are detected by the BASIC Syntax Checker:

¢ Incorrect constants, identifiers, functions names, line numbers, and state-
ment verbs

¢ incorrect expressions caused by unbalanced parentheses, implicit muitipli-
cation, and illegal operand-operator-operand sequences (e.g., two operators
together as in A*—B)

® |ncorrect statement construction, such as no THEN- clause following IF

Global syntax errors (e.g., transfer to a line number not included in a program) are
detected by the BASIC compiler.

Lines of input which are not prefixed by a line number automatically bypass the
Syntax Checker and are treated as commands. The, BASIC Command Processor
responds with a question mark (?) to an invalid command, which frequently results
from typing a source statement without its line number.

If the error in a rejected BASIC statement is not obvious, the user may issue a HELP
command. This wili result in a short explanation of the error being displayed at the
terminal. Corrective action is often suggested by the expianation.

When errors are detected by the Syntax Checker, only the portion of the statement
which is correct will be displayed at the terminal. The user should complete the
statement and re-transmit it to BASIC. In the case where the user does not wish to
correct the statement, but wishes to enter a new statement or a command, the
following action should be taken:

® On a UNISCOPE terminal, back up the cursor to the Start-of-Entry symbol ()
and erase the line. A new statement may now be entered.

¢ On a hardcopy terminal, transmit a percent sign (%). BASIC will respond with
an asterisk {*) indicating a new statement may be entered.

BASIC COMMAND PROCESSOR

The BASIC system provides a set of edit commands which are described in detail
in Section 5. The editing commands are integrated with the BASIC source
language statements so that the user does not have to manually switch between
edit and program construction modes.

1-6 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE | PaGEREV.] , TITLE | DOCUMENT NO.

1.6.1 Program Execution

The BASIC compiler is a one-pass, load-and-go system. The compiler generates
object code which provides for program execution following the statement. The RUN
command instructs the BASIC system to compile and execute the sequence of
statements currently contained in the user’'s program file. This sequence of
statements need not constitute a logicaily complete BASIC program, because the
compiler automatically generates code to terminate program execution foliowing
the last statement. The last statement in a program file must always be an END
statement, whether or not the program is logically compilete.

In addition, the BASIC compiler does extensive global syntax checking. Each syntax
error results in a message to the user’s terminal consisting of the line number of the
source statement which caused the error and an appropriate diagnostic.

Example:

INVALID NESTING OF FOR-NEXT STATEMENTS
LOADER AT LINE 00020
>

As the program is loaded, a diagnostic is displayed for each error encountered; if
errors are detected, the user is returned to the Syntax Checker. If no compiler errors
are detected, the object code is automatically executed. The following types of giobal
syntax errors are detected by the BASIC Compiler Syntax Checker:

¢ Overflow and underflow resulting from conversion of numeric constants to
floating-point internal representation

¢ Reference to an undefined function and redefinition of a defined function

® References to nonexistent or invalid line number (e.g, GOTO, GOSUSB,
IF-THEN, ON)

® NEXT before FOR, or no NEXT matching a FOR
o lllegal nesting of FORs with same index

¢ lllegal nesting of FORs with different indices

e Statements leading to unpredictable results

® Object code exceeding available memory

¢ Duplicate parameters in a function definition

¢ lllegal DEF-FNEND statement ordering

UA-0140 Rev.3

BEM:BASIC — User Reference

1.7

DOCUMENT NO.

[TITLE » | PagEREY. |

PAGE

If an OLD program is being executed, and there are statements which were flagged
by the Syntax Checker but have not yet been corrected, the Loader will display an
error message:

UNCORRECTED ERROR IN SQURCE PROGRAM
LOADER AT LINEOO766

The user should go back and correct the line(s) in error before attempting to RUN
the program again.

The code generated by the BASIC compiler includes tests for a number of run-time
errors. Each run-time error results in a typeout to the user’'s terminal consisting of
the source statement which resulted in the error and an appropriate diagnostic.

- Example:

ARRAY SUBSCRIPT OUT OF RANGE
STOPPED AT LINE 00230
>

Program execution terminates automatically when a run-time error is detected.
See Appendix C for complete list of diagnostics.

1.6.2 Program Listing

The LIST or PRINT command can be used to display all or parts of a program at the
user’s terminal. :

Example:
LIST 150 — 175

Only those lines numbered 150 to 175, inclusive, are listed. Lines of source text are
listed as they were typed in.

1.6.3 Saving a Program

The SAVE command can be used to save a copy of the user’s current program file in
a SAT Library file. The file-name, supplied by the user, is used to locate the file on
the disk. The program-name is used for an element-name within the library. The
program is saved in source statement form. If a BASIC program with the same
program name has been previously saved on the user’s disk file, the system will
respond:

OVERWRITE PREVIOUS FILE (YES, NO)?
If the user responds with Y or YES, the current program file will replace the

previously saved program. For responses with an N or NO, the controi will be
returned to the user without overwriting the previously saved program.

1-8

BEM:BASIC — User Reference UA-0140Rev.3

PAGE

[Pace rev.] TTLE i DOCUMENT NO.

The message is repeated for a response different from Y, YES, N, or NO. For an
example of saving a program, refer to the SAVE command description in Section 5.

1.6.4 File Organization of a Saved File

All files saved by BASIC, or OLD programs recalled by BASIC, are stored in standard
0S/3 Library files. The user is required to supply at least the program and file
names. BASIC will check the system catalog to see if it lists the file. If it does, the file
password, if any, will be verified and the volume name listed in the catalog will be
used. If the file is not listed in the catalog, the user will be required to supply a
volume name.

When the user invokes the OLD command, alf lines of source are processed by the
Syntax Checker. If a syntax error is discovered while reading a statement from the
source file, the line is written to the terminal, preceded by a question mark, and
rejected. It wiil then be entered into the work file with a notation that the line must
be corrected before the program may be run. The user must wait until the entire file
is read before he can enter lines from the terminal. BASIC will respond with an *
when it is ready.

Programs saved by BASIC may be listed or punched using the OS/3 utiiity LIBS.

1.6.5 Using a Saved Program

The OLD command can be used to load a program saved on the user’s direct-access
file space into his work space. When the OLD command is issued, the user must aiso
supply the file information of one of the BASIC programs saved in a library file. The
saved program then becomes his active program file. The copy of the program on
disk is unchanged.

The OLD and NEW commands may be issued at any time during a BASIC session. In
either case, the current contents of the user’s active program file are lost and the file
is renamed.

Another command, RUNOLD, allows the user to quickly execute a saved program,
without the overhead of copying the source and compiled object code to the work
space.

1.6.6 Returning Control to the Monitor

During the BASIC session, it may be necessary for the user to return control to the
monitor, so that certain monitor commands such as STATUS, TYPE, etc., may be
issued. In order to facilitate returning control to the monitor, BASIC provides the
user with the SYSTEM command. The SYSTEM command causes BASIC to interrupt
to the monitor, and the user can subsequently return to BASIC by issuing the
/RIESUME] command.

UA-0140 Rev.3

BEM:BASIC — User Reference

1-9

DOCUMENT NO.

] TITLE] PAGE REV. [

PAGE

1.6.7 Deleting Program Lines

BASIC statements which have been stored in the work file may be removed by
typing their line number, as explained previously. A command is also available to
remove several lines with a single command.

Example:

DELETE 126- 129,500

1.6.8 Terminating BASIC

1.7

When the user has finished with BASIC the BYE command may be used to terminate
BASIC and return any storage space occupied by the program.

LOGOFF PROCEDURE

The monitor LOGOFF command terminates the user session. Its purpose is to end
the task and return to the BEM system the memory and any disk space used by the

task.

This command must be the last one in the task and is entered according to the
following format:

Format:

/LOGOFF

 UA-0140 Rev.3 BEM:BASIC — User Reference

2-1

DOCUMENT NO | TITLE | Pacerev. |

PAGE

2 LANGUAGE ELEMENTS

2.1 GENERAL

The BASIC language is made up of eiements which can be combined in various ways
to construct programs and subroutines. In BASIC, the language elements are divided
into the following categories:

Characters
Constants
Variables
Expressions
Function references
Statements

2.2 CHARACTERS

BASIC programs are constructed from a set of 58 distinct characters. A character is
defined as a letter, digit, delimiter, or special character.

letter ABCDEFGHIJKLMNOPQRSTUVWXYZ

digit 0123456789

delimiter operator or separator
aperator: F—* <> &
separator: . LA

special character S@H? %

In addition, BASIC programs use open-string and string characters.

open-string character letter, digit, operator, special character, period (.}
semicolon (;), and double quote ("').

string character letter, digit, operator, special character, comma
: (,), period {.), a semicolon (;), or a blank (4).

NOTES:
1. blanks:
The character blank, which may be used in constructing the BASIC programes,
is designated in the syntax by the symbol &. Any spaces which appear in the

syntax equations do not denote blanks in the BASIC language. Blanks are only
significant in BAS/_C when they appear in a comment or in a string constant.

2-2 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [Pacerev [TITLE 1 DOCUMENT NO.

2. quote:

The character quote (”) is used to delimit the beginning and end of a
closed-string constant. If a quote is required within a closed string, two
consecutive quotes are used.

3. asterisk:

Exponentiation i's specified by means of a pair of asterisks. A vertical arrow (!)
Is also permitted, where applicable.

2.3 CONSTANTS

Constants are used in a BASIC program to specify data values. There are three types
of constants: decimal numbers, string constants, and line numbers.

decimal numbers A fraction which may be optionaily followed by an
exponent field. A fraction is defined to be a series
of one or more digits and may contain an optional
decimal point. The decimal point may precede,
follow, or be embedded in the series of digits. The
exponent field indicates the power of ten by
which the fraction is to be muitiplied and consists
of the letter E followed by an optional sign and
one or two digits. The sign may be + or — and, if
omitted, is assumed to be +.

Examples:

fraction: 9,9.,.9,9.9
exponent: E1,E-+1E+01,E~-1, E—-O1

string constants closed string: quote followed by a series of O to
4095 string characters followed by a quote

Exampie: "AAB” or “BILL" "'S”

open string: a series of 1 to 4095 open-string
characters or blanks or quotes

Example: AAB
line number series of one to five digits without any sign,

decimal point, or exponent field. it must be in the
range 1 to 99999. :

UA-0140 Rev.3 BEM:BASIC — User Reference

DOCUMENT NO. L TITLE | Pagerev |

PAGE

NOTES -
1. decimal numbers:

All decimal numbers are converted and stored internally in floating-point
format. The exponent occupies seven bits and indicates the power to which
the number 16 must be raised. The sign occupies one bit. In Floating-point
format the mantissa occupies 24 bits, and contains a 6-digit hexadecimal
number in normalized form. In BASIC, if the value of the fraction part of a
decimal number, disregarding the decimal point, exceeds 224-1, the number is
rounded and trailing digits are lost.

Example:

-

12.3456789
is acceptable, but is (effectively) rounded to
12.345679

If the mantissa is nonzero, the magnitude vof the floating-point number has
the following range:

16 ~%5<M < 1683 (approximately 10 ~ "8 <M < 1075)

Overflow and underflow conditions for numeric constants are processed as
errors. ,

2. string constants:

All string constants are stored in EBCDIC code. A 2-byte length field is
prefixed to each string before it is stored; the value of the length byte is not
included. If a given string constant contains more than 4095 characters, it is
truncated at the right. Note that an open-string constant, as opposed to a
closed-string constant, cannot contain a comma. Moreover, an open-string
constant is permitted only as input to the READ and INPUT statements.
Within a closed-string constant, two consecutive quotes are interpreted as a
single quote. Note that is is not possible to enter a string constant in a
program longer than 74 characters, since the maximum line length is 80
characters.

3. line numbers:

Each statement in a BASIC program must be preceeded by a line number
which is an integer between 1 and 99999. The line numbers specify the
logical sequence of statements in a program (increasing order). They are also
used as statement labels for transferring control during program execution.

Leading zeros in a line number are ignored in the sense that 000175 is
equivalentto 175.

3.4

BEM:BASIC — User Reference

UA-0140Rev.3

PAGE

[Pacerev |

TITLE I DOCUMENT NO.

2.4 VARIABLES

Variables are used in a BASIC program to designate arbitrary data values of a fixed
type. In BASIC, the user may construct scalar variables and array variables. A scalar
variable is defined as a numeric variable -or a string variable. An array variabie is
defined as a numeric array or string array. A numeric reference may be a numeric
variable or a numeric array. A string reference may be a string variable or a string

array.
scalar variable
numeric variable
string variable

array variable

numeric array variable

string array variable

NOTES:

1. numeric variables:

numeric variable or string variable

letter optionally followed by a single digit
Examples: X, X2

letter followed by a dollar sign ($), or a letter
followed by a single digit, followed by a dollar
sign.

Examples: AS, J§, Q68

numeric array variablie or string array variable

letter followed by one or two subscript expres-
sions enclosed in parentheses

Examples: X(4}, X(4,20), X{A-+B)

letter followed by 3 dollar sign {$) followed by one
or two subscripts enclosed in parentheses

Examples: C$(20), C$(A+B), DS (A.C)

Numeric variables may only be assigned decimal numeric values.

‘2. numeric array variables:

Numeric array variables may only be assigned decimal numeric values.

The upper bounds for a 1-dimensional or 2-dimensienal numeric array may
be explicitly specified by means of a dimension (DIM) statement. (See Section
3). An implicit upper bound of 10 for either dimension is implied if not
specified. In either case, the lower bound is always zero (0},

UA-0140 Rev.3

BEM:BASIC — User Reference

2-5

DOCUMENT NO

TITLE |Pagerev |

PAGE

3. subscripts:

A subscript may be defined using any arithmetic expression. During execu-
tion, the value used to locate the array element referenced is computed by
rounding the subscript expression to the nearest integer. If the subscript value
is not within the bounds specified (or implied) for that dimension of the
referenced array, then the user is given an error message and program
execution terminates.

Two-dimensional arrays are stored in row-major order.

. string variables:

String variables may only be assigned character string values. All such
variables are initialized to the null string (zero length). The maximum number
of characters which may be placed in a string variable is 4095.

. String array variables:

String array variables may only be assigned character string values. All
elements of these string array variables are initialized to the null string (zero
lengthj.

The rules for numeric array variables regarding bounds and subscript evalua-
tion apply to string array variables as well.

2.5 EXPRESSIONS

The éxpression is the BASIC facility for performing operations on data values. BASIC
provides for both arithmetic numeric expressions and string expressions. Arithmetic
numeric expressions specify arithmetic calculations; string expressions are used
primarily to identify input/output. Unless otherwise stated, all expressions are
assumed to designate single vaiues.

arithmetic expression term optionally preceded by a minus (—) or plus
(+) sign; or an arithmetic expression plus (+) or
minus (—)aterm

Example A**2*8-3

term factor or a term multiplied (*) or divided (/) by a
factor
Example A**2*B

factor | primary or a factor raised to a power (**) designat-

ed by a primary

Example: A**2

2-6 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE {pacenev | TTLE | DOCUMENT NO.

primary ‘ decimal number, numeric reference, function re-
ference, or an arithmetic expression which is
enclosed in parentheses
Examples: 2,A,RND(X), (C—D)

string expression string primary or a string expression followed by
an ampersand (&) denoting concatenation, fol-
lowed by another string expression.
Example: “ABC” &B$

string primary closed string, string reference, or function
reference

Examples: A$, SEGS(DS, 6, 8), "AB”
NQTES:
1. Mixed mode expressions are treated as errors.

2. The exponentiation operator (**) may be written as a vertical arrow (1), where
applicable.

3. A**B**C /s compiled as (A**B)**C
4. Parentheses may be used to factor subexpressions.

5. Overflow and underflow conditions existing during the evaluation of arith-
metic expressions are treated as errors.

6. Division by zero is treated as an error.
7. Zeroto a negative power is treated as an error.

8. A negative number can only be raised to a nonzero positive integer number.
The maximum value of the positive integer is 15. Any violation of this rule is
treated as an error.

2.6 FUNCTION REFERENCES

An expression may contain references to either specific built-in functions provided
within the BASIC system, or user-defined functions. All function references consist
of a function name foilowed by an argument list enclosed within parentheses. All
built-in functions have between zero and three arguments. In each case, the
arguments are evaluated and control is transferred to an out-of-line routine for
evaluating the referenced function. The resuiting {single) value replaces the function
reference in-the containing expression.

UA-0140 Rev.3) BEM:BASIC — User Reference 2-7

DOCUMENT NO. [TITLE] PAGE REV. [PAGE
buiit-in function a function name optionaily followed by an ex-
pression or list of expressions enclosed in paren-
theses
function name ABS ATN CHR$ CLK$ COS COT DATs DET

EBC EXP INT LEN LOC LOF LOG MAR
MOD NUM PER POS RND SEGS SGN SIN
STR$ SQR TAN TIM TYP USRS VAL

user-defined function FN followed by a letter and optional dollar sign,
followed by an argument list enclosed in
parentheses ‘

Example: FNC$ (CS, 2)

argument list - expression optionally followed by up to 15 expres-
sions. A comma is used to separate one expres-
sion from another

Example: A.BS, “ABC” & "DEF". ..
NOTES:

1. SIN(x), COS (x), TAN(x) COT(x) and ATN(y) designate the functions sine,
cosine, tangent, cotangent, and arctangent, respectively; the argument x
and the result of ATN are angles measured in radians..

2. EXP(x) designates exponentiation e. Overflow occurs if x is too large (i.e.,
x >174.6).

3. LOG(x) designates the natural logarithm of x, In x. The LOG of zero or 3
negative number is treated as an error.

4. ABS(x)designates the absolute value of x, Ix|.

5. SQR(x) designates the square root of x. A negative argument is treated as an
error.

6. RND(x) designates a pseudo random number:

a. if x > 0, then RND(x} is a ‘function of x whose value is in the open
interval (0, 1).

b. If x < 0, the system supplies an arbitrary random number in open
interval (0,1).

e If x = 0, the system supplies a pseudo random number which is a
function of the previous random number generated by RND. If x = 0O,
the first time RND is called in a pregram, the system will supply a fixed
number in the open interval (O, 1). :

d. If no argument is used, x = 0 is assumed. To generate a sequence of
pseudo random numbers, the user would call any of these options
followed by repeated calls to option c. With this option the RANDOMIZE
statement should be used to generate a unique sequence of random
numbers.

BEM:BASIC — User Reference UA-0140 Re\}.S

2-8
PAGE |Pacerev | TITLE | DOCUMENT NO.
7. INT (x) designates the largest integer not exceeding x.
For example: INT(2.985)=2, INT(—2.015)=-3.
8. SGN (x)designates the sign of x.
+1,ifx>0
SGN(x)= 0. ifx=0
—1,ifx<0
9. FNA to FNZ designates one of the 26 user-defined numeric functions and
FNAS to FNZ$S, one of 26 user-defined string functions (see the DEF
statement).

10. DET is a pseudo-function and may be used to obtain the value of the
determinant of the last matrix inverted.

11. LEN (X$) computes the length, in characters, of the string XS. This will be a

) value between 0 and 4095. .

12. MOD (xy)is the modulus remainder of x divided by y: (x-y * INT (x/y))

13. POS (A8, BS, X) determines the location in string AS of the first character of
the first occurrence of the string BS beginning at or after position X in AS.
This will return zero if BS does not occur in AS.

14. TiM is the elapsed running time of the program in seconds, accurate to the
nearest millisecond.

15. VAL (As) returns the value of the number whose decimal representation is in
string AS.

16. EBC (string) is a special function which takes a string of from one to three

.characters in length. It returns a value of the EBCDIC code for its argument.
The argument is a character, or a 2- or 3- letter mnemonic for a character
fe.g., EBC (ETX) = 3). See Table 2-1 for a list of mnemonics.

17. CHR$(x) returns a 1- character string consisting of the EBCDIC character with
the code MOD (INT (x), 256).

For example: CHRS(193) = A.

18. CLKS gives the time of day as an 8- character string in the form HH:MM.SS.

19. DATs gives the current date as an 8- character string in the form
MM/DD/YY.

20. SEGS (AS.xy) locates the substring of AS consisting of all characters

between positions X and Y, inclusive and returns that string. An empty
string is returned if X > Y, and the appropriate beginning or end of AS is
taken for X < =0 or Y >LEN (AS).

UA-0140 Rev.3

BEM:BASIC — User Reference

DOCUMENT NO.

TITLE | Pagerev. |

PAGE

21.

22.

23.

24.

25.

26.

27.

28.

STRS (X) converts X to its decimal representation as a string result. -

USRS is a 4- character string giving the user’s “logon identifier” from the
/LOGON command.

LOC (8N) returns the current location of the file pointer for the file assigned
to channel number N.

LOF (BN) returns the current end-of-file value (length of file} for the file
currently assigned to channel number N.

MAR (8N) returns the current margin size for the file currently assigned to
file number N.

PER (#N.AS) returns the value +1 if the operation specified by AS is valid for
channel nurmber N, Q if the operation is invalid, and —1 /f AS does not
specify one of the operations: INPUT, LINPUT, PRINT, READ, RENAME,
RESET, SCRATCH, or WRITE. Operations may be invalid if they are applied
to an unopened file or if the user has restricted access to the file. INPUT,
LINPUT, and READ are invalid if the file is empty or the current pointer is at
end-of-file (LOC=LOF). A value of +1 returned by PER ensures that the
specified operation will be allowed if it is the next operation issued against
the file.

TYP (#N.AS) returns +1 if the file given by N currently has the type specified
by AS, O if not, and —1 if AS does not specify one of the operations: ANY,
LIBRARY. NUMERIC, PERM, RANDOM, STRING, TERMINAL, TTY, or WORK.
The terminal has type TTY, a scratch file has type WORK, an OS/3 Library
file has type LIBRARY, and an 0S/3 Data Management file has type PERM.
Any open file has type ANY. NUMERIC and STRING are provided for
compatibility and will always return a value of +1. A TERMINAL file is a
sequential file for which the operations INPUT, LINPUT, and PRINT are valid.
A RANDOM file is one for which the operations, READ,WRITE, and RESET
are valid. Currently all BASIC files have both type TERMINAL and type
RANDOM.

NUM returns the number of values inputted for the last vector MAT INPUT
statement. :

2-10

A

BEM:BASIC — User Reference

UA-0140 Rev.3

PAGE

[PacE Rev. |

TITLE

OOCUMENT NO.

Table 2-1 List of Mnemonics

Mnemonic Value Mnemonic Value
ACK 486 LCJ 145
BEL 47 LCK 146
8s 22 LCL 147
CAN 24 LCM 148
CR 13 LCN 149
DC1 17 LCoO 150
DC2 18 LCP 151
DC3 19 Lca 182
DCca 60 LCR 183
DEL 7 LCS 162
DLE 16 LT 183
DS 32 LCU 164
EM 25 Lcv 165
ENQ 45 Lcw 166
EOT 55 LCX 167
ESC 39 LCcY 168
ETB © 38 Lcz 169
ETX 3 LF 37
FF 12 NAK 61
FS 28 NUL 0
GS 29 RS 30
HT 5 Sl 15
LCA 128 SO 14
LCB 130 SOH 1
LCC 131 SOs 33
LCD 132 SP 64
LCE 133 STX 2
LCF 134 suB 63
LCG 135 SYN 50
LCH 136 us 3
LCl 137 vT 1

UA-0140 Rev.3 BEM:BASIC — User Reference A 2-11
DOCUMENT NO. | TITLE IPAGEREV [PAGE
2.7 CHANNEL SETTER
The channel setter is used in file-related statements to specify which data file is to
be selected. it has the form:
expression
where
4 identifies the channel setter.
expression is a numeric expression which is evajuated at
execution time.
Examples: #3, #|, #3-J
Programming Notes
1. The expression is truncated to an integer. The resultant value must be in the
range O to 4095.
2. A channel setter of zero, or an omitted channel setter, selects the terminal.
2.8 STATEMENTS

The statement is the smallest complete unit of information in the BASIC system.
Statements may be entered into a program, reordered, and executed.

There are two general classes of statements in BASIC: executable and nonexecuta-
ble. Executabie statements designate particular actions to be performed; nonexecu-
table statements specify supplementary information.

statement line number followed by an executable statement
or a nonexecutable statement

executable statement assign, control, input-output, matrix, or data file,
statements

nonexecutable declaration or remark statement

statement

Each BASIC statement entered into a program must be prefixed with a line number.
These line numbers determine the logical order of statements within a program.
They are also used in several of the control statements to effect transters of control.

Comments may be appended to any BASIC statement by prefixing the comment
with an apostrophe (). When the Syntax Checker scans a source statement any
characters after the apostrophe are ignored (except when the apostrophe is part of
a string constant).

Each BASIC statehent is described in detail in Section 3.

UA-0140 Rev.3 BEM:BASIC — User Reference 3-1

DOCUMENT NO. | TITLE | Pace REV | PAGE

3 SOURCE LANGUAGE STATEMENTS

3.1 INTRODUCTION

This section describes the BASIC source language statements that are used in
constructing a BASIC program. Each statement is described in detail with examples
showing the use of each statement.

The BASIC source language statements are either classified as executable or
nonexecutable. The executable statements are categorized as assignment, change
of control, input/output, matrix operations, and data files. The nonexecutable
statements are categorized as declarative and remark. Table 3-1 shows the list of
ait the BASIC source language statements.

A BASIC program consists of any sequence of BASIC statements; each statement
must be preceded by a line number and must be written on a single line of terminal
input. The maximum number of statements in a program depends on the complexity
of individual statements in a particular program. This limit is usually a function of the
amount of memory availabie to load the program, and is not a limit imposed by the
compiler.
. In describing the statements, the following conventions are used:
e Keywords that may be used in the statement are shown in capital letters.

o Names constructed using lower case letters and embedded hyphens desig-
nate syntactic variables.

e Brackets,[], are used to enclose optional parameters.
e Braces, { }.are used to enclose aiternatives.

e Ellipsis, . . . following an operand parameter indicates that the user may
specify more than one parameter of that type. For example, the syntax

READ variable-1 [, variable-2 . . .]
- allows the statements

READ A

READA.,B

READA,B,C

to contain many input variables in the READ list.

3-2 A BEM:BASIC — User Reference UA-0140Rev.3

PAGE | PaceRev | TITLE | DOCUMENT NO.

Table 3-1 List of BASIC Statements

Statement Statements
Category Executable Nonexecutabie
Declaration DIM
DEF
FNEND
Remark REM
Assignment LET
Control FOR and NEXT TIME
GOSUB and RETURN
GOTO
IF
ON
N STOP, PAUSE, and END
— SYSTEM -
Matrix Operations MAT-add, subtract, multiply

MAT-invert, transpose
MAT-scatar muitiply
MAT-identity, constant, zero
MAT-null

MAT INPUT

MAT LINPUT

MAT READ

MAT PRINT

MATWRITE

Data File READ DATA
RESTORE, RESET

Program Subdivision CHAIN . | sus
CALL

SUBEXIT
SUBEND

Conversion - CHANGE

Input/ Qutput and FILE

Files INPUT

T | UNPUT

MARGIN

PRINT and USING
READ

RENAME

RESET

SCRATCH

WRITE

3.2 DECLARATION STATEMENTS

The Declaration statements (DIM, DEF, and FNEND) explicitly specify the dimen-
sions of arrays, and define any defined functions which are referenced in a program,
respectively.)

UA-0140 Rev.3 BEM:BASIC — User Reference 3-3

DOCUMENT NO. [) TITLE iPAGE Rev. | PAGE

3.2.1 DIM Statement

The DIM statement explicitly specifies the upper bound(s) of numeric and string
' arrays so that sufficient space can be reserved in memory for the array. Either 1-or
2- dimensional numeric or string arrays can be dimensioned. The lower bound for

each dimension is always 0.

| Format
l .

numeric-dimension numeric-dimension

DimMm , ’ '
string-dimension string-dimension

where

numeric-dimension a letter followed by one to five digits in paren-
theses or a letter foilowed by two numbers (each
consisting of one to five digits) separated by a
comma in parentheses

string-dimension a letter followed by a dollar sign ($) foliowed by
| one to five digits in parentheses, or a letter
:’ followed by a dollar sign, followed by two num-

‘ . ' bers (each consisting of one to five digits) separat-
ed by a comma in parentheses.

Programming Notes
1. The duplication of an array name in a DIM statement is treated as an error.

2. The appearance of the same array name in more than one DIM statement is
treated as an error. :

3. if the value of a subscript of an array exceeds 10, the array name must appear
in a DIM statement, otherwise an error occurs.

4. A DIM statement can appear anywhere in the program, and may appear after
the related.variable is used, as long as the number of subscripts remains
consistent.

5. The upper limit on the subscripts of an array will be referred to as the array
dimensions or dimensions of the array.

6. Numeric array elements are initialized to zero, and string elements to null
strings.

Example 1:
20 DIM A(25)

In this example, A is a 1-dimensional numeric array consisting of 26 numeric
: variables: A(0), A(1), A(2), . . . ,A(25).

3-4 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE | Pacerev | TILE [DOCUMENT NO.

Example 2:
21 DIM B(20,30), Rs(35)

in this example, B is a 2-dimensional numeric array consisting of 651
numeric variables:

B(0, 0), B(1,0), . . . , B(20, 0)

8(0, 30), B(1, 30), B(20, 30)

and R$ is a 1-dimensional string array consisting of 36 string varia-
bles: R${(0), R$(1), R$(2), ..., R$(35)

7. The DIM statement defines the maximum bounds for the array. Certain
other statements may be used to change the array bounds dynamically
during execution. Changing the array bounds will limit the set of elements
which can be referenced by subscripts or matrix operations.

3.2.2 DEF Statement

In addition to the built-in functions, the BASIC user can define other functions via
the DEF statement.

Format

DEF FN /etter {$] [{param-llst)] [,Iocal-/ist] [= expression]

where
FN/etter The name of the defined function must consist of
FN followed by a letter from A to Z. An optional
dotlar sign denotes a function with a string result.
param-list variable [, variable . . .]
local-list : variabie[, variable . . .]

Programming Notes

1. Any reference to a defined function for which the user has not supplied a
corresponding DEF statement is treated as an error.

2. The redefinition of a defined function is treated as an error.

3. A defined function may reference any other function except itself. Recursive
definitions are not allowed.

4. Afunction may be invoked only from an expression.

UA-0140 Rev.3

BEM:BASIC — User Reference

3-6

DOCUMENT NO.

TITLE IPAGE Rev |

PAGE

10.

1.

12.

13.

14.

. The param-list is used to pass values in one direction only and that is to the

function. Variables in the param-list are local. Variables in the param-list
may be string or numeric in type. When called, the passed parameters in the
call and in the definition must have matching types.

If the function definition requires several statements (muitiline function), the
DEF statement defines the entry into the function and requires a unique,
corresponding FNEND statement which defines the exit from the function.
Branching into and out of a multiline function definition is illegal.

" A local-list can be provided for a multiline function to indicate that the

variables named in the list are to be local only throughout the function
definition. Such variables may be used for any other purpose outside the
function definition; upon entry into the function, the variables are initialized to
zero.

In order to give a multiline function a value, the function name must appear to
the left of an equal sign in an assignment statement.

A DEF statement within a function definition is illegal.

The param-list and local-list variabies are restored to their original values
upon exiting from the function definition.

All function definitions containing local parameters must appear before they
are referenced by the main program. If a DEF statement is encountered
during normal program flow, the statement(s) defining the function are
bypassed and control passes to the first statement within the main program.

If no parameters are to be passed to the function, the param-list may be
omitted. '

The function may reference variables external to it by using the same variable
name as was used in the main program.

Functions which are passed in subprogram CALLs must be defined prior to
the CALL statement.

Example: 30 DEF FNE(X) = EXP(-X**2)

During execution, this statement would be invoked for various values of the
function e~*2 by referencing FNE(.1), FNE(3.45), FNE(A + 2), etc. Such a definition
can simplify the program when values of some function are needed for a number
of different values of the variable.

3-6 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [Pacerev | TITLE | DOCUMENT NO.

Example:

100 DEF FNAS, BS

110 PRINT “ENTER YES OR NO";
120 INPUT BS

130 IF B$="NO" THEN 150

140 IF BS< > “YES' THEN 110
150 FNAs=8s

160 FNEND

1650 IF FNAS = “YES” GOTO 2000

This muiltilined string function allows the user to request and accept and
answer by referencing the user function FNAS.

3.2.3 FNEND Statement

The FNEND statement terminates a multiline function and is the only way of exiting
from a multiline function. Ail variables in the local-list and param-list in the DEF
statement are restored to their values before the function call.

Format
FNEND
Programming Notes
1. Each multiline function must terminate with exacily one FNEND statement.
2. Muitiple FNEND statements for a given DEF statement are iliegal.
Example:

25 DEFFNE(AB,C)D

30 D=A*S
35 FNE=A+B+C+D
40 FNEND

This example illustrates a multiline function. A, B, and C are the param-list
variables, while D is the local-list variable of the muitiline function FNE. As shown,’
the multiline function must begin with a DEF statement and terminate with an
FNEND statement.

numeric-let
{LET] string-let
function-let

where
numeric-let numeric-reference = [numeric-reference = . . .]
arithmetic-expression
string-let string-reference = [string-reference = ...]
) string-expression :
function-let . FNletter {$] = expression

Programming Notes
1. The statement verb LET need not be written.

2. Mixed mode assignment will not be accepted by the Syntax Checker.

UA-0140 Rev.3 BEM:BASIC — User Reference 3-7
" DOCUMENT NO. { TITLE |PaGEREV. | PAGE
3.3 REMARK STATEMENT
The REM statement provides a means for inserting explanatory remarks in a
program. Although what follows REM is ignored, its line number may be used in a
control statement. Comments may also be appended to BASIC statements by
prefixing the comment with an apostrophe.
Format
REM [character . . .]
Example:
100 REM INSERT DATA IN LINES 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY
iOO REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS
279 LET A7 =B +4 THIS IS A COMMENT
280 LET P =4*ATN(1) ‘COMPUTE THE VALUE OF "PI”
290 THE FOLLOWING CODE USES P FOR PL.
3.4 ASSIGNMENT STATEMENT
’9 T%e LET statement is used to assign a vaiue to a variable.
"
Format

3-8 BEM:BASIC — User Reference " UA-0140Rev.3 .

