UNISYS

System 80
0S/3

Job Control

Programming
Guide

Copyright © 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

0S/3 Release 14 November 1991

Printed in U S America
Priced ltem 7004 4623-010

The names, places, and/or events used in this publication are not intended to correspond to any individual, group,
or association existing, living, or otherwise. Any similarity or likeness of the names, places, and/or events with the
names of any individual, living or otherwise, or that of any group or association is purely coincidental and
unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product Litense or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the User
Reply Form at the back of this manual or by addressing remarks directly to Unisys Corporation, SPG East Coast
S)g/stemsz%ocumentation Development, Tredyffrin Plant, 2476 Swedesford Road, P.0. Box 203, Paoli, PA,
193010203, U.S.A.

UNISYS Product Information
Announcement

0 NewRelease o0 Revision ® Update o New Mail Code

Title
System 80 0S/3 Job Control Programming Guide

This announces the release of an update to this document.

This guide is intended for the novice programmer with a basic knowledge of data processing but with little programming
experience, and the programmer whose experience is not on Unisys systems.

This update includes mode characteristic information for the 5073 magnetic tape. It also describes the SYSM64 parameter
which has been added to the ASM jproc, and the BUFMODE parameter which has been added to the DD job control statement.

All other changes are corrections, deletions, or expanded descriptions applicable to items present in the software prior to this
release. References to other Unisys manuals have been updated to reflect the changeover to the new 11-digit document
numbering system.

You can order the update only or the complete manual with all updates. To receive only the update, order 7004 4623-010. To
receive the complete manual, order 7004 4623-000.

To order additional copies of this document;
® United States customers should call Unisys Direct at 1-800-448-1424.
* Al other customers should contact their Unisys Subsidiary Librarian.

® Unisys personnel should use the Electronic Literature Ordering (ELO) system.

See important notice on the back of this sheet.

Announcement only: Announcement and attachments: ~ System: System 80
SAB, SAE, MBOO ECC3, MB0O1, MBB1, Release 14
MBB3 Date: November 1991

Part Number: 7004 4623-010

Please note that, in Release 14, the UP numbers of certain documents were changed to the new Unisys 11-digit document numbering system:

Oid
Number

UP-8044
UP-8076
UP-8613
UP-8811
UP-8834
UP-8839
UP-8859
UP-8870
UP-8913
UP-8986
UP-9744
UP-9745

In this update, some old UP numbers are still used in references to other documents; they will be changed in the next revision of this document.

New
Number

7004 4482000
7004 5190000
7004 4490000
7004 4508000
7004 4516000
7004 5505000
7004 5208000
7004 4524-000
7004 4532-000
7004 5919000
7004 4540-000
7004 4557-000

NOTICE

old
Number

UP-9748
UP-9975
UP-9976
UP-9979
UP-9982
UP-9985
UP-9986
UP-10003
UP-12443
UP-12649
UP-14207
UP-14208

New
Number

7004 4565-000
7004 4581000
7004 4595000
7004 4607-000
7004 4615000
7004 5224000
7004 4623000
7004 5232-000
7004 5240000
7004 4631-000
7005 3434-000
7005 3442000

PAGE STATUS SUMMARY

ISSUE: 7004 4623-010
Page Update Page Update Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover 000
Title Page/Disclaimer 010
PSS ifi 010

About This Guide v thru ix 000

Contents xi thru xix 000
1 1 thru 13 000
2 1 thru 13 000
3 1 thru 23 0eo
4 1 thru 21 000

22 010

23 thru 50 000

(,. 5 1 thru 41 000
E\,_,

6 1 thru 58 000

59, 68 o10

61 thru 78 000

7 1 thru 17 000
8 1 thru 15 000
9 1 thru 11 000
Appendix A 1 thru 9 000
Appendix B 1, 2 020
Appendix C 1 thru 9 000

19 e10

11 thru 20 000

Index 1 thru 13 000

User Reply Form

Back Cover 200

Unisys uses an 11-digit document numbering system. The suffix of the document number (1234 5678xyz) indicates the document level. The first digit of the suffix (x)
designates a revision leve!; the second digit (y) designates an update level. For example, the first release of a document has a suffix of -000. A suffix of -130 designates the
third update to revision 1. The third digit (z) is used to indicate errata for a particular level and is not reflected in the page status summary.

7004 4623010 i

C

UNISYS

System 80
0S/3

Job Control

Programming
Guide

Copyright © 1991 Unisys Corporation
Al rights reserved.
Unisys is a registered trademark of Unisys Corporation.

0S/3 Release 14 April 1991

Printed in U S America
Priced ltem 7004 4623-000

The names, places, and/or events used in this publication are not intended to correspond to any individual, group,
or association existing, living, or otherwise. Any similarity or likeness of the names, places, and/or events with the
names of any individual, living or otherwise, or that of any group or association is purely coincidental and
unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the User
Reply Form at the back of this manual or by addressing remarks directly to Unisys Corporation, SPG East Coast
Systems Documentation Development, Tredyffrin Plant, 2476 Swedesford Road, P.0. Box 203, Paoli, PA,
193010203, U.SA.

PAGE STATUS SUMMARY

ISSUE: 7004 4623-000
Page Update Page Update Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level

Cover

Title Page/Disclaimer

PSS iii

About This Guide v thru ix

Contents xi thru xix
1 1 thru 13
2 1 thru 13
3 1 thru 23
4 1 thru 59
5 1 thru 41
e 6 1 thru 78
(7 1 thru 17
8 1 thru 15
9 1 thru 1
Appendix A 1 thru 9
Appendix B 1, 2
Appendix C 1 thru 20
Index 1 thru 13

User Reply Form

Back Cover

Unisys uses an 11-digit document numbering system. The suffix of the document number (1234 5678xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit {y) designates an update level. For example, the first release of a document has a suffix of 000. A suffix of -130 designates the
third update to revision 1, The third digit (z) is used to indicate an errata for a particular level and is not reflected in the page status summary.

C

7004 4623-000 ii

About This Guide

Purpose

This guide is one of a series of manuals designed to help the programmer use the
Unisys Operating System/3 (0S/3).

Scope

This guide specifically describes job control and explains how to use it.

Audience

The intended audience is the novice programmer with a basic knowledge of data
processing but with little programming experience and the programmer whose
experience is not on Unisys systems.

Prerequisites

Anyone using this guide should understand basic structured programming techniques.

How to Use This Guide

Read the entire guide to familiarize yourself with the basic concepts it presents; then
use it for reference as needed.

Organizatidn

This guide is structured to proceed from the basic to the complex, addressing topics in
this sequence:

Job Control Overview

This topic is covered in Sections 1 and 2. It tells you what job control is and how it is
used by the operating system. You learn the basic concepts of a control stream and
the general program logic.

7004 4623-000 v

About This Guide

Basic Job Control Programming

This topic is covered in Sections 3, 4, and 5. In these sections, you become familiar
with the basic job control statements used to run your programs. You also learn about
job control procedure call statements (JPROCS) that can save you coding time and
reduce control stream coding errors.

Advanced Job Control Programming

This topic is covered in Sections 6, 7, 8, and 9, building on what you learned in
Sections 3, 4, and 5. You learn how you can get better performance and response from
the computer by using advanced job control statements that perform functions that
cannot be done with the basic set. You also learn how to write JPROC definitions that
you can store in the system and how you can call them when needed.

Appendixes

* Appendix A discusses and illustrates the rules used in describing job control

statement formats. You also learn how you should code these job control
statements.

* Appendix B contains supplementary information that increases your
understanding of job control.

* Appendix C contains an alphabetical listing of all the job control statements and
JPROCS and their parameters. You can use this as a quick-reference chart.

Results

After reading this guide, programmers will be able to use job control statements and
JPROCS to specify to the operating system what specific work it must do.

Notation Conventions

The general conventions that apply to the coding formats presented in this guide are
described in Appendix A.

vi 7004 4623-000

About This Guide

Related Product Information

The following Unisys documents may be useful in understanding and implementing
job control.

Note: Use the version that applies to the software level in use at your site.

Integrated Communications Access Method (ICAM) Utilities Programming
Guide, 7004 4565

This guide describes how programmers can use the utility routines provided by ICAM.
Job Control Programming Reference Manual, UP-9984

This manual is a quick-reference document for programmers familiar with 0S/3. It
describes the job control statements and job control procedures used in a System 80
environment to communicate with job control. It also presents the procedure definition
statements that allow expansion and conditional modification of the job stream when
you start the job.

System Service Programs (SSP) Operating Guide, UP-8841

This guide describes the system service programs. They are utility programs that
support the operation and organization of the operating system. They include the
SAT and MIRAM librarians, the linkage editor, the disk, tape, and diskette prep
routines, and various copy routines.

Consolidated Data Management Macroinstructions Programming Guide,
7004 4607

This guide describes consolidated data management (CDM), a collection of program
modules that handles the movement of data between input and output devices on your
system. It also describes the consolidated data management macroinstructions, which
let you obtain information about the characteristics of your file or request that
consolidated data management process the files you defined for your program.

Models 8-20 Operations Guide, 7004 5208

This guide describes the hardware configuration of the System 80 models 8-20 and
presents procedures for initializing the system. It also covers all commands and
procedures used in the OS/3 environment.

Model 7E Operations Guide, 7002 3866

This guide describes the hardware configuration of the System 80 model 7E and

presents procedures for initializing the system. It also covers all commands and
procedures used in the OS/3 environment.

7004 4623-000 vii

About This Guide

viii

Model 50 Detailed Operations Guide, 7004 1942

This guide describes the hardware configuration of the System 80 model 50 and
presents procedures for initializing the system. It also covers all commands and
procedures used in the OS/3 environment.

Supervisor Technical Overview, UP-8831

This manual presents an overview of the OS/3 supervisor and its functions for OS/3
high-level language programmers and site administrators.

Supervisor Macroinstructions Programming Reference Manual, UP-8832

This manual describes, for the assembler programmer, the OS/3 supervisor
macroinstructions used for program management, file space management, file access,
multitasking, and spooling. It also provides formats and coding conventions for the
macroinstructions, diagnostic and debugging information, and examples of
macroinstruction use.

Models 8-20 Installation Guide, 7004 5505

This guide provides the system administrator with the information and procedures
needed to install, tailor, and maintain OS/3 software in a System 80 models 8-20
environment.

Model 7E Installation Guide, 7002 3858

This guide provides the system administrator with the information and procedures
needed to install, tailor, and maintain OS/3 software in a System 80 model 7E
environment.

Model 50 Installation Guide, 7004 1892

This guide provides the system administrator with the information and procedures
needed to install, tailor, and maintain OS/3 software in a System 80 model 50
environment.

Interactive Services Operating Guide, UP-9972
This guide describes procedures used to communicate with the operating system
interactively through a local workstation or remote terminal. It also describes the

procedures for logging on and off the system and performing various interactive
commands.

File Cataloging Technical Overview, 7004 4615
This overview describes the OS/3 file cataloging facility in a System 80 environment

for the system administrator or programmers who are authorized to control use of the
system catalog file.

7004 4623000

About This Guide

Spooling and Job Accounting Operating Guide, 7004 4581
This guide describes basic spooling and job accounting concepts.
Screen Format Services Technical Overview, UP-9977

This overview describes how programmers can use screen format services to create
and maintain formatted screen displays to be used with their application programs.

Menu Services Technical Overview, UP-9317

This overview describes the procedures for creating and using menus. It also
describes how menus, displayed on the workstation screen, can be used with
assembler, COBOL, RPG II, and FORTRAN IV™ programs.

Dialog Processor Programming Guide, UP-8858

This guide provides the experienced programmer with information on the dialog
processor, which is the interface between the dialog (written in dialog specification
language) and the application program using the dialog.

Distributed Data Processing Programming Guide, 7004 4508

This guide describes 0S/3 distributed data processing and the various distributed data
processing program products.

General Editor (EDT) Operating Guide, 7004 4599

This guide describes the commands and procedures needed to use the OS/3 general
editor to copy files, concatenate files, and create and modify library modules and data
files interactively from a workstation.

Consolidated Data Management Programming Guide, UP-9978

This guide describes consolidated data management and how it moves data between
peripheral devices and programs. ‘

Assembler Programming Guide, 7004 4532

This guide describes the OS/3 basic assembly language (BAL) and its use. Included
are general language concepts, assembler instructions, and programming techniques.

Data Utilities Operating Guide, 7004 4516

This guide provides the information needed to use the data utilities. Included are
instructions on executing data utilities interactively and for batch jobs.

FORTRAN W is a trademark of SuperSoft Associations.

7004 4623000 iX

Contents

About This Guide

Section 1. Overview

Why You Need Job Controlccceeeeceennninniennssensscnsensscsscessesssessessesanes 11
Job Control Statements and Job Control Streamsccccvuervrrmrecrrrrccrans 1-1
JOD SEEPS ...t e e e et s s se s s s s b s s abe st s bbbt 12
Job Control Procedures {JPROCS)uireiieieircrrceeteccereneesenneesesenacases 12
Job Control and the Operating Systemccoeceeecreieerrnerernsnecsersseesnnons 13
Processing a Job Control Streamccoceeveeiriniceenreecsencseresnicsssesssasassens 15
Beginning Job Processing - the RUn Processorceeveeeeererrcnerecnecnsanns 15
Considering Jobs for Execution - the Job Schedulerccceeevevecereeverenenns 16
Beginning Job Execution - the Job Initializerccceeeveeveeeieeceneeeeceanen. 1-7
Initializing a Job Step - the Job Step Processorceevevveecverenereneennens 1-7
Ending the Job Step - the Job Step Processorccceevveerennenee w 18
Ending the Job - the Job Terminatorccceeeeeecereceeerrererrenecseresnnesanas 19
Building and Storing Job Control Streams and JPROCSccccecevrnennnee 19
Saving Translated, Expanded Job Control Streams
{Save/Restore Facility)c.ccooerrerererneersreesmrcressseresneesseesassesesesnsesaesnnns 1-10
Running Job Control Streamscccceeveeereecrnernreneesseessesernessnsesseresseees 1-11

Section 2. Basic Concepts

Assigning Devices and Flesccooceeeeeereenerenecrserssessenesssessessssssssessnnse 2-1
Peripheral Devices and Logical Unit Numbers (DVC Statement) 22
Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement) 23
File Identifiers (LBL Statement)occeecvereerereecrrenerenesneenreseesanssersneesees 24
Disk and Format-_abel Diskette File Area (EXT Statement)cccceevueunee. 25
Data-Set-Label Diskette File Area (EXT Statement}ccccoeereerveereerscneennnes 26
Logical File Names (LFD Statement)cccceeceeverecmeerrerrreneeeeeceereeeeseens 27

Device Assignment Set Placement and Durationccoccveveerreervecnennne 29

JOb Terminationccocveeiiiiriiiireneeenisnensreeeessseessessssseesssnasessasessasesasans 2-10

ReStarting @ JObcoceiveeiiierierecnieeeeneersneesasreneeessecsasesssessasessssensnsnanes 211

Branching within a Control Streamcceecevvererencenirenrcneeseeesereneenns 211

Jobs and Main STOFAgEocvevererermereisrecieseesseecsssneessuresssansessasessasesssnes 2-12
JOD ROIFOUL/ROIHNceeeereieeireiecreccereceecsnereseescanesanecnneessessnnesnsessnnanns 2-12
Minimum and Maximum Main Storageccceeeeevreeeereerncereerereerssnrennnas 2-12
Dynamic Expansion of Main Storageccocceeveeererenereseeerersrnnecnnecsanenns 213

7004 4623000 Xi

Contents

Section 3.

Section 4.

Xii

Minimum Control Stream Requirements

What Is a Minimum Control Stream? e 31

Constructing the Minimum Control Streamcecceceereeeeernerneericrsnesaesneas 31

The Beginning of the Jobcoveereerercrmeiereesnerssesesssesenesenes 33

Identifying the Devices 4

Assigning a Logical File Name to the File . 35

Executing the Program cetessesasesenentesnesatasieennasareaeasaeraaennsrsanns 36

Ending the Basic Control Streamcoceervverineennreensressessesnsans 38

Ending the Card Reader Operationc.cccecueeuennee.. 38

The Control Stream So Far - A ReVIEWcccoeeveeereeveeeeseeeenrenesenssessnsans 39

Adding Card Input 310

Card Input and Embedded Datacccvveeervereriercnercreeseseenssssenessnnes 312

The Program Is Changed - Another Deviceccvveveeevrueernrncersrenennae 314

What Is Needed to Use a Tape? 314

The Logical Unit Number and File Name for the Tapecccccveeeeveeeervenenne 315

Supplying a Volume Serial Number for the Tapeeceeeereevereeeeneeseenes 315

Labeled Tapes for File Identificationceeeessesnessnescseereccenenesneneens 317

Another Programming Change - Another Device Assignment 318

The Device Assignment Set for a Disk or Format-Label Diskette 320

The Device Assignment Set for Data-Set-Label Diskettecccceveeveeenenn 321

The Device Assignment Set for a Workstation . 321

The UID Job Control Statementcceeeeveeseeeeessceeceesessessens 322

The USE Job Control Statementccceeerveeeeeneresneecsncersesnens 322

Job Step Temporary and Job Temporary Filescccoecvemrveveverrveerenennne 323

Basic Job Control Statements 323
Getting the Most Out of the Basic Job Control Statements

Optional Parameters Can Improve Job Performanceocveeveerernnnn.. 41

Improving Your Control of the Jobccoeeueeirvieneeniceceereeeseeseseesessesns 41

A Selection Priority for the JObcccceeeeeeeemerieneneerecereeseeseseeenssenens 42

Main Storage Needs ttreneesnreserrenneesanessaseraneanes 42

More Main Storage to Speed Up the JOD veeeeeemreeeeeeeceeeeeeeeeeeeenesessnnns 43

Multitasking SPECIfiCAtIONc.cveeerverierereresesnscsseresreesreeeseenssssssssesassns 44

The Processing Time for the JObccceeeveemvereerirersceceeeeessnessessenssnssens 45

Debugging the Control Streamcceeeeeeeeeseeeirrreeeeereessensesessenssssssns 46

Job Accounting and Spool BUFFEESceceereeveesecreeerscineneseerssneseenssnssnsnn 47

Printing the Job Log File and Page Headersceeeeeeeeeeerccseereenssassensnns 48

Identifying the Peripheral Devices a Little Furtherccocveeeeveeveeevennne. 49

Using Multiple Devices, SYSRES, or the Job's SYSRUN File w.evveveeveenennnnen. 49

Specifying Multiple Workstationscceeeeverreereerereercercesnennes .. 410

More Control over Peripheral DEVICESccevevrreeuereereereerrensaneeensenenes 411

Assigning Devices by Physical Address and Assigning

Real Devices retesbressessattenteesanasaaresneranneesaesannessaeasnnaes 411

Is This Device Needed for This Particular Run?ccccveueeveereene 412

Different Volumes on the Same DEVICEeceeeervereveerernernernesseens 412

7004 4623000

N

Contents

Section 5.

7004 4623000

Multiple Volumes in a File? Use Alternate Devices to Decrease

Operator SEtup TiME ...ccceeeevveecrreensseneesseesssseessssesessresssrosssnns 414

Ensuring that Workstations Are Connected to a Jobccueeuueee. 415

Specifying @ Remote Disk Filecccccevveerrereriveereeeseessnesseerseessressecsanne 416
Indicating Use of the DDP Program-to-Program Facilitycceceeveuveruennne 417

More Information about the Characteristics of Your Volumes 419
More Than One Volume in @ Filecccueeveeerereeerereeicreeeesneeseeneenessneanes 420
Special Characteristics of Tape VOIUMESccvevueereeveeeceerecnnieeceeenennnes 421
Extending Your Tape VOIUMESccccveeererrernrenenrreeeseesersnesresseseesersennenes 422
Sharing Disk VOIUMEScoeereemeresiveesnesseessersessneeseessessnesnsssessesssssns 424
Ignoring or Changing the Volume Serial Number 424
Multivolume Files Online SIMURANEOUSIYcccovvereeesreeerererecesereseressnesanens 427

More Information on Disk and Format-Label Diskette File Allocation 427
ThE File TYPE «eeveereeeererrereetectesnessessessesesesssssessssnesesssesssssessenssssssonsosess 427
Formatting a File and Using Contiguous Spaceccceeeeeveervecververueencen 428

Your Disk or Format-Label Diskette File Needs More Spacec.coeueuue.... 429

Terms of AlIOCAONccceveeereeerireeirerenieescrsaesssscsneseesesessesseseassssssans 430
Allocation AMOUNLScceereererrereceesresnesnernesneescseessessessessessessosessesosess 431
Changing the Specifications of a Previously Allocated Fileccceouruenne.. 433
Allocating Space in the Fixed-Head Area of Your 8417 Disk 434

No Terminate Option for Insufficient Extent Spaceccceeeeeeveererecene. 434
Information about Data-Set-Label Diskette File Allocation 434
Using Your File Identifier More Efficientlycc.occovmeevvienivenicreeieenene 435
Multivolume File? Assign Each Volume a File Serial Numbercce.e....... 436

The Expiration and Creation Date of the Fileccceevvereeeerererreercnennes 437
Indicating the Position of the File when Several Are on a Tape Volume 438
Different Versions of @ Flececeereerrrencrenreennnesssesseeesessssesessssessessens 439
Changing the Label of a Disk File 440
Specifying Qualifiers for File Identifiers 443
More Information about the Logical Fileccccceovvveeeueeeenne... 444
Reserving an Extent Information Storage Areaceeeeceeereseeeensenesnenee 444
Specifications for EXiSting Filesccceveveeeeeeesenne - 445
Indicating Where the Load Module Is Located 446
Task Switching Priority teessenenneseeseesnsensessasnanarans 448
Avoiding Abnormal Termination due to Program Errorseecveeervenenene. 450

The Job Control Language S0 Farcooeeuvmieiniceineeiniieeeescecrseeaeseeeenes 450

Doing It the Easy Way - with Procedure Calls

Whatls a Procedure?ooeveeeereeeieeereiereriresnnesessssnsesessesesssssnens
Setting Up Temporary Work Filesc.coueeeeueeireeeeeeeeeeeeeeeeenressessesnens
USiNg YOUr OWN VOIUMEcoeereereienenrenicnnesesnesseesenseseenssnsesssessssene
Providing the Extent Specificationsc.ccecieveeeseererreneeseeeeeeesnnenonnes

Accessing Previously Allocated Filesccccooevreerreeumseeenernnen.

Allocating a File with @ JPROC Callc.oceeuieeeeerreeeerererreeseesseneesessenes

Too Many Devices for the Same Volumec.coeuereeereeervercennann.

Using the LInKage Editorcoceievueeeieceemrerrenenerseeressesssssessesssenes
Generating LOADM and INCLUDE Linkage Editor Control Statements
Making the Linkage Editor Suit YOUr NEedsc.cevveeeveecerreeseeereesnscones

51
52
55

510
513
516
521
523

Xiii

Contents

Xiv

Section 6.

Personalizing Your Print OUPULccceeeeeuieneecinrenseesrecssnressesssesessressnees 533
Controlling Spooled Output with a JPROC Callcoouvreevrrernrecnrernnnne 5-38

Making Job Control Work for You

Advantages of Using Advanced Job Control Statements................ccoocvrrennne. 61
Controlling Spooled Output with a Job Control Statement . 61
Sending Spooled Output to Remote Batch Processing Terminals 63
Sending Spooled Output to DDP Sites and Auxiliary Workstation Printers 64
Spooling INPUt Card Datac.eeeveeiienrecinresnecssesssersassssnsossesssesosseessssase 67
Spooling DISKELe FIlES ...ccceerrsersrnernrsenessenssnecseecsaeessanssasssneaessesssnrssesssanen 69
Equating Logical Unit Numbers to Device Type Codes.........cooereereeercrerersnne 610
Specifying Unique Load Codescuuiueveecersreeeeermieeneceessecseesssnosssons 611
Using FOrms COntrolcccoveeeeiiireerennnnieseseseessessssessssssssesssssssnssssssons 6-16
Controlling Tape UNILS...........cccoceeeeereeissriessnssssesssessssssesossssssssssssssssosssassnsesne 620
Releasing (Freeing) a Device and Volume.................ccoeevererrveveererereernnennas 6-22
Scratching Unwanted Files.................cceeuemrererinecnnnieesessnesnessnssssinesseeseesees 6-24
File CatalogiNg..........ccceeevrrerunnnereecrrssessosessecsneseeseenssnsansasssssssosessessesasessenees 6-26
Selecting Optional Features.................ccuueeneeieeeesvenneseessessessessessesnesessens 6-26
Using the SET Job Control Statementccccoveriveeercerernrscerecnsrssessonens 6-39
Changing the Dateccoeerrrenen. ereresseesaesnerensesaassnneen 6-39
Setting the UPSI eeeesteesreseessieseestesaresaeeseeaaesaestessrensesseas 6-39
The Communications Region retrerreesneesaesenneesaaseteeasasranann 640
The User Local Data Area (LDA)ccceemreeeerresecsneernesnecsnesseeessnessessnns 641
ReStartiNg @ JODccceeerieiieecrnrennnissesesiesnnesenecsoresnsesseessssessnesssessnsesssessnsans 642
Restarting a Job from a Job Step 643
Restarting a Job from a Checkpoint Record 644
Issuing System Commands .. 645
Calling Control Streams...............ccccceceeeeeereecnrnrneerssnnseessssssessssssesessessasseses 647
Using the RV/RUN Job Control Statements to Call Control Streams 648
Using CC SC/SI to Call Saved Translated Control Streamsccoveeueneee. 649
Communicating with the System Operator or Workstations 650
Introducing Processing Options.................ocveeeeemeeninsenseescsnssessesssnnssseesessoneas 652
Defining Software Facilities Needed by Your Job.............ccccoeveeeerierennennnnn. 653
Making Temporary Changes tc a Load Moduleccoceevvermrrveevrevrnennn. 6-56
Changing Your File Definition at Run Time..........c.ccoceemverrneecrnececeesnesvosecns 658
Adding Cards to a Stored Control Stream.. teeseeessssnseeresssnraeressssasnesenen 661
Bypassing Job Control Statementscoeecvverusreerecnieseseesirernseesenes 663
Bypassing Job Control Statements to Avoid Abnormal Termination............. 668
Dynamic Skip Function from a Workstationccecceovvnnieenicnneencnnenens 669
Substituting Embedded Datacccocouerrereernernrernnerncensenscsnsseeesseenes 6-69
Replacing Embedded Data Sets in Expanded Control Streams.................... 6-70
Job Control Considerations for Screen Format Services,
Menu Services, and Dialog Processing.............cocceceveevrveervesessseesseesosssnsaes 672
The USE Statement for Screen Format Servicesccvevvveeeeevvemreeeveenene 673
The USE Statement for Menu SErviCeseeeeveeesrercreeeecncens evenerenenene 674
The USE Statement for Dialog Processingceevevueeeeeecrerivcesseeesseeseses 6-76
Source Module Access via the USE Statementccceererernreeenrnnnn. 6-78

7004 4623-000

Contents

Section 7.

N\

Section 8.

Section 9.
Appendix A.
(
_
7004 4623-000

Run-Time Conditional and Set Symbol Job Control Statements

Run-Time Conditional Job Control Statements...........c.cccoeeeeereeeeeeerreresesranns 7-1
Unconditional BranChingeeeeeeeereemeneresessesescensessessssssecesenesnsnsnnes 71
Conditional BranChiNgcceereererememreeenrresseeressssssessessesmsessssssnsssonsenes 72
Providing Targets for Branchingcceceerermreeeeseereeeseessessesssnensnssans 74

Run-Time Set SYmbOls...............cocerreeereiereireeeeseesesescsnssssseseessansessessennns 75
Global Status Set SymbOlScceeeerererirreeereerenreieeerceereeeseneseseeasennns 75
Local Status Set SYMDOIScccvvrerreeeririeirenreeerenreeenreeesseseessssensenes 7-10
Specifying Set Symbol Values in QUOTESoveceeeereereerereersresnesnssesessnenens 7-12
Using Symbols to Examine Job and System Related Values and

FACIIHES ..vveeerereerecsenreeninenernesesessenessarssssaesnensasssasesesensesssessssenen 7-13

Priorities among Set Symbols, Keyword Parameters, and Positional

Parameters................ceecveereeenereeneiienieeesesseeeeeesssessssesnsesesessensans 7-16
How to Write and Call a Job Control Procedure Definition
The Benefit of Procedure Definitions................cooeeveeeeeereeessseresessenesnessssons 81
CodING RUIES ...ttt e esassessessessesessesessesssssssensssens 81
Parameter TYPES...........ccvueuvueucuencniecnessieesessesessesesssssssssssssssssessassessssssasssssnens 83
The Start of the JPROC Definitioncccoveeeeeereeereeeeeereeeeseeeessssesessnns 83
Naming the JPROC Definlitionccoceeeeieecereeereeeereseesesesnessssesnsssssesssnens 84
Ending the JPROC Definiition..............c.oooecuevemererereeereeseeeessesessesesssssssssssnsns 85
Calling JPROC Definitionscccoveeereeerieeeecenresrenssesessesenessssesessssssesesnns 86
How JPROC Definitions Are Storedc.ooeeeeeeeveeeeesereessseesssnesssessssssnens 87
Specifying an Alternate Library File to Be Searched for JPROCS 89
Parameter Referencing................ccceeememeeeeeeeeeeeenseeeeesseneiosssssesssssssssssnns 810
Using the Interactive Job Control Dialog
The Function of the Job Control Dialog.............ccoeeeeeeeveeereeeeeeeeeeeeesesesenns 91
Building a Control Stream with the Job Control Dialogccevvvevevevenenn. 93
Building a User JPROC with the Job Control Dialogceveeevemeeeneuenenen. 98
Entering Embedded Datac.eeeeeveeemreerrneeeeeeneeseseseseseseeeseenesesessnns 98
Changing Dialog ReSPONSEsoouvveveeemeureseerseseesereseesseenesssesessssssees 99
Statement Conventions
Job Control Statement FOrmat................oooueueeeveereeeeeeseeeereeeeeeeeeesesesessssneesnen Al
How Job Control Statements Are Presentedooeeeeeeeveeemvemeeeeeeeeons A2
Coding CONVENIONSc.cuiuireeieeeeereeeeeeereeeeseeeeenssessesessssssssssssssssseseseses A7
Statement Continuation.............................. tereeetereeeeernresansaessssnresstaesanns A8
Software CONVENtioNS................ccueeecemreeeeeeeeeeeeeeeeseesesesssessesesessesessssessessens A9

Contents

Appendix B. Operation Considerations

System LIbraries............ccccvinirnierceiinecsnsnnenicsscessnesnsessenssenssssssssssssssssssesaess B1
Volume Table of CONtEntscccccveeeererniresrcneressserecsansesanesens B-2

Appendix C. Job Control Statement Formats

JOb Control STatemMEntsccceecevereeieencrerisrineessnnesssessssnsassonssssssssessasasenses Cl
Job Control ProCceduresoouueeeieeieiieeireceirreeressesnesessesssneessessssssesesssnens C9
Index
User Reply Form

xvi 7004 4623-000

Figures

1-1.
1-2.

2-1.
91.

9-2.
93.

7004 4623-000

Operating SystemM/3 (0S/3).....uveerreriierreereesseressessaesssesssnessesssnesssesssessanessansssassanaas 1-3
JOD ProCesSiNg FIOWc.eevueereeeerneicirerineessecnesecsstossisssssessessacssssssssnssassssessassnsesassasssnes 15
Job Region in Main StOrage......ccccceeereeenereneesnsssercssicssnsssisssesssersanessnasssessanesnassansssssans 2-13
Using the Job Control Dialog to Build a Control Stream or User JPROCcccoevuemrennncne 92
Audit Version of the Dialog Processor........ccceceenee. tetvesssreessareeasatessennesssesssasares 910
Changing Your Dialog ReSPONSES.....cccccueereseercsssarencerersansanes teeeeseereeesbesssnaeesnanen 911

XVii

Tables

41.

61.

71,

7004 4623-000

Mode Characteristics......cuieeeeeererreeerecsrseerecssseeeesersneeceenes

DD Supported KeyWords.......cccevveverrerneessereessansessaseessaesenns

Keywords and Symbol Values for // INQ JOB and // INQ SYS

..

XiX

O

Section 1
Overview

Why You Need Job Control

To process any program, the operating system must have some necessary instructions
and information. Should the system compile, link edit, or execute a program? Does it
know what files a program uses, which devices to reserve, and how much main storage
a program needs? Should it allocate space for a file? For the operating system to
know what specific work - what job - you want it to do and how, you must supply this
type of information to that part of 0S/3 called job control.

To communicate with job control, you use 0S/3 job control language (JCL), which
consists of job control statements and job control procedures (JPROCS). The
statements and JPROCS you code make up a job control stream.

Job Control Statements and Job Control Streams

Each of the many job control statements has a different function but they are
combined in a control stream to do a singular job. OS/3 requires that every job have a
control stream. Using three statements, / JOB, / EXEC, and /&, we can show you the
following outline job control stream required for executing a program:

[// JOB MYJOB Identifies your job and indicates
. the beginning of the control stream.

Job control // EXEC PROG1 Specifies execution of the program PROG1.
stream for .

executing
a program
/& Indicates the end of the control stream.

These three statements illustrate the idea of a job control stream, but you’ll see in
later sections that you must also include statements identifying files and devices.
Additional statements are used, depending on the specific function needed to
accomplish your job. You can also include program data in the control stream.

In this guide, we’ll explain the function of each job control statement and its
parameters so you can build simple as well as complex job control streams.

7004 4623-000 1-1

Overview

Job Steps

Any job can have one or more steps. If, for example, you want to execute three
programs, one after the other, you can construct one job control stream with three (job)

steps likg this:
// JOB MYJOB
. Job step 1
// EXEC PROG1
Job named MYJOB | Job step 2
1/ EXE& PROG2]
Job step 3
// EXEC PROG3 J
L /&

A job can have up to 254 job steps. The steps are processed serially and the EXEC job
control statement normally marks the end of each one.

Job Control Procedures (JPROCS)

Besides using individual job control statements in your control stream, you can use Jjob !
control procedures (JPROCS). (

A JPROC is a series of job control statements that performs a certain function or
routine. JPROCS are supplied as part of the system £nd you can also write your own.
They are filed in a library and each JPROC has its own name. (See "Building and
Storing Job Control Streams and JPROCS" in this section.) When referenced by that
name in a job control stream, the statements that make up the JPROC are generated
and incorporated into the control stream.

You may frequently need some function that a specific group of job control statements
performs. Instead of coding the same group of statements in every job control stream
requiring that function, you can simply define the statements as a JPROC, then code
the JPROC name.

Compiling a source program, for example, is something that’s done often. If you
include a certain system supplied JPROC name in your job control stream, all the
statements necessary for the language processor to compile your source program are
generated. The following simplified control stream specifies the COBOL language
processor JPROC.

1-2 7004 4623000

i

Overview

// JOB MYJOB

. Causes the generation of job control
. statements that identify files and
// COBOL devices needed by the COBOL language

. processor. Executes the language
. processor so that a source program can
. be compiled.

/&

System-supplied and user-written JPROCS are explained in Sections 2 and 3.

Job Control and the Operating System

To better understand what job control does, it helps to know where job control fits into
the operating system.

Unisys Operating System/3 (0S/3) is divided into two parts: the executive and the
system support software components. Job control is part of the executive portion of
OS/3. Together, the supervisor and job control manage job processing for OS/3.
Figure 1-1 shows the executive and system support software components of 0S/3.

EXECUTIVE

SUPERVISOR JOB CONTROL

SYSTEM SUPPORT SOFTWARE COMPONENTS

SYSTEM INFORMATION
DATA LANGUAGE SERVICE MANAGEMENT
MANAGEMENT PROCESSORS PROGRAMS SYSTEM
INTEGRATED
DATA BASE COMMUNICATIONS DIAGNOSTIC
MANAGEMENT ACCESS APPLICATIONS EMULATORS PROGRAMS
SYSTEM METHOD

Figure 1-1. Operating System/3 (0S/3)

7004 4623-000 1.3

Overview

14

The supervisor controls the sequence and position of your programs and system
programs in main storage. For more information on supervisor facilities, see the
Supervisor Technical Overview, UP-8831.

Job control manéges system facilities and prepares the system for job execution. In
general, it does the following:

* Assigns a job number to every active job and symbiont

® Analyzes the job control stream

¢ Checks the order and syntax of control statements

¢ Expands job control procedures (JPROCS)

® Schedules jobs and queues them according to priority

e Allocates peripheral devices and main storage

These and some of the other functions that job control is responsible for are handled
by (system) programs called symbionts. Symbionts are normally executed in response
to a user request that may be in the form of a system console command, a workstation
command, or certain job control statements. Symbionts compete for main storage and
CPU time along with your jobs. The run processor, which begins processing your job

control streams, is a symbiont. We'll be discussing the run processor in the next (
section. &

7004 4623000

Overview

Processing a Job Control Stream

You can build job control streams on disk, data-set-label diskette, or on cards.
Looking at Figure 1-2, you can see that job processing involves several steps.

OR

OR

O

N
JOB CONTROL

STREAM ; |

JOB STEP JOB STEP
RT%QKSSNT . RUN - JoB L JoB | | PROCESSOR | || PROCESSOR | Jos
. PROCESSOR SCHEDULER INITIALIZER (STEP INI- 7| (STEP TER- TERMINATOR

TIALIZATION) | MINATION)

} f

ACTUAL
EXECUTION
OF YOUR
PROGRAM

SYSRUN FILE
(CONTAINS TRANSLATED JOB CONTROL STREAM, INCLUDING EXPANDED JPROCS)

Figure 1-2. Job Processing Flow

A brief discussion of each step in the job processing flow should give you a general idea
of what happens after job control accepts a request to process a job.

Beginning Job Processing - the Run Processor

The run processor begins job processing by scanning the control stream, translating
the job control statements into tables on disk, and expanding JPROCS. At this point,
it also checks the stream for order and syntax errors. If there are errors, no further
preparation of the job is made and job control error messages are generated.

7004 4623-000 15

Overview

Once the control stream is translated, the run processor places it in the YRUN
system file (a §YRUN file is created for every job being processed). The name of the
job (obtained from the / JOB statement) is entered in a table called the job queue
table. The job queue table contains the names of all jobs waiting to be executed. The
jobs are ordered by a priority specified on the JOB statement (or, as you'll see later, on
other job control statements or workstation/console commands). Within a particular
priority, the jobs are ordered on a first-in, first-out basis.

RUN PROCESSOR

® Translates job control statements

®* Expands JPROCS

® Checks order and syntax of control stream
* Builds control blocks

* Enters job name in job queue table

® - Creates YRUN file

Considering Jobs for Execution - the Job Scheduler

After the run processor prepares your job control stream, processing control passes to
the job scheduler, which checks the job queue table. If there are jobs in the queue
table, the scheduler determines which jobs will be executed next. The job priority and
the availability of system resources (peripheral devices and main storage) are the
basis for this determination.

A job can have one of four priorities: preemptive, high, normal, or low. At any one
time, the job queue table can contain the names of up to 15 preemptive priority jobs,
39 high priority jobs, 71 normal priority jobs, and 15 low priority jobs. The job
scheduler considers preemptive jobs for execution first, followed by high, normal
priority, and low jobs (in that order). Jobs are considered within each priority level on
a first-in, first-fit basis. Lower priority jobs are not considered until there are no other

higher priority jobs in the job queue table. Jobs in HOLD status are not considered at
all.

Before job execution can start, sufficient main storage and the necessary peripheral
devices must be available. The job scheduler checks for both; and if both are not
available, the job is left in the job queue table. A slightly different situation exists if
roll-out is configured with the system. (See "Job Roll-Out/Roll-In" in Section 2.)

16 7004 4623000

Overview

In addition to checking priority and the availability of main storage and peripheral
devices, the job scheduler maintains the shared code directory, reserves volumes,
maintains a volume use table for all jobs, deletes your job name from the job queue
table, and displays your job name at the system console.

JOB SCHEDULER FUNCTION

* Considers your job for execution by priority

* Reserves devices and main storage for your job so that job execution can begin

* Deletes the job name from the job queue table

® Displays the job name on the system console

Beginning Job Execution - the Job Initializer

Processing control passes to the job initializer when job execution is ready to begin.
Up to 47 jobs can be executed concurrently.

The job initializer also loads shared code modules, activates job accounting, and
updates job log status.

JOB INITIALIZER FUNCTION
® Builds job preamble

¢ Loads shared code modules

® Activates job accounting

® Updates job log status

Initializing a Job Step - the Job Step Processor

The job step processor performs the functions necessary for initializing and completing

a job step. At this point in job processing, the program specified on the EXEC
statement is loaded and executed.

7004 4623-000 1-7

Overview

JOB STEP PROCESSOR FUNCTION (STEP INITIALIZATION)
* Reviews volume requirements

* Reviews device allocation

¢ Updates system volume use table

® Allocates devices and disk space

® Locates and updates file control blocks

® Locates and posts address of embedded data

® Stores logging data

® Performs utility functions (rewinding tapes, scratching files, etc.)

Ending the Job Step - the Job Step Processor
The job step processor also performs the end-of-job-step housekeeping duties. If this
is the last step in the job, the job step processor passes processing control to the job
terminator; if not, it retains processing control for initialization of the next job step.
JOB STEP PROCESSOR FUNCTION (STEP TERMINATION)
* Updates job preamble
® Initiates burst mode printing of spool files

®* Records logging data

® Scratches job step (temporary) work files

18 7004 4623000

/ \

P

Overview

Ending the Job - the Job Terminator

When the last step in the job has been processed, the job terminator receives control to
perform end-of-job housekeeping duties.

JOB TERMINATOR

® Deletes job name from system console
® Scratches job temporary files

® Scratches job’s YRUN file

® Requests printing of log and spool files
* Displays job termination message

®* Frees memory and releases devices

® (Clears job entries from system volume use table

Building and Storing Job Control Streams and JPROCS

Here are some ways you can build and store job control streams:

¢ Ifyou have UDS-200 data entry equipment, you can use it offline to place job
control statements directly onto data-set-label diskettes.

® You can use the general editor (EDT) to build control streams at a workstation.
Depending on the instructions you give the editor, the control stream can then be
placed on data-set-label diskette, in the spool file, in a permanent job control
stream library on disk or format-label diskette, or on cards. You can specify a
permanent SAT library of your own as the stream’s destination, or you can use
YJCS, the system job control stream library. The General Editor (EDT)
Operating Guide, 7004 4599, explains the use of the general editor.

® You can use the job control dialog to build control streams. The dialog stores the

completed stream in YJCS. Section 9 explains the interactive job control
dialog.

* If the control stream is already on data-set-label diskette, in the spool file, or on
cards, you can use a FILE system console command or the FILE workstation
command to place the stream in a permanent SAT library. The FILE system
console command is explained in your operations handbook and the FILE

workstation command is discussed in the Interactive Services Operating Guide,
UP-9972.

7004 4623-000 . 19

Overview

For JPROCS to function as intended, you must store them in YJCS or your own
SAT library. So whether you use EDT or the job control dialog, the eventual
destination of the JPROC is a permanent library. See "How JPROC Definitions Are
Stored" in Section 8 for more information on storing JPROCS.

Saving Translated, Expanded Job Control Streams
(Save/Restore Facility)

1-10

Before a job can be executed, no matter how often its been executed already, it must
be translated and have any JPROCS expanded first. This is done by the run
processor, and for some jobs (especially those with many JPROCS) this takes a long
time. You can reduce this time by saving the control stream in its translated,
expanded state. Because the run processor can skip the step of translating and
expanding this type of control stream when it is restored and job processing starts, the
job’s execution begins sooner.

To save a job control stream in its translated, expanded state, you simply include the
// OPTION SAVE or / OPTION NOSCHED statement in the control stream. (See
"Selecting Optional Features" in Section 6.) When job processing is initiated and the
run processor finishes expanding and translating the control stream, a copy of the
stream (as it appears in §Y$RUN) is placed in a permanent MIRAM library. You can
specify your own library or you can use the system library YSAVE.

Depending on which OPTION statement you used, processing then proceeds through
execution (OPTION SAVE) or stops as soon as the expanded, translated stream is
placed in the specified library (OPTION NOSCHED). In either case, you'll have a
copy of the expanded stream in a permanent library.

When a translated stream is processed, the OPTION SAVE/NOSCHED statement is
ignored. If you intend to process the untranslated stream, you should remove the
OPTION SAVE/NOSCHED statement. A command different from the one used to
initiate processing of the untranslated stream is used for the translated one. See
"Running Job Control Streams" later in this section for more information.

7004 4623-000

Overview

EXPANDED. TRANSLATED
CONTROL STREAM CONTAINING - OPTION SAVE.NOSCHED CONTROL STREAM

AN ALTERNATE
SAT LIBRARY

CONTROL STREAM PROCESSING

SYsJcs @ ALTERNATE
OR

MIRAM
AN ALTERNATE n LIBRARY
SAT LIBRARY

ORIGINAL CONTROL STREAM

When deciding whether or not to save expanded, translated control streams, keep the
following in mind: these streams take up more disk space than untranslated ones, you
can’t use them to update a file catalog (see "File Cataloging" in Section 6), and you
can’t change parameters on any of the job control statements. Replacing embedded
data sets is the most extensive change you can make to these streams (see "Replacing
Embedded Data Sets in Expanded Control Streams” in Section 6). Remember, you
cannot use a hyphenated job name if you intend to save your translated control
stream; the save processor does not recognize the hyphen.

Running Job Control Streams

Running a job control stream is a term commonly used in place of processing a control
stream. In OS/3 there are several ways you can initiate the running of a control
stream. These include the RV/RUN system console and workstation commands, the
// RV/RUN job control statements, the SC/SI system console and workstation

commands, and the / CC SC/SI job control statements. The differences between these
commands and statements are summarized as follows:

® RV system console or workstation command

This command initiates a stored control stream from a workstation or system
console that does not need an input device.

7004 4623-000 1-11

Overview

1-12

RUN system console or workstation command

This command initiates a job control stream from a workstation or system console
that needs an input device. This may mean the control stream to be run is on a
data-set-label diskette, in the spool file, or on cards. It may mean the control
stream is stored in YJCS or an alternate SAT library file but contains a CR job
control statement and, therefore, will need an input device to complete
processing. (See "Adding Cards to a Stored Control Stream" in Section 6.)

// RV job control statement

This statement, when encountered in an executing job control stream, initiates
the running of another control stream.

// RUN job control statement

This statement, when encountered in an executing job control stream, initiates
the running of another control stream. You can use / RUN if the control stream
is on cards or is stored in a library but contains a / CR statement because card
input is needed to complete job processing.

SC system console or workstation command

This command initiates an expanded, translated control stream (stored in
YSAVE or an alternate MIRAM library) that does not require replacement of
embedded data and, therefore, does not need an input device.

SI system console or workstation command

This command initiates an expanded, translated control stream from $§Y$SAVE
or an alternate MIRAM library that needs an input device for the replacement of
embedded data.

// CC SC job control statement

This job control statement, when encountered in an executing control stream,
initiates an expanded, translated control stream from YSAVE or an alternate
MIRAM library that does not require replacement of embedded data and,
therefore, does not need an input device.

// CC SI job control statement

This job control statement is used the same as // CC SC except that it initiates an

expanded, translated control stream from YSAVE or an alternate MIRAM
library requiring an input device for the replacement of embedded data.

7004 4623000

'/ﬁ.\v.

-

Overview

7004 4623-000

For information about system console commands, see the appropriate operations
guide. For information about workstation commands, see the Interactive Services
Operating Guide, UP-9972. For information about the / CC SC/SI and

// RV/RUN job control statements, see, respectively, the "Using the RV/RUN Job
Control Statements to Call Control Streams" and "Using CC SC/SI to Call Saved
Translated Control Streams" in Section 6.

113

)

Section 2
Basic Concepts

Assigning Devices and Files

An important part of writing a job control stream is identifying devices and files and
establishing a logical connection between the files and the program using them. The
following job control statements help you do this:

DD EXT LFD uiD VoL
DST LBL ROUTE USE
DvC LCB SPL VFB

The DVC and LFD statements (in that order) are required for every type of file and
device you use. The other statements (when used) must appear between the DVC and
LFD statements. They’re necessary depending on the kind of file, or function you
want performed in relation to that file. As a group, these statements are called a
device assignment set.

// JOB MYJOB

Device // DvC...
assignment .
set for a

file used by

PROG1 // LFD...

// EXEC PROG1
/&

The CAT, DECAT, EQU, FREE, REN, and SCR job control statements are not coded
between the DVC and LFD statements; so, technically, they’re not part of a device
assignment set, but their function is related. We'll talk about these in later sections.
In this section, we’ll talk about the DVC, VOL, LBL, EXT, and LFD job control
statements to help you become familiar with the overall function of a device
assignment set.

7004 4623-000 21

Basic Concepts

Peripheral Devices and Logical Unit Numbers (DVC Statement)

A peripheral device is any unit of equipment, distinct 'rom the central processor and
main storage, that allows the system to send or receive data. Some devices, such as
card readers, only handle incoming data (input); some, such as printers and card
punches, can only handle outgoing data (ouput); while others, such as disks, format-
label diskettes, tapes, and workstations, can handle both (input and output).

In OS/3, each type of peripheral device is assigned a specific number called a logical
unit number. You specify logical unit numbers in the DVC job control statement. This
tells job control (the job scheduler) which peripheral devices you need for your job.

Suppose you need a printer because your program produces printed output. The
following information (taken from Table A-1 of the Job Control Programming
Reference Manual, UP-9984) shows some logical unit numbers for printers.

Device Type | Logical Device Type and Features
Code Unit No.

04040000 14, 15 0791 correspondence quality printer
04010000 16, 17 0798 printer, no optional features
04020000 18, 19 0789 printer

04FFQQ00 |- 20, 21 Any printer, no features specified
04400000 22, 23 9246 printer, no features specified
04100000 24, 25 0776 printer, no optional features
04200000 26, 27 AP9215 printer, no features specified
04800000 28, 29 0770 printer, no optional features

If you need a Unisys 0776 printer, specify either 24 or 25 on the DVC statement. If
any printer will do, specify 20 or 21.

Device assignment // JOB MYJOB Device // JOB MYJOB
for the 0776 // DVC 24 assignment // DVC 20
printer // LFD... for any { // LFD...
// EXEC PROG1 available // EXEC PROG1
printer

Each logical unit number you use corresponds to a device requirement for your job.

So, if you specify logical unit number 20 in one job step and logical unit number 21 in a
following step, two printers must be available in order for your job’s execution to
begin, even if one is sufficient.

22 7004 4623-000

~ w\\

Basic Concepts

C

// JOB MYJOB

// DVC 20
// LFD...
. Two printers must be
// EXEC PROG1 | available for this
. job to run.
// bve 21

// LFD...

// EXEC PROG2
/&

Besides using logical unit numbers, disk devices can be assigned by specifying RES or
RUN. These and other functions of the DVC statement are further discussed in
Sections 3 and 4.

Note: For 0776 printers, the CLASS=parameter should be used if a unique logical
unit number is required.

Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement)

Volume serial numbers are used to uniquely identify disk packs, diskettes (format and
data-set-label), and tape reels to the operating system. This number is written
externally (generally on a gummed label) and internally (on the actual recording
surface). Both numbers should match for identification purposes.

The assignment of volume serial numbers takes place when the prep routines
associated with disk, diskette, and tape are performed. See the System Service
Programs (SSP) Operating Guide, UP-8841, for information about prep routines.

When you specify a volume serial number in a VOL statement, job control checks to
make sure that a tape reel, diskette, or disk pack with the matching volume serial
number is mounted. If the wrong volume is mounted, the system notifies the operator.

7004 4623-000 23

Basic Concepts

In this example

// JOB MYJOB

. . Specifies any available
Device // DVC 50) disk device
assignment // VOL 12345A
for a disk file // LFD... =———p Specifies a disk pack with
. the assigned volume serial
number of 12345A

// EXEC PROG1

/&
the disk volume whose serial number is 12345A must be mounted for job processing to
continue.

We'll discuss other functions of the VOL statement in Sections 3 and 4.
Notes:

1. OS/3 assumes that all volume serial numbers are unique. The mounting of two
volumes with the same volume serial number at the same time yields unpredictable
results.

2. 0S/3allows a maximum of 151 volumes to be in use by all active jobs. (The —
maximum number of volumes allowed for a single job is also 151.) (

File Identifiers (LBL Statement)

While a volume serial number identifies one tape, disk, or diskette volume, a file
identifier names (or identifies) a particular file on that volume. The file identifier is
an alphanumeric name physically written on the recording surface of the tape, disk, or
diskette (format and data-set-label). You specify a file identifier on the LBL job
control statement. If you're creating the file, the identifier you specify is assigned. If
the file already exists, job control checks to see that the file identifier specified with
the LBL statement matches one already recorded for a file on a particular volume.
This ensures correct file use.

24 7004 4623000

Vi

Basic Concepts

// J0B MyJos

Device // DVC 50 If the file,is being created,
assignment set // VOL 12345A MYFILE is the identifier
for a disk file // LBL MYFILE =} assigned. If the file exists,

// LFD... MYFILE is the identifier job
. control checks for.

// EXEC PROG1
/&

A file identifier specified on an LBL statement is required for any file on disk,
diskette, or multifile tape volume. Ifa tape volume holds only one file, a file identifier
may be specified but isn’t required. As you'll see in a later section on spooling card
input, it is sometimes useful to specify an LBL statement (with a file identifier) in the
device assignment set for a card file that’s been spooled.

The LBL statement has other functions that are covered in Sections 3 and 4.

Note: The prep routine for data-set-label diskette automatically assigns a file
identifier of DATA unless you specify otherwise during the prep.

Disk and Format-Label Diskette File Area (EXT Statement)

Whenever you're creating a disk or format-label diskette file, you allocate space for
that file in contiguous areas (on the recording surface) called extents. The amount of
space as well as other characteristics of the file’s extent are specified using the EXT
job control statement. The device assignment set for every disk or format-label
diskette file you are creating must include an EXT statement. It is also required if
you want to change certain extent specifications for a file that already exists.

Using the EXT statement, space on disk or format-label diskette is allocated in terms
of one of the following:

¢ Number of cylinders
You specify the number of cylinders needed for the file.
® Absolute cylinder address

You specify the number of cylinders needed for the file and you also specify the
starting address of the file as an absolute cyiinder address.

7004 4623-000 25

Basic Concepts

e Number of tracks
You specify the number of tracks needed for the file.
® Absolute track address

You specify the number of tracks needed for the file and you also specify the
starting address of the file as an absolute track address.

e Number of blocks (by cylinder)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of cylinders so the actual
allocation is by cylinder.

e Number of blocks (by track)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of tracks so the actual allocation
is by track.

You'll learn more about file space allocation when we discuss the EXT statement in
Sections 3 and 4. For now, it is enough to know that an EXT statement must be
included in the device assignment set when you're allocating space or making certain
allocation changes for a disk or format-label diskette file.

// JOB MYJOB

// DVC 50

// VOL 12345A
Device assignment // LBL MYFILE This statement specifies four
set for a // EXT MI,C,,CYL,4 =P cylinders of contiguous space

disk file. // LFD... for a MIRAM (disk) file.

// EXEC PROG1
/&

Data-Set-Label Diskette File Area (EXT Statement)

26

The prep routine for a data-set-label diskette automatically allocates the entire
diskette for one file and assigns a file identifier of DATA unless you specify otherwise.
If the space was already allocated by the prep routine, there is no need for you to
include an EXT statement in your device assignment set. If, however, the space was
not previously allocated, you must use the EXT statement to allocate the space
yourself. Allocating the space yourself allows you to have control over how many files
the diskette can contain.

7004 4623000

A~

()

rdin

N

Basic Concepts

Space on data-set-label diskette must always be allocated by block and it must be
contiguous. Data-set-label diskette files are always one-extent files. For information
about the EXT statement for data-set-label diskette, see "Information about Data-Set-
Label Diskette File Allocation" in Section 4.

Logical File Names (LFD Statement)

We've already talked about how you specify a file identifier (a name that’s physically
recorded on the surface of a disk, tape, or diskette) on the LBL job control statement.
There is another name, however, that is required for every file (not just disk, tape, and
diskette) and must be included in every device assignment set. It is the logical file
name: the name your program references the file by.

You specify it on the LFD (logical file definition) job control statement, which is
always the last statement in any device assignment set. The name you specify
logically (LFD) links the file (name) you reference in your program with the physical
file (LBL) defined in your job stream’s device assignment set. The names that you use
are:

e InBAL

The name from the label field of the file definition macroinstruction.

1f: Then:
1 10 16
// DVC 5@ Device assignment
FILE1 cDIB // VOL 12345A set for a newly
// LBL MYFILE allocated file
// EXT MI,C,,CYL,4 referenced by the
// LFD FILE1 program as FILE1
e InCOBOL

The LFD field of the implementor name from the SELECT clause.

If: Then:

12

SELECT CDS ASSIGN TO CARDREADER-INFIL-F // DVC 30 Device assignment set
// LFD INFIL for the card file

(In basic and extended COBOL, the LFD name corresponds to the first eight
characters of the file name from the SELECT clause. If an external name is specified,
however, then use the external name instead.)

7004 4623000 27

Basic Concepts

e InFORTRAN

The device number from the READ or WRITE statement, prefixed by FORT.

1f: Then:
1 7 10 // DVC 90
// VOL TAPE@1 Device assignment
READ(6, 10) // LBL PAYFIL set for a tape file

// LFD FORTé

* InRPGII

The file name from the file description specification.

If: Then:
’,‘3‘:;" FILE TYPE // DVC 20 Device assignment
FILE DESIGNATION // LFD PRINT set for a print file
END OF FILE
SEQUENCE
PAGE FILE FILE FORMAT
NO | | ine NAME -
NO 2lele
al3|e o| ewock
8 g g a z LENGTH
Z|Z|a|lwl|g|uw
1 213 5|67 1314516171819 20 23
O] {0,1,0|F[PRTI NIT, , [2) £

Lo] <

The file name used for a printer file in programs supplied by Unisys (such as the
compilers and the linkage editor) is a standard system file name, PRNTR. So, if you
want the printed output from a compilation, for example, the LFD statement for the
print file device assignment set is / LFD PRNTR. This logical file name applies only
to programs supplied by Unisys. In a job or job step that executes a user program, you
must supply your own logical file names (for the printer plus any other files) on the
LFD job control statement.

When using any other Unisys routines (such as the data utility routines), specify the
standard system file names shown in the coding examples in the corresponding
publication.

These and other applications of the LFD statement are discussed in Sections 3 and 4.

28 7004 4623-000

Basic Concepts

Device Assignment Set Placement and Duration

There is no strict rule for the placement of a device assignment set in a job control
stream: simply place the device assignment set somewhere between the JOB
statement and the EXEC statement.

// JOB MYJOB

. <

other job control statements

// DVC 50

// VOL 12345
// LFD DSKFIL1
// LFD PAYROLL

. <=——————— other job control statements

// EXEC PROG1
/&

Where a multiple step job is concerned, just remember that a device assignment set
specified in one job step is normally effective for that step as well as any that follow.
Consider this example.

// JOB MYJOB

/7 DVC 20

// LFD PRTFIL Device assignment sets for a print
Job step 1 // DVC 90 file and a tape file. The assignments

// VOL T0eeo1 are effective for job steps 1, 2,

// LBL TAPE1 and 3.

// LFD PAYRATE

// EXEC PROG1

continued

7004 4623-000 29

Basic Concepts

// DVC 50
// VOL 1234A Device assignment set for a disk
// LBL DSKFIL1 file. The assignment is effective for
Job step 2 | // LFD PAYROL job steps 2 and 3.

// EXEC PROG2

Any of the device assignments

Job step 3 // EXEC PROG3 specified in job steps 1 and

2 are effective for job step 3.

/&

In the preceding example, PROGI can reference only PRTFIL and PAYRATE. It
cannot reference PAYROL. PROG2 and PROGS3 can reference PRTFIL, PAYRATE,
and PAYROL.

Job Termination

2-10

There are two ways in which a job can terminate: normally or abnormally.

1.

Normal Termination

This is initiated by the control stream, the program, or the workstation or system
console operator. Generally, it occurs after the last job step, but it can also be
caused by the operator using the CANCEL or STOP operator command, or by the
program issuing a cancel instruction. If terminated by the CANCEL system
command or program instruction, the entire job terminates immediately. This
includes the currently executing job step plus all subsequent job steps (if any) in
the job. The STOP operator command terminates a job when the job step
currently executing is finished.

Abnormal Termination

This is caused by program errors or by control stream errors (syntax order). If
caused by program errors, you can get a main storage printout (dump), which can
be used to debug your program, provided that you have placed an OPTION
DUMP statement in the control stream prior to the job step that caused
termination. The OPTION job control statement is covered in "Selecting Optional
Features” in Section 6. If caused by a control stream error, a message explaining
the error is displayed on the system console.

7004 4623-000

.‘/('-_f‘?\.

Basic Concepts

In anticipation of program errors, you may use the ABNORM=label parameter of the
EXEC statement. This parameter causes a skip forward in the job control stream so
that the job finishes executing and doesn’t terminate abnormally. If, however, the
operator issues a cancel instruction, the job terminates normally.

All terminations result in the deallocation of the system facilities (peripheral devices,
main storage, disk work areas, etc.) allocated to the job.

Restarting a Job

What if your job terminates abnormally - specifically when your program is executing?
If the program only processes a few records, you can rerun the job from the beginning
without any great loss; but, if the program processes many records, rerunning the job
increases processing time and cost. To help avoid this, OS/3 provides a restart facility
that permits you to resume execution of your job from a particular job step or a
checkpoint record. See "Restarting a Job" in Section 6 for more information.

Branching within a Control Stream

When you write a program, you can set alternate paths for the program to take.
Normally, program statements execute consecutively in the order of their appearance.
However, it is often necessary to alter this normal sequence and skip forward to a
different point in the program - this is called branching. Similarly, alternate paths
can be taken in job control streams. The SKIP and OPTION QUERY job control
statements allow you to skip forward in the job control stream during your program’s
execution to another job control statement. The ABNORM parameter of the EXEC job
control statement allows you to skip forward in the job control stream if your program
causes an abnormal termination. (See Section 6.)

