UNIVAC 9000
CARD ASSEMBLER

Programmed Instruction Course

Book 2 - Assembler Language

COMPUTER SYSTEMS

SPERRYSFUNIVAC

EDUCATION CENTER

UE-686.2

UNIVAC 9000 CARD ASSEMBLER
PROGRAMMED INSTRUCTION

COURSE

ASSEMBLER LANGUAGE

Book 2

UE-686.2

UNIVAC is the registered trademark of Sperry Rand Corporation. Other
trademarks of Sperry Rand Corporation are FASTRAND, UNISCOPE, and
UNISERVO.
Sperry Rand Canada Limited Registered User.
UNIVAC Marca Registrada.

©1973 Sperry Rand Corporation Printed in U.S.A.

INTRODUCTION

FILE DEFINITION
MACRO INSTRUCTIONS

DEFINE STORAGE

DEFINE CONSTANT

BASE REGISTER
ADDRESSING

CONTENTS

Input/Output Control System (10CS)

Define -the-File (DTF) macro instructions
Keywords, responses, required entries
Symbolic addressing of 1/O areas and devices
Macro coding for card and printer files

DS instruction format and coding specifications

ORG code, location counter
Defining 1/O area, work area and print area

Hexadecimal notation
Character constant
Hexadecimal constant

General purpose registers

Psuedo registers

USING instruction

EXTRN directive

ENTRY directive

Branch and Link (BAL) instruction

Page

2-27

2-39

2—iii

CONTENTS (Continued)
Page
IMPERATIVE
MACRO INSTRUCTIONS {4
OPEN macro instruction
CLOSE macro instruction
GET macro instruction
PUT macro instruction
DECIMAL ARITHMETIC S
INSTRUCTIONS Pack (PACK)
Unpack (UNPK)
Add Packed Decimal (AP)
Subtract Packed Decimal (SP)
Multiply Packed Decimal (MP)
Zero and Add Packed Decimal (ZAP)
Compare Packed Decimal (CP)
LOGICAL INSTRUCTIONS SR TR 2-79
Move Character (MVC)
Move Immediate (MV1)
Compare Logical (CLC)
Compare Immediate (CLI)
BRANCHING
INSTRUCTIONS e e e e e e e e e e e s e e s e s 200
Branch on Condition (BC)
Branch if Equal (8)
Branch if Less Than (4)
Branch if Greater Than (2)
Unconditional Branch (15)
Branch on QOverflow (1)
Branch on Plus (2)
Branch on Minus (4)
Branch on Zero (8)

2—iv

CONTENTS (Continued)

Page
EDITING e e e e e e 2-107
Edit {ED) instruction
Edit mask pattern
PANELS 1. Define the File Card Reader (DTFCR) 2-115
2. Define the File Printer (DTFPR) 2-116
3. Define Storage (DS) Coding Specifications 2-117
4. Origin (ORG) Instruction Specifications. 2—-118
b. Printer Layout Sheet 2-119
6. Character Codes « « « « « « - « . 2120
7. Define Character Constant Coding Specifications. . . . 2—-121
8. Define Hexadecimal Constant Coding Specifications. . . 2-122
9. Edit Instructions Examples 2-123
SELF-TEST e e e e e e e e e e e e e s 271240

2—v/vi

INTRODUCTION

This text is Book 2 of a series of programmed instruction manuals
designed to teach 9000 Series Card Assembler programming. Successful
completion of Book 1 (UE-686.1) and the self-test evaluation are
prerequisites for starting Book 2.

In this text, the novice acquires the basic Card Assembler programming
knowledge and coding skill required to successfully complete the
diagnostic exercises and terminal problem in Book 3.

FILE DEFINITION

1. PREVIEW

The Univac 9200/9300 Assembler Programming System helps
the user prepare programs by means of Software Programming
Libraries provided by Univac.

The acquisition of input data from peripheral devices such as the
card reader or magnetic tape and the transfer of the processed
output data to peripheral devices such as the printer, card punch,
or magnetic tape are important aspects of programming. To
provide for input/output functions on the Univac 9200/9300
systems, the programmer can use a prewritten input/output
programming system known as the Input/Output Control System
(10CS). This system, developed by Univac, simplifies control of
input/output devices and reduces the programmer’s task of
providing for input/output procedures.

This section of the course will discuss information the programmer
must provide in his coding when he wishes to use the
Input/Output Control System to perform input/output functions.
10CS consists of two parts: the input/output macro routines and
the macro instructions specified by the user program to
communicate with input/output routines. The macro instruc-
tions used to communicate with the input/output routines are
Imperative Macro Instructions; those used to generate the
input/output routines are Declarative Macro Instructions.

The macro instructions used to communicate with the
input/output routines are——____ Macro Instructions.

The system provided by Univac to reduce the programmer’s
1/0 commands is the

The macro instructions used to generate the 1/O routines are
the Macro Instructions.

Imperative

10CS

Declarative

2. The user is provided with a complete set of routines for

controlling all input/output operations that may be required by
the system. Since not every source program will require every
routine or its variable functions, Univac provides a Macro
Generator program which is capable of specializing each
input/output routine according to the particular user’s stated
requirements.

The Macro Generator reads Definition Statements (Declarative
Macro Instructions) made by the user describing the input/output
operations required by the application and punches them into
cards in the Assembler Source Language format. They may then
be assembled as part of the user’s source program, or assembled
separately and linked with the user program at execution time.

These Imperative Macro Instructions are related to the
input/output routine to which they refer by means of a file name.
At Assembly time, the 1OCS routines become part of the user
program.

At execution time, when an input/output function is desired in
the program, control is passed from the user-logic portion of the
program to the I0CS portion of the program.

Check the following statements as true (T) or false (F):
T F

0 [Univac provides a Macro Generator program which
is capable of specializing each input/output routine
according to the particular user’s stated
requirements.

O O The Macro generator reads the user’s Declarative
Macro Instructions and punches them into cards
in the Assembler Source Language format.

[0 [Data files are brought in and processed at assembly
time.

O [10CS routines may become part of the user
program at assembly time.

True

True

False

True

3. A file is a collection of logically related records that are to be

brought in by an input device or written out to an output device.
To use the 10CS system, the programmer must supply certain
key information about each input and output file used in the
program. This file information must be defined in a Declarative
Macro Instruction called a Define-The-File statement (DTF).

Match the following:
A. DTF e Input/output routines.

B. 10CS — A Declarative Macro
Instruction.

A statement coded by the
programmer to supply file
information.

A Univac supplied macro
program.

. The DTF statement is a macro instruction used to describe one

file. A DTF statement indicates the device to be used and the
type of processing to be performed on the file. It also specifies
the memory areas that are to be allocated for the input or output
data.

Whenever data is brought into memory from a peripheral device,
an assigned area of storage must be available for that data. This
area is called an input area. Similarly, when data is written to
a peripheral device, it must be sent from an area of storage known
as the output area.

How many DTF statements are required to perform the following
sequences?

® Read from a card file.
® Perform calculations.
L Produce a printed report file.

How many peripheral devices are required?

How many input areas of storage are required?

How many output areas of storage are required?

Two

Two

One

One

5. The START directive defines the program name and tentative
starting location. It must precede all other program statements
in the source deck except comments.

All DTF statements must be placed directly after the START
instruction and must precede the main coding.

The general format for coding this macro is as follows:

) LABEL 5 IOOPERATIONS 16 OPERAND) 72 80
BRG1 1 MSI'IIAR;[‘ AR U I B B 17 e Ly
FILE .., DII‘FEP{ OPY, 0000 1,] XALJ Lo vy
[B A Ly 1 OP2, | 1111 XLIIIJJI
[B B | 011)131 T R ST A | EETTI B S
Wﬁ : | g TR

Each file must be identified by a unique filename not more than
four characters in length.

The operation field must contain the Assembler mnemonic for
the Declarative macro which is

Entries in the operand field are selected by the programmer.

Each operand (except the last) must be followed by a comma.
A character must be inserted in column 72 of the coding form
to indicate continuation.

The maximum length of a filename is
characters.

All DTF statements must be placed directly after the
instruction.

DTF

four

START

6. The DTFCR Declarative Macro Instruction is used to define the
file for the card reader. The rules for coding the DTFCR statement
are described in Panel 1 on page 2-115.

Examine the DTFCR statements below and answer the questions

that follow.
. LABEL] ‘(:’PERATIONS 1 OPERAND ((72 80
BBG%[[I slTrART 11;_|_L4|.||;|7 i R
AD | .., | DTFCR EOFA=EQJ, . .| [P . 1. ...
e [oa=RBOR L\ NP
pa 4 L1 i IlTBleaTBIRuDN IALJ;) X P R
[S| | MOIDIEI._-TI‘!R‘ANSI L I TR

L e

i | IR B RS BT S

What device will this file use?

What is the name of this file?

What is the name of the subroutine the programmer will want

completed after all data cards have been read?

What is the name of the first input area?

What is the name of the translate table?

What keyword entry specifies that a translate table is to be used?

The above DTFCR may also be coded serially as follows:

LABEL

B OPERATIONS OPERAND
10 16

72

30

AD |,

DTFCR [EQFASEQT,TOA1=RBUF,. 1 . . |

L Ly

\ .., | [LTBLSTBRD, MODESTRANS , , \

vl

Card Reader

READ

EOJ

RBUF

TBRD

MODE

2—-6

7. The DTFPR Declarative Macro Instruction is used to define the
file for the Printer. The rules for coding the DTFPR statement
are described in Panel 2 on page 2-116.

Examine the DTFPR statements below and answer the questions
that follow:

LABEL

5 OPERATION &
10 16

OPERAND
72

PRNT

DTFPR

KS!ZH1 l3l2l 2t J_I 1

11 1

Lo

CNTL=YES ., |,

|

i

1

'EONqu6l3N| N B

P,R,AD,"‘jZl,l PN B

AR

1

P |RQ\7|=iYE'S| '

|
|
|
1
|

|
{
L
L |
|
L

i1 1l

1

PR T N B S T S O A
—

What device will this file use?

What is the name of this file?

How many print positions per line are specified?

Will there be additional spacing?

Will a 48-character or 63-character print bar be used?

Will there be single spacing or double spacing?

Is there provision for control of an overflow condition?

Printer

PRNT

BKSZ=132
CNTL=YES

FONT=63
double (PRAD=2)

PROV=YES

8. Match the following Keywords and corresponding response
functions:

1. BKSZ

10.

CNTL

FONT

PRAD

PROV

EOFA

10A1

ITBL

. MODE

OTBL

Specifies symbolic address of
input translation table.

Specifies symbolic address of
output translation table.

Provides for handling printer
overflow.

Provides for line spacing or
skipping control.

Specifies number of print
positions.

Specifies spacing advance after
printing.

Specifies either 48 or 63 print
bar character set.

Specifies that card codes
require translation.

Specifies symbolic address of
input area.

Specifies symbolic address of
end-of-file routine.

10

LABEL] ‘%PERATION'B - OPERAND ((72 80
CARD, 1. . | DTFCR [FOFA=EQJ, 1. J fB. . 1. ..,
oot o [RBURATOAL. L LKL
[N A Loy TBRD=SITBL , , | ‘l X T TR
RS B [MQQE?T.RANSI f I) X ra
Lo 10 La TR TN S T Y S S B TN B SR
| bbbl L s a o T T RIS A A B 1 TS B
e se——

Correct the above DTFCR example. Use the coding form below.

LABEL 5 OPERATIONS® OPERAND S k /S OPERAND‘
1 10 16 72 80 16) 72
CARD, |, |PPFCRI |, .., oot pIii. ., OFA=EOJ,,, | .,
TSR B Loy L P I T ' ll T IpAlF‘—LRB,UF,,[. .
AN B B | IR TR ST U A O N B A A NI B AN _%IEBDALL_L_L Xl |
1t 1 ! I 11 l 11 1 11 1 l 111 I | 11 l | D L MOPE]ﬁTWSI 11 1
L0l Lo TR R N S B T [N AR I A SR A i B L
M B T B L Illllll“l;lll ‘ M I T
10. Check the appropriate column for each of the following
keywords:
KEYWORD DTFCR DTFPR DTFCR DTFPR
PRAD A
EOFA / —_—
BKSZ /
10A1 v/
ITBL /
CNTL
MODE '/
FONT
PROV

11. Complete the definition statement for a card file labelled INFL.

Include the following specifications:

The 1/O area label is RBUF.

The end-of-file routine is labelled EOJ.

The card codes require translation.
The input table label is TBRD.

(any sequence acceptable)

LABEL 5 OPERATION & OPERAND I [OPERA J
10 16 80 16 72
IxN1F1I‘1 [D]T'FIC,R I TN VO N T N R S GO 1\ \l | L ILOIAL=IRIBI.L]IE’I X L1
TN T TN Ay | Lo, EOFA=EOJ,, | \ \Kl ..
[N B | IR IR S N 0 W0 A A B I Il | L MOLDIEV_—]TlRAanSIll X L
Lo oy l i TR AR N S U U B B] Ly I|T|B|L|=|'I‘|B|RI)1 1 Py
RN B [[T IS SR B S] L TR W 0 VO T B L1
[U A Ly PR ROV RN T N NS S B B ST O 1 | | L MR N BT N WA ’ "
o el L L l |
Complete the definition statement for a printer file labelled
PRNT. Include the following specifications:
The print-line requirement is 132 print positions.
The specified print bar has 63 characters.
Spacing and skipping is user controlled.
The printer will advance two lines after printing.
The printer will automatically advance paper to the first line
on the next page when a page is completed.
LABEL 5]%Penmon . OPERAND l [50 N OPERAND ” "
BKSZ=13
Y S I T L | freonneese] bR
N T Y | l; L CNTL=YES.] Ve
[N B L1 ||1|||||1111, [1 | 1 P'R'A'DFIZ' lx"l"
TR B I B L vy 1::||1|11|11\ (l | L1 PARIO‘V‘:IYE‘SI'I' . SR
AT S B AR S A | PR SO B
[T G| L1 ||11|||||11J_|J ! It WIS T i 1 P I
[R A | T RS UV HY T N T S NN B M B |] L
L . | 1 1t N R T :_L_‘LdJ I| | L

2-10

12. When defining a printer file, a programmer uses keyword entries
that are unique to the printer. These entries relate to line spacing,
page changing and overflow.

The BKSZ = 132 entry provides for the number of print positions
per line (max. up to 132). The printer image area, included in
the first 260 bytes of memory, is the buffer area for the printer.
When PUT, the Imperative Macro Instruction to print a line,is
encountered in the program, the data in the printer work area
is transferred to the printer image area. Printing is executed using
the data in the printer image area.

The CNTL = YES entry signals I0CS that the programmer will
control the paper advance and test for bottom of page condition
by writing a CNTRL macro instruction within the main coding
of the program.

Write a complete DTFPR statement for a printer file. Assume
that paper control will be directed by macro instructions written
in the main coding of the program. Also, assume that there will
be double spacing. Printing is to begin at the top of each form.

LABEL * OPERATION & OPERAND ([e ogrmnee, S »
! 10 16 72 80 [PRNT, 1, TEPR| BKSZ7132.. 1. KE...o....
7 L Lovs | CNTLEYES.. 7R { RN
[N B Lo RN B AT IR |' | T R At ‘i“ : - :on;:zyés" :‘l ELL‘:)
PR O B B U I AP R B | R B o LPONEER o L
I N I Y | I R T B B B B B | TN B R -
IO SR B Fusg I N AT B B B A A] T B
[N I S| IS TR SN OO0t S W R I B A N | [B
M B S | IR IO B S B S B 1 T SRR
T ——

2—-11

13. When the programmer uses the CNTL = YES entry in the printer’s
DTFPR, he must specify the format of a printout by using the
CNTRL instruction in the logic or process portion of the program.
Usually, it is written immediately before a PUT command. For
example, assume we are producing a report named PRNT. To
advance two line spaces before the next line is printed, the
programmer must write the two instructions as follows:

LABEL 5 OPERATION & OPERAND)
1 10 16
[ENUTEN N CN:rlRL PIRNEI l‘SPl A I
vty BUT JPRNT |y L L
AT B Ly 1 b b b v b
MRS S| | I b v e b b
Lo by [SN S U AT O W A S B O S

Com‘plete the macro that will cause the paper in the printer to
advance two lines before the next line is printed.

LABEL 5 OPERATION & OPERAND ON 5 OPERAND
1 10 16 16
| I | [1 1 CNIT‘IRIL | N 13 l it 1 1 l S | l | . I PlRlNlTl 7 IS|P1 r |2| | - | 1 I I
1 1 1 LAI_l 1 PIUI’I‘L 1 |RINI'I" | | 1 , 11 1 1 I 1t 1 11 1 1 I 1.1 1 I ! I | l
L by | PR N O Y U KO T R WA T IO U NI I T N T B N ST S A
AR NN WA | [T U O B B A N B A A R RN Iﬂ TS W S A VA VA N T A S S AT
[N I A |t TR U O S0 T SN SO AU O BB | l] T S U I T AU WO Y AT AR B
e —— S B

2-12

14. The CNTRL macro provides the programmer with the ability to

advance the paper before or after the line is printed.

To delay the paper advancement until after the next line is
printed, place two commas in the second operand of the CNTRL
instruction.

LABEL 5 OPERATION B OPERAND

10 16)
R B TIRL RNII’SPI'I'IZI baov by |I
[B B PUI'TI 1 PRNI’I‘I Le v v v by o by gy
SR N B L T E N I A N B TR TR T B O |
IS i | I N B T I S SRR AT ST A
IS NS I I B gy IS U EE N B SN A S B B R TR B S

_aneunl

The above code will cause the paper in the printer to advance
two lines:

[0 before the line is printed.
[0 after the line is printed.

The CNTRL macro (spacing) can advance the paper up to 2 lines
with 1 instruction.

after the line is printed.

15.

Single spacing is automatically provided each time a PUT is issued.
Therefore, when a report is to be single spaced, the CNTRL macro
is not needed for line spacing. However, CNTRL must be used
to advance (skip) the paper to the top of the next page (home
paper position) or to the bottom of the current page.

