
1103A and 1105 PROGRA1,J.:Ir'G

SPECIAL DISCUSSIOr, OF CC!.:r.:''\NDS

and

INPUT - OUTPUT EQUIPMENT

By
Guenther F. Paprotny

Univac Scientific anJ Univac 1105 ProgrJ:::-:-:ing TrainilllJ

INTRODUCTION

A. "t'!o ruav read thi s manual?

Dxring the discussion of the 1103A and 1105 basic commands,
as presented in Chapter IV, it was ass~~ed that the reader
already possesses some basic knowledge of those cOIr.lI:l.:lnds and
their applications. This 1~owledge ~ust not be less than that
of a student after 2 weeks of an 1103A or 1105 Progra~ing course.

The ITIateri al is presented to serve the following purposes:

1. as a~ Bid i~ 5-week (or longer) 1103A or 1105 programming
courses. It may be handed out to students as "class notes"
at the beginning of the third week o

2. as a Reference ~'1anual for experienced 1103A or 1105 prograJ"1...mers.
In this respect the manual might ~"1swer questions 'wi. th regard
to special applicRtions of co~~ands and to progrs~~~g input -
output equiprnents.

3. as study material for experienced 1103 progrRJrUners 'Who have
to learn 1103A or 1105 pro2r~illdng.

4. as self-study material to 1103A and 1105 progrs~~ers who wish
to increase their ~~owledge of the computer, its prorrp~Edng
and internal operation (internal operation to the extent
that only those machine operations are discussed which affect
pro fI" anmIi ng I)

B. CO:1tent of V..P '1ual

Thi s ma..'1~.:al cont9.in s a complete descri pti on of the 1103A and
the 1105 computers and thetr Input - OJtput equiprr.ents,

Chapter I describes the Address System of an 1103A or 1105 computer.

Chapter II describes the functioning of the Progr~ Address Counter.
The use for extraction of commands is discussed as well as
restri cti o~s for carries in PAl(and their consequences. Thi s
is explained for computers with one, two, or three b~~ks of
core storaf!e.

Chp..pte!' III explBins "One's Transmi ssi on" in order to enable the
reader to '1.L'!derst.and the "Left Shift" and "Spli t" COIn.TTI,!3!'! ds.

Chapter IV conteins a special discussion of eJ.l 1103A and 1105
co~~~ds. This discussion presents exact sequences,w~ere necessary,
Ch"1C poi !;ts out lip: tfp~ls II and computer faults because of the use
of A a!ld Q as 2pe!'a'rJds"

I

Chapter V explains programming for the following Input-output equipments:

The on-line electric Typewriter
The High Speed Punch Unit
The Ferranti Tape Reader
The on-line 8o-column Card Unit
The Magnetic Tape Syste~ ifixed and Variable Block Length)

Whenever necessary for programming the equipment is described. FurthermCle,
paragraph c) contains a description of the 1103A and 1105 lockout circuitry
from a programmers point of view in order to enable the reader to under-
stand why he has to program in this or that way during input~output opel~tions.

Chapter fI presents a discussion of the 1105 Magnetic Tape and Buffer System
and programming consequences.

Chapter VII discusses the 1103A and 1105 Interrupt Facility and its applica­
tion for program controlled operations.

Chapter VIII describes the 1103A and 1105 Floating Point System.

C) pefi~ ~i ~n_o! l~~:9utE!l~ ~~t~_f.Q~ l10~~ ~n(llLO~.

1103A :
Fl exowr i tel.
High Speed Punch Unit
Ferranti Reader

. -Ufiu 11" Card Unit (opt i onal)
Magnetic Tape System (~10 Uniservos, One Tape Control Unit)

1105:
Flexowriter
High Speed Punch Unit
Ferranti R'eader
'"'Bull"Gard Unit (optional)
Magnetic Tape System (~20 Uniservos, Two Tape Control Units v Two Buffer

Units)

D) Wh.!..c~ ~ap!..e~~r~ ,!:.o ..E~r!a~ by .!1Q.5y!..0~r~~ers ~ wEich ~nes l?Y_llO~
!:.r.Qg!.a!!!.ID~~ ?

1105 Programmers:
In order to study programming for the 1105 Computer read the whole
manual in the sequence presented. You may drop the description of
"On-Line Card Unit',' and/or "Floating Point System", if the computer
you will work with does not possess these optional features.

1103A Programmers:

Read whole manual in the sequence presented except Chapter VI and
Chapter VII, paragraph C, 2. Drop Floating Point and/or Card Unit,
if the computer you will work with does not possess those.

References:

a) Univac Scientific General-Purpose Computer System, Programming/PX 18,
Sept. 56.

b) Programming Manual, Univac Scientific Computing System Model 1103A,
Manuscript Copy of section on magnetic tapes, Oct. 30, 57.

c) Programming Manual, Rough Draft, Univac Scientific Model 1103A

d) Preliminary Programming Manual for the Univac 1105 Computing System.
US 108, March 7, 58

e) Univac Scientific General-Purpose Computer System, External Function
Modification to the Basic Computer, PX 150, Sept. 57

f) Univac Scientific General-Purpose Computer System, Modification to
Provide Two Additional Core Bays to the Basic Computer. PX 148, Sept. 57

g) Univac Scientific General-Purpose Computer System, Timing Sequences,
PX 21, Oct. 56.

C~TENTS

Page
I) The 1103A/1105 Address System

a) Magnetic Core Storage I
b) Arithmetic Registers 1
c) ~1agnetic Drum Storage I
d) Illegal Addresses 1

II) The Program Address Counter PAl(

a) General Remarks 1
b) Restrictions for Carries in PAK 3

1) Computer with one bank of core storage 3
2) Computer with two or three banks of core storage 4

III) Remarks on "One's Transmission" 5

IV) Special Discussion of Basic 1103A/1105 Commands
a) General Remarks 6
b) "Transmit" Commands 7
c) tlArithmetic"Commands 9
d) Jump and Stop Commands 12
e) Commands Referencing Subroutines 16
f) The "Left Shift" Commands 18
g) The "Left Transmit" Command 22
h) The "Sp1 i t tt Commands 23
i) The "Q-Controlled" Commands 26
j) The t'Controlled Complement" Command 27
k) The "Repeat" Command 27
1) The "Scale Factor" Command 36

V) The 1103A Input Output System

a) The On-Line Electric Typewriter (Flexowriter) 39
b) The High Speed Punch Unit 41
c) "I nput-Out put" C o!mnands EF -v, ERj v, EWj v 44

1) The EF-instruction (general) 44
2) The Information Flow from and to Ext. Equipment 44
3) The IDA-and lOB-Lockouts, ER jv, EW jv 45
~) The EF-instruction (details) 48

d) The Ferranti Paper Tape Reader 49
dd) Drum Zone Selection 50
e) The "Bull" Card Unit as On-Line Equipment

1) The GO-Column Card 51
2) General Description of Read-and Write Channels 51
3) Selection of Card Unit Operations, Bit Assignments 52
4) Reading of Cards 53
5) t'Wri ting" on Cards 53
6) Summary on Programming tlRead" and "Write" Operations54
7) Faults 55
6) Manual Preparation of Card Unit for Program

Controlled Operation 56
9) Remarks on Timing 56

f) The 1103A Magnetic Tape System, 1105 Bypass Mode
Operations 57

I. Fixed Bleck Length
A) Representation of Data .n Tape
B) Tape Format
C) Registers ef the Magnetic Tape Control Unit
D) Selectien of Magnetic Tape Operations
E) Discussion of Mgdes of Operation
F) Checks made during "Read- Operations
G) Most Frequent Programmin~ Faults
B) Miscellaneous
J) Saople Prograns

II. Variable Block Length

Page

57
57
57
58
59
60
61
62
63

A) Data Repres.entation and Tape Format 64
B) ''\'iri te" Operation 64
C) "Read" Operation 64

1) End of Block Detection 65
2) Parity Error 65
3) hlGd 6 Error 66
4) Parity and Mod 6 Error 66
5) End of Recerd Detection 66
6) Su~~ary 66
Flew Chart for Read Operation 67

D) Stop Tape Operation 6e
E) Move Forward (or Backward) . 68
F) Rewind, Rewind with Interlock. Change Bias 68
G) Selection ef Variable or Continuous Input ~lc.de 68
H) S~~ple Progra~s 69
J) Continuous Data Input 70

III. Tape Format Required by Off-Line High Speed Printer 70 b

VI) The 1105 Magnetic Tape And Buffer System

A) General Introduction to the 1105 Buffer System 71
B) Physical Structure of the Buffer System 71
C) Information Flow via Buffers

l) Computer ~ Buffer 72
2) Buffer ~ Tape 73

D) Buffer States
1) 1Load M and ·Unload- 73
2) Buffer "Activity· 75

E) Programming for Write Operations Using Buffers
~) Fixed Block Length 76
j) Variable Block Length 76

F) PrGgr~~ing fer Read Operations Using Buffers
~) Fixed Block Length 77
)7) Variable Block Length 79

G) Stop after Read or Write Operatiens 80
H) Selectien of Bypass Buffer Mode 80
') Automatic Tape Centreller 81
K) Some Timing 82
L) Faults 83
~) Sample Pr.grams 83

VII) The lI03A and 110S Interrupt Feature

A) General Explanation
B) ~odification of the Computer Program by an

Interrupt Signal and Programming Consequences

1) then Joes the Interrupt beco::Je effective?
2) ~oJification of ~p 6 by the Interrupt Signal
3) Progra~Tiing Consequences

C) The Program Controlled Interrupt
1) The ItBull" Card Un i t
2) The 1105 Buffe~ System
3) Other Equipments

VIII) The 1103A/II05 Floating Poi~t System

A) ~·~epres011tatioIi. of i\unbers
B) Floating Poir.t Co:nmands
C) Some Remarks on r~lachi ne Cpera ti OilS Occurri ng

During Floating Point Arithmetic Processes
0) Use of "Transmit" and "Compare" Instructions

for Floating Point Numbers

APP=~~DIX

Table
Table
Table
Table
Table
Table
Table
Table

Special ::emarks Oli the Buffer Systen

I:
II:

Ill:
IF . . .

V:
VI:

VII:
VIII:

~eaJ Single CarJs
r:eaJ Consecutive Cards, Single Card kode
;~eacl Consecuti ve Cards, Free fiun
Punch .3ingle Carus
PUl~Cr. Cor.secuti ve Canis, Single Card j\;ode
Punch Consecutive Cards, Free Run
~eaJ dn~ Punch Simultaneously, Single Cards
Bit f.ssig!~ments for I~:agnetic Tape Operations of the
1103~/110j anJ for Buffer Operations of the 1105

Page

r.r-
()J

05
66
87

86
C9
90

91
93

98

96

riAl thru AA6

Al
A2
A3
AS
,\6
A7
;.\9

AIO

I) The 1103A/1105 Address System

a) Ma91leti~CorJt ,§toz:!9!

The core storage of the 1103A and the 1105 computers consists
of up to three (3) banks of cores. One bank of core storage
holds 409610 36-bit-words and is a standard equipment.

The addresses are:

&~S 0 (first bank):
MCS 1 (second bank):
MCS 2 (third bank):

b) Arithmetlc_R~ister.!

00000 thru 07777 (octal)
10000 thru 17777 (octal)
20000 thru 27777 (octal)

The addresses of the 36-bit Q-register are:

31000 thru 31777 (octal)

The addresses of the 72-bit Accumulator are:

32000 thru 37777 (octal)

c) .Masneti,.g Dr!!!Il..?~!2~ ("Double Drum")

The magnetic drum storage is divided into two (2)~; zone A

and zone B. Each zone possesses 1638410 registers with addresses

40000 thru 77777 (octal)

Therefore we have 2 registers 40000, 2 registers 40001, etc. If
e.g. a reference to 40000 is made it depends upon the zone -

selection made earlier, whether "40000 zone Aft or "40000 zone B"

is employed. This zone selection will be described later. (See
page 50.)

d) .!lle.9,.al. !.dQrELSl.e~

The illegal addresses of the computer are, if it is equipped with

one bank of core storage: 10000 thru 30777 (octal)
two banks of core storage: 20000 thru 30777 (octal)

Three banks of core storage:

II) The Program Address Counter PAK

a) ~'!.e!.a!.. ~el!a!k.!

30000 thru 30777 (octal)

PAK is a l5-bit register which serves in two ways:
1) as a storage for the address from which the next command is

to be extracted.
2) as a repeat counter during the execution of a repeat sequence

also controlling the advancement of the u- and v-address of the
repeated instruction. (This will be discussed under "Repeat
command tf.)

-1-

The extraction of a command from storage and its execution is based upon
eight (8) ~iain Pulses, MP 6, ~lP 7, and MP 0 thru r\lP 5.

:.IP 6 and r,lP 7 extract a command from storage,

fllP 0 thru rolP 5 execute this command.

A computer Master Clear which precedes all operations of the computer sets
it automatically to rJP 6 and PAK to 40000. Before depressing the Start
button the operator has to manually insert the-address at which the program
starts, into PAK (if this address is different from 400000).

Now the following sequence of steps takes place upon starting operation:
(It is pointed out that one box of the flow diagram does not represent one
clock pulse)

1 Clear PCR 1-----

Initiate Read:
Clear X

Wait Int. nef.

MP 6

-------- -- ---
T

MP 7

~ _____ 1 __ _

hlP 6 essentially transfers the address from

PAK to Sfu1, advances PAK by 1, and reads the
word from the storage register whose address
is now held in SAR, into X.

from
MP 7 brings the word X into PCR, where it
later will be interpreted as command.

MP 7 also clears SAR, since this will be used
during the execution of the command.

SAR = Storage Address Register, a 15-bit register. When reading from or
writing into a storage location the computer "looks" at SAR in order
to determine the address of this storage location. Notice that·SAR
is not cleared, before the transfer PAl(to SAIl is made. However,

each "Read into X" and "Write from X" sequence clears SAH immediately,

after it used it. This involves transmissions between X on one side
and core, drum, A, and Q on the other side.

But notice; after a "Shift" sequence SAR is not cleared. This is
the reason for some rather unexpected results during special uses
of ItLe ft Shi ft" and "Spl it" commands, as explai ned later.

-2-

PCR = Program Control Register, a 36-bit register.

A word entering PCR is interpreted as command.

PeR consists of:

~.lCR = Main Control Register; 6 leftmost bits of PCR

which hold the operation code.

UAK = U-Address Counter; 15 bits holding the u-address
portion of the command.

VP~ = V-Address Counter; 15 bits holding the v-address

portion of the command .

. Special use of UAK and VAK is explained later during the

discussion of a command, whenever it is necessary.

b) Restrictions for Carries in PAK

When PAK is advanced a "1" is added to the number (address)
held in PAK. The carry from one stage of PAK to the next
stage is, however, restricted in the following way:

PAK = xxx xxx xxx xxx xxx (binary)

PA~J.ri JAKll JAKo
PAK13

PAK12

Restriction present with all 1103A/liOS computers:

There is never a carry from PAK13 to PAK14"

In addition to this the following restriction is imposed on PAK:

1) Computer with one bank of core storage

If PAKl 4 = 0, there will be no carry

from PAKli to PAKI2.

If PAKl4 = 1, there will be a carry

from PAKII to PAKI2 •

Consequences for a computer with one bank of core storage:

Assume PAK = 100 000 000 000 0002 = 400008
Here PAK can be advanced up to

III III III III 1112 = 177178,
Lecause the carry from PAK11 to PAK12 can be made.

-3-

Advancing PAK again by 1 we have:

III III III III III
+ 1 (binary)

100 000 000 000 000

That means that in PAK

771778
+ 1

400008

(octal)

Assume PAl(= 000 000 000 000 0002 = 000008
Here PAK can be advanced to

000 III III III 1112 = 071718

Because of PAK14 = 0 there will be no carry

from PAKII to PAKI2. T~ereforet adding a

"1" again we have:

000 III III III III
+ 1

000 000 000 000 000

That means that now in PAK

07777
+ 1

00000

(binary)

(octal)

2) Computer with two or three banks of core storage.

In this case the restriction mentioned under 1) depends upon a

switch set on the Supervisory Control Console. This is the

so-called MCS-Section Switch. It will be set to one of the

following two positions:

SINGLE - If "the switch is set to this position the restriction
for the carry is imposed on PAK as discussed under
1) above, i.e. there will be no carry from PAKll to

PAKI2, if PAK14 = o.
NOR~~ - Setting the switch to this position means to drop

the restriction mentioned under 1). That means
that now a carry from PAKII to PAK12 can be made

-4-

regardless of the value of PAK14. (Only exception:
see "Repeat Command").

Let us look at the Normal setting of the switch. Here the
programmer has to keep in mind the following fact:

a) Computer with 1!Q banks of core storage:

PAK can be advanced from OOOOOs thru 177778.

But 177778
+ 1

results in PAK =000008_

b) Computer with ~ banks of core storage:

PAK can be advanced from 000008 thru 27777
8

•

But 277na
+ 1

resul ts in PAK = OOOOOa

(In order to find out ~ this is accomplished by the machine
re~er to Block Diagrams)

III) Remarks on "One's Transmission"

Experience shows that some confusion exists even among experienced
programmers of the 1103/II03A/II05, if the word "one's transmission"

is mentioned. However. as pointed out during the discussion of

PAK (see: PAK~SAR), it is absolutely necessary that a programmer

understands the meaning of this word and the results caused by a

one's transmission, if he really wants to understand the Shift-and

Split-Commands (which will be discussed later in details).

Without going into engineering details let us consider the final

results after a one's transmission from PAK to SAR:

Here One's Transmission means:

If PAKi = 1, swi tch SARi to "1 '\

If PA~=i = 0, do not touch SARi.
(i = 1,2, •••••••• 14)

Assume PAK = 000 110 100 010 011 2 = 064238
After one's J SAR = 011 001 011 110 0102 = 313626
transmission SAR = 011 III 111 110 011 2 = 377638

This result can easily be obtained applying the above rule.

The example also shows that the result may be obtained by applying

the following logical addition in binary:

-5-

0+0=0

o + I = I
I + 0 = I
1 + 1 = 1

This means that you merely may add the two numbers in binary in the
normal way with the exception that I + I = 1. No carry will be produced.

It should be noticed that all transfers as e.g. storage--+X, X~storage,

X~Q. etc. are made by one's transmission. However, in order to obtain

the correct result in the register into which has to be written the computer
automatically clears this register first. Thus, if e.g.

(X) = 0--0100

(v) = 1--1100

and (X) --;. v has to occur. the computer produces.

Clear v.

One's Transmission from X to v.

This is merely stated here. The only exception from this general
rule which is the concern of the programmer is the above mentioned
one's transmission from PAK (OAK, VAK) to SAR or SAR to PAK.

IV) Special Discussion of Basic 1103A/Il05 Commands

The following paragraphs represent a discussion of all commands
except Floating-Point-Commands and the Input/Output-commands
EF -v, ER jv, EW jv. This discussion refers in particular to
programming situations which either would cause a computer fault
or an unusual result; it requires. however, a basic knowledge of
these commands on the part of the reader.

During most of the commands numbers are transferred in the
computer from

storage to storage

storage to A or Q
A or Q to storage

plus certain transfers to input/output registers (discussed later).
All these transfers are made via the X-register (Exchange Register).

-6-

Two of the above transfers are of special interest:

Accumulator to.X, X to Accumulator. These are transfers

between a 72-bit register and a 36-bit register requiring

special discussion.
1) Accumulator to X:

With the exception of one command, the LT jk v, there will

always be a transfer of (AR) to X. This is done automatically

by the computer. Thus, the computer never picks up (AL)

except in a LT jk v with j = O.

2) X to Accumulator:

Here the situation is somewhat different. A is an additive
register which means that a number may be added to (A), but
not transferred to A. If a transfer is to be obtained the

computer automatically executes the following steps:

Clear A
(A) + D(X) --+ A

This results in the double extension of (X) in A, i.e.

(AR) = X and (AL) contains sign-bits.

However, some commands so not use the double extension.

These are the three (3) Q-Controlled commands and the four (4)

Split-commands. They use the single extension S{X), i.e.

(AR) = X and (AL) contains zeros.

Keep in mind that the Q-Controlled and Split commands

are the only ones which make use of SeX) instead of D(X).

All other commands always use D(X), if (X) has to be added
to (A).

b) "Transmi t" Commands

TP u v

TM u v
TN u v

Sequence: (u) ~ X •
(X) ~ v ••

•• If v = A: Clear A
(A) + D(X)~A

• If u = A: {AR)-+X

These two commands are executed like the TP
except that I (u)1 or (u)l, respectively, are
transferred

-7-

Notice that no faults ever occur during the execution of one
of these three commands because of the use of A or Q as u- or v­
addresses. (Here, and from now on, it is assumed that no illegal

addresses like 300008 etc. are used as u or v. The use of an
illegal u- or v-address, naturally, results in an SCC-Fault,
SCC being Storage Class Control.)

TO u v Sequence:

u29 ••••• ulS -4 X29 ••••• XIS
129 ••••• Xis -+ v29 ·····vIS

To write it in a different way:

(u) --+ v
u u

Keep in mind:

v3S ••••• v30 and vl4 ••••• vo remain undisturbed

If u = Ai

u = Q;

However, v = A Q! Q results in an seC-Fault.

TV u v Sequence:

u14 ••••• Uo -+ 114 ••••• XO

Xl4 ••••• XO ~ Yl4 ••••• vO

or, written in a different way:

(u)y ---+ Yv

Again, v3S ••••• vIS remain undisturbed

If u = A: (Aa>v -t Vv

u = Q: (Q>v ~ Vv

Like in the TU u v v = A Qr Q results in an SCC-Fault.
Therefore keep the general rule in mind:

It is not possible to transfer parts of a 36-bit number

into A or Q.

-8-

c) "Ari thmeti c tI Commands

RA u v Sequence:
(u)--7X

Clear A
(A) + O(X) -7 A

(v)~X

(A) + O(X)~A
(AR)-J X

(X) -7 u *
• omi t , i f u = A

If v = A the above sequence shows that then

(u)f = 2 • (u)i

provided that no "overflow" into the sign position (bit i3S)

occured during the addition.

RS u v

If v = A: (u)f = 0

(A)f = 0

The sequence of this command is equal to

that of the RA u v except that (v) is

subtracted from (u).

AT u v Sequence:

5T u v

(u) -+ X

(A) + O{X) ~ A

(AR)-7 X

(X)-+ v ~

• omi t , i f v = A

The sequence is equal to that of AT u v

except that D{u) is subtracted from (A).

Notice that the above four commands RA, RS,AT, and 5T never
result in a computer fault. An "overflow" into the sign
position i35 occuring during an addition or subtraction will,

therefore, not be noticed during machine operations. If the

programmer suspects such a possibility for an overflow he may
e.g. apply the method suggested in the following paragraph:

-9-

Assume (u)i = 01----1

(v)i.= 0 01

(binary)

(binary)

The command RA u v results in the following:

D(u) --+ A: (A) = 0 --- 001 1
D(v) = 0 000 -- 01 +

(AR) ~ u: (u)f = 10---0
f

(binary)

(binary)

As it can be seen: The sum of the largest positive number
in u, (u)i = 235 -I, and a "I" results in a negative number
in u, (u)f =~(235 -I), which is the negative number with
the largest absolute value.

Assume the command following the RA u v is an
EJ u w~ This will test whether or not D(u) is
equal to (A). In the above case this equality

would not occur.

Therefore: Whenever the programmer suspects an overflow
during an addition he may test this by giving the following
commands:

a RA u v
a+l EJ u w
a+2

Upon jumping to w the programmer knows that !!.Q overflow
occured. But if the computer proceeds with the next
instruction in sequence (e.g. at a+2 in the above example)

the programmer can provide some means which will indicate
to him that an overflow occured.

MP u v Sequence:
(u~X

Clear A
(X)-+ Q
(v)-+ X

Form in A the (true) product
of (Q) and (X).

Giving this command the programmer has to keep in ~ind
two things:
(Q). is destroyed and replaced by (u)
(A)~ is destroyed and replaced by (u) • (v)

-10-

Moreover: if

if

It is obvious

overflm\' into

MA u v

v = A: (A)f = 0
2

v = Q: (A) =
f

(u)-
1

that this command never results in an

the sign-position

Sequence:

(u)~X

(X)~ Q

A71-

Shift (A) left 36 places
{v)....-+ X

Add the product (Q) • (X) to (A) using

an addition process.

This command results, as it is well known, in {A)f = (A)i
+ (u)·{v). However, during the addition an overflow into

the sign-position might occur depending upon the values
of (A)i' (u), and (v). The overflow might occur, if (A)i

is very large such that A71 ¥ A70• The computer tests

this condition cfter the above shift of 36 places in A

has been made, i.e. it tests, whether or not A35 ¥ A34.

If this is the case computation stops with an Overflow-Fault
("Att-Fault) indicating the possibility of an overflow.

Notice that A35 ¥ A34 or. originally, A71 # A70 does ~

mean that an overflow will occur in any case.

DV u v Sequence:
(u)~ X

(A) .
(X)l ~ Q

(Q)~ v * (A)f ~ 0 is Remainder
c: I f v = A:

Clear A

(A) + D{Q)~A,
i.e. remainder is lost.

Notice that the remainder in A always is positive. This
can cause differnt results in Q and A during two divisions
performed with the same arithmetic number.

-11-

To illustrate this let us take the number - ~.

First case:

Second case:

{A)i = + 7
(u)i = - 3

here:_ 3
7 = .2 + 1-

-3

Therefore:

<A). = -7
1

<u)· = +3 1

here: -7 =
3

Therefore:

quotient <Q>f = -2

remainder <A)f = +1

2 -3 +-
3

quotient <Q)f = -3

remainder (A)f = +2

It is clear that the quotient of a division might consist

of more than 35 significant bits, as e.g.

(A)i = 260, (u) = 22, quotient = 256

Such a number cannot be placed into Q. Therefore, if this

situation occurs, i.e. an "overflow" in Q is about to take

place, the computer stops with a Divide Fault ("A" Fault).

Notice that at this time (A)i will be already destroyed.

d) Jump and Stop Commands -- - ~ ~ - .-.--~~-

The following commands. cause the computer to "ask the question"

EJ u v Is D(u) = (A)?

TJ u v Is D(u) > (A)?
ZJ u v IS (A) = 0 ?

SJ u v Is (A) :> o ?

QJ u v Is (Q) = o ? *
If the answer to any of the above questions is "yes" a jump to
address v occurs.

* Keep in mind that after the decision "(Q) ~ 0 or not" is made the
content of Q is shifted one place to the left in any case.

-12-

If the answer turns out to be "no" the sequence of steps which
has to follow depends upon the nature of the command:

One-way-jump (EJ, TJ): take next instruction in sequence
Two-way-jump (SJ,ZJ,QJ): jump to u.

The above commands do not alter the contents of registers

involved in their execution.

IJ u v Sequence:

(u)~ X

Clear A

(A) + D(X)~ A

(A) -1 A

Is A71 = 01

If yes:
(AR)f ~ u

jump to v

If no:
take next instruction in sequence

The reader will probably know that this command is mainly used
for performing "loops" in the program, i.e. for executing a part
of a program several times. Keep in mind that, if a part of
the program has to be executed n times and theIJ is at the end
of this part (where it will be in almost all cases), the "index"
(u> has to be = n-l.

Also notice: after the loop has been performed n times and the
computer continues with the instruction immediately following the
IJ, (u)f = O.

MJ j v

The sequence of steps resulting from the execution of this
command depends upon the value "j". Thi s j is represented by
the leftmost octal digit of the u-portion of the command, exactly
i29 i 28 i 27 in binary. Let us discuss the different values for j:

j = 0, i.e. MJ 00000 v

j = 1, i.e. MJ 10000 v
j = 2, i.e. MJ 20000 v
j = 3, i.e. MJ 30000 v

-13-

This is an unconditional
j ulip to address v.

In these three cases there
are two possibilities.

Either the switch on the console which corresponds to the

number used in the command (1,2, or 3) is set

then: undonditional jump to v

or the corresponding switch is not set

then: take next instruction in sequence.