You can also branch from one job control statement to another in a control stream by
using run-time conditional job control statements (they’re called run-time statements
because they are available and effective through the run symbiont). Run-time
conditional job control statements are interpreted and acted upon while the run
symbiont is scanning the control stream. They are not placed in the job’s YRUN
file; their actions are completed when the run processor has acted upon them. Only
forward branches are allowed. The job control statements belonging to this category
are GO, IF, and NOP. They are explained in "Run-Time Conditional Job Control
Statements” in Section 7.

7004 4623000 2-11

Basic Concepts

Jobs and Main Storage

After the supervisor is loaded into the system, the remaining main storage is available
to job control, symbionts (like the run processor and the job scheduler), your jobs,
shared code, and your programs. Naturally, the amount of available main storage
varies, depending on the jobs, symbionts, and programs executing at the time. Job
control assigns a portion of main storage to each job as the space becomes available.
The amount of main storage assigned is that which is needed to execute the largest job
step in the job. When a job is completed, the space it occupied is returned to the
system.

Job Roll-Out/Roll-In

In "Considering Jobs for Execution - the Job Scheduler” in Section 1, we mentioned
that the job scheduler considers jobs for execution by priority and the availability of
main storage and peripheral devices. In general, if the necessary main storage and
peripheral devices are not available, the job’s execution, regardless of its priority,
cannot begin. A different situation exists if roll-out (ROLLOUT=YES) is configured at
SYSGEN time.

With roll-out, high, normal, and low priority jobs are rolled out to disk to provide
enough main storage for preemptive jobs to be executed. When the preemptive
priority section of the job queue table is empty, the job scheduler rolls first the high,
then the normal, and last the low priority jobs back into main storage for execution.
Remember though, even if roll-out is configured, the peripheral devices needed for the
preemptive job must also be available; otherwise, roll-out does not occur.

Minimum and Maximum Main Storage

By minimum main storage size we mean the amount needed to successfully execute
the largest step of a job. The maximum size is the amount that can be used, if
available, to improve or speed up job step execution. As you'll see in Section 4, you can
specify the minimum and maximum main storage size on the JOB statement or on the
OPTION statement.

The total amount of main storage used by a job step also includes the size of the job
prologue. The prologue contains information (control tables) needed to regulate your
job. The size of the prologue, however, is automatically taken into consideration so
you don’t have to include it in any main storage size that you specify. Just keep in
mind that the job prologue is part of the true main storage requirement for a job. This
is illustrated in Figure 2-1.

212 7004 4623-000

N\

CODE !
(} F 1
s Y
4 4 MINIMUM PROGRAM
JOB STEP LOAD MODULE LENGTH AREA
MAXIMUM
LENGTH
A

Basic Concepts

| v 1
A JOB PREAMBLE

TASK CONTROL BLOCKS

AN

W
AN\
AN

3\

JOB ACCOUNTING TABLE JOB
PROLOGUE

LOCAL DATA AREA

SHARED CODE TABLE

A DISK STORAGE) JOB REGION
1 EXTENT INFORMATION 1 LENGTH

SPOOL CONTROL TABLE AND BUFFERS

PHASE LOAD TABLES

SAT/CDM ACCELERATION

S\
AN

ol

Figure 2-1. Job Region in Main Storage

Dynamic Expansion of Main Storage

Your job may require dynamic expansion of its initial main storage allocation to load
software modules (data management modules, for example), or to accommodate other
program modules called by your job. This capacity for dynamic expansion of the job
region is called the DLOAD facility. For more information about this facility, see
"Defining Software Facilities Needed by Your Job" in Section 6.

7004 4623-000 ' 213

N

Section 3
Minimum Control Stream Requirements

What Is a Minimum Control Stream?

A minimum control stream consists of only those job control statements needed to
properly direct the execution of a job.

Let’s assume you want to execute a program that has been compiled, link edited, and
stored in a library. This particular program does not use any input (cards, tape, disk,
etc.) and the only output is directed to the printer. The purpose of the program is to
print constants on adhesive-backed mailing labels, like this:

e)
NAME
ADDRESS
CITY STATE
ZIP CODE
\ J

Granted, this isn’t a widely used application, but it illustrates a bare minimum control
stream.

Constructing the Minimum Control Stream

In order to run this program, we have to construct a control stream to tell the
operating system what to do with it. Since the needs of the program are simple, we
need very few job control statements.

7004 4623000 31

Minimum Control Stream Requirements

First, a JOB statement is needed to indicate the beginning of the job to the operating
system. Every job entering the system must start with a JOB statement. Each job
step does not need a JOB statement, only one for the job as a whole. Next, since there
is a print output, a DVC statement is needed to assign a printer to the job. And
finally, every peripheral device we use has a file associated with it; every file needs a
file name. An LFD statement provides the file name.

The DVC and LFD job control statements make up a basic device assignment set.
Since the printer is the only peripheral device used by our program, no other device
assignment sets are required.

In fact, there are no other processing options needed for this program. We are now
ready to initiate the execution of the job step (our entire job consists of only one job
step). We need an EXEC statement for this.

Now our program has all the job control statements that it needs to function. But,
when it is finished, we have to tell the system that our control stream is finished. We
need a /& job control statement.

Briefly, we have indicated all the job control statements needed for this simple
program. They are:

e JOB
e DVC
e LFD

e EXEC
e /&

We will cover each of these job control statements in its proper sequence. We will
show all the parameters available for these job control statements, but, at first, only
those parameters that are required will be described, along with any parameters that
are generated by default. The optional parameters will be introduced into the
discussion of job control at the appropriate time.

But, before we start our control stream, you should read the statement conventions in
Appendix A. They explain how the job control statements are presented in text (how
you can tell which parameters are optional, which are required, how a default option
is shown, etc.) and how you code them.

32 7004 4623-000

/"'\

I

Minimum Control Stream Requirements

The Beginning of the Job

The JOB job control statement is the first job control statement that you need. Its
format is:

//lsymbol]l JOB jobname|, |P| |[,minl[,max1|, tasks , [max-time
H {1 suP
N
L

[,print-option-listll,acc-noll,nXm1|, [ACT » [NOHDR
LOG {nm} }
NOACT
NOLOG
NONE
BOTH

As you can see, it has quite a number of parameters. You can specify the name of the
job, the priority, how much main storage is needed, the amount of tasks in a job step,
how long the job should take, special information for display on the system console,
accounting information, spooling buffer size, and log information (where your
accounting record is kept).

The only parameter we are interested in right now is the jobname parameter, and any
default parameters (shown by shading) that are generated.

The jobname parameter does just what it implies: it names the job. It consists of one
to eight alphanumeric characters. Do not hyphenate the job name if you plan to save
the job. The save processor does not allow or recognize hyphens.

For example, we assign the name POCO to the job. It’s coded as:
// JOB POCO

By default, the job has a normal scheduling priority (N) and one task (1).

There is a special feature of the jobname parameter that helps you ensure that unique
job names are always assigned - you can use trailing ampersands (&) in the job name.
You could, for example, code:

// JOB POCOZ&&&

When the stream is processed, the system replaces the ampersands with unique
numbers.

7004 4623-000 33

Minimum Control Stream Requirements

When would you use this feature? If you have a job control stream (POCO for
example) that is used frequently by different personnel - perhaps even concurrently
from workstations - all the users could use POCO&&&& and be assured of having
unique job names assigned. It is recommended that if you use this feature, you use at
least three trailing ampersands.

You can override the parameters specified on the JOB control statement through
selected features of the OPTION job control statement, which is explained in
"Selecting Optional Features" in Section 6.

Identifying the Devices

The next entry needed in the control stream is for the printer. The DVC job control
statement is used to request the assignment of peripheral devices to a job. Its format
is:

RES OPT

RUN I1GNORE
ALT

I

o
REQL(N)]
[REAL

//Csymbol1 DVC [nnn[(n)]] , [addr

The DVC job control statement specifies the logical unit number associated with a
peripheral device type. It can also be used to assign alternate devices, or to specify
that the job should be executed even if the requested devices are unavailable.

Here, again, we are only interested in the required parameter specifying the logical
unit number. There are no default parameters.

The nnn is a decimal number indicating the logical unit number of the device. By
looking at the following information (taken from Table A-1 of the Job Control
Programming Reference Manual, UP-9984) we see that the category for printers is in
the range of 14-29. If we are willing to use any printer that is available, we use logical
unit number 20 or 21. But, it just so happens that there also are a 0776 printer
subsystem and a 9246 printer subsystem available in the system. Our program uses a
special character that is only present on the 0776 printer, so we will use logical unit
number 24.

34 7004 4623000

Minimum Control Stream Requirements

Logical Device Type Device Type and Features

Unit No. Code

20, 21 04FF0000 Any printer, no features specified
22, 23 04400000 9246 printer, no features specified
24, 25 04100000 8776 printer, no optional features

You'll notice that there are two other choices for the DVC job control statement: RES
and RUN. They will be discussed and used in later examples.

We can now add the DVC job control statement to our control stream as follows:

// JOB POCO
17 DVC 2%

Notes:

1. The (n) portion of the nnn parameter is used only when the logical unit number
indicates a workstation device.

2. Logical unit numbers can be changed at system generation (SYSGEN) time to suit
the needs of a particular installation. You must be aware of any changes because
they could cause device assignment problems within your control stream, especially
if you're using JPROCS supplied by Unisys.

Assigning a Logical File Name to the File

Every device assignment set in the control stream ends with the LFD Jjob control
statement. This associates the file defined in the program with the file information in
the control stream. Its format is:

//lsymbol] LFD [filename .[n , |[EXTEND
*filename 8 INIT

PREP
1D
IGNORE

The LFD job control statement specifies the file name of the file. It’s also used to
reserve main storage for information about disk file extents, write over the
information of the file, and add to the data already in the file.

7004 4623000 35

Minimum Control Stream Requirements

The filename parameter specifies the name of the file you are going to use, and must
correspond to the name given to the file in the program. The file name for the LFD job
control statement is determined in the following manner:

e The basic assembly language (BAL) programmer uses the name in the label field
of the file definition macroinstruction.

* The COBOL programmer uses the external name from the SELECT entry in the
environment division. (If the external name is omitted in COBOL 68, use the file
name from the SELECT entry.)

e The FORTRAN IV programmer uses the device number from the READ or
WRITE statement, prefixed by FORT.

e The FORTRAN._77 programmer uses F0 followed by the unit number unless a
specific name was specified in the OPEN statement.

e The RPG II programmer uses the file name from the file description specification.

The filename parameter is normally one to eight alphanumeric characters, but if you
are using a data management file, it has a maximum of seven characters. This is
because data management allows only one to seven characters in the label field of the
file definition macroinstruction.

If an asterisk is placed in front of the file name on the LFD job control statement, it
means this is an input-only file; you cannot write on it. The operator should be
notified of this so he can take appropriate action.

For our control stream example, we’ll assume our program is a COBOL program. The
file name for the printer in the FD entry is WRITEOQUT. We can now add the LFD job
control statement to our control stream.

// J0B POCO

Executing the Program

We have defined all the requirements of the program to the operating system. Now
we have to provide a job control statement to call the sorted program from a library
and initiate execution. This is done with an EXEC job control statement. Before the
program is actually loaded, any outstanding tape and disk mounting requests are
completed.

36 7004 4623-000

—

Minimum Control Stream Requirements

£

The format of the EXEC job control statement is:

//Lsymbol] EXEC program-name|, {library-name| |[,switch-priorityl[,ABNORM=label]
$YSRUN
YSLOD

The EXEC job control statement identifies the name of the load module. It is also

used to specify the library containing the load module, the task switching priority, and
any action to be taken if the program causes an abnormal termination.

Once more, we are only interested in the required parameter and any default
parameters generated.

The program-name parameter identifies the load module to be executed. Every
program that is successfully compiled and link edited creates a load module. Every
load module that is created and every routine supplied by Unisys must have a name.
The LOADM linkage editor control statement assigns a name to a load module; the
EXEC job control statement calls the load module by a program name. These names
must agree.

For example, you link edit your program with the module name TESTR on the
LOADM linkage editor control statement. The linkage editor creates the load module
with the name TESTR. When you want to execute this program, your EXEC job
control statement uses this same name: TESTR.

If, when you link edit your object module, you do not use a LOADM linkage editor
control statement, the load module name, by default, is LNKLOD.

Assume that this program is stored in a library from which it can be retrieved as many
times as needed. When the program was link edited, the linkage editor was
instructed to place the load module in a specific, permanent library; otherwise, it
automatically would have been placed in the job’s YRUN file, which is only a
temporary file. Assume it is located in the system load library file (§Y$LOD), and the
load module name is LABELS. Since YLOD is the default parameter generated for
the load library, we only need to specify the program name, which is the same as the
load module name: LABELS.

We can now add the EXEC job control statement to our control stream as follows:

// JoB POCO

1/ DVC 24

// LFD WRITEOUT
77 EXEC LABELS

By default, the lowest available task switching priority established at system
generation time is used.

7004 4623000 37

Minimum Control Stream Requirements

Ending the Basic Control Stream

So far, we have provided all the job control statements needed to construct a basic
control stream: JOB, DVC, LFD, and EXEC.

This control stream is all the system needs to execute our simple program. But, after
the program executes, the system returns to job control to obtain the next job control
statement. Because the job is finished, a /& job control statement is used to signal the
end of the job. Its format is:

/&

This statement has no parameters, but it can have comments. These comments have
no effect on the system; they only provide a means of annotation. The comments must
be separated from the /& job control statement by at least one blank column.

The statement conventions for coding more than one job control statement on a line
(multistatement coding) are presented in Appendix A. The /& job control statement,
however, must be the only job control statement on a line.

Adding the /& job control statement, along with some comments, our control stream
looks like this:

// J0B POCO

// DVC 24

// LFD WRITEOUT

/7 EXEC LABELS
J& . END-OF-1ABEL-JOB

Ending the Card Reader Operation

We have signaled the system we are finished processing. Now, we have to terminate
the card reader operation - this informs the system that there are no more cards
associated with the job. We do this with a FIN job control statement. Its format is:

//lsymbol] FIN

There are no parameters.

We can now add a FIN job control statement to our control stream, as in the following
example:

// JOB POCO

// DVC 24

// LFD WRITEOUT

// EXEC LABELS

/& END-OF - LABEL - JOB
// FIN

7004 4623000

7

Minimum Control Stream Requirements

The FIN job control statement also signals the end of card input when merging job
control statements with stored control streams, submitting data cards as input for a
stored control stream, or storing a complete control stream.

Note: Using the FIN job control statement is unnecessary when input is on data-set-
label diskette or in the input spool file.

The Control Stream So Far - A Review

We have defined everything the system needs to know about the job. It has been
given a name, the system was instructed what load module to use, and the job has
been assigned the peripheral device it needs. The program is ready for execution.

This control stream represents only a minimum application. We have only scratched
the surface of the capabilities of the OS/3 job control. Throughout the rest of this
guide, we are going to build on this minimum control stream by adding and modifying
job control statements.

Let’s assume that the program with a load module name of LABELS was recompiled
and link edited after it was modified to accept input from the card reader. This new
input contains name and address information that will be printed on the adhesive-
backed labels along with the constant information as shown in the following sample.

NAME JOHN A. SMITH

ADDRESS 143 S. 52ND. ST.

CITY HOMETOWN STATE PA.

ZIP CODE 18908

7004 4623-000 39

Minimum Control Stream Requirements

Adding Card Input

310

Since the job will now accept card input, we must provide a device assignment set for
the card reader. This means we have to insert a DVC and LFD job control statement
for the card reader into the control stream. Once again, their formats are:

//Tsymbol] DVC {nnn[(n)]]

-

RES
RUN

//lsymbot] LFD Ffilename G

e | B

The following section of Table A-1 in the Job Control Programming Reference,
UP-9984, indicates that the category for card readers is 30-35.

[addr

OPT
IGNORE

ALt

1
0
REQL(n)]

[REAL

[,HOST=host-id]

[EXTEND
INIT
PREP
1D

| IGNORE

Logical Device Type Device Type and Features
Unit No. Code

30, 31 Q8FFQ000 Any card reader subsystem, no features specified
32, 33 08200000 0719 card reader, no features specified

34, 35 08800000 0716 card reader, no features specified

For this example, we will assume the system you're using has only one card reader, an
0719 card reader. For a logical unit number, there are four alternatives. We can use
32 or 33, which assigns a 0719 card reader specifically, or, since the 0719 card reader
is the only one we have, we can use 30 or 31, which allows us to use any available card

reader.

7004 4623000

N

Minimum Control Stream Requirements

If the system had two card readers, both of a different type, and a particular card
reader is needed, you must be more specific in your assignment. If it’s immaterial
which card reader is used, you could assign the logical unit number for any card
reader (30 or 31).

A point to remember about logical unit numbers: if you don’t care about the specific
device type, use the logical unit number that assigns any device within the category
(20 and 21 for printer, 30 and 31 for card readers, etc.). In that way, if there is more
than one type of device, you get the first one available. For instance, suppose you
selected logical unit number 25 (Unisys 0776 Printer Subsystem) but there is also a
0770 printer connected to the system. The 0776 printer has 40,000 lines waiting to
print, while the 0770 printer has a backlog of only 500 lines. By specifying only the
0776 printer, you must wait for the other 40,000 lines to finish printing. By specifying
any printer, the output is sent to the first available printer. The logical unit number
we are going to use for the card reader is 30.

Note: When requesting the assignment of more than one device of the same type (two
printers, for example), be sure you request the assignment of any specific
devices you need before you request the assignment of general ones. This
ensures that a specific device you may need (the 0770 printer, for example)
will not be allocated for use as a general printer when it’s needed as a specific
device.

Now that we have a DVC job control statement for the card reader, we need a
corresponding LFD job control statement. Since this program is written in COBOL,
we check the SELECT entry in the COBOL program and find that the file name is
CARDIN. This file name is coded in the LFD job control statement.

We can now add the device assignment set for the card reader to the control stream.
It can be placed anywhere in the control stream, with the following restrictions:

® It must be before the EXEC job control statement.

® It cannot be within embedded data.

® It cannot be within the device assignment set (DVC through LFD sequence) for
another device.

7004 4623-000 311

Minimum Control Stream Requirements

Card Input and Embedded Data

To accept data input from a card reader, we must inform the card reader in some way
that it is data to be read. In many cases, this data is caused to be read at execution
time by data management. In this kind of application, the data cards follow the / FIN
card that caused the card reader to be turned off previously. All that is additionally
needed is a /* card after the data signifying end of data. There are no other
parameters required, and no comments are permitted in the comment area of the
card. This /* statement is always required for any type data. Thus, to our control
stream we can now add the data, followed by the /* end-of-data statement, and run
our job, which consists of the LABELS program. Basically, we are saying to the
processor, run my job POCO which executes the program called LABELS - my data is
a card file after the FIN statement when you are ready to execute. This will print the
name and address information, plus constants, as shown, on adhesive-backed labels
that the operator has previously placed in his printer. The following example
illustrates this control stream:

// JOB POCO

// DVC 24

// LFD WRITEQUT

// oveC 30

// LFD CARDIN

// EXEC LABELS

/& END-OF - LABEL- JOB

/I FIN

_ data-cards

Note: You should be aware, however, that in the case of multiple files, if the first
program in the series does not read all of its data cards (along with the /*
that signals end of data), the next program step will pick up where the
previous one left off. Additionally, if you are programming in higher level
languages, such as RPG, COBOL, or FORTRAN, you cannot read multiple
card files in a single program without closing and reopening the files.

Another way in which data cards may be accepted, and which informs the card reader
that data is being input, is the embedded data method. This means that the data is
embedded within the control stream itself. All it requires is a start-of-data (/$) job
control statement immediately after the EXEC statement, followed by the data and
the /* end-of-data. /$ has no parameters, and may appear as the last job control
statement on a multistatement line.

312 7004 4623-000

Minimum Control Stream Requirements

The advantage of this method is that the device assignment set is no longer required
for the reader, since the control stream is already being read. Additionally, the data
being read is instantly accessible, which is discussed later in Section 8. A
disadvantage is that embedded data in a prefiled job control stream is harder to
change than the data in a card file (which follows the // FIN job control statement).
This is because the embedded data is actually a part of your control stream rather
than a separate card file. Changing embedded data is discussed in "Substituting
Embedded Data" and "Replacing Embedded Data Sets in Expanded Control Streams”
in Section 6. An example of an embedded data control stream is:

// JOB POCO

// DVC 24

// LFD WRITEOUT
// EXEC LABELS
s
 data-cards

I*

/& END-OF - LABEL - JOB
// FIN

You can use this method when you become familiar with the programming techniques
needed by the language you're using - for example, a COBOL ACCEPT or FORTRAN
READ instruction. In fact, programs supplied by Unisys (such as the COBOL
compiler and the data utility routines) use this method. It entails the use of a
supervisor macroinstruction in the program (if it’s assembler language; if it’s one of
the other languages, there are similar instructions that are used). Again, if you decide
to use the embedded data method, the changes to your job control stream are:

1. Remove the device assignment set for the card reader; it’s not needed.

2. Place the data (/$, data cards, /*) after the EXEC job control statement. This is
what’s known as embedded data.

When you use the embedded data method, and you have an 0716 card reader
supporting the 96-column card feature, your data file can use the full 96 characters.
With data-set-label diskette, you can use up to 128 characters. But, even though your
control statements also can be on 96-column cards and data-set-label diskette, only
the first 72 columns (characters) can be used for job control statements.

In addition to embedded data, there is a dummy data set. A dummy data set consists
of only a /$ and a /*. This is used with some language JPROCS. More information
about dummy data sets can be found in the language manuals (COBOL, FORTRAN,
etc.).

You can replace embedded data sets in translated, saved job control streams by using
the DATA STEP job control statement. Refer to "Dynamic Skip Function from a
Workstation" in Section 6 for more information.

7004 4623000 313

Minimum Control Stream Requirements

The Program Is Changed - Another Device

So far, the program has been written to read name and address cards and print the
information, plus constants, on adhesive-backed labels. The program has been refined
once more. It is still going to print %mstants. However, the name and address file is
now on magnetic tape, in ZIP Code™ sequence. This tape was created by someone
else’s job. We want to list only the name and addresses of certain ZIP Codes;
therefore, we modify the program to accept a table from the card reader. This table
contains only the ZIP Codes we want to print. The program instructs the system to
compare the ZIP Codes from the table with the file on the magnetic tape and print the
names and addresses that match the ZIP Code table.

We have already provided the device assignment sets for the printer and the card
reader. Even though the format of the card reader input is different (previously it was
the name and address file, now it is the ZIP Code table), no changes are needed to the
card reader device assignment set. It was a program change and does not affect the
job control stream. The logical unit number is still 30 (DVC job control statement),
and the file name in the program is still CARDIN (LFD job control statement). The
only new item we have to provide in the control stream is a device assignment set for
tape.

What Is Needed to Use a Tape?

314

We have already said that every peripheral device used needs the DVC and LFD job
control statements. For readers, printers, and punches, this is all that is needed to
complete the device assignment set. However, magnetic tapes have volume serial
numbers, and, optionally, file identifiers. So, the device assignment set for a tape file
could be either

/7 DVC ...
// VoL ...
// LFD ...

or

// DVC ...
// VoL ...
// LBL ...
// LFD ...

The first step is to provide a logical unit number and file name.

ZIP Code is a registered trademark of the U. S. Postal Service.

7004 4623-000

Minimum Control Stream Requirements

The Logical Unit Number and File Name for the Tape

The range of logical unit number for magnetic tapes is 90-127. The name and address
tape is a 9-track, phase-encoded tape. We must be specific. The logical unit number
selected for the DVC job control statement is 100. This gives us any tape drive that
can read a 9-track, phase-encoded tape; the tape unit transfer rate is immaterial.

We can now add this partial device assignment set for tape to our control stream.

// JOB POCO
// DVC 24

// LFD WRITEOUT
// DVC 30

HAE
// E
/&

XEC LABELS

END-OF -LABEL - JOB

These new DVC and LFD job control statements do not represent the entire device
assignment set needed for tape. If we tried to run the job now, it would abort.

Supplying a Volume Serial Number for the Tape

Every tape file used in a job must have a VOL job control statement in the device
assignment set. This identifies the volume to be used. Its format is:

//Lsymbol] VOL

7004 4623000

{Mcc

N

NMcc
volsn-1

| SCRATCH

sy
(NS)
(Nov)
(PREP)

rfvolsn-1 ey] [T [volsn-2| [t§% 1 1] ...
[y | lovsy |
(NOV) (NOV)
| (PREP) | | (PREP) |
o [Sp—] o ’_ e]
volsn-2| [y volsn-3| [(5)
[y | Jovsy |
(NOV) (NOV)
| (PREP) | | cPrEP)
— p— — p—
|SCRATCH |SCRATCH J

315

Minimum Control Stream Requirements

The VOL job control statement supplies the volume serial number of the volume to be
accessed by the job. However, a tape volume does not necessarily need a volume serial
number, but it still must have a VOL job control statement.

You can also use the VOL job control statement to: count the number of blocks in the
file; specify the mode characteristics of the tape; request data management to write a
volume serial number; inhibit the checking of volume serial numbers if they are not
known; or, to indicate that the volume may also be used by someone else at the same
time that you are using it (this only applies to disk).

Again we are only interested in the required parameter. This parameter has several
different options, but for this job, only the volume serial number is needed.

The volsn-1 parameter is the 1- to 6-alphanumeric-character volume serial number of
the first volume of the file. A file may span more than one volume. Perhaps the
length of the file made it necessary to use three tapes (volumes) to hold the entire file.
Since this file is on only one volume, only one volume serial number is needed.
Assume it to be TAP111.

We can now add the VOL job control statement to our control stream as follows:

// JOB POCO

// DVC 24

// LFD WRITEOUT
// DVC 38

// LFD CARDIN

i 111
// LFD NAMADD
// EXEC LABELS
// /& END-OF -LABEL-JOB
// FIN

data cards
/*

This control stream could now be run, provided that the tape is unlabeled (no file
identifier).

0S/3 data management supports a maximum of 151 explicit volume names per file for
disk, diskette, and tape files.

316 7004 4623-000

()

Minimum Control Stream Requirements

Labeled Tapes for File Identification

Just as there can be one or more volumes in a file, there can also be one or more files
in a volume. Suppose the tape volume contained five files. It would be necessary to
have file identifiers on each particular file to access the proper file. Single-file tape
volumes also can have file identifiers. This is done to ensure that the correct file is
used. Even though the volume serial number is checked to see if the proper tape is
mounted, it is possible that this tape does not have the proper file needed for the job.
For example, someone could have inadvertently written on the tape because it did not
have a file identifier to indicate that this tape already contains information to be
saved. By using a file identifier, you indicate this is a saved tape. Had there been a file
identifier on the tape, anyone trying to write on this tape would have been notified
that this is a saved tape.

The LBL job control statement is used to either check or create a file identifier. Its
format is:

//lsymbol] LBL ([file-identifier ,] |, [file-serial-number] |[,expiration-date]
tfile-identifier | VCHECK

[,creation-date][{f_i le-sequence-nurber}] |Z {generation-mnber}]
1 1
|z {__/ersion-number}:|

1

The LBL job control statement identifies the file. It also can be used to: ensure that
the correct members of a multivolume file are used; indicate the date the file can be
deleted (by a SCR job control statement); indicate the date the file was created;
indicate the position of the file in respect to the other files in a multifile tape volume;
and, specify the generation and version number of a tape file, thus ensuring the most
current edition of the tape file is used.

We only want to ensure that the proper file is on the tape volume, so we need only the
required parameter.

The file-identifier parameter is 1 to 17 alphanumeric characters for tape, card, and
diskette files. Itis 1 to 44 alphanumeric characters for a disk file unless that fileis a
scratch (temporary) file; then the file-identifier is 1 to 39 alphanumeric characters. If
the file-identifier contains embedded blanks, it must be enclosed by single quotation
marks.

7004 4623-000 317

Minimum Control Stream Requirements

Assume that MASTERFILE is the file identifier assigned to this tape file when it was
created. We can now add the LBL job control statement to the control stream as
shown in the example.

// JOB POCO
// DVC 24
// LFD WRITEQUT
// DVC 30
// LFD CARDIN
// DVC 100
// VoL TAPUIY
FF 1Bl MASTERFILE
// LFD NAMADD
// EXEC LABELS
/& END-OF -LABEL - JOB
/&
// FIN

data cards
/*

The default parameters generated indicate this is the only file on the volume (1), and
it is the only edition of the file (1).

Note: File identifiers prefixed by $SCR refer to job step temporary files; those
prefixed by $JOB refer to job temporary files.

Another Programming Change - Another Device
Assignment C

The site manager has determined the label program doesn’t fulfill all the
requirements for which it was intended. Once more, it must be changed.

The name and address file was copied from the tape volume to a disk volume by using
a Unisys data utility routine. Now, the input name and address file is on disk, the ZIP
Code table is still input from the card reader, and the selected names and addresses,
plus constants, are still printed on adhesive-backed labels. These selected names and
addresses are now going to be saved and output to a file on a tape volume for a later
processing application.

Although there may be many programming changes involved, the control stream
changes are minimal.

318 7004 4623-000

N

Minimum Control Stream Requirements

The device assignment set for the card reader, the printer, or the tape doesn’t need
changing. Even though the tape was used previously as an input file, converting it to
an output file is only going to involve changes in the program,; it is not reflected in the
control stream. After the tape was copied to disk, the information it contained was
deleted in another procedure. We can use this tape with a volume serial number of
TAP111 as the output tape. We can also use the same logical unit number in the DVC
job control statement. NAMADD is used as the file name for the output tape file in
the program. This allows us to continue using NAMADD as the file name in the LFD
job control statement. However, we are going to give this tape file a different file
identifier. In the previous device assignment set for the tape it was MASTERFILE.
We want to change it to reflect its purpose.

It is no longer a master file for input; it is an output tape - let’s call it OUTPUTTAPE.
This requires a change to the file-identifier parameter of the LBL job control
statement for the tape device assignment set. We do not need to change it, but to
make the purpose and the name agree, we will. Changing the LBL job control
statement makes our control stream look like this:

// JOB POCO
// DVC 24
// LFD WRITEOUT
// bvC 30
// LFD CARDIN
// DVC 100
/7 VoL TAP111
77 1Bl QUTPUTTAPE
// LFD NAMADD
// EXEC LABELS
/& END-OF - LABEL - JOB
// FIN

data-cards
/*

We still must provide a device assignment set for the name and address file input
from disk.

7004 4623-000 319

Minimum Control Stream Requirements

The Device Assignment Set for a Disk or Format-Label Diskette

320

The following chart lists the necessary job control statements for the basic disk and
format-label diskette device assignment set.

Your SYSRES
Disk or or
Allocation Format- $YSRUN File
Label (Disk only*)
Diskette
DvC DVC
Previously voL LBL
Allocated LBL LFD
LFD
DvC bvc
voL LBL
Not LBL EXT
Altlocated EXT LFD
LFD

*A formatabel diskette volume cannot be used as your SYSRES volume or the volume containing the SYSRUN file.

In our case we have a disk file, the extent was allocated, and the file is not SYSRES or
the job’s YRUN file. So the following job control statements are needed: DVC, VOL,
LBL, and LFD.

The disk pack used for the name and address file fits on an 8494 Disk Subsystem.
The logical unit number we are going to use for the DVC job control statement is 80.

Within the program, the file name from the FD entry is DKNAME. This is the file
name for our LFD job control statement.

We need a VOL job control statement to indicate the volume serial number of the disk
we are going to use. We need only the required parameter for the volume serial
number. Assume the site manager had the name and address file copied to the disk
with a volume serial number of DSKO001.

Since most disk volumes contain many files, each file needs a file identifier. When the

site manager copied this file, he allocated it with a file identifier of DSKMASTFIL.
We must specify this in an LBL job control statement.

7004 4623-000

Minimum Control Stream Requirements

We now have all the information needed for the disk file. We can add the device
assignment set for the disk input file to our control stream and run the job.

// JOB POCO

// DVC 24

// LFD WRITEOUT
// DVC 30

// LFD CARDIN

// DVC 100

// VoL TAP111

// LBL OUTPUTTAPE

// LFD NAMADD

J/pvC 8o

7. 1ED DKNAME
// EXEC LABELS
/& END-OF -LABEL - JOB
// FIN

data-cards
/*

The Device Assignment Set for Data-Set-Label Diskette

The prep routine for data-set-label diskette automatically allocates the entire diskette

for one file and assigns a file identifier of DATA (unless you specify otherwise). When

this file is used, you must include a device assignment set in your job control stream
(that consists of the DVC, VOL, LBL, and LFD job control statements. For example:

// DVC 130
// VoL DSL@1
// LBL DATA
// LFD FILEO1

You only include an EXT statement in the device assignment set (and specify your
own identifier on the LBL statement) if the space wasn’t already allocated during the
diskette prep routine. See "Information about Data-Set-Label Diskette File
Allocation" in Section 4 for information about the EXT statement.

The Device Assignment Set for a Workstation

The DVC and LFD job control statements are required for a basic workstation device
assignment set. The UID, USE SFS, USE DP, and USE MENU statements are
included under certain circumstances.

7004 4623.000 321

Minimum Control Stream Requirements

The UID Job Control Statement

The UID job control statement may be used as part of the device assignment set for a
workstation when you want to ensure that specific workstations, identified by user-id
or device address, are automatically connected to a job. This is done before a job’s
execution begins (if the workstation has not already been connected via the
CONNECT command). Its format is:

//Lsymboll UID |user-id-1 s=e+, |User-id-255
(addr-1) (addr-255)
user-id-1(addr-1) user-id-255(addr-255)

A maximum of 255 workstations may be specified. You can specify YMAS as a
user-id to assign the job’s master workstation to a job. The user-id parameter is one to
six alphanumeric characters in length. A device assignment set that assigns the
workstation being used by user-id (JONES1) could look like this:

1/ DV& 200
// UID JONES1
// LFD WKSTN

Assigning workstations is discussed in more detail in "Specifying Multiple
Workstations" in Section 4.

The USE Job Control Statement

If you are preparing a control stream for a program that uses screen format services,
menu services, or the dialog processor, you must include a USE job control statement
as part of your workstation device assignment set. Three different forms of the USE
statement make it possible for you to specify which workstation service you want.
These are as follows:

// USE SFS... (for screen format services)
// USE MENU... (for menu services)
// USE DP... (for dialog processing)

Each statement and its accompanying parameters is discussed further in Section 6 in
"The USE Statement for Screen Format Services", "The USE Statement for Menu
Services”, and "The USE Statement for Dialog Processing", respectively.

322 7004 4623-000

Minimum Control Stream Requirements

Job Step Temporary and Job Temporary Files

To satisfy the needs of the software components for disk work areas, files lasting for a
job step and for the length of the job are provided. These files are deleted at the end of
the job step or the end of the job. While these files are primarily used by the software
components, the ability to allocate and use temporary files is also available to you.

Basically, you allocate job step temporary and job temporary files the same way you'd
allocate any disk file. The only difference is you must prefix your file identifier with
$SCR for a job step temporary file and $JOB for a job temporary file. For example, to
allocate a job step temporary file, you could include the following device assignment
set in your job control stream:

// DVC 50

// VoL D12345

// LBL $SCRWORK1
// EXT MI,,,CYL,2
// LFD WORKFIL

When a temporary work file ($SCR, $JOB) is allocated, the file label is modified by job
control to allow concurrent jobs using the same file identifiers to access the proper
work file. Every job in the system is assigned a unique job number. The label $SCR1
in JCL is allocated as $SCRnnnnnl, where nnnnn is the job number.

Job step temporary files are automatically deleted at the end of the job step, while job
temporary files are automatically deleted at the end of the job. If the system is
reinitialized in the middle of your job, job control automatically scratches job
temporary files and job step temporary files when it reallocates them.

See "Setting Up Temporary Work Files" in Section 5 for information about using
JPROCS to allocate job step temporary and job temporary files.

Basic Job Control Statements

This section has covered the job control statements needed to run most jobs. In the
following section, we are going to use the basic job control statements and add the

optional parameters, explaining how each parameter affects the performance of the
job.

7004 4623-000 323

Section 4
Getting the Most Out of the Basic Job
Control Statements

Optional Parameters Can improve Job Performance

So far, in our discussions of basic job control statements, we’ve concentrated on the
required parameters. A great deal of work can be accomplished using just these
parameters. Sometimes, however, required parameters won’t provide enough
information. In other instances, the ability to provide more information to the system
will speed up job execution. Additional information about a job and its peripheral
devices is supplied via the optional parameters that are part of the basic job control
statements. This section describes these parameters and shows how they are used.

Improving Your Control of the Job

The JOB control statement was used to give a name to the job. It is used also to
specify the following: a selection priority; the main storage size for the job; how many
tasks are in any one job step; how long the job should take; a list of the control streams
on the operator’s system console for debugging purposes; and spooling buffer sizes.
Once again, its format is:

//lsymbol]l JOB jobname|, |P| |[,minl}[,max]|, [tasks , [max-time
H {1 } {sup }
N
L

LOG HDR
NOACT
NOLOG
NONE
BOTH

[,print-option-list]f,acc-noll,nXml|, [ACT [Z {NOHDR}:}

7004 4623-000 ' 41

Getting the Mosf Out of the Basic Job Control Statements

As you can see, some optional parameters generate default values when they are
omitted. In the previous discussion of the JOB control statement, only the required
parameter - jobname - was coded. By so doing, we indicated that, by default, the job is
to have normal priority (N) and there is only one task (1). This points up the fact that
when only the required parameters are specified, you are, in many cases, providing
more information about the job than is contained in the required parameters. The
default values were selected because they conform to the most frequently used
programming practices. This allows you to code as short a control statement as
possible. The less there is to code, the less chance there is of making a coding error.

Note: The OPTION job control statement can be used to override individual
parameters of the JOB control statement. Refer to "Selecting Optional
Features” in Section 6 for more information.

- A Selection Priority for the Job

Jobs are selected for execution on a priority basis. The second parameter on the JOB
control statement specifies the priority. There are four priorities: low (L), normal (N),
high (H), and preemptive (P). Remember our discussion on the use of priorities in
Section 1, where we outlined how the priority is used by the system for selecting jobs
and what each priority means?

Most jobs are normal priority, which is by default, the parameter generated. If you
need another priority, you have to specify it.

It so happens that the label job named POCO is needed in a hurry, so the system
administrator allowed you to assign high priority. Added to the existing JOB control
statement, it would be coded as:

// JOB POCO,H

Main Storage Needs

42

When the load module named on the /EXECUTE statement is in a load library on a
mounted disk volume, you don’t have to indicate the minimum amount of main
storage to execute the load module. If the disk volume containing the load module is

not already mounted, you must indicate the minimum amount of main storage needed
to execute the module.

The min parameter does this. The minimum main storage size is specified in decimal
or hexadecimal. The smallest amount that can be specified is 8K decimal bytes (2000
in hexadecimal). The area used by the job prologue is not included in this amount.

7004 4623-000

Getting the Most Out of the Basic Job Control Statements

Assume the label program needs approximately 12K (12,288) decimal bytes (3000 in
hexadecimal) and that it’s in a load library on your own volume. The JOB control
statement would now be:

// JOB POCO,H,3000

or

// JOB POCO,H,X'3000"

You can also specify the minimum main storage size in decimal. This is done by
coding D'number’ for the min parameter, as illustrated in the following JOB control
statement:

// JOB POCO,H,D?12288"

For the sake of illustrating the omission of positional parameters, this JOB control
statement is coded as follows when the priority is omitted (it would be assigned the
normal priority, by default, by the system):

// JOB POCO, 3000

See "Coding Conventions" in Appendix A for information about coding numbers in job
control statements.

Note: If a job consists of multiple job steps, specify only the minimum main storage
size needed by the largest load module.

Consider the possibility that you may be running a 3-job-step job, consisting of
perhaps a COBOL compile, followed by a link edit, and then the execution of the
generated load module. OS/3 knows how much main storage to allocate for both the
COBOL compiler and the linkage editor, but there is no way 0S/3 can know how much
is required for the execution of your program, since it is not generated until after all
the job control has been interpreted. If your generated load module does not use more
main storage than the COBOL compiler (which is larger than the linkage editor, thus
the largest known job step), then your load module will have sufficient main storage
allocated. On the other hand, if your load module is larger than the COBOL compiler,
not enough main storage will be reserved.

More Main Storage to Speed Up the Job

In addition to specifying the minimum main storage, you can also request additional
main storage. This is an amount that can be used, but is not required, to speed up job
execution. However, the program must be structured to take advantage of the
additional main storage; for example, a segmented COBOL program. Some of the
routines supplied by Unisys that use extra main storage in this manner are
sort/merge, linkage editor, and the language translators. Additional memory may also
be advisable when running large assembly programs using many tags. As the
minimum main storage size is specified in decimal or hexadecimal, so is the
maximum,; it is the fourth parameter (max) shown in the format.

7004 4623-000 43

Getting the Most Out of the Basic Job Control Statements

We'll assume that the label program was structured to use 41K decimal bytes (A028
hexadecimal) of main storage, if it is available; also, that it uses the high scheduling
priority and needs at least 12K decimal bytes (3000 hexadecimal). Added to our JOB
control statement, it would be coded as follows:

// JOB POCO,H,3000,A028

You can also code X’A028’ to represent the maximum main storage size in
hexadecimal.

You can specify the maximum main storage size in decimal by coding D’number’ for
the max parameter (e.g., D’41000’ instead of A028 or X’A028’).

If we omitted the scheduling priority (it would default to normal) and the minimum
main storage size, it would be coded as follows:

// JoB PoCO,,,A028

Note: If either the min or the max parameter is omitted, the value specified for one is
used for the other. If both are omitted, and the load module is not located in
$YSLOD (on SYSRES) or in an alternate load library on either SYSRES or
the volume containing the job’s YRUN file, job control automatically
allocates 8K decimal bytes of main storage (2000 in hexadecimal). If you have
requested a job dump through the OPTION statement (JOBDUMP), and you
have not specified min or max on the JOB statement, job control nearly
doubles the amount of main storage that is automatically allocated. If you
specify min or max and intend to request a job dump, specify at least 14K
decimal bytes (3500 in hexadecimal).

Multitasking Specification

If a program is written in BAL, you can create multiple tasks within it by using the
task parameter. This is called multitasking.

So far, we have been saying that job POCO is written in COBOL. For this example,
assume that it is written in BAL, and that we are going to allow for 18 tasks to be
active. The job still needs 12K decimal bytes to execute, but it can use 41K decimal
bytes, and has a high scheduling priority. Adding the multitasking specification
would make our JOB control statement look like this:

// JOB POCO,H,3000,A028, 18

44 7004 4623-000

Vi

i

Getting the Most Out of the Basic Job Control Statements

Each task specified requires 256 bytes in the job prologue. The maximum number of
tasks you can have within a job is limited by the maximum size of the prologue (65535
bytes). If we omit the task parameter, job control assumes 1 by default.

Note: There are other tables which require prologue space and their size varies
depending, for example, on the number of files and spool buffers declared
through job control. If you exceed the prologue size (you receive an R289
message and the job is not scheduled), you can reduce the number of tasks,
files, or spool buffers specified.

The Processing Time for the Job

After the same job has run several times, you probably know how long it takes to
execute. Should it run longer, it may mean something is wrong - perhaps there is a
"bug" that has never been encountered before. Rather than waste processing time,
you can set a processing time limit using the max-time parameter. If the job executes
beyond this time limit, a message is sent to the operator, who can either cancel the job
or extend the time limit by any increment. If you specify max-time, you should tell the
operator what action to take if the specified processing time is exceeded.

The max-time limit is specified in minutes. It refers to elapsed wall-clock time or to
elapsed CPU time, depending upon how your supervisor is configured. If you want to
suppress the max-time function completely for a particular job, you can specify SUP in
the max-time parameter, rather than a number.

The system will adjust the max-time value to allow for the following conditions:

¢ Checkpoint/restart

e PAUSE job control statements

e SET CLOCK commands

¢ Roll-in/roll-out

If you omit max-time, the time limit set at system generation is used as the default
value. The max-time parameter is supported only on supervisors configured with
NORMAL or MAX timer services. If a timer service is not specified at system
generation, max-time specifications are ignored.

Suppose you know that the job POCO should take no more than 15 minutes to run.

Added to the other parameters of the JOB statement, the max-time parameter is
coded as follows:

// JOB POCO,H,3000,A028, 18, 15

7004 4623000 _ 45

Getting the Most Out of the Basic Job Control Statements

Debugging the Control Stream

With the print-option-list parameter, you can control the printing of job control
statements and JPROC listing by specifying one or mcre available options. In a
spooling system, statements are printed (without passwords) in the job log; otherwise,
they are displayed on the system console. This gives a graphic display or printout of
the control stream for debugging purposes. For example, if a particular control stream
is run for the very first time and there are syntax errors in the coding, the system will
generate an error message telling you so. If you have used one of the debugging list
options, you receive a listing of your control stream.

The options for this parameter are:

B Lists job control statements with symbol substitution. This is the default in a
spooling system.

D Lists job control statements (as they’re read in by the run processor) without any
symbol substitution

P Lists completed job control statements, which are generated by a procedure call
statement in the control stream, showing the values assigned in the procedure
definition statements

E Lists any data contained in the control stream

S Lists all the job control statements skipped as a result of an IF or GO job control
statement

»>

Combines all the options

Suppresses the display of job control warning errors on the console or workstation
but not on the job log

¥ None of the options are in effect (the default in a nonspooling system).

You may specify more than one option on a JOB control statement. However, if more
than one option is specified, the parameter group must be enclosed in parentheses.
Each option must be separated by a comma and can be specified in any order. For
example, (S,P,E) or (P,E,S); when only one option is specified, no parentheses are
needed.

When the D, P, E, or S options are chosen (separately or in combination) you get a
listing of your basic job control statements with symbol substitution even if B is not
specified.

46 7004 4623000

Getting the Most Out of the Basic Job Control Statements

Let’s assume this is the first time we are running job POCO, and we want to list the
basic job control statements with symbol substitution, the job control statements
generated by a procedure call, and the data. These are options B, P, and E, but since
the option B is in effect when either P or E is chosen, you don’t have to specify it.
Added to the other parameters of our JOB control statement, it would be coded as
either:

// JOB POCO,H,3000,A028, 18,15, (P,E}

or

// JOB POCO,H,3008,A028, 18,15, (E,P)

Job Accounting and Spool Buffers

Use the acc-no parameter to provide the account number that has been assigned to
you at your installation. This 1- to 4-alphanumeric-character parameter creates an
entry in the job preamble for this account number, containing the total elapsed wall
clock time. Wall clock time can be defined as the point in time when a job is initiated
for execution, up to the time when the job terminates. Therefore, any time used by
spool input and spool output is not included.

This parameter may or may not be required, depending on the accounting procedures
used at your installation.

Suppose the account number assigned to you is A001. Adding this information would
make the existing JOB control statement appear as:

// JOB POCO,H,3000,A028, 18, 15, (E,B) ,A001

The nXm parameter sets up buffers for the file. This buffer holds data from the time
it first becomes available until the time it’s needed for processing. Thus, the central
processor does not have to wait as long for data. The job log and any spooled files that
don’t have their own buffers can share these buffers.

When coded, the n is the number of buffers, X is a constant, and the m is the number
of (256-byte) blocks. Whenever nXm is omitted, a single 256-byte buffer (1X1) is
reserved if only the job log is sharing the buffer with your spool files. If other spool
files are also sharing the buffer, two buffers of 512 bytes each (2X2) are allocated for a
total of 1024 bytes.

For example, if you wanted to allocate two buffers of 2048 bytes total, you would code:
// JOB POCO,H,3000,A028,18, 15, (E,B),A001,2X4

The only values accepted for m are 1, 2, 4, 8, 16, and 32. Numbers larger than 32
default to 32. Numbers not in the acceptable range are changed to the lower
acceptable constant (e.g., 6 is changed to 4).

7004 4623000 47

Getting the Most Out of the Basic Job Control Statements

Printing the Job Log File and Page Headers

The job log file contains the job accounting records, dumps created as a result of an
OPTION job control statement with the DUMP parameter, and a log, or list, of
messages and job control statements that were displayed on the system console. You
can selectively print this job log file with your job, by using one of the following
parameter choices of the JOB control statement:

ACT
LOG
NOACT
NOLOG
NONE
BOTH

The ACT parameter forces the printing of accounting records, regardless of the system
options in effect. LOG forces the printing of job log records, regardless of the system
options in effect. The NOACT parameter, when used, suppresses the printing of
accounting records. The NOLOG parameter means do not print the log (which also
contains dumps generated by an OPTION DUMP job control statement). If you code
the NONE parameter, both the log and accounting records aren’t printed. The BOTH
parameter allows both the log and accounting records to print. If you don’t specify one
of these parameters, the system options in effect are used.

For example, if you want only the accounting information to print (no log records -
NOLOG), you would code:

// J0B POCO, H,3000,A028, 18, 15, (E,B),AB81, 2X4, NOLOG (_

Cancel and snapshot dumps are never suppressed. If you're running in a nonspooling
environment, this parameter is ignored.

At the beginning of the job log and accounting record printout, a page header, which
consists of several lines of asterisks, is printed. This can be suppressed by coding the
NOHDR parameter on the job control statement; by default, HDR is generated.
Coded, it would be:

// JOB POCO,H,3000,A028, 18, 15, (E,B),A001,2X4,NOLOG, NOHDR

This parameter is ignored if you're not spooling.

A job log report program is also available that will provide you with a job accounting
report based on the contents of the log file. For more information about the job log
report program, refer to the System Service Programs (SSP) Operating Guide,
UP-8841.

48 7004 4623-000

Getting the Most Out of the Basic Job Control Statements

Identifying the Peripheral Devices a Little Further

The DVC job control statement associates a physical device type, specified by a logical
unit number, with your job. It can also be used to: assign multiple devices, in a serial
manner, during a job step; provide the physical address of the unit for using a specific
device; or (in a DDP environment), indicate that a disk file is remotely located. Here,
again, is its format:

RES (oPT

RUN I1GNORE
JALT

I

0
REQL(N)]
| REAL

//Isymbol1 DVC {nnn[(n)]] , [addr 1 |r,HOST=host-id]

Refer to this format when each new parameter is introduced.

Note: A particular job cannot mix RBP destinations with auxiliary printers or DDP
destinations.

Using Multiple Devices, SYSRES, or the Job's SYSRUN File

The first parameter has three choices: nnn, RES, or RUN. (Remember, the (n) portion
of nnn is only used when assigning workstations.)

We have already explained how to use nnn to specify a logical unit number (see
"Identifying the Devices" in Section 3). However, if you want to use more than one
print, punch, or card file in a job, you should assign a different logical unit number to
each file because the run processor flags multiple occurrences of the same logical unit
number in the same job step. If your system contains only 0776 printers, for example,
you can use the logical unit numbers 20, 21, 24, and 25. Sometimes, in a spooling
environment, you may want to assign more than four virtual printers or punches. To
do this, you must use the EQU statement (see "Equating Logical Unit Numbers to
Device Type Codes" in Section 6) to equate additional logical unit numbers to your
devices. You can use any logical unit number that is not already in your system. The
EQU statement is placed just before the device assignment set. To get an 0776
printer when you have already used the logical unit numbers 20, 21, 24, and 25, you
might use the logical unit number 10, as follows:

// EQU 10,0410
// DVC 10

7004 4623-000 49

Getting the Mosf Out of the Basic Job Control Statements

The number used for the type parameter of the EQU statement, 0410, is listed in
Table A-1 of the Job Control Programming Reference Manual, UP-9984, as the device
type code for the 0776 printer.

Note: The maximum number of unique devices allowed in a job is 255. The
maximum number of unit record devices (e.g., card readers, data-set-label
diskettes, printers) allowed in one job is 42.

You don’t have to supply a logical unit number for files in SYSRES or the volume
containing the job’s YRUN file. Use RES to indicate that the file is on the SYSRES
volume, or RUN to indicate that the file is on the volume containing the job’s §Y$RUN
file. Whenever RES or RUN is used, you can omit the VOL job control statement in
the device assignment set. The system differentiates between which volume is the
SYSRES volume and which volume contains the job’s YRUN file. RES or RUN can
only be used for disk files.

In our controi stream, we used this device assignment set for the name and address
disk input file as follows:

// DVC 60

// VoL Dskoet

// LBL DSKMASTFIL
// LFD DKNAME

If, instead of using the disk with a volume serial number of DSK001, the site manager
puts the name and address file on the SYSRES volume, still using the file identifier of
DSKMASTFIL, and assuming the file name in the program is still DKNAME, then the
device assignment set is:

// DVC RES
// LBL DSKMASTFIL
// LFD DKNAME

The VOL job control statement is omitted because the file is on SYSRES.

Specifying Multiple Workstations
Suppose you want to access a workstation file from more than one workstation. The
(n) portion of the DVC statement’s nnn parameter allows you to associate up to 255
workstations of the type and characteristics specified by (nnn) with one file. Consider
the following example:

// DVC 208(4)

// LFD WKSTFILE

410 7004 4623-000

Getting the Most Out of the Basic Job Control Statements

When the DVC statement is specified like this, up to four workstations can be logged
on and then optionally connected (using the workstation CONNECT command) to the
same job. These workstations access WKSTFILE.

If all four workstations must be connected for the job to begin execution, use the REQ
parameter of // DVC, like this:

// DVC 200(4),REQ

The UID statement is used when you want specific required workstations
automatically connected to the job.

The REQ parameter and the UID job control statement are discussed further in
"Ensuring that Workstations are Connected to a Job" later in the section.

More Control over Peripheral Devices

The format shows there are eight possible choices for the second parameter of the
DVC job control statement: addr, OPT, IGNORE, ALT, I, O, REQ, and REAL. They
are explained in the following paragraphs, except for I and O, which are explained
when we discuss spooling diskette files. Refer to "Spooling Input Card Data" in
Section 6 for more information.

Assigning Devices by Physical Address and Assigning Real Devices

Every device has a physical address associated with it. This is a hexadecimal number
representing the channel number, control unit address, and device number. Itis
assigned by a Unisys customer service engineer. You can specify it by using the addr
parameter of the DVC job control statement.

It is unlikely you will need to use the addr parameter because the system can best
assign devices, since it is aware of the requirements of all jobs being run. Your job
may have special needs, however. Suppose you are running in a spooling
environment. You have a large job where the format of the printed output is very
important. You want to bypass spooling so that you can check your printed output

~ immediately and stop the job, if necessary, to correct the format. Since it is a large
job, you do not want it to go first to a spool file and then print if there are formatting

errors. You would specify the physical address of a real (rather than a virtual) printer,
like this:

// DVC 20,160

7004 4623600 411

Getting the Most Out of the Basic Job Control Statements

You may assign a real device and bypass spooling without specifying its physical
address if you use the REAL parameter. The following statement, for example, allows
you to request any real printer:

// DVC 20,REAL

If you use the addr parameter to request a specific tape or disk device, bé sure the
volume you want is not mounted on another unit. The / UID job control statement
can be used to assign workstations by physical address. Refer to "Ensuring that
Workstations are Connected to a Job" later in this section for more information.

Is This Device Needed for This Particular Run?

Sometimes, all the peripheral devices normally used by the job are not absolutely
needed. You may have a case where a job normally produces print and tape output.
Your system administrator needs the print output in a hurry, but is not worried about
the tape output at this time. If necessary, the job can be rescheduled to produce the
tape output.

Our control stream has device assignment sets for tape and print files. In the DVC job
control statement of the device assignment set for the tape file, we can use the OPT
parameter. This indicates that the peripheral device is optional; it is not essential to
the running of the job. Ifit is not available at the time the job is put into execution, all
references to this device are bypassed.

Added to our DVC job control statement for the tape output file, it would be coded as
follows:

// DVC 108,0PT

Different Volumes on the Same Device

412

Within a job step, job control normally allocates one device for each logical unit
number specified in the control stream. You might, however, have several different
volumes to be processed serially within the same job step. This could require several
different devices and your job would not be run until all the devices are free. You can
suppress job control’s check for one volume per logical unit number within a single job
step and reuse the same device serially by specifying IGNORE on the DVC statement.
Since IGNORE reduces the number of peripheral devices a job needs, it increases the
chances of your job being run sooner.

If the first occurrence of a logical unit number does not specify IGNORE in the DVC
statement, all subsequent references to that logical unit number must have IGNORE
specified in the DVC statements.

If you use the IGNORE parameter, processing for the first volume must be completed
before the second volume is needed, and so forth.

7004 4623-000

—

Getting the Most Out of the Basic Job Control Statements

A typical application for the IGNORE parameter might be a program that takes
information from a tape file, updates it with information from a card file, and creates
a new tape. But a job is scheduled that lasts most of the day, and it uses all but one of
the installations’s tape drives. Since you need two tape drives, you would have to wait
until that job was finished. However, you wrote the program so that it reads the input
tape file completely, updates the information, and then writes it out to a new tape.
Since the processing of the tape volume containing the input file is finished before the
program creates the new tape file, you can use the same device by using the IGNORE
parameter of the DVC job control statement in the device assignment set for the next
file to be processed (the output file, in this case).

The IGNORE parameter tells the system to disregard the fact that there already has
been a device assignment set for this logical number in this job step.

Suppose the input file is on a tape with a volume serial number of TAP111, a file
identifier of FIRST, and the file name for the input file is MASTIN. The output file
will be on a tape volume with a volume serial number of TAP222, have a file identifier
of SECOND, and a file name of MASTOUT. The logical unit number we are going to
use is 101.

The device assignment sets for the input and output files would be:

// DVC 181

// voL TAP111

// LBL FIRST

// LFD MASTIN
// DVC 181, 1GNORE
// VOL TAP222

// LBL SECOND

// LFD MASTOUT

When you use this feature of job control, make sure you inform the operator of the
tape mounting sequence.

Users of the Unisys sort/merge routine will find the IGNORE parameter useful on
tape sort applications that use tape volumes as input, work areas, and output.

When a job consists of more than one job step, the system assumes that the first
device assignment set for a logical unit number will be used in subsequent job steps
until a new device assignment set for the same logical unit number occurs. For
instance, if you wanted to use the tape file with a volume serial number of TAP222 in
the next job step, you would have to specify the following device assignment set at the
beginning of the new job step:

// pve 101

// VOL TAP222

// LBL SECOND

// LFD xxxx (this depends on your program)

7004 4623000 413

Getting the Mosf Out of the Basic Job Control Statements

Otherwise, the system assumes the tape with a volume serial number of TAP111 is to
be used.

Multiple Volumes in a File? Use Alternate Devices to Decrease Operator Setup Time

The file is large - in fact, so large it needs four tape volumes to hold it. When the
program uses four tape volumes, the operator can mount them, one at a time, on the
device associated with the logical unit number on the DVC job control statement.
When a volume is processed, the operator removes it from the device and mounts the
next volume on the device. Meanwhile, processing time is wasted while the system

waits for the new volume to be mounted. The operator must do this for every volume
of the file.

One way of avoiding this is to use the ALT parameter on the DVC statement. This
allows you to.alternate the same logical unit number between two devices, provided
that two devices of the same type are available. One device uses the logical unit
number while the first volume is being used, then the logical unit number switches to
the other device for the next volume. After the second volume is finished, and if there
are any more volumes in the file, the logical unit number is switched back to the first
device, and so on, until all volumes are used. In this way, the operator can mount two
tape volumes, on two different physical devices associated with a logical unit number,
in their proper sequence. When the first volume is finished, the system switches to
the device containing the second volume. Meanwhile, the operator can unload the
first volume and mount the third volume on the device. In this way, no time is wasted
because of setup time. Al alternate devices must be of the same type. This is
especially helpful when small tape reels are used. Note that alternating is restricted
to the boundaries of one job step, and that if only one device is available, a job will
execute with only one device (even though ALT is specified).

The ALT parameter of the DVC job control statement doesn’t work correctly if it is
used more than once in a jobstream. A separate drive is allocated for each ALT, and if
there are insufficient drives to accommodate all of the ALT's, only one drive is
allocated even if two drives are available. If the ALT function is needed more than
once in a jobstream, the following job control can be used:

// DVC 98 /7 VOL A
// DVC 91 /7 VoL B

Assume a job has four tape volumes, using logical unit number 100. You can switch
between the two physical devices associated with logical unit number 100 by coding
the DVC job control statement as follows:

414 7004 4623-000

Getting the Most Out of the Basic Job Control Statements

Of course, the VOL job control statement must be modified to indicate the volume
serial numbers of the four different tape volumes. We’ll discuss the use of optional
parameters for the VOL job control statement later. Briefly, the following example is
how multiple volume serial numbers are coded.

// DVC 100,ALT
/7 VoL T11111,722222,733333, T4bbbb

To ensure that alternation occurs between devices, you may explicitly declare two
devices in your job control stream. This means you’ll have two DVC statements, each
specifying a different logical unit number. Consider the following example:

// DVC 100
// VoL T11111,733333
/7 ovc 181

/7 NOL T22222,Thbbbs

In this case, the operator can always alternate between the two devices specified by
the logical unit numbers 100 and 101, until all volumes are used.

Users of the sort/merge routine will find it helpful to alternate when sorting many
tapes with the same label on a master tape.

Ensuring that Workstations Are Connected to a Job

You can use the REQ [(n)] parameter of the DVC statement or the UID job control
statement when you want to ensure that workstations are connected to a job.

REQ tells the system that the workstations you've specified through the nnn/(n)]
parameter of the / DVC statement are required and must be connected (using the
workstation CONNECT command) for the job to begin execution. You can further
tailor the DVC statement by specifying that only a certain number of the workstations
must be connected before the job is executed. You do this with the (n) portion of the
REQ parameter. If you prepare your statement like this:

// DVC 200(8),REQ(1)

it tells the system that eight workstations can be connected to the job and that one of
the eight is required and must be connected for the job’s execution to begin.

Notes:

1. The (n) portion of the nnn parameter and the REQ>(n)] parameter are used to
assign workstations only. Up to 255 workstations can be assigned to a single
. workstation file. ;

7004 4623-000 415

Getting the Most Out of the Basic Job Control Statements

2. Thennn parameter of /| DVC is used differently for workstations than for other
devices. If you specify the logical unit number 200 (any workstations) and tailor
the specification by using the (n) portion of the nnn and REQ parameters, multiple
workstations (of any type) are assigned to the job.