Example:
LABEL 5 OPERATION & OPERAND I
1 10 16
[B qNJ.IJRlL PIRN'I'I Ille n I17[[N SN B N
[R B qu'rl L PIRIN'I‘I Lo v vy o by 00
TR B A B | P S S BT S A N ST R S B N N A
I B B! | RS B O B

When used with a 7 as shown above, the SK parameter skips
to the top of the next page. To skip to the bottom of the current
page, a 1 is written in the SK parameter.

When the above CNTRL macro is executed, the paper in the
printer advances to the top of the next page after the line is
printed.

Complete the statement below so as to cause the paper to skip
to the top of the next page before the line is printed.

LABEL t OPERATION S OPERAND)
1 10 16

oot | ONTRUPRNT, g1
o1 JPUT |PRNT | 1
Ll Lia s [N AN AR A I SR R B
L by | IR T SO WO N R N N O N A A O O
(AR el ""I"'IJ"'__'AJI

ON & OPERAND)
16
i1 ISK:I|7| | T 11
v b v by
TN N A S B B B B R A
pev e boyv vy b d

(SR U B A A S BT

16. REVIEW FRAME

a
O

a
a

o o oo

O 0o o O

10CS routines called for by' the programmer are
assembled with the user program.

Data files are brought into memory and processed at
assembly time.

The programmer supplies information about the files
in the DTF.

A program with two input files and two output files
requires five DTF statements.

A file name must not exceed four characters in length.

1/O areas must be defined and named in another area
of the program.

The response to the keyword I0A1 = must be the
symbolic name assigned to the |/O area of memory.

The keywords must be listed in a prescribed sequence.
The last entry is always followed by a comma.

The CNTL = entry is only applicable to printer files.
To cause the paper in the printer to advance two lines
before printing, the programmer must write: CNTRL

filename, SP, 2.

If a report is to be single spaced, the programmer must
use the CNTRL macro.

CNTRL filename, SK, 1 advances the paper to the top
of the next page before the line is printed.

True

False

True

False

True

True

True

False

False

True

True

False

False

2-15

DEFINE STORAGE

17.

PREVIEW

in the DTF coding, the programmer names the input/output areas
that will be needed. The Define Storage instruction reserves
memory for the 1/O areas.

In the following frames you will learn how to code the DS
instructions to allocate memory for the input/output areas needed
to process a simplified inventory problem, The input in this
problem is a punched-card file. The output will be a printed
report.

2-16

18. Assume that the punched-card file records have

the following

format:

Item Columns Length Field Name
Part Number 15 5 cols. PART
Description 6-30 25 cols. DESC
Quantity on hand 31-34 4 cols. QNT
Unit price 35-39 5 cols. UNPR
Date 40-45 6 cols. DATE
(unused field) 46-80 35 cols. {blank)

A 3 & & \g&-

Qvg 0“’(5’ /S F Q,\S"

N

22222)222222222222222222222222202222

17171111117 11113711171111111179 4111717

5688836888823883688888888885(8388¢

How many bytes of storage must be reserved as

to receive the above data?

000000000000030000000000000000j0000{00000j00C0CD
1234 5§65 78 910 21516 1718107021 27222425 26 20 2829 39 3¢ 32 33 34J55 36 37 38 3040 4142 33 44 49
[RRA R RN RE AR R R R AR RN IRRRI IRRER INREREE
22222222222
33333]3333333333333333333333333]3333133333)333333
44444144445844444444444444444444/4484/4444841444444
55555/5555555553555595555555555§5555[55555/555555
66666(6666666663666666666666666{6666{666G6/666666

11110111111

an input area

Assume that the input area has been previously identified in the
DTFXX coding as RBUF. How many bytes of memory must be

allocated for the area named RBUF?
0 45 bytes

[0 80 bytes

80 bytes

80 bytes

2-17

19. The following DS statement allocates memory for the input area

named RBUF.

LABEL 5 OPERATIONS OPERAND I
10 16

RHU.EIH nslll CL8¢|]||||||||1111|

[N B Loy N TN S S NN RO T ST B R

TR B A A B L 14 lJlllIllfllllllllll

|1541;||1|,l.—-‘l

Answer Yes or No to the following questions concerning above
coding:

Does the tag begin in column 1?

Is the tag within the four-character limit provided by the Label
field?

Is there an embedded (blank) space within the tag?

Does the tag start with an alphabetic character?
Does the mnemonic DS start in column 10?

Does the operand specify the number of bytes to be reserved?

Are there any embedded blanks within the operand field?

Does the operand start in column 16 of the operand field?

Read the DS coding specifications on Panel 3 of page 2-117.

Yes

Yes

No
Yes

Yes

Yes

No

Yes

20. ~¢——— RBUF

80 bytes

L Memory location 1000 (assumed address)

What is the memory address of the first byte of the input area
named RBUF?

What is the address of the last byte?
O 1044

0O 1079

1000

1079

2-19

21.

a

et— RBUF g QNT
<= PART
|«— UNPR
|¢— DESC ’ ’ = DATE I
. 5 25 4 6 6 35
bytes bytes bytes bytes | bytes bytes

MEMORY LOCATION 1000

]

The above illustration shows the input area as redefined to include
the field subdivisions. Complete the DS coding below to allocate
memory for the records illustrated above.

1000

1000
1005
1030
1034
1039
1045

LABEL 5 OPERATION & OP(
1 10 16
RBUE |, [[DS ., [lcL8g)
RN W B O QRG 1 RBan | |’
PnART Ly qsl L [N B A |’
DESC I DS 1 Loy |\
QNT T B QSL il AN BN
UNPR ., ., | IDS .. T
DATE 1, , S [N N B SR
L1 1 1 l 11 DS 11 | I l 111 1
1t 11 I 11 l i1 1 B S N T | I b I N |
L Loy TSNS B A

The above coding directs the Assembler location counter to
allocate 80 bytes starting with location 1000. The ORG code then
directs the Assembler to decrement the count to the starting
address represented by RBUF,

What address is symbolized by the tag RBUF?

The input area RBUF can also be redefined by means of the
duplication factor as shown below:

1000
1000
1005
1030
1034
1039
1045

LABEL 5 OPERATION & 0;(
10 16

UE .. |ps .. [lgcLeg)
PART , , , |DS , , [ICLS .., .,
DIESJCI 1 qs| L1 QL%51 l11 1
QNT ., ., |DS , | ICL4 , 1., .Y
U.NP.R | DS |, | CLS5 , | L1
DATE ; , . |DS . |ICL6 , 1, .,
[B qsll 1 q113|5| ||a||\
IOV BT | IS TR SN D B GO B
lllllll llll |1Jlll|ll
Lot 4l ot g IR A IR

QPERATION &
10 16

|
|
|
]
}
| SR
|
I
]
|

1000

2-20

22. The ORG instruction resets the Assembler location counter to
the starting address of the tag in the Operand field. (Read the
ORG instruction specifications described in Panel 4 page 2-118).

When the program is assembled what address is assigned to each
of the following tags?

RBUF 1000
PART — 1000
DESC —— 1005
ONT &@—_—k 1030
UNPR —— 1034
DATE — M ——v 1039

Note:

In the printed Assembly listing, addresses and location counter
references are represented as hexadecimal values. However, since
we have not yet studied the hexadecimal numbering system, we
will represent addresses as decimal values.

2-21

23. The inventory report is to be printed in the format illustrated

in Panel 5 on page2-119. This requires the assignment
of an output area in memory that will receive the heading and
data fields of each line to be sequentially printed. We will assign
the address tag OUTP to a 132-byte area as illustrated below.

~— OUTP

132 bytes

The first printline will contain the heading, DATE, and the date
of the report. These fields are defined in the output area as
illustrated below:

~—— QUTP

-——— HDR1

———— DATE

103 bytes (blank)

Z 16 bytes (blank)

Z- L—- 8 bytes (report date)
1 byte (blank)

4 bytes (DATE heading)

Write the DS coding to allocate memory for the fields illustrated
above. Since the blank fields will not be addressed in the
program, they require no address tags. However, a blank field
that precedes a heading or data field must be defined to increment
the location counter to the first byte location of the heading
and data fields to be addressed. DS coding to define the final
103-byte blank field is not required in actual programming but
should be included in this introductory problem.

LABEL t OPERATION & OPERAND \ LABEL 5 OPERATION®
1 10 16 1 10 16
IR B | B Voo el b e] 01U|‘I‘|P| | Q§x Y CJ£1L3A 1
[B A v b v e b e by g |7 ISR Rl(;l 1 OIU:IIIPI 1
T S N I L b e v be v g by LAL\ 1ot DSI L CL1I6I)
L1 L | TR TR N T [N O T T N S Y S M G S DR1| 1 QS| L C\I-I4| L
[N G| T EE I U N EE A SN B S AT SO A A 17 A qsl Ll QI{1| L
[N R | IR oo b e e b e by |\ QA'I‘lEI HS. L CL8 |, 1.
RN B Laaa P SR T S U S S T S U N O .D | DS, | , C\I-i1|¢1
TN Laoa g II(l}lliLlll!l'(lllﬂ ol | B Pyl
. N W .. | 1]
e |

24. The second line to be printed will contain the report title. Thus,
the output area is redefined as illustrated below:

ft——OUTP e HDR2
{INVENTORY REPORT)
16 bytes
58 bytes (blank) 58 bytes (blank)

Continue the DS coding to redefine the storage area for the fields
illustrated above, for the second line header.

LABEL 5 OPERATIONS OPER.
10 16

QUTR (.. |Ins .. [lcr132 ..o 1\
L. .. 1..]ORG , [louTP)
11 gslll CII'|]16111|1|II
1 gslll C1I\4|:||1||I1

1 11 1

[HDRL

g a1l qsl Ll CII.lll [SR EE \
D|A|Tl| El Al +q Sl 1 1 ClLl 8] J. l TS S | I)
P11 1 1 1 lqsl .l CII‘lll gl 3I 1 1 1 1

]
|
|
1
|
st a bl
|
I
1
|
|
|

LABEL t OPERATION S
1 10 16
i 111 I L I 11 . |
e o | L1
[N S I I B [AN
11 1.1 lJ i I 11 |
gty Ly L1t
PRI B B | N
[ENERE It P11
r 1o by QRG O.U.T.P.
21 11 l 11 DSI 1 CII“5l81
HDR2 |, , | DS | CL.16
L1, DS | CRSS,
[ON BTN B b s AT
IS W [L1
PEN SN U AT 1 20 118
SRR B 1 i1

2-23

25. The third printline will contain the column headings. Thus the
output area is redefined as illustrated below:

g~ OUTP

@~ HDR3

|=&- HORa

r‘— HDRS

lg— HDR6

22 bytes
{blank)

11 bytes

| S 16 bytes (blank)

11 bytes

23 ﬁ
bytes

(blank)

!

17
bytes
{blank)

10 bytes

L_ 14 bytes {blank)

8 bytes

Continue the DS coding to redefine the storage area for the fields
illustrated above for header positions 3, 4, 5 and 6.

LABEL s ‘%PERATIONS 16 OPERAND
QL'ULI‘R [DSI f C‘L1L3I2| v oy
TSN QRG 1 OUT.P, | T I RS
[OR N B DSLJ i CII-\1|6| Lo o by
II:IIDLR11 Ly QSI L1 C|I-|41 B R B R
FINE B DISJ_n] CIL11 O BT B R S I
DATE |, |DS , |ICL8 , ., ., ..,
| IR Dlsl 1 C|111|¢13| TR B
[N A quc;n 1 O|U|T|P. Lo vl ey
va o by DS: (4 CIL5L8r Lo oo o lvay
HRDIZI 1 DSJ_I 1 C|L1161 | B ST A R
| .} 4‘ 1 DSI [CIIJSLBI I 1 1 1 | ’ 111 1
Lot i Ly TN NN T N ST T W T A RO
ST A Ty s by v oy
PRI B 111 O B R S U R
[N B I [N R B SRR N A
rraa Ly Lo v o I S B R N O I
L b [[T TRU S S N N 0 A A
T T W Ly 1y [N NI N TN A A A
1 1 1 1 l L1 I I | 11 1 | ! 11 IAI;I 11
a1 s [E TN R U N BRI O B R
y a1 1y [NI U SN U I B AR
ttap 1y Le g PRI T B B R A B B B)
: : : !] | 4 1 AR B AN A AR R

LABEL 5 OPERATION S \
10 16

raa L L1 L1 I‘
AN A B Lo PR |
N I B B Ly a1 |
[N BB B [141
L1y a1y Ly L]
P T U B L ea 0 La
PN S B A L1t
IR I I L1 Lt
ENEN IR A [P [
TR I A Ly oo raga |
T L 14 ¢ Lt 1 l‘
L ORG | | PUTP, ,

FDR3 |, [DS [FLLL
L L L 1 L DSI 11 C,II'1212_L
HIDIRI4I - Dlsl 1 4 CII'I]-I].I

HnDnR5| Lo Dlsu Li CJL|8| 1
1111 I L1 DJSI 11 CII‘I]“|4I
HIDIRIG| I_I_L Dﬁ] . %lllgL
ra el Dlsn L CII'IlLZL
t e by Loy L1
e 1y Ly 13 [

2-24

26. The fourth printline will contain the first line of data. The output
area is redefined as illustrated below. Since the fields in the
remaining printlines will have the same format as those below,
further redefinition of the memory area is not required.

oute
f&— PART
DESC [~ arv
[“— UNPR
25 bytes (glnnk)
18 bytes
{blank) 18 bytes (blank]
5 bytes 4bytes
19 bytes (blank) 18 bytes (blank)

Continue the DS coding to redefine the storage area for the data
fields illustrated above for data on the 4th print line.

LABEL L 1 ‘%PERA'HONB 16 OPERAND
QU,T,P i A DIS L1 CL11 43121 [T BT
o1, JORG LV JPOUTP
it [Dlsx L C|L11461 | A B B S A I
DJRL1I 141 L1 C11‘|4| S N R R B B A A
[IR AN S G I D§l Fn CJI"111 I B S R N
DATE , , , |DS , , |[CL8 , (., 1.\,
IR A Dﬁl 1 C|I‘114¢13| TN ST B R
vl QRG 1 01U1'I‘1P1 | R S E I B SR
o gl |S 1 C|L|5|8| TR N N A R
IDAR121 | Dlsl 1 C|I"11161 [SR
et fPS JICLS8
o1, JORG JOUTP (g,
NPT I 2~ &) K N I
H;QR3| [D'S| L1 C1L111| Pev e s by ey
PR O B N A DISI 1 CIL212| | T S
lHD134 | QSL L1 q11111| Loy v e by o0
I qsl L1 C11123 ooy oo by gy
I'il)1R15| Lay qsl L ClIiel i U AR AR A
TR DlSl 1 Cul-‘11|4. | IR B
rﬁ:l)lqu L1 Dlsl 1 CII'|1I¢| | RN B
1. 1.1 I i1 DIS 11 C|I’|1|7| I [I | I P11
11 1 1 I |- I 11 P11 ‘ 11 ¢ 1 I L1 .1
y g L [T AT S AT S B
) I I L1 l 1 1 1 lvl 1 l 1.1 1 ! I | I S -
paa a1 f o1 AR U0 N A A I AT A
S B Loyt v by e by
L by [N T S N A N B AU N AR
P 131 I 1 1 l 1 1 1 L1 I I I ‘ 11 1 1
T S A [R T N T O L S B B A
AR AT Py NI S I B A R B |l
paoea b fHL R B A R R]
: : - | dnad [P S T U O N S O A . f

CL18,

CL4, |

CL 1.8,

| L
DR 1 L1 L1r
PR N | T L1y
[N B Ly L1
MR B Y Lae L
rra s by L 11 Lt
A | T NN
g by | Lo
raa a1 Loy IRt
RS Lot L
[boaoy o [
vl | TR
[T I [111
AR L1 s L1
j .| l 1 I 1 .1 1 | S |
I W QRG OUTP,
L1 | Dsa Lt CL1.9.‘
PART |, , | DS . , | [CL5 .
Lt il | i bsl] ClL1|
DESC |, .| IDS , .| cL25,
|
|
i
I
|

NER |, [DS .. [lcLs,
L1 L I‘[_>I§L11 CIlelﬁl
Lty ..Ll.;l T

2-25

27. REVIEW

Check the following statements as True (T) or False (F):

T F

O [O The tag in a DS statement represents the symbolic True
address of the first byte of the defined field.

O O An unused field defined by a DS statement must be False
named.

1 O The ORG instruction is an Assembler-directing True
instruction.

0 [The ORG instruction resets the location counter to True
permit a storage area to be redefined.

[0 O A tag can be used more than once in the Label field False
of the coding form.

8 [A DS statement can be used to define storage for an False
I/O area only.

O 0O Printline storage requires an allocation of at least 132 True

bytes of memory.

2-26

DEFINE CONSTANT

28. PREVIEW

The programmer frequently uses constant values that must be
loaded into the program at object time. A constant may be a
column heading that is to be printed or it may be a numeric
value that will be used in an arithmetic operation. The
programmer defines a constant and specifies the required storage
by coding a Define Constant (DC) instruction.

The 9200/9300 instruction set permits considerable flexibility in
defining constant values. Two commonly used types of constants
are discussed in the following section:

Character constants

Hexadecimal constants
Because hexadecimal notation is used in representing constant

values, a brief introduction to the hexadecimal numeric system
precedes the discussion of constants.

2-27

29,

In the hexadecimal (hex) numbering system, 16 symbols are used
to represent numeric values. Digits O through 9 and alphabetic
characters A through F represent numeric values O through 15
as shown in the comparative table below:

Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 1
Cc 1100 12
D 1101 - 13
E 1110 14
F 1111 15

A hex symbol represents how many binary digits?

Binary 0100 0000 represents hex 40. What hex value represents
binary 1111 1111?

What is the binary representation of the hex value C1?

Four

FF

1100 0001

2-28

30. As in the decimal and binary numbering systems, the value of
a hexadecimal numeric symbol is determined by its position. Hex
positional values correspond to powers of 16 and increase by the
progression of the power of 16. This is illustrated below using
the hexadecimal value 1111 as an example:

POSITIONAL VALUE
POWER OF 16 163 | 162 | 18! 169
HEX VALUE 1 1 1 1
DECIMAL VALUE | 4096 | 256 16 1

Write the hex equivalents of the following decimal values:
4096
256
16
1

What is the decimal equivalent of hex value 1111?

