1103A and 1105 PROGRAMLING

SPECIAL DISCUSSICN OF CCIIANDS
and

INPUT - OUTPUT EQUIPMENT

By
Guenther F. Paprotny
Univac Scientific and Univac 1105 Programming Training

INTRODUCTION

A&, Who mav read this manugl?

During the discussion of the 11034 and 1105 basic commands,

as presented in Chapter IV, it was assumed that the rezder
alresdy possesses some basic knowledge of those commands and
their applications., This knowledge rust not be less than that

of a student after 2 weeks of en 11034 or 1105 Prograrming course.

The meterial is presented to serve the following purposes:

1. as an sid in 5-week (or loneger) 11034 or 1105 programming
courses. 1t may be hended out to students as "class notes"
at the beginning of the third week,

2. &as a Reference Manual for experienced 11034 or 1105 programmers.,
In this respect the manual might answer questions with regard
to specizl apvlications of commands and to programmirg input -
output equirments.

3. as study meterial for experienced 1103 programmers who have
to learn 11034 or 1105 prosremming.

Le as self-study material to 11034 and 1105 programmers who wish
to increase their knowledge of the computer, its programming
and internal operation (internal operation to the extent
that only those machine operztions are discussed which affect
programming!)

B, Content of Manuesl

This manuzl contains a complete description of the 1103A and
the 1105 computers and their Input - Output equipments,

Chapter I describes the Address System of an 11034 or 1105 computer,

Chapter IT describes the functioning of the Program Address Counter.
The use for extraction of commands ig discussed as well as
restrictions for carries in PAK and their consecuences. This

is explained for comruters with one, two, or three banks of

core storage,

Chepter III explains "One's Transmission" in order to enable the
reader to understand the "Left Shift" and "Split" commands.

Chapter IV contains a special discussion of =211 1103A end 1105
commards, This discussion presents exact secuences, where necessary,
and points out "pitfalls" and computer faults because of the use

of A and G as pperands.

C)

D)

Chapter V explains programming for the fellowing Input=Qutput equipments:

The on-line electric Typewriter

The High Speed Punch Unit

The Ferranti Tape Reader

The on=line 80«column Card Unit

The Magnetic Tape System fFixed and Variable Block Length)

Whenever necessary for programming the equipment is described., Furthermae,
paragraph c) contains a description of the 1103A and 1105 lockout circuitry
from a programmers point of view in order to enable the reader to under-

stand why he has to program in this or that way during input=~output operations,

Chapter VI presents a discussion of the 1105 Magnetic Tape and Buffer System
and programming consequences,

Chapter VII discusses the 1103A and 1105 Interrupt Facility and its applica=-
tion for program controlled operations,

Chapter VIII describes the 1103A and 1105 Floating Point System,

Definition of Input=Output System for 1103A and 1105.

1103A:

Flexowrite.,
High Speed Punch Unit
Ferranti Reader

"*Bull" Card Unit (optional)

Magnetic Tape System (%10 Uniservos, One Tape Control Unit)

1105:

Flexowriter

High Speed Punch Unit

Ferranti Reader

"Bull"Card Unit (optional)

Magnetic Tape System (220 gniservos, Two Tape Control Units, Two Buffer
Units ')

1105 Programmers:

In order to study programming for the 1105 Computer read the whole
manual in the sequence presented., You may drop the description of
"On-Line Card Unit" and/or "Floating Point System”, if the computer
you will work with does not possess these optional features,

1103A Programmers :

Read whole manual in the sequence presented except Chapter VI and
Chapter VII, paragraph C, 2, Drop Floating Point and/or Card Unit,
if the computer you will work with does not possess those,

Joother 7 ﬁ“‘”’f

References:

a) Univac Scientific General~Purpose Computer System, ProqrammingiPX 18,
Sept. 356.

b) Programming Manual, Univac Scientific Computing System Model 1103A,
Manuscript Copy of section on magnetic tapes, Oct., 30, 57,

¢) Programming Manual, Rough Draft, Univac Scientific Model 1103A

d) Preliminary Programming Manual for the Univac 1105 Computing System,
US 108, March 7, 58

e) Univac Scientific General~Purpose Computer System, External Function
Modification to the Basic Computer, PX 150, Sept. 37

f) Univac Scientific General=Purpose Computer System, Modification to
Provide Two Additional Core Bays to the Basic Computer, PX 148, Sept. 57

g) Univac Scientific General=Purpose Computer System, Timing Sequences,
PX 21, Oct, 56,

CONTENTS

1) The 11034/1105 Address System

11)

I11)
V)

V)

a) Magnetic Core Storage
b) Arithmetic Registers
c¢) Magnetic Drum Storage

N TYIVoon) A deencana
U} l1ileydl AUULTDITD

The Program Address Counter PAK

a) General Remarks
b) Restrictions for Carries in PAK

1) Computer with one bank of core storage
2) Computer with two or three banks of core storage

Remarks on "One's Transmission"

Special Discussion of Basic 1103A/1105 Commands

a) General Remarks

b) "Transmit" Commands

c¢) "Arithmetic"Commands

d) Jump and Stop Commands

e) Commands Referencing Subroutines
f) The "Left Shift" Commands

g) The "Left Transmit" Command

h) The "Split" Commands

i) The "Q-Controlled" Commands

j) The "Controlled Complement™ Command
k) The "Repeat' Command

1) The "Scale Factor" Command

The 11034 Input Qutput System

a) The On-Line Electric Typewriter (Flexowriter)
b) The High Speed Punch Unit
¢) "Input-Qutput" Commands EF-v, ERjv, EWjv
1) The EF-irstruction (general)
2) The Information Flow from and to Ext. Equipment
3) The I0a-and I0B-Lockouts, ER jv, EW jv
4) The EF-instruction (details)
d) The Ferranti Paper Tape Reader
dd) Drum Zone Selection
e) The "Bull" Card Unit as On-Line Equipment
1) The 60-Column Card
2) General Description of Read-and Write Channels

3} Selection of Card Unit Operations, Bit Assignments

4) Reading of Cards
5) "Writing" on Cards

Page

Pt ot poet

[N JC I L]

wn

39
41
44
44
44
45
48
49

50

51
51
52
53
53

6) Summary on Programming "Read" and "Write" Operations54

7) Faults

&) Manual Preparation of Card Unit for Program
Controlled Operation

9) Remarks on Timing

f) The 1103A Magnetic Tape System, 1105 Bypass kiode
Operatiorns

55

56
56

57

I.

II.

111,

Fixed Bleck Length

A) Representatien of Data en Tape

B) Tape Format

C) Registers of the liagnetic Tape Contrel Unit
D) Selectien of hagnetic Tape Operatiens

E) Discussion of Medes ef Operation

F) Checks made during "Read”™ Operatiens

G) kost Frequent Programming Faults

H) Miscellaneous

J) Sample Prograns

Variable Block Length

A) Data Representation and Tape Format
B) "Write™ Operation
C) "Read” Operation

1) End of Block Detection

2) Parity Error

3) kied 6 Error

4) Parity and kod 6 Error

5) End ef Recerd Detection

6) Summary

Flew Chart for Read Operation

D) Step Tape Operatien

E) Heve Ferward (er Backward))

F) Rewind, Rewind with Interlock, Change Bias

G) Selection ef Variable er Continuous Input blcde
H) Sample Programs

J) Centinueus Data Input

Tape Format Required by Off-Line High Speed Printer

VI) The 1105 Magnetic Tape And Buffer Systenm

A) General Intreduction to the 1105 Buffer System
B) Physical Structure of the Buffer System
C) Information Flow via Buffers
1) Computer «— Buffer
2) Buffer «— Tape
D) Buffer States
1) "Load” and "Unload”
2) Buffer "Activity”

E) Programming for Write Operations Using Buffers
4A) Fixed Bleck Length
£) Variable Bleck Length

F) Pregramming fer Read Operatiens Using Buffers
&) Fixed Block Length
ﬁ) Variable Bleck Length

G) Stop after Read er Write Operatiens

H) Selectien of Bypass Buffer kede

¥) Autematic Tape Centreller

K) Some Timing

L) Faults

i) Sample Pregrams

7

71
71

72
73

73
75

76
76

71
79

80
€0
81
82
83
63

ViI)

VIII)

The 11034 and 1105 Interrupt Feature

A) General Explanation
B) liodification of the Computer Program by an
Interrupt Sigral and Programming Consequences

1) Yhen does the Interrupt become effective?
2) liodification of P 6 by the Interrupt Signal
3) Programming Consequences

C) The Program Controlled Interrupt

1) The "Bull" Card Unit
2) The 1105 Buffer System
3) Other Equipments

The 1103:/1105 Floating Point System

A) Hepresentation of humbers

E) Floating Poiunt Commands

C) Some Remarks on Machine Cperations Occurring
During Floating Point Arithmetic Processes

D) Use of "Transmit" and "Compare” Instructions
for Floating Point Numbers

APPZNDIX

Table
Table
Table
Table
Table
Table
Table
Table

Special ilemarks oi the Buffer Systenm

I: QRead Sirgle Cards '

I1I: Dead Consecutive Cards, Single Card hode
11I: dead Consecutive Cards, Free Hun

1V: FPunch 3ingle Carus

V: Punch Consecutive Cards, Single Card hode
VI: Punch Consecutive Cards, Free Run
VII: Head anug Punch Simultaneously, Single Cards

VIII: Bit Assignments for lagnetic Tape Operations of the
1103~/11C5 and for Buffer Operations of the 1103

Page

91
93

98

98

AAl thru AAG

Al
A2
Ad
AS
Ab
AT

A9

AlC

I) The 1103A/1105 Address System

The core storage of the 1103A and the 1105 computers consists
of up to three (3) banks of cores. One bank of core storage
holds 4096;0 36-bit-words and is a standard equipment.

The addresses are:

MCS O (first bank): 00000 thru O7777 (octal)
MCS 1 (second bank): 10000 thru 17777 (octal)

MCS 2 (third bank): 20000 thru 27777 (octal)

e et . —

The addresses of the 36-bit Q-register are:
31000 thru 31777 (octal)

The addresses of the 72-bit Accumulator are:
32000 thru 37777 (octal)

c) Magnetic Drum Storage ("Double Drum")
The magnetic drum storage is divided into two (2) zones; zone A

and zone B. Each zone possesses 16364, registers with addresses

40000 thru 77777 (octal)

Therefore we have 2 registers 40000, 2 registers 40001, etc. If
e.g. a reference to 40000 is made it depends upon the zone -
selection made earlier, whether "40000 zone A" or "40000 zone B"

is employed. This zone selection will be described later. (See
page 50.)

d) 1llegal Addresses
The illegal addresses of the computer are, if it is equipped with

one bank of core storage: 10000 thru 30777 (octal)
two banks of core storage: 20000 thru 30777 (octal)
Three banks of core storage: 30000 thru 30777 (octal)

11) The Program Address Counter PAK

PAK is a 15-bit register which serves in two ways:

1) as a storage for the address from which the next command is
to be extracted.