Keep in mind: the above mentioned switch on the console
can be set or released, if and only if the
computer is ~ operating. During computer
operation a setting or releasing of these
switches is blocked.
Therefore: if one part of your program
makes use of a j = 1 set, and another part
requires j = 1 to be released then you have

to stop computer operation with a MS jv
(see below). Now the switch may he released,
and operation can be resumed.

j = 4, i.e. MJ 40000 v
j = 5, i. e • MJ 50000 v
j = 6, i.e. MJ 60000 v

j = 7, i.e. MJ 70000 v

These values of j do not possess
any corresponding switch on the console. The execution of
these four (4) commands has to be discussed for two cases:

1) ll03A, i.e. computer without Buffer System:
Here the j is actually determined by the bits

i28 i27 which means that i29 is disregarded by the

machine. Therefore, we have the following situation:

If i 29 i 28 i 27 equals it results in a "machi ne j"

000 or 100. j = 0
001 or 101 j = 1
010 or 110 j = 2
011 or III j = 3

As you can see: a MJ 00000 v is equivalent to a
MJ 40000 v, •••••• , a MJ 30000 v is equivalent to a
MJ 70000 v.

2) 1105, i.e. computer with Buffer System:

of

In this case any MJ jv with a j of 4,5,6 or 7 represents a
completely different kind of command used for Buffer
operations. This will be discussed under "Buffer System".

-14-

The following remarks refer to all jump commands:

If v = A and a jump to v occurs: See-Fault

For two-way-jumps in addition:

If u = A and a jump to u occurs: SeC-Fault

Notice that the fault occurs, if and only if a jump to A is

made, i.e. if the programmer tries to extract the next
instruction from A. However, the command EJ u A with (A) = 0,

(u) = 1 will, for instance, not result in a fault.

Notice: If a 3umP to Q is made in any jump-command a fault

is ~ generated. The machine will pick up (Q>, send it to

PCR. and interpret this as command. The programmer will
certainly never try to jump to Q. If this, however, happens

because of programming errors, there are three possibilities:

(Q) contains an illegal operation code: MeT-Fault
<Q> contains a jump command: Jump will be performed normally.
<Q> contains a legal, but not jump, command: This will be

j = 0:

MS j v

v--+PAK
Stop

executed. Since PAK is advanced, say
from 31000 to 31001, the next command
is again taken from (Q), etc. Notice:
you might advance PAK, until it reads
32000. Then: see-Fault I

There exist again switches on the
console for j = 1, 2, 3.

Notice: . v---+ PAK indicates: erase the address held in PAK, and
replace it by v. Therefore, a "jump to address v" has been
set up by the machine, but before continuing at v a stop
is made.

j = 1,2, or 3 and corresponding switch set: v~PAK
Stop

and corresponding swi tch !!.2! set: v ~ PAK

As you see: v-+ PAK, i.e. jump to v, takes place in any case.
j controls stopping or not stopping only.
Refer to MJ j v in order to see the difference
between that command and the ~5 j vI

-15-

j = 4,5,6,7: For ~ computers, 1103A and the 1105, these values

of j correspond to the values 0,1,2,3 in such a way that

a j = 4 results in a "machine-j tt of 0

a j = 5 resul ts in a "machine-j tt of 1

a j = 6 resul ts in a !!machine-j r: of 2

a j = 7 results in a "machine-j" of 3

PS - -
This is the Program Stop command. If this
command is given computer operation can be
resumed after a computer Master Clear only.

Two commands are used for referencing subroutines. These are

the Return Jump RJ u v and the Interpret IP - -.

RJ u v Sequence:

PAK~X14 ••••• XO

Clear PAl(

v--.PAK

The sequence for this command is given here in details in order to

inform you about the real facts, sinee the explanation to be found

usually might cause confusion on the part of the reader or might

mislead him. This incorrect explantion I refer to is:

If Y is the address of the RJ uv t then y + 1 ~ UVt v ~PAK

To state it again: this last mentioned explanation of the RJ uv

is incorrect.

Let us follow the correct sequence with
Assume you have the following program:

At the very beginning of the execution
PAK = 00171 (since it is advanced
PeR = RJ 00170 00150

an example:

Start oof50 RA 01900 02000
r

OOi70 RJ 00170 00150
00171 -- ----

of the RJ uv you have:
by 1 already)

Executing the RJ the computer saves the address held in PAK by
-16-

placing it into X, erases PAK, and continues with: 00150--7 PAK

(X)v = OOl7l~ool70v

Thus the RJ at 00170 is now modified and reads
RJ 00170 00171

and a jump back to 00150 is made. If the RJ at 00170 is

executed again later (and has not been changed by some other
means in the meantime) it will not jump you back to 00150 again,
but you will proceed with the next instruction in sequence.

As it can be seen: the explanation y + l~ Uv would mean
that 00171 is sent to 00l70v changing the RJ before the jump
is initiated. According to this explanation you had to pick
up 00171 and to place it into PAK (by v --7 PAK). Thi sis not
the case.

You might, however, say: at least the explantion is correct
as far as y ~ 1 is concerned, because the above example picks
up 00171, and this is y + 1.

This is right in the above case and will always be so as long

a$ no Interrupt Signal is generated because of the use of the
Interrupt Feature, However, if a RJ is executed right after
the generation of an Interrupt Signal it will pick up the
address held in PAK which will not be the above mentioned
y + 1. (See under "Interrupt Feature")

Thus keep in mind:
Executing a RJ u v means to place the address held in FAK at

that time into Xv, placing v into PAK and, finally, (X)v into

Uv·
Usually the Return Jump is not used in:the way as described in

the above example. Normally the v-address of the RJ u v denotes
the entrance of a subroutine, and the u-address denotes the

exit of this subroutine, where e.g. (u) = MJ 00000 30000.

Keep in mind: using the RJ u v means that the entrance and
exit of the subroutine referenced may be an)~here in the core

or drum.

As already discussed earlier an See-Fault occurs in the

following cases:
If v = A: See-Fault (do not jump to A)

If u = A Q!' Q: seC-Fault (do not try to write parts of a
36-bit number into A or Q)

For v = Q refer to tht:: explanation given under "Jump and Stop

Comma nds".
=17=

IP
The ten (10) octal digits which form the u-and v-portion

of the IP-cornmand are insignificant. They.are completely disregarded

by the machine during the execution of the IP --.
The sequence of steps which takes place can briefly be described

as follows:
PAK-t v-porti on of F 1

F2 = 00001 ~ PAK

Address Fl is determined by a switch on the Supervisory Control

Console which can be set either to "ooooott or "40001". Its normal

setting is "00000" (also refer to "Repeat Command tt which uses the

F l-Swi tch).

Assume Fl = 00000. In this ease the address held in PAK at the
beginning of the execution of IP (which will be = address of

IP-command + 1 in almost all eases; see remarks under RJ uv) is

transferred to the v-portion of the content of 00000, and a jump

to F2 = 00001 is initiated. Thus the IP referenced a subroutine
whose entrance is 00001, exit 00000.

If Fl = 40001 keep in mind that now the entrance is again F2=OOOOl,
but the exit of the subroutine will be 4000[~.

The usefulness of this command is based on the fact that the ten
octal digits of its u-and v-portion may be used for storing other

information as e.g. parameters, pseu~o-codes, addresses, etc. which

may be used by the subroutine to which the IP ~- refers (Interpretive

System) •

f) The "Left Shift" Commands- .. --.-,~--.-

As you know shifting can be performed in two registers: in the

Accumulator and in the Q-register. There is only a shift to the
left. Moreover in either register we have the so-called "end around
shift''. i.e. you do.!!..21 "drop off" bits at the left end of the registers.

The two "Left Shift tt commands are LA u k and LQ u k. Tbe v-portion of

either cormnand contains a number k which determines how many places a
word in A or Q is to be shifted to the left. Do not forget: a binary
word is shifted by the computer, i.e. k refers to '~inary places".

-18-

Example:
Assume (Q)i = 0---01001 in binary. k = 4.

After shifting has been performed (Q}f is:

<Q)f = O. 010010000 in binary.

Let us examine the sequence of the LA u k:

(U)~X} omit, if u = A
Clear A
(A) + D(X) ~A

Shift (A) k places left

{AR)f -; r
where address r is given by the Boolean
logical sum of (u) + (v-k)
v denoting the v-portion of the LA u k.

The first part of the execution of this command is probably well

known to you: take the double-extension of (u) place it into A,

and shift k places left. (If u = A, just shift (A)i). But now
comes a point which has to be discussed in details, because the

steps to follow depend entirely upon the number contained in the

v-part of the instruction LA u k. This v-part consists of 1510

bits. However, just 7 bits are used for the representation of

the number k, as indicated below::

v-part of LA uk: xxx xxx ~ xxx xxx
~.~
8 bi ts : k

How does the machine determine how many p_laces it has to shift?

This is done in the following way:

After D(u) is in A1 the v-part of the LA u k is transferred to
t.

SAR (from VAK). The rightmost 7 bits of SAR are used as a Shift-
Counter, SK, and the machine performs the sequence:

Is SK = 0 000 OOO? (binary)
If ~: Shift (A)~~ place, subtract one from

SK, and go back to above question.

If yes~ continue with the following steps:
---- Transfer the u-address (from UAK) by

-19-

one's transmission into SAR. Now write
(AR)f into the storage given by the number
contained in SAR. If this address is an
accumulator address do not touch (A)f, but
leave it as it is.

As you can see: the transmission of u to SAR will result in
SAR = u, if the leftmost 8 bits (as shown above) were all zeros.
If they are not all zeros, you generate the Boolean logical sum
(" 1 + 1 = Itt) in SAR between u and what was left in SAR at the

end of the shifting. This might generate an address completely

different from u.

Let us follow three examples:

1) Shift (01050) 1710 places and place (AR)f back into 01050.

Here: LA 01050 00021
~

v-part of LA-command

Before the shifting of D(01050) in A takes place 000218 ~ SAR.

Therefore, _SAR = 000 000 OO~ OO,!
k

(binary>

After the shift SAR = OOOOOs. The transfer u = 0105Qa to

SAR results in SAR =.0105°8, and thus (Afl>f ~back to Ol050.

2) Shift (01050) 1710 places in A and send result to 05250.

Here we will use the command LA 01050 ~

v-part I
Before the shifting

SAR = 000 101 OLQ..~ OO.J
k

(binary)

After the shift of 1710 places (notice that k = 218 = 1710)

we have:
SAR = 000 101 010 000 000 (binary)

The one's transmission 01050a -+SAR results .in the following:

+ (one's transmission) 000 101 010000000 (binary)
000 001 000 101 000 (binary)

000 101 010 101 000 (binary)
or 0 5 2 5 0 (octal)

Therefore, we now send the answer~(AR)f to 0525°8_ as intended.

Notice that you always have to carefully figure out the v-part
of the LA-command, if you wish to send the answer to a register
different from u·. Also notice that this register must have an
address which has to be at least larger than u by 200., In fact,

it has to be larger by n· 20Da than U, n = I, 1, 2, 3, •.•••••

-20-

3) Shift (01050) 1710 places in A and leave the answer in A.

Here the command LA OlOSO 32021 will give us the desired result,

because
SAR after the shift = 011 010 000 000 000

/.u = OlOSOa = 000 001 000 101 000
011 011 000 101 000

As you see SAR = 330SQa which denotes A.

(binary)
(binary)
(binary)

Notice that !nI core-register may be used for this purpose, i.e.
for shifting in A and leaving the answer in A. (Compare this
with the remarks made on the LQ u k for leaving the answer in
Q. See below).

Generally speaking the above mentioned address r can be easily
found by subtracting at first k from the number which makes up

the v-part of the LA u k. Then address u has to be added to this

in binary such that 1+ 1 = 1. Doing so with the above examples

we have:
I) v = 000218' k = 218, v - k = 000008. u ~ 010508.

Therefore u + (v - k) = 010S08
(T logical sum, 1 + 1 = 1)

2) v = 052218, k = 218, v - k = OS 2008 , u = 01OS08•

Therefore u + (v - k): 000 001 000 101 0002
+ 000 101 010 000 0002

000 101 010 101 0002

u + (v - k) = 05250e

(flogical sum, 1 + 1 = 1)

3) v = 320218. k = 218' v - k = 320008, u = 01050a.

Therefore· u + (v - k) = 330SQs = A

(t logical sum, 1 + 1 = 1)

The LQ uk instruction works in the same way with the exception
that u is now placed into Q and shifted there. Again SAR is used
like in the LA u k. Thus you can send results to registers different
from u.

-21-

There is only one situation which requires special discussion.
This is the case that you wish to shift a number in Q and leave
it there.

You have seen that you may use any core-address in order to shift

a number in A and ieave the resuit there. IOU will do that by
giving a LA u 32000 + k command, as e.g.· LA 01050 32021. This

may give you the idea that you may do the same with a LQ u k command,
i.e. may try to shift (02000) in Q and leave the result in Q by

giving a LQ 02000 31003 (shift 3 places). This, however, is ~

true. The result will be sent to A (that it also stays in Q is

beyond any doubt). The reason is that

u'
SAR after shift

000 010 000 000 0002
+ (one's transmission)

011 001 000 000 0002

011 011 000 000 0002

results in 3300Qa in SAR which is the address of A.

It can easily be seen that the following addresses may be used

in order to leave the result in Q without sending it to any
other place:

00000 thru 01777
10000 thru 11777
20000 thru 21777

(octal)
(octal)
(octal)

No other addresses will accomplish this.

g) The "Left Transmit" Command -- - - -. - ~ -- -. ~ .-. --
As it was said earlier: the computer always pieksup (AR), if a

number has to be obtained from A. There is only one command which

takes the content of AL provided that the programmer specifies this.

It is the LT jk v.
·Sequence:

Shift (A)i k places left

If j = 1: (AR)f--+X
If j = 0: (AL)f---+ X

In either ease:
(X) --+v *

• if v = A: Clear A
(A) + D(X)~A

The u-portion of the command contains the number jk, such that

~.xxx~

j
-22-

As you see: the rightmost 7 bits of the u-portion denote' the number k,

but 2112 bit is used for determining j. All other bits are disregarded
by the machine during the execution of the LT-command. They also do
~ affect the LT itself or the sequence of steps to follow, if they
are different from zeros.

The j is, programwise, given by the leftmost octal digit of the u-portion

of the LT jk v. Therefore:

0=000 1 = 0012 2 all result 2 = 0102 3 = 0112 result in a

4 = 1002
in a 5 = 1012 "machine - j" "machine - j"

6 = 1102 of "0" 7 = 1112 of "1 t.

This means:
j is an even digi t: (AL) --? X

j is an odd digi t: (AR) --+ X

This decision "even or odd" is made by the machine such that it "examines"

the bit UAK12 (do not forget: during its execution the LT is in PeR).

h) !he "~PJ.!.t: ~o~!n;J~

All four split commands have in common that the single-extension of

a number is added to (or subtracted from)-A.

SP u k Sequence:

(u) -+X

Clear A
(A) + S(X)~A

Shift (A) k places left

The number k denoting the number of places (A) has to be shifted is,

as in the LA-and LQ-commands t given by the rightmost 7 bits of the

v-porti on of the SP u k ·couunand. The remaining 8 bi ts of this v-part

are insignificant for the execution of this and the other 3 split commands.
They, however, affect the sequence which follows with the next MP 6 (see

under "Program Address Counter"). This requires a detailed discussion.

-23-

The question is: what is left in SM, after the shifting of k places

has been made? Obviously SAR will contain all zeros in the rightmost
7 bits, but the leftmost 8 bits will be equal to those stated in the
v-part of the SP u k. Example:

Here. k = 5. Thus, after the shift we have

SAR = 000 010 l~ (binary)

SK, now = 0

It is important to understand that SAR is not cleared at the end of

the SP u k_ The computer proceeds with the normal MP 6 (see page 2).

That means: PAl< -? SAR by one 1 s transmi s s ion. If, as gl ven above

in the example, the SP-command is stored at address 052028. then PAK

contains 052038 _ Let us see what number is generated in SAR by

PAl{ ~·SAR:

SAR = 000 010 100 000 000
PAl{ = 000 101 010 000 011

final SAR = 000 111 110 000 011

(binary)
(binary)

(binary)

As MP 6 and MP 7 state: the next command is to be extracted from the

location)lihose address is held in SAIL This is now 076038 _ At the

same time PAK holds the address 052048 ·since it was advanced by "1 ".

Therefore we do the following:

At first the SP at 052028 is executed normally. The next instruction

is extracted from 076038. If this is not a jump we proceed at 052048•

As you see: only 052038 has been omitted I Naturally, if the v-part

of the SP-command contains the number k only (i.e., the leftmost a bits
of the v-portion are all zeros), SAR will be equal to "zero" after the

shift, and we will proceed in sequence. This is the normal way of
using the SP-command.

It is pointed out that you may not arrange the v-pan' su~h·that the
next instruction had to be taken from A or Q. If you do so, you get
an seC-Fault in case the address of the accumulator results from

PAK~ SAR. If you end up wi th Q. no fault will be generated. However,
the steps to follow depend upon the content of this arithmetic register!

-24-

All following three split commands use SAR in the same way as the
SP u k. The sequence following the shifting is, therefore, equal to

that discussed for the SP-command.

In general one can say for !l! split commands:

The instruction following the split command is extracted from location
PAl(+ (v - k)

(1 Boolean logical sum, 1 + 1 = 1)

where v denotes the 5 octal digits which make up the v-portion of

the split command.

SA u k

SN u k

Sequence:
(u) --+X

(A) + SeX) ~A
Shift (A) k places left

Sequence:
(u) ~X

Clear A

(A) - SeX) ~A

Shift (A) k places left

This can also be denoted as

(S(x>] 1 -+A
Shift(A) k places left

but the explanation found sometimes which says
S(X)l ~A etc.

is completely wrong. Reason:
Assume (X) = 7 76 (octal). Then:

SeX) = 0 0 7-76

[S(X~11 = 7 7 0--01
but (X) = 0-01

S(X)1 = 0 0 0-01

Notice the difference between [sex)] 1 and S(X)I.

SS u k Sequence:
(u)~X
(A)-S(X)~A

Shift (A) k places

-25-

A final evaluation of all four sequences shows:

The difference between SA and SP is:
in the SA the step "Clear Aft is omitted.

The difference between SS and SN is:

Otherwise the command itself points out (Split Positive Entry.
Split.Subtract, etc.) whether a single extension is added to or
subtracted from A.

i) !!t~ t~-£ont~lled·f.OO!!la!!.d!

These commands are merely mentioned here without any discussion
of details. There are just three things you have to keep in mind
when you perform a ttmasking" operation:

1) The logical product L(Q)(u) is a bit-by-bit product, such that

o • 0 = 0
o · 1 = 0
1 0 = 0

1 • 1 = 1

This bit-by-bit product is a pure ·logical operation and may not
be mixed up with a (true) product of two numbers.

2) If in any of the three "Q-Controlled" commands u or v is A or Q,

then watch out. The result may be different from what you expect.

Some examples are:

QT Q v

QA Q v

QS u A

QS u Q
QS Q A

QS Q Q

(A)f = seQ)
(v)f = <Q)

(A)f = (A)i + seQ)
(V)f = (~)f
(A)f = L(Q)(u)
(Q)f = (Q)l + L(Q)(u)

(A)f = seQ)

(A)f = 236 - 1

3) The logical product L(Q)(u) is developed in X. Then the single­
extension of this· number is added to At SeX) + (A)i ~A.

Therefore, (AL) is e.g. zero (36 zeros in binary) at the erad of

any QT-command. It is also zero at the end of any QS-command,

regardless of <Q), (u), and (v).

-26-

" j) _The i.on,E'o..!..1e.!! Comp1e~nt":' C..Em.~n~

The CC u v makes use of An during its execution. It does not clear

or use AL- J\L is undistvrbed bv the CC-command.

AR is used to develop the logical sum of (u) and (v). This sum

is developed such that 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = I, 1 + 1 = o.
Remember 1 + 1 = 0 is different from the result of the Boolean
logical sum. There we had 1 + 1 = 1.

The logical sum applied by the CC can also be denoted as ''hi t-by-bi t"

sum without carries".

Example:
CC u A

k) !1!.e ":tR~e~"S~~<!

The Repeat Command, RP jn w, repeats the next instruction several

times, modifying it after each execution as specified.
The u-portion of the "Repeat It command contains the number jo, where

n. is given by the 1210 rightmost bits and j by the next two bits.

The leftmost bit of the u-portion is not used for the determination
of j. It affects, however, the termination of the repeat sequence!

This will be discussed later.

~~ Tj n

leftmost bit

n denotes the number which specifies, bow many times the next
instruction is to be executed.

j denotes how the u- and v-part of the next instruction is to be
modified after each execution.

j -00 - 2 do not modify NI (NI = next instruction)
j =. 012 modify v-part of NI
j = 10

2 modify u-part of NI

j = 112 " modify u- and v-part of NI.

As you see: nothing has been said so far about'the leftmost bit
shown in the above picture!
The modification of NI is done by adding a "1".

Basically we have to distinguish between two cases:
the NI is a jump-command,
the NI is not a jump-command.

-27-

Let us begin with the second case.

1) The repeated instruction is not a "jump" -command.

An example is e.g. .RP 10100 w
TP 0500006000

(05000) ; O. Here registers 06000 thru 06077 wiii be cieared,
since j = 1, n = 10°8-

In order to understand, why this is so and what happens in the machine
that might affect programming we have to examine the sequence of the

RP-command. This is given below in flow chart format and assumes that
the Repeat command is stored at address y:

w--} v-portion
. of Fl

Address w is sent to the v-part of FI'
where Fl = 00000 or 40001 as determined
by the switch on console.

The NI is sent to X. PAK which holds Y + 1
is now free for other operations.

PAK is. cleared and the "Repeat" Sequence
initiated (the latter affects several
flip-flops)

The u-part of the ijP jn w is sent to PAK.
Then this is complemented •.
(The above example would give us:
101008 -7- PAK, PAK1 = 676n)

The NI which was sent to X in step 2 is
now placed into the Program Control Register
and ready for execution.

SAR is cleared for later use.

At this point the execution of the Repeat command is terminated.

Noti ce that we made proper use of w, and j n t and that we a 1 S 0 "told ,.

the machine to start with a Repeat sequence.

-28-

The repetition of the instruction following the RP jn w is performed
by the se',uence:

--....,. Advance PAK

Execute
Instruction

Modify UAK
and VAK accord­
ing to j

This sequence shows, how the
machine determines, whether or
not the NI has been executed n
times. As you "can see the carry
from PAKII to PAK12 tells the
machine this fact. If it occurs
the NI is llQ1 executed anymore,
but the so called '~ormal Repeat
Termination Sequence" begins at
~. (see later)

** If NI is an EJ or TJ and a jump occurs!
(See be I O\\')

Let us follow the above sequenee with the example

a RP 10003 a + 2
a+l TP 00005 06000
a+2 -- ------ ------

At first the address a+2 is sent to the v-portion of FlO Then the

complement of 100038 is sent to PAK. so that now PAK = 677748, and

TP 00005 06000 -?PCR. Starting "at 0 we want to accomplish the

following:
TP 00005 06000
TP 00005 06001
TP 00005 06002

and resume operation at a+2. Will we do that?

At first we ad\'ance PAK: 67774
+ 1

67775
(octal)

There was no carry_ Therefore we execute TP 00005 06000, and then

mOdify PCR such that now (PCR) = TP 00005 06001

Advancing PAK again we have: 67775
+ 1 (octal)

61776
No carry; therefore TP 00005 06001 is executed and PeR modified to
TP 00005 06002.

-29-

Advancing PAK the third time we get: 6m6
+ I
67n7

(octal)

. Again there was no carry_ ke execute TP 00005 06002 and modify FeR
to TP 00005 06003.

PAK is advanced again: 67777
+ I

70000
(octal)

Here the carry from PAKII to PAK12 oCDHred. At this time we already

executed the three TP-instructiens as we Intended to do. It is,

therefore, all right that we do not go on executing the TP 00005 06003

which is in PeR', but' go to 0.
Do not forget: PAK = 700008 at this time. This will be important
later, 'if special cases are discussedl

You can' see that the modificatiOft'of the TP was done in FeR, not in

the storage-location a+l. Keep in mind that the content of the storage

. register holding the instruction to be repeated is not changed.

So far we have talked about ·a carry from PAKII to PAKI2• This carry

g,enerates the "End Repeat Signal" which terminates the repeat sequence
at once. Here you will probably remember the restrictions for carries

in PAK as described under "Program Address Counter". How do these

restrictions affect the above mentioned carry which' is to terminate the

repeat sequence?

Notice: the MCS-Section switch does .!!.2.laffect ~ as long as a "Repeat

Sequen~e" is being performed. * (See under "Program Address Counter").

This~means that a carry from PAKll to PAK12 can be generated by the
machine, if and only if PAK14 = 1, regardless of~the number of core'

banks. Therefore, a Repeat Sequence can be terminated only, if the
number j was a 0,1,2, or 3. because the ~omplement of either of these
four numbers results in a leftmost bit equal to "1".

Keep in mind: j = 4,5 t 6, or 7 results in~an unterminated Repeat Sequence.
The modification of the NI, however, will be performed such
that a j = 4 equals a j = 0

j = 5 equals a j = I
j = 6 equals a j = 2
j = 7 equals a j = 3, because this is determined by

the machine by "looking" at PAKl3 and PAK12.

• To be precise: as long as the "End Repeat" flip-flop is "I".

-30-

As it was mentioned earlier: the repeated instruction is in PeR and
the modification takes place there. It means that UAK and VAK are

modified according to j. Both, UAK and VAK are counters, and the
question arises, \vhat restrictions for carries in these counters are

established. The answer is:

UAK and VAK possess exactly the same restrictions for carries as PAK,
including everything mentioned about the ~~S-Section switch. The only
difference is that during a Repeat Sequence and the MCS-Sect. switch in

Normal, there will be a carry from UAK!1 to UAKl2 and VAKIl to VAKl2
regardless of the value of UAKl4 or VAK14 , respectively, but no carry

from PAKIl to PAKl2 unless PAKl4 = 1.

Let us folIo\\' 'some examples: (assuming 3 cores)

1) a RP
a+l TP
a+2 =--

17000 a+2
12000 05000 (120oo)i = 0-0

First case: MeS-Section switch set to SINGLE:'

Here we clear registers 05000 thru 07777
and 00000 thru 03777.

(v-part of TP is in VAK: VAK = 0500Qe. Modifying this with the

restriction that no carry from VAKIl to VAK12 occurs, gives us
the above result.)

Second case: MeS-Section switch set to NORMAL:

Now we clear registers 05000 thru 13777, i.e. 70008 _ consecutive

storages. (Carry in VAK is enabled by switch •.)

As you see: If the machine possesses two or three banks of core storage,

and you use the Repeat command, then give the operator a note, how you

want the ~~S-Section switch to be set (as you write down switches for

Manual Jump and Manual Stop.) The normal case is, tbat it will be set

to NORMAL. (Otherwise computer operation can be started in Test Mode only).

We are now ready to continue. We executed the NI n times and came to the
"Normal Repeat Termination S~quence". Before we discuss it let us try to

find out, what we have to do. We want to come back to the instruction at
w, i.e. resume operation with the instruction whose address is given by w.

(This will often be a+2, as shown in examples, but it need not be that).

-31-

MP6
and
MP7

How are we doing this?

Ilnitiate Read:
r.lp~r y

Wai t -i~t': Ref. ,

Clear SAH
Clear PCR

The sequence shows: without using or
changing PAK, we set SAR to the fixed
address Fl. "Looking" at this address
in SAR the computer reads the word
from the storage into X and finally
into peR. Remember that the v-portion
of this word which now is in PCR
contains our address w.

The next Main Pulse is MPO, i.e. the
word in PCR is executed. Remember
what we tried to accomplish. We
wanted to come to address w. This can
be done only if PCR contains a jump
command. Therefore:

Let (F 1) = MJ 00000 30000. The v-part of it was erased and replaced
by w at an earlier time. This(Fl)which now reads MJ 00000 w is

transferred to PCR (by the above termination sequence) and executed.

As you see: we jump to wand continue there.

Keep in mind: In order to continue at address w after the normal

termination of a Repeat Sequence we have to have an unconditional

jump at Fl. This jump will erase PAK and replace it by w.