The decimal equivalent of the hex value FF can be calculated

as follows:
F F
I ‘—— 15x16%= 15
15x161=240

255

What is the decimal representation of the hex value F1?

What is the EBCDIC representation of the hex value F1?

1000
100

10

4369

241

1111 0001

2-29

31.

Internally, the computer represents all printable characters in
memory as in EBCDIC (as shown in Panel 6, page 2—-120).

Externally, in the Assembly listing, the computer converts
EBCDIC values into hex values for the reading convenience of

- the programmer. Thus any printable character can be represented

as either an EBCDIC value or a hex value.

Write the EBCDIC and hex byte representations of the printer
graphic symbols ABC:

EBCDIC

1 J T T T
1100'0001. 1100.001011100100”

HEX

Convert the printer graphic symbols 7 3 4 to EBCDIC and hex
values:

EBCDIC

T T T

T T
c1,c2cC, 3

1111 0111 1111 0011 1111 0100
1 1. 1 1 i

HEX

Which form of representation is easier for the programmer to code
and read?

0 EBCDIC

[0 Hexadecimal

T 1 _ 1
F 7 F 3 F 4
At 9 1 1

Hexadecimal

32. In the preceding section we discussed the allocation of storage
for data to be printed in a monthly inventory report. Provision
also must be made by the programmer to print the page headings
on each page of the report. These headings can be defined as
character constants and coded as shown in the following example:

LABEL & OPERATION S 1 OPERAND 7
10

_HDIR1|||| CII L4n‘DATtEllll||||l|||1

\
TR R Lo ..f-l..-nl;n..l-nn.J)
|

[N ER N A Ly RS A S I 0 N A U B B G A B B SN A

illl!!!!] I AN T BN A SRR B SN ST R A
— e —

Read the rules for coding character constants in Panel 7 on
page 2-121 then write the DC coding for the report title and
column headings of the inventory report shown on Panel 5.
Use the tags HDR2, HDR3, HDR4, HDR5, and HDR6.

LABEL . ‘OD’EﬂA‘IUI OPERAND I,
LABEL B GPERATION® OPERAND ®] HDR2 | [, TIL16, INVENTORY REPORT.,
1DR3 DC, CLL1'PART NUMBER'® .
I OR4 ;.. 1BC., . | CLLL'DESCRIPTION' |
TR B | (RN NS ST S RN S B R S A | iDRS y, . [PC ., | CL8'QUANTITY' |
T\ IDR6 DC CL1g UNIT PRICE"
[R B | B! po o by e by vy e b b | PN | Fee | .
La v las 1 . . B
toa el Loy ||||||11LJ||1|[1111114_|lll e

AN B oo prov by v e by b b
llJ_IIIl |||| !lljlllllllllllllllllljj‘&
LIII‘II T |1Illll1l|||1|]1|J||||||||
ISR B L TS EE N I AT A AR A I RN TS S B S B S S A S A |
- [T ks e Ll b by

2-31

33.

Any constant defined as a character constant can also be defined
as a hex constant. (Read the rules for coding hexadecimal
constants in panel 8 on page 2-122.)

Example:

LABEL 5 OPERATION & OPERAND I
10 16

]
[HDR1 1. . | DC . . | XL4'C4CIEICS." .1\ 01 &

AN A B Lo e b v g v s oy Lyag

AN B | TR B B B B O B B RN
| 1 1y FPRUTGUTE RN [TN ST S N S T U A 1

What is the printer graphic representation of the constant defined
in the above DC coding (see Panel 6)?

Each byte in a hexadecimal constant contains:
[J one hex character
[0 two hex characters
When one or more characters in a constant cannot be represented

by a printer graphic character, the constant must be defined as
a hex constant.

Example:
LABEL 5 OPERATION® OPERAND k
10 16
1
EDMS 1 .. ||DC ., ||XT.9"%
11 11 I 1) l 1.1 1) B] 1 1 1 11 1 l § I - l 11 1 1 l 1 1
‘!!Illl l 14 PUNTETEE BN A N A B S E U5 0 DU T A

Can the above constant be defined as a character constant?

DATE

two hex characters

No

2-32

34. The Assembler converts constants in memory and represents them
as hex values in the object code listing.

Examples:
LABEL % OPERATION S OPERAND, OBJECT CODE
10 16
C\ONI1I ' 11 DCI 11 CLI3I ! DNEI ! 1 i l 1 D6D5C5
Mlzl | - CI i} i XLlll ' ISBI ' 1.1 1 I 1 1 SB
AR I A 1 4 1 [T NN N I A B O A
| | 414 [)

Refer to Panel 6 and write the object code hex representation
generated by the following defined constants.

LABEL + OPERATION S OPERAN OBJECT CODE
10 16

qul4l I 1 1 Qq 1 1 CII.I41llcplDlElll I] s
ICONS, |, , | IDC . . | KD2'FIF2' | |

[B S O B | B [ON I R B B B A

N 1

=

OBJECT CODE

C3D6CACS
F1F2

2-33

35.

When the explicit length factor is omitted, the implied length
of a constant is the number of characters stated within the
enclosing quotation marks.

Examples:
IED T
LABEL sﬂrsamousu j IMPL LENGTH
TAGT 1, . L le'aBg') 3 bytes
TAGlzl l 11 DICI b1 x| ! 14L¢l ' I 1.1 1 1 byte
AR N | | Lt 1
— re |

Rewrite the DC coding for each of the following constants. Omit
the explicit length factor:

LABEL 5 OPERATION S OPERAND g
10 16 I
YRR IR IR T TN |
TAGS, |, . Co 4'F6FAF2F4" .\, . ..
111y b Lo [T SR TN Y T O S S U N O B O
IR A | PR SN WN NN H S SY ON S SY U O OO |
Lya gl L RS N B U T S T DS RS N A G 'Y

LABEL 5 OPERATIONS OPERAND S F OPERATION & OPERAND)
1 10 16 10 16
'I‘:AG4 1y DC . | PTETT S SN N A TR N N B 14_(\ Ciis CYRATY
'I:AGa L1 Dq | [S S (0 VAU T NN T S W Y A A N U l Co ;' F|6F|4F2F41'
Lt b by PR S ST T TT N H T S A [[RN I B A S A B A
[B o1 [T E S 0 T T T A A T S N WM \ Lii s AT B R A1
TN AN A | b el v Lo by | [T T B A W S W

|

36. When DC coding specifies an explicit length that is greater or
less than the implied length of a constant, the specified explicit
length overrides the implied length and padding or truncation
occurs as described in the coding specifications in Panels 7 and

8.

Examples:

LABEL

5 OPERATION &
10 16

opmk OBJECT CODE

E. ... [bc. [lr2'asc: .\ f
TWO, , | DC ., [CL3'AB '
THRE | DC , | XL2 F1F2F3'
ELQQR I qcl T qu3l'IFI1IF12I'l Ly

L]

| JE S S OO O N SO B A

IR B

ci1c2
C1C240
F2F3
00F1F2

Match one of the following conditions to each of the constants
coded above:

Truncated on left side

Truncated on right side

Padded on left side

Padded on right side

LABEL

ONE

TWO

THRE

FOUR

®

O » O

37. A defined constant cannot exceed 16 bytes as specified by a
single DC statement. When the constant length exceeds 16
bytes, one or more additional DC statements must be speci-
fied. For example, the heading constant:

‘REPORT OF CURRENT SALES & PROFITS'
is defined as follows:

LABEL L] ‘(:)PERA'ﬂoNﬁ 16 OPERAND
HDNlG [DCI [N CI ' |RE|P lolRTu p lF‘l pIUIRRENI‘ P
1.1 1 1 | T DIC1 L1 Cl ' :I‘I IS’A.]-_I‘EIS' I&l lPiRQFlIL’I'I ! L l J o |
A S A DCI [Cl 'LSI ' vl by e v b by
[N RN R Ly MU I TN T SN N B S 0 A U A TN N B B

How many DC statements are required to define the above
constant ?

What is the maximum length that can be specified in a
single DC statement ?

3 DC statements

16 characters

2-36

38. Match each constant with the corresponding object code (refer

to Panel 6):

CONSTANT

C'A’

XA’

XL4'F2F3’
XL2'F2F3’
XL1'F2F3

X'ag

CI$I

OBJECT CODE

——

c1

0A

5B

40

F2F3
0000F2F3

F3

C'A’

XA’

c'¢

X490’
XL2'F2F3’

XL4A'F2F3

XL1'F2F3

2-37

39. REVIEW

Check the following statements as true (T) or false (F):

T
O

F
0O

One hex digit represents eight binary digits.

Two hex digits can represent the contents of one byte
of memory.

The memory representation of a constant in the
Assembly object code listing is in hexadecimal.

Character constants can be used to define printer
graphic characters only.

Hexadecimal constants can be used to define printer
graphic characters only.

When defining a constant, the explicit length must be
specified.

The operand field of a DC statement contains a constant
value which must be enclosed within single quotation
marks.

The implied length of a constant is indicated within
the enclosing quotation marks.

False

True

True

True

False

False

True

True

2-38

BASE REGISTER ADDRESSING

40. PREVIEW

The 9200/9300 has eight general purpose registers as well as eight
psuedo registers that can be used in base and displacement
addressing.* The USING directive provides the Assembler the
information it needs to assign the base register a value for the
base register table. These psuedo registers are assumed to contain

values that are multiples of 4096.
Psuedo-register
0

1

6

7

Psuedo register 4 in the above table contains what assumed value?

Value
0

4096

8192

12288

28672

Psuedo register 5 contains what assumed value?

Psuedo register 6 contains what assumed value?

*General purpose registers are numbered 8 to 15. Psuedo registers

are numbered O to 7.

16384

20480

24576

2-39

41.

USING

The USING directive informs the Assembler that a specified
register is available for base register assignment and that it contains
a specified value. Each USING statement provides for 4096 bytes
of memory. When the USING directive is used to specify pseudo
registers, it provides for direct addressing by listing the modules
of 4096 bytes that are available for the program being assembled.
Since it may not be known in advance how many locations
will be utilized; it is better to use the full capacity of the
computer unless the program is small or the programmer has
knowledge of the size of the assembled program.

2--40

42.

The format of the USING instruction is illustrated below.

LABEL 5 OOPERATIONﬁ 16 (o]
\
MAKE
IR B qSIIING *I 'IQ T AVA”_ASBKLE TO
USING %, 1
NS R E B 1 b b USER PROGRAM
Lty Loy T S B B
NN SN I Ly a g Loy b gy

® The * (asterisk) indicates that the current value of the

location counter is to be used for generating displacements.

® The Number 1 above specifies that psuedo-register 1 is to

be used as a base register.

If the programmer knew that the program would need less than
4000 bytes of memory, only the first USING directive would
be used. For a program requiring 8000 bytes of memory, the
first two USING directives would be used.

Write a USING instruction to notify the Assembler that general
register 7 will be used as a base register. The current value of
the location counter will be used for generating displacements.

LABEL * OPERATION & OPERAND I 5 OPERATION & OPERA
10 16 10 16
TR I SR Ly [T B RN RN A R AR USING*I-!7IIIIIII
111} I 1 1 l 1t 3 1) 1 i ' | I] l i 11 1 I 1 | 1 ' | 11 1 | | 1 I 1 1 1 1 I
1 Lo Loy PR RS N B A S T S R S B B | RTINS NN N I B A O |
%) AN B -—I— ot 1 orou
The USING instruction:
T F
O O computes base displacement addresses. False
OO O tells the Assembler which register will be used as the True
base register.
O [provides the Assembler with the information it needs True
to assign base registers a value for the base register table.
O [does not appear in the Object Program. True
0 O is an Assembler directive. True

2—-41

43,

PREVIEW

When a job consists of more than one subprogram, the elements,
which are the output of separate Assembler runs, must be
combined before they can be loaded as an executable object
program, This combining, or linking, is done by a utility program
called the linker. The linker inserts the storage addresses for
references made from one element to another and modifies
addresses if an element is relocated.

44,

EXTRN DIRECTIVE (Externally Referenced- Symbol
Declaration)

EXTRN notifies the assembler that a symbol (label) referenced
in one separately assembled program will be defined in another
program.

In the example below the subprograms READ and PRNT have
been assembled separately. The User program, by means of
the EXTRN directive, notifies the Assembler that the symbols,
READ and PRNT, will be assigned address values at a later
time by the Declarative Macro Instruction subprogram.

LABEL %5 OPERATION® . OPERAND
10 16
[O T B EP((TIRN ADllxlllllltlllllxlnll
[N RN B El}(leRN PIRN(TA | T RN B SRS R ST A
IO I Lig T T I Y B BT S B B B S A O AN O
Nﬁ

2-42

45. ENTRY DIRECTIVE (Externally Defined Symbol Declaration)

An ENTRY notifes the Assembler that a symbol (label) in one
program will be referenced by another separately assembled
program.

In the example below the subprograms FOF and EOJ are
referenced in a subprogram that contains Declarative Macro
Instructions DTFPR and DTFCR but are defined in the User
program. The RBUF area is referenced in the Declarative Macro
Instruction subprogram and defined in the User program. To
provide the linkage between the subprogram and the User program
ENTRY directives with externally referenced symbols (labels) are
written into the User program. The labels FOF and EOJ are entry
points into the User program from another program. The
subprogram is executed after control is transferred to it from a
subprogram.

LABEL 5 IOOPERA'"ON‘B 16 OPERAND j
TR B EN;'I:RxY EOxJilllxllnnnu
RIS B EAN;’I:RIY Equ: i R BT |

IR B BN FINTRY RBUF,

(| o boe v Lol

llll!l llll |Ill]|llllll|ll

The subprogram would have EXTRN directives corresponding to
the ENTRY directives in the main User program. Subprogram
READ, for example, contains EXTRNS for EOJ and RBUF. The
subprogram PRNT contains an EXTRN for FOF.

For every ENTRY in an element, there is an EXTRN in one or
more other elements and, for every EXTRN in an element, there
is one ENTRY in another element.

243

46.

BRANCH AND LINK (BAL)

The Branch and Link instruction provides an unconditional branch
to the address specified in OP2 while storing the address of the
next executable instruction in the register specified by OP1.

LABEL 5 OPERATION & OPERAND
10 16

R B! |*

L1 TR RS SN BT

IR BlAnl‘ul Sllsltmipx'ull.

1

!

|
TN RN B ch 1 S:I‘l()lR'LCIARDI L1y [1’
il 1 1 I 11 l‘l 11 1_J_t L | 1 IAILI J 1 I) S
81U181P1 10 qE1T1 1 READIICARDI L4 Laaaa]
TR S R BT | TR N BRI ST R |

" NI

In the above program when the BAL instruction

program skips to SUBP.

What address is placed in register 8?

is

read the

MVC

2-44

IMPERATIVE MACRO INSTRUCTIONS

47. PREVIEW

To read data into the processor or write data out of the processor,
it is necessary to have contact with the peripheral equipment (card
reader, printer, etc). The OPEN macro instruction provides access
between the processor and the peripheral devices. It prepares the
peripheral device to be ready to send data upon receipt of a GET
macro instruction. The CLOSE macro instruction terminates the
communication link,

The GET macro instruction causes data to flow across the
communication link from the input peripheral device to the
processor. The PUT macro instruction causes data to flow from
the processor to the output peripheral device.

245

48. EXAMPLE:

LABEL t OPERATION S OPERAND 7
10 16
TR B OlPENI ILJLLI;L]IIIIII]IJ_II
iV | OPEN I FILR (0
[OPEN, ELLT 0 o]
AR A [ST HD NN S U T N U U0 A N T WO O
- ! _'—_ 'll! Ifl'* | l;l_l

In the above instructions, FILJ is opened, then FILR is opened,
and finally FILT is opened.

Write three OPEN macro instructions to activate three files named
FILC, FILD, and FILR.

LABEL + OPERATION & OPERAND) t OPERATION OPER
10 16 10 16
oo by [NN T B S RIS BN R S S S A 1I OPENJ 1I:L|C| Log 44
R G Ly PR TR ISR VOO T S SO S S S U O S S OPEN| FAIélDllllJl
t [y L1 TSN N S N T T O A S N S OO IO A SO | OPPAENI FIIIT"IR Ly 1y
TR B B [N ST TN NN TN W S U U N S O A | S TEN U B R R

Each filename in the operand must be identical to the filename
of a DTF statement.

Before data is made available from a file, the file must be
opened (activated)

Each DTF name must agree with the —________ name in file
the operand of the OPEN macro instruction.

246

49. The OPEN macro instruction is usually written after the USING
instruction, at the beginning of the program.

Check the following statements as true (T) or false (F):

T

O

.

O

Only one OPEN macro can be included in a User's
program,

A file must be opened before it is accessed.
A separate’ OPEN macro must be written for each DTF.

All files must be opened immediately after the USING
operation code at the beginning of the program.

In a preceding frame it was stated that ENTRY
statements are necessary for FOF, EOJ and RBUF
because they are referenced by another program.

EXTRN statements are necessary for subprograms
externally defined.

False

True

True

False

True

True

2-47

50. The CLOSE macro instruction is similar to the OPEN macro

instruction but performs the reverse function. This allows the
operator to assign the peripheral device to another program.

Example:
LABEL 5 OPERATION & OPERAND
10 16

Lo Ly CLOSE % 1 5% PR G AR TN EEETET. N

| S 1 I_] 1 I 11 L 1) J_‘;I 11 Ll 1 11 1 ‘ 1 11

[S L4 [N I YRS B B A B S A AR B B R A

lJ 1 —_I_ el | LJ_I 1

Rules:

® Any entry in the label field is optional.
® The Operation code is CLOSE.

® The Operand contains the name of the file to be closed.
This is the filename of a DTF statement.

Match the following:

A. CLOSE ———— Label field
B. Filename (FILJ) ——— Operation field
C. Entry is optional ——— Operand field

Write a CLOSE macro instruction to deactivate a filename FILJ.

