Al

o SPERRY+UNIVAC
CDY tibrary User Interface

‘ ’ o o Pocument Kc. CS-61 update 1

10 SEp 82

e
S5 -61 | ¢pl Library User Interface] 1 | Contents-1
Number] 30 SeEp B2 | update | Page

——— - - = - WP T W AR WP W G M - O SR W P S T W S TP T e e e S e D Y WS W W M T VB M A S - S - T - - -~ -

. ' T ') CONTENTS

CONTENTS

1. INTRODUCTION 1-1
1.1. SCOPE 1-1

2. FUNCTIONS AVAJILABLE 2-1

. LIBRARY INTERFACES

1. Interface Macros

«2« Flow of Control

. READING AND WRITING LIBRARY MODULES

1. Reading tibrary Module Records

2. writing Library Module Records
DELETING A LIBRARY MODULE

. SEARCHING A LIBRARY DIRECTORY

«1e Specific Module Search

«.2« Gang Module Search

«3. Performing a Library Directory Search

. CHANGING LIBRARY MODULE HEADER INFORMATION

.
LN T I |

* 0
tF ot

O NI N NN Y

NN NN NN
1
o W R O R AN A N AV R

le DESIGN TYRADE-OFFS AND PRODUCY OBJECTIVES 3-1
Lo INTERFACE DESCRIPTION 4-1
‘ [I USER INTERFACE 4-1
{.1.1. Declarative Macros 41
4.1.1.1. (CDIB Macro 41
bela1e2e RIE Macro 4-1
4e1e2. 1Impersative Macros 4-3
4e102¢1. DMSEL Macro 4-3
Lelel.2. DHMINP/DMOUT Macros 4~4
Lbale OPERATOR INTERFACES 4-4
4ol DATA BASES Lh~4

S« ERVIRONMENT CHARACTERISTICS 5-1
S5¢71e HARDWARE REQUIRED 5-1
5.2 RESTRICTIONS 5-1
5.3 COMPAYIBILITY 5-1

6. ARM _ 5-1

5-61 ! «¢p) Library User Interface i 1 [Contents=-2

Number I 30 SEP 82) ----------------_-_-_----i-gffite ! Page--
7. PERFORMANCE ' 7-1
8. STANDARDS 8=-1
9. STANDARDS DEVIATIONS 9-1
10. ODOCUMENTATION 15-1
11. SUPPORT 11-1

APPENDIXES

. A. PROPOSED STRUCTURE FOR MIRAM LIBRARIES: A-1

A.1. DATA PARTITION A-1
Ae2+ DIRECTORY PARTITION A-2

(S=€61 | CbI Library User Interface 1t 1] 1-1
Number | 30 segp 82 | upda

- T - - - - - e W W W e = W S e R S G = - G e W AR T - G e e - - S - e Y - - -

. 1. INTRODUCTION

1.1. SCOPE

This documents the user interfaces wusing Library Utilities necessary
to access or generate library modules or manipulate a tibrary in the
(DY environmente.

Some of the MIRAM library modules supported for the current release
R9.U are:

- saved run library modules (Type 1)

- screen format modules (Type F, FC)
- HELP modules (Type Help)
- MENUs (Type Menu)

The SAT library modules supported for the current release are:
- source
- proc
- object

- load

. - group”s

2. FUNCTIONS AVAILABLE

' The system Llibrary interface allows user programs to directly access
any system library file. The functions provided are:

- reading a library module
- creating a lLibrary moaule
- deleting 2 library module
- interrogating a library directory

- updating library module header information
2.1« LIBRARY INTERFACES

2.1.1. Interface Macros

The €DI macros are the only ones used to interface with Libraries
(thru tibrary utflities). Both imperative and declarative macros are
used. The imperatives are:

- OPEN

data management file OPEN

- CLOSE - data management file CLOSE

- OMINP - retrieve a library record
- DMOUT - write a library record
. - DMSEL - initialize a Library operation
- DMUPD - change module header information
The declaratives arez: .
- cpiB - Llibrary operation control block
- RIB - optionally used only at OPEN

2.1.2. Flou of Control

The CoIB (as defined by data management) is the basic controlling
block used by library utilities to communicate with the user program.
1t is referenced on each jmperative macro and will contain status on
returne

The user starts by issuing an OPEN jmperative to a CDIB which identi-
fi3es the Library file involved (by LFD). This is a standard data man-
agement requirement.

5 =€ 1 } (01 Library User Interface o 1 H 2=-2
Number | 30 sep 82 | tpdate | Page

The next step depends wupon what kind of operztion the user wants to
do. The operations available are described in Section 2.2 and assume
the CbIB is already open. The flow of most operations is:

1« DMSEL - initialize (or identify) operation
2. DMINP/DMOUT/DMUPD - retrieve or present data
3., DMSEL - terminate operation

Step 2 will probably be executed more than once- Step 3 is now always
requireds

The wuser must issue a CLOSE ¥mperative macro for each active CDIB
before the program terminates. CLOSE »ALL s also acceptable.

2.2. READING AND WRITING LIBRARY MODULES

Library modules are normally read or written one record at a time (us-
ing a DMINP or DMOUT imperative). The only exception is when transter
sode (see the DMSEL imperative, section 4.1.2) is wused to copy an en-
tire module. Transfer mode reads and writes 256 byte blocks instead
ot single records.