Recall from "The UID Job Control Statement” in Section 3 that the UID statement is
used if you want specific workstations connected to a job automatically. This is done
before the job’s execution begins (if the workstations specified have not already been
connected using a CONNECT command). You identify a particular workstation by its
user-id, device address, or both. For example:

// DVC 200
// UID WS1,(818),Ws2(019)
// LFD WKSTFILE

The UID statement in this example indicates that the following three workstations
will automatically be connected: any workstation logged on with a user-id of WS1, the
workstation with the address 018 and logged on with any user-id, the workstation
with the address 019 and logged on with a user-id of WS2. If these three conditions
are not satisfied, the job remains in the scheduling queue. Remember that
workstations specified in the UID statement are required; therefore, the job will not
run until these devices are available (that is, logged on).

Although the (n) pdrtion of the nnn parameter and the REQ [(n)] parameter are
generally unnecessary in the DVC statement when the UID statement is used, you
may encounter a special situation. For example:

// DVC 200¢4)
// UID Ws1,Ws2
// LED WKSTFILE

The DVC statement indicates that the job can use up to four workstations. The two
identified in the UID statement are required and, provided they’re logged on, will
automatically be connected at execution time. Two more workstations (any two) can
optionally log on and then connect to the job with the CONNECT command.

Remember, you can specify YMAS as a user-id to assign the job’s master
workstation to a job.

Specifying a Remote Disk File

To indicate that a disk file is located at a remote host in a DDP network, specify the
HOST=host-id keyword parameter on the / DVC statement. The host-id is one to four
alphanumeric characters long and identical to the label-id of the LOCAP
macroinstruction in yeur ICAM network. $HOST (in place of a host-id) indicates that
the file is located at the job’s remote originator (the remote host that initiated the job).

416 7004 4623000

Getting the Most Out of the Basic Job Control Statements

Consider the following:

// JOB MYJOB

// DVC 50,HOST=A123
// VOL D00@@28

// LBL FILE1

// LFD REMOTE

// EXEC PROGA
/&

The DVC statement in the preceding device assignment set means that the disk file is
located at host A123.

Note: The host you specify (using either a host-id or $HOST) must be a remote host.

If you specify a local host, you'll receive a data management error message
(DM21 INVALID DEVICE ASSIGNMENT).

For information about DDP facilities, see the Distributed Data Processing
Programming Guide, 7004 4508. For more information about the originator, see the
OPTION ORI statement in "Selecting Optional Features" in Section 6. See "How Job
Control Statements are Presented" in Appendix A for information about coding job
control statements containing positional as well as keyword parameters.

Indicating Use of the DDP Program-to-Program Facility

If your program is written in BAL and uses consolidated data management macros,
you can use DDP’s program-to-program facility. In its simplest form, this facility
allows a program at one host (the primary) to initiate communication with a program
at another host (the surrogate). The job control stream for each program participating
in this simple conversation must contain a DVC PROG job control statement. Used in
place of / DVC, // DVC PROG begins the device assignment set for the program-to-
program type file. The format is:

//[symbol] DVC PROG [, job-namell,HOST=host-id]

You can specify one / DVC PROG statement in any single-step job control stream. (A
single-step job requests the execution of only one program.) The device assignment set
must contain a / LFD statement and may contain a / LBL statement for cataloging
purposes.

7004 4623-000 417

Getting the Mosi Out of the Basic Job Control Statements

418

The job-name parameter identifies the name of the other participant in the program-
to-program communication. For example, when specified in the / DVC PROG
statement for the primary, job-name identifies the surrogate. When specified in the
// DVC PROG statement for the surrogate, job-name identifies the primary. This
parameter is required in the / DVC PROG statement for the primary, but is optional
in the / DVC PROG statement for the surrogate.

The HOST=host-id parameter simply identifies a particular host in a DDP network.
The host-id is one to four alphanumeric characters long and identical to the label-id of
the LOCAP macroinstruction in your ICAM network. You use $HOST (in place of a
host-id) to indicate the originator (the host that initiated the job). Consider the
following control streams:

HOST AAAA HOST BBBB

// JOB MYJOB // JOB YOURJOB
// DVC PROG,YOURJOB, HOST=BBBB // DVC PROG
// LFD THISFIL // LFD THATFIL
// EXEC PROG1 // EXEC PROG2
/& /&

The // DVC PROG statement in MYJOB indicates that communication can only be
established with PROG2 - the program identified in YOURJOB at host BBBB.
PROG], in this case, must act as the primary. The / DVC PROG statement in
YOURJOB means that PROG2 is a surrogate in the program-to-program
communication with PROG1. PROG2 can also act as the surrogate when other job
control streams declare / DVC PROG,YOURJOB,HOST=BBBB. Now consider the
following:

HOST AAAA HOST BBBB

// JOB MYJOB // JOB YOURJOB

// DVC PROG, YOURJOB,HOST=BBBB // DVC PROG,MYJOB,HOST=AAAA
// LFD THISFIL // LFD THATFIL

// EXEC PROG1 // EXEC PROG2

/& /&

7004 4623-000

)

Getting the Most Out of the Basic Job Control Statements

These two job control streams indicate that only PROG2 at host BBBB and PROGI at
host AAAA can communicate with each other. The first program to open the program-
to-program type file is considered the primary.

Although primarily intended for communication between programs executing on
different hosts, the program-to-program facility can be used between programs
executing on the same host. For more information about DDP’s program-to-program
facility, see the Distributed Data Processing Programming Guide, 7004 4508.

More Information about the Characteristics of
Your Volumes

We have used the VOL job control statement to specify the volume serial number. It
also has additional parameters for further identifying each volume to the system.
Once again, its format is:

— — = _ — —_
// [symboll voL [Mce 11, [volsn-1| [¢8) ', [volsn-2f [t8)
N Javsy | Josy |
NMcc - (NOV) (NOV)
volsn-1|{(S) | (PREP)] | (PREP) |
(NS) — — - 1
L (Nov) h o _.,,, -_I L _--,- -_l
(PREP) volsn-2| [(S) | volsn-3| [(S)
{NS) | JENS) |
| (NOV) Nov) |
| (PREP)] - | (PREP)
| SCRATCH] L |scratch] L [scratcH I

Refer to this format when each new parameter is introduced.

Notes:

1. If all the volumes used to contain a multivolume file are going to be online
simultaneously (mounted on different devices during the course of a single job
step), the NOV and PREP options, if used, must be specified for each volume.

2. The DVC specification in the device assignment set is used to determine if more
than one device is being used.

3. Ina multivolume file, if the individual volumes are mounted on separate devices,
the NOV and PREP options can be specified only for the individual volumes.

4. Ifthe PREP option is specified for any volume in a multivolume file sequentially

mounted on one device, it applies to all volumes in a multivolume file. NOV must
be specified for the last volume in the file for it to apply to all volumes in the file.

7004 4623-000 419

Getting the Most Out of the Basic Job Control Statements

More Than One Volume in a File

When we discussed the ALT parameter of the DVC job control statement, it was
stated that all volumes in the file must be specified on the VOL job control statement
of the device assignment set for the two devices sharing a logical unit number. (See
"Multiple Volumes in a File? Use Alternate Devices to Decrease Operator Setup
Time" earlier in this section). The example given was:

// DVC 100,ALT
/7 VOL T11111,T22222,133333, Thbbbss

Each group of numbers specified on the VOL job control statement (T11111, T22222,
etc.) represents the volume serial number of the volumes in the sequence in which
they are mounted.

Remember, whenever there is more than one volume in a file, notify the operator of
the mounting sequence.

If more than eight volume serial numbers are listed, a nonblank character must
appear in column 72 of the VOL job control statement and one or more continuation

cards (Appendix A) must follow. For example:
Column 72
(continuation) I

/7 NOL T11111,122222, 733333, T444h44, 155555, 766666, T7TTTT, T8BEES, X
/11 T99999, TAAAAA

Continuation Column
Indicator
(Optional)

You can also specify multivolume files by using separate VOL control statements, like
this:

/7 VoL TH11111
// VOL T22222
// VoL 133333

This method has an advantage over the continuation method in that you can change
VOL specifications easier if they are coded separately.

420 7004 4623-000

~

N

Getting the Most Out of the Basic Job Control Statements

The VOL statement’s (NOV) and SCRATCH parameters provide you with the option
of not listing each specific volume serial number in a multivolume file. For further
discussion of these parameters, see "Ignoring or Changing the Volume Serial Number"
later in this section.

Special Characteristics of Tape Volumes

Tape volumes have certain mode characteristics, such as bytes per inch, parity, and
the number of tracks (7 or 9). The mode characteristics of tape volumes are specified
using the Mcc parameter. The values for cc are given in Table 4-1.

Suppose you are using a UNISERVO® 12 magnetic tape subsystem, and the tape
volume is 7-track, 200 bytes per inch, even parity, with the translate and convert
features off. The mode setting is 20 and it would be coded as M20. The volumes being
used are coded as the remaining parameters.

2, 711111, 722222

If the Mcc parameter is omitted, the mode settings specified at system generation
time are used.

If your supervisor supports block numbering and you have specified BKNO=YES in
your program’s file definition macroinstruction (or BC$CLNM for PIOCS), data
management will check block numbers on input tape volumes or write sequential
block numbers on output tape volumes. If you want to suppress block numbering or
checking during initialized processing, you use the N parameter on the VOL job
control statement. Initialized processing includes use of the TPREP utility routine or
the PREP option on the VOL statement as well as processing of input or output files
with nonstandard labels or no labels. When you specify N, block numbering is
suppressed for all volumes included on the VOL statement. For noninitialized
processing, the N parameter is ignored. That is, if your supervisor supports block
numbering and you have specified it in the file definition macroinstruction, you cannot
suppress checking or writing of block numbers by using the N parameter. For details
about block-numbered tapes, see the Consolidated Data Management
Macroinstructions Programming Guide, 7004 4607.

For example, to suppress block numbering on two tape output volumes with volume
serial numbers of T11111 and T22222, code as follows:

// VoL N,T11111,722222

When both the N and Mcc parameters are used, code them as one parameter. For
example:

// VOL NM2@,T11111,T22222

UNISERVO is a registered trademark of Unisys Corporation.

7004 4623-000 421

Getting the Most Out of the Basic Job Control Statements

Table 4-1. Mode Characteristics

Tape cc | Bytes per Inch | Parity | Translate Feature | Convert Feature

UNISERVO 12/16 Magnetic Tape Volumes

7-track | 10 200 Odd of f On
20 200 Even off of f
28 200 Even On of f
30 200 Odd Off off
38 200 0dd On off
50 556 Odd off on
60 556 Even of f off
68 556 Even on off
70 556 Odd off off
78 556 Odd On off
90 800 Odd off on
AQ 800 Even off off
A8 800 Even on of f
BO 800 Odd off off
B8 800 0dd on off

9-track | C8 800 0dd off off
ce 1600 0dd Ooff off

UNISERVO 22/24 Magnetic Tape Volumes

9-track | C8 800 0dd off off
co 1600 0dd of f off

UNISERVO 26/28 Magnetic Tape Volumes

9-track | co 1600 Odd off off
Do 6250 Odd off of f

2145 and BT3200 Magnetic Tape Volumes

9-track | c8 800 Odd Ooff off
co 1600 Odd off off
Do 6250 Odd off off

5073 Magnetic Tape Volume

18-track| NA 38000 Odd off off

Extending Your Tape Volumes

If you recall, when we were assigning file names to files, we used the LFD job control
statement (see "Assigning a Logical File Name to the File" in Section 3). Well, now
we’ll use this same statement to extend our file. Once again, here is the format:

//Isymbol] LFD ([filename | [, [N] ||, [EXTEND
{*filename} {8} {INIT }

422 7004 4623010

S
7 \

Vi
/ \
{ |

Getting the Most Out of the Basic Job Control Statements

Looking at the format, we see the optional parameter EXTEND. The EXTEND
parameter lets us add information to the present end of a tape or disk file, provided
our program allows us to do so and the following job control conditions are met:

® The PREP option is not specified on the VOL job control statement.
e The file being extended is the only file on the volume.

® The file uses standard labels.

° The file specified is an output file.

The following example shows the use of the LFD statement to extend the file ADDR1:
// LFD ADDR1, ,EXTEND

The following device assignment set, which includes this LFD statement, illustrates
how to extend a file (MAST) on volume T11111.

// DVC 100

// VOL T11111,T22222,T33333
// LBL MASTER

// LFD MAST, ,EXTEND

If you expect additional volumes will be needed to accommodate extension of the file
you can add the volume serial numbers of any tapes to the VOL statement. The
following device assignment set indicates that the extension of MAST will result in a
multivolume file.

i

// DVC 100

// voL T11111,T22222,733333
// LBL MASTER

// LFD MAST, ,EXTEND

If you are extending a tape file that already has multiple volumes, your VOL
statement has to specify only the last volume containing the file plus any additional
volumes. You must include the serial number of the file’s first volume as the second
parameter (file-serial-number) of the LBL statement. See "Multivolume File? Assign
Each Volume a File Serial Number" later in this section for more information.
Suppose, for example, the file MAST is on volumes T11111, T22222, and T33333. If
you expect the file’s extension to require an add1tlonal tape volume, you would code
the device assignment set as follows:

// DVC 100

/7 VOL ,,,T33333, Thbbbl
// LBL MASTER,T11111

// LFD MAST, ,EXTEND

The volume serial number T11111 is reqmred to identify T33333 and T44444 (the new
volume) as being part of the same file.

7004 4623-000 423

Getting the Most Out of the Basic Job Control Statements

Note: When referencing multivolume files on the VOL statement, any undeclared
volume serial numbers must be represented with commas. Additionally, if
Mece, N, or NMcc are not specified for the first positional parameter, you must
supply a comma. In the VOL statement in our previous example
(/! VOL,,,T33333,T44444) the first comma represents the first positional
parameter. The second and third commas represent T11111 and T22222,
respectively.

The Consolidated Data Management Macroinstructions Programming Guide,
7004 4607, also contains information about extending tape files.

Sharing Disk Volumes

More than one job can share a disk volume. But suppose you are updating a file that
will be accessed by other user jobs. They should not access the file until the update is
completed, or else their output would not be the most current. You can indicate, on
the VOL job control statement, that the disk volume is nonsharable; thus the file
cannot be accessed. The system will not allow other jobs to begin execution until your
job has finished the update.

Assume the file being updated has a volume serial number of DSK083 and it should
be nonsharable. You indicate this by using the (NS) parameter. The parentheses are
coded as part of the parameter, and there is no comma separating the volume serial
number and the (NS) parameter. This is coded as:

// VOL DSK@83(NS)

When there is more than one volume in the file (DSK083, DSK076, and DSK093, for
instance) and they are all nonsharable, code it in this manner:

// VOL DSK@83(NS),DSKO76(NS),DSKO93(NS)

Sharable disk volumes are the default condition.

Ignoring or Changing the Volume Serial Number

424

Through the VOL job control statement, you have the option of ignoring volume serial
numbers. This allows the use of any available volume or one with an unknown
volume serial number.

For example, you want to create a tape file. The operator is told that you can mount
any unused tape with a volume serial number (it does not contain a permanent file,
and you do not want a scratch tape because you are creating this file for other jobs).
Since you don’t know what tape the operator will use, you don’t know the volume
serial number for your VOL job control statement. By using the (NOV) parameter and
a dummy volume serial number, you can use a volume without specifying the correct
volume serial number. '

7004 4623-000

Getting the Most Out of the Basic Job Control Statements

Code it this way:

// VOL DUMMY(NOV)

Notice that there is no comma separating the dummy volume serial number and the
(NOV) parameter. The parentheses are part of the parameter.

After the job is processed, you should be informed, in some manner, of the volume
serial number of the created tape. This volume serial number must be used on the
VOL job control statement for any subsequent job using this tape volume.

Notes:

1. The volume serial number DUMMY is used kere just as an example. You can use
your own dummy volume serial number, but if it isn’t a unique one, keep the
following in mind: if two or more jobs use the same dummy volume serial number
for a disk volume, these jobs can run concurrently and share the same disk volume.
This may or may not be desired. If a job uses the (NOV) parameter with a dummy
volume serial number for one type of volume (e.g., a tape), and a second job uses
the (NOV) parameter with the same dummy volume serial number for another type
of volume (e.g., a disk) or, for another nonsharable volume (e.g., another tape), the
second job is not executed until the first job is finished.

2. If you specify a volume serial number and the volume with that serial number is
mounted on a device before the job goes into execution, that volume (and the device
on which it'’s mounted) is used even if you've specified a different physical device
number on the DVC statement. If, however, you use / /| VOL DUMMY (NOV) the
physical request is not ignored.

With the VOL statement’s SCRATCH parameter you can specify a multivolume file
without listing each volume’s serial number. Consider this example:

// VOL VSN1,VSN2,SCRATCH

This statement declares a multivolume file and requests that the volume VSN1 with
the serial number be mounted first and volume VSN2 be mounted second. The
SCRATCH parameter indicates that after VSN2, any volumes can be mounted.

When you request scratch processing, a message to mount a scratch volume is
displayed (after any explicitly requested volumes have been taken care of) on the
system console. Any volume will then be accepted until the end of file. Remember,
because data management cannot check for the proper serial numbers at this point,
you should make sure that the operator knows exactly what volumes to mount and the
sequence to mount them in.

The SCRATCH parameter can also be used alone. For example:

// VOL SCRATCH

7004 4623000 425

Getting the Most Out of the Basic Job Control Statements

This statement requests scratch processing for all volumes in the file.

You may want to use the SCRATCH parameter if you have a 20-volume diskette file
for example, and you don’t want to list 20 volume serial numbers in your job control
stream. When coding job control statements remember that the SCRATCH
parameter can only appear once in a VOL statement and it is always the last
parameter specified.

You can also suppress checking of volume serial numbers for all volumes of a
multivolume file by specifying NOV in the VOL statement for the last volume of the
file.

You can change a volume serial number by specifying the new volume serial number
followed by the (PREP) parameter. You can also use this to assign a volume that
currently does not have a volume serial number (scratch volume or a new volume).
Any information that is currently on the volume is scratched.

Your job creates an output tape that you want saved and to be assigned the volume
serial number of TAP099. It would be coded as follows:

// VOL TAP@99(PREP)

Once again, there is no comma separating the new volume serial number and the
(PREP) parameter. The parentheses are part of the parameter.

Notes:

1. Be very careful when you use the PREP option on a file to be processed by the
librarian. When you specify the PREP parameter, the tape is prepped every time it
is opened as output. The librarian closes output tape files whenever they are to be
used as input and then reopens them as output. If a tape file is to be reused as an
output file within the same job, the librarian closes it as input and reopens it as
output. This reopening causes the tape to be reprepped (if PREP was specified),
thereby effectively erasing all the information previously produced. Therefore, use
this option only if the file will be output only, or output, then input. Otherwise, use
the TPREP utility to prep the file. The PREP option cannot be suppressed. You
maust redefine the tape file without specifying the PREP option on the VOL
statement.

2. For multivolume files, if PREP is specified for any of the volumes, all volumes in
the file are prepped.

3. SCRATCH lets you mount additional tape volumes (unlimited processing);

however, these additional volumes are not prepped if PREP is specified. If they
must be initialized, use the TPREP utility routine.

426 7004 4623000

Getting the Most Out of the Basic Job Control Statements

Multivolume Files Online Simultaneously

You may have an application, a data base system, for example, that requires a large
multivolume file, with the volumes online simultaneously (since they are accessed in a
random manner). Suppose you have a 3-volume file (volumes A B, and C). You would
code the device assignment set for the file like this:

// DVC 50
// VOL A
// bVC 51
// VoL B
// DVC 52
// voL C
// LBL DATA
// VMNT=NO
// LFD BASE

More Information on Disk and Format-Label Diskette
File Allocation

You use the EXT job control statement to allocate the space (extent) needed by a disk
or format-label diskette file. The format is;

oty 1 gu [[H [[3” E e _ [{mﬂ

TBLK
cyL
TRK
oLD

-

Y y=e«|[,OLDIL,FIXIL,NTERM]
(bj,aj)

All the parameters are optional.

The File Type

With the first parameter of the EXT statement, specify the type of file you're
allocating the extent for.

7004 4623000 427

Getting the Most Out of the Basic Job Control Statements

MIRAM files are discussed in the Consolidated Data Management Programming
Guide, UP-9978. System access technique files are described in the Supervisor
Technical Overview, UP-8831.

For the EXT job control statement, you can specify MIRAM (multiple indexed random
access method) files, indicated by coding MI, or SAT (system access technique) files,
indicated by coding ST.

If, for example, you wanted to use the multiple indexed random access method, you
would code:

// EXT M1,C,,CYL,1

Formatting a File and Using Contiguous Space

428

Files are formatted using the parameters F, BLK, and (bi,ai). These indicate that you
are going to format the file, F, in terms of blocks, BLK, to a certain length, (bi,ai). The
bi indicates the number of bytes in the block, and the ai indicates the number of
blocks in the file. Files can be formatted only in terms of blocks.

Suppose that you have a MIRAM file to allocate and it contains 5000 blocks, each 472
bytes long. Refer to the format of the EXT job control statement to see the correct
position of each of the parameters you are going to see: MI, F, BLK, and (bi[,ai]). It
would be coded as follows:

// EXT MI,F,,BLK,(472,5000)

You can set up your program to access a particular block (or blocks) within the file.

The EXT job control statement is also used to allocate space contiguously. When you
allocate a file, there may not always be a single extent (a single contiguous area)
available on the disk or format-label diskette. Suppose, for example, you need 10
cylinders for a file but there aren’t 10 contiguous cylinders anywhere on the volume.
Instead, there are 2 contiguous cylinders in one place, 3 in another, and 5 more in
another. If this is the case, OS/3 disk space management divides the file among 3
different areas resulting in a 3-extent file. The C parameter (shown as one of the
choices in the second parameter in the format) can prevent this from happening so
that if enough contiguous cylinders cannot be found, the file won’t be allocated.

Note: A single file on disk or format-label diskette can have no more than 16
Dphysical extents. If a file already occupies 16 extents but more are needed, you
must use another volume even if sufficient space is still available on the
original volume. (The file becomes a multivolume file.) A VTOC listing of the
volume will tell you in advance how many extents an existing file occupies.
Just remember there can be only 16 extents for a single volume file, 32 extents
if the file occupies two volumes, 48 for three volumes, and so on.

7004 4623-000

A

Getting the Most Out of the Basic Job Control Statements

When you specify the absolute starting address (the addr parameter, explained in
"Terms of Allocation" later in this section), you must allocate contiguously. You must
also specify addr in hexadecimal. The use of continguous space reduces file access
time, thus reducing job processing time.

To allocate a MIRAM file that contains 1000 blocks, each containing 1024 bytes, and
you want contiguous disk space, code as follows:

// EXT MI,C,,BLK, (1024,1000)

The C and F parameters can be combined to form one parameter. Use this if you want
contiguous, formatted disk space. A comma is not needed to separate these
parameters.

For example, to allocate 300 blocks, each 256 bytes in a contiguous area, using the
multiple indexed random access method, code the following:

// EXT MI,CF,,BLK,(256,300)

Notice that we’ve been coding BLK in these examples. BLK, however, is the default
condition - you could have coded the last example like this:

// EXT MI,CF,,,(256,300)

Your Disk or Format-Label Diskette File Needs More Space

When a disk or format-label diskette file is allocated, a certain area is reserved for a
file. It is possible, however, the amount that you estimate may not be enough. There
may be more information than you realized; an update of the file made it larger than
originally intended, or, you may be replacing existing information with new
information (this requires the use of the INIT parameter of the LFD job control
statement, which is explained in "The Expiration and Creation Date of the File" later
in this section). This new information may require more space than you had
previously allocated.

Job control can extend the requested area, if necessary. Let’s say you're settingup a
file to contain 700 or 800 entries for an accounts payable procedure, and you estimated
the file would need 100 blocks, each 256 bytes in length. Since this is only an
estimate, you can use a parameter in the EXT job control statement to allocate more
space if it is needed. This is called dynamic extension. Ifit isn’t needed, it isn’t
allocated. In this way, you don’t waste space by allocating more than necessary.

The parameter used to provide this dynamic extension is the third parameter group in
the format. The inc parameter is the amount of additional space that you request.
This dynamic extension is in terms of cylinders.

7004 4623-000 429

Getting the Most Out of the Basic Job Control Statements

Specifying 0 indicates you do not want to allow for dynamic extension of the file. Use
this when you want to limit the amount of information placed in the file. If nothing is
specified, by default, one cylinder is generated.

Assume, for the accounts payable application, that we estimated 100 blocks, each 256
bytes long, on a formatted, MIRAM file. We want two additional cylinders if dynamic
extension is necessary. The coding would be:

// EXT MI,F,2,,(256,100)

Terms of Allocation

430

We've already covered some allocation terms in previous examples: BLK for allocating
in terms of blocks and CYL for allocating in terms of cylinders. With the addr
parameter you can also specify the absolute cylinder address in hexadecimal at which
the file is to begin. When you do this, allocation is in terms of cylinders.

Note: The absolute address can be specified in decimal by coding D’number’, or
hexadecimal by coding X ‘number’. Any number not preceded by D or X and
enclosed in single quotes is considered hexadecimal.

Let’s say you need one MIRAM file, allocated contiguously, allowing 5 cylinders for
dynamic extension, and it must start at cylinder 78. Code it:

// EXT MI,C,5,4E

Do you recall specifying the amount of blocks needed for the file? One of the examples
looked like this:

// EXT 1s,C,,BLK, (1024, 1000)

Specifying (1024,1000) told job control how many blocks to allocate: 1000. When you
specify allocation in terms of cylinders or by absolute address, you must indicate how
many cylinders to allocate for the file by using the mi parameter.

If you wanted 10 cylinders, it would have been coded as:
// EXT MI,C,5,CYL, 1@

The TRK parameter allows you to allocate disk and format-label diskette files in
terms of tracks. The TBLK parameter allows you to allocate a file in blocks by track
rather than in blocks by cylinder (BLK parameter). The Tccc:hh parameter is similar
to the addr parameter because it lets you specify the absolute hexadecimal (Xnumber’
or number) or decimal (D'number’) starting address of the file. The address, however,
is a track address in cylinder/head format and the allocation is in terms of tracks, not
cylinders. For more information about file allocation by track, see the Consolidated
Data Management Macroinstructions Programming Guide, 7004 4607.

7004 4623000

Getting the Most Out of the Basic Job Control Statements

Note: You cannot allocate a disk file or format-label diskette file by track (using
TRK, TBLK or Tccechh) when creating MIRAM files with IRAM
characteristics.

Remember that when you specify CYL, addr, TRK, or Tccc:hhh, you must specify the
number of cylinders or tracks with the mi parameter.

Allocation Amounts

The parameters for indicating the amount of space wanted were shown, indirectly,
when we discussed formatting and terms of allocation. These were coded as the fifth
parameter, mi or (bi,qi).

The mi parameter is used with either the CYL, addr, TRK, or Tccc:hh parameter, and
indicates the amount of cylinders or tracks needed by the file. These were covered in
the last example of "Terms of Allocation" in this section.

The (bi,ai) parameter is used with the BLK or TBLK parameter for allocating in terms
of blocks (rounded up to cylinders or tracks, respectively). Remember BLK is the
default parameter so you don’t need to specify it. The bi indicates the amount of bytes
in the block, and the ai indicates the number of blocks in the file. For instance, this
example

// EXT MI,C,5,CYL,10

indicates an allocation of 10 cylinders, while either of these examples

// EXT MI1,F,10,,(256, 100)
// EXT MI,F,10,BLK, (256, 100)
indicates an allocation of 100 blocks, each 256 bytes in length.

You can specify any number of separate disk areas (extents) for an individual file. A
reason for using several different extents for a single file would be to decrease data
access time, thus reducing processing time. Assume the program is designed such
that the file can be divided into two different extents. The first extent contains data
used only by the first part of the program; the second extent contains data used only
by the second part of the program.

For instance, the first extent contains hourly pay rates for calculating gross pay, and
the second extent contains payroll deductions to subtract from the gross pay to get the
net pay. Once the gross pay is calculated, the first extent is no longer needed; the
.program will not need this information again. It only needs the deduction information
in the second extent to finish processing. In this way, one large extent is divided into
two smaller extents, reducing the amount of access arm movement for the disk unit.

7004 4623000 431

Getting the Most Out of the Basic Job Control Statements

For example, you have a file divided into two different extents. The total size of the
file is 20 cylinders. The first part of your program uses 12 cylinders, and the second
part needs 8 cylinders. They can both be specified on the same EXT job control
statement. The information in the first four parameters applies to both extents in the
file.

Look at this portion of the format:

o o

The mj parameter means the same as the mi parameter and the (bj,aj) parameter
means the same as the (bi,ai) parameter. The only difference is that mj and (bj,aj) are
used for additional extents in the file. So, we could code the two extent files (12
eylinders and 8 cylinders) as:

// EXT MI,C,1,CYL,12,8
T U

Notes:

1 This applies to both extents.

2 This is the allocation for the first extent.

3 This is the allocation for the second extent.

If you allocated in terms of blocks, with the first extent occupying 300 blocks, each 256
bytes in length, and the second extent occupying 700 blocks, each 256 bytes in length,

it would be coded as:
// EXT MI,C,1,BLK,(256,300),(256,700)
|] 1 | L |
T T T
1 2 3

Notes:
1 This applies to both extents.
2 This is the allocation for the first extent.

3 This is the allocation for the second extent.

432 7004 4623-000

/F\\,

Getting the Most Out of the Basic Job Control Statements

You can also specify separate extents for an individual file by coding separate EXT
statements, as we did when we coded separate VOL statements for a multivolume file.
Refer to "More Than One Volume in a File" earlier in this section for details. You
have coded separate extent specifications for our previous example, like this:

// EXT MI,C,1,BLK,(256,300)
// EXT MI1,C,1,BLK,(256,700)

Changing the Specifications of a Previously Allocated File

Sometimes, you may want to change some of the information pertaining to a
previously allocated file. Use the OLD parameter to do this. The following portion of
the EXT job control statement format shows OLD as either the fourth or seventh
parameter:

. |addr —T, mi . [mi yeee{[,OLDIL,FIXIINTERM]
Tece:hh (bil,ail) (bjl,ajD)
BLK

TBLK
CyYL
TRK
OLD

When coded as the fourth parameter, OLD means you want to change the automatic
allocation amount for dynamic extension (the third parameter) for a previously

allocated file. Suppose you specified one cylinder when a MIRAM file was originally
created. To change this specification to five, you code the EXT statement as follows:

// EXT ,,5,0LD

You can omit the first and second parameters, since they are ignored if specified.

When OLD is coded following the allocation amount (mi, mj, etc.), it increases the
original allocation amount for your extents.

7004 4623000 433

Getting the Most Out of the Basic Job Control Statements

Let’s assume your file was originally a 30-cylinder, sequential file and you discover
you really need 50 cylinders. To obtain these extra 20 cylinders, you can change the
allocation amount for the file by using this EXT job control statement:

// EXT ,,,CYL,20,0LD

When changing the allocation amount, you may omit the first, second, and third
parameters since they are ignored, if specified.

Allocating Space in the Fixed-Head Area of Your 8417 Disk

If you have an 8417 disk subsystem with a fixed-head feature, use the FIX parameter
with your EXT statement when you want to allocate the extent in the fixed-head area.
See the Consolidated Data Management Macroinstructions Programming Guide, 7004
4607, for information about the 8417 fixed-head disk.

No Terminate Option for Insufficient Extent Space

The NTERM option, when used, informs you if the extent cannot be allocated because
of insufficient disk space or because a specified absolute disk area is already in use
(error code 36). Rather than terminating the job, which is what happens without this
option, the system displays a JC48 message and waits for either a retry (R) or cancel
(C) reply. This allows your operator to evaluate the files currently on the disk and to
clear those that are not needed so your job can continue.

Information about Data-Set-Label Diskette File Allocation

To allocate space for a file on data-set-label diskette, include an EXT statement in the
device assignment set for the diskette.

A data-set-label diskette file is always a 1-extent, nonextendable, sequential file.
Therefore, several of the EXT statement parameters and options that we discussed in
the preceding section do not apply. To help you avoid confusion, refer to the following
EXT statement for data-set-label diskette:

//tsymbol] EXT MI,C,@,BLK,(bi,ai){,NDI]

434 7004 4623-000

/‘r_ ™ \

Getting the Most Out of the Basic Job Control Statements

Just as for disk, the first parameter of the EXT statement indicates file type. The
extent for a data-set-label diskette file must be contiguous and cannot be dynamically
extended. So specify C for the second parameter and 0 for the third parameter. Space
on a data-set-label diskette is allocated by block, so BLK and (bi,ai) must be specified
for the fourth and fifth parameters respectively. Specify the last parameter, NDI
(non-data-interchange), for all System 80 data-set-label diskettes that are not basic
data exchange (BDE) diskettes. If you omit this parameter, it is assumed that you're
allocating a BDE diskette (a single-sided, single-density diskette having 128-byte
sectors, 26 sectors per track, and 73 tracks.) For more information about the
characteristics of data-set-label diskettes, see the Consolidated Data Management
Macroinstructions Programming Guide, 7004 4607.

The following is an example of an extent statement for a data-set-label diskette file
having 100 blocks of 80 bytes each:

// EXT MI,C,0,BLK, (80, 1000)

Using Your File Identifier More Efficiently

So far, the LBL job control statement was used to designate the individual files on a
volume by providing a file identifier (labeling a file).

We are now going to explain the optional parameters, and a special variation of the
file-identifier parameter, that improve file handling efficiency. Once again, the format
of the LBL job control statement is:

//Tsymbol] LBL file-identifier |, [file-serial-number] |[,expiration-date]
'file-identifier!| VCHECK

[,creation-date] lz 'file-sequence-number}:} [Z {generation-number]:]
11 1
lz {version-number}
1

As each individual parameter is introduced, refer to this format.

]

7004 4623000 435

Getting the Most Out of the Basic Job Control Statements

But first, we'll describe the special variation of the file-identifier parameter.
Sometimes, you may not want more than one job to access a particular file at the same
time, for example, when it is being updated. Ifit’s a disk file, you can make it lockable
by assigning a 6-byte lock ID as a prefix to your file identifier. Ninety-nine lock IDs
are available: $LOKO1 through $LOK99. The lock ID may be followed by up to 38
characters. The LBL statement for a lockable file might be coded this way:

// LBL $LOK15MASTERFILE

Once you have assigned a lock ID to the file, it is locked automatically each time it is
opened. The type of lock (read-only or write-only) is determined by the ACCESS
parameters in your file definition macroinstruction for the file. See the Consolidated
Data Management Macroinstructions Programming Guide, 7004 4607, for a complete
description of the file lock facility.

Multivolume File? Assign Each Volume a File Serial Number

When using a file consisting of multiple volumes, a file serial number can be assigned
to identify each volume as being a member of the file. In this way, a volume that is
not a member of the file cannot be used.

The file serial number is identical to the volume serial number of the first volume of
the file. For instance, there are four volumes in a file, in this sequence:

1. XYZ
2. P10
3. A79
4. TPL

The file serial number for all the volumes in this file would be XYZ.

You use the VCHECK parameter to either create a file serial number on output
volumes, or to check the file serial number on input volumes. This VCHECK
parameter instructs job control to use the first volume serial number specified on the
VOL statement as the file serial number.

Once again, we have the four volumes, XYZ, P10, A79, and TPL, in that order, in a file.
We want to write a file serial number on them. Arbitrarily, the file identifier we are
going to use is OUTPUT. Your VOL and LBL statements would look like this:

// VOL XYZ,P10,A79,TPL
// LBL OUTPUT,VCHECK

436 7004 4623-000

/'\

/-.\.
)

Getting the Most Out of the Basic Job Control Statements

If this file was already created with a file serial number (input rather than output), it
would be coded the same way. The VCHECK parameter writes on output and checks
on input.

The file-serial-number parameter is also used to write or check the file serial numbers
of volumes, but in a slightly different manner.

Again, we have these same four volumes (XYZ, P10, A79, and TPL) in the file. But,
you only want to use the last two volumes, A79 and TPL, in that order, on this run.
This is a previously created file; when it was created, the VCHECK parameter was
used, giving a file serial number of XYZ to each volume. If we used the VCHECK
parameter now, while trying to read only these two volumes, A79 and TPL, job control
would use the volume serial number of the first volume specified on the VOL
statement, A79, as the file serial number value. Since these volumes were created
with a file serial number of XYZ, the job would not run. But, the file-serial-number

parameter allows you to specify the particular file serial number to use. This case
would be coded like this:

// VoL ,, ,A79,TPL
// LBL OUTPUT,XYZ

Note: /When referencing multivolume files on the VOL statement, any undeclared
volume serial numbers must be represented with commas. Additionally, if
Mce, N, or NMcc are not specified for the first positional parameter, you must
supply a comma. In the VOL statement in our previous example
(/] VOL,,,A79,TPL) the first comma represents the first positional
parameter. The second and third commas represent XYZ and P10
respectively.

If either VCHECK or the file-serial-number parameter is omitted when a multivolume
file is created, there is no file serial number for the file, or, if it’s a tape volume, there
is no VOL1 label.

The Expiration and Creation Date of the File

You can limit the life of files by writing an expiration date with the LBL statement.
This date indicates whether or not a file can be deleted by a scratch routine (by using
the SCR job control statement, explained in "Scratching Unwanted Files" in Section 6)
or by a function of data management. This is coded as the third parameter on the
LBL job control statement, and can take either of two forms:

* yyddd

In this form, yy is the year, and ddd is the day of the year. For example,
February 10th is the 41st day of the year (31 in January, plus 10).

7004 4623-000 437

Getting the Most Out of the Basic Job Control Statements

* Rdddd

In this form, R is a constant, and indicates a retention cycle is being used based
on the creation date (either the next parameter, or the date set in the system).
The dddd indicates the amount of days (1-9999).

For instance, you create an output tape with a file identifier of XRAY, and you want it
to have an expiration date of the 98th day of 1991. This would be coded as:

// LBL XRAY,,91098

If you omit the expiration date when writing a file, the current date is inserted for you.
If you omit it when allocating a file, no date is specified and zeros are inserted. If you
omit the date and allocate, then write to the file (in the same Jjob step), the current
system date is used.

The creation-date parameter indicates the date the file is generated. If omitted for a
tape file or a disk output file, the date stored in the job preamble is used. If omitted
for a disk input file, this field is ignored.

The creation date has only one form: yyddd, where yy is the year and ddd is the day.

If you want a creation date of the file, identified by XRAY, to be the 100th day of 1991,
code:

/7 LBL XRAY,,,91100 (

Indicating the Position of the File when Several Are on a Tape Volume

438

When you place more than one file on a single tape volume, you can indicate each file’s
position on the tape by assigning sequence numbers. Later, if you want a particular
file on that volume, you simply reference the file (in the // LBL statement) by its
identifier and sequence number. You can only assign sequence numbers to standard
labeled tape files. :

When you create a tape file, you use the fifth positional parameter of the // LBL
statement (file-sequence-number) to assign a sequence number. The following
statement, for example, assigns a sequence number of 3 to PRMAST - the third output
file on a volume to contain 5 files:

// LBL PRMAST,,,,3

Later, when you want to read (input) PRMAST, you can go directly to that file by
including the same statement (/ LBL PRMAST,,,,3) in your device assignment set.
When you specify the file sequence number, data management searches for the first
file with that number. Ifit’s found, data management then checks the file identifier
for a match. (If the file sequence number you specify is not found or if the file
identifiers don’t match, a data management error results.)

7004 4623000

Getting the Most Out of the Basic Job Control Statements

Remember, you must assign file sequence numbers when a tape file is created in order
to reference that file by sequence number later. If you don’t assign a sequence number
on output, data management assigns a number 1 to the file regardless of its position
on the tape volume. If you don’t provide a sequence number on input, data
management does not check for a sequence number but expects to use the first file
encountered. In either case, omitting file sequence numbers means using another
method to position the tape to the file you want (e.g., the / MTC statement or reading
and closing preceding files without rewinding until the desired file is reached).

Different Versions of a File

Ordinarily, only one generation of a file is used by a program. There are instances,
however, when more than one generation of the same file may be needed. For
example, one generation contains payroll deductions only used in January, March, and
May, and another generation has the payroll deductions used only in February, April,
and June. To indicate the different generations of a file, you can use the 1- to 4-digit
generation-number parameter of the LBL job control statement. This is used only
with tape files, and is the sixth parameter shown in the format. By using this
parameter, you can be sure the correct generation is used.

Suppose you did have two different generations of the payroll deduction file, with a
file identifier of CUSTMAST, and you want to use the second generation. This would
be coded as:

// LBL CUSTMAST,,,,,2

If you omit this parameter, data management assumes 0001.

Let’s go one step further. Each generation of a file can have several different versions.
Again, we have these two different generations of the CUSTMAST payroll deduction
file. Generation 1 is used in January, March, and May, and generation 2 is used in
February, April, and June. But, suppose each of these generations had two unique
sections. Version 1 is used in odd-numbered years, and version 2 is used in even-
numbered years.

We could use the 1- to 2-digit version-number parameter to do this.

Suppose it is January, 1990. We need generation 1 (January) and version 2 (1990 is
even numbered). This would be coded as:

// LBL CUSTMAST,,,,,1,2

If the version-number parameter is omitted, data management assumes 01.

7004 4623-000 439

Getting the Most Out of the Basic Job Control Statements

Changing the Label of a Disk File

The REN statement is used to permanently change the label of a disk file through job
control - a simpler procedure than the alternative methods for renaming disk files.

The format of REN is:

//[symbol] REN lfdname, [new-label [,NTERM]
'new-label*

The lfdname parameter identifies the file to be renamed. It must match the Ifdname
in the LFD statement for the file.

The file’s new label is specified in the new-label parameter. New-label replaces the
existing label identified in the device assignment set for the file. If new-label contains
embedded blanks, it must be enclosed by single quotation marks. It may be from 1 to
44 alphanumeric characters in length.

Specifying optional parameter NTERM causes any fatal errors encountered during the
renaming process to be ignored, but permits the job to continue. If this parameter is
present, the job continues running if a renaming error occurs, but the file is not
renamed. If NTERM is omitted, the job terminates at the point of error.

The REN statement is checked for syntax errors by the run processor during job
stream validation. If no errors are detected, the job is queued and becomes a
scheduling candidate. The run processor passes information from the REN statement
to the step processor, which performs the actual renaming during job execution.

The device assignment set for the file to be renamed must precede the REN
statement. It is a good idea to place the REN statement within the control stream as
close to the device assignment set for the file as possible, since / REN is only effective
against files on volumes mounted when the REN statement is encountered.

Afile is renamed in the job step containing / REN, prior to execution of the program
for that step, or prior to job termination if no EXEC statement follows // REN.
Subsequent references to the renamed file must use new-label in the LBL statement
of the device assignment set for the renamed file.

Notes:

1. TheREN statement is used only to rename disk or format-label-diskette files; it
may not reference device assignment sets for data-set-label diskette or tape
volumes.

2. REN statements are not permitted against files on SYSRES that begin with $Y3,
or against files on SYSRUN that begin with YR.

3. Don't use | /| SKIP to bypass a device assignment set referenced by a REN
statement that is not also bypassed. If you do, you'll get an error during the
renaming process. (See "Adding Cards to a Stored Control Stream" in Section 6
for more information.)

440 ' 7004 4623000

)

Getting the Most Out of the Basic Job Control Statements

4. Ifyou rename a cataloged file, you must recatalog the file under the new name.

Suppose you have a program that calculates the engineering department’s payroll and
outputs a disk file labeled EGRPAY. The control stream to rename the file EGRCOST
looks like this:

// DVC 5@

// VOL DSKO1
// LBL EGRPAY
// LFD DSKOUT

// REN DSKOUT,EGRCOST

The file’s label is now EGRCOST. Suppose that a subsequent job step uses EGRCOST
as input for calculating company-wide costs. Building on our first example, the
renamed file is referenced subsequently in the control stream like this:

(x" // DVC 50
// VOL DSK©1
// LBL EGRPAY
// LFD DSKOUT

// REN DSKOUT,EGRCOST

// DVC 50

// VOL DSK®1
// LBL EGRCOST
// LFD DSKIN

7004 4623-000 441

Getting the Most Out of the Basic Job Control Statements

442

A single REN statement applies only to the first volume in a multivolume file. To
rename a multivolume file, therefore, you must specify a unique REN statement for
each volume in the file.

If EGRPAY in our first example had been a multivolume file, we would have renamed
it this way:

// DVC 50

// VOL DSK01
// LBL EGRPAY
// LFD DSKOUT1

// bvC 51

// VOL DSK@2
// LBL EGRPAY
// LFD DSKOUT2

// REN DSKOUT1,EGRCOST
// REN DSKOUTZ,EGRCOST

Use the REN statement carefully to avoid renaming a file concurrently used by
another job. To help prevent this problem, establish nonsharable status (using the NS
option of the VOL statement) for endangered disk volumes, or use passwords known
only to selected personnel.

7004 4623-000

N
\

r/‘h'\

f ™

()

Getting the Most Out of the Basic Job Control Statements

Specifying Qualifiers for File Identifiers

The QUAL job control statement is used to prefix a qualifier to all subsequent file
identifiers in a job. The format of the QUAL statement is:

//Tsymbol] QUAL qualname

The qualname is a 1- to 8-character alphanumeric name. When specified, this name
followed by a slash becomes the qualifier, and is automatically prefixed to each
subsequent file identifier in your job control stream.

Consider the following example:

// QUAL SMITHCO

// DVC 60 // VOL DISK@1
// LBL PAYABLES.TAXES
// LFD PAYFILE

// DVC 60 // VOL DISK@1
// LBL INCOME.INTEREST
// LFD INFILE

In this example, SMITHCO is specified as the qualifier and will be prefixed, along
with a slash, to each subsequent LBL file identifier producing:

SMITHCO/PAYABLES.TAXES and SMITHCO/INCOME.INTEREST.

The qualifier remains in effect until the end of the job or until another QUAL
statement is encountered. Ifthe next QUAL statement specifies another qualname,
that name becomes the qualifier for any subsequent file identifiers. If no name is
specified (e.g., / QUAL), use of the qualifier is terminated.

An LBL file identifier that is already prefixed with an alphanumeric name and a slash
overrides the QUAL statement qualifier. Consider this example:

// QUAL SMITHCO

// DVC 6@ /7 VOL DISK@1
// LBL PAYABLE.TAXES
// LFD PAYFILE

// DVC 60 // VOL DISKO1
// LBL INCOME/INTEREST
// LFD INFILE

INCOME/ in the second LBL statement is already considered a unique qualifier;
therefore, SMITHCO/ will be prefixed to PAYABLE.TAXES but not to
INCOME/INTEREST.

Because the QUAL statement is especially useful in identifying cataloged files (see
"File Cataloging” in Section 6), QUAL is also discussed in the File Cataloging
Technical Overview, 7004 4615,

7004 4623-000 443

Getil‘ng the Most Out of the Basic Job Control Statements

More Information about the Logical File

So far, you know the LFD job control statement is used to provide a file name that
associates the file defined in the program with the file information in the control
stream. Now, by introducing the optional parameters, you will see some of the other
functions it provides. Once again, its format is:

//Isymbol] LFD [filename . [n , |EXTEND
{*filename} {8} INIT

PREP
1D

IGNORE

Refer to this format as each parameter is introduced.

We have already discussed the filename parameter. An asterisk (*) indicates that the
file label is lockable.

Reserving an Extent Information Storage Area

Files are defined on disk and format-label diskette volumes in terms of extents. An
extent is space on the volume made up of contiguous tracks. If you recall, we used the
EXT job control statement to split up a file into two extents. So, in the strict sense, an
extent is not always the entire disk area a file requires; at times it is, but at other
times it isn’t.

Information about the extents is placed in the job’s prologue along with other
information needed to regulate your job. (See "Minimum and Maximum Main
Storage" in Section 2.) On the JOB statement, you specify the minimum and
maximum amount of main storage needed to execute your largest job step. However,
in order for job control to reserve sufficient main storage for the extent information in
the prologue, you must specify the number of physical extents a file has in the second
parameter of the LFD statement. Assume, for example, that the file named DSKOUT
has 10 extents. To reserve space for information about these extents, you code the
LFD statement as follows:

// LFD DSKOUT, 10

The space acquired by using this parameter influences the total main storage
requirement for the job. If you specify a value of zero, job control does not reserve
main storage for extent information. If you omit this parameter, main storage
sufficient for information about eight extents is reserved. The maximum value you
can specify for this parameter is 20.

444 7004 4623-000

AT
/ \

e
(

Getting the Most Out of the Basic Job Control Statements

Note: If you specify a greater number of extents on the LFD statement than a file
actually has, main storage is used unnecessarily for the extent information.
Although this should be taken into consideration, problems are more likely to
arise if you specify fewer extents on the LFD statement than the file actually
has.

Specifications for Existing Files

The third parameter of the LFD job control statement provides five different options:
INIT, EXTEND, PREP,IGNORE, and ID.

The INIT option is used to initialize an existing disk file; that is, INIT causes all
information except the allocated space and file identifier to be discarded when the
program using that file opens it. When you specify INIT for an output file, the output
will start at the beginning of the file. When INIT is specified for an input file, an end-
of-file will be indicated when your program reads the first record. You can specify
INIT for all disk and diskette files.

Suppose you already reserved for the old file rather than allocate a new one? In this
way, you are not leaving dead space on the disk volume.

We'll assume that the file name is SORTOUT. The device assignment set to reuse
WORK2 on disk volume DPS028 would look like this:

// DVC 50

// VOL DSP@28

// LBL WORK2

// LFD SORTOUT,,INIT

Notice the logical unit number for the DVC job control is 50. This indicates any disk
device can be used. Also note the absence of an EXT job control statement. It wasn’t
needed; specifications for the new file are the same as the old one.

Note: The INIT parameter must not be used for a file that contains checkpoint
records. The use of this parameter causes writing to begin at the start of file
every time you log a checkpoint record to the file, thus overwriting any
checkpoint records already existing on the file.

The EXTEND option allows you to add information to the present end of an existing
output file if the instructions in your program allow you to do so. EXTEND has no
effect on input files.

You can specify EXTEND for tape files; EXTEND logically does not affect disk and
diskette files.

Suppose you allocated four cylinders for your file, but filled only two cylinders with
information. Now, you have more information to add to this file, and your program
allows you to do so. You must also instruct job control that you intend to do this.

7004 4623-000 445

Getting the Most Out of the Basic Job Control Statements

If the file name were ADDON, you could extend the file like this:

// LFD ADDON, ,EXTEND

Remember, whether or not you can actually extend a file depends on the instructions
given in your program. In COBOL, for example, an OPEN OUTPUT statement does
not permit file extension even if you specify the EXTEND parameter on the LFD
statement.

The IGNORE option lets you specify that a file is an optional file. This means you can
decide at job execution time, without having to change the program, whether accesses
to the file should be processed or ignored based on the file resources that are available.
This option should be used only with consolidated data management. It is ignored if
specified for a file that is accessed using basic data management (including SAT files).

When the IGNORE option is specified, the following status is returned to the
executing program:

® File initialization (OPEN) - successful status
® Input operation - end of file (EOF) indication
® All other operations - successful status (request is ignored)

Use this option when a program reads or writes multiple files and it is not necessary
that all of the files be aceessed. For example, a program updates some files and-
produces a report, but the report is not always needed. You would specify IGNORE in
the // LFD statement of the printer device assignment set. Another example is where
the program reads multiple input files, but one of them is not available at the time
and is not essential to the execution of the program.

When this option is specified for an input file, the program should be performing
sequential retrieval; otherwise, it may not be expecting an EOF indication.

Indicating Where the Load Module Is Located

An EXEC job control statement is required to call a load module and initiate
execution. Once again, the format is:

$YSRUN

//Lsymbol] EXEC program-name |, library-name [,[+Iswitch-priority][,ABNORM=Label]
YLOD

The second parameter indicates the name of the library (on disk) containing the load
module. This can be either YLOD, YRUN, or the LFD name of the alternate load
library you have previously specified in the control stream.

446 7004 4623000

~

Getting the Most Out of the Basic Job Control Statements

As you can see, the shaded default option is YLOD. This is where you would store
most of your programs. When you omit the second parameter, YLOD is searched.
If the load module is not found here, then the job’s YRUN file is searched.

Another choice you have is the job’s §Y$RUN file, which is where the linkage editor
stores your load module if you have not indicated a specific library. You would code
YRUN in the EXEC job control statement if you have a load module with the same
program name in YLOD. Let’s assume that you have a load module named
PAYROL in YLOD and that you want to make some changes to this program. Take
the source deck, make the necessary changes, and compile it with the same program
name: PAYROL. When it comes time to execute, the system is told that the load
module to fetch is PAYROL. Without specifying the library name on the EXEC job
control statement, the default (§Y$LOD) is assumed, so the system fetches the
PAYROL load module from YLOD. But, you wanted the one from the job’s $YSRUN
file. You are going to receive the wrong load module. So, in this case, you had better
indicate that you want to fetch from the job’s §YRUN file. Remember, the job’s
$YSRUN file is only a temporary file. Any load module you store here is available
only during that job.

Let’s say your load module is named PAYROL and it is loaded in the job’s YRUN
file. It would be coded as follows:

// EXEC PAYROL,$YSRUN

If the load module cannot be found in the job’s YRUN file, YLOD is searched to
see if it was store:d there.

The remaining choice for this parameter, library-name, is used when the load module
is stored in a private load library of your own. If you do this, you must define this
library in a device assignment set, and the library-name must agree with the file
name on the LFD job control statement. Normally, if the module is not found in this
library, YLOD and then YRUN are searched. If, however, you specify NSRCH on
the OPTION job control statement, only the library named on the EXEC statement is
searched for the load module; YRUN and YLOD are not searched. (See "Selecting
Optional Features" in Section 6.)

Let’s say the load module is named PAYROL, and it is stored in a library with a file
identifier of PAYLIBRARYMAST, on disk volume DISKO1. You used PAYLIB as the
file name on the LFD job control statement, and, as the file identifier on the LBL job
control statement, you would, of course, have to use PAYLIBRARYMAST. The device
assignment set and the EXEC job control statement would be coded as:

// DVC 50
// VoL DIsKe1
L PAYLIBRARYMAST

7004 4623000 447

Getting the Most Out of the Basic Job Control Statements

If this library is not accessed by your program (if it is only accessed by the system to
obtain the load module named on the EXEC job control statement), the file name on
the LFD job control statement need not agree with any specification within your
program. It serves only to associate the library in the device assignment set with the
library on the EXEC job control statement. As the file name on our LFD job control
statement, we could have used any name as long as it agrees with the specification on
the EXEC job control statement.

If the load module is not located, YLOD and then the job’s YRUN file is searched.

Task Switching Priority

The EXEC job control statement is also used to specify task switching priorities. This
synchronization and rotation of central processor control from task to task is a
function of the supervisor, and is described in the Consolidated Data Management
Programming Guide, UP-9978.

The switch-priority is the third parameter of the EXEC job control statement. The
priority you specify can be an absolute value ranging from 1 to 60, with the lower
number representing the higher priority (1 is the highest priority). Assume, for
example, your job has one step and you want a switching priority of 10 assigned to the
specified program. (The load module name for the program-name is SWITCH and it
is stored by default in YLOD.) You could code the EXEC statement as follows:

// J0B MYJOB t (7

// EXEC SWITCH,,10
/&

You can also specify a relative value such as +3 or -3 to change priority for a program
specified in a particular job step with respect to the job’s overall priority (as set, for
example, by a SWITCH operator command or an OPTION PRI job control statement).

When specifying priorities this way, remember that a plus (+) value decrements the
overall assigned value. This results in a higher task switching priority. A minus (-)
value increments the overall assigned value. This results in a lower task switching

priority.

448 7004 4623000

Getting the Most Out of the Basic Job Control Statements

Suppose you code the following:

// JOB MYJOB Assigns an overall task switching priority of 7
// OPTION PRI=7 to each program.

// EXEC PROG1

The programs specified in these 2 job steps
. have a task switching priority of 7.
// EXEC PROG2

// EXEC PROG3, ,+2]

The program specified in this job step has a
. } task switching priority of 5.
// EXEC ORIG4,,3]

. | The program specified in this job step has a
task switching priority of 3.

// EXEC PROGS,,-4 1 The program specified in this job step has a
. task switching priority of 11.

/&

The OPTION PRI job control statement is discussed in "Selecting Optional Features"
in Section 6. :

If you omit a task switching priority, the lowest available priority (the highest
number) is used.

You should understand that the task switching priority specified on the EXEC job
control statement is only the initial switching priority for that job step. There are two
ways it can be changed during the job step:

® The operator can raise or lower the priority using the SWITCH console command
if a job is getting too much or too little CPU time.

® The program itself may raise or lower its priority using the CHAP (change
' priority) macroinstruction. This function is described in the Consolidated Data
Management Programming Guide, UP-9978.

As you can see, the effect of the switching priority really depends on the task
switching priorities specified for other jobs running at the same time as your job. Your
job will not gain any advantage by specifying a task switching at priority of 1 (the
highest priority) if all other jobs also use priority 1. There is a case, however, where
the assigned switching priority is particularly significant. Recall from Section 1 that
the RUN symbiont is one portion of job control that reads and analyzes job control
streams. The RUN symbiont is only one of many 0S/3 symbionts that perform system
functions, usually in response to operator console commands. Normally, all symbionts
run at priority 0, i.e., higher than any user job. A SYSGEN option, however, allows

7004 4623-000 449

Getting the Most Out of the Basic Job Control Statements

the supervisor to be configured so that all symbionts run at some lower (user) priority.
For example, suppose symbionts run at priority 2 under your supervisor. The only
jobs that should be run with task switching priority 1 would be those that are
extremely time-critical and cannot tolerate the loss of CPU time whenever a symbiont
is active. Other jobs should be run at priority 3 and lower.

Avoiding Abnormal Termination due to Program Errors

The ABNORM-=label keyword parameter of the EXEC job control statement is used to
bypass job control statements if your program contains errors that may cause the job
to abnormally terminate. If the program has such errors, control of the job skips to
the statement whose label you specify in this parameter so that the job’s execution can
continue. Any subsequent action depends on the contents of the target job control
statement. A more specific example for using this parameter is given in "Bypassing
Job Control Statements to Avoid Abnormal Termination" in Section 6. For now, just
remember that ABNORM=label is a keyword parameter, not a positional parameter,
and, therefore, may be coded in any position. For example:

// EXEC MYPROG,ABNORM=ERROR

Also remember that the operator can still cancel (normally terminate) your job even
though you specify this parameter.

The Job Control Language So Far

- 450

We have now covered the job control statements you'll probably use most frequently
for your jobs. Section 5 deals with system JPROCS provided in the basic 0S/3
software package. Their use eliminates the need of repeatedly coding a series of job
control statements that perform a specific function.

7004 4623-000

Section 5
Doing It the Easy Way - with Procedure Calls

What Is a Procedure?

Have you ever heard someone say: "I've made that mistake before. There must be
some way, some procedure, to make sure it won’t happen again"? Common errors are:
keystroke errors, forgotten commas, statements out of sequence, etc. - errors that
occur because of repetition rather than unfamiliarity. If we could reduce the number
of job control statements coded, the bulk of these errors would also be reduced. What
is needed is a procedure that allows you to write a series of job control statements,
store them for later use, and, by writing a single job control statement, call in these job
control statements whenever needed.

This procedure exists - it allows you to write and call your own procedures, or to call
procedures supplied by Unisys. In Sections 6 through 9, you'll learn how to write,
store, and call your own procedures. This section discusses how to use procedures
supplied by Unisys. These procedures are called by job control procedure call
statements (JPROC calls) in the control stream. Each JPROC call generates a ready-
to-use set of job control statements. Optional parameters in the JPROC call line
enable you to tailor the job control statements generated to suit your needs. (See "Job
Control Procedures” in Appendix C for a complete listing of JPROCS.)

When you use more than one JPROC call, keep this in mind: only one JPROC call can
appear on a single card. JPROC calls can be part of a multistatement line of coding,
but

¢ It must be the only JPROC in the line.

¢ It must be the last statement on the line.

You can code this:

// job control statement // jproc call
but not this:

// jproc call // jproc call
and not this:

// jproc call // jéb control statement

7004 4623-000 51

Doing It the Easy Way - with Procedure Calls

Setting Up Temporary Work Files

Temporary work files are used extensively by programmers to store intermediate
processing results and data that will only be used in a particular job or job step.
Depending on file characteristics and the device used, from three to five job control
statements are needed in the device assignment set for each temporary work file. The
WORK and TEMP JPROC calls allow you to generate any device assignment set
needed for temporary work files.

The difference between the two JPROCS is that WORK sets up temporary files for one
job step and deletes them at the end of the job step. TEMP sets up temporary files for
the duration of the job, deleting them at the end of the job. WORK and TEMP also
generate different default file name values - we’ll explain these in a moment.

The format for WORK and TEMP is:

//[lfdname] [WORKn pve=nn,voL= [vol-ser-no]] ||, [BLK=nnnn
{TEMPn} RES BLK=4000}
RUN CYL=nn
VOL= |vol-ser-no
RES

RUN

[s]

Suppose your assignment is to write a program that reports the grades for each
student in the local school district. The program must list each student’s name,
grouped by school, in descending grade order. The disk area that stores the data used
to calculate the order will never be used again once the job step terminates - an ideal
candidate for a temporary file created by WORK.

Ignoring all optional parameters, the basic WORK JPROC call is:

// WORKn

52 7004 4623-000

Doing It the Easy Way - with Procedure Calls

Where n is a number in the range 1 through 10. Up to 10 temporary work files can be
set up for each job step (or job, if you're using TEMP). If no specific device or volume
is requested, the file is allocated on either SYSRES or the job’s YRUN file; odd-
numbered files go to SYSRES and even-numbered files to YRUN. So, if you want
one temporary file allocated on the job’s YRUN file, for the duration of the job step,
you would code the following:

// WORK2

These job control statements would be generated:

// DVC RUN
// EXT ST,,1,BLK, (256, 4000)
// LBL $SCR2,16

// LED $SCR2

We'll discuss the generated EXT statement in conjunction with the BLK, EXTSP, and
TYPE parameters. For now, it’s sufficient to know that 4000 blocks, each 256 bytes
long, are allocated by default.

The lfdname parameter of WORK and TEMP supplies a file name for the generated
job control statements. It is one to eight alphanumeric characters in length. The file
identifier on the LBL statement generated by WORK is always prefixed by $SCR,
which identifies job step temporary (scratch) files. The number after $SCR

corresponds to 72 in WORKn. If you omit the lfdname parameter of the WORK JPROC
call and code the following:

// WORK1

the generated statements are:

/7 EBL $SCR1
// LFD $SCR1

The file name in your program must also start with $SCR. In addition, you must use
the same WORK JPROC call each time the program is run. If the JPROC call is
changed to // WORK?, for example, the file name in your program must be changed to
$SCR17.