LABEL % OPERATION® OPERAN;\
1 0 16
TR B START] TN SR EN
Lot L JUSING * By
IR IS B! | 1o FRT T O N S A
AN A | 1o [N S T S S U
ISR B QP,ENL FlILI-\J1 | A A
IS B L 1o o PR H U AV RN ST T WO
IR B Lo I EN N AT A
IANET I B Lyg [N ENEN N SN AT
IS I [T ORI S T B T SO A

C
A
B
LABEL 5 OPERATION S
10 16
Illll llll 11 1 1
FET I BN A L [
BTN I) 1 I
1 oy | AR |
FEE AN [L
lll‘l "II ll]lL
a1 CLQs FILJ
[TER T [T L1ty
e by Lo

51.

The files to be closed are listed in the operand.

LABEL 5 OPERATION S OPERAND)
10 16
a1 g CILOlsE F|I|LJ| Py o bv v g by gy
oot |CGLOSE FILR |00 0y,
N N B quS,E FIIILTI bovv o by v g by s d
AN A | [EN I B SN A IS AN A A B B BN AR A
L—‘—*|lll) ijLJ

In the above instructions FiLJ is closed first, then FILR, then

FILT.

Write CLOSE macro instructions to deactivate three

named FILC, FILD, and FILR.

DTF files

16

LABEL 5 OPERATION & OPERAND
10

)

NN B | TR [R B R

I

i B

lllllll llll | S T N W N W

'

|
]
1o bay s 1 [SN B |
|
1

b -

Each filename in the operand must agree with the name of a
DTF statement and must agree with a filename in the OPEN

macro instruction,

A file must be

before it can be

When a program is finished with a file, the file should be

5 OPERATION S OPk
10 16

GLOIQF‘ EI,LC 1 41

| [GLOSH FILD ; .,

1 CleSIE EILRlllll

1 | S Y PRI N T R T W B

I " L

opened {activated)
closed (deactivated)

closed

2-49

52,

The GET macro instruction causes the next consecutive record
to be read into the processor from the opened peripheral device.

The following is a typical GET macro instruction that places the
next logical record into the previously defined input area.

LABEL 5 OPERATION & OPERAND
10 16

TN B GET|1 FAT-TIF‘---WORK||1111|1|1/11

[B | T ST U B T S EATEA S ST B SR

) N SR T 0 W A B O B O B AT A
C—

Rules:

® An entry in the Label field is optional.

The Operation code is GET.

Operand 1 specifies the name of a file that identifies the

peripheral device from which the record is to be retrieved.

This filename is addressed by a_label in a DTF statement.
Operand 2 specifies the name of the area which is to re-
ceive data. ‘

Match the following:

A. GET Label field

B. Optional entry Operation field

C. Filename (FILE) Operand field

Write a GET macro instruction 1o read the next record from FILJ
into the processor.

LABEL 5 OPERATION S OPERAND)
1 10 16
1. | STARTG 00y
1 | USTING *,r.g..b...f..%
IR RN B Losey o T WO N T A S B

IR B Lio TS T VA IR SR N :I
IR NN BN oanEuNl FlIlLJl Lo g 1] n\
IR BN NI B L RTINS U SOV A W .n
IR B L ge [N B AR A B

o1 JICLOSEl FTILT, 4, 00010
basper ™= ——

% OPERATION & OP|
10 16
L1t [B
Lyog tooog by
| Leiv oy
| FRTEN T T W
Ll L by
ET [[EILJ 1, ..
Laaa Laaa b
L TS I

2-50

53. The PUT macro instruction causes the next logical record to be
written from the processor to the opened peripheral device.

The PUT macro instruction directs a peripheral device to write,
punch, or display logical records that are in the output area of

memory.

The following PUT macro instruction sends a completed record
to the output device identified as the filename of the DTF

statement.

LABEL 5 OPERATION & OPERAND
10 16
t oy b RU:]: 1 FIT‘EIIIDJA!T-A Lvv oy v lovy gy |l
NN BN S d o0 ||1_|]||111||||11|||
| 5 .)
?
Rules:

® An entry in the Label field is optional.

® The operation code is PUT.

® Operand 1 specifies the filename that identifies the peri-
pheral device thattis to receive the record. The filename
must be identical to the label of the DTF statement.
Operand 2 specifies the symbolic address of the data
that is to be transferred to the peripheral device.

The PUT macro instruction above processes data records serially.

The filename in operand 1 must agree with the Label in the

statement.

The location where the record is to be aritten is called

DTF

FILE

2-51

654, Write a PUT macro instruction that sends the next record from

a work area (WORK) to a printer (FILE).

OPERA%

LABEL 5 OPERATION & OPERAND I 5 OPERATION &
1 10 16 10 16
)|||||x l|1| IIllIlllJLIlllI[llL lll PIUI'I‘II IIlllel,"qlo)RII(ll
1 1 1 IAI_LI l 1 1] 1 1 1t 1 [11 I LJ 1 1 1 J. ‘ 1§ AL \ L 1 |- 1 | N - 1 l A1 1 (
%J'V [I B A B A S ,
65. If we have moved all data into the output area (labelled QUT)
to be printed, what output device would be specified in Operand
1? Printer
This device would be specified in Operand 1 as PRNT.,
Suppose we wanted the data in the output area to be punched
instead of printed, what device would be specified in Operand
1? Punch
This device would be specified in Operand 1 as PNCH,
Operand 2 would contain the label of the output area.
If we were moving data from OUT to PRNT, how would the
instruction to cause printing be coded? Write the instruction
below.
LABEL & OPERATION & OPERAND % OPERATION OPER
1 10 16 10 16
Lo Ly Loaa g 11L411|21|111.L1111Al PU:I‘II INTI’pU:I‘||

[T B Loy TS BRI SRS T S S R T

T e ' !

| | 1

TR RN

2-52

56. END

The END statement directs the Assembler to terminate the
program being assembled.

LABEL 5 OPERATIONS OPERAND I

1 10 16
tooi ., | CLOSE AD.l..ul..,.l....7
baa i, | CLOSE[PRNT, | v v v 1w iy
TN N G HPR . '111EE'||1||||1||||||7
[i B Ean BEGNl!llllllllllllll
Ll La A U i B SR I T N R N TR
PR B Lo por e by by dow g
| MR T B A !

The operand in the END statement is the symbolic address
of the first executable instruction of the Object program.

The last instruction in an Assembly program is the:
O CLOSE macro instruction
O END statement

[l TERM instruction

END statement

2-53

DECIMAL ARITHMETIC INSTRUCTIONS

57. PREVIEW

Most of the data processing steps itlustrated in a process flowchart
are performed within the main memory of the computer when
the Object Program is executed.

In this section, you will learn more about applications and rules
governing instructions that perform calculations within the main
memory. Specifically, the Add, Subtract, and Multiply
instructions.

58. FOOTNOTE FRAME

In the Introduction to 9200/9300 you learned that numeric data
must be stored in packed format before arithmetic calculations
can be performed. At that time, we introduced EBCDIC code
and showed illustrations of data in packed and unpacked formats.
The concept of packed and unpacked data is reviewed in this
section.

264

59. Assume that we are writing a stock-control program that reads in
punched cards. The cards contain the number of items added to
or removed from stock, One field in this transaction card is
called QTY (quantity).

After we read a card with the value 829 in the QTY field,
memory would appear as:

- QTY
11111000 11110010 11111001 J
Ast significant / least significant
byte byte

The four leftmost bits of each byte contain:
O all zeros,

O all ones. all ones

O acombination of ones and zeros.

When the four leftmost bits of the least significant byte are all
ones, the field is considered to be positive. In the illustration
above, the value 829 is:
O positive (+). positive (+)
O negative (-).
The sign of the field is indicated by the four leftmost bits of
the:

O most significant byte.

O least significant byte. least significant byte

2-bb

60.

When numeric data is read in from punched cards, it appears in
memory in unpacked format. Character representation of
decimal data is unpacked. This means that the leftmost four
bits of the least significant byte in the field always designate the
sign. The leftmost four bits of the other bytes in the field are
called zone bits. The illustration below shows a three-byte, un-
packed decimal field.

T T
Zone Numeric| Zone Numeric Sign Numeric
1 [1

Using the positive value 829, memory contents could be
illustrated as:

The four leftmost bits of the bytes containing the digits 8 and
2 are called bits.

The four leftmost bits of the byte containing the 9 designate the
of the field.

zone

sign

61. The zone bits have no decimal value. Therefore we can replace
them with numeric information by packing two decimal digits
into an eight-bit byte. A single Pack instruction can convert a
field from unpacked format to packed format. The instruction
preserves the sign of the unpacked field by reversing the posi-
tions of the sign and the numeric portion of the least significant
byte in the field as shown below:
4
PACKI ALPH ' (), ALPI:I (4) ' ALPH
8 + BEFORE
z, 1]z, z , 2 4/9 PACKING
\' \ | >I\ .
AFTER
p, 1] 8, 9, * PACKING

To calculate the minimum length of the receiving field, halve the
length of the unpacked field and add one.

After packing, the sign of the field is located in the:
O rightmost position of the field.
[0 leftmost position of the last byte.
An unpacked numeric field that is three bytes in length can

be packed into bytes (fractions are
not counted).

An unpacked numeric field that has a length of nine bytes can
be packed into a field having a length of:

O eight bytes.
0 five bytes.

O four bytes.

rightmost position of the field

five bytes

2-57

62. This block of a flowchart specifies
that the data in the area of memory
ADDTSOALE named SALE is to be added to the
TOTL data in the area named TOTL. If
the data is read in from cards, it is in
T unpacked format. The data must be
packed before it is used in calculations.
This function is not illustrated in the
flowchart.
The following instructions cause the data to be packed and then
added.
LABEL t OPERATION S OPERAND ,
1 10 16
v b P‘Achn SAIEI(lsl)I'SM‘EI(ISJl [
PR R B P“A\CE TLOITIIJI(I7I)I’I'I‘JQELI(I7I)I L1
[N NI B A A|P| i1 TxolTlll(l7l)|lSéE'E|(|5|)l Lt
L by | R [N U B B T B S S R G B EN N
How many instructions must be written to pack the two data
items? two
How many bytes of memory does the field named TOTL
occupy before it is packed? seven
How many bytes of memory does the field named TOTL
occupy after it is packed? seven
63. In the first card read into memory, the field SALE contains

the value 45613 and the field TOTL contains 0071460, Show
each field in memory before and after packing. (Refer to panel
1 in the back of this manual.)

SALE Before

TOTL Before

SALE After

TOTL After

|Fa|Fs| F6| F1] F3|

[rp | Fo| F7] F1] Fa] Fe | Fo|

log | @0] 45|61 | 3+]

[ge]on[an]og[71] 46 %]

2-58

64.

LABEL 5 OPERATION S OPERAND —\
1 10 16)
[B ’Alpl [TIO:I“I-* (17|) L '1SA|LE| (ISI) L i
11 1 I L1 1 | | I] I | I | I 11 L I L

This Add Packed Decimal (AP) instruction adds the
packed data in SALE to the packed data in TOTL. The
result is placed in TOTL (destroying the previous con-
tents of TOTL). The data in SALE is not destroyed by
the operation.

After an AP instruction is executed at Object Program execu-
tion, the sum is located in the memory area indicated by:

O the first operand.

O the second operand.

How does the control unit of the computer know the number
of bytes of data in each field to be added?

0O All data fields used in arithmetic instructions are
exactly five bytes long.

[0 The programmer has included two length factors
in the instruction.

the first operand

The programmer has included

two length factors

2-59

65.

All of the decimal arithmetic instructions permit the operands to
be of different lengths, Each operand can be up to 16 bytes in
length. The first operand, however, must be the longer because
this field will contain the result after execution of the instruc-
tion. If the first operand is shorter than the second operand,
significant digits in the high-order bytes of the second operand
will not enter into the result.

Write an instruction that will add the following numeric data
items and place the result in the larger area.

et Cost

08 | 75 | 4+

lg—— Work

00 68 | 49 00 | @+

Show the two areas of memory after the instruction is executed.

L—— Cost

|e—— Work

LABEL 5 OPERATION & OPERAND OPERATION & OPERAND \
10 16 10 16
TR B | [N B ST T SR S AU B AU P, . WQRK(IS):..COST‘i)
1 gy L IV SN N BRI R A A B AT ' L1 [T B R RN A S RS |
[B —— AR BRI T [B | L1
b T

[0 | 68| 40| 75| a+ |

2—-60

66. The maximum length of the operands in the Pack (PACK), Add
Decimal (AP), and Subtract Decimal (SP) instructions is:

O 7 bytes.
O 16 bytes.
[0 40 bytes.
O 256 bytes.

When a decimal arithmetic instruction is executed, the result is
found in the memory location identified by the:

O first operand.

[0 second operand.

16 bytes

first operand

67. Examine the following code and answer the questions,

LABEL 5 OPERATION® OPERAND
10 16

[EEE N B PIAI(:II(J S|A111E|(|6|)1’|SAA|LE|()6|)] L1t

Lol P[A,CK ABILEI(L4I)|’1BAKEI(I7I)I S|

Lo aa b AP‘ 1 S,AI{E.(|6,),,,AB]I!,E,(,4,)| |

N WA L o NI BT AN ST SR I B A AT A |
k——"

What is the length of the field named SALE after the packing
operation?____________bytes.

Before packing, the data in BAKE was seven bytes long. What
is the length of ABLE after packing? bytes,

In the Add instruction, the four bytes of data at ABLE are
added to the numeric data in the field named

The sum produced by this addition will be in the field named

siX

four

SALE

SALE

2—-61

The PACK instruction permits the programmer to specify a
length for both operands. The packing operation can be per-
formed in place (as in our earlier examples) or into another
memory area. When the packing is performed in place, high-
order zeros are generated to fill out the field. When the pack-
ing operation is to occur in a separate area of memory, this
second area does not have to be cleared or initialized in any
way as high-order zeros are generated.

Write the instructions that will pack the contents of AMT into
an area named WORK, and then add WORK to TOTL.
Examine the data before writing the instructions.

F7 | F5 | Fo

AMT before packing:

. 75 0+
WORK after packing:

09 12 9 +

TOTL before addition:

LABEL t OPERATION® OPERAND (OPERATION & OPERAND ‘
10 16 10 16

Lo by | RSN B RN EN B AT SRS ST B I ‘ACKJ OIRKI(lzl) |1AMT|(3|) 1
AT A T D | ... | [TOTL(3)., HORK.(2)
RSN B [AR B AR B AT AT N R |\ |14 TS S O S N I R
T B B A | I T U VT T S YO T T T T Y U N O h I iy TR S N R R S R O T
ettt boa L TSN N B AN B N A A SO S R R L1 IS N N I A S I IO R R A
=l Lt Lot | TR S N T ST SN A TN ST W T B S RPN | S VI VY B OO B S BRI

2—-62

69.

PRCE COST

9 | 87 1+ @7 67 | 2+

Adding fields of equal length can result in an overflow condition.

Suppose AP PRCE (3), COST (3} is executed when the data in
the fields are as shown above. What is the true total of the two
values?

What is the name of the result field?

Can the result fit into the result field?
0 VYes

O No

The computer would try to get the result, 104543+ into PRCE
in the same way you perform arithmetic calculations, by start-
ing at the right and working to the left.

What would appear in PRCE as a result of the addition?

104,543

PRCE

No

g4 | 54

2—63

70.

FOOTNOTE FRAME

The situation described in the preceding frame is called over-
flow because the result overflows the field in which it is to be
stored. It can occur even when the result field is longer

than the other field; for example, adding 1 to the five-character
field 99,99,9+. It is the programmer’s responsibility to provide
adequate storage for the expected result. Remember, the sign
is always included.

The decimal Add and Subtract instructions set an internal in-
dicator called the condition code, following the execution of
each instruction. We may test this condition code and branch to
another place in the program, or not branch, depending on the
setting of the internal indicator. The indicator may be set to
one of four conditions, which are designated by the values

0, 1, 2, and 3. Condition code 3 indicates that overflow has
occurred.

You will learn how to write statements to test for overflow later
in the course.

71.

The Subtract Packed Decimal (SP) instruction has the
same format as the Add Packed Decimal (AP) instruction.
The first operand contains the result (difference) following
execution,
}— WIDE
00 | 69 | 7+
—~—— BAL
o0 | 99| 88| 7+
Write an instruction that will subtract the quantity in WIDE
from the quantity in BAL. The result is to appear in BAL.
LABEL 5 OPERATION® OPERAND (QPERATION & OPERAND (
1 10 16 10 16
AN B (I PR S H N A ST S N R T NI N S S WA | SIPILJ BAL.(14|)|IW|IDE;(v3T))
L lag | PR T W (NSO YA SN W NN SN S ST NN B SR N Ly IR N S N AT SR Y N TR
- h'"_I'__ ‘J-I_Ll 1 i1

2-64

72.

Write the instructions needed to pack and then subtract the two
data items from a field named TOTL.

i TOTL

00 | 96 | 26 | 47 | 6+
WORK
4_—
F2 | F6 | F7 | F3
COST
S
F1 | F3 | F4
LABEL 5 OPERATION & OPERAND ? . IDPERA'HON‘B OPERAND
10 16 10 16 -
Lo g L) L RS U A S SN N B N S I | PAQK[WIQRKI(!4])]’|WIOIRKI(I4I)
1 I‘ 11 I 1l l 1t i 1 1 1 11 ¢) l 1t b 1 l 1t 1 |7 lAClI{l ClolSlT]('3l) I'ICIOSITI(13J)
TR A [PR E UY H T T S S I B S R B A B |\ (Pl 1 TIOI'I'II‘I(!SI)I'WIOIRKI(14J)
[N S N A L 4a | 1 [T R S S S N U S S S 1P1 J TJngLx(lsx)llncpfc';JTl(l3)
||||||| l;}' T A A N A Lae REREUINS VU 0 WO WO N R A S A
Now write code that will produce the same result by packing
and then adding WORK and COST and subtracting the sum
from TOTL.
LABEL 5 OPERATION % OPERAND 7 . OPERATION & OPERAND
10 16 10 16
v b i1 TSNS SR RN B A SRR B 17 lACKl WIO,R,KI(A.).rWDIRK.(A.)
| I - ‘ J - I Ll 1 L1 1 1 b U | 1 l 1 1+ | l 11 1 I AC‘KL CIOISII‘I(I31) |’|C|OST|(‘3])
v g [PN TR S NS SN U N SO T M U A MO BT | ' WpuRK|(|4l)|'|C|OS|’r|(|3z)'
RSO B! | TSR TS I T T 0 A A R B I B SO | |P| 1) Tl()_lTJI‘l(|51)l'IWJOBKI(I4l)
Loy [[N R BN R R T AN A A [EUR RN TS RN W R R |
Show the contents of the area named TOTL after the instruc-
tions are executed.
@f | 96 | 22 | 66 | 9+

265

73. The packed numeric data specified by the second operand is

algebraically added to (or subtracted from) the data specified by
the first operand.