2) as a repeat counter during the execution of a repeat sequence
also controlling the advancement of the u- and v-address of the
repeated instruction. (This will be discussed under "Repeat
command".) 1

The extraction of a command from storage and its execution is based upon
eight (8) Main Pulses, MNP 6, MP 7, and MP O thru NP 5.
NP 6 and)P 7 extract a command from storage,

MP O thru MNP 3 execute this cammand.

A computer hiaster Clear which precedes all operations of the computer sets
it automatically to MP 6 and PAK to 40000. Before depressing the Start
button the operator has to manually insert the-address at which the program
starts, into PAK (if this address is different from 40000g).

Now the following sequence of steps takes place upon starting operation:

(It is pointed out that one box of the flow diagram does not represent one
clock pulse)

_____ Ao
iClear PCcR l

PAK — SAR PAK to SAR, advances PAK ?y 1, and reads the
word from the storage register whose address
is now held in SAR, into X.

MP 6 essentially transfers the address from

Advance MP 6
PAK

)

Initiate Read:
Clear X
Wait Int. Ref.

PR, SR
A T from
Clear SAR 7 MP 7 brings the word/ X into PCR, where it
later will be interpreted as command.
| X)—KR | ,-.JL__._ iP 7 also clears SAR, since this will be used

during the execution of the command.

SAR = Storage Address Register, a 15-bit register. When reading from or
writing into a storage location the computer "looks" at SAR in order
to determine the address of this storage location. Notice that- SAR
is not cleared, before the transfer PAK to SAR is made. However,
each "Read into X" and "Write from X" sequence clecars SAR immediately,

after it used it., This involves transmissions between X on one side
and core, drum, A, and Q on the other side.

But notice; after a "Shift" sequence SAR is not cleared. This is

the reason for some rather unexpected results during special uses
of "Left Shift" and "Split" commands, as explained later.

PCR = Program Control Register, a 36~bit register.
A word entering PCR is interpreted as command.

PCR consists of:

MCR = Main Control Register; 6 leftmost bits of PCR
which hold the operation code.

UAK = U-Address Counter; 15 bits holding the u-address
portion of the command.

VAK =

V-Address Counter; 135 bits holding the v-address
portion of the command. ‘

Special use of UAK and VAK is explained later during the

discussion of a command, whenever it is necessary.

b) Restrictions for Carries in PAK
When PAK is advanced a "1" is added to the number (address)
held in PAK. The carry from one stage of PAK to the next

stage is, however, restricted in the following way:

PAK = xxx ?xx XXX XXX XXX (binary)
~
T K PA
PA}lJ PAK | Ko
PAK13
PAK12

Restriction present with all 1103A/1105 computers:
There is never a carry from PAK13 to PAK,,.

In addition to this the following restriction is imposed on PAK:

1) Computer with one bank of core storage
If PAKy4 = O, there will be no carry
from PAK}, to PAKjj.
If PAKj4 = 1, there will be a carry
from PAK;; to PAK,,.

Consequences for a computer with one bank of core storage:
Assume PAK = 100 000 000 000 0009 = 40000g

Here PAK can be advanced up to

111 111 111 111 111y = 77777,
Lecause the carry from PAK;; to PAK}o can be made.

-3-

Advancing PAK again by 1 we have:
111 111 111 111 111
+ 1 (binary)
100 000 000 000 000

That means that in PAK

177778

+ 1 (octal)
400008

Assume PAK = 000 000 000 000 0002 = 000008
Here PAK can be advanced to
000 111 111 111 1112 = 077778

Because of PAK;4 = O there will be no carry
from PAK}) to PAK;5. Therefore, adding a
"1" again we have:

000 111 111 111 111

+ 1 (binary)
000 000 000 000 000

That means that now in PAK

o777
+ 1 (octal)

00000

2) Computer with two or three banks of core storage.
In this case the restriction mentioned under 1) depends upon a
switch set on the Supervisory Control Console. This is the
so-called MCS-Section Switch. It will be set to one of the
following two positions:

SINGLE - If the switch is set to this position the restriction

for the carry is imposed on PAK as discussed under
1) above, i.e. there will be no carry from PAK}] to

NORMAL - Setting the switch to this position means to drop
the restriction mentioned under 1). That means
that now a carry from PAK]) to PAK;, can be made

-4-

regardless of the value of PAKj4. (Only exception:
see "Repeat Command").

Let us look at the Normal setting of the switch. Here the
programmer has to keep in mind the following fact:

a) Computer with two banks of core storage:
PAK can be advanced from 00000g thru 17777g.

But 177778
+ 1

results in PAK =000008.

b) Computer with three banks of core storage:
PAK can be advanced from 00000g thru 27777g.

But 277778
<+ 1

results in PAK= 00000g

(In order to find out how this is accomplished by the machine
refer to Block Diagrams)

III) Remarks on "One's Transmission™

Experience shows that some confusion exists even among experienced
programmers of the 1103/1103A/1105, if the word "one's transmission"
is mentioned. However, as pointed out during the discussion of
PAK (see: PAK—>SAR), it is absoiutely necessary that a programmer
understands the meaning of this word and the results caused by a
one's transmission, if he really wants to understand the Shift-and
Split-Commands (which will be discussed later in details).
Without going into engineering details let us consider the final
results after a one's transmission from PAK to SAR:
Here One's Transmission means:

If PAK; = 1, switch SARi to "1",

If PAXj = 0, do not touch SARj.

=1214)

Assume PAK = 000 110 100 010 011, = 06423g
After one's SAR = 011 001 Ol1 110 0102 = 31362&
transmissioq} SAR = 011 111 111 110 Olly = 37763g

This result can easily be obtained applying the above rule.
The example also shows that the result may be obtained by applying
the following logical addition in binary:

-3

0+0=0
O+1=1
'1+40=1
1+1=1

This means that you merely may add the two numbers in binary in the
normal way with the exception that 1 + 1 = 1., No carry will be produced.

It should be noticed that all transfers as e.g. storage—X, X—3>storage,
X—»Q, etc. are made by one's transmission. However, in order to obtain

the correct result in the register into which has to be written the computer
automatically clears this register first. Thus, if e.g.

(X) = 0—0100
(v) = 1——1100

and (X)—> v has to occur, the computer produces.
Clear v.
One's Transmission from X to v.

This is merely stated here. The only exception from this general
rule which is the concern of the programmer is the above mentioned
one's transmission from PAK (UAK, VAK) to SAR or SAR to PAK.

IV) Special Discussion of Basic 11034/1105 Commands

The following paragraphs represent a discussion of all commands

except Floating-Point-Commands and the Input/Qutput-commands

EF -v, ER jv, EW jv. This discussion refers in particular to

programming situations which either would cause a computer fault
or an unusual result; it requires, however, a basic knowledge of
these commands on the part of the reader.

a) General Remarks

During most of the commands numbers are transferred in the
computer from

storage to storage
storage to A or Q

A or Q to storage

plus certain transfers to input/output registers (discussed later).
All these transfers are made via the X-register (Exchange Register).

-6-

Two of the above transfers are of special interest:
Accumulator to X, X to Accumulator. These are transfers
between a 72-bit register and a 36-bit register requiring

special discussion.
1) Accumulator to X:
With the exception of one command, the LT jk v, there will

always be a transfer of (AR) to X. This is done automatically
by the computer. Thus, the computer never picks up (AL)
except in a LT jk v with j = O.

2) X to Accumulator:

Here the situation is somewhat different. A is an additive
register which means that a number may be added to (A), but
not transferred to A, If a transfer is to be obtained the

computer automatically executes the following steps:

Clear A

(4) + DX) —— A
This results in the double extension of (X) in A, i.e.
(Ag) = X and (A;) contains sign-bits.
However, some commands do not use the double extension.
These are the three (3) Q-Controlled commands and the four (4)
Split-commands. They use the single extension S(X), i.e.
(AR) = X and (Ap) contains zeros.
Keep in mind that the Q-Controlled and Split commands
are the only ones which make use of S(X) instead of D(X).
All other commands always use D(X), if (X) has to be added
to (A).

b) "Transm{}ﬁ_Commaan

TP u v Sequence: (u) —X *
(X) — v **

#% Jf v=A: Clear A
(A) + DX)——A

& If u=A: (AR)--)x
™ uv These two cemmands are executed like the TP
™ uv except that [(u)[or (u)l, respectively, are

transferred

7=

Notice that no faults ever occur during the execution of one
of these three commands because of the use of A or Q as u- or v-
addresses. (Here, and from now on, it is assumed that no illegal

addresses like 30000g etc. are used as u or v. The use of an
illegal u- or v-address, naturally, results in an SCC-Fault,
SCC being Storage Class Control.)

TOuv Sequence:
uoaguls-—)xzqxls
x29 -....Xis — 729 coooovls

To write it in a different way:
(), — vy
Keep in mind:

V35 ceeen v3p and vyy4vVo remain undisturbed

If u=A; (Ag)u-—+ Vu
u=0 (@, — v,

However, v = A or Q results in an SCC-Fault.

TVuv Sequence:
u14uo-—)X14Xo
Xi4 ceeeXp = Vg4 ceeeaVg

or, written in a different way:
(u)v-—o Vo

Again, v35v)5 remain undisturbed

If u

A: (Agly — vy

0

Like in the TU u v v = A or Q results in an SCC-Fault.
Therefore keep the general rule in mind:

It is not possible to transfer parts of a 36-bit number
into A or Q.

-8~

¢) "Arithmetic" Commands

RA uv Sequence:
(W)= X
Clear A
(A) + DX) —A

(v) =X
(A) + DX)—A
(Ag)—X
X)—u¢*

* omit, if u= A

If v = A the above sequence shows that then
(u)f =2 - (U)i
provided that no "overflow" into the sign position (bit i__)

35
occured during the addition.

RS uv The sequence of this command is equal to
that of the RA u v except that (v) is
subtracted from (u).

n
o

If v=A: (ug¢
(A); =

!
o

AT uv Sequence:
(u)—X

(A) + DX)=— A
(Ag)=X

X))o v =

* omit, if v=A

ST uv The sequence is equal to that of AT u v
except that D(u) is subtracted from (A).