Library Utilities supports both fixed and variable length records. The
record format is specified in the RIB parameter RCFM,

fixed-record lengths are specitied by the FI5 paramater RCSZ and may
vary from 1-32x bytes. variable-records have the wmaxirum allowed
lenyth specified in the R1B and the actusl record length in the first
2 bytes of the & byte Record Descriptor word (RDwW) 2s defined by Data
Management (See (S-14, "(Common Data Interface (to Data Management)

2.2+%1« Reading Library Mpodule Records

1. DMSEL cdibnamel (1311,LI3,IN,uorkareal(C)|O

Z2e pMINP cdibnamel (1)]1,workareal(C) {0

DMSEL initializes the operation and locates the module by the name and
type in the workarea (see section 2.4)« DMINP moves uHeta rccords, one
at 4 time, to the user butftfer. The user issues as many as needede Er-
rors and end-of-data are signaled in the appropriate CDIN fietds.
2.2.2. Mriting Library Module Records

1. DMSEL cdibnamel] (1)]1,LIB,0UTyworkarcal (03|00

2. ~ DMOUT cdibnamel(1))1, workareal(0)|C

(o)

. e]
Number | 30 sep 82 -} Update | Page

—— - - - - - -

LS I S Vo M

ul).uhk 1

I. DMSEL cdibnamel(1)]1,LIB,ADD

The first DMSEL (out) inftjalizes the operation and specifies the name
and type of the wmodule being yenerated, CMOUT adds records sequen=
tially to the end of the file. The user issues as many as needed. The
Ltast DMSEL (ADD) completes the operation by updating the necessary di-
rectory indices to include the new module and end-of-Library (ENDLIB)
marker. If a module exists with the same name and type, it is delet~-

ede .

2+35.. DELETING A LIBRARY MODULE

DMSEL cdibnawel (1)} 1,LIB4DELLworkareal (2)10
DMSEL initializes the operation and locates the =module specified by
the name and type in the workarea. The module is marked deleted but
not physically removed from the file until it is copisd or packecd. 1t

no mocdule satisfying the search criteria (full name and type must be
specified) an error condition is returned.

2.4. SEARCHING A LIBRARY DIRECTORY

2.60%7. Specific Module Search
The tibrary directory can be searched for a specific sodule by using
a 12 byte key consisting of 8 bytes of nare and 4 bytes of type, both
padded with blanks as necessary.
Example:

IMYMOD Is |

{0 718 11}
2.4.2. Gang Module Search
Library Utilities also permits searches based on partial name and/or
partial type. This is called a ™gang™ search. Partial names and
types are padded with btinary zeroes.

Example:

JMY0000000300001TYO000]
io 718 111

where 00 stands for x“007. The search is for any module with a
name beginning “my” and a type beginning “TY .

11 the module name or type does not matter, a x“00” is placed ¥n the
first position of the appropriate key field.

- ————— - T —— — > - - e G - = e G . " W T W e W U G e G W P v o i v -

5=€1

-

I
Number I 30 sep 82 | Upcate | Page

—— n e - - e - G S e A - - . T AP W - e SR L A W M W s M A G N R TR S WR R e S W T W A e A S A W e - S

| CpI Library User Intertface o 1

Example:

170000000000000001| F |
In 718 11}

where 00 stands for X“00”. The search is for any module whose
type is “F”.

If the entire key is X“007s, Library uUtilities will accept any module
tound in the file. '

2.4.3. Performing a Library Directory Search
The required segquence of imperative macros is:
1. DMSEL ¢dib,LIB,HIN, (O}

2. where RO points to the 12-byte module keye.

3. DMINP cdib, (0)

pMSEL initializes the operation,

DMINP retrieves the header of the first (next) module whose name and
type key satisfies the search criteria, and puts it in the workarea
specified by RO. This imperative may be repeated as often as desired

and will set the end-of-~file condition in the CDIB when no more
modules satisfying the search criteria are found.

Ce5e CHANGING LIBRARY MODULE HEADER INFORMATION

1. DMSEL cdibnamel (1)[1,L1IB8,HIN,workareal(™) |0

2. DMINP cdibname] (1)}1,workareal (0|0

3., Make desired changes to header name, type, or ccmment fields.

L. DMUPD cdibnawmel (13]1,wvorkareal(C)|0

DMSEL initializes the operation. DMINP locates the module and returns
its headee record; if no module is tound, an error s returned. The"
user alters the name, type, or comment fields as desired and then
writes the altered header and updates the directory with a DHUPD com-—

wande. If the new module name and type matches an existing module name
and type, the change operation is suppressed and an error is returned.

-1] €DI Library User Interface 1 71 | 3-1
Number | 30 sep 82 I update |

A e i o o o e o 0 TP T P WS e e e e T AP " S - - A - - — -

" ’ 5« DESIGN TRADE-OFFS AND PRODUCT OBJECTIVES

The goals in providing Ulibrary utilities through a CDY interiace re
are:

1. 7To provide a standard library interface consistent with other
data management interfaces. We can eventually allsw users to use
library utilities (which weé never have had befored. The inter-
tface is easily learned as it is a derivative of the CDI system
standard.

2. 7o provide device independence for sequential source INPUT/OUTFUT
userse Some of the special commands fsuch as CUSFL module name
tfor input) should be optionally performed actomatically as part
of OPENe. This would require more intormation cn the job control
device allocation sete. It would allow users to use the same rou-

tine to read/ write from .either a sequential device or a Library
element.

S =¢ 1 I
Number !

(bl Library User Intertface
30 Sep 82

4.1." USER INTERFACE

4.1.1. Dpeclarative Macros

£.1.1.1. ¢€DIB Macro
The €pIB8 is the
gresse Its
face (to Data Management)™.

controlling

4.1.1.2. RIB Macro

The RIB (Resource Information Blpck) 1s used to present
with information regarding the file structure and

“ties
vironment. The subset of RIS parameters
dtcess is shown below; a full
found in (S-14 “Common Data Interface

Format:

tabel RIB [,ACCESS=(EXCISRDOD]
L, LIBADD={NO]YESD)]
LLLIBINIT=(NOIYES)]
T,#0DE={SEQ|[RAND]
[aNWAIT=(NOlYES)D

[y RCFM=(EIX | VARDY]
[,R(SZ=(256]1n)] =

L, RECPASS={NOIYES}]T =
[,SKAD=SYMBOL] =

Ly WKENM=(NOIVARIVAR]ID]

ACCESS Specifies the type of file

EXC Only 1 access
at any time.
write wuse of
defaultl).