All of the examples that have been used thus far in the explana-
tion of the Add Decimal and Subtract Decimal instructions have

had a positive result. But positive results are not always the case.

Whenever a larger positive value is subtracted from a smaller one
the result is negative. In some cases when the operands have
different signs the results are negative. The conventional rules
of algebra apply.

Show the result obtained by the instruction SP BAL(4), QTY(3).

'4— BAL before l<_ QTy

| oo | 81| 49| 3+ [81 Jao | 7+

- BAL after

Because of the algebraic rules, the addition of a negative number
decreases the first operand. Show the results of AP FLD(5),
QTY(3).

— FLD before e QTY

00 | P00 | 00 | 56 | 9+ 00| 06 | 9-

| —— FLD after

o8

)

g

og

[/}

og

5@

g+

74.

Assume the master quantity (MQTY) and transaction quantity
(TQTY) fields contain a maximum of five decimal characters.

The work areas (WORK and WRKA) have been defined as

three-byte fields. Write the code to perform the functions con-
tained in the following flowchart.

i

Pack

to
WORK

Master Quantity

Pack
Transaction
Quantity
to
WRKA

Subtract

from

Transaction Quantity

Master Quantity

LABEL » OPERATIONS OPERAND] OPERATIONS OPERAND
TR ['O E B SRS S S R ¢ Ij CJI(x WIC)IRIKI(|3|) |IMQII’|Y|(15|)
Lo 1 | SO S B SIS T N S SR A R) IA lPJACK WnRKIA(I3I)|':I‘|QIr'P‘YI(|5.)
IR [U B BN N B SRR i B AR IJJ JPx T WIOIRK,(|3,),,W31KA,(,3,)
T T O ! [TIUI T T N T T SO0 S A N S N S O S S AT Lo Lo v b by
*E—L:L L1 ay | TR N S U W N ST S SN S W [WTER] SRS YN TN N N T S S W TS W

2—67

75.

The Muiltiply Packed Decimal instruction has the same
format as the Add Decimal and Subtract Decimal instruc-
tions; the result field is specified by the first operand. The
operation code is MP. The data in the location specified

by the first operand is multiplied by the data in the location
specified by the second operand. The result field (the
product) must be large enough to contain all of the
significant digits resulting from the multiplication., The fol-
lowing rules ensure that the first operand is large enough to
receive the product.

*The second operand (multiplier) must be shorter than the
first operand and must not exceed eight bytes in length.

*The first operand (multiplicand) must have high-order zero
bytes equal to the number of bytes in the multiplier field.

L «——COST e QTY

g¢ | 98| @1 | 42 | 7+ pgo | 7+

Write a Multiply instruction using the data above.

LABEL 5 OPERATION® OPERAND E OPERATION & OPERAND
10 16 10 16
raa by | PR SRTRR TN O T TN S N A S S N S N NS Y |[' L1 COIST: (ISI) IIIOJTIYl(lzl)I
1 1 1 l 1] S 1 1 1 1} I i1 1 l N S S | I 1§ 1 1 l 1 I l 11 1)] 1 ' L1 1 1 I 1 1
TR I A | I TR SN N R N WA O A SV N B I S A R A O L1 [AT A R i B
NS U B A Lo [N B AN B S U S R BN B AT Lo [N A B AN A O SR
% | TR N A AN B S SN I L'—f

76. Check the following MP statements as true (T) or false (F):

T F
O O

High-order zero bytes in the first operand must be
equal to the length of the second operand.

The first operand must not exceed eight bytes.
The second operand is the muitiplier.

The product is located in the first operand.
The multiplier must contain leading zeros,

The Muitiply instruction has the same format as the
Add and Subtract instructions,

The result field is specified by the first operand.

True

False

True

True

False

True

True

2—-69

77.

Write the instructions that perform the functions indicated by
the flowchart. Assume the following data is read in from
punched cards.

le—— QTY
Fo | F7
| g COST
F3 | F4 | Fo | FO | F1
le—— BAL
Fo | Fa| F2 | F2 | oF
Pack all
Fields
in Place
Multiply
Unit Cost by
Quantity -
4
Add Result
to Balance
|
LABEL 5 OPERATION & OPERAND I OPERATION & OPERAND
10 16 10 16
b o by [|||||||||l|:1'1||||T\ CII<I I'I'IY|(|2I)|'Q:T|Y|(|21)1|
11t I 1 1 I 11l) I T | [L1 JJ_f [S | | 14 b C:IKI Clolsl'rl(lsl)l'lclosrrl(lsl)
AR NS O A Li g ST BN O A I O S AU AR AR W SR AN R A PACKI BAIﬂ(lsl)|IBIA|I‘|(rS|)| 1
T U I B A [RTINS T SN TN S OO0 S N U A O T N MPI 11 CDST.(!S.)HQ.TIY.(.Z,).
[N O BT | [N B S B U B R RS S S A R | A|P111 BIAIL(ISI)IIICDSrrl(Sl)l
PR I A | PSRN T K TN T N YOO N T S W A S SRR Lo T S H U N R T B SO
%J— a | ‘j—_,l"‘—‘* IS YO B SN EE ST

2-70

78. A rule for multiplication states that the first operand must have
high-order zero bytes equal to the number of bytes in the second
operand. Packing the unit cost field (COST) in the previous
frame produced the two bytes of leading zeros required. Would
it be possible to muitiply the following two fields? No
|le—— PRCE le— NUMB
00 7 42| 6+ 00 | 53 | 9+
Check the reasons for your answer.
O Neither field is large enough to store the resuit. Neither field is large enough
O At least three bytes of Ieadfng zeros are required in Three bytes of leading zeros
the first operand. are required
[0 The result could be stored in PRCE .
[0 Two bytes of leading zeros are present.
79. Another decimal arithmetic instruction performs the dual func-

tion of zero-filling a work area and moving a packed field into
the work area. The Zero and Add Packed instruction performs
this function. The operation code is ZAP and the format is the
same as the AP, SP, and MP instructions.

We were unable to multiply the PRCE and NUMB fields in
the previous frame. However, we can allocate a seven-byte work
area called WORK with the statement WORK DS CL7 and

write an instruction that will ZAP the fields named WORK and
PRCE. The result of this ZAP instruction is a field that is large
enough to receive the result of the multiplication. Write this
instruction on the line-above the MP instruction,

LABEL 5 OPERATION S OPERAND
1 10 16

Lo Ly L ISR U D N BN SN R RN BN SR |

PERATION &
0 16

OPERAND 7

28R

WQRK (7), , PRGE (4)}

I AN i B [N WQRKGZ)nhN;IIMBI(13) 111

R B L TS N T T T ST S S Y U A N MO

pa o b e by

[ENEE A B

—

After execution of the Multiply instruction, the result is located
in the field named

“_uM

WORK

2-71

Assume that the DS statements defining the names used in the
flowchart below are:

LABEL 5 OPERATION & OPERAND)
10 16

WAGE |, [IDS , . [IGL3 .\ v 1 ovur.,

TAX ., DS, [ICL4 .\ .iiii N\

quglxn Dslll ClLleJllJ_Lll: [L

'I‘lq'I‘lLlll nslll %Slllllllllll | 1

OITLHB|11 DS | L2 00y
e

All data is in packed format. WAGE may contain a maximum of
five decimal numbers and a sign. Complete the followmg instruc-
tions indicated by the flow chart.

Calculiate
Deductions

TAX + OTHR

ZAP
WAGE into
TOTL

Multi
by
HOU

ply

R

Subtract
Deductions

LABEL 5 OPERATIONS OPERAND 7 Is e OPERAND
e R [TTEAX (4)..OTHR (2) ..
Liaa oy JJZAR | ITOTL05) s o ol Lo, WAGE(3))
T B A I MP| 1 PR T Y N H S A B A N B ST \ quTll‘l (lsl)lerlo|UlR (vzl)l L
' B R B SIPI L e v by v be ey by II quTl:L'J(I5|)1£1A$x(141)| I 4

113 | —— | NI S R R N B R RSN |

2-72

81.

After execution of the instruction below, show the memory
contents of the field named TOTL if the value in WAGE is as

shown.

ZAP TOTL(5), WAGE (3)

i<——— WAGE i«—TOTL after

32 | 97| o+

Show the memory contents of the field named ACCT after exe-
cution of the PACK instruction,

PACK ACCT(5), ACCT(5)

| —— ACCT before

/[

99

32

97

b+

28

@9

32

97

5+

82.

FOOTNOTE FRAME

To this point in the text you have studied the PACK, AP, SP,
MP, and ZAP instructions. A thorough understanding of these

instructions enables you to perform all of the calculations re-

quired in the course.

2-73

83.

Many programs are designed to produce a written report as an
end product. In a stock control problem the report may contain
a listing of the items that are currently in stock. The report may
include the quantity on hand, the unit price, and many other
items. A banking report may contain information about mort-
gage, checking or savings transactions, etc. Each of these pro-
grams will require calculations on packed fields of data. Before
the results of the calculations can be displayed on a printed re-
port or punched into cards, the data must be converted to un-
packed format. Unpack is a decimal arithmetic instruction with
the operation code UNPK. The instruction format is the same as
the PACK, AP, SP, MP, and ZAP instructions.

Review the following Unpack instruction and check the succeed-
ing statements as true or false:

UNPK WORK(5}, SALE(3)

T F
O O Thedata in the second operand is unpacked into the
area identified by the first operand.

[0 O After execution, the data in WORK will be in packed
format.

0O O Data must be unpacked before it is printed or
punched into cards.

O [The Unpack instruction has the same format as the
Pack instruction.

O O UNPK is a decimal arithmetic instruction.

O O The field into which we are unpacking the data
must be larger than the packed field.

True

False

True

True

True

True

2-74

34. ‘4__ TOTL

49 32 6+
LABEL 5 OPERATION S OPERAND \
10 16
.. 1..]|UNEK | [PRNT (5),,TOTL(3); ., . .|
:IIIJI J)_l__]_]lll[llllllllllllll

| e=— PRNT (after execution)

F4 FO | F3 | F2 | +6

As in the packing operation, the half-bytes of the rightmost byte
are reversed. The unpacked field must be approximately:

0 twice as large as the packed field.

O half the size of the packed field.

The contents of the rightmost byte are moved into the rightmost
byte of the receiving field:

[0 without being changed.
O with the sign and numeric reversed.

O with the sign stripped from the field.

The Unpack instruction will generate zone bits of a hexadecimal
Fin:

O all bytes of the receiving field.

O all but the rightmost byte of the receiving field.

twice as large as the packed field

with the sign and numeric reversed

all but the rightmost byte of the
receiving field

2-75

85. To calculate the length of the receiving field, double the
length of the packed field and subtract one.

Example:

Unpack AMT (4 bytes) into WRK

LABEL + OPERATION & OPERAND)
10 16
AN S B UNPK, w:RK(|7l)l'AM|T|(|4I)11| Lt
I PR 1 AT R IN U AR NS
par b [N [T N O A U W B B B S A AN B R
R S Lo PR USSR WO S S OO S N A N N 1
| | | et [T T A S UR R I A S SR | !

Write the instructions that will unpack the following:
Unpack AMT 1 (2 bytes) into WRK1
Unpack AMT 2 (3 bytes) into WRK2

Unpack AMT 3 (6 bytes) into WRK3

LABEL & OPERATIONS OPERAND OPERATION & OPERAND
10 16 10 16

e }} NPK, | WRK1(3) ,AMT1(2),
[

[UNPK | WRK2 (5),,AMT2 (3),

| L ! L
| | | |
' [T [N ET A S A N Y O S S A B AN B U A NPK WRK3|(I1|1|)|: T, 6] '
| TN T U N Y S S G S B B B O S JEN [N A BN N B A A
11 Lag o b e e by d L T O N A S N A I S R |
1 | 1
|

Loy P R B R B S B R S|

-
-
— = = - = = |-

WM | [N AT I B O BB B S R
B —

2-76

86.

Complete the program that will perform the functions indicated

in the flowchart.

Pack
CON, BAL,
and AMT The data is read into memory
from cards as:
CON 3 bytes (unpacked)
BAL 5 bytes (unpacked)
Add AMT 5 bytes (unpacked)
Contributions
To
Balance
The field named WORK is
Subtract defined as nine bytes long.
Balance
from
Amount
Unpack
Amount
into
Work
LABEL 5 OPERATION B OPERAND OPERATION & OPERAND ’
16 16 10 16 ‘
FOR NI BN BACK CIQN(I3|)IIIIIIIIIIII 1 CO (3
L1, | IBACK | BAL(), BAL(), . 1., . K
[A B B RAQK AM'I‘,(,S]),,,AMT|(|5,)| [] A
RN A AP, | [G I NS W N B A N0 NS W B A \ (S)IICQNI(|3|)|
Lo o b S'Plll mm(lsl)llltlllllLJl L = (
I B B Lo Uanan ()
AN B Lt TS S N TS BTSN N B R N W A) I v e b
1 | "IN R B A A | | Y it be v e by g

2-77

87. Write the code to calculate the year-to-date (YTD) sales, YTD
returns, and YTD net sales. The record formats and a segment
of the flowchart are shown below:
Add INPUT TAPE FILE
SALT to
SALP 1-5 Account Number
6-9 Sales this month SALT (packed)
10-14 Prior sales SALP (packed)
15-18 Returned this month RETN (packed)
19-22 Prior returns PRET (packed)
Unpack
SALP
into
YTDS
OUTPUT TAPE FILE
Add 1-5 Account Number
RETN 6-14 YTD sales YTDS (unpacked)
to 15-23 YTD returns YTDR (unpacked)
PRET 24-32 YTD Net Sales YTDN (unpacked)
Unpack
PRET
into
YTDR
Subtract
PRET
from
SALP
Unpack
SALP
into
YTDN
LABEL 5 OPERATlONt] OPERAND ' 1 B,‘{,”‘"‘“"’w . OFERAND
: BP__. | EALD.(5)..SALL(A),
T N | ||.||||11l|l||l|;|:h lm.P.K. .'I".QS.(IQ.).'.S»AIL.P.(,SJIL
[B [YAV TN A VO N T N SO S SV WA N T S A AP, ., | PRET (4) ,RETN(4); .
AR SN B L1 TRTUN WY N N O N N IO WY S T 0 B N S OO UJN'PLIS YIDR(9),, ERET.(4), ,
ISP, , . | SALP(5),,PRET (4),
VI VR B Loy Lo b b v g by Iy UNPK | WTDN (9),,SALP (5),
AR EEI S Lys IR N OO B ST A S B S TR N B e ETET RS
AT I Ly IS B RN RN RSN A B
/| [\

2-78

LOGICAL INSTRUCTIONS

88.

PREVIEW FRAME

An instruction that moves data from one memory area to an-
other memory area is a familiar component of any computer
system. The 9200/9300 System uses a set of Move instructions
of which the basic member is the Move Character (MVC) in-
struction.

The following frames supply you with the basic information re-
quired to effectively use the MVC instruction.

The Move Immediate (MV1) instruction, which may be con-
sidered a subset of the MVC instruction, is also introduced.

89.

When a Move Character instruction is executed, the contents
of the second operand are copied into the first operand. The
MVC instruction below moves (or copies) six bytes of data

from the location named AMT to the location named TOTL.

LABEL 5 OPERATION S OPERAND \
10 16

[N R MVCI ']:Q'IIL(|6I)1’1AM'I.||11111L+|I

% | AN B |

The data being moved can be in packed or unpacked format
and can include letters of the alphabet, punctuation, or
mathematical symbols.

Which is the receiving field in the MVC instruction?
O First-operand field

[0 Second-operand field

When this instruction is executed, the data in the first byte of
AMT is moved into:

O the last byte of TOTL.

O the first byte of TOTL.

First-operand field

the first byte of TOTL

2-79

90. Arithmetic instructions require two length factors in their
operands. Both length values are stored in a single byte of
memory (each using four bits). Therefore, the data areas ad-
dressed by a singie arithmetic instruction cannot exceed 16
bytes. In the MVC instruction (and others that require only
one length), 256 bytes can be addressed and moved with one
instruction,

MVC PRNT (132), WORK

The above instruction moves 132 bytes from the location
beginning with to location beginning WORK
with____ . PRNT

Like other storage to storage instructions, the first operand is
the receiving field.

Write an instruction that will move six bytes of data from the
field named TAG to a field named BAKR.

LABEL t OPERATION® OPERAND 5 OPERATION & OPERAND
1 10 16 | 10 16

llll_LII llJI llLIllIlllllll!‘llll M\lcll AKIR!(]GI)I'ITAIGll

U S AT [IIllIII!IlIllllllll [Nt PN SN S U W N N AR

— o —— it

After an input card is read, areas BAKR and TAG contain the
following data:

|« BAKR |«— TAG
E

F{G|H

AlB|]CI|D

After an MVC instruction is executed areas BAKR and TAG
contain the following data:

|<_ BAKR l.q.—TAG
E E|F

F|G|H G| H

Data was destroyed in the:
O sending field.

0O receiving field. receiving field

2-80

91. The move operation in the 9200/9300 does not destroy
the sending data. The data is copied into another field.

After an input card is read, the fields BAKR and ABLE con-
tain the following data.

L_BAKR le— ABLE
|9|4|E|J]R] Jio|lN|E]|S

Show the contents of the fields after the following MVC instruc-
tion is executed,

| LABEL 5 OPERATIONS OPERAND S
ool PIMVC | IBARKR(5).L,ARLE 1 0o
[AT B Ly TR IS BN N B S B S
e TR ‘
l«—BAKR l—— ABLE
l [] l] l ' l | i T I Both areas will contain JONES

Which field remains unchanged as a result of the MVC instruc-

tion? The sending field (ABLE)

2-81

92.