7004 4623-000 53

Doing It the Easy Way - with Procedure Calls

For TEMP, unlike WORK, the generated file identifier is $JOB if you omit the
lfdname parameter. Therefore, if the file name in your program begins with $SCR,
you must use the [fdname parameter of the TEMP JPROC call, like this:

//%SCR1 TEMP1

to generate:

// LBL $J0B1
// LFD $SCR1

If you had not used the lfdname parameter in this example, the generated file name
would have been $JOB1, which would not have matched the file name in your
program.

You can have the control statements generated by WORK and TEMP listed by
specifying the P option on the JOB statement. If you have spooling in your system,
the control statements will be printed in the job log. Otherwise, they will be displayed
on the system console.

When the job step terminates, all temporary files created by WORK are scratched.
Files created by TEMP are scratched at the end of the job.

The Ifdname parameter can also indicate a file’s function when using the WORK
JPROC call. For example, if you code

//GRADEOUT WORK2

the generated job control statements are:

// DVC RUN
/1 EXT ST,,1,BLK, (256,4000)
// LBL $SCR2

// LFD GRADEOUT

It is easier to remember what GRADEQUT contains than it might be to remember
what $SCR2 contains.

The remaining optional parameters of the WORK and TEMP JPROC calls are

keyword parameters. If you are unsure of the rules for coding them, turn to Appendix
A to refresh your memory.

54 7004 4623000

Vel

()

Doing It the Easy Way - with Procedure Calls

Notes:

1. Work file labels ($JOB and $SCR) are modified to be unique for the job by
inserting a job-id after the first 4 bytes of the label. This enables all residual work
files (for example, work files not scratched when an HPR occurs) to be cleared from
the disk during IPL.

2. Within user JCL, work file labels (those starting with $JOB or $SCR) cannot
exceed 39 characters.

Using Your Own Volume

By default, temporary work files are allocated on SYSRES or YRUN. But what if
you needed several work files and there isn’t enough available space on these
volumes? In this case, you would use your own volume by specifying the VOL
parameter. Building on our last example, if your own volume is DISK01, you would
code:

//GRADEQUT WORK2 VOL=DISK@1

This device assignment set is generated:

£ pve 50

£7 vol. prsked

/7 EXT ST,,1,BLK, (256,4000)
// LBL $SCR2

// LFD GRADEOUT

Note that the logical unit number generated for the DVC job control statement is 50.
The WORK and TEMP JPROCS automatically assign the first available logical unit
number in the range 50 through 59, but you can use the DVC parameter to assign
another logical unit number selected from Table A-1 in the Job Control Programming
Reference Manual, UP-9984. In order to avoid a conflict, for example, you may want to
assign a different logical unit number to the temporary work file if you've already
assigned DVC 50 to a disk volume in your job control stream.

Suppose we select logical unit number 60 (indicating any 8419 disk) and add the DVC
parameter to our example, like this:

//GRADEOQUT WORK2 VOL=DISK@1,DVC=60

Since DVC and VOL are keyword parameters, they do not have to be in any specific
order. So, it could be coded:

//GRADEOUT WORK2 DVC=60,VOL=DISK@1

7004 4623000 55

Doing It the Easy Way - with Procedure Calls

Either of these two JPROC calls generate these job control statements:

IEDVE 60

// VoL DIsKe1

// EXT sT,,1,BLK, (256,4000)
// LBL $SCR2

// LFD GRADEOUT

You can use the VOL parameter and omit the DVC parameter - job control will assign
a logical unit number. The converse is not true; if you use the DVC parameter, you
must use the VOL parameter.

Providing the Extent Specifications

When the WORK or TEMP JPROC calls allocate temporary work files, they are, by
default, 4000 blocks - each 256 bytes long. However, you can change this by using the
BLK parameter or the CYL parameter.

Possibly, your file doesn’t require 4000 blocks. Maybe you only need 1000 blocks.
Don’t tie up 3000 blocks that your program isn’t going to use. Use the BLK keyword
parameter to indicate that only 1000 blocks are needed:

//GRADEOUT WORK2 DVC=60,VOL=DISK@1,BLK=1000

which would generate these job control statements:

// DVC 69

// VOL DISK®1

// EXT sT,,1,BLK,(256,1000)
// LBL $SCR2

// LFD GRADEOUT

Suppose you want to allocate 3 cylinders for the file instead of 1000 blocks. In this
case, specify the CYL parameter in the JPROC as follows:

//GRADEOUT WORK2 DVC=60,VOL=DISK@1,CYL=3
This JPROC generates the following job control statements:
// DVC 69
// VOL DISK@1
// EXT ST,,1,CYL,3

// LBL $SCR2
// LFD GRADEOUT

56 7004 4623-000

f"h-\\

Doing It the Easy Way - with Procedure Calls

In "Reserving an Extent Information Storage Area" in Section 4, we used the second
parameter of the LFD job control statement to tell the system how many extents
existed in the file. Job control used this to calculate the amount of main storage
needed to contain the information about the extents. For the WORK and TEMP
JPROC calls, you do this with the EXT'SP keyword parameter.

When the number of extents is omitted, 16 is assumed. If you know your data will
take less than 16 extents, it’s a good practice to specify the EXT'SP parameter. For
example, your data may only need one extent; it is foolish to let the system allocate 16.

Assuming only one extent, we would code:

//GRADEOUT WORK2 DVC=60,VOL=DISKO1,BLK=1000,EXTSP=1

These statements would be generated:

// DVC 60

// VOL DISK@1

// EXT ST,,1,BLK, (256, 1000)
// LBL $SCR2

// LFD GRADEOUT, 1

In "Your Disk or Format-Label Diskette File Needs More Space” in Section 4, we
discussed the dynamic extension of a disk file. You can indicate how much additional
area to allocate on the WORK and TEMP JPROC calls, too. Use the SECALL
keyword parameter.

In the grading report, we estimated 1000 blocks were needed for 5000 students. If
this amount is exceeded, you will, by default, receive one additional cylinder. The
dynamic extension process takes a little time, which increases processing time.
Normally, one additional cylinder is enough extra space to contain any additional
information, but, at different times in the school year, you are called upon to do the
grading report for a neighboring school district. This district has 15,000 students.
This will no doubt exceed the 1000 blocks, and the overflow of data will take up more
than one cylinder; it will be closer to five cylinders. Job control will keep on
dynamically extending the file, in increments of one cylinder, until the needed space is
acquired. Since each dynamic extension takes time, why not request that the
extension be made all at once, by increasing the dynamic extension amount? This
additional space is only allocated when needed (and most times you run this job,
dynamic extension will not be needed). The relative cost of extra temporary space
acquired infrequently, by dynamic extension, is minimal compared with the processing
time cost required to allocate one cylinder five times. Since you know when the)
special runs for the other school district will occur, they can be scheduled when the use
of these five additional cylinders will not hinder jobs being run.

7004 4623-000 57

Doing It the Easy Way - with Procedure Calls

Let’s add a 5-cylinder dynamic extension to the example we’ve been using:

//GRADEOUT WORK2 DVC=60,VOL=DI1SK01,BLK=1000,EXTSP=11,SECALL=5

This generates these job control statements:

// DVC 60

// VoL DISK®1

// EXT ST,,5,BLK, (256, 1000)
// LBL $SCR2

// LFD GRADEOUT,1

You should now be able to use the WORK and TEMP JPROC calls and tailor them to
your own needs.

By default, both the WORK and TEMP JPROCS set up temporary SAT files, but you
can also specify MIRAM files (MI) using the TYPE parameter:

For example-, we can include the TYPE parameter in the previous example to indicate
a MIRAM file type. Code the JPROC as follows:

// GRADEOUT WORK2 DVC=6@,VOL=DISK@1,BLK=2008,EXTSP=11,SECALL=5, TYPE=MI

This generates the following job control statements:

// DVC 60

// VoL DISK@1

// EXT MI,,5,BLK, (256, 1000)
// LBL $SCR2

// LFD GRADEOUT, 1

Accessing Previously Allocated Files

Ordinarily, to access a previously allocated disk file, you use the DVC, VOL, LBL, and
LFD job control statements. These statements aren’t needed, however, if you use the
ACCESS JPROC call. Its format is:

//\fdname ACCESS [lblname s |DVC=nn,VOL=_ |volsn]] |
¢lblname :) voL= _{yolsn] RUN
« [n] ||, [EXTEND RUN
[{8}]‘: {mn }j' *

*
This JPROC call can be used to access any tape or previously allocated disk file,
except a multivolume file. For instance, to access multivolume files, a file serial
number must be specified (otherwise, data management returns an error indication).
There is no parameter in the ACCESS JPROC call for this specification.

58 7004 4623000

Vi
\

/ \

/‘“\x

Doing It the Easy Way - with Procedure Calls

The ACCESS JPROC call uses both positional and keyword parameters; if you're a
little hazy on the rules for coding, consult Appendix A.

Let’s digress a moment, and discuss the DVC and VOL parameters. The rules
governing their use are exactly the same as for the WORK and TEMP JPROC calls.
See "Using Your Own Volume" in Section 5. If you omit the VOL parameter, the file is
assumed to be on the volume containing the job’s YRUN file.

Let’s set up a situation where the ACCESS JPROC call can be used to advantage.
Suppose we want to write an inventory control program for a metal fabricating plant.
This plant produces many different items: office furniture, aircraft parts, aluminum
siding, and such. Each item produced depletes a central metal inventory, and the
purchasing agent wants to know when to order new stocks of metals. After making
some further assumptions (DVC=60 and VOL=DKWORK) we have the information
needed to code a useful ACCESS JPROC call:

//MMIFIL ACCESS METALMASTINV,DVC=60,VOL=DKWORK

This ACCESS JPROC call generates this device assignment set:

// DVC 60

// VOL DKWORK

// LBL METALMASTINV
// LFD MMIFIL

The ACCESS JPROC call has two optional positional parameters that allow you to
generate a complete LFD job control statement. In "Specifications for Existing Files"
in Section 4, we discussed how the optional parameters of the LFD job control
statement are used. Well, the optional positional parameters of the ACCESS JPROC
call correspond exactly to the parameters of the LFD job control statement.

Compare these formats:

//lsymbol]l LFD [filename . [n , [EXTEND
*filename 8 {INIT }

//1fdname ACCESS |lblname

. |DVC=nn,VOL= |volsn
(lblname ||, fn] ||, [EXTEND voL= {volsn] {RUN
8 INIT RUN *
*

The two enclosed portions are identical, both in format and function.

~

7004 4623-000 59

Doing It the Easy Way - with Procedure Calls

The n parameter specifies the number of extents reserved in main storage, and the
default value is 8.

The other optional positional parameter provides two different options: EXTEND and
INIT.

As a brief recap of "Specifications for Existing Files" in Section 4, we can say that
using the EXTEND option allows you to add information to the present end of the file.
With the INIT option, you can write over the existing information in the file (except
for the file identifier).

When you code any of these options, or specify the number of extents in the file, with
the lblname parameter, you have to enclose them all within parentheses.

Since the metal fabricating plant buys and sells a lot of materials, the metal master
inventory file changes a great deal. You must update the metal master inventory file
to reflect any new materials purchased and sold, and perform the main processing
function.

All new material is purchased on the tenth of the month. On the eleventh, it’s time to

add the new material to the metal master inventory file. Our call line would look like
this:

//MMIFIL ACCESS METALMASTINV,DVC=6@,VOL=DKWORK

By default, space is reserved for eight extents. The following device assignment set is
generated:

// DVC 60

// VOL DKWORK

// LBL METALMASTINV
// LFD MMIFIL

While there are more minor limitations to the ACCESS JPROC call, there are many
instances where it’s very useful.

Allocating a File with a JPROC Call

You saw how we used the ACCESS JPROC call to access an existing disk file. This
replaced four job control statements, helping to reduce the possibility of coding errors.
You save more coding time by using the ALLOC JPROC call to allocate disk and
diskette files. It’s a combination of the ACCESS JPROC call and the EXT job control
statement.

510 7004 4623-000

Doing It the Easy Way - with Procedure Calls

The format is:

~

//\fdname ALLOC [lblname . Dvc=nn,v0L=} [vplsn}]

(lbtname -) voL= [volsn] {RUN
, [n EXTEND RUN
{8} {INIT } *
EXT= M1 . |c , |inc , |addr , [mi
{ST} CF 0 Teec:hh {(bi ,ai)
F 1 BLK

J

*
L TBLK
oYL
TRK
OLD

lz {mj } ,..il[,OLD][.FIX]E,NDI])
(bj,aj) ‘
! _

The EXT keyword parameter provides all the options available as positional
parameters on the EXT job control statement. The only difference is the equal sign
and the parentheses.

Note: Section 4 describes the parameters and options available for data-set-label
and format-label diskette using the EXT statement.

Your site processes payrolls for 25 different companies. Each company has a file
containing each employee’s name and hourly wage. This file is accessed during the
processing of the company payroll (a use for the ACCESS JPROC call). Originally,
though, each company file was on punched cards, and each of them must be loaded
into its own disk area. (Here is one use for the data utility card-to-disk routines; why
write your own program when one is already provided?} To do this, there must be a
device assignment set for each file being created. This means 25 device assignment
sets for the 25 files. Looking back at "Basic Job Control Statements" in Section 3, we
see that the site manager needed five job control statements to allocate his disk file:
DVC, VOL, EXT, LBL, and LFD. This means 125 job control statements would be
needed. The ALLOC JPROC reduces this to 25.

For our example, assume that the file requirements (such as access method area
needed, etc.) are identical for each of the 25 files, so most of the parameters for the job
control statements (and the ALLOC JPROC call) would be the same. Of course, each
file must have its own unique file identifier, but the information about the extents is
the same, all the files can be stored on the same disk volume, and, since you’re using
the same program to store them (the data utility routine, run 25 times), the file name
is the same.

7004 4623-000 511

Doing It the Easy Way - with Procedure Calls

/ f—;‘\.

We'll assume that disk volume DSP028 will hold these files. It’s the only volume with
DSP028 as the volume serial number, so a logical unit number in the range of 50
through 59 (any disk device) suffices. If we omit the DVC keyword parameter, job
control assigns the first available number in this range. Assume that the first one
available is 50. The data utility card-to-disk routine uses QUTPUT1 as the file name
in the LFD job control statement; this is the value we must use as the lblname
parameter. All the file names for the different data utility routines can be found in
the Data Utilities Operating Guide, 7004 4516.

We are going to take the default value for the number of extents (8), and we don’t
want to use any of the options for a previously allocated file.

After defining the extent information, we'll have the parameters that are common to
all files. The only thing left will be to supply a unique file identifier for each file. All
the files are MIRAM files (which is a default condition, MI), allocation is contiguous,
with one cylinder for dynamic allocation. The initial allocation is two cylinders. Now
we have what we can call our master ALLOC JPROC call for the 25 different files.
The only thing missing is the file identifier.

From the information we’ve gathered, our master ALLOC JPROC call for the file
identifier would look like this:

//0UTPUT1 ALLOC xx...xx,VOL=DSP028,EXT=(,C,1,CYL,2)

Now, we need file identifiers for each file. Each of the 25 files must be given a unique
file identifier so the proper file can be accessed at the proper time. The names of two
of the companies are Target Manufacturing, Incorporated, and the Reality’s Dress
Company. Why not use TARGET and REALITYS as the file identifiers? It makes
them easier to remember and identify. The ALLOC JPROC call for Target
Manufacturing, Inc., would be:

)

//OUTPUT ALLOC TARGET,VOL=DSP@28,EXT=(,C,1,CYL,2)

and the generated job control statements would be:

// Dve 50

// VOL DsP028

// EXT ,C,1,CYL,2
77 LBL TARGET

// LFD OUTPUT

The ALLOC JPROC call for the Reality’s Dress Company would be:
//GUTPUT1 ALLGC REALITYS,voL=DSP028,EXT=(,C,1,CYL,2)

The only difference in the generated job control statements is the file identifier of the
LBL job control statement: one is TARGET; the other is REALITYS.

‘/-ﬁ—&\

512 7004 4623000

Doing It the Easy Way - with Procedure Calls

Note: Ifthe EXT keyword parameter is omitted, job control assumes one cylinder for
dynamic extension and, therefore, allocates one cylinder of extent space for a
MIRAM file.

Now, let’s see how to avoid the error of assigning one volume to different devices.

Too Many Devices for the Same Volume

Many applications use two files on the same volume. A common mistake is to assign
the files - thus the volume - to two different devices during the job. Using the
DVCVOL JPROC helps to avoid this. This JPROC assigns logical unit numbers for
the generated DVC job control statements. It also generates a VOL job control
statement with the volume serial number you specify in the JPROC call. The format
is:

RES b

//[symbol] DVCVOL [vol-ser-no t,lun]lZNOVOL: {Y}:l
N
RUN

The symbol in the label field is only used as a target for the job control statement that
causes a branch.

The DVCVOL JPROC assigns the logical unit numbers 50 through 59, in ascending
sequence, to the different volume sequence numbers in the order they are encountered
in the control stream. If you had three volumes, A, B, and C, in that sequence, A
would be 50, B would be 51, and € would be 52. It is possible, however, to override
these volumes and assign a specific logical unit number to a specific volume by using
the lun parameter.

The NOVOL parameter (NOVOL=Y) performs the same function as the NOV
parameter of the VOL job control statement. It suppresses the checking of volume
serial numbers.

Once a logical unit number is assigned by the DVCVOL JPROC call to a volume, the
same logical unit number is assigned whenever this volume is encountered in the job.
If volume A was assigned 50 in one job step, and you tried to assign it to 51 in the next
job step, the system overrides the 51 and assigns 50.

If you tried to do this by using just the DVC and VOL job control statements,
assigning 50 in the first job step and 51 in the next job step, your job may run, but you
may have to demount the volume from DVC 50 and mount it on DVC 51.

When you use the DVCVOL JPROC call, the LBL and LFD job control statements for
the file must be present in the control stream after the DVCVOL JPROC call. If
you're allocating a file on a disk volume, the EXT job control statement must, of
course, also be used.

7004 4623-000 513

Doing It the Easy Way - with Procedure Calls

There is a limit to the number of volumes you can assign using the DVCVOL JPROC
call in a job: 10.

Another point worth remembering: the DVCVOL JPROC call can be a member of a
multistatement line of coding, but it must be the last statement on the line.

Let’s set up a control stream with some DVCVOL JPROC calls, and see what job
control statements are generated. The numbers refer to the explanation following the
example.

// DVCVOL DIsK@1

// LBL A

1. [// LFD A // DVCVOL DSK0@2
// LBLB // LFD B
2. |// DvVCvOL DK@0e3,69
// LBLC // LFD C
3. |7/ pvcvoL DISK@1

// LBL X

// LFD X

4. |// pvcvoL DK@ee3,&7
// LBL Y

// LFD Y

1. Thisis an example of a multistatement line of coding. Note that the
DVCVOL JPROC call is the last statement on the line. The next line and
the line after example 2 are also multistatement lines.

2. This line assigns a specific logical unit number, 69, to the volume DK0003.

3. This DVCVOL JPROC call is used again for the volume DISKO01. It was also
used in the first DVCVOL JPROC call on the first line. It will be assigned
the same logical unit number assigned to the first call for the volume
DISKO1. You'll see this more clearly when we show the job control
statements generated by these DVCVOL JPROC calls.

4. Thisis another example calling for the volume DK0003, which was already
assigned a logical unit by a DVCVOL JPROC call. Notice that it also
requests a specific logical unit number: 67. Since this volume already was
assigned to logical unit number 69 in example 2, the request for logical unit
number 67 is ignored, and it is assigned to logical unit number 69.

514 7004 4623000

Doing It the Easy Way - with Procedure Calls

Here are the generated job control statements. They should give you a clearer picture
of how each DVCVOL JPROC call functioned.

1. |// bvC 5@

// VOL DIsSK®e1
// LBL A

// LFD A

2. |// bveC 51

// VOL DSKee2
// LBL B

// LFD B

3. [// bvC 69

// VOL DK@ee3
// LBL C

// LFD C

4. |// DVC 50

// VoL DIsKe1
// LBL X

// LFD X

5. |// DVC 69

// VOL DK00e3
// LBL Y

// LFD Y

1. Volume DISKO01 was the volume encountered in the first DVCVOL JPROC
call - it’s assigned to logical unit number 50. The LBL and LFD job control
statements are not generated by the JPROC call. Remember, these were
supplied in the control stream. If another DVCVOL JPROC call for volume
DISKO1 is encountered in this job, it is automatically assigned to logical unit
number 50.

2. ADVCVOL JPROC call for volume DSK002 was the next one encountered.
It's assigned the next available logical unit number. Since 50 was already
assigned to volume DISKO1, 51 is the next available logical unit number.

3. The next DVCVOL JPROC call was for volume DK0003. Normally, it would
be assigned to logical unit number 52, which was the next one available.
But, the DVCVOL JPROC call for this volume requested a specific logical
unit number, 69, so that’s what is assigned.

4. Another DVCVOL JPROC call for volume DISKO1 was encountered. Since

this volume was already requested and assigned earlier in the control
stream, this occurrence is assigned the same lqgical unit number: 50.

7004 4623000 515

Doing It the Easy Way - with Procedure Calls

5. The volume DK0003 was requested by another DVCVOL JPROC call. Even
though a specific logical unit number, 67, was requested, it was assigned to
logical unit number 69, since this is the logical unit number assigned earlier
in the job. The first number encountered is used, and any other logical unit
numbers requested for the volume in the same job are ignored.

To assign multiple diskette volumes through a JPROC call, use the DVCDKT JPROC.
It functions the same as the DVCVOL JPROC except that it assigns the logical unit
numbers 130 through 132. Its format is:

//[symbol] DVCDKT vol-ser-nol,lun] {ZNOVOL= {Y}:}
N

There is also a JPROC call for tape units: DVCVTP. Except for a few minor
differences, it functions the same as the DVCVOL and DVCDKT JPROCS. Its format
is:

//lsymbol] DVCVTP vol-ser‘no[,lun][PREP= {Y}j’ |ZNOVOL= {Y}]
N N

The DVCVTP JPROC call assigns the logical unit numbers 90 through 99.
Additionally, DVCVTP has the keyword parameter PREP=Y. If specified, this
parameter functions the same as the PREP option of the VOL job control statement
("Ignoring or Changing the Volume Serial Number" in Section 4); it causes any
information currently on the tape volume to be effectively erased.

Using the Linkage Editor

So far, we've discussed how to execute programs stored in a library. These programs
were not always located in this library. At one time they could have been on punched
cards in one of the programming languages, such as COBOL or RPG II.

These programs are compiled or assembled using a language translator, which
converts the program instructions into a form understandable to the computer (an
object module). Each language translator has a JPROC call you can use to generate
the job control statement needed to direct the operation of the language translator; in
other words, you get an object module from source input. The JPROC call for each
language translator can be found in the appropriate assembler, COBOL, FORTRAN,
and RPG II publications.

In this guide, we'll explain the JPROC call for the linkage editor. But, before we do, a
word or two about the linkage editor.

516 7004 4623000

Doing It the Easy Way - with Procedure Calls

The linkage editor converts an object module into an executable load module. Only
load modules can be executed, and the only method of converting object modules to
load modules is by using the linkage editor. The function of the linkage editor is fully
covered in the System Service Programs (SSP) Operating Guide, UP-8841.

The format of the linkage editor JPROC call is:

//Isymbol] {LINK } Linput-module-name-1, ..., input-module-name-10]

LINKG

.,PRNTR= | lun[,dest]
N[, dest]
20[,dest]

,IN= [(vol-ser-no, label)
i (RES)
(RES, Label)
(RUN, Label)
(*,label)
(RUN, SYSRUN)

,RLIB= [¢vol-ser-no,label)]
(RES, Label)
(RUN, Label)

(*,label)

| ,0UT= [(vol-ser-no, label)

(RES, Llabel)
(RUN, Label)
(*,label)
w
(RUN,SYSRUN)

+ALIB= [(vol-ser-no,label)
' (RES, Label)
(RUN, Label)
(*,label)

,SCR1= [vol-ser-no ,STD= [YES LALTLOD= [(vol-ser-no,label)
RES NO (RES, Label)

(RUN, Label)
L)
CRUN, $YSRUN}

[,0PT=*options'1|,CLIB= |(vol-ser-no,label ,modname)

7004 4623000

(RES, Label ,modname)
(RUN, Label ,modname)
(*, label ,modname)

[,CMT="'comment!][,ENTER=expression]

517

Doing It the Easy Way - with Procedure Calls

There are two choices in the operation field: LINK and LINKG. By specifying LINK,
you execute the linkage editor. By specifying LINKG, you execute the linkage editor
and the load module you just created (without using an EXEC job control statement).

As you can see, all the parameters are optional. But this JPROC call has default
values, which generate the job and linkage editor control statements sufficient to
accomplish a link edit, and assumes the following:

e All the object code you specifically want included in the load module is in the job’s
YRUN file.

® Any object code that may have to be automatically included in the load module
(such as error processing routines) is in YOBJ.

® The load module produced is given the name LNKLOD, and it’s stored in the job’s
YRUN file.

You can alter these default conditions using the optional parameters. There are also
parameters that allow you to choose special options (such as a specific printer, a
certain scratch work file, etc.).

Let’s see what job and linkage editor control statements are generated when you omit
all the parameters. We’ll use both the LINK and the LINKG operations. For these
examples, assume that the program was just compiled (or assembled) by a language
translator, and the object code was placed in the job’s YRUN file. This occurred in
the last job step, but it is still the same job. The job’s YRUN file is only a temporary
file, lasting for the length of the job. So, if you placed the object code in the job’s
YRUN file in one job and tried to locate it in another job, you wouldn’t find it.

/* (this is the end of the language translator job step)
// LINK

/&

// FIN

Here’s what job control statements are generated:

/* (this is the end of the language translator job step)
1. // DVC 20 // LFD PRNTR

// DVC RES

// EXT ST,C,1,BLK,(256,10)

// LBL $SCR1 // LFD $SCR1

3. // EXEC LNKEDT

/$

4. LOADM LNKLOD
/*

5 /&
// FIN

518 7004 4623-000

AN,

N

Doing It the Easy Way - with Procedure Calls

1. This is the device assignment set that’s generated for the printer. Notice
that we’ve used multistatement coding, showing the DVC and LFD job
control statements on the same line.

2. The linkage editor always uses one scratch work area. The JPROC call
assigns it to the SYSRES device, and makes it a job step temporary file.
(The file identifier begins with $.) This work area is scratched at the end of
the job step.

3. This calls the linkage editor from YLOD and initiates its execution.

4. The generated load module must be assigned a name. The default is
LNKLOD. This is on the LOADM linkage editor control statement, which is
treated as data by job control, thus the /$ and /* job control statements.

5. As always, this indicates the end of the job.

This example is fine if you don’t want to execute the program, since default conditions
assign the load module to the job’s YRUN file, which is only a temporary file. This
lIoad module is not available to another job (but it is to another job step in the job).
This application is useful if you only want to see the output of the linkage editor; but it
isn’t much help if you want to execute. This does not mean that you can never access a
load module in a job other than the one in which it was link edited. You can, but you
have to assign it to a library other than the job’s §Y$RUN file. You’'ll see how later on,
when we discuss the optional parameters. But first, let’s see how to execute the load
module that was placed, by default, in the job’s YRUN file.

There are two ways you can execute a load module placed in the job’s YRUN file:
first, you can execute it in a subsequent job step after link editing, using the default
LNKLOD load module name on the EXEC job control statement; or, second, you can
use the LINKG operation, which automatically executes the load module.

Here’s method 1 (LINK):

/* (end of language translator job step)
// LINK

// EXEC LNKLOD,YRUN

/&

// FIN

7004 4623000 519

Doing It the Easy Way - with Procedure Calls

The job control statements generated are:

/* (end of language translator job step)
// DVC 20 // LFD PRNTR
// DVC RES
// EXT ST,C,1,BLK, (256, 10)
// LBL $SCR1 // LFD $SCR1
// EXEC LNKEDT
1.0ADM 1NKLOD
AR
£F EXEC 1NKLOD,$YSRUN
/&
// FIN

The load module name on the LOADM linkage editor control statement and the
program name on the EXEC job control statement is the same: LNKLOD. Since we
know the linkage editor always assigns this as the default load module name, we use
it as the program name. Also note that $YSRUN is the second parameter on the
EXEC job control statement. Remember, in "Specifying Qualifiers for File Identifiers"
in Section 4, we said this parameter indicates the name of the library containing the
load module. If omitted, YLOD is searched and then the job’s YRUN file. Since
the job’s YRUN file is searched eventually, why specify it? Time. We know, it’s in
the job’s YSRUN file, so why search YLOD needlessly? Go directly to the job’s
YRUN file.

Now, here’s method 2 (LINKG):

/* (end of language translator job step)
// LINKG

/&

// FIN

And here are the generated job control statements:

/* (end of language translator job step)
17 OPTION GO
// DVC 20 // LFD PRNTR
// DVC RES
// EXT ST,C,1,BLK, (256, 10)
// LBL $SCR1 // LFD $SCR1
// EXEC LNKEDT
/%
LOADM LNKLOD
/*
/&
// FIN

520 7004 4623-000

Vo

"

Doing It the Easy Way - with Procedure Calls

The only difference between this LINKG operation and the LINK operation is the
generated OPTION job control statement. The GO means the load module should be
automatically executed when linkage editing is completed. You don’t need an EXEC
job control statement.

The LINKG operation generates a load module name of LNKLOD and is loaded, by
default, in the job’s YRUN file. This means it is not available after the job is
completed. The LINKG operation is useful when you’re testing programs or running
programs that are infrequently used.

So far, we’ve covered only the basic use of the linkage editor JPROC call. Now, let’s
add some optional parameters and make it do exactly what we want.

Generating LOADM and INCLUDE Linkage Editor Control Statements

Up until now, the module name for the generated LOADM linkage editor control
statement has been LNKLOD (the default name). You can override this using the
label field of the JPROC call, shown as symbol in this portion of the format:

//[symbol] {LINK} [input-module-name-1, ..., input-module-name-10]
LINKG

The symbol parameter is a 1- to 6-alphanumeric-character name. If fewer than six
characters are specified, it’s padded on the right with zeros. If it’s omitted, the value
for the first input-module-name specified is used for the load module name. If the
input-module-name parameter is also omitted, LNKLOD is used.

Since we mentioned input-module-name, now is a good time to explain it. This
parameter allows you to specify up to 10 object modules to be included in the load
module you're constructing. In other words, it specifies the module names for the
INCLUDE linkage editor control statements. Each input-module-name can be from
one to eight alphanumeric characters long. If this parameter is omitted, the value
specified as symbol is also omitted, all object modules residing in the job’s $YSRUN
file are included in the load module. An explanation of how the linkage editor JPROC
searches for input modules to be included in the load module is given in the
description of the IN parameter (see "Making the Linkage Editor Suit Your Needs" in
Section 5).

If you are specifying more than one object module name, you may want to specify a
value in the symbol field that is representative of all the input-module-names to be
included. Also, if all eight positions are used for the first input-module-name and it is
also to be used as the symbol by default, the last two positions are truncated by the
linkage editor to obtain a 6-character symbol, and the linkage editor diagnostic
message K016 is issued.

Let’s look at examples showing different ways of assigning module names for the
generated LOADM and INCLUDE linkage editor control statements.

-7004 4623-000 521

Doing It the Easy Way - with Procedure Calls

Here’s the first example:

/* (end of language translator job step)
Z/PROG LINK

// EXEC PROG,SYSRUN

/&

// FIN

Here’s what is generated:

/* (end of language translator job step)

// DVC 20 // LED PRNTR
// DVC RES
// EXT ST,C,1,BLK, (256, 10)
// LBL $SCR1 // LFD $SCR1
// EXEC LNKEDT
/% -

LOADM PROG

. INCLUDE PROG

"1 EXEC PROG $YSRUN
/$
// FIN

By using PROG as the symbol, you get PROG as the module name on the LOADM
linkage editor control statement. By default, it’s also the module name for the
INCLUDE linkage editor control statement. (You'll notice there’s no space between //
and PROG on the JPROC call.) You also use it as the program-name parameter on the
EXEC job control statement.

The same job and linkage editor control statements would have been generated if you
specified it like this:

/* (end of language translator job step)
// LINK PROG

// EXEC PROG SYSRUN

/%

// FIN

Notice that PROG, in this case, is specified as the input-module-name, rather than the
symbol. Remember, one can substitute for the other if it’s omitted.

You could make this job a little easier by getting rid of the EXEC job control
statement, like this:

/* (end of language translator job step)
/7 LINKG PROG

/&

// FIN

522 7004 4623000

Doing It the Easy Way - with Procedure Calls

The following subsections describe the rest of the parameters used with the linkage
editor JPROC call, and present examples showing what job control statements are
generated when you specify a particular parameter.

Making the Linkage Editor Suit Your Needs
Once again, the format of the linkage editor JPROC call is:

LINKG N[,dest]

//Lsymbol 1 {LINK } [input-module-name-1, ..., input-module-name- 101 ,PRNTR=[lun[,dest]]
201, dest]

,IN= [(vol-ser-no, label) ,0UT= {(vol-ser-no,label)

(RES) (RES, Label)
(RES, Label) (RUN, Label)
¢RUN, Label) (*,label)
¢*,label) ‘ w
(RUN, YSRUN)Y CRUN, $YSRUN)

,RLIB= [(vol-ser-no,label)] ,ALIB= |(vol-ser-no, label)

(RES, label)] (RES, Label)
(RUN, Label) (RUN, Label)
(*, label) | (*, Label)

,SCR1= [vol-ser-no ,STD= [YES ,ALTLOD= [(vol-ser-no,label)
< RES NO (RES, Label)

(RUN, Label)
(*,label)
CRUN, BY$RUN X

—

[,OPT='options']|,CLIB= {(vol-ser-no,label,modname)
(RES, Label ,modname)
(RUN, Label ,modname)
(*, Label ,modname)

[,CMT="comment®]1(,ENTER=expression]

7004 4623000 523

Doing It the Easy Way - with Procedure Calls

We've already covered symbol and input-module-name, and the difference between
LINK and LINKG. The remaining parameters are used to define particular input and
output files, to indicate libraries to be searched for modules to be automatically
included, to define scratch work areas, and to specify the alternate library that
contains.the linkage editor (normally it’s YLOD). If you want to assign a specific
printer, there’s a parameter for that. And, if you are going to provide your own
linkage editor control statements (you might want to do multiple link edits in a single
job step), you must use a parameter to indicate this.

Let’s start with the PRNTR parameter. If PRNTR=N is specified, the LINK JPROC
does not generate a device assignment set for a printer. Also, it is assumed the
PRINT file is not to be sent to a terminal. Remember, since no device assignment set
is generated, you must supply your own. The lun subparameter is used if you want to
assign a logical unit number for a specific printer (20 is the default, indicating that
any printer can be used). The dest subparameter indicates the remote destination
identifier (one to six alphanumeric characters) for the print output file when dealing
with remote batch processing, which requires that every unit record device must have
a destination.

There may be times when you want to change the spooling environment, the standard
load code, or the vertical format buffer used by the linkage editor. (These buffers are
changed with the SPL, LCB, and VFB job control statements, described in
"Controlling Spooled Output with a Job Control Statement", "Specifying Unique Load
Codes", and "Using Forms Control" in Section 6.) This is accomplished by coding N as
the value of the PRNTR parameter. When you code N, the JPROC will not generate a
device assignment set for the printer; you must physically insert the printer’s device
assignment set into the control stream before the JPROC call. This device assignment
set consists of a DVC job control statement and an LFD job control statement (which
must have a value of PRNTR for the file name). The SPL, LCB, or VFB job control
statement you want to use is placed between the DVC and LFD job control
statements. For example:

// DVC 20

// VFB LENGTH=78,0VF=75
// SPL RETAIN

// LFD PRNTR

// LINK PRNTR=N

Note: Other JPROCS allow you to use the PRNTR=N parameter and supply your
own device assignment set for the printer. All the language JPROCS and the
JPROCS for generating control streams for data utility routines allow you to
specify PRNTR=N. This parameter is used in these JPROCS exactly as it’s
described for LINK/LINKG.

524 7004 4623-000

™

Doing It the Easy Way - with Procedure Calls

Next, let’s look at the parameter for the input file definition:

,IN= |(vol-ser-no,label)
(RES)
(RES, Label)
(RUN, Llabel)
(*,label)
(RUN, $YSRUN)

The linkage editor uses two processes to include modules - specific and automatic
inclusion. Modules specified in the input-name parameter and modules specified on
embedded INCLUDE statements are specifically included. For each input-module-
name specified, the linkage editor performs a specific inclusion search in the following
manner: If the IN parameter is specified, only the file it identifies is searched; if the
IN parameter is not specified, first, 5Y$RUN is searched for object modules to include.
Then the file defined in the RLIB parameter is searched (if the RLIB parameter was
specified) and, finally, YOBJ is searched.

For automatic inclusion, the linkage editor performs a search in the following manner:
The file defined by the ALIB parameter is searched first (if the ALIB parameter was
specified), and then the file defined by the RLIB parameter (or the default YOBJ) is
searched. Modules are automatically included to satisfy the external requirements of
modules that have already been included by either automatic or specific inclusion.
Automatic inclusion may be suppressed by specifying the NOAUTO option.

Here are the options available to you through the IN parameter.

The first option is IN=(vol-ser-no,label). The vol-ser-no is the volume serial number of
the disk volume you're using, and the label is the file identifier of the file used when
the file was created.

The next choice is IN=(RES). This means the file is on SYSRES in YOBJ.

The following two choices are very similar: IN=(RES,label) and IN=(RUN,label). In
both, label stands for the file identifier. If you use RES, the file is on SYSRES; if you
use RUN, the file is on the volume containing the job’s YRUN file. (Remember,
$YSRUN can be on the SYSRES device.)

The next choice is IN=(*,label). This means the file is cataloged; therefore, its location
is obtained from the file catalog.

The default parameter (RUN,YRUN) should not be coded when you want to use the
default; its use in coding can cause an invalid file name.

Whenever you use the IN parameter, with both subparameters (3 vol-ser-no,label, for
example), and STD=NO is omitted, an INCLUDE module-name/IN linkage editor
control statement is generated.

7004 4623-000 525

Doing It the Easy Way - with Procedure Calls

The next parameter we'll discuss defines the output file. Here’s what it looks like:

,OUT= [(vol-ser-no,label)
(RES, label)
(RUN, Label)
1(¢*,label)
N
LRI

Quite frequently, you will not want to permanently save the generated load module,
particularly when you don’t have all the bugs out of your program. However, once the
program is working satisfactorily, you'll probably want to save the load module, rather
than compiling (or assembling) and link editing it every time you run it (unless it’s
used only once a year, for example). This is done with the OUT parameter.

As we've said, most times you don’t want to save the generated load module for any
length of time (but youll probably want to execute it in the next job step to see how
close to the finished product you are). For this reason, the linkage editor JPROC
places the generated load module in the job’s YRUN file by default.

But, once the module is ready to be saved, you override the default in one of these
ways.

You can specify QUT=(vol-ser-no,label). This is the volume serial number and the file
identifier of the file where you want to store the load module.

The following two choices are similar: OUT=(RES,label) and OUT=(RUN,label). This
is like the IN parameter we just discussed. label is the file identifier; RES means the
file is on SYSRES; RUN means the file is on the volume containing the job’s $YSRUN
file.

The next choice is OUT=(*,label). This means the file is cataloged; therefore, its
location is obtained from the file catalog.

The last choice is OUT=(N). This means you don’t want to save the load module at all,
not even for the next job step. When this option is used, all you get is a listing of the
load module, which you can use for debugging. The generated load module is not
placed in any file.

Just as with the IN parameter, the default (RUN,YRUN) should not be coded.
Whenever the OQUT parameter is coded, a PARAM OUT=0UT job control statement is

generated to specify the linkage editor option that an output file has been defined for
the load module. The PARAM job control statement is explained in Section 6.

5-26 7004 4623-000

O

Doing It the Easy Way - with Procedure Calls

The linkage editor JPROC call assumes the output file is already allocated. If it isn’t,
you must allocate the file by placing a device assignment set in the control stream
before the linkage editor JPROC call. Let’s clarify this with an example. Suppose you
want to store the load module on disk volume DISKO1, and you want it placed in the
file identified by SAVEDPROGRAM. This file has never before been allocated. So,
what you have to do is allocate the file before you can link edit the module.

You've probably noticed that the logical unit number is not coded in the OUT
parameter (or any other except for the printer). This is because the linkage editor
JPROC call uses the DVCVOL JPROC call (a JPROC call within a JPROC call, which
is in turn converted to DVC and VOL job control statements). In "Too Many Devices
for the Same Volume" earlier in this section we explained how there can be conflicting
device assignments and how the DVCVOL JPROC call eliminates this conflict. So,
we’ll use the DVCVOL JPROC call in the device assignment set.

The OUT parameter generates a file name of QUT for the generated LFD job control
statement of the device assignment for the output file. So, we might as well use OUT
as the file name when we allocate the file. (We don’t have to, since the program does
not have to have a match for this file name; it’s only serving the purpose of completing
the device assignment to allocate a file. Think of it as a job step in itself.) Remember
that OUT is the file name used by the JPROC. In "Specifying Qualifiers for File
Identifiers" in Section 4 we said that, if the load module is stored in a user library (a
function of the OQUT parameter), you have to use the file name of the device
assignment set for this library as a parameter in the EXEC job statement. This will
be a lot clearer in the example.

First we start to allocate the file

using the DVCVOL JPROC call. // DVCVOL DISK@1

Next, an EXT job control statement. // EXT sT,C,3,CYL,1

Now the file identifier, // LBL SAVEDPROGRAM

and then the file name

that allocated the file. // LFD OUT

Now, the linkage editor JPROC call

(let's call the load module XY2), // XYZ LINK OUT=(DISKO1,SAVEDPROGRAM) =
and execute the program. // EXEC XYZ,0UT

If the file is already allocated, the load module created is appended to the present end
of the file. If a load module with the same name already exists in the file, it is
replaced by the new load module.

When you specify the LINKG operation, you can’t use the OUT parameter to define a
specific output file. You must use the job’s YRUN file.

7004 4623-000 ' 5.27

Doing It the Easy Way - with Procedure Calls

Next, the parameters RLIB and ALIB name libraries that contain object modules,
such as your own (user-written) subroutines, for inclusion in the load module. To see
exactly how and why different object modules are included into your load module, see
the System Service Programs (SSP) Operating Guide, UP-8841.

By default, the linkage editor searches YOBJ for the needed modules for automatic
inclusion processing. The ALIB parameter allows you to specify an additional file to
be searched. This file is searched first. If all the needed modules are not found here,
YOBJ, or the file named by the RLIB parameter, is searched.

The RLIB parameter names the file to be searched before YOBJ during specific
inclusion processing, and in place of YOBJ during automatic inclusion processing
when no ALIB parameter is specified.

Both the RLIB and ALIB parameters look very much alike:

,RLIB= [(vol-ser-no,label)] |
| (RES, Label)
(RUN, Label)
L (*, Label)

LALIB= [(vol-ser-no,label)]
| (RES, Label)
(RUN, Label)
| (*, Label)

In RLIB=(vol-ser-no,label) and ALIB=(vol-ser-no,label;, you provide the volume serial
number and the file identifier of the file containing the library you want.

RLIB=(RES,label) and ALIB=(RES,label) are similar, just as are RLIB=(RUN,label)
and ALIB=(RUN,label). The label provides the file identifier; RES means the file is

on SYSRES; RUN means the file is on the volume containing the job’s YRUN file;
the asterisk (*) means the volume is identified in the file catalog.

Whenever you use the RLIB or ALIB parameters, PARAM job control statements are
generated to specify the linkage editor option for libraries for inclusion processing.
These PARAM job control statements are:

e PARAM RLIB=RLIB

e PARAM ALIB=ALIB

5-28 7004 4623-000

Doing It the Easy Way - with Procedure Calls

The linkage editor needs one scratch work file. Normally, SYSRES is used, but you
can use a different volume:

SCR1= [vol-ser-no
RES

This parameter, whether specified directly or indirectly through default, generates all
the job control statements needed to allocate a job step temporary work file.

The linkage editor JPROC call often follows immediately after one of the language
translation JPROC calls. Each of the language translators also uses scratch work files
(the SCR1 parameter; some also use SCR2 and SCR3). The SCR1I parameter coded
for the linkage editor must agree with the SCRI parameter for the language
translator; you can’t contradict this assignment without getting errors. So, if you
specified SCR1=DSP028 in the language translator JPROC call, you must do the same
in the linkage editor JPROC call.

You've already seen that the symbol field provides a name for the generated LOADM
linkage editor control statement, and the input-module-name parameters provide the
names for the generated INCLUDE linkage editor control statements. However, there
are times when you want to physically place these linkage editor control statements in
the control stream as data; you don’t want the JPROC call to generate them. You
indicate this by using the STD parameter.

For instance, you may want to include only certain parts of an object module to form a
load module. Since there’s no provision for doing this with the JPROC, you have no
choice but to physically place the linkage editor control statements you need in the
control stream. But, you have to use the STD parameter to tell the linkage editor
JPROC that you're going to do this, or else it automatically looks at the input-module-
name parameters, and then the symbol field, for the name of an object module to
include. Since you didn’t specify the linkage editor control statements through the
JPROC call (they’re physically in the control stream), these fields would be blank.

Another case: you may want to use additional linkage editor control statements as
well. (OVERLAY, for example, there’s no parameter for this.) Whenever you place any
linkage editor control statement physically in the control stream, all the needed
linkage editor control statements must be physically placed in the control stream.

The STD parameter looks like this:
sTD= [YES
o}
Indicating NO means you’re going to physically place the linkage editor control

statements in the control steam. The default value, YES, means you want them
generated automatically.

STD=NO tells the JPROC to ignore any specifications in the JPROC call for
automatically generating INCLUDE and LOADM linkage editor control statements.

- 7004 4623-000 529

Doing It the Easy Way - with Procedure Calls

5-30

Next, let’s look at the parameter telling the JPROC where to find the linkage editor:

ALTLOD= |(vol-ser-no,label)
(RES, Label)
(RUN, Label
*,Label)
CRUN, SYSRUN)

Normally, the linkage editor resides in YLOD. However, you may want to use a
copy of the linkage editor that is not in YLOD. The ALTLOD parameter allows you
to identify the file that contains the linkage editor you want to use. You may specify a
volume serial number, RES, RUN, or an asterisk (*). RES means the file is on
SYSRES; RUN means the file is on the volume containing the job’s YRUN file; and
the asterisk means the volume is identified in the file catalog. In all cases, the label
provides the file identifier. If the ALTLOD parameter is omitted, the normal
procedure of searching YLOD and the YRUN is performed.

The next parameter we discuss is one making available certain linkage editor options.
The parameter looks like this:

OPTION='options!

The options that may be specified here are all the keywords appearing in the linkage
editor /PARAM and LINKOP control statements that do not need to be equated to
subparameters as, for example, SHARE, NOSHARE, AUTO, and NOAUTOQO. Refer to
the linkage editor section of the System Service Programs (SSP) Operating Guide
(UP-8841) for all the options.

The CLIB parameter looks like this:

(RES, Label ,modname)
(RUN, L abel ,modname)

CLIB= l(vol-ser-no,label,modwne)
(*, Llabel ,modname)

You use this parameter to specify where the linkage editor control statements reside
that are to be processed for this link-edit job. As the parameter indicates, you must
supply the name of the source module and the file in which it resides. You must also
specify the disk volume on which the file resides.

The CMT parameter inserts a character string in the comment field of each phase
header record produced for the generated load module. Its format is:

CMT="comment"'

The character string you choose may run up to a maximum of 30 characters and must
be enclosed in apostrophes. It may contain blanks, commas, and other special
symbols, excluding apostrophes.

7004 4623000

Doing It the Easy Way - with Procedure Calls

The ENTER parameter specifies the transfer address. The ENTER parameter looks

like this:

ENTER=expression

The expression is a decimal number from one to eight digits, a hexadecimal number
from one to six digits in the form X’nnnnnn’, a previously defined symbol, or a
previously defined symbol plus or minus a decimal or hexadecimal number, in the
form we’ve just discussed.

Now, let’s do some coding.

7004 4623000

1.

Column 72
// JOB LNKJPROC I
//BELLPR LINK PAYROLL, IN=(DISKQ1,PRAREA), X

/71 OUT=(DISK@1,BELLHRLPR)

// FIN

This is the JOB control statement telling the operating system that the
name of the job is LNKJPROC.

This is the JPROC call. (We’re only link editing, not automatically
executing, also. Thus, the operation is LINK, not LINKG. Besides, the OUT
parameter is used. When an output file is specified, the LINKG operation
can’t be used.) As you can see, we used the IN and OUT parameters. The
source deck was already compiled (let’s say yesterday), and the IN
parameter indicates it’s stored in the file identified by PRAREA, on disk
volume DISKO1. The OUT parameter indicates we also want the load
module to be stored on disk volume DISKO1. This payroll is for the Bell
Historical Library, so we chose a file identifier that closely represents the
name: BELLHRLPR. (Assume this file has already been allocated;
otherwise, we'd need a device assignment set to allocate the file.)

When the object module was created (compiled or assembled), it was given
the name PAYROLL. So, this is the name of the object module we want to
obtain from the file identified as PRAREA. This provides us with the input-
module-name parameter, which generates an INCLUDE linkage editor
control statement for this module.

We're providing a name for the load module by using the symbol field. We
also want to make this name readily identifiable with the company name.
Since the symbol field is limited to six characters maximum, we can’t use
BELLHRLPR, as we did for the output file identifier. (Also, two identical
names in the same JPROC call could cause confusion.) We'll shorten it to
BELLPR. This is what will appear on the generated LOADM linkage editor
control statement. When you want to execute this load module, this is the
program-name you'd use on the EXEC job control statement.

531

Doing It the Easy Way - with Procedure Calls

3.

This ends the job and terminates the card reader operations.

Now here’s what the JPROC call generated:

/7
'

1. 7
/7
7

2. {7

[//

3. 7
7

/1

4. 1/
/%

"JOB LNKJPROC

DVC 20 // LFD PRNTR
DVC 5@ // VOL DISK@e1
LBL PRAREA // LFD IN

DVC 58 7/ VOL DISK@1

LBL BELLHRLPR // LFD OUT
DVC RES

EXT ST,C,1,BLK,(256,10)
LBL $SCR // LFD $SCR1
EXEC LNKEDT

PARAM OUT=0UT

LOADM BELLPR
INCLUDE PAYROLL,IN

This is generated by the IN parameter. The linkage editor uses the
DVCVOL JPROC (which we're showing in its generated form: DVC and
VOL). DISKOL1 is the first volume requested in the job, so it receives the first
logical unit number: 50. The IN parameter always generates a file name of
IN for the LFD job control statement.

This is generated by the OUT parameter. Again, DISK01 was requested in
the JPROC call, and since it was already assigned to logical unit number 50,
this number is assigned to this volume every time it's encountered in the job.
The OUT parameter always generates a file name of OUT for the LFD job
control statement.

This is the device assignment set for the scratch work area, which was
generated by default in this case.

This is the PARAM job control statement generated by the OUT parameter.

This is the object module name (PAYROLL) and the load module name
(BELLPR). These linkage editor control statements are generated by the
input-module-name parameter and the symbol field. The IN shown on the
INCLUDE linkage editor control statement is generated because both
subparameters on the IN keyword parameter are used.

We've now covered all the parameters of the linkage editor JPROC call and provided
examples of their use. You should now be able to use this JPROC call correctly.

532

7004 4623-000

—~

Doing It the Easy Way - with Procedure Calls

Personalizing Your Print Output

Unisys provides the WRTBIG and WRTSML JPROCS to produce block characters on
your printed output. Any type of information can be printed by WRTBIG and
WRTSML - your name or a message, for example.

WRTBIG and WRTSML function in the same way; the only difference between the
two is the size of the block characters produced. Those created by WRTSML are
smaller than those created by WRTBIG.

WRTBIG and WRTSML produce block characters formed by the characters
themselves, arranged in the pattern of the characters being printed. You can print the
letters A through Z and the numbers 0 through 9. In addition, you can use WRTBIG

and WRTSML to print these special characters:

(

)

Note:

Left parenthesis
Right parenthesis
Plus
Ampersand
Asterisk
Hyphen

Slash

Question mark
Colon

Number

Equal

Period

Dollar

[

]

Left bracket
Right bracket
Double quote
Apostrophe
At
Greater than
Less than
Vertical line
Exclamation Point
Semicolon
Underscore
Comma
Percent

Embedded blank

Some printers cannot print all of these characters - check with your system
administrator.

Up to eight blocks, or lines, of print can be generated by WRTBIG and WRTSML.

- 7004 4623000

533

Doing it the Easy Way - with Procedure Calls

5-34

Each line produced by WRTBIG can contain up to 12 characters. A maximum of four
lines can be printed on each page. WRTBIG produces characters 10 characters high
and 8 characters wide. The letter P, for example, prints like this:

PPPPPP
PPPPPPP
PP PP
PP PP
PPPPPPP
PPPPPP

WRTSML produées characters seven characters high and five characters wide. Up to
20 characters can be printed on each line, and up to 6 lines can be printed on each
page. The number 7 produced by WRTSML looks like this:

Note that the character produced by WRTSML is 7 characters high and the one
produced by WRTBIG is 10 characters high.

The format for WRTBIG and WRTSML is:

WRTSML

//Tsymbol] {HRTBIG} ‘block-1'[, 'block-2',...,'block-8']

.IN= j(vol-ser-no,label)
(RES, Label)
(RUN, Label))

,LUN= | (Jnnn] , [lfdname] [,destl)
20 PRNTR

7004 4623000

M

N

Doing It the Easy Way - with Procedure Calls

P |

The ‘block’ parameter is where you code the actual information you want printed on a
line. Notice there are eight ‘block’ parameters - one for each line of print. Each
parameter is enclosed by apostrophes. You can use blanks anywhere in the field to
position the characters on the page.

For instance, if you coded this:

// WRTSML ' RETURN',! TO'," JOHN DOE'
you get:
RRRR EEEEE TTTTT U U RRRR N N
R R E T U UR R N N
R R E T U UR R NNN
RRRR EEE T U U RRRR N NN
RR E T U URR N N
R R E T U URR N N
R R EEEEE T Www R R N N
TTTTT 00000
T 0 0
T o0 o
T 0 o
T 0 o
T 0 o
T 00000
JJJ 00000 H H N N DDDD 00000 EEEEE
J O O H H NN N D DO OE
J O OH H NNN D DO OE
J O O HHHHH N NN D D O O EEE
J 0O OH HN N D DO OE
J J O OH HN N D DO OE
JI 00000 H H N N DDDD 00000 EEEEE

Notice that even though the field can be 12 characters, it does not have to be. You can
put the end apostrophe after the last character for the line. Also, note that if there are
over 12 characters for WRTBIG or over 20 characters for WRTSML the field is
truncated.

You can also use WRTBIG and WRTSML to print the date, the time the job started,
the system version number, and the job name from the JOB control statement. This is
done by coding the following as the first four characters in any ‘block’ parameter
(nothing else can appear in the parameter; the last eight positions must not be used):

° TIM$

This prints the time of day in the form of hh:mm:ss (hours, minutes, seconds).
e DAT$

This returns the date, in the form of yy/mm/dd (year, month, day).

7004 4623000 5-35

Doing It the Easy Way - with Procedure Calls

* VER$

This gives you the version number of the operating system in use.
» JOB$

This prints the job name from the JOB control statement.

Each option can be used alone, or combined with other options or information.

Look at this example:
Column 72
// JOB POCO j
// WRTBIG 1 Je v de dede v e dede ke ke o 8 R X
/11 1JoBs', X
172 _'DATS", X
1/3 1 dedededededededededekok |

(Remainder of your
control stream)

Note the use of statement continuation. The printout would look like this:

PPPPPP 000000 cccece 000000

PPPPPPP 00000000 CCCCCCCC 00000000
PP PP 00 00 CC cC oo 00
PP PP 00 00 CC 00 00
PPPPPPP 00 00 CC 00 (1]
PPPPPP 00 00 CC 00 00
PP 00 00 CC 00 00
PP 00 00 CC ccC 00 00
PP 00000000 CCCCCCCC 00000000
PP 000000 ccceee 000000
999 0000 / 0000 8888 / 0000 8888
99999 00 o0e // 00 @0 888888 // 00 00 888888
99 99 o0 00 /77 @@ o0 88 88 /// 00 ee 88 88
99 99 oe 00 /// 0@ 00 88 88 /// @0 00 88 88
99 999 @0 00 117 00 00 8888 11/ 00 00 8888
99999 00 00 17/ 00 00 888888 17/ 00 00 888888
99 00 ee /// 00 ee 88 8 /// 00 00 88 88
99 99 00 ee /// 00 00 88 88 /// 00 00 88 88
99999 e o0 // 00 00 888888 // 00 00 888888
999 0000 / 0000 8888 / 0000 8888

5-36 7004 4623-000

{ e

Vil

Doing It the Easy Way - with Procedure Calls

The IN parameter identifies the file containing either the load module WRTBIG or the
load module WRTSML. If you don't specify this parameter, it is assumed that the
module you want is on SYSRES in the file §Y$LOD. If the load module is on SYSRES,
but in a file other than YLOD, specify (RUN,label), where label is the file identifier.
To indicate that the load module is on the volume containing the job’s YRUN file,
use (RUN,label). If the file containing the load module is identified in the file catalog,
use (*,label).

The LUN parameter provides the logical unit number of the printer to be used. By
default, 20 is used. But, if you want a specific printer, use the appropriate logical unit
number. (Make sure the rest of your print output goes to this printer.)

If the file name in the job is not PRNTR (which the programs supplied by Unisys use),
you indicate this through the lfdname of the LUN parameter (this is similar to the
LFD job control statement).

The dest subparameter indicates the remote destination identifier (one to six
alphanumeric characters) for the print output file when dealing with remote batch
processing, which requires that every unit record device must have a destination.

You can change the standard load code or vertical format buffer used for the job by
coding N as the value of the LUN parameter. This indicates that the JPROC is not to
generate a device assignment set for the printer; you must physically place the device
assignment set for the printer in the control stream before the JPROC call.

Suppose you wanted to use WRTSML to print the date at the béginning of the
printout, and the file name for the printer in the program is LISTER. You would code
it as:

// WRTSML 'DATS$',LUN=(,LISTER)

* 7004 4623-000 537

Doing It the Easy Way - with Procedure Calls

Controlling Spooled Output with a JPROC Call

5-38

The manner in which spooled output files (print, punch, or data-set-label diskette) are
handled is set at SYSGEN time, but you can alter the standard operation of individual
files with the SPOOL JPROC. To fully understand the function of this JPROC, you
should be familiar with spooling, which is discussed in the Spooling and Job
Accounting Operating Guide, 7004 4581.

When used, the SPOOL JPROC must be included in the device assignment set for the |
spooled output file. The format of the JPROC is:

//Tsymboll SPOOL, |REDIRECT= [DISK [,BUF=nXml{,COPIES= [n
TAPE i
E

DISKETT

, sk1PCoDE= n] [|,RECORDS= [n] |[,FORMNAME=forms]
fl s

+HDR= {:gs}j| lETESTPAGE-‘-: {:gs}:l [,PAGEBRK=n]
r,UPDME= {:gs}:l IZCOMPREss- {:gs}:l IZRETAIN= {ggs}jl
uom- :| l:sscuas-]

ves YES

Note: When using the SPOOL JPROC for a spooled data-set-label diskette output
file, only BUF, RETAIN, UPDATE, COMPRESS, and HOLD keyword
parameters are meaningful.

The REDIRECT keyword parameter redirects spooled output (output that’s already in
the spool file volume) to a disk, tape, or format-label diskette for temporary storage -
the output is printed or punched later. A spooling component known as the output
writer assigns the tape, disk, or format-label diskette volumes to be used for the
redirected output so you don’t have to include a special device assignment set in your
job control stream for these volumes.

Notes:

1. When you specify REDIRECT=TAPE, make sure that a DEV operator command,
directing all spooled output to a tape volume, is not in effect for this copy of the
output writer. A note to the operator should suffice.

2. REDIRECT=DISKETTE means redirect the spooled output to a System 80 format-
label diskette only.

7004 4623000

=X

~~

Doing It the Easy Way - with Procedure Calls

The COPIES keyword parameter allows you to specify the number of times (up to 255)
you want a spooled file printed or punched (output). If you don’t specify this keyword,
the file is output only once and then deleted from the spool file. If you specify 0, the
output is written to the spool file but is immediately deleted instead of being printed
or punched.

The BUF keyword parameter sets up buffers to be used by the spool subfile being
created. The n specifies the number of buffers, X is a constant, and m specifies the
size of each buffer (in 256-byte increments). If you omit this parameter, the spooled
file shares the job log buffers along with other spooled files not having reserved
buffers.

You must specify SKIPCODE if you’re requesting a filed vertical format buffer (via the
// VFB statement) that has more than seven skip codes or if the system default vertical
format buffer has more than seven skip codes. Three skip codes are always included
in this count: home position for current page, overflow for next page, and home
position for next page. The four remaining are for user-specified skip codes. This
parameter, therefore, specifies the total count of lines on a form where a skip code is
allowed, plus three. Zero indicates no skip codes.

The RECORDS keyword specifies the number of records (lines, including spaces and
skipped lines for print files, cards for punch files) the spool file can contain before a
message asking if the job should be continued, breakpointed, or cancelled is sent to the
operator. The operator receives this message only when the specified number is
reached, and job processing stops until the operator replies. The specified number is
rounded to the next higher multiple of 1024. For example, if you specify 7000, it’s
rounded to 7168. The highest number you can specify is 262,144. Value 0 specifies no
limit is put on the number of records that can be entered into the spool file.

Note: If you're executing a COBOL program that uses the WRITE verb with the
AFTER clause, the number you specify for RECORDS should be double that
of the actual number of records.

If your spooled file is to be output on a special printer form or on special cards, you
must identify the special form or card type in the FORMNAME parameter. The form
name you specify is a 1- to 8-alphanumeric-character name assigned by your
installation to each form. A message identifying the form or card type to be used is
issued to the operator. Remember, a form name specified in a VFB statement
overrides a form name specified in the SPOOL JPROC (see "Using Forms Control" in
Section 6). :

The HDR parameter (HDR=NO) suppresses the printing of a page header in burst
mode at the beginning of the spooled file when it’s output. If omitted, a page header is
automatically printed.