PAGE [Pacerev | TITLE | DOCUMENT NO.

3. Muitiple assignments are allowed. The right-hand expression is evaluated
and then assigned to each of the references, from right to left, in turn.
Subscripts are evaluated just prior to assignment.

4. The function-let is used to assign a value to a multiline user-defined function.
(See DEF statement.)

"Example 1:

10 LET I=2
20 A(1)=1=3,5

. when statement 20 is executed, | is assigned the value 3.5 and then A(3)is
assigned the vaiue 3.5.

Example 2:
56 LET G$=HS=""THIS STRING"

This is a string-let statement used to assign the closed string constant “THIS
STRING" to string variable H$, which in turn is assigned to string variable G$.

Example 3:

10 DEF FNA(A,B,C,D)
20 LET FNA=(A-B)=(C+D)
30 FNEND

Statement 20 is a function-let statement used in the multiline function FNA.,

3.5 CONTROL STATEMENTS

These statements give the programmer the ability to alter and controi the normal
sequence of statement execution. Included in this group of statements are: FOR and
NEXT, GOSUB and RETURN, GOTO, {F, ON, STOP, and END statements.

3.5.1 FOR and NEXT Statements
—? f" a—

The FOR statement initiates a loop and the NEXT statement, whose variable
matches the one specified in the FOR statement, terminates the loop.

Format

FOR numeric-variable = arithmetic-expression TO arithmetic-expression
[STEP arithmetic-expression]

NEXT numeric-variable

UA-O140Rev.3 = - "~ BEM:BASIC — User Reference ’ < X B

DOCUMENT NO. i TIME ‘ | eagenrev.| PAGE

Programming Notes

1. AFOR-NEXT loop specifies the iteration of a sequence of statements for given
values of the numeric-variable (loop index). The initial, final, and step values
are given by the three arithmetic expressions specified in the FOR statement.
A step value of +1 is assumed if the STEP is omitted. These values are
calculated on each entry into the loop.

The loop index may be used in calculations within a FOR-NEXT loop. In
particular, its value may be changed by assignment and this will affect the
sequence. of values for which the loop is iterated.

Leti, f, s, c designate the initial, final, step, and current values, respectively, of
a loop index.

Then initially, we must have (f—i)*s = Q. That is, the step value, which may be
negative, must move the loop index value in the direction of the final value.

Iff > iand s = O, then program execution will continue indefinitely within the
FOR-NEXT loop. The calculations to determine loop termination are done at
the top of the loop, thus the statements in the FOR-NEXT loop may be skipped

entirely.
4 .
. If controtl is transferred into a FOR-NEXT loop, the results are unpredictable.
(2. In the NEXT statement, the numeric-variable must be the same as that

following the verb FOR in the FOR statement. If a different numeric-variable
is detected (indicating an overlapping nested loop), an error resuits. An error
will also result because of any one of the following conditions:

a. The occurrence of a NEXT statement prior to its corresponding FOR
statement.

b. A FOR statement without its corresponding NEXT statement.

¢. More than one FOR statement with the same index (variable) prior to the
occurrence of the NEXT statement corresponding to the first such FOR
statement (that is, loops may be nested, but not if they use the same
index).

3. The TO and STEP operand order is not checked.
Example:

10FORI=1TO 10STEP 2

is the same as

10FORI=1STEP2TO 10

3-10 BEM:BASIC — User Reference

UA-0140 Rev.3

PAGE [Pace Rev | TITLE

DOCUMENT NO.

4. Nesting is allowed to 10 levels.
Example:

30 FOR X = 0 TO 3 STEP D
80 NEXT X

120 FOR Xu=(17+€0$(2))/3 TO 3%SQR(910) STEP 1/

235 NEXT X
240 FOR X = 8 TO 3 STEP -1

300 NEXT X _
456 FOR J = -3 TO 12 STEP 2

500 NEXT J

Note that the step size may be a fraction (%), a negative number (—1), or a
positive number {2). In the exampie with lines 120 and 235, the successive
values of X4 will be .25 apart, in increasing order. In the next example (lines
240 through 300), the successive values of X will be 8, 7, 6, 5, 4, 3. In the
last example (lines 456 through 500), J will take on values —3, —-1, 1, 3, 5,

7.9, and 11.

5. The action of the FOR statement and the NEXT statement is defined in terms

of other statements as follows:

FORv = initia|-value TO limit STEP increment
{block)

NEXTv
is interpreted as
LET own1 = limit

LET own2 = increment
LET v = initial-value

line 1 IF {(v-own 1)*SGN(own2)>0 THEN line 2

(block)

LETv=v+own2
GOTO line 1

line 2 (continue in sequence)

UA-0140 Rev.3 BEM:BASIC — User Reference

3-11

DOCUMENT NO. L i TITLE

| PacERev. |

PAGE

3.5.2 GOSUB and RETURN Statements

The GOSUB statement provides a subroutine call facility.

Format
GOSUB J/ine-number
RETURN

Programming Notes

1. The GOSUB statement transfers control to the statement whose line number
is referenced. Control is subsequently returned to the statement following the

GOSUB by executing a RETURN statement.

2. A GOSUB statement inside a subroutine may be used to call another routine.
This is referred to as “‘nested GOSUBs.” It is necessary that the RETURN
statement be used to exit from the subroutine. The execution of a RETURN

statement before a GOSUB statement is treated as an error.

3. GOSUB and RETURN statements need not be paired; that is, the same
RETURN statement may be used to return from several different GOSUBs.

Example:

90 GOsuBs 210
91 A=3.1

100 STOP
210 .

© 350 RETURN

The GOSUB statement (line number 90) directs the system to line number 210
which is the first statement of a subroutine. The last statement of the subroutine is
line number 350 (a RETURN statement) which causes the system to return to line

number 91 of the program.

, 3.5.3 GOTO Statement

The GQIQ statement causes an unconditional transfer of control to the statement

whose line number is referenced.

Format

GO TO line-number

3-12 BEM:BASIC — User Reference

UA-0140 Rev.3

PAGE | PaGe REV.|

TITLE

[oocumentno.

Programming Note

The nonexistence of the statement whose line number is referenced will be treated

asanerror.

Example:

19 LET J$ = "THIS STRING"

20 GOTO 25

21 READ AS$,BS,CS

.

25 K$ = "WHAT STRING"

in this example, the GOTO statement (line-number 20) transfers control to the
assignment statement at line number 25 and thereby bypasses the READ state-

ment (line-number 21).

—_’ 3.5.4 IF Statement’
ae—

The IF statement provides a conditional transfer of control. If the condition specified
is true, then control is transferred to the line number referenced.

Format
THEN
IF condition { GOTO line-number
GOsuUB
where .
- condition arithmetic-expression relation arithmetic-expression
string-expression reiation string-expression
END channel-setter
MORE channei-setter
relation any of the symboils listed in Table 3-2.
Table 3-2 Relation Symbols
Symbol Meaning Example
= is equal to A=8
< is less than A<B ,
<=or =< Is iess than or equal to A<=B
> Is greater than A-B
>=or=> Is greater than or equal to A>=8
< sor#E is not equal to A<>B

UA-0140 Rev.3

BEM:BASIC — User Reference

3-13

DOCUMENT NO.

TITLE {PAGEREV.|

PAGE

Programming Notes

1.

Mixed mode expression across a relation will not be accepted by the Syntax
Checker.

When two strings of different lengths are compared, the shorter string will be .

padded on the right with blanks until it is of equal length to the longer string.
Thus, string comparison is always performed on equal length strings. This
results in correct collating sequence. Note that this logic of string compari-
sons does not affect the actual stored lengths or vailues of strings. Also, null
strings are considered to be a string of all blanks in all string comparisons.

The condition may test two arithmetic or two string expressions against
each other using the tests listed in Table 3-2. If the condition is met, the
transfer is completed.

The condition may also be a filz test, in which case the specified file is
tested to see if there are MORZ records left to be read, or if the file is at
END. The channeli-setter specif,zc must refer to an open file. If the file has
not been opened by a file staterment, execution will be terminated.

if the last record of a file has been read, but not entirely processed, the IF
END statement will test true. That is, the file is considered to be at end of
file if no additional READ is permitted. However, there may still be data in
the buffer which an INPUT would accept.

Example 1:

10 AS=''ASHLEY"
20 BS="'808"
30 IF AS<BS THEN 50

50 PRINT AS;BS
END

In this example, string A$ is smaller in value than string B$, aithough string AS is
greater in length than string B$. Thus, control will transfer to line number 50 after
executing the IF statement on line number 30.

Example 2:

40 IF SIN (X)=M THEN 80

In this example, if the sine of X is equal to M, control will be transferred to the
statement with line number 80.

3-14

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE

| pace rev | TITLE | DOCUMENT NQ.

Exampie 3:

175 IF MORE #7 THEN 190

180 PRINT "PROGRAM FINISHED"
185 STOP '
190 READ #7:v$

This example uses the MORE condition to contral the reading of a file. When the
last record has been processed, the program stops.

3.5.5 ON Statement

The ON statement provides a multibranched switch.

Format
GOTO
ON arithmetic-expression { GOSUB, line-number [, line-number . . .]
THEN

Programming Notes

1. The arithmetic-expression is rounded to the nearest integer and used as an _
index to select one of the sequence of line numbers to branch to.

2. If the value of the arithmetic-expression is less than one or greater than the
number of line numbers specified, a run-time error will result.

3. Once the selection has been determined, either a GOTO or a GOSUB is
performed, depending on the instruction. In the case of a GOSUB, a RETURN
will return to the next statement.

Example:

150 ON X +Y GO TO 575, 490, 650
2170 ON FNA(G) GOSUB 2200, 2400

The first statement will transfer control to line number 575, 490, or 650 depending
upon whether the value of the expression X + Y yields 1,2, or 3, respectively.

The second statement will execute either a GOSUB 2200 or a GOSUS 2400,
depending on whether FNA (G) has a value 1 or 2.

UA-0140 Rev.3 ' BEM:BASIC — User Reference

3-15

OOCUMENT NO.

1 . TITLE | pacerev.|

PAGE

~ 3.5.6 PAUSE Statement

The PAUSE statement interrupts program execution and causes the following
message to be typed out of the terminal:

PAUSED AT /ine-number CONTINUE (Y OR N)?

if the user responds with N or NO then execution is terminated. if the user responds
with Y or YES, then execution is to be continued at the next sequential line number.

Exampie:

*10 PRINT “THISIS ATEST PROGRAM"”
*20 PAUSE

*30 PRINT "THIS IS ANOTHER LINE"
*40 PAUSE

*50 END-

* RUN

THIS IS ATEST PROGRAM.

PAUSED AT 00020 CONTINUE(Y ORN)? > YES
THIS IS ANOTHER LINE

PAUSED AT 00040 CONTINUE (Y OR N)? > NO

3.5.7 STOP Statement

The STOP statement is used to halt program execution, and causes the following
message to be typed out at the terminal: '

STOPPED AT /ine-number

Programming Note

1. A STOP statement may appear anywhere in the program.

Example:

*10 INPUTA

*20 IFA= 10 THEN 40
*30 STOP-

*40 PRINT “KEEP GOING"
*50 END

* RUN

212
STOPPED AT 00030

*

3-16 BEM:BASIC — User Reference UA-0140Rev.3

PAGE FAGE REV. L TITLE 4L DOCUMENT NO.

3.5.8 END Statement
e aamp—"
The END statement is the last statement in a BASIC program.
Format
END

Programming Notes

1. When the user issues the RUN command all statements up to and including -
the END statement, and any subprograms which may follow, are compiled.

2. Only one END statement may be present in a program. Any statements after
the END are treated as an error.

*30 END

3.5.9 RANDOMIZE Statement

_This statement will generate a random seed for use by the random number
generator. lts function is equivalent to the function call RND(-1). If not used, then a
given sequence of calls to RND will generate the same sequence of numbers for
repeated executions.

Example: ' .

10 RANDOMIZE

- 3.5.10 TIME Statement

This is a nonexecutable statement specifying the maximum CPU seconds allowed
for this program. If multiple TIME statements occur, the minimum value specified is
used. When the specified time limit is reached, the following message is displayed:
TIME UP — PROGRAM LOOPING
Format
TIME integer
The operand of the TIME statement specifies an integer number of CPU seconds.

Example:

5 TIME 150

UA-0140 Rev. 3 BEM:BASIC — User Reference A

3-16A

DOCUMENT NO.] TITLE |racerev. |

PAGE

3.5.11 SYSTEM Statement

This is an executable statement that allows a BASIC program to issue any BEM
"system command.

Example:

50 SYSTEM A$
193 SYSTEM “ALLOCATE DA, NEWFILE PACKQO2"

Programming Notes

1. The contents of the string should not start with a slash and should end with
at least one space. :

2. Issuing any of the following commands will terminate the BASIC program:
EXEC, LOGOFF, INTR.

3. Errors which occur wiil be displayed on the user’s terminai, but will not be
reported to the BASIC program.

UA-0140 Rev.3 BEM:BASIC — User Reference 3-17
DOCUMENT NO.] TITLE | PacERev | PAGE
3.6 INPUT/OUTPUT STATEMENTS

_* 3.6.

The input/output statements permit the user to transfer data between internal
storage and the terminal, print data at the terminal {and format the data), and use
the same data in a program as many times as are required. Included in the group of
input/output statements are the INPUT, LINPUT, PRINT, USING, READ, DATA, and
RESTORE statements :

This section presents these statements in their simple form for use with terminal
input/output and program supplied data. A more general (and compiete) form of
these and several additional statements is presented in Section 4, which describes
the use of files.

1 INPUT Statement
GUE—

Data may be entered dynamicaily during the running of a BASIC program using the
INPUT statement.

Format
INPUT variable {,variable . . .]
where

variable is either a numeric or string variable reference.
This may be either a scalar variable, or a refer-
ence to an array element.

Programming Notes

1. The INPUT statement is similar to the READ statement, except that its data is
input (dynamically) from the user’s terminal. The user is prompted for input
data by means of a question mark(?). Insufficient data results in additional
prompting. Data must be entered according to the type of variabie in the
INPUT statement. Data items entered must be separated by commas. The
inputting of invalid data causes an error message to be printed at the user’s
terminal; the complete input line must be reentered.

2. If the first four characters of input are STOP, then program execution is
terminated.

Example

20 PRINT “TYPE IN VALUES FOR X, Y, AND Z*;
30INPUT X, Y, Z

The execution of the above statements would cause the system to type out
TYPE IN VALUES FOR X, Y, AND Z?
and the terminal device would be positioned after the question mark waiting for

input values for X, Y, and Z. Note that without the semicolon at the end of
statement 20, the question mark would have been posted on the next line.

3-18 ' BEM:BASIC — User Reference UA-0140 Rev.3

PAGE |PAGEREV [THTLE Ji DOCUMENT NO.

3.6.2 LINPUT Statement

The LINPUT statement allows an entire input line to be read into a single string
variabie. No input checking or conversion is performed.

Format
LINPUT string-variable {,string-variable . . .]

where:

string-variable is a reference to a simple string variable or a
string array element,

Example:
10 LINPUT C$,H$(6,5)
This statement will cause the user to be prompted twice for input. The first input

response will be stored in its entirety in variable C$. The second response will be
stored in array element H$(6,5).

j 3.6.3 PRINT Statement

The PRINT statement results in data items being printed at the user’s terminal.

Format
PRINT, item[{;} item, .,] [{ : }]
where
item expression or TAB (expression)

Programming Notes

1. The width of a printed line on a user’s terminai defaults to 80 characters, but
may be reset by a MARGIN statement.

2. Using the commal,) or the semicolon (;), it is possible to control horizontal
positioning on a printed line. Initially, the pr:nt line is divided into fields of
15-character positions each.

UA-0140 Rev.3

BEM:BASIC — User Reference

3-19

OOCUMENT NO.

TITLE " | PaceRev. |

PAGE

/

a. If a comma is used after an item, the next item will be printed in the next
available field. A data item is piaced at the beginning of a field. If an item

cannot be placed in a field because it will cause the line to exceed the .

maximum print positions for a device, then that item will be placed in the
first field on the next line. If the last item in the current PRINT statement
is followed by a comma or semicolon, and there is sufficient space
remaining on the line, then the items in the next PRINT statement will
be printed on the same line. If the iast item is not followed by a comma
or semicolon, then the next PRINT statement begins printing on a new
line.

b. If a semicolon is used after an item, the next item will be printed in the
next print position on the line (i.e., the item following the string is
_ printed directly connected to it).

¢. For numeric items, the size of a zone depends upon the number of digits
needed to represent the data item. The zone width is always one
character more than is needed for the data item. In each case, the
number is printed starting at the first position of the zone. Numbers that
cannot be represented as six or fewer digits are represented in E-nota-
tion (refer to Programming Note 5) and occupy either 11 or 12 print
positions within a 13-position zone.

. Whenever the TAB function is used in the PRINT statement, it will cause the

print head to move over to the position indicated by the integer vaiue of the
TAB expression. The use of the comma and the semicolon remains un-
changed in this type of statement When a comma follows a variable, a fixed
field width is reserved before the next entry in the statement is recognized.
The semicolon causes this field width to be minimized. Thus, when the
terminal device is being tabbed, the semicolon should be used. The TAB
expression is evaluated modulo the current margin size; a value less than or
equal to zero results in an error. If the value of the TAB expression is less
than the current print position, the current line is printed and a new line is
begun.

. When a string reference is encountered which has not been assigned (a nuil

string), the PRINT statement will produce no printout.

. The conventions for printing numeric data are as follows:

3. Aninteger number is printed as an integer.
b. In all cases, no more than six significant digits will be printed.

¢. if the number is positive, the sign is not printed but a print position is left
blank.

.

3-20 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [PAGE REV. . TITLE I DOCUMENT NO.

d. Decimal numbers will be printed without an exponent part whenever
possible. Decimal numbers requiring an exponent field will be printed:

—.mantissa E £+ dd

where the mantissa may be up to six digits. Trailing zeros in the
mantissa are not printed. '

e. A space follows every number printed.
- 6. if noitems are present on the PRINT statement, a line advance occurs.
Example 1

10 FOR | = | TO 15

20 PRINT |
30 NEXT |
40 END

This-example prints the numbers 1 to 15 on 15 lines as follows:

Col 1

i

41
a2
a3
L[4
o5
A6
A7
48
A9
8610
At
a12
413
A4
£15

VExampIe 2:

10 FOR I = 1 TO 15

20 PRINT 1,
30 NEXT |
40 END

This example prints the numbers 1 to 15in 3 lines as follows:

Col 1 Col 16 Col31 . Colaé Col 61
l i { } i

Al a2 a3 A4 25
A6 A7 A8 29 A10

At A12 A3 Al4 A5

UA-0140 Rev.3 BEM:BASIC — User Reference

3-21

DOCUMENT NO.

| TME | PaceRev. |

PAGE

Example 3:

10 FOR | = 1 TO 15
20 PRINT ;

30 NEXT |

40 END

This example produces a single line of printout of the numbers 1 to 15 as follows:

ATAAZAAZALALASAABAATAABAASAAIOAATTAATI2AAT3LAT4AA15

If statement 20 were modified, the following would be printed:

20 PRINT — I;
—1A-2A-34—44-54—64-T7A-8A—9A~104~114—124-134-144-15

Example 4:

20 LET A =I

30 €S = '"SALESMAN''

40 AS = “JoE"

50 BS = "ADOKES'

60 N = 4

70 FPRINT A,-16,A$;B5,C$;N
80 END’

The execution of statement number 70 would produce the following output line:

Col. Col. Col. Col Col. Col.
2 16 3 35 46 85
| | § | | i
1 -18. JOEADOKES SALESMANA4

Example 5:

10 PRINT "'0000000001V1111111122222222223333333333""
20 PRINT '"'123456789012345678901234567890123456789""
30 AS=ttait

4o A =1

50 PRINT TAB (10);:A

60 PRINT TAB(20);A

70 PRINT TAB(30);A

80 PRINT TAB(10); A$; TAB(20); AS$; TAB(30); AS

90 RUN

3-22 A BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [PaGEREV | TITLE 1} DOCUMENT NO

This example illustrates the use of the TAB function in the PRINT statement. The
output of this program is as follows:

Col 1 Col 10 Col 20 Col 30

| § ! i ’
000000000111111111122222222223333333333
123456789012345678901234567890123456789

1
1

- »

Example 6:
10 FOR 1 = | TO 25
20 PRINT 2=},

30 NEXT |
4o END

This is an example of how large numbers are printed and how they are spaced when
a semicolon is used in the PRINT statement. The printout produced is as follows:

A2004 ANSAA1E LA 32006400 128AA256AA512A4 102404204840 4096048192 AA16384A4 32768
£655364A131072A4262144 AN524288 AA1.04858E+06 AA2.0971 5E~r06 AAG 1943E+06
48.38861E+06AA1.67772E+07 AA3.35544E+Q7

3.6.4 MARGIN Statement
The MARGIN statement is used to set the currént margin for the terminal.
Format
MARGIN numeric-expression
Programming Notes .

1. The value of the numeric expression in the MARGIN statement is truncated,
and the resulting integer is used for the output margin length for the terminal.

2. The MARGIN statement takes effect lmmedlately, even if a line of output is
pamally filled.

3. The MARGIN statement specifies the largest possible record which can be
written to the file.

4. A margin value less than zero, or greater than 4095 is treated as an error.
Example:
1 MARGIN 64

This statement sets the current margin to 64 characters. This may be useful for
UNISCOPE terminais with 64 character lines.

UA-0140 Rev.3 BEM:BASIC — User Reference 3-23

DOCUMENT NO. | TITLE {raceRev. | PAGE

3.6.5 READ and DATA Statements

The READ statement is used to assign to the listed variables values obtained from a
DATA statement.

Format

READ variable [, variable . . . |
DATA datum |, datum . . .}

-where

decimal number
datum

string constant
| Programming Notes
|

1. Before the program is run, BASIC takes ail of the DATA statements in the
order in which they appear and creates two blocks of data. Each time a READ
statement is encountered anywhere in the program, the appropriate data
block supplies the next available datum (or data). The string data block used to
supply values for string variables, and the numeric data block is used for
numeric variables.

‘ . 2. Insufficient data results in program termination with a diagnostic message.

Example:

10 READ X,Y.,Z,X1,Y2,G49

20 DATA 4,2,1.7

30 DATA 6,734€-3,-174,321,3.14159265
35 PRINT X,Y,Z,X1,Y2,Q9

40 FOR K=1 TO §

50 READ B

55 PRINT B

60 NEXT K
71 DATA

1
72 DATA 2
73 DATA 4
74 DATA 5
75 DATA 1
80 END

.234E16

The execution of the above example would produce the following output.

; Col Col Col Col Col

|

| 2 16 31 46 61
i i b ! |
4 A2 AT A.006734 -174.321
3.14159
1

o | ;

4
5

A234E+17

3-24 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [PaceRev [. TITLE | DOCUMENT NO

3.6.6 RESTORE and RESET Statements

The RESTORE and RESET statements permit the user to read data from the
beginning of data block.

Format

RESTORE
RESET

Example:

10 READ N
20 FOR I=1 TO N
30 READ X

.

100 NEXT |

110 RESTORE

120 READ M ’
130 FOR J =1 TO M

140 READ Y

200 NEXT J

300 DATA §

310 DATA 1.0
315 DATA —01
320 DATA3.2E+01
325 DATA 4

330 DATA —3.
400 END

In this exampie, the READ statements on line numbers 10 and 120 will read the
same datum (i.e., the number 5 contained in the DATA statement on line number
300. Similarly, the READ statements on line numbers 30 and 140 will read the
same data from the DATA statements on line numbers 310 to 330.

3.6.7 USING Statement
The PRINT USING format of the PRINT statement gives the BASIC user the ability
_to define the format of his program’s output. The USING clause consists of three
parts: the USING keyword, the using string which contains the format fieids, and

the expression-list that is used to fill in the format fieids of the using string.

Format

USING using-string, expr-1, expr-2, . . ., expr-n

UA-0140 Rev.3

BEM:BASIC — User Reference A

3-25

OOCUMENT NO.

1 . . TIMLE |Pagerev. |

PAGE

Exampile:

PRINT USING, "<#### = STRING FIELD, + ## = NUMERIC FIELD”, S1$,N
As shown above, both string and numeric output can be formatted by a using
string. Numeric fields begin with a $, +, or —, and can only contain numeric output.
String fields begin with < or >, and only string data can be formatted into a string
field. Each starting character has a defined function and will be explained later.

The # is a place holder and by varying the number of place holders, the user can
change the size of the format field and thus the format of the output.

A format field begins with one of the characters $, +, —, <, or > and contains all
characters up to but not including the next $, +, —, <, or > {or to the end of the
using string). The complete using string may be made up of numerous format
fields. A format field can appear anywhere within a using string and the place
holders do not have to be contiguous. if more format fields are given in the using
string than variables in the variable-list, the excess fieids are ignored . If there are
extra variables in the list, then the using string will be reused until the variable-list
is exhausted.
Any characters which do not have special meanings as described in this section
may be embedded within format fields. As the BASIC system edits data into the
piace holders, any embedded characters are copied too.
Example 1:
If variable S$ contains the string:

“A=+##, B=—##, AND C$ CAN = <### OR ###"
the statement

PRINT USING S$,20,—20,”ABCDXYZ"
would produce the following output:

A=+20,8 =—20, AND C$ CAN = ABCD OR XYZ
Example 2:
If only one variable is printed, the resuit would be:

PRINT USING Ss,20

A=+20,B=
Example 3:

PRINT USING Ss, —20, 20, “ABCDXYZ", 30, —30

will output:

A=—20,8= 20, AND C$ CAN = ABCD OR XYZA= 30,B=-30, AND C$ CAN =

—

3-26 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE lPAGE REV. l TITLE l DOCUMENT NO.

3.6.7.1 FORMATTING STRING QUTPUT

The BASIC user has two options for formatting the string output of his BASIC
program. He can left-justify or right-justify the output in the format field defined in
the using string. '

To left-justify the output, the format field must start with a <. When a format field
starts with this character, the field will be filled from left to right starting with the
leftmost character, in this case the <, until the format field or the string is
exhausted. If the string is not long enough to fill all of the place hoiders, then the
remaining place holders will be space-filled. If there are more characters in the
string than there are place holders, the string will be truncated.

If the format field starts with a >, then the string will be right-justified in the
format field. The last place holder in the field will be replaced with the last
character of the string being printed. The next to the last place holder will be filled
with the next to the last character and so on from right to left until the format fieid
is completely replaced by the string. If the format fieild is longer than the string
being printed, the remaining place holders, including the > will be replaced by
spaces. If the string is longer than the format field, the leftmost characters of the
string will be omitted.

Exampie 1:

PRINT USING “|<#####4 "', “ABCD"

will output:

|ABCD |
Exampie 2:

PRINT USING “|>#####4", “ABCD”
will output:

I ABCD|

3.6.7.2 FORMATTING NUMERIC QUTPUT

Through using strings, the BASIC user is given a wide variety of ways to format
numeric output. The user can dictate the number of decimal places that are
printed, thus defining the accuracy of the number being outputted. An exponent
field can be defined in order to neatly print large numbers. The numeric field can
be preceded by three different fieid descriptors. A dollar sign will cause the doilar
sign to be right-justified against the outputted number. The plus sign will
right-justify a plus sign against the number if the number is positive, or a minus
sign if the number is negative. A minus sign will cause a minus sign to be
right-justified if the number is negative; if the number is positive, no sign will be
printed. To further identify the output, the user can combine the dollar sign with a
plus or minus sign, giving $-+ or $—. Examples will be given later to explicitly show
each format that can be used.

UA-0140 Rev.3 BEM:BASIC — User Reference A

3-27

DOCUMENT NO.

| TITLE |Pagerev [

PAGE

Many different situations can occur when printing numbers with format fields due
to the flexibility in describing the format fieids and the varying magnitude of the
numbers being printed. The following paragraphs present some of these situations
and explain how each will be handled.

When a numeric field is defined, the user should be aware of the expected
magnitude of the number to be printed in the field. The magnitude of a number
cannot be greater than the size of the format field (number of place holders) in
which the number is to be printed. An example would be printing the number 100
in the format field +##. In this field there are only two numeric positions, and the
100 will take three. To inform the user that this error has occurred, the entire
format field is replaced by asterisks. In this case, the output would be ****.

There are two ways to avoid this problem. First, the format field can be made very
large in order to accommodate large numbers. This is an adequate solution, but
can lead to another problem. BASIC will only print six significant figures; if the
user attempts to print more than six significant figures (an example would be
10000000) then the number is truncated to six figures and the remaining portion
of the format field is replaced with question marks. Qutput printed in this manner
may not always be in good readable form. In the example given above, if the
format field used was +#########, the output would be +10000077?.

A second method for printing numbers of varying magnitudes avoids using large
format fields by defining an exponent field in the format string. An exponent field
is defined by five consecutive up-arrows 11!t When an exponent field is used, the
number is adjusted to fit into the defined field, and the exponent is then calculated
to give the user the magnitude of the number. If an exponent field is defined in the
format string, such as +####11111, then the magnitude of the number will be
known. The +1000000 wiil be formatted as +1000 E+03 and the +100000000
will be printed as +1000 E+O5 which tells the user exactly what was printed. As
can be seen in the examples, the exponent field in the format field is formatted as
follows:

space E sign digit digit

If an exponent is used with a numeric format field, then any number can be printed
in the field. The number will be adjusted to the field size, and the exponent will
hold the magnitude of the adjusted number. If this statement is executed:

157 PRINT USING " +##111117, 25, 290, —300, .00001
the results will be:
+2% E+00 +29 E+01 =30 E+0Q1 +10 E—06

To print numbers that contain a decimal component, the user can define decimal
fields in the format field. The format field will begin with a +, —, 8, $+, or $—,
optionally followed by any number of place holders. A decimal point may be
embedded anywhere within the place holders. The following field will contain a
decimal field of three places, “"+##&.###". When the decimal is printed, it is
rounded to the number of positions given and then printed. When no decimal
places are given, the number is rounded to the next integer value.

3-28 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE | paceRev.| TTLE] | DOCUMENT NO.

There are a few other rules that must also be remembered when printing decimal
fields:

e Replace any unused place holders to the right of the decimal point with

Zeros.

|
o The maximum number of decimal places that can be printed without an
exponent field is six.

e |f there are any place holders to the left of the decimal point and the value is
less than 1.0, a single zero is printed to the left of the decimai. The sign is
justified to this character.

Example:

Number Format Resuit

1.455 +## 48 +1.46

0.50 SHR#.H#E $0.50
0.1234567 + #RBHRGHY +.1234577?

When an exponent file is included with a decimal field, the number is rounded to
the proper number of significant digits. It is moved into the format field, and then
the proper exponent is calculated and formatted into the exponent field.

Example:

10 LET A § =""+# BH###1I111"
11 PRINT USING A$, 1.04
12 PRINT USING A$, 12.345

The results will be +1.04000 E+00 and +1.23460 E+O1

Another option available with format fields is the choice of + and — signs. These
two signs are not equivalent and will produce different output. The plus sign will
always cause a sign to be printed in the output field. If the number that is printed is
positive, then the printed sign is the plus sign. But, if the printed number is
negative, the sign position is replaced with a minus sign. When a minus sign is
chosen, it is printed for a negative number, but no sign is printed for a positive
number. Also, if the format field that has been defined contains one less place
holder than is necessary to print a positive number, then the minus sign will be
replaced by the one-remaining digit. Thus, the number 100 can be printed in the
field —## as 100, but —100 will produce *** as output since the minus sign must
also be printed. This allows one-digit positive numbers to be printed in the format
field —, and can inhibit the printing of signs in the format field.

The following group of examples is intended to show the user how to use a using
string, the errors that can occur, and some practical uses for the PRINT USING
format of the PRINT instruction.

UA-0140 Rev.3 BEM:BASIC — User Reference 3-29
DOCUMENT NO. | TIMLE |Pacerev. | PAGE
Examples:
Format Field Number Printed Resulting Qutput
+REHBH +100 +100
+HeRE# —100 -100
—REHER +100 100
—Ru###H —100 -100
SH#K . RE +20.99 $20.99
S+ii# HE —20.99 $—20.99
SHHHE R +20.99 $+20.99
S—REH# B8 +20.99 $20.99
S### AND ## CENTS +45.50 $45 AND 50 CENTS
DICE — AND — 1.1 DICE 1 AND 1
$H H#E 1Y 1234.56 $1,234.56
$H# Hi# HE 8.94 $8.94
—#:00 HOURS ## 1234 12:00 HOURS 34
MINUTES : MINUTES
TODAY IS THE —#TH OF 2677 TODAY IS THE 26TH OF
SEPT, 19## SEPT, 1977

3.6.7.3 USE WITH THE PRINT STATEMENT

The USING clause may oniy be used in combination with a PRINT or MAT PRINT
statement. As previously stated, a USING clause begins with the word “USING",
followed by a string and a list of expressions to be formatted:

USING string-expression, expression, expression, ...

Examples:

106 PRINT USING A$, B, C, 10, E(5) -
107 PRINT USING “FILES—#DISKS—#TAPES—#",F, D, T

108 PRINT USING “USER RESPONSE OF >#### IS INVALID", U$
109 PRINT USING FNB$(6), T, U, SIN(3.14159)

The USING clause need not be the only thing on a PRINT statement; unformatted
expressions may be combined with formatted data. When combining formats in
this manner, it is important for the user to realize exactly where a USING clause
begins and ends. It ailways begins with the word USING. The end of the USING
clause occurs either at the end of the PRINT statement which contains no trailing

comma, or at a semicolon.