SRDO
(Cd'
not allowvede.

LIBADD Specifies that

when the file is CLOSEgZ.

LIBINITY

block for any tibrary
use and format are defined in €s-14,

description of the RIS macro -
(to Data FKanagement)™,

path
This path
the

Multiple access paths
but only to

an automatic DMSEL

Specifies that the file is tc be 4nftfait-ed

| 1 |

——-’_-.._—..-..—-.———__—_—‘--_-—-—-_-

4« INTERFACE DESCRIPTION

operation in pro-
“Common Data Inter-

Library UtiLi~
the user”s en-
to tibrary file
can be

pertaining

sharing permitted:

to the tile is permitted
has exclusive read/
file. (This is the

to the
cead.

tile are permit-
Write operations are

CADDJ is

to be done

ohane S0 3

ACDE*

NWAIT

RCFM

RCSZx

RECPASS«

SKAD®

WKFM

Specifies Sgauential or RANdom access to the file.

specifies whether the task should be waited uhen a file
share environment incompatibility occurss (See the AC~—
CESS para- meter).

specifies the record format.
f1x fixed length records

VAR variable length records. The RCSI parameter
gives the maximum allowable record size. The
t{irst & bytes are the recorc descriptor word
(RDU’ see CS—14).

For fixed records, this is the record size 1in bytese.
fFor variable records, this is the maximum allowable re-
cord size.

Specifies if record boundaries are ignored when reading
a file. *“NO"™ will cause L.U. to start each input oper-
ation at the beginning of a record. :

The location of a fullword which contains the module
relative record number when reading randoaly
(MODE=RAN). The first record in the module is retative
record 1.

Specifies the workarea format as fixed or variable (4
byte record descriptor word followed by datal). The
workarea format may be ditferent from the record for-
nat.

NO The workarea and record foraats are identi-
cal. (This is the default)e

VAR The workarea format is variable. For outputy,
the wuser wmust specify the effective record
size in the first haltword of the ROW. On
input, L.U. will put the record size in the
RDWe. The workarea must be targe enough to
hotd the largest record which mnight be re-—
turned.

VARI Same as VAR for output operationc. On input,
the user requests a number of bytes to be
moved in the RDW. 1f the record 1s Llonger
than this amount, the record is truncatea and
the CDIB will reflect this. If the record is
too shortey LeU. will alter the RDW to hold
the correct record ltengthe.

S=61] C0I Library User Interface | 1 l -3
Number I 30 sep 82 } update |} page

- - - > = — e Y - " - > S Gn W M T ST v v N W En S W A - S e T W S e Gp e o A

. *These parameters are for MIRAM tibrary files only.
4e1.2. Imperative Macros

bde1.2.10 DMSEL Macro

DMSEL {cdibnamel(1)11)
+L1B
'(ADDlDELlHIN[ININEXTIOUTlXIN'XOUT)
s{workareal (|0}

Positional paraaeters 1 and 4 are described in (S~14 *"Comson Data In-
terface (to Data Management)™.

v

Pcsitional parameter 2 indicates that this directive per&ainﬁ’to a Li-
brary file and Library Utilities should be activated.

positional parameter 3 gives the type of action to be done:

ADD ~ create a directory entry for the current module and add it
to the file. Positional parameter &4 does not applye.

DEL delete the module whose name and type key appears in the
workarea.

HIN jnitialize the input operation to return oniy module head-
ers. Seafch criteria are specified in the workarea (see
. section Z2.4).)
IN initialize the input operation to return moudule reccrds.
NEXT jnitialize the input operation for the next module in file

With & name and type key satisfying the search criteria
previously specified on the DMSEL in macro {see section
2.‘.).

ouT initialize the output to urite module records to the end
of the file. The mocdule name and type key is specified in
the workarea.

XIN initialize the transfer mode input operation. fach subse-
quent DMINP will vreturn a 256-byte block tros the module
beyinning with the module header. It must be paired with
X0UT for output.

XouT initjalize the transfer mode output cperations. Each
subsequent DMOUT will write a 256-byte block to the file.
L.U. expects the first block to cont3ain the module header.
It must be paired with XIN for input.

R s s AR S

5-41] ¢€pI Library User Interface | 1 | L-4
Number } 30 sep &2 | Update | Page

In each operation where a name and type key is referenced, a 12-byte
contiguous area consisting of an 8-byte namwe and &4 byte type fields is
expected. (See section 2.4).

bele2.2« DNMINP/DMOUT Macros

The ODMINP reads and DMOUT writes records (or blocks in the case of
transfer mode) to or from the file. Both are described in (5-14 “Com-
mon Data Interface (to Data Management)™.

4.2. OPERATOR INTERFACES

NZA

4+3. DATA BASES

The proposed structure of the MIRAM library file will be presented in
an appendix.

The definition of the SAT library file structure exceeds the scope of
this documant.

i -6 | ¢pl1 Library User Interface 1 1 | 5-1
Nuaber I 30 Sgp 82 } update | pPage

- - - T - - - e - AR S m e - e s 4 - o T S A % e W G5 e e WS - e T G W S e

." o T T B S. ENVIRONMENT CHARACTERISTICS

5¢1. HARDWARE REQUIRED

Unknowne

5.2. RESTRICTIONS

The MIRAM libraries (and tibrary utilities) exist only in the (DI en-
vironment. MIRAM librarfes will be inaccessable in the DTF only sys-
tene.