LABEL 5 OPERATION & OPERAND I
10
LSALE L4 DS, . . CLS o 0o v by v v 1y
NUMB b o0 DSJ Ll CLS 1o v v Lo by L
WORK 1, , DS | CLAG 1 v
| - L 1 1 = | T S TN T TR T T Y B A BV RO

After an input card is read, the fields SALE and NUMB con-
tain the following data:

I SALE

—

! e— NUMB

le |8 a[a3]|7]|1]2]3]a]es

Write an instruction that will move the data from SALE into
the first five bytes of WORK.

—\

RN R R RN S A AN SR S B S S|

LABEL 5 OPERATION & OPERAND
10

16

llllll llll

[—— o e e v g

[T B

|l «——— WORK (after execution of the above instruction)

6 | 81a4a{3]7y=*|Plal2]|R

After execution, the first byte of WORK contains a 6. WORK+1
contains an 8, WORK+3,contains a 3, etc. What character is in
WORK+5?

LABEL t OPERATION® OPERAND Y
10 16
[N B M\Ixcl 1 WIOIRKI+ISI(151)IINUMBI Ly a 1
. o g SR o .

The above instruction moves five bytes of data from NUMB
into the last five bytes of WORK. This addressing method is
called relative addressing. What is in WORK after execution of
the above move operation?

t OPERATION &
10 16

OPERAND

Vq I ’JIC)IRK (|51)I’lSlA,I'lEL
Illi j I | I 1t 1 1 I 1 1)
*(asterisk)
6843]712]345

2-82

93.

LABEL t OPERATION & QPERAND ’
10 16
MPN,: | | < Lé. i BRI SRR B AT :X
NAME, , , |DPS, . |CLIB, ¢\ o]
AiDlDlRi Ly DS‘ i1 c1['|1 |¢| bv oo by v 0 by gy 1’
JI()B:I.! | DS« L C1L13M: by b 0 by ,\
L g | AT NEN N B A S B R A S BT ST SR F"
P B | [T S B R T SAr R B SR ST B N
% L [T, AN BN AT AN Ol B G AT A BRI

After an input card is read, the data in the fields listed above
must be moved into an output area for printing. Assume the
printer area has been defined as:

PRNT DS CL132

For the present, you should also assume that the output area
has been cleared of all data. Each byte contains the bit con-
figuration for a blank space.

Write Move instructions that will load PRNT with the data
from EMPN, NAME, ADDR, and JOBT. Leave two bytes
of blanks between each item moved to form the following:

I*—PRNT

DXIXIXIXIXT T IxIxIxdxIxIxx Ixx x| | [x[et.

LABEL t OPERATION S OPERAND \
1 10 16

IR I B MVC | R T TR T E B ETES N N SR
T R R lMVICI v o by v by v by
TR I W I M\ZLC:_x llllllllLLllll_lllll\
' B N BN MVC IS NS TN A S T S A N RO SN A S
R AR S A [AR B I BN SN A U A A AT AU A A R A

A b L 1Lt

s OPERATION S
10 16

OPERAND

VICJ 1

T(5) EMPN,),

MVC, , | PRNTH7.(18) [NAME

PRNT.H19,(148) .ADDR

G . | PRNTH31,(38) ,,JOBT,

MVG |
1 NI
e

2-83

94. Moving a small amount of data into a large area does not clear or
change the unused portion of the receiving field in any way.
Therefore, the programmer must clear the printer output area
before loading each line of data to be printed.

By placing a 1-byte space immediately ahead of the 132-byte
printer output area, it is possible to propagate the space
character through the print line and thereby clear the print
line to spaces.

LABEL % OPERATIONS OPERAND
10 16

* %ECEJII Dgl q'Jél‘l IlllngJ_l;lLLlll
PIRN'EJII Dsll CI‘1]3I2IIII'11III|II

[i [N S S S W A B B R B A

PN IS A 4 PR N S HU S SN N N GO WA B

llil!l i A N IS S

The result of the above coding places a space immediately
ahead of the print line output storage area.

~

A

-

{e— SPCE
— PRNT

[0]c [a]r]B|A] G E

Your task is to propagate the space through the entire 132 bytes
of PRNT with a single Move instruction,

LABEL 5 OPERATIONS OPERAND \ s “’:E“‘"m‘ 16 OPERAND
1 10 16
MVC |, | PRNT (132),,SPCE,
Lo by L |.|_1||||11||4|1L11J1|I ~lly .
Sy ——— W)

When the above instruction is executed at object time, the first
character from SPCE (hex 40) replaces the first character of
PRNT. (This places a hex 40 in SPCE+1.) On the next memory
cycle, the character from SPCE+1 (now hex 40) replaces the
second character of PRNT (SPCE+2). The 40 in the second
byte is then copied to the third byte, and so on until the
space character is propagated through the entire 132-byte
PRNT field. The length factor {132) in this example controls
the number of bytes to be moved.

* The delta (&) symbol is used to signify a space.

2-84

95.

LABEL 5 OPERATION S OPERAND (
10 5
_EL_NAK [C| ['|4-01l| PN BN RN RS
PIRNI'I'I I 1 i D_Sl 1 1 CGI‘1 I3I2I 1 L 1 L I 1 1 1 L l 1 i1 1 1
EIMPIN; 1 Dlsl L C|]:"|5| [AR AR AR A AN A A I BN A O
NAME Lo DSI Pt CT‘2¢| | VT T R N N S U0 W0 M T A 1\
Al)ll)lR 1a DSI L Cr]-ﬁ2|¢| Lo v g by g by
JOBT (. . S . .| ICL3 .
HEDT 1, , | DG, .| G FINAL REPORT.\ ., ..\
HED2 |, . | pC , , | [G'JULY, 1960,]
L1t 1 I 1 1 I 11 1 11 1 1 I j I O | I L1 11 I I3 ¢ 1 -
s —
i
Clear PUT
PRNT PRNT
| |
Move HED 1 Clear
to PRNT
PRNT +b
[|
Move HED 2 Move
to EMPN to
PRNT+116 PRNT+12
I I
skip Move NAME
3 to
Lines PRNT+22
L etc.

Use the data shown above to code the processing operations
indicated by the flowchart.

LABEL % OPERATION & OPERAND \
10 16
||ll||l Illl l|||l|l||]|llllllll'
I A boas »1:11...1||.|.I:||.l
IR A B I [N S I A A S I A SN AN A | ||||(
ooty | IGNTRI [PRNT ;SKs3 1\ (0100])
L dog PRUT | PRNT | bl
M R 1110 TN AN 0 W N S N SRR N S SR B S S
e ey | ST T O S T B U T S U S NN SR BN O
rara by L ey A N R T RO U T A S A R O B
NI B | T NN SN B S SR B R R R SR
b— £

I'OUPERATION' - OPERAND

[MVC_ [PRNT.(132) ,BLNK. | ., |
MVC TH5(12
MVG .RN.T.‘hlnlgn(ngl) i HEnzy 1
| S IR I I WOV Al I I ST I W A
Laas (IR NE T AN SRS N AU A
MVC, . | [PRNT (132) ,
MVC | | PRNT+12(5),, EMPN,
MVC_, | PRNT422 (20) ,NANE,
| P PITEIEE O I W W T A G B ST S AT

2-85

96.

FOOTNOTE FRAME

We have used the relative addressing technique with a Move in-
struction to load and position the data in a printer output area.
This same addressing technique can be used in other instructions,
for example:

AP TOTL(4),SUM+3(1)
SP RSLT+6(3),AMT(2)
ZAP TAX(9),WORK+4(5)

Although a valid technique, relative addressing should be avoid-
ed whenever possible. Extensive use will frequently introduce
clerical errors into the program. It is better programming
practice to assign a symbolic name to each memory area to be
addressed. The ORG statement provides you with this capabili-

ty.

97.

The Move Immediate instruction (MV1) permits the programmer
to place one character anywhere in memory.

Example:
MVI PRNT,X4@’

In the above example the second operand is the hexadecimal
configuration of a space (hexadecimal 4@). When the instruction
is executed at object time, the space character is moved into the:

O last byte position of PRNT.

3 first byte position of PRNT.

The second operand is called a self-defining value and must not
exceed one byte,

A length is not specified in the MVI instruction because it
always operates on:

[0 three bytes.
[0 onebyte.

[0 two bytes.

first byte position of PRNT

one byte

2-86

98. The second operand in the MVI instruction can be written as
a single character in quotes preceded by the letter C, or as two
hexadecimal digits in quotes preceded by the letter X, Cand X
denote the character and hexadecimal constants studied earlier
in the text.

Assume that it is necessary to fill an area named WORK with
decimal 9's. Work has been defined as WORK DS CL7. Com-
plete the code below by supplying the MV instruction.

5 OPERATION OPERA,
10 16
VI] WORK,
1 A D!

LABEL 5 OPERATIONS OPERAND
10 16

Aol L L1
]

11 Loy v by e b by

MVC , | WORK+H1.(6).,WORK | ., ,

OR

L Ly poer o b v g b v Joy s

L1 | PR N T T S N [N T T N N A A

t OPFRATIONS
10 16

OPER

- !! Jr IR BT

How many characters are moved into WORK by the MVI

instruction?
O six
O One

11)

MVI WIOL% ? IX\ ' lF|9l ' l

llll

by e el

L1 s

g by |

One

2-87

| «——o NAME

EIEIEIEIEIES

Assume that NAME has been defined as a six-byte area. The
X’s in NAME represent any data that may have been left in
the area from a previous program.

LABEL 5 OPERATION & OPERAND
10 16
[N S B MV]; L MMEIIQ'.A'. | O B g
IR B UNY | I USRI N S AT T U S ST U B
114 - o v b by g d

Fill in the diagram below to show the contents of NAME after
the MV instruction is executed.

le———NAME

|
LI

Alxlxlxlxlx

100.

Some housekeeping functions, such as setting a one-byte counter
to some value, can be accomplished with the MV1 instruction.

Because we usually add to or subtract from the counter during
processing, the initial counter value must be in packed format
with a sign in the rightmost four-bit position. Let the letter C
represent a positive sign and the letter D, a negative sign.

Write an instruction that places a positive 9 in a single-byte field
named CNTR.

LABEL 5 OPERATION & OPERAND 5 OPERATION & OPERAND
1 10 16 10 16
1 1
AN NI B B | AN A A AT A e 7\ M\ZnIl I CINT:R’IX J?Iq 1
[T I N B | T 1||1||n|11|111[111|l) Lo llllllllllll
rra 4o L1 g VRN RN I BRI S R USSR SN T SR L T B B A A

L1

[N R |

e

2-88

101. Check the following statements as true or false.

T

O

F

The first operand is the receiving field,
Data to be moved must be stored in packed format.

The Move Character instruction copies the contents
of one memory area into another area.

The data in the sending field is destroyed by the
move operation,

A maximum of 256 bytes of data can be moved by
a single MVC instruction.

The minimum of one byte of data can be moved by
a single MVC instruction.

The number of bytes to be moved is determined by
the length factor of the receiving field.

Clearing a print line can be accomplished by a single
Move instruction.

MVC PRT+9(10), NAME is an example of relative
addressing.

MV is the operation code for the Move Immediate
instruction.

The self-defining value in an MV instruction is
written as the first operand.

The MVI instruction can be used to insert any
character in memory.

True

False

True

False

True

True

True

True

True

True

False

True

2-89

BRANCHING INSTRUCTIONS

102. PREVIEW

Instructions are usually executed one after the other in the
sequence that they are entered into memory at Object Program
execution time, However, the program may require a loop or
branch back so that the next record may be brought into
memory and processed. Frequently, this same routine is
executed over and over again until hundreds or thousands of
records are processed. When the last record is recognized, the
branch back to the beginning of the program must not occur,
Instead, control is passed to a wrap-up routine in which files are
closed and the program is terminated.

Sophisticated programs are usually organized into a number of
different routines, each performing a function of the logic. The
programmer uses decision and branching instructions at key
points to branch around routines, to branch back to an earlier
routine, or to drop through and continue processing the next
instruction in line. Often, this decision is based on factors with-
in the data being processed. Therefore, it is necessary to test the
data when making decisions that influence the sequence

of instruction execution.

The following group of frames teaches you 1o use instructions
that test data and provide branching options that are based on
the result of the test.

2-90

103.

Changing the sequence of instruction execution is usually
dependent upon the combined action of two instructions, the
Compare instruction and the Branch on Condition instruction.
A Compare instruction examines two data fields and sets an
internal indicator (condition code indicator) that reflects the
outcome of the comparison. This same indicator is set when
certain decimal arithmetic instructions are executed.

The Branch on Condition instruction tests this indicator and
causes the program to branch to another routine or to continue
with the next instruction in sequence (depending on the condi-
tion setting of the indicator).

All Compare instructions in the 9200/9300 set perform two
functions. They compare two fields of data and:

[0 add the two data items.
O set an internal condition code indicator.

[change the sequence of instruction execution.

The condition code indicator (CC) is set by execution of a Com-
pare instruction or execution of certain
instructions.

set an internal indicator

decimal arithmetic

2-91

104. The Compare Logical (CL.C) instruction is useful when com-
paring two account numbers. |f we are posting transactions (T)
to a master file (M), we must be certain that the transaction is
posted to the correct master record.

The following illustration shows the three possible conditions.

Routine A Routine B

Routine C

Which routine in the program should be followed if the condition
code indicates the values to be equal?

0O Routine A
O RoutineB
O RoutineC

If the master record account number is less than the transaction
account number, which routine will be followed?

LABEL 5 OPERATION® OPERAND
10 16

TR ClI‘IQI D'IAS.(|4|)|I:I‘1R~LAN| e b
e —— .

In the instruction above, we have assumed that the length of
each account number is four bytes, After comparing the data,
the instruction will:

[0 set the CC indicator.

O cause the program to branch to the correct routine.

Routine C

Routine B

set the CC indicator

2-92

105. The Branch on Condition (BC) instruction tests the condition
code settings specified by a test number in operand 1 and will

branch to the address in operand 2 if the test condition is met.

Condition code test numbers -are assigned as follows:

8 Branch if equal (OP1 = OP2)
4 Branch if less (OP1 < OP2)
2 Branch if greater (OP1 > OP2)
15 Branch unconditionally to OP2 regardless of
condition
Example:
Compare the Master Record Account number MAS(4) with

the Transaction Account number (TRAN). If the Master
Record number is less than the Transaction number branch

to routine B.
LABEL 5 OPERATION® OPERAND

10 16)
[N R B cll'ncl ! 4 T
[B B'CI 14 4|IR|TEB| S B EN S B \
T O B I Ly [R I S BT S S N N S R S B B R A
b Ly [N AU BN B BN B B N W BT R
Pt by | I PRSI SN TN S H N N I A A

If multiple conditions are tested by a series of
BC instructions, the program will branch to the
OP2 address corresponding to the condition
that is met.

Assume that MAS and TRAN have the following values:

MAS 1082
TRAN 1081

After the following instructions are executed what routine
will be executed?.

LABEL 5 OPERATION® OPERAND ’
10 16

.. 1 leLG | | MAS (4),,TRAN |
EC L1 811R_T.EC T TSR |

L1 BC |, | 4,RTEB | | 100100,
L BICI L1 ZnRTuEA R I A B A

|!!!=' p o]

RTEA

2—-93

106. The Compare Logical instruction can compare the relative
binary value of two alphanumeric fields. The relative binary
value is based on the complete EBCDIC value (all eight bits) of
their codes (as shown in the character code chart of panel 6).
Use panel 6 to determine which of the following has the greater
binary value.
E or K? — isgreater. K
Xor 3? — _ isgreater. 3
7 or %{percent)? - isgreater. 7
Borw? s greater, w
107. Assume that the binary value of the data in FLD1 is greater.
Which code segment will cause a branch to the CALC (calculate)
routine?
0O cCLC FLD1,FLD2 CLC FLD1,FLD2
BC 2, CALC BC 2, CALC

O CLC FLD1,FLD2
BC 4, CALC

0O cLc FLD2,FLD1
BC 8, CALC

O CLC FLD1,FLD2
BC 8, CALC

2-94

108.

The second operand of a CLC instruction must not include a
length factor. The number of bytes that are compared is de-
termined by the length of the first operand.

Based on the data shown below, check the routine that will be

executed next,

L AMT le—ToTL
K | a K
cLe AMT(2), TOTL

CLC

CLC

O BC 8, COLD
O BC 4, HOT

O BC 2, WARM

TOTL(2),AMT
O BC 8, COLD
0O BC 4, HOT

0 BC 2, WARM

TOTL(1), AMT
O BC 8, COLD
O BC 4, HOT

O BC 2, WARM

HOT

WARM

coLD

2—-95

109. In a payroll application, each employee’s weekly card contains a
five-character employee identification number (EMPN} in
columns 1-5. Each employee master record also contains a five-
character identification field named ENUM. With a record from
each file in memory, the contents of the two fields are tested for
an equal condition as follows:

{Loop back to
read next record)
LOOP (routine)

ERRO
(error routine)

Move ENUM
To
ouT

Complete the following coding of the functions in the above

flowchart.
LABEL 5 OPERATION S OPERAND 7 5 OPERATIONS OPERAND
1 10 16 10 16
[T S LC . TSR BT SRS U S R S I RS A | | I EMPNu(lsl)IIENHM '
1.1 1 1 l 1 1 B1Cl 1 1 i1 1 I I I - 1 l 11t 1 ‘ 11 1 1 I l 11 b 2I’L0|QPI 11 1 l 11 L
IO BRI A B|Cx|1 PORTE ST TS TR NN S A S S SO B S AN A Lo 4|lrE1RRiO||||I|||
TSN S V.C | [N RSN EAT S T SR S B I S
Ll I Lo T S W AT O N B SO AU A G

296

110.

Column 6 of the employee card is punched with a pay code
(CODE) that may be one of the following:

W = weekly pay scale.
H= hoUrIy pay scale.

S = pay based on sales.

Obviously, the program must contain a separate procedure to
calculate each type of pay. Assume the three routines are
named WEEK, HOUR, and SALE. Draw and label a flow-
chart that illustrates the steps required to test this field of
data. If W, H, or S is not present, go to ERRO routine.
(Assume that the employee identification number equals the
employee master record number.)