Notice that the above four commands RA, RS, AT, and ST never
result in a computer fault. An "overflow" into the sign

position i35 occuring during an addition or subtraction will,
therefore, not be noticed during machine operations. If the

programmer suspects such a possibility for an overflow he may
e.g. apply the method suggested in the following paragraph:

-9-

Assume (u)j = O] =] (binary)

(v);=0 01 (binary)
The command RA u v results in the following:
D(u)— A: (A) =0 001 1
D(v) =0 000 01 + (binary)
A
R

(Ap) = u: (u)f = 10 0 (binary)

f
As it can be seen: The sum of the largest positive number
in u, (u)j = 235 -1, and a "1" results in a negative number
in u, (W ==(23% ~1), which is the negative number with
the largest absolute value.

Assume the command following the RA u v is an

EJ u w. This will test whether or not D(u) is
equal to (A). In the above case this equality
would not occur.

Therefore: Whenever the programmer suspects an overflow
during an addition he may test this by giving the following

commands:
a RA uv

atl EJ uw
a+2 . o 06 0 0 0 00

Upon jumping to w the programmer knows that no overflow
occured. But if the computer proceeds with the next
instruction in sequence (e.g. at a+2 in the above example)
the programmer can provide some means which will indicate
to him that an overflow occured.

MP uv Sequence:
(u)—X
Clear A
X)—Q
(v)—X
Form in A the (true) product
of (Q) and (X).

Giving this command the programmer has to keep in mind
two things:

(Q); is destroyed and replaced by (u)
(A); is destroyed and replaced by (u) -« (v)

-10-

Moreover: if v = A: (A)f 0

if v = Q: (A)f = (u);

It is obvious that this command never results in an

2

overflow into the sign-position A7j.

MA uv Sequence:

(u)—X
X)—Q

Shift (A) left 36 places

(v)—>X

Add the product (Q) - (X) to (A) using
an addition process.

This command results, as it is well known, in (A)g = (A)j

+ (u)-(v). However, during the addition an overflow into
the sign-position might occur depending upon the values

of (A);, (u), and (v). The overflow might occur, if (A)j

is very large such that A7) # Asy. The computer tests

this condition after the above shift of 36 places in A

has been made, i.e. it tests, whether or not Azs # Asy.

If this is the case computation stops with an Overflow-Fault
("A"-Fault) indicating the possibility of an overflow.

Notice that Ag5 # Agy or, originally, A7; # A4 does not

mean that an overflow will occur in any case.

DV uvw Sequence:
(u)— X

(Q)==3 v *, (A)y 2 0 is Remainder

Clear A

(A) + D(Q)—A,
i.e. remainder is lost.

Notice that the remainder in A always is positive. This
can cause differnt results in Q and A during two divisions
performed with the same arithmetic number.

-11-

To illustrate this let us take the number-;zz .

3
First case: (A)i =+ 7
(wj = -3
R P |
here._ 3= 2 i:g‘
Therefore:
quotient (Q)f= -2
remainder (A)f = +]
Second case: (A)i = -7
(u)i = +3
here: = - -3+
3 3
Therefore:

quotient (Q)g = -3
remainder (A)f = 42

It is clear that the quotient of a division might consist

of more than 35 significant bits, as e.g.

(a); = 260, () = 22. quotient = 298
Such a number cannot be placed into Q. Therefore, if this
situation occurs, i.e. an "overflow" in Q is about to take
place, the computer stops with a Divide Fault ("A" Fault).

Notice that at this time (A)j will be already destroyed.

d) Jump and _Stop Commands

The following commands cause the computer to "ask the question”

EJ uv Is D(u) = (A)?
T uv Is D(u) > (A)?
2] uv IS (A)=02?
SJ uv Is (A) 207
Q) uv Is (QQ 2072 *

If the answer to any of the above questions is "yes™ a jump to
address v occurs,

* Keep in mind that after the decision "(Q)2 O or not" is made the
content of Q is shifted one place to the left in any case.

-12-

If the answer turns out to be "no" the sequence of steps which
has to follow depends upon the nature of the command:

One-way-jump (EJ, TJ): take next instruction in sequence
Two-way-jump (SJ,2J,QJ): jump to u.

The above commands do not alter the contents of registers
involved in their execution,

IJ uvw Sequence:
w—X
Clear A
(4) + D(X)=-> A
(A) -1=4
Is Ay; = 07

If yes:
(AR)f -—) U
jump to v

If no: ..
take next instruction in sequence

The reader will probably know that this command is mainly used
for performing "loops” in the program, i.e. for executing a part
of a program several times. Keep in mind that, if a part of

the program has to be executed n times and the IJ is at the end
of this part (where it will be in almost all cases), the "index"
(u) has to be = n-1.

Also notice: after the loop has been performed n times and the

computer continues with the instruction immediately following the
1J, (wg = 0.

M v

The sequence of steps resulting from the execution of this
command depends upon the value "j". This j is represented by
the leftmost octal digit of the u-portion of the command, exactly
igg iog ig7 in binary. Let us discuss the different values for j:
jJ=0, i.e. MJ 00000 v
This is an unconditional
jump to address v.

j=1, i.e. MJ 10000 v
j=2, i.e. MJ 20000 v
J

3, i.e. MJ 30000 v In these three cases there
are two possibilities.

-13-

Either the switch on the console which corresponds to the
number used in the command (1,2, or 3) is set

then: undonditional jump to v
or the corresponding switch is not set

then: take next instruction in sequence.

Keep in mind: the above mentioned switch on the console
can be set or released, if and only if the
computer is not operating. During computer
operation a setting or releasing of these
switches is blocked.

Therefore: if one part of your program
makes use of a j = 1 set, and another part
requires j = 1 to be released then you have

to stop computer operation with a MS jv
(see below). Now the switch may be released,
and operation can be resumed.

, 1.e. MJ 40000 v
i.e. MJ 50000 v
, 1.e. MJ 60000 v

, i.e. MJ 70000 v

These values of j do not possess
any corresponding switch on the console. The execution of

these four (4) commands has to be discussed for two cases:

e e o
|
N oo

1) 1103A, i.e. computer without Buffer System:
Here the j is actually determined by the bits

ip8 iy which means that iog is disregarded by the

machine., Therefore, we have the following situation:

If 129 igg ig7 equals it results in a "machine j" of
000 or 100 j=0
001 or 101 ji=1
010 or 110 j=2
011 or 111 j=3

As you can see: a MJ 00000 v is equivalent to a
MJ 40000 v,, a MJ 30000 v is equivalent to a
MJ 70000 v.

2) 1105, i.e. computer with Buffer System:

In this case any MJ jv with a j of 4,5,6 or 7 represents a
completely different kind of command used for Buffer
operations. This will be discussed under "Buffer System".

=14-

The following remarks refer to all jump commands:

If v= A and a jump to v occurs: SCC-Fault

For two-way-jumps in addition:

If u= A and a jump to u occurs: SCC-Fault

Notice that the fault occurs, if and only if a jump to A is
made, i.e. if the programmer tries to extract the next
instruction from A. However, the command EY u A with (A) = O,

(u) = 1 will, for instance, not result in a fault,

Notice: If a jump to Q is made in any jump-command a fault
is not generated. The machine will pick up (Q), send it to
PCR, and interpret this as command. The programmer will
certainly never try to jump to Q. If this, however, happens
because of programming errors, there are three possibilities:

(Q) contains an illegal operation code: MCT-Fault

(Q) contains a jump command: Jump will be performed normally.

(Q) contains a legal, but not jump, command: This will be
executed. Since PAK is advanced, say
from 31000 to 31001, the next command
is again taken from (Q), etc. Notice:

you might advance PAK, until it reads
32000. Then: SCC-Fault]
NS v There exist again switches on the
console for j = 1, 2, 3.
j = 0: v — PAK
Stop
Notice: v-— PAK indicates: erase the address held in PAK, and
replace it by v. Therefore, a "jump to address v" has been
set up by the machine, but before continuing at v a stop
is made.

j = 1,2, or 3 and corresponding switch set: v—PAK
: Stop
and corresponding switch not set: v-—PAK
As you see: v-—PAK, i.e. jump to v, takes place in any case.
j controls stopping or not stopping only.

Refer to MJ j v in order to see the difference
between that command and the MS j v!

-15-

j = 4,5,6,7: For both computers, 1103A and the 1105, these values
of j correspond to the values 0,1,2,3 in such a way that

a j = 4 results in a "machine-j" of 0

a j = 5 results in a "machine-j" of 1
a j = 6 results in a “machine-j” of 2
a j = 7 results in a "machine-j" of 3
PS - -

This is the Program Stop command. If this
command is given computer operation can be
resumed after a computer Master Clear only.

Two commands are used for referencing subroutines. These are
the Return Jump RJ u v and the Interpret IP - -,
RJuv Sequence:
PAK—X14Xg
Clear PAK
v—»PAK

x14 .o'o.xo-’u14 -.oo.uo

The sequence for this command is given here in details in order to
inform you about the real facts, sinee the explanation to be found
usually might cause confusion on the part of the reader or might
mislead him. This incorrect explantion I refer to is:

If y is the address of the RJ uv, then y + 1—u,, v—PAK

To state it again: this last mentioned explanation of the RJ uv

is incorrect.

Let us follow the correct sequence with an example:
Assume you have the following program: Start 00150 RA 01000 02000

00170 RJ 00170 00150
00171 == cecem cmeee
At the very beginning of the execution of the RJ uv you have:

PAK = 00171 (since it is advanced by 1 already)
PCR = RJ 00170 00150

Executing the RJ the computer saves the address held in PAK by
-16-

placing it into X, erases PAK, and continues with: 00150 —3) PAK
X)y = 00171—> 001'(’0v

Thus the RJ at 00170 is now modified and reads

RJ 00170 00171
and a jump back to 00150 is made. If the RJ at 00170 is
executed again later (and has not been changed by some other
means in the meantime) it will not jump you back to 00150 again,
but you will proceed with the next instruction in sequence.
As it can be seen: the explanation y + 1—3 u, would mean
that 00171 is sent to 00170, changing the RJ before the jump
is initiated. According to this explanation you had to pick
up 00171 and to place it into PAK (by v—PAK). This is not
the case.
You might, however, say: at least the explantion is correct
as far as y + 1 is concerned, because the above example picks
up 00171, and this is y + 1.