5e3. COMPATIBILITY

N/A

3 SR .5 i O M S S AR A A s SN DN NI 3 S S A Nt 00 05,

L

L - L 2 et i b i fud TPy

cs-¢1 I ¢pI Library User Interface

P 6=
Number l 30 SeEpP 82 { Pag
e ARM

Yo be supplied.

- = [CD] Library User Interface Ve q] 7.1
h‘um'ber'.] 30 sep B2 i date | Page

. G T — - - S WS AR ED A% W e G TN A G S S MR e s S S B W e MR S S e e e L A W AR W G G S WA e PE G S 4R e A AR S TR S e S e e S -

. A ' 7. PERFORMANCE A

Jo be supplied.

T] ¢pl Library User Interface o 1 | g-1

o .
/ﬁiqmbe“ I 30 sep 82 ‘mdate] pPage

I : — - 8. STANDARDS

To be supplied.

) 1 D1 Livbrary User Interface i i [6=1
‘.,,ﬂ{l 30 SEP E2 oo

- 9. STANDARDS DEVIATIONS

H/A

_/./c”f/m I bl Library User lnterface S i | 10-1
o l\umbe“ I 30 sep 82 ‘deate | page
. ° T T T I ') ' 10 DOCUMENTATION

NZRA

- - - ——— - - - - - -

N/A

- - - - - = Y G . . S G WY W e R

i 11.

] 11-1
| Page
SUPPORT

-¢1] €bl Library User Interface | 1 i A~1
t.umber | 30 sep 82 ,] Update | Page

. S o APPENDIX A. PROPOSED STRUCTURE FOR MIRAM LIBRARIES:

This format for MIRAM library files is based on the Nailus-Holt~- Sny-
der letters (10717772 - 11720/78).

A.1. DATA PARTITION

The data partition will consist of 256 byte fixed length non-keyed re-
cords. Neither deleted records nor mixed keyed/non-keyed records will
be usede It is felt that neither feature is required and their inclu-
sion would require a one byte record control block (RCB) in each re-
cord . The RCB would break otherwise ctontiquous text data (for block
modules) and unnecessarily complicate the designe.

A module consists of a set of contiguous blocks. The first block is
the header block, which occupies one full blcck and contains the num-
per of blocks consumed by the module. The next blocks <contzin tte
‘module data. ALl pointers within tne header which point to blocks
uithin the module are relative to the module header itself. Copying
the module from one file to another can be block for btock without
modification.

The first module will be written starting in the first btock cf the
data partition, followed by an ENDLIB block. When a second module is
created, its header will be written to the same block as the ENDLIB
and a new ENDLIB block will be written at the end of the module.
There should only be one ENDLIB block in every fite. If this is not
the casey, the file is considered corrupted.

. The header block format is the same for all modules types as wvell as
BOG/EOG records and contains these fields:

- Module name
- Module type
- Creation Date

- Creation Time

- Block (module relative) displacement of text block(s)
- Total number of blocks consumed by the text
- Total number of blocks consumed by the entire module

- Flag Field(s)

- Record size (max record size of variable records)

- Dscwerred 4308 40

561 [CbI Library User Interface o 1 i A=?
Number I 30 sep 82 | Update } Page

- —---—---——.—-_-—---_.._-_-._--—-—-----—-—u-—-__--..—--—-——-_-—..--.--——-—-._-.-_—_._—-..-.

- Comment

A.2. DIRECTORY PARTITION

The dicrectory is a set of MIRAM indices maintained by MIRAM ang
manipulated through index-only operations ty Library utilities. In-
dices are maintained lexically ordered. Since none of the data re-
cords are keyed, library utilities will be zvare of the directory en-
tries necessary for each module and add each using en index-only
write.

BCG/EOG records occupy an entire block and have the same format as a
header record (roughly) with these exceptions:

- Group Name is the module name
- “80G67 or TE0G6” is the module name

- Number of module blocks is set to 1

[0 5 SRR SNy LR I B B R A Bt e
u .

S PR R S
S 0 UMY c:.va ~
‘ ’ Ob/3
CTIN U A Pl E e VT : ; - —
® Uk evhe VilnCany COMPONENT PRODUCT
. SOFTWARE DESCRIPTION

- e v - . o — a8 S - e e W W G W e W e e e e e -
- S . e v - o VS G vmm et e Pmm S W Gt M GRS WY e mp S G e

- B o m— G o A e S e — s o e e . e

..———————..——-——_.-—-_—-———

MIde 7000 AUS-S42- 4945 |
' FRI4RA Eaiite i ToTTTTTTTTI T

" Rardwseesystems: - OO SUL 09625 O96/33 O 80/a0

, . D e e i
ABSTRACY: ' ' o 4q L{b A
Cpoa — ' /

| b
@ Qb s m'(’ RC;LAM L“ 0’(7‘\ e Prapi o
Usg =L 18
APPROVALS:

i i
. grotian fianigert

l
i
e A
1
1
}
{
:

SIHUG IR S

BHTTSOER

R R I
U{IVAC OF THARE S N
05/3 DOCUMENTATION COMPONENT: ~—~ |MODULE: "~ | PAGE:
® - .
1.0 Introduction -
1.1 Scope R R

This documents the CDI user interfaces to system libraries

using library utilities. This one necessary to access or

generate library modules and manipulate thewlibrary is

contained here.