WEEK
routine

HOUR
routine

SALE
routine

ERRO
(routine)

2-97

111.

The Compare Packed Decimal {CP) instruction compares
the relative algebraic value of two packed decimal fields.
The first operand is compared with the second operand
and the condition code indicator reflects the result of the
comparison,

The Compare Packed Decimal instruction is executed byte-by-
byte starting at the right-hand end of each operand. (The
rightmost byte of the first operand is compared with the
rightmost byte of the second operand.) The rightmost half-
byte for both operands contains the sign; they are compared
first. If the signs are unlike, the condition code is set to
reflect the relative algebraic value of the operands.

re—— BAL te—— CHK

4 1|3 5|6 + 5 24 6|7 -

I3 L] 1 1 1

CP BAL(3), CHK(3)
BC 4, ROTA

BC 2, ROTB

After execution of the above CP instruction, control passes to
the routine named:

O ROTA.

O ROTB.

ROTB

2-98

112.

Assume three fields of data are in memory as follows.
AMT — five bytes of packed decimal data
TEST — five bytes of packed decimal data

BAL — three bytes of packed decimal data

Write a Compare Packed Decimal instruction to compare the
contents of TEST with the contents of AMT. (Each operand
of a decimal arithmetic instruction requires a length factor.)

LABEL % OPERATION S OPERAND
10 16
I ATETE B | [i BV | ST T A N
Lo b Ly RTINS N R R S S HU SN NS 0 NN S S A
RN BN B | P U TS T N U T OO0 DU N ST VO 000 O M
&" d

Write an instruction to compare the contents of TEST with the
contents of BAL.

I{B OPERATION &
10

16

OPERAND

L

TEST (5),,AMT, (5)

I SN RO A R SRR N A WA

| I

LABEL BIOOPERATIONt 1 OPERAND J |S'°°PERAT|°N$‘6 OPERAND
Lo bas Lo [ETETEE T BT SN TS B RS S B S l qu L |E|S|T1 (151)]’154% (|3|)|
RIS Srare B A B TN N S S AP B B B B
AN A | B [ST A DA S T N W B WO A B A BB B | [[ER SN SN R B B B A

w—"ﬁ T houtn A | Lo o

299

113.

The operands of a Compare Packed Decimal instruction
can be of unequal lengths, When operand 1 is greater in
length, operand 2 is filled with packed zeros in the left-
most bytes. If operand 2 is greater, the remaining digits
are ignored. A sign is presumed to be in the four right-
most bits of the least significant byte of both operands
and is considered in the comparison.

L work [«—PART

20|03} 06| 7+ !@6 7+l

Write an instruction to compare WORK with PART,

LABEL 5 OPERATION & OPERAND (
10 16

[N RN B [AN S NI AN S S SRR AR

[BN l 14 TR T N S B G S R R A R

[) [N T B A N U AV A B

The instruction compares from right to left; the two bytes that
contain (7+) are compared first, then the two bytes that contain
(06) are compared. At this point, the fields are found to be
equal. What happens next?

O The instruction terminates.

[0 The next byte of WORK is compared with packed
zeros.

O The next byte of WORK is compared with (7+).

‘When does this Compare Packed Decimal instruction terminate?

O When the leftmost byte of the second operand has
been compared with zeros

0O When the leftmost byte of the first operand has been
compared with zeros

OPERATION & OPERAND
10 16

qP: T |QRK (|4|)|I|P|A1RT1 (JZL

| FU R B BT A B B B A

The next byte of WORK is
compared with packed zeros.

When the leftmost byte of the
first operand has been compared
with zeros

2—-100

114

!<— CONT

47|¢ +

|<——BAL
29|a7|9+

Using the above data, which routine receives control after the
CP instruction is executed? Check your selection,

cp
0O BC
O sC

0O BC

CONT(2),BAL(3)

8,PAT1

2,PAT2

4PAT3

BC

8,PAT1

2-101

115. The CP instruction is frequently used to test a field that is used
as a counter. The CONT field in the following flowchart con-
trols the number of times the LOOP routine will be repeated.
Compilete the following code by writing the instruction corre-
sponding to the decision block of the flowchart.

Add SUM
to
AMT

Add ONE
to
CONT

PRNT
REC1
LABEL 5 OPERATION & OPERAND , OPERATION & OPERAND
1 10 16 10 16
CQN'I: L DC L X:IQC:l IR SRS G SR \ FEE NN B
NINE||| QQ.. X|91C]||||]14L|11|||[\ T e v b v by

QNEIIII DCII 'l1l‘c‘irlJ4L|IlllilJll

|
|
[[B
|
]
|

[N AR
|
|
|
|
]

I
[N B ALITEE cea b e b g L s | Lo by gy
[RN B 1% lll]l|ll|llLllllll|s L O U T B T S N A S
Ll 1% ,..11.|.|..L.1....|’ L TN RSN A
LOQP i, [|ap | |AMT (4) ,sUM(2), 1., 1 N
NI B AR L1 QNTu (IJT)clloanEl(»1n)nl Lo | [[N BN B A SRR U S SRt
AT | N L T G2 . . | |CONT, (1), ,NINE (1)
||||||| BICII '|L00P|lllll|l||lllll Illl |lllll|ll_L|l|l
N I B PJUJI: L PRINLTJ_L[REIC1I Lev vy ba v | [T "N S B R NN SR R

w

2--102

116. Decision points in a program are frequently based on the out-
come of arithmetic operations. Therefore, the Add Packed
Decimal (AP), Subtract Packed Decimal (SP), and Zero and Add
Packed Decimal (ZAP) instructions also affect the setting of the
internal condition code indicator.
Check the instructions that affect the internal condition code
indicator,
O Mmvce O BC
O AP O ZAP AP ZAP
O cLC O PACK CcLC
0O mvi 0O sp SP
O cp d Ds cp
O wmp O DP
117. The programmer may want to test the setting of the condition

code indicator following the execution of an Add Packed
Decimal or Subtract Packed Decimal instruction. One or more of
the following instructions can be used for this purpose.

BC 1, SUBA (Branch on Overflow)
BC 2, SUBB (Branch on Plus)

BC 4, SUBC (Branch on Minus)
BC 8, SUBD (Branch on Zero)

Overflow occurs when there is a 1 carry out of the most signifi-
cant position, or when the second operand is longer than the
first operand. In either case, overflow is an indication that the
result field (specified by the first operand) is:

[larger than the result.
[smaller than the result.

O the same size as the result,

smaller than the result

2-103

11

8.
!-1-—— TOTL

L——BAL

lool26]ar[d+]([26]47[0~]

Using the above data, which routine receives control after
the following SP instruction is executed? Check your selection.

0 5 O W R

SP

BC

BC

BC

BC

TOTL(4),BAL(3)

1,DEAD
8 MIKE
2,SAM

4,RICE

BC

2,SAM

2-104

119,

Write a stock control application routine that will do the
following: Subtract the quantity removed from stock (QTY)
from the quantity-on-hand (ONH). Assume each data item is
packed into three bytes. After each subtraction is executed,
test the result field. If zero, branch to a reorder routine
(ORDR); if negative, branch to a back-order routine (BACK);

if positive, drop through and continue processing.

Subtract
QTY from
ONH

BACK
(Negative)

(Positive)

Move ONH
to
WORK

LABEL 5 OPERATION & OPERAND l
1 10 16
[T SIPI Lt TSN I A i I |\
caoao b L b by e by L lJ_Ll
NN A 1 [T E N S N A O T
[B L1 [E U T B N S A '
[N B Ly TR S T B B S N I
[N B | PRI N S B R SO I i
R 11t 1 |1

5 OPERATIONS OPERAND !
10 16
| 1‘ 1 IN.IH1(13|)J'IQI'IL.YI (73;%1
qcl 1t 8"10L%q3 P | [P |
Bq ol 4| ’IBIAqK [
Wq 1 WQRKI (|3|)) ’:QNEHJ L
1y SN R N MOV N U O MU A B
I 1 1 1 It 1 l’ ' i1 1 ¢ I kS -
‘#L4 [R N B S B R i B A

2-105

120. HALT AND PROCEED (HPR)

Stops the processor and displays the OP1 address in the
HALT/DISPLAY indicators on the Control Console.

OP1 may include 1 to 4 hexadecimal digits.

Format:
LABEL 5 OPERATION & OPERAND
10 16
MR S HlPR i OPI1J i SRR B l)
) S] ‘ - I 1l] It 1 1 l 1 |- 1 I 1|
PR S RO [FAT TN T N T S S B
,
Example:
LABEL 5 OPERATION S OPERAND
10 16
1 1 \
1 1 1 1 I 1 1 HPIR 1 x l7IEEE 1 i l | S -
j I | I 11 l J |) I T |] § I 1 I i1l
[B I T Ly T S O I B G
hepmmenpn A
To stop the processor, use the instruction.

The HPR display indicates a normal halt of the
program.

HPR

user

2-106

EDITING

121.

PREVIEW

When a programmer wants to print the result of an arithmetic
operation, he must first unpack it to conform to the printer-
graphic representation. At the same time he may want to
perform editing operations, such as inserting a dollar sign and
a decimal point. The Edit (ED) instruction performs unpacking
and editing of packed decimal data with one operation.

The operation of the instruction is highly flexible. With proper
planning it is possible to suppress nonsignificant zeros, insert
commas and decimal points, insert minus signs or credit symbols,
and specify where suppression of leading zeros should stop.

The following group of frames teaches you the use of the Edit
instruction.

122.

During an edit operation, the source field is edited under control
of the edit pattern called a mask field.

LABEL 5 OPERATION S OPERAND
1 10 16

RN B! _I_D111 IKI(IQI)I'.IAM[[‘IIIIIIII
1

—— L

The instruction shown above edits into the field named MASK
data that is stored in the field named

The editing proceeds according to the pattern stored in the field
named

The edited data appears in the field named

AMT

MASK

MASK

2107

123.

Which operand represents each of the following?

is the field containing unedited data.

LABEL 5 OPERATION & OPERAND \
10 16
Lol ElDl 11 DIPJPA(11141)1IBALI TR B
I N BT - o b by oy
S

is the field containing the mask before execution of

the edit.

is the field where edited data is located after execu-

tion.

is the field in packed decimal format.

BAL

OuUTP

ouTP

BAL

124. The programmer specifies the mask by writing an X-type
constant.

MASK DC X'492020202¢206¢

Before the first execution of the ED instruction, the mask must

be moved into the field that is to contain the edited data.
'|<-MASK

[40] 20] 20[20 [20 | 20| 0]

;q—OUTP
I O O I I

Write a move instruction in the space below that will
the mask in the OUTP field.

place

LABEL % OPERATIONS OPERAND
10 16

/

RN S | TR Lo v by ey a1y

N\

IR A A I I S S N N S WA T U S T A

11

1
]

AR ENEE B L TR E R T T S N I A S N I
!

[B) I—— Lot et by |

% OPERATION & OPERAND
10 16

C| 1 UTP|(17) IYi MASKI !

| TR TR BT RN B

A [N N B RN AN O S A

2-108

125. Write an edit instruction that will unpack the DATA field
in the QUTP field.

le——DATA

pe| 37} 8C

}e— OUTP

LABEL %5 OPERATION & OPERAND \ F OPERATION 5 OPERAND
1 10 16 10 16
L by lljn L b by v by v Laa s i1 Op:l‘npl(l7x) I |D|AF[I|A
1.1 1} I | I P - 11 1 1 I | T T l 1 1 1 1 I i1 1 1 ‘) b1 1 1 l b) 1 l 11
i
126.
LABEL 5 OPERATION S OPERAND h
1 10 16
! b TR PV RS ST S S S I S S B S S ! l’

AMTI 1 I 1 1 DSI 1 1 C\LSI i l | I - 1 l 5 | Il I 1| 1) l) S I\
PRTL [, . DS, | . C|L1 11_141 [T B B B BN T S B S B AR | i)
SK |, . IDC ., | X'4820208202323232 236

L1 Ly IIIILKII[JIIILLIIIIII

Write two instructions to edit the data from AMT into

PRTL.
LABEL 5 OPERATION S OPERAND ’ \ OPERATION & OPERAND l!
1 10 16 10 16
TR B | L P STUN I N VA S S N S ST SN B N M SR BT 1% 1 J_L | TR R
[N B | T v b e by ey v b e Iy q 3 P1 s (Ill) ’MASK
Lol 1131 PRI W T IS T D T N B VY N0 U A B T B B MO D 11 PIR.EL (|]1]1)| hAMT)
Lt g Lyt TR AT E S DA EAY B RS SN A B A A A B Ly [N B R B AR
1 Lot | %I‘ ' IR B S A A Ly el | [I U T

2-109

127.

As the edit operation proceeds, each of the characters in the
mask is examined. The first (leftmost) character in the mask is
called a fill character. For many edit operations, the blank or
space (hexadecimal 40) is used as a fill character, however any
character can be used. (Refer to Panel 9 on page 2-123.)

The ED instruction uses a fill character to supress leading
zeros, that is, to eliminate zeros that come before the first
significant digit in a numeric field, replacing them with blanks
(or some other character).

0000794
What is the first significant digit in the above field?

Replacing leading zeros with blanks (b), the field would appear
as .

Replacing leading zeros in 0079400 with asterisks {*) would
produce

bbbb794 or 794

**79400

128,

LABEL 5 OPERATION & OPERAND
10 16

MASK |, , | IDC ., | X '4020202060, " . |

IR R | AT E I BN N SRR S B N

__.JJ-——---\L] L . |

The operand of the DC statement above replaces leading zeros
with blanks. The hexadecimal 20’s in the mask field are always
replaced during an edit operation.

Rewrite the operand shown above so that each leading zero in
the data will be replaced by an asterisk (hexadecimal 5C).

LABEL 5 OPERATION & OPERAND \
10 16

MAlellnl Dlgl_Ll |J_L||1|1l|l|a|||s1|l

R B lJ_LI Il_LlIIll]IIIIIIALl

Rewrite the operand to replace the leading zeros with dollar
signs (hexadecimal 5B).

LABEL t OPERATION® OPERAND
1 10 16

MASKI|| DCLI oo b v b v b

[N RN B Lo lllllllllllllllLlJ‘
] L T A R J

OPERAND
16

\

'5C 20202069

oo by by s

16

's OPERAND

X '.5B202020160.", |

TR U R T B B!

[B B R B T B B AR

2-110

129.

!<-—- MASK

[s8[20 [20]| 20| 20| 20

!"'—DATA
[[00 [00 | 4c |

ED MASK(6),DATA

The above mask field contains a dollar sign fill character. Which
result is produced when the data shown above is edited and
printed.

0O $00094
O $$$%94
0O $94

O $94+

$5$594

130.

FOOTNOTE FRAME

The following frames explain additional control characters
used in the construction of edit patterns. These characters
are:

Hexadecimal Title
20 Digit select character
21 Significance start character
4B and 6B Insert character

These characters can appear anywhere in the mask field.
(Refer to Panel 9.)

NO RESPONSE REQUIRED.

2-111

131. Digit select characters {(hex 20) in the mask are a/lways replaced
during the edit operation. They can be replaced by either the
fill character or a digit from the source field.
If the source digit is not to be printed, the digit select character
is replaced by. the fill character
If the source digit is to be printed, the digit select character is
replaced by . the source digit
132. Which hexadecimal number is used to represent each of the
following (refer to panel 9)?
Digit select character 20
Blank 40
Dollar sign 5B
Significance start character 21
Comma 68
Decimal point 48
133. A significance start character is replaced by either the fill

character or a significant (nonzero) digit from the source
field. The edit operation then assigns significance to the
remaining digits including zeros.

Show the edited results of the following fields:

{Use the A symbol to indicate a blank space.)

apf20{20) 20|21 20} 2¢

120056

001234

000012

000O0O0? 1

0000O0O

A1 200656
AAAN1T 234

AANAAANT 2
AAAAAO 1

AAAAAOD O

2-112

134. The significance start character can be used to insert a
decimal point in the printed result. Show the edited
results of the following fields:

[ap]20]20] 20 21[48] 2] 29|

123456 1234.56
001234 12.34
000012 12
000006 06
000000 .00
Show the printed results when the significance start character

is omitted:

[40]20]2p 20 [20] 48] 29] 2§ |
123456 1234.56
001234 12.34
000012 12
0000O0G6 6
000000 blanks
135. Show the printed results of the following fields after editing:
(w120 [ce 20 [z6 2[5] 20] 29] 2]
1234567 1,234,567
0123456 123,456
0001000 1,000
829

0000829

2-113

136. Show the printed results of the following after editing.

0943095

007

0000165

0000001

6200

140 |20 [20 [68] 20] 20] 21] 48] 20] 20]

9,430.95

762.00

1.65

01

137. Design a mask to edit and print dollar amounts on checks. Use
an asterisk (5C) fill character. It is fairly common practice to
print dollar amounts with asterisks to the left of the first

significant digit in order to protect against fraudulent alteration.

This is called asterisk protection.

Assume that the data is a seven-digit field and that the dollar
sign is preprinted on the check. The printed result is to contain
a decimal point and a comma when applicable.

LABEL + OPERATION & OPERAND \
10 16
MIASKI | Lo IS BTSN BV R B N SR AT RS B
TR R | YR TS N Y ST S N S SR SN S NN U T GRS VAT ERT I
N ‘

Show the results using the following data and your mask.

12345¢6

001234

000012

000001

0000O0CDO

7

5

AL

OPERAND

]

TR S B

PRI

PRI B

|.'.5C208206B2028214820.20 ", [

|

¥12,345.67

¥¥¥%123.45

******1‘23

L X3 KL 8 % 12

*******.01

2-114

PANEL 1

Define the File Card Reader (DTFCR)

KEYWORD SPECIFICATIONS

@ EOFA Required Specifies symbolic name of user defined
end-of-file routine

@ I0A1 Required Specifies symbolic name of user defined
input buffer area

@ ITBL Optional Required if translation of input table is
needed. Specifies symbolic name of user
defined input translation table,

@ MODE Required Specifies that card codes are to be translated
by user defined table.

NOTES:

Keywords may be coded in any sequence.

Circled numbers are used for reference only.