This is right in the above case and will always be so as long
as no Interrupt Signal is generated because of the use of the
Interrupt Feature, However, if a RJ is executed right after
the generation of an Interrupt Signal it will pick up the
address held in PAK which will not be the above mentioned

y + 1. (See under "Interrupt Feature")

Thus keep in mind:
Executing a RJ u v means to place the address held in PAK at
that time into Xy, placing v into PAK and, finally, (X)y into

Uy. .
Usually the Return Jump is not used in' the way as described in

the above example. Normally the v-address of the RJ u v denotes
the entrance of a subroutine, and the u-address denotes the

exit of this subroutine, where e.g. (u) = MJ 00000 30000.
Keep in mind: wusing the RJ u v means that the entrance and
exit of the subroutine referenced may be anywhere in the core
or drum. |

As already discussed earlier an SCC-Fault occurs in the
following cases:

If v = A: SCC-Fault (do not jump to A)

If u= A or Q: SCC-Fault (do not try to write parts of a
36-bit number into A or Q)

For v = Q refer to the explanation given under "Jump and Stop

Commands".
:17:

f)

Ip - -
The ten (10) octal digits which form the u-and v-portion

of the IP-command are insignificant. They are completely disregarded
by the machine during the execution of the IP --,
The sequence of steps which takes place can briefly be described

as follows:
PAK—> v-portion of F;

Fo = 00001 —> PAK

Address Fy is determined by a switch on the Supervisory Control
Console which can be set either to "00000" or "40001". Its normal
setting is "00000" (also refer to "Repeat Command" which uses the
Fy-Switch).

Assume F; = 00000. In this case the address held in PAK at the
beginning of the execution of IP (which will be = address of
1P-command + 1 in almost all cases; see remarks under RJ uv) is
transferred to the v-portion of the content of 00000, and a jump
to Fg = 00001 is initiated. Thus the IP referenced a subroutine
whose entrance is 00001, exit 00000.

If F) = 40001 keep in mind that now the entrance is again F=00001,
but the exit of the subroutine will be 40001:.

The usefulness of this command is based on the fact that the ten
octal digits of its u-and v-portion may be used for storing other
information as e.g. parameters, pseudo-codes, addresses, etc. which
may be used by the subroutine to which the IP -- refers (Interpretive

System).

As you know shifting can be performed in two registers: in the
Accumulator and in the Q-register, There is only a shift to the

left. Moreover in either register we have the so-called "end around
shift", i.e. you do not "drop off" bits at the left end of the registers.
The two "Left Shift" commands are LA u k and LQ u k. The v-portion of

either command contains a number k which determines how many places a
word in A or Q is to be shifted to the left. Do not forget: a binary
word is shifted by the computer, i.e. k refers to "binary places".

-18-

Example:

01001 in binary, k = 4,
After shifting has been performed (Q), is:
Q) = 0. 010010000 in binary.

Assume (Q); = O

Let us examine the sequence of the LA u k:

(wy—X
Clear A
(A) + D(X) —A

Shift (A) k places left

} omit, if u=A

(AR)f =3 T
where address r is given by the Boolean
logical sum of (u) + (v-k)

v denoting the v-portion of the LA u k.

The first part of the execution of this command is probably well
known to you: take the double-extension of (u) place it into A,
and shift k places left. (If u = A, just shift (A);). But now
comes a point which has to be discussed in details, because the
steps to follow depend entirely upon the number contained in the
v-part of the instruction LA u k. This v-part consists of 15j¢
bits. However, just 7 bits are used for the representation of
the number k, as indicated below:‘
v-part of LA u k: »xotx xxx xx% XXX XXX
8 bits "k

How does the machine determine how many places it has to shift?
This is done in the following way:

After D(u) is in A, the v-part of the LA u k is transferred to
SAR (from VAK). The rightmost 7 bits of SAR are used as a Shift-
Counter, SK, and the machine performs the sequence:

Is SK = 0 000 000 ? (binary)
If no: Shift (A) one place, subtract one from
SK, and go back to above question.

If yes; continue with the following steps:
T Transfer the u-address {from WAK) by
one's transmission into SAR. Now write
(AR)f into the storage given by the number
contained in SAR. If this address is an
accumulator address do not touch (A)g, but
leave it as it is.

-19-

As you can see: the transmission of u to SAR will result in

SAR = u, if the leftmost 8 bits (as shown above) were all zeros.
If they are not all zeros, you generate the Boolean logical sum
("1+ 1=1") in SAR between u and what was left in SAR at the
end of the shifting. This ﬁight generate an address completely

--different from u.

Let us follow three examples:

1) Shift (01050) 17; places and place (Ag)y back into 01050.
Here: LA 01050 00021
M

v-part of LA-command
Before the shifting of D(01050) in A takes place 0002lg —> SAR.

Therefore, SAR = 000 000 00Q_010 001 (blna:y)
k .
After the shift SAR = 00000g. The transfer u = 01050g to

SAR results in SAR = 01050g, and thus (Ag). —>back to 01050.

2) Shift (01050) 17;q places in A and send result to 05250.
Here we will use the command LA 01050,05221

v-part!

Before the shifting
SAR = 000 101 01Q 010 001 (binary)

k

After the shift of 17,4 places (notice that k = 21g = 17)0)
we have: : :

SAR = 000 101 010 000 000 (binary)
The one's transmission 010508-$SAR results in the following:

+ (one's transmission) 000 101 010 000 000 (binary)

' 000 001 000 101 000 (binary) -
000 101 010 101 000 (binary)
or 0 5 2 S5 0 (octal)

Therefore, we now send the anSWeri(AR)f to 052503. as intended.

Notice that you always have to carefully figure out the v-part
of the LA-command, if you wish to send the answer to a register
different from u. Also notice that this register must have an
address which has to be at least larger than u by 200g, In fact,
it has to be larger by n. 2008 than u, n =@, 1, 2, 3, o

-20-

3) Shift (01050) 17;p places in A and leave the answer in A,
Here the command LA 01050 32021 will give us the desired result,

because SAR after the shift

‘u = 01050g

011 010 000 000 000 (binary)
000 001 000 101 000 (binary)

011 O0l1 000 101 000 (binary)

won

As you see SAR = 33050g which denotes A.

Notice that any core-register may be used for this purpose, i.e.
for shifting in A and leaving the answer in A. (Compare this
with the remarks made on the LQ u k for leaving the answer in

Q. See below).

Generally speaking the above mentioned address r can be easily
found by subtracting at first k from the number which makes up
the v-part of the LA u k. Then address u has to be added to this

in binary such that 1 +1=1. Doing so with the above examples

we have:
1) v =0002lg, k=21, v - k= 00000g, u= 01050g.
Therefore u + (v - k) = 01050g
(T1logical sum, 1 + 1 = 1)
2) v =0522lg, k=2lg, v -k =052005, u= 01050g.

Therefore u + (v - k): 000 001 000 101 0002
-4+ 000 101 010 000 0009

000 101 010 101 0005

u+ (v - k) = 05230g
(Tlogical sum, 1 +1=1)

'3) v=3202lg, k=2lg v-ks= 320005, u = 01050g.

Therefore u + (v - k) = 33050g = A
(f logical sum, 1 +1 = 1)

The LQ uk instruction works in the same way with the exception

that u is now placed into Q and shifted there. Again SAR is used
like in the LA u k. Thus you can send results to registers different
from u. '

-91-

g)

There is only one situation which requires special discussion,
This is the case that you wish to shift a number in Q and leave
it there.

You have seen that yeu may use any core-address in order to shift

a number in A and leave the result there. You will do that by
giving a LA u 32000 + k command, as e.g.- LA 01050 32021. This

may give you the idea that you may do the same with a LQ u k command,
i.e. may try to shift (02000) in Q and leave the result in Q by
giving a LQ 02000 31003 (shift 3 places). This, however, is not
true. The result will be sent to A (that it also stays in Q is
beyond any doubt). The reason is that

u - : 000 010 000 000 000, + (one’ o
SAR after shift : 011 001 000 000 0009 one's transmission)

011 011 000 000 0002

results in 33000g in SAR which is the address of A.

It can easily be seen that the following addresses may be used
in order to leave the result in Q without sending it to any
other place:

00000 thru O1777 (octal)
10000 thru 11777 (octal)
20000 thru 21777 (octal)

No other addresses will accomplish this.

The "Left Transmit" Command
As it was said earlier: the computer always picks up (Ag), if a
number has to be obtained from A. There is only one command which
takes the content of A; provided that the programmer specifies this.

It is the LT jk v.
Sequence:

Shift (A); k places left
If j = 1: (Ag)p —X
If j = 0: (A)y =X
In either cCase:
(X) v *
if v=A: Clear A
(A) + DIX)=—A

The u-portion of the command contains the number jk, such that

zx¥.xxx x&&J%?ggggy

I oo

As you see: the rightmost 7 bits of the u-portion denote the number k,
but one bit is used for determining j. All other bits are disregarded

by the machine during the execution of the LT-command, They also do
not affect the LT itself or the sequence of steps to follow, if they
are different from zeros.

The j is, programwise, given by the leftmost octal digit of the u-portion
of the LT jk v. Therefore:

0 = 000 1 = 001,

9 = 0102 a}l result 3 = 0l1y result in a
42100,) wmachine - j" 5 = 101, "machine - j"
6 = 1102 of "O" 7= 1112 of "1"

This means:

J is an even digit: (Ap)—X

J is an odd digit: (Ag)=— X
This decision "even or odd" is made by the machine such that it "examines"
the bit UAKjo (do not forget: during its execution the LT is in PCR).

h) The"Split” Commands
All four split commands have in common that the single-extension of

a number is added to (or subtracted from) A.

SP u k Sequence:
(u) =X
Clear A
(A) + SX)—>A
Shift (A) k places left

The number k denoting the number of places (A) has to be shifted is,
as in the LA-and LQ-commands, given by the rightmost 7 bits of the
v-portion of the SP u k command. The remaining 8 bits of this v-part

are insignificant for the execution of this and the other 3 split commands.
They, however, affect the sequence which follows with the next MP 6 (see

under "Program Address Counter"). This requires a detailed discussion.

The question is: what is left in SAR, after the shifting of k places

has been made? Obviously SAR will contain all zeros in the rightmost
7 bits, but the leftmost 8 bits will be equal to those stated in the

v-part of the SP u k. Example:

(DS9NDY = Ch NRNDE NIANS
Tl ava g DI VIULY voauo

Here, k = 5, Thus, after the shift we have
SAR 000 010 100 000 000 (binary)

SK, now = 0

It is impdrtant to understand that SAR is not cleared at the end of
the SP u k. The computer proceeds with the normal MP 6 (see page 2).
That means: PAK—3SAR by one's transmission. If, as given above
in the example, the SP-command is stored at address 05202g, then PAK
contains 05203g. Let us see what number is generated in SAR by

PAK — SAR:

SAR = 000 010 100 00O 000 (binary)
PAK = 000 101 010 000 O11 (binary)
final SAR = 000 111 110 000 Oll (binary)

As MP 6 and MpP 7 state: the next command is to be extracted from the
location whose address is held in SAR. This is now 076038. At the
same time PAK holds the address 05204g since it was advanced by "1".