When a USING clause is encountered, BASIC formats the entire using string and
the PRINT statement prints it to the output device. Thus when used with files, the
using string, after editing, must not be longer than the margin for the file.

3-30 A BEM:BASIC — User Reference UA-0140 Rev.3

PAGE | pacerev | TITLE ' { DOCUMENT NO.

Examples of combined formats are shown; the shaded areas indicate the USING
clauses.

242 PRINT A, B; C; DS; |

243 PRINT #t:

246 PRINT TAN (X), OF ——### #mn ,x

247 LET F$ = "IS THE < ######## OF —H#H.H# 11

,AN'fEN'r mx,’ SIN(X); usmG Fs sms

The list of expressions to be used W|th a smgle USING clause can be extended over
several PRINT statements by ending the statements with a comma. This indicates
that more expressions are to follow, and BASIC will delay printing the output until
a semicolon is found in a subsequent PRINT, or until a PRINT is executed which
does not end with a comma.

Examples:

341 PRINT USING AS, B, C, D, s
342 PRINTE, F; G, H

343 PRINT USING 18, JS, K, L(3),
344 PRINT SiN(3.14159),

345 PRINT M

346 PRINTN, O

347 PRINT P, USING Qs, R;
348 PRINT S

Variables B, C, D, E, and F are printed under the format in A$, variables G and H
are unformatted. Variables J$, K, array element L(3), the sine of 3.14159 and
variable M are under the format in I8, while N and O are unformatted. Variables P
and S are unformatted, while R is printed under the format in Q$.

The final example of the USING clause shows how the format fields are reused
when insufficient format fields exist for all of the variables to be printed.

Examples:

— 179 PRINT USING “—_##811111 IS THE <N##84# OF— HER1111~, TAN(X). “TANGENT",
180 PRINT X, SIN(X], “SINE", X, COS (X), “COSINE", X
181 PRINT COS(X); IS THE COSINE OF ;X

UA-0140 Rev.3 BEM:BASIC — User Reference A 3-31
DOCUMENT NO. I TITLE | PAGE AEV. [PAGE
4.855E-+05 IS THE TANGENT OF 1.571E--00 1.000E-+00 IS THE SINE OF 1.571E+00 -
2.060E—06 IS THE COSINE OF 1.571E+00
2.05959E—06 IS THE COSINE OF 1.57079
This example shows several unique properties of USING clauses. The format string
contains three format fields:
— BHH#IIITIS THE
<##p##s OF
— gH#m
Since statement 179 ends with a comma, the USING clause is still active. Any
variables printed on a succeeding PRINT statement will still be under format
control. Statement 180 does not end with a3 comma so it terminates the format. A
total of nine expressions are formatted. Statement 181 is a normal PRINT
statement. .
3.7 MATRIX OPERATION STATEMENTS

For ‘ease in handling matrix operations on numeric arrays, the following MAT
statements are provided in BASIC.

MATC=A+8
MATC=A—B
MATC=A*8

MAT variable=V *W

MAT C =INV (A)

MAT C =TRN(A)

MAT C=CON
MATC=ZER
MATC=IDN

Add the two matrices A and B store the result in
matrix C.

Subtract the matrix B from the matrix A and store
the result in matrix C.

Multiply the matrix A by the matrix B; store the
result in matrixC.

Multiply vectors V and W and assign the result to
a variable.

Invert the matrix A and store the resuiting matrix
inC.

Transpose the matrix A and store the resuiting
matrix in C.

Set each element of matrix C to a value of one.
Set each element of matrix C to zero.
Set the diagonal elements of matrix Cto 1’s, and

all other elements to zero, yielding an identity
matrix.

3-32 BEM:BASIC — User Reference ' UA-O0140 Rev.3

PAGE | PaGE Rev. TTLE | DOCUMENT NO. ‘
@
MAT C$ =NULS Set each element in matrix C$ to a null string.
MAT C = (exp)*A Multiply each element of the matrix A by the value
of the expression and place the result in matrix C.
MAT INPUT AAS Input elements of a matrix.
MAT LINPUT As$.BsS input lines of data into elements of matrices

using the LINPUT statement.
MAT PRINT A AS Print elements of matrix A;

MATREAD AAS Read elements of matrix A from Data statements.

3.7.1 Matrix Dimensioning

An array variable used in a MAT statement should have its upper bounds (maximum)
defined in a DIM statement.

For matrix operations, the lower bounds for each dimension of a matrix are assumed
to be 1; elements in row and column zero are unchanged.

Example:

100 DIM P(3.4)

defines 20 elements P(0,0), . . ., P(3,4) but only 12 elements P(1,1), . . . ,P(3.4) take
part in any MAT operation. :

The mathematical definition of matrix addition, subtraction, muitipiication, inversion
and transposition operations require the obvious conformities of matrix dimensions;
otherwise, errors will resuit. Details concerning matrix dimensioning are discussed
in the programming notes for each matrix operation statement.

Certain statements allow the user to implicitly or explicitly redimension a matrix.
When a matrix is explicitly redimensioned, a trimmer is used which has a form
similar to the array bounds listed in a DIM statement. Trimmers cannot change the
number of subscripts of an array, but they can change the number of elements in
the array (i.e., you can’t change a matrix to a vector or vice versa).

When changing the number of elements in an array, the new array dimensions
cannot cause it to have more elements than the original DIM statement reserved
for it. if the original DIM statement reserved {n,m} elements, and the trimmer
changes it to {a,b}, the following condition must hold: .

(at1) > bH1)< (n+1)* (m+1)
For example, if array A was dimensioned as 3, 4 it could not be trimmed to GX2,

- since the original matrix contained 20 elements and the new matrix would require
28 elements (remember row and column zero).

UA-0140 Rev.3 BEM:BASIC — User Reference - . _/ 333

DOCUMENT NO. | TITLE | PaGEREY. | PAGE

3.7.2 MAT Addition, Subtraction, and Multiplication Statements
These statements permit addition, subtraction, and muiltiplication of matrices.
Format
MAT /etter = letter+ letter
MAT letter = letter — letter
MAT Jetter = letter * letter
Programming Notes

1. The operator (+) denotes a matrix addition statement; the operator (—)
denotes a matrix subtraction statement; and the operation (*) denotes a
matrix multiplication statement.

2. Only one operation may be performed per statement.

3. Matrix dimensions must be conformable for each operation. |f dimensions
are not conformable, execution is terminated and a dimension error mes-
sage is typed out at the terminal. The output matrix will be redlmensuoned if
possible, to be consistent with the mput matrices.

4. The following are treated as errors:

MATA=A*8B
MATA=B"A

~ 5. The mathematical definition of matrix muitiplication is used. Thus, each of the
following conditions must hold for MATA=B *C: '

a. current row bound (A) = current rov‘v bound (B)
b. current bound {(A) = current column bound (C)
¢. current bound (B) = current row bound (C)

Matrix A will be redimensioned to meet these conditions.

If either B or C is a vector it will be transposed, if necessary, so that A will
be a vector. If both B and C are vectors an error will result. (See 3.7.3.)

6. The mathematical definition of matrix addition and subtraction is used. Thus,
each of the following conditions must hold for MATA=B + Cor MATA =8
—C.

a. current row bound (A) = current row bound (B)
current row bound (A) = current row bound (C)

b. current column bound (A) = current column bound (B)
current column bound (A) = current column bound (C)

Matrix A will be redimensioned to meet these conditions.

3-34

BEM:BASIC — User Reference

UA-0140Rev.3

PAGE

fracerev]

TITLE

T

DOCUMENT NO.

Example:

10
20
30
40
50
60
70
71
72
73
80
81
82
85
86
20
9
92
95
96
100
101
102
105
106
110
200
210
220
230
240
250
260
300

The execution of the above program would produce the following output:

DIM A2, 2),B(2,2),Cl2.2)
FOR 1=1TO2

FOR J=1T02

READ A, J), Bll,J)’
NEXT
NEXT
DATA
DATA
DATA
DATA
PRINT
PRINT “MATC=A+8"
PRINT

MAT C=A+8
GOSUB 200

PRINT

PRINT “MATC=B—A"
PRINT

MAT C=B-—A
GOSUB 200

PRINT

PRINT “MATC=A"*B"
PRINT

MAT C=A*B
GOSUB 200

STOP

PRINT A(1, 1) A(1.2)
PRINT A2, 1) A2, 2)
PRINT B(1,1);8(1,2)
PRINT B(2,1);B(2,2)
PRINT C(1,1)C(1,2)
PRINT C(2, 1) C(2, 2)
RETURN

END

pPLON-TC
o~dao,m
;

MAT C=A+8B

O NGO W -

1

- 00 H~N

2

MATC=8-A

PN~

hpPpPOOOAEN

UA-0140 Rev.3 ; BEM:BASIC — User Reference

3-35

DOCUMENT NO. | TITLE | PageRev. |

PAGE

MATC=A"8

N W -
0oL N

19 22
43 50

By using the MAT PRINT statement (3.7.12) statements 200 through 250 could be
replaced by

200 MAT PRINT A; B; C;

3.7.3 MAT Vector Multiplication

. This statement permits the muitiplication of two vectors, yielding a scalar result.
Format
MAT variable = letter * letter
Programming Notes
1. Both arrays used in the statement must be defined to be vectors of equal size.
2. The result must be assigned to a numeric variable.
Example:

MAT A6=V*W

3.7.4 MAT Inversion Statement

Matrices are inverted using the MAT Inversion statement.

Format

MAT /etter = INV (letter)
" Programming Notes

1. Matrix inversion in place MAT A = INV (A) is treated as an error. If a matrixis
singular, the value of the pseudo-function DET will be set to zero; otherwise,
DET will contain the value of the determinant for matrix just inverted.

2. The mathematical definition of matrix inversion is used. Thus, each of the
following conditions must hold for MAT A = INV (B):

a. currentrow bound (B) = current bound (B)
b. current row bound (A) = current row bound (B)
c. current column bound (A) = current column bound (B)

3-36 BEM:BASIC — User Reference UA-0140Rev.3

PAGE | ace rev.| TITLE ' Il DOCUMENT NO.

3. The matrix being inverted will be destroyed during the inversion process.

Example:
550 MATK =INV (L)
Matrix K is made to represent an inverted row-column arrangement of matrix
L
3.7.5 MAT Transpose Statement
Matrices are transposed using the MAT Transpose statement.
Format
MAT Jetter= TRN (letter)

Programming Notes

1. Matrix transposition in placé MAT A=TRN (A) is treated as an error.

2. The mathematicai definition of matrix transposition is used. Thus, each of the
following conditions must hold for MAT A = TRN (B}):

a. current row bound {A} = current column bound (B).
b. current column bound (A) = current row bound (B).

Example:
300 MAT G =TRN (H)

The matrix G will be the transpose of matrix H.

3.7.6 MAT Constant Statement
This statement resuits in all elements of the subject matrix being set to one.
Format
MAT fetter = CON [(trimmer(]
where |

trimmer is a new array dimension which is to be applied to
the matrix.

Programming Notes

1. A trimmer may optionally be used with this statement to dynamically
redimension the matrix. This trimmer may not change the number of
subscripts for the matrix. The new dimensions may not cause the new matrix
to have more elements than did the original definition, or an error will resuit.

UA-0140 Rev.3 BEM:BASIC — User Reference 3-37

DOCUMENT NO. | TITLE {PaGEREV. | PAGE

2. Atrimmer has the same format as the dimensions on a DIM statement.
Example:
175 MAT C=CON
The elements of matrix C will be set to one. The dimensions of matrix C are used in

the operation.

3.7.7 MAT Zeros (0’s) Statement

This statement results in ail elements of the subject matrix being set to zero.
Format
MAT /etter = ZER [{trimmer)]

where

trimmer is a new array dimension which is to be applied to
the matrix.

Programming Notes
1. A trimmer may optionally be used with this statement to dynamically
redimension the matrix. This trimmer may not change the number of

subscripts for the matrix. The new dimensions may not cause the new matrix
to have more elements than did the original definition, or an error will result.

2. Atrimmer has the same format as the dimensions on a DIM statement.
Example:
150 MAT C =ZER(3)

The elements of matrix C will be set to zero. The dimension of matrix C is changed to
3 then the operation is performed.

3.7.8 MAT Identity Statement

The MAT Identity statement is used to set the subject matrix to an identity matrix.
Format
MAT Jetter = IDN {{trimmer)]

where

trimmer is @ new array dimension which is to be applied to
the matrix.

3-38 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE {racerev.| TITLE 1 DOCUMENT NO.

Programming Notes
1. A trimmer may optionally be used with this statement to dynamically
redimension the matrix. This trimmer may not change the number of
subscripts for the matrix. The new dimensions may not cause the new matrix
to have more elements than did the original definition, or an error will resuit.
2. Atrimmer has the same format as the dimensions on a DIM statement.

3. The current row and column dimensions of the subject matrix must be equal
when this statement is executed; otherwise, an error occurs.

Example:
20 MATB=IDN(3.3)
In the statement with line number 20, matrix B is changed to a 3 x 3 matrix and then
set to an identity matrix. If B is not defined to be square, a dimension error message
will result.
3.7.9. MAT Scalar Muitiply
-The expression is evaluated and this resuit is used to muitiply each element in the

matrix on the right of the equal sign. The resultant values are assigned to the matrix
on the left of the equal sign.

Format

MAT Jetter =(exp)*letter
Example:

190 MATC=(5)*A

Each element in A is muitiplied by 5 and the result placed in matrix C. The
dimensions of both matrices must be identical.

3.7.10 MAT INPUT Statement

The MAT INPUT statement causes elements of the arrays in the array list to be
assigned values during execution of the program. The terminal user will be
prompted by means of a question mark to enter a list of values. If the array name is
specified with a trimmer, or if the array name is not the last one in the list, the
user must supply the same number of values as the current array dimension
requires to fill the array. If the last array in the list is specified without a trimmer, a
variable number of user-supplied values are permitted. The number of values
inputted is stored in the function NUM.

UA-0140 Rev.3

BEM:BASIC — User Reference

3-39

DOCUMENT NO.

TITLE | PaGeRev |

PAGE

Format

MAT INPUT mat-name [(trimmer)] [,mat-namel (trimmer)},...]

Example:

100 MAT INPUT A(3,4), V$

Programming Notes

1.

When the terminal user must enter an array in response to a MAT INPUT
statement it is quite likely that he will not be able to fit the entire array on a
single line. The user may specify that a line is to be continued by entering a
comma and an ampersand (&) following the last data item. The last line
which is not terminated by an ampersand will terminate the input:

Line1:1,2,3, &
Line2:4,5

If the BASIC program is not doing vector input, then the number of data
items typed by the terminal user must match the number of entries in the
array.

When doing vector input, the vector is redimensioned to the number of
values inputted, in addition to the vaiue being stored in NUM. ‘

When inputting 2-dimensionai arrays, elements in row 1 are filled first, then
row 2, and so on. :

3.7.11 MAT LINPUT Statement

This statement causes entire lines to be read into the elements of a string array
during execution of the program. Matrices are filled row-by-row until the entire
matrix (except row and column zero) is filled.

Format

MAT LINPUT string-array [{trimmer) | [,string-array {{trimmer)},...]

Example:

325 MAT LINPUT A$(5),C$

3-40

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE

[Pacerev | TITLE] DOCUMENT NO.

3.7.12 MAT PRINT Statement

The MAT PRINT statement causes an entire array (except for row and column zero)
to be printed row-by-row. If an array is followed by a semicolon separator, the
elements of each row are printed closely packed; otherwise, the elements of each
row are printed in columns 15 spaces wide. Each row begins on a new line. If a
row does not fit on one line, it is continued on succeeding lines. If no print
separator follows a vector, it is printed as a column vector; i.e., one element per
line; otherwise it is printed as a row vector.

" Format

MAT PRINT mat-name letter [{} mat-name letter. .][]

.
.

where

mat-name is the name of a string or numeric matrix.

3.7.13 MAT READ Statement

3.8

The MAT READ statement causes elements of the matrices in the array list to be
assigned values during execution of the program. These values are obtained from
the appropriate block data formed by the DATA statements. Matrices are filled
row-by-row until the entire matrix (except for row and column zero) is filled.

Format , .

MAT READ mat-name [{trimmer)] [,mat-name [(trimmer)]]

where
mat-name is the name of a string or numeric matrix.
trimmer is a new array dimension which is to be applied to
the matrix.
PROGRAM SEGMENTATION

The statements described in this section allow BASIC programs to be logically and
physically segmented. The CHAIN statement allows a large program to be divided
into several smaller ones which may be serially executed occupying the same
memory region. The CALL and SUB statements allow the development of parame-
terized, independent routines. The LIBRARY statement provides the mechanism for

calling previously coded and debugged routines which have been stored in 0S/3
library files.

UA-0140 Rev.3 BEM:BASIC — User Reference 3-41
DOCUMENT NO. [TITLE | PaceRev. | PAGE

3.8.1 CHAIN Statement

This statement terminates the -execution of the current program and initiates
execution of a specified program. The chained program can reside in either an
0S/3 library file or in a BASIC workspace file created by the chaining program.
The CHAIN statement allows a large BASIC program to be segmented and new
phases to be loaded without the terminal user being involved.

Format
#N
CHAIN {s tring-expression} WITH &/ [[#J, .. .1}
where
| #N is a channel expression for a BASIC file contain-
| ing a BASIC program.
string- is a program identifier of a BASIC program in an
expression 0S/3 library file. Its format is similar to that
used on an OLD or RUNOQOLD statement.
Bl 8#d,... is a list of channel expressions specifying those
files to be passed to the chained program. The
‘ passed files will be assigned sequential channel
numbers, beginning at 1. That is, in the chained
, program, the first file in the list will be assigned
to channel 1, the second to channel 2, etc.
Example:
900 CHAIN #3

950 CHAIN “PHASE2, PROGLIB, PACK43"” WITH #10, #1
Programming Notes

1. If the chained program is specified by a channel expression the file must be
a temporary or library file; a data management file is not permitted.

2. If the filé containing the chained program is an 0S/3 library file, the file will
be closed after the chained program is loaded.

3. Any files not included in the file list will be closed before the chained
program is loaded.

4. The chained program source is not copied into the BASIC workspace. When
execution of a chained program completes, the origina! contents of the
workspace when the RUN or RUNOLD statement was issued will still be
intact.

3-42 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [Pace Rev. | TITLE | DOCUMENT NO.

3.8.2 LIBRARY Statement

This statement is used to inform BASIC of the names of 0S/3 library files which
are to be searched to find subroutines referenced by the program.

Format

LIBRARY file {{password)] [,volume]

where
file is the name of an 0S/3 library file.
password is the READ password for the file. It must be
included in the statement if the file has been
cataloged with a password. '
volume is vthe name of the disk pack on which the file

resides. If the file has been cataloged with a
volume name, this parameter may be omitted.

Programming Notes
1. At load time all subroutines in the program file will be loaded first. Then if
there are unresolved subroutine names, the files specified in the LIBRARY
statements are searched. If any subroutines are not resolved in this manner,
execution is terminated. ,

2. A maximum of four LIBRARY statements are permitted in a BASIC program.

3. If more than one library is specified, the order in which they are searched is
unpredictable.

4. In order for a subroutine to be found in a library, the SUB name must match
the element name with which it was written to the library file.

5. Although muitiple subroutines may be stored in the same library element,
BASIC will only locate subroutines by the element name. Consequently, the
element name must be the name of the first subroutine referenced in the
program.

Exampie:

100 LIBRARY “SUBROUTINES (RDPASS), PACK33"

UA-0140 Rev.3 BEM:BASIC — User Reference 3-43

DOCUMENT NO. I TITLE PAGEREV. | PAGE

3.8.3 CALL Statement
The CALL statement is used to invoke a BASIC subroutine.
Format
CALL string-constant [.param-list]
where

string- is a subroutine name consisting of at most eight
constant alphanumeric characters.

param-list expression
variable
channel setter P
function name
array

Five types of parameters may be specified in the param-list.

1. Expression (call-by-value) — Any numeric or string expression. The value is
only passed to the subroutine, no vaiue may be returned. A simple variable
may be made an expression by enclosing it in parentheses.

Example:

A+3, 5, (X), As&BS, “ABC”

2. Variabie (call-by-reference) — Any numeric or string variable. The value of
the variable may be changed by the subrgutine,

Exampile:
(X, R3, As, X8{(..3)
3. Channel setter — A file is passed to the subroutine. Any processing may be
performed on the file by the subroutine, including reopening the file with a
different name.

Example:

#1, #X+Y

3-44 BEM:BASIC — User Reference UA-0140 Rev.3
PAGE [Pacerev | TITLE | DOCUMENT NO.
4. Function name — A function is passed to the subroutine. The function may
be used in any valid context in the subroutine. The number and type of
parameters for the passed function must agree with its use in the
subprogram.
Example:
FNX$,SIN
5. Array — An entire array may be passed to a subroutine. Any valid operation,

including redimensioning may be performed by the subroutine. Note that the
CALL statement only specifies the number of dimensions, not the actual
dimensions. ‘
Example:

A().BsS()

Programming Notes

1.

2.

3.

4,

Subprograms may not be called recursively.
Only open files may be passed.
Arrays may be redimensioned in a subroutine by using them with trimmers.

Functions which are passed on CALL statements must be defined before the
CALL statement.

Example:

100 CALL “SUB1": 5+, A$, #B, SIN B(,), "YES”

3.8.4 SUB Statement

This statement is the first statement of a BASIC subroutine. It must follow an END
or SUBEND statement or be the first statement in a BASIC program file.

Format

where

SUB string-constant [:param-list}

string-constant is the subroutine name, consisting of no more
than eight alphanumeric characters. If this sub-
routine is to be loaded implicitly by BASIC
through the use of LIBRARY statements, this
name must be the same as its element name in
the OS/3 library file.

BEM:BASIC — User Reference

UA-0140 Rev.3 3-45
DOCUMENT NO. { TITLE {PaGEREV | PAGE
param-{ist is the list of local variables passed to the subrou-

tine. Each must have the same type (string or
numeric) and dimension (matrix, vector, scalar,
function, or file) as the corresponding parameter
in the CALL statement.These parameters may
be:

variable

channel setter PR
function name

array

Four types of parameters may be specified in the param-list:

1.

Variable — Any numeric or string variable. The corresponding CALL state-
ment may contain a variable or an expression. When the caller passes a
variable, subroutine references will aiter the value of that variable; when the
caller passes an expression, the parameter will be a local value. The
subroutine is not aware of the different parameter modes. However, a
returned value would be lost if the subroutine is called with an expression.

. Channel setter — Any channel constant (#1, #30, etc.). References to this

channel will act upon the file passed by the caller. The file must be opened
by the caller prior to calling the subroutine. Any files opened in the
subroutine which are not intluded in the param-list will be local to the
subroutine and will be closed upon exit.

FN letter [$] — Any user function may be defined in the SUB parameter list.
Function result type and the types of each function parameter must be
consistent with the function passed to the subroutine by the cailer.

Array reference — Any array name may be defined here. The variable type
and number of dimensions must be consistent with the passed arrays. No
dimension statement for these arrays may appear in the subroutine. Note
that no dimensions are included on the SUB line, only the number of
dimensions.

Example:

A() . X$()

Programming Note

1.

Each SUB statement must define a unique subprogram name. Two or more
subprograms with the same name in the user’s program will result in an
error.

. Any variables, arrays, functions, or files not declared in the SUB line are

local to the subprogram. Local arrays, functions, or files must be defined by
the appropriate DIM, DEF, or FILE statement.

3-46 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE] PAGE REV.T i TITLE l DOCUMENTNO.

3. A SUB statement is only valid as the first statement in a library subprogram,
or after an END or SUBEND statement.

4. Local variables contain unpredictable values when the subroutine is entered.

5. DATA statements are local to the subroutine. The DATA pointers are reset to
the beginning of the data block on entry to the subroutine, and any READ
statements issued within a subprogram will not interfere with READS or
DATA in the calling program.

Example:

10000 SUB “SUB1" :X.Y$,#3,FNS,X(,)

3.8.5 SUBEND Statement

This statement is the last statement in a BASIC subroutine. If this statement is
executed, control is returned to the caller.

Format
SUBEND

Programming Notes .

1. The SUB and SUBEND statements delimit the subroutine. No statement
within the subroutine may refer to a statement before the SUB or after the
SUBEND.

2. If the subroutine is loaded from a LIBRARY statement, the line numbers

within the subroutine are local to the subroutine and, in fact, may be
duplicates of lines existing in the main program.

3.8.6 SUBEXIT Statement
. The SUBEXIT statement is used to terminate a subroutine and to return controi to
the caller. Unlike the SUBEND statement, the SUBEXIT may occur anywhere
within the subroutine, except that it may not occur within a user-defined function.
Format
SUBEXIT
Example:

983 SUBEXIT

UA-0140 Rev.3 BEM:BASIC — User Reference 3-47

DOCUMENT NO. [TITLE LPAGE REV. l PAGE

3.9 CHANGE Statement
The CHANGE statement is used to convert arithmetic and alphanumeric formats. [t
can be used to change a character string into an array of numeric values and vice
versa. :

Format

CHANGE string-expr TQ array [BIT expr]
CHANGE array TO string [&BIT exprl

where
string expr is any siring expression which is to be changed.
array is any numeric array..
expr is a numeric expression specifying the number of

bits per character.

Programming Note

1. In changing from a string to a numeric vector, the BIT expression specifies
the number of bits, n, which will be used to form pseudo characters. The
first n bits of the string are used to form a decimal number. This value is
converted to floating point and stored in the first entry of the array. Then
processing continues with the next n bits. If extra bits remain which would
not compiete a full character, they will be ignored. The total number of
entries converted is stored in the zero element of the vector.

2 When changing from a string to a vector, the vector must be large enough to
accommodate all the character values or an error will resuit.

3. In changing from a vector to a string, the user must set element zero of the
vector to the number of vector elements to be converted. Each element in
the vector from the first to the last one selected by the user will be
converted to a bit string of length n. These bit strings will then form the new
string. If element zero contains a zero, a null string is produced.

4. When changing from a vector to a string, if a converted element value
cannot be represented in n bits or is negative, a runtime error will resuit. An
error can also be caused by attempting to create a string greater than 4095
characters.

5. If omitted, the BIT parameter defaults to eight. The maximum permissable
value for the BIT expression is 24.

Examples:

100 CHANGE A$ TO X(15)
200 CHANGE Zto B$ BIT 7

UA-0140 Rev.3 BEM:BASIC — User Reference 4-1

DOCUMENT NO l B TITLE l PAGE REV.] PAGE

4 FILE SUPPORT

4.1 INTRODUCTION

" The file capability in BASIC gives the user a method of saving and retrieving
program information permanently. Data in files may be referenced by a program,
updated, or new data may be written to the end of a file. The type and format of
these files are flexibie to enable the user to access files from BASIC and from
batch programs. The following sections present the function and format of the
statements used to access files, and any special considerations for the use of each
file type.

4.2 FILE DESCRIPTION

Three file types are supported by BASIC: Temporary files, Library files, and Data
Management files. Although the file types may vary, the actual format of a data
. record processed by a given statement will not change. This will allow a correctly
written program to use the same statement to process a Temporary, Library, or
Data Management file interchangeably as long as the record content is the same.

‘ ¢ Temporary files

These files are maintained entirely by BASIC and permit the user to create
and read local files without the overhead of allocating space on the disk.
When a FILE statement declares a temporary file, BASIC allocates one in its
workspaces. When the program or subprogram terminates, these files are
erased.

|

I .

| e Library files
l Library files, or library elements, may be used for permanent storage of
‘ BASIC files. These files are stored as single librarian format elements within
| a SAT file, and may be accessed by the Librarian, batch programs, and other
| BEM subsystems.

| Since library elements are sequential by nature and may not be extended or
| updated in place, they are copied to the BEM workspace and accessed there.
| After the BASIC program has finished with the file (either at program or
j subprogram termination or when the file’s channel number is reused by
} another FILE statement) the data is copied from the workspace back to the
| file and placed at the end, automatically deleting the old element if one
exists. If no WRITE operations have taken place on the file, it will not be
written back.

4-2

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE

|pacerev | TTE | opocumentno.

e Data Management files

BASIC permits access to two types of Data Management files: Sequential
and Direct Access. Unlike library files, Data Management files do not make
use of the workspace, but process the data in place on the disk. indexed
sequential, indexed random, tape, variable blocked, and keyed files are not
accessible under BASIC.

Under most conditions BASIC adapts itself to the file specifications such as
record size, block size, and record format, but certain files do not logically
permit some operations. The fact that a file is designated sequential or
direct access in the Volume Table of Contents (VTOC) does not, itself,
determine which BASIC statements will be permitted. This is determined by
the block format. For example, fixed length records permit BASIC to locate
any record at random given its record number using a simple internal
computation, and does not necessitate a search through the entire file. On
the other hand, variable length, blocked records do not permit such a
computation since the number of records per block varies from one block to
the next. Thus a sequential search wouid be required.

Any number of data management files may be open simultaneously;
however, no more than 29 library and workspace files may be open at the
same time.

All BASIC files are controlied by several parameters defining which operations will
be permissible for the file, and how the BASIC statements will operate. These
parameters are the file type (library, temporary or data management), margin size,
current location pointer and end-of-file pointer. The file type is determined when
the file is opened by the FILE statement. At the same time, a margin setting is
determined which will limit the maximum record size which can be written to the
file. The current location pointer and end-of-file pointer are dynamic and change
during execution. The current location pointer is initialized to zero and points to the
next record to be read or written to the file at any given time. After a record is read
or written, the pointer is advanced by one to point to the next record. At any time
during execution the user may change the current location pointer via a RESET
statement; this will take effect on the next READ or WRITE. PRINT statements do
not use the current location pointer, but always output records using the end-of-file
pointer. This pointer is set to write records immediately following the last record in
the file and is incremented once for each record written. The end-of-file pointer
can only explicitly be reset by a SCRATCH statement, which erases the entire file
contents and repositions both pointers to the start of the file.

Records in BASIC are numbered beginning with zero; the first record is at location
0, the second at location 1 and so on. The end-of-file pointer is always set to the
last record in the file plus one, so if the file contains 105 records the last record

will be at location 104 and the end-of-file pointer will contain a vaiue of 105.

UA-0140 Rev.3 BEM:BASIC — User Reference

4-3

ODOCUMENT NO.

| TITLE | Pacerey. |

PAGE

BASIC files are composed of one or more records, with each record containing
data in some user defined format. Certain BASIC statements (such as INPUT) make
assumptions as to the format of the data, and will scan off data from the records
fieid by field. Other statements make no assumption as to the format, and allow
the user to retrieve entire records and perform the field separation and conversion
himself. When outputting records to the file the user can format the entire record
in a string variable and write it to the file (WRITE) or he can ailow BASIC to
perform the formatting and editing for him via the PRINT USING capability.

In general, field separation for file records follows the same rules as for data input
from the terminal. On output, however, the user program must supply the
separators that will be expected by BASIC when the file is read. When BASIC
performs the field separation functions for the user, certain restrictions apply to
the format of the data in the records. Numeric fields are composed of an optional
sign, a series of digits with an optional decimal point, and an optional exponent
field. The field must either terminate the record, or end with a comma. String fields
may be either open or closed, and must either terminate the record or end with a
comma. Closed string must begin and end with a quote (') and must be the only
data in the field. Quotes required within closed strings may be entered as two
successive quote characters.

When numeric variables are read via the INPUT statement, the field used to supply
the next value must be a numeric field or a fatal error will result. With string
variables this is not a problem because the string contents may in fact be numeric
digits.

The user must be aware of these restrictions if a file is to be created by BASIC and
then read via INPUT statements; commas for field separators must be written
explicitly to the file. For example, if a3 BASIC program would read data with the

‘statement;

10INPUT #3: A, B, C
the record would have to {ook similar to:

45.2 ,45.6,54.2
One statement to create this record could be:

23 PRINT #3: A1 ;. ;81;"."; C1
Note that since BASIC is performing field separation, and fields may either
terminate the record or end with a comma, records to supply data for this INPUT
could be any of the foliowing examples:

45.2

45.6

54.2

452,456
54.2

45.2,45.6,54.2,64.7

4-4

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE 4[PAGEREV. l - TITLE I DOCUMENT NO.

4.3

In the last example, the value 64.7 would not have been read by the INPUT
statement, but would be retained for the next INPUT (assuming the user does not
reposition the file).

To uniquely identify each file, a channel number is required. The channel number
to be used for a file is defined by the user in the FILE statement and must be in the
range 0 to 4095. Once a file has been defined in the FILE statement, any future
references to that channel number will initiate an access to that file. One special
case of the channel number is channel zero, which is always defined to be the
terminal. Statements such as PRINT, INPUT, and LINPUT may explicitly reference
channel zero to access the terminal, but normally no channel setter is specified
since the statements default to the terminal.

FILE STATEMENTS

"There are ten BASIC statements used for files. A brief description of each file is

shown in Table 4-1. These statements apply to all file types and perform the same
function regardless of the file. This means that a program could be written with a
sequential file in mind, but may also be used with a Library file without program
changes. The program, however, must be carefully written so that it is not
restricted to a single file type (e.g., if the program writes 200 character records
then it may not be used with Library files since the margin limit of these files is
128 characters).

Table 4-1 BASIC File Statements
File Statement Use

FILE The FILE statement is used to declare a file and assign it to a
channel number. This statemaeant causes the file to be located on
disk and opened for use. Once a file has been assigned to a
channel number, any future references to that channe! will refer
to that file.

MARGIN - All files in BASIC have a margin size which corresponds to the
size of the largest record which may be written to that file. The
defauit margin size for all files is 128 characters. The margin

size will be set to the record size when a Data Management file .

is opened. Most other files will receive the default margin
setting. The MARGIN statement may be used to change the
margin value during program execution.