The MIBAM library modules supported for the current

release A(R7. are: A?CGZ ‘

o0 saved run library modules

0 screen format modules

The SAT library modules supported for the current release
are:

O _source -’

o proc .
— T
Mo BTET
YN RO

- "
URIVAC %gﬁm&ﬁ
0373 U EN! I COMPONENT MODULE : PAGE :
2.0 Fupctions Available

Thé system library interface allows user programs to

access directly any system library file. These functions
are provided: . .
.0 ;ggadingi§‘l%br§ry module
';o creating a'}ibrary module

o deleting a_library module

o interrogating a library directory

PNIvAC é L\éL |

0575 DOCUMENTATION COMPONENT MODULE : PAGE :
2.1 1ibrary Interfaces

2.1.1 Interface Macros . -

The CDI macros -are the only ones used to interface

with libraries (thru library utilities). Both imperative

and declarative macros are used. The imperatives are:

o OPEN - data management file OPEN
o CLOSE - data management file CLOSE
o DMINP - retrieve a library record ’ F)
o DMOUT - write a library record d
¥ Y _ e
o DMSEL - initialize a library operation (usually)f/
The declaratives 3re: : : .

o CDIB - library cperation control block

‘o RIB - used only at OPEN (as per data managemsnt)

DOCUEHTAT 10N | COMPONENT: MODULE: PAGE :

Flow of Control

The CDIB (as defined by data mapagement) is the basic

. controlling block used by library utilities. It is used

to communicate between the user program and the utilities.
It is specified on each imperative macro and will contain

status on return.

The user starts by issuing an OPEN imperative to a CDIB
which identifies the library file involved (by LFD).

This is a standard data management requirement.

The next step depends upon what kind of operation the
user wants to do. The operations available are described

in Section 2.2 and assume the CDIB is already open. The

~

flow of most operations is:
‘1. DMSEL - initialize (or identify) operation
2. DMINP/DMOUT - retrieve or present data

3. DMSEL - terminate operation

- This is an outline of a typical operation. Step 2 will

- probably be executed more than once. Step 3 is not always

required.

The user must issue a CLOSE imperative macro for each

CDIB active before the program terminates.

v+ ——pA—————

" l F‘l i ﬂ%
~ A SOFTHARE . - I .
~0S/3 | DOCUMENTATION | COMPONENT: _|MODULE : PAGE :
2.2 - Reading and Writing Lib;;ry Moduleér - T

This interface allows the user to read or write library
modules a record at a time. Records of a library-module

are passed between library utilities and the user program

as a result of a DMINP or DMOUT macro instruction.

1 MR
Y VAC OF THARE | R
873 DOCUMENTATION “COMPONENT MODULE: PAGE :
- . 2.2.1 Reading a Library Mociuie - e B

.This sequence of imperative macros is required: ___
| | (o))
1$7 ELEREN S NramemmLIRE=type
l . DMSEL R Cdlb' L' ? IN ’ NEXT o -

(0)
2. DMINP c¢dib,
' workarea

DMSEL initializes the opefation by locating the module
IR~ .
"and returning the header record in the data buffer
(IOAREAl). Two types of operation are permitted:
o0 select element of specified name and type
o select the next sequential element iIn file,
DMINP moves data records to the user buffer. The
ap—————) X
user issues as many of these as required. Wnhen the

modules is exhausted, an end of data condition is set

in the CDIB.

S INIERIA
UHIVAC SOFTWARE |

0573 DOCUMENTATIOH COMPONENT: MODULE : PAGE ;
2.2.2 Writing a Library Module

This sequence of macros is\fequired:
_ (8 .
l. DMSEL cdib, L‘é,‘DOUT, PREMENT=eameIYR E=type
) g
2. DMOUT cdib, | workarea

3. DMSEL cdib.L@pADD

DMSEL (out) initializes the operation.
DMOUT accepts user data records sequentially and.adds

them to the end of the module being generated. The

user issues as many calls as required.

DMSEL (ADD) completes the operation by adding the

module to the file. All required directory indices

are created by library utilities on this cali. 1Iif

a module exists with the sahe name, it is deleted.
When this call - is omitted, this is the result: ‘
o the module is not added to the file
o a module with the same name is not deleted

o the integrity of the file is maintained

1ON COMPONENT : MODULE: PAGE:

Deleting a Library Module

To delete a library, use the DMSEQ# macro:
: % ‘

DMSEL filename, Eﬁp]DEL, ramer—type

Interrogating a Library Directory

(To be described in a later revision).

S LERAL

U{1VA _ SOFTHARE o
0573 DOCUMENTATION | _COMPONENT: __ MODULE : PAGE:
3.0 _Design Trade-Offs and Product Objectives

Thé goals in providing library utilities through a
cpI interface are:
1. To provide a standard interface consistant with
. other data manageﬁent.interfaces. We can eventually
allow users to use library utilities (which we never have
had before). The interface is easily learned as it

is a derivative of the CDI system standard.

2. To pfovide device independence for sequential source
INPUT/OUTPUT users. Some of the special commands
(such as SELECT module name for input) should be
optionally don~ automatically as part 2f OPEN. ‘.
~ This would require more information on the job
control device allocation set. It would allow
‘users to use the sam~ routine to read/write from

either a sequential device or a library element.

/,// \
P ERN E
UHIVAC | e | -
0S/3 DOCUMENTATIO ~ COMPONENT: MODULE: [PAGE:
4.0 . Interface Description
4.1 User Interface
4.1.1 Declarative Macros
4.1.1.1 CDIB Macro

The CDIB is the controlling block for any library
operation in progress. Its use is consistent with
the data management interface. His format is:

filename CDIB

" The format of the CDIB is defined in CS-14.

NTERM
Ug%y%C DO%%%E%%S%ION COMPONENT : | MODULE : PAGE :
4.1.1.2 RIB Macro N
NAME QPESRATION CPrRAD
et = -Awm$=%%% (éSé:ﬂgj@_
L gig' :

sBFSZ= n

- Le

k“,INDA=sxymbc>l *

.,IOA1=symboi]

[,Imu:(r)] | ; .

HQ e \,_\‘J.— h)(j‘:

236

,HORK=NO
IES

* Used for MIRAM library files only.