This situation points out what will happen if Fl does not contain a
jump. Assume we have:

and

a RP 17000 a+2
a+l TP 12000 05000
a+2 -- ----- -----

Fl TP 20000 30000

After executing the TP at a+1 70000 times we continue at FI according
to the termination sequence. Remember that PAK = 700008. Executing
(F l) means to transfer a word from 200008 to a+2. PAK has not been

changed. Since the computer continues with the normal MP 6 as shown
under "Program Address Counter", the next instruction will be extracted

from 7000°8- This is now the address where we continue our program
after finishing the repeat sequence and the execution of Fl.
You can see:

If Fl does not contain a jump-command the computer proceeds

at 70000, if j = 1 was used
at 60000, if j = 2 was used
at 50000, if j = 3 was used
at 40000, if j = 0 was used

-32-

•

At this point let us summarize what we know so far. We perform a

Repeat Sequence, where the instruction to be repeated is ~ a jump­

command. In any case this instruction is executed n'times and the

co~puter picks up the command stored at Fl provided that a j = 0,1,

2, or 3 was used. If Fl contains an uncoditional jump we will go

to wand proceed there. If FI does not contain a jump, it is executed

and the computer proceeds at one of the above mentioned drum addresses

accordi ng to j.

A j = 4,5,6, or 7 sets up an unterminated repeat sequence and will

normally not be used. There are, however, some situations where a

programmer might use them with advantage.

It is also pointed out here that the whole repeat sequence is regarded

by the co~uter as being completelY finished, after the command at F)

has been executed.· This is important for the Interrupt Feature

which will be discussed later.

Let us discuss the second case:

2) The repeated instruction is a "jump"-command: We have to divide the

jump-commands into two groups:

one group contains EJ, TJ
the second group contains all others.
If we forget about the EJ and TJ for a moment, we can see that in all
other jump-commands there is only the alternative to jump immediately
or never to jump. Take a MJ 10000 v. If the switch is set:
unconditional jump. Therefore

RP j 1l W

MJ 10000 v
would result in the following: during the very first execution of ·the
MJ the jump occurs which erases PAK and replaces it by v. This means
that the repeat sequence is terminated immediately. In general we

can say: If the instruction to be repeated is a RJ, IP, QJ, 5J, ZJ,
PS or MS the Repeat Sequence is automatically terminated •

At that time the 'riold Repeat Flip-Flop" is finally "0" again. At
the beginning of the '~ormal Termination Sequence" which starts with
a MPb, this Flip-Flop is still a "I". See: "Interrupt Feature".

-33-

These instructions behave, as if no RP precedes them. If the

instruction to be repeated is an IJ or MJ and a jump is called for,

the Repeat Sequence is terminated immediately. If no jump is called
for (IJ uv with (u)i = 0, MJ j v with j = 1, 2, 3 and switch not set)
the instruction is repeated n times and the next inStruction is taken
from Fl. i.e. the repeated instruction is treated like a "normal" command.

The tio commands EJ uv and TJ uv represent special cases.

table of 1008 numbers stored at 07000, 07001, .00.00 etc.

Assume you have a

You wish to compare

another number which is in A with this table in order to find out whether or

not it is equal to at least one of the numbers in the table. At the same

time you are interested in the address of the number in the table which is
equal to (A)o How can this be accomplished?

The answer is: (F 1) = MJ 00000 30000

a RP 20100 af2

a+l EJ 07000 v

a+2 ---

It might be easy for you to see that we compare (A) with (07000), (07001) etc.

and that we jump out of the Repeat Sequence immediately, if an equality is
found. Then we continue at address v. But how do we find the address of the
number in the table which caused the jump?

Refer to the flow chart on page 29. There you see that we go to C£>,
if a jump occurs during the repetition of an EJ or TJ. Let us discuss the
steps following at ~.

"Jump Termination Sequence" (for EJ and TJ only)

As you can see: the number which is in PAK at the
time an equality is found, is complemented and sent
to the v-portion of Q. (Before this is done Q is
cleared, so that the operation part and the u-part
of Q contain zeros.) Then PAK is cleared, and the
address v from EJ u v is placed into PAK, i.e. a
jump to v is completed.

As soon as this sequence is finished the whole Repeat
Sequence is regarded by the machine as being terminated. *
The next Main Pulse is a normal MP6. Keep this in mind
for the Interrupt Feature.

What does the complement of PAK which now is in Q represent? Let us
follow our example shown above and assume that (07003) = A.

At first (jn)' = 57677 is in PAK. Therefore:

First Time Second Time Third Time Fourth Time
Advance PAK 57700 57701 57702 57703

J,
Carry from NO NO

PAKl1 to PAK12?
NO NO

J,
Execute EJ 07000 v EJ 07001 v EJ 07002 v EJ 07003 v

!.
Jump? NO NO NO YES

As you see: PAK = 57703, when the jump occurs. The complement goes to
Q which gives us <Q) = 00 00000 20074
we executed the EJ 4 times. Let us subtract 4 "from jn: 201008

4

2OO74e

This is also our number in QI

, ~

In general you execute the EJ exactly r times (1 = r = n). If an equality
occurs during the r-th execution. then the number

jn-r.
is sent to Q.

How do we get the address in the table? In our example we have to generate
070038. We could do that by 070008 + 4 - 1. This would mean that we had

• As said earlier: the ''Hold Repeat" Flip-Flop is "0".

-35-

is given by
s = 7210 - k I 0' i f 37 < k ~ 71 ,

If k = 0, then s = o.

The above case makes use of an address u which is not the Accumulator

address. Let us, therefore, give the command SF A v with

(A)i = \OOl~ 01 ~ (binary)
~. A
-L R

Here (A)i is shifted, until A35 # A34 • As a result we obtain

As you see: (A)i is "scaled down" in this particular case. This

"scaling down" cannot happen in the case of SF u v, \\'hereD(u)~A first.

~~at is the number k in the above example?

k = 3510• We actually multiplied (A)i with 2-35 .

Therefore, s has to be = -35.

In general:

If SF A v is used and 0 E k ~36, then

s = - k.

If k turned out to be in the range

37 L... k ~ 71

then s = 72 - k as stated earlier.

We did not include the value k = 3710 so far.

Notice: If k = 3710 then (A) contains tlzero" or all 72 bits of

(A) are "ones tt.

-38-

The number k which is sent to the v-portion of v denotes how many
places (A)f would have to be shifted to the left, if one tried to
bring it back to its original value D{u). Notice that the operation

part and the u-part of (v) are not affected by the transmis~i~n

k~vI4 ••• vO.

Example:
(u) = 00 00000 00004

(v) = 13 00235 45670

What are the contents of A and v after the execution

of SF uv? Answer:

(binary)

or:(A)f = 00 00000 00000 20 00000 00000 (octal)

HOt\!' many places would you have to shift (A)f to bring it back to
the original value D(u)? Look at (A)f and count: shift 2 places
and the' "I" is in the rightmost position of AL• Shift 36 more
places and the "1" is in the rightmost position of An. Now shift
2 more places and you have 0--01002. Altogether we shifted

36 + 2 + 2 = 4010 places.

Therefore k = 4010 = 508 and (v)f = 13 00235 00050.

You know that a shift of one place to the left is equivalent to a
multiplication with 2 (provided that the most significant bit of the

number is not shifted into the sign-position or even further). How
did we multiply (u) during the applic~tion of the SF-command? We

began wi th 0---0100 (binary)

and finished with
010 0 (binary)

As you see we actually shifted 32
10

places. If you denote this
number with s, then

s = 7210 - 4010 = 3210
in our case.

In general:

Given is SF uv with u not A-address
Here D(u)--7A and is shifted as stated above.
The only possibility for k is

k = 0 ~ 37 < k ~ 71

The number (u) is tlscaled up" in A. The number s, where

-37-

is given by
s = 7210 - k I 0' i f 37 < k ~ 71 ,

If k = 0, then s = o.

The above case makes use of an address u which is not the Accumulator

address. Let us, therefore, give the command SF A v with

(A)i = ,0010", 01 ~ (binary)
~. A
-L R

Here (A)i is shifted, until A35 # A34 • As a result we obtain

As you see: (A)i is "scaled down" in this particular case. This

"scaling down" cannot happen in the case of SF u v, \\'hereD(u)~A first.

~~at is the number k in the above example?

k = 3510• We actually multiplied (A)i with 2-35 .

Therefore, s has to be = -35.

In general:

If SF A v is used and 0 E k ~36, then

s = - k.

If k turned out to be in the range

37 L... k ~ 71

then s = 72 - k as stated earlier.

We did not include the value k = 3710 so far.

Notice: If k = 3710 then (A) contains tlzero" or all 72 bits of

(A) are "ones tt.

-38-

V) The 1103A Input-Output System

a) !!!e_OE-Lin~ t!.!~tric_ TlP~vr..! t~ J.Fle!o~r2 t~rJ

The operation of this output-equipment is controlled by the command

PR - v

Generally speaking the execution of this Print-Command can be
explained in the following way:

'~ypewriter, perform ~ operation according to the two rightmost

octal digits of the content of v."

As you see: the computer "looks" at the two rightmost octal digits

of the number stored at address v. These two octal digits represent

a ~ for the typewriter. The typewriter performs one operation
which can be either a print-out of ~ character, i.e. ~ decimal

digi t .2!. ~ letter or ~ sign

or a function as e.g. "Carriage Return", "Shift up", "Space," etc.

Notice: ~ Print-Command causes the print-out of ~ character

(or the performance of a function)

In order to print out the word t11103Att how do we have to program?
Assume we store the codes for this word in register 020008 such that

(02000) = 52 52 37 70 47 30

codes for I I J I 1 I
Shift Up

We want to make sure that typing will start in "shift down" position
which gives us big numbers, but small letters. Therefore after the

''3 tt has been typed we have to "shift up".
The program is:

a PR 00000 02001
a+l LQ 02000 00006
a+2 PR 00000 31000
a+3 1J 02002 a + 1
a+4 --_......._----

with
02001 00 00000 00057 "Shift .Down" Code
02002 00 00000 00005 Index

The above example shows how you will print out some information, if
'you know this information at the time you write the program.
But how do we print out a number, say the content of a register in octal,

if this number is unknown to us, because it is a result of some
computation?

-39-

Assume we wish to print out all 1210 octal digits contained in 03000.
We do it in t~e f.(}llowing way:

a LQ 03000 00003 Shift (03000) 3 places in Q
a+l TP b-l 32000 Dummy print command --7 A
a+2 QA b-2 a+3 Set up print command in a+3
a+3 [00 00000 OOOOOJ Print one octal digit
a+4 IJ b-3 a Printed all 1210 digits?
a+5

b-3 00 00000 00013 Index
b-2 00 00000 00007 Extractor mask
b-l PH 00000 b t'Dummy" print command
b 00 00000 00037

btl 00 00000 00052 Codes for octal
b+2 00 00000 00074
b+3 00 00000 00070 digits
b+4 00 00000 00064 a thru 7 b+5 00 00000 00062
b+6 00 00000 00066
b+7 00 00000 00012

In order to-understand the method used here assume e.g. (03000) =
12 .34501 65432 and· follow the above program step by step.

At this time you will certainly like to know how the computer "tells"

the typewriter what to pri~t. The method used is also applied for other

input-output equipments and is, therefore, discussed in the following
paragraphs.

The Print-Command makes use of a special register. the so called Typewriter

Register TWR. This is a "buffer" register. because i t~ '~functions. like a

buffer between computer and typewriter. Actually the six rightmost binary
bits from (v) are sent to T1m, and the typewriter performs its operation
by sensing the combinations of "ones" and "zeros It in TWR. However t a
six-bit-code can be sent to T\VR. if -and only if a previous print-operation
has been completed by the typewriter. This machine possesses a certain
speed. It prints out approximately 10 char~cters per second. This
means that approximately 100 msec. are needed for the printing of)~
character. This isa very long time compared to the speed of the computer.

Assume you give a print-command. and 10 m sec. later you execute another
print-command. The code sent by the first PR to TWR is still there,
when the second code tries to enter TWR. Naturally this has to be avoid­
ed ... since the second transfer to TWR would .resul t in the. lGgical sum of
both codes. Therefore, TWR possesses a so called "lockout" which prevents
a transmission from X to T~~ as long as the previous operation has not

-40-

been eompleted, After the completion of it T\\'R is cleared and the
"lockout" is removed. The next code may now enter TWR. Keep in min.d:
As long as a print ope~ation is performed and a second print operation
is about to take place the computer has to wait for the termination of

the first print-out, until it :can initiate the second one. The computer
"hangs up" temporarily.

However, the execution of the Print-Command is performed within 34
micro-seconds, i.e. 34 micro-seconds after the beginning of a PR -v the

computer can go on' wi th the execution of another command. It always
will do sol Only if this command (or one of the commands following
within about 100 m sec.) is another PR -v the above mentioned situation
(temporary "hanging-up") will occur.

The rather. slow speed of the typewriter means that this output equipment

may be used for a print-out of short results or some parameters which
indicate~the flow of operation in the computer to the operator (programmer).

Never use it for printing out long tables of results etc. You waste

computer time!

You have seen that you: ,always have to send a ~ to the typewri ter.
But not all 6-bit-numbers are legal codes for this output equipment. The

code 000 0002 = 008 is e.g. ~ legal code. The question is: what will
the typewriter do if a code is sent to it which he does not "understand"?
In this case computer operation is stopped with a "Print Fault" ("A" Fault).

b) !.h~ [ij!h ..?~ee~ fUEc~ Qnj!
This output equipment punches holes into a 7-1evel paper tape •. The
format of the tape is described below:

0000 .0 00 ~one "frame" containing 7 boles

0 o 0 0 528
0 0 208
O~O 148

00 0 0 1418 (or: 4la Plus 7-th level hole) t - - - t>

7-th level 'sprocket holes

The.paper tape contains small holes which identify a "frame" on tape.
These small holes are the so called Sprocket Holes.

One frame may contain up to 7 holes as shown above. A'holerepresents a
binary "1", the absence of a hole denotes a binary "0".

-41-

The operation of the High Speed Punch Unit is controlled by the command

PU J v

Punch v5 ••••• vo on one frame.

If j is .an odd octal digit: also punch a 7-th level hole

If j is an ~ octai digit: do ~ punch a 7-th level hole.
j is determined by the binary digit in UAKI2. as explained under "Left

Transmit" command.

Before we diseuss how to punch out numbers or letters, we have to ask the
question: If a paper tape has been punched out somehow, where can we read
the information contained on it?

There exist two units which may be used: the Flexowriter and the Paper Tape
Preparation Unit. Both are off-line equipments.

The Flexowriter is exactly the same electric typewriter which is used as
on-line equipment to print out information by means of a PR -v. As off-line
equipment it is capable of reading paper tapes and printing out the informa-

, tfon pr-ovided'the paper tape has been printed· out in 'Flex-Code (as mentioned
under ·"On~Line Electric Typewriter"). This means that the programmer when
writing a Punch Routine has to make up his mind whether or not.he wants to
read the tap~ with the Flexowriter. If he intends to do so, he only needs
to apply the programs given under "On-Line Electric Typewriter", where each

Print-Command has to be replaced by a Punch-Command. j = 0, since Flexo­
writer cannot "read" a 7-th level hole.

The Paper Tape Preparation Unit is capable of punching, reproducing and
reading-paper tapes. The method used by this equipment· for the representation
of data on paper tape is the following:

0 e OOS.plus 7-th level hole
II 0 Ola

a ., 00 238
0 o 0 0 458
o 0 , 000 678
000 0 708

00 0 fI 0 52a plus ·7-th level hole .,
Each frame represents two octal digits (6 bits) of a 36-bit computer word.
Therefore 6 frames represent one 36-bit word. The 1-th level hole is used
by the unit during the reading of the tape such that nfinding" a 7-th level
hole means to print out in octal all digits between the preceeding 7-th level
hole and the one just found (the two octal digits being on the same frame
as the last 7-th level hole are also printed out).

-42-

Without going into more details as far as the operation of,the Tape

Preparation Unit is concerned let us summarize the facts which are important
for punching in this manner (so called "bioctal"):

One frame has to contain ~ octal digits. In order to initiate printing

during the off-line reading procedure include a 7-th level hole (this will
be at least on each 6-th framel)

A typical example for punching in "bi oc tal" is the following program
starting at a:

a PU 10000 a+2
a+l LQ u 00006
a+2 PU 00000 31000
a+3 IJ b a+l
a+4 LQ u 00006
a+5 PU 10000 31000

. .
b 00 00000 00004

Follow this program step by step with any number (u) and prepare a picture
of what will be punched out.

As you might guess: there does not exist any fault in connection with the

Punch-Command, because you do not send a code to the High Speed Punch Unit.
Whatever the last 6 bits of the content of v are they will be punched out
on paper tapel

The speed of the High Speed Punch Unit is 6010 frames per second, i.e.

one Punch-Command is completely executed and the frame punched out after

approximately 16.7 m sec. This is about 6 times as fast as the typewriter.

Therefore, whenever "flex coe.e"output is desired use the High Speed Punch
instead of the typewriter.
The execution of a Punch-Command is delayed, if a previous punch operati:"

has not been finished. This is accomplished in the same way as for the
PH -v; there is naturally a different "buffer" register which is used. This

.is the High Speed Punch Register HPR.

-43-

C) :Jl!Put-Ou!.p~t:' C~mman~ _~ -:Y ,_E~ J.y ,_ E.!i l!.-
The Electric On-Line Typewriter and the High Speed Punch Unit are the

only two external equipments which possess their own commands. All other
external equipments have to be handled by the "external" commands EF,

ER, and EW.

Basically there are two different operations which have to be made
by progranuning:

Selection of an external equipment and specification of what it
is to do (EF)

Program Control of the flow of information between computer and

external equipment (ER, EW)

1) The EF-v instruction (general)

A general explanation of the exec.tion of the EF -v is the following:

.(v)-+ lOB (Input-Output Register B)

Select an external equipment and cause it to perform an operation.

(Both selection and initiation of an operation are done by examining
the content of lOB)

Tilis means that the programmer specifies by the number he puts into v,

which equipment and which operation he wants to select. The content
of v has to be arranged by placing "ones" into special positions of the
register. These are the so called "Bit Assignment~". They will be
explained later during the discussion of each equipment.

2) The Information Flow from and to External Equipments.

Very often the operation of an external equipment results in a flow
of numbers from the external equipment to the computer (Input) or from
the ~omput~r':to the external equipment (Output). The numbers to be

transferred may consist of up to 36 bits.

As you have seen during the discussion of the Print and Punch-Conunands
an exchange of numbers between computer and external equipment is made
by using special registers, so called "buffer" registers. It is important
that you understand this: All external eguipments.use either the lOB-register
or the lOA-register or both. Only the Typewriter and the High Speed Punch
possess their own buffer registers, TWR and HPR.

lOB (Input-Output Register B) is a 36-bit register

lOA (Input-Output Register A) is an a-bit register
Both registers can be used for input or ou~put purposes.

-44-

As it was said for TWR and HPR already:. "buffer" registers possess a
so called "lockout". This "lockout" is discussed in the following paragraphs.

It is obvious that the speed of an external equipment, any external

equipment, is much slower than the speed of the computer. Because of that

fact the following two situations will occur often:

During ext. equip. to computer transfer; the computer tries to pick up
information from IDA or lOB, before the external equipment sent it to
these registers,

During computer to ext. equip. transfer; the computer tries to send
information to IDA or lOB, before the external equipment has picked up
the previous information from these registers.

Let us assume the first of the above two situations occurs, i.e. the
computer tries to pick up a number, say, from IDA, before the external

equipment sent it there. Naturally, we have by all means to avoid
the execution of the computers "intention". This is done automatically
by the machine. A good understanding of the way it is done is

absolutely necessary for a prograrm~er, if he wants to be a good
programmer.

The basic concept which led to building in a "lockout .circuitry" is the
following:

If the computer communicates with an external equipment, then

delay computer operation, if the computer is ahedd of the external
;

equipment; indicate a fault, if the external equipment is ahead
of the computer.

Since the "lockout" sets up also certain situations for particular operations
as e.g. parity error indication sent to IDA ~Uril}g reading of magnetic tape

etc., it is necessary to discuss its functioning now.

3) The IDA-and lOB-Lockouts, EIi jv, EW jv.

Let us look at the IDA-lockouts, since the lOB-lockouts are functioning

in exactly the same way, and study one of the above mentioned two ca~es,
namely an external eguipment~computer transfer. The other transfer,

computer --)external equipment. is similar and will, therefore, be explained

briefly only.

Externa 1 Equi pmen t -7 Computer Tran s fer:

Assume you select an external equipment such that it will send one number
after the other to IDA. The computer naturally has to pick up each number
from IDA (by an ER-instruction; explained later) and place it into its
memory_ Say, the speed of the external equipment is such that one number
is sent to IDA every 4.3 m sec. (speed of Ferranti Reader/discussed later).

-45-

i

What does this mean? It means that between the picking-up of two
consecutive numbers the oomputer has a time of 4.3 m. sec. for other
operations. It also means that the computer may not be tQO late, e.g.

try to pick up a number every IOmsec., because at that time t\\10 numbers
tried to enter IDA already.

As programmers we can think of two different sequenees which take place
in order to accomplish a delay of computer operation or to produce a fault:

one sequence occurs automaticallY according to the speed of the external
equipment and is, therefore, under ext. equip. control,

the other one takes place with ~ Ell jv instruction and is, therefore,
program controlled.

~~der ~xte:E~} ~~i.p~f2..t ..f0~t~o.!.:

Heferring to the above mentioned example you see that once you select a

data transfer to lOA to occur every 4.3 m sec. you set ~p an automatic
sequence. Each time a number is sent to lOA by the external equipment,

this equipment will also test whether or not the preceeding number has

been taken away from IDA by the computer. With other words the external
equipment finds out whether or not IDA is "empty" again. This "test" is
made in a very simple way, namely by "examining" the state of one Flip-Flop,
the so called tt:,'ait Read IDA Ff". Let us drop too many engineering details
and diseuss this "IDA Rend Lockout" (how we will call it) from our pro­
gramming point of view:

This sequence
,. lO-Faul t .

occurs hit11
each trans­
mission ext.
equip.~ lOA

You see: if the "lOA Read Lockout"
is in the "0" state, the external
equipment is satisfied. A number
is sent to lOA, and the lockout

I
J,

set to "1". I f the lockout was not
"0", i.e. it was a "1", then a
special "B"-Fault is generated,
called "IO"-Fault.

If you examine the above sequence closely, you will find that the computer,

when placi ng (iOA) into its mer.lOry, mus t set the "lOA Read Lockout" back to

"0", thus indicating'to the external equipment that this transfer has been

made. On the other hand the computer at first has to examine the state of
the lockout. It may proceed, if this lockout is a "I", because this means
that the external equipment sent a number to lOA already. Otherwise the

computer has to wait, until this will be accomplished. All this is made

by the sequence

-46-

III At this time the "second t1 number is also transferred to lOA. This means that
at the time of the IO-Fault lOA contains the logical Suml (1+1=1) between two
numbers.

!lnde! ~r~!:.a~ ~o!!.t!:o.!:
In order to pick up a number from lOA or lOB and to place it into a
storage location, we possess the command

ER jv
If j = 0: (IOAl --i- v 7 ••••• v 0

v35 •••• va all zeros

If v = A:

(IOA)--7 A7 ~····Ao

If j = 1: (IOB)-tv

If v = A:

A71 ••••• Aa all zeros

D(IOB)~A

If v = Magnetic Drum location: seC-Fault I

j is given by the leftmost octal digit of the u-part of the ER-commaDd.

It is determined exactly like in the Punch-Command, i.e. an ~ digit

corresponds to j = 0, an odd digit corresponds to j = 1.

This command, as explained earlier, has to do some more things than

just accomplish a transfer as stated above. It also has to examine the

10ckGut and set it to "zero" at the end. Therefore, we have the following
sequence for each ER 00000 v:.,

: then
- - - - - - Y proceed

to "0 tt

If the "lOA Read Lockout" is a "1"
the computer "knows" that a number
has been transferred to lOA by the
ext. eq~ip. It, therefore, picks it
up, clears IDA (in preparation for the
next transfer from ext. equip. to lOA)
and sets the lockout to "0". If the
lockout was a "0" at the moment the
execution of the ER begins, this execu­
tion is delayed, until the ext. equip.
sent a number to lOA.

You can also see that a failure to execute -the ER-command in time will
leave the lockout in its "1'1 state. The external equipment, when examining
this lockout. thus finds out that an ER has ~ been executed in time, and
therefore, the· 10-Fault is generated.

The same situation is true for lOB. Therefore, if a data transfer from
external equipment to computer via lOB is made. the external equipment as

-47-

well 11. each ER 10000 v examine the "Wai t Read lOB FF". This is handled -
in" exactly the same way and need not be explained again. But keep in mind

that both lOA and lOB possess a "Read Lockout".

Now let us briefly diseuss the transfer Computer ~ External Equipment:

The basic idea is this: At first the computer has to transfer a number
tn T{)~ In.,. T()R\ ThO 0.,+ ~:",," +\.~- \.._- .. - -! ... '- U--n fILii;;; nurnher I"rOm
............... - v.." " ""''''. 'I,;;\{"~p. ,,"ueu UQI) &'U }J~lil\ r.......,
IDA (or lOB). Again we want to make sure that the computer may not try
to a.sert a number, say, into IDA, before the ext. equip. made use of
the previous number, i.e. the computer may wait, if it is ahead of the
external equipment. On the other hand the external equipment has by all
means to find a number in IDA, when it is ready to receive it. Therefore,
if such a number is not present in lOA, i.e. if the transfer computer-710A
did not occur" in time, a faul t is to be generated. This faul t is a "B"
Fault and represents a "No Information" Fault.

These situatiGns are handled by -another Flip-Flop, the so called "Wait
Write lOA FF". There are again two sequences, one under Program Control

{by an EW jv} and "another sequence which is under External Equipment control.

They are similar to the "Read" Sequences and are, therefore, not discussed
here in details.

The data transfer from computer to IDA or lOB is made by the command

EW j v
If j = 0: v7 - •••• va ---t lOA

If j = 1: (v) ---7 lOB

If v = Magnetic Drum location: seC-Fault!

As already said: in addition to the data transfer the EW-command also
tests the "~ri te Lockout" condi tion and sets"i t at the end such that the
external equipment will be "satisfied" when testing it.

4) The EF -v instruction (details)
" Now we are ready to discuss the EF-instruction in details. This instruction
has been modified slightly during 1957 (See: External Function Modification,
PX 150, Sept. 57). The only modification which was made refers to the
following situation:

An EF -v is given at a time when lOB still contains "Read" information

deposited there by an external equipment.

Previously, such a condition resulted in the Borlean logical sum (1 + 1 = 1)
of both the "Read" information and the (v) which was supposed to select
another equipment. Therefore, both numbers were lost, no fault was detected,
and nothing could be said about the selection which took place.

-48-

At present the EF -v sequence prevents the above occurence of the above
mentioned case. If it detects that lOB still contains "Read" information,
it clears lOB, inserts (v) into lOB, and sets the "lOB Read Lockout" to "0"

thus preventing the execution of an ER 10000 v, until new t~ead" information
has been placed into lOB. We can describe this situation by the following
sequence:

ER -v

(v)---7-X

Clear lOB

Set "103 Wri te
Lockout to "1"

d) ~!.1!.e2~~nti 'y~er 1:~~ R~a~e!

As you see: the lOB l\!ri te lockout is tested.
If it is "1", the execution of the EF is
delayed, because lOB still contains "Write"
information sent to it by a previous EW
(0 r EF). I fit is" 0 " no' 5 u c h 'JV: r i t e tt
sequence occured lately. nowever, in any
case lOB is cleared and the lOB Read Lockout
set to ftO". Thus the machine keeps track of
the above mentioned case (whether it occured
or not). At the end the lOB Write Lockout is
set to "1" preventing the execution of another
EW (or EF), until this EF has been executed
completely (actually: until the ext. equip.
sent an lOB Resume signal).