Therefore we do the following:

At first the SP at 05202g it executed hormally. The next instruction
is extracted from 07603g. If this is not a jump we proceed at 05204g.
As you see: only 05203g has been omitted! Naturally, if the v-part

of the SP-command contains the number k only (i.e., the leftmost 8 bits
of the v-portion are all zeros), SAR will be equal to "zero" after the
shift, and we will proceed in sequence. This is the normal way of
using the SP-command.

It is pointed out that you may not arrange the v=-part’ such that the
next instruction had to be taken from A or Q. If you do so, you get

an SCC-Fault in case the address of the accumulator results from

PAK— SAR. If you end up with Q, no fault will be generated. However,
the steps to follow depend upon the content of this arithmetic register!

-24-

All following three split commands use SAR in the same way as the
SP u k. The sequence following the shifting is, therefore, equal to

that discussed for the SP-command.

In general one can say for all split commands:
The instruction follewing the split command is extracted from location
PAK + (v = k)
(T Boolean logical sum, 1 + 1 = 1)
where v denotes the 5 octal digits which make up the v-portion of
the split command.

SA u k Sequence:
(u) —X
(4) + S(X) —A
Shift (A) k places left

SN u k Sequence:
(u) —X

Clear A
(a) - SsX)—A

Shift (A) k places left

This can also be denoted as

G —a

Shift(A) k places left
but the explanation found sometimes which says

sx)l—aA etc,

is completely wrong. Reason:
Assume (X) = 7 76 (octal). Then:

S(X) = 0 0 7 76
axt= 7——7 0—o1
but x)* = 0——>01
sx) = 0 00 01

Notice the difference between |:S()()]l and S(X)!,

SSuk Sequence:

(u) —X
(A) - SX)=—A
Shift (A) k places

-925-

A final evaluation of all four sequences shows:
The difference between SA and SP is:
in the SA the step "Clear A" is omitted.
The difference between SS and SN is;:

tha atan
wie Sicp

t
Otherwise the command itself points out (Split Positive Entry,
Split Subtract, etc.) whether a single extension is added to er
subtracted from A.

"Wy . LATEE 1 s ¢+ s
Clear A" i itted in

[vvvews
T A 315 Omi he SS nd

-
v

These commands are merely mentioned here without any discussion

of details, There are just three things you have to keep in mind
when you perform a "masking" operation:

1) The logical product L(Q)(u) is a bit-by-bit product, such that

0-0=0
0-1=0
1-0=0
1°1=1

This bit-by-bit product is a pure -logical operation and may not
be mixed up with a (true) product of two numbers.

2) If in any of the three "Q-Controlled” commands u or v is A or Q,
then watch out, The result may be different from what you expect.

Some examples are:

QTQ v (A) = S(Q)
(V)¢ = (Q)

QA Qv (M) = (A); +SQ)
(V)f = (AR)f

QS u A (Adp = L(Q)(w)

QS u Q (Qf = (@1 + LQ)(w)

0S Q A (A)g = S(Q)

S QQ (A)p = 236 -1

3) The logical product L(Q)(u) is developed in X. Then the single-
extension of this number is added to A, S(X) + (A); —A.
Therefore, (Ap) is e.g. zero (36 zeros in binary) at the end of
any QT-command. It is also zero at the end of any QS-command,

regardless of (Q), (u), and (v),

-26=

§) The Controlled Complement! Command
The CC u v makes use of AR during its execution. It does not clear

or use Aj. A is undistvrbed by the CC-command.

AR is used to develop the logical sum of (u) and (v). This sum

is developed such that 0+ 0=0, 0+1=1,1+0=1,1+1-=0,
Remember 1 + 1 = 0 is different from the reéult of the Boolean
logical sum, There we had 1 +1 =1,

The logical sum applied by the CC can also be denoted as "bit-by-bit”

sum without carries”,
Example:
CuA (AR)f=o' (u)f=o

k) The "Repeat” Command
The Repeat Command, RP jn w, repeats the next instruction several
times, modifying it after each execution as specified.
The u-portion of the "Repeat” command contains the number jn, where
n is given by the 12y rightmost bits and j by the next two bits.
The leftmost bit of the u-portion is not used for the determination
of j. It affects, however, the termination of the repeat sequence!
This will be discussed later.

X305 30X 0K 20X
[] 7
leftmost bit

n denotes the number which specifies, how many times the next
instruction is to be executed.

Jj denotes how the u- and v-part of the next instruction is to be
modified after each execution.

j = 00, : do not modify NI (NI = next instruction)

J = 0lp : modify v-part of NI

j= 102 : modify u-part of NI

J = 1l " modify u- and v-part of NI.

As you see: nothing has been said so far about the leftmost bit
shown in the above picture!

The modification of NI is done by adding a "1",

Basically we have to distinguish between two cases:
the NI is a jump-command,
the NI is not a jump-command.

-27-

An example is

{05000) = 0.
since j = 1, n = 100g.

e.g.

Let us begin with the second case.
1) The repeated imstruction is not a "jump" -command.

RP 10100 W

TP 05000 06000

s o d

Here registers 06000 thru 06077 will be cleared,

In order to understand, why this is so and what happens in the machine
that might affect programming we have to examine the sequence of the

RP-command.

This is given below in flow chart format and assumes that

the Repeat command is stored at address y:

W—3 v-portion
- of Fl

|
.

(y +);—)X
N/
Clear PAK

"2

-

Initiate .

Repeat Sequence

v
jn—PAK |

L

Complement
PAK

L
(X)—>PCR

L

Clear SAR

T

Address w is sent to the v-part of Fy,
where Fl = 00000 or 40001 as determined

by the switch on console.
The NI is sent to X. PAK which holds y + 1

is now free for other operations.

PAK is cleared and the "Repeat"” Sequence

initiated (the latter affects several
flip-flops)

The u-pért of the RP jn w is sent to PAK,

Then this is complemented.

(The above example would give us:
10100g—> PAK, PAKl = 67677)

The NI which was sent to X in step 2 is

now placed into the Program Control Register
and ready for execution,

SAR is cleared for later use.

At this point the execution of the Repeat command is terminated.

Notice that we made proper use of w, and jn, and that we also "told"

the machine to start with a Repeat sequence.

-28-

The repetition of the instruction following the RP jn w is performed
by the se- uence:

;L This sequence shows, how the

——)!Advance PAK machine determines, whether or
not the NI has been executed n
times. As you'can see the carry

from PAKyy to PAK12 tells the
machine this fact, If it occurs

Carry from
PAKy; to PAK ?

12 the NI is not executed anymore,
NO but the so called "Normal Repeat
Termination Sequence"” begins at
Execute - . (see later)
Instruction
%
Modify UAK
and VAK accord-
ing to j
*% If NI is an EJ or TJ and a jump occurs!

(See below)

Let us follow the above sequenee with the example

a RP 10003 a + 2
atl TP 00005 06000
342 ~= cmmmee ecemae

At first the address a+t2 is sent to the v-portion of ¥,. Then the
complement of 10003g is sent to PAK, so that now PAK = 67774g, and
TP 00005 06000 —PCR. Starting'at,(::)um want to accomplish the

following:
TP 00005 06000
TP 00005 06001
TP 00005 06002

and resume operation at a+2., Will we do that?

At first we advance PAK: 67774

+ 1 (octal)
67775

There was no carry. Therefore we execute TP 00005 06000, and then
modify PCR such that now (PCR) = TP 00005 06001

Advancing PAK again we have: 67775
+ 1 (octal)

G
No carry; therefore TP 00005 06001 is executed and PCR modified to
TP 00005 06002,
-20-

Advancing PAK the third time we get: 67776
+ 1 (ectal)

67717
" Again there was no carry. ﬁe execute TP 00005 06002 and modify PCR
te TP 00005 06003.

PAK is advanced again: 67777
+ 1 (octal)

v 70000
Here the carry from PAK;j; to PAKjo ocaoured. At this time we already

executed the three TP-instructiens as we intended to do. It is,
therefore, all right that we do not go on executing the TP 00005 06003
which is in PCR, but 'go to .

Do not forget: PAK = 700008 at this time. This will be important
later, if special cases are discussed!

You can see that the modification of the TP was done in PCR, not in

the storage -location a+l. Keep in mind that the content of the storage

. register holding the instruction to be repeated is not changed.

So far we have talked abdui a carry from PAK;; to PAKIZ‘ This carry
generates the "End Repeat Signal"™ which terminates the repeat sequence
at ence. Here you will probably remember the restrictions for carries

in PAK as described under "Program Address Counter”. How do these
restrictions affect the above mentioned carry which is to terminate the
repeat sequence?

Notice: the MCS-Section switch does not affect PAK as long as a "Repeat
Sequence™ is being performed. * (See under "Program Address Counter").

- Thisimeans that a carry from PAK;] to PAK,, can be generated by the
machine, if and only if PAKj4 = 1, regardless of:the number of core -
banks. Thefefore, a Repeat Sequence can be terminated only, if the
number j was a 0,1,2, or 3, because the complement of either of these
four numbers results in a leftmost bit equal to "1".

Keep in mind: j = 4,5,6, or 7 results inxan unterminated Repeat Sequence.
The modification of the NI, however, will be performed such

that a j = 4 equals a j =0 : ‘
j=5equals aj=1
j =6 equals a j=2
j = 7 equals a j = 3, because this is determined by

J
the machine by "looking" at PAKj3 and PAK)o.

¢ To be precise: as long as the "End Repeat" flip-flop is "1,

-30-

As it was mentioned earlier: the repeated instruction is in PCR and
the modification takes place there. It means that UAK and VAK are
modified according to j. Both, UAK and VAK are counters, and the
question arises, what restrictions for carries in these counters are
established. The answer is: |

UAK and VAK possess exactly the same restrictions for carries as PAK,
including everything mentioned about the MCS-Section switch. The only
difference is that during a Repeat Sequence and the MCS-Sect. switch in

Normal, there will be a carry from UAKll to UAK12 and VAK11 to VAK12

regardless of the value of UAKj4 or VAK;4. respectively, but no carry

Let us follow some examples: (assuming 3 cores)

1) a RP 17000 a+2
a+l TP 12000 05000 (12000); = 0——0
at2 S= ~eece ccee-

First case: MCS-Section switch set to SINGLE:

Here we clear registers 05000 thru O7777
' and 00000 thru 03777,

(v-part of TP is in VAK: VAK = 05000g. Modifying this with the
restriction that no carry from VAK1] to VAKyo occurs, gives us
the above result.)

Second case: MCS-Section switch set to NORMAL:

Now we clear registers 05000 thru 13777, i.e. 7000g . consecutive
storages, (Carry in VAK is enabled by switch.)