All parameters are optional. Omitted parameters take

on ﬁhe underlined wvalue.
The INDA and ICAL parameters>are not required, either.
if they are omitted, the required space will be acquired
-from dynamic main storage. If they are specified, they
are subject to the constraints:

o For SAT library files, INDA is ignored and unused

o TFor MIRAM library files, either specify both INDA

and IOAL, or omit both. Wwhen you s?ecify them, the .

INDA buffer must immediately precede and be contigious

to the TOALl buffer in main storage. -

COMPONENT :

MODULE : PAGE :

WORK=£?ES

Parameters:

ACCESS=option

——

BFSZ={256}
n

INDA=symbol

. IOAl=symbol

10RG=(2
. 2-12

NWAIT=[§Q
YES

RCSZ= { 56
n

Aoyd

NO

defines'the disk file_lock used.

(See CS-14 for details).

The disc buffer size (parameter IOAl).
It must be a multiple of 256.

The symbolic address of the index

_ processing buffer. It must be half-

ﬁord éligned. Its iength is 256
bytes.

The symbolic address of the disk buffer.
It must be halfword aliéned.

r is the general register used to
point to the current zeccré when the
user is not using a workarea. This
parameter is ignored if Qork=yes

is specified. :

Specifies whether to retufn on a file
lock error. (See CS-14 for details).
The size of the user's work area (where
records are returned). It should be as
large as the largest record expected.
Specifies whether records are to be
placed ;n the workarea. If NO is
specified, records will be pointed

to by IORG. (Note: Source-records

will only be expanded when YES is

specificd.

ATION - COMPONENT ! MODULE : PAGE:

4.1.2 Imperative Macros

4.1.2.1 DMSEL Macro Format .
(o)

ADD

‘ DEL i'strin%} 'string}
DMSEL cdib,LY,] IN AELEMENT={ TAG'" “TYPE= | TAG~d{zn

NEXT
ouT

ADD - add the current moaule being éréated to the file.
“ This causes the required directory indicés‘to be
created. (Keywords ELEMENT, TYPE do not apply).
DEL - delete the named module from the file. This
eliminates all directory indices for the module

and marks tne module header as inactive. ‘

IN — initialize the input of the named module. (This
call is required before DMINP macro calls are
permitted.) The module'header record is placed
in the buffer area.

NEXT - initialize the inout of the next module in the
file. (This call is required before bMINP macro
calls_are permitted.) The module header is placed
in the buffer area.

(Note: if a BOG or ECG is the next file item, it
will be returned).

OUT - initialize the output of the named module. {This

| call is required before DMOUT macro calls are "

permitted.;

- NTERNAL %
~ UHIVAC LR
- U%%/B DOCUHEHTATION COMPONENT : MODULE : PAGE !
. Where a "named godule" is required, it is specified '

* 8 ie
@l"“b M}woédMEWYPE.

" "ELEMENT - the 8 character library module/group name

. . TYPE - the four character library module/group name
P ,;';.A"“’ - ‘oahsucus ‘L b“‘!{r

/- They cambe=specifiedsas a'string (thesactual-neme-—in

/ quotes}-or-the.tag ~f the. area-containing-them-may-be

speci--fied‘.

(RN

\ W} rﬁd;w;»r—" s U/“ % ..C (e Trron

o RLEE T
/" UNIVAC OF THAR
7 08/5 DOCUMENTATION |} COMPONENT: MODULE : PAGE:

4.1.2.2 DM INP/DMOUT Imperative Macros

The DMINP macro makes a record availabie for processing

The DMOUT macro adds a new record to the library module
being cfeated. Both macros are generalized imperatives

that can be used to request records from all data management
processors.

Their format is:

NAME OPERATION OPERAND
[labe]:] {DMINP } { (1) } i, workarea
(¢
DMOUT 1 g
Parameters:
cdib the symbolic address of the CDIB thaﬁ

corresponds to the similarly named File
assigned through job cecntrol.
workarea specifies a user defined ' .-k area that

will contain the record +r=:._. - ‘red.

For DMINP, a retrieved record is placed in the workarea

if WORK=YES is specified. Otherwlse the record remains
/7

-

) (W)
.in the I0Al buffer and is povinted to by register IORB.

For DMOUT, the user places records to be output in

the workares.

e n éN}EﬁN%'
/ URIVAC OF TWARE |
/708/37 | DOCUMERTATION COMPONENT MODULE : PAGE :
}y;f -
4.2 operator Interfaces
N/A
4.3 Data Bases
The proposed structure of the MIRAM library file will
be presented in an appendix.
The definition of the SAT library file structure
exceeds the scope of this document.
5.0 Environment Characteristics
il ' Hafdware Required
Unknown.
5.2) Restrictions

The MIRAM libraries (and library utilities) exist
only in the CDI environment. MIRAM libraries will

in inaccessable in the DTF only system.

5.3 Compatibility

N/A
6.0 ARM

To be supplied.

/ INTERNAL :
/" UHIVAC SOFTHARE
y - 0S/3 DOCUMENTATION COMPONENT: MODULE : PAGE !
7.0 Performance o o
To be supplied.
8.0 Standards
To be supplied.
9.0 Standérds Deyiations
N/A
10.0 Documentation
N/A
11.0 Support
N/A

ATION_ | COMPONENT: MODULE : PAGE :

.

-Apbéndix A Proposed Structure for MIRAM Libraries:

This format for MIRAM library files is baséd on the

Nailos - Holt - Synder letters (10/17/78 - 11/20/78).

Data Partition

.The data partition will consist of 256 byte fixed length
non-kéyed records. Neither deleted recérds nor mixed.

. _ keyed/non keyed records will be used. It is felt that
neither feature is required and their inclusion Qould
‘require a one byte record control block (RCB) ih each
record. The RCB would break otherwise contiguous text

data (for block modules) and unnecessarily complicate

the design.