PRINT The PRINT statement may be used with files to write string or
numeric data. Records written as a result of the PRINT statement
are always appended to the file at the end, and the end-of-file
pointer changed to show a longer file. Thus PRINT corresponds
to a sequential extension of the file.

{continued)

UA-0140 Rev.3

BEM:BASIC — User Reference

4-5

DOCUMENT NO. |

TITLE PAGEREV. |

PAGE

File Statement

INPUT

LINPUT

RESET

READ

WRITE

{continued}

Table 4-1 BASIC File Statements (contd)

Use

One of the statements used to read data from a file is INPUT.
Variables listed in the INPUT statement are filled by scanning
values from the record. More than one value may be present in a
record; each will be scanned off and assigned as needed to
supply values for INPUT requests. Multiple data values on a
singie record must be separated by commas.

Normally, records are read sequentially beginning with the first
in order to obtain values for INPUT requests. The user, however,
may change this by resetting the value contained in the current
location pointer. This would cause a new record at the specified
location in the file to be read to supply values for the next INPUT
requests.

Entire records can be read into a single-string variable using the
LINPUT statement. This enables the user to make use of the
string and conversion functions in BASIC to strip off fields in the
record when the format of the data vaiues is not standard.

As with the INPUT statement, LINPUT reads the file sequentiaily
to fill the variables in the LINPUT list, but may be forced to begin
reading records at a new location within the file by resetting the
current location pointer.

The RESET statement is used to reset the current location
pointer in order to change the position in the file where INPUT,
LINPUT, READ, and WRITE statements will operate. Certain
restrictions apply to the use of RESET depending on the file type.

The READ statement is similar to the LINPUT statement, but may
be used with string or numeric variables. When used with string
variables, the statement functions identicaily to the LINPUT
statement. When used with numeric variables a record is read
which is expected to contain a single numeric data item. This
value will be converted to floating point and assigned to the
numeric variable.

As with the LINPUT statement, READ will access records se-
quentiaily unless the current location pointer is altered, in which
case it will begin reading records at the new location.

The WRITE statement is used to output variables, one per record,
to the file. Either numeric or string variables may be used with
the WRITE statement. When numeric values are written they are
converted to display format, padded with spaces if necessary to
fill the record, and written at the current file pointer. The pointer
is advanced once for each record written. String values are
written in a similar manner to numeric values, except that no
conversion is required.

4-6 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [eacenev | TITLE i DOCUMENT NO.

Table 4-1 BASIC File Statements (contd)

File Statement Use

RENAME The RENAME statement provides the capability to change the
name of an open file. When used with library files, BASIC
discards the original name and notes the new name for use
when the file is closed. Data management files may not be
renamed.

The RENAME statement may also be used with temporary files
to change a temporary file to a library file {instead of scratching
the file when it is closed, it will be written to a library), or a
library file may be renamed to a temporary file (it will not be
written back when closed, leaving the original copy intact). This

* facility may be used to create a new library eiement, by opening
the file as a temporary file {*), and renaming it to a library
element.

SCRATCH The SCRATCH statement will erase the contents of a file. The
file is not closed by this statement, so PRINT or WRITE state-
ments may be used to write new data to the file. Note that when
the file is scratched, the end-of-file pointer and current position
pointer are both set to the beginning of the file.

4.3.1 FILE Statement

The FILE statement is used to assign a file to a channel number. The channel
number must specify an integer value between 1 and 4095. The file name must be
in a format compatible with the type of file being opened. If a previous file had
been assigned to the same channel number, that file is closed before the new one
is opened. ‘

Format

FILE channel-setter: string-expression

where
channel-setter identifies the channel number assigned to the
file. All future references to the file use this
number.
string-expression is a string expression identifying the file which is

being opened. Its exact format varies with the
different types of files available.

» -

UA-0140Rev.3 BEM:BASIC — User Reference C 4-7

DOCUMENT NO. T TITLE | Pace REV.T PAGE

Programming Notes

1. The FILE statement opens a BASIC file. Files are closed when a second FILE
statement is issued for the same channel number, or when the program
terminates. Local files opened by subprograms are closed when the subpro-
gram terminates (SUBEXIT or SUBEND).

2. If the file name specifies an asterisk (*), then the file is a temporary file
maintained by BASIC in its work space. The file is scratched when it is
closed.

3. If the file name specifies an OS/3 Library file, the file is copied to the BASIC
work space when it is opened. Once in the work space, the file is identical to
a temporary file except that it will be copied back to the library when it is
closed. The Library file must be copied because the format of an 0OS/3
Library file does not permit updating records in place or extending an
element. The format of the file name for Library files is: ‘

element filellreadpass/writepass)].volumelA

The file parameter (full file definition) must be terminated by at least one
space.

4. If the file name specifies an 0S/3 Data Management file, the file will not be 1
copied; BASIC processes these files in place. When the file is opened, its
characteristics will be obtained from the VTOC. These will determine the
record size (MARGIN) and types of access permitted. The format of the file
name for Data Management files is: ‘

sQ
{ } file [{readpass/writepass]] {,velume)A
DA

The file parameter (full file definition) must be terminated by at least one
space.

The user can specify the file parameter by using a variable entry (T$). In this
way, the user can type in the file VTOC identifier and choose one of several
files on a specified disk pack.

5. Not all Data Management files may be processed. BASIC will process only 1
sequential (SAM) and direct (DAM) access files; it cannot process indexed-
sequential (ISAM) files.

6. Data Management files which have variable length, blocked records
(VARBLK) may not be read. All other record formats (VARUNB, FIXBLK,
FIXUNB) may be used.

7. BASIC will process files with record sizes up to 16K bytes and block sizes up
to 65K bytes. Within these limits, any record sizes and block sizes are
permitted.

8. Data Management files must exist before they can be opened by a FILE
statement. If upon opening a file it is found to be empty, the default margin
size is taken (128), the record and block sizes are set to the margin size, and
the file is assumed to have fixed, unblocked records. This is the BASIC
default file specification.

4-8 C BEM:BASIC — User Reference , q UA-0140 Rev.3

PAGE I PAGE REV.—I TITLE l DOCUMENT NO

9. A library element must exist before it can be accessed by a FILE statement.
If a new element is to be created as a BASIC file, it should be built as a
temporary file with a margin not greater than 128 characters, and changed
to a library element prior to being closed with the RENAME statement. (See
5.10).

10. if the file has been password protected, the correct passwords must be
entered in the FILE statement. Failure to enter the READ password (if
required by the catalog) will inhibit any READ operations. Failure to correctly
enter the WRITE password (if required) will inhibit any WRITE operations. If
a file has both the READ and WRITE passwords cataloged and neither is
specified by the user, access to the file will be denied {the program couldn’t
do anything anyway since both READ and WRITE would be inhibited).

Exampies:

100 FILE #F9:F9$

200 FILE #1:”"DATA,BASICLIB,DISKO3
300 FILE #4000:*"

400 FILE #D: “"SQ,SAMFILE,DISKO1 ~

500 FILE #10: N1$ & ", LIBRARY,PACKO2 ~
600 FILE #47: “DA,PAYROLL(A234/A432)
INPUT T$

700 FILE #11:SQ,"&T$&" ,DSPOOL **

4.3.2 MARGIN Statement

The MARGIN statement permits the user to change the current margin setting for
a file. The initial margin setting is determined when the file is opened. For
temporary and Library files the default margin is used (128 characters). Existing
Data Management files acquire a margin setting from the maximum record size
specification stored in the VTOC entry for the file.

Format

MARGIN channel-setter . expression

where
channel-setter identifies the channel number of the file to be
altered.
expression this value will be truncated to an integer value

and used as the new margin setting.

Programming Notes

1. The current margin setting limits the maximum record size which may be
written to the file. Any attempt to exceed this limit will cause an error.

2. If the margin is changed while there is a record waiting to be completed (as
a result of a PRINT statement ending with a comma, for example), the record
being formatted will be written out prior to changing the margin.

UA-0140 Rev.3

BEM:BASIC — User Reference

4-9

DOCUMENT NO.

] TITLE PAGE REV. I

PAGE

3. The margin expression must result in a number between 1 and the following

limits:
Temporary files 496 characters
Library files) 128 characters
Data Management files 16K characters

4. A temporary file or Library file receives a default margin specification of 128
characters which may be changed at any time after the FILE statement has
been issued.

5. The margin size for a Data Management file may only be changed when the
file is empty and no data records have been formatted. This condition occurs
if an empty file is opened, or immediately after a fiie has been scratched.

Examples:

10 MARGIN #3: 80
20 MARGIN #1: 20*wW

4.3.3 PRINT Statement

The PRINT statement may be used with any file accessible under BASIC to format
all or portions of a record. The list of variables specified on the statement are
written one after the other according to the print separators used between each
item in the print list. '

Any records written with a PRINT statement are always appended to the end of the
file (the file will get longer). As each record is written, the end-of-file pointer is
incremented by cne to allow reading of all records up to and including the newly
printed one. Resetting the current location pointer has no effect on the PRINT
statement.

The PRINT statement is also affected by the MARGIN setting. If the user attempts
to print more data in a single record than the margin will allow, BASIC then prints
as many fields as it can on the first record and continues on a second record. No
single data item longer than the margin setting can be printed.

Format
PRINT channel-setter : [item [separator [item]].. . .]

where
channel-setter is the file to which this record will be written.
item is an expression or a TAB reference.

separator a comma (,) or a semicolon (;)

4-10

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE

| pacerev.| TITLE _ | oocumentno.

Programming Notes

1. Print separators may be used to control horizontal positioning within a
record. If a semicolon is used after an item, the next item will be printed
beginning at the next position in the record. If a comma is used, the next
item will be printed beginning at the next 15-character fieid in the record

- (the record is broken into fields of 15 characters each and the next free field
is used). If there is insufficient space in the current record, it is written out
and a new record begun.

2. The TAB function may be used to advance to a specific position in the
record. If the direction of the TAB is backwards, the current record is written
out and a new record begun. The function of the comma and semicolon
remain unchanged.

3. Null strings cause no data to be written to the record.

4. Numeric data is formatted either as an integer or decimal number. An
integer number will be printed as an integer. A decimal number will be
printed without the exponent field whenever possible. In either case no
more than six significant digits will be printed and a space will follow every
number printed. If the number is positive the sign is not printed but its print
position is left blank; otherwise, a minus sign is printed.

5. If the statement ends with a separator the record will not be written
immediately, but will be held until another PRINT statement completes the
record, or any other statement references the file.

6. If there are no items included in the list, the PRINT command will serve to
write a previously unprinted record, or to print a blank record if the buffer is
empty.

4.3.4 INPUT Statement

The INPUT statement allows the user to read a list of vaiues from a record in the
file. These values must be formatted in the record just as they would have to be
formatted if entered at the terminal as an INPUT response. if there are insufficient
values on a given record BASIC continues reading records until it has filled all of
the variables in the program’s “input list”. Unlike input from the terminal, there is
no relationship between the structure of the INPUT statements and the records in
the file. Thus Example 1 and Example 2 are functionally identical.

Data items read by INPUT statements are taken from fields within the records and
may be numbers, open strings, or closed strings. |f the wrong type of data is
supplied for a variable in the input list, a fatal error will resuit. When strings are
read in, leading and trailing spaces are deleted unless the string in the field is
enclosed in quotes. When quotes are used the characters within the quotes are
assigned without any editing. Note that to output quotes to a record they must be
explicitly printed as in Example 3.

UA-0140 Rev.3 BEM:BASIC — User Reference 4-11

DOCUMENT NO. [TME | PacE Rev. | PAGE

Format

INPUT channel-setter . variable[, variable)
where

channel-setter selects the file to be read.

variable a numeric or string variable or array element.
Programming Notes

1. Records required by INPUT requests are retrieved sequentiaily beginning
with the first record in the file. The current location pointer is incremented
immediately when a record is read, not when all fields in the record have
been processed. The RESET statement may be used to change the location
where the next record will be read.

2. More than one data field is permitted on a single record. If an INPUT
statement does not exhaust all fields in a record the remaining fields are
retained for subsequent INPUT statements. The remaining fields wiil be lost
if output is written to the file or the current location pointer is changed;
subsequent INPUT statements will force a new record to be read.

» 3. Numeric data fields may contain leading or trailing spaces, must contain a
. valid number, and must end with a comma or be the last field in the record.
It is not an error to supply a numeric data field to a string variable on INPUT;

the character string consisting of the numeric digits wiil be used.

4. String data fields may be open or closed strings. Open-string fields may
contain any valid characters and terminate with a comma or at the end of
the record. Closed strings must begin and end with quotes (). Leading
spaces before the first quote are permitted, as are trailing spaces between
the last quote and the comma or end of record. A fatal error will result if a
string data field is supplied for a numeric variable.

Example 1:

100 INPUT #1: A,B(5), Cs
Example 2:

100 INPUT #1: A

101 INPUT #1: B(5)
102 INPUT #1: C$

4-12 BEM:BASIC — User Reference UA-0140Rev.3
PAGE JPacerev.| TITLE _ | DOCUMENT NO.
Example 3:
100 LET As=" “ * *{or CHRS(EBC({")))

110 PRINT #124: A$ & “ABC " & A$
120 RESET #124: LOF (#124)—1
130 INPUT #124: R3S ' -

This exampie writes a record containing
“ABC "

to the file. Statement 120 repositions the current location pointer to the end-of-file
record minus one, which is the new record. This value can then be read into
variable R3 without losing any spaces which may be significant. It is important to
note that statement 110 was not coded as

110 PRINT #124: ;A$; "ABC" AS

since it is possible (although unlikely) that one of the three fields in the second
format could fill the record and thus two records could be printed:

“ABC

Concatenating ail three fields ensures that théy will be printed as one string.

4.3.5 LINPUT Statement

The LINPUT statement aliows the user to read in entire records; each record is
read into a single string variable. Since the record contents are ignored when this
* assignment is made, any data may be read into a string from the file. This permits
the user to read a record and strip off fields via the string functions in cases where
an INPUT statement would not find the data in the correct format. Completely
blank records are permitted and are stored in the string variable as null strings.

Format

LINPUT channel-setter: string-variable [, string-variable . .]
where

channel-setter ' selects the file to be read.

string-variable is a string variable or string array element where
the record contents are to be stored.

UA-0140 Rev.3

BEM:BASIC — User Reference

4-13

DOCUMENT NO.

TITLE | PaGE Rev. |

PAGE

Programming Notes

1. If the last statement issued to the file was an INPUT and there is still data in

the record which has not been read, LINPUT will use the remaining
characters in the record instead of requesting a new record. The next
variabie to use LINPUT wiil then force a record to be read.

. If the last statement issued to the file was other than an INPUT, or if it was

an INPUT and there is no data remaining in the record a new record will be
read for the string variable. ’

. Records required for LINPUT requests are retrieved sequentially beginning

with the record at the current location pointer and the pointer is increment-
ed for each record read. In other words, the record is incremented once for
each variable in the LINPUT list. The RESET statement may be used to aiter
the location where the next LINPUT will begin retrieving records.

4. Leading spaces in records are not removed. Trailing spaces are eliminated.

Examples:

940 LINPUT #I: AS
950 LINPUT #1: B1s , Cs(3.4)
960 LINPUT #4: DS(E+1)

4.3.6 RESET Statement

The RESET statement is used to reposition the current location pointer to any

location within the file. The statement may be used with or without a record
number. When the record number is omitted, RESET goes to the beginning of the

file — record zero.

where

Format

RESET channel-setter [:.numeric-expression)

channel-setter selects the file to be repositioned.

numeric-expression is the new location of the file.

Programming Notes

1. The numeric expression, if present, must result in a nonnegative number

and the new location must not be greater than the current value of the
end-of-file pointer.

4-14 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [PacE Rev. i TITLE 1 DOCUMENT NO.

2. A RESET statement without a record number is permitted to position any file
type to the start of the file.

3. A RESET statement with a record number can be used with temporary or
library files, or with data management files.

Examples:

34 RESET #3: |
35 RESET #4

4.3.7 READ Statement

The READ statement is somewhat similar in function to the LINPUT, in that there

is a one-for-one correspondence between variables in the statement and records N

in the file, except that both string and numeric variables are permitted. When used

with string variables, READ will retrieve a record and assign its contents without

editing to the variable. When a numeric variable is specified, a record is read

which must contain a single numeric value. This value is converted to floating ‘ ‘
point and stored in the variable. '

Format
READ channel-setter : variable-name({ , variable-name. ..}
where
channel-setter specifies the channel number of an open file to
be read. Channel zero, the terminal, may not be ‘
referenced by this statement. !
variable-name string or numeric variable or array element into

which the data is to be read.
Programming Notes

1. One record is read beginning at the current location pointer for each
_variable in the list. For each record read the current location pointer is
incremented by one. Changing the current location pointer via a RESET will
select the location of the next record to be read by the READ statement.

2. READ does not check if the last operation on the file was an INPUT (as
LINPUT would), but always reads new records.

3. When reading string variables, the entire record including any leading
spaces is assigned without editing to the variable. Trailing spaces in the
record will be eliminated.

@

UA-0140 Rev.3

BEM;BASIC — User Reference

DOCUMENT NO i

TITLE {PageRey. | PAGE

When reading numeric variables, the entire record may contain only a single
number; it will be converted and assigned to the variable. If the record
contains any data other than a single number an error occurs.

Examples:
43 READ #43: AS, B4$, CS(H)

44 READ #44: A, B7,Cl.J)
45 READ #37: D, E8S

4.3.8 WRITE Statement

The WRITE statement writes a list of variables to the file, one vaiue per record.

String

text is written without any editing other than space filling if necessary.

Numeric values are converted to display format and padded with spaces to fill the

record. Depending on the position of the current location pointer, records are
either updated or appended to the end of the file.
Format
WRITE channel-setter expression [, expression . . .]
where
channel-setter specifies the channe! number of the open file to
which records are to be written. Channel zero,
the terminal, may not be referenced by this
statement.
expression is either a string or numeric expression to be

written to a record in the file.

Programming Notes

1.

Each variable occupies one record, which is written at the position in the file
specified by the current location pointer. After each record is written, the
pointer is incremented. The RESET statement may be used to set the
location where records wiil be written.

. If the current location pointer is set to the end-of-file value a new record will

be added to the file and the end-of-file pointer advanced. if the current
location pointer is set less than the end-of-file value, the record which was
there will be overlaid by the new record, creating an update. The current
location pointer may not be set past the end-of-fiie pointer.

Data to be written to the file may not be greater in length than the current
margin setting for the file.

The WRITE statement may be used with temporary files, library files and
data management files.

4-16

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE

{rageRev | TITLE | DOCUMENT NO.

Examples:
8710 WRITE #10: “RECORD ONE” , “RECORD TWO”
8720 WRITE #10: 3,4,05
8730 WRITE #10: A+6,B$,C44$(8),SEGS$(Ds,1,9)
4.3.9 RENAME Statement
The RENAME statement will change the name of a BASIC file while is it contained
in the workspace. In particular, it permits a Library file element to be copied or
created.

Format

RENAME channel setter - file-name

where
channel-setter is a channel expression identifying an open file
which is to be renamed.
file name " isa string expression specifying an 0S/3 library

file or a work file. its format is similar to the file
name used with a FILE statement.

Programming Notes

1. Permanent data management files rhay not be renamed. An attempt to do so
will terminate execution of the program.

2. A temporary file may be renamed to a library file in order to create a new
element in a library file.

3. A library file may be renamed to a temporary file in order to prevent the
original copy of the file from being updated when the file is closed.

4. If the programmer wishes to ensure that a file is not updated unless a
specific condition occurs first, he should open the library file and immedi-
ately rename it as a temporary file. Then if an error should occur during
processing or if the terminal user shouid terminate the program the library
file will not be updated. Once the program has determined that the file is
complete, the file can be renamed to a library file so that when it is closed,
the library file will be updated.

5. If a program opens a library file with name A, processes the file, renames it
B, and then terminates, the original copy of A will not be modified and a
new modified version will exist with the name B.

UA-0140 Rev.3

BEM:BASIC — User Reference

4-17

DOCUMENT NO

{ TITLE | Pacerev. |

PAGE

4.3.

Examples:

1045 RENAME #1:"*”
2074 RENAME #N:“NEW,LIBRARY,PACKO9”

10 SCRATCH Statement
The SCRATCH statement is used to erase the entire contents of a file. If the file is
a temporary or library file, the scratch will only operate upon the workspace; the
library file itself will not be affected. If the file is a data management file, the
scratch will erase the contents of the file. If there is no subsequent operation to
the file, the file will be scratched from the disk.
Format

SCRATCH channel-setter
Programming Notes

1. If a data management file is to be physically scratched from the disk, the
SCRATCH operation shouid be the last operation issued against the file by

the BASIC program.

2. If a data management file is to be rewritten from the beginning, then the
SCRATCH operation shouid be issued prior to writing to the file.

3. After a SCRATCH command, both the LOC and LOF of the file will be zero.
4. SCRATCH currently has no effect for library files.
Example:

104 SCRATCH #6

4.3.11 Matrix 1/0 Statements

To simplify the handling of matrices when they are used with files, five matrix 170
statements are provided in BASIC. These statements perform the selected opera-
tion on all elements of the matrix except those in row and column zero. Processing
for vectors begins with element 1 and continues to the last element in the vector.
Arrays are processed beginning with element 1,1, then 1,2, continuing to 1,n, then
row 2, row 3, and so on. ‘

4-18

BEM:BASIC — User Reference

UA-0140Rev.3

PAGE

~ |eacerev. |

TITLE | DOCUMENT NO.

Supported statements include matrix PRINT, INPUT, LINPUT, READ, and WRITE. In
general, the statements work just as if each matrix element were coded in the
statement. For example:

MAT PRINT #3: A;

is interpreted as:

PRINT #3: A(1,15A(1,25A(1,3); . . . ;All,n);
PRINT #3: A(2,15A(2,25A(2,3), . . . ;A2,n);
PRINT #3: A(m,1);A(.m,2);A(m,3); . . . A(mn)

Trimmers, when used, dynamically change the array dimensions during execution.
This change is made just prior to performing the indicated file operation.

Formats

where

MAT PRINT channel-setter : matrix [separator | matrixy,...
MAT INPUT channel-setter : matrix [(trimmer)}. ...

MAT LINPUT channef-setter : string-matrix { {trimmer)], ...
MAT READ channel-setter : matrix [(trimmer)], ...

MAT WRITE channel-setter : matrix, ...

channel-setter

matrix

string-matrix

separator

trimmer

selects the previously opened file for the indicat-
ed file operation. Channel zero, the terminai,
may not be specified for MAT READ or MAT
WRITE.

is a string or numeric matrix name.

is the name of a string matrix. Numeric matrices
are not permitted with this statement.

is @ PRINT item separator such as a comma or
semicolon and determines the spacing of the
printed elements in the record. ‘

is an optional matrix trimmer expression. This
specifies the new matrix dimensions to be ap-
plied before the indicated operation is performed.

UA-0140 Rev.3

BEM:BASIC — User Reference

4-19

DOCUMENT NO.

TILE |Paceney |

PAGE

Programming Notes

1. A trimmer may be used with the MAT INPUT, LINPUT, or READ statements

to dynamically redimension the matrix. This trimmer may not change the
number of subscripts for the matrix. The new dimension may not cause the
new matrix to have more elements than did the original definition, or an

error will result.

2. The MAT PRINT statement for files uses commas and semicolons to control

spacing of elements in the records. If the matrix name is followed by a
semicolon, the elements are printed closely packed. A comma following the
matrix name causes the elements to be printed in 15-character columns.
Each row begins a new line. If no print separator follows a vector, it is
written as a column vector, one element per record; otherwise, it is printed
as a row vector. The rules used in printing records to files are defined in 4.4.

3. The MAT INPUT, LINPUT, READ, and WRITE statements for files perform the

indicated operation once for each element in the matrix. The rules covering
the file INPUT, LINPUT, READ, and WRITE statements are defined in 4.3.4,
4.3.5, 4.3.7, and 4.3.8, respectively.

Examples:

120 DIM A(7),C$(3,5),D(2,8).E$(5),K(9),J$(4),K$(2,4),R(20)

122 MAT PRINT #3: AE$;CS
123 MAT PRINT #3: D;

124 MAT READ #3: R,E$

125 MAT INPUT #4: K.ES(J)

126 MAT LINPUT #78: K$,J$-
127 MAT WRITE #1: K$,R,A

128 MAT READ #1+1: K$(3),A(3)
129 MAT LINPUT #41: D(2,1)

UA-0140 Rev.3 © BEM:BASIC — User Reference 5-1

OQCUMENT NO l TITLE PAGEREV. l PAGE

5 BASIC COMMANDS

5.1 INTRODUCTION

This section contains a detailed description of the operation and editing commands
provided by the BASIC system. These commands enabie the programmer to assign
a name to 3 program, execute a program, and return controi to the BEM monitor.
Editing commands are distinguished from source statements by the absence of
prefixed line numbers. Once entered into the BASIC system, the editing command
operates immediately on the current contents of the user’s work space, which can
contain either a new program (being constructed) or a saved program.

The editing commands provided by BASIC provide the ability to enter, delete, list,
and modify text on a single or multiple line basis. When extensive modifications
must be made, the user should consider using the EDT subsystem.

¢ DEFINITIONS

The following syntactic units occur several times in the specification of the
editing commands:

1. Line-number a series of digits in the range of 1 to 99999
2. List-items line-number

line-number — line-number

line-number, list-items

line-number — line-number, list-items

3. File-parameters program-name, file-name
program-name, file-name (password)
program-name, file-name, volume
program-name, file-name (password), volume

4. Search-string “characters’’ .
Programming Notes
1. Letter and digit are defined in Section 2.
2. A program-name may contain from one to eight letters or digits, the first of
which is a letter. Embedded characters such as §, ?, #, @, %, and hyphen may

be included in this program-name.

3. A file-name may be up to 44 characters long. The same character construc-
tion rules which apply to program-names also apply to file-names.

5-2

BEM:BASIC — User Reference UA-0140Rev.3

PAGE

| pacerev.|

TITLE Il DOCUMENT NO.

. A password may be up to eight characters long. The same character
construction rules which apply to program-names also apply to passwords. A
password may be required if the file specified by file-name has been
cataloged with a password. When reading from a file {OLD), the read
password may be required. When writing to a file (SAVE), the write password
may be required. If the file is not cataioged, or no password is listed in the
catalog, then the user’s password specification, if any, is ignored.

.. A volume must be six characters and is made up of letters and digits. This
name is used to locate the disk on which the referenced file exists. If the file is
cataloged and a volume name has been listed, then the user may omit the
volume entry. In any case, if a volume is listed, this overrides the catalog
volume name.

All library file references refer to source elements, which may have been
created by the OS/3 librarian LIBS, 0S/3 EDT, 0S/3 RSP, or 0S/3 BASIC.

. Allreferences to "“the system' apply to the 0S/3 BASIC System.

. A search string is constructed in the same way as a closed string, and allows
the user to selectively process source statements based on their content.

5.2 COMMANDS

The editing commands available to the user are given as follows:

BYE oLD
DELETE PRINT
HELP RUN
LIST SAVE
NEW SYSTEM
modify

5.2.1 BYE

The BYE command is used to terminate BASIC. Control is returned to the monitor
and monitor commands may be entered. All work space information is lost.

Format

BYE

5-3

UA-0140 Rev.3 BEM:BASIC — User Reference
DOCUMENT NO. | TIME }racerev. | PAGE

5.2.2 DELETE
This command may be used to delete one or more lines of source from the user’s
work space. If no line numbers are specified, the entire program is cleared.
Format

DELETE - [/ist-itemns] [search-string]

Note that single lines may be deleted by typing the line number of the line to be
deleted. If a search string is specified, then the selected lines will be searched and
those containing the string will be deleted.

5.2.3 HELP

Additional information about a status or error condition may be obtained by using
the HELP command. Several lines of explanation will be displayed at the terminal.
This command should be entered immediately following the message which the
user wishes clarified, as the HELP command wiil always refer back to the last error
message. :

Format

HELP

5.2.4 LIST,PRINT

The LIST or PRINT command directs the system to display on the user’s terminai the
lines or sequence of lines referenced in the user’s work space. If no line numbers
are specified, all statements in the program will be printed. If a search string is
specified, then the selected lines will be searched and those containing the string
will be printed.

Format

LIST
PRINT

} [list-items) {search-string]

5.2.5 NEW

The NEW command erases the current contents of the user's work space. The
system will then respond with an asterisk. BASIC is now in the same condition it
would be in if the user had just executed it from the monitor.

Format

NEW

5-4 A ' BEM:BASIC — User Reference , UA-0140 Rev.3

PAGE | PAGE REV | TTLE | DOCUMENT NO.

5.2.6 MODIFY
This command is used to correct or reenter a source statement from the terminal.

The statement is entered as if a new statement is being input. Any statement with
the same line number is deleted and the new statement is substituted in its place.

Format

— line-number statement -—

5.2.7 OLD

The OLD command erases the current contents of the user’s work space, then
locates and loads the specified program into the user’s work space.

Format
oLD file-parameters
Programming Notes

1. Errors may occur when BASIC is trying to locate the program if the disk
volume, disk file, or element cannot be found. Errors may also occur if a
password is required but not specified in the command.

2. As statements are read from the library file, each is verified by the Syntax
Checker. Any statements in error are displayed on the user’s terminal, and
are entered into the program file, with a notation that the line is not valid.
This permits the LIST command to show these lines so the user may later
correct them.

3. Once all statements have been processed, control is returned to the terminal
where new statements may be added, corrections made, or editing com-

mands entered.

4. if a RUN is issued while there are still uncorrected lines from a previous OLD
command, the lines which are in error will be rejected.

5.2.8 RUN

The run command directs the system to compile and execute the program contained
in the user’'s work space.

Format

RUN

UA-0140 Rev.3 BEM:BASIC — User Reference 5-5

DOCUMENT NO. I TITLE | Pacerev | PAGE

5.2.9 SAVE

The SAVE command directs the system to save, on a SAT Library File, a copy of the
source program currently contained in its work space. The program-name is entered
in the file directory and the body of text is stored as a source element. This element
may later be retrieved using the OS/3 librarian LIBS, the 0S/3 EDT program or
0S/3 BASIC.

Format

SAVE file-parameters

Programming Notes

1. Errors may occur if the disk volume or disk file cannot be located, or if a
password is required but not specified in the command.

2. If a program with the same name already exists in the file, BASIC will ask:
OVERWRITE? (Y or N)

A response of Y will delete the oid copy and overwrite it with the new
program.

A response of N will terminate the command immediately and will leave the
old copy of the program intact.

5.2.10 RUNOLD

The RUNOLD command combines the functions 'of the OLD command and the RUN
command. It eliminates the time-consuming step of writing the program into the
work space. Consequently, the source code is not available for editing. Statements
are read from the library file, compiled, and written directly into memory. Because
this command is intended to be used to execute debugged programs, statement
numbers are discarded to conserve memory.

Format
RUNOLD file-parameters
Programming Notes

1. Errors may occur when BASIC is trying to locate the program if the file
parameters are not correct. :

2. If there are any syntax errors detected, the command will be terminated.
The program will not be in the work space and an OLD command will have
to be issued before the program can be corrected.

3. If execution errors occur, line number zero will be displayed as the error
location, because line numbers are not saved during RUNOLD processing.

5-6 A BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [pacerev] TITLE B DOCUMENT NO.

5.2.11 SYSTEM

This command serves the dual purpose of breaking into BEM system mode without
destroying the contents of the work space {compare with BYE) and of providing the
ability to execute a BEM command without leaving BASIC. If an operand is
provided, that command is executed immediately. If there is no operand, the
terminal user is returned to system mode. The user may resume BASIC by issuing
the /RESUME command. '

Format
SYSTEM [BEM-command]
Examples:
SYSTEM
SYSTEM STATUS RES
5.2.12 MERGE
The MERGE command ailows the contents of a library file to be added to the

current contents of the work space. Its function is identical to that of the QLD
command, except that the work space is not erased first.

Format
MERGE file-parameters
Programming Note

1. If lines are read which duplicate the line numbers of lines already in the
work space, the new lines replace the oid.

5.2.13 RESEQUENCE

This command will resequence a BASIC program. Because resequence is a
complex operation requiring two passes over the source file, it is combined with a
SAVE operation and may only be used with a syntactically correct program.
Format

RESEQUENCE [start }{ :increment 1{ :file parameters }
Example:

1 RESEQUENCE 100:50:MYPROG,MYFILE, MYPACK

UA-0140Rev. 3 BEM:BASIC — User Reference A 5-7

DOCUMENT NO; | TITLE |PacEREV. | PAGE

Programming Notes.
1. If omitted, the starting value and increment defauit to 100.

2. The resequence operation will not be completed if the new highest line
number would be greater than 99999 or if any line contains a syntax error.

3. An error will occur if any line of text must be expanded beyond 80
characters in order to insert the new line numbers.

4. The contents of the work space are not modified. T

UA-0140 Rev.3

BEM:BASIC — User Reference

6-1

DOCUMENT NO.

| TITLE PAGE REV. |

PAGE

6.1

6.2

6 BASIC PROGRAM TECHNIQUES

INTRODUCTION

.Constructing a BASIC program requires transiation of the problem into a set of

statements which the BASIC system can use in solving the problem. To aid in
selecting the proper statements needed to solve a specific problem, a summary of
statement and command formats is provided in Appendix A. Once the required
statements and commands are selected, refer to the detailed descriptions of those
statements and commands in Sections 3 through 5 to review their characteris-
tics and restrictions.

In transiating a problem into a series of statements, the user should be familiar
with the hierarchy of arithmetic operations, the use of loops, tables, lists, built-in
and muitiline functions, subprograms, and files in BASIC. These subjects are
covered in detail in this section.