This input device reads 7-level paper tape. As the tape moves through the

reader 7 photocells associated with the seven levels 'of each frame sense the
holes of the frame and send them as binary "ones" into lOA. Therefore. the
frame toooOO I
would result in (lOA) = 00 101 110

(Notice: only the rightmost 7 bits of IDA are used by t.he reader, i.e.
10A7 is always a "0"). The transmission of a frame to IDA is made, whenever

the reader senses a sprocket hole.

Bit Assianments:
x

10B33 = 1 Select Reader ("Master Bit")

IOB16 = 1 Start

10B15 = 1 Stop

-49-

The following combinations are possible:

1) Start Reader, Free Run:

This selection is made by an EF -v instruction, where (v) =
10 00002 00000 (octal). It means that the Reader is started and
will from now on send one frame after the other to IDA. The time
between successive transfers is 4.3 m sec. (safe time).

2) Stop Reader:

Here (v) = 10 00001 00000 (octal)

This selection causes a stop of a Free Run operation. Keep in mind
that one more frame is sent to IDA after the Stop instruction has been
executed. If you want to use lOA again, make sure that you clear it
and set the lockout to "on by giving one more ER 00000 v.

3) Step Reader:

If it is desired to read just one frame and then stop the reader an
EF -v may be executed with (v) = 10 00003 00000.

Notice that-the "Master Bit" 10333 has to be present in all codes which
ref~r to the Ferranti Reader. You can keep in mind the general rule:

the "Master Bit" of an equipment has to be present in (v) each time a
reference to this eguipment is made by an EF -v instruction.

The correct timing for start and stop delays may be found in the Univac
Scientific Programming ~lanua1, U 1519. (It is only pointed out here that
e.g. punching with a PU jv may not be attempted during a Free Run operation
of the Reader.)

The computer Master Clear 'selects Drum Zone A. A switching to Zone B
is made by an

EF -v with v26 = 1, VIS = 1

i.e. (v) = 00 04001 02000

Switching to Zone A is' made by an

EF -v with v26 = 1 only,

i.e. (v) = 00 04000 00000

After selection of one zone all commands referencing 40000 thru 77771
automatically refer to the registers of this zone, until the next selection
is made.

-50-

e) !!!.e_ :SuI 1': £ard_ U!i!. !! 2n.:.L.!n.! ~~!p~n.!

col umn I~

row y-J.
/~

1/

o

I

2

3

f
~ ,
7

t

1

"-

1) The 8O-Column Card

The card is divided into 12 horizontal rows and 80 vertical columns.
A rectangular hole may be punched at the intersection of-each row
and column.
Each card is divided into three fields:

Field I
Field II

D Columns I thru 36
D Columns 37 thru 72

Field III = Columns 73 thru 80

The following figure shows columns, rows, and fields of a card:

34 , 1'7
f

I

I
I

I

I
t

f ,
I

I .-.
I

t
I

. " I - .

I

I

I
I

I

I
J.

I

It, ,3
I

I
I

I

t
~ I

I

I

i' I
I
I

I

I

,
I ,
,
, ,

'D

"""
/~"- /i~

Field I Field II . Field III

2) General Description of Read-and Write-Channels
The ''Bull II Card Un! t possesses two channels, the right-hand "Read" channel
and the left-hand "Write" channel. These channels consist of an input
hopper, 5 stations, and the output stacker:

Stations

5 H!~~~lt.
I///h

~--------~--------~--------~------~~--------~

1 2 3 4

-51-

The card on the bottom of the input hopper is picked up and placed into
,station Ii
the card which is advanced from station 5 into the output stacker is
placed on top of the .tack.
The reading of a card is done in station 2 of the,'~ead" channel, whereas

the ,punch mechanism has to be set after the card arrived in station 3 of
the "Write" channel. Actual punching is performed during the advancing
of the card from station 3 to station 4.

3) Selection of Card Unit Operations, Bit Assignment

Any operation of the card unit has to be initiated by an EF -v instruction,
where (v) contains the proper bits for the operation to be performed.

The following operations are possible:

,'Select-Card Unit (Start-Cycle) ~ v3S =, I ,(.''Master".Bit~)

This bit selects the card unit as external equipment and must, therefore;
'be,present in any (v) of an'EF -v which refers to this~unit, It also
advances all cards in station 2 ,through ,5 ~ station in both channels,
:i.e; card in station 2 goes, into station 3, ••••• , card in statioD'5'~s
placed on top of stack in output stacker.

Pick'Read Card - v2 = I
This bi t causes the card uni t to pick a card from the" base o!'the' !tRead"

'cha~~~1 a~d to place it i~to ~tation 1. It also 'advances 'th~~card-in
statlon- 1 of tne ''Read" channel into station" 2.

Pick Punch Card - v3 = I
Similar to "Pick Read Card".

_Read. - Vo = 1

This bit enables the sensing brushes to "read" the cara which moves from
, station 1 to. station 2 in the "Read"ch;:lnnel: ." It 'aoes m ibi t'iaUr',a
movement of the card from station I to station 2.

Punch - VI = I
This selection enables the punch mechanism to receive information from
lOA and lOB, and prepares it to punch the card at the beginning of its

movement from station 3 to station 4.

,Free Run -. Vs = 1

This bit causes a continuous operation of the card uni~ by retai~lngall
selections made together with the Free Run bit in~, the same (v) of.. EF "v.

The Free Run has to be stopped by progranuning. an EF -v. where,(;y) 'contains
v35 = I and

Stop Free Run - v4 = I
-52-

All selection made for the Free Run operation are dropped by this bit.
HO\vever, one more cycle of operati ons as performed during the Free Run
will be executed after the "Stop" has been given.
Example: If cards ar~ read in Free Run and the "Stop" is given by an
EF -v instruction one more card will be read by the card unit. The
program has, tiherefore, to provide the proper instructions for reading
this card as described later.

Interrupt - v7 = 1

This bit causes the Interrupt Facility of the 1103-A (or 1105) to work
in connection with the card unit. An explanation of this will be given
during the discussion of the Interrupt Feature.

4) Reading of Cards
A card is read rO\¥ after row beginning wi th row 9. Thus the last row
to be read is row 12.

A hole at the intersection of any row and column is transmitted to the
computer as "1", the absence of a hole denotes a "0". Since one row
contains 80 "ones" and "zeros" in any combination it is impossible to

read the whole row at a time. The transmission of the data of one row
is, therefore, made in three ~teps:

1. Field III = 8 bi ts --+ lOA

2. Field I = 36 hi ts ~ lOB
3. Field II = 36 bi ts -+ lOB

Thus the following three instructions have to be executed for each row:

E~ 00000 u (IOA)~ u7 ••••• Uo
ER 10000 v (IOI3)~ v
ER 10000 w (IOB)-+w

To read the whole card this group of instructions has to be executed 12 times.
The transmission of data from Field III to lOA may be o~itted by manually
setting the "Enable Field III ft swi tch on the Card Uni t Control Cabin~t
to its "out" position. In this case the ER 00000 u~.!!.2! be executed,
{~ee under 'FaUlts"). For reading all three fields the above mentioned
switch has to be set to its t~ormal" position.

5) "Wri ting" on Cards

In order to punch data on a card the punch mechanism has to be set for
each row beginning with row 9. Again three instructions have to transfer
the information, which is to be punched into one row, to IDA and lOB,
respectively, This information has to be given in the sequence:

for Field III
" I

" II

-53-

Thus the following group of three instructions has to be executed !2!
each row:
. 1. ElY 00000 u

2. EW 10000 v
3. E\~ 10000 w

. u7 •••.•• uo ~ lOA

(v) --4 lOB
(w) ~ lOB

If the "Enable Field III" switch is set to'its "out" position the
EW 00000 u must not be executed (see under iFaults"). If this switch is
set to "Normal" this ElY 00000 u has to be executed.

6) Summary on Programming "Read" and "Write" Operations

a) Read Operation
1. The card to be read must be picked up from the read input hopper

by an EF -v, where (v) = 40 00000 00004. This instruction places
the card into station 1.

2. In order to advance the card from station 1 to station 2 the "Pick
Read Card" must be given again. In addition the "Read" selection
has to be made now. these operations are initiated by EF -v, where
(v) = 40 00000 00005. Now the card which is to be read is placed
into station 2, but another card is picked' from the input hopper and

.placed into station 1 of the "Read" channel. This cannot be avoided
even if it is not intended to read this second card.

3. Now the group of three instructions as described in paragraph 4) has
to be executed 12 times.

4. In order to move. the cardJust read, out of the read channel .a.n EF -v
with (v) = 40 00000 00000 has to be executed 4 times. Notice that
the card which was ,read is placed into the ou~put stacker, but.the
second card still remains in station 1.

b) Write Operation
1. The card to be punched must be picked up from the write input

hopper and placed into station 1 by an.EF -v, where (v) = 40 00000 00010.

2. Another EF -v with the same (v) has to place this card into station 2,

but will also pick one more card and place it into station 1.

3. The card in station 2 must be placed into station 3 and the punch
mechanism enabled for receiving information. This is done by an
EF -v instruction, where.(v) = 40 00000 00002.

4. Now the group of three instructions as described in paragraph 5)
has to be executed 12 times.

5. In order to move the card just punched, out of the write channel
an EF -v with (v) = 40 00000 00000 has to be executed 3 times.

Notice that the card which was placed into station 1 during step 2
still remains in this station.
Exact programming and timing for reading and punching cards is given
in the appendix.

-54-

7) Faults

a) Program Faults:
During a '~ead" Operation the following situations might occur:

1. If tte 3 ER's are ~ given 12 times for each card, i.e. each row
is not picked up from.IOA and'IOB, respectively, an ID-Fault
(B-Fault) occurs. This is due to the fact that the first row for
which no ER's are provided causes a transmission to lOB twice.
Since the first data (from Field I) have not been removed the
second transfer of data (from Field II) will find the lOB-lockout
still in its "1" state thus causing the ID-Fault.

2. If the time available between rows is exceeded, i.e. the 3 ER's'
are not given early enough, the computer is also stopped with an
IO-Fault due to the lockout condition of IDA.

3. If the Enable Field III switch is set to "out" and the ER 00000 v.
is initiated the execution of this instruction cannot be performed,
since no data have been trar.sferred to lOA. Thus the two.following
ER's for lOB cannot be' executed which again' results in an IO-Fault
as described under 1.

4. If the Enable Field III switch is set to "normal" and the ER 00000 v
instruction is omitted the second transfer of·datato lOA causes an
IO-Fault as mentioned under 2.

During a "Wri te" operation the same 4 si tuations might occur a"s during
the reading process. They:all result in a computer B-Fault·, and the
''No Information" Light on the Card Uni t Control Cabinet is illuminated.

No Card in Reader:

If card reading is supposed to occur and no card is present in the
reading station a computer B-Fault is generated and the '~o Card in
"Reader" light on the Card Uni t Control Cabinet is illuminated.

No Card in Punch:
If punching is attempted and no card will be present beneath~the punch
die during the next cycle (i.e. no card is'present in statien 3 which
could be punched during its movement from 3 to 4) a computer B-Fault
is generated and the "No Card in Punch" light on the Card Uni t Control
Cabinet is illuminated.

b) Other Faults:
The following fault conditions will cause the card ~quipment to stop
illuminating the "stop" light on the Card Unit Control Cabinet:

-55-

l~ Read output stacker full
2. Write output stacker full
3. Read input hopper empty
4. Write input hopper empty
5. "Stop" but ton de'pressed
6. Punch jam occurs
7~ '~tandby" switch to forward position

(i.e. away from operator of card unit)

Notice that these conditions stop the card unit only. but not 'the computer.

As a result computer operation continues, e.g. if cards are read and the
read input hopper is empty the card unit stops and the program hangs up,
if the first attempt is made to read (lOA). Operation can be resumed
after placing cards into the read input hopper.

Notice also that during a reading or writing operation at least one card
has to be present in the input hopper not used during the operation.

8) Manual Preparation of Card Unit for Program Controlled Operation

9)

The card unit is prepared for program controlled operation by following
the steps below:

1. Set the '~nable Field III" switch in the Control Cabinet to the
position as required by the program (see paragraphs 4) and 5».

2. Place the cards into the read and write channel face (printed side)
down, so that row 9 enters the channels first. Place the metal w~ights
on top of decks.

3. Set the switches on the card unit in the following manner:

In

MOTOR away from operator
OC left
DUPL. away from operator
PUNCH away from operator
READ away from operator
PICK READ towards operator
PICK PUNCH towards operator
STANDBY towards operator

Notice: In order to clear both channels manually before starting the
program the following operation has to be perform~d:

1. Remove all cards from input hoppers.
2. Set PICK READ and ,PICK PUNCH switches away from openator.
3. Press "Start" and f-C lear" but ton on the card uni t simultaneously,

until all cards left the channels.
4. Place cards into channels and do not forget to set PICK READ and

PICK PUNCH towards operator.

addition to the timing mentioned in the appendix keep in mind that the
theoretical time which is available to the computer between reading or writing
consecutive rows is approximately 27,8 m sec.

-56-

f) ~~ 1103A1!a~eti~ ~p!.. S.lstel!., ll05 ~pass Mode J>perati~r.~ (Uniservo }Il
The paragraphs below contain a description of the Magnetic Tape System, as
it is used with an 1103A computer equipped with Uniservo II Magnetic Tape
Handlers. However, they also represent a description of either one of
the Magnetic Tape Control Units of the 1105 computer and the programming
of Bypass Mode operations, as performed there. (1105 computers are always
equipped. with Uniservo II's). 1105 programmers may, therefore, carefully
study the explanations given below, since they will not be repeated.

1103A computers equipped with Uniservo I Magnetic Tape Handlers require
slightly different programming methods for reading tape in Fixed and
Variable Block Length Format. Informations about these methods is omitted

in this manual and may be found in the appropriate literature.

I. Fixed Block Length

A) Representation of Data on Tape

One line of magnetic tape consists of 8 bits: 6 data bits, a parity bit,
and the sprocket bit.

The sprocket bit is used during the reading process. It is always a "1"
and causes a sprocket pulse thus indicating that data (and not blank space)
is being read.

The 6 data bits represent the information stored on the tape. They may
represent two octal digits in 1103-A (or 1105) machine language or a 6 bit
character in any code, e.g. in Univac Excess Three code.

The parity bit is automatically inserted on each line during the writing
process. It makes the number of "ones" on each line odd (sprocket bit not
included) enabling the equipment which reads Unitape to check the accuracy
of the information on a line.

B) Tape Format
The tape is divided into blocks. Each block consists of 6 blockettes, one
blockette consists of 12010 lines. Therefore; 1 block = 6 blockettes = 72010
lines = 12010 computer words.

Blocks are separated by block spaces of either I.2~ or 2.4".

The blockette space may be 0", .I't or 1.2". When writing on tape a high or

low density (lines per inch) can be selected. It is 20010 and 12810 lines
per inch, respectively.

C) Registers of the ~agnetic Tape Control Unit

The foIl cv.ing registers are automatically employed, if a magnetic tape
operation is selected.

--r
-~f-

Tape Register TR

Tape Control Register TeR

Align Input Register AIR

Tape Shift Counter TSK

Line Counter LK

Word Counter \Iv'K

Blockette Counter nTK

Block Counter BK

~6 bits: 6 lir~s are assembled in TR _.---
durl.jg the r\!ading process. It also holds
a word which is to be written on tape.

14 bits: when a tape operation is selected
IOB?~ thru IOnl~ is transferred to !CR. It

...... .1':;'

selects and controls the operation to be
performed with a Uniservo.

7 bits: it holds the 6 data bits plus the
parity bit during a reading operation.

3 bits: counts the shifting of TR

3 bits: if LK = 6, it initiates a pulse
which advances tire WK by 1, and is cleared.

5 bits: if WK = 2010, BTK is advanced by 1
and \'lK is cleared.

3 bits: if BTK = 6, it initiates an "end of
block" signal and is cleared. During the "move"
operation it also sends a signal to ilK
decreasing it by 1.

12 bits: it holds.IOBll thru lOBO during a
"move" operation, i.e. the number of blocks
to be moved forward or backward.

D) Selection of ~agnetic Tape Operations

A reference to the magnetic tape system has to be made by an EF -v
instruction r.'here (v) contains a "1" in v3! ("~.1aster Bit").

1\ 0 tic e t hat the ex e {'" t ion 0 fan EF - v ins t r t! c t ion jus t pIa c e s (v) in t 0

lOB. v31 = 10331 = 1 ill then cause a transmission of 10B25 thru 10B12
to TeR which now can select the operation as specifed in (v).
The following tape operations and contents of v are possible:

Operation

Read forward (or backward)

Contents of v includes bits for

Select hlagnetic Tape
Read forward (Q! backward)
Uniservo number
Stop (see "Free nun tt)

Select Magnetic Tape
i'.Tr ite, Density
Block space, Blockette space
Uniservo number
Stop (see "Free Run")

-58-

Operation

Move forward (£!" backward)

Rewind

Change Bias

E) Discussion of Modes of Operation

1) Read Forward

Contents of v includes bits for

Select Magnetic Tape
Move forwaru (Q! backward)
Uniservo number
Number of Blocks to be moved

Select Magnetic Tape
Rewind (Q.r Rewind wi th Interlock)
Uniservo number

Select Magnetic Tape
Change Bias to Low (2£ High Qt Normal)
Notice: No other operations may be

specified in this (v).

6 data bits plus parity bit are sent to AIR. Now the parity check
is made. In any case the 6 data bits are transmitted to TR35 thru TR30'
and AIR is cleared. (TR) is then shifted left 6 places and the-next
line sent to TR35 thru TR30 etc. 6 left shifts of 6 places each will
take place altogether. After one complete word is assembled in TR it
is sent to lOB and TR is cleared. Now (lOB) can be removed into a
storage by an En 10000 v instruction.

Since it is only possible to read complete (not part of a block as e.g.
one word) blocks the programmer must provide 12010 ER's for each
block he intends to read.

2) Read backwards
This operation is performed like the "read forward". Only exception
is: (TR) is shifted right 6 places and only 5 right shifts will take place.

3) Write

Thereis only a "write forward" operation because of the physical structure
of the Uniservo. This unit possesses an Erase Head which is located
about 4" ahead of the nead/~':r i te Head. Duri ng the "wri te ff opera t i on the
Erase Head erases the old informations which might be-- on ,the tape.
Therefore, writing may be started either at the very beginning
of the tape or at a point where the previous writing operation has been
stopped.

An E\~ 10000 v instruction has to transfer (v)~10B. The computer then

transfers (lOB) ---1TR. This is shifted left 6 places and TR5 thru TRO
written on one line of tape; a parity bit and sprocket bit is also
generated for each line. After (TR) has been shifted 6 times and 6 lines
have been written on tape TR is cleared and the next transfer (10B)~ TR
may occur. The machine also inserts block and blockette spaces as
specified by the IT -v instruction tvhich initiated the "write" operation.
Notice that only complete blocks can be written on tape. Therefore, 120

10
E~':'s have to be given for each block.

-59-

4) '.love fon'J.rd or backward

When this mode of operation is selected a transfer IOB11 thru I030~BK
occurs. For each block passed a "1- is subtracted fron (OK).

If (BK) = 0 tape movement stops autcnatically.

5) Rewind

The selection of a ~Rewind~ operation for a Uniservo causes this tape
to be rewound to its very beginning and then to stop auto~atically.
As soon as the "rewind- operation was initiated Tca is cleared and the
tape control unit free fer other tape operations. After a "Rewind with
Interlock~ nc further reference to this Uniservo can be made by the
computer until the interlock is re~oved manually at the Uniservo.

6) Change Bias
Provision has been made for a change of the nreaJ~ bias which enables

the progra~~er to re-read a block after a parity error by either suppress­
ing too strong signals t·noise~) or reading weak signals also.

Notice that a ·change bias· operation will chunae the bias for all Uniscrvos.

7) Free Run Opcratior.s
A "read" or nwrite- operation nay be done either for one block or any
nunber of blocks. If only one block is to be read (written) the "stop

bits ~ay b6 included in (v) of the EF -v instruction which selects
reading (writing). If xore than onc block is to be read (written), the
operation can be done in Free Run such that no "stoph bits are included
in (v). After the proper nu~bcr of blocks h;s been read (written) at ether

EF -v must be executed where (7) now contains the Select [agnatic Ta?c

bit and t118 ·stop" bits. The Uniser\To nur::b~r need not be selected u]:.1in,

since TCR still contains the bits wLich selectGG the rC'ld (write) cpcrt:!tic2,
and the S0COI::.i tr3i1 5 for of 10325 ••• 10312 to Tca ("one's trar.s~1i s s ion")

will provic.:c ·'stop" bits in TCn. Thus Uniscrvo number anu stop bits arc

present in TC~ causing 3 stop sign~l fer the Uniscrvo in action which
will be effective if the hc~d of blo~kn signal from DTK is also present.
After the stop TCR is cleared and another tape operation may be initiated.

F) Checks made during "'Rea:!" Operation

1) Parity check.
During a "Read forwaru" or uRe:!d backward" operation a parity check is
made by the co~puter for each line on tape. If one or more parity errors
occur wi thin a block the following indication is given to the prograrru7.cr
at the end of the block:

a) "1··-» 101\) and lOA - lockout is set to -1-
b) Tape moveoent stops in interblock space.

-60-

tnerefore the content of lOA has to be examined by the programmer at the
end of each block~ e.g. by giving an ER 00000 A .nd then testing (A).
After a parity error was found the programmer may provide a change of the
bias level and re-read the block~

2) Sprocket Error Check

In addition to the parity check the computer counts the number of lines N
of a block. If N > 72010 or N <" 72010' a socal1ed Sprocket Error occurs.

In this case:
al 1 ~ IOA3' set lOA-Read Lockout to "1'­
b) Tape stops automatically

Reading and testing (lOA) at the end of each block reveals the occurrence
of this error.

3) End of Block without Error:

If neither a parity nor a sprocket error occurred t the IDA-Read Lockout
is merely set to -1- in order to enable the program to execute the
ER 00000 v at the end of each block. Thus, finding (lOA) = 0 the programmer
knows that the current block was read successfully.

4) Occurrence of Parity and Sprocket Error:
If both errors are detected for a block, IOAO and IOAj are set to MIn.
Thus, finding (IOJ·\l = 118 the programmer knows that this situation occurred.
Tape movement was stopped automatically.

G) ;,10st Frequent Progra:nIning Faults

1) An ER 10000 v instruction has to transfer (IOB)~Core before the next trans­
mission of (TR)--, lOB occurs. If (lOB) has not been removed at the time
when (TR)-7IOB is due a computer B-Fault (IO-Fault) is initLJted and the
tape movement stops at the end of the blocko

2) During the ~YriteM operation an EW 10000 v has to transfer a word to lOB
thus enabling a transmission (I08)-7T&. If the Tape Control Unit is about
to execute this transfer and no word has been sent to lOB a computer B-Fault
OJT-Fault) is initiated, the "No Information- light in the Tape Control
cabinet or on the Desk Console is illuminated, and the tape movement stops
at the end of the block.

3) "Too Many" EW 10000 v instructions will result either in a. -No Information'"
Fault or in a ·'wait" position of the computer (i.e. computation -hangs up").
If more than 12010'n EW's are programmed for writing n blocks on tape in

Free Run the first extra External Write is executed at the end of writing
the nth block and the word written on tape, after the block space was inserted
behind this block since tape movement was not stopped by an EF stop instruction.
Writing continues with the execution of the Extra E)I's until an EF stop instruc­
tion is initiated. This stop, however, cannot become effective, because a
transmission 10025 ••• 10012 -7TCR is not possible except between blocks. Tale
movement continues, and the "too many" EW's are now interpreted as "too few"
~~'s (for the (n.l)st block)

-61-

resul ting in a j,v ,io.&.",.tion Faul t.

If a -~rite on Block and Stop· operation is programmed followed by more
than 12010 EW's tape movement is stopped at the end of the block but the

l215t EW initiat~s an lOB lockout condition which is established when
the next EW or EF instruction is attempted. Then the computer -hangs up·.

4) "Too Many" or ~Too Few· ER's also set up either faults or cause the computer
to -hang up·. Which situation occurs depends upon the operation and the
amount of ER's executed. They are not discussed here, but the reader
should try to find out what happens for various cases as e.g. Read one
block and stop using 11910 ER's; read one block and stop using 11810 (or
less) ER's etc. This should not be too hard for the reader if he under­
stands the functioning of the lOB lockouts and the sequence of the EF -
instruction as explained earlier, and will be a good exercise. If questions
arise, refer to Programming Manual U 1519 and/or Manuscript Copy of Section
on Magnetic Tapes, Oct. 30, 57.

5) If two Number Selection switches for the Uniservos are set to the same
number a computer B-Fault (MT-Fault) is generated at the time the computer
is started. In addition the "Selection Error- light on the Tape Control
Cabinet is illuminated.

6) If a tape is "Rewound with Interlock~ and a reference to this tape is
attempted by an EF -v the fellowing occurs:

(v) of this EF is sent to lOB. Then 10025 thru 10812 is transferred to
TCR. The selection of the tape operation, however, cannot be initiated
because of the interlock. On the other hand the computer program continues
with the instruction i~~ediately following the above EF -v.

What happens in the future depends entirely upon further references of
any of the tape units (for 1105: tape units of the same TCU as the tape

rewound with interlock). Sooner or later the computer will hang up with
an EF, ER, or ~d, if such references are made.

H) MiscellaneQus

A "Rewind- operation initiated for a tape which is rewound already will not
cause any fault. CGmputation proceeds nermally.

A computer -Master Clear~ sets the bias to normal.

The speed ef the tape is 10010 inches per second. Notice that in Fixed Block
Mode tape movement can be stopped in an interb10ck space only. never within

a block.

-62-

J) Sample Programs (for Bit Assignments refer to the table in the appendix)

1) Rewind Uniservo 3. Then write ene block of data fram 05000, 05001, etc.
on Uniservo 3 in low density, 1.2" Blockette and 1.2" Block·Spaces.
(High Speed Printer Format)

a EF 00000 b b 02 00200 30000
a-rl EF 00000 b+l 1103A: b+l 02 00656 30000
a+2 RP 10170 .+4 1105: b+l 02 00646 30000
a+3 E'Vi 10000 05000
a+4 r\I Fl MJ 00000 30000

2) Write 1010 blocks in Free Run, density etc. as in example 1. Then ·cmove
back 1010 blocks.

a EF 00000 b 1103A: b 02 00056 30000
a+l RP 12260 a+3 1105: b 02 00046 30000
a+2 E'.y 10000 05000 bTl 02 00600 00000
a-r3 EF 00000 b+l b+2 02 00014 30012
a+4 EF 00000 b+2

3) Read forwarJ one block from Uniservo 8 into 06000, 06001, etc.

a EF 00000 b b 02 00603 00000
a+l RP 10170 a-t3 b+l 00 00000 00001
a+2 ER 10000 06000 b+2 00 00000 00010
a+3 En 00000 32000
a+4 lJ a-T-5 OK
a-t5 EJ b+l P
a-r6 EJ bT2 S
.+7 Beginning of "Parity and Sprocket Error"

ris you see: at the end of the block (lOA) is tested.. If it is = 0, a jump
to "OK" occurs, i. e. everything is fine and we continue in the normal program.

If (IOid = 1 t we know a pari ty error occurred. We, therefore, jump to the
place where this Parity Error Routine begins <at address ·P").

If (lOA) = lOS' a sprocket error existed and a jump to ~S" is made.

If (lOA) # 0, f It and, lOS' it must be = 118• In this case a parity
and sprocket error occurred. Starting at 8-r7 we, therefore, have the steps
provided for this situation.

The steps to be taken after occurrence of errors will generally be the
foll~ying: Re-read the block which caused the error by changing the bias
level to high, low, and possibly normal again. If after several tries the
data can not be read successfully, one can indicate this (possibly by a
short Print-out on f1exowriter) and stop the program.