As you see: If the machine possesses two or three banks of core storage,
and you use the Repeat command, then give the operator a note, how you

want the MCS-Section switch to be set (as you write down switches for

Manual Jump and Manual Stop.) The normal case is, that it will be set
to NORMAL, (Otherwise computer operation can be started in Test Mode only).

We are now ready to continue. We executed the NI n times and came to the
"Normal Repeat Termination Sequence". Before we discuss it let us try to

find out, what we have to do, We want to come back to the instruction at
w, i.e. resume operation with the instruction whose address is given by w.

(This will often be at+2, as shown in examples, but it need not be that).

=31~

P

~

MP6
and
MP7

Y- - - -

How are we doing this?

SAR

Set
to Fy The sequence shows: without using or
changing PAK, we set SAR to the fixed
. i address Fy. "Looking” at this address
(Initiate Read: _ in SAR the computer reads the word
l Clear X from the storage into X and finally
’Wait Int. Ref. into PCR. Remember that the v-portion
of this word which now is in PCR
l contains our address w.
Clear SAR
Clear PCR The next Main Pulse is MPO, i.,e. the
word in PCR is executed. Remember
Ai what we tried to accomplish. We
(X)—PCR wanted to come to address w. This can
T be done only if PCR contains a jump

command. Therefore;

Let (Fl) = MJ 00000 30000. The v-part of it was erased and replaced
by w at an earlier time. This(Fj)which now reads MJ 00000 w is
transferred to PCR (by the above termination sequence) and executed.
As you see: we jump to w and continue there.

Keep in mind: In order to continue at address w after the normal
termination of a Repeat Sequence we have to have an unconditional
Jump at F;. This jump will erase PAK and replace it by w.

This situation points out what will happen if F) does not contain a
jump. Assume we have:

a RP 17000 a+2
a+l TP 12000 05000
at2 == cmmee ceeee
and

Fy TP 20000 30000
After executing the TP at a+l 70005 times we continue at F, according
to the termination sequence. Remember that PAK = 70000g., Executing
(Fl) means to transfer a word from 20000g to a+2. PAK has not been

changed. Since the computer continues with the normal MP 6 as shown
under "Program Address Counter"”, the next instruction will be extracted

from 70000g. This is now the address where we continue our program
after finishing the repeat sequence and the execution of Fj.

You can see:
If Fy does not contain a jump-command the computer proceeds

at 70000, if j = 1 was used
at 60000, if j = 2 was used
at 50000, if j = 3 was used
at 40000, if j = O was used

-32-

At this point let us summarize what we know so far. We perform a
Repeat Sequence, where the instruction to be repeated is not a jump-
command, In any case this instruction is executed n' times and the
computer picks up the command stored at F; provided that a j = 0,1,

2, or 3 was used. If F) contains an uncoditional jump we will go

to w and proceed there. If F; does not contain a jump, it is executed
and the computer proceeds at one of the above mentioned drum addresses
according to j.

Aj=4,5,6, or T sets up an unterminated repeat sequence and will
normally not be used. There are, however, some situations where a

programmer might use them with advantage.

It is also pointed out here that the whole repeat sequence is regarded

by the computer as being completely finished, after the command at F)

has been executed.®* This is important for the Interrupt Feature

which will be discussed later.

Let us discuss the second case:

2) The repeated instruetion is a "jump"-command: We have to divide the
jump-commands into two groups:
one group contains EJ, TJ
the second group contains all others.
If we forget about the EJ and TJ for a moment, we can see that in all
other jump-commands there is only the alternative to jump immediately
or never to jump. Take a MJ 10000 v. If the switch is set:

unconditienal jump. Therefore
RP jomw
MJ 10000 v
would result in the following: during the very first execution of the

MJ the jump occurs which erases PAK and replaces it by v. This means
that the repeat sequence is terminated immediately. In general we

can S8y: 1f the instruction to be repeated is a RJ, IP, QJ, SJ, 27,
PS or MS the Repeat Sequence is automatically terminated.

At that time the "Hold Repeat Flip-Flop" is finally "0" again. At
the beginning of the "Normal Termination Sequence” which starts with
a MPo, this Flip-Flop is still a "1". See: "Interrupt Feature".

-33-

These instructions behave, as if no RP precedes them, If the

instruction to be repeated is an IJ or MJ and a jump is called for,

the Repeat Sequence is terminated immediately. If no jump is called

for (IJ uv with (u)j = 0, MJ j v with j =1, 2, 3 and switch not set)

the instruction is repeated n times and the next instruction is taken
from Fy, i.e. the repeated instruction is treated like a "normal™ command.

The t¥o commands EJ uv and TJ uv represent special cases. Assume you have a
table of 100g numbers stored at 07000, 07001, €tc, You wish to compare
another number which is in A with this table in order to find out whether or
not it is equal to at least one of the numbers in the table, At the same

time you are interested in the address of the number in the table which is
equal to (A)., How can this be accomplished?

The answer is: (Fy) = MJ 00000 30000

a RP 20100 af2
atl EJ 07000 v

a+2 . A . —y

It might be easy for you to see that we compare (A) with (07000), (0O7001) etc.
and that we jump out of the Repeat Sequence immediately, if an equality is

found., Then we continue at address v. But how do we find the address of the
number in the table which caused the jump?

Refer to the flow chart on page 29. There you see that we go to (::)

if a jump occurs during the repetition of an EJ or TJ. Let us discuss the
steps following at .

~34~

"Jump Termination Sequence" (for EJ and TJ only)

45;;:) As you can see: the number which is in PAK at the
time an equality is found, is complemented and sent
PAK'— Q to the v-portion of Q. (Before this is done Q is
T cleared, so that the operation part and the u-part
Clear PAK of Q contain zeros.) Then PAK is cleared, and the
1 address v from EJ u v is placed into PAK, i.e. a
v — PAK jump to v is completed.

As soon as this sequence is finished the whole Repeat
Sequence is regarded by the machine as being terminated. *
The next Main Pulse is a normal MP6. Keep this in mind
for the Interrupt Feature.

What does the complement of PAK which now is in Q represent? Let us
follow our example shown above and assume that (07003) = A.

At first (jn)' = 57677 is in PAK. Therefore:

First Time Second Time Third Time Fourth Time
Advance PAK 37700 57701 57702 97703
Carry from
PAK]] to PAK]o? NO NO NO NO
$
Execute EJ 07000 v EJ 07001 v EJ 07002 v EJ 07003 v
d
Jump? NO NO NO YES

As you see: PAK = 57703, when the jump occurs. The complement goes to
Q which gives us (Q) = 00 00000 20074

We executed the EJ 4 times. Let us subtract 4 from jn: 20100g
- 4

20074g

This is also our number in QI

In general you execute the EJ exactly r times (1 £ £ n). If an equality

occurs during the r-th execution, then the number
jn-r.
is sent to Q.

How do we get the address in the table? 1In our example we have to generate
07003g. We could do that by 07000g + 4 - 1. This would mean that we had

® As said earlier: the "Hold Repeat™ Flip-Flop is "0".

-35-

() = (u) - 25,
is given by

s = 72)p - kjg, if 37<k £71,
If k=0, then s = 0, ‘]

The above case makes use of an address u which is not the Accumulator

address. Let us, therefore, give the command SF A v with

(A); = 0010 0, 0 0, (binary)
A Ar

Here (A)i is shifted, until Ags # Aggq. As a result we obtain

(A)g =

\0———0, 010 0,

As you see: (A)j is "scaled down" in this particular case. This

1

"scaling down" cannot happen in the case of SF u v, whereD(u)—»A first.

What is the number k in the above example?
k = 35)0. We actually multiplied (A); with 2-35.

Therefore, s has to be = =35,

In general:
If SF A v is used and 0% k £36, then

s:-k.

If k turned out to be in the range
37<k £71

then s = 72 - k as stated earlier,.

We did not include the value k = 3710 so far.
Notice: If k = 3710 then (A) contains "zero" or all 72 bits of

(A) are "ones".

-38-

The number k which is sent to the v-portion of v denotes how many
places (A)¢ would have to be shifted to the left, if one tried to
bring it back to its original value D(u). Notice that the operation

part and the u-part of (v) are not affected by the transmission
k—)v14o . nVO.

Example:

n

(u) = 00 00000 00004
(v) = 13 00235 45670

What are the contents of A and v after the execution

of SF uv? Answer:

(A)f = 9—9.010 0, (binary)

AL Ap

°1”(A)f = 00 00000 00000 20 00000 00000 (octal)

How many places would you have to shift (A)g to bring it back to
the original value D(u)? Look at (A)s and count: shift 2 places
and the> "1" is in the rightmost position of A;. Shift 36 mere

places and the "1" is in the rightmost position of A;. Now shift
2 more places and you have O 01009. Altogether we shifted

36 + 2 + 2 = 40y¢ places.
Therefore k = 40,45 = 50g and (v)g = 13 00235 00050.

You know that a shift of one place to the left is equivalent to a
| multiplication with 2 (provided that the most significant bit of the
number is not shifted into the sign-position or even further). How
did we multiply (u) during the applicétion of the SF-command? We
began with

0
and finished with
010

0100 (binary)

0 (binary)

As you see we actually shifted 32 0 places. If you denote this

1
number with s, then

s = 7210 - 40

in our case,.

10 = 3210

In general:
Given is SF uv with u not A-address
Here D(u)—A and is shifted as stated above.

The only possibility for k is
k=0 or37T<k=T1
The number (u) is "scaled up" in A. The number s, where

-37-

(Ap)p = (u) - 25,
is given by

s = 7219 - kyp, if 37< Kk £71,
If k=0, then s = 0, ‘]

The above case makes use of an address u which is not the Accumulator

address. Let us, therefore, give the command SF A v with

(A)§ = 0010 —0, 0 0, (binary)
A Ag

Here (A)i is shifted, until Azg # Agqe As a result we obtain

(A)f

= 0 ———0, 010 0,
AL A

As you see: (A)j is "scaled down" in this particular case. This
"scaling down" cannot happen in the case of SF u v, whereD(u)—A first.

What is the number k in the above example?
k = 35)0. We actually multiplied (A); with 2-35.

Therefore, s has to be = -35.

In general:
If SF A v is used and O£ k £36, then

S=‘k.

If k turned out to be in the range
374k £71

then s = 72 - k as stated earlier.

We did not include the value k = 3710 so far.
Notice: If k = 3710 then (A) contains "zero" or all 72 bits of

(A) are "ones".

-368~-

V) The 1103A Input-Output System

— o o G— m— — —— — —

The operation of this output-equipment is controlled by the command
PR - v

Generally speaking the execution of this Print-Command can be
explained in the following way:

"Typewriter, perform one operation according to the two rightmost
octal digits of the content of v."