HIERARCHY OF ARITHMETIC OPERATIONS

BASIC can perform simple operations such as addition, subtraction, multiplication,
division, and exponentiation. BASIC can also evaluate numerous buiit-in functions
and user-defined functions. The order in which the simple operations, built-in
functions, and user-defined functions are evaluated are similar to those used in
standard mathematical calculation, with the exception that ail BASIC operations
must be written on a single line.

The five simple operators that can be used in BASIC are given as follows:

Operator Definition Example
il Exponentiation A**B
* Muittiplication A*B
/ Division A/B
+ Addition A+B
— Subtraction A-—B

The hierarchy of arithmetic operations is summarized in the following rules:

1. The arithmetic'expression enclosed in parentheses is evaluated first, and its
value may then be used in further computations.

Exampie: X*{A + B)

In this exampie, the expression A + B is evaluated first and its value is then
muitiplied by X.

6-2

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE

| Page REV |

TTLE | DOCUMENT NO.

2. Where parentheses are omitted, or where the entire arithmetic expression is

enclosed within a single pair of parentheses, the order in which the
operations are performed is as follows:

Operation . Hierarchy
Evaluation of functions (built-in or user-defined) 1st (highest)
Exponentiation (**) - ' | 2nd
Multiplication and division {* and /) 3rd
Addition and subtraction (+ and —) . 4th

Example: A*8/C**SQR(D)+ E

This arithmetic expression is evaluated in the following order:

SQR(D) Calt the result T1 (function)

Cc**T1 Call the resuit T2 (exponentiation)
A*B | Call the result T3 (multiplication)
T3/72 Call the result T4 (division)

T4+ E Final operation (addition)

In addition, for operators of the same hierarchy the component operations of
the expressions are performed from left to right.

Example: A*B/C

This arithme.tic expression is evaluated in the following order:
A*B Call the resuit T1
T1/C Final operation

Exahple: A**B**C

This arithmetic expression is evaluated in the following order:
A**B Call the result T1

T1**C Final operation

UA-0140 Rev.3 BEM:BASIC — User Reference 6-3

DOCUMENT NO. l TITLE [PAGE REV. [PAGE

3. Where nested pairs of parentheses are used, the arithmetic expression
within the parentheses is evaluated before the outer operations are

performed.
Example:
PR
((B+{(A+B) *"C))+A"*2)
N y— “~———
. T2 , T4
T3

This arithmetic expression is evaluated in the following order:

(A + B) Call the resuit T1
(T1*C) Call the result T2
B+T2 Call the result T3
A**2 Call the resuit T4
(T3 + T4) Final operation

6.3 USE OF LOOPS

it is sometimes necessary to construct BASIC programs in such a way that certain
portions are performed more than once, with perhaps only slight changes each
time. This repeated execution of the same portion of a program is referred to as a
loop.

The use of loops can best be illustrated and explained by the foliowing two
examples. Both perform the simple task of printing out a table of the first 100
positive integers together with the square root of each.

Example 1:

10 PRINT 1, SQR(I)
20 PRINT 2, SQR(2)
30 PRINT 3, SQR(3)

1000 PRINT 100, SQR(100)
1010 END '

6-4 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE rPAGE REV l TITLE T OOCUMENTNO.

Without a loop, the above program requires 101 statements.
Example 2:

10 LET Xx=1

20 PRINT X, SQR(X)

30 LET X=X+

Lo IF X< = 100 THEN 20
50 END

- With a loop, this second example obtains the same table values but with only five
statements instead of 101. Note that statement number 10 is executed only once;
whereas the sequence of statements 20, 30, and 40 are repeated 100 times.

In general, ail loops contain four characteristics: initialization (e. g.. statement 10),
the body (e.g., statement 20), modification (e.g., statement 30), and the exit test
{e.g., statement 40).

Because loops are so important and because loops of the type justillustrated arise so
often, BASIC provides two statements to specify a loop even more simply. They are
the FOR and NEXT statements and their use is illustrated below:

Example 3:

10 FOR X=1 TO 100
20 PRINT X, SQR(X)
30 NEXT X

40 END

In this example, the FOR statement initializes the ioop index X to 1, the final value to
100, and the step value to 1. Thus, the loop {statements 10 to 30) is performed 100
times and the resulting table is the same as that produced by examples 1 and 2.

Note that the step value can be adjusted by writing

10FORX=TO 100 STEPS
and in this case the resulting table would contain the integer numbers 1, 6,
11, ... 96 with their corresponding square roots. Observe that another step of 5

would cause the loop index X to exceed 100.

The STEP value may be positive or negative and may be a decimal number. If
statement number 10 in example 3 was changed to

10FORX=100TO 1 STEP —.1

then the resulting table would be printed in reverse order and contain the numbers
100,99.9,99.8,.. . .,1.1, 1.0 along with their corresponding square roots.

UA-0140 Rev.3

BEM:BASIC — User Reference

6-5

OOCUMENT NO.

L TITLE | paceRev. |

PAGE

More compiicated FOR statements may be written which permit the user to specify
the initial, final, and step values as arithmetic expressions. For example, if N and Z
have been defined earlier in the program, then the user could write the following
FOR statement:

Example 4:
100FORX=2ZTONSTEP(N — Z)/10

The user should refer to the programming notes of the FOR and NEXT statements in
Section 3 for further details about the loop parameters. -

Loops within loops may be used and these are referred to as “nested loops.” The
FOR and NEXT statements may be used for this purpose and these are illustrated in
Table 5-1. As can be seen in the table, loops may be nested several levels (maximum
of 10), but are never permitted to overlap.

Table 5-1 Nested Loops

Allowed Allowed Not Allowed
r— FOR X ——-j—FOR X FOR X
FOR Y FOR Y FOR Y
[NEXT Y FOR Z NEXT X
—NEXT X [NEXT ¥4 ——NEXT Y
FOR W .
l:NEXT w
L—NEXT Y
FOR 2
[NEXT Y4
——— NEXT X

6-8

BEM:BASIC — User Reference UA-0140 Rev.3

PAGE

| pacE REV . TITLE. { DOCUMENT NO.

6.4 USE OF LISTS AND TABLES

in addition to the ordinary variables used in BASIC, there are variables which can be
used to designate the elements of a list or a table. These are used where we might
ordinarily use a subscript or a double subscript; for example, the coefficients of a
polynomial (ao, a;, 35, . . .) or the elements of a matrix b;; . The variables which we
use in BASIC consist of a single letter, which is called the name of the list, followed
by the subscripts in parentheses. Thus, the user might write A(Q), A(1), A(2), etc., for
the coefficients of the polynomial and B{1, 1), B(1, 2), etc., for the elements of the
matrix. :

The user can enter the list AO), A(V1 Lo A{1Q) into a program very simply by the
statements:

Example 1:
10 FOR I = 0 TO 10
20 READ A(1)
30 NEXT |

4o pATA 2, 3, -5, 7, 2.2, L4, -9, 123, 4, -4, 3

Lists and tables whose subscripts exceed 10 require that the user suppiy a DIM
statement to indicate to the system that extra memory space is needed. For
example, a list of 15 numbers may be entered as:

Example 2:
10 OIM A (29)
20 READ N)
30 FOR =1 TO N
Lo READ A(1)
50 NEXT |
60 DATA 15
70 DATA 2,3,5,7,l|"3’]7']79’23’29,3],37’1;]’143,lq7
80 END

In this example, statements .20 and 60 could have been eliminated and statement
30 replaced by 30 FOR | = 1 TO 15. However, this program as typed allows for the

lengthening of the list simply by changing statement 60, so long as the value read in
for N does not exceed 25.

UA-0140 Rev.3

BEM:BASIC — User Reference

DOCUMENT NO

T TITLE | PaceRev. |

PAGE

6.5

A simpler way of performing the same function as lines 30 to 50 is to use a MAT
statement:

30 MAT READ A (N)

Matrix A will be redimensioned to the current value of N; a value will then be
assigned to each element of A from 1 to N.

A table consisting of 3 rows and 5 columns could be entered into a program by
writing:

Example 3:

10 FOR I=1 TO 3
20 FOR J=1 TO 5
30 READ B(1,J)

4o NEXT J
50 NEXT |
60 DATA 2,3,-5,-9,2
70 DATA 4,-7,3,4,-2
80 DATA 3,-3,5,7,8

Here again, the user may enter a table with no dimension statement, and it will
handie all the entries from B(0, 0) to B(10, 10). If a table with a subscript greater
than 10 is entered without a DIM statement, an error message specifying a
subscript error will be generated. This is easily rectified by entering the line:

5 DIM B(20, 30)

if, for instance, a 20 by 30 table is required. Here, again, a single statement can
replace lines 10 to 50:

10 MAT READ B(3.5)

The single letter denoting a list or a table name may aiso be used to denote a simple
variable without confusion. However, the same letter may not be used to denote
both a list and a table in the same program. The form of the subscript is flexible. The
user might have the list item B(l + K), or the table items B(L,K), or Q((A(S,7), B C)).

USE OF BUILT-IN FUNCTIONS

The built-in functions provided in BASIC consist of mathematical functions (SIN,
COS, TAN, COT, ATN, EXP, LOG, ABS, and SQR), specialized functions {INT, RND,
SGN, DET, LEN, MOD, POS, TIM, VAL, EBC), string functions (CHR$, CLK$, DATS,
SEGS, STR$, USRS), and file-related functions (LOC, LOF, MAR, PER, TYP, NUM).
Exampies of each function are provided.

6-8 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE | pace v | TITLE] | DOCUMENT NO.

6.5.1 Mathematical Functions '

e SIN(X), COS(X), TAN(X), COT(X), and ATN(X) designate the functions sine,
cosine, tangent, and arctangernt, respectively, and the argument X is an
angle measured in radians. i

Example:

10 X=3.14159/2

20 Y1=SIN(X)

30 Y2=C0S(X/2)

L0 Y3=TAN(X/3)

50 Y4=COT(X/6)

60 PRINT X,Y1,Y2,Y3 YL ATN: YL)
70 END

In this example, X is #/2 {909), Y1 is the sine of 90°, Y2 is the cosine of 45°, Y3 is
the tangent of 30°, and Y4 is the arctangent of 15°.

e EXP(X) designates exponentiation e * .

Example: 10 D = EXP(X**2)
In this example, D is e*2.

® LOG(X) designates the natural logarithm of X, In(X).

Example: 10 A = LOG(Y**10)
In this example, A is 10 in(Y).

® ABS(X) designates the absolute value of X, !X.

Exampie: 10 B = ABS (—X*Y)
In this example, B is|—X*Y!

¢ SQR(X) designates the square root of X, v/X.
Example: 10 C = SQR(A**2 + B**2)
In this example, Cis VAZ + B2,
6.5.2 Specialized Functions
® [INT(X) designates the laréest integer not exceeding X.
By definition, the following relationships hold:
a. £X>0,thenINTIX)< X

b. HX=0,thenINT{X)=0
c. fX<O, thenINT(X)< X

UA-0140 Rev.3 'BEM:BASIC — User Reference 6-9.

DOCUMENT NO. l TITLE | PageRev. | PAGE

Example:

10 X=INT(2.985)
20 Y=INT(-2.015)
30 Z=INT(X-Y)

In this example Xis 2,Y is —3,and Zis 5 (i.e., Z = INT(2 —{—3))).

The INT function can be used to round to any specific number of decimal
places. For example, INT(X*10 + .5)/10 will round X correct to one decimal
place. INT (X*100 + .5)/100 wiil round X correct to two decimal places, and
INT (X*10**D + .5)/10**D will round X to D decimal places.

¢ RND(X) designates a pseudo random number as follows:

a. If X > 0, then RND(X) is a function of X whose value is in the open
interval [0, 1).

b. If X < 0, the system supplies an arbitrary random number on the open
intervai [0, 1).

c. If X = 0, the system supplies a pseudo random number which is a
function of the previous random number generated by RND. if X =0, the
first time RND is called in a program, the system will supply a fixed
number in the open interval [0, 1). '

d. If X is not specified (i.e., RND) then RND(0O) is assumed.

To generate a sequence of pseudo random numbers, the.user would call any
of these options followed by repeated calls to option c.

Example:

5 X=0

- 10 FOR L=1 TO 20
20 PRINT RND(X),
30 NEXT L
4o END

6-10 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE |PaGEREV | TITLE { DOCUMENT NO.

¢ RANDOMIZE may be used to cause RND to supply arbitrary random numbers.
it is equivalent to call RND (-1). The execution of the above program would
cause the foliowing 20 random numbers to be outputted:

Example:

10 RANDOMIZE

Col 1 Col 16 Col 31 Col 46 Col 81

i i i f .
.763242E-05 .250198 .753869 567054 589602
747568 440211€-01 .554667E-01 252568 442911
.B16485€-01 52082 99271 041932 572162
.397055E-01 58698 .801253. 882914 793956

If the user wants 20 random one-digit integers, statement 20 could be
changed to read:

20 PRINT INT(10*RND(X));

This would result in the foilowing output:

Coi 1 ' Coi 78

]

027585700240590505887

The user can vary the type of random numbers desired. For example, if the

user wants 20 random numbers ranging from 5 to 24 inclusive, statement 20
could be changed to:

20 PRINT INT(20*RND(X) + 5);

In general, if random numbers are to be chosen within the range A < RND(X)
< A+ B, then the random function could be used as follows:

INT (B*RND(X) + A).

® SGN(X) designates the sign of X.

+1,ifX>0
SGN(X)= 0,ifX=0
—1,ifX<0
Example:
10 X=SGN(0)

20 X1=SGN(-1,82)
30 X2=SEN(X1)
40 X3=SGN(-X1)

UA-0140 Rev.3

BEM:BASIC — User Reference 6-11

DOCUMENT NO. l

TITLE

l PAGEREV | PAGE

The execution of this example assigns 0 to X, —1 to X1, —1 to X2, and +1 to

X3.

e DET designates the value of the determinant of the last matrix to be inverted,

or a value of zero if it could not be inverted.

Example:

10
20
30
40
50

DIM A(3,3), B(3.3)

MATREAD A

MATB =INV (A)
.MATPRINTB

“THE VALUE OF ITS DETERMINANT iS”"; DET

® LEN (X$)returns the length of the string argument.

Example:

10
20
30
40

LET As="ABC"”
LET BS=AS&AS

PRINT LEN (AS$), LEN (BS), A$, BS

END

would print out

3

¢ MOD (X,Y) computes the modulus remainder

6 ABC

ABCABC

MOD (X,Y) =X - Y (INT (X/Y))

Example:

600
610
620
999

FORI=1105
PRINT I; “MODULO 2 EQUALS

NEXTI
END

This program would print

AP WN -

MODULO
MODULO
MODULO
MODULO
MODULO

NMNNDNDNDNNDN

EQUALS
EQUALS
EQUALS
EQUALS
EQUALS

—_ O = =

“, MOD(1,2)

6-12 X BEM:BASIC — User Reference UA-O140 Rev.3

PAGE |PAGEREV| TTLE | DOCUMENT NO.

e POS (AS, BS, X) begins searching A$ at X for the string B$ and returns the
position of B$ in AS.

Example:

10 LETX$="THIS STRING IS ATEST"
20 PRINT “ENTER BEGIN, STRING:";
30 iINPUT Q.Q$

40 PRINT POS(X$,Q$.,Q)

50 GOTO0 20

60 END

if run, this would result in:

ENTER BEGIN, STRING:? 1,IS

3

ENTER BEGIN STRING:? 5,IS

13

ENTER BEGIN, STRING:? 4, DUMMY
0

ENTER BEGIN, STRING*? STOP
o TiM returns the elapsed running time in seconds, accurate to milliseconds.

Example:

10 LET A=TIM

20 FOR =110 1000
30 NEXT !
40 PRINT “ELAPSED TIME IS”, TIM-A
50 END .
’

Would print

ELAPSED TIME IS 6.325
® VAL{QS$) returns the value of the number whose decimal representation is in
Qs.
Example:

10 LET F9$="4334.57"
20 PRINT VAL (F9$), VALISEG$(F9$,3,5))
29 END

This program would print

4334.67 34

In this example, the SEGS function creates a substring of characters 3, 4, and
5 (which are 34.), and performs the VAL function on this substring.

UA-0140 Rev.3 BEM:BASIC - User Reference

6-13

DOCUMENT NO. l TITLE [s-AGE Rev. |

PAGE

® EBC (string) may be used to obtain the EBCDIC value for a single EBCDIC
symbol. Certain symbols cannot be typed, and must be entered as 2- or
3-character mnemonics. Lower case lettering may be entered by using the
prefix “LC’, then the letter to be interpreted as lower case: LCE will be
interpreted as an e. Table 2-1 lists these mnemonics, along with the
decimal value which the EBC function will return. EBC is a compile-time,
rather than a run-time, function. Examples of using the function follow:

EBC(1)=241 EBC(CR)=13
EBC(B)= 194 EBC(NUL)=

6.5.3 String Functions

e CHRS${x) returns a 1-character string consisting of the EBCDIC character
with the code MOD(INT(x),256). This function may be used to embed special
characters or control sequences in printed output:

10 PRINT “THIS SENTENCE IS UNDERLINED";
20 PRINT CHRS$ (13); ,

30 PRINT” 4
99 END '

THIS SENTENCE IS UNDERLINED

Line 20 uses the decimal value of a carriage return, 13, to move the teletype print
head back to the start of the output line without sklpplng down one line (no
line-feed is used) This couid have also been done by:
20 PRINT CHRS$ (EBC(CR));
e CLK$ gives the time of day in string format.
An 8-character string in the form “HH:MM:SS" is returned.

Example:

10 PRINT “THIS PROGRAM WAS RUN AT:"”; CLK$
20 PRINT

99 END
If executed, this program would begin by printing

THIS PROGRAM WAS RUN AT: 14:05:30

6-14 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE |PAGEREV[TITLE _ i DOCUMENT NO.

® DAT$ may be used to obtain the current date as an 8-character string in the
form MM/DD/YY.

Example:

10 PRINT "THIS PROGRAM WAS RUN AT™; CLKS; "ON""; DATS
20 PRINT . ..

99 END
This program would begin by printing
THIS PROGRAM WAS RUN AT 14:06:10 ON 06/24/77
® SEGS$(A$,XY) allows the user to obtain substrings of a larger string. All
characters between positions X and Y inclusive of A$ will be returned as a v
new string. If X>Y then a null string is returned. The appropriate beginning or
end of A$ is returned in the case where X <=0 or Y >> LEN (A$).

Examples:

1. 1 CLKS is 14:10:05 then SEG$ (CLK$,1,5) would be 14:10.

2. The function call SEGS$(B1$, 2,4095) would always return a string
consisting of all but the first character of 815.

3. The function cail SEGS$ (C$,1,LEN(C$)-1) would always return a
string consisting of all but the last character of C3.

e STRS (x) may be used to convert a floating point number to its decimal
representation. This function returns a string. -

Example:

10 LETN2=6.35
20 PRINT STR$(N2), SEGS$(STR$(N2), 1.1)

This would print

6.35 6

Notice that STR$(VAL(A$))=A$ and VAL(STRS$(X)) = X. STR$ and VAL are
inverse functions.

® USR$ designates the logon-id of the user who is currently executing the
program. This a 4-character string derived from the user-id stated on the
/LOGON command.

UA-0140 Rev.3 BEM:BASIC — User Reference 6-15

DOCUMENT NO. 1 TITLE | Pacerev.| PAGE

6.5.4 File Functions

¢ LOC {#n) returns the current location of the file pointer for the file assigned
to channei n. This function is useful if a program must remember the
location in the file to be referenced iater.

Example:
10 FILE #3: "PROG,DISKFILE,PACK37"
. processing

20 READ #3: A6$
21 LET R=LOC(#3)-1

. process record in A6$

30 RESET #3: R
31 WRITE #3: A6$

In this exampie, the current location pointer is in some unknown position when
statement 20 is executed, but the record at that position must be read, changed,
and written back. Statement 21 obtains the current position and decrements it
since the READ statement automatically increments the location pointer. The
record can then be processed. To overwrite a record, the file is reset back to the
record by statement 30 and written by statement 31.

e LOF (#n) returns the current value of the end-of-file pointer for the file
assigned to channel n. This value is equivalent to the number of records in
the file.

Example:

170 FILE #2: "SQ,ERRORS,SYSRES”
180 FOR 1=1 TO LOF(#2)

190 WRITE #2: As(l)

200 NEXT |

In this example the value of LOF is used to control a FOR loop. Each record in the
file is written from the corresponding array element in A. This same function can
be accomplished with the file IF statement:

170 FILE #2: "SQ,ERRORS,SYSRES”
180 A=1 '
190 IF END #2 THEN 230

200 WRITE #2: A(l)

210 A=A+1

220 GOTO 190

230 . ..

6-16 A BEM:BASIC — User Reference UA-0140 Rev.3

PAGE [racerev.| TITLE | DOCUMENT NO.

e PER (#n,AS) allows the user to determine if a file operation will be permitted
if executed against the specified file. The function specified by string
expression A$ is tested against the file assigned to channel n and a +1
returned if the function will be permitted, O if not, and —1 if an invalid
function statement is used. '

Example:

210 PRINT “"ENTER NAME OF FILE TO PROCESS:"”;
220 INPUT N1$
230 FILE #3: N1s -
249 IF PER (#3,”INPUT") = 1 GOTO 300
— ’ 250 PRINT "FILE CAN'T BE READ, ENTER CORRECT FILE WITH PASSWORD"”
260 GOTO 210
300 PRINT “FILE NAME ACCEPTED"

. continue processing

This would result in:

ENTER NAME OF FILE TO PROCESS:? sg, myfile,mypack

— FILE CAN'T BE READ, ENTER CORRECT FILE WITH PASSWORD
ENTER NAME OF FILE TO PROCESS:? sq,myfile(pass), mypack
FILE NAME ACCEPTED

In this example, the user must enter a file for the program to process. The program
will later read the file using INPUT statements. In order to avoid program
termination should BASIC not permit this, the PER function is used to test if INPUT
will be accepted for the file. The most likely reason for it not being accepted is the
failure to enter the correct READ password

® TYP (#n,A8) allows the user to test the file type of a file. The string
expression A$ specifies one of the possible file types to test against the file
at channel n; a +1is returned if the file has that type, O if not, and —1 if an
illegal file was specified by AS.

Example:
300 IF TYP {#3.LIBRARY) = 1 GOTO 330
—_— 310 PRINT "SPECIFY ONLY LIBRARY FILES WITH THIS PROGRAM"
320 GOTO 210

330 PRINT "FILE ACCEPTED”

This example is a continuation of the last example and shows how a program
which is designed to,run using only library files can test user-supplied files.

UA-0140 Rev.3 . BEM:BASIC — User Ref‘erence

DOCUMENT NO.] TITLE | PaGeRev. |
e NUM can be used with MAT INPUT of vectors to determine how many
elements of the vector were entered.
Example:
* 710 DIM V(100)
* 720 PRINT “ENTER LIST OF NUMBERS"”
* 730 MAT INPUT V '
* 740 S=0
*750 FOR1=1TO NUM
* 760 S=S+Vvil)
* 770 NEXT |
* 780 PRINT “SUM OF NUMBERS 1S:";S; “AVERAGE IS:”;S/NUM
* 790 END
* RUN
ENTER LIST OF NUMBERS
?1,9,8,2,3,4,8.&
745,20, 16
SUM OF NUMBERS IS: 116, AVERAGE IS 11.6
In this example a vector is used to accept a variable number of input values from
the terminal. The NUM function is then used to determine how many elements of
the vector are to be processed. An ampersand (&) was used on the first line of
input from the terminal since the entire list would not fit on one line.
6.6 USE OF MULTILINE FUNCTIONS

Muitiline functions are defined using a combination of DEF and FNEND state-
ments. The user should refer to the prograrnm'ing notes on the DEF and FNEND
statements in Section 3 for further details concerning the construction of multiline
functions. .

Example:

110 DEF FNA(N)T, |

120 REM THIS MULTILINE FUNCTION COMPUTES
130 REM THE FACTORIAL OF N

140 T=1

150 IF N<=1 GO TO 190

160 FOR 1=2 TO N

170 T=T#|

180 NEXT |

190 FNA=T

200 FNEND

6-18 A BEM:BASIC — User Reference UA-0140Rev.3

PAGE | ace Rrev. | TITLE | oocumentno. I

If the above multiline function is called within the sequence of statements:

510FORJ=0TO9

520 PRINT J; “1A=""; FNA(J)
530 NEXT J

540 END

The printed output would appear as follows:

Col 1

[

ola=a1
11A=41
21a=A2
31a=46
41a=424
51A=A120
8la=4720
Tta=A5040
814=4040320
91A=A362880

6.7 USE OF SUBPROGRAMS

Subprograms provide a mechanism by which independent, parameterized routines -.
can be developed and called with minimal program overhead. J

The following example shows a simple subprogram which translates strings,
which may contain lowercase characters, to all uppercase. The calling program
need only issue a CALL statement selecting the subprogram and stating which
string is to be converted. Upon return from the routine the string will contain only
uppercase characters. Although this main program converts a file from upper/low-
er case text to all uppercase, other programs could use the subprogram for other
purposes if it were saved in a common library.

Example:

-_ 100 FILE #4: “TEXT,LIBFILE(RDPASS)
110 FOR =1 TO LOF (#4)
T20 LINPUT #4 : LS
130 CALL “UPPER" : L$
140 RESET #4: LOC (#4) —1
150 WRITE #4 : LS
160 NEXT | '
170 END
500 SUB “UPPER" : S$
510 DIM C(128)
520 CHANGE S$ TOC
630 FOR I=1 TO C(0)
540 iF C(i)> EBC(2)—64 GOTO 600
550 IF C{l) < EBC(A)—64 GOTO 600
560 C{l)=C(l)+64
600 NEXT 1
610 CHANGE CTO Ss
620 SUBEND

UA-0140 Rev.3

BEM:BASIC — User Reference

6-19

DOCUMENT NO.

| TITLE . . PAGE REV. |

PAGE

6.8

This example also makes use of the CHANGE statement to separate each
character of the string and convert each to its EBCDIC value. Each character value
can then be tested for lowercase and, if true, changed to uppercase by adding
decimal 64, which is the decimal difference between the EBCDIC characters A and
a. After the individual characters have been processed they are combined into a
string via the CHANGE function.

USE OF FILES
Several examples of programs which use files are presented in this section.

The following BASIC program uses several files to operate on library elements. The,
purpose of this program is to read a COBOL program, locate any references to the
COBOL 'COPY’ verb and insert the copied modules in-line.

Example 1:

100 PRINT “ENTER COBOL PROGRAM NAME AND COPYLIB FILE NAME™";
200 INPUT Ps,C$:

300 FILE #1: P$ ‘

400 RENAME #1: "

500 LINPUT #1: R1S

600 IF POS (R1$, IDENTIFICATION DIVISION",1) = 0 THEN 8000

700 RESET #1

800 FILE #2: "*~

This portion of the program queries the terminal user for the COBOL program
name and the name of the file where the copy elements can be found. The file is
opened and immediately renamed to temporary file to prevent overwriting the
original module on errors. The first record is then read and tested to see if it is a
valid COBOL program. If not the user is notified. Otherwise, the file is reset so it
can be reread from the beginning.

Example 2:

1000 FOR | =1 TO LOF (#1)

1100 LINPUT #1: R18

1200 LET C =POS (R1$, " COPY “, 7} + 1
1300 IF C—1 > O THEN 3000

1400 WRITE #2: R1$

1500 NEXT |

1600 RENAME #2: P$

1700 GOTO 9999

The program file is now read, one line at a time and tested for the COPY verb. If
the record is other than a COPY it is written to the output file. Otherwise, a
separate section of code is used to process the copy. Finally the output file is
renamed to the original file name so when closed it will be written in place of the
original.

6-20 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE |pacerev | TITLE [oocumentno.

Example 3:

3000 CALL “FINDNOSP”: R1$, C+4, C2 -
3100 LET C3 = POS (R1s&" ", ,C2)

3200 IF SEGS (R1s, C3—1, C3—1)<> “.” THEN 3400
3300 LET C3=C3—1

3400 LET N$ = SEGS$ (R1$, C2, C3-1)

3500 FILE #3: N$& ",” &C$

3600 RENAME #3: "*”

3700 FOR J =1 TO LOF (#3)

3800 LINPUT #3: R2$

3800 WRITE #2: R2$

4000 NEXT J

4100 GOTO 1500

Once a COPY statement has been found, the copied module name must be
isolated. This is concatenated onto the file name and the library element is
opened. It too is renamed to a temporary file so it is not overwritten. Each
statement of the element is then added to the output file.

Example 4:

8000 PRINT "THIS IS NOT A COBOL PROGRAM, TRY AGAIN"
8100 GOTO 100
9999 END

These statements complete the main program.

The subprogram FINDNOSP must also be written. Its purpose is to find the first
nonblank character in a string. It is called with three parameters, a string to
search, the column to begin the search at, and a variable into which the result is
placed. The subprogram scans the string and returns the column of the first
nonblank character in the string after the column specified by parameter two; the
result is returned in parameter three. if nonblanks are not found, zero is returned.

Example 5:

10000 SUB “FINDNOSP'": S$, B, E

10100 FORE=BTOLEN({SS$)

10200 IF SEGS$ (S$, E, E) < " “ GOTO 19999
10300 NEXTE

10400E=0

19999 SUBEND

UA-0140 Rev.3

BEM:BASIC — User Reference

6-21

DOCUMENT NO. l

TITLE | Pace Rev. |

PAGE

6.9 HINTS FOR MORE EFFICIENT CODE

The following suggestions for writing BASIC programs will improve the execution
time and reduce memory requirements:

Use intrinsic system functions instead of BASIC code whenever possible.
Use FOR-LOOPSs rather than maintaining counters in BASIC.

Use string functions, such as POS and SEGS, rather than maintaining an
array of characters stored one character per word.

Use MAT statements to process matrices rather than indexing with FOR
loops.

Rather than using several LET statements to compute a result, combine
them into a single LET statement. This avoids saving temporary values and
is especially heipful for string manipulation. :

When using DATA statements, combining several values onto one state-
ment rather than one per statement will result in faster RUN compilation.

UA-0140 Rev.3 BEM:BASIC — User Reference A 7-1
DOCUMENT NO. | THLE LPAGE REV. l PAGE
7 ERRORS AND DEBUGGING
7.1 INTRODUCTION
- There are two basic categories of errors: (1) those which prevent the running of the
program and (2) those which permit the program to run but cause wrong answers or
no answers at all to be printed (these latter errors are referred to as logical errors).
7.2 ERRORS PREVENTING RUNNING OF PROGRAM

It may occasionally happen that the first run of a new program will be free of
errors and give the correct answers. But it is much more common that errors will
be present and will have to be corrected. The errors in category (1) are detected by
the Syntax Checker, the Editing Command Processor, the System Monitor Proces-
sor, the System Monitor, the Run-time Error routines, and the Post Compilation
routines. (The errors reported by all of the BASIC system components previously
mentioned, except the Syntax Checker, are listed in Appendix C. This appendix
also contains, for each error, the procedure to correct the error condition.)

The Syntax Checker detects improper syntax in each statement and reports the error
by printing on the terminal a question mark (?) followed by a copy of the incorrect
statement, up to but not including the first character in error. For example, consider
the following statement:

10 FOR N=1,

Since the comma is not permitted in a FOR statement, the BASIC system responds
with)

2 10 FOR N=1

and waits for the user to complete the statement. If the user types in
TO7

then the complete statement
10FORN=1T0O7

is successfully processed by the BASIC system.

7-2 BEM:BASIC — User Reference UA-0140 Rev.3

PAGE | PAGEREV.| TTLE i DOCUMENT NO.

7.3 .LOGIC ERRORS

Logic errors are those which permit the program to run but cause wrong or no
answers at all to be printed. In either case, after the errors are discovered, they can
be corrected by changing, inserting, or deieting statements from the program. A
statement is changed by typing it correctly with the same line number. A statement
is inserted by typing it with the new line number. A statement is deleted by typing
the line number and pressing the TRANSMIT key or by using the DELETE command.

Corrections to a BASIC program can be made at any time either before or after a run.

In addition, line numbers may be typed in out of sequence, since BASIC arranges
them in ascending order once they are read.

As an example, consider the following program which reads in a series of numbers
and finds the largest and smallest numbers in the series. The program also
computes the average of the series.

Example:
10 INPUT N,A
20 L=S=A
30 FOR I=2 TO N
&0 INPUT X
50 A=A+X
60 {F X>=L THEN 90
70 L=X

80 GO TO.110-
90 IF X>=S THEN 110

100 S=X

110 NEXT |

120 A=A/N

130 PRINT ""SMALL="'; S, "LARGE=''; L, "'AVERAGE='; A
140 END

Assume that when the above program is executed, the user types in the following
data values:

A1

hpwhbho

The resulting output would appear as

SMALL=A1 LARGE=A1 AVERAGE=A3

UA-0140 Rev.3 BEM:BASIC — User Reference 7-3

DOCUMENT NO. r TIMLE [PAGE REV. [PAGE

The value for LARGE is obviously incorrect. After examining the program, it
becomes evident that the IF statement on line number 60 should be changed to

60 IF X <=L THEN 90

Once this correction is made and the program is reexecuted with the same input
data, the resulting output would appear as

SMALL=A1 LARGE=AS5 AVERAGE=A3

UA-0140 Rev. 3 BEM:BASIC — User Reference A

8-1
DOCUMENT NO. 1 TITLE [PaGerev. | PAGE
8 BEM OPERATION
8.1 INTRODUCTION

This section instructs the novice user how to use BEM and how to execute BASIC
in particular. The purpose of this section is to explain commands available to the
terminal user; how to initiate a session, execute and monitor application programs,
and terminate the session. For details on how to configure BEM, console
operation, etc., the user should consult the BEM — 0S/3 Basic Editor Monitor
User Reference, UA-0139.