-63-

II) Variable Block Length

A) Data Representation and Tape Format
In Variable Block Length one line on magnetic tape consists of 6 data
bits, a parity bit, and a sprocket bit, i.e. it is equal to a line
recorded in Fixed Block Length Mode.
c..: ,." """,1 •• "' •• 1' 'll- .. _ L.....: __1_ _ _ Mo __ .: _~ "'_+ .. ~ ___ ... t.. _____ __
,J..L UV~ VII..LJ .L U..L.L VV IV U..L ... nUL U;) vOU UCL Ul1;)UI.L eu ue ... wceu ... HC \, VlUpU "~L

and the magnetic tape, each block must contain an integral number of
words. Its length may, therefore, vary from one computer word up to
the capacity of core storage~
Blocks are recorded with a high density, the inter-block space is
always 1.4".

B) "Write Operation"

A "Write" operation is initiated by the execution of an EF -v instruction,
where (v) has to contain the following information:

Select Magnetic Tape bit
Variable Block Length/Continous Data Input bits
Urite Selection bits
Uniservo NUr;}ber

One E\'; 10000 v instruction has to be executed for each word to be
written on tape.

Notice that "stop" bits must !l.21 be included in the EF-instruction which
selects the '\.-rite" operation. This is due to the fact that TCR is
inspected for stop 'bits after each \':ord. A "Write" operation has,
therefore, to be stopped by programming an EF "stop" instruction. (See
under D) after the execution of the desired number of EU's.

Also notice that Jensitv and inter-block spaces need not be selected.
~ than

Hm':ever, if bits specifyin'] other density or block spacesl\high density
and 1.,1" space are contained in (v) of EF -v which selected the "Write"
operations these bits arc ignored.

C) "Read II Opera ti on

A "Read FOri';ard" (or ":-:ead backward") operation is initiated by an
EF' -v instruction, l':herc (v) has to contain the following bits:

Select ~,:agnetic Tape
Read F or~':ard (or Dack;':arrJ)
Variable Dlock·Length/Continous Data Input
Un is ervo ;\umber
Stop nits (if no Free Run desired)

One word is assembled in TR, and then (Tn) is transferred to lOB. Thus,
one ER 10000 v has to be executed for each word of a block.

Due to the nature of the Variable Block Length Mode the occurrence of
the following situations requires a special indication in lOA:

Parity error, end of block detection, mod 6 error, and end of record
detection.

-64-

1) End of Bleck Detection

The number of words contained in a block is variable and in general
unkn~/n to the programmer. However. each word has to be .picked up by
an ER 10000 v instruction. There may not be less or more ER's than
~~ds in the block. In order to enable the program to decide whether
or not a word has been assembled the following indications are sent
to lOA:

If one word has been assembled from tape. the
lOA-Read Lockout is set to "1M. Thus testing
lOA and .finding (lOA) = 0 the program knows:
there is a word in lOB. Therefore, pick it up
by ER 10000 v. In other words:

Read lOA first. If and only if (lOA) = 0, a
word is in lOB and can be picked up. If (lOA)
0, no word is in 103.

The end of block is detected after a lack of sprocket pulses for
approximately 600 p sec. If this time elapses without occurrence of
a sprocket pulse

l--)IOAl; Set IOA-Reau Lockout to ~l"'.

Assune there is only one word in a block. You test lOA first, and since
a word (the only one) has been assembled (lOA) = O. Finding this you
execute Ell 10000 v. Now you return to your test of lOA. Because of the
assucption that there is no other word (and provideu no error occurs
during reading) 600 F sec. will elapse. Then l~ IOAI- Reading and

testi~g 10 you find (lOA) = 2. This indicates to you that there is no
~;crj f but that the end of the bIock has been reached wi thout a ftRead
Error"". Therefore, do not execute un ER 10000 vI

iJ~rir:G reauing the tape pari ty or sprocket errors (here called: mod 6
errors) [light occur. This is discussed in the following paragraphs.

2) Parity Error
If during reading of a block one or more parity errors occur. an indication
of this situation is given to the progran at the end of the block.
lr, i s i !: d i cat ion is:

1-1' IOAO

This is !Jllde precisely at the time the end of block is detected, i.e.

if a pari ty error (but not a mod 6 error) occurred, one ~\i 11 fi nd

l.:ecQuse

:.--.. r-. '1- + '!"" _ ,!",,~1'
V v" ~ ... (.. ~

-~. +
,. l

(IOn) = r.
.j

of IC.·~ 1 = 1 (enJ of block)
ICI.->.O = 1 (parity error)

~c Fixe: Block Length: a pari ty error in Variable Block Irlode

czuse a~ a~to2atic stop of tape 30ve8ent.

-55-

3) Mod 6 Error (Sprocket Error)

A block has to contain an integral multiple of 6 lines. If 1 thru 5
lines are missing (a situation detected at the end of the block, naturally)

1 ~ IOA3

Thus, assuming this error occurs only, one will find

(lOA) = 128

because of

l0A3 = 1 (mod 6 error)

lOAl = 1 (end of block)

Tape movement is ~ stopped automatically.

4) Parity and Mod 6 Error
If both errors occur in a block,

(lOA) = 138

because of
IOA3 = 1

lOAl = 1
lOAO = 1

(mod 6 error)

(end of block)
(parity error)

Again tape moverJent is not stopped automatically.

5) End of Record Detection
If during a ~Read" operation, a lack of sprocket pulses is detected for
a distance of approximately 4~, an end of record signal generates

a) 1 --7 IOA2

b) Stop Tape novement automatically

6) SUfl1'1ary

The following CGntents of 10,\ are possible:

Content of IDA (c .. ctal) Condition

0 Word in lOB
2 End of good block
3 End of block with parity error

12 End of block with mod 6 error
13 End of block with parity and mod
4 End of Record

Thus there are 3 different possibilities:

(lOA) = 0 ~lord in 103

(lOA) = 2 or 3 or 128 or 138: No Word in lOB, but End of block
reached without or with error(s).

6 error.

(lOA) = 4 End of Record, Tape stopped automatically.

-66-

it'low Diagram for "'Head Forward tit< Operation
in Variable llloclc Length Mode

""

/. - 'I "J Continue
("~).-.- Was it the ~) ------~ Stop Tape .. _ ... _) N. ormal

c _~s t-f O~~{~ / ~I,--_______ Program (~ (':)_~_~~V--NO
C~)

End of
Record

I
C'
...,J
I

(2)0

If"--"-'~-
mod 6 err<- r
is to be
ignored, go

_~~. (3) ____ ... _

• If reading of n blocks is desired

I ___ YE_S--,,) Gi ve up

Tried Several YES
Times? ~Givc up

Notice: This flow diagram represents a logicll solution only.
The necessary housekeeping instructions are not shown here.

D) Stop Tape Operation

Since the only automatic stop of tape movement occurs after the detection of
an end of record, i.e. approximately 4- of blank space, * the programmer has

to provide an EF -v instruction, which stops tape movement after a -Write·
Or "'Reau· operation. Here (v) has to contain the following bits:

Select Magnetic Tape

Stop Code

After a -Write- operation the EF "Stop· instruction produces the inter-block
space.

Since the EF ··Stop· instruction also clears TR no mis-assembly of the words
contained in the next block will occur after a mod 6 error.

E) Move Forward (or Backward)

This operation is initiated by an EF -v instruction, where (v) has to contain
the following bits:

Select Magnetic Tape
Variable Block Length/Continuous Data Input
Move Forward (Q! Backward)

Uniservo Number
Number of Blocks to be ~~ved.

The number of blocks specified in (v) is sent to EK. An end of Jlock detection
is used to decrease (BK) by 1. If (BK) = 0 moving is stopped automatically.

No parity or mod 6 check is made during a -Move- operation. There is also no
end of block or end of record indication in lOA. Therefore (lOA) must not be
read during or after a fthlove N operation.

F} Rewind, Rewind with Interlock, Change Bias Operations

The Variable Block Length/Continuous Data Input bits have no significance
for these operations. They need, therefore. not be included in (v) of the
EF -v illstructions which select these operations.

G) Selection of Variable Q! Continuous Input Mode

Since the bits 10320 10019 = 112 cause an operation in either Variable Q!:

Continuous Input mode, the selection of one of these t\yO modes is discussed
in the following paragraphs.

-60-

1) A preceding computer Master Clear determines that Variable Block Lengt~
mode is chosen by the Variable/Continuous bits

2) A preceding cOI:lputer r.laster Clear followed by an EF "Change Mode- instruct),on
deternines that Continuous Data Input is chosen by the Variable/Continuous
bits.

3) If Continuous Data Input was selected another EF "Change Mode- instruction
executed later switches the computer back to Variable Block Length mode, etc.

Notice: Any EF -v instruction for 5agnetic tape which does not specify Variable/
Continuous mode, automatically causes an operation in Fixed Block Length.

H) Sa~ple Programs (Variable Block Length Format)

1) Write 20
10

words into one block on Uniservo 5. (Assume tape is rewound or

writing starts where previous writing operation had been stopped.) Words
to be taken from 15000t 15001, etc.

a EF 00000 b b 02 00066 50000
aTI RP 10024 a+3 bTl 02 00600 00000
a+2 E~ 10000 15000
a+3 EF 00000 bTl

2) Read fonvard two blocks from Uniservo 7 into 20000. 20001, etc. After
parity error re-read the block one more time without changing the bias. If
again unSDccessful. stop with hlS j = 3.

If a "Dod 6C1 error occurs stop cOi7lputation wi th a LIS j = L. In case of a

"parity and Dod 6~ error, step with a rJS j = 2.

a-I EF 00000
a r"

aT I ER

a-r-3 Err
a-r4
a-r5 r.:J
a-r6 EJ
a-r-7 EF

a-rlO EJ
aT ll LJ

a-r3
0000:)

a-r-6
10000

a-r3
00000

bT2
00000

b73
08000

b
b-r6

32000
a+3

[20000J
bTl
aT l

a-r-12
b+7

c
d

a-r12 TP h,l bTl I
a,13 1J
a-r-14 EF
a,15 ;\1

bT5
00000

c EF 00000 b-r-lO
c+l TJ b+6 a-r3
c+2 IJ bTll a-I
c+3 r.:s 30000

b
b+l
b+2
b+3
b+4
b+5
b+6
b+7

b+lO
b-rll

d
d-rl
d-r-2

-69-

02 00062
00 00000
00 OCOOO
00 00000
00 00000
00 00000
00 00000
02 00600
02 00074
00 00000

EJ b+4
r~s 20000
I.iS 10000

70000
00001
00002
00003
00012
00001
20000
00000
70001
00001

d+2

J) Continuous Data Input
This mode of operation which is a.ailable automatically, if the computer
is equipped with Variable Block Length Format, represents a special
input method. A discussion of it is omitted here. However, it is

pointed out that the data representation on tape is completely different
from Fixed or Variable Format. One line on tape consists of 4 data bits,
2 code bits, one parity, and one sprocket bit. 3 lines are called a
Data Entry 1'jord, etc.

Detailed information may be found in the Manuscript Copy of Section on

~lagnetic Tapes, Programming f,lanual, Oct. 57.

-70-

III. Tape Format Required by Off-line High Speed Printer
In order to prepare a magnetic tape which is to be read by the off-lme
High Speed Printer the tape has to be prepared in the following format: ~

no", ~ ; + ~r • , 1")0 ,.: "',... _ .: - '"
U'-U;;).A.,,} 0 ~"-V ~.&.ue;) peL ~UVU

Block Space: 1.2"
Bl ocket t e Space: 1.2"

Furthermore the High Speed Printer requires a special code for each
number, letter, etc. This is the so called "Univac Excess Three" code.
Each line of the tape results in the printing of one character, i.e.
one 36-bit computer word results in printing of 6 characters. One
Blockette gives us 120 characters. These are printed on one line of
the High Seeed Printer paper. This unit is capable of printing up to
60010 of such lines per minute.

The "Univac Excess Three" Code and the conversion from binary to excess-three
and visa versa is omitted here, since it represents a special programming
situation which can be solved easily by any person who knows how to program
the 1103A or 1105.

70 b

VI) !1!e_l.lQ..5 .ll~~tic _T2~_a.E! Q.uf.f~_S.Y~t~I}!
A) General Introduction to the 1105 Buffer System

As explained under "1103A Magnetic Tape System, 1105 Bypass Mode Operations"
the communication between computer and Uniservos is made word by word
using the buffer-register lOB. During transfers of data the computer
cannot be used for other operations except during the time which is
available between transfers of two words. This time, however, is very
short, and a significant part of calculations cannot be performed in many
kinds of applications.

Because of this fact a "Buffer System"-has been added to the computer
which will allow computer operations to occur during a transfer from
Buffer to Tape Units. These operations, Computer to Buffers and Buffers
to Uniservos, are explained in the following paragraphs. However, it is
pointed out that the representation of data' on tape, the selection of
operations of Uniservos, and the physical structure of the 1105 Magnetic
Tape System are identical to those used with the 1103A computer. The only
difference is that the 1105 computer possesses .!!!2..Magnetic Tape Control
Units which are independent from each other. But each of these is built

*' exactly as explained for the 1103A. 1105 programmers may, therefore,
carefully study chapter f) before continuing reading at B) chapterVI).

As already said: A data transfer from computer to Uniservos using the
Buffers is accomplished in two steps: at first all data (up to 12010
computer words) are placed into a buffer memory, and then the contents
of this buffer is written on a selected Uniservo. The transfer computer
to Buffer is equivalent with a core-to-core transfer and very fast. The
transfer Buffer to Uniservo is initiated by ~ command and then performed
independently from the computer. Thus, the time needed for writing up to
12010 words on tape is completely available for other computer operations.

The same situations occur, if a transfer tape~computer is made. All
these facts are discussed in the following paragraphs. But to say it
aiain: read them only if you understand the structure, processes and
operations of the Magnetic Tape System as explained under f), Input-Output
Section.

0) Physical Structure of the Buffer System
The 1105 Buffer System comprises two Buffers.
~ Buffer contains

a core memory of 12010 registers
a word counter
an Input-Output Transfer Register lOT

and communicates directly with one Magnetic Tape Control Unit (TeU).

-71-

* as far as progra~~ing is concerned.

Therefore we possess 2 Buffers, 2 Tape Control Units (one for each Buffer>,
and 2010 Uniservo5 (1010 Uniservos for each TeU).-
In order to be able to distinguish between buffers, tape control units,
and Uniservos the f@llowing numbering is applied:

Buffer #1, TeUl i Uniservo~ 1 thru 1010

Buffer #2, TCU2, Uniservos 1 thru 1010

Keep in mind: Duffer 1 can communicate with TeU 1 only, never with TeO 2.
In the same way, Buffer 2 can communicate with TeU 2 only, ~ with
TeU 1. Since the Uniservos have numbers from 1 thru 10, we have always
to specify whether we mean e.g. Uniservo 3 connected with TeU 1, or
Uniservo 3 connected with TeU 2.
The lOT-register is a 36-bit register. Each word transferred to or from
the buffer has to go via lOT.

The Buffer ~ord Counter is increased py one, if a word enters the buffer,
and decreased by one if a word leaves the buffer. Its use during machine
operations and progra~~ing situations will be explained later.

C) Information Flow via Buffers
1) Computer ~ Buffer

Assume 12010 words are to be sent to a buffer, say buffer 1. In order
to accomplish that we have to make sure that the buffer is ready to
receive data (this is made by instructions explained later). If it is
ready the following flow of data occurs:

One word has to be sent to lOB. This is done by an EW 10000 v instruction.
Since the buffer is "informed" that we send words to lOB, it picks the
word up from lOB, puts it into lOT, and finally places it into one buffer
memory register increasing its l~Jord Counter by "1". In order to fill
the buffer completely 12010 words have to be sent to it, i.e. 12010 EW's
must be executed to fill the buffer. As you see: this is the amount of
words needed to write ~ block on tape in Fixed Block Length.

Assume buffer 1 is filled completely, and all words have to be placed
into the computer. At first we have to "tell" the buffer- to send the
words to the computer (by an instruction explained later). The buffer
then sends one word at a time to lOT and from there to lOB. ihe computer
has to pick up each word from lOB by an ER 10000 v instruction.

As the above mentioned cases indicate: the computer program controls
only the transfer from computer to lOB and from IOn to computer. The
other transfer, buffer ~I08, ocrurs automatically, when~ver the buffer
"realizes" that ei ther lOB contains a word which can be picked up (103-7

Buff~r). or lOB is emptv and the next \';ord can be placed into it (Buffer~

lOB), provided the proper selection of the buffer operation has been made.

~ in the future, up to 1210 Uniservos per TeUI

-72-

2) Buffer HTape

Assume buffer 1 is filled, i.e. contains 12010 words. We intend to write
these words on tape in Fixed Block Length. In order to do .so we have to
give a command which initiates writing. This command, however, has to
specify: Tell 1, Uniservo No, Write, density, block and blockette spaces,
and stop bits, if no free run is desired. Compare this with an EF -Y

instruction for Bypass Mode. There we have to specify the same informa­
tion to write one block on tape. The only exception is the TeD No.
instead of the former "Master Bit". As you probably guess: the instruction
which initiates writing of the contents of a buffer on tape, is an EF
"Write" instruction, where (v) contains the same bit selections as explaine
under Bypass Mode, except "Master Bit". This ''Master Bit" is now replaced
by !!2 bits, one for TeU 1 and another bit for TeU 2.

If we give this command: Buffer 1 write on Uniservo ••••••• the buffer
begins the information transfer to the tape and contlnues to do so, until
the whole content of the buffer is written on tape. This means: ~
command initiates the writing of up to 12010 words on tape. This writing
process is automatically performed by the buffer and need not (and cannot)
be controlled by the computer program. Notice that the computer, there­
fore, is free for other operations and can use the whole time needed for
the writing process. The information flow is: buffer memory~Iar ... TR~
tape. Keep in mind: lOB is not used during a transfer buffer~tape.
Now we want to examine the transfer tape--tbuffer. This transfer is
initiated by an EF "Read" instruction where (v) has tospecifyTeU No.,
Read (forward or backward), Uniservo No, and stop bits, if necessary.
If e.g. TeU 2 was selected, then word after word enters buffer 2,·until
one block (up to 12010 words) has been transferred to it. lOB Is not
used duri og thi s transfer, sine e one word goes from tape -+TR~IOT-+buffer
memory. The operation is, as the buffer-7tape tr~sfer, initiated by
one command, and from now on it is performed automatically, i~e. the
computer is free for other operations.

D) Buffer States

1) "Load" and "Unload"

As you saw in the preceding paragraphs: each buffer possesses an Iar-regist

Buffer memory communicates with this register directly.
Let us examine the case that a buffer has to receive data, say from tape,

As already explained one instruction (an EF "Read" instruction) initiates
the transfer of one block to the buffer. l',·ord after word goes from TR
to lOT and has to enter the buffer memory automatically. This can be
done only if the buffer is really ready to receive data from lar.
The other case is that the buffer has to transfer words, say to the
computer. This means that one word after the other has to be sent from
buffer memory to lOT (and then to lOB).

-73-

Again this automatic sequence (buffer memory ~IOT) can take place only
if the buffer is ready to do so.

The result of these considerations is that a buffer has to be in one of

two states:

in the "load" state, if it is to receive data regardless of whether
the data comes from computer or tape

in the ~unload~ state, if it is to transfer data to computer or tape.

The question is: how is the switching from one state to the other accomplished?

Upon starting computer operations the programmer expects that the buffers
are completely empty and ready to receive data, either from tape or from
the computer. This is the case.

A computer ~aster Clear clears both buffer memories, sets both
Word Counters to "0", and sets both buffers to the "load" state.

From now on switching to "unload" and "load" depends upon the Word
Counter or the End of Block Signal. It may be said now. that buffer
operations in Fixed and Variable Block Length Bode are possible. Let us
discuss switching for both.

Fixed Block Lenath:

Here one block consists of 12010 computer words, i.e. is equal to the

c~pacity of one buffer. As long as this mode of operation is selected
switchinq of the buffer from "load" to "unload" and visa versa is fully
automatic. It means:

After computer -? buffer transfer:

If the Word Counter is = 12°10• the buffer is switched to "unload".

After tape -+ buffer transfer:
If the 'r:nd of Block" signal is generated. the buffer is switched
to "unload".

After buffer ~ computer .2lll! buffer ~tape transfers:

If the l','ord Counter is = 0, the buffer is slvitched to "load".

Variable Slock Length:
Because of
not exceed
not more.
be read in

the capacity of each buffer, a block in Variable Format may
12010 words, i.e. it may contain 1,2.3, ••••• ,120 words, but
Variable Blocks which contain more than 12010 words have to
Bypass r,~ode.

The switching of the buffer from "load" to "unload" and visa versa is
fully automatic after the following data transfers:

buffer ~ computer
tape ~ buffer
buffer) tape.

-74-

The transfer computer ~ buffer t however t does not s\d tch the buffer

to "unload" automatically. This switching of the buffer has to be
accor.1plished by an EF ttEnd Transfer" cor..mand as explained later.

The following may be pointed out here:
The EF "End Transfer" has to be given, if less than 12010 words are
sent to the buffer (from the cOQPuter). If exactly 12010 words are
sent to the buffer anJ are to be written on tape in Variable Format,
~e have to distinguish bet~een the following t~o situations:

Ei ther the E~ "i':ri te on Tape in Variable Format ,. hus beeJ gi yen before
the transfer cOf.lputer ~ buffer was nade: then an SF ''End Transfer"
has to be made (this will be the normal case, namely Free Run).

Or the SF "\':ri te on Tape in Variable Format" is gi yen after the transfer
of 12010 \'.'orus to the buffer: the11 an EF "End Transfer" need not be
given. However, if it is executed the program proceeds normally, This
means for a progra::1'Jer:

If you wish to write in Veri able For~at al~avs give an EF
"End Transfer" after the co:n:,uter --+buffer transfer.

2) Buffer "Ac ti vi ty"

As you have seen earlier: the transfers buffer -7 tape and tape ~buffer
are maue incepenJently fro~ the co~puter as soon as a command initiated
the~. The cODputer program will naturally use the time which elapses
during such a transfer in order to perform other operations. After a
certain ti~e has been used in this ~ay the cODputer ~i~ht try to refer
to a buffer .,hich just co;. . .'TIunicated (or still cOr.l.r:lunicates) with a tape
unit.

In order to handle such situations in a proper way the fol101'.'ing has
been nade:

A buffer is "active", if it
either receives data fron tape,
or transnits data to a Uniservo,
or if one of its Uniservos performs a "~lovett operation.

A buffer is "iriactive", if its nef.1ory
either is not receivi~g data fro~ tape and the
switch "load" to "ujjloaJ" has been cOi:1:)lete.J,

or is not trans~itting data to a Uniservo and the
s \..-1 t c h fro r:1 "u n loa J" to" 1 0 ad" has bee nco::: pIe t e J ,
or if nor;e c: its Uniservos is rerforr1ing a "r.:ov~" 0r>eration.

A detection of buffer activity is ~aJe by ~J jv instructions with
j = 4 or 5, as explained belo~.

-75-

E) Programming for Write Operations using Buffers
A "Write" operation using a buffer involves the following program steps
in the sequence given:

~) Fixed Block Length

1) Test for Buffer Activity

MJ 40000 v If buffer 1 is active, jump to v.
If buffer 1 is inactive, take N.I.

MJ 50000 v Same as above for buffer 2.

These instructions have to be applied, whenever the programmer
suspects that a previous buffer~tape data transfer or a Move
Tape operation might not be finished at the time he tries to
initiate another operation involving the same buffer and/or TeU.

2) EF "Write Buffer" instruction

This instructi on prepares the buffer for the computer -+ buffer
data transfer. The (v) of the EF -instruction contains bits for

"'Buffer No tt

"\\1ri te Buffer"

3) Data Transfer from Computer to Buffer

12010 words have to be sent to the buffer, i.e. we have to execute

12010 EW's. The fastest way to do it is by using a RP -command, i.e.

RP 10170 w
EW 10000 v

4) Buffer ~ Tape Transfer

In order to wri te 120 words of a buffer on tape an EF '1Vrite Tape"
.. 10. () . . f lnstructlon has to be glven, where v contalns blts or

TeO No. (corresponding to Buffer No.)
Write, Density
Uniservo No.
Spaces
Stop (if no Free Run desired)

This instruction is identical in function and coding to the EF "Write
Tape" instruction used for the 1103A computer with the exception:
the old "Master Bit" is now replaced by a TeU No.
Notice: The EF "Write Tape" instruction sets the buffer to "active". *

)7) Variable Block Length
In order to write one block on tape in Variable Format apply the
following steps:
1) as in Fixed Block Lengtt
2) as in Fixed Block Lengtt

-76-
~ provided the buffer is in the "unload" state

3) the data transfer te a buffer involves the transfer of less than
12010 words. But as in Fixed Block Length the proper number of
words can be transmitted by the sequence:

RP jn w
EW 10000 v

3a} EF ·'End Transfer-
(v) of this EF contains bits for

-Buffer No'"
"End Transfer-

This command switches the buffer to ~unload".

4) as in Fixed Block Length with the addition that bits for Variable
Fornat have to be included in (v). If writing of one block is
atteopted only, then -Stop" bits can be included in (v). (This is
different fron the 1103A and 1105 Bypass operations in Variable Block
Length c:ode.)

F) Prcgra~~ing for Read Operations using Buffers
The progran steps which have to be executed in order to read information
fron tape into the computer via a buffer are the following:

t) Fixed Block Length
1) EF "Read Tape" instruction

This information which initiates the transfer of one (or more) blocks
from tape into a buffer makes use of a (v) with the selection bits for

TeU No
Read forward (or backward)
Uniservo No
Stop (if no Free Run desired)

Thus. if TeU 1 is selected, a block goes into buffer 1; if TeU 2 is
selected, a block is sent ta buffer 2.

Notice: The EF "Read Tape- instruction sets the buffer to ~active". *
The transfer of one block from tape to buffer is now an automatic sequence.
The time necessary to perform this transfer will, in most cases, be used
by the programmer. He, therefore, has to test for buffer activity, when
he wants to continue with an operation involving the buffer which was used
for the tape ~ buffer transfer.

2) Read Error

If the buffer was found to be inactive the prograJ!l.lTler may test whether
or not an error occurred during the reading process. This is done with
an r.1J j = 6 or 7:
MJ 60000 v If an error occurred during reading into buffer I, take

N.I. If there was no error, ju~p to v.
r.1J 70000 v Equivalent to above co:t.m.and, but refers to buffer 2.

The Read Error can be a parity error, sprocket error, or end of record. If
either one occurs the tape movement is auto:'Jatically stopped in the following
block space. It does not result in a co~puter fault • ...,..,

~provided the buffer is in the "load ft state -,1-

In order to determine the nature of the error the following method has to be
applied:

Read the corresponding Buffer Word Counter (see page 79) and test it.

If (B\-IK) = 120, there was a pari ty error
If <rniK) # 120 and # O. there was a sprocket error *
If (Bi.4K) = 0, there was an end of record, i.e. no words are in the buffer.

Keep in mind: In normal node (buffer moue) IDA is not used for error indications.

3) EF nRead Buffer- instruction ~*

This co~~and initiates the transfer buffer~computero (v) of this EF -v
has to contain bits for

'i3uffer No·t

"'Read Buffer'"

4) (IOB)~ Computer Transfer

Each word sent to IOil by the buffer has to be pickeu up by an ER 10000 v.

If all 12010 words are to be read, the fastest way of doing it is
RP 10170 w
Ea 10000 v

However, keep in mind that you need not pick up all words! If e.g. reading of
the first \':ord is intended only, then [one E!1 is sufficient. But the second word
is sent to 103 froD the buffer! T~ere arc now t~o possibilities: either the first
word is only operatcJ on and, after sese ti~Ct the reading of the buffer is continued.
In this case, the progr'-l:;~er has to gi ve the rC:1ai I'd ng 11910 ER' s.

The second possibility is that after reading the first word another EF-instruction
is given in order to select a different input/output equipr.:ent. In this case (lOB) =
second werd is erased, i.e. it is lost. It Day be said that an EF-instruction may
n(;t Select a rcaJ c~~raticn witt the second buffer or a:1y other eguipiJent.