If you specify the FORMNAME parameter, a query is directed to the operator asking
if a sample test pattern page should be printed. Specifying TESTPAGE=NO
suppresses this query. If the TESTPAGE parameter is omitted, the system default
(YES) is used. This query does not occur for STAND1 forms.

7004 4623000 539

Doing It the Easy Way - with Procedure Calls

540

You use the PAGEBRK parameter to specify the number of pages or cards to be
spooled out before the file is breakpointed and printed or punched. The highest value
you can enter is 32,000. When you omit this parameter, the file is printed or punched
according to the burst or nonburst operating mode in effect.

The UPDATE parameter (UPDATE=NO) specifies that the spool file subdirectory
entry is to be updated only when a file is closed. (In this case, if the system halts, you
lose any output the program generated prior to restarting the IPL with spool file
recovery.) If you omit this parameter, the spooler updates the subdirectory each time
it crosses a logical track in the program file. (In this case, if the system halts, you can
still print any output the program created prior to starting the IPL again.)

Using the COMPRESS keyword parameter (COMPRESS=NO), you can prevent the
system from attempting to compress data that’s directed to the output spool file.
Normally, you should not specify COMPRESS=NO if the data contains a large
number of embedded blanks or if the file has a block size larger than 120. Specifying
this parameter when the block size is 121 or greater results in an output spool file
containing only one line per sector and requires that n x m be at least 2 x 4.

If you specify RETAIN=YES, the spooled output file is printed, punched, or placed on
data-set-label diskette, but it is also retained in the spool file to be printed, punched,
or output to data-set-label diskette again at a later time. If RETAIN is specified with
REDIRECT (the first keyword parameter), the output file is redirected to a tape, disk,
or format-label diskette and it is also retained in the spool file for printing, punching,
or outputting to data-set-label diskette at a later time.

The HOLD keyword parameter (HOLD=YES) simply holds the spooled print, punch,
or data-set-label diskette output file for later processing. (Files on hold are released
when the BEGIN SPL command is issued or when a CC job control statement
specifying the BEGIN SPL command is encountered in a job stream.) This parameter
is useful if you have a large spooled file that will take a long time to output and you
don’t want to tie up the output device during peak processing time. Remember
though, since the file being held remains in the spool file, there is a possibility that the
spool file’s available disk space may be exhausted. Also, if you specify HOLD=YES in
conjunction with RETAIN, REDIRECT, or both, the ontput file is put on hold and the
RETAIN or REDIRECT parameters are not acted upon until the file is released.

7004 4623000

Doing It the Easy Way - with Procedure Calls

The last keyword parameter (SECURE) determines whether print output that’s
destined for an auxiliary workstation printer is secured or not secured. (Spooled
output is directed to an auxiliary workstation printer via / ROUTE or // OPTION
OUT.) We say the print file is secured if the workstation to which the auxiliary printer
is physically connected must be logged on before the output file can be printed. If the
workstation isn’t logged on, the file will not be printed. If the file is not secure (this is
the default), the file will be printed at the specified auxiliary workstation printer
whether or not the workstation is logged on. Here is an example of a job using the
SPOOL JPROC to control output spooling.

// JOB PAYROLL

// DVCVOL DSP@28] Device assignment set for

// LBL JONESPAYROLL the input file on disk. Device assignment set for a

// LFD JONESPAY | spooled data-set-label diskette
/7 DVC 130] output file. (See "Spooling
// SPOOL BUF=4X32 < Input Card Data" in Section 6
// LFD JONESYTD] for information about the DVE
// DVE 20 1 Device assigment set statement for spooled

// SPOOL HOLD=YES for a spooled printer data-set-label diskette files.)
// LFD JONESCHK output file.

// EXEC JONCKS

/&

// FIN

We have now finished our discussion of what is known as basic job control. From this
point on, we enter the area of advanced job control programming. You'll learn how to
use the advanced job control statements to perform functions that cannot be done with
the basic set. You'll also learn how to write your own job control procedure definitions,
which you can store and call when needed.

By now, your grasp of job control should be such that you could construct control

streams for the majority of jobs in your installation. When you finish Seetions 6
through 9, you should be able to construct control streams for any job.

7004 4623000 541

Vi

Section 6
Making Job Control Work for You

Advantages of Using Advanced Job Control Statements

As you have just seen, quite a lot can be done by using the job control procedure calls
(JPROCS) and the basic job control statements supplied by Unisys. Now we’ll see how
to increase performance by using the advanced job control statements and JPROCS
that you write yourself. Your basic objective is to run jobs in the most efficient, most
economical, and quickest way possible. This objective is achieved not only by how you
write a program, but also in the way you use job control.

Controlling Spooled Output with a Job Control Statement

In Section 5, we discussed how you can alter the standard operation (established at
SYSGEN time) of spooled output files with the SPOOL JPROC. The SPL job control
statement provides the same facilities and parameters as the SPOOL JPROC, so the
following brief description of the SPL job control statement is essentially a review of
"Controlling Spooled Output with a JPROC Call" in Section 5. When deciding
whether to use the SPL job control statement instead of the SPOOL JPROC, keep the
following in mind: although the SPOOL JPROC is easier to code because of its
keyword (rather than positional) parameters, it takes more time for the run processor
to process the SPOOL JPROC.

The format of the SPL job control statement is:

//[symboll SPL HOLD [,nXml[, [no-cop
RETAIN 1

TAPE
DISK
DISKETTE

—, no-skpcode ,» |max-rec{ |[,formsl|, [NOHDR + [NOTSTL
7 } 5120 {BDR } {sn }
— 0

[,brk-pge][, {N_OIJPD}][,@QMP][,RETAIN][,HOLD][,SECURE]

UPD

Note: When using the SPL statement for a spooled data-set-label diskette output file,
only the nXm, NOUPD, NOCMP, RETAIN, and HOLD parameters are
meaningful. The remaining parameters are ignored.

7004 4623000 61

Making Job Control Work for You

The HOLD parameter holds the spooled output file (print, punch, or data-set-label
diskette) for later processing. Files on hold are released by a BEGIN SPL command
or by a CC job control statement specifying a BEGIN SPL command. You'll notice
that HOLD is also the last parameter of the SPL statement. This is so you can specify
HOLD (as the first parameter) or choose one of the other options for the first
parameter and still specify HOLD (last).

With the RETAIN parameter, the spooled output file is processed (printed, punched,
or placed on data-set-label diskette), but it is also retained in the spool file for
processing at a later time. For the same reasons mentioned for HOLD, you can specify
RETAIN as the first or the twelfth parameter.

You use the TAPE, DISK, and DISKETTE parameters to redirect spooled output to
tape, disk, or format-label diskette for temporary storage. The output can be
processed (printed, punched, or placed on data-set-label diskette) at a later time.

The remaining parameters can be summarized as follows:

* The nXm parameter establishes buffers for use only by the spool subfile being
created.

¢ The no-cop parameter allows you to specify the number of times (from 0 to 255)
you want a spool file processed (printed or punched). Zero indicates no output.

¢ The no-skpcode parameter must be specified if a filed vertical format buffer
(requested via / VFB) or the system default vertical format buffer has more than
seven skip codes. One skip code for forms overflow and two for home paper
position are always included in this count.

® The max-rec parameter specifies the number of records the output file can
contain before a message is sent to the operator asking if the job should be
continued, breakpointed, or cancelled. Value 0 specifies that no limit is put on the
number of records that can be entered into the spool file.

* The forms parameter identifies any special form or card type (other than the
standard paper or cards) needed when the spool file is output.

* The NOHDR parameter suppresses the printing of a page header at the
beginning of a print file; the HDR parameter prints it.

* The NOTSTL parameter suppresses the test line request message to the operator
when a forms change is required. This request message does not occur for
STANDI1 forms. The STL parameter sends a test lines message to the operator
when a forms change is required. If both parameters are omitted, the system
default is used.

7004 4623-000

Fa \\‘

S

M

Making Job Control Work for You

()

The brk-pge parameter indicates a specific number of pages or cards to be spooled
out before the file is breakpointed and printed or punched.

The NOUPD parameter indicates that the spool file subdirectory entry be
updated only when a file is closed. Value UPD enables recovery of spooled data in
the event of a system crash.

The NOCMP parameter indicates the system should not attempt to compress
data that’s directed to the output spool file.

The RETAIN and HOLD parameters perform the same function they do when
specified as the first parameter. Remember, though, if you specify HOLD (as the
last parameter) with RETAIN; TAPE, DISK, or DISKETTE; or with RETAIN and
TAPE, DISK, or DISKETTE, the output file is first put on hold. The other
parameters are acted upon accordingly when the file is released. If you specify
RETAIN (the twelfth parameter) with TAPE, DISK, or DISKETTE, the output is
redirected to the appropriate device and a copy of the file is also retained (in the
spool file) for later use.

If specified, the SECURE keyword parameter indicates that the workstation to
which the auxiliary workstation printer is connected must be logged on before the
output file can be printed. If the workstation is not logged on and this keyword
parameter is specified, the file will not be printed.

dJust as described in "Controlling Spooled Output with a JPROC Call" in Section 5 for
the SPOOL JPROC, the SPL job control statement must be placed in the device
assignment set for the spooled file.

Sending Spooled Output to Remote Batch Processing Terminals

The DST job control statement is used to send spooled output (print or punch) to RBP

(remote batch processing) terminals in your ICAM network. The format of the DST
statement is:

//[symbol] DST dest-1[,dest-2,...,dest-16]

The dest parameter is one to six alphanumeric characters and defined by RBP. The
keywords OS3CTR or CENTRAL can be used to specify the local site’s printer.

-7004 4623-000

63

Making Job Control Work for You

The DST statement must appear within the device assignment set for the print or
punch file. When specifying multiple destinations, you can list several destinations in
one // DST statement or use several // DST statements each listing one or more
destinations. For example:

// JOB REMOTE // JOB REMOTE
// DVC 20 // DVC 20
// DST A,0S3CTR,C,D or // DST A
// LFD PRINT // DST 0S3CTR

// DST C,D
// EXEC PROG1

/& // EXEC PROG1
/&

For more information on remote batch processing, see the Integrated Communications
Access Method (ICAM) Utilities Programming Guide, 7004 4565.

Note: RBP output (specified by / /| DST) and DDP and auxiliary printer output
(specified by / | ROUTE) cannot be mixed for any one job. For any job, all
output must be of one type or the other.

Sending Spooled Output to DDP Sites and Auxiliary Workstation Printers
The ROUTE job control statement routes print or punch output to printers and
punches at DDP sites and to auxiliary printers connected to a load or remote
workstation or terminal. You place the ROUTE statement in the device assignment
set for the file to be routed.

Notes:

1. Output can be routed to the site central printer and up to seven auxiliary printers.
2. The//ROUTE and // DST statements cannot be mixed in the same Job.

The ROUTE statement format is:

//[symbol JROUTE destination-1,...,destination-8

You can specify up to eight destinations for non-DDP destinations, or one DDP site
destination. These destinations are the central printer or punch at a local or DDP
site, a workstation auxiliary printer at a DDP site, or an auxiliary printer that is
locally or remotely connected to your system.

You specify the destination as follows:

[host-id:luser-id-1,...,user-id-8

64 7004 4623000

VN

Making Job Control Work for You

~

The host-id identifies a particular host in a DDP network. It is one to four
alphanumeric characters long and identical to the label-id of the LOCAP
macroinstruction in an ICAM network. You can also use $HOST to indicate the host
that initiated the job (the originator/master). The host in this case may be remote or
local. A host-id is optional but must be followed by a user-id if specified. Whenever
you omit a host-id, the local host (the processor on which the job is executing) is
assumed.

To identify an auxiliary workstation printer, specify a 1- to 6-alphanumeric character
workstation user-id. You can also use YMAS to indicate an auxiliary printer at the
master workstation. The keyword CENTRAL in place of a user-id indicates a central
printer or punch. Any destinations that specify a user-id (other than CENTRAL) or
YMAS denote auxiliary workstation printers and are valid only for print files.

Consider the following destinations:
¢ CENTRAL or OS3CTR

The output goes to the central printer or punch at the local site.
® host-id:CENTRAL

The output goes to the central printer or punch at a DDP site (identified by
host-id).

¢ host-id:user-id

The output goes to an auxiliary workstation printer (identified by a user-id) at a
remote host (identified by a host-id) at a DDP site. This destination is valid only
for print files.

* user-id

The output goes to an auxiliary workstation printer (identified by a user-id) that

is locally or remotely connected to your system. This destination is valid only for
print files.

* YMAS

The output goes to the auxiliary printer if the master {the terminal or
workstation that has control of the job when the job is executed) at the local site
is a workstation. Otherwise, the destination is the central printer at the local
site. The YMAS destination is valid only for print files.

7004 4623-000 65

Making Job Control Work for You

The following statements route output to the central printer:
// ROUTE OS3CTR

and
1 ROl;TE CENTRAL

The following statement routes output to up to eight auxiliary printers:
// ROUTE USERID1,...,USERID8

The following statement routes output to the central printer and up to seven auxiliary
printers:

// ROUTE OS3CTR,USERID1,...,USERID?

The following control stream contains a device assignment set for a print file which
includes the // ROUTE statement.

// JOB QUTPUT

// DVC 20 Print file
// ROUTE A123:CENTRAL device
assignment set

// LFD PRTFIL

// EXEC PROG1
/&

The ROUTE statement in the preceding device assignment set routes the print output
to the central printer at a remote host whose host-id is A123.

66 7004 4623-000

-
(

Making Job Control Work for You

Notes:

1. RBP output (specified by / /| DST) and DDP or auxiliary printer output (specified
by /| ROUTE) cannot be mixed for any one job. For any job, all output must be of
one type or the other. Also, DDP destinations and local auxiliary printer
destinations cannot be used for the same print file.

2. When a workstation or terminal starts a job that directs printed output to an
auxiliary printer connected to a local or remote workstation or terminal (one that is
not the originator), the user at the other workstation or terminal must be logged on
with the same user-id as specified in the /| ROUTE job control statement and
must issue an RP command to starts printing. See the Interactive Services
Operating Guide, UP-9972, for more information on the RP command.

Spooling Input Card Data

A job that reads a large volume of data through the card reader ties up the operating
system by using a slow-speed device (card reader) as the means of supplying input to a
high-speed processor. You can avoid this by loading the card data into a spool file
(high-speed disk device) for later retrieval. In this way, the card reader can be used to
transfer data to the spool file while other jobs are being executed in the high-speed
processor. High-speed processing, therefore, goes on without interruption from a slow-
speed card reader.

The system operator uses the IN command to initiate spooling. You must identify the
card file to be spooled to the system operator, precede these cards with a DATA
statement, and follow them with a FIN job control statement or another DATA
statement. DATA is a control statement that identifies (to the input reader) the card
data you want spooled. Itsformat is:

// DATA FILEID=file-identifier[,RETAINIE, 1GNORE]

When the operator places your cards in the card reader and issues the IN command at
the console, the card file is placed in the spool file along with the file-identifier from
the DATA statement. The FIN or the final DATA card terminates the card reader.
The spooled card file becomes a subfile.

Later, when your job stream is run, the subfile is read in (just as the cards are read in
at the card reader, only much faster). Spooled data cards may be read by a job that’s
entered at a card reader or by a stored job control stream.

Note: Input data doesn’t have to be spooled before your job’s processing begins, but it
must be spooled by the time your program attempts to open its files.

The job control stream must contain a device assignment set for a card file. If you've
included an LBL job control statement in the device assignment set, the file identifier
specified on the DATA card must match the LBL statement’s file identifier. If there
isn’t an LBL statement, the file identifier on the DATA card must be a concatenation
of the job’s name and the file name from the LFD job control statement. Either way,
an association is made between the file you defined in your job control stream and the
subfile.

- 7004 4623-000 67

Making Job Control Work for You

If this is the control stream,

// JOB BALANCE
// DVC 30

/7 LBL spPooOL1
// LFD READ
/&

// FIN

you code this DATA statement:

// DATA FILEID=SPOOL1

If this is the control stream,

// JOB BALANCE
// DVC 30

// LFD READ
/&

// FIN

you code this DATA statement:

// DATA FILEID=BALANCEREAD

The RETAIN parameter is used to maintain the subfile after it is processed. If you
specify RETAIN, only the DE SPL,RDR console command can delete the subfile. The
following example shows the use of the RETAIN parameter:

// DATA FILEID=BALANCEREAD,RETAIN
data cards

/7 FIN

You can, if necessary, place a / RUN/RV job control statement in the card deck. When
the deck is spooled, the run processor calls the specified job stream. Only one
RUN/RYV statement may be placed within a DATA...DATA or DATA...FIN card
sequence. If more than one RUN/RV statement is present, only the last statement is
used.

The IGNORE parameter is used to permit RUN job control statements to be spooled
as data. It can be used, for example, for conversion jobs. Suppose you have a card
deck of control streams to be converted from another operating system to 0S/3 and
you have several RUN statements in the deck. When you spool the card deck, you
don’t want the RUN statements to call stored control streams; you want them
converted to OS/3 RUN job control statements.

Let’s assume we are running a conversion job named CNVT with an input card deck to
be spooled named CARDIN. The DATA FILEID job control statement is coded like
this:

// DATA FILEID=CNVTCARDIN, , IGNORE

7004 4623-000

P~

N

Making Job Control Work for You

Because we specified IGNORE in this example, RUN statements in the card deck are
spooled as data cards.

Spooling Diskette Files

dJust as card input can be spooled, so can input from data-set-label diskette. The
operator uses the IN command to initiate the spooling and the data is placed in the
spool file. It remains there as a subfile and is retrieved by either a control stream
entered at a card reader, or by a prefiled job control stream. The data set label from
the diskette provides the label for your spool file, while the /* statement indicates the
end of the data file.

Whenever you're using input that’s spooled from data-set-label diskette, specify the I
parameter of the DVC statement for the diskette. Remember, the format of the DVC
statement is:

addr
OPT
IGNORE
JALT

I

0
REQ[(n)]
[REAL

-

RES

//[symboll DVC |nnni(n)1]
RUN

The I parameter tells job control that your data is in the spool file. The data cannot be
retrieved from this file unless the I parameter is specified as follows:

// DVC 132,1

The O parameter is used when you want the spooled output to go to data-set-label
diskette.

7004 4623000 69

Making Job Control Work for You

Equating Logical Unit Numbers to Device Type Codes

Since logical unit numbers can be changed at SYSGEN time, the possibility exists
that, when running your control stream on a system other than the one it was
designed for, one of your logical unit numbers may indicate a different device on the
other system. For example, the system your control stream was designed for might
have logical unit number 64 associated with an 8416 disk subsystem. But on the
system you are running under, logical unit number 64 may be an 8419 disk
subsystem - wrong device. A way to get around this is to use the EQU job control
statement, which equates logical unit numbers to specific device type codes. (This
device type code is always associated with this device.)

The format of the EQU job control statement is:

//[symbol] EQU lun-1,type-1L[,lun-2,type-2,...,lun-n, type-nl

The lun parameter indicates the logical unit number you have on the DVC job control
statement in the control stream. The type parameter is the 4- to 8-hexadecimal-
character device type code for the device you are using. See Table A-1 of the Job
Control Programming Reference Manual, UP-9984, for the codes.

The EQU job control statement, which you must place before the device assignment
sets in the control stream, is effective for the entire job.

Let’s assume that a job is being run on a system other than the one it was written for
and that there’s a possibility the logical unit numbers in the second system were
changed at SYSGEN time. On your system, logical number 64 is the 8416 disk
subsystem. To ensure that we get an 8416 on the other system, we insert an EQU job
control statement coded as follows (the device type code - 2002 - was obtained from
Table A-1 of the Job Control Programming Reference Manual, UP-9984).

// EQU 64,2002
// DVC 64

// VOL DISK@1
// LBL XYZ

// LFD TEST

You can also use the EQU statement to specify additional logical unit numbers for
virtual readers, printers, or punches. See "Using Multiple Devices, SYSRES, or the
Job’s YSRUN File" in Section 4.

610 7004 4623-000

=

Making Job Control Work for You

Specifying Unique Load Codes

Aload code buffer controls what characters are printed by your printer. Codes
corresponding to the characters on your print band or cartridge are placed in the
buffer and whenever a particular code is encountered, the character equated (via the
load code buffer) with that code is printed. (To simplify this discussion, we’ll use the
term print cartridge from here on to mean print band or cartridge.)

For non-SDMA printers (0770 and 0776), the default contents of the load code buffer
are set at SYSGEN time; there is a unique buffer for each printer type. One of the
uses of the LCB job control statement is to override these specifications - to equate
different codes with different characters so that you can change print cartridges. You
define a load code buffer by specifying an 8-bit code for each character on the
cartridge. Whenever that code is encountered, the corresponding character is printed.

For SDMA printers (class I, II, III), each print cartridge contains its own
corresponding load code buffer. Therefore, you don’t need to define a unique buffer in
an LCB statement when you change cartridges. If you do, it is ignored. As you’ll see,
though, the / LCB statement has other uses.

There are two formats for the LCB statement, one for non-SDMA printers and the
other for SDMA and AP9215-1 printers. The format for non-SDMA printers is:

//Isymboll LCB {X'hex-string-1' } [:{X'hex~string-2' } yeney {X'hex-string-n' }]

C'char-string-1! C'char-string-2' C'char-string-n*

[,CARTNAME=symbol]

,NAME= [48-BUS
48-sC1
63-STD
OWNLC1
OWNLC2

,CARTID= [X'aa‘]
i cle' [
J

[,NUMBCHAR=n1

—

. TYPE=|0770
8776
*

+.SPACE=|X'aa’
Clc?

X'40!

continued

-7004 4623-000 611

Making Job Control Work for You

,MISM= [TGNORE
REPORT

,DUAL= | X! XXyyxXxyyxxyyxxyy!
C'abababab!
C'bbbb*
X'yyyyyyyy'

—

Clct

,MISMCHAR= [X'aa'
X140t

The only parameters that have practical use for SDMA printers are symbol,
CARTNAME, NAME, TYPE, and MISM.

The format of the LCB job control statement for SDMA and AP9215 printers is:
// [symbol] LCB [CARTNAME=symbol]
,NAME= [48-BUS
48-SCI

63-STD
OWNLC1-OWNLC?

[,TYPE=SDMA]

MISM= [1GNORE
REPORT

The symbol in the label field is a 1- to 8-alphanumeric character name and can have
one of the following uses:

® To specify a default cartridge name when you omit the CARTNAME parameter

* To specify the name of a filed load code buffer that youre changing via the job
SG$PRB

Use of symbol will become more clear after we discuss the CARTNAME and NAME
parameters.

For non-SDMA printers, you use the first parameter of the LCB statement to assign
the codes for each graphic symbol on the print cartridge by specifying either the
Xhex-string’ (hexadecimal) or C'char-string’. You need two hexadecimal characters or
one EBCDIC character for every symbol. The position of each in the string of
parameters must correspond to its position on the print cartridge. As many

612 7004 4623000

Making Job Control Work for You

parameters as you need to specify the entire print cartridge may be used; you may
intermix the character and hexadecimal strings as required. Since the single quote
(apostrophe) and ampersand (&) symbols have special meanings to job control, they
must always be coded in hexadecimal. Statement continuation is only allowed
between parameters; individual character strings can’t be coded on one job control
statement and continued on another. When using hexadecimal character strings, the
number of digits must be even.

Note: The character strings for your printer are shown in the appropriate printer
subsystem manual.

The CARTNAME parameter specifies the name of the print cartridge to be used. Your
installation is responsible for assigning a unique, 1- to 8-alphanumeric character
name to each cartridge. SCIENCE, for example, could be used for a scientific
character set.

When you provide a cartridge name in the // LCB statement, the operator is requested
to mount the cartridge just before the file starts printing. The output is not printed
until the operator mounts the cartridge and replies to the message. Remember, if you
don’t specify a cartridge name, the cartridge that’s already on the printer is used. So,
to ensure use of the proper cartridge and to avoid printing of the wrong characters,
you should specify a cartridge name. i

You can use symbol in the label field of the LCB job control statement (instead of
CARTNAME) to specify a cartridge name. If you use both symbol and CARTNAME to
specify a cartridge name, the CARTNAME parameter takes precedence.

You specify NAME when you want to use one of the filed load code buffers (48-BUS,
48-SCI, 63-STD, or OWNLCn) established at SYSGEN time or by use of the job
SG$PRB. There is a-unique 48-BUS, 48-SCI, 63-STD, and OWNLCn for each printer
type. (There is also a default load code buffer for each printer type when no / LCB
statement is specified.) NAME indicates that you want a filed load code buffer; you're
not establishing your own. Therefore, CARTNAME, TYPE, and MISM are the only
other parameters you can specify when you use NAME. '

The NAME parameter specifies the name of the filed load code bﬁﬁ'er, which in turn
specifies a cartridge name. So, when NAME is specified, CARTNAME is unnecessary.

As mentioned earlier, you can also use symbol for the name of a filed load code buffer.
This is done only when you are executing the job SG$PRB to change a filed load code
buffer (48-BUS, 48-SCI, 63-STD, or OWNLCn) via the job SG$PRB. If this is the case,
you use symbol to specify the name of the buffer to be changed. This is the only time
symbol indicates a load code buffer name. At all other times it indicates a default
cartridge name if you omit the CARTNAME parameter. See the appropriate
installation guide for more information about the job SG$PRB.

7004 4623-000 613

Making Job Control Work for You

614

The CARTID parameter specifies a cartridge or band identifier. It may be either two
hexadecimal digits (X‘aa’) or one EBCDIC character (C'¢’). This parameter is required
for non-SDMA printers (0776 and 0770) and must agree with the number found
physically on the cartridge.

The NUMBCHAR parameter applies only to non-SDMA printers and specifies the
total number of graphic symbols expected on the print cartridge. As a safety check to
make sure you specified all characters, this number should coincide with the number
of characters specified in the character strings. When you omit NUMBCHAR, the
number of characters specified by the character strings is assumed to be correct.

To identify the printer for which the LCB job control statement is constructed, you use
the TYPE parameter. From this, we can see that an LCB job control statement coded
for one type of printer cannot be used for another type.

The 0770 and non-SDMA 0776 printers are available only on the models 8/10/15/20/50
systems. For all other non-SDMA printers, enter * for the TYPE parameter and use
the logical unit number to specify the type of printer. Specify SDMA for the TYPE
parameter if you are a model 7E user with an AP9215-1 printer.

You specify the space, or nonprinting code, for non-SDMA printers through the
SPACE parameter. This code is not included in either the X*hex-string’ or
C'char-string’ parameters. It may be either two hexadecimal digits (X’aa’) or one
EBCDIC character (C‘¢’). The default value is X‘40’.

A mismatch occurs when you try to print a character that is not in the load code buffer
or has not been specified as a dualed character. You can use the MISM parameter to
record character mismatch errors in the system error log by coding MISM=REPORT.
The default, MISM=IGNORE, means that mismatches aren’t recorded.

For the 0770 or 0776 printer, you have a choice as to the replacement symbol. If you
specify in EBCDIC, you would use the DUAL=C‘abababab’ parameter, with a being a
character that is on the print cartridge and b being the character that a replaces. For
example, assume that the print cartridge contains the asterisk symbol (*) but not the
question mark symbol (?). You could substitute * for ? in the printout by specifying
DUAL=C*?. Every time the program outputs the EBCDIC code for a question mark,
an asterisk appears in the printed listing.

If you specify in hexadecimal, you would use the DUAL=X%xyyxxyyxxyyxxyy’
parameter, where xx is the code for the character printed and yy is the code of the
character that xx replaces.

We've already said that when a character mismatch occurs, you can use the MISM
parameter to record it in the error log. For non-SDMA printers, you may also specify a
character that’s to appear on the printed output in case of a character mismatch;
otherwise, a blank will appear (the default value X‘40°). This is done with the
MISMCHAR parameter. You can specify any character you want, in either
hexadecimal (X‘aa’) or EBCDIC (C'c"), as long as the character also appears in either
the X'hex-string’ or C'char-string’ parameter.

7004 4623000

~

Making Job Control Work for You

Here is an example of how the LCB job control statement is used for a non-SDMA
printer:

Column 72
// bvc 28 - I
// LCB C'/.=*V XI7DI C'+,$' %) (-0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZ', X

/71 NUMBCHAR=48, CARTID=X'82"', TYPE=0778,DUAL=C'*?8 I1>+<}, X
/72 CARTNAME=SCIENCE
// LFD PRINTOUT

UVIHWN -
DA)

1. The DVC job control statement has 28 for the logical unit number, indicating
that a 0770 printer must be used.

2. This gives the actual character set for the load code buffer. Notice the
shaded area; this is where a switch is made from specifying in EBCDIC (C)
to hexadecimal (X). We did this because we want to specify a single
quotation mark (apostrophe) for the load code. Since a single quotation
mark begins and ends each character string, coding the single quotation
mark as an EBCDIC character would have terminated the character string,
and the remaining characters would be invalid. So, we ended the character
string after the last character before the single quotation mark (the
asterisk), specified the single quotation mark in hexadecimal (7D), and then
continued with the next character (a plus sign) in EBCDIC. The comma
character for the load code (after the plus sign) will not end the character
string because it’s enclosed within single quotation marks.

3. The NUMBCHAR parameter indicates that there are 48 characters in the
print cartridge. If we missed specifying a character in the character string
parameter, this would cause an error, so we’d know that we forgot a
character. The CARTID parameter indicates a cartridge identifier of 02, and
we’re using a 0770 printer (TYPE parameter). The DUAL parameter
indicates that three nonprintable characters (?, >, and <) are going to be
appearing during the job, and gives the printable characters (*,”, and +) that
will replace them.

4. When this print file is opened, the operator receives a message telling him to
mount the cartridge named SCIENCE.

5. Provides the file name for the print output file and completes the device
assignment set.

7004 4623-000 615

Making Job Control Work for You

Here is a similar example of how the LCB job control statement is used for an SDMA
printer:

// DVC 228
// LCB TYPE=SDMA, CARTNAME=SCIENCE

Some points to remember when coding the LCB job control statement are as follows:
® You can always specify the CARTNAME and TYPE parameters.

° Ifyou specify NAME to indicate a filed load code buffer, you cannot specify any
other parameters except CARTNAME, TYPE, and MISM.

* Ifyou're using the job SG$PRB to change a filed load code buffer, use symbol to
specify the name of the buffer rather than NAME.

Using Forms Control

616

A vertical format buffer controls a printer’s vertical form spacing. This applies to the
0770, 0776, and 0789 printers. Codes corresponding to specific lines on a printer form
are loaded into the vertical format buffer. You advance the form to a particular line
by issuing a skip command in your program and specifying the code. The default
vertical format buffer for each printer type is set at SYSGEN time. You can use the
VFB job control statement to specify a unique vertical format buffer for a print file.

You must place the VFB job control statement within the device assignment set for
the printer file to which it applies. The / VFB statement becomes effective when your
program opens the print file. The format of the VFB job control statement is:

//lsymbol] VFB LENGTH=lines
[, FORMNAME=symbol]

OWNVF 1

,USE= [STAND1
OWNVF2-OWNVF9 (SDMA and 9215 printers only)

8

,DENSITY= {6}

,TYPE= |SDMA| |[,OVF=(line-1,...,line-n)]
0770
0776
*

[,O0vF2=(line-1,...,line-n)1[,CD1=(line-1,...,line-n),...
[,CD15=(line-1,...,line-n)11
[,HP=n]

7004 4623-000

Making Job Control Work for You

The symbol in the label field is a 1- to 8-alphanumeric character name and can have
one of the following uses:

* To specify a default form name when you omit the FORMNAME parameter.

* To specify the name of a filed vertical format buffer that you’re changing via the
job SG$PRB.

Use of symbol will become more clear after we discuss the FORMNAME and USE
parameters.

The LENGTH parameter indicates how many lines are on a form in the range of 1 to
192. You must use this parameter whenever you specify any of the VFB statement
parameters for forms overflow (OVF1,0VF2) or vertical line positioning
(CD1,...,CD15). LENGTH must also be specified whenever you specify DENSITY.

The FORMNAME parameter specifies the name of the printer form to be used. (This
is very useful when you want your output printed on a special form.) Your installation
is responsible for assigning a unique, 1- to 8-alphanumeric character name to each
form. PAYCHLK, for example, could be the name used for payroll checks.

When you provide a form name in the // VFB statement, the operator is requested to
place that form in the printer before the file begins printing. The output is not printed
until the operator loads the form and replies to the message. Remember, if you don’t
specify a form name, the form that’s already in the printer is used. So, to ensure use
of the proper form and to avoid printing on any valuable special forms, you should
always specify a form name.

Remember, you can specify a form name using any of the following:

® The SPOOL JPROC (See "Controlling Spooled Output with a JPROC Call" in
Section 5.)

* The SPL job control statement (See "Controlling Spooled Output with a Job
Control Statement"” in Section 6.)

® The symbol in the label field of the VFB job control statement (A form name
specified this way takes precedence over a form name specified with
// SPOOL or // SPL.)

¢ The FORMNAME parameter of the VFB job control statement (A form name
specified this way takes precedence over a form name specified with // SPL,
// SPOOL, or the / VFB statement’s symbol.)

7004 4623-000 617

Making Job Control Work for You

You specify the USE parameter when you want to use one of the filed vertical format
buffers (either STAND1 or OWNVFn) established at SYSGEN time or via the job
SG$PRB. There is a unique STAND1 and OWNVFn for each printer type. USE
indicates that you want a filed vertical format buffer - you’re not establishing your
own. Therefore, FORMNAME and TYPE are the only other parameters you can
specify when you specify USE.

As mentioned earlier, you can use symbol for the name of a filed vertical format
buffer. This is done only if you are executing the job SGSPRB to change a filed buffer
(STAND1 or OWNVFn). If this is the case, you specify either STAND1 or OWNVFn in
the symbol field. You don't specify the USE parameter. This is the only time symbol
indicates a vertical format buffer name. At all other times it indicates a default form
name if you omit the FORMNAME parameter. See the appropriate installation guide
for more information about SG$PRB.

DENSITY indicates the number of print lines per inch. (The default is 8.) An 11-inch
form, for example, printed at a density of 8 lines per inch has 88 lines; this same form
printed at a density of 6 lines per inch would have 66 lines.

Note: If you change the print density for a print file, the forms mount message is
displayed to your operator. This occurs even if the form name remains the
same, and the form is not to be changed. Once alerted, your operator must
reply to the message before any output printing can occur.

We refer to the remaining parameters of the VFB job control statement as skipcodes.
These codes indicate forms overflow and vertical line positioning. When you specify
any one of these, you must also specify the LENGTH parameter because line is a
decimal number in the range of 1 to whatever amount is specified by the LENGTH
parameter. When only one line is specified for a code, you may omit the enclosing
parameter. Ifyou accidentally repeat a code for the same line, the first one is accepted
and the others are ignored. (In this case, a warning message is displayed.)

The OVF parameter specifies the forms overflow line indicator. When an overflow
code is placed in the vertical format buffer, any space operation (such as print and
space) that advances the form to or beyond the overflow position causes the hardware
to detect and indicate forms overflow. You can specify multiple overflow indicators.
For example, you might indicate a forms overflow routine through your program that
prints subtotals, and another overflow routine that goes to the top-of-forms (home
paper) position of the next page.

The OVF2 parameter specifies a secondary forms overflow position for use with the
0770 printer. You can specify multiple overflow indicators. For example, if you're
going to print payroll checks and there are only 10 print lines for each check, setting
up a vertical format buffer at only 10 lines is impractical. Every time 10 lines are
printed, the vertical format buffer is rechecked to find the specifications for the next
paycheck (spacing, etc.), even though it’s the same form with the same spacing. This
takes time. But if you set up the vertical format buffer length for, say, 60 lines, you
could define 6 paychecks in one buffer. In this way, the vertical format buffer is
checked after every sixth form instead of after every form.

618 7004 4623000

Making Job Control Work for You

When you design the VFB, bear in mind that lines can be printed (and the form
advanced) beyond the overflow position. For printing of assemblies, librarian runs,

dumps, etc., you should provide at least four lines between the overflow position and
the bottom of the form.

The user should always specify an OVF parameter if the file is to be spooled or if you
specify the LENGTH parameter.

The CD1 through CD15 parameters are for the device independent control character
codes. These codes are used for vertical line positioning. For example, CD1=5 means,
every time this code is detected, each page of your report is skipped to the fifth line.
Not all codes may be used with all printers. The Consolidated Data Management
Macroinstructions Programming Guide, 7004 4607, lists the appropriate control
character codes for your printers in the section that explains the control printer forms
macroinstruction.

The HP parameter specifies the line number location of the home paper position.

Notes:

1. In a spooling environment, space must be reserved for all lines with assigned skip
codes. If you specify a | | VFB statement for a spooled file and provide a full
vertical format buffer specification (you do not specify a filed vertical format buffer
with USE or symbol), job control reserves enough space. If, however, you request a
filed vertical format buffer (STANDI1 or OWNVFn) that has more than seven skip
codes, or if you use a system default vertical format buffer having more than seven
skip codes, you must specify the number of skip codes using the no-skpcode
parameter in the |/ /| SPL statement or the SKIPCODE parameter in the / /
SPOOL JPROC.

When you don’t use a / / SPL statement or / | SPOOL JPROC, the default is seven
skip codes. Three skip codes are automatically included in this count: home
position for current page, overflow for next page, and home position for next page.
The four remaining are user-specified skip codes. Therefore, the / | SPL statement
and the / | SPOOL JPROC specify the total count of lines on your form where a
skip code is allowed, plus three.

2. Repeat occurrences of the same skip code on more than one line are counted as
separate skip codes.

Consider the following. Suppose you want to produce a report on a special 11- by 14-
inch form that prints 12 lines of data at 6 lines per inch (Ipi), then skips 3 lines; prints
another 12, skips 3; and so forth down the page a total of 4 times. Your VFB
statement might look like this:

// VFB FO=WORKSHT,DE=6,LE=66,0V=61

7004 4623-000 619

Making Job Control Work for You

You would have to identify your special printer form (WORKSHT) to the operator so
that it can be loaded on an available printer. Specify your desired printing density in
terms of lines per inch (Ipi). Specify the overall length of the form as a function of the
number of lines that could be printed on the form; in this case, 66 (6 Ipi x 11 inches).
And, finally, specify the line on the form at which you want the printer to advance the
paper to the top of the next page, which is called the home paper position. This
parameter is sometimes critical because the location of the home paper position
depends on where the operator physically aligns the form on the printer. If the home
paper position has been set by the operator to line 4 of the form and your program
prints before skipping any lines, the first print line will occur on line 4.

If we assume that the form we're using is meant to be loaded at line 4 and that our
program prints before skipping, our OV specification would be 61 as shown in the
example. This would allow us to print 48 lines and skip 9, before advancing the paper
to the next top-of-forms, or home paper position (4 + 48 + 9 = 61). If, however, the
operator loads our form at print position 2, instead of 4, our OV specification would
have to be 59, instead of 61, to maintain our desired page format. The obvious lesson
in this example is that you must tell the operator how to load a special form when
your output format is critical. Most of the time, you're not concerned with the exact
number of lines that are printed, but only that the printed output not continue beyond
a reasonable line on the form.

Some points to remember when coding the VFB job control statement are as follows:

® You can always specify the FORMNAME and TYPE parameters.

° Ifyou specify USE to indicate a filed vertical format buffer (STANDL1 or
OWNVFn), you cannot specify any other parameter except FORMNAME and
TYPE.

e Ifyou're using SG$PRB to change STAND1 or OWNVFn, use symbol to specify
the name of the buffer instead of USE.

* Ifyou specify DENSITY, you must specify LENGTH.

* Ifyou specify any codes (OVF1, OVF2, CD1 through CD15), you must specify
LENGTH.

* Ifyou specify LENGTH, you should specify at least one overflow code (OVF).

Controlling Tape Units

6-20

You use the MTC job control statement to position a tape volume prior to or after job

step execution. With it, you can move the tape volume to a certain block within a file

or to a certain file within a multiple volume. A tape volume can also be rewound to a
load point, rewound and unloaded, or have tape marks written.

7004 4623-000

()

Making Job Control Work for You

You must insert the MTC job control statement at a point after the device assignment
set for that tape unit. The format of the MTC job control statement is:

//Lsymbol] MTC Lfdname, {BB,nn
BM,nn
FB,nn
FM,nn
WM, nn
RL
RU

The Ifdname parameter specifies the same file name that was used in the device
assignment set for the tape volume.

The next parameter provides seven choices; they indicate the type of operation you
want done. They are:

BB - Backspace a specified number (nn) of blocks.

BM - Backspace a specified number (nn) of tape marks.

FB - Forward space a specified number (nn) of blocks.

FM - Forward space a specified number (nn) of tape marks.

WM - Write a specified number (nn) of tape marks.

RL - Rewind to load point.

RU - Rewind and unload the tape volume.
The amount, nn, must be a decimal number.
The relationship between the number of tape marks to the number of files on a
volume is covered in the Consolidated Data Management Macroinstructions

Programming Guide, 7004 4607.

The following example shows how the MTC job control statement is used:

// JOB TAPELIST
// DVC 90

/7 VoL T123

// LFD TAPEIN

/7 DVC 20

// LFD PRNT
17 MIC TAPEIN,FB, 10

// FIN

The first MTC job control statement spaces tape T123 forward 10 blocks prior to job
step execution. The second MTC job control statement rewinds and unloads the same
tape after the job step is finished. Note that the lfdname parameter of both MTC job
control statements agrees with the filename parameter of the LFD job control
statement.

7004 4623-000 621

Making Job Control Work for You

Releasing (Freeing) a Device and Volume

622

Once a device and a volume are assigned to a job, they remain assigned until the job is
finished. This assignment applies to all job steps of the job. But, what if your job has
10 job steps, and a certain device or volume is only used in the first job step? In effect,
they can’t be used by any other job until this entire job is complete. You can use the
FREE job control statement to release the device and volume immediately after it is
no longer needed, even though the job is not completed. However, if a device and
volume are released during one job step and either one is requested in a later job step
in the same job, no release occurs. This protects you from not having a needed device
or volume available because it was released too soon. Remember, the entire control
stream is scanned before the job begins executing.

The format of the FREE job control statement is:

//lsymbol] FREE Lfdname-1[[(DEV)],...,|fdname-nl[(DEV)]]

The lfdname parameter specifies the same file name used in the device assignment set
for the file.

The (DEV) parameter indicates that the device and volume are to be released. There
is no comma between the l[fdname and (DEV) parameters.

Note: You should always specify (DEV) even though it’s shown as optional.

Additionally, you must specify (DEV) to free unit record devices such as card
readers, card punches, printers, and workstations.

7004 4623-000

—~~

Making Job Control Work for You

Here’s an example of a multiple-job-step job. The first job step needs the card reader.
After that, it’s not needed.

// JOB PAYROL
// DVC 50

// VOL DIsKe1
// LBL DETAILS
// LFD PRDISC

// EXEC BALANC Job steps that
// EXEC NEGBAL don't need the reader
// EXEC WORKP
/&
// FIN
data file
/*

You can also use / FREE to allow a job to be scheduled that appears to use more
volumes or devices than are available.

Suppose, for example, that a job (PAYROL) uses four cataloged tape volumes. Your
system has only two tape drives. The system assumes, for cataloged volumes, that
each unique volume requires a unique device. Your job is not scheduled because there
are not enough unique devices available for each unique cataloged volume. You can
get the job scheduled, however, if you use the FREE statement to release the tape
drives once the first two volumes have been accessed.

During execution of the job, you are still protected from a needed device or volume
being unavailable, because no actual release occurs if / FREE specifies a device or
volume needed in a later job step.

Your job stream might look like this:

// JOB PAYROL

// LBL FILA

// LFD TAP1

// LBL FILB

// LFD TAP2

// EXEC STEP1

// FREE TAP1(DEV)
// FREE TAP2(DEV)
// LBL FILC

// LFD TAP3

// LBL FILD

// LFD TAP4

// EXEC STEP2

Your job is scheduled, even though your system has only two tape devices, because the
drives are freed after the first job step. During execution of the job, volumes A and C
use one tape drive and volumes B and D use the other tape drive.

// FREE can be used to release a workstation when it’s no longer needed by a job. You

specify the workstation Ifdname as it appears on the LFD statement in the
workstation’s device assignment set and code the FREE statement as follows:

7004 4623-000 6-23

Making Job Control Work for You

// FREE WRKSTN(DEV)

If this statement is specified, all workstations connected to the file are freed.

Scratching Unwanted Files

624

Once a disk or diskette file is no longer needed, it might as well be scratched, making
the space available for some other file. The SCR job control statement does this. Any
file or extent specified on this job control statement is scratched as soon as the SCR
job control statement is encountered by the job step processor. Therefore, the SCR
statement should only be specified after any job steps needing that particular file are
executed. Only files on volumes that are currently mounted when the SCR job control
statement is encountered are scratched. You can’t use the SCR job control statement
to delete a file on SYSRES that has Y as the first three characters of the file label,
and you can’t use it to delete the YRUN file from the RUN volume. Only one
volume serial number may be specified for any SCR job control statement.

The format of the SCR job control statement is:

//[symbol1SCR lfdname|, [DATEL,yyddd]
PRE[,aaaal

The lfdname parameter specifies the file name (of the file to be scratched) used in a
previous device assignment set in the control stream. Within that assignment set, you
must specify the volume serial number and the file identifier. But, if you’re working
with a disk file and the next parameter is either DATE or PRE, you may omit the LBL
job control statement from the relevant device assignment set.

7004 4623000

Making Job Control Work for You

7N
{)

The DATE and PRE parameters are used only for disk files. When you use the DATE
parameter, all files on the disk volume that have an expiration date earlier than the
current system date are scratched. If you want to use a date other than the current
system date, include the yyddd parmeter as part of your specification (where yy is the
year and ddd is the day - leading zeros must be specified). When you specify a date,
all the files on the disk volume dated earlier than the date specified are scratched.

The PRE parameter indicates that all files on a disk volume with a certain prefix are
to be scratched. You specify this prefix as the next 1-to-8-character parameter. The
first three characters of this prefix, however, cannot be Y if the volume is SYSRES.
If you omit the aazaa parameter, the first four characters of the file identifier from the
associated LBL job control statement are used as the prefix.

If this parameter (DATE and PRE) is omitted, the entire file specified by the lfdname
parameter is scratched.

Here are three examples:

// DVCVOL DsP@28

// LBL PAYROLLDETAILS
// LFD PRDET

// SCR PRDET

In this first example, the entire file identified as PAYROLLDETAILS is scratched.
The filename parameter of the LFD job control statement and the lfdname parameter
of the SCR job control statement must agree.

// DVCVOL DSP@28
// LFD DELETES
// SCR DELETES,DATE, 76002

In this example, all files on disk volume DSP028 that have an expiration date earlier
than the second day of the year 76 are scratched. Notice the absence of an LBL job
control statement. When you use either the DATE or PRE parameter, an LBL job
control statement isn’t needed.

// bvC 130

// VOL DKT0Q1
// LBL ADDRFILE
// LFD ADDR1

// SCR ADDR1

7004 4623000 625

Making Job Control Work for You

Our last example shows an entire file being scratched on our format-label diskette.
Remember, the filename parameter of the LFD job control statement and the lfdname
parameter of the SCR job control statement must agree.

Notes:
1. Thefile to be scratched should not be in use by another job.

2. Afiter an SCR job control statement is processed, the file is no longer available.
You can’t even refer to this file with another SCR job control statement or a FREE
Statemnent.

File Cataloging

The file catalog (YCAT) is a system resident file. It contains entries consisting of
file information about tape, disk, and diskette files in the system. The catalog enables
easy access to this file information for jobs and can also restrict files only to authorized
users.

The CAT, DECAT, and QUAL job control statements and a special form of the LBL
job control statement are used to create, access, and decatalog cataloged files. Their
use and a complete description of the OS/3 file cataloging facility are contained in the
File Cataloging Technical Overview, 7004 4615. The catalog manipulation routine
(JC$CAT) is also described there.

Selecting Optional Features

Unisys Operating System/3 provides optional features you can select whenever you
want. As you'll see, some options (such as DUMP and GO) are only effective during
the job step in which they are specified, some (such as GABRDUMP, GDUMP, and
GSYSDUMP) are effective from the time the option is encountered until end of job,
while others (such as ACN, BUF, OFT, LOG, and SCAN) are in effect for the entire job
because they are acted upon when the run processor prepares the control stream for
execution.

This is the format of the OPTION job control statement:

//lsymbol] OPTION p-1L,...,p-n]

6-26 7004 4623000

i

Making Job Control Work for You

As you can see, you can specify as many features as desired, as long as they’re
separated by commas (there can’t be any spaces). The features available are:

7004 4623000

ABRDUMP

Provides a main storage dump in the immediate vicinity of the current TCB PSW
address. Displays current registers and buffers of all open DTFs.

ACN=account-number

Overrides the acct-no specified in the JOB control statement.

BOF

Your program is given control with binary overflow interrupt-enabled.
BUF=nXm

Overrides the nXm parameter specified in the JOB control statement.

DOF

Your program is given control with decimal overflow interrupt-enabled.
DUMP

Provides a job region dump at execution time in hexadecimal, if job step
termination is requested, or a snapshot dump in response to a SNAP
macroinstruction.

EOD=xx

Supplies substitute characters for the end-of-embedded-data (/*) job control
statement. Used when embedded data is DSL source code. The first character
specified must be a slash (/). The second character can be anything but a slash,
an asterisk, an ampersand, or a currency symbol (/, *, &, $).

GABRDUMP

Specifies that OPTION ABRDUMP is in effect for every job step from the time
GABRDUMRP is encountered to end of job.

GDUMP

Specifies that OPTION DUMP is in effect for every job step from the time
GDUMRP is encountered to end of job.

627

Making Job Control Work for You

e GJOBDUMP

Specifies that OPTION JOBDUMP is in effect for every job step from the time
GJOBDUMP is encountered to end of job.

e GO
Automatically executes a load module after link editing is completed. An
OPTION job control statement with the GO feature is generated automatically by
the ASMLG JPROC call statement, for example.

e GSUB

Provides symbol substitution for all embedded data sets in the job stream. This
is a global SUB option.

e GSYSDUMP

Specifies that OPTION SYSDUMP is in effect for every job step from the time
GSYSDUMP is encountered to end of job.

e HDR= j NOHDR
HDR

NOHDR suppresses the printing of page separators. HDR allows page separators
to be printed. OPTION HDR overrides the page separator specification in the
JOB control statement.

e HOLD

Places a job containing it in hold status while the job is in the job queue table. A
job containing this option is not released until a BEGIN operator command is
issued, or until a CC job control statement with BE specified is encountered in a
subsequent control stream. CC BE cannot be used to release a HOLD within the
same job.

e IMMOVE
Prevents memory consolidation movable shuffle in this job step.

e JOBDUMP

Provides an edited version of a dump if a dump is requested and is in effect only
for the job step that contains this option.

6-28 7004 4623-000

Making Job Control Work for You

e LDA

Directs job control to set up a 256-byte user local da% area (LDA) in the job
prologue. This option is provided primarily for IBM® System/34 compatibility
and is used if RPG programs or the assembler uses the LDA.

e LINK

Automatically executes the linkage editor once the object module is created. This
allows you to compile and link edit without intervention from job control.

® LOG= | logical-unit-number
ORIGINATOR
CENTRAL

Directs the job log to a specific printer or a magnetic tape. The keywords
ORIGINATOR and CENTRAL refer only to printers. If you specify
ORIGINATOR, the log goes to the printer at the job’s originator (this includes an
auxiliary workstation printer if the job’s originator is a workstation). If you
specify CENTRAL, the log goes to the local site’s control printer. Only
LOG=CENTRAL can be specified in RBP initiated jobs. The default log
destination for RBP is the originator.

For security purposes, the file passwords are not entered in the job log file.

Note: Innonburst mode, the job log is normally printed first (on the first available
printer) followed by the output file. If the DVC statement for the output file
indicates a specific printer (e.g., DVC 28), you should include the OPTION
LOG statement with the same logical unit number (e.g., OPTION LOG=28) so
that the job log will be directed to the same printer as the output file. If
OPTION LOG isn't included, the job log will be printed first (on the first
available printer) and the output file will be printed on DVC 28, provided the
device is available. If the device is not available, the output file will not be
printed.

If the DVC statement for the output file indicates any printer (e.g., DVC 20)
and you include an OPTION LOG statement indicating a specific printer (eg.,
OPTION LOG=28), both the job log and the output file will be printed (in that
order) on DVC 28. For more information on nonburst mode, output spooling,
and job logs, see the Spooling and Job Accounting Operating Guide,

7004 4581.

IBM is a registered trademark of Internationaf Business Machines Corporation.

7004 4623-000 6-29

Making Job Control Work for You

¢ MASTER=destination (where destination=[host-id:luser-id)

Assigns the specified workstation (at the specified host) as the job’s master - the
workstation that has control of the job when the job goes into execution. (By
default, the originator has control of the job so that master and originator are
usually the same unless you use this option. See OPTION ORI for a definition of
the originator.) The assignment as master takes effect when the job name is
entered in the job queue and this assignment does not change.

Specify OPERATOR as the user-id to designate a system console as the master.
If your system has DDP, you can use a host-id to specify a particular host. If you
omit the host-id, the local host (the processor on which the job is executing) is
assumed. The host-id is optional but if specified, must be followed by a user-id.
If you include this option in a saved translated control stream, the option will be
effective when the stream is restored.

° MASTER:destination(EXEC) (where destination=[host-id:Juser-id)

Functions the same as MASTER=destination but takes effect only when the job is
in execution. The originator has control when the job is in the job queue.

* MAX=maximum-main-storage-size

Overrides the max parameter specification in the JOB control statement. The
max value is interpreted as a hexadecimal value when you simply code the
number or X’number’. You can also indicate that the max value be interpreted as
a decimal by coding MAX=D’number’. If more than one maximum value is
specified (via the // JOB statement or multiple / OPTION statements), the largest
value is used.

* MERGE=NO

Used to create a separate identifier for a job’s log in the spool LOG file (when
spooling and log accumulation are configured for the system). By including
MERGE=NO, you can determine if your job log is present in the accumulated
LOG file.

* MIN=minimum-main-storage-size

Overrides the min parameter specification in the JOB control statement. The
min value is interpreted as a hexadecimal value when you simply code the
number or X’number’. You can also indicate that the min value be interpreted as
a decimal by coding MIN=D’number’. If more than one minimum value is
specified (via the / JOB statement or multiple / OPTION statements), the largest
value is used.

6-30 7004 4623-000

l/"'—‘".

Making Job Control Work for You

* MXT=maximum-time

Overrides the max-time parameter specified in the JOB control statement. The
maximum time can be specified in minutes, or you can specify SUP or DEF.
MXT=SUP suppresses the max-time function. MXT=DEF specifies that the
system default is to be used for the max-time value.

e NOSCHED

Saves a job control stream in its translated state (in §Y$SAVE), but prevents the
job from being scheduled and executed. See the SAVE option for information
about subsequent runs of the saved, translated job stream.

* NOSCHED: (alt-miram-lib |, | RES) |) [,write-password]
RUN

vsn

Functions like / OPTION NOSCHED but is used when you want the saved
translated control stream placed in your own MIRAM library.

You must use the alt-filename parameter to specify a 1- to 44-character file
identifier. The file identifier must not be hyphenated.

Optionally, you can specify the volume to contain the job control stream. RES
identifies the SYSRES volume, RUN identifies the RUN pack, the vsn identifies
the volume serial number of a disk pack or format-label diskette. Keep the
following in mind:

- Ifthefile is cataloged, the volume you specify here (RES, RUN, or a vsn) is
used instead of the volume indicated (for that file name) in the catalog.

- Ifthe file is cataloged and you don't specify RES, RUN, or a vsn, the volume
indicated (for that file name) in the catalog is used.

- Ifthe file is not cataloged and you don’t specify RES, RUN, or a vsn, the
SYSRES volume is used. When you omit RES, RUN, or a vsn, the

parentheses are optional and you can simply code
// OPTION NOSCHED:alt-filename.

If the file is cataloged with a 1- to 6-character write-password, you must specify
the password in the last parameter.

See the SAVE option for information about subsequent runs of the saved,
translated job stream.

7004 4623-000 631

Making Job Control Work for You

6-32

NSCAN

Resets the SCAN facility. It should be used only with embedded data of a job
step for which SCAN has been specified. Subsequent job control statements
normally removed by SCAN are not removed. The OPTION NSCAN statement
itself is removed. When NSCAN is specified, SCAN cannot be used again in the
same job step.

NSRCH

Only the library named on the EXEC job control statement is searched for the
load module; the job run library file (§Y$RUN) and the lead library file ($§Y$LOD)
are not searched.

NSUB

Resets the SUB facility. It should be used only within the embedded data of a job
step for which both SUB and SCAN have been specified. Set symbols in
embedded data are not substituted until another SUB is encountered.

NULL
Specifies a no-operation for the OPTION statement.
OFT=+4n

Tells the run processor to reserve space for an additional number (n) of files in
the open file table. The n parameter must be in the range 1 through 16 and must
be preceded by a plus sign. For IMS users, n is the number of terminal classes
used to dynamically create files.

OPL=option-list

Overrides print-option-list specifications on the JOB control statement. Any of
the options available through the print-option-list parameter of the JOB control
statement may be specified via OPTION OPL.

ORIGINATOR=destination (where destination=[host-id:Juser-id)

The originator is that workstation (and host) that physically initiates a job and
subsequently has control of the job. OPTION ORI allows you to designate
another workstation as the originator regardless of the physical originator. This
option takes effect (changes user-id) immediately when it is encountered in the
job control stream. That is, the run processor immediately changes the user-id to
that specified by the ORI parameter. You have the option of specifying more than
one OPTION ORI statement in the same job stream. In such cases, the last
OPTION ORI statement encountered in the job stream designates the
workstation that controls processing at execution time.

7004 4623000

Making Job Control Work for You

7004 4623-000

Specify OPERATOR as the user-id to designate a system console as the
originator. If your system has DDP, you can use the host-id to specify a
particular host. If you omit the host-id, the local host (the processor on which the
job is executing) is assumed. The host-id is optional but, if specified, must be
followed by a user-id. If you included this option in a saved translated control
stream, the option will be effective when the stream is restored.

OUT= | ORIGINATOR
CENTRAL
[host-id:]Juser-id

Note: When a workstation initiates a job that directs printed output to an
auxiliary printer connected to another workstation (one that is not the
originator), the user at the other workstation must issue an RP command
to initiate printing. See the Interactive Services Operating Guide,
UP-9972, for information about this command.

Directs all job output (print files, punch files, and job logs) to the specified
destination as follows:

- ORIGINATOR

Directs all printed output to the printer at the job’s originator. Directs all
punch output to the central punch at the job’s originator.

- CENTRAL
Directs all print or punch output to the local site’s central printer/punch.
- [host-id:Juser-id

Directs all printed output to the specified destination and all punch output to
the central punch at the specified host.

The host-id identifies a particular host in a DDP network, is 1 to 4
alphanumeric characters long, and identical to the label-id of the LOCAP
macroinstruction in your ICAM network. Use $HOST to indicate the job’s
originator (the host that initiated the job). If the host-id is omitted, the local
host is assumed. The host-id is optional but, if specified, must be followed by
a user-id.

A1- to 6-alphanumeric character workstation user-id identifies an auxiliary
workstation printer. The keyword CENTRAL in place of a user-id identifies
the central printer or punch. Any destinations that specify a user-id or
YMAS are valid only for print files. CENTRAL is valid for print and
punch files.

633

Making Job Control Work for You

6-34

This option is effective for all of the job’s print and punch output, but it can be
changed for individual print or punch files by specifying / ROUTE or / DST in

the device assignment set for that file.

PRI=switch-priority

Establishes an overall task switching priority that applies to each program
specified on subsequent EXEC statements in that job. This priority can be
changed for particular programs by specifying a relative priority (e.g., +3 or -3) or

an absolute priority (e.g., 3) on the EXEC job control statement.

PRO

Allows procs in embedded data.

PRT=

(
ACT

LOG

NOACT

\ NOLOG

NONE
BOTH

Overrides the print option specified in the JOB control statement.
- ACT forces the printing of accounting records.

- LOG forces the printing of job log records.

\

/

'

- NOACT suppresses the printing of account records from the job log file.

- NOLOG suppresses the printing of log information from the job log file

(including main storage dumps).

- NONE suppresses the printing of both accounting records and log

information from the job log file.

- BOTH forces the printing of accounting records and job log information.

PSYSDUMP

Terminates the job immediately if abnormal termination occurs. SYSDUMP is
executed as a separate job. This allows immediate rerunning of the terminated

job.
QUERY

The OPTION QUERY job control statement is for workstation users. It allows
you to change control stream execution by dynamically skipping parts of the
control stream at run time. To use this facility, specify an OPTION QUERY job

7004 4623000

Making Job Control Work for You

7004 4623-000

control statement when you create your control stream. Then, when you run the
control stream (key in RV job name) and the OPTION QUERY statement is
processed, the following messages are displayed at the workstation screen:

JC 36 ENTER SKIP PARAMETER (DISPLAY, CANC, STEP=, LABEL=,0FF ,NONE)
JC 37 UPSI=xxxxxxxx QUERY LABEL=yyyyyyyy

If you enter a null response to the message, the system assumes you want to
proceed without a skip.

The type of skip you want is specified by keying in one of the following options:
Option Meaning

NONE Discontinue this function in the job step

CANC Cancels the job

STEP= Resume processing at the specified job step (program name)

LABEL= Resume processing at the label specified on the NOP QUERY job
control statement

OFF Discontinue this function in the job

DISPLAY Display all labels and job steps names in the the control stream.
Step names are preceded by an asterisk (*) to distinguish them from

labels.
X= UPSI setting
Y= Label of QUERY job control statement

To use the label skipping facility of OPTION QUERY, you must specify // NOP
QUERY job control statements in the stream as targets for the skips. The NOP
statement is discussed in "Providing Targets for Branching" in Section 7.

REPEAT

The currently executing program is automatically restarted upon termination
until all embedded data files are exhausted. This gives you the ability to execute
stacked assemblies or compilations without job control intervention. The
REPEAT option does not clear the job region between executions, unless the ZRO
option is used when linking the program.

SAVE
Saves a job control stream in its translated state and schedules the job to be run.