A module consists of a set of contigusus'blocks. The
£irst block is the header block, which occupies cue
full block and contains the number of blocks in the
module.. The next block (or blocks).contaiﬁs the
module data. All pointers within the module thch
point to blocks within the module are felative to the

module itself. Copying the module from one file to

another can be block‘for block without modification.

ATION COMPONENT : MODULE : PAGE ;

The first module will Ee written starting in the first
block of the data partition, followed by an ENDLIB block;
When a second module is created, its header will be
written in to the same block as the ENDLIB and a new

one ENDLIB written at the end of the module. There

‘should only be one EDNLIB block in every file.

The header block format is the same for all module
types as well as BOG/EOG records and contains thése
fields:
o. Module (or group) name
o Module»type
0 Number of blocks occupied by this module -
o Flags; - status (deleted/active)
* - index item (yes/no)
;-uniqueness (ves/no)
< o Number of blocks in module
o Block (mocdule relative) displacément of data/
text blocks.

o Number of text bytes

s yEsnAL
~ URIVAC SOF TWARE |
0S/3 DOCUMENTATION COMPONENT MODULE: |PAGE:
7/ U e _-..;___._1.,___4._.— —— .--_—;__ e . e e e
’ 'Dir‘ectory Partition o . , - ,

The diréctory is a s§§”of MiﬁAM indices maigtaiged by
| MIRAM and manipulated through iﬁdex—only ope;a£;ons b;
library utilities. Inaices are maintained lexically
ordered. Since none of the data records are keyed,

.library utilities will be aware of ﬁhe directory

entries necessary for each module and add each using

an index—oniy write.

vl INTERAA
T URIVAC OFTWARE
0S/3 DOCUMENTATION COMPONENT: MODULE : PAGE :
. BOG/EOG records occupy‘an entire block and have the same
format as a header record (roughly) with these exceptions:
© Group Name is the module name
_ o 'BOG' or 'EOG' is the module type
o Number of module blocks is one

The unique flag is not set (allowing multiple’

groups of the same name)

L1I3S1I1I0
. Library 1/0 Access routine

vESCRIPTION

This document describes a, subroutine which will oalloy
sn assembly language or COGBOL program to access libroary
/ files in S14M format. “Source, copy lib, proc¢ and macro
‘ elements may be recad or written using this routine. LIBSIO
e 1s written such that the user can not issue functions out of
.sequence or functions which will render the file inoperaoble.
An abnormal termination routine is included to " Insure that

the file s terminated properly even if the user”s program
should atort or be cancelled. The routine has a single entry
point and communicates with the user progranm via a 92 byte
area. Both ~assembly language ‘2nd COBOL . use the same
interface. : i : ' : '

ASSEMBLY LANGUAGE INTERFACE ' . . .

The ‘"user preoaram _communicates all requests thru a
simple calling sequence. A 92 byte area must be set up
according _to- the diagram shown ©pelow. Register 13 must
-point to-an 18 word save area. The calls to LISSIO are
issued using: B : : : : . - B IC
>Sued using : L . — L LY /}(l'.
L 4, = A(UBPTE
‘ , o , . bALA i, TS
‘the co_mmuni;at’ions area is set up and rodified es explained -
in table 3, Shown below is a byte map ior this area. %

Liapie =D & (Conr

- . ro 1] I v~y T R N R
. .o LALL LIB5IC;VIOMMAREA D

i

STARTING LENGTH USED FOR . | 1 -
. BYTE | . IR . : I $
0 . - . 80 " 80 byte record to or from LIBSIO EXTRN 1l
’ . If file is jnput this is supplied . - Q
by £IBSIO. I file 15 output . (
the user places his output record
S - here. N - - S =
80 8 ' Element name to be” resd or written - i
32 - . Y - Element type (s, ,p,7§ for source :
) .o " _copy, proc or m&cro 4in ESCDIC
83 . .. 1 " LIBSIO function code. See table 1
. .. _ for functions. . - - :
84 - 1 - - Error code from LIESIO. Sce
. : . “table 2 for error codes. .
85 . 1 file number. MUST BE EBCDIC 717

l - LA ’ ﬂ'j;n("’bf,{hnfzbff\‘

.f‘x-_rx._-"w ;;"-.r\ ’ "i N
G ERRN == LINIVAC

fmmveTEIg
R EVETIE

S

CU 1006

sn crample of the

RECORD
NAME
"FELTITYPE
FUNCTION
EﬂRORS

bS
bC
DC
bC

DS
bC

CL80

c paYrRoOLL 7
C’s”

07

cLi

c/1/

communication arca

is:

. .
. —— — Y——————— T %

PR R LI LI

i~
.
-
N -
T s
T A
Le.r N w o i

T COUOL LANGUAMGE INTERFACE

To use LIBSIO in COBOL the user must set up 3 working
storaooce orca definition as shown below. The linkage with
COBOL is done by cntering linkage and calling L1BS10: '

ENTER LINKAGE. . :
CALL LIBSIO USING LIBSIO-DATA-AREA.
ENTER COBOL., o
the dota area

in working storage is set up similar to:

01 LIGSIO-DATA—-AREA.
02 RECORD ' PIC X(80).)
C2 MODULE-NAME PI1C X(3) VALUE SPACES.
02 MODUULE-TYPE PI1IC X VALUE 7S7.
‘ ' This may be sy¢c,p or m_with . .-
- ’ S = source
’) c = copy ,
p = proc . -
» m = macro) - "
G2 FUNCTION CODE PIC X VALUE 707,
this function code is taken
from table 1.
02 ERROR-(CODE PIC X VALUE “07.
this is returned by LIBSIO
it £an he found in table 2.
0z FILLER FIl¢C - B

X VALUE AN

//////{ PROCESSIHNG USING LIBSLO

Six function orc provided by LI1BSIO which inéludc: open
input, open output (new)y, open output (updatﬁ) close and
transfer., The tronsfer operotion "is used in place of a reod

-" or write, the type of open determines uhidxact@nt function
) will be usced. The user only issues a tronsfer function, A
file may be opened in either of three ways open ‘input, open

output (necw), or open output (update), ony nuaber; of records
may be transferred, and the file must be closed. E
i

FUNCTION CODE O — OPEN INPUT] '

This "7is wused to- open a filée 2and locate the
element. 1t indicates that a user wishes to" recad the
fite. The file is opened; and the directory is searched
‘for a module with the same name as that given 3in the 8
byte element name field. The wuser supplicd 1 byte -
module tyrpe is also used to insure " that the correct
type wmodule is located possible error codes from this
function are: 0,1,2:2,6,7. : .