To use BEM, the user must locate a free terminal and log on. Logging on consists
of entering the LOGON command, together with a user-id, account-number, and
password. This user-id is used for identification by the console operator, the
account number is used for billing purposes, and the password for security; each is
one to four characters long, and either of the last two may be omitted depending
on conditions at your site. When the LOGON command is accepted, BEM will
display the log-on bulletin and inform the user it is ready to process requests. The
log-on bulletin is built by the administrator and may contain messages to inform
the users of resource availability or system status.

The administrator may also assign a default file to each user’s account, and place
certain restrictions on command and file usage. If the user wishes to use the
default file, the file and volume names should be omitted from the command which
references the file. If a user is informed that he cannot access a certain file, or is
not permitted to write to a certain file, the system administrator wiil need to be
contacted to remove the restrictions.

Once logged on, the user is placed in monitor mode and may enter any monitor
command. To identify monitor mode, BEM presents the UNISCOPE start of entry
(SOE) character, followed by a slash (/). All monitor commands begin with the
slash, but if the user does not erase the screen, the slash is supplied by BEM.

Several commands may be entered while in command mode. The HELP command
functions identicaily to the BASIC HELP command. TYPE allows the user to send a
message or question to the computer console. Three STATUS commands are
provided, one to list users of BEM, another to list 0S/3 resources available and
those in use, and the last gives information about the user’s own terminal.

The EXECUTE command is used to load and run BEM application programs such as
BASIC and EDT. The program is located and loaded, and any additional storage
{memory or disk) requests for that program are processed. Once loaded, the
program is in control of the user’s terminal and all key-ins and responses are
controlled by it.

While a program is processing, BEM provides a method to interrupt it and return
control to the monitor. To interrupt a program, the user hits the MESSAGE-WAIT-
ING key or transmits anything. A program may only be interrupted when it is
active. {f it is awaiting input, the program provides its own way to exit to the
monitor; for example, the SYSTEM command may be used to interrupt BASIC.

8-2 A BEM:BASIC — User Reference UA-0140 Rev. 3

PAGE | PaGe REV.| TTLE | DOCUMENT NO.

One advantage of this. capability is that during execution a program may be
interrupted to enter a monitor command, then the program may be resumed using
the RESUME command. The RESUME command will not function if the EXECUTE
or LOGOFF commands are entered since the user’s work areas are destroyed.

As an example of the interrupt capability in BASIC, the user attempts to RUN a
program but is informed that there is insufficient room to load the program. The
interrupt capability may be used here to allow the user to enter STATUS
commands and wait until sufficient memory is available to load the BASIC
program. When it is availabie, the user may RESUME BASIC, and rerun the
program. , :

At the end of a session, the LOGOFF command is used to release all storage that
has been acquired during the session. To begin a session after LOGOFF has been
" processed, the next user must LOGON again.

8.2 COMMAND FORMAT

All BEM commands begin with a slash (/), and are immediately followed by the
command keyword. The slash is noermally provided by BEM, but it must be entered
if the user has altered the screen, or is operating a non-video terminal. Commands
may be abbreviated by typing at least those characters which are underiined.

8.2.1 LOGON Command ;o

The LOGON command is used to begin a BEM session. The “id"”* used may be one
to four characters, and is determined at the user site, and has no actual meaning
to BEM.
Format

i /LOGON user-id,[account-number),[password]

8.2.2 HELP Command

The HELP command allows the user to obtain additional information or explanation
about an error or status message which has just been displayed. The HELP
command should be entered immediately after the message requiring explanation,
since the command always relates to the message immediately preceding the
HELP query. ;

Format

/HELP

UA-0140 Rev. 3 BEM:BASIC — User Reference A 8-3

DOCUMENT NO. [TITLE l PAGEREV. l PAGE

8.2.3 TYPE Command

The TYPE command is used to send a message or question to the console operator.
All characters following the command keyword are sent to the computer console.
Up to 52 characters may be sent.

Format

QY PE comment

8.2.4 PAUSE Command

The PAUSE command is used to send a message or question to the console
operator. It is different from the TYPE command in that the user’s task is
suspended until the operator replies to the message.

Format

/PAUSE comment or questions

8.2.5 STATUS Commands

f—
Three formats of this command are available. The first will display information
concerning terminais on the system. The second format will display information
about 0S/3 resources in use by BEM. Lastly, information about the user’s own
terminal may be obtained.
Format 1
/STATUS TERM
Output Format 1: l
TERMINAL COMMAND PROGRAM SCRATCH SPACE 1)
nnnn cceece PPPPPP $SS uuuu
where
nnnn Terminal name in the form T/itO where / is
the line number and T is the terminal num-
ber.
cceece Last system command issued at this termi-
nal.
PPPPPP Last program executed at this terminal.

8-4 A BEM:BASIC — User Reference UA-0140Rev. 3

PAGE | PaGE REV. | TITLE | DOCUMENT NO.

sss Number of disk scratch space cylinders ac-
quired by this terminal.

uuuu : User’s identification code.
Format 2
/STATUS RESOURCE

Output Format 2:

wemvecneacnnens MEMORY - connemensecmm - e SCRATCH-----
TASKS TERMS MAX AVAIL FREE MAX FREE
nnn ttt mmmmm aaaaa Ff $SS ddd
where
nnn Total number of tasks which may. be active
at one time; the maximum number of termi-
nais which may be logged on the system.
it Number of terminals currently logged on.
mmmmm Amount of storage, in bytes, allocated to the
entire BEM system as obtained from the job
. card.
aaaaa Total amount of storage, in bytes, available
for allocation to users and program areas.
ffiff Current amount of storage, in bytes, which
is free to be allocated.
SSS Total number of disk cylinders available for
allocation to users and programs.
ddd Current number of disk cylinders which is
l free to be allocated.

The third STATUS option will display the user’s id, terminal number, logon time,
current date, and wall-clock time.

Format 3
/STATUS
Output Format 3:

TERMINAL USER LOGON DATE CUR-TIME
1 EQO1 PROC 09:07 78/02/17 09:08:20

UA-0140 Rev. 3 BEM:BASIC — User Reference A 8-5

DOCUMENT NO. | TITLE jFAGE Rev | PAGE

8.2.6 EXECUTE Command
This command is used to invoke application programs. Sufficient memory and disk
space must be available, if required by the program, for loading to complete
successfully. .
Format
/EXECUTE program

Programming Note -

1. Programs which may be executed are EDT, RSP, and BASIC.

8.2.7 LOGOFF Command

The LOGOFF command is used to terminate a session. All work areas assigned to
the user are released.

Format

/LOGOFF

8.2.8 FILE STATUS Command

command may be used. This command wiil display the name of each source proc,
object, or load module, together with the type of each module. An alternate form of
this command (LONG), displays the additional information about each moduie.

To obtain a directory listing of an 0S/3 Library file at the terminal, the FSTATUS ‘

Format
/FSTATUS library {(password)] [,volume] [LONG]
where 1
library Name of the file which is to be listed.
password Read password for the file. It must be sup-
plied with the command if the file was
cataloged with a password.
volume Name of the disk pack on which the file
resides. If the file has been cataloged with a
volume name, the parameter may be omit-
ted.
LONG The aiternate format of the command is to l

be used to display the comment, creation
date, and time for each module.

8-6 A BEM:BASIC — User Reference UA-0140 Rev. 3

PAGE | paGEREV.| TITLE { DOCUMENT NO.

This command will produce output similar to the example shown:

P-SUPEQU P-EQJ S-SRCMOD §-COPYMOQD
l S-COBOLPRG P-CLOSE 0-08JMOD L-LODMODO0O

To obtain a directory listing of the default file for an account (if one exists), enter
the command without any operands.

The LONG format of the FSTATUS command produces output similar to:

P-SUPEQU SUPERVISOR EQUATES 02/05/78 12:18
P-EQJ END OF JOB PROC ' 01/31/77 02:59
§-SRCMOD COBOL PROGRAM 07/14/77 14:20
S-COPYMOD | COB80L COPY MODULE 07/14/77 14:38
S$-COBOLPRG 07/14/77 15:08
. P-CLOSE CLOSE THE FILE 01/28/77 22:06
Q-LOAD PROGRAM TO SAVE FILE 09/15/78 08:18
L-LOADMOD PROGRAM TO SAVE FILE 09/15/78 08:17

Iif the LONG format is used with the default file, a single comma must precede
LONG:

/FSTAT, LONG

8.2.9 PRINT and PUNCH Commands

These two commands may be used to produce a printed listing of a module, or a
punched card deck. The PRINT command will list a module on the system printer. A
heading identifying the user and line numbers are also produced. The PUNCH
command will punch the named modute on the system punch. identifier cards are
punched preceding and following each deck to give the user’s task information.

Format

/PRINT element.file [(password)], [volumel|,typel
/PUNCH element,file {(password)], {[vaolume] | type]

where

element . Name of the module to be printed or
punched.

file o Name of the OS/3 Library file which con-
tains the element.

password Read password for the file. It must be in-
cluded in the command if the file has been
cataloged with a password.

volume . Name of the disk pack on which the file

resides. If the file has been cataloged with a
volume name, this parameter may be
omitted.

UA-0140 Rev. 3 BEM:BASIC — User Reference A 8-7

I DOCUMENT NO. | TITLE | PaceRev. | PAGE

type Element-type of the module. An “S” de-
notes source, a "'P” denotes proc. If this is
omitted, source is assumed.

8.2.10 DELETE Command

This command may be used to deiete an element from a library file. Any macro
proc, source, object, or load element or group header may be deleted.

Format

/DELETE element,file [(password)], [volume], [type]

where
element Name of the module to be deleted.

file Name of the 0S/3 Library file which con-
tains the element.

. password Write password for the file. It must be
~ included in the command if the file has
‘ been cataloged with a password.

volume Name of the disk pack on which the file
resides. If the file has been cataloged with a
volume name, this parameter may be
omitted. .

type Element type of the module:

S Source

P Proc

M Macro

O Object

L Load

G Group header

If this is omitted, source is assumed.

NOTE: Type G specifies that only group headers (BOG and EOG
markers}) be deleted, not the entire group.

8.2.11 RUN Command

This command will schedule a batch 0S/3 job. If a job name is specified, the job

control is assumed to be stored in the system Job Control file (YJCS). If the

name is omitted, the job control is assumed to be in the JCS queue of the system
. Spool file.

3-8 A BEM:BASIC — User Reference UA-0140Rev. 3
PAGE {Pacerev | TTLE Il DOCUMENT NO.
Format
/RUN program
Example:
/RUN LISTLIB
/RU

When a job is scheduled via BEM, the user will not be notified of its actual
initiation or termination. The DISPLAY JOBS command may be used at the
terminal to monitor the execution of a batch job.
NOTE: The RUN command is an optional feature of BEM and may
not be available at your site due to operating procedures.

8.2.12 DISPLAY Command

The DISPLAY command gives information about 0S/3 system usage. This com-
mand takes two forms:

o Information about batch jobs
e List of DISK volumes currently mounted

Information about batch jobs may be obtained using the JOBS display option.

Format
DISPLAY JOBS
Example:

JOB NAME SIZE TIME STEP EXEC JOB NO.

BEM 044986 13.2 01 BEMQOO 0002

ASMTEST 131072 25.8 02 - ASMO000 0015

FREE MEMORY 004096

where

JOB NAME The name of each batch job currently
executing.

SIZE Amount of memory allocated to that job,
including program load area and job pro-
logue in decimal.

- TIME Current elapsed CPU time for all steps of

job, in seconds.

STEP Step number currently executing.

UA-O140 Rev. 3 BEM:BASIC — User Reference A

8-9
DOCUMENT NO. | TITLE | PageRev. | PAGE
EXEC. Name of current load module.
JOB NO. Unique job number assigned by Spooling. i
The unused memory entry shows total free memory at the time of the DISPLAY.
Memory allocated to the supervisory, symbionts, and ICAM is not explicitly shown
by the display. ' 1
A list of disk volumes on the OS/3 system may be obtained with the VOLUMES
option:
/DISPLAY VOLUMES
Example:
*OS3REL USERO1 *BEMPAK
This example shows three disk packs mounted. The two of these that are
accessible to the BEM user are marked with an asterisk (*).
8.2.13 SCREEN Command
The SCREEN command is used to inform the BEM system of certain UNISCOPE
characteristics or options which the user wishes to utilize.
Format
copP ROLL
i . . , . TuT
/SCREEN [dimension] | 0 op | inoroLL [uTs4o0] -—
where
dimension ‘ Size of the UNISCOPE screen: height X
width, e.g., 16 X 64, 24 X 80.
For a hard copy device, the width is ignored,
but the height will control the number of
lines printed at a time.
corP Indicates that all messages output by BEM
are to be logged on the COP printer.
NOCOP Messages are no longer to be logged.
ROLL All messages displayed by BEM will be

displayed at the bottom of the UNISCOPE
and the screen will be scroiled up. -

8-10 A BEM:BASIC — User Reference UA-0140 Rev. 3
PAGE |PacERev TITLE | DOCUMENT NO.
NOROLL UNISCOPE screen will no longer be
L scrolled.
UTS400 indicates to BEM that this is a UTS400

terminal and sets the UTS control page for
correct RSP operation.

The COP option should not be used unless the device is actually present and
configured, or control will not be returned to the terminal. If such a problem occurs,
the user should clear the terminal, and issue a /SCREEN NOCOP command to
restore operation.

The COP option provides the ability to obtain selected hard copy listings at the
terminal. it is not intended to produce a hard copy log of aill terminal transactions.
Consequently, not all BEM commands will produce meaningful COP listings. To get
a hard copy of an FSTATUS or DISPLAY, for instance, the user should format the
screen and use the UNISCOPE terminal PRINT button.

The ROLL option truncates all output to a single line on the UNISCOPE screen and
thus shouid not be used when longer lines need to be displayed. Two lines are
always left at the bottom of the screen, however, for data entry.

8.2.14 VTOC Command

The VTOC command may -be used to display the names of the files on a disk
volume. The name of each file on the disk will be shown, along with the number of
cylinders allocated to the file, the file type, and extent count. If the file is a library

file (file type = SAT), additional information is displayed showing the remaining -

free space in each partition of the file. This command may be issued to any disk
allocated to the BEM system.

Format

/VTOC volume-name
Example:

/VTOC PACK22

would produce output similar to:

FILE NAME CYL. EXTENTS TYPE DIRECTORY/ DATA/ B-LOAD
SAM FILE 010 01 SAM
RAND FILE 002 01 D.A.
LIB FILE 050 05 SAT 124/ 4021/ 4

VERYLONGFILENAME
010 02 SAT 0/ o/ 0

UA-O140 Rev. 3

BEM:BASIC — User Reference A

8-11

DOCUMENT NO. [

TITLE { PAGEREV. |

PAGE

8.2.15 Disk Space Management Commands

These commands ailow the user to create and erase files dynamically under BEM.
As with most other BEM commands, their use may be restricted by the system
administrator for certain accounts.

8.2.15.1 ALLOCATE COMMAND

This command will allocate a new disk file on a specified volume. The file may be
any 0S/3 file type. If it is a SAT file, it may be initialized as an OS/3 library file.

Format

YES

/ALLOCATE type, file-parameters [mIT = {N 0}] [.SIZE =n] LINC =n]

where

type

file-parameters

INIT

SIZE

INC

Indicates the type of file to be allocated:
ST — SAT (possibly a library file)
IR — IRAM
IS — ISAM
DA — Direct access
SQ — Sequential
NI — Non-indexed

Valid 0S/3 file description of a file which

* does not exist on the volume. The volume

stated in the parameter list specifies where
the file will be placed.

YES — causes the SAT file to be initialized
as an 0S/3 library file. This is the default
value for a SAT file.

NO — the file is not initialized. This is the
default value for non-SAT files.

Initial allocation SIZE in cylinders. Defauit
value is ten cylinders.

SIZE in cylinders of any extents added
when the file is extended. Default is one
cylinder.

Any DA, SQ, or Ni files allocated may be processed by BASIC. Any initialized SAT
file may be processed as a library file by any BEM module.

8-12

A BEM:BASIC — User Reference UA-0140 Rev. 3

PAGE

| pacerev.| TIMLE | GOCUMENT NO.

8.2.15.2 SCRATCH COMMAND

This command will scratch any file except system files. If the file is catalogued, its
catalog entry will not be removed. The user should be careful when using this
command, as once a file has been scratched, its contents are inaccessible.

Format

/SCRATCH file-parameters

where

file-parameters Is a description of the file to be scratched.
’ This may not be a Y file.

8.2.16 ENTER Command

This command enters an 0S/3 library file element to be executed in BEM
background mode. This function is only available if it is configured by the system
administrator. Tasks entered in background are executed by BEM exactly as from
interactive terminals except that output is produced on the high speed printer.

Format

/ENTER element, file-parameters [,typel

where
element Is the name of the module to be entered.
file-parameters Is a descriptior; of the OS/3 library file
which contains the element.
type- Is the element-type for the moduie — S

denotes source, P denotes proc. If this is
omitted, source is assumed.

The ENTER facility allows users to submit an 0S/3 library element containing
commands and data just as they would be entered at the terminal. This element
may contain one or more LOGON-LOGOFF sequences, and each task (LOGON-
LOGOFF pair) may perform any functions which would be valid at the terminal. The
first statement of an entered deck must be a LOGON command, and there should
not be any cards between the LOGOFF and LOGON commands when several tasks
are stacked in a single ENTER deck.

Decks submitted via the ENTER function are queued in the OS/3 spool file, along
with background decks submitted through the card reader. These decks are then
processed in a first-come first-served manner concurrently with interactive pro-
cessing. The number of tasks available to process these decks is defined by the
system administrator; more than one background task may be active at a time.

UA-0140 Rev. 3 BEM:BASIC — User Reference A

8-13

DOCUMENT NO

| TITLE | PaceRey. |

PAGE

Qutput from entered tasks is routed to the main site printers and each task’'s output
is identified with the user-id from the LOGON statement. Invalid LOGON state-
ments in a deck cause BEM to begin rejecting cards until a valid LOGON is found,
or the end of the deck is reached. Rejected cards are printed on a separate listing.

Each time an input is expected during a background session, BEM attempts to read
the next card. This card couid be either a command or a line of data. It is processed
just as if it had been entered from a terminal. If an error is encountered during the
processing of a command, the error message is printed and processing continues
with the next card; the session is not aborted. The only condition which will cause

a background session to be aborted is the exhaustion of all input. This is usually.

due to a missing or misinterpreted LOGOFF statement, and results in the task
being logged off.

Certain conditions which normally arise at a terminal have been modified for
background tasks:

¢ CONTINUE queries are eliminated for background tasks and ail output is
displayed in its entirety. Normally, BEM outputs one screen of lines and
suspends output until the user answers the CONTINUE query.

¢ OQVERWRITE queries are eliminated for background tasks. If a module to be
written already exists, it is deleted and a new one written automatically.

e QUT OF MEMORY conditions for background tasks are considered errors
and a NO response is assumed.

e Batch tasks are treated as hard copy terminals, thus RSP is not available.

8.2.17 COMMENT Command

P

This command permits the user to enter comments in the comment field associat-
ed with an OS/3 library element. The element is iocated, and then the 30-charac-
ter comment specified in the command is applied.

Format

/COMMENT element file-parameters [,type} comment

where
element Is the name of the 0S/3 librarian format
element to be commented.
file-parameters Specifies the location of the file containing
the element.
type Specifies the element type. A P denotes

proc or macro; an S or blank, source; an O,
object; an L, load.

A ' BEM:BASIC — User Reference UA-0140 Rev. 3

8-14
PAGE |PAGEREV.| TTLE | DOCUMENT NO.
comment Is a 30-character string to be used as a

comment. It must be separated from the
file-parameters by exactly one space. Any
additional spaces are considered part of the
comment. .

8.2.18 BULLETIN Command

This special purpose command allows the system administrator to read, display,
and change (using the WRITE keyword) the LOGON bulletin. The READ and WRITE
options are restricted to privileged users only, while DISPLAY can be used by any
user.

Format

READ
/BULLETIN DISPLAY
WRITE

where

/BULLETIN READ Deletes the entire contents of the user’s
workspace and then reads the current
LOGON hbuiletin into the workspace. This
command should be issued while in EDT or
RSP as a SYSTEM command to avoid losing
the workspace again on entry into EDT or
RSP. : :

NOTE: This option is equivalent to
@DROP; all procs are lost.

/BULLETIN DISPLAY - Displays the current LOGON bulletin to the
terminal. This option can be invoked by any
user.

/BULLETIN WRITE Overwrites the existing LOGON builetin
with the contents of the user’s workspace.

If the entire new bulletin will not fit in the
maximum space reserved for LOGON bul-
letins, only as much as will fit is written and
an error will be displayed. The user can find
out how much was accepted via the BULLE-
TIN DISPLAY function. It is allowable to
write a new bulletin which is larger than
the existing one, provided the maximum
bulletin space limit is not exceeded. This
command shouid be issued from EDT or
RSP via a SYSTEM command. ’

UA-0140 Rev. 3 BEM:BASIC — User Reference A

8-15

DOCUMENT NO.

[TITLE { PaGEREV. |

PAGE

8.2.19 RECOVER Command

This command allows the terminal user to recover OS/3 librarian elements which
were unintentionally deleted. It is only effective for elements which have been
deleted recently and have not been entirely removed from the file via a PAC
librarian statement. It must be used carefully to ensure that the correct element is
“undeleted” (there may be several to choose from).

Format

/RECOVER elernent, file-parameteri,type}

where

element Is the name of the deleted modules to be
recovered.

file-parameters Is the location of the file containing the
elements to be recovered.

type Is the element type which is to be used to
rebuild directory entries for the deleted ele-
ment.

Once invoked, this command will begin by listing each deleted element which
could possibly have the same element type specified in the command. For
example, if the user attempts to recover a source module named TEST, and the file
contains both source and load deleted modules, only the source modules will be
shown: :

/RECOVER TEST,MYFILE,MYPACK,S °

1. TEST 0S/3 TEST PROGRAM 01/30/78 12:48
2. TEST 0S/3 TESTPROGRAM 01/30/78 14:02
3*TEST 0s/3 TEST PROGRAM 01/30/78 15:25

SELECT NUMBER AND NEW NAMED

Each element with the name and type indicated will be displayed, with a sequence
number for identification purposes. The comment field, date, and time of creation
will also be shown. If an undeleted element currently exists, it too will be shown
and flagged with an asterisk.

After displaying the list, the user will be asked to select an element (by number),
and the name under which the recovered element is to be written. The name
selected by the user must not be a name which already exists. As long as this rule
is followed, the user may rename any of the modules listed including the active
one; thus RECOVER may be used to rename modules too.

8-16

A BEM:BASIC — User Reference UA-0140 Rev. 3

PAGE

{raceRev.| TITLE [DOCUMENT NO.

8.3

Continuing with this example, if the user wished to retain the active TEST element,
but also recover deleted element 2, the response

>2,TEST2

could be entered to recover copy 2 of TEST and rename it to TEST2. BEM will
insure that another module of the same name does not already exist and generate
appropriate error messages.

If, on the other hand, the user did not want the active copy of TEST (#3), but
wished to restore copy 2, he could rename the active copy and restore copy 2 via:

> 3, DUMMY
D2, TEST

and later go back and deiete element DUMMY from the file.

Each time the user renames a module, BEM will list the elements again with new
numbers to avoid confusion. To end the RECOVER command, type STOP.

BATCH SUBMISSION

An optional feature available at some sites is the capability for entering card decks
of BEM sessions for background execution. This feature permits access to the
system when a terminal is not available.

To use the batch capability, the user need only keypunch the session from LOGON
to LOGOFF, and submit it to BEM via the computer operator. The deck will be
queued and executed on a first-come first-served basis.

Output from batch tasks is routed to the main site printers, and each task’s output
is identified with the user-id from the LOGON statement.

Batch decks are processed in a manner similar to the decks submitted via the
ENTER facility. For additional details on how these decks are processed, and how
errors are handled, see the description of the ENTER command (8.2.16).

Basic Statement and Command Formats

Operation Operand Format Type and Use Examples
BYE Command- BYE
Terminates BASIC and returns to
BEM.
CALL string-constant [: param-list] Subprogram Statement- 17 CALL "SUBR" : 3+4, A, B (}
Initiates a call to a subprogram. 18 CALL "FIND #3, SIN, (A)
19 CALL “SEND™ : C{,), K(3,4), BS
CHAIN string-expression Subprogram Statement- 23 CHAIN “PROGRAM2, CHAINLIB, PACK34"
channel-setter ' 24 CHAIN AS WITH #3
| WITH channel-setter, . . .] Initiates compilation and execution of 25 CHAIN #4 WITH #1, #4, #.18
another program segment.
CHANGE string-name TO numeric-vector General Statement- 34 CHANGE A$ TO V
numeric-vector TO string-name 35 CHANGE M TO B3$
| BIT expression] Converts a string to a vector or vice 36 CHANGE GTOK1$ BIT 12
versa
DATA string-constant R Input/Output Statement- 45 DATA 1, 3,6, 1E3, —.34,17.3E34
numeric-constant 47 DATA "STRING ONE'’, STRING TWO, OTHER STR
Supplies values for subsequent READ 49 DATA FOURTH STRING, 33, “FIFTH STRING
statements.
DEF FN/etter[$) [(param-list) | Declaration- 54 DEF FND (X,Y) = SQR(X12+Y12)
[, local-list) Defines the entry point into a user 55 DEF FNS$ (X,Y$) = SEGS (Y$.X.X) &
function 56 DEF FNQ
. ’ 57 DEF FNGS, |, J, K
= ssion
[= expression | 58 DEF FNE (A,B,C)W.Z
DELETE [line-number-list [“'search-string’’} Command- DELETE 10
. DELETE 100-132
Deletes | f he BASI
inetseejv(;:;spaz;m the BASIC program | e/ e re - |NSTRUCTIONS ™
’ DELETE 1-100 “REM”
DIM letter[$] (integer [, integer]}, ... Declaration- 67 DIM A(3), B(4,5)
Defines arrays or vectors and specifies 68 DIM G$ (45)
subscript bounds. 69 DIM C(100), H$(2,40)
{continued)

ON IN3WNJ0G

€'A3H OV 10-VN

ERSINR

dualsjay 19sN — JISVE' N3G

S1VINHOd4d ANVININOD ANV
AN3INILVLS J1SVE 40 AHVYINIANS VYV XIAN3ddV

| A3u30va|

l-V

39vd

Basic Statement and Command Formats (contd)

Operation Operand Format Type and Use Examples
END Control Statement- 78 END
Defines the last statement in the main
program and terminates execution.
FILE channel-setter : string-expression- Input/QOutput Statement- 82 FILE #3: "™*"
Defines and opens a data file. 83 FILE #1: "SQ, ERRORS, SPOOL3 .,
84 FILE #7: "COBOLPGM, LIBFILE(/WRPASS)
85 FILE #J: A$
FNEND Declaration- 88 FNEND
Defines the end of a multiline user
function and returns control.
FOR numeric-variable = numeric-expression | Control Statement- 93 FORI=3T0O 10
TO numeric-expression 94 FOR J2 =1TO POS(AS,BS 1)
[STEP numeric-expression] Initiates a loop and specifies values for 95FORK=J2TOL3 STEP 4
loop index.
GosuB line-number Control Statement- 102 GOSUB 943
Transfers control to a subroutine and
saves return address.
GOTO line-number Control Statement- 111 GOTO 130
Transfers control to another statement
in the program.
IF Format 1: Control Statement- 120 IF A$ = “"YES" THEN 340
expression test expression Compares two expressions according 122 IF SIN(X) = 0.5 GOTO 43
GOTO to the “test” specified and if true, 123 IF END #3 GOSUB 230
GOSUBY fine-number performs the GOTO or GOSUB. A file
THEN condition may also be tested.
Format 2:
END
{ M ORE} channel-setter
GOTO
GOSUB » line-number
THEN
{continued)

39vd

Jlxau 39va|

ERNUIN

doualisjey J9sn — JISvE N3g

“ON IN3WNJ0Q
£'A8H 0Y10-VN

[4d4

Basic Statement and Command Formats [contd)

Operation Operand Format Type and Use Examples
INPUT { channel-setter : Yvariable-name , . . . Input/Output Statement- 130 INPUT A,Bs
Solicits input from the terminal or 140 INPUT #1: D(3.4).J
reads a fite and assigns vatues to the
variables listed. .
LET Format 1: Assignment- 143 LET A$ = SEGS (AS$.3,4)
numeric-variable 145 B(3,4) = SIN{Y)
[= numeric-variable . . . } 147 FND = B(3.,4) * Al4) - |
= puIneric-expression Assigns values to numeric or string
variables, or to a function.
Format 2:
string-variable
{ = string-variable . . . |
= string-expression
Format 3: /
FNletter($) = expression
LIBRARY srriny-‘constanl - Subprogram Slateme; 155 LIBRARY “SUBLIBRARY, PACK11"
Specifies names of subprogram librar- 157 LIBRARY “CATALOGEDSUBLIBRARY(ALLOWD)
ies 1o be searched.
LIST { ine-number-list || “search-string") Command- LIST 3-4, 10, 100-200
Displays lines of a BASIC program to L:g}: IPR(‘)'(‘:T'REM"
the terminal. L 1
MARGIN [channel-setter : | numeric-expression | Input/Output Statement- 160 MARGIN 120
Changes the current margin setting for 164 MARGIN #3: 64
the terminal or a file.
MAT letter = letter + letter Matrix Operations- 174 MATA=8B1C
Adds two matrices and places the re- | /2 MATV =W+2Z
sult in a third matrix.
MAT letter = CON { (trimmer) } Matrix Operations- 178 MAT A = CON
Sets all elements of the matrix to the 179 MATV = CON ()
value 1. The matrix may optionally be
redimensioned.

{continued)

'ON INZWNJ00
£'A8H OYLO-VN

Jul

8oualajey Jesn — DISvH-W38

EEA

30vd

E-v

Basic Statement and Command Formats fcontd)

Operation Operand Format Type and Use Examples

MAT letter = \DN [(trimmer) } Matrix Operations- 185 MAT H = IDN (3.3)
Sets the matrix to an identity matrix. 188 MAT J = IDN
The matrix may optionally be redimen-
sioned.

MAT letter = INV (letter } Matrix Operations- 190 MATQ =INV(R)
Performs the matrix inversion function
on square matrices.

MAT letter = letter * letter Matrix Operations- 198 MATU=V*"W
Multiplies two matrices and places the 199MATA=V "8
result in a third.

MAT letter$ = NULS [(trimmmer)) Matrix Ope}ations- 201 MAT D$ = NUL$
Sets all elements of a string matrix to ggg m:} Fﬁiz_':‘%lii“;'
null strings. The matrix may optionally - 3
be redimensioned.

MAT letter = { numeric-expression) * letter Matrix Operations- 212 MATD=(J+4) * E
Multiplies all elements of a matrix by a 21I3MATV=(SIN(UN "W
scalar value.

MAT letter = letter — letter Matrix Operations- 221 MATD=F — E
Subtracts two matrices and places the
result in a third matrix.

MAT letter = TRN { letter) Matrix Operations- 234 MATD =TRN(F)
Transposes rows for columns in a ma-
trix.

MAT letter = ZER [{trimmer)} Matrix Operations- 244 MAT S = ZER
Sets all elements of the matrix 1o the | 247 MATE =ZER (3.4)
value 0. The matrix may optionally be
redimensioned.

MAT INPUT [channel-setter : | Matrix Operations- 253 MAT READ A, B$

letter{S]1{ {trimmer)], ... Solicits input from the terminal or a
file and assigns values to each ele-
ment of the matrix.

{continued)

30vd

v-v

|Azu30va |

EgIUR

soualajey Jesn — JISVEIN3E

“ON AN3WNDOQ
£'A3H OPLO-VN

Basic Statement and Command Formats (contd)

Operation Operand Format Type and Use Examples

MAT LINPUT | { channel-setter : | Matrix Operations- 255 MAT LINPUT #3: AS, BS

letters ({trimmer)], . . . Solicits input from the terminal or a 256 MAT LINPUT D$
file and assigns complete lines of daia
to each element of the string matrix.
MAT PRINT { channel-setter :] Matrix Operations- 262 MAT PRINT A, B; C;
letter($]{ separator), . . . Displays a matrix to the terminal or a 265 MAT PRINT #8: BS,
file. Spacing is determined by the
separator.
MAT READ { channel-setter : } Matrix Operations- 272 MAT READ A
letter[$)[trimmer)], . . . Reads values in for each element of 277 MAT READ 86(3)'
the matrix from DATA statements or 279 MAT READ #J+3: C, D(3.4)
from a file.

MAT WRITE channel-setter - letter{$}), . . . Matrix Operations- 281 MAT WRITE #3: AB
Writes each element of the matrix to a 283 MAT WRITE #1: K3, ¥
record in the file.

MERGE element, library { (password)) Command- MERGE SUBR, SUBLIB, SUBPAK

{. volume | Reads in an existing program on disk
without deleting the original contacts
of the workspace.

NEXT numeric-variable Control Statement- 292 NEXTH
Terminates a loop initiated by a FOR | 293 NEXT.J5
statement.

NEW Command- NEW
Deletes the contents of the BASIC
workspace so a new program may be
written,

OoLD element. libraryl (password) }{.volume) Command- OLD PRINTSIN, PROGRAMLIB,.DISKPK
Deletes the contents of the BASIC OLD COMPUTE,CATALOGUEDFILE
workspace when located and reads in
an old program from disk.

ON numeric-expression Control Statement- 320 ON J*{4-Hl) GOTO 120,300,120,430

GOTO ' 111 ON K GOSuB 10,20,30,50,10,40
GOSUB} /ine-number, . .
THEN The value of the numeric expression

selects which line number in the list

will be used with the GOTO or GOSUB

statement.