4a} In any case: if only part of the content of a buffer is read into the computer
and the recaining words are not wanted the switch from ·unload R to -load- and a
cle~ing of the buffer De~ory is acco~plished by an

EF "Clear nuffer~ instruction:

(v) contains bits for
"'Buffer No·'

"'Clear Buffer ft

The instruction accooplishes:
Set Buffer Wcrd Counter to ·0"
Clear Buffer Ue~ory
Switch Buffer from "unload" to -load-

* ~otice: Ii oore than 72010 lines per block are detected, each additional line
advances the Buffer Word Counter by one, until it reads 12710 = 1778

** See remarks on bottoo page D4

-78-

~) Variable Block Length
1) as in Fixed Block Length; only include bits for Variable Block Length.
2) Test for Read Error like in Fixed Mode. In Variable Mode there are,

however, three types of Read Errors:
parity error, sprocket ("mod 6") error, end of record.

The End of Record is detected by the machine like in Bypass Mode, i.e.
after approximately 4" of blank space have been passed following the
end of the last block. This causes the tape to stop automatically.
It can be found by reading the Buffer Word Counter and testing it. If
it is = 0, there was an end of record .
. If the BWK '# 0, the nature of the read error (parity or sprocket error)
can be determined only by re-reading the block in bypass mode. The
tape movement, ho\vever, stopped automatically in the following block space.

Notice: IDA is not used for error indications.

2a) EF "Read Word Counter"
Since the length of the block read into the buffer from the tape is
unknown to the programmer, but the exact number of ER's has to be given
for the transfer buffer -+ computer, an instructi on is provided which
picks up the content of a Buffer Word Counter. This is the EF "Read
Word Counter". (v) of this instruction has to contain:

''Buffer No"
"Read Word Counter" bits

The sequence of steps set up by this command is:
Content of Buffer Word Counter -+IOBu
Therefore, an EH 10000 v oan take (lOB) ar.d place it into the computer.

It is obvious that this number represents the exact number of En's which
have to be executed. It is actually our "n" for a RP-command, and we
have only to put it into this place. This, by the way, is the reason
why the Buffer Word Counter is sent·to the u-part of lOB.

3) as in Fixed Block Length

4) as in Fixed Block Length. The "n" of the RP-command has been found out
by the method explained under 2a) EF "Read Word Counter". If all words
which entered the buffer from tape are placed into the computer the
switch from "unload" to "load" is made automatically.

4a) If only part of the content of a buffer is read into computer memory,
the swi tch from Nunl oad" to "load 11 has to be made by the EF tIC lear Buffer"
instruction as explained for Fixed Block Length.

-79-

G) Stop after Read or Write Ope.ations
If the tape is to be written or read a block at a timet the stop bits may
be included in the EF '1frite Tape" or FF ''Head Tape" instruction (Fixed
or Variable Format).

\~en reading or writing in free run mode, tape movement must be stopped
by an EF "Stop Tape" instruction. (v) of this command has to contain

"TeU No"
"Stop bits"

When bas this command to be executed?

In order to terminate a "Read" operation,the EF "Stop Tape" must be
executed either before or after the instructions which complete the transfer
of the last block from buffer to computer.

In order to ierminate a '~rite" operation, the EF "Stop Tape" must be
executed after the last block has been written on tape, i.e. after th~
last transfer buffer ~ tape.

A rule which covers both, reading and writing, is:
In order to terminate a Free Run operation, execute the EF "Stop Tape"
instruction not earlier than at the time, when the last transfer tape~buffer
or buffer =+tape is finished.

It is not possible in Buffer Mode to execute an EF "Stop Tape" instruction
too late. This is explained under "Automatic Tape Controller".

H} Selection of "Bypass Buffer Mode"

Tape operations can be performed without using a buffer, i.e. it is possible
to "bypass" or disregard either of the buffers. If this is intended, an
EF "Bypass Buffer" instruction has to be executed, where (v) contains bits

for "Buffer No"

"Bypass Buffer"

Assume that this instruction is given in order to bypass Buffer 1. As a
result all following tape operations referring to TCU 1 will be made in
exactly the same way as described under Vf) "The ll03A Magnetic Tape System,
1105 Bypass Mode Operations~. This means that the flow of information is

computer --+ lOB -7 TR (of n:;u 1) ~ tape
or tape ~ TR (of TeD I) ~ lOB -oJ computer.

However, tape operations referring to TeU 2 still employ buffer 2. It is
naturally possible to bypass both buffers simultaneQusly. But keep in
mind that in this case reading and/or writing cannot occur simultaneously,
as it is possible in normal (buffer) mode.

~n order to return to the normal mode, (i.e. to use buffer 1 again in
above example), one of the following instructions has to be executed:

-80-

EF "Clear Buffer"
EF "End Transfer"
EF "Read Word Counter"
EF ttl':ri te Buffer"
SF "Read Buffer"

1':h i c h 0 f the s e ins t r u c t ion sis use d J e pen J sup 0 nth e cur r e n t s tat e 0 f
the buffer, i.e. upon the progran~ing situation given by the problem
to be solved.
The "Bypass" r,:ode has to be selected:

in order to read or write tlocks in Variable Format consisting
of more than ll.jr'lO words;
in order to distinguish between parity and sprocket error in
Variable Format.

It may he selected for any other tape operation.

J) Automatic Tape Controller ATC

Let us assume we perform a Free Run operation, say ~riting, in Bypass ~ode.
Block after block is written onbpe. The tape does not stop, until we
give an EF "Stop Tape" instruction. This forces the prograrmner to carefully
calculate the timing for his problem. Between the last word of one block
and the first word of the next block the programmer has a certain time
which he may not exceed. There is also a limit for the time which may pass,
until an EF "Stop Tape" instruction has to be given after writing the last
,"iord on tape.

During Free Run operation which employs a Buffer the situation is completely
different.

Reading in Free Run via a buffer:
If one block of data entered the buffer and is not picked up by the
computer tape movement is stopped te~porarily •. This stop occurs
after a nominal 3 m sec. time lapse following the detection of the
end of the block, if during this time an SF "Read Buffer" has nvl ..
been given.

Tape movement is automatically started again, when the EF "Read
Buffer" instruction is executed.

If the block transferred from tape to buffer was the last block
and the SF "Stop Tape" instruction has not been executetl within
3 m eec. following the end of tlock detection the automatic stop
i sal s 0 i nit i ate d . n n ~F "s top Ta :~. e" ins t r u c t ion ex e cut e d 1 ate r
will effect a permanent hal t of ta;,e Dove:::e:lt.

~riting in Free Eun via a buffer:

If one block of data has been i\-ritten on tape and the tr3nsrer of
the next block i:-o:-:1 co;:--;puter to bu:'':er is cot ini tiatcJ \:i tilin a

nominal 3 m sec. time lapse following writing of the last word
on tape, an automatic stop of tape movement is made. Tape movement
is ~tarted automatically, when the transfer computer-+buffer is
initiated by an EF "Write Buffer" instruction.

If the block written on tape was the last block and the automatic
stop occurred an EF "Stop Tape" will cause a permanent halt of
tape movement.

The following example will illustrate the situation completely.
Assume you write in Free Run via buffer 1. You send the first block to
the buffer, and writing on tape is started. This takes 36 m sec., if a
,density of 200 lines per inch is selected and 12010 words are written.
The program naturally uses this time for other operations. Assume
further, ~hat 50 m sec. elapse before you initiate the next transfer
computer~buffer. What happened? After 36 m sec. tha last word of
the first block was wri tten on 'tape. Now the block space is inserted.
If 1.2" are selected, it takes 12 m sec. to pass this space. However,

after 36 + 3 = 39 m sec. the Tape Control realizes that the next block
is not being transferred from computer to buffer 1. It, therefore,
initiates the automatic stop of the tape. Just imagine for a moment
this would not be so. In this case the tape would require the first
word of the second block not later than 48 m sec. after the start of
the writing of the first block. Since it was assumed that 50 m sec.
pass this example would cause troubles for the programmer. Therefore,
keep in mind: you can never be too late during Free Run operations.
"Too early" is naturally a different situation. Properly programmed
MJ's (j = 4 or 5) prevent a too early reference to a buffer.

K) Some Timing *
a) Transfer Buffer ~ Tape

The tape moves with a speed of 100" per sec. Therefore, the transfer
of 12010 words with 200 lines per inch density requires 36 m sec.

b) Spaces

To pass a block space of 1.2" or 2.4" a time of 12 m sec. or 24 m sec.,
respectively, is required. Similar for Blockette Spaces.

c) Transfer Buffer ~Computer
Buffer~Computer: If repeated ER's are used one word is transferred

every 16 ~ sec. 12010 words are, therefore, placed
into the computer withIn approximately 1.9 m sec.

Computer~ Buffer: If repeated EW's are used one word is transferred
every 20 JA sec., 12010 words within approx. 2.4 m sec.

For more timing refer to t'l105 Prog. r~lanualt U 1513".
(& See "Pre 1 imi nary Prograrnmi ng rllanual for the 1105 Computer" t

US 108, page 20 and 21

-62-

L) Faults

All faults occurring during Buffer operations are "Bft Faults. The
following classes of faults are possible:
"Select Fault":
This fault occurs in either one of the following two cases:

a) Buffer is in the "load" state and inactive,
but an EF "Read Buffer" is executed.

b) Buffer is in the "unload" state and inactive,
but an EF "Write Buffer" is executed.

"IO-Fault":
This fault occurs, if a reading of tape is attempted, but the buffer
is already filled.

Examples: Reading of a block of more than 12010 words.
EF "Read Tape" and Buffer is in "unload" state.

The above fault is generated at the time when the second word from
tape tries to enter lOT, while the first word is still there.
An "Address Fault" (see below) will automatically select an "Io-Fault".

nAddress-Fault":
As a checking device a buffer counts the words as they enter the buffer.
If a word has not been stored in its proper buffer memory location the
"Address Fault" is generated.

'tTransfer Faul ttl:
Each "B-Fault" generated during computer and/or buffer operations is
sent to the Tape System where it generates a "Transfer Fault" which
will stop tape movement in the next block space.

M) Sample Programs (for Bit Assignments see Appendix)
1) Write one block of numbers stored at 20000, 20001, ••• on Uniservo 5,

TCO 1 using high density, 1.2" Blockette Space, 1.2" Block Space,
Fixed Block Length. At first test for Buffer Activity. If Buffer 1
is active wait until it is available. (It is assumed that the operation
of the buffer is a "Write on Tape" operation. If buffer is inactive you
know that it must be in the "load" state.)

a MJ 40000 a Wait until buffer I is inactive.
a+l EF 00000 b Select "Write into Buffer 1"
a+2 RP 10170 a+4} Send 12010 words
a+3 EW 10000 20000 to Buffer I
a+4 EF 00000 b+l Write on tape
a+5 NI

b 00
b+l 01

10000 00400
00646 50000

Constant
Constant

-63-

Notice how we accomplish the waiting for a previous buffer ~tape
operation. (a) is an MJ 40000 a. This means: as long as Buffer 1
is active, we jump to at i.e., to the same command. In the moment
the buffer is inactive, no such jump will occur, but we now continue
in sequence and perform the buffer and tape operations.

2) Read forward one block from Uniservo 3, TeU 2, into 10000, 10001, ••.•
Fixed Block Length. Test for Buffer Activity first and wait, if not
available. (It is assumed that a previous operation leaves the buffer
in the "load" state.)

a MJ 50000 a \Vait, until Buffer 2 is inactive
a+I EF 00000 b Read Tape into Buffer 2
at 2}available for computation;

: at least about 46 m sec.
a+n~l may be used

a+n MJ 50000 a+n Wait, until Buffer 2 is inactive
a+n+I MJ 70000 a+n+3 Test for Read Error
a+n+2 RJ u v Return Jump to Error Routine
a+n+3 EF 00000 bTl Select "Read from Buffer 2"
a+n+4 RP 10170 a+n+6}
a+n+5 ER 10000 10000 Buffer 2 -+ Computer

b 02 00602 30000 Constant
b+l 00 20000 00200 Constant

3) Write one block of data consisting of 1910 words on Uniservo 1, TeU 2,
in Variable Block Length. Assume Buffer 2 is ready for the operation.

a EF 00000 b Select "Write into Buffer 2"
a+l RP 10023 a+3 \. Send words to Buffer 2·
a+2 EW 10000 05000} from 05000, 05001, •••...
a+3 EF 00000 b+l Switch Buffer 2 to "unload"
a+4 EF 00000 b+2 Write on Tape

b 00 20000 00400 Constant
bTl 00 20000 01000 "
b+2 02 00666 10000 fI

Notice the EF "End Transfer" at a+3 which accomplishes a switching
of Buffer 2 from "load" to '·unload".

Remarks: During a "Read Backwards" operation the word which was recorded
as last ~ord is read as first word into the buffer, the word which was
recorded as first word (word ~l) is read as last word. However, when
reading this block from buffer ~ computer, word #1 is picked up first etc.
This means that a "Read Backward" operation essentiall.L transfers all
words of a block to the comDuter in exactly the same order as they were
written on tape, if a buffe~is u·seLi!

-B4-

VII) The_l..!03A ~n~ l.!O~ I.!!..terr~!.. ~~t!!.r.~
A) General Explanation

The Program Interrupt Feature of the 1103A/Il05 permits an external
equipment to interrupt the computer program automatically, when the
external equipment is ready to communicate with the computer. Proper
progra~ing can interrupt the computer program upon occurrence of
the following situations:

Data sent to lOB or IDA by an ext. equip. have to be picked up by
the computer.
Data have to be sent to lOB or lOA by the computer, because the
external equipment is ready to receive them.

Either (or both) of the Buffers of the 1105 is ready to communicate
with the computer.
There is also the possibility to interrupt the computer by manually
pushing two buttons on the computer console.

Both the manual and the program controlled interruption generat~ a
so-called "Interrupt Signal" which results in a modification of the
normal sequence of steps the computer follows. This modification
affects Main Pulse 6 and is explained in the following paragraph.

B) Modification of the Computer Program by an Interrupt Signal and
Programming Consequences
1) When does the Interrupt become effective?

As already said: the Interrupt is nothing else but a signal (pulse)
Assume data are read into the computer, say from cards. After.!!.Wt
~ is placed into lOB and lOA the Card Unit emits a signal thus
informing the computer that data are available in lOB and lOA.
This signal is the Interrupt Signal. t~at is the situation now?
The computer is operating, i.e. it is either picking up a command
from storage (f.1P 6 and 7) or executing a command (MP 0 thru 5).
The Interrupt Signal arrives at any of these Main Pulses, and the
question is: will it be effective at once, or will it have to wait?

The answer to this question is:
The Interrupt Signal nas to wait, until the
computer executed a command completely or
until a llepeat Sequence is terminated completely. *

To make this absolutely clear: we have to distinguish between
two situations:

Either the interruption is attempted at a time a Repeat Sequence
is being executed. In this case the Interrupt Signal becomes
effective, after the command at address F} has been completely

* To be precise: until the '1Iold Repeat FF is 0" (refer to "Repeat Command")

-C5-

executed or a jump has been performed during repetition of an EJ or TJ.
Or the interruption is attempted and no Repeat Sequence is being
executed. In this case the Interrupt Signal becomes effective after
the execution of the command which the computer is operating on.
The following program might illustrate this:

a TP h h.4. 1
OJ AI I .A

a+1 RA a b
a+2 RP 10100 a+4
a+3 TP b+2 c
a+4 NI

First case: The Interrupt Signal arrives during the execution of
the TP at a. In this case it has to wait, until this
command is executed completely. Then the signal is
effective and results in a modification of steps as
explained later.

Second case: The Interrupt Signal arrives during the execution of
the Repeat Sequence, say after the TP at a+3 has been
executed 5 times. r\ow the interruption is delayed not
only until the TP at a+3 is executed 1000 times, but
also, until the command at Fl is executed completely.
(See under "Repeat Command" for details regarding the
execution of an RP jn w)

2) Modification of MP 6 by the Interrupt Signal

Now we are ready for the discussion of the modifications performed
by the Interrupt Signal. At the moment this signal becomes effective
the computer is actually ready to continue wi th f,IP 6, i. e. the computer
tries to pick up the next co~~and from a storage location given by
PAK. (Refer to "Program Address Counter", page 2 of this manual. There
is the discussion of the computer operations performed during r.ip 6
and flIP 7). The Interrupt modifies this MP 6 in the following way:

--T---~
Essentially SAn is set to address F3"= 00002,
and the word stored at this location is
placed into X.

~IP 6, as
modified
by the
Interrupt

Set S).l~

to F3

I nit i a "t e :1 e ad:
Clear X

I:ai t 1n£. f:ef. 1 _______ '--' ______ -1

This is ~ade ldthout chanoing or using
the adJrcss currently held in PAK.

Example: Assume the InterruDt is generated Juring the execution of
(06235) = TP A Q. At this tj;:-:(? 1'/J: = 06236. At the end of the
execution of the TP, the Interrupt bcco~es effective. This ~eans that
the next cO::l.'1and to be executed is e~:tr3ctec frc:-:1 0000:2. PAI{ is left
unchanged and reads 06230 at the beginnicg of the execution of (00002).

-£.6-

3) Program~ing Consequences
The above example shows th;]t the steps the CO::iputer h;]s to follow
after picking up (00002) entirely depend upon the cormnand stored
there. There are two possibilities:
~) (00002) is not a jump co~mand

In this case (00002) is executed and the computer p~oceeds ~ith
extracting the next CO::'L":1and fro::1 06230, since PAl{ has not been
changed.

f) (00002) is a ju:np cO:":l."Jand

!-lere Pi~r~ is erased by the new adJress to which ti~; jUr:1P, and the
computer proceeds there. On the other hand it is obvious that we
want to cooe back to our ~ain program sooner or later, and especially
w the point, where v;e left it (06236 in example). l':e also want to
accomplish by the interruption a communication with external equip.,
i.e. starting at 00002 there has to be a small subroutine ~hich has
to I rform the comr:mnication. Bow can we do this? We have to save
the address of our main program held in PAK, and must execute a
jump, since the above mentioned subroutine hardly consists of
(00002) only.

This can be done by one co~mandt the RJ uv. Therefore:
If the Interrupt Feature is to be used, then

(00002) = ~J u v,

where v denotes the entrance of the subroutine, u denotes its exit.

Here you see the importance of a complete understanding of the RJ- co;rt;'TIan::L

Its execution is made in the way:

P r\K --4- U. r
~

v ~PAK
Following our example and assuming the subroutine to be executed after
an Interrupt starts at 05000 and end at 05500, we have to write:

(00002) = rrJ 05JOO 05000
\d th (05.500) = r.:J 00000 30000.

In thi s case 06236 --7 05S00v so that now

(05500) = ~J 00000 06236.

Ther. 05000 ~ l-'.i.K, i. e. a j U:lp to 05000 is made. After executi on of

the \':hole subroutine i';C ('.0::18 to 05500, \dlich brings us back to our
8a1n proGru~, nil~cly 06230.

So fur \':e have e;~plaincd hm·; to S'.l\'e tIll:; address of the main progra:n
t 0 L' hie h \.: r: i n t;; n ,J tor e t t1 r !l. 2 r d h 0\',' t 0 j u::: p tot h e sub r 0 uti new h i c h
has to be excc:..:tcd. ECi,C'\'Cr- I you can see th()t this subroutine probably
uses A anJ 0 uuri~a tile exec~tion of its cO~8ands. On the other hand
valuable nu~bers ~icllt ~e left in A and 0 at the moment the main program

r -
-0/-

is left. We certainly cannot afford to lose these numbers. Moreover,
before returning to the main program we have to restore A and Q such
that they contain the same numbers as at the mement we left the main
program. The result of these considerations is the following:

(00002) = RJ u v

(v) = TP A ws (Aa)I)WS

(V+I) = LT 00000 ws+l (AL)-+ws+l
(v+2) = TP Q ws+2 (Q)--+ws+2

} Program which actually
performs the communication
with ext. equip.

I

(u-3) = TP ws+2 Q Restore Q
{u-2l' = SP ws+1 00044 Restore ~
(u-l) = SA ws 00000 Restore AIl
(u) = MJ 00000 30000 Exit

The above program is a typical example for a subroutine which has to
be executed after the generation of an Interrupt Signal. It stores
(A)i and (Q)i, performs its specific job, and restores (A) and (Q).

C) The Program Controlled Interrupt

1) The ''Bull'' Card Unit

The Interrupt Feature can be selected in connection with the on-line

card unit. One bit (v7 = 1) included in (v) of the EF-v which selects
a card unit operation enables this equipment to emit the Interrupt Signal.

Reading of Cards:

When cards are read the Interrupt Signal is emitted at the time lOB
and IDA contain data from one row, i.e. one row is ready to be picked
up froi!! lOB and IDA. This means that the subroutine to which the
program jumps has to read lOB and IDA as explained under "Bull~ Card Uni t. "

Punching of Cards:
tllien cards are punched the Interrupt Signal is emitted at the time the
card unit requires new data for one row in lOB and IDA, i.e. the
subroutine has to send data for one row to IDA and lOB as explained
earlier.

In either case it is important to understand that the interruption is
made for each row of a card.

The usefulness of the Interrupt Feature in conjunction with the card
unit is evident. It eliminates the task for the programmer to carefully
calculate the time he hses for other computer operations between
successive rows. The Interrupt Sianal automatically "informs" the
computer that either (lOB) and (IDA) have to be picked up (reading)

-C8-

or data have to be sent to lOA and lOB (punching). ThiS'· means that
now these operations cannot be made too late. On the other hand 1t
also means that the programmer need not initiate these operations
too early and, therefore, "hang up" temporarily thus wasting valuable
computer time.

It is, however , pointed out that the main program may not contain any
Repeat Sequences which need more time for their executions than 1.5 • sec.

(if Interrupt for punching is used) or 10 m sec. (if Interrupt for
reading is used). These are the so called "receptive times" for the
card unit, i.e. time which may elapse between the beginning of ·an
input or output cycle and the execution of the first EW or ER.

2) The 1105 Buffer System
The Interrupt can be used in connection with the 1105 Buffer System.
It is possible to select the Interrupt for either buffer or both buffers.
This selection is made by including iit v24 = 1 into (v) of one of the
following instructions: EF "Read Tape", EF "Write Tape". EF "Move Tape".

Reading from Tape via a Buffer:

The Interrupt Signal is generated at the time a whole block has been
transferred from tape to buffer. Actually the interruption is made by
the "end of block" signal, and at the same time the buffer is switched
from "load" to "unload". The subroutine .. to which you jump because of
the RJ uv at 00002 can, therefore, perform the transfer buffer ~computer.

Writing on Tape via a Buffer:
In this case the Interrupt Signal is generated, after the content of the
buffer has been written on tape and the buffer has been switched to the
"load" state. The subroutine to which you Jump because of the Interrupt
can, therefore, perform the transfer bf the next block from computer to
buffer.

In both cases you see that the Interrupt only means: A previous tape +-+
buffer operation is completed. Therefore, the buffer is ready to commun·
icate with the computer. However, the interruption does ~ mean that
the computer ~ to perform a buffer~computer transfer, since even in
Free Run the Automatic Tape Controller would stip the tape, if the next
reading or writing is not initiated in time. With other words, the
Interrupt for the Buffer System mere~l prevents the computer from waiting
for Buffer Inactivity. Thus it gives the programmer the possibility to
make the most efficient use of the time needed for tape~buffer transfers.

As long as the Interrupt is chosen for use with ~ buffer at a time, no
MJ with j = 4 or 5 need to be executed after the jump to the subroutin~.
because such a jump means that the buffer is inactive. However, if the
Interrupt is selected for both buffers simultaneously, these MJ's have

-89-

to be executed in order to detect which buffer emitted the Interrupt Signal.
After the main program is interrupted once. all subsequent Interrupt Signals
initiated within 0.5 m sec are ignored.

Moving the Tape:

The Interrupt may also be selected for a "Move n blocks" operation. In
this case the main program is interrupted after the tape has been moved
the specified number of blocks. (This does not apply for Bypass Mode
Move ope.ationsl)

3) Other Equipments

The Interrupt may also be chosen for other equipments as e.g. the'Ferranti
Tape Reader and the On-Line High Speed Printer. A discussion of these
operations is omitted. The existence of these possibilities is merely
mentioned here.

-90-

VIII) The 1I03A/l.!.O~ FJ.o~tin~~i~t_Sls..!:e~

A) Representation of Numbers

A decimal number N is represented in the form
'\' _, ")c ,'-.!. m-,--

\\'Jle r ~ ~ , ;n < 1.

~ith this restriction for m, there exists one and only one value

for c.
J:1 is called fti:1antissa",

c is called "characteristic".

Since botl}t 83ntissa and characteristic, are to be plnced into one
J()-t:it r2Qister, the follm':ing fori:1at has been chosen:

I

I
27 bits

'\
:-:-:untissa

tit Cl1ar:1cteristic

0.) ~;cpr'~'Se)]tatior: of positive :;u~lbers c:> 0)

T;; e ~ a;; tis s a i s p 1 ace d i I: tot 11 e riC' h t::l0 s t 2710 bit s 0 f the r e IJ j s t e r
s u (' 1: t l' 3 tit S 'j;:; c i ,.." 31 poi:: t j S 3 S S U~:t edt 0 be bet \ '.' e e n bit i 27 and i 20 '

i.e. all 27 bits are fractional bits with the leftmost bit (i26)

,\s sr~cvn i~l the above fifJure the G bi ts reserved for the character­

istic actually represent the so-called "biased'! characteristic C ,

c = c + 128'r\.
lv

lit: r':JSOII for this r:1cthoc1 is th~ follm';ir;g:

::lC L bi ts resert;ed for the characteristic car. lie bet\' .. een 00 000 coo
III (tdr:ary). It is,]~oLever, obvious tflt:lt ;:;: positive

lj 0 S ~ C S san e cat i vee 11 a rae t c r j s tic t a s e. (1.)4./ = ! S • i) ... - 1
.....J ,J ... ,

;~:';C;(jtiv:; e~:PG;~crjts for a positive nU:7lbcr. If \':C ;}s~ur~e t!li::lt 00 COO coo
~'::,rTCSC'~-;ts () c = 0, \','e can~ot represent G. C <Cl, u:~les~, 1':(; aSSi(Hl the

le~t~o~t cf these [bits the fUIictio~ of a sign for the charact2ristic.
T:~is. 11m';e\,CY, h'ould over-cor:1p1icate the tdlOlc matter, sinrr he then

:: d. ~ C 'F: :.ll :,. i t 11 H: 0 s i (F bit s i Lon e r c' C1 i s t r,;~' •

-' ;. l r f 0 :;,- ...: I t L c f 0 1 1 c; d 1"', 9 r ,-' p r i ... • 5 en tat i or for the c ! 1 (} r ::1 c t t.' r i s tic h ~ s

G bits 10 OOU

ccrr,-spor;ds to c

= '")1\'1
_~"/Vr

v
1 "e' ':'10

Then:
10 000 001 = 2018
10 000 010 = 2020

10 000 all = ')r'} ... ~Lle

11 III III = 377[;

01 III III = 177e

01 III 110 = 1768
01 III 101 = !75a

00 000 coo = 0

represents

represents

represents ,
• , ,

represellts

represents

represents

repr<:sents

C :=
,
1

C == 2
c == .')

,J

c == 12710

c - - 1

c = --2
C := ;-;) . .

l

App1yi Jig til is me til od \','e are aD Ie to repres en t exponen ts c in the range
"- L-

-12010 :: c :: + 12710

Thus all numbers j, >0 in the r<::trJg(;

2
-129 .&. 1\; / ')127

!, " '-

can be represented usi~p this "Floating Point" FOf::1at. (The range in
deci:r.a1 is roughly 10-0G~ i\ ~lO+00)

::':xa:-:1pl(-~s :

:\ = 3:

Since

') -v - 2/J . i . l' • ...", - 'J/ I
• " - oJ -.i, c .:;,;. 2 .

3/1 == G/G == .6[.:.· l102 , \I:e have:

3 = 0 ~90 CJl~ ...1 10 < V")(2..-

Si~il17 C mantissa, 27 bi ts

In octal we have: 3 = 202 60()0

~\: = >4:
Sin c e ~4 == !'2 . :2 - 1 , \\. e 0 b 1<1 i n :r. = ~2, c == - 1.

':ill ere f or e, };i = 0 01 III III 1 () ~~ U (bin a r y)

or, 177 40~40
~

~,~ntisSLl.