EXAMPLE:

LABEL t OPERATION &
10

16

OPERAND K

READ | , , | DTFC

IO B Loy I|OA1|=qREU-EJI

[N W A [IiTBLﬁ'IiBlgl)l'l 3 [B

[B | QQEx%TnRANIS! @1 ' R |

pa a1y | TR S B A RN T A A SR B A SR
|

[T T N G A B S

2-115

PANEL 2

Define the File Printer (DTFPR)

® 6 60 O

NOTE:

. KEYWORD

SPECIFICATIONS

"BKSZz

CNTL

OTBL

FONT

PRAD

PROV

Required

Optional

Optional

Required

Required

Optional

Specifies number of required print positions
(1-132)

Required if CNTRL macro instruction coded by
user will direct spacing of skipping.

Required when 48-character font is used.
Specifies symbolic name of user defined output
translation table.

Specifies either 48 or 63-character print bar _
set.

PRAD =1 Specifies 1-line advance after printing
PRAD = 2 Specifies 2-line advance after printing

Required for form overflow action by user.
PROV = FOF Specifies symbolic name of user
defined routine to which control will be
transferred.

PROV=YES Specifies automatic sklp to first
line of next page.

Keywords may be coded in any sequence.

Circled numbers are used for reference only.

EXAMPLE:

. LABEL 5 &PERAT]ON‘ 1 OPERAND F 72 30

PRNT, , , , | BPFPR| BRSZ=132,, 1010, v ..) Yukl..ot...,
SR N | cNuTJ"ﬂYlE JLA| OI i B A CRL
I S B A A [OTrBlr"I_TTBrPIRIII t 4 I I
IR U B N Lo FONT 163'||l N I B R A R
RN A Lo PIRAQL'111|@;-I Lo | AR R
P B B T | TR |R|0|V’|=IE‘1OxFA||(6>|J_|_|||1‘l T B
[N B [P SO N N TN T S N G S A T A B B I B

2-116

PANEL 3

Define Storage (DS) Coding Specifications

Label field

The symbolic address (tag) must be unique and should have descriptive
meaning.

The tag must not exceed four characters and must not have embedded
blank spaces.

A tag is not required when it is desired to reserve an unused area.
When a tag is required, the first character must be alphabetic and must
start in column 1.)

Special characters are not permitted in the Label field

Operation Field

The mnemonic DS must be coded in columns 10 and 11.

]

Operand Field

The operand must start in column 16.

When the number of bytes to be reserved does not exceed 256, the first
character is a C followed by the length factor L and the decimal value
that specifies the number of bytes to be reserved.

No more than 256 bytes can be reserved without a duplication factor.

Duplication Factor

When the number of bytes to be reserved exceeds 256, the operand .
starts with the duplication factor.

Example: TAG DS 2CL256

(Reserves 512 bytes.)

2--117

PANEL 4

ORG Instruction Specifications

Label Field

Not used.

Operation Field

The mnemonic ORG starts in column 10.

Operand Field

The Operand field contains a previously defined symbolic address
starting in column 16. The Assembler is directed to reset the Location
Counter to the value of this address.

LOCTN
CNTR
ADDR

1000

1000
1040

LABEL 5 OPERATION® OPERAND \
10 16
REICL([D§| s Llalai | T I BRI S O B
[T ST A O|R|G REICI [TR BT AN |
115])11: L1y DSL 1y CL|4|¢| | N U B S R R A
FI“'llglgl 49 Dﬁl 1 C|L14Jg1 | I T S B A B A N B |
! ! ! ! ! ! L*I } [N N B S A U B AN N B

2—-118

PANEL 5

UNIVAC

SERIES

PRINTER FORVIAT CHART

UNIVAC

Sreion 00 sosnaT Baun sassssaTien

DATE

APPLICATION

FORM NUMBER

AGE

L

CONTEROL
TAPE
CHANNELS

CARR

PREPARED RY .__....

RUN NUMBER o o

RUN NAME

FORM PARTS

IR

AIERRRARNA

DATE APPROVED

APPROVED BY

NTITY]

XXX

QUA
X

Tl

+
i

1

EIP

RECORD NUMBER

bttt -

IINVENTORY,

XD XXX XX XX XIKIXIXX

!

XIXIX:XX

RECORD NAME

T
Il

A XX

1

NUMBER

!
i

XXXXX

Pﬁﬁj

DAT

TYPE OF PRINTOUT

d-zw zO

<~z

olcerwe

b

Duwu. O ul

T we

|
(3
b1 Bahodd et
ST Own o us

TYPE H;D/T

D

2—-19

PANEL 6
Character Codes

Printer k Printer
HEX EBCDIC Graphics HEX EBCDIC Graphics
C1 1100 0001 FF 1111 1111 o (lozenge)
C2 1100 0010 40 0100 0000 (space)
C3 1100 0011 4A 0100 1010 ¢ (cents)
c4 1100 0100 4B 0100 1011 . (period)

C5 1100 0101 4C 0100 1100 < (less than)

C6 1100 0110 4D 0100 1101 { (open parenthesis)
c7 1100 0111 4E 0100 1110 + (plus)

C8 1100 1000 4F 0100 1111 | (vertical)

Cco 1100 1001 50 0101 0000 & (ampersand)

D1 1101 0001 5A 0101 1010 ! (exclamation)

D2 1101 0010 5B 0101 1011 $ (dollar sign)

D3 1101 0011 5C 0101 1100 * (asterisk)

D4 1101 0100 5D 0101 1101) (close parenthesis)
D5 1101 0101 5E 0101 1110 ; (semicolon)

D6 1101 0110 5F 0101 1111 — ({logical NOT)

D7 1101 0111 60 0110 0000 - (minus)

61 0110 0001 / (slash)

6A 0110 1010 A (logical AND)
68 0110 1011 , (comma)

6C 0110 1100 % (percent)

6D 0110 1101 _ ({(underline)

6E 0110 1110 > (greater than)
6F 0110 1111 ? (question mark}
7A 0110 1010 : (colon)

78 0111 1011 # (number)

7C 0111 1100 @ (at rate of)

7D 0111 1101 * (apostrophe or single quote)
7E 0111 1110 = (equal)

7F o111 1111 " (quotes)

D8 1101 1000
D9 1101 1001
E2 1110 0010
E3 1110 0011
E4 1110 0100
Eb 1110 0101
E6 1110 0110
E7 1110 011
E8 1110 1000
E9 1110 1001
FO 1111 0000
F1 1111 0001
F2 1111 0010

F3 1111 0011
F4 1111 0100
F5 1111 0101
F6 1111 0110
F7 1111 01
F8 1111 1000
FO 1111 1001

CONDPOPWN=_LONLKXEL<CAWIOOVOZErR"ITOMTMOUOO® P

2120

PANEL 7
Define Character Constant Coding Specifications

Example:

OBJECT
LAB
ABEL s OPERATIONS OPERAND CODE

'I:A|G|1|xz !q_(;lx (:IIfIIABICI'I(JII|IIIIII| C1C2C3

Name field entry [Constant value

is optional. Explicit length factor

Character constant indicator

Operation code
Mnemonic

Label Field — A tag is optional in the name field. Coding specifications for the name field are the same as for
the Define Storage operation (see panel 3).

Operation Field — The mnemonic DC is coded in columns 10 and 11.

Operand Field — The Operand field designates the actual constant to be stored. The Operand coding starts in
column 16.

Constant Value

The constant value must be enclosed within single quotes. A single DC statement can specify no more
than 16 characters. When the constant exceeds 16 characters, including embedded blanks, one or more
additional DC statements must be specified.

Explicit Length Factor

The explicit length factor can be omitted. When it is, the implied length is assumed. (The implied length is the
length of the constant value within the enclosing quotes.) When specified, the explicit length overrides the im-
plied length. When the explicit length differs from the implied length, the result field is truncated:or padded
with blanks (hex 4@) on the right side.

2—-121

PANEL 8
Define Hexadecimal Constant Coding Specifications

Example:
OBJECT
LABEL S OPERATION® OPERAND CODE
1 10 16
TAG ,, ., |PC ., |KL2'E3C5' |, ., . ., . .1, E3C5

= T
Name field entry Constant value
is optional

Explicit length factor

Operation Mnemonic Hexadecimal constant indicator

Label Field — A tag is optional in the name field. Coding specifications for the name field are the same as for
the Define Storage operation (see panel 3).

Operation Field — The mnemonic DC is coded in columns 10 and 11.

Operand Field — The Operand field designates the actual constant to be stored. The Operand coding starts in
column 16.

Constant Value

The constant value must be enclosed within single quotes. A single DC statement can specify no more
than 16 bytes. When the constant value exceeds 16 bytes, one or more additional DC statements must
be specified.’

Explicit Length Factor

The explicit length factor can be omitted. When it is, the implied length is assumed. (The implied length is the
length of the constant value within the enclosing quotes.) When specified, the explicit length overrides the
implied length. When the explicit length differs from the implied length, the result field is truncated or padded
with hexadecimal zeros (#0) on the left side.

2-122

PANEL 9
EDIT INSTRUCTION EXAMPLES

LABEL

5 OPERATION &
10 16

OPERAND

1

SEE NOTE BELOW TR i B])- [|P|1k’|qP|2| TN B
—. .,
oP2 [1 7213, 45 ,6]7]+] PACKED DATA FIELD
(BEFORE EDIT) OP1 (5B 20 [2¢ [6B [20 | 20 |21 [4B |20 [20 EDIT PATTERN
l 1 1 l l 1 l (MASK FIELD)
(AFTER EDIT) OP1 |sB| F1{F2|eB|F3| Fa|F5|4B| F6| F7] = UNPACKED FIELD
FILL CHARACTER ? 1 2, 3 45 . 6 7 PRINTED RESULT
DOLLAR SIGN
0P2 1o, 0[]0, 12, +] PACKED DATA FIELD
PN\ \X'
(BEFORE EDIT) OP1 lap]| 20 |20 6B 20| 20 [21 [4B |26] 20 MASK FIELD
4] iL VL
(AFTER EDIT) OP1 {a0] a0 [0 [20 | 20] 20 |40 [4 [F1] F2] UNPACKED FIELD
FILL CHARACTER % AN A ANAAN T 12 PRINTED RESULT
BLANK SPACE
{The symbols A or b are used by programmers to indicate blank spaces
when checking number of spaces in the result.)
oP2 (o, 00 .00, 01, +] PACKED DATA FIELD
(BEFORE EDIT) OP1 {5c| 29| 2¢ [68] 20] 21] 29[48] 20] 20 MASK FIELD
L l Yy Vv ¥
(AFTER EDIT) OP1 |sc| sc|sc|sc|sc| sc|Fo|aB | Fo|F1] UNPACKED FIELD

FILL CHARACTER
ASTERISK

*

** 0 . 0

%HHHHl

PRINTED RESULT

NOTE

Edit control hexadecimal characters:

Fill character (40, 5B, 5C, etc.)

Digit Select Character (20)

Significance Start Character (21)

Insert characters (6B, 4B)

2-123

SELF-TEST

Check each of the following statements as true or false. Check your answers on page 2-129.

—
-

1. An EOF card indicates the beginning of a punched-card file.
2. An object program is in machine code,
3. Machine code is used to write a source program.
4. A systems flowchart is prepared by a programmer.
B. A program flowchart is prepared by an operator.
6. AP in a coded statement represents an operation code.
7. A program is a series of instructions.
8. The basic function of high-speed memory is processing.
9. A file name must have nine characters,
10. A byte contains six bits.
11. The symbolsina system§ flowchart do not represent operands.
12. The symbols in a program flowchart represent devices.
13. An Assembler program is produced by the computer manufacturer.
14, Data files are brought into memory and processed at object time.
15. The keywords in a DTF statement must be listed in a prescribed sequence.
16. Card file records are 80 bytes in length,
17. A DTFCR statement must include the keyword entry 10A1.
18. A storage area is cleared for use in arithmetic calculation by filling it with spaces.
19. A storage area is cleared for use in a printing operation by filling it with spaces.
20. The Edit instruction is a logical instruction.
21. A DTFPR statement is an Imperative Macro instruction.
22. Connector symbols can be used on a flowchart to represent a repetitive process.
23. Data for arithmetic calculations must be in packed decimal format.

24, A counter can be used to control the number of times a loop will be repeated.

0O 000000000 DODOoODOoOOo0ODDOoOoOOoOOoOOoOOogOoao o o
000000 ob0boif0oOOo0OOoC0ODoODoOoOoDpDDoDDooooao g

25. At Assembly time, |OCS routines called for by the programmer become part of the
user program.

2-124

Ooo0ooogogao T

o d

o 0O

O 000000 o

O

O 0oo0oo0oo o

0 O

o O

0O 00 o0o0go o

0O O

26.
27.
28.
29.
30.
31.

32.

33.
34.

35.

36.

37.

39.

40.
41.
42,

43.

45,

46.

47.

49,

Constants are not stored in memory as hexadecimal values.

One hexadecimal digit is represented by four bits in memory.

A numeric value is used to increment a counter.

Two hexadecimal digits are represented by four binary digits.

The representation of a constant in the Assembly listing is in hexadecimal.
The programmer supplied information about the files in the DTF statements,

Any constant defined as a character constant cannot be defined as a hexadecimal
constant.

A program with one input file and one output file requires three DTF statements.
Hexadecimal constants can be used to define printer graphic characters.

Hexadecimal constants are used to define numeric values that will be used in arithmetic
operations.

An input area named in a DTF statement does not require a storage area to be reserved
by a DS statement.

The response to the keyword 10A 1= must be the symbolic name assigned to the 1/0
area of memory.

When defining a constant, the explicit length is never specified.

The constant value defined in a character constant must be enclosed within a pair
of single quotation marks.

A Declarative Macro instruction defines an input or output file.
The last keyword entry in a DTF must be followed by a comma.
An unused field defined by a DS statement must be named. -
Univac provides 10CS macr;) routines.

Card input files are defined by Imperative Macro instructions.
Printline §torage can be reserved for 132 bytes.

The Label in a DS statement represents the symbolic address of the second byte of
the defined field.

The ORG instruction resets the location counter to permit a storage area to be redefined.

Two areas in memory can be reserved by the same label.

A DS statement can be used to define storage for an input area only.

2-125

-
-

O 0 0 0 0O 0o o 0O
O 0 00 o0ooo0o g

O 00 0o Qg
[R T R o I R

00000 Doooao g
o o0 0000 oo o g

2-126

50.

51.

52.

53.

b4,

55.
56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

The ORG instruction is an Assembler-directing instruction.

The first character in the label field of a DC statement cannot be numeric.

The MVC instruction is a Declarative Macro instruction.

The implied length of a constant is indicated within the enclosing quotation marks.
When a numeric value is used in arithmetic operations, it must be in packed format.
The START instruction follows the DTF statements.

Printer graphic symbols are stored in memory as hexadecimal characters.

A DC statement defines a constant and also reserves storage for the value to be stored.

An input or output area named in a DTF statement must be reserved by a DS
statement.

Statements 59 through 64 are referenced to the following instruction example.
Check them as true or false. ‘

AP WORK{4), SALE(3)
SALE is the receiving field address.
The data stored in SALE will not be added to the data stored in WORK.
WORK is the first operand address.
After execution, the result will be stored in WORK.

The data originally stored in WORK will be destroyed when the instruction is
executed.

After execution, the déta originally stored in SALE will be changed.

A DTF statement is the last instruction coded in a source program.

A Move Character (MVC) instruction operates on packed data only.

An Edit (ED) instruction-prepares packed data for printing.

The specified explicit length of the constant XL2'F1F2’ is the same as its implied length.
The data in the sending field is destroyed by a move operation.

The Move Immediate (MVI) instruction operates on one character only.

The constant C*1234’ will appear in hexadecimal form as F1F2F3F4.

A MVC instruction copies data from one field to another.

Data cannot be moved unless it is stored in packed format.

O 0 000 o0 g

o o

O

O 0 0 0 O

O O o oo

O 0 o0 o0 oo

o O

O

74,

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91,
92.
93.
94,

95.

A work area cannot be cleared by a single MVC instruction.

An Add Decimal (AP) instruction stores the sum of two packed fields in the first
operand field.

A printline area can be cleared by a single MVC instruction.

A Compare Packed (CP) instruction sets a condition code indicator that reflects
the result of comparing two packed data fields.

The Compare Logical (CLC) instruction does not operate on alphanumeric data.

The condition code indicator is tested by a Branch on Condition instruction after a

compare operation is performed.
An example of relative addressing is:
MvC PRT+9(10), NAME
The Using instruction is an Assembler-directing instruction.
The Using instruction defines a constant value,
The DTFPR statement is a Declarative macro instruction.
The BC instruction follows the CLC instruction.
The BC instruction is an Assembler-directing instruction.

A DTF statement cannot specify a peripheral device.

The filename that identifies a peripheral device is assigned by the programmer in a

DTF statement.
The BAL and USING instructions are not DTF statements.

Blank spaces are allowed between characters in the Label field of a DS or DC
statement.

The last keyword entry in a DTF statement must be followed by a comma and a
continuation character.

The START instruction is the first instruction coded in a program.
The DTF statements follow the START instruction.

The BAL instruction precedes the START instruction.

A CLOSE instruction is the last instruction in a program.

The GET instruction is an Imperative Macro instruction.

2-127

-
-

OO O o 0O
OO0 O Q0

2-128

96.
97.
98.
99.

100.

A PUT macro instruction precedes a CLOSE macro instruction.
The Label field of a DS statement must not exceed four characters.
The keyword BKSZ is not required in a DTFPR statement.

The Assembler listing prints all EBCDIC values in hexadecimal.

Internally, the computer represents all printer graphic symbols in machine code.

SELF-TEST ANSWERS

76.

51.

26.

77.

52.

27.

78.

b3.

28.

79.

54.

29,

80.

55.

30.

81.

56.

31.

82.

57.

32.

83.

58.

33.

84.

59.

85.

60.

35.

86.

61.

36.

87.

62.

37.

88.

63.

89.

64.

39.

90.

65.

40,

91.

66.

1.

92.

67.

42.

93.

43.

94,

69.

44,

95,

70.

45,

96.

71.

46.

97.

72.

47.

98.

73.

48,

99,

74.

49,

100.

75.

50.

2—-129/130

	000
	2-0001
	2-0002
	2-0003
	2-0004
	2-0005
	2-0006
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129