{continued)

"ON AN3WNDOG
E€A8H OY10-VvN

ERty
doualejey lesn — JISVE.N38

['A3u 30va |

39vd

§-v

Basic Statement and Command Formats (contd)

Operation Operand Format Type and Use Examples

PAUSE Control Statement- 332 PAUSE
Suspends execution of the program 3
and queries the terminal user to deter-
mine whether to continue or not.

PRINT [line-number-list }| *search-string” | Command- PRINT 3-4,10,100-200

. . PRINT “LINPUT"

Displays lines of a BASIC program to . .
the terminal. PRINT “END” 9000-99999

PRINT { channel-setter : } Input/Output Statement- 345 PRINT “THE ANSWER IS*;A3

expression separator ... Displays the value of each expression 354 PRINT LJK N

listed according to the format specified 356 PRINT TAB(I);
by the separators. Display is to a file or
a terminal.

RANDOMIZE General Statement- 362 RANDOMIZE
Obtains a random seed for the random
number generator.

READ [channel-setter : Y variable, ... input/Output Statement- 371 READ AB.C
Assigns values to each of the variables g;?’ 2223 :? AAas(g_s,)s c2.3
listed from DATA statements or by et -C2.3)

l reading records from a file.
RESEQUENCE | start| .incr)(:file-params } Command- RESEQ 100:50:RESPROG, PROGLIB, PACK57
Resequences the program as it is
saved to a library file using the starting
line number and increment.
T RESET [channel-setter: { numeric-expression } 1} Input/Output Statement- 382 RESET

Repositions the file or the DATA state- gg: :Egg zla 3
ment pointer. v

REM any characters for a comment Genaeral Statement- 391 REM THIS PROGRAM COMPUTES THE EIGENVALUES

i 392 REM FOR AN ARRAY.
Used f -1 .
sed for an in-line comment 393 REM
394 REMARK

RETURN Control Statement- 395 RETURN
Returns from a subroutine which was
called via GOSUB.

RUN Command- RUN
Initiates compilation of a program in
the workspace.

{continued)

“

20w

| A3u39va]

Juu
8%U819}8Y Jasn — DISVE:IN3E

"ON IN3WND0Q
£'A%4 O LO-VN

Basic Statement and Command Formats {contd)

Operation Operand Format Type and Use Examples
RUNOLD element, filenamel (password I {.volume} | Command- RUNOLD COMPUTE,CATALOGUEDFILE
Initiates compilation of an old program
stored on disk.
SAVE element.filenamel (password)) {,volume} | Command- SAVE COMPUTE,CATALOGUEDFILE(PSWORD)
Saves the BASIC program contained in
the workspace on disk.
SCRATCH channel-setter Input/Qutput Statement- 403 SCRATCH #3
Deletes the contents of the BASIC file. | 404 SCRATCH #1-2
STOP Control Statement- 412 STOP
Terminates execution in the program.
May be placed anywhere within the
program as opposed to END which
must be last.
sus string-constant : params Subprogram Statement- 421 SUB “FINDSPAC"
Defines the entry into a subprogram 425 su :'NTEGRA};" A.FNC.J
and specifies any passed parameters. 429 SUB "FILEFIND" #3, G$
SUBEND Subprogram Statement- 437 SUBEND
indicates the last statement in the
subprogram and returns control to the
CALL statement when executed.
SUBEXIT Subprogram Statement- 449 SUBEXIT
Returns control to the CALL statement
from anywhere within the subpro-
gram.
SYSTEM { BEM command } Command- SYSTEM
Returns control 10 BEM, or executes a SYSTEM FSTATUS PROGRAMLIB,PACK33
single BEM command without leaving
BASIC.
SYSTEM string Control Statement- 475 SYSTEM AS
Issue a BEM command from a running 476 SYSTEM "RUN" &P1$
BASIC program.
{continued)

"ON IN3WND0Q
€'A8H OV LO-VN

Ju

adualisjey Jesn — DISVEN3E

A

39vd

Basic Statement and Command Formaets (contd)

Operation Operand Format Type and Use Examples
TIME intager General Statement- TIME 120
Changes the CPU time limit placed on
an exacuting program.
USING using-string, axpression|, exprassion), .. .| Input/Output Statement- 127 PRINT USING A$.B.C
i ; ; 145 MAT PRINT USING “#.##11111".8
Defines format string and edited ex-))
pressions. 167 PRINT #7: USING C18§, F§.G
WRITE channel-setter : expression , ... input/Output Statement- 523 WRITE #3: A, SIN(X).BS

Wirites records to a file, one per ex-
pression listed.

IOvd

| nau3ova]

"ON INIWND0Q
€'A8Y O LO-VN

80UBIBBY JasN — DISVE:N3E8

UA-0140 Rev.3 BEM:BASIC — User Reference B-1

DOCUMENT NO | TITLE | PageRev. | PAGE

APPENDIX B SAMPLE BASIC SESSIONS

An example of a complete session is provided in this Appendix to aid the new user
in learning BASIC. The designation IN: denotes text, which is supplied by the user,
and OUT: designates reponses from the system.

1 IN: /LOGON USR1

2 0uT: USER LOGGED ON, SYSTEM READY

2 QuUT: /

4 IN: EXEC BASIC .

S QuUT: 0S/3 BASIC READY (VER 1,1) BEGIN:
‘6 QuUT: L

7 IN: .10 PRINT "PROGRAM TO COMPUTE AREA OF A CIRCLE GIVEN RADIUS™
§ QUT: =

9 IN: 20 PRINT "&eNTER CIRKRCLE RADIUS:";
1C QuUT: =

11 IN: 30 INPUT R

12 OUT: »

13 IN: 40 A = 3,14159 R *« 2

16 0UT: 7640 A = 3,14159

15 IN: 60 A = 3.16159 = R #»x 2

1¢ OUT: »

17 IN: 5C PRINT '"AREA OF CIRCLE IS ";A,"CONTINUE?&;
18 QUT: =

1% IN: 60 INPUT (3

20 0uT: =

21 IN: 70 IF C$ = "“YES"™ THEN 200

2¢ QuUT: =
23 IN: 80 END
24 QUT: =

25 In: RUN

26 JuT: NO SUCH LINE NUMBER FOR G6QOTO OR GOSUB
27 QUT: LOADER AT LINE Q0790

28 QUT: EXECUTION CALCELLED DUE TO ABOVE ERRORS
29 JuT: « -

IS IN: LIST 720

> X1 QUT: 70 IF CS = M“YES"™ TheEN 200
32 QUT: =
33 IN: 7C IF €S = “YES'™ THEN <3
34 QUT: «
23S IN: RUN :

36 QUT: PROGRAM TO COMPUTE AREA OF A CIRCLE GIVEN RADIUS
37 QUT: ENTER CIRCLE RADIUS:D

I8 IN: 1

39 OUT: AREA OF CIRCLE IS 3,14159 CONTINUE?D
4C IN: YES

41 QUT: ENTER CIRCLE RADIUS:p

62 IN: <

43 OUT: AREA OF CIRCLE IS 12.5664 CONTINUE?D
4¢ IN: NO

&S QUT: *

46 IN: g8Yt

47 QuUT: /

48 IN: LOGOFF

49 QUT: USER LOGGED OFF, TERMINAL IS NOw FREE

B-2 BEM:BASIC — User Reference UA-0140 Rev.3
PAGE | PaGERev | TITLE | DOCUMENT NO.
Key for sample BASIC sassion:
Lines Daescription
1-3 These lines constitute the iog-on procedure. A user has logged on
with a user-id of USR1.
4-6 The BASIC compiler is invoked.
7-12 Program lines 10, 20, and 30 are entered and verified by the
Syntax Checker.

13-14 Line 40 is entered, but is incorrect, so it is rejected by the Syntax
Checker. The statement up to and including the constant 3.14159
is correct, but there is an error after the constant.

15-16 The user corrects the error by inserting a multiplication operator
between the constant and the variable R. The line is accepted and
verified.

17-24 The rest of the program is entered.

25 A RUN command is entered to execute the program.

26-29 An error is detected by the compiler at line 70. Execution is
inhibited and the user’s terminal is returned to compilation moda.

30-35 Line 70 is displayed and the reference to line 200 is corrected to
use line 20. Execution is again attempted.

36-37 The program begins execution by displaying a heading line and a
request for input.

38 Data is supplied for the INPUT statement at line 30.

39-40 The answer is computed and displayed, along with the question,
as to whether to continue or not. The user requests continuation.

41-42 The program again requests input and is supplied a value of 2.

43-45 A second answer is computed and displayed. This time the user
selects not to continue the program, and so it terminates.

46 To terminate the BASIC compiler, the BYE command is used.

47-49 A LOGOFF command is issued to end the session.

UA-O140Rev. 3 BEM:BASIC — User Reference A

C-1

{ TITLE _ | pace REV. {

PAGE

APPENDIX C SYSTEM ERROR MESSAGES

Error messages appropriate for an interactive environment are short and self-
explanatory. For additional information about an error message, the user is
directed to the HELP command. The messages are categorized on a functional
basis and are listed in the following table. Possible causes of each error and
suggested procedures to follow in response to the error are aiso included. The
designation to the right of the message identifies the BEM component which
identified the error.

A SUBSTATEMENT OCCURRED BEFORE AN END B8ASIC

Subprograms' must occur after the main program. This means that they must be
placed immediateiy after the END statemént, or after another subprogram’s
SUBEND statement.

ACCESS TO PROGRAM NOT PERMITTED FOR USER ID BEM

The account curréntly in use does not permit its users to execute the selected
function or program. Use another account, or contact the system administrator to
change the account’s restriction.

ACCESS TO QUEUE TYPE NOT PERMITTED RSP

Access to the queue type (PRINT, PUNCH, READER, LOG, JCS, RBPPU, RBPPR) is
not permitted for one of two reasons. The 0S/3 Supervisor has not been
generated to include the appropriate level of support for the queue, or the BEM job
control includes parameters to restrict access to that queue. Consult the system
administrator to have the access type changed.

ACCESS TO SYSRES FILES NOT PERMITTED LIBRARY

The account currently in use does not permit its users to access files on the 0S/3
system pack. Use another account or contact the system administrator to change
the account’s restriction.

ACTIVE SUBROUTINES EXCEED 16 LEVELS B8ASIC

A maximum of 16 levels of subprogram calls may be issued. Investigate for a
possible program loop, or a recursive subprogram cail.

ALLOCATE FORMAT ERROR BEM

The ALLOCATE command has been entered incorrectly. The format of this
command is:

/ALLOCATE type.file,vol[SIZE=n][INC=n] [,lN|T={YNE§}]

Cc-2 A BEM:BASIC — User Reference UA-0140 Rev. 3

PAGE | PaGE Rev.| e 1 DOCUMENT NO.

———

ARGUMENT TOO LARGE FOR EXP{X] FUNCTION 8ASIC

A value has been used with the exponential function which will produce a result
greater than the largest number that the 90/30 is capable of handling. The
maximum permissible value for the EXP argument is approximately 1 74.6.

ARRAY SUBSCRIPT OUT OF RANGE) BASIC

An array subscript, which is out of the range specified by the dimension statement
has been detected. The subscript is either less than zero, or greater than the upper
limit in the dimension statement. {f no dimension statement has been used, the
upper limit is 10.

ATTEMPTED TO RESET FILE BEYOND EOF OR NEGATIVE BASIC

The RESET statement may not reposition the file past the end of the file pointer.
The record number specified must be positive.

ATTEMPT TO TEST END OR MORE ON RANDOM FILE 8ASIC

The IF-END or IF-MORE formats may only be used against TERMINAL format files.
Check the file type referenced by this statement.

BAD FORMAT — TRY AGAIN . RSP

The user has transmitted something other than the preformatted parameter table.
This may also be the result of using RSP with a UNISCOPE without the protected
fields hardware option.

BASIC EDITING COMMAND UNRECOGNIZABLE . 8ASIC

Either an invalid command has been entered, or a BASIC statement has been
entered without a valid line number. Valid commands are:

oLD NEW SAVE *
RUN PRINT HELP
BYE DELETE ST ’
SYSTEM RUNOLD
BASIC FILE NOT OPEN OR NO DATA STATEMENTS BASIC

The channel number referenced by the flagged statement has not been opened by
a FILE statement. Check the channel-setter for a valid file, or issue a FILE
statement for the channel to be used. This error can also result when READ
statements are issued and no DATA statements are present.

BASIC SOURCE LINES OUT OF ORDER BASIC

The lines of source in a BASIC program read in by a RUNOLD or CHAIN statement
are not in order by line number. This is mandatory. Do an OLD against the program
and then SAVE it. -

UA-0140 Rev. 3 BEM:BASIC — User Reference A C-3
DOCUMENT NO. [TITLE | Pacenev. | PAGE
BEM POINTERS DO NOT AGREE WITH WORKSPACE WORKSPACE

The workspace access routines have detected a problem with the in-core and disk
pointers. This could have been caused by a previous |/0 error, or a modification of
the disk by an external source. If the error persists, the user may be forced to halt
the current program and reexecute it.

BULLETIN LOCKED — RETRY LATER 8EM

The bulletin cannot be updated because another user is currently accessing it. Wait
until the other user finishes and retry the command. The system administrator
shouid discourage the updating of the bulletin by multiple users.

CHAIN ERROR — INVALID NAME OR PASSING BAD FILE BASIC

There are two possible causes for this error. The Library element specified in the
CHAIN statement does not exist, or one of the channel numbers of files to be
passed to the next program segment is invalid.

CHANGE ERROR ' BASIC

The CHANGE operation specified by the flagged statement is not valid. Possible
causes of this error are an invalid vector or vector size, invalid BIT expression, or
invalid string résuit, or invalid value encountered during conversion.

CHANNEL NUMBER INVALID IN FILE STATEMENT BASIC

The channel-setter used in the FILE statement results in a channel number which
is not in the range 1 to 4095. Channel zero cannot be defined by a FILE statement.

COMMAND CANNOT BE USED AT THIS TIME ’ 8EM

A PRINT, PUNCH, DELETE, or FSTATUS command was issued while an active
program had been interrupted. The active program was accessing a file at the time
of interruption. Allow the interrupted command to complete (RESUME} and then
retry the command.

COMMAND KEYWORD OMITTED £DT

An operand has been entered for which there is no command function. For
example, the file parameters have been used without the specification READ or
WRITE. ‘

COMMAND TERMINATED : EDT

The EDT command which was active when the user issued a /INTR or ' DISCON-
TINUE command has been terminated. Informational message only.

CONTINUE? (YOR N) ALL

BEM has displayed a full screen or page and has additional output for the terminal.
When ready, the user may respond with a Y to see additional dispiays, or an N to
terminate the display and the command. A response other than Y or N will result in
the CONTINUE message being displayed again.

c-4 A BEM:BASIC — User Reference UA-O14O Rev. 3

PAGE | pace rev.| TLE -] DOCUMENTNO.

‘ COPY WITH NUMBER OPTION INVALID EDT

The COPY command may not be used with the NUMBER command.

DEF MUST PRECEDE REFERENCE IF LOCALS ARE USED BASIC

When local variables are used in a multiline user function, the definition must
occur at a lower numbered line than the first reference to that function. Move the
function definition and rerun.

DESEQ OPTION ONLY ALLOWED WITH READ . . EDT

The DESEQUENCE option is only meaningful when used with the EDT READ
command; in all other cases its use is treated as an error.

DEVICE UNAVAILABLE AT THIS TIME BEM

The printer or punch is not configured and may not be used. Contact the system
administrator to have the printer or punch configured.

DIMENSIONS INCONSISTENT IN SUB CALL BASIC

The type of variables used in the SUB and CALL lines differ. Either a scalar
variable was used where an array was expected, or the number of subscripts on
the SUB and CALL lines differ. '

DISPLAY COMMAND PARAMETER ERROR 8EM

The DISPLAY command has been entered incorrectly. Valid options are:

Joes
/DISPLAY {VOLUMES}

DIVISION BY ZERO, EXECUTION CONTINUES 8ASIC

The program has attempted a division by zero. The algebraic resuit of division by
zero is undefined; however, execution continues using a high value.

EDT VARIABLE AREA NOT AVAILABLE EDT

There is currently insufficient storage available to use EDT variables.

ELEMENT/GROUP NOT FOUND BEM

The element or group specified in the DELETE command could not be found. Check
the spelling of the name and check the names in the file via FSTATUS.

ELEMENT IS NOT IN THE LIBRARY FILE LIBRARY

The program requested by the command is not in the file specified. Check the
spelling of the program name and verify that the program is on the file. Also, be
sure the correct module type has been used (P for PROCs).

BEM:BASIC — User Reference A

UA-0140Rev. 3 C-5
DOCUMENT NO. | TITLE |Pagerev.| © PaGE
ELEMENT NUMBER DOES NOT EXIST, RE-ENTER > BEM

The user did not select one of the numbers listed by the RECOVER command. Only
those elements identified with a number in the left margin may be recovered.
Reenter the correct number and the new module name.

END OF FILE ON INPUT OR LINPUT BASIC

The program has issued an INPUT or LINPUT statement which attempted to read
more records than were in the file. Investigate the program logic to determine why
too many records are being read.

END STATEMENT IS MISSING OR MISPLACED B8ASIC

Alt BASIC programs must have an END statement as the last line. Insert an END
statement and rerun.

ENTER ELEMENT NUMBER, NEWNAME OR “STOP "> BEM

The RECOVER command has presented a list of elements which could be
recovered. Select one by specifying its number, and a new name for it. Other
possible responses at this point are STOP to terminate the command, or HELP to
obtain additional information.

ENTER FILE NAME BASIC

The user has entered a SAVE, OLD, or RUNOLD statement without specifying a file
name. Supply the name in response to this message.

ENTER FUNCTION NOT CONFIGURED) BEM

The system administrator has not elected to make the ENTER comman.d available
at your site. Contact the administrator to have the function installed. This error
may also be the result of not having 0S/3 Spooling configured, or not having any

-spooled Input Readers.

ERROR IN READING CARDS/ENTER STREAM, USER CANCELLED B8EM

A fatal 1/0 error has occurred while reading cards from a batch stream or enter
file. The batch is discarded and the user is cancelied.

ERROR IN READING SCRATCH SPACE WORKSPACE

An 1/0 error has occurred while reading from the work area. Retry input or
investigate for possible hardware problem.

ERROR IN READING SCRATCH SPACE INDEX WORKSPACE

An 1/0 error has occurred while reading the work area index. Retry input or
investigate for possible hardware probiem.

- C-6 A BEM:BASIC — User Reference UA-0140 Rev. 3

PAGE |paceRev.| TITLE i DOCUMENT NO.

ERROR IN SOURCE — RESEQUENCE TERMINATED BASIC

One or more of the source statements read in by an OLD command with errors
have not been corrected. Only valid programs in the workspace may be rese-
quenced. This error indicates that. there is at least one statement which is not
syntactically correct.

ERROR ON READ FROM FILE (INVALID NUMBER) BASIC

A READ statement attempted to read a numeric variable. The record which was
read did not contain numeric data.

ERROR PROCESSING USER FILE LABELS FILES
The file being accessed contains user file labels. These cannot be processed by
BEM.

ERROR WHILE WRITING INTO SCRATCH SPACE WORKSPACE

An 1/0 error has occurred while writing to the work area. Retry input or
investigate for possible hardware problem.

EXPONENT OVERFLOW, EXECUTION CONTINUES . BASIC

The result {(or intermediate result) of a3 computation has exceeded the largest
number the 90/30 -is capable of handling. This number is approximately 107S.
Machine infinity is supplied and execution continued.

EXPONENT UNDERFLOW, EXECUTION CONTINUES BASIC

The result {or intermediate result) of a computation is less than the smallest
number the 90/30 is capable of handling. The number is approxxmately 10778, Zero
is supplied and execution continued.

EXPONENTIATION ERROR BASIC

Invaiid operands were used with the A**8 or AIB function. This error can occur if
A" is negative and “B”’ is not an integer between 1 and 15 or — 1 and — 15.

EXPRESSION QUT OF COMPUTED GOTO RANGE BASIC

The calculated expression is not a valid number for this computed GOTO. it is
either too large or nonpositive. The count of line numbers in the statement
determines the largest vaiue the expression may have.

FILE ACCESS HAS BEEN TERMINATED BY USER UBRARY

This indicates that a file access has been terminated when the user did not wish to
wait on a FILE IS IN USE message.

FILE ALREADY EXISTS ON VOLUME BEM

The user is attempting to allocate a file which already exists on the specified
voiume.

UA-0140Rev. 3 BEM:BASIC — User Reference A Cc-7
DOCUMENT NO. [TITLE | PaGe Rev T PAGE
FILE DOES NOT HAVE VALID “ENDLIB" LIBRARY ‘

While searching the directory of the file, BEM could not find the ENDLIB marker.
The file's integrity is in question. A possible solution wouid be to copy all elements
to another file, then scratch and rebuild the original fiie.

FILE IS EMPTY — ENDLIB MISSING ’ : LIBRARY

The user has attempted to access an empty library file. Initialize the file with the
Librarian in order to use it with BEM. .

FILE IS IN USE. PLEASE WAIT LIBRARY/FILES

Another user is accessing the file. After his command completes, yours will begin.
if you don’t wish to wait, interrupt the system.

FILE IS NOT AN OS/3 LIBRARY FILE LIBRARY

The file specified by the command is not a library file, or has not been initialized by
the librarian. Have the system administrator prepare the file, and be sure you are
using the correct file.

FILE PARAMETERS DO NOT FOLLOW “FSTATUS” BEM

The FSTATUS command requires file parameters in the format:
filename (password), volume

FILE PARAMETER FORMAT ERROR LIBRARY/FILES

The file parameters given for a file-access function are not valid. The maximum
length for each parameter is: name, 8; filename, 44; password, 6; volume, 6. if a
module type has been supplied, it must be S, P, or M.

FILE REQUESTED 1S NOT ON DISC VOLUME LIBRARY/FILES

The filename requested is not on the volume specified. Check the spelling of the
filename or verify that the file is on the volume.

FILE STATEMENT INVALID FOR #0 BASIC

The channel-setter specified with the FILE statement resuits in a value of zero.
Channel zero, the terminal, cannot be defined by a FILE statement.

FNEND’ FOUND WITHOUT FUNCTION DEFINITION BASIC

The FNEND statement was detected, but it was not at the end of a function.

Remove the statement or place it in the correct location and rerun.

“FNEND* STATEMENT MISSING BASIC

A user-defined multiline function exists in the program without a closing FNEND

statement. Locate the function and insert the FNEND statement.

BEM:BASIC — User Reference UA-0140 Rev. 3

C-8 A
PAGE | PAGEREV.| TME . | DOCUMENT NO.
FUNCTION ASSIGN DOES NOT MATCH FUNCTION NAME B8ASIC

The name of the function being assigned differs from the name of the function in
which it appears. Only the function being defined may be assigned a value.

FUNCTION ASSIGNMENT MUST APPEAR WITHIN FUNCTION B8ASIC

A vaiue must be assigned to a multiline function before the FNEND statement. The
function value may not be assigned outside the body of the function.

FUNCTION DEF MUST PRECEDE USE IN “CALL"” BASIC

In order for a user function to be passed to a subprogram, it must be defined. Move
the definition into lower-numbered lines before the CALL.

FUNCTION DEFINITION WITHIN A FUNCTION BASIC

BASIC has detected a function within the body of another function definition.
Check for a missing FNEND statement or restructure the function.

FUNCTION EXPECTED IN CALL OR SUB LINE B8ASIC

A previous CALL statement passed a function reference. This CALL did not pass a
function. The parameter types must be the same. Resolve the conflict and rerun
the program.

" FUNCTION HAS NOT BEEN DEFINED . BASIC

The function referenced on the line in error has not been defined. Define the
function or remove the reference to it and rerun. .

GIVEN LINE EXCEEDS 80 éHARACTERS WHEN RESEQUENCED A BASIC

The line shown, when resequenced, is larger than 80 characters. This is an
informational message, in that the complete resequenced line is written out, and
can be modified by EDT, but if the program is later read in by BASIC, it will be
flagged with an error for being over 80 characters in length.

GOTO INTO OR OUT OF FUNCTION DEFINITION BASIC

A tunction may not reference program lines which do not occur within the body of
the function, nor may statements outside the function reference lines within the
function body. This applies to GOTO, GOSUB, ON, and |F statements.

ICAM ERROR {INPUT TOO LONG) RETRY BEM

The last message sent from the terminal to BEM did not arrive correctly;
retransmit it. Any input to BEM is limited to 128 characters in length. If this error
is dispiayed while transmitting the RSP Spool file descriptor screen, it indicates
the UNISCOPE being used does not have the required protected format feature.

ILLEGAL COMBINATION — “NOT" INVALID DT

If the NOT option is specified, then a search-string must also be specified and a
change-string must not be specified.

UA-0140Rev. 3

BEM:BASIC — User Reference A

C-9

DOCUMENTNO.

1) TITLE [PaGeRev |

PAGE

ILLEGAL COMBINATION OF COMMANDS EDT

Several command keywords have been entered which conflict. See Table 3-1 in
UA-0141 for allowable combinations.

ILLEGAL "VAL"” ARGUMENT) BASIC

The string passed to the VAL function did not contain a valid number. The contents
of the string must be either an integer or a decimal number in scientific notation.
No extra characters may be prefixed or suffixed to the number.

INCORRECT NESTING OF FOR-NEXT STATEMENTS - BASIC

A FOR or NEXT statement, which was not nested correctly, was detected. Possible
causes are: -

1. A FOR statement that has the same index as a previous FOR statement in
the nest.

2. A NEXT statement that does not have the same index as the FOR statement
_immediately preceding it.

3. A NEXT statement that does not follow any open FOR statement.

INCONSISTENT FORMAT IN “'USING’’ STRING BASIC

The format field type does not match the type of variable being printed. Either a
string was printed into a field beginning with $, + or —, or a number was printed
into a field beginning with <or >.

INPUT DATA INCORRECT, RE-ENTER ' B8ASIC

The data entered for an input statement does not match the variable types required
by the program. The entire line must be reentered. This error message could also
be caused by too much or too little data in the input response.

INSERT ERROR (DUPLICATE OR INVALID CHANGE STRING) EDT

Either the keyword INSERT is preceded by a string, or it is not followed by one. The
change string may also be invalid. See Section 3.1.2.4 or 3.1.1.6 of UA-0141,

INSUFFICIENT DATA TO READ . BASIC

All DATA statements in the program have been used, yet the program attempted to
request additional data. ‘

INSUFFICIENT INFORMATION TO CREATE SPOOL FILE RSP

The minimum information required to create a Spool file was not specified on the
spool descriptor screen. An input file requires either an LBL, or both a JOB NAME
and an LFD.

c-10 A BEM:BASIC — User Reference UA-O140Rev. 3
PAGE | PaceREV.| TTE] oocumentno.
‘ INSUFFICIENT RESOURCES TO LOGON BEM

There is not enough memory or user tasks to allow another user to log on to the
systemn. The user should wait until another user has released storage or logged off.

INTERNAL ERROR IN LIBRARY ACCESS ROUTINE LIBRARY

The library access routine within BEM has detected a logic error. Take a dump as
sgon as possible, save all relevant data, and consult your Sperry Univac repre-
sentative. .

INTERNAL ERROR IN RESEQUENCE ROUTINE - 8ASIC

A condition which should not normally exist has been detected by the resequence
routines. Collect all relevant data, obtain a memory dump, and contact your local
Sperry Univac customer representative.

INTERNAL ERROR IN WORKSPACE . WORKSPACE

An internal error has been detected by the workspace access routines in BEM. if
the error persists the user may be forced to halt the current program and reexecute

it.

INTERRUPTED: (C)ONT,(DHSCONT,(S)YSTEMD BEM

This message indicates that the user has interrupted BEM by means of the
MESSAGE-WAITING key on a UNISCOPE terminal, or the BREAK key on a
hardcopy terminal. The user has three options: C- will continue the interrupted
operation; D- will discontinue the current operation and return to command mode;
S- will temporarily suspend the current operation and allow the user to enter BEM
commands; when the user wishes to resume the current operation, the /RESUME
command is used.

INVALID @(LABEL) -- MISSING PAREN EOT

An open parenthesis was found to start a label, but there is no closing parenthesis.

INVALID @SET COMMAND EOT

An @SET command has been used with an invalid keyword parameter. The only
valid keywords for use with SET command are PAGE, LINE, TABS, and CHAR. See
Section 3.2.3 of UA-0141,

INVALID ASSIGN STATEMENT EDT

An ASSIGN statement must be of the form:
@ASSIGN Gn = expression

INVALID BLOCKSIZE OR RECORD SIZE FILES

BEM cannot process the file due to a conflict with the block or record size for this
file. If the file already exists, check that the block size or record size is not zero, or
greater than 65K.

UA-0140 Rev. 3 BEM:BASIC — User Reference A c-1
DOCUMENT NO. { TITLE ~ |PaceRev.| PAGE
INVALID BULLETIN OPTION — NOT READ/WRITE/DISPLAY ’ 8EM ‘

There are only three valid bulletin functions which may be used with the BULLETIN
command. These are READ, WRITE, and DISPLAY. Correct the command and retry
it. .

INVALID 8Y PARAMETER USAGE . EDT

The BY specification has been used without the SEQUENCE command, or the form

 of the parameter is not valid. See Section 3.1.1.2 of UA-0141.

INVALID CHANNEL SET EXPRESSION - BASIC

The channel-setter in the flagged statement resuited in a number less than zero, or
greater than 4095. Channel numbers must be between 0 and 4095.

. INVALID COLUMN IN TAB COMMAND EDT

One of the column numbers used in a TAB command is not between 1 and 128.
See Section 3.2.3 of UA-0141.

INVALID COLUMN RANGE EOT

The column range specified in a replacement expression is invalid. It must be of
the form:

nii-j
where 1<igj<128
INVALID DO OPTION o _ . eor
The DO statement has the format:

@DO n [P)

where n is an integer {1-9) and the optional P specifies that each command is
to be printed.

INVALID EDT VARIABLE (#Gn) EOT

A single number sign (#) is assumed to designate an EDT general variable. This
must be followed by the letter G and a digit in the range 0-9. If a number sign is
needed in the command, enter two number signs (##).

INVALID ELEMENT TYPE , BEM

The element type used with the /DELETE command must be one of the following:

S-source P-proc M-macro
O-object L-load G-group

C-12 A BEM:BASIC — User Reference UA-C140 Rev. 3

PAGE |Pacenev.| TIME } DOCUMENT NO.

INVALID EXPONENT FIELD IN USING STRING . BASIC

An exponent field must consist of exactly five up-arrows (1) and cannot be followed
by a place holder #. Correct program and rerun.

INVALID FIELD DESCRIPTOR, EXPECTING <, > BASIC

The user program attempted to print a string variable with a numeric format.
Correct the program and rerun.

INVALID FIELD DESCRIPTOR, EXPECTING $,+,— BASIC

The user program attempted to print a numeric variable with a string format.
Correct the program and rerun.

Il‘:lVAUD FORMAT FOR LOGON COMMAND 8EM

The LOGON command has been entered incorrectly. It must begin with the word
LOGON, and is foilowed by one to three fields of up to four characters each. Check
that none of the fields are too long, and that there is nothing entered after the
third field.

INVALID 1D, ACCOUNT, PASSWORD FOR LOGON BEM

An unlisted id, account, and password combination has been entered; thus the
user has been denied access to the system. If the fields have been entered
correctly, then the account may have been removed from the system. Contact the
system administrator to have the account created.

INVALID IF STATEMENT g EDT
An IF statement has the following format:

@IF expression op expression COMMAND

@IF {:T-'} COMMAND i
INVALID KEY LENGTH) FILES

Files containing keys cannot be processed by BASIC.

INVALID LINE RANGE BASIC

Valid line ranges consist of single line numbers.(a,b) or ranges o(lines (a-b). Aline
number consists of a decimal number in the range 1-99,999.

INVALID LINE SET COMMAND EDT

An at sign (@) alone has been entered, or the line number with the line set
command is not valid. See Section 3.2.4 of UA-0141.

INVALID OR ZERO LINE NUMBER EOT

A line number in an EDT variable expression must be in the form nnnn.nnnn, and
must not be zero.

UA-0140Rev. 3 BEM:BASIC — User Reference A c-13

DOCUMENT NO. [TTLE | PacERev. | “PAGE

Sy

INVALID MAJOR FRAME COMMAND - RSP

The user has entered a command other than one of those shown on the screen. A
new screen will be presented. Valid commands are:

BREAK "END © DISPLAY RETRIEVE
RELEASE BUILD DELETE HELP
CLEAR READ WRITE SCREEN
TYPE UPPER LOWER SYSTEM
INVALID MARGIN SIZE , BASIC

The margin expression specified on the flagged statement resulted in a number
less than zero, or greater than 4095. This error could also have resulted from
attempting to set the size of the margin greater than the limit for the file type.

INVALID NUMBER PARAMETER EDT

The number parameter must follow the NUMBER command, must be a valid
change string, and must terminate with at least 1 but not more than 15 numeric
characters. The parameter must be enciosed in apostrophes and any “or”
characters in the string must be entered twice.

INVALID OR DUPLICATE CHANGE STRING EDT

The change-string used is not valid or two change-strings have been entered.
. Change-strings must begin and end with apostrophes. See Section 3.1.1.6 of

UA-0141.

INVALID OR DUPLICATE COLUMN RANGE) EDT

The column range entered is not valid, due to incorrect format, or two column
ranges have been entered. See Section 3.1.1.3 ¢f UA-0141.

INVALID OR DUPLICATE COPY-TO LOCATION EOT

Either two copy-to locations have been used (i.e.; @ COPY 1-10 TO 11 TO 22) or
the one given is not valid. The number following the word TO must be a valid line
number. See Section 3.1.1.7 of UA-0141.

INVALID OR DUPLICATE LINE RANGE EDT

The line range entered is not valid due to incorrect format or two line ranges have
been entered. See Section 3.1.1.9 of UA-0141.