\0 tic <2: ~2 .J/0

~ = 1/3: 1/'2. = ') j'"J} • 2- 1
v '-1'- • i.e. ill = 2/3, c =-1

In t his ca set he con v e r s ion oft h e dec i ,'Ti::i 1 III a r. t 1 S sa r:1 == 2/21 i n to bin a r y

(or octal) is not m~de as simply as in the above examples, where the

denominator ah::-.:ys Las 2)(' (x = 2 for r\~ = 0, x = 1 for :\ = Il0. Therefore,

,';e hllVe to convert a deci::1Cll fraction to al1 octal fr3ctl0n by ~ultiplyinc

-92-

with 8:
1/3 = .666 666 666

.666 666 • 8

E...J • 333 328

you see: the result is actually 5.333 333 •••••• Therefore, we go on with

.333 333 • 8

~ .666 664

Here the result is 2.666 666 ••••• This means we have to go on with .666 666 •• #

which brings us back to where we started. Thus

2/3 = .525 252 525 5258

Since the mantissa consists of 2710 bits we have to restrict ourselves
to 9 octal digits.

1/3 = 0 01 III III 101 010 101 010 101 010 101 010 1012
or / 1 3 == 177 525 252 5258

Representation of negative Numbers N<O.

A negative number is given by the complement of all 36 bits of its
absolute value.

Example:

N=-3

Since + 3 = 0 10 000 010 110+------).0, we obtain
3 := 1 01 III 101 001~1 (binary)

Notice: Sign bit, mantissa, and' characteristic are complemented. On

the other hand, +3 has a characteristic c = 2, and -3 = -3/4 .22 has also
a characteristic c = 2. nut nevertheless the 6 bits comprising the
characteristic portion of a negative number are given by the one's complement
of the true biased characteristic.

at) Representation of N = O.

The number "zero" is represented by 3610 "zeros", i.e. all 36 bits of
the register are zeros.

A number N being represented in the above mentioned format is said to
be "norr.la1ized" and "packed".

"r~ormalized" means: the most significant bit of the mantissa is in stage i26.

"Packed ,. means: mantissa, biased characteristic, and sign bit are placed
into one register in the 1-8-27 format.

S) Floating Point Coa~ands
During all Floating Point arithmetic processes the programmer possesses
the option to round or not to rou~d the rightmost bit of the mantissa of
the result of such a process. This is handled by the command

-93-

f 1; j - (r loa tin gPo i n t ~: 0 u r ,j 0 ~~ t i 011)

OctQl 0;\~:·<~:ic;-. 2IJ:;'? = '.,'. . .'
Fl:!~C ti (;~':

If j = 1:

If j = 0:

do ~ot round results of all follo~ing
floating point operations

from now on round again all results of

This is also accomplished by a computer
~aster Clear, i.e. rounding is the normal
operation of the nachine.

j is determined as in PU jv etc.

FA uv (Floating Point Add)

Octal operation code = 64

Function:
(u) normalized, packed Floating Point number
(v) normalized, packed Floating Point number

Th e n (u) + (v) -+ Q

where (Q}f = normalized, packed and rounded (optional) Floating
Point result.

FS uv (Floating Point Subtract)
Octal operation code = 65

Funeti on:
(u) - (v)--+- Q

where (u), (v), and (Q)f are normalized, packed numbers, and (Q}f
is rounded (optional).

FM uv (Floating Point Multiply)
Octal operation code =.66
Function:

(u) • (v)---+Q

where (u), (v) and (Q)f are normalized, packed numbers, and (Q)r
is rounded (optional).

FD uv (Floating Point Divide)
Octal operation code = 67
Func ti on:

11U ~Q
(v)

(u) , (v) a 11 d (Q) r are nor rna 1 i zed, pac ked n u nb e r s I and (Q) f i s
rounded (optional).

-94 -

(Floating Point Polynomial Multiply)

Octal Operation code = 01
Function:

(u)o (Q)i + (v)--1Q

(u), (Q)i' and (v) have to be normalized and packed Floating Point

numbers. (Q~f is also normalized and packed, and it is rounded

(optional). This rounding process is performed in the following

way: At first the product (u). (Q)i is rounded. Then the sum (u)· (Q)i

+ (v) is rounded again. If no rounding is ~antedt neither the product

nor the su~ are rounded.
The usefulness of this comma~d is illustrated by the following example:

compute r ~
. arxu + a- x' + a x + a Vi oeo •• I 0'

h'herc
(00100) = as
(00101) = a t

(O,)~02) = a6
t

!
(00107) = al
(00110) = an

'and (00077) = x

Solution:
b TP 00100 0

b+l r~p 10010 b+3
b+2 FP 00U77 00101
t~~0 ,'T

IJ'V .' 1.

PI uv (Fl03ting Point Inner Pror:uct)

Oct31 oper3tio~ code = 02
fl.lf;ction:

eu)· (v) T (O)i -4 Q

(u), (v), 3nd to)i have to be norm3lized and pncked. (Q)f is also

nor ~ ali zed, r J C ~.~ c dan d r 0 U !1 de d (0 P t i 011 a 1) • As i nth e F P U \' t e i t 11 e r

beth, product (u)- (v) and su~ (u). (v) + (Q)j, are rounded, or nei ther

one is rounrled.

~:oti:::e: LCCdtj on F ~ = (Vj00": is ::~{'Ii for te!"1POI'~rv stor')(1p of (Q)l'. ~ __ ~_I' __ J_U __ ~_,,~u_"_' ____ ~V __ j~'~fJ~_U~~ ___ u~, _____ ~_

TLis CO."!1:11and is useful for CO:-1putjng SUrrlS of products ;.IS e.g.

L::t n = J ar:d

(., 1
c,L, \ ..:.;.. '.

V
(J02UG) = bO

l 1 I,J 1) = 81 (002')1) bl

(COl C;:i) = a~i (r;C:~(\5) = 1-.-,jJ

s
-

To develop the sum ~ ai hi = dO hO + 31 b1 + ---- + as bJ
1.;.::0

~e write the program:

ao bO~Q
compute

c F~l

c+l RP
c+2 FI
c+3 ~I

00100 00200
30005 c+3
00101 00201 } aO bO + ---- + as b5 ~ Q

UP uv (Unpack)

Oct~l operation code = 03

Functi on:
Assum2 (u) is a packed, normalized Floating Point number, Unpack
(u) in the~ following way:

(u)m-4Um, sign bit u35 is also placed into u34 thru u27

If (u) ~ 0:

If (u) < 0:

Definition:

}
v35 and v 26 thru va

are all "zeros"

(u)m is the mantissa part of the number
(u)c is the characteristic part of the number

U :-:1 means:

Vc means:

Example:

bits u26

bits v34

(u)i = a 10 000 011
... T' ..."

101 O~(-~)O
---""""---~

- + S = 8 · 2
3

C

Unpack (u) gives the result:

(u)L' =
1

o 00 000 000 101 o~)0

(V)f = 0 10 000 011 0< 0

(u)i = , 01 III 100 010 1<)1:: -5 = -i . 23
.l

Unpack (u):

(u)f = 1 11 III III 010 l~)1

(v)f = a 10 000 all o()0

As you see: Lhcn unpacking (u) the rishtmost 2710 bits of (u)f (mantissa
part) are ~qual to those of (u)i' but the other 9 bits are all sign bits.

fiOl'.'ever, (v)f contains always the true biased characteristic of the
number (u)i' This :neans thllt the characteristic part of (u)j (0 is at
first co~plemented and then placed into the proper part of v (in above

exa:rrple (u)i = -5: (u)c = 01 III 100 is complemented and 10 000 Oll--1vc)

-96-

NP uv (Normalize Pack)
Octal operation code = 04
Function:
Assume{u)i is an unpacked mantissa, normalized or not, i.e. the binary
point is assumed to be between u27 and u26' but the most significant
bit of the mantissa mayor may not be at u26.

Assume further that (v)i contains an unpacked ~ biased characteristic
in the characteristic part.

Normalize and pack in the following way:
(u)i is normalized and rounded (optional) such that now

the mantissa is in urn-

(v)i is adjusted according to the number of shifts which were
needed to normalize (U)i, and sent to uc • If (u)i was
negative, complemtnt (v)c and then send it to uc •

As you see: (u)i contains a mantissa which mayor may not be normalized.
However the binary point is assumed to be between u27 and u26. Therefore,
if e.g. the most significant bit of the mantissa was in u26, two right
shifts are needed to bring it into u26. This is equivalent to a multipli­
cation with 2-2. Therefore the true biased characteristic is increased
by two. Then the machine determines~~ether (u)i is positive or negative.
If positive the adjusted characteristic is sent to uc • If negative the
complement of the adjusted characteristic is sent to Uc. In any case
(u)f is a normalized, packed and rounded (optional) Floating Point number.

Example:
Let (u)i = 000 000 101 0 0 = m

.j .
bInary pOInt

(v)i = 010 000 001 0 0

Normalizing (u)i means: shift it 3 places to the right, i.e.
multiply mantissa. with 2-3• Now (u)i = 000 000 000 101 0 0
contains m.Z--3• Therefore a ~" is added to the biased character­
istic in v: (~)f = 0 10 000 100 0-----0.

Then (v)c ---7 uc:
(u)f = 0 10 000 100 101 ° 0

c: 1010

What we actually produced was this:
We have m and C = 2018, i.e. c = 1.
The number we are looking for is, therefore, m ~ 2 9

But m was not in the range t ~ m" '1, since it was = 5. As a
resul t m • 2-3 = twas produced. However, in order to keep the
value m·2·, we now have to add 3 to the characteristic, since

m. 2' = m· 2-3 • 2!:tl. . .
...l.... ~ ~ characterlstlc
2~ ~ mantissa -'1

-97-

C) Some Remarks on Machine Operations occuriing during Floating Point
Arithmetic Processes.

Assume we give the command FA uv. In order to add (u) and (v) the machine
obviously has to unpack both numbers, align the maDtissas according to the
difference of the characteristics, add the mantissas, round the result
(pptional), and normalize and pack the result in Q •. Without going into
details the following is stated:

During Floating Point Arithmetic operations the Accumulator is
used. This means that (A)i is destroyed, whereas (A)f contains
the mantissa of the result such that the most significant bit
of the mantissa is in A62 (i.e. m is given by the rightmost 27ro
bits of ~). If a result is a "zero~, then (A)f = 0, (Q)r· O.

During the "unpack" prodedure the two characteristics are saved in two
special registers, C and D. The characteristic of the result is developed
in another register, called S-register.

Since there is no room for going into details of sequences of Floating
Point commands, the use of A and Q as operands and the results of such
operations are not explained here. It is, therefore, pointed out that.
the reader may check the appropriate literature on the Floating Point
System before using A and/or Q as u and/or v in these instructions.

During addition, subtraction, multiplication, division, and normalizing~
one of the two following situations may occur:

1) The characteristic of the result is too large, i.e. c would be > 12710•
If this is detected, a computer "A" Fault is generated, and the
"char. overflow" light on the console is illuminated.

2) The characteristic of the result is too small. i.e. e would be
(--128. In this case the result is replaced by "0", i.e. A and 0
are cleared.

D) Use of "Transmit" and "Compare" Instructions for Floating Point Numbers.

Because of the format chosen for the representation of numbers in Floating
Point, the use of the following instructions is preserved for operations
with Floating Point numbers:

TP uv EJ uv
TN uv TJ uv
TN uv SJ uv

ZJ uv

Examples:
Assume (u) cOlO 000 011 101 0--0 - + 5
After TN u v we have

(v) = 101 111 100 010 1--1 =-5
-98-

Assume you want to compare (u) and (u+l).

Then: a TP u A
a+l EJ u+l v

Assume you performed an arithmetic operation in Floating Point. In

order to find out whether or not this number is positive, just give

a SJ uv without transferring the result from Q to A. This is possible,
because (A)f contains the resulting mantissa and naturally Sign bits.
In order to find out whether the result is t~", just give a ZJ uv,
since (A)f has to be = 0, if result = O.

-99-

TABLE I

Sample Card Unit Routines

READ SINGLE CARDS

The computer instructions below withdraw two cards from the read
card feed hopper. position the first card for reading and transmit its
contents to the computer, and continue advancing it through the read
channel until it reaches its final position in the receiving stacker.
(The second card withdrawn from the hopper is left in the first station.)

EF-v

EF-v

~j~ ~j:~~}
ERj v (j=l)

EF-v

EF-v

EF-v

EF-v

(v) = 40 00000 00004
(START, PICK READ CAP~)

(v) = 40 00000 00005
(ST .. \RT, PICK READ CARD. READ)

1 cycle

I cycle

Within 140 ms. of the execution of this
instruction, the execution of the follow,
ing three instructions should be initiated:

I
Repeat for each card row, each repetition
being initiated not later than 10 ms. after
the beginning of the corresponding row
point. *

(v) = 40 00000 00000
(START)

(v) = 40 08000 00000
(START)

(v) = 40 00000 00000
(START)

(v) = 40 00000 00000
(START)
(card read now placed in receiving
stacker)

1 cycle

1 cycle

I cycle

I cycle

C This means (here and in folloKing tables): After you read one
row and used already 27.8 m seC. you may give the first En after
an additional 10 m sec. However, as you probably see: do not try
to do this for each row again and again, because these additional
m sec. will soon increase such that a ''B''-Fault has to occurl

A1

TABLE II

READ CONSECUTIVE CARDS

A. Single Card Mode

To transmit,informati?n fr?m,n consecutive cards, without selecting
the FREE nu~~ Dit, a routIne Slffillar to the one above for READ SI~~LE CARD
is executed:

EF-v

EF-v

(v) = 40 00000 00004
(STiU1T, PICK READ CARD)

(v) = 40 00000 00005
(START, PICK READ CARD, READ)
Within 140 ms. of the execution of this
instruction the execution of the following
three instructions should be initiated:

ERjv (j=O)} Repeat for each card row, each repetition
ERjv (j=l) being initiated not later than 10 MS. after
ERjv (j=l) the beginning of the corresponding row point.

EF-v

I

ERjv
EHjv
ERjv

(j=O)} I
(j=l) i
(j=l) !

I

EF-v (c

EF-v 0

EF-v 0

EF-v *

(v) = 40 00000 00005
(ST~1T, PICK READ CARD, READ)

Execute this instruction within 10 ms. of
the beginning of row point 12 of the previous
cycle. ~\'i thin 170 ms. of the execution of this
instruction, the execution of the following
three instructions should be initiated:

Repeat for each card rm~eachrepetition
being initiated not later than 10 ms. after
the beginning of the coreesponding row point.
Execute this same instruction (n-2) more times,
initiating each execution with 10 ms. of row
point 12 of the previous card cycle. After
each such instruction is executed, initiate
execution of its associated External Read
Instructions within 170 ms •.

(v) = 40 00000 00000
(STAHT)

(v) = 40 00000 00000
(STAnT)

(v) = 40 00000 00000
(STAnT)

(v) = 40 00000 00000
(STM:T)

I cycle

I cycle

n-l cycles

1 cycle

1 cycle

1 cycle

1 cycle

At the conclusion of the above program, the nth card (or last card read) is
found in the receiving stacker; an (n+l)th card is in the first reading station

* Execute these instructions within 10 ms. of row point 12 of the previous
cycle to obtain continuous card cycles from the Card Unit.

A2

TABLE III

B. Free nun ~,~ode

.".'':;1:, The co:nputer instructions belO\v wi thdral'i n+l cards fro:;1 the read card feed
hopper, one at a ti~e, position n of them for reading and trans~it their
information content to tile co~puter, and continue advancing these n cards
through the read channel ur.til the last caru reaches its final position in
the receiving stacker. (The n~lst card is left in the first reading station.)

I ,
I
I

I
I

EF -v (v) = 40 00000 0000·1
(ST/;.~T , PICK Rr::;J) CJ··.r~D)

EF-v (v) = ··10 00000 000:15
(ST;~~T , FriS: r~u;\ , PICK RE,'\D CA;~D, m:,;!))

i
'~,'i th in 1~10 !11S. of the execution of this
instruction, the execution of the following , three instructions should be initiated.

:::jv (j=O) } i Repeat for each curd rOl',' , each repetition
L;jv U=l) ! being initiated not later than 10 ros. after
E2jv (j=l) : the beginning of the corresponding row point.

t (A series of card cycles is initiated.)

I 170 ms. from the cO:7lpletion of the External

! Head Instruction for rO\'.- 12 of the previous

! care cycle, execution of the following three

!
ins truc ti O!lS should be initiated.

Err'v (' 0)'; Hepeat for each card each repetition J= I (rm,,' J
ERjv (j=l) ~ ~ beinG ini tiated not later than 10 ms. after
EHjv (j=l)) r the beginning of the corresponding ro .. :

, point:

Sane procedure for next (n-4) cycles

170 ms. fro~ the completion of the Exterjal
nead Instructions for ro~ 12 of the last
previous card cycle, ex~cution of the follo~­
ing three instructions is initiated.

El:jv (j=O) }:, Repeat for each card ro~':, each repetition
SP.j\r (j=l); being initiated not later than 10 ms. after
E~jv (j=l) , the beginning of the corresponding row point.

EF-v (v) = 40 00000 00020
(ST.';~:T, 370r)

This i[struction ~ust be executed ~ithin
10 ~S. of the beginning of ro~ point 12
of this cycle.

co;~ 'T.

A3

I

I
i
i

I
r
I

!

I

1 cycle

1 cycle
(first
free run
cycle)

(n-3) cycles
(intermediate
free run
cycles)

I cycle
(the next to
last cycle
of free run)

ERjv (j=0)
EHj v (j=l)
EI1jv (j=l)

EF-v *

EF-v ...

EF-v :::

EF-v ".

TABLE III (Continued)

170 ms. from the completion of the External
Read Instructions for row 12 of the previous
card cycle, execution of the following three
instructions is initiated:

Hepeat for each card row, each repetition
being initiated not later than 10 ms. after
the beginning of the corresponding row point.

(nth card read during this cycle and free
run selections are dr0pped.)

(v) = 40 00000 00000
(ST~i~T)

(v) = 40 00000 00000
(START)

(v) = 40 00000 00000
(START)

(v) = 40 00000 00000
(STArlT)

1 cycle
(last cycle
of free run)

I 1 cycle

I
! I 1 cycle

1 cycle

1 cycle

* Execute these instructions within 10 ms. of row point 12 of
the previous card cycle to obtain continuous card cycles from
the Card Unit.

I
i
!

1

I
t

I
I
I
i

I
I ,
!

I
!

TAI3LE I\,

PV:\CH Sl\GLS eM lDS

The computer instructions belm\' wi thdraw tl':o cards from the punch
card feed hopper, position the first card for punching and punch infor­
~ation in it, and continue advancing it through the punch channel until
it reaches its final position in the receiving stacker. (The second
card ~ithdra~n fro~ the hopper is left in Station 1.)

IT-v (v) = 40 00000 00010 1 cycle
(ST;"~T , PICK PU~\'CH CArrD)

EF-v I (v) = .10 00000 00010 1 cycle
J

(STAi~T , PICK PU;~CH CARD)
:

Sf-v I (v) = 40 00000 00002 1 cycle
(, ;:-0'1'

..,lru\.J.. t PUf\CH)

Within 140 ros. of the execution of this
instruction, the execution of the following

I three instructions should be initiated:

E'.j v (j=O) ! }epeat for each card row, each repetition !
L.jv (j=l) i ~ . initiated not later than 1.5 ms. after ! 0elng
r:::.jv (j = I) I the begir.ning of the corresponding row point. e:

I

i
!

EF-v i (\') = 40 00000 00000 I cycle
r (STr'.~~~) l
I
;

~

~ (Card is punched in this cyclEd

!
EF-v i (v) = 40 00000 00000 I cyc'Ie

I
(ST:.~T) I

EF-v (~;) = 40 00000 00000 I cycle
f 1..-"'" r,..,... '\
1...)-._.1 j

t,; See re;,j;}r:~s 0:; Tablt: 1

A5

TABLE V

A. SINGLE CARD MODE

To punch n cards without selecting the FREE RUN bit#

EF-v

EF-v

EF-v

EWjv (j=O)
EWjv (j=l)
EWjv (j=l)

EF-v
EWjv (j=O)
ElVjv (j=l)
E1'!j v (j= 1)

EF-v
EF-v
EF-v

(v) = 40 00000 00010
(STAHT, PICK PUNCH CARD)

(v) = 40 00000 00010
(START, PICK PUNCH CARD)

(v) = 40 00000 00012
(START, PICK PUl\1CH CARD, PUNCH)

Within 140 ms. of the execution of this
instruction, the execution of the follo\\,­
ing three instructions should be initiated.

Repeat for each card row. Each repetition
being initiated no later than 1.5 ms. after
beginning of each row point.

Execute the above sequence of instructions
n-l times. Each sequence starting with the
EF, and given no later than 170 ms. of the
previous row point.

(v) = 40 00000 00002
(START PUNCH)

Timing as above.
nth card punched in this cycle.

(v) = 40 00000 00000
(START)

Each EF within 10 ms. of row point 12
of previous instruction

1 cycle

1 cycle

(n-l) cycles

1 cycle

3 cycles

At the conclusion of the above program a single card is left in
Station 1, and all cards punched are in the stacker.

A6

I

TABLE VI

B. FREE HUN MODE

The computer instructions below withdraw n+2 cards from the punch feed
hopper, one at a time: the first n cards are advanced through the punching
channel, punched ans sent to the receiving stacker; the (n+l)st card is
advanced to the Stacker; the (n+2)nd card is left in Station 1.

EF-v

EF-v

EF-v

EWjv (jED)
EWjv (j=l)
EWjv (j=l)

EWjv (j=O)
E\~jv (j=l)
EWj v (j=l)

Et'ij v (j =0)
EKj v (j =1)
E\\j v (j=l)

EF-v

(v) = 40 00000 00010
(START, PICK PU~~H CARD)

(v) = 40 00000 00010
(START, PICK PU~~H CARD)

(v) = 40 00000 00052
(START, FREE RUN, PICK PUNCH CARD, PUNCH)

Within 140 ms. of the execution of this
instruction, the execution of the following
three instructions should be initiated:

Repeat for each card row, each repetition
being initiated not later than 1.5 ms. after
the beginning of the corresponding row point.

(A series of card cycles is initiated.)

170 ms. from the completion of the first
External l';rite Instruction (j=l) for row 12
of the previous card cycle, execution of the
following three instructions should be
initiated:

Repeat for each card row each repetition
being initiated not later than 1.5 ms. after
the beginning of the corresponding row point.

(Same procedure for next (n-4) cycles)

170 ms. from the completion of the External
Write Instructions for row 12 of the last
previous card cycle, execution of the f011m','­
ing three instructions is initiated.

Repeat for each card row, each repetition
being initiated not later than 1.5 ms. after I
the beginning of the corresponding rOl\' point. i

(v) = 40 00000 00020
(START, STOP)
This instructi on must be executed \d thi n
10 ms. of the beginning of ro~ point 12 of
this cycle.

CO\ 'T.

A7

I
!

1 cycle

1 cycle

1 cycle
(first free
run cycle)

(n-3) cycles
(intermediate
free run
cycles)

1 cycle
(next to
last cycle
of free run)

T {~.B ~= \,1 (C 0 r: tin u e d)

f

1 cycle

!
I

170 ms. from the co~pletion of the External I
i.,'ri te Instructi ons for row 12 of the previ OUS

card eyelet executio~ of the following three
instructions is initiated:

(last cycle
of free run)1

I

EWjv (j=0) I
EWjv (j=l) "
EWjv (j=l)

I

EF-v sc:

EF-v c:

EF-v •

Repeat for each card row, each repetition
being initiated not later than 1.5 ms. after
the beginning of the corresponding row point.

(FREE RU~ seleations are dropped)

(v) = 40 00000 00000
(START)

(nth card is punched)

(v) = 40 00000 00000
(STAnT)

(v) = 40 00000 00000
(STA.RT)

(nth card put in punch receiving stacker)

(v) = 40 00000 00000
(START)

,t
(n + 1) Card is put in recei vi ng stacker

1 cycle

1 cycle

1 cycle

1 cycle

• Execute these instructiens within 10 ms. of. row point 12 of
the previeus eard cycle to obtain continuous card cycles from
the Card Unit.

TAI3LE VII

hI:AD A:\D PU~~CH 51 ;,:CLTA.\EOUSLY

The co~ruter instructions belo~:

1) \;ithdraw t~o cards, one at a time, fro~ the punch feed hopper; the
first card withdraKn is punched and placed into the output stacker;
the second card withdrawn is left in Station 1.

2) ~ithdraK two cards, one at a time, from the read feed hopper; the
first card ~ithdrawn is read and sent to the receiving stacker; thp
second card \d thdra\\'n is left in Station 1.

I EF-v (v) = 40 00000 00010
(START, PICK PU~CH Ck1D)

1 cycle
t
!

EF-v

EF-v

EWjv (j=O)
EWjv 0=1)
E\~j v U=l)
ERjv (j=O)
ERjv (j=l)
ERj v (j=l)

EF-v

EF-v

EF-v

EF-v

(v) = 40 00000 00014
(STAi1T, PICK PU~~CH CARD, PICK READ CARD)

(v) = 40 00000 00007 I

(STAnT, PUNCH, PICK READ CARD, READ)
i

Within 140 ms. of the execution of this J

instruction, the execution of the following I
six instructions should be initiated: I
Repeat for each card row, each repetition t
being initiated not later than 1.5 ms. after t
the beginning of the corresponding row point. !
(READ CARD read in this cycle)

(v) = 40 00000 00000
(STAt'?T)
(PUNCH CARD punched in this cycle)

(v) = 40 00000 00000
(START)

(v) = 40 00000 00000
(START)

(PUNCH CARD put in punch receiving stacker)

(v) = 40 00000 00000
(START)

(READ CARD put in receiving stacker)

I
I

1 cycle

1 cycle

1 cycle

1 cycle

1 cycle

1 cycle

Simultaneous Reading and Punching of n cards can be done by applying a
similar method, either in Single Card hlode or in Free Run!

A9

TABLE VIII

1103A and 1105

Octal Magnetic Tape Functions

1103A

The table given below shows the ~ equivalent of the bit assignments
for the selection of Magnetic Tape operations:

02 00000 00000

00 00000 10000
00 OO<?OO 20000

00 00600 70000
00 -00001 -00000

00 00001 20000

00 00006 00000
00 00016 00000
00 00000 _ 00000
00 00020 00000
00 00040 00000
00 00000 00000
00 00100 00000

00 00002 00000
00 00012 00000

00 00600 00000

00 00004 00000
00 00014 00000
00 00000 Oxxxx

00 00200- 00000
00 00400 00000

00 00001 50000
00 00001 60000
00 00001 70000

00 00060 00000

00 00010 00000

Examples:

Select Magnetic Tap~ ("~aster Bit")

Uniservo:Number 1
" "2

" "
" " .
" "

, ,

t
8

10

Write in high density I
\'Jri te' in low densi ty
0.0" Blockette Space
0.1"" "
1.2"" "
1.2" Block Space
2.4"" "

Read forward
Read backward

Wri te in low densi ty' } 1105!
Write in high density _

Stop <-after "Read" or "Wri te" operation only)

Move forward
Move b~ckward
XXX)(= Number of blocks ("Move" operation only)

Rewind
Rewind with iRterlock
Set '~ead Bias" to Normal

" It

It "
"
"

"Low
" High

Select Var. Bl. Length.2!.. Cont. Data. Input
Change Mode

\~it~ in high density on Uniservo 3 using Free' Ru~, 1.2" Bleekette Space.
1.2" Block Space:

(v) = 02 00046 30000

Write- in low density .2.!:!£ block on Uniservo 9 using 0.0" Blockette Space,
2.4" Block Space:

(v) = 02 00717 10000

A10

TABLE VIII (Continued)

Read forward in Free Run from Uniservo 6, Fixed Block Length:
(v) -'S 02 00002 60000

;.love baclrward Uni servo 8 1910 blocks; Fixed Block Length:
(v) = 02 00015 00023

Reed forward from Uniservo 4 in Var. Block Length:
(v) = 02 00062 40000

1105

a) plpas~ E<?.d.~
In order to select tape operations without using a buffer, i.e. to
bypass a buffer, give an EF -v, where

(v) = 00 10000 04000 to bypass buffer 1
(v) = 00 20000 04000 to bypass buffer 2

Tape operations in Bypass riiode are now selected as explained. for 1103A
with the addition, that
i31 = 1 is Master Bi t for TeU 2,
i30 = 1 is Master Bit for TeU 1.