FUNCTION CODE 2 — OPEN OUTPUT (NEW) _ > * -
_ hisTfunction-is-used to initiate a new element in

the file, when the user wishes to issuve write commands.
The file i1s opened as output and a module with the name

from the 8 byte module-name aresa is created. The module
+

type (scurce; copyliby poroclib, nor nacrod is determined

) by the 1 byte nmcdule-type Tietd supplied by the uvser.

iy 1f the element already exists, the file is NOT opencd,
‘ instcad an error condtion (4) is posted. If the user

vishes to create an element which alrcady exists he
* should wuse function code 3 to open the file. Function’

code 2 is availzble to allow the wuser to prevent

overwritina of a2 module which is already in the file.

FUNCTION CODE 3 — OPEN OUTPUT (UPDATE)D
This function code works similarly to Tunction 2
except it atlows the user to overwrite an element uhich’
may exist in “the {file. Whether the element was
contained in the Tile kefore the open or not, a3 new
element will be created and the old one, 3f there wvas
.oney will be deleted automatically. 1f the user wants
to know if the element existed before the creation,; he
should use an open output (new) functiqn : :

FUNCTION CODE & — TRANSFER A RECORD : :
This function is usecd to pass 80 <charecter data
records between LIESIO and the user. 1t the uscr has
opened the file 3s inputy, then a transfcr T{function s

the same as issueing a read commond. His 80 byte area
will be lcaded by LIBSIO each time he dissues a
transfer. End of file is indicated by an error code

ER TR)
A NN

u . ‘ .
R = = LINIVAG
\" ‘.fi"."_>"5:.5.575._.5

297, 1f the uscr has opened the file for output (either
mode) then the transfer commanc has the same cffcect os
issveing a write command, He should load the 80 byte
data ared with 3 record prior to coch transfer
function. Error codes from this function arc: 0,5,6,7,9

FUNCTION CODE 5 - CLOSE THE FILE .)

This function is used to <close the file after
processing is complete. The file must be closed for
both input and output. After the file is closed it may
be opened again as either input or output. vvhen a file
is closed, no information oabout it”s post wuse s
retaincd. Possible error codes from this function arec:
0,5;6:7. '

L

©*I1BSI0 JNTLK

FACE DESCRIPTIONS

TABLE 1
." FUNCTION CODE THAT MAY ERRCRS USE
LCODE FOLLOY IT
0 4, 012367 OPEN INPUT
2 4 00124 67 OPEN T PUT (NEW)
3 45 01267 OPEN GUTPUT(UPDT)
4 4 5 05679 TRANSFER
5 023 05 67 CLOSE
TABLE 2
ERROR F1LE MEANING
CODE CLOSED .
0 NO NO errcr -has ocurred ~ sucessful
1 NO Ooen attempted on an open file /// “/////
2 YES File could not be opened (not there)
3 — - YES Element to be read could not be found = -
G YES Yodule to be created exists (fcn code 2)
. S . yi35 Tv ansiver {read/wiite OF TlG3E OF &
T _ a—r—~*ilif_yh1ch is alrezdy closed
’ 6 YES Unreccverable 1/0 error >~ —-
It [YES Error from proc module— attempt to add a
) nzme entry which exists for another proc
s elenent.
8 W Function code not recognized or file type
- not set to “s” “¢” “p” or “m”.
9 NO End of file on input file. Ho data is
returned with this condition.
RUTE: Error code U is not &an actual error, it indicates
sucessful completion. of the function.) Lo L,
- L]
; " P e FF torr. by il

/J‘ KAl
/ UABLE 3

/. FlELD " LENGTH SUPPLIED

/o | BY
TSRS RECORD 80 LIBS10 Work arca.for a read
1 ' USER Work arca for a write
NAM - 8 - USER Name of element to be
. read or written. '
CTYPE a1 : USER " Type of element.
FUNCTION 1 _ USER ' Function which user:
' \\\ wants performed.
ERROR 1 L1B8SI0O Error or status from
d ' _ libsio
FILE # 1 ' USER . | Must be set to “17.

LINKING PROCEDURE

To link LI13S10 the wuser néed 6nly have an INCLUDE
stotement for the subroutine in his linker job strean. A
sample of this job stream 1s shown: ’ - :

1?7 Cwvrr S A
.« 2 L S —_t . - - -

/] PARRAN LIN=RESVYVS/USERLIR

%) . A ,
LOADH progran I .))
INCLUDE proaram,* - . L
INCLUDE LIBSIO,USERLIB ' o ’ .
7> '

" JOB CONTROL 70O EXECUTE LISSIO]

When executing a program which uses LIBSIO, the SIAM-
library that is to be accessed must be defined in the job
control -stream. This usually requires only one statcment.
The keyword RDWD=YES must be vused 3if the file is ever opened
as output. The library file descriptor (LFD) is LIBRARY. '

17 CALCAf LIBS.SRCE. 136,FL&P“LI&&mRT*USE PDUD
/7 CALCAT SYSH. LdS STB FLHM=L1IBRARY : ’ . 1

/ F D /Vm;c,

— T UINIVAG

» . - - i PRS- N