A copy of the control stream as it appears in YRUN is stored in the system file
YSAVE. Subsequent runs of the job are initiated through the SC/SI system

635

Making Job Control Work for You

command or through the / CC SC/SI job control statement. If you elect to use

this option, do not hyphenate the job name. Otherwise, an error condition will
result and your job will not be saved. Saving a job control stream with a large
number of JPROCS in its translated state eliminates the time-consuming chore of
JPROC expansion by the run processor on subsequent runs. Information about
the SC/SI system command is found in the appropriate operations guide and the
appropriate workstation user guide for your system. This option is available only
if your system is configured with consolidated data management.

° SAVE: (alt-filename |, | RES | |[write-password]).
RUN
vsn

Functions like / OPTION SAVE but is used when you want the saved translated
control stream placed in your own permanent MIRAM library.

You must use the alt-filename parameter to specify a 1- to 44-character file
identifier. (The file identifier must not be hyphenated.)

Optionally, you can specify the volume to contain the job control stream. RES
identifies the SYSRES volume, RUN identifies the RUN pack, the vsn identifies
the volume serial number of a disk pack or format-label diskette. Keep the
following in mind:

- Ifthe file is cataloged, the volume you specify here (RES, RUN, or a vsn) is
used instead of the volume indicated (for that file name) in the catalog.

- Ifthe file is cataloged and you don’t specify RES, RUN, or a vsn, the volume
indicated (for that file name) in the catalog is used.

- Ifthe file is not cataloged and you don’t specify RES, RUN, or a vsn, the
SYSRES volume is used. When you omit RES, RUN, or a vsn, the
parentheses are optional and you can simply code // OPTION SAVE:alt-
filename.

If the file is cataloged with a 1- to 6-character write-password, you must specify
the password in the last parameter.

e SCAN

Acts upon and removes selected job control statements (CR, GBL, GO, IF, JSET,
NOP, and OPTION) from embedded data files. If this feature isn’t selected, only
the terminators (FIN, END, /$, and /*) are detected.
e SERIAL= J A
C
Allows you to have a list of RU/RV commands which are to be run serially rather
than concurrently, i.e., the first job must terminate before the second job is run.

The list of RU/RV commands following the option serial statement is referred to
as the controller job.

6-36 7004 4623-000

/—-\\\

o,

v//—\\

)

Making Job Control Work for You

7004 4623000

The controller job can contain any number of RU/RV statements as well as other
JCL statements excluding DVC-LFD sequences and EXEC statements. The only
statements allowed after the last RU/RV statement are SKIP and OPR.

If SERIAL=C and a job terminates abnormally, the controller is also terminated
and the following message is displayed:

JC61 CONTROLLER JOB JOBNAME TERMINATED ABNORMALLY

SERIAL=A specifies that the controller is not to be terminated. The UPSI byte is
set to X’80’ so the controller can skip to the abnormal path.

When the last job terminates normally, the following message is displayed:
JC60 CONTROLLER JOB JOBNAME TERMINATED NORMALLY

Multiple controllers can be active simultaneously. If you delete (DE) any job in
the list, the entire process is terminated.

SEVERE

Specifies that the run processor is to be terminated (the job is not to be
scheduled) if warning errors occur. Normally, warning errors would not
terminate the job.

SIG

Program is given control with floating-point significant exception interrupt-
enabled.

SUB

Scans embedded data for parameters for sét symbol substitution.

SYSDUMP

A complete edited system dumi) is provided if job step termination is requested.
TEST

Specifies that the job is not to be queued or run.

TRACE

Fetches the monitor routine to record the effect of variable instruction

parameters. Optional monitor tasks may be selected as described in the
Supervisor Macroinstructions Programming Reference Manual, UP-8832.

6-37

Making Job Control Work for You

6-38

o TSK=number-of-tasks

Overrides the tasks parameter specified in the JOB control statement. From 1 to
255 tasks can be active within any job step.

e UNDEFINED
Specifies that from the time this option is encountered to the end of job, a
warning error message is to be generated whenever an undefined SET symbol is
detected.

e UNEQUAL

Specifies that a warning error message is to be generated whenever two character
strings of unequal length are compared.

e XUF

Your program is given control with exponent underflow exception interrupt-
enabled.

If no dumps are requested for a job step (JOBDUMP, DUMP, or SYSDUMP), a
NODUMP feature is generated, which prohibits snapshot dumps, end-of-job-step
dumps, and abnormal termination dumps. This feature, NODUMP, is not to be
specified on an OPTION job control statement; job control assumes this feature.

The OPTION job control statement is generally inserted as the first job control
statement for the job step (unless, of course, this is the first job step, in which case the
JOB control statement is first). The OPTION statement may also be used in
embedded data when the NSCAN, NSUB, SCAN, or SUB features are specified.

In this example,

// OPTION JOBDUMP,TRACE
all the executed instructions of the program in this job step will be recorded. If the job
step terminates abnormally or a DUMP macroinstruction is encountered, an edited
dump is provided.
OPTION should not be placed between these job control statements:
e EXECand/$
e EXEC and PARAM
* PARAM and PARAM
e PARAMand/$

* /*and /$ (where they delimit two separate embedded data sets)

7004 4623-000

77N

Making Job Control Work for You

Using the SET Job Control Statement

The SET job control statement modifies certain control fields in the job preamble and
establishes a local data area (LDA) in the job prologue. The three fields that can be
modified are: the date, user program switch indicator (UPSI), and the
communications region. The SET job control statement does not alter the contents of
the system information block; for this purpose, use the SET system console command.

The LDA is a 256-byte user area that follows the job accounting area in the job'
prologue. It is provided primarily for IBM System/34 compatibility.

We use different formats of the SET job control statement to accomplish the
aforementioned functions, so we'll look at each separately.

Changing the Date

To temporarily change the date field of the job preamble until the end of the job, use
this format of the SET job control statement.

//lsymbol] SET DATE,yy/mm/dd[,t-date][,d-date]

The yy/mm/dd parameter is the date you want stored in the job preamble in place of
the current date. It’s specified as year, month, day.

The t-date parameter specifies a 5-digit date for tape files, in the form yyddd (2-digit
year, 3-digit day). This date is stored, right-justified, in a 6-position field in the job
preamble, with the leftmost position set to a blank. This t-date parameter is flexible.
You can specify six digits, with the leftmost digit indicating the quarter of the year,
and the remaining five digits indicating the date. You use this parameter when you
want to compare the creation date of the first file header label (HDR1) against a date
different from the date in the system information block.

The d-date parameter is the 5-digit date for disk files, also in the form yyddd. You use
this if you want the format 1 label to be compared against a date different from the
one stored in the system information block. If you omit the d-date parameter, the date
specified in the t-date parameter is used. If you also omit the ¢-date parameter, then
the date from the system information block is used.

In this example,

// SET DATE,90/09/14
the date used for the job is September 14, 1990.

Setting the UPSI

The SET UPSI job control statement allows you to set indicators that can be tested
during program execution. This UPSI area is one byte long (eight bits). You can
assign a specific meaning to any or all of the bits. For instance, say a program will run

7004 4623-000 6-39

Making Job Control Work for You

with either card or tape input (two different sets of instructions defining the input
device). You could code the program such that when the first bit of the UPSI byte is 1,
the program instructions for card input are used; when the first bit is 0, the program
instructions for tape input are used. Then, through the SET UPSI job control
statement, you set the first bit of the UPSI byte to indicate which type of input is
being used.

The format of the SET UPSI job control statement is:

//[symbol]l SET UPSI,switch-setting

The switch-setting parameter is the 8-bit UPSI byte. The allowable characters are:

0 - Thebitis set to off.
1 - Thebitissettoon.
X - The bitis unchanged.

Unspecified rightmost bit positions are assumed to be X (unchanged). Initially, the
UPSI byte is set to all zeros.

More than one SET UPSI job control statement may be specified for a job. However,
you must reset conditions you don’t want that have been set by a previous SET UPSI
job control statement. For example, on the first SET UPSI job control statement, you
want to set bits 0,1, and 7. Code it like this:

// SET UPSI, 11000001

If, on a subsequent SET UPSI job control statement in the same job, you want to set
bits 0, 1, and 2, it would be coded like this:

// SET UPSI,XX1XXXX@

Since bits 0 and 1 were already set by the first SET UPSI job control statement and
we want them left on, we code an X in these positions, and code a 1 to set bit 2. Since
bit 7 is to be turned off, we code a 0 in this position; otherwise the 1 from the first SET
UPSI job control statement would still be effective.

The Communications Region

6-40

The communications region is a 12-byte field in the job preamble that passes
information from one job step to the next. For instance, assume your job has two job
steps. The first job step generates input for the second. But, if this input is incorrect,
you don’t want to run the second job step. In the program for the first job step, you
insert a routine that checks the validity of the output, and if it’s incorrect, writes a
code in the communications region. Then, in the program for the second job step, you
insert another routine that checks the communications region. If the code is there,
control is transferred directly to the end of the job.

7004 4623000

C

&

Making Job Control Work for You

Once you place these routines in your programs, they are there permanently unless
you remove the routines and recompile the programs. It may just happen that
sometimes you want to run the second job step even if the first job step was wrong (a
test). Here is where you would use the SET COMREG job control statement. This
allows you to change the code in the communications region.

The format of the SET COMREG job control statement is:

//[symbol] SET COMREG,char-string

The char-string parameter specifies the 1 to 12 EBCDIC characters or the 2 to 24
hexadecimal characters (even amounts only) to be stored in the communications
region. It is stored left-justified, and any unspecified rightmost characters remain
unchanged. Specify hexadecimal characters as X'ccc...cc’ and EBCDIC characters as
C'ece...cc’.

At the beginning of the job, the communications region is set to 0’s.

Let’s say you wanted the hexadecimal code of E2 E3 D6 D7 to be stored in the first
four bytes of the communications region; it would be coded as:

// SET COMREG,X'E2E3D6D7'

The User Local Data Area (LDA)

Job control support for the user local data area in the job prologue is primarily for
compatibility with the IBM System/34 LDA feature. You can, at your option, use this
area as a larger, more versatile communications region (COMREG). When specified,
this statement automatically sets the OPTION LDA, which sets up the LDA in the job
prologue. It also allows you to store character strings in the LDA. The format of the
SET LDA job control statement is:

// SET LDA,n,m, [char-string
'char-string’

The character string specified is stored left-justified in the LDA. If the character
string contains blanks, it must be enclosed by single quotes.

The n parameter specifies the byte at which the character string starts in the LDA.
The lowest value for this parameter is 1.

The m parameter specifies the total number of bytes occupied by the character string.
This value must be equal to or greater than the length of the string. It cannot exceed
the length of the LDA or be a value that, in conjunction with the n parameter
specification, extends beyond the end of the LDA.

Assume you want to insert a 7-byte string in the LDA. You want the string to begin at
byte 3 and the string doesn’t contain blanks; your statement is coded as:

// SET LDA,3,7,ABCDEFG

7004 4623-000 641

Making Job Control Work for You

the entry in the LDA appears as:

I N S A I ,
byte 1|2(3]4|5]6|7]8[0o[0|n]n 256

If the string contained blanks (), then your statement would be coded as:

// SET LDA,3,7,'ABCAAFG!

The entry in the LDA appears as:

L[lefefeefrfe] ||

byte 1|2|3|4|5|6|7|8|9|10|11|12/ " s

If the total number of bytes specified (m parameter) exceeds the actual length of the
string, the entry is left-justified and padded with trailing blanks. For example:

// SET LDA,3,9,ABCDEFG

results in the following entry into the LDA:

| [*efelofe]r]e]s o |

byte 102|345]|6]7 8] 0] n]n " e

Keep in mind not to specify a string that exceeds the limit of the LDA (256 bytes) or to B
specify a string length that extends beyond the end of the LDA. For example: <
// SET LDA,250,8,ABCDEFGH

This statement is invalid because you are attempting to insert an 8-byte string into
the LDA beginning at byte 250. This extends beyond byte 256, the upper limit of the
LDA.

Restarting a Job

642

In "Restarting a Job" in Section 2, we mentioned that you can restart a job that
stopped running because of a computer malfunction, without rerunning the entire job
from its beginning. To be specific, we provide you with a restart facility that lets you
resume execution of your job from a particular job step or from a particular checkpoint
record reached when the job stopped. In both cases, the job control restart (RST)
statement is used to initiate the restart process. The RST statement defines the
criteria for restarting the job. You simply complete the RST statement, insert it as the
first statement of the job control stream for the job being restarted, and rerun that
control stream. If the job is on cards, make the RST statement the first card in the
deck and rerun the job deck. In cases where the job is prefiled, submit only the RST
statement for the job through the card reader. If you are a workstation user and the
control stream is prefiled, use the general editor (EDT) or the librarian to place the
RST statement in the control stream.

7004 4623-000

5

Z/{-—r\\ki

Making Job Control Work for You

The format of the RST statement varies slightly depending on whether you are
restarting from a job step or a checkpoint record. There is also a certain amount of file
preparation required if you want to set up restart from checkpoint records. This is
discussed later in the section. The general things you should keep in mind when using
the restart facility are:

¢ You may submit only one RST statement per job.
¢ (Card files cannot be repositioned.

e If a multifile tape is to be repositioned, the file sequence number must be
included on the LBL job control statement.

* Tapes previously positioned via an MTC job control statement are not positioned
to the proper point in the restarted job.

o Ifarestart is to take place after the job has terminated (normally or abnormally),
the restarted job step must not have originally requested temporary work areas.

® Scheduling may be delayed if all the resources needed by all job steps in the job
are not available, even if those needed only by the job step to be restarted are
available.

¢ Mount messages to the operator may be produced for volumes that were not
needed for the original run because the SKIP job control statements are ignored.

¢ Ifthe file containing checkpoint records is a disk file, it cannot contain any of
your data.

¢ Ifthe job being executed at the time a checkpoint was recorded was in the job’s
YRUN file (output to the linkage editor), the job being restarted will not run to
normal completion if a program overlay is called after the job is restarted.

Restarting a Job from a Job Step

Restarting a job from a job does not require any special preparation other than
preparing an RST statement, inserting it in the control stream for the job being
restarted, and rerunning the job stream. The step processor:skips to the job step
specified in the RST statement and execution of the job resumes at that step. The
format of the RST statement for restarting a job at a job step is as follows:

//Lsymbol] RST,,step-numberl, jobname[(rename)1[,prill, key-1=val-1,..., key-n=val-n]

The step-number is the only required parameter. It specifies the number of the job
step at which you want to restart the job.

The jobname parameter should only be used if the RST statement is submitted from a
card reader.

7004 4623-000 643

Making Job Control Work for You

The rename parameter allows you to specify an alternate name for a prefiled job that
you want to restart.

You can also override the priority level originally defined for the job (JOB statement)
by including the pri (priority) parameter. Valid entries for this parameter are P for
preemptive, H for high, N for normal, or L for low. If omitted and no priority is
specified on the JOB statement, the priority defaults to normal.

The key=val parameter represents keywords and their values that may be referenced
like the parameters of a GBL job control statement. (See "Local Status Set Symbols"
in Section 7.) The effect of these parameters is as if a GBL job control statement were
inserted as the first job control statement of the job. The total length of the value for
the parameters cannot exceed 44 characters.

The following coding of the RST statement restarts the job MYJOB at the beginning of
job step 3. The control stream can be assumed to be prefiled since the job name is
given, and the priority will be established by the original job statement, if specified;
otherwise, it will be run at a normal priority.

// RST ,,3,MYJOB

This same statement can define an alternate name for the job MYJOB by adding the
rename parameter. In this case, MYJOB is renamed NEWNAME.

// RST ,,3,MYJOB(NEWNAME)

Likewise, you can change the priority level of the restarted job by including the pri

parameter. In the coding example shown, the priority for the job is changed to high
(H).

// RST ,,3,MYJOB(NEWNAME) ,H

Restarting a Job from a Checkpoint Record

To restart a job from a checkpoint record requires that you first establish checkpoint
records in your program. In a BAL program, this is done with the CHKPT
macroinstruction. In a COBOL program you use the RERUN clause. You must also
define a file (through use of the CHKPT macroinstruction and RERUN clause) into
which the checkpoint records are written as they are encountered during your
program’s execution. Therefore, you must provide a device assignment set for this file
in the control stream for the job. Once you have completed this, you may use the RST
job control statement to restart the job if it stops. The process is the same as that
described for restarting from a job step. That is, prepare the RST statement, insert it
as the first statement in the control stream for the job, and rerun the job control
stream. (See the previous subsection, "Restarting a Job from a Job Step".) However,
the format for the RST statement requires two additional parameters when used to
restart a job by checkpoint records; they are filename and checkpoint-id. All of the
remaining parameters are the same as those described in "Restarting a Job from a Job
Step".

644 7004 4623000

Making Job Control Work for You

// ['symbol] RST filename,checkpoint-id,number[, jobnamel(rename)[,pri]l
[,key-1=val-1,...,key-n=val -n])

The filename, checkpoint-id, and job step number are required parameters and must
be specified in the order shown.

The filename parameter identifies the file into which the checkpoint records were
written. Therefore, the file name you specify in the RST statement must agree with
the file name specified in the LFD control statement of the device assignment set for
the checkpoint record file. A word of caution; the LFD job control statement for the
checkpoint file must not contain the INIT parameter because the use of this
parameter will begin writing at the beginning of the file. (See "Specifications for
Existing Files" in Section 4.)

The checkpoint-id parameter specifies the particular checkpoint that you want to
restart the job from. You obtain this number from the screen of the system console. A
checkpoint number is displayed on the console screen each time a checkpoint record is
written by your program.

The following example shows how you would code the RST statement to restart a job
named POCO. The job is to resume execution from checkpoint 6 (the number
displayed at the system console at the time the job stopped) in job step 2. The file
containing the checkpoint record is identified as CHKPTLOG. This is the same name
as that specified on the LFD job control statement used in defining the file earlier in
the job control stream.

// RST CHKPTLOG,6,2,POCO

Suppose there is a possibility that another job named POCO is scheduled for
execution. To be safe, you can rename the job to be restarted as follows:

// RST CHKPTLOG,6,2,POCO(NEWNAME)

And, by including the priority parameter, you can redefine the priority for the
restarted job. For example:

// RST CHKPTLOG,6,2,POCO(NEWNAME), L

Issuing System Commands

The CC job control statement allows you to issue OS/3 system console and workstation -
commands, with their associated parameters, from within a job control stream.
Because there are many system commands, we will not attempt to discuss each one
here. You can find the formats and descriptions of system console commands in the
appropriate operations guide. Workstation commands are described in the Interactive
Services Operating Guide, UP-9972. The format of the CC statement is:

//Isymbol] CC [command
‘command and parameters!

7004 4623-000 645

Making Job Control Work for You

When enclosed in single quotes, any system console or workstation command and
parameters can be specified in the CC statement. When the command has no
associated parameters or when you do not specify any parameters, the quotes are not
used.

Let’s say you want to release a job (JOB1) that’s being held as the result of a HOLD
system command. If you specify the BEGIN command in a CC job control statement,
you can include this statement in the job you’re going to run. JOB1 will be released
when this statement is processed (at your job’s execution time). You would code the
CC statement as follows:

// CC 'BE JOB1!'

Suppose you wanted to initiate the general editor from a job control stream. The
workstation command for the general editor is simply EDT. Because there are no
parameters, you'd code the CC statement as follows:

// CC EDT

Whenever parameters are specified with a command, the total number of characters
within the quotes cannot exceed 60.

The CC statement is examined for syntax errors by the run processor during job
stream validation. If no syntax errors are found, the job is queued. The command and
its associated parameters are sent to the system when the CC statement is
encountered by the job step processor. The command is validated by the system
independently of your job, so errors associated with satisfying commands do not
terminate a job stream. If no EXEC statement follows a CC statement, the specified
commands are acted upon prior to job termination.

Notes:

1. The following system console commands cannot be specified in the CC job control
statement: MIX, SWITCH, AVR, REBUILD, SHUTDOWN, SYSDUMP, and all
SET commands.

2. When the command string contains no blanks (other than the blank separating the
command from its first parameter), you can precede the first parameter with a
comma instead of enclosing the command and its parameters in single quotes.

For example: // CC BE,JOB1

3. Unsolicited input messages (see the Interactive Services Operating Guide,
UP-9972, and |/ | PAUSE responses cannot be specified in the CC job control
statement.

7004 4623-000

N

N
{

Making Job Control Work for You

Calling Control Streams

As we mentioned in "Running Job Control Streams" in Section 1, there are several
methods available for calling control streams. System console or workstation
commands such as RUN/RV and SC/SI can be used, but we’ll discuss only the methods

available through job control.
The following job control statements are used to call control streams:
// RUN
/I RV
// CC SC
/I CC SI

Note: The run processor (RUN/RV commands) and restore processor (SC/SI

commands) do not allow any volumes for a multivolume, single-mount file to
be RES or RUN packs.

The RUN and RV job control statements are discussed in the next subsection, "Using
the RUN/RV Job Control Statements to Call Control Streams." Using the CC SC/SI
statement to call saved, translated streams is discussed in "Using CC SC/SI to Call
Saved Translated Control Streams" later in this section.

7004 4623000 ' 647

Making Job Control Work for You

Using the RV/RUN Job Control Statement to Call Control Streams

The RV and RUN job control statements are used in a job control stream to call
another job control stream. They both select the stream you name and prepare it for
execution. You use RV when you're calling a prefiled control stream that does not need
a card reader. RUN is used only when the control stream you're calling needs a card
reader.

An input device is unnecessary (/ RV is used) when the control stream you want is in
YJCS or an alternate library file and doesn’t contain a CR job control statement.

A card reader is necessary (therefore, / RUN is used) when the control stream is on
cards or when the tontrol stream is stored but contains a CR job control statement.
The CR statement in a control stream indicates that data on cards is to be accepted
from the input device and inserted into the stream. (See "Adding Cards to a Stored
Control Stream" later in this section.)

Although you can use / RUN when an input device is not required, you should use

// RV. Using the RUN statement wastes time because your job will not be initiated
until the (unnecessary) card reader is available. On the other hand, your job will not
be initiated at all if you use an RV statement to call a control stream that needs a card
reader.

The format of the RV/RUN statement is:

//lsymbol]l [RV jobnameLnew-name)]

RUN| [jobnamel (new-name)]
(new-name)

[zalt-filename

: (alt-filename, [RES|)
RUN
vsn

RUN
vsn]

.

: (alt-filename, [RES] ,read-password)

:] [key-1=val-1,...,key-n=val-n]

E PRE
HIGH time
NOR time+n

LOW

648 7004 4623000

Making Job Control Work for You

- This statement’s parameters are similar to those of the RUN/REV console command
and are explained in detail in the appropriate operations guide. They are also
explained in the Job Control Programming Reference Manual, UP-9984.

Using CC SC/SI to Call Saved Translated Control Streams

Recall from earlier sections that a job control stream can be saved in its translated
state (after JPROCS have been expanded) by including an OPTION SAVE or OPTION
NOSCHED job control statement in your control stream. When the stream is run, a
copy of it is stored in the system file §Y$SAVE. Subsequent runs of the control stream
can be initiated through the SC/SI command or the CC job control statement

specifying the SC/SI command. We are interested in the CC job control statement
here. The format of the CC statement is:

//symbol] CC {command }

'command and parameters!

The format of the command we want to specify is:

SI (did) jobname[(new-name)]
([did], label)
(RDR, Label)

SC

zalt-filename , [PRE

: (alt-filename, [RES]) HIGH l:time
RUN NOR {time+n}
vsn LOW

RUN

: (alt-filename, [RES} ,read-password)

vsn]
L -

You use the SI command to initiate a job control stream that requires replacement of
embedded data from an input device (card reader, data-set-label diskette, or input
spool file). The SC command is used only to initiate a job control stream that does not

require the use of an input device to replace embedded data. Consider the following
examples:

e //CC’'C MYJOPB’

This statement initiates the translated job control stream called MYJOB.

7004 4623-000 649

Making Job Control Work for You

e //CC’SIMYJOB(NEWDATAY

This statement initiates the translated control stream MYJOB. MYJOB is to be
run under the new name NEWDATA. The replacement embedded data for
MYJOB is expected to be found on the first available card reader.

Notes:

1. Further explanation for the SC/SI command and its associated parameters can be
found in the appropriate operations guide.

2. When substituting embedded data, the DATA STEP statement must be used. It is
explained in "Substituting Embedded Data" later in this section.

3. When embedded data is submitted on diskette, the diskette must be a data-set-label
diskette, and the record size must be 128 bytes or less. The records must be
unblocked and unspanned.

Communicating with the System Operator or
Workstations

You can send a message to the system console or specific workstations with the OPR
job control statement. The message you specify is displayed at job step processor time.
The format of the OPR statement is:

//lsymbol]l OPR comment-line[,destination-1,...,destination-n]

You use the comment-line parameter for the text of your message, which can contain
up to 60 characters and must be enclosed in single quotes if it contains embedded
blanks, the slash character, or commas.

The destination parameter is provided for those systems with workstations or DDP. If
your system has neither, the destination parameter is ignored and your messages go to
the system console.

A destination is actually a host-id, user-id pair:
destination=[host-id:Juser-id

The user-id directs the message to a particular workstation. The host-id allows users
who have DDP to direct the message to a workstation or system of console at a
particular host. If your system does not have DDP, you’ll only be interested in the
user-id portion of the destination.

650 7004 4623000

e

Making Job Control Work for You

The user-id can be any 1- to 6-alphanumeric character workstation user-id. You can
also specify the keyword OPERATOR or YCON to denote the console workstation,
or YMAS to denote the master workstation. If you omit the destination, YMAS is
assumed. (See the OPTION MAS and OPTION ORI statements in "Selecting
Optional Features" earlier in this section for more information about
originator/master workstations.)

The host-id is 1- to 4-alphanumeric characters and is identical to the label-id of the
LOCAP macroinstruction in your ICAM network. The host-id is optional but if
specified, you must follow it with a user-id. You can also specify $HOST as a host-id.
$HOST simply means that the host of the master (the originator of / JNOTE) is used.

If you specify a user-id but omit the host-id, the local host (the processor on which the
job is executing) is assumed. Remember, if you omit a destination entirely, the
message goes to the job’s master workstation.

Consider this example. Suppose you want to tell the operator an error is going to
occur but that the job is to continue processing. You could code the following:

// OPR 'AN ERROR WILL OCCUR - DO NOT CANCEL JOB', OPERATOR

OPERATOR is the destination, so the message is directed to the console and the local
host is assumed. (Without DDP, the processor is always a local host.) The following is
a list of other sample destinations you could specify in the / OPR statement:
e USERO0O1

The message is sent to workstation USERO1. (The local host is assumed).
* YMAS

The message is sent to the master workstation. (The local host is assumed).
® No destination specified

The message is sent to the master workstation.
e A321:USER0O1

The message is sent to workstation USERO01 at host A321.
¢ $HOST:OPERATOR

The message is sent to the console workstation at the originator/master host.
Messages sent to workstations that are not logged on are not rerouted unless they

were intended for the master workstation (§Y$MAS). The system reroutes such
messages to the console.

7004 4623-000 651

Making Job Control Work for You

The PAUSE job control statement lets you send messages to the system operator or
specific workstations; however, it causes the job’s processing to stop until the message
is acknowledged. (Processing of other jobs in the system continues without
interruption.) Regardless of the PAUSE statement’s position within a job step, the
message is displayed just before execution of the program within the job step. The
PAUSE statement has the following format where the comment-line and destination
parameters are identical to the corresponding parameters in / OPR:

//Lsymbol] PAUSE comment-line[,destination-1,...,destination-n]

Suppose you want the operator to check a job’s printer listing for errors before the job
is run. You might code the PAUSE statement like this:

Y
// PAUSE 'CHECK FOR ERRORS - IF NONE, CONTINUE, OTHERWISE CANCEL'®, OPERATOR

Job processing stops until the operator acknowledges the message by cancelling or
continuing the job. When multiple destinations are specified, the acknowledgements
are requested one at a time, not all at once.

The JNOTE job control statement allows you to send messages to the system operator
or a particular workstation. Unlike // PAUSE, however, / JNOTE does not stop job
processing and does not require acknowledgement. / JNOTE is like OPR except that
it’s acted upon by the run processor so you can send messages earlier on in the job’s
processing - before job execution actually begins. Format of the JNOTE statement is:

//[symbol] JNOTE comment-line[,destination-1,...,destination-n]

The parameters function the same as // OPR and / JNOTE parameters; however, you
cannot specify YMAS as a user-id. You can specify YORI to indicate the
originator of the job. This is also the default if no destination is specified. Messages
sent (via JNOTE) to workstations that are not connected are not rerouted unless
they’re intended for the originator workstation (§Y$ORI). The system reroutes such
messages to the console.

Introducing Processing Options

Some programs are written to perform a variety of functions in addition to their main
processing function. These programs must be told what variable functions to perform
when the job is run. A good example of this type of program is a language translator,
which can produce a series of special services if they are requested, but which are not
desirable with every compilation or assembly. You submit these requests with
PARAM job control statements.

Since PARAM job control statements are read by the individual program, you design
the content and format of the information when you write the program. PARAM
statements are prepared and read as embedded data.

652 7004 4623-000

Making Job Control Work for You

There is no limit to the number of PARAM job control statements allowed in the
control stream, and each one can contain up to 62 characters of information. However,
any information beyond column 71 is ignored. You must place the PARAM job control
statements immediately following the EXEC job control statement.

The format of the PARAM job control statement statement is:

//[symbol] PARAM operand-1[,...,operand-n]

The operands are the variable information you want to introduce into the job. If the
information contains embedded blanks, it must be enclosed by single quotation marks.

Assume that in a program named LISTX, you set a variable option called LST=, which
defines the line spacing on the printer. The values you defined in the program are A
for a single space, B for a double space, and C for a triple space. On this running of
the program, you want to triple space, so it would be coded as the following:

// EXEC LISTX
// PARAM LST=C

Defining Software Facilities Needed by Your Job

OS/3 automatically loads all of the shared-code modules needed by your job; you do
not need to identify these shared code modules in order for them to be loaded. If,
however, you have written your own shared-code modules and they are not on
YSLOD or the volume that contains your job’s YRUN file, you must use the / SFT
statement to identify these modules to the system.

You can also use / SFT to identify data management shared-code modules that you
want loaded prior to job initiation. This ensures that your job does not have to wait
until a particular shared-code module it needs becomes available. The data
management shared-code modules loaded prior to job initiation stay resident for the
duration of the job.

The // SFT statement may also be used to indicate that dynamic loading is needed or
to override the system generation limits for dynamic expansion of the user job region.
(This feature is for ANSI’74 COBOL users.)

Let’s review the applications for the SFT job control statement. You use
// SFT to:

* Identify user-written shared-code modules that are not in YRUN or YLOD

* Identify data management shared-code modules that you want loaded prior to job
initiation

* Specify dynamic loading and/or override SYSGEN limits for dynamic expansion
of the user job region as established by the SYSGEN parameter DLOADBUFR
(ANSI'74 COBOL users only)

7004 4623-000 653

Making Job Control Work for You

654

The format of the // SFT statement is:

//Ilsymbol] SFT [module-1[,...,module-n] [DLOAD=|:([calls],l:{expansmn limit il :‘J
DLOAD=| ([calls],| [expansion-limit] [}
MAX

The module parameters identify to the run processor the user shared-code modules
needed in a job step or the data management shared-code modules that you want
loaded prior to job initiation. (User shared-code modules are always loaded prior to
job initiation.) The Supervisor Macroinstructions Programming Reference Manual,
UP-8832, lists all the shared code modules and their functions.

The SFT statement identifies shared-code modules only for the job step in which it
appears. If you need the same shared-code modules in three job steps, for example,
you must code an SFT statement for each of the three job steps.

Suppose you want to load, prior to job initiation, the data management module that
provides for magnetic tape file output in the last step of your job. The module that
performs this function is named DD$T1110. You would code

// SFT DD$T1110

and place it in the control stream for your job. The run processor would detect the
SFT statement while scanning the control stream and the shared-code module
DD$T1110 would be loaded before your program is executed.

Notes:

1. When preparing a job, you must not request more shared-code modules than were
provided for when your system was generated, or the job will not be scheduled.

2. Data management shared-code load modules reside in the system library
$YSSCLOD. You can use the SAT librarian to get a listing of these modules and to
obtain information related to each, or, if you have interactive facilities, you can use
the FST command and specify YSCLOD.

3. There is a system generation parameter IGNORESFT) that allows you to specify
that /| SFT job control statements be ignored. This system generation option is
useful because you can then take advantage of the dynamic shared-code feature of
OS /3 without having to change existing control streams that contain / /| SFT job
control statements. The appropriate installation guide contains more information
about this system generation option.

The DLOAD parameter of the SFT job control statement may be used only with
ANSI'74 COBOL programs. DLOAD tells the run processor that your job needs the
0S/3 dynamic loading facility for externally referenced program modules and
indicates the space requirements for dynamic loading.

7004 4623-000

Making Job Control Work for You

Normally, the run processor checks the load module and determines from the phase
header record whether a job needs dynamic loading of main storage. If it does, the
supervisor then allocates space for dynamic loading, immediately following the user
job region, according to the limits specified at system generation. In the following
instances, however, the DLOAD parameter may be needed:

* Ifyour COBOL program references modules not in $§Y$RUN or YLOD that
reference other program modules that would make it impossible for the run
processor to determine whether these externally referenced modules require
dynamic loading.

* Ifyou want to override the SYSGEN-specified limits for dynamic expansion of the
user job region.

The format of the DLOAD parameter is:

DLOAD=| ([callsl], expansion-Llimit)
MAX

The calls specification indicates the maximum number of dynamically loaded modules
allowed for a job. The expansion-limit specifies the maximum number of bytes (total)
that can be added to a job in support of the DLOAD facitily. The number is considered
hexadecimal if you code X’number’ or number. 1t is considered decimal if you code
D’number’,

If you code

// SFT DLOAD=(5,5000)

five DLOAD calls will be allowed for in this job, and the job will be allowed to expand
a maximum of X’5000’ bytes over its initial main storage allocation.

The MAX specification indicates that the size of the job is limited only by the amount
of main storage in the system.

If you omit the number of calls, the system default number of calls (set by the
SYSGEN parameter DLOADTABLE) are allowed. If you omit the expansion limit, the
system default for the expansion limit (set by the SYSGEN parameter DLOADBUFR)
is used. If you code // SFT DLOAD-= then both these defaults apply.

If your job region must be expanded to accommodate the DLOAD facility, the system
allocates contiguous main storage immediately following your job. This may involve
moving your job to a larger region in main storage. If a large enough region does not
exist, an error message is generated - unless your system is generated with the
DLOAD facility.

If the DLOAD facility has been specified at system generation and there is not enough
contiguous space to accommodate your expanded job, your job is rolled out to disk
until the required contiguous main storage is made available through:

7004 4623-000 655

Making Job Control Work for You

¢ Main storage consolidation
* Roll-out of other lower priority jobs
¢ Waiting until other jobs terminate, freeing the required contiguous space

Note: Other jobs can only be moved or rolled out to free main storage for your
expanded job after your job has been rolled out.

There are several points to keep in mind about DLOAD. If the DLOAD facility was
not specified at system generation, an error may occur if enough main storage does not
exist to dynamically expand your job. On the other hand, if you specified the DLOAD
facility at system'generation, your job might be rolled out for a long time. Even if you
do not need to roll out jobs, the DLOAD facility takes time. One way to avoid this
problem is to allow for a larger initial main storage allocation for your job through the
JOB control statement. Suppose, however, that you do need the ability to dynamically
expand your job size and you have specified the DLOAD facility at system generation.
To avoid being rolled out for an extended period of time, you can:

®* Run your job on a system generated with main storage consolidation
* Run your job with preemptive priority (P) specified on the JOB control statement

Avoid running your job when other large or long-running jobs are using main
storage

Note: Jobs that use files with locks set cannot be rolled out to accommodate dynamic
expansion requirements.

For more information about specifying the DLOAD facility at system generation, see
the appropriate installation guide.

Suppose your job needs the shared code module SINCOS and you want to override the
SYSGEN limits for dynamic expansion of your job. You need to allow for six DLOAD
calls with a total expansion limit of X’8000’ bytes over your initial main storage
allocation. Your SFT job control statement would look like this:

// SFT SINCOS,DLOAD=(6,8000)

Making Temporary Changes to a Load Module

6-56

You use an ALTER job control statement to make minor temporary changes in up to
eight bytes of a load module to see if the changes have the desired effect before these
changes are made permanent. Recompiling and link editing are time-consuming. As
many ALTER job control statements as you need to change the module are grouped
before the EXEC job control statement.

7004 4623-000

A

Making Job Control Work for You

The format of the ALTER job control statement is:

//Isymbol1 ALTER L‘phase-name][,address][,change]lz {RESET}]
ORG

The phase-name parameter is either the 8-alphanumeric-character name of the phase
assigned by the linkage editor or the 1- to 6-alphanumeric-character alias name of the
phase. If you omit this parameter, the last phase name used on an ALTER job control
statement in this job step is used.

The address parameter is the 1- to 5-digit starting location address where changed
information is to be stored. The number you specify for the address is considered
hexadecimal if you code X’number or number. 1t is considered decimal if you code
D’number. This is in relation to the first byte of the phase area. If you omit this
parameter and an address is required, an address of zero is used. An address is not
required when RESET is used as the fourth parameter.

Note: If the address given is invalid, a change does not take place.

The actual information to be placed in the phase is specified with the change
parameter. You can specify it in either EBCDIC or hexadecimal. EBCDIC
information takes the form C’c...c. The maximum number of EBCDIC characters is
eight (eight bytes). The maximum number of hexadecimal characters is 16 (eight
bytes).

If you omit the change parameter, no modification is made for this ALTER job control
statement alone, but the information it does contain, such as phase name, is passed to
subsequent ALTER job control statements.

The ORG parameter indicates that the address specified in the address parameter
should be added to all the addresses on succeeding ALTER job control statements,
until one with a RESET parameter or a different phase name is encountered.

Once an ALTER job control statement is encountered, each and every phase of the
load module expects an ALTER job control statement. This is the reason for the

RESET parameter. It indicates that no other ALTER job control statements are in
the control stream.

7004 4623000 657

Making Job Control Work for You

Consider these examples:

// ALTER TSTPGM@®

// ALTER ,4361,X'FAF3F9
// ALTER ,4700,X'F8'

// ALTER ,, ,RESET

If a RESET parameter is specified, the information is passed along to the program
execution phase. When the phase that had the RESET parameter specified is loaded
for the first time, the option is reset so that no other phases will be altered. This saves
time if a phase that is only loaded once is the only phase requiring alteration.

Suppose there is a phase named TSTPGMOOQ and it constantly needs changes
according to weather conditions. The first and last ALTER job control statements
could be inserted as needed. In the preceding example, the information contained in
addresses 4361 and 4700 is changed.

Changing Your File Definition at Run Time

You may need to change the file definition contained in one of your programs.
Regardless of the type of program (COBOL, assembly, and so forth), you would have
needed to either reassemble or recompile and relink your program with the updated
file definition. Now, using the DD (data definition) job control statement, you can
make this change at run time. The changes made using the DD statement are
effective only during the execution of the job; if you want to make a permanent
change, you must make it in your source program.

You can have only one DD statement in each DVC-LFD sequence, and it must be
placed with the assignment set for that device.

658 7004 4623000

Ty

Making Job Control Work for You

The format of the DD statement is:

//lsymbol] DD |RCFM = [FIXBLK| |[,BKSZ=nIlL,

FIXUNB
UNDEF

VARBLK
VARUNB

EXCR
SRDF
SRDO
SRD
SADD
uce

. ACCESS= [EXC [ZREHIND=

[,OPRW=NORWD] | ,CLRW= [NORWD]
RWD
FREE
ASSIGN]

[, TPMARK=NO] | ,RECV= [ALL

RCSZ=n1[,SI1ZE=AUTOI[,SIZEn=n]

E KLEN] =n||, [KLOC] =n|C,INDS=n]
KLENn KLOCn

NORWD
UNLOAD

,FILABL= |NO
NSTD

STD

YES
LOAD
NO
FCE
OFF

[,OFFSET=11|,RESTORE= [n +CACHE= [NO (MSGSUPP= [DM36
YES YES LBOS

[,BUFMODE=NO]

e g e e g

ALL

In the format, we see all the allowable keyword parameters. If a parameter is
specified but not allowed, it is ignored. The n following the KLEN and KLOC
keywords refers to KEYn of a multikey MIRAM disk file. The n following the SIZE
keyword refers to the partition identifier of a MIRAM disk file types. In Table 6-1, we

equate the keyword parameters with their

associated file types. For a complete

description of all parameters, see the Consolidated Data Management Programming
Guide, UP-9978. Descriptions of the parameters that are associated with SAT files
are found in the Supervisor Macroinstructions Programming Reference Manual,

UP-8832.

7004 4623010

659

Making Job Control Work for You

660

Table 6-1. DD Supported Keywords

Format Label Data Set Label
Keyword Diskette/Disk Diskette Tape Card Printer

RCFM* X X X
BKSz* X X
RCSZ*
KLEN1-5*
KLOC1-5*
INDS*
SIZE
SIZE 1-2
ACCESS
VSEC
RECV
VMNT
RCB
OFFSET X
REWIND
OPRW
CLRW
FILABL
TPMARK
RESTORE X
CACHE X
MSGSUPP X
BUFMODE X
Take care when specifying this keyword parameter. If the program accessing the file is dependent on a
predefined (e.g., compile time) file or processing characteristics, it may not be prepared for such a change at
execution time. You may obtain unexpected results unless the program is a user-written BAL program prepared
for this type of specification change or if the user documentation for the product explicitly states that this
specification can be changed at execution time.

> X

X
X

2K XX X XX X X X X X X X X

X X X X X

-

Legend
X Allowed keyword

Suppose we want to change the following FD entry in a COBOL program:

1 8 12 72

FD SAVEIT
RECORDING CODE IS F
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133 CHARACTERS
BLOCK CONTAINS 1@ RECORDS

Our FD describes an output magnetic tape file. We want to change the record size
from 133 characters to 120 characters. Our DD statement would be:

// DD RCSZ=120

7004 4623-010

]

Making Job Control Work for You

When a file is cataloged, the DD information does not get cataloged. When you call
the file using the catalog, if the DD information is required, you must specify the DD
statement in your control stream following the LBL statement. For example, when
you cataloged the file, the following assignment set was used.

// DVC 6@

// VOL DIsKo1
// DD BKSZ=200
// LBL DISKMAST
// LFD DISKM
// CAT DISKM

Now, when you call the file using the catalog, and the DD information is required, you
would use the following:

// LBL DISKMAST
// DD BKSZ = 200

When you use the DD statement with a cataloged file, it must appear following the
LBL statement. Otherwise, it can appear anywhere in the DVC-LFD sequence.

Note: The file cataloging facility is described in the File Cataloging Technical
Overview, 7004 4615.

Adding Cards to a Stored Control Stream

The CR job control statement is used in a stored control stream to indicate that other
job control statements or embedded data (on cards, data-set label diskette, or input
spool file) is to be accepted from the input device and temporarily inserted into a
stored control stream. You indicate the type of input device in the RU command or
the // RUN job control statement. The CR job control statement has no parameters,
it’s just specified as:

//lsymbol] CR

Let’s examine one application of the CR statement. Suppose you’re constructing a job
control stream to execute programs that use low volume card input in the form of
embedded data. Assume that you also want to store the control stream in YJ: CS,
but you know that the embedded data will have to be periodically changed. Because
the embedded data is part of the control stream, you’ll actually be changing the
stream when the data is changed. This somewhat defeats the purpose of storing a
control stream in the first place.

7004 4623-000 ‘ 661

Making Job Control Work for You

You could change the programs to accept the data as card files submitted from the
card reader (the card files can be changed without disturbing the control stream).
Another alternative is to place CR statements in the control stream. When the stored
control stream is initiated (with an RU command or a // RUN statement), the run
processor will expect to find data in the card reader when it encounters a CR
statement. The following example illustrates this:

The stored stream is: In the card reader you've placed:
// JOB MYJOB /%
embedded data for PROG1

// EXEC PROG1 r*

// CR // FIN
/%
// EXEC PROG2 embedded data for PROG2
// CR /%
/& // FIN (This last FIN statement
// FIN is unnecessary if the

input is on data-set-label
diskette or in the spool
file.)

When the first CR statement is encountered, control is directed to the card reader
where you've placed the embedded data for PROGI1 between the /$ and /* statements.
The first FIN statement ends card reader operations and control is returned to the
stored stream until the next CR is encountered. Then the embedded data for PROG2
is accepted. Using this method you can place different data in the card reader for each
job run if necessary.

Note: This application of the CR statement cannot be used with saved translated
control streams. Embedded data already included in such streams may,
however, be replaced using the DATA STEP statement as described in
"Replacing Embedded Data Sets in Expanded Control Streams" later in this
section.

As you'll see when we talk about bypassing job control statement, / CR is also used
when you want other job control statements temporarily inserted in the stored stream.

7004 4623000

/'_"\.‘

Making Job Control Work for You

Depending upon your application, a CR statement can be placed anywhere in the
control stream. If, however, it is placed between a /$ and /* in the stored stream (e.g.,
for inserting job control statements within embedded data), you must include an
OPTION SCAN statement in you control stream. For example:

// JOB MYJOB
// OPTION SCAN

// EXEC PROG1
/%

embedded data
// CR
embedded data
/*

/%

// FIN

If the OPTION SCAN statement is omitted, the CR statement is ignored.

Note: Filed control streams should be limited to control information or other low-
volume data sequences that remain relatively constant. These control streams
and any constant data (not entered from the input reader on each run) are
considered permanent and occupy space otherwise available to the system.

Bypassing Job Control Statements

You use the SKIP job control statement to skip forward in the control stream to
another job control statement. SKIP is effective during execution of your program.
Here’s where the label field is used. Put a symbol in this field of the job control
statement that’s the target of the branch and specify this symbol in the SKIP job
control statement. The skip can be conditional or unconditional, depending on the
parameters you use.

Note: Although both are used to bypass job control statements, | | SKIP, which is
effective at execution time, must not be confused with | | GO, which is effective
at run processor time. See "Unconditional Branching" in Section 7 for an
explanation of /| GO.

Neither the SKIP job control statement nor the target job control statement can be
within a device assignment set or embedded data. All the devices assigned within a
skipped section are still required before the job can be scheduled; however, skipped
devices can’t be referenced subsequently in the same control stream because (even
though they are available) they aren’t completely identified to the system. In view of
this, you cannot bypass device assignment sets referenced subsequently in the control
stream by REN or SCR job control statements. If you use SKIP to bypass the device
assignment set for a cataloged file, you must specify a complete device assignment set
for the file, not just the / LBL statement, and skip to a target label beyond the device
assignment set for the cataloged file. File cataloging is explained in File Cataloging
Technical Overview, 7004 4615. The skip function ends following the completion of the
advance or upon the detection of a /& job control statement, whichever occurs first.

7004 4623000 663

Making Job Control Work for You

The format of the SKIP job control statement is:

ANY

//lsymbol1 SKIP target-label|,mask|, {ALL
NONE

The target-label parameter corresponds to the symbol in the label field of the job
control statement that’s to receive the branch.

The mask parameter tests the UPSI byte and makes the SKIP job control statement
conditional. (See ‘Setting the UPSI" earlier in this section.) It’s one to eight
characters long, and each character is a binary digit that corresponds to the bits of the
UPSI byte. The allowable characters are 0 and 1; 0 means not set, and 1 means set. If
you use fewer than eight characters, the unspecified rightmost positions are assumed
to be zero. If you omit the mask parameter, the skip is unconditional.

The ALL, ANY, and NONE parameters are used with the MASK parameter to
establish the criteria for satisfying the skip condition. For example, ALL states that
all the UPSI bits indicated by the mask must be set to satisfy the skip condition. Only
then will the skip be processed. Otherwise, it is ignored and processing continues with
the next job control statement in the control stream. The same applies to the ANY
and NONE parameters. If you do not specify one of these conditional parameters,
ANY is assumed by default.

Let’s set up a hypothetical situation. Suppose there’s a program like the one described
under the SET UPSI job control statement. (See "Setting the UPSI" in this section.)
The program accepts input either in the form of cards or tape. In this case, bit 1 set
means card input, no bits set means tape input. It edits details for an accounts
receivable application and is run many times daily. So, you want to store this control
stream in YJCS, rather than have it input through the card reader each time it’s
run - but then there would be two different device assignment sets for one input file
(card or tape). Using the SKIP and SET UPSI job control statements, you could set
and test the UPSI byte to see which device assignment set is needed and skip over the
unwanted device assignment set. You could code the control stream to be stored as
follows:

6-64 7004 4623-000

A

Making Job Control Work for You

// JOB BALANCE
// CR

1. |// SKIP CARD, 1
// DVC 90

// VOL MAST@1
// LBL DETAILS
// LFD TAPEIN
2. |// SKIP DOIT
3. |//CARD DVC 30
// LFD CARDIN
4. |//DOIT EXEC EDIT
/&

// FIN

and then precede the data cards to be processed with a SET UPSI job control
statement that would identify the type of input device required.

In the sample control stream, parameter 1 in the first SKIP job control statement
specifies that if the first bit of the UPSI byte is set to 1 (on), go to the job control
statement with a symbol of CARD (3). This provides the device assignment set for the
card reader, and the device assignment set for a tape is bypassed. If this bit is off, the
device assignment set for a tape is processed until the second SKIP job control
statement is reached. This causes an unconditional branch to the job control
statement with a symbol of DOIT (which is the EXEC job control statement) and
bypasses the device assignment set for the card reader.

Now, let’s use input. Assume it’s in the form of a card file. Look back at the example
of the stored control stream. When it's read, the first CR job control statement
switches control to the card reader, where we place a SET UPSI job control statement
to turn the UPSI byte to on (which indicates card input). It's followed by a FIN job
control statement, which terminates the card reader operation - control returns to the
stored control stream. Since the UPSI byte is set to on, the tape device assignment set
is bypassed, and the card reader device assignment set is used. The load module is
then called. Here’s what the stream to set the UPSI byte and provide the card input
would look like.

// SET UPSI, 1 } Control statements inserted in the stored
// FIN stream when // CR is encountered

data cards
/* } Input card file
If the input were on tape, you would place a single FIN job control statement in the
card reader. When the first CR job control statement transfers control to the card
reader, FIN job control statement transfers it right back. Since the UPSI byte is not
set, the device assignment set for tape is used, and the device assignment set for the
card reader is bypassed.

Several system programs, such as the assembler, dump/restore, and disk prep, set the
UPSI byte when an error occurs. For example, when an error occurs during a disk
prep, the prep routine, by its nature, will continue to normal termination. If the error
is fatal, you wouldn’t want to run any subsequent job steps in the job, as they in turn
would also be in error; you’d want to continue processing. The UPSI byte is
automatically set on error conditions, and you can test it with the SKIP Jjob control
statement. The system programs use the following conventions when errors occur:

7004 4623000 ‘ 6-65

Making Job Control Work for You

666

e Abinary 1000 0000 (X’'80’) represents a fatal error. If this occurs, you would not
want to run the remaining job steps. This can also be specified as a binary 1.

* Abinary 0100 0000 (X’40’) represents a warning error condition, which means
that subsequent job steps can be processed. (However, it’s up to you to determine
whether the job should be rerun for total accuracy.)

The following two examples show how you can use the SKIP job control statement to
check for errors in the system programs. (We're using the disk prep routine, whose
control statements are explained in the System Service Programs (SSP) Operating
Guide, UP-8841.

Example 1
1. // JOB DSKPRP
2. |/7 pvc 28 // LFD PRNTR
3. // DVC 50 // VOL DSP@28 // LFD DISKIN
4. |// EXEC DSKPRP
5. |/%
6. SERNR=DSP928, PARTL=V
7. |/*
8. // SKIP ENDS,1
9. . (other
10. . job steps
11. . go here)
12. |//ENDS NOP
13. |/%
1. (// FIN

In example 1, you check the UPSI byte to see if a fatal error has occurred. If the UPSI
byte contains bit 1 set (line 8), then all the other job steps are bypassed and control is
transferred to the NOP job control statement with the label ENDS (line 12). The NOP
job control statement provides you with an address for the skip, with no function being
performed. The /& job control statement terminates your job while the FIN job control
statement terminates the card reader operation.

7004 4623-000

N

Making Job Control Work for You

Example 2

// JOB DSKPRP
// DVC 20 // LFD PRNTR
/7 DVC 50 // VOL DSP@28 // LFD DISKIN
// EXEC DSKPRP
/3
SERNR=DSP@28, PARTL=V
/*
// SKIP WARN,01
// SKIP FATAL,10
10. |7/ sKkIP EXIT
11. [//WARN OPR 'WARNING-A NON-FATAL ERROR HAS OCCURRED'
12. |// SKIP EXIT
13. |//FATAL OPR 'FATAL ERROR-JOB TERMINATED-CORRECT AND RERUN'
14. |77 sk1p ENDOFJOB
15. |//Ex1T NOP

VENrWNR

16. . (other
17. . job steps
18. . go here)
19. |//ENDOF JOBNOP

20. |/&

21. {// FIN

In example 2, you check for both the fatal and warning errors and the display of
appropriate messages on the system console. If a warning error has occurred, that is,
bit 2 set in the UPSI byte (line 8), then you skip to the label WARN on the OPR job
control statement. The SKIP job control statement (line 12) is the next job control
statement processed. Here, you skip down to the label EXIT on the NOP job control
statement (line 15). As mentioned earlier, the NOP acts as an ending point for the
SKIP job control statement. The remaining job steps follow the NOP statement and
are processed accordingly. Following the last job step, the NOP statement on line 19
is processed, with no action being performed. Your job then terminates normally
through the /& and FIN job control statements.

If a fatal error occurs, which is bit 1 set in the UPSI byte (line 9), you skip down to the
label FATAL on the OPR statement (line 13) and print the specified message. The
SKIP job control statement (line 14) skips down to the label ENDOFJOB on the NOP
statement, thus bypassing your remaining job steps and terminating your job.

7004 4623-000 667

Making Job Control Work for You

Bypassing Job Control Statements to Avoid
Abnormal Termination

The ABNORM-=label keyword parameter of the EXEC statement is used to skip
forward in the job control stream if your program contains errors that will cause an
abnormal termination. Recall that the format for the EXEC statement is:

$YSRUN

// [symboll EXEC program-name|, flibrary-name| {[,[+Iswitch-priorityl[,ABNORM=label]
$YSLOD

The label that you specify with the ABNORM parameter corresponds to the symbol (in
the label field) of the job control statement that is the target of the skip. Since
ABNORM is a keyword parameter rather than a positional parameter it may be coded
in any position. For example:

// EXEC MYPROG,ABNORM=ERR
or
// EXEC MYPROG,MYLIB,ABNORM=ERR

Now consider the following job control stream:

// JOB MYJOB

// OVC 20

// EXEC MYPROG,ABNORM=ERR

// OPR 'MYPROG TERMINATED NORMALLY'®

// SKIP EOJ

// ERR OPR 'MYPROG TERMINATED ABNORMALLY'
//EOJ NOP

/&

Should MYPROG contain errors that will cause abnormal termination, the ABNORM
parameter in this example specifies a skip to the job control statement with the label
ERR. In this case, the message MYPROG TERMINATED ABNORMALLY will be
displayed on the system console. If MYPROG terminates normally, this skip will not
occur. Instead, the console message MYPROG TERMINATED NORMALLY will be
displayed.

Remember, if the operator issues a cancel instruction for your job, the job still
terminates normally, even though you've specified the ABNORM= parameter.

668 7004 4623-000

:/:ﬂ\ \

Y

Making Job Control Work for You

Dynamic Skip Function from a Workstation

The interactive user can change control stream execution from the workstation by
dynamically skipping parts of the control stream. This is accomplished through the
OPTION QUERY job control statement. (See "Selecting Optional Features" earlier in
this section.) When a control stream containing the OPTION QUERY job control
statement is processed, a message is displayed at the workstation screen asking you to
indicate the type of skip function you want.

Substituting Embedded Data

Data can be embedded within a stored control stream, but there may be times when
not all of this is used. For example, you may have a payroll application using a file
with the names and pay rates of all the employees. The first quarter of the file may
consist of salaried employees, and the remainder is the hourly employees. This job is
run every week, but the salaried employees only get paid every two weeks, so you
don’t need to use their portion of the file on every run.

You can place job control statements within the embedded data to control this. By
using the SCAN parameter in the OPTION job control statement, the embedded data
is scanned to detect and act upon the job control statements embedded in the data.
Thus, the data you do not want is skipped. If the OPTION job control statement is
omitted, the job control statements are passed over without action.

The following rules are used by the run processor, and must be followed when placing
job control statements in embedded data:

® There can be only one job control statement per card.
® Job control statements cannot be on the same card as data.

* The job control statement must be the target of an IF or GO job control
statement.

When scanning embedded data for job control statements, two situations exist:

1. Embedded data is scanned when the OPTION job control statement is not
present in the following manner:

* Datais divided into sets - a particular /* job control statement is paired with
its corresponding /$ job control statement in order to determine the true end
of embedded data. The number of /* and /$ job control statements must be
equal.

® The FIN job control statement and the END proc definition statement are
acted upon when detected.

7004 4623000 _ 669

Making Job Control Work for You

2. Ifthe SCAN parameter of the OPTION job control statement is used, the
following job control statements are also acted upon:

CR

GBL

GO

IF

JSET
NOP
OPTION

We'll discuss replacing embedded data sets in a saved, translated job control stream
next.

Replacing Embedded Data Sets in Expanded
Control Streams

Embedded data in a saved translated control stream can be replaced for only one run
of the job. The replacement data must be preceded by a / DATA STEP statement and
submitted from a card reader, data-set-label diskette, or an input spool file. The
format of the DATA STEP statement is:

// DATA STEP=nnn

The nnn parameter is a decimal number in the range 1-255 that specifies the number
of the job step within the job for which you're submitting new embedded data. Step1,
for example, is specified like this:

// DATA STEP=1

670 7004 4623000

7

Making Job Control Work for You

The DATA STEP statement is followed by a PARAM statement (if needed), the start-
of-embedded-data statement (/$), the new data set, and the end-of-embedded-data
statement (/*). If the job step specified in / DATA STEP has more than one data set,
you must replace the old data sets in the job step with an equal number of new data
sets. If you don’t, an error occurs and the function is not performed. For example, let’s
say you want to replace the embedded data sets (two of them) in job step 3 of your job
with new data sets. You would prepare these statements:

// DATA STEP=3
/%

new embedded data
/*
/%

new embedded data
/*

A DATA STEP statement must be submitted for each job step that contains embedded
data you want to replace. If your job has four job steps, for example, and you want to
replace the embedded data sets in steps 2 and 4 with new data, you would prepare
these statements. For this example, assume step 2 has one data set and step 4 has
two data sets:

// DATA STEP=2
/%

new embedded data
/*
// DATA STEP=4
/%

new embedded data
/'k
/%

new embedded data
/*

Since the DATA STEP sequence of statements (including the new embedded data) are
submitted to the saved, translated stream from a card reader, diskette, or spool file,
you must use the SI command or the / CC SI job control statement to initiate the
running of the saved, translated stream.

The data sets you submit through the DATA STEP statement last for the duration of
the run only because the copy of the job’s YRUN file stored in YSAVE contains a
copy of the original embedded data. To permanently change a saved, translated
stream, submit a new stream to be translated and saved.

7004 4623-000 671

Making Job Control Work for You

Note: You can also use the /| | DATA STEP statement to null existing embedded
data by not including any new data between the start-of-embedded-data
statement (/$) and the end-of-embedded-data statement (/*). However, bit
pointers must be set in the original job control stream when attempting this
operation. To null embedded data in a saved translated control stream, your
prepared statement appears as follows:

// DATA STEP=nnn

/%
I*

Y

Job Control Considerations for Screen Format Services,
Menu Services, and Dialog Processing

If you are preparing a control stream for a job that uses screen format services, menu
services, or dialog processing, you must include the USE statement in your
workstation device assignment set. The USE statement has different formats
depending on which of the three interactive components your job uses. Only one USE
statement may be specified in each workstation device assignment set.

Notes:

1. When menu processing is initiated from a BAL user program, the following
statements are required for the workstation OPEN RIB:

WKFM=VARI
WAIT=YES
WORK=YES
PMODE=WSAM
2. Menus and screens may not be used together within a user program except when

the screens are processed directly by the menu processor (i.e., via the SCREEN and
DISPLAY menu function commands).

672 7004 4623000

T
\

P i

Making Job Control Work for You

The USE Statement for Screen Format Services

When your program needs to use screen format services from a workstation, the USE
statement you specify takes this form:

format-file-LFD

//lsymbol]l USE SFS|, |[format-file-LFD-11/[format-file-LFD-2]
SYSFMT

[,initial-screen]|z {nnn}]
1

[,screen-format-1=alias-1[,...,screen-format-12=alias-121]

The symbol parameter is used as the target of a branching statement. It is one to six
alphanumeric characters long, and the first character must be alphabetic.

In the first positional parameter, you can provide an LFD name for up to two screen
format files. Any name you use must match an LFD name specified in a previously
defined device assignment set for a screen format file. (Screen format files are always
MIRAM files.) The format-file-LFD is one to eight alphanumeric characters long.

When coding this parameter, remember the following:

¢ Ifyou omit a format-file-LFD name, it is assumed that all screen formats used
reside in the system file YFMT.

* Ifyou code /format-file-LFD-2 alone, $§Y$FMT is examined first, then the file
indicated by format-file-LFD-2.

* Ifyou code format-file-LFD-1/ alone, the file indicated by format-file-LFD-1 is
examined first, then YFMT.

* Ifyou code format-file-LFD alone, only the file indicated by format-file-LFD is
examined.

‘The initial-screen parameter specifies the name of the first screen format to be used by
the application program. It is one to eight alphanumeric characters in length. Use of
this parameter depends on the program’s language. For more information, see the
Screen Format Services Technical Overview, UP-9977.

The nnn parameter specifies the number of screens to be resident in main storage at
one time, in the range 1 to 255. The default value is 1.

The screen-format=alias parameter equates a screen format name specified in an
application program (alias) to the actual screen format name generated by the screen
format generator. A maximum of 12 alias name sets may be specified. The screen-
format name and alias name may each be from one to eight alphanumeric characters
in length.