As you see: the computer "looks" at the two rightmost octal digits

of the number stored at address v. These two octal digits represent

a code for the typewriter. The typewriter performs one operation

which can be either a print-out of one character, i.e. one decimal
digit or one letter or one sign

or a function as e.g. "Carriage Return"”, "Shift up", "Space,” etc.

Notice: one Print-Command causes the print-out of one character

(or the performance of a function)

In order to print out the word "1103A" how do we have to program?
Assume we store the codes for this word in register 02000g such that

(02000) = 52 52 37 70 47 30

TTTTIT

codes for 1 1 0 3 A
Shift Up

We want to make sure that typing will start in "shift down" position
which gives us big numbers, but small letters. Therefore after the

"3" has been typed we have to "shift up”.
The program is:
a PR 00000 02001
atl LQ 02000 00006
a+r2 PR 00000 31000
at3 IJ 02002 a+1
atd == cemmem oo
with
02001 00 00000 00057 "Shift Down" Code
02002 00 00000 00005 Index

The above example shows how you will print out some information, if
"you know this information at the time you write the program.

But how do we print out a number, say the content of a register in octal,

if this number is unknown to us, because it is a result of some
computation?

«30~

Assume we wish to print out all 12,5 octal digits contained in 03000.
We do it in the following way:

a LQ 03000 00003 sShift (03000) 3 places in Q
atl TP b-1 32000 Dummy print command —» A

at2 QA b-2 at3 Set up print command in a+3
a+3 [00 00000 00000] Print one octal digit

at4d IJ b-3 a Printed all 12y, digits?
ath = ————— ————

b-3 00 00000 00013 Index

b-2 00 00000 00007 Extractor mask

b-1 PR 00000 b "Dummy" print command
b 00 00000 00037)
b+1 00 00000 00052 Codes for octal
b+2 00 00000 00074
b+3 00, 00000 00070 > digits
b+4 00 00000 00064
b+5 00 00000 00062 0 thru 7
bt6 00 00000 00066
b+7 00 00000 00072 _/

In order to understand the method used here assume e.g. (03000) =
12 34507 65432 and follow the above program step by step.

At this time you will certainly like to know how the computer "tells"
the typewriter what to print. The method used is also applied for other

input-output equipments and is, therefore, discussed in the following
paragraphs.

The Print-Command makes use of a special register, the so called Typewriter
Register TWR, This is a "buffer™ register, because it functions like a

buffer between computer and typewriter. Actually the six rightmost binary
bits from (v) are sent to TWR, and the typewriter performs its operation
by sensing the combinations of "ones™ and "zeros" in TWR. However, a
six-bit-code can be sent to TWR, if -and only if a previous print-operation
has been completed by the typewriter. This machine possesses a certain

speed. It prints out approximately 10 characters per second. This
means that approximately 100 msec. are needed for the printing of ione
character. This is a very long time compared to the speed of the computer.

Assume you give a print-command, and 10 m sec. later you execute another
print-command. The code sent by the first PR to TWR is still there, '
when the second code tries to enter TWR. Naturally this has to be avoid-
ed, since the second transfer to TWR would result in the legical sum of
both codes. Therefore, TWR possesses a so called "lockout™ which prevents
a transmission from X to TWR as long as the previous operation has not

~40-

been completed, After the completion of it TWR is cleared and the
"lockout" is removed. The next code may now enter TWR. Keep in mind:

As long as a print operation is performed and a second print operation
is about to take place the computer has to wait for the termination of

the first print-out, until it can initiate the second one. The computer
"hangs up"” temporarily.

However, the execution of the Print-Command is performed within 34
micro-seconds, i.e. 34 micro-seconds after the beginning of a PR -v the
computer can go on with the execution of another command. It always
will do sol Only if this command (or one of the commands following
within about 100 m sec.) is another PR -v the above mentioned situation
(temporary "hanging-up”) will occur.

The rather slow speed of the typewriter means that this output equipment
may be used for a print-out of short results or some parameters which
indicate the flow of operation in the computer to the operator (programmer).

Never use it for printing out long tables of results etc. You waste
computer timel!

You have seen that you always have to send a code to the typewriter.

But not all 6-bit-numbers are legal codes for this output equipment. The
code 000 000, = 00g is e.g. no legal code. The quéstion is: what will

the typewriter do if a code is sent to it which he does not "understand”?
In this case computer operation is stopped with a "Print Fault" ("A" Fault).
b) The High Speed Punch Unit

This output equipment punches holes into a 7-level paper tape. The

format of the tape is described below:

O OO0 O «0 O O} ¢one "frame" containing 7 holes
O O - @) 52

o ° 20g
u 0.0 144
00 ° (9} 141g (eor: 41g plus 7-th level hole)

- - - - - -

7-th level N\Sprocket heles

The .paper tape contains small holes which identify a "frame" on tape.
These small holes are the so called Sprocket Holes.

One frame may contain up to 7 holes as shown above. A'hole represents a
binary "1", the absence of a hole denotes a binary "O".

-41-

The operation of the High Speed Punch Unit is controlled by the command

PUJ Vv
Punch vs5vg on one frame.
If j is an odd octal digit: also punch a 7-th level hole

if j is an even octal digit: do not punch a 7-th level hole.
j is determindd by the binary digit in UAKj9, as explained under "Left

Transmit"™ command,

Before we discuss how to punch out numbers or letters, we have to ask the
question: If a paper tape has been punched out somehow, where can we read

the information contained on it?

There exist two units which may be used: the Flexowriter and the Paper Tape
Preparation Unit. Both are off-line equipments.

The Flexowriter is exactly the same electric typewriter which is used as
on-line equipment to print out information by means of a PR -v. As off-line
equipment it is capable of reading paper tapes and printing out the informa-
tion provided the paper tape has been printed out in Flex-Code (as mentioned
under "On-Line Electric Typewriter"). This means that the programmer when

writing a Punch Routine has to make up his mind whether or not he wants to
read the tape with the Flexowriter. If he intends to do so, he only needs

to apply the programs given under "On-Line Electric Typewriter™, where each

Print-Command has to be replaced by a Punch-Command. j = O, since Flexo-~
writer cannot "read” a 7-th level hole.

The Paper Tape Preparation Unit is capable of punching, reproducing and
reading .paper tapes. The method used by this equipment for the representation
of data on paper tape is the following:

O o 00g plus 7-th level hole
Olg
23g
454
67
i
52g plus 7-th level hole

a

°

© 000

@)
O

oo O

O
O
o

0000

o
L O @)

f

Each frame represents two octal digits (6 bits) of a 36-bit computer word.
Therefore 6 frames represent one 36-bit word. The 7-th level hole is used
by the unit during the reading of the tape such that "finding” a 7-th level
hole means to print out in octal all digits between the preceeding 7-th level
hole and the one just found (the two octal digits being on the same frame

as the last 7-th level hole are also printed out).

42~

2 o o O

Without going into more details as far as the operation of-the Tape
Preparation Unit is concerned let us summarize the facts which are important
for punching in this manner (so called "bioctal"):

One frame has to contain two octal digits. In order to initiate printing
during the off-line reading procedure include a 7-th level hole (this will
be at least on each 6-th framel)

A typical example for punching in "bioctal" is the following program
starting at a:

a PU 10000 at+2
atl LQ u 00006
at2 PU 00000 31000
atd IJ b atl
atd LQ u 00006
at5 PU 10000 31000

b 00 00000 00004
Follow this program step by step with any number (u) and prepare a picture
of what will be punched out.
As you might guess: there does not exist any fault in connection with the
Punch-Command, because you do not send a code to the High Speed Punch Unit.
Whatever the last 6 bits of the content of v are they will be punched out
on paper tapel
The speed of the High Speed Punch Unit is 60, frames per second, i.e.
one Punch-Command is completely executed and the frame punched out after
approximately 16.7 m sec. This is about 6 times as fast as the typewriter.
Therefore, whenever "flex code"output is desired use the High Speed Punch
instead of the typewriter.
The execution of a Punch~Command is delayed, if a previous punch operati:

has not been finished. This is accomplished in the same way as for the
PR -v: there is naturally a different "buffer” register which is used. This

is the High Speed Punch Register HPR.

=43~

C) IInput-Output” Commands

EF -v,_ER jv, EW jv.
The Electric On-Line Typewriter and the High Speed Punch Unit are the
only two external equipments which possess their own commands. All other
external equipments have to be handled by the "external" commands EF,
ER, and EW.
Basically there are two different operations which have to be made
by programming:

Selection of an external equipment and specification of what it

is to do (EF)

Program Control of the flow of information between computer and

external equipment (ER, EW)

1) The EF-v instruction (general)
A general explanation of the execution of the EF -v is the following:

(v)— I0B (Input-Qutput Register B)

Select an external equipment and cause it to perform an operation.
(Both selection and initiation of an operation are done by exaMining
the content of IOB)

This means that the programmer specifies by the number he puts into v,

which equipment and which operation he wants to select. The content

of v has to be arranged by placing "ones" into special positions of the

register. These are the so called "Bit Assignments'. They will be

explained later during the discussion of each equipment.

2) The Information Flow from and to External Equipments.
Very often the operation of an external equipment results in a flow
of numbers from the external equipment to the computer (Input) or from
the ¢omputer:to the external equipment (Output). The numbers to be
transferred may consist of up to 36 bits.
As you have seen during the discussion of the Print and Punch-Commands

an exchange of numbers between computer and external equipment is made
by using special registers, so called "buffer" registers. It is important

that you understand this: All external equipments use either the IOB-register

or the IOA-register or both. Only the Typewriter and the High Speed Punch
possess their own buffer registers, TWR and HPR.

I0B (Input-Output Register B) is a 36-bit register
IOA (Input-Qutput Register A) is an 8-bit register
Both registers can be used for input or output purposes.

-44-

As it was said for TWR and HPR already: "buffer” registers possess a
so called "leckout”, This "lockout™ is discussed in the following paragraphs.

It is obvious that the speed of an external equipment, any external

equipment, is much slower than the speed of the computer. Because of that
fact the following two situations will occur often:

During ext. equip. to computer transfer; the computer tries to pick up
information from I0A or I0B, before the external equipment sent it to
these registers,

During computer to ext. equip. transfer; the computer tries to send

information to IOA or I0B, before the external equipment has picked up
the previous information from these registers.

Let us assume the first of the above two situations occurs, i.e. the
computer tries to pick up a number, say, from IOA, before the external
equipment sent it there. Naturally, we have by all means to avoid

the execution of the computers "intention". This is done automatically
by the machine. A good understanding of the way it is done is

absolutely necessary for a programmer, if he wants to be a good
programmer,

The basic concept which led to building in a "lockout .circuitry” is the
following:
If the computer communicates with an external equipment, then

delay computer operation, if the computer is ahead of the external
equipment; indicate a fault, if the external equipment is ahead

of the computer.