INVALID OR DUPLICATE SEARCH STRING : EDT

The search-string used is not valid or two search-strings have been entered.
Strings must begin and end with quotes or apostrophes. See Section 3.1.1.8 of
UA-0141.

Cc-14 A ' " BEM:BASIC — User Reference UA-0140Rev. 3

PAGE | PAGEREV.| TTLE } DOCUMENT NO.

INVALID PROC GROUP NUMBER EDT

The PROC group number must be a single digit integer in the range 1-9.

INVALID RESPONSE, ENTER NUMBER, NEWNAME > BEM

The user’s response to the last query was incorrect. A non-zero number must be
entered first, followed immediately by a comma and then the module name. No
intervening spaces are permitted.

INVALIO SCREEN ROLL COMMAND RSP

The user has entered a command other than one of those shown on the top of the
screen. A new screen will be presented. Valid commands are:

CcMD up DOWN /
RIGHT LEFT DELETE
INSERT UPDATE REFRESH

INVALID SEARCH COMMAND ' RSP

The search command issued to RSP is not correct. It consists of a search-string
and an optional column range. The search-string must begin and end with an
apostrophe. A column range is a single number, or two numbers separated by a
hyphen. The number must be between 1 and 256.

INVALID SEARCH STRING BASIC

A search-string consists of any character string enclosed in quotation marks. If a

quote appears in the string, it must be typed as ™ .

INVALID SUBSTRING EXPRESSION . EDT

A substring of an EDT variable is written as. a starting position (s} and a length (1)
enclosed in parentheses--{s,l).

where 1<s<b0ands+I|<51

INVALID TAB EXPRESSION FOR PRINTING BASIC

The argument of the TAB function was less than one.

INVALID TRIMMER IN MATRIX STATEMENT BASIC

Either the trimmer specified did not resuit in a positive number, or the resultant
array would require more storage than the original array.

UA-0140 Rev. 3

BEM:BASIC — User Reference ' A

C-15

OOCUMENT NO.

| TITLE [Pacerev |

PAGE

INVALID VARIABLE EXPRESSION EDT

An EDT variable expression must be one of:

STRING — ‘ABC’
VARIABLE — Gn

NUMERIC EXPRESSION —n+m,n—m, n
LINE/COLUMN RANGE — nii—j

170 AREA COULD NOT BE LOCATED, RETRY : LIBRARY

An 170 area for the library function could not be acquired by BEM. Wait a few
minutes and retry. If the problem persists, contact the system administrator to
have the system memory partition enlarged.

1/0 ERROR ACCESSING MESSAGE INDEX BEM

An 1/0 error has occurred while writing to the bulletin file. Only part of the bulletin
is now valid. The DISPLAY option should be used to determine that status of the
bulletin, and the WRITE option may then be retried.

i/0 ERROR ON WRITE TO FILE . FILES

An |/0 error has occurred while writing the data management file. Investigate for

possible hardware problem or retry the program.

I70 ERROR WHILE ACCESSING V.T.0.C. LIBRARY/FILES

An 1/0 error has occurred while accessing the VTOC for the disk volume specified.
Retry or investigate for possible hardware problem.

170 ERROR WHILE READING CATALOG N\LIBRARY/FILES

An 1/0 error has occurred while reading the catalog. Retry or investigate for
possible hardware problem.

170 ERROR WHILE READING LIBRARY FILE - LIBRARY

An 1/Q error has occurred while reading the library file. Part of the program may
be missing. Retry or investigate for possible hardware problem.

170 ERROR WHILE WRITING LIBRARY FILE LIBRARY

An 1/0 error has occurred while writing the library file. The program has not been
saved. Retry the command or investigate for possible hardware problem.

LIBRARY FILE FULL, ELEMENT NOT ADDED LIBRARY

The library file has been filled and there is not enough room to write out the
program. The old version, if any, is left intact. Have the file expanded or its
contents compressed.

C-16 A BEM:BASIC — User Reference UA-0140 Rev.»3

PAGE | paGE REV | TITLE .] DOCUMENT NO.

LIMIT OF 4 *LIBRARY"* STATEMENTS EXCEEDED BASIC

BASIC will search at most four libraries for subprograms, the program has
attempted to use more than four.

LOADER AT LINE xxxxx ‘ BASIC

When the error was detected, the BASIC compiler was at the line number given by
xxxxx. This message is displayed in conjunction with another error message.

LOG OF A NON-POSITIVE NUMBER UNDEFINED 8ASIC

The LOG function has encountered a nonpositive argument. The logarithm of a
nonpositive number is undefined, thus execution is cancelled. '

MATRIX DIMENSIONS ARE INCORRECT FOR FUNCTION BASIC

The row or column dimension of the matrices in the matrix staternent is incorrect.
Check DIM statement for the matrices in question.

MISSING FILE PARAMETER EDT

A READ or WRITE command has been entered, but the file parameters do not
immediately follow the command keyword. Correct and retry.

MISSING FILE PARAMETER . 8EM

File parameters must immediately follow the DELETE, PRINT, or PUNCH keyword
and be in the format:

element, filename (password), volume, type

MODULE NOT OVERWRITTEN, COMMAND TERMINATED . LIBRARY

This is a confirmation message informing the user that the WRITE command was
not executed. it resuits from a NO answer to the OVERWRITE question.

MORE THAN 29 FILES OPEN 8ASIC

BASIC does not support the concurrent use of more than 29 temporary and library
files per user. This program has exceeded the limit.

MORE THAN 4 CHARACTERS IN LABEL EOT

EDT statement labels may contain no more than four characters. Correct the proc
by using shorter labels.

MUST BE PRIVILEGED FOR BULL READ/WRITE BEM

Only privileged users may read or write the BEM bulletin. Normally, only the
system administrator will have a privileged status in the accounting file.

UA-O140 Rev. 3 BEM:BASIC — User Reference A C-17
. DOCUMENTNO. T TIMLE - |Pacerev | PAGE
NEW NAME ALREADY EXISTS, RE-ENTERD> BEM

An element with the specified name already exists in the file. Select another name
and retry the response.

NO OISK SCRATCH SPACE AVAILABLE : WORKSPACE

All the disk cylinders available to BEM have been assigned, wait and retry or
contact the system administrator.

NO FORMAT STRING DEFINED IN USING STRING BASIC

The user program attempted to print a variable using a format string that does not
contain any valid format strings.

NO MEMORY AVAILABLE FOR FILE 1/0 BUFFERS FILE

A memory area to store a block buffer and DTF could not be ailocated for your file.
Retry later and contact the system administrator if the probiem persists.

NO MEMORY AVAILABLE FOR WORKSPACE BUFFERS WORKSPACE

An area of memory could not be acquired for 1/0 buffers. Retry command when
memory becomes available. If problem persists, contact system administrator to
have the memory partition size increased.

NO PROC TO END v EoT

The @END statement was issued while no proc was active.

NO SUCH LINE NUMBER FOR A GOTO OR GOSUB OR IF-THEN 8ASIC

The line number referenced in a GOTO, GOSUB, ON, or IF-THEN statement is not
present in the program or function. Insert the required statement or remove the
reference to it.

NOT A DATA MANAGEMENT FILE FILES

The file being accessed is not a valid sequential or direct access file. To be valid, it
must have type SQ or DA and contain a single partition.

NOT ENOUGH MEMORY IS AVAILABLE TO LOAD 8EM

Insufficient storage is available to load the function you are calling for. Wait and
retry. If the problem persists, contact the system administrator to have the memory
partition size increased.

NOTHING HAS BEEN FOUND TO RECOVER 8EM

The RECOVER conmenand has searched the library for deleted modules with the
same name and type as specified in your command, but could not find any. This
response may indicate that the library has been packed, or that you have recovered
all deleted elements and there aren’t any left to display.

BEM:BASIC — User Reference UA-0140 Re\}. 3

C-18 A
PAGE {PaGEREV.| TTLE] DOCUMENT NO.
NULL USING STRING NOT ALLOWED BASIC

The using string specified in the print statement is a null string. Define the variable
and rerun.

NUMBER OF ARGUMENTS INCONSISTENT B8ASIC

The number and type of arguments passed in the CALL statement(s) do not agree
with the number and type on the SUB line.

NUMBER OF PARAMS IN FUNCTION CALL INVALID -7 BASIC

A maximum of 16 passed parameters and local variables may be specified on a
function declaration line. Reduce the number of labels and rerun. .

NUMBER OF SUBSCRIPTS FOR ARRAY INCORRECT BASIC

The variable that caused the error has been dimensioned with a different number
of subscripts than were found in the reference to it.

OPERATION NOT PERMITTED TO FILE ' BASIC

The operation to be performed against the file conflicts with the file type.

0S/3 ALLOCATE ERKOR 8EM

This message is returned when the ALLOCATE command receives an error status
from the supervisor when trying to ailocate the file. It may indicate that there is

insufficient space on the disk volume.

QUT OF MEMORY - RETRY (Y OR N) . . ALL

One of the internal routines within BEM has attempted to acquire additional
storage on a temporary basis. No storage was available. The user may wait for
storage to become available and reply Y, or may terminate the current program by
replying N. If the problem persists, contact the system administrator to have the
memory partition size increased. -

OVERFLOW ON VARIABLE SUBSTITUTIONS — TRUNCATED EDT

When variables in a command line were replaced, the new line exceeded 80
characters. The truncated command was processed.

OVERWRITE? {(YES OR NO) LIBRARY

The program to be written out by the command already exists on the file. A reply of
YES will overwrite the previous version with the new one. A reply of NO will
terminate the command.

PAGE/LINE SIZE INVALID EDT

The page or line sizes are not within the correct range. PAGE must be between 1
and 255, LINE must be between 1 and 128.

UA-0140 Rev. 3 BEM:BASIC — User Reference A Cc-19

[DOCUMENT NO. | e {PaGEReV. | PAGE

PARAMETER TYPE MIS-MATCH : BASIC

* The type of a parameter passed to a function/subprogram conflicts with the type
defined for the function subprogram. For example, a string was passed when a
numeric value was expected or a numeric value was passed when a string was
expected. Compare the line in error and the definition; correct the discrepancy.

PASSWORD IS INVALID FOR FILE - : LIBRARY/FILE

" "The password used does not match the one cataloged for the file. Another cause of
this error could be failure to specify a password with the file-access command. The
~ . useris denied access to the file in either case.

. PAUSED AT xxxxx CONTINUE (Y or N} BASIC

tal

A PAUSE statement has been encountered at the line number given by xxxxx.
Answer YES to continue execution; answer NO to terminate the program.

RN

. PLEASE LOGON BEM

The user's terminal has not been joined to the' BEM system. Follow log-on
procedures given in Section 2 of UA-0139.

PRINT TO FILE > MARGIN SIZE BASIC

__ The program attempted to print a string, number or USING string with a length
¥2& greater than the current margin setting. Change the .margin size, or reduce the
=~ length of the expression printed.

" PRINT/PUNCH 1/0 ERROR - ' 8EM

A hardware 1/0 error has been encountered on the printer or punch. Retry the
command. If the problem persists, investigate a possible hardware error.

_PRINTER/PUNCH IS IN USE, PLEASE WAIT BEM

= Another user is using the printer or the punch. Your command will be completed
- after the other command completes. If you do not wish to wait, interrupt the
system.

PROGRAM CANNOT BE RESUMED) BEM

The user tried to resume a program when no program had been loaded. A
RESUME command is only effective when the user has interrupted an active
program and wishes to return to it.

PROGRAM COULD NOT BE FOUND BEM

The program to be executed via an EXECUTE command could not be found. Only
EDT, RSP, and BASIC may be loaded under level 4.0.

PROGRAM NOT INCLUDED iN CONFIGURATION BEM

The system administrator has not elected to provide the program you have
requested.

A BEM:BASIC — User Reference " " UA-0140Rev. 3

C-20
PAGE | pacerev | TITLE I OOCUMENT NG, |
REFERENCE TO ACTIVE PROC ' EDT

The user has attempted the DO option on a currently actnve proc, or has attempted
to enter the current proc with an @PROC command.

REFERENCED SUBROUTINE NOT FOUND IN LlBﬁAR_IES C N BASIC

All user-specified libraries have been searched, but the subprogram listed in the
error message could not be found. Execution is:inhibited.

RENAME ERROR . : . BASIC

The string-expression used to supply the new file name does not contain a valid '

file parameter or temporary file name. This error may also be the result of
attempting toc RENAME a data managemant file.

REQUESTED RECORD NOT FOUND IN DATA FILE FILES

BASIC was attempting to read a record which does not exist in the data
management file. Probably due to a hardware errcr. If the problem persists, consult
your Sperry Univac representative.

RETURN WITHOUT MATCHING GOSUB CALL BASIC.

The program has attempted to return from a subroutine that was not called by a
GOSUB statement.

ROLL OPTION VALID ONLY AT UNISCOPE TERMINALS 8EM

The /SCREEN ROLL or /SCREEN COP options cannot be used with u hardcopy
terminal. The command is ignored.

RSP AVAILABLE ONLY AT UNISCOPE TERMINALS . RSP

RSP cannot be used at a hardcopy terminal. Move to a UNISCOFE terminal and
reexecute RSP.

RSP/EDT MUST BE LOADED TO USE/BULLETIN BEM

The BULLETIN READ or WRITE commands can only be issued while EDT or RSP is
loaded (use @SY BULLETIN. . .) since there is no workspace unless one of these is
active.

SAME MATRIX APPEARS ON BOTH SIDES OF EQUAL SIGN B8ASIC

The same matrix may be referénced on both sides of the equal sign in a MAT
statement, a new matrix must be generated.

SAT ERROR INITIALIZING FILE LIBRARY

The INIT=YES option has been selected in the command, and the file could not be
initialized. This could be due to a hardware error, or an attempt to initialize a
non-SAT file.

UA-0140 Rev. 3 BEM:BASIC — User Reference A c-21

" DOCUMENT NO. | TITLE }racerev. | PAGE

[

L R can AR A e R PN S N -

SCRATCH AREA IS FULL. TEXT NOT ADDED WORKSPACE

The program you are using has tried to acquire an additional unit of disk space and
Lznot scould not do so. The last i |mage entered has been lost. Wait and retry or contact the
systemn operator.

3

© ¥ SCRATCH ERROR Foo el BEM

i

The file specified in"the command could not be scratched. This may be a resuit of
an error status being returned from the-supervisor,.or could have been caused by
an attempt to scratch a file which should not be scratched {a system file for
- example). : ~

SCREEN COMMAND FORMAT ERROR ’ Bem

The SCREEN command has been entered incorrectly. Valid optmns are:

- ROLL cop D W ;
- /SCREEN [NOROLL] . [’NOCOP]' «..,_[,Ige/ghtx w:dth]

NPERNE - - R L

The default is /SCREEN NOROLL,NOCOP,24X80. -

SCREEN DIMENSIONS ARE INVALID FOR RSP - RSP

;J KN
RSP may only be used with UNISCOPE terminals; the only vahd sizes for these
terminals are 12 X 80, 16 X 64, 24 X 80, and 24 X-64. These are the only sizes

. which will be accepted. Treevggl

N R

P

LI SEARCH STRING NOT FOUND € F s e T RSP

w2l RSP has 'searched the workspace from the-current location tg the end, but could
not find the string requested. Informational. mgssage only... ..

SEARCH STRING NOT FOUND IN LINE-RANGE ‘ v eor
e The Editor has scanned all lines that the user's command has mstructed it to, but
did not find the string for which it was searching. This is caused by looking for a

word or string which is not in the text. Informational message ‘anly.

SECOND DEFINITION OF AN ARRAY NOT ALLOWED ' ’ BASIC

Two-dimension statements have been used to defme the same variable. Remove
one of the statements and rerun.

SECOND DEFINITION OF THE SAME FUNCTION 8ASIC

The same function has been defined twice within the program. Remove one
definition and correct the program. Rerun.

SECOND DEFINITION OF SUB — DEFINITION IGNORED BASIC

Two subprograms with the same name have been encountered during the

compilation process. The second subprogram will be ignored. The second subpro-

1 gram may have been found in a library element as a result of a library search. This
is a nonfatal error.

A BEM:BASIC — User Reference UA-C140 Rev. 3

c-22
PAGE | pace Rev. | TITLE | DOCUMENT NO.
SEQUENCE PAPAMETER ERROR :) EDOT

The name or number used to sequence a module is not correct. This may be caused
by using more than 16 numeric characters in the name or increment number. See
Section 3.1.2.8 of UA-Q141. . :

SET MARGIN FOR DMS FILE NOT AT RECORD O BASIC

A MARGIN statement was issued against a data management file while it still has
data in it. The MARGIN statement may only be used when ine file is empty.

SIMPLE VARIABLE INCONSISTENT WITH CALL ‘ BASIC

The CALL and SUB lines differ in the specification of a simp!e variable to be
passed to the subprogram. Resolve the inconsistency and rerun.

SOFTWARE CHECK AT ee LLLLLL 7 8EM

A software check has been detected by the Monitor. Please take a dump as soon
as possibie; save all relevant data, and consult your Sperry Univac representative.

SPECIFIED LINE NOT IN FILE EDT

The line specified in a replacement expression does not exist in the EDT work
space.’ o o

— COMMAND IGNORED RSP

.

SPOOL FILE NOT FOUND

The file described is not present in the Spool file. Check the spelling of the entries,
anrid check that the correct.queue name was specified. The snool elemeant may not
inave baen created yet.

SPOOL 170 ERROR R*U*) o RSP

An 1/0 error occurred while accessing the system Spool file. Respond R to retry; U
to terminate the command. If invalid data has been retrieved, clear the workspace
{CLEAR) and retrieve the file again.

SPOOL I/0 ERROR WHILE ENTERING TASK . BEM

The ENTER function has encountered a Spool file access error while writing the
command element to the Spool file. If the error persists, contact the system
administrator. :

SQUARE ROOT OF A NEGATIVE NUMBER UNDEFINED] .- BASIC

The SQR function has encountzred a negative argument. The square foot of a
negative number is undefined, thus execution is cancelled.

START AND INCREMENT WILL EXCEED 99999 . . BASIC

The starting number and increment used with the RESEQUENCE command cannot
be used as they are, because they would cause cne of the new line numbers to
exceed the maximum line number (99999) for 0S/3 BASIC. Use a different start or
increment and reissue the command.

UA-0140 Rev. 3 BEM:BASIC — User Reference ‘ A

DOCUMENT-NO. T TITLE ~ [PacERev. |
T T T - o o) ‘ AR
STATEMENT FOLLOWING END/SUBEND NOT SUB/REM BASIC
‘ The only permissible statements following an END statement are'a-REM statement
nasos-or @ SUB statement. Correct the program and rerun.
v"f:"’ W . :
STATEMENT LABEL NOT IN FILE - o EDT
-.~, The label specified on the @GOTO statement could not be found in the EDT proc
o space
&0 4 : - - Lol L Sl
STATUS COMMAND PARAMETER ERROR ' o Bem

o

sze. The operand of a STATUS command is incorrect. Allowable status commands are:

[ISTERS S E/SIATUS T-E-RM
/STATUS . RESOURCE |
/STATUS i
a3
sroppen AT xxxxx e BASIC

A STOP statement has been encountered or an error detected at the line number
given by xxxxx.

o

ey

STRING EXCEEDS 4095 CHARACTERS R BASIC

Ay LT

A string operatnon has produced a string wuth a Iength in excess of 4095
. characters. The maximum number of characters permitted in a strmg is 4095.
T <K "_m" n‘, : DA -:ﬂ R fﬂ
,2a-11~ SUB: FNX PRECEDES "“CALL” , ~ BAsIC

e I A PR SR A TAT rampo

164 BIA 'SUB statement decldring a passed function: cammot-oceur before: the statement
that calls it (and defines the function parameters). Relocate dhe: subprogram so it
occurs after at least one statement that calls it.

LY A C TN i TS 3

g “, ;.. SUB.NAME IS GREATER THAN 8 CHARACTERS]) BASIC

398C2/The name used on 3 CALL or SUB statement for:a subprogram must be a string
constant which is not longer than 8 characters. Correct the spelling of the name or

‘ shorten its length.

ar -, SUBEND" OR ""SUBEXIT” NOT IN A SUB » BASIC

i " "A" SUBEND or 'SUBEXIT was encountered whlch was not in a subprogram The
SUBEND must be the last statement in a subprogram, Lo

ST T gUBEXIT NOT ALLOWED IN FUNCTION DEEINITION © " BASIC

& ' " A SUBEXIT statement was encountered within a multiline user function definition.
It can only be issued from the subprogram level.

WLAB SUBROUTINE CALLING ITSELF 8ASIC
"1’ 7L A CALL statement has been found which references the subprogram in which it
Lo eSIdes ’Recursave calls in any forrn are prohibited.

W NETE Ine st

G-24

A BEM:BASIC- — User Reference ~UA-91 4QBev 3

PAGE

-]r_iqsgiv.]_ i mnE

T e Cew m——————s - .._.1:, pIR—— mmm -

. SUBROUTINE LIMIT OF 30 EXCEEDED ©:3/"ja ' s ; Lt omazg o - yypcy-BASIC

BASIC will not accept more than-30 sybprograms. Combine several gubp;pgrams
or change program logic to ehmmate a few.

Lo O

S SR) 38 ey mens
Ce e T sl s AR

- SYSTEM CLOSED TO NEW USERS, TRY LATER - BEM

Tﬁe ccmputer operator has closed the systgm, 50/ that no new usef" wau be allowed
=10 -onsWaituntil later to LOGON. EUTERT e T e mee s s ey
. STEONT CiminE ey g

SYSTEM COMMAND NOT RECOGNIZED BEM
R SEIID Q. il fiew TWITUO TR Ol et

A command was entered in monitor mode whlch was not recogmzed All
cbmmands must bégm with one slash and oﬁty dommahds Ilstede beiotv are

allowable R A SRt L
/DELETE file-info 25 ,m;:m; -
/DISPLAY JOBS
/DISPLAY VOLUMES R L
/EXEC program _ T,
/FSTATUS file-info. ST R
JHELP LR e
/INTR e e ey i
/LOGOFF T T BT T
/PAUS E"CUMMén: et O R R e 1711
/PRINT file-info ke
/PUNCH file-info |
/RUN program Lz S e T
/RESUME
/bCﬁEEN - 4 : R P I P Play

‘_’/STATUS RESOURCE ' ‘ EREEERE AL T
S ySTATUSTERM ~ -7t : . Crntnga
/TYPE cornment o Coe L gl
- /VTOC volume
. SaA
“TAB" CANNOT BE USED WITH “PRINT USING" s . Basic

The TAB function-cannot be used while PRINT US%NG is active. The TAB should be
removed, or a semicolon placed before the function call to termmate the USING
clause. LT R

TANGENT/COTANGENTOUTOFRANGE o . hgasic

- i

_The result of a TAN or COT functlon evaluanon caused an overﬂow condmon

f TAsK ENTERED IN BAGKGROUND MODE \ R

Machine infinity is supplied and execution continues.

BEM

This is a confirmational message indica:ing that the Enter fle wes mccessfully
queued for execution. The task may already have begun, or may be delayed until a
batch processor becomes available.

e .+ M . 0 o ST e et e 5

°

T Bhe prévious Gse? did hot LOGOFF;qhis term1na| is still Iogged ony ra I FLl

5 TERMINAL IDLE TOO LONG, REPLY OR BE CANCELLED BEM
b 2 TR v + LR P B M AR ¥R

This terminal has had no activity for a long period of- time, and is assumed to have
EOvRSey 18R iBIRS1F this termimal it in usd, -reply within 30 secends; ot BEM will
log the terminal off. The time limit before this message is’ drsplayed issset-by the

4 system administrator.

Ca . ot e e e
v Y1 A RESVAERRSS NS

: THE suaﬂourme DEFINED IS NOT REFERENCED BASIC

Y J A" r,.” ik /) 2N i RO

21¢ Thisvispan: mfermauonel message: only lt noufles the us@r that he has ,tncluded a
subprogram (either implicitly via LIBRARY or explicitly in the’ workspace) which is
never called. It should be eliminated as it only takes up memory Compnlanon
continues. Gy

&

TIME UP — PROGRAM LOOPING T BASIC

The time limit specified in the TIME statement has been exeeeded by the program.
It may be looping, or it may require that the time limit be mcreased

TOO MANY TAB STOPS _ j " £or
b SO .
More than eight tab stops have been used with the: T:AB-commiand: See Section
3.2.3in UA-0141. Gy eyt e
RN e AR

TYPE CF FUNCTION PARAMS INCONSISTENT IN CALL myETenL Y U BASIC

o

The functions passed to a subprogram do not agree in. ,type gr number of
parameters expected. Check the CALL statements ta-seethat any funmxons passed
contain the same number and type of parameters themvnheck &he~subprogram to
be sure it references the function correctly. Jremrmer e T8, T

UNABLE TO CREATE SPOOL FILE - RSP

~

RSP could not successfuily build the desired Spool file - Cﬁecﬁ"’ﬁﬁrémeters and
v retry. i the problem persrsts consuit your. Sperry Umvacrepresentatwe

-
ey

N 1o _— f .
PaEe- Y o T i .»»,; B o P .
{ Lo

UNCORRECTED ERROR IN SOURCE “ | C " sasic

P

«2as One of the statements flagged during the previqus OLD command has not been
eliminated or corrected The number of that line is’ shown

G TR

UNKNOWN ERROR ON SATFILE -+ + hs o o L e LIBRARY

T PR et T

B T O N

i

)
P
‘«‘_’

+;3- BEM has received an error code from the, SAT progessor which it does not expect.
If the command issued does not violate any o the’ Bonstrdinits placed on by BEM,
’comact your docal. Sperry Univac representauve, T

£ - H opeeed

‘v il e B .~ . s oo

£ g T) ‘
. SEbtAdRe3 _ __ BEM:BASIC-< UserRéférence A 025
B [ragensv.| " PAGE
“V*“* TERMINAL ALREADY LOGGED ON, PROCEED =i [v% . . .o HLRALy BEM

14C-26 A BEM BASIC — User Reference . UA-O14O Rev.3

il

5 PAG,E _ -}PkGE‘-R-E‘VTA ‘: :. L v — - v maman .._Mm,.. G ama e ——— g . e —If mt‘llljm'__

T~ -~ P T Atreme fel we er e - . AN
A i,

y . ¢

¢ UNRECOGNIZABLE COMMAND e EDT-

A command keyword has been used which the Ec_btor does not recog_mz : Check all
keywords used against Appendix A of UA-O141 L "

P

(RS

337 YRUSIN DID NOT SUPPLY FILE NAME & NO BERAULTGIVEN: 2+ - oy 1oy 31 FILE(LIBRARY

867 2The user has jssued a command which :requires that.a fxle-namg.be specified; no
filename was stated in the command. if the user expected to use a detault file
specification, he should contact the system administrator, as the administrator did

= r“motdeclare a default file for this account. - - To:gerrect the command, enter a
f|lename expllculy

S

g usewwsﬁeoﬁw CANCELLED BY OPERATORZ "0 . 07 8EM
[t 2l RSN Y
- s-sviThe, operam hamcancelled your task for some: rea;_qrg _Contaqg.;he find
out why. ERTNAES LRI B TR RO fugr v g “t'..mr»'
USER LOGGED OFF, END OF FILE ON CONTROL STRFAM. 0 spw e iy oo, BEM

: This .message .is -anly: issued by a batch:processor.. It indicates. that the_processor
auempt.eﬁ to fead morecards from tl:\e enter stream and founq nong‘l‘eﬁ‘ Tbe enter

......

mistyped LOGOFF command.

AT WO ok, - D
ySER LOGGED OFF NQ RESPONSE IS ALLOTTED TIME ’ BEM

R ST .

e ..
" ‘_\“'ng—-'—

. Fhiguiiessags is issued 30-seconds after the 'TERMINAL IDLE TOO.LANG. .
message if no response is made. To use this terminal, the next user need only |og
on again.

USER LOGGED OFF, TERMINAL IS NOW FREE BEM

This indicates successful completion of a LOGOFF command.

USER'S ACCOUNT DOES NOT PERMIT WRITING TO FILES FILE/LIBRARY

The user has attempted to write or update a file and is not permitted to by his
account description. To remove this restriction, contact the system administrator to
change the access permission.

USER’S ACCOUNT PROHIBITS ACCESS TO THIS FILE FILE/LIBRARY

The account description for this user does not permit the specified file to be
accessed. This usually is a result of accessing a file other than the default file if
only that file is permitted. To remove this restriction, contact the system adminis-
trator.

VOLUME IS NOT AVAILABLE TO THE BEM SYSTEM . LIBRARY/FILE

The disk volume you have requested is mounted, but has not been made available
to the BEM system by the system administrator. Contact the system administrator
to have the pack included.

,,: vaf (Ir‘ -;i\ ¥ . =~ SHE f D . - .
o LAQI40 RO e " BEMEBASIC = User FRétgterice A =£-27
B L T 1 T _: . |rAGerev | .. pace

L.

“* VOLUME NAME IS NOT SPECIFIED AR L2 ST L O RBRIARY/FILE

Theﬁusér has fot’ supplsed*th’e name of e dusk volirm& 16 ‘seaiy, and the-volume
name is not in the catalog. o TUERAC D Bk D s Elhre

TRRYS yOLOME NOT MOUNTED ONRBHSKORIVE - & ~ 3 Viar 007 U7 fup it SBBARY/FILE

© 7 U IREVolumd” reqtfeaéd is not* mouritéd: ohva disk drive, Contact the' operatorto have
- .”“tﬁ_‘é“VElurﬁ’é mounteif SRR UL SRR o
Ll AR VICRS SRR o AT R T T T A e g

FE I aAtHNG FOR Cﬁ’EN ’H:E f‘RBLé ENTR¥~ A RTIY =11 N »vuaﬁunwms

An “Open File Table Entry”” in the preamble could not be sécured fof this file
#7% access. BEM will wait until another filgsagcess terminates and releases ifs entry. If
the user does not wish to wait, the interrupt facility of BEM may be used to
< {arkniivdte’ thé Hie® accesE oI HHis™ probl@rm ‘occurs feeqaently, eontact:the system
administrator to have more entries placed in the preamble. vy Tan

By

N5y OF FUNCTION PARAMS INCONSISTENT IN-CALL © 3C 0o %30 [F 2., . BASIC

= “yie'::"""l’\;ieM ufmber- of “pafametérs ‘Passed t& a subprogfamidoes Tot Fgree With the
R nurﬁbér“St%ted o the syus: hﬂb or does not agﬂeemth ”anotheccﬁd.l. to the same
W 3“'“drdgram BT BT Wl e . 5 : 5

_ #0INVALID ON CHAIN ' BASIC
MER e Csmmoanaas o gzg
Channel zero, the terminal, may not be used as the ?ne from ?uch the chamed

prdgra‘m |s t&be read: A data—"management tempdrany.. of hbrm/;mg must-be used.

v“Z'?“"/ e b o 5
P e R . Sy A_”‘,E SEERALITEY L1 e 4‘!'“‘ 2
~y Y
STl UG
wWwaAs . - . e -
o3 S EC ML TN YZEL 0 REL.
) .
L - L -
[T i eV Yot Qg vt Wod S5 AN R
ViR EELLL TN TS DI E Ay
[0 SR VeI 4% B TN i = it - e 5 Taake = £ ot
e A - - G
SF g ecs [ter v - - y
- - ’ R
T AN] o3 T3 e
BRELS X . - .
BE . - SN AN IO P
i S o e Lnant W Tty WO Sy i
Rromrt Ponted et ueee) o
T RIS R S O E A b e P PR
VELIITLE TR T ~ . e oy
2] 2
SR TE R .
& LY b2 e LY
Rk iR grg Py - . " o -
2 . i 3
.s . -
OISR IOINDE Tty intn e 25 E & ;

R SIUETEE e et m e e

1737 B

Eirly

Ees . R e R I L SR L P Ty

LL T Sy pup

PP

AT Lt s i AR % 50 0% - — . T TR et mhee v s e

REST

Lhgrme

T

A

EN

P e,

3

xx

3
H
3

TSR s s e Sr b v te s e e T T et v e 11 0 e WS A,

e i SV e a e e e T Tt et e x s« A28 At % %S as e

e et et e i i S

N H
L .
L]
‘ : .
| H
| i SPERRY<=LWNIVAC
i :
L. .
- H
- : USER COMMENT SHEET
:
L]
E Your comments concaerning this document will be weicomed by Application Services for use in 4
E improving subsequent editions.
L
Please note: This foirm is not intended to be used as an order blank.
e ——— S i e e
—7TTy .. L {R”i..u.;m;'.*,“. s - < “tﬂa ' -
H Comments:
-
.
.
[]
L]
H
H
:
H
.
H
-
:
- «
»
i
- 83
=i
. é =
:
34
-
-
[l
:
-
L3
L]
[]
-
H
:
[]
-
[]
.
a
.
-
.
From:
- = (Nm of User) - - -
:] T . AIBWM“AM“#__ L -
s .
H .
E Fold ori dotted lines, stapie, and mail. (No postage stamp necessary if mailedin U. S. A))
3 Thank you for your cooperation.
:
H
[
L]

R

SRR PRt ey 2 A

3
e
.
,-4§thsWi&I e bsbwaabany . assssseei sesssassusalsesssanssseendaseEsEs - . . .
awlvan eg o ARLTSNEFET, M ARESITIE
b s k) -~ A '
1:..-}1‘! satien :
B Ay
-~ ~g i o st
FIRSTCLASS
;F e .

a

—- no postage necessary if mailed in the United Sta.?e-s

L L LR 1 2.1 R

} Po;%ﬂl“l be paid by
=UNIVAC

Attn: Manager, Applicatiofi Services

~ P.0.Box500
~ BlueBell, PA 19422
1encasssdistennnvii sesensinisning ;-niciit-iibiﬁ----l-iii-----l----;----n--.--i--.--------...‘btl-t------ni-lliq-.----

. e
s

snnas.

‘outj Buoje)