7004 4623-000 _ 673

Making Job Control Work for You

The control stream for a job that uses screen format services could include these job
control statements:

// J0B YOURJOB

// DVC 5@

// VOL ABC

// LBL FRMTFILE Device assignment set for the screen
// LFD FORMAT { format file

// DVC 200
// USE SFS,FORMAT Device assignment set for the
// LFD WORKSTN workstation

.- > Screen format file LFD name

// EXEC PRGRM2
/&

When you run YOURJOB, PRGRM2 is executed. PRGRM2 contains an instruction to
open WORKSTN, which opens the screen format file FORMAT.

For more information about screen formats, see the Screen Format Services Technical
Overview, UP-9977.

The USE Statement for Menu Services

When your program needs to use menu services from a workstation, the USE
statement you specify takes this form:

YFMT /menu-file-LFD

//Isymbol1 USE MENU |, [menu-file-Lro/sYsmr]
SYSFMT

[,initial-menu][z {nnn}:}
1

[,menu-format-1=alias-1[,...,menu-format-12=alias-12]]

- 674 7004 4623-000

Making Job Control Work for You

N\

The USE MENU statement is similar to the USE SFS statement except that the
parameters refer to menu formats instead of screen formats.

The symbol parameter is used as the target of a branching statement. It is one to six
alphanumeric characters long, and the first character must be alphabetic.

The first positional parameter provides an LFD name for up to two menu format files.
Any name you use must match an LFD name specified in a previously defined device
assignment set for a menu format file. (Menu format files are always MIRAM files.)
The menu-file-LFD is one to eight alphanumeric characters long. When coding this
parameter, remember the following:

* Ifyou omit a format-file-LFD name, it is assumed that all menus used reside in
the system file YFMT.

* When you code /menu-file-LFD, YFMT is examined first, then the file
indicated by menu-file-LFD.

® When you code menu-file-LFD/, the file indicated by menu-file-LFD is examined
first, then YFMT.

The initial-menu parameter specifies the name of the first menu format to be used by
the application program. It is one to eight alphanumeric characters in length.

The nnn parameter specifies the number of menus to be resident in main storage at
one time, in the range 1 to 255. The default value is 1.

The menu-format=alias parameter equates a menu format name specified in an
application program (alias) to the actual menu format name (given when the menu
was created). A maximum of 12 alias name sets may be specified. The menu-format
name and alias names may each be from one to eight alphanumeric characters in
length.

7004 4623-000 675

Making Job Control Work for You

The control stream for a job that uses menu format services could include these job
control statements:

// J0OB YOURJOB

// DVC 50
// VOL ABC Device assignment set for the menu
// LBL MENUFILE format file

// LFD MENU1

// USE MENU,MEN
// LFD WORKSTN

—

Device assignment set for the
workstation

/7 DVC 208 -]

Menu format file LFD name

// EXEC PRGRM1
/&

When you run YOURJOB, PRGRM1 is executed. PRGRM1 contains an instruction to
open WORKSTN, which opens the menu format file MENUL.

For more information about menu services, see the Menu Services Technical Overview,
UP-9317.

The USE Statement for Dialog Processing

When your job needs the dialog processor to manage a dialog session at a workstation,
the USE statement you specify takes this form:

//lsymbol1 USE DP,dialog-namel,printer-lfdl[,new-audit-Lfdl[,old-audit-lfd]
The files specified in the USE DP statement must have been previously identified
(through device assignment sets) in the control stream.

The symbol parameter is used as the target of a branching statement. It is one to six
alphanumeric characters in length, with the first character being alphabetic.

The dialog-name parameter specifies the name of the dialog you want to use; it must

match the LFD statement of the dialog file’s device assignment set. It is one to eight
alphanumeric characters in length.

676 7004 4623000

Making Job Control Work for You

P
\

The printer-lfd parameter specifies the name of the printer file. It must match the
LFD statement of the printer’s device assignment set. It is one to eight alphanumeric
characters in length. This parameter is specified when you want to produce a printed
summary of the dialog session.

The new-audit-Ifd parameter specifies the name of the new audit file output by the
audit version of the dialog processor. It must match the LFD statement of the new
audit file’s device assignment set. The new audit file contains a record of your
responses to a current dialog session. This parameter is one to eight alphanumeric
characters in length.

The old-audit-lfd parameter specifies the name of the old audit file used as input to
the audit version of the dialog processor. It must match the LFD statement of the old
audit file’s device assignment set. It is one to eight alphanumeric characters in length.
The old audit file contains a record of your responses to a previous dialog session.

The control stream for a job that calls the dialog processor could contain these job
control statements:

// JOB MYJOB

// DVC 20

// LFD PRNTR } Device assignment set for the printer
// DVC 50

// VOL DSK@1

// LBL NEWAUDITFILE Device assignment set for the new

// LFD AUDIT1 } audit file

// DVC 51

// VOL DSK@2

// LBL DIALOGFILE Device assignment set for the

// LFD DIALOG1 } dialog file

// DVC.ZOO

// USE DP,DIALOG1,PRNTR, ,AUDIT1 Device assignment set for the
// LFD WKSTN workstation
// EXEC PRGRM1 e New audit file Lfd
/& Printer lfd
Dialog name

When you run MYJOB, PRGRM1 is executed. PRGRM1 contains an instruction to
open WKSTN, which, when processed, causes DIALOG1 to execute at the workstation.
Your responses to DIALOGI are routed back to PRGRM1.

7004 4623-000 ‘ 677

Making Job Control Work for You

For more information about dialog processing, see the Dialog Processor Programming
Guide, UP-8858.

Source Module Access via the USE Statement

Your programs can write (create) or read a source module that you identify in the USE
LIB job control statement. When included in the device assignment set for a library
file, / USE LIB indicates that the file contains source modules and the specified
module will be accessed by your program.

}

The module name you specify can be from one to eight alphanumeric characters long
and the first character must be alphabetic. The following job control stream indicates
that PROG1 will access a source module named MODULEL.

The format for // USE LIB is:

//lsymbol] USE LIB,module-name ,TYPE=|S

—OX

// JOB READMOD

// DVC 50

// VOL D1234

// LBL SRCLIB1

// USE LIB,MODULE1
// LFD SRCMOD

// EXEC PROG1
/&

Note: Access of a source module by your program is limited to either a sequential
read or sequential write operation.

678 7004 4623000

&

/ A\

Section 7
Run-Time Conditional and Set Symbol Job

Control Statements

Run-Time Conditional Job Control Statements

GO, IF, and NOP are run:time conditional job control statements. They allow you to
branch to other job control statements in the control stream. Unlike SKIP job control
statements (effective during execution of your program), they are interpreted and
acted upon while the run processor is scanning the control stream, and then stripped
from the stream. Therefore, any devices and volumes specified on the bypassed job
control statements need not be available. Only forward branches are allowed for run-
time conditional statements. Because GO, IF, and NOP are processed only by the run
processor and their actions are completed when the run processor has acted upon
them, they are very useful when writing job control procedure (JPROC) definitions.

Unconditional Branching

The GO job control statement causes an unconditional branch to another job control
statement identified by a symbol. The destination can be a set symbol with a value
determined when the job stream is analyzed.

The format of the GO job control statement is:

//Lsymbol]l GO destination

The symbol is only used when this job control statement is the target of another GO or
IF job control statement.

The destination parameter identifies the target job control statement and must agree
with the symbol in the label field of that statement.

Like the other run-time conditional statements, the GO job control statement is acted
upon by the run processor, before a job is scheduled, and then deleted from the control
stream. For this reason, the devices and volumes skipped by a GO statement need not
be available when the run symbiont is scanning the control stream.

Note: Unlike GO, SKIP is effective during the execution of a program. Because a job
is not executed until all the devices and volumes it uses are available to the
system, devices and volumes bypassed by SKIP must be available or the job
won’t be scheduled. However, devices and volumes bypassed by a SKIP
statement can’t be referenced in subsequent job control statements in the
control stream because, even though they are available, they have not been
completely identified to the system.

7004 4623-000 71

Run-Time Conditional and Set Symbol Job Control Statements

The following is a stored control stream similar to the one shown with the SKIP job
control statement. (See "Bypassing Job Control Statements" in Section 6.)

// JOB BALANCE
// CR

// DVC 9@

// VOL MAST@1

// LBL DETAILS
// LFD TAPEIN

// GO DOIT
//CARD DVC 30

// LFD CARDIN
//DOIT EXEC EDIT
/& N
// FIN

If the input is on cards, you would place the following stream in the card reader:

// GO CARD Job control statements inserted in the stored stream
// FIN when // CR is encountered.
data cards }

r* Input card file

When the first CR job control statement from the stored control stream is encountered
by the run processor, it transfers control to the card reader, where the GO job control
statement causes the device assignment set for the tape to be skipped without any
processing. The tape volume and the device that would use it do not have to be
available. Therefore, they can be used by another job. If the input is on tape, a FIN
job control statement is all that’s needed in the card reader. The tape device
assignment set would be read, and the stored GO job control statement would cause
the device assignment set for the card reader to be bypassed.

Conditional Branching

72

The IF job control statement causes a conditional branch to another job control
statement, depending upon certain test conditions. This is similar to using the SKIP
job control statement conditionally, except that it’s interpreted and acted upon by the
run processor, just like the GO job control statement.

The format of the IF job control statement is:

//Lsymbol] IF (a op b)destination

The symbol is only used when this job control statement is the target of another GO or
IF job control statement.

The test for a conditional branch is specified as (a op b), where a and b are the two
operands to be compared. You can compare two numeric operands (1 op 2) or two
alphabetic operands (a op b) but a run processor error results if you attempt a
comparison between one numeric and one alphabetic operand (1 op b).

7004 4623-000

Run-Time Conditional and Set Symbol Job Control Statements

The op in the expression is the relational operator that specifies the type of
comparison to be done. The values for op are:

EQ - aisequaltod

NE - aisnotequaltod

GT - aisgreaterthanb

LT - aislessthand

GE - aisgreater than or equal to b
LE - aislessthanorequaltod

Remember, whenever you enclose an operand in quotes, the quotes are considered a
part of the operand. For example, (a’ EQ a) is an allowable comparison but the
operands are not equal because one value is ‘2’ and the other is a. (See "Specifying Set
Symbol Values in Quotes” later in this section for more information.)

The operands are separated from the relational operator by spaces and the entire
parameter is enclosed within parentheses.

Note: If a numeric comparison is made and neither a nor b is numeric, both the
greater than and less than conditions are set, resulting in all conditions except
equal being allowed to branch. If a character compare is being used and the
two operands are not of the same length, then the comparison is made on the
number of characters present in each, rather than on the contents of the
operands. Thus, a string of five characters will always be less than a string of
six characters, regardless of the character content of the comparands. If you
have specified / | OPTION UNEQUAL, an error message is generated
whenever character strings of unequal length are compared. (See "Selecting
Optional Features" in Section 6.)

The destination parameter identifies the target job control statement that will receive
control if the transfer condition is true. This entry must agree with the symbol in the
label field of the target job control statement.

When scanning for the target job control statement, only the FIN job control
statement is acted upon. Therefore, you cannot branch out of the current job stream;
any procedure calls or CR job control statements that are skipped are not acted upon.

The comparand fields may be variable symbols, or dummy arguments, that can be set

in a JPROC definition. They’re called dummy arguments because the variable symbol
can be modified when called by the JPROC call.

7004 4623-000 . 7-3

Run-Time Conditional and Set Symbol Job Control Statements

Let’s look at an example. At first, this example will not be totally clear, but when
combined with the explanations of the remaining job control statement in this section
and the JPROC definitions in the next section, it will become clearer. The only
purpose here is to explain how the IF job control statement functions.

Consider this example:

/7 IF ('&IN' EQ 'N')EXIT

This job control statement is in a JPROC definition. When the PROC directive was
written, it contained a parameter called IN. The ampersand of &IN identifies this as
a variable symbol; this means, use the value of the IN parameter. EQ is the relational
operator. N is a value that can be supplied as a value for IN. Thus, if the value
specified by the IN parameter is equal to N, transfer control to the destination
supplied by the next parameter, which is EXIT. IfIN is not equal to N, control is
transferred to the job control statement immediately following the IF job control
statement. Note in the example that spaces precede and follow both IF and the
operator EQ. Note also the lack of spaces between the parentheses and the '&IN’ and
‘N’ terms and the lack of spaces or a comma before the word EXIT.

Providing Targets for Branching

74

The symbols in the label field of the job control statements provide the targets for
branching job control statements. But the /$, 1*, and /& job control statements don’t
have a label field. You may also want to branch to the end of a JPROC, which is an
END directive. This doesn’t have a label field that can be accessed by a branching job
control statement. The NOP job control statement allows you to branch to an
otherwise unaccessible position in the control stream,

The format of the NOP job control statement is:

//symbol NOP [QUERY]

This job control statement provides a target for a branching job control statement.
The symbol must agree with the target defined in the sending job control statement.
The optional QUERY parameter is used when you want to take advantage of the
label-skipping facility of // OPTION QUERY. This facility is available to workstation
users and console operators.

The following is an example based on the IF job control statement example shown
earlier in "Conditional Branching" and using the END directive as the target (it’s still
within a JPROC definition):

// EXEC LISTX
/7 IF ('&IN* EQ 'N')EXIT
// PARAM SPACE=TWO
//EXIT NOP

END

7004 4623000

O

Run-Time Conditional and Set Symbol Job Control Statements

Notice that the IF job control statement was placed afer the EXEC job control
statement. This is allowable since it’s a run-time conditional job control statement,
which is acted upon by the run processor and then stripped from the control stream.

Note: You can use the NOP statement to place comments in your control stream.
The comment is used in place of the QUERY parameter, is separated from the
NOP statement by one or more blanks, and is enclosed in single quotes. When
used for this purpose, the NOP statement does not have to be the target of a
branching statement.

Run-Time Set Symbols

A set symbol is a type of variable that can be set to a value and used by the run
processor as a counter, switch, or value to control a job. Because the run processor is
responsible for making set symbols effective, they are called run-time set symbols.
There are two types of set symbols:

e GLOBAL

A global set symbol, once declared, can be referenced anywhere in the basic
control stream as well as in any JPROC definition the control stream calls.

e LOCAL

A local set symbol can only be declared and referenced within a JPROC
definition. (If a local and a global set symbol have the same name, the local
symbeol is used within the JPROC.)

You use the following to declare run-time set symbols.

* //GBL,// QGBL, RUN/RV (command), / RUN/RV
Declare global set symbols only.

e //JSET

Declares local set symbols and (if specified in a basic control stream after // GBL
or // QGBL) can be used to supply or change the value of a global set symbol
(without changing the symbol’s status to local).

Global Status Set Symbols

The GBL job control statement can be used to declare global set symbols. This
statement may appear anywhere in the control stream, and the symbols are global
from the point of declaration forward.

7004 4623-000 75

Run-Time Conditional and Set Symbol Job Control Statements

The format of the GBL job control statement is:

//symbol 1GBL set-id-1[=init-1][,set-id-2[=init-2],...,set-id-n[=init-n]]
The set-id parameter specifies the name of the set symbol. The init parameter assigns
a value to the set symbol, provided a value has not already been assigned. For
example:

// JOB MYJOB

// GBL PRNTR=20

The set symbol defined in the preceding / GBL statement is PRNTR and the value of
PRNTR (&PRNTR) is 20. The value 20 is substituted any time you reference this

symbol by &PRNTR later in the control stream, or in any JPROC the control stream
calls. For example:

// JOB MyJoB
// GBL PRNTR=20

// DVC &PRNTR=20
// LFD PRTFIL

run processor encounters this statement. The

The value 20 is substituted for & RNTR when the
result is // DVC 20.

/&

Note: The & used when referencing a set symbol is never used when defining the set
symbol in the GBL job control statement.

The value assigned by the init (value) parameter is used only if a value is not assigned
by a preceding // GBL statement; is not assigned in the RUN/RV command (the
RUN/RYV job control statement if you're initiating one job from another); is not
changed later in the control stream by a / JSET statement. Consider the following:

// JOB MYJOB
// GBL PRNTR=20

// GBL PRNTR=26

76 7004 4623-000

Run-Time Conditional and Set Symbol Job Control Statements

The value assigned by the first GBL job control statement applies for the entire
control stream any time &PRNTR is referenced. The second GBL job control
statement does not result in an error condition but has no effect on the value of
PRNTR. (You can use a JSET job control statement in place of the second GBL job
control statement to change the value of PRNTR. JSET is discussed in "Local Status
Set Symbols" later in this section.)

The effect of specifying a global set symbol and value in the RUN/RV command is as if
// GBL is inserted directly after the / JOB statement in the control stream. If, for
example, you use RV MYJOB, PRNTR=28 to initiate a job, / GBL PRNTR=28 is
considered the first statement in the stream. You can reference &PRNTR any place in
the job stream and the run processor will substitute the value 28. Consider the
following:

// JOB MYJOB

The global set symbol PRNTR was defined and given
. a value of 28 in the RUN/RV command. The run
// DVC &PRNTR processor substitutes 28 for &PRNTR resulting in
// LFD PRTFIL // DVC 28.

Note: Remember to include a /| OPTION SUB statement in your control stream if
you want values substituted for set symbols referenced in embedded data.

If you include a // GBL statement for PRNTR in your control stream specifying one
value, and initiate that stream with a RUN/RV command specifying another value for
the same symbol, the value specified on the RUN/RV command is used. If, for
example, you use RV MYJOB, PRNTR=28 to initiate the following stream:

// JOB MYJOB
// GBL PRNTR=20

// DVC &PRNTR
// LFD PRTFIL

the value 28 is substituted for &PRNTR. The value 20 is used only if you don’t supply
a value for PRNTR in the RUN/RV command.

7004 4623-000 . 77

Run-Time Conditional and Set Symbol Job Control Statements

Whenever you specify a set symbol in the / GBL statement without a value (for
example, / GBL PRNTR), you must use the RUN/RV command to supply the value, or
provide a value using the / JSET statement before the symbol is referenced.
Otherwise, the value of the symbol is considered null. This may or may not be desired.
Consider the following GBL job control statement:

// GBL PRNTR, TOKEN=DKIN

This statement declares global status for the set symbols PRNTR and TOKEN. The
value of TOKEN is DKIN. The value of PRNTR was previously defined in the
RUN/RV command, will be defined later in a JSET job control statement before
&PRNTR is referenced, or is a null value.

When coding the GBL job control statement, you cannot use the statement
continuation; specify separate // GBL statements.

With the QGBL job control statement, interactive users can declare global set symbols
in a job control stream and then specify values for those symbols through the
workstation at job run time. The format of the QGBL job control statement is:

//Lsymboll QGBL set-id-1[=init-11[,set-id-2[=init-21,...,set-id-n[=init-nl]

The set-id parameter may be a maximum of eight characters and the init (value)
parameter may be a maximum of 60 characters. When you run a control stream
containing a / QGBL statement, the specified set symbol is displayed at the
workstation and you’re asked to provide a value for the set symbol. A null response
may indicate that a (default) value specified in the QGBL statement is valid. Suppose
you build a job control stream that includes these statements:

// JOB MYJOB
// QGBL DVC=20@
// DVC &DVC
// LFD PRNTR

/&

When you initiate the control stream (RV MYJOB) and the run processor encounters
the / QGBL statement, the following is displayed on the workstation screen:

@3 ? JOB=MYJOB SYMBOL=DVC VALUE=20 *ENTER VALUE

If you don’t enter a value on the following line (for example, 03 22, indicating a specific
printer), the value specified in the / QGBL statement (20) is substituted for &DVC.

78 7004 4623000

Run-Time Conditional and Set Symbol Job Control Statements

Suppose you write the following job control stream to prep a data-set-label diskette:

// JOB PREPDSL
// QGBL ADDR,VSN,RCSZ,SPIRL, IPL
// DVC 20
// LFD PRNTR
// DVC 130,8&ADDR
// VOL X(NOV)
// LFD DISKIN
// OPTION SCAN,SUB
// EXEC DSKPRP
/%
SERNR=&VSN, RECSZ=&RCSZ, SPIRL=&SPIRL, IPLDK=&IPL
voL1
/*
/%
The // QGBL statement declares five global set symbols. One is referenced in the DVC
statement for the diskette device. The other four are referenced in the embedded
data. (The embedded data consists of keyword parameters whose values provide
necessary information for the diskette to be prepped.) When you initiate the job at

your workstation using RV PREPDSL, and the run processor begins job processing,
the following occurs:

* A workstation screen display asks you to supply values for each of the set
symbols declared by the / QGBL statement. For example:

JOB=PREPDSL SYMBOL=ADDR VALUE IS NULL *ENTER VALUE

(Assume that 320, DK001, 128, Y, and Y are the values you specify for ADDR,
VSN, RCSZ, SPIRL, and IPL, respectively.)

® When DVC 130,&ADDR is encountered, the run processor substitutes the value
320 resulting in / DVC 130,320. (Had a null response been entered, then a
physical device would not be assigned.)

® When the embedded data is encountered, the run processor substitutes the
specified values (provided, of course, you included a / OPTION SUB statement in
the job control stream) resulting in

SERNR=DK@@1, RECSZ=128, SPIRL=Y, and IPLDK=Y.

For information about prepping diskettes, see the Systems Service Programs (SSP)
Operating Guide, UP-8841.

If global symbols declared by // QGBL are given values through any other means (a
RUN/RV command, a / GBL statement in the control stream, a / JSET statement in
the control stream), you won’t be asked to submit a value at the workstation even
though the stream includes a // QGBL statement.

7004 4623-000 79

Run-Time Conditional and Set Symbol Job Control Statements

Local Status Set Symbols

The JSET job control statement can be used to define a local set symbol or to change
the value of a global set symbol without changing its status to local.

The format of the JSET job control statement is:

//symbol JSET value

The symbol specifies the name of the set symbol. The value of this set symbol is coded
as the value parameter. It may be a character string up to eight characters long
enclosed by apostrophes, if it contains blanks. For example:

// PRNTR JSET 20 (The symbol PRNTR is given a value of 20.)

Now, consider the following:
//PRNTR JSET &DEVICE

In this statement, PRNTR will have whatever value is given to DEVICE. The value
for DEVICE can be supplied via the RUN/RV command, in a preceding / GBL or //
QGBL statement, in a JPROC call, or even in // JSET statement specified later in the
control stream (for example, /DEVICE JSET 20).

The value can also be a simple 2-term expression such as &A+&B. The operations
allowed in a 2-term expression are:

Operator Description
/ Covered quotient, A/B is equivalent to (A+B-1)/B.
/ A/B means arithmetic quotient of A and B.
* A*B means arithmetic product of A and B.

- A-B means arithmetic difference of A and B.

+ A+B means arithmetic sum of A and B.
*x A**B means logical product AND of A and B.
++ A++B means logical sum OR of A and B.

- A--B means logical difference XOR of A and B.

710 7004 4623000

P

Run-Time Conditional and Set Symbol Job Control Statements

Whenever you're performing an operation using a JSET statement, the operands upon
which the operation is to act must be numeric. Look at this example:

// GBL M=1,X=2
//MX JSET &M+8&X

The result of this operation is MX=3.

If both the operands are not numeric, the operation is not performed and the result is
a concatenation of the values. If M had been set with the value of A in the preceding
example, the result would have been MX=A+2. The operation would not have been
performed.

You can also use the JSET control statement to establish a null value. This can be
done by specifying either:

//symbol JSET

or

//symbol JSET 1!

Leading zeros are not maintained for multiple-digit numeric values in a JSET control
statement. If a leading zero is required when the symbol is used, it must be created
via a second JSET control statement. For example, if you want the value of symbol P
to be 08, assign another symbol (K in this example) the value of 0, like this:

//K JSET @
Assign symbol P the value of 8, like this:
//P JSET 8

When P is referenced, it must be prefixed by K. Thus, the value of &K&P is 08.

As mentioned earlier, when you define a set symbol in a JPROC using / JSET, the
symbol is considered local and can only be referenced within the JPROC. JSET,
however, also allows you to change the value of a global set symbol without changing
its status to local. For example: '

// JOB MYJOB
// GBL PRNTR=20

. This statement changes &PRNTR to 28.
//PRNTR JSET 28 PRNTR is still a global set symbol.

7004 4623-000 _ 711

Run-Time Conditional and Set Symbol Job Control Statements

If you define a global set symbol in the RUN/RV command or a GBL statement and
you don’t specify a value (for example, RV MYJOB, PRNTR or / GBL PRNTR) you can
simply use / JSET to provide one or more values for PRNTR.

For example:

// JOB MYJOB
PRNTR was defined in the RUN/RV command or a previous
. // GBL statement. // JSET assigns 28 for the value of
//PRNTR JSET 28 PRNTR. Any time the run processor encounters &PRNTR,
. 28 is substituted until the next // JSET is encountered.

//PRNTR JSET 20 This statement changes &PRNTR to 20. Any time the
. run processor encounters &PRNTR, 20 is substituted
until the end of job.

Specifying Set Symbol Values in Quotes

There are certain considerations you should take when assigning a value enclosed in
quotes to a set symbol.

Whenever you use / GBL or // QGBL to assign a quoted value to a set symbol, the
quotes are always considered part of the value. For example:

// GBL X='ABC',Y=XYZ

The value of X (&X) in this case is ’ABC’ while the value of Y (&Y) is XYZ. This is
worth remembering especially if &X will be involved in a comparison using the IF job
control statement. (See "Conditional Branching” earlier in this section.) If, for
example, the value of X is set to ’ABC’ as follows:

// GBL X="ABC'
the following statement represents a character comparison match:

// IF (&X EQ 'ABC®)LABEL

This statement results in a branch to LABEL because the value of X is ’ABC’ and the
value you're comparing X to is’ABC’. Consider the following statement:

// 1F (&X EQ ABC)LABEL

This is not a character comparison match because the value of X is still ’ABC’ while
the value you’re comparing X to is ABC.

7004 4623000

~

Run-Time Conditional and Set Symbol Job Control Statements

A different situation exists when you use / JSET to assign a quoted value because //
JSET always removes one level of quotes (if any). Consider the following:

//X JSET 'ABC' The value of X (&X) is ABC.
//X JSET ''ABC!'! The value of X (&X) is 'ABC'.
//X JSET ABC The value of X (&X) is ABC.
//X JSET ''ABC'! The value of X (&X) is 'ABC'.
//X JSET &X X is now ABC.

This should also be considered when specifying a comparison with / IF that involved a
quoted value assigned by // JSET.

Using Symbols to Examine Job and System Related Values and Facilities

Through the use of symbols, the INQ job control statement allows you to examine job
and system related values (such as jobname, system time, and system date) or to
determine the availability of certain facilities (such as DDP and workstations).

The / INQ statement has two formats:

//symbol INQ JOB,keyword
//symbol INQ SYS, keyword

You use // INQ JOB to examine job related values and facilities and // INQ SYS to
examine system related values and facilities. In both formats, symbol defines the
variable symbol that is set to a value specified by keyword.

The keyword ORI, for example, sets the value of the symbol X in the following
statement to the user-id of the job’s originator (the workstation that initiated the job).

//X INQ JOB,ORI

If you refer to the value of X (&X) elsewhere in the job control stream, the user-id of
the originator will be substituted for that value.

Consider the following:

// JOB MYJOB :

//% INQ JOB,ORI
// OPR 'DELIVER OUTPUT TO &X',OPERATOR

/&

7004 4623-000 713

Run-Time Conditional and Set Symbol Job Control Statements

If USERO1 initiates the job, the run processor substitutes USERO1 for &X so that the
operator receives the message 'DELIVER OUTPUT TO USERO01’. If USERO02 initiates
the job, the operator receives the message 'DELIVER OQOUTPUT TO USER02.

Suppose you want to execute a program that can receive input either from a
workstation or diskette. If the job is initiated from a workstation, then workstation
input is preferred. The // INQ JOB statement, used with the keyword WKS, allows
you to determine whether the job is initiated from a workstation. This way you can
configure a job control stream that assigns a diskette device or a workstation,
depending on the situation.

The keyword WKS sets the value of the symbol X in the following statement to either
1oro0: K

// X INQ JOB,WKS

If the value of X is 0, it means that a workstation is not initiated for this job. If the
value of X is 1, a workstation is initiated for the job. With this in mind, consider the
following job stream:

// JOB MYJOB

//X INQ JOB,WKS
// IF(&X EQ @)DSKT
// DVC 200

// USE SFS

// LFD INFO

// GO NEXT
//DSKT DVC 130
// VOL A123

// LBL FILE1

// LFD INFO
//NEXT EXEC PROG1

/&

This job stream is configured so that the device assignment set for the workstation is
skipped if the job is not initiated from a workstation and the device assignment set for
the diskette is skipped if the job is initiated from a workstation. Table 7-1 lists all of
the keywords that you can use with / INQ JOB and // INQ SYS.

7-14 7004 4623-000

./;——:\.

Run-Time Conditional and Set Symbol Job Control Statements

Table 7-1. Keywords and Symbol Values for // INQ JOB and // INQ SYS

Keyword

For // INQ JOB NAME
ORI
HOST
ORID

WKS

JBNO

DDP

For // INQ SYS RES
RUN
DATE
DAY
MM

DD

TIME
HOST
REL
SUP

DDP

7004 4623000

Value of Symbol
The job name
The user-id of the originator
The host-id of the originator (null if none)
The device-id of the originator if a local workstation

0 if job is not initiated from a workstation
1 if job is initiated from a workstation

A 4-byte job number

0 if remote DDP is not initiated
1 if remote DDP is initiated

SYSRES volume serial number
SYSRUN volume serial number
The system date (yy/mm/dd)

The day of week (Sunday = 1, Monday = 2, etc.)
The month (01 through 12)

The day of month (01 through 31)
The year (specify last two digits)
The system time (hh.mm.ss.)

The system'’s own host-id

The system release-id (w.r.rrr)
The supervfsor’s name

0 if DDP is not available

1 if DDP is available

continued

7-15

Run-Time Conditional and Set Symbol Job Control Statements

Table 7-1. Keywords and Symbol Values for // INQ JOB and // INQ SYS (cont.)

Keyword

For // INQ SYS WKS

S80

SPL

JuL

Value of Symbol

0 if workstation support is not configured
1 if workstation support is configured

07 if running on model 7E
08 if running on model 8

10 if running on model! 10
15 if running on model 15
20 if running on model 20
50 if running on model 50

0 if spooling is not configured
1 if spooling is configured

Assigns Julian date YYDDD to specified symbol

Priorities among Set Symbols, Keyword Parameters,
and Positional Parameters
External to a JPROC definition, the only possibility of substitution is for set symbols.

Inside of a JPROC definition, however, the possibility of a set symbol matching a
keyword parameter or positional parameter name does exist.

7-16

The positional parameter name is maintained as a separate entity. Global set
symbols are maintained in a single list. Keyword parameter names and local set
symbols are maintained together, with a new definition replacing the old. The effect
of keyword parameter names and local set symbols being maintained together is to
force keyword parameter names to local status if they are mentioned in JSET job
control statements within the procedure.

When it’s determined that substitution should be performed, the following steps occur,
in the order given:

1.

A comparison is made with the positional parameter name. This test is done
first, since there is one name with many values, but it’s a relatively fast test.
Care must be taken to make the positional parameter name unique with respect
to all set symbols and keyword parameter names. A sublisted reference to a
keyword parameter cannot be distinguished from a reference to a positional

parameter.

The list of local set symbols and keyword parameter names is scanned.

The list of global set symbols is scanned.

7004 4623000

g ™

F'/Aq,_.‘\\l

Run-Time Conditional and Set Symbol Job Control Statements

The result is that if a keyword parameter name matches a local or global set symbol
within a procedure, the following occurs:

1. Areference to the name obtains the keyword parameter value up until the
occurrence of a JSET job control statement for the name.

2. From the point of occurrence of the JSET job control statement to the end of the
JPROC definition, the value of the most recent JSET job control statement is
used.

3. At the end of the JPROC definition, the value reverts to the value of the global
set symbol at the time of entering the procedure.

Note: Remember that set symbol substitution may increase the number of characters
in a value.

7004 4623-000 717

Section 8
How to Write and Call a Job Control
Procedure Definition

The Benefit of Procedure Definitions

Section 5 discussed the job control procedure (JPROC) call statements supplied by
Unisys. In this section, we'll discuss how to write your own JPROC definitions and
how to call them.

A JPROC definition is similar to an assembler procedure definition, which is
explained in the Assembler Programming Guide, 7004 4532. However, the JPROC
definition is a series of job control statements and procedure directives, as opposed to
assembler instructions and directives. It consists of a PROC directive, one or more
NAME directives, a series of job control statements, and an END directive.

The PROC directive signals the beginning of the procedure, the NAME directive
declares a label by which the JPROC can be called, and the END directive signals the
end of the JPROC. Each time the series of job control statements is needed, a JPROC
call is used. Job control then inserts the necessary job control statements at the point
where the JPROC call was placed. The JPROC definition defines the coding and job
control statements needed for a particular operation, and the JPROC call specifies the
values for the variable parameters of the JPROC definition.

Coding Rules

The directives used in writing JPROC definitions take this form:
LABEL AOPERAT IONA OPERAND

The label field extends from column 1 to column 8. At least one space must separate
the label field from the operation field, and also the operation field from the operand
field. Column 72 is used to indicate continuation, and columns 73 through 80 can
contain identification or sequence information.

Note: For compatibility with job control statements, you can precede the label field
with two slashes (/ /) in columns 1 and 2. In this case the label field extends
from column 3 to column 10.

The job control statements within a JPROC definition follow the same conventions as
regular job control statements. These are listed in Appendix A.

7004 4623-000 81

How to Write and Call a Job Control Procedure Definition

82

The characters that are allowable in directives and job control statements are as
follows:

Letters A through Z

Special letters 7$#@

Digits 0 through 9

Special characters +-*/,="blank ().>< &!:;

The terms you can use in the operand field of a directive may be symbols or character
strings, which are explained in the following paragraphs.

A symbol is a group of up to 240 alphanumeric characters used for parameter
identification and as labels. The first character must be alphabetic. Special
characters or blanks may not be contained within a symbol. The following are
examples of valid symbols:

v CARDAREA
GS279 R$INTRN
DAVE

The $ of REINTRN is allowable, because it’s a special letter, not a special character.

For a symbol to be recognized by job control as a parameter identifier, it must be
immediately preceded by an ampersand.

The following are not valid symbols:

READONE - embedded blank
SPECL - special character
8AGN - first character not alphabetic

The operand field in a NAME directive may be obtained by referencing the symbol
p(0), where p is the symbol used to reference any positional parameter in the
definition. The zero indicates the parameter of an operand field.

A character string can represent up to 252 valid characters, all of which must be
printable. Character strings containing embedded blanks or commas must be
enclosed in either quotation marks or parentheses. The enclosing quotation marks or
parentheses are considered part of the character string. Embedded quotation marks
are not allowed in the character string.

A null character string is represented by two consecutive quotation marks.

All parameter values are evaluated as character strings.

7004 4623-000

How to Write and Call a Job Control Procedure Definition

Parameter Types

Parameters are used to pass information from the JPROC call to the JPROC
definition. These parameters can be equated to values, symbols, or character strings,
and may be used to specify file identifiers, file names, volume serial numbers, etc.

There are two types of parameters: positional and keyword. Positional parameters
are identified by their position within the operand field of the JPROC call; keyword
parameters are identified by the symbols assigned to them in the JPROC directive.
The rules for specifying positional and keyword parameters with respect to position,
order, omission, and format are covered in Appendix A.

Both positional and keyword parameters may be sublisted. Thus, each operand of the
JPROC call may represent one value or a series of values that may be referenced
independently. When a parameter is sublisted, the subparameters must be separated
by commas, and the entire list must be enclosed by parentheses.

For sublisted positional parameters, an operand would appear as:
(val-1,val-2,...,val-n)

For sublisted keyword parameters, an operand would appear as:
key=(val-1,val-2,...,val-n)

An omitted positional parameter in a JPROC call takes the value of a null character
string. When a keyword parameter is given a value in the JPROC definition, it takes
that value if the keyword parameter is omitted in the JPROC call. When no value is
given to a keyword parameter in the JPROC definition, it takes the value of the null
character string when omitted.

Now, let’s explain the three JPROC directives.

The Start of the JPROC Definition

The PROC directive signals the start of a JPROC definition. It defines the number
and type of parameters that may be specified in the JPROC call.

The format of the PROC directive is: :

LABEL | AOPERATIONA | OPERAND

[[//1symbol] | PROC | [pos,nll, k,... k]

The symbol is a dummy label of one to eight alphanumeric characters. It’s used as an
entry point to the JPROC definition when it’s expanded and inserted into the control
stream. If the JPROC call also has a symbol, it replaces the symbol of the PROC
directive when the JPROC definition is called. If the JPROC call has no symbol, the
dummy label is replaced by a null character string. The characters & . ()’ , + -/ may
not be embedded in the symbol.

7004 4623-000 83

How to Write and Call a Job Control Procedure Definition

The pos parameter represents the symbol by which any positional parameter in the
body of the JPROC definition is referenced. If this parameter is omitted, no positional
parameters can be used in the JPROC call. The n is a decimal number that represents
the total number of positional parameters permitted in the JPROC call. If omitted,
zero is assumed. If you omit the pos and n parameters in this directive (thereby
indicating there are no positional parameters), you must still code two commas before
you can code any keyword name values.

The %k parameter represents the name or names used in referencing keyword
parameters and their default values (if any).

To preset a keyword value, the & parameter takes the form:
[,k-1=value,...,k-n=valuel

In the following example, MOD1 is the symbol used as an entry point. One positional
parameter is allowed, and it’s referenced by the symbol P in the JPROC definition.
There are three keyword parameters allowed in the JPROC call; PRINTER, INPUT,
and OUTPUT. If the PRINTER keyword parameter is omitted, it defaults to 20.

MOD1 PROC P,1,PRINTER=20, INPUT,OUTPUT
or
//MOD1 PROC P, 1,PRINTER=20, INPUT,OUTPUT

Naming the JPROC Definition

The NAME directive supplies the name by which a JPROC definition is referenced. It
must immediately follow the PROC directive. More than one NAME directive can be
used, but all must be grouped at the beginning of the JPROC definition. Each such
NAME directive specifies a different name for the same JPROC definition. Multiple
NAME directives allow you to specify a different parameter in the operand field of
each directive.

Note: You may not give a JPROC any valid job control statement names (DVC,
QGBL, etc.).

When you call the particular NAME directive on the JPROC call, you can reference
the parameter of the NAME directive with p(0), where p is the symbol used to
reference positional parameters. This will be shown in an example, which should
make this much clearer.

The format of the NAME directive is:

LABEL | AOPERATIONA | OPERAND

[//1symbol I NAME | param

7004 4623000

A

;/ﬁhﬁ‘

O

How to Write and Call a Job Control Procedure Definition

The symbol specifies the name of the JPROC definition. This is the name that’s used
on the JPROC call to obtain the JPROC definition. The param is a parameter or
parameter sublist that may be selected at job execution time.

Here’s an example of this procedure:

MOD1 PROC P, 1 //M0D1 PROC P,1

DUMPJOB NAME Y //DUMPJOB NAME Y
DUMPSYS NAME X //DUMPSYS NAME X

// GO LABEL&P(Q) or // GO LABEL&P(@)
//LABELY OPTION JOBDUMP //LABELY OPTION JOBDUMP
// GO NEXT // GO NEXT

//LABELX OPTION SYSDUMP //LABELX OPTION SYSDUMP
//NEXT NOP //NEXT NOP

This JPROC definition has two names: DUMPJOB and DUMPSYS. Positional
parameters are referenced by the symbol P, so the parameter of the NAME directive is
referenced as P(0). Assume that DUMPSYS is the name used on the JPROC call. The
parameter on this NAME directive is X. When the first GO job control statement is
interpreted, it would mean go to the job control statement with a symbol of
LABEL&P(0). This &P(0) references the parameter of the selected NAME directive.
In this case, it's X. So X is added to LABEL, giving the symbol LABELX. This job
would have an OPTION SYSDUMP job control statement inserted at execution time.
The procedure would then go to the next job control statement, the NOP.

If DUMPJOB is the name used on the JPROC call, the parameter on the NAME
directive would be Y. When the GO job control statement is interpreted, it would
mean go to the job control statement with a symbol of LABELY (from the
LABEL&P(0)). This job would have an OPTION JOBDUMP job control statement
inserted at execution time; the GO job control statement means go to the job control
statement with a symbol of NEXT. This is the NOP job control statement; the
OPTION SYSDUMP job control statement is skipped.

Ending the JPROC Definition

The END directive indicates the end of the JPROC definition. Therefore, it’s the last
item in a JPROC definition. Everything between the PROC and END directives is
considered to be the body of the JPROC definition.

The format of the END directive is:

LABEL l AOPERATIONA | OPERAND

[//1symbol | END | unused

7004 4623000 85

How to Write and Call a Job Control Procedure Definition

and, added to the PROC and NAME directives defined in "Naming the JPROC
Definition" earlier in this section, looks like the following example:

MOD PROC P,1
DUMPJOB NAME Y
DUMPSYS NAME X

any
job control
statements
needed

END

If you are submitting embedded data as part of a JPROC definition and the embedded
data contains the characters END, a special situation arises because the run processor
interprets the characters END as the END JPROC directive. To avoid this problem,
you must use a // GBL job control statement to replace the END characters in the
embedded data. This is an example:

// OPTION suB

// GBL X=END

// EXEC program-name
/%

&X

/*

Calling JPROC Definitions

Once you've written and debugged a JPROC definition, use the file symbiont to store
it in the job control stream library file (YJCS) or an alternate library file, and then
call it when you need it. Until that time, you can test it by placing the JPROC
definition within a control stream and issuing a JPROC call containing the name you
supplied on the NAME directive. (In this way, you can test a JPROC without having
to actually file it.) The JPROC definition is stored temporarily, in the job’s $YSRUN
file. We'll explain this in a little more detail in "How JPROC Definitions Are Stored"
later in this section.

To call the JPROC, you use a JPROC call in the control stream. When the run
symbiont encounters the JPROC call, it searches the job’s YRUN file, then searches
the specified library file for the named JPROC definition, and then inserts the
selected job control statements from the JPROC definition into the control stream at
this point. :

86 7004 4623000

How to Write and Call a Job Control Procedure Definition

The format of the JPROC call statement is:

//[symbol] procname [p1,p2,...,pn,ki=vi,kj=v],..., km=vm]

The symbol is a dummy label and is optional. When used, the symbol is substituted
for the symbol specified in the label field of the PROC directive.

The procname specifies the name of the JPROC definition. This must be the same as
that specified in the label field of a NAME directive in the JPROC definition being
called.

The p represents positional parameters, and the k=v represents keyword parameters
and their values.

Positional parameters specified in a JPROC call are associated with positional
parameters specified in job control statements in the body of the JPROC definition.
The PROC directive specifies the number of positional parameters allowed.

All parameters specified in the JPROC call must be separated by commas. Positional
parameters must precede any keyword parameters. When a positional parameter is
omitted, the comma must be retained to indicate the omission, except in the case of
omitted trailing positional parameters. When there are no positional parameters
preceding keyword parameters, two commas must precede the keyword parameters to
indicate the omission of the positional parameters.

Keyword parameters are identified by name, not by position, so an omitted keyword
parameter does not require a comma to indicate its omission. Keyword parameters
may be specified in any order.

No more than one JPROC call can be on a single line.

How JPROC Definitions Are Stored

The file symbiont stores JPROC definitions in YJCS or an alternate SAT library
file. (See "Building and Storing Job Control Streams and JPROCS" in Section 1.) The
values to be used are not substituted for any preset values until the JPROC call is

issued. Substitution then takes place, and the JPROC definition is then considered to
be expanded.

A JPROC definition may be called as often an necessary, or until it’s deleted from the
library file.

7004 4623000 87

How to Write and Call a Job Control Procedure Definition

The reading, verifying, and expanding of the entire control stream is a function of the
run symbiont.

A job input directly from a reader device may include JPROC definitions in its control
stream. The JPROC definition must appear in the control stream before any
reference to it is made. Therefore, if a JPROC definition pertained to assigning
devices to a job, it should be placed before any device assignment sets. Such JPROC
definitions apply only to that particular job; they aren’t stored in YJCS or an
alternate library file, they’re stored temporarily in the job’s YRUN file. They also
cannot be embedded within data.

Because the job’s YRUN file is the first file searched for a JPROC definition, by
placing a JPROC definition in the job control stream you have the ability to test the
JPROC definition without storing it permanently. You can also use this facility to
temporarily override a JPROC definition that’s already stored. Whenever a JPROC
definition being called is found in the job’s §Y$RUN file, YJCS or the alternate
library file is not searched.

A sample job using this facility would look like this:

// JOB TESTPROC
MOD PROC P, 1

DUMPJOB NAME Y
DUMPSYS NAME X

any job control statements needed

END
// DUMPJOB
/&
// FIN

In this example, the JPROC named as either DUMPJOB or DUMPSYS would be
entered as a temporary JPROC definition, which is referenced later by the JPROC call
of / DUMPJOB. Upon encountering the PROC directive, the run processor will file
the statements up to the END directive into the job’s YRUN file, which is scanned
when the JPROC call is encountered.

7004 4623-000

./ i
/ \

Ve

How to Write and Call a Job Control Procedure Definition

Specifying an Alternate Library File to Be Searched
for JPROCS

The ALTJCS job control statement tells the run processor which alternate library file
is to be searched for JPROCS. An alternate library file is one other than YJCS.

// ALTJCS specifies an alternate library file to be searched for JPROCS only, not job
control streams. An ALTJCS job control statement specification overrides an
alternate library specification on the RUN/RV command that initiated processing of
the job control stream.

You can specify multiple ALTJCS control statements in a control stream; the last
library file specified is searched for JPROCS until the next ALTJCS statement is
processed.

Note: The run processor searches only the specified alternate library for JPROCS.
Specify ALTJCS ,,,FREE to revert to the prior order of search (alternate
library and then YJCS). The FREE option must also be specified before
another ALTJCS statement can be specified.

The format of ALTJCS is:

//lsymbol1 ALTJCS [file-label-idl |, [RES (,rpwl}, [FREE] |C,LUN=nnnN]
RUN ONLY

[,vol-ser-nol OFF

The file-label-id is 1 to 44 alphanumeric characters long. It is optional if you’re not
searching a new library, but changing the last parameter (FREE, ONLY, OFF, or ON)
for an alternate library already defined in a previous ALTJCS statement. We'll
discuss these options later. If you don’t specify a file-label-id, don’t specify

vol-ser-no or rpw.

The vol-ser-no parameter specifies the volume serial number of the disk where the
alternate library file resides. This parameter can also specify the volume serial
number of a format-label diskette. RES, RUN, or the actual volume serial number of
the disk or diskette may be specified. If no vol-ser-no is specified, the cataloged
vol-ser-no is used; if it is not cataloged, RES is used.

The rpw parameter specifies a read password associated with the alternate library
file. It must be specified if the file is cataloged with a read password. It is ignored if
no read password exists for the file or if the file is not cataloged.

The ONLY, OFF, and ON parameters specify order-of-search options. ONLY specifies
that only the identified alternate library file is to be searched. When OFF is specified,
the alternate library file remains open to the run processor and can be searched again
by the use of the ON or ONLY options. You specify this option if you no longer want
an alternate library file searched for JPROCS. ON specifies that the identified
alternate library file is to be searched first and then YJCS. ON is the default
option. FREE is equivalent to OFF, except that it also frees the alternate device (from
the run processor).

7004 4623000 89

How to Write and Call a Job Control Procedure Definition

Using the LUN keyword parameter, you supply a logical unit number to indicate the
device type and characteristics for the alternate library. LUN is never specified
unless a volume serial number is also specified. It is especially useful where either a
disk or format-label diskette can be the alternate library volume.

The volume serial numbers for disk and format-label diskette are syntactically the
same. As a result, the system cannot determine if a disk or format-label diskette is
required unless the volume is already mounted, or unless you use LUN parameter. If
you don’t specify a logical unit number and if the proper volume isn’t already
mounted, mount messages suggesting a disk drive, for example, could be directed to
the operator when a format-label diskette is actually required. The LUN parameter
helps avoid such confusion.

Notes:

1. LUN is used only to determine the device type and characteristics. It has no
relationship to logical unit numbers used elsewhere in the job control stream.

2. Confusion with mount messages is also avoided if the DVC-LFD sequence for the
file is cataloged. (See "File Cataloging" in Section 6.) By simply providing a file-
label-id in the ALTJCS statement, the correct volume serial number as well as
device type is extracted from the catalog (according to the label specified).

You can identify alternate libraries for control streams and JPROCS through the
FILE system console command and the RUN/RV workstation or console command.
Workstation commands are explained in the Interactive Services Operating Guide,
UP-9972. System console commands are explained in the operations handbook for
your system.

Parameter Referencing

The parameters of job control statements that require substitute values at execution
time must begin with an indicator of &.

For example, if, in the body of a JPROC definition, you have a DVC job control
statement in which you wanted to vary the logical unit number, it could be coded as
follows:

// DVC &P(2)

The P is an arbitrary symbol assigned by you in the PROC directive; the (2) indicates
that the logical unit number to be inserted is coded as the second positional parameter
on the JPROC call. The parentheses around the 2 are required.

810 7004 4623-000

P
|

./ i

P

How to Write and Call a Job Control Procedure Definition

In this example,

// DVC &P(1,2)

the (1,2) indicates that the logical unit number to be inserted is coded as the second
subparameter under the sublist for the first positional parameter.

For each character string following the single ampersand, a substitution is made. If
the character string is invalid (not defined in the PROC directive), a null character
string is inserted.

Any job control statement may be continued between parameters, or between the
operation and the first parameter. No job control statement can exceed column 71.
This means that the total number of characters cannot exceed column 71, even after
substitution. The maximum of 71 characters includes embedded spaces. Column 72 is
used to indicate continuation.

The length of a single parameter is 242 characters. For positional parameters, this is
the value; for keyword parameters, it is the keyword and the value. If a parameter is
sublisted, the maximum length is decreased by 2 for each element of the sublist.

Note: The maximum length of a single operand of a job control statement is 252
characters. Thus, if you have a parameter of 242 characters, there are only 10
characters left for other parameters.

Here are some examples.

Example 1

In this portion of a JPROC definition, we'll see how a value is given to the DVC
job control statement in the body of the JPROC definition.

PROC POS, 1
ACTI NAME

/7 DVC &POS(1)
END
Let’s say that the JPROC call is this:

// ACTI 10

the DVC job control statement that would be generated and inserted to the
control stream would be as follows:

// DVC 10

7004 4623-000 811

How to Write and Call a Job Control Procedure Definition

Example 2

If part of the JPROC definition looked like this:

PROC KEY1=90
ACT2.NAME

// DVC &KEY1

END
and the following JPROC call was issued:
// ACT2 KEY1=20
this job control statement would be generated:
// DVC 208

If the JPROC call was issued without the KEY1 parameter, the value of 90 set in
the JPROC definition would be used.

812 7004 4623000

,”/QR\{

How to Write and Call a Job Control Procedure Definition

Example 3

7004 4623000

This JPROC definition has one positional and one keyword parameter, and two
NAME directives.

1. |LAB PROC POS,1,KEY1=10Q
2. |MASTER NAME 20
3. |DETAIL NAME 30

//&LAB DVC &POS(0Q)
/7 DVC &POS(1)
/7 DVC &KEY1

[« JUE I

END

When this JPROC call is issued:

//L1 MASTER 40,KEY1=50

these job control statements are generated:

//L1 DVC 20
// DVC 40
// DVC 50

Line 4 in the JPROC definition means to take the value of the parameter in the
NAME directive that matches the name on the JPROC call - MASTER. So the
first DVC job control statement has a logical unit number of 20. Line 5 means to
take the value of the first positional parameter in the JPROC call; the second
DVC job control statement has a logical unit number of 40. Line 6 means take
the value of the KEY1 keyword parameter; the third DVC job control statement
has a logical unit number of 50. LI is specified by the JPROC call as being the
substitute value for the symbol in the PROC directive. Line 4 will use this value.
So, the first DVC job control statement has a symbol of LI.

813

How to Write and Call a Job Control Procedure Definition

814

Example 4

A parameter sublist may be referenced. This is done with a secondary level of
indexing, which is shown in the following example:

PROC POS, 1,KEY=(10,20)
EXAM NAME (30,40)

// DVC &KEY(1)
// DVC RKEY(2)
// DVC &POS(®,1)
// DVC &POS(®,2)

WD =
P

END
When the following JPROC call is used

// EXAM KEY=(50,60)

these job control statements are generated:

// DVC 50
// DVC 60
// ovc 30
/7 DVC 40 .

Line 1 of the JPROC definition means use the first subparameter of the KEY
keyword parameter. The JPROC call uses this keyword parameter, so its new
values (50 and 60) override the values assigned in the JPROC definition (10 and
20). Line 2 means use the second subparameter of the KEY keyword parameter.
Line 3 means use the first subparameter on the NAME directive (0,1), and line 4
means use the second subparameter on the NAME directive (0,2).

7004 4623000

N

How to Write and Call a Job Control Procedure Definition

Example 5

A reference to a parameter may occur anywhere in the body of a procedure
definition. If the reference is the only field, and therefore naturally delimited,
there is not much likelihood of confusion. If the possibility of confusion exists, the
reference may be terminated with a period, which is a concatenation operation.
The period is dropped during the expansion of the control stream.

The following JPROC definition has two keyword parameters: KEY1 and
LABEL; neither has default conditions.

PROC KEY1,LABEL
COM NAME

// OPR 8KEY1.IS&LABEL.1990
END
If this JPROC call was used
// COM KEY1=TODAY-, LABEL=-OCTOBER-6-

this would be generated:

// OPR TODAY-IS-OCTOBER-6-1990

7004 4623-000 815

Section 9
Using the Interactive Job Control Dialog

The Function of the Job Control Dialog

The job control dialog is an interactive facility of 0S/3 that guides you through the
process of building a job control stream or user JPROC from a workstation. To begin a
job control dialog session, key in SC JC$BLD. This activates the dialog processor and
opens the job control dialog file. Dialog text is displayed at the workstation screen
and your responses to the dialog are entered at the workstation keyboard. The dialog
processor passes your responses to the system program JC$BLD, which creates your
control stream or JPROC and stores it in the system file $§Y$JCS. The functions of the
dialog processor, which manages a dialog session, are detailed in the appropriate
operations guide.

Note: If you encounter system errors when keying in SC JC$BLD, key in RV
JCPBLD and press XMIT. A short paragraph explaining RUN libraries is
then displayed followed by the question DO YOU WANT TO SAVE RUN
LIBRARIES? (Y OR N). Key inY so that you'll be able to enter the SC
JC$BLD command without encountering any errors in the future.

The job control dialog introduces the concept of job control and (if you’re building a
control stream) presents job control statements in the form of menu items from which
you choose the statements you want. If you need a dialog concept or particular
statement explained, you can ask for help - by keying in HELP or a choice that
generates HELP screens. HELP screens explain the choice or statement parameters
to you. When you make a valid choice, the dialog resumes at the point where it was
interrupted. The HELP screen facility of the job control dialog can be used selectively
(statement by statement) so that you receive detailed explanations only when you
need them. More experienced users, then, can execute the dialog session quickly while
still being constrained to build syntactically correct statements. Figure 9-1 presents
an overview of the process of using the job control dialog to build a control stream or
user JPROC.

7004 4623000 91

Using the Interactive Job Control Dialog

92

STEP 1

Key in the SC JCSBLD
command to initiate a
job control dialog session.

SC JCsBLD...

STEP 2

The dialog processor is
activated and the job

control dialog file is opened

in response to the command ...

begin executing the dialog.
JOB DIALOG
CONTROL PROCESSOR
DIALOG
STEP 3
The dialog processor routes
your dialog responses to the
system program JCSBLD.
Jos DIALOG
cConTROL PROCESSOR
DIALOG
STEP 4
DIALOG
JCSBLD uses your responses RESPONSES

to the dialog to build a job
control stream or user JPROC
and stores it in SYSJCS.

\

JC$BLD

Figure 9-1. Using the Job Control Dialog to Build a Control Stream or User JPROC

7004 4623-000

Using the Interactive Job Control Dialog

Building a Control Stream with the Job Control Dialog

Let’s begin a sample job control dialog session. First, you perform the system LOGON
procedures described in the appropriate workstation user guide. Then, you key in SC
JC$BLD and its associated parameters. The first dialog screen looks like this:

DIALOG FOR JOB CONTROL

PROGRAM=

THIS DIALOG PREPARES A JOB CONTROL STREAM OR PROCEDURE
(JPROC). FOR AN EXPLANATION OF THE DIALOG PROCESS, ENTER
"HELP' IN THE SPACE PROVIDED. HELP

If you key in HELP, these screens are displayed:

THE DIALOG FOR JOB CONTROL IS A METHOD OF CONSTRUCTING

JOB CONTROL STREAMS AND PROCEDURES (JPROCS) USING COMPUTER
ASSISTANCE. PROMPTING FOR DATA ENTRY OR SELECTING FROM
AMONG AVAILABLE OPTIONS IS ALWAYS PROVIDED, AND YOU CAN
ASK FOR MORE DETAILED EXPLANATIONS OF STATEMENTS,
PARAMETERS, AND OPTIONS. AFTER A STATEMENT IS COMPLETED,
THE IMAGE BUILT BY THE COMPUTER AS A RESULT OF YOUR CHOICES
IS DISPLAYED ON THE WORKSTATION SCREEN. YOU MAY ACCEPT IT
FOR OUTPUT, CORRECT IT, OR REJECT IT ALTOGETHER.

Note: To proceed from one screen to the next, you usually press the transmit key.
Whenever necessary, a note will appear at the bottom of the screen reminding
you to do this.

rTHE JOB CONTROL SETS ARE FORMED BY MAKING SELECTIONS FROM
MENUS OF AVAILABLE OPTIONS, AND ENTERING SOME TYPES OF
DATA DIRECTLY. THIS ALLOWS YOU AS MUCH FREEDOM IN YOUR JOB
CONTROL AS OTHER MEDIA, BUT AT THE SAME TIME PROVIDES

A STRUCTURE TO JOB CONTROL CREATION WHICH HELPS TO
PREVENT MANY COMMON ERRORS. REMEMBER, HOWEVER, THAT THE
DIALOG DOES NOT RECOGNIZE THE SAME JOB CONTROL ERRORS AS
THE RUN PROCESSOR. DIALOG ERROR CHECKING IS LIMITED TO
DIALOG OPERATION ERRORS, AND DATA TARGET MISMATCHES

(SUCH AS TRYING TO PUT ALPHABETIC DATA IN A STRICTLY
NUMBER FIELD).

7004 4623-000 93

Using the Interactive Job Control Dialog

The next screen asks what type of module you want to build:

f)
JOB CONTROL MODULE TYPES

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:
1. JOB CONTROL STREAM

2. USER WRITTEN JOB CONTROL PROCEDURE (JPROC)

3. HELP

SELECT ITEM BY ENTERING NUMBER. »_ _

If you ask for HELP, these screens are displayed:

IN ORDER TO EXECUTE ANY JOB, IT IS NECESSARY TO CONVEY TO

THE COMPUTER EXACTLY WHAT YOU WANT TO DO, AND WHAT RESOURCES
(PRINTER, READER, DISKS, ETC) ARE NEEDED. THIS IS ACCOMPLISHED
THROUGH THE USE OF JOB CONTROL. THERE ARE TWO TYPES OF JOB
CONTROL MODULES. THE COLLECTION OF JOB CONTROL STATEMENTS USED
TO RUN A JOB IS CALLED A JOB CONTROL STREAM, SOMETIMES REFERRED
TO AS THE JOB STREAM OR CONTROL STREAM. 1IN IT, THERE MAY BE JOB
CONTROL STATEMENTS, CALLS TO SYSTEM SUPPLIED PROCEDURES, AND THE
SECOND TYPE OF MODULE - USER-WRITTEN PROCEDURES (JPROCS).

rJOB CONTROL PROCEDURES HAVE TWO PARTS - THE DEFINITION

AND THE CALL. THE DEFINITION IS THE JPROC MODULE CREATED
BY THE DIALOG. THE CALL IS A STATEMENT IN THE CONTROL
STREAM WHICH HAS THE JPROC NAME AS THE COMMAND, AND
PROVIDES ANY NECESSARY PARAMETERS. THE JPROC CALL IS USED
AS AN ABBREVIATION TO PREVENT CODING THE DEFINITION MANY
TIMES. WHEN THE CONTROL STREAM IS PROCESSED, EACH CALL IS
REPLACED BY THE APPROPRIATE DEFINITION WHICH HAS BEEN PUT
AT THE BEGINNING OF THE STREAM OR STORED IN A SYSTEM FILE
(YJCS). THE RESULT IS THE SAME AS IF THE DEFINITION HAD
BEEN CODED INSTEAD OF THE CALL.

94 7004 4623-000

P

Using the Interactive Job Control Dialog

Once again, you're asked what type of module you want to build.

q D
JOB CONTROL MODULE TYPES
USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:
1. JOB CONTROL STREAM
2. USER WRITTEN JOB CONTROL PROCEDURE (JPROC)

3. HELP

SELECT ITEM BY ENTERING NUMBER. P_ _

You can ask that HELP screens explaining the choices be displayed again (by keying
in 3), but let’s assume you want to build a control stream. The next screen displayed
is the JOB control statement screen:

r
STATEMENT: JOB

FORMAT: //SYMBOL JOB JOBNAME,PRI,MINSTORE,MAXSTORE, TASKS,
TIME,OPTIONS,ACCT,BUFFERS, LOG, HDR

FUNCTION: THIS STATEMENT IDENTIFIES A JOB AND INDICATES
THE BEGINNING OF CONTROL INFORMATION FOR THE
JOB. THE SAME NAME IS GIVEN TO THE JOB'S RUN
FILE ($YSRUN).

IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER HELP.

What if you didn’t need HELP screens? The job control dialog screens vary according
to the responses you make to the dialog. The initial screen is the same:

\
(DIALOG FOR JOB CONTROL

THIS DIALOG PREPARES A JOB CONTROL STREAM OR PROCEDURE
(JPROC). FOR AN EXPLANATION OF THE DIALOG PROCESS, ENTER
HELP IN THE SPACE PROVIDED.