Either one of these bits can be used depending upon the buffer which
is to be bypassed (Both bits may not be specified!)

Therefore:
If Buffer 1 is to be bypassed, EF "Tape" operations are selected
with a (v) = 01 xxxxx xxxxx.

If Buffer 2 is to be bypassed, EF ''Tape'' operations are selected
with a (v) = 02 xxxxx xxxxx.

b) Normal (Buffer) Modd -- ----------
Tape operations are selected as explained for II03A, with the addition
that either one of the Tape Control Units can be specified (see under
Dypass ;ilode). r\otice that fll~rite Density" for 1105 is reverse to 1103A.

Example:"
\'Jrite in high density, Fixed Block Length, Unis. 3, Free Run,
1.2" Dlockette Space, 1.2" Block Space,
Te U 1: SF - v wit h

(v) = 01 00056 30000
The sar:1e for Unis. 3, TeU 2: EF -v with (v) = 02 0005,) 30000.

Interrupt Selection:
Bit v2~ = 1 in (v)

Buffer operations
(v) of EF -v

00 10000 02000
00 20000 02000
00 10000 01000
00 20000 01000
00 10000 00100
00 10000 CC;2!)O
00 10000 OOlDO
00 20000 00100

of EF "Tape" ins true t ion

Function
Clear Buffer I and switch to "load"

" " 2 " " " "
"End Transfer", Buffer 1 switch to "unload"
"II "2"""

"~ ,r i t e B u f fer" 1 (s i ~ i Jar for B u f fer 2)
"::ead Luffer" 1 (si:nilc. .. ' for Buffer 2)
:1cad ::ord Counter of Duffer 1 into IOSu

" tt ,,1 n 2 ft "

fl.11

r

r
t
I

TAPE OPS1ATlm~

r.:ove F orwarJ /
Backward

Rewind

aewind/
Interlock

Change Bias

TABLE IX (Continued)

DO

Designate in (v) of EF instruc-
, ti on: .
i 1) Magnetic Tape Master Bit
I

2) ~love Forward/Backward
3) Number of blocks to be

moved.
I 4) Uniservo ~umber

!

Designate in (v) of EF instruc-­
tion:
1) Magnetic Tape ~.:as ter Bi t·

>--.

2) Rewind

3) Uniservo Kumber

Designate in (v) of EF instruc­
ti on:

1) ~,;agnctic 'Tape r.:aster Bit
2) 2e~ind/lnterlock

3) r r: i s e r v 0 ., tt mb e r

Designate in (v) of EF instruc­
tion:

1) Magnetic Tape ~aster Bit
2) Change bias level bits

Program a return to normal bias
level unless a computer ~aster
Clear occurs which acco~plishes
this.

A13

DG~\' T 1 ,
1

Program a :.:ove Fon;ar:J/ i
3ac!n::ard of ::Jore blocks
than ~ave~been recorded. J

I

Terminate a move opera- ;
tion Kith an EF Stop Ta:e
instruction.

I Reference a uniservo
I re\':ou~d ·wi th' i Iter lock
: linti 1 the uniservo door
I ir.terlock switch has
; been opened and closed.

I
I Include any other tape

I operati on in the EF
Change Bias instructioE.

I Program two successive
; chancres to high or lo\\'
! oJ

: bias level.
I
!

TABLE I

AVAILABLE CO:,1PUTATIO~ TIMES

Fixed Block Length ~ode

The following table sho\\'s the recom~ended programming times allow-
able for computation bet~een tape operations. The safe times lIsted are
based on theoretical timing conditions and then adjusted to include a safety
factor. The safety factor takes' into consideration fluctuations in normal
operating characteristics and unpredictable component variations. The
theoretical times do not include any execution time for the instructions
effecting the particular tape operation under consideration. Because of
possible adjustments on different machines, the theoretical times may vary
slightly from installation to installation.

Situation

READ OPERATION

Between EF Start Tape and first En
1.2" block space
2.4" block space

. (See also leader and reversal delay)

Between successive ER instructions

at l2G lines per inch

at 50 lines per inch

Across ·the blockette space

1.2" blocket te space

0.1" blockette space

Across the block space

1.2" block space

2.4" blockette space

Between last ER and EF Stop Tape
1.2" block space
2.4" Block space

I

Theoretical
Time

46.1 ms
58.9 ms

46C)Js

1200 JlS

12 ms

1 ms

12 ms

24 ms

3.75 ms
17.25 ms·

I

Safe Time
(based on the­
oretical time)

31 ms
40 ms

350 }Is

900)ls

9 ms

750 }S

9 ms

18 ms

1 ms ~

14 ms ~

Observance of the stated time for this interval is important if reading
is continued. If the stop occurs too close to the first lines of the
next block, not enouuh time is allm':ed for the tape to accelerate before
the first lines arc encountered in the following reading operation.

A14

I

I

!
I

I
!
i

I
1

i
I
I
i

I
i

I
I
I
!
I
i
I
I

i ,
I

I
I
I
I

TABLE X (Continued)

If this Siiould be the case, the first lines \\"ill not be sensed fro~ the
tape. For a 1.2 inch block space t a zero time delay would be rcco:!1l'nended
if it were. feasible, as this would stop tape movement such that the
read/write head would be positioned midway through the inter-block space.
Where other instructions must be executed before the Ef Stop Tape instruc­
tion, it is reco~~ended that the ~ininun ti~c does not exceed the value
shown in the table. The 2.4 inch case is not as critical, but again it
is reco::lmcnded that the value shO\,"n is not exceeded.

j Safe Time
Situation I Theoretical (based on the-

Time oretical time)

WRITE OPERATIO!\

BetKeen EF Start Tape ar.d first t:"" f\ I
1 ')tr block space I 46.1 ms 31 ms
2 .1" block space i 58.9 ms 40 ms ."1: i

(See also leader and reversal delays) I
i

Between successive EW ir.structions I

128
I I at 1 i I~e s per inch ! 468)ls 350 y.s

at 50 lines per inch I 1200 ys I 900 Jls i , i
Across the blockette space I I

1.2" blockette space 12 ms I 9 ms
O. 1 tt blockette space 1.0 ms 750 ys

Across the block space i
!

1.2" block $pace 12 ms 9 ms
91 If
..... "-j block space 2,~ ms 18 ms

Between last rt,· and EF Stop Tape Lh

1 fJ" block space 12 ms 1 ms **
2.·1 " blocl.; space 24 ms 1. ms ** ,

I

LSAD=f~ c: ~.-~l~
Starting rea:Jing or writing fro::!
re~'\our:d pas i ti or:

i

1 ')" bloc k s~)ace ! 15"~6.1 ms 1 ')'1'" _v (ms
" I" block 155C.9 1247 ,.:, • '-i SrJJC (; ! inS IDS

I
i

RE\'"EHSAL DEL\YS :

; Eeadir.g or l'.T i t i:-1o in crr,Qsi te dircctjoL
I

fro~ prei'i ou S I. J r_,L:" ;:~~: :: t: :.-, ~_l;: t ! 011. 1 ms 45B ms

...... :\ext PaGe

A15

TABLE X (Continued)

** During writing, the limitation on this time is actually dependent
upon the block spacing. If the time allowed for block spacings
of 1.2 inch or 2.4 inch is exceeded, a No Information fault occurs.
For the sake of uniformity of block spacings, however, it is re­
commended that the time does not exceed one ms for either of the

Situation

r.E\\I~\D naTIATI00; DELAYS
(preventing another 1013 to TCR transmission)

Previous forward direction
Previous backward direction

CHA~GE BIAS DELAY
(preventing another lOB to TCR transmission)

A16

I Theoretical
Time

35 ms
600 ms

-35 ms

~afe Time
(based on the­
oretical time)

22 ms
450 ms

22 ms

OP::~ t .. T1 O~ ~

I
Read FOI"l\'ard/
5ackward

~rite

Stop

I

i

l

TABLE XI

Syr-,OPSIS or

r k1I ABLE BLOCh LE~GTH fLODE. OPERATI CI\

!
I
I
j

DO
!

i
Designate in (v) of EF instruc- i
tioD: !
1) ~a9netic Tape ~aster Bit
2) F~ead For\'.'ard/Back~ward
3) Cniservo f\umber
4) Variable/Continuous Bits

Read and check content of lOA
before lOB is reaa; then, read
lOA again or read IOL.

Jeslgnate ir. (\') of EF instruc-
ti on:
1) ~a~netic Tape ~aster Bit

;'ariablE'/C or.tir:uous Bi ts
.:) L"r:ise!'vo \U1':1:>er
l..j '..l~ te Ot>e!'ati on
Prograr:1 -anEh instructior; for
eact ~ord to be written.

prograw an EF Stop Tape instruc­
tior. l~~ediately after the
last word to be "7itten in each
block.

Designate in (v) of EF instruc­
tion:
1) Magnetic Tape Master Bit
2) Stop Bits

Program an EF Stop Tape during
reading for all desired stops,
except at end of record; during I

writing, to terminate tape move~
ment and create block spacing. t

A17

DO~'T

Exceed allowable computa­
tion time between the EF
Start instruction and the
1st En, between successive
ER instructions~ or be­
tween the last EE and Ef
Stop Tape instruction.

Include uniservo numoer
in EF Stop Tape instruc­
tior .•

Exceed allowable "computa­
tion time between the EF
Start and 1st EK. between
successive EW's, and be­
tween the last EW and EF
Stop Tape instructions.

Include uniservo number
in EF Stop Tape instruc­
tion.

Designate a uniservo
in (v).

TABLE II (ec,r,tinued)

TAPE OPERATI CI\ DO Om'T

Move F orward/ Designate in (v) of EF instrue- Terminate Move Operation
Backward tion: with an EF Stop Tape

1) Magnetic Tape Master Bit instruction.

2) Move Forward/Backward Program a Move Forward/
Backward of more blocks

3) Variable/Continuous Bits than are recorded in the
4) Number of blocks to be direction of the move-

moved ment.
5) Uniservo Number

Rewind
I

Rewind
Interlock See'Fixed'Block Lengtb Mode Operation

-Change Bi as
J

A1g

TABLE XII

AVAILABLE COMPOT AT! 00 TIMES

Variable Block Length Mode

The following table shows the recommended programming times allow-
able for computation between tape operations. The safe times listed are
based on theoretical timing conditions and then adjusted to include a
safety factor. The safety factor takes into consideration fluctuations in
normal operating characteristics and unpredictable component variations. The
theoretical times do not include any execution time for the instructions
effecting the particular tape operation under consideration. Because of
possible adjustments on different machines, bhe theoretical times may vary
slightly from installation to installation.

Situation

READ OPERATI ~

Between EF Start Tape and first ER
(1.4" block space)

(See also leader and reversal
delays)

Between successive ER instructions
(at 128 lines per inch)

Across the block space
(1.4" block. space)

Between last ER and EF Stop Tape
Inter-block stop
Intra-block stop

Theoretical
Time

50.85 ms

14 ms

7.0 ms
468)Is

Safe Time
(Based on the­
oretical:time)

33 IDS

350 JS

10 ms

1 ms •
250 }S

o Observance of the stated time for this interval is important if read­
ing is continued. If the stop occurs too close to the first lines of
the next block, not enough time is allowed for the tape to accelerate
before the first lines are encountered in the following reading opera­
tion. If this should be the case, the first lines will not be sensed
from the tape. For a 1.4 inch block space, a zero time delay would be
recommended if it were feasible, as this would stop tape movement such
that the read/write head would be positioned midway through the inter­
block space. ~~ere other instructions must be executed before the EF
Stop Tape instruction, it is recommended that the minimum time does
not exceed the value shown in the table.

A'9

I

TABLE XII (Continued)

Situation

~mlTE DPERAn Cl\

Between EF Start Tape and iirst EW
(l.4" block space)

(See also leader and reversal delaYI>

Between successive EK instructions
(at 128 lines per inch)

Across the block space
(1.4" block space)

Between last EW and EF Stop Tape
(1.4" block space)

LEADER DELAY

Starting reading or writing from
rewound position

nE\~RSAL DELAY

Reading or writing in opposite
direction from previous tape movement

RE\n~~D INITIATIor, DELAYS

(preventing another lOB to TCR
transmission)

Previou$ fon\!ard direction

Previous backward direction

ellA \lGE Bl AS DELAY

(preventing another lOB to TeR
transmission)

I

!

Theoretical
Time

50.85 ma

468 }S

14 ms

468 ys ••

1550.85 ms

615.65 ms

- -

35 ms

600 ms

35 ms

I
I
I

j
I

I

Safe time
(based on the­
oretical time)

33l1li

350p

10 ms

250 IS

1240 ms

462 ms

22 InS

450 ms

22 ms

*~ During "Titing, the limitation on this time is actually dependent
upon the block spacing. If the time allowed for the block spacing
of 1.4 inch is exceeded, a ~o Information occurs.

A20

I
i

Special Remarks on the Buffer System

The following remarks dedicated to the design of the buffer system might,
at first glance, seem to be unnecessary from a program~er's point of view.
However, these engineering details (modified to "programmer's language" as
much as possible) affect the programming of buffer and tape operations to
a great extent. They are, therefore, presented here and might help to
clarify some peculiar programming situations occuring during 1105 magnetic
tape and buffer operations.

I. Handling of Buffer Activity and Inactivity

Each buffer possesses a so-called "Buffer Active Flip-Flop".
If it is in the "1" state, the buffer is "active". If it is in the
.I10 t

' state, the buffer is "inactive".

a) \'ihich operations set a buffer to "active"..!. and when? --------------------_ - -----
A buffer is set to "active" in either one of the following three
situations:

1) "Move Enable" from TCU

2) "Wri te Enable" from TeU A;\D buffer "Unload FF" in its
ttl" state (i.e. buffer in "unload" state)

3) "Read Enable" from TCU .fu~D buffer "Unload FF" in its
"0" state (i.e. buffer in "load" state)

Programming consequences:
A buffer is set to "acti ve" by one of the following three instructions:

1) EF nr,love Tape n blocks"

2) EF '1\Jri te Tape" p~ovided the buffer is in the "unload" state.

3) EF "Read Tape" provided the buffer is in the "load" state.

(It is assumed that the buffer was "inactive" upon execution of these
instructions, and that "Bypass r\Jode" has not been selected.)

b) ~ ...:vha.!_mea~_i! ~I!. 2~t!~e_~uf.f~~ 2~t_ ~o_ :~n~c_t!~e~'~

The "nuffer Acti ve FF" can be set to "Ot1, if and
only if a computer hlain Pulse 5 occurs.

This ~p 5 in conjunction with some other pulses lwhich essentially
oean that the tape operation is completed, see below) set a buffer
to "inactive".

Progra:r..-:1ing consequence:
Assume the computer stalled, i.e. hung up at one instruction such that no
t:p 5 can be generated by the cachine. In this case a buffer cannot be set
to "inactive", even if the corresponding tape operation which caused buffer
activity is finished!

AA-l

1) Read Tape operation:

Assume a tape is read (Free Run or not). One block enters a buffer.
During this time the buffer is "active". When is it set to "inactive"?

The buffer is set to "inactive" during the occurrence
of the first MP 5 which follows the detection of an
interblock space.

This is accomplished in the following way:

The above mentioned interblock space generates an End of Block signal
which in turn generates a "Stop" signal in the Buffer Stop Control.
This sets the "Run FF" (which was set to "I" earlier, essentially at
the· time the "Active FFtt was set to ttlft) to ftO". The fact "Run FF :; 1
and Buffer in Unload State" means that the "Active FF" is set to "0".

When is buffer activity resumed, if we are in Free Run?

The buffer is set back to "actile" after its content
has been transferred to the computer and the switch
from "unload" to "load" has been accomplished.

This is almost obvious because of a) ~3. After the transfer buffer~
I

computer and the switching to the "load" state we possess the "Read
Enable" from TeU (because of the Free fiun) and the "Unload FF = 0"
pulse (because buffer is in "load" state). These two will cause a
pulse "Set Buffer Active", and activity is, therefore, resumed.

(At the same time the Run FF is set to "1" again, since buffer is in
"load" state again.)

2) Write Tape operation:
Switching of the buffer from "active" to "inactive" and back to "active"
(if Free Run) during a Write Tape operation is accomplished in a manner
similar to that of a Read Tape operation.

The buffer is set to "inactive" during the occurrence of
the first ~1P 5 which follows the detection of a buffer
"Limit Count" (meaning: buffer is empty, i.e. BWK = I anu
"Back BWK" pulse).
The buffer is set back to "active" (Free Run operation) after
the transfer of the next block of data from computer to
buffer and the switch from "load" to "unload".

3) Move Tape operation
Assume a tape is moved n blocks. The buffer connected with the same
TeU is set to "active" at the start of this operation, as we saw earlier.

When is buffer activity dropped?

The buffer is set to "inactive" after the completion
of the ~ove operatiOn.

A A-2

This is done in the following way: The "Move" operation placed the
number n (= number of blocks to be moved) into the Block Counter. As
long as this BLK ~ 0, the buffer cannot be set to "inactive". But
precisely at the time Bu\ = 0, the buffer "Active FF" is set to "0".
As you see: BU'~ = 0 also means: Move operation is finished.

Notice: Assume a moving of 3 blocks is attempted. Although n;u detects
an Interblock Space after the first and second block, buffer activity
is not dropped, since BLK ¥ O.

c) ~e..e£.i!I_E..r~g.E.~if$_s!..t!!.a!.i~n!. <iu;:i!!92'~a.E!..n~ .!l~d_w-E!...t!.n.9:

1) Writing on Tape

As explained the EF "Write Tape" instruction sets the buffer connected
with the same TCU to "active" only if the buffer is in the "unload"
state. If the buffer is in the "load" state and such an EF-instruction
is given the buffer will not be set to "active". The tape, however,
starts right away.

Let us assume we have the following situation:
The buffer is in the -load" state (say, it is empty and inactive) and
an EF "Wri te Tape rt is executed (Free Run or not). \~hat Happens? The
tape movement is started, and within a certain time the TeU will require
data from the buffer. This means that the buffer must be filled with
data (from the computer) and must have completed the switch from "load"
to "unload", before the TCU requires the first \\lord. If the swi tch to
"unload" is made, the buffer "Active FF" will now be set to "1" according
to a) ~2.
Bow much time is avai labl e between the 2F "Eri te Tape tI and EF fll~ri te
Buffer" cannot be deternined exactly at the present time. It depends
upon the start uelay of the Uniservo II plus the time needed for moving
to the beginning of the block which is to be \'Jritten. However, 6 m sec.
seem to be a safe time in any casco This time might be larger, but has
to be determined by examining the appropriate literature, if available.

Assume the EF "r~rite Tape" is given, the buffer is in the "load" state,
and the program Joes not fill the buffer wi th the first block (to be
written)within the time available. In this case a No Information {"B"}
Fault is generated in the tape system, when the n;u requires the first
word from the buffer (from lOT), and there is no word. This shows that
a programmer who gives an EF ttl/rite Tape" with the buffer in the "load"
state creates a timing problem for himself, (namely for the first block),
because before the first block is written on tape the Automatic Tape
Control will not be effective, i.e. will not stop the tapel (Refer to
"Automatic Tape Control")

2) ReaJing of Tape
During reading magnetic tape a situation similar to that of writing on
tape can occur, i.e. an EF "~ead Tape" is given at the time the buffer

A";-3

involved is in the "\.:nload" state (and inactive). As already explained
the buffer will not be set to "active", but the tape movel!lent is started.
This means that the program has a certain time (see: c) ~l) to transfer
the content of the buffer to the computer. If this and the switch to
"load" is accoI!lplished in time, the buffer will be set to "active"
because of a) ~3.

If, hO\'Jever, the buffer content is not removed, before the transnissicrl
from tape to buffer iss tarted, an "IOI'-Faul t occurs at the time the
second word tries to enter lOT, whereas the first word is still there.

This again creates a timing problem for the progra~~er, namely for
the first block to be read, since the Automatic Tape Control does r.ot
become effective before reading the first block.

II.Selection of- Buffer Operations rEF "Buffer" instructions)

Serious trouble can occur for a program, if an EF "Buffer" instruction is
given during the time the buffer is "active". It is true that this situation
should never occur, because a programmer may execute a command referencing
a buffer, if and only if he knows that the buffer is "inactive". However,
errors in a program might lead to such a situation.

a) li0'!y ~~ ..!h~.!.e.!e£.ti on_ a..!: t~m..Eted J>l- a.E j:t.1l~f~r,: !.n~t!:..u£.t!.OE .!>~c~~~
effective? ------
The EF "Buffer" command sends (like any EF-) a 36-bit word to lOB. The
computer is now satisfied, i.e. continues with the next instruction in
sequence. The code word in lOB, hO\~ever. is used to send pulses to the
Start COl~trol of the buffer referenced which are to set up an operatio;}
of this buffer.

If the buffer is "inactive", the selection is performed and lOB cleared
for further use.

If, however, the buffer is "active", the selection cannot be performeJ,
and lOB will n~t be cleared, but the program continues in sequencel

It is, therefore, very important that a programmer keeps in mind:

An EF "Buffer" instruction can perform the selection, if and
only if the buffer i~ "inactive" upon its execution. In any
case (\vhether the selec~i on could be made or not) the program
continues in sequence.

A short explanation of how this is made in the buffer control is given below:
A pulse from "Buffer Active FF = 0" is used in the buffer Start Control to
allow the pulses from 100 to pass through the appropriate gates and initiate
those pulses which will set up the buffer for its operation. If the buffer
is "active'\ the "Active FF" is in its "1" state and the buffer Start
Control can, therefore, not initiate the operation.

On the other hand the Start Control initiates a "Resume" signal, if the
operation attempted could be ~electe~ properly_ This "Resume" signal is

AA-4

usei (via Buffer Command Timing Circuitry) to generate a "Clear lOB and

~csu:::et' pulse. This means that 103 can be cleared only if the operation

sclecteu by the EF "13uffer" instruction can be performeu. Otherwise lOB
co::tL:ues holding the code, and any further reference of lOB establishes
3.:1 ICJ Lockout conuition.

~) Illustrative Exanple:

:':12 eX3:::pL~ belO\~ is a program which essentially is used after detection

J~ a ~~aJ ~rror, i.e. it tries to accomplish the following: Love back one

:~:::;:; :.(',a..j fcrha:-j one block; Test for Read Error; if none, place buffer

ceLt:.:';;! iI~to cO;7iputer and proceed. (TeO 1, Un~servo 2)

..l _r - b
3+1 ~. b+l

J7:2 : .. J ~~CC~CC a+2

aT0 : .. J ocoeo a+5
oT~

Y. ,.
U V 1 .. -.;

a+~; rr"' b+2 ~t

a-r-·) :.P 1 ':)170 a+10
a-r7 .: i) IOCCO c

t, 01 CC)O I-J 20COI
bTl 01 OCoC:: 2DDOO
~-()
.L~ I _ I'C'

Vv I (,:CiCC' G0200

.-.t fi:::st glar;ce Lothir:g see::1S to be LTong. but careful examination reveals

t!:dt th~ CC2?~te~ hill hang up continuously at the first of the 12010 En's

:'l:e :-eascn is the follm-;lng:

:LL; :=;-~ 6: LLl",!"eSS a is e:{ecuteu properly, i.e. the "i,:ove" code is sent to

T·=~~ Q~.': ~o:ri~~; \~.-ill be sta:-ted. At tl12 sa~e time the buffer is set to

:':·.s =: at ai.i . .:eS5 aTl will !lOt': be executed to the extent that the code

(t)-r-l)--7' IGJ, but Lot further, since TC.~ is locked out because of the flr~Iove"

operatIon. 1'11e cO::iputer, however, pl4oceeds.

T::e :,:J -1 at 3-r2 fi nds tf'e buffer in its "acti ve" state. It was programmed

to 1.'ai t fo:- t!~e co~;:;letion of the "uead Tape" operation, However, the

cC:-:ipute: no:: :':Zli t5 at this point, until the "f,'ove" operation will be finished.

As soon as ~ovi~q is c02pleted, the computer program continues at a+3, where
it tries to ~2~cct a ~~ad Srror. Since at this time reading has not even

bee~ starte~t no ~.ea~ :r:or can be detected and the program will proceed at
aT.). ;.t the; S3:JS ti::J:~ (bTl) ~, .. hich was in lOB has been sent to TCR, where

it set up the tI;~eaJ" orleratio!1, i.e. the buffer is "active" again.

The EF at uT.j is ex(:cuted such that the code (b+2)~I(;D. The proper
se1c;ctio[of the buffer operatio;; ("Read Buffer") cannot be made because

of the; fact tL.lt tl:e: t,~ff2r is "3ctive".

AA-J

The computer, however, continues at a+6, a+7. The first ER lviII, therefore,
hang up, since no word entered lOB from the buffer. This hanging-up
occurs at hlP I, i.e. no ~p 3 can be issued! This in turn means that the
buffer never can be set to "inaative", and a permanent hanging-up is

_ _ .. ~. _ '1 __ 1. accompl..lSneUJ

The above program is wrong because of the fact that another tape operation
was initiated at the time the buffer was still "active tf with moving. The
instruction at a+1 should be executed only if the buffer was found to be
"inacti ve" i, e. an f,~J 4 between a and a+l flould correct the program.

On the other hand you saw that the EF at a+1 itself did not stall the
computer, not even the EF at a+5. Had we arrived at a+5 at the time
when reading was finished, there would not have been any hanging-upl
Only the fact that (a+5) was executed during buffer activity caused the
computer to stall at the first ER.

The above example will certainly stress the fact that the programmer has
to test buffer activity first and initiate an operation which involves
this buffer, if an~ only if he found the buffer to be inactive. It will
also illustrate, ho~ careful a faulty program has to be examined in order
to find the real trouble source.

III The rl.lIto:natic Tape Controller

It is well knm'm tl!dt the rlutooatic Tape Controller is used to stop tape
move:nent t(;L:porarily Juring t';'eaJ Tape t' or "~':rite Tape" oreratiot;s. The
followi~g remJr~s are ma~e to define the exact situation which causes the
~TC to become effective.

a) Gead Tane ?ree ~un ____ c ____ _
During tl1is operation the .~~TC beC0:12S effective dfter the first (second,
third,) block I1LiS b2~n reaJ. If idthiJi approxiodtely 3 m sec. fro:n

the detection of the :':nJ of Block [.0 sF -Read Buffer" has been cxecuteu,
Ate issues a "Stop" signal to TCU which causes a temporary stop of tape
r.10vemcr.t. ,~n ~F "Read Duffer" \dll tben cause the tape to start again.

b) t!Lt~ I.a2.e j'~ee_ iD-t12
Here the nutomatic Tape Cm.troller becor.1Cs effective after the first

(seconu, third, , .•.•) block has been wri tten on tape. If wi thin approx­
imately 3 m sec. from the time at which the last word has been written on
tape an Sf -rIxiteBuffer" has not been given, ATC stops tape movement. An

EF if r i t e 3 u f fer" will the n i r: i t i ate the res tar t 0 f the tap e .

c) (~ . .o!!.s.Eflu~!2.c~§
heep in mlftu.: when you hcaJ Tape or I:~rite Tape, xrc will not stop the
tape in front of the first block, since neither an t'Er.d of Block" signal
(Jur-ing reatling) nor a "Last \'.ord \';ri te" sign31 from TCU was present.

AA-6 Guenther F. Paprotny
September 22, 1958

	000
	001
	002
	003
	004
	005
	006
	01_AdrSystem
	02_PAK
	03
	04
	05_OnesTransm
	06_1103_1105_Cmds
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39_1103A_IO
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	70b
	71_1105_Tape
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85_Interrupts
	86
	87
	88
	89
	90
	91_FloatingPt
	92
	93
	94
	95
	96
	97
	98
	99
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	AA-1
	AA-2
	AA-3
	AA-4
	AA-5
	AA-6