7004 4623-000 95

Using the Interactive Job Control Dialog

Because you don’t need HELP screens to explain the dialog process, simply press the
transmit key to display the next screen. The next screen displayed is:

r
JOB CONTROL MODULE TYPES:

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:
1. JOB CONTROL STREAM

2. USER WRITTEN JOB CONTROL PROCEDURE (dJPROC)

3. HELP

1

You key in 1, indicating that a job stream is being prepared. The next screen

displayed (since HELP screens weren’t requested) is the JOB control statement
screen:

7

STATEMENT: JOB 1

FORMAT: //SYMBOL JOB JOBNAME,PRI,MINSTORE,MAXSTORE,TASKS,
TIME,OPTIONS,ACCT,BUFFERS,LOG, HDR

FUNCTION: THIS STATEMENT IDENTIFIES A JOB AND INDICATES
THE BEGINNING OF CONTROL INFORMATION FOR THE
JOB. THE SAME NAME IS GIVEN TO THE JOB'S RUN
FILE (YSRUN).

IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER HELP.

As you can see, there is a big difference in the path the job control dialog takes,
depending on your responses to the dialog.

7004 4623000

Using the Interactive Job Control Dialog

Let’s take the dialog one step further. If you key in HELP in response to the JOB
statement screen, each parameter of the JOB statement is explained. If HELP is not
requested, you are simply asked to key in the parametric values, without benefit of
prompting screens. When the JOB statement is built, it is displayed and you have a
final chance to change the parameters of the statement, with or without HELP
screens, or accept the statement as it appears. When the JOB statement is accepted,
the next screen presented is the job control statement master menu.

JOB CONTROL STATEMENT MASTER MENU

1. ALTER 11. EXEC 21. LFD 31. ROUTE 41. VFB

2. ALTJCS 12. EXT 22. MTC 32. RST 42. voL

3. CAT 13. FREE 23. NOP 33. RUN/RV 43. /3

4. ccC 14. GBL 24. OPR 34. SCR bb. /*

5. CR 15. GO 25. OPTION 35. SET 45. /&

6. DATA 16. IF 26. PARAM 36. SFT 46. SYSTEM JPROCS
7. DECAT 17. UNOTE 27. PAUSE 37. SKIP 47. GENERAL ENTRY
8. DsT 18. JSET 28. QGBL 38. sPL 48. END OF SESSION
9. DbvC 19. LBL 29. QUAL 39. UID 49. HELP

10. EQU 20. LCB 3@. REN 40. USE

ENTER SELECTION BY NUMBER _ _
IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER HELP_ _ _ _

The rest of the job control dialog works in the same way as for the initial module-type
choice and the JOB statement screens. Each statement you choose from the master
menu is displayed and you are asked if you need help to build it. If you do, HELP
screens are displayed that explain the parameters of each statement,

Note: The DD job control statement is not provided on the Job control statement
master menu. To include this statement in your job control stream, make the
GENERAL ENTRY menu selection (47), then enter the statement and its
parameters in the space provided.

The control stream you create is stored in YJCS. A printed summary of the dialog
session, organized by sequentially numbered paragraphs, is produced by the dialog
processor. The default logical unit number of the printer file (printed summary)
output is 20 - any printer. You can accept this default or, during the dialog session,
provide a specific printer’s logical unit number. Table A-3 of the Job Control
Programming Reference Manual, UP-9984, lists the 0S/3 logical unit numbers for
printers.

7004 4623-000 97

Using the Interactive Job Control Dialog

Building a User JPROC with the Job Control Dialog

The dialog for creating a JPROC guides you through the process of defining your
JPROC and building the job control statements and system JPROCS you want to
include in the body of the JPROC definition.

The procedure for initiating the dialog is the same as for building a job control stream:
perform the system LOGON procedures and key in SC JC$BLD.

When the job control dialog asks you whether you're building a job control stream or
user JPROC, key in the choice for user JPROC. The dialog then presents menus for:

* Beginning the JPROC (PROC, NAME)
® Choosing job control statements

® Choosing system JPROCS

¢ Ending the JPROC (END)

As is the case when you're building a job control stream, these menus generate other
menus based on your responses to the dialog.

You can request HELP screens at any point in the dialog where you need choices or
parameters explained. After the HELP screens are displayed and you make a valid
choice, the dialog returns to the point where it was interrupted.

JC$BLD uses your dialog responses to create a JPROC.

Note: If you store a JPROC in your own (alternate) library file instead of YJCS,
you must include the ALTJCS job control statement in any subsequent job
control stream that calls the JPROC. ALTJCS identifies the JPROC and
applies only to JPROCS.

Entering Embedded Data

To enter embedded data from a workstation, first choose the /$ (start-of-data)
statement from the job control statement master menu. Then, when the master menu
is redisplayed, make the GENERAL ENTRY selection (47). Once this is done, you'll
be able to enter your embedded data. When all embedded data is entered and the
master menu is presented again, choose the /* (end-of-data) job control statement.

If you plan to enter dialog specification language (DSL) source code as embedded data
from the workstation, a special situation arises because the characters that denote the
start of a DSL comment are the same as the end-of-data job control statement (/*). It's
necessary, then, to substitute another set of characters for the end-of-data job control
statement. You do this through the OPTION job control statement.

98 7004 4623000

/ur’"*-.\

) /—\\

Vs
/
f

Using the Interactive Job Control Dialog

When the OPTION statement menu is displayed at the workstation screen, choose an
OPTION EOD statement. The format is OPTION EOD=xx. The first character you
select must be a slash (/). The second character can be anything but a slash (/), an
asterisk (*), an ampersand (&), or a currency symbol ($). Let’s say you choose /Z.
Then, when the end-of-data statement is displayed as part of the job control dialog
menu, you choose GENERAL ENTRY and key in your substitute characters; /Z in this
case. The control stream you create, then, will include these job control statements:

// OPTION EOD=/2

/$ (start of data)
(DSL source code)

/2 (end of data)

You key in your DSL source code when the dialog requests it. By substituting
different characters for the end-of-data job control statement, you avoid any conflict
with the DSL start-of-comment delimiter.

Changing Dialog Responses

Once you build a control stream or JPROC from a workstation, you may be able to use
it for other jobs by making only a few changes to it or, you may discover that you need
to correct it. Rather than building a new control stream or JPROC from scratch to
incorporate the changes you want, you can use the audit version of the dialog
processor to change or edit the responses you made in a previous job control dialog
session. The audit version of the dialog processor outputs an audit file containing a
complete record of your dialog responses and accepts as input an existing audit file of
your responses to a previous dialog. An existing audit file used ds input is considered
an old audit file. The audit file produced as output of the current dialog session is
considered a new audit file.

You begin a dialog session, which uses the audit version of the dialog processor, by
performing the system LOGON procedures and keying in RV JC$BLD. When you
identify a new and/or old audit file (by volume serial number and file label) during the
resulting dialog session, the system loads the audit version of the dialog processor.

Note: Old and new audit file names cannot be the same when responding to
JC$BLD queries.

The audit version of the dialog processor (Figure 9-2) also outputs a printed summary
of a dialog session that is used as a guide to changing dialog responses in a subsequent
session. The summary is organized by sequentially numbered paragraphs. When you

7004 4623000 99

Using the Interactive Job Control Dialog

910

use the audit file as input to the dialog processor in a subsequent session, the job
control dialog asks you to enter the numbers of the paragraphs you want to change
The summary lists these paragraph numbers.

” WORKSTATION

oLD |
AuDIT DIALOG
FILE YOUR DIALOG
S PROCESSOR RESPONSES
JOB
CONTROL
DIALOG
e 1]
W SUMMARY
AUDIT
FILE

A18871

Figure 9-2. Audit Version of the Dialog Processor
Note: Audit files must be previously allocated MIRAM files.

The audit version of the dialog processor allows you to present the job control dialog
quickly and create a "new" control stream or user JPROC by changing only the
responses that need to be changed. Unchanged responses are automatically routed
from the old audit file by the dialog processor to JC$BUILD - without your
intervention. During the same session, you enter your new responses to the job
control dialog. You can also produce a new audit file (if you've specified it in the build
command) that contains a mix of responses from the old audit file and responses
entered during the current session. This audit file can then be used as input to the
dialog processor in a subsequent session.

Note: Only control streams and user JPROCS created using the job control dialog
can be changed in a subsequent dialog session.

Suppose you build a control stream for a job that runs nearly every day with only a
few changes to the control stream. Perhaps you want disk and print output on some
days, and disk output only on other days. You first build the control stream on
Monday, specifying that a new audit file and a printed summary of the session be
produced. You use the audit file as input to Tuesday’s dialog session and use the
summary report as your guide to changing the appropriate dialog responses.

7004 4623-000

Using the Interactive Job Control Dialog

Figure 9-3 traces the process of changing your dialog responses in a subsequent

session.
ON MONDAY. you create a job control stream and
output a new audit file (SESSION1) that contains
WORKSTATION your responses to the job control dialog.

DIALOG

> o
Jos - PR‘(’;QEL?SGOR -ng':é-sgss* JCSBULD =CONTROL ==p-
CONTROL ‘

SUMMARY
PARA 1
SESSION1 PARA 2
(NEW AUDIT
FILE)

|
SESSION1 IS SPECIFIED AS THE OLD
AUDIT FILE FOR TUESDAY'S SESSION

! ON TUESDAY, you create a new control stream, using
SESSION1 and the job control dialog as input to the dialog
processor. You change only those responsas that need to be
changed, using Monday's printed summary as a guide.

(SESSA'?J';:T Unchanged responses are automatically routed from SESSION1
FILE) e (old audit file) to JCSBUILD. In addition, you create a new audit
) file (SESSION2) and a printed summary of Tuesday's session,

' t ’ which can be used as input to a subsequent dialog session . . .

JoB

responses tshen from SESSIONT;

Jos > etes i =data enered and choices mede in 4= JCSBUILD =CONTROL =~
CONTROL response to the job control disiog STREAM

SUMMARY
PARA 1
SESSION2 PARA 2
(NEW AUDIT
FILE)

Figure 9-3. Changing Your Dialog Responses
The appropriate operations guide has more information about using the audit version

of the dialog processor, including information about breaking off a session and
continuing it at a later time - without losing your changed dialog responses.

7004 4623000 911

7~ \
\

N

Appendix A
Statement Conventions

Job Control Statement Format

A job control statement has a maximum of five fields, which must appear in the
following order:

1.

7004 4623-000

Indication Field

Distinguishes job control statements from data. It is required and begins with
either /, /&, /$, or /*.

Label Field

Contains a 1- to 8-alphanumeric-character symbol; the first character must be
alphabetic. Unless this field is explained in a specified control statement, it is the
target address of a SKIP, GO, or IF control statements or the ABNORM=label
keyword parameter of the EXEC statement. This field is not separated from the
indication field by a space; it immediately follows the /.

Operation Field

Contains the name of the function to be performed. It is required for all job
control statements having an indication field of //. At least one space must
separate the operation field from the label field.

Operand Field

Contains the specific information concerning the items upon which a job control
function is to operate or the manner in which the function is to be performed. At
least one space must separate the operand field from the operation field.

Comments Field
Contains any descriptive information desired but not processed. The field must
not contain a slash character. For those job control statements in which an

operand is not permitted, such as the FIN control statement, all information
beyond the operation field is treated as the comments field.

Al

Statement Conventions

Excluding the indication and label fields, consecutive fields must be separated by one
or more spaces. A space may not appear in a field except within apostrophes
(hexadecimal code 7D) or parentheses in an operand field.

Example
//MYTARGAD LBL 'MASTER CUST! NAME FILE
| | |
| |
e L -
1 2 6 3 6 4 6 5
Notes:

1 Indication field
2 Label field
3 Operation field

4 Operand field: Note that spaces are allowable, because of the use
of apostrophes.

5 Comments field

6 Field separation spaces

How Job Control Statements Are Presented

A2

The conventions used to delineate job control statements are:

¢ Positional parameters must be written in the order specified in the operand field
and must be separated by commas. When a positional parameter is omitted, and
subsequent positional parameters are being specified, the commas associated
with positional parameters must be retained; otherwise, the specified parameters
will not be processed as required. If no subsequent parameters are being
specified, their associated commas should also be omitted.

For example, the ALTER job control statement has four optional positional
parameters. This is presented in text in the following format:

//Isymbol] ALTER [phase-namel[,address][,changel |Z {RESET}:|
ORG

7004 4623-000

Statement Conventions

Then, the statement may be written:

// ALTER phase-name,address,change,RESET
// ALTER phase-name,address,change

// ALTER phase-name,address

// ALTER phase-name

// ALTER phase-name, ,change

// ALTER ,,,RESET

// ALTER phase-name,,,ORG

Note that three commas are required in both the last and next-to-last examples.
In the next-to-last example, the three commas are encountered before any
parameters and are thus used to imply that the first, as well as the second and
third parameters, were omitted. In the last example, a parameter is encountered
before any commas, and thus the first comma is used to separate the first
parameter from the omitted second and third parameters.

// ALTER ,,,ORG

If the last example used four commas, it would appear that ORG was the fifth
parameter. And, because job control only associates four parameters with the
ALTER job control statement, the ORG parameter specification would be invalid.

® Akeyword parameter consists of a word or a code immediately followed by an
equal sign, which is, in turn, followed by a specification. Keyword parameters can
be written in any order in the operand field. Commas are required only to

(separate parameters.

The VFB job control statement has the following format:

//[symbol] VFB LENGTH=lines[zDENSITY= {6}:][,FORMNAME=symbol]

8
,USE= [STAND1 ,TYPE= |SDMA| |[,OVF=(line-1,...,line-n)]
OWNVF1 0770
OWNVF2-OWNVF9 0776
*

[,OVF2=(line-1,...,line-n)1[,CD1=(line-1,...,line-n),...1
[,€D15=(line-1,...,line-n)]
[,HP=n]

However, for the purpose of explaining the use of keyword parameters, we'll use
only the first four parameters. Thus, we arrive at the following format:

//[symbol] VFB LENGTH=lines[ZDENSITY= {6}:][,FORMNAME=symbol][,USE=STAND1]
8

7004 4623000 A3

Statement Conventions

Then, this job control statement may be written as:

// VFB LENGTH=lines,DENSITY=6,FORMNAME=symbol ,USE=STAND1
// VFB USE=stand, FORMNAME=symbol ,DENSITY=6,LENGTH=l ines
// VFB DENSITY=6,LENGTH=lines

// VFB LENGTH=lines

// VFB FORMNAME=symbol ,USE=STAND1

® A job control statement may consist of a group of positional parameters followed
by a keyword parameter (as the last parameter).

For example:

//{symbol] EXEC program-name|, [library-name [,[+1Iswitch-priorityl[,ABNORM=label]
SYSRUN
YLOD

Since the last parameter is a keyword (not the last positional) parameter, this
statement may be written as follows:

// EXEC program-name,ABNORM=|abel
// EXEC program-name, library-name, ABNORM=1abel

Commas for the omitted positional parameters may be retained if desired. For
example:

// EXEC program-name,, ,ABNORM=label
// EXEC program-name,library-name, ,ABNORM=1 abel

The conventions for coding commas when a positional parameter is omitted and
subsequent positional parameters are being specified still apply. When the
second positional parameter is omitted, for example, the EXEC statement must
be coded as follows:

// EXEC program-name,,switch-priority,ABNORM=label

® Apositional or keyword parameter may contain a sublist of parameters called
subparameters, which are separated by commas and enclosed in parentheses.
The parentheses must be coded as part of the list. The subparameters within the
parentheses may be positional, in which case the associated commas must be
retained if a parameter is omitted, except for the case of trailing parameters, or
they may be nonpositional. The description of the subparameters will indicate
whether or not they are positional or nonpositional.

For example:

[,OVF=(line-1,...,line-n)1[,0VF2=(line-1,...,line-n)]

A4 7004 4623000

P N

N

N

Statement Conventions

7004 4623-000

Capital letters, commas, equal signs, and parentheses must be coded exactly as
shown.

CMcc

X'aa'
NUMBCHAR=n
(NOV)

Lowercase letters and words are generic terms representing information that
must be supplied by the user. Such lowercase terms may contain hyphens and
acronyms (for readability). For example:

phase-name
max-time
destination
filename

Information contained within braces represents mandatory entries of which one
must be chosen, such as:

BB,nn
BM,nn
FB,nn
FM,nn
WM,nn
RL

RU

Information contained within brackets represents optional entries that
(depending upon program requirements) are included or omitted. Braces within
brackets signify that one of the specified entries must be chosen if that parameter
is to be included. For example:

[sched-priority]
addr
JALT

OPT
IGNORE

A5

Statement Conventions

An optional parameter having a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified with no adverse
effect, it is considered inefficient to do so. For easy reference, when a default
specification occurs in the format delineation it is printed on a shaded
background. If, by parameter omission, the operating system performs some
complex processing other than parameter insertion, it is explained in the
parameter description.

Library-name
SYSRUN ;
Y1.0D

TYPE= [0770
SDMA

An ellipsis (series of three periods) indicates the presence of a variable number of
entries.

When a portion of a parameter is underlined, only that portion need be specified.
For example:

EORMNAME=symbol

can be coded as:

FO=symbol

7004 4623000

P

N

Statement Conventions

Coding Conventions

All the job control statement information starts in position 1 and is not permitted to
extend for more than 71 positions. Job control statements begin with either one or
two slashes. In those with only one slash, no space is permitted between the slash and
the next character. However, one space must appear between this character and the
operand field. In job control statements beginning with two slashes, at least one space
must appear between the last slash and the operation field (except when using the
continuation statement (/n) or the label field).

More than one job control statement of the type beginning with two slashes may be
written on a card, but must not extend beyond position 71. At least one space must
precede the slashes denoting the beginning of the second job control statement; this is
referred to as multistatement coding.

Numbers required for particular parameters can be expressed in decimal or
hexadecimal. Numbers preceded by D’ are considered decimal. Numbers preceded by
X are considered hexadecimal. (A trailing quote may optionally be specified.) All of
the following represent the same value:

X'FF
X'FF1
D'255
D1255¢

Numbers not preceded by X’ or D’ are automatically considered decimal except in the
following cases when they default to hexadecimal:

® Main storage sizes specified on the JOB statement (min and max parameters)

® Memory sizes specified on the OPTION MIN and OPTION MAX job control
statements

® Absolute disk addresses specified on the EXT statement (addr or Tcec:hh
parameters)

¢ Address on the ALTER statement (eddress parameter)

* Expansion limit on the SFT statement’s DLOAD option (expansion-limit
parameter)

Character strings on the ALTER, LCB, and SET job control statements must be
specified as shown in their formats.

7004 4623000 A7

Statement Conventions

Statement Continuation

A continuation line is not considered to be a job control statement in itself. It is a line
that contains the continuation of a job control statement in a preceding line. A
nonblank character must appear in position 72 of the line containing the statement to
be continued. Continuation may be used with any job control statement that contains
at least the first two fields.

A continuation statement must begin with either the 3-character sequence /n, or just
a simple //, which then must be separated by one or more blanks from the continued
portion of the job control statement. The continued statement takes the form:

//In] param-1...param-n

The n is a decimal number in the range of 1 through 9. The numbers do not need to be
consecutive; however, each number must be greater than or equal to the preceding
number used in the control stream. This is an optional field and may be left blank, or
numbers can be used so you can keep a visual record of the amount of continuation
statements used.

For example, you could code the continuation as either

Column 72 ﬂ
// parameters X <

//1 parameters X
//2 parameters

or

// parameters X
//1 parameters X
//1 parameters

or

// parameters X
// parameters X
// parameters

The param-1...param-n are the parameters required to continue the immediately
preceding job control statement.

Continuation can only occur at the blanks following the operation or operand fields, or
after the comma following a parameter in the operand field. When you continue job
control statements, the positions between the last used position and position 72 must
be blank. Any information you intended as a comment for this line would be treated
as data.

7004 4623-000

V"

Statemeht Conventions

An error message occurs if:

Column 72 contains a nonblank character and the card is not a valid continuation
Comments extend past column 71

A parameter list is not delimited by a comma

An example of the continuation of a multistatement line of coding is as follows:

// DVC 50 // VOL ABC123,T12345,T57341 // EXT ST,C,3, X
/71 CYL,1 // LBL MASTER // LFD FILEX

Software Conventions

The following rules and conventions apply to the processing of job control statements
and directives:

7004 4623-000

Data cannot be contained on a job control statement.

Embedded data is normally assumed to be 80 characters long; when input from
diskette, data can be 80 or 128 characters long.

Comments cannot contain a slash.

Job control does not scan past position 72; however, embedded data of up to 128
bytes is passed through.

The CR job control statement, and a JPROC call when used, must be the last
statement on the card.

The following job control statements and JPROC directives cannot be part of a
multistatement line:

// JoB
// FIN
// PROC
// NAME
// END

The // need not start in column 1, but must be first on the card. The / is optional
for PROC, NAME, and END.

The following job control statements cannot be part of a multistatement line.
They need not start in column 1, but must be first on the card.

/*

/&
/%

A9

Appendix B
Operation Considerations

System Libraries

There are five primary system program libraries stored on the system resident device
(SYSRES). The format of these libraries conforms to the standards established by the
librarian. For a description of these standards, see the System Service Programs
(SSP) Operating Guide, UP-8841. As in all disk files, an entry for each library file is
maintained in the volume table of contents (VT'OC) on SYSRES. These files may be
accessed by your program without specifying a DVC-LFD sequence, provided the file

name you use in your program is the same as the file identifier. For example:
YLOD.

The five library files are:

7004 4623-000

System Load Library File

This file contains the load modules that are generated as output from the linkage
editor or the librarian. This includes system software load modules. This file is
used as the default input file to the system loader.

The file identifier for this file is YLOD.

System Object Library File

This file contains the object modules generated as output from the language
translators. This includes system software object modules. This file is the
default input file to the linkage editor.

The file identifier for this file is YOBJ.

System Macro Library File

This file contains the standard system macro definitions, and is used as the
default input file for these definitions by the assembler.

The file identifier is YMAC.

System Source Library File

This file provides permanent storage for source modules consisting of source
coding processed by the language translators. This file is used only when

specifically referenced in the control stream. It's never used as a default input or
output file.

B-1

Operation Considerations

The file identifier is YSRC.
® System Job Control Stream (JCS) Library File

This file provides for the permanent storage of control streams and JPROCS. It’s
used as the default output file by the file symbiont and as the default input file by
the run symbiont.

The file identifier is YJCS.

Volume Table of Contents

For each file on a direct access volume, there exists a set of control blocks in the VTOC
area of the volume. Each set indicates the attributes and extents of the file, and may
contain up to two control blocks. The information contained in these blocks is used by
data management to control access to files. In case of multivolume files, there is a set
of control blocks for the file in the VTOC of each volume.

For a complete description of these control blocks, see the Consolidated Data
Management Macroinstructions Programming Guide, 7004 4607.

B-2 7004 4623000

Appendix C
Job Control Statement Formats

Job Control Statements

//{symbol] ALTER [phase-name][,address][,change][z {RESET}_W
ORG

//(symbol] ALTJCS [file-label-idl|, [RES t,rpwl|, [FREE] |[,LUN=nnn]
RUN JONLY
vol-ser-no OFF

//{symboll CAT Lfdnamel,catpwll,SCRIL,GEN=nn]

//[symboll CC [command
'command and parameters!

//lsymboll CR
// DATA FILEID=file-identifier[,RETAINIL, IGNORE]

// DATA STEP=nnn

7004 4623000 C1

Job Control Statement Formats

FIXUNB
UNDEF
VARBLK

//Lsymbol] DD[;EFM= FIXBLK] [[,BKSZ=nlL, RCSZ=n1[,SIZE=AUTOI[,SIZEn=n]
VARUNB|
B

KLOCn

—
, [KLEN] =n
KLENR

{KLOC } -n [,INDS=n]

,ACCESS= [EXC ,REWIND= [NORWD
EXCR {UNLOAD}
SRDF
SRDO
SRD
SADD
. uce
| _
[, OPRW=NORWD] [,CLRW= [NORWD] ||,FILABL= [NO
RWD NSTD
FREE STD
ASSIGN
[, TPMARK=NO]|,RECV= [ALL ,VSEC= [YES] ||,VMNT= one RCB-
YES {n } YES
LoAD} |L-
NO
FCE
OFF

[,OFFSET=11 RESTORE' CACHE- ,MSGSUPP= |DM36
YES YES LBO5

ALL

[,KEYREF=n]

//[symbol1 DECAT lfdname[,catpu][,SCR][z {GEN}:}
ROL

//[symbol] DST dest-1[,dest-2,...,dest-16]

//tsymbol1 DVC [nnn:(n>1] . [addr
RES ALT
RUN 1GNORE
JopT
I
0
REQL(n)]
[REAL

c2 7004 4623000

™

N

Job Control Statement Formats

//Lsymbol1 DVC PROGL, job-namel[,HOST=host-1d]

//lsymbol] EQU lun-1,type-1[,lun-2,type-2,...,lun-n,type-n]

$YSRUN

//1symbol]l EXEC program-name|, [library-name] [,[+Iswitch-priority][,ABNORM=label]
Y1L.00

EXT (For disk and format-label diskette)

//lsymboll EXT [MI] |, |C , linc addr , Imi
{ST} CF) Tcce:hh (bi,ai)}
F i BLK
TBLK
cYL
TRK
oLD

. [mj ye-+|[,0LDIL,FIX]L,NTERM]
(bj,aj);

EXT (For data-set-label diskette)

-

//Isymbol]1 EXT MI,C,Q,BLK,(bi,ai)[,NDI]

//[symbol] FIN

//[symbol] FREE lfdname-1 [[(DEV)],...,lfdname-nL[(DEV)11

//[symbol] GBL set-id-1[{=init-1],set-id-2[=init-21,...,set-id-n[=init-nl]
//{symbol] GO destination

//Isymbol] IF (a op b) destination

// [symbol] INQ JOB, keyword

// Lsymboll INQ SYS, keyword

//[symbol]l JNOTE comment-line[,destination-1,...,destination-n]

7004 4623000 c3

Job Control Statement Formats

//lsymbol1 JOB jobname|, |P]| |[,minl[,max1|, [tasks , [max-time
H 1 SUP
i
L
[,print-option-list]

[,acc-nolf,nXml}|, [ACT + [NOHDR
LOG HOR

NOACT
NOLOG
NONE
BOTH

//Isymbol] JSET value

//Isymbol] LBL [file-identifier -, [file-serial-number] |[,expiration-date]
‘file-identifier!® VCHECK ;

T,creation-date]

IZ {file-sequence-number}:Hz {generation-nunber}:l

1 1

lz {yersion-number}
1

//lsymboll LBL [[qual/llevel-id-1 |,level-id-2...[,Llevel-id-n] [nn] 1ECrpw/wpu) 1

— L —J

'fqual/1level-id-1[,level-id-2...[, level-id-n] [nn] 1LCrpw/wpw) 1t

VCHECK

lz {_file-sequence-number}:HZ {generation-nmnber}:Hz {_yersion-nunber}:l
1 1 1

[{fi le-serial -number}jl [,expiration-datell,creation-datel

c4 7004 4623-000

Job Control Statément Formats

—~

LCB (For Non-SDMA printers)

C'char-string-1°* C'char-string-2' C'char-string-n'

//Isymbol] LEB {X'hex-string-1' } {i {X'hex-string-Z' } yueer {X'hex-string-n' }:]

[,CARTNAME=symbol]

NAME= |48-BUS
48-SCI
63-STb
OWNLC1
OWNLC2

,CARTID= (X'aa®
C'c!

[, NUMBCHAR=N]

,TYPE= (0770
0776
*

Xi40!

,SPACE= {X'aa'
C'c!

(,MISM= [IGNORE
\ {REPORT

[, DUAL= [X!xxyyxxyyxxyyxxyy'
. JC'abababab

C'bbbb!

[X'Yyyyyyyy!

Clcl

X140!

ERISMCHAR= {X'aa']

LCB (For SDMA and AP9215-1 Printers)

//[symbol] LCB [CARTNAME=symbol]
,NAME= |48-BUS
48-SCI
63-STD
OWNLC1-OWNLC9

[, TYPE=SDMA]

,MISM= [LGNORE
REPORT

Pt

7004 4623-000

C5

Job Control Statement Formats

//lsymbol] LFD [filename] [, [n] [{, [EXTEND
*filename 8 INIT

PREP
ID
I1GNORE

//Isymbol] MTC lfdname, |[BB,nn
BM,nn
FB,nn
FM,nn
WM, nn
RL
RU

//lsymbol] NOP [QUERY]

//lsymbol] OPR comment-line[,destination-1,...,destination-n]
//[symbol] OPTION p-1[,...,p-n] °

//[symbol] PARAM operand-1[,...,operand-nl

//Tsymbol] PAUSE comment-linel[,destination-1,...,destination-nl

//lsymbol] QGBL set-id-1[=init-11[,set-id-2[=init-2],...,set-id-n[=init-n]]

//Isymbol] QUAL [qualname]

//lsymbol] REN lfdname, {new-label [,NTERM]
'new-label !

//lsymbol] ROUTE destination-1,...,destination-8

//lsymbol1 RST filename,checkpoint-id,step-numberl, jobnamel(rename)11[,pril

[,key-1=val-1,...,key-n=val-n]

(new-name)

//[symboll |RUN l:{jobname[(neu-name)]}:l

RV jobname[(new-name)]

[:alt-filename

:(alt-filename, |[RES})
RUN
vsn

RUN
vsn

:(alt-filename, {RES] ,read-password)

NOR
LOW

.| PRE time [,key-1=val-1,...,key-n=val-n]
HIGH time+n

7004 4623000

N

/ >

/ﬁﬁ\\

Job Control Statement Formats

//lsymbol] SCR lfdname|, [DATEL[,yyddd]
- |PRE[, aaaal

//Ilsymbol]l SET COMREG,char-string
//Isymboll SET DATE,yy/mm/dd[,t-datell,d-date]
//tsymbol] SET UPSI,switch-setting

;
//lsymboll SFT |module-1[,...,module-n)] ,DLOAD=[E[calls],[: expansion-limit}):] :]
MAX

DLOAD=| ([calls], expansion-limit} |)
MAX

//1symbol] SKIP target-label |,mask]|, ALL
ANY
NONE

'string*

// [symboll SET LDA,n,m, {string }

//[symbol] SPL HOLD [,nXml], fno-cop ', [no-skpcode} |[, [max-rec| |E,forms]
RETAIN {i } {7 } - 12120
DISK ¢ .o
TAPE ‘
DISKETTE

" UPD

NOHDR}:|[,N_OISTL][,bI‘k-pge] [,MPD }[..NO_CMP][,RETAIN][,HOLD][,SECURE]

//IsymbolJUID Juser-id-1 ye--, juser-id-255
(addr-1) (addr-255)
user-id-1¢addr-1) user-id-255(addr-255)

//Esymbol JUSE DP,dialog-namel,printer-lfd][,new-audit-lfdlf,old-audit-Lfd]

//[symbol] USE LIB,module-name|,TYPE=]|L

O X i

7004 4623-000 C7

Job Control Statement

Formats

//Lsymbol] USE MENU |, {
$Y

//tsymbol JUSE SFS|, [

[Enenu-format-1=alias-1[,...,menu-format-12=alias-12§]

'file-LFDIQXSEEI

} [,initial-menu]lz {nnn}j]
1

T/menu-file-LFD

[,initial-screen]{z {nnn
1

[,screen-format-1=al ias-1[,...,screen-format- 12=al ias-121

// [symbol]l VFB LENGTH=lines
[, FORMNAME=symbol]

//Lsymbol 1vOL

+USE=

,DENSI

,TYPE= |0770

STAND1
OWNVF 1

OWNVF2-OWNVF9

{3

10776

SDMA
*

-

[,OVF=(line-1,...,line-n)]

[format-file-LFD-1/[format-file-LFD-2]
format-file-LFD
SYSEMT

] (SDMA printers only)

[,0VF2=(line-1,...,line-n)1[,CD1=(line-1,...,line-n),...]
[,CD15=(line-1,...,line-n)]

[,HP=n]
[Mcc

NMcc
volsn-1

SCRATCH

/%
I*
/&

£8)

(NS)
(NOV)
(PREP)

, fvolsn-1

Tvolsn-2

| SCRATCH

i

. [volsn-2

lvolsn-3

| SCRATCH

Tenovy |

[§)
(NS)

| CPREP) |

)
(NS)
(NOV)

| CPREP)

7004 4623000

~

P

Job Control Statement Formats

Job Control Procedures

//Lsymbol] procname [p1,p2,...,pn,ki=vi,kj=vj,..., km=vm]

//fdname ACCESS |lblname , |DvC=nn,VOL= |volsn
RUN
(lblname|, [n . [EXTEND] | *
8 INIT voL= |volsn
RUN
*
//\fdname ALLOC |lblname , [pvc=nn,voL= volsn
RUR
*

(lblnamelz {;}:H: {ii.‘ﬁ"”}]’

voL= {volsn
RUN
*

U] e)

JBLK
&
TRK
oLD

, fmi v=--{[,0LDIL,FIXIL,NDID)
(bj,aj)

7004 4623-000 Cc9

Job Control Statement Formats

C10

//Tsymbol] [ASM

ASML
ASMLG

} ,PRNT

,0UT=

JRUN, Label -1

JRUN, Label -1

,LST= {option

R= {lun[,destl] ,IN=

(vol -ser-no, Label)
(RES, Label)

CRUN, Label)
(*,label)

CRUN, SYSRUN)

[vol -ser-no-1, Label - 1]
RES, label-1

*, label -1

[vol -ser-no-1, Label - 1]
RES, Label -1

*,label
N

B

,SCR2= {vg&-ser-no}:} LALTLOD=

Gt

(vo
(RE!
(RE
(RUI
*,

|RUN, Label -2

L-ser-no, label)
S)

S, label)

N, label)

label)

[vol -ser-no-2, label -2
RES, label -2
JRUN, Label -2
* label-2

[vol -ser-no-2, Label -2
RES, Label -2

*, label-2
N

[RES, $TSSRC

+SCR1= [vol-ser-no
(opt-1,...0pt-n RES

(vol -ser-no, label)
(RES, Label)
(RUN, Label)

(*

, Label)

7004 4623010

Job Control Statement Formats

//Lsymbol] [AUTO

7004 4623-000

PRNTR= {lun[,dest]} .IN= [(vol-ser-no,label)

AUTRPG | N[, dest] (RES)

AUTRPGL 200, dest 1 (RES, Label)

AUTRPGLG] (RUN, Label)
(*, Label)

,0UT= [(vol-ser-no,label)
(RES, label)
(RUN, Label)
(*,label)
W
(RUN, SYSRUN ¥

,OUTSRC= [(vol-ser-no, label , L fd-name,module-name)
(RES, Label , L fd-name,modul e-name)

,SCR1= [vol-ser-no] |},SCR2= [vol-ser-no
RES RUN

ikLTLOD= (vol-ser-no, Label)
(RES, Label)

(RUN, Label)
(*,label)

(RES, YLOD)

,EMB= [NO ,Mop= [3) |[r,skip=C]
YES 4

5

,COPY n= {(vol-ser-no,label,fd-name)
(RES, label , L fd-name)
(RUN, Label, L fd-name)

[,ERRFIL=(vol -ser-no, Label ,module-name)]

}] | LsT= [«

n=Xx

C11

Job Control Statement Formats

//symbol {CCOMP | CCOMPL | CCOMPLG} IN=(label,vol-ser-no)
IPRNTR=({N|lun|20})]1 [,LIB1=(label,vol-ser-no)]
[,LIB2=(label,vol-ser-no)] [,LI1BC=(label ,vol-ser-no)]
[,0uT=({label,vol-ser-no|N})1 [,DEBUG=(K]|#E]Y|YES}]
[,DEFINE=(define_symbol[=initial_valuel{, ... h]

[, INTERACT={N|NO}1 [,DUMP={N|NO}1 [,LIST={i[iil)|Y|YES}
[,SoURCE={N|NQ|Y|YES}1 [,NRENT=(N|NO|Y|YES}]
[,ALTLOD=(label,vol -ser-no)] [,MAIN=(H[NE|Y|YES}]

[, PP={N[NO|Y|YES}1

//lsymbol] |COBL74 PRNTR= [lun[,dest]
COBL74L N[,dest]
COBL74LG 20L, dest 1

.IN= [(vol-ser-no,label)
(RES)
(RES, Label)
(RUN, Label)

(*, label)
L -

F:LKN=((vol-ser-no, label)])
(RES, Label) RES, label
(RUN, Llabel) RUN, Label
(*,Llabel) * label

CRES, YSRC)
1|+SCR1= yp{-ser:no.
RES

,0BJ= [(vol-ser-no, label)
(RES, Label)
CRUN, Label)
CRUN,SYSRUNY
(*,label)

+SCR2= [vol-ser-no +SCR3= [vol-ser-no
RES RUN

+ALTLOD= |(vol-ser-no,label)] |[,option=specification]
(RES, Label)
(RUN, Label)
(* Label)
(RES, SYSLOD)
(RUN, $YSRUN)

[,ERRFIL=(vol-ser-no, label ,module-name)]

Cl12

,LINn=(|vol -ser-no, Label |)

7004 4623000

~~

Job Control Staiement Formats

COBL85L N

//tsymbol] [COBL85S PRNTR= [lunL,vol-ser-nol]
COBL85LG 20

,IN=| (vol-ser-no,label) | ,LIN=| (vol-ser-no,label)

(RES) (RES, label)
(RES, Label) (RUN, Label)
(RUN, Label) (*, label)
(*, label) (RES, BY$SRC)
,LINn=} (vol-ser-no,label) | ... ,0BJ=| (vol-ser-no,label)
(RES, label) (RES, Label)
(RUN, Label) (RUN, Label)
(*, Label) (*,label)
CRUN; BYSRUNY

+SCR1=[vol-ser-no]| ,SCR2=[vol-ser-no ,SCR3=[vol-ser-no
""" RES RES

4ALTLOD=| (vol-ser-no,label) | [,option=specification]
(RES, Label)
(RUN, Label)
(*,label)
¢ [

//tsymbol] [cOBOLB 1 |PRNTR= {lun[,dest]] ,IN= [(vol-ser-no,label)

COBOLBL N[, dest] (RES)
COBOLBLG| 20C,dest] (RES, label)
COBOL (RUN, Label)
COBOLL (*, Llabel)
COBOLLG |

,0BJ= [(vol-ser-no,label) ,LIN= [(vol-ser-no,label)

(RES, Label) (RES, Label)
(RUN, Label) (RUN, Label)
(*,label) o1
CRUN, SYSRUN) (RES

[,0UT=(p-1[,...,p-M)IL,LST=(p-1,...,p-N)]

+SCR1= [vol-ser-no +SCR2= [vol-ser-no
RES RES

""" (RES, Label)
(RUN, Label)
(*, Label)
R
CRUN,

,SCR3= {yo!-ser-no};] (ALTLOD= [(vol-ser-no,label)

70044623000 C13

Job Control Statement Formats

//Isymbol] DVCDKT vol-ser-nol,lun] |ZNOVOL= {Y}:|
i

//Lsymbol] DVCVOL |vol-ser-no| [,lunl|,NOVOL= [Y
RES N
RUN

//lsymbol] DVCVTP vol-ser-no[,lun][ZPREP= {!}:][ZNOVOL= {Y}:]
N N

//tsymboll [FORT] |PRNTR= [lun[,dest] .IN= [(vol-ser-no, label)
FORTL N[,dest] (RES)
FORTLG 200, dest1 (RES, Label)
FOR L (RUN, Label)
FORL (*, label)
FORLG
FOR4 —

FOR4L ,0UT= |(vol -ser-no, label)
| FOR4LG, (RES, Label)
(RUN, Label)
(*,label)
N
CRUN, SYSRUN)

+SCR1= [vol-ser-no +ALTLOD= [(vol-ser-no,label)
{RES } (RES, Label)
(RUN, Label)
Calabel)
CRUN, SYSRUN Y

[,OPT=(D,N,X)1[,MDE=1]1[,STX=0options]

[,CNL=k1|,LIN= [filename ,LsT= [k
Tib1 option
[.MAP=(S,A,L)J|ZSIZE= {L}:|
S

[,ERRFIL=(vol -ser-no, label ,module-name)]

C14 _ 7004 4623-000

Y

Job Control Statement Formats

[,0PT=(S,N,X)1[,LIN=filename]

//lsymbot] |FOR& PRNTR= |lun[,dest] .IN= [(vol-ser-no,label)
FOR4L N[,dest] (RES)
FOR4LG Zﬂt.de&t] (RES, label)
(RUN, Label)
(*,label)
,0UT= [(vol-ser-no, label) lZSCR1= vol-ser-no
(RES, Label) {RES }
(RUN, Label)
(*, label)
CRUM, SYSRINY
,ALTLOD= [(vol-ser-no,label)
(RES, Label)
(RUN, label)
(*,label)
CRUN, $YSRUNY

[,LST=option1[,MAP=(S,A,L)] IZSIZE= {L}j|
S

[,ERRFIL=(vol -ser-no, Label ,module-name)]

FOR77L

//lsymbol] |FOR77
FOR77LG

7004 4623000

|

PRNTR= [N LIN

({ lun [,vol-ser-no]})
N
74

L0UT=

(vol -ser-no,label)
(RES, Label)
CRUN, Label)

(+ALTLOD=| (vol-ser-no,label)

(RES, label)

(RUN, Label)

C(RUN, $YSEUN)

(LIN=]| (vol-ser-no,tabel)
(RES, label)

(RUN, Label)

L

(vol-ser-no,label)
(RES)

(RES, Label)

CRUN, Label)

[,LIN=filename]

Bt

C15

Job Control Statement Formats

C-16

//symbol] {

LINK
LINKG

} [input-module-name-1,..., input-module-name- 101

,PRNTR= [lun[,dest]}

N[, dest]

200 destl

,IN= {(vol-ser-no,label)
(RES)
(RES, label)
(RUN, Label)
(*,label)

CRLIN, SY$RUN)

J(RES, label)
(RUN, Label)
[(*,label)

J(RES, Label)
(RUN, Label)
[(*, label)

(RES, Label)
(RUN, Label)
(Lolabel)
CRUN, SYSRUN)

[,ENTER=expression]

,RLIB= [(vol-ser-no,label)]

,ALIB= [(vol-ser-no,label)]

LALTLOD= [(vol-ser-no, label)]

,0UT= |(vol-ser-no,label)

(RES, Label)
(RUN, Label)
(*, Label)

CRUN, BYSRUNY

[sc.n: {E%-ser-no}] Izsm {zgs}i'

[,OPT='options']

,CLIB= |(vol-ser-no,label,modname)| |[,CMT='comment']
(RES, label ,modname)
(RUN, Label ,modname)
(*,label ,modname)

7004 4623-000

{/f‘~3

Job Control Statément Formats

// [symbol] PASCAL [PRNTR=N]

.IN= | (vsn,label)| |,LIN= [(vsn,label)
(RES) (RES, Label)
(RES, Label) (RUN, Label)
(RUN, label)
,0Bd={ (vsn, labet) ,ALTLOD=[(vsn, label)
(RES, Label) (RES, label)
(RUN, Label) (RUN, Label)
(*,label) CRES, YL.0D)
(RUN, SYSRUNY {RES, YRUN Y

RPGL

N[,dest]

//{symbol] [RPG PRNTR= [lun[,dest] ,IN=
G

RPGL

,0UT=

*,

(N)

,ALTLOD=

[,CONSOLE=L

-
,EMB= {NO

—
+SCR1= fvol-ser-no
RES

01 ||.Mop= [3
YES 4

20[,dest]

(vol-ser-no,label)
(RES, Llabel)
(RUN, Label)

Label)

(RUN, $YSRUN)

}:I [scnz= {;lo"l‘ -ser-no}:l

(vol-ser-no, label)
(RES, Label)

(RUN, Label)

*, Label)

(RUN, SYSRUN)

fd-namel

5 i
IRAM

,OBJLST=[YES]|[,MEM=valueK1|,DUMP=[YES
NO NO

(vol-ser-no, Label)
(RES)

(RES, Label)

(RUN, Label)

| (*, Label)

,LsT=

n=Ix RN

[,CoL=7]

[,ERRFIL=(vol -ser-no, label ,module-name)]

[,MIRAM=ALL

7004 4623000

1 |,UNPKDS=[YES
NO
_

e

C17

‘Job Control Statement Formats

TAPE

//Isymbol] SPOOL |REDIRECT= |DISK [,BUF=nXm] IZCOPIES= {n}:l
i
DISKETTE,

+SKIPCODE= [n] ||,RECORDS= [n] |[,FORMNAME=forms]
4 2129
°

UPDATE- coupnsss- ,RETAIN= YES
YE$ ¥E$
[, HoLo= YES] {{,SECURE= vgs
No No

~

RES 8
RUN

,0UT= ([vol-ser-no| ,label noext EXTEND
RES IN IT
RUN

,PRNTR= {lun[desti]

//ignored UDD IN=([vol-ser-no] ,label[z {noext}

N[,dest]
20[,dest]

Z"”"“” {-I?}] [‘”"”‘“: {LSS}]

LEXT=CIMID [, |c | 1|, {inc addr]
CF [Tece:hh

F 1 BLK
TBLK
CcYL
TRK

OLD

—
, [mi 11, fmj. yoe,|[,0LDIC,FIX])
(bi,aid[| | cbi,ald

C18 . : 7004 4623000

Job Control Statement Formats

RES 8
RUN

//ignored UDT IN=([vol-ser-no] ,label |, {noext}:])

,0UT=(vol -ser-no, label) | ,PRNTR= |lun[,dest]
NL,dest]
20LC,destI

,PUNCH- COMPARE-
YES YES

//ignored UTD IN=(vol-ser-no,label),

ouT= (|vol-ser-no| ,label|, [n + [EXTEND] |)
RES 8 INIT
RUN

,PRNTR= [lun[,dest1] ,PUNCH= [NO ,COMPARE= [HO
N[,dest] {}Es} . {}Es}
200, dest]
LEXT=(IMIT], [c , [ine , [agdr
- {CF '} Tece:hh

F 1 BLK

TBLK

cYL

TRK

oLD

s |L,OLDIL,FIX1)
(b1 a1) (bj aj)
//Tfdname] [WORKn DVC=nn,VoL= [RES
{TEMPn} RUN
vol-ser-no
voL= [RES
RUN
vol-ser-no
,BLK= [4000 LEXTSP= [nn ,SECALL= nn ,TYPE= flle type
o] | e e e
CYL=nn -

7004 4623000 Cl19

Job Control Statement Formats

C20

//[symbol] {HRTBIG

WRTSML

} tblock-1'[, 'block-2', ..., 'block-8']

,LUN=

'(vol-ser-no,label)

(RES, Label)
(RUN, Label)
(*,label)

1 129
[N

nnn

| (RES, YLOD)

+ [Lfd-name
PRNTR

}:][,dest])

7004 4623-000

rd k"’\'\‘

e

Index

A

ABNORM parameter, EXEC statement,
4-50, 6-68
Abnormal termination, 2-10, 4-50, 6-68
ABRDUMP option, 6-27
Absolute address, 2-5
ACCESS JPROC call, 5-8
Access method, specifying, 4-26
Account numbers, 4-7
Account records, suppressing printing, 6-34
ACN=account-number option, 6-26
ALIB parameter, LINK JPROC call, 5-28
ALLOC JPROC call, 5-10
Allocation, file, 4-30, 4-31, 4-33, 5-10
ALTER job control statement description,
6-56
Alternate devices, 4-14
Alternate library files
for job control streams, 1-10
for JPROCS, 1-10
for saved, translated control streams,
1-10, 6-36
searching for JPROCS, 8-9
storing control streams in, 1-10
storing saved, translated control
streams in, 1-11, 6-36
ALTJCS job control statement, 8-9
ALTLOD parameter, LINK JPROC call,
5-30
Audit version, dialog processor, 9-9
Automatic inclusion, 5-25

7004 4623000

Backspacing, 6-20
BAL, 2-7
Basic assembler language (BAL), 2-7
Binary overflow interrupt, 6-27
BLK parameter, changing extent
specifications, 5-6
Block characters, printing, 5-33
Block numbering, tape volumes, 4-21
Blocks
allocation amounts, 4-31
changing extents, temporary work files,
5-6
file allocation, 2-7
BOF option, 6-27
Branching
conditional, 7-2
directing program control, 2-11
providing targets, 7-4
unconditional, 7-1
Buffers
load code (See Load code)
spool, 4-7
vertical format (See Vertical format
buifers)
BUF=nXm option, 6-27
Building job control streams
description, 1-9
using the job control dialog, 9-1

Index-1

Index

C

CACHE parameter, DD statement, 6-59
Card data, input spooling, 6-7
Card input, adding, 3-10
Card reader
device assignment set, 3-10
ending operation, 3-8
start of data and end of data, 3-12
Cards, adding, 6-61
CARTID parameter, LCB statement, 6-14
CARTNAME parameter, LCB statement,
6-13
Cartridge (See Print cartridge)
CAT job control statement, 6-26
Catalog, file (See File cataloging)
CC job control statement
calling saved translated control
streams, 6-49
description, 6-45
CD1 through CD15 parameters, VFB
statement, 6-17
Changing dialog responses, 9-9
Character strings
LCB statement, 6-11
phase header record comment field, load
modules, 5-30
Characters, block, 5-33
Checkpoints
INIT parameter, 4-45
restart facility, 2-11
RST statement, 6-44 _
CLIB parameter, linkage editor JPROC
call, 5-30
CMT parameter, linkage editor JPROC call,
5-30
COBOL, naming your files, 2-7
Coding conventions, A-7
Commands, issuing (CC statement), 6-45
Comments field, A-1
Communications region, SET statement
(SET COMREQG), 6-40
Conditional branching, 7-2
Continuation lines, A-8
Control fields, modifying, 6-39
Control streams (See Job control streams)
CR job control statement, 6-61
Creation date, file, 4-37
Cylinders, file allocation, 2-5, 4-30

Index-2

D

Data

compressing, 6-3

definition, 6-58

embedded (See Embedded data)

start of data and end of data, 3-12
DATA job control statement, 6-7
Data management

assigning a file name, 3-5

modules not in YLOD or YRUN,

6-53

Data-set label diskette (See Diskette files)
DATA STEP job control statement, 6-70
Date -

block characters, 5-35

changing, 6-39

file expiration and creation, 4-37
DATE parameter, SCR statement, 6-25
DD job control statement

description and format, 6-58

keyword parameters, (table) 6-1, 6-59
DDP program-to-program facility, DVC

PROG statement, 4-17

DECAT job control statement, 6-26
Decimal overflow interrupt, 6-27
DENSITY parameter, VFB statement, 6-17
Destination, specifying

DST statement, 6-3

JNOTE statement, 6-52

OPR statement, 6-50

OPTION LOG statement, 6-29

OPTION MAS statement, 6-30

OPTION ORI statement, 6-32

OPTION OUT statement, 6-33

PAUSE statement, 6-52

ROUTE statement, 6-4
DEV parameter, FREE statement, 6-22
Device assignment sets

card reader, 3-10

different volumes on same device, 4-14

disk, 3-20

diskette, 3-20

DVCVOL JPROC ecall, 5-13

file name assignment, 3-5

job control statements, 2-1

minimum control stream, 3-1

renamed file, 4-40

tape, 3-14

7004 4623-000

Index

temporary work files, 5-2
workstation, 3-21, 3-22
(See also Devices)
Device independent control character codes,
6-19
Device type codes, equating logical unit
numbers, 6-10
Devices
adding, 3-14
alternate, 4-14
assigning by physical address, 4-11
assigning multiple workstations to a file,
4-10
different volumes on same device, 4-12
identifying, 3-4, 4-9
logical unit numbers (See Logical unit
numbers)
multiple volumes in a file, 4-14
optional device assignment, 4-12
releasing (freeing), 6-22
too many on same volume, 5-13
using, 2-2
using multiple, SYSRES, or YRUN
file, 4-9
Dialog processor
audit version, 9-10
device assignment set for workstation,
3-21
job control considerations, 6-27, 6-76
Dialog responses, changing, 9-9
Dialog session, control stream Section 9
Disk device assignment set, 3-20
Disk file area allocation
amounts, 4-31
changing specifications, 4-33
contiguous space, 4-28
cylinders, 4-30
description, 2-5
EXT statement, 4-27
formatting the file, 4-28
more disk space needed, 4-29
Disk files
changing label, 4-40
reinitializing, 4-45
scratching, 6-24
Disk volumes
file allocation, 2-5
reserving extent storage area, 4-44
sharing, 4-24
temporary work files, 5-5

7004 4623-000

(See also Volumes)
Diskette device assignment set, 3-20, 3-21
Diskette files
area allocation, 2-5, 4-34
data-set-label, 2-6
EXT statement, 4-34
format-label, 2-5
scratching, 6-24
spooling, 6-1, 6-9
Diskette volumes extent information
storage area, 4-44
multifile, 5-13
DLOAD facility, 2-13, 6-54
DLOAD parameter, SFT statement, 6-54
DOF option, 6-27
DST job control statement, 6-3
Dummy data set, 3-13
Dump, edited, 6-28
DUMP option, 6-27
DVC job control statement
adding card input, 3-10
assigning device by physical address,
4-11
assigning multiple workstations to a file,
4-10
assigning optional devices, 4-11
description, 4-8
device assignment sets, 3-4
different volumes on same device, 4-11
disk, 3-20
diskette, 3-20, 3-21
JPROC calls (DVCVOL), 5-13
minimum control stream, 3-1
multiple volumes in a file, 4-13
specifying a remote file, 4-16, 6-5
tape, 3-15
using multiple devices, 4-9
workstation, 3-21
DVC parameter, temporary work files, 5-5
DVCDKT JPROC call, 5-16
DVC PROG statement description, 4-17
DVCVOL JPROC call 5-13
DVCVTP JPROC call
description, 5-16
linkage editor JPROC call, 5-23
Dynamic expansion
main storage, 2-13
overriding SYSGEN limits, 6-56
user job region, externally referenced
program modules, 6-56

Index-3

Index

Dynamic extension, disk file
description, 4-29
JPROC calls, 5-6

Dynamic skip function, 6-69

E

Embedded data
entering from a workstation, 9-8
EOD option, 6-27
JPROC definitions, 8-6
sets, replacing in expanded control
streams, 6-70
start of data and end of data, 3-12
substituting, 6-69
END directive
ending JPROC definition, 8-5
target for branching, 7-4
End-of-data (/*) job control statement, 3-12
End-of-job (/&) job control statement, 3-7
End-of-job process, 1-9
End-of-job-step process, 1-8
ENTER parameter, linkage editor JPROC
call, 5-31
EOD=xx option, 6-27
EQU job control statement
description, 6-10
multiple devices, 4-9
Error messages
undefined set symbol, 6-37
unequal length character strings, 6-38
Errors
abnormal termination, 2-10
renaming disk files, 4-40
testing UPSI byte, 6-64
EXEC job control statement
abnormal program termination, 4-50,
6-68
format and description, 3-6
job step delimiter, 1-1
locating load module, 4-46
minimum control stream, 3-2
specifying alternate library file for
JPROCs, 8-9
task switching priority, 4-48
using the linkage editor, 5-20
Executive, 1-3
Expanded control streams, replacing
embedded data, 6-70

Index-4

Expiration date, file, 4-37
Exponent underflow exception interrupt,
6-38
EXT job control statement for disk
allocating disk area for new files, 3-20
allocation amounts, 4-31
changing specifications of previously
allocated file, 4-33
cylinder allocation, 4-30
description, 2-5, 4-27
device assignment set for diskette, 3-20,
3-21
dynamic extension, 4-29
formatting a file and using contiguous
space, 4-28
specifying file access method, 4-27
EXT job control statement for diskette, 2-5,
2-6,4-34
EXT parameter, ALLOC JPROC call, 5-11
EXTEND option, access JPROC call, 5-10
Extending files, 4-45
Extent information storage area, 4-44
Extents
allocating disk area for new files, 3-20
allocating file with JPROC call, 5-11
allocation amounts, 4-31
changing specifications, 5-6
data-set-label diskette EXT statement,
4-34
description, 2-5,2-7
disk EXT statement, 4-27
format-label diskette EXT statement,
4-27
LFD statement, 3-5
reserving, 4-44
EXTSP parameter, 5-6

F

FD entry, changing, 6-60

File access methods, 4-27

File allocation
amounts, 4-31
changing specifications, 4-33
data-set-label diskette, 2-7, 4-34
disk, 2-5
format-label diskette, 2-5
JPROC call, 5-10
terms, 4-30

7004 4623000

Index

File cataloging
description, 6-26
SKIP statement, 6-63
File definition
changing at run time, 6-59
linkage editor JPROC call, 5-21
File identifiers
description, 2-4
job step temporary files, 3-23
JPROC calls, 5-2,5-12
labeled tapes, 3-17
qualifiers, 4-43
using efficiently, 4-35
File names
assigning, 3-5
description, 2-7
JPROC calls, 5-2
tape, 3-15
File serial numbers, multivolume files,
4-36
File symbiont, storing JPROC definitions,
8-7
FILE system console command, 1-9
FILE workstation command, 1-9
FILEID parameter, DATA statement, 6-7
Files
accessing previously allocated, 5-8
allocating with a JPROC call, 5-10
cataloging (See File cataloging)
different versions, 4-39
existing specifications, 4-45
formatting and using contiguous space,
4-28
identifiers, 2-4
job step temporary, 3-23, 5-2
job temporary, 3-23, 5-2
logical, 4-44
logical names, 2-7
multivolume (See multivolume files)
naming, 2-7, 3-5
renaming, 4-40
scratching, 6-24
spooling, 6-1
(See also Disk files)
FIN job control statement, 3-8
Floating-point significant exception
interrupt, 6-37
Format-label diskette (See Diskette files)
FORMNAME parameter, VFB statement,
6-17

7004 4623-000

Forms control, 6-16

Forms, special (SPL statement), 6-2
FORTRAN, naming your files, 2-8
Forward spacing, 6-20

FREE job control statement, 6-22

G

GABRDUMP option, 6-27
GBL job control statement, 7-5
GDUMP option, 6-27
Generation number, file, 4-39
GJOBDUMP option, 6-28
Global set symbols
calling control streams, 6-47
description, 7-5
GO job control statement
branching, 2-11, 7-1
description, 7-1
GO option, 6-28
Graphic symbols, print cartridge, 6-11
GSYSDUMP option, 6-28

H

HDR option, 6-28
HELP screens, job control dialog, 9-3
Hexadecimal characters

LCB statement, 6-11

SET COMREG statement, 6-41
HOLD option, 6-28
HOLD parameter, SPL statement, 6-2
Host-id, user-id pair (See Destination)
HOST parameter

DVC statement, 4-16

DVC PROG statement, 4-18
HP parameter, 6-19

IF job control statement
branching, 2-11
description, 7-2
IGNORE parameter
DATA statement, 6-8
LFD statement, 4-44
IN parameter, linkage editor JPROC call,
5-24

Index-5

Index

Temporary work files
changing extent specifications, 5-6
job step, 3-23, 5-2
setting up, 5-2
using your own volume, 5-5
Termination, job, 2-10
TEST option, 6-37
Test pattern page, 6-3
Time of day, block characters, 5-35
TRACE option, 6-37
Tracks, 2-6
Transfer address, ENTER parameter
(LINK JPROC call), 5-31
Translated control streams, calling, 6-49
TSK option, 6-38
TYPE parameter
LCB statement, 6-14
VFB statement, 6-18

U

UID job control statement, 3-22,4-11, 4-16
Unconditional branching, 7-1
UNDEFINED option, 6-38
UNEQUAL option, 6-38
USE job control statement
dialog processor, 3-22, 6-76
library services, 6-78
menu services, 3-22, 6-74
screen format services, 3-22, 6-73
source module access, 6-78
USE parameter, VFB statement, 6-18
User-id, host-id pair (See Destination)
User local data area, 6-41
User program switch indicator (UPSI)
setting, 6-39
testing (SKIP statement), 6-64

'

Version number
block characters, 5-36
file, 4-39

Vertical format buffers
changing, 5-24
skip codes, 6-2
VFB statement, 6-16

Index-12

Vertical line positioning, 6-16
VFB job control statement
description, 6-15
linkage editor JPROC call, 5-24
SPL statement, 6-3
VOL job control statement
description, 4-19
device assignment set for disk, 3-20
device assignment set for diskette, 3-20,
3-21
device assignment set for tape, 3-15
DVCVOL JPROC call, 5-13
extending tape volumes, 4-23
ignoring or changing volume serial
number, 4-24
multivolume files, 4-19, 4-27
sharing disk volumes, 4-24
tape volumes, special characteristics,
4-21
VOL parameter, temporary work files, 5-5
Volume serial numbers
alternate library file, 8-9
description, 2-3
ignoring or changing, 4-23
multivolume files, 4-19, 4-36
tape, 3-15
temporary work files, 5-5
VOL statement, 4-19
Volume table of contents (VTOC), B-2
Volumes
data-set-label diskette file allocation,
2-7
different on same device, 4-12
disk file area allocation, 2-5
disk, sharing, 4-24
format-label diskette file allocation, 2-5
identifying files, 2-3
multiple, assigning file serial numbers,
4-36
multiple, online simultaneously, 4-27
releasing (freeing), 6-22
tape, extending, 4-22
tape labels, 3-17
tape, special characteristics, 4-21
temporary work files, 5-2, 5-5
too many devices, 5-13
VOL statement, 3-14, 4-19

7004 4623000

N

Index

w

Work files
linkage editor, 5-29
temporary, setting up, 5-2
(See also Scratch files)
WORK JPROC call
changing extent specifications, 5-6
description, 5-2
using your own volume, 5-5
Workstation
assigning more than one to a file, 4-10,
4-15
building a job control stream,
(figure) 9-2
changing control stream execution, 6-35
communicating with operator, 6-50
device assignment set, 3-21
dynamic skip function, 6-69
master, reassigning, 6-30
originator, reassigning, 6-32
releasing (FREE statement), 6-23
WRTBIG JPROC call, 5-33
WRTSML JPROC call, 5-33

X

XUF option, 6-38

7004 4623-000

SYMBOLS

YCAT, 6-26
YJCS
adding cards to control streams, 6-61
calling control streams, 6-48
description, B-2
restarting a job, 6-42
storing job control streams, 1-9
YLOD
description, B-1
locating load module, 4-46
YSMAC, B-1
YOBJ
ALIB and RLIB parameters (LINK
JPROC call), 5-25
description, B-1
YSRUN
locating load module, 4-46
preparing a job for execution, 1-6
temporary work files, 5-3
using the linkage editor, 5-18
YSAVE, running a job control stream,
1-12
YSRC, B-1

Index-13