Since the "lockout"” sets up also certain situations for particular operations
as e.g. parity error indication sent to I0A during reading of magnetic tape

etc., it is necessary to disguss its functioning now.

The 10A-and I0B-Lockouts, ER jv, EW jv.
Let us look at the IOA-lockouts, since the I(GB-lockouts are functioning

in exactly the same way, and study one of the above mentioned two cases,
namely an external equipment—ycomputer transfer. The other transfer,

computer — external equipment, is similar and will, therefore, be explained
briefly only.
External Equipment — Computer Transfer:

Assume you select an external equipment such that it will send one number
after the other to I0OA. The computer naturally has to pick up each number
from I0A (by an ER-instruction; explained later) and place it into its

memory. Say, the speed of the external equipment is such that one number
is sent to 10A every 4.3 m sec. (speed of Ferranti Reader discussed later).

-
-45-

what does this mean? It means that between the picking-up of two
consecutive numbers the oomputer has a time of 4.3 m. sec. for other
operations. It also means that the computer may not be too late, e.g.

try to pick up a number every 10Omsec., because at that time two numbers
tried to enter I0A already.

As programmers we can think of two different sequenees which take place

in order to accomplish a delay of computer operation or to produce a fault:
one sequence occurs automaticaliy according to the speed of the external

equipment and is, therefore, under ext. equip. control,

the other one takes place with each ER jv instruction and is, therefore,
program controlled,

Under Egﬁg{pg}_gqyipment Control:

Referring to the above mentioned example you see that once you select a

data transfer to IOA to occur every 4.3 m sec. you set up an automatic
gsequence. Each time a number is sent to IOA by the external equipment,

this equipment will also test whether or not the preceeding number has

been taken away from I0A by the computer. With other words the external
equipment finds out whether or not IOA is "empty" again. This "test” is
made in a very simple way, namely by "examining" the state of one Flip-Flop,
the so called "ait Read I0A FF". Let us drop too many engineering details
and discuss this "IOA Read Lockout” (how we will call it) from our pro-
gramming point of view:

—_—
T Is Lockout . !
This sequence (’_j;;:;i::::>——h0~%ﬁ I0-Fault

occurs with You see: if the "IOA Read Lockout"
each truns- J YES is in the "O" state, the external
mission ext. equipment is satisfied. A number
equip.— ICA Number —I0A is sent to IOA, and the lockout
i T set to "1", 1If the lockout was not
fSet Lockout "0", i.e. it was a "1", then a
to "1" special "B"-Fault is generated,
called "IQ"-Fault.

If you examine the above sequence closely, you will find that the computer,
when placing(I04) into its memory, must set the "IOA Read Lockout"” back to
"0", thus indicating to the external equipment that this transfer has been
made. On the other hand the computer at first has to examine the state of

the lockout. It may proceed, if this lockout is a "1", because this means
that the external equipment sent a number to IOA already. Otherwise the

computer has to wait, until this will be accomplished. All this is made

by the sequence

46~

* At this time the “second" number is also transferred to 1I0A. This means that
at the time of the I0-Fault IOA contains the logical sum (1+1=1) between two
numbers.

In order to pick up a number from IOA or IOB and to place it into a
storage location, we possess the command
ER jv

If j = o: (IOM—’V7VO

V35Vg all zeros
If v=A:

(IOA)-—)A7 '.....Ao
A71.....A8 all zeros

If j=1: (I0B)=—v
If v = A:
D(10B) —> A

If v = Magnetic Drum location: SCC-Fault!

'j is given by the leftmost octal digit of the u-part of the ER-command.
It is determined exactly like in the Punch-Command, i.e. an even digit
corresponds to j = 0, an odd digit corresponds to j = 1.

This command, as explained earlier, has to do some more things than
just accomplish a transfer as stated above. It also has to examine the

lockeut and set it to "zero" at the end. Therefore, we have the following
sequence for each ER 00000 v:..

Is Lockout | Wait, until If the "IOA Read Lockout" is a "1"

"1ve Lockout = "1" the computer "knows" that a number

ES : has been transferred to IOA by the

' | then t i It, therefore, picks it
(IOA)"V-(,..VO ______ & proceed ext. equip. ' e e, p
N up, clears I0A (in preparation for the
next transfer from ext. equip. to IOA)
Clear I0A

and sets the lockout to "O". If the
¥ lockout was a "O" at the moment the
S:g &gﬁkout execution of the ER begins, this execu-
tion is delayed, until the ext. equip.
sent a number to IOA.

You can also see that a failure to execute -the ER-command in time will
leave the lockout in its "1" state. The external equipment, when examining
this lockout, thus finds out that an ER has not been executed in time, and

therefore, the I0-Fault is generated.

The same situation is true for IOB. Therefore, if a data transfer from
external equipment to computer via IOB is made, the external equipment as

-47-

4)
'Now we are ready to discuss the EF-instruction in details. This instruction

well as each ER 10000 v examine the "Wait Read IOB FF". This is handled
in exactly the same way and need not be explained again. But keep in mind

that both JOA and IOB possess a "Read Lockout".

Now let us briefly discuss the transfer Computer — External Equipment:
The basic idea is this: At first the computer has to transfer a number
to I0A {or IOB). The ext. cquip. then has to pick up this number from
I0A (or I0B). Again we want to make sure that the computer may not try
to imsert a number, say, into IOA, before the ext. equip. made use of
the previous number, i.e. the computer may wait, if it is ahead of the
external equipment. On the other hand the external equipment has by all

means to find a number in JOA, when it is ready to receive it. Therefore,
if such a number is not present in I0A, i.e. if the transfer computer — IOA
did not occur in time, a fault is to be generated. This fault is a "B"

Fault and represents a "No Information" Fault.

These situations are handled by .another Flip-Flop, the so called "Wait
Write I0A FF". There are again two sequences, one under Program Control

(by an EW jv) and another sequence which is under External Equipment control.
They are similar to the "Read" Sequences and are, therefore, not discussed
here in details.

The data transfer from computer to IOA or IOB is made by the command
EW j v

If j
If j

0: V?'.Q..VOﬁIOA
1. (v)—10B

If v = Magnetic Drum location: SCC-Fault!]

As already said: in addition to the data transfer the EW-command also
tests the "Write Lockout” condition and sets it at the end such that the

external equipment will be "satisfied" when testing it,

The EF =-v instruction (details)

has been modified slightly during 1957 (See: External Function Modification,
PX 150, Sept. 57). The only modification which was made refers to the

following situation:
An EF -v is given at a time when IOB still contains "Read" information
deposited there by an external equipment.

Previously, such a condition resulted in the Borlean logical sum (1 # 1 = 1)
of both the "Read" information and the (v) which was supposed to select
another equipment. Therefore, both numbers were lost, no fault was detected,
and nothing could be said about the selection which took place.

-48-

At present the EF -v sequence prevents the above occurence of the above
mentioned case. If it detects that IOB still contains "Read" information,
it clears 10B, inserts (v) into I10B, and sets the "IOB Read Lockout" to "O"
thus preventing the execution of an ER 10000 v, until new "Read" information
has been placed into I0B. We can describe this situation by the following

sequence:

ER -v As you see: the IOB krite lockout is tested.
:ESEE%EEEE:] iilgie;? bécéuzgelggezz§igncgit;?ESE€W;§te"
—— information sent to it by a previous EW

s e A MO (or EF). If it is "O" no'such “irite”
QU2 v sequence occured lately. [owever, in any
YES Wait External case I0OB is cleared and the I0B Read Lockout
Ref. set to "0". Thus the machine keeps track of
Clear I0B the above mentioned case (whether it occured
or not). At the end the IOB lirite Lockout is
J set to "1" preventing the execution of another
Set "IOB Read EW (or EF), until this EF has been executed
Lockout to 0") completely (actually: until the ext. equip.
C% sent an I0OB Resume signal).
(X)—>10B
N

Set "IOZ ¥rite
Lockout to "1™

— . — — s —

This input device reads 7-level paper tape. As the tape moves through the

reader 7 photocells associated with the seven levels of each frame sense the
holes of the frame and send them as binary "ones" into I0A. Therefore, the

frame iOOeOOl
would result in (I0A) = 00 101 110

(Notice: only the rightmost 7 bits of IOA are used by Lhe reader, i.e.
10A; is always a "0"). The transmission of a frame to IOA is made, whenever

the reader senses a sprocket hole.

Bit Assignments:

I0B33 = 1 Select Reader ("Master Bit")
I0Bjg = 1 Start
10Bjs = 1 Stop

-49-

The foellowing combinations are possible:

1) Start Reader, Free Run:

This selection is made by an EF -v instruction, where (v) =
10 00002 00000 (octal). It means that the Reader is started and
will from now on send one frame after the other to IOA. The time

between successive transfers is 4.3 m sec. (safe time).

2) Stop Reader:
Here (v) = 10 00001 00000 (ectal)
This selection causes a stop of a Free Run operation. Keep in mind
that one more frame is sent to IOA after the Stop instruction has been

executed. If you want to use IOA again, make sure that you clear it
and set the lockout to "O" by giving one more ER 00000 v.

3) Step Reader:
If it is desired to read just one frame and then stop the reader an
EF -v may be executed with (v) = 10 00003 00000.

Notice that the "Master Bit" 10Bg3 has to be present in all codes which
refer to the Ferranti Reader. You can keep in mind the general rule:

the "Master Bit" of an equipment has to be present in (v) each time a
reference to this equipment is made by an EF -v instruction.

The correct timing for start and stop delays may be found in the Univac
Scientific Programming Manual, U 1519. (It is only pointed out here that
e.g. punching with a PU jv may net be attempted during a Free Run operation
of the Reader.)

=T e e e o v

The computer Master Clear 'selects Drum Zone A. A switching to Zone B
is made by an

EF -v with vog = 1, vizg = 1

00 04001 02000

i.e. (v)

Switching to Zone A is made by an

EF -v with v26 1 only,

00 04000 00C00

i.e. (v)

After selection of one zone all commands referencing 40000 thru 77777
automatically refer to the registers of this zone, until the next selection
is made.

=50~

1)

- e s . e wr e e S e G e o -

The 80-Column Card

The card is divided into 12 horizontal rows and 80 vertical columns.
A rectangular hole may be punched at the intersection of each row
and column, .

Each card is divided into three fields:

Field 1 = Columns 1 thru 36
Field II = Columns 37 thru 72
Field III = Columns 73 thru 80

The following fignre shows columns, rows, and fields of a card:

column 7 23Y5 3¢ 137 72,03 o
row ! 1
J { |
/2 ' .
/" : :
0. r i
1 | |
! I
a i
I
2 1 t
| Bl
4 L a
P : '
i t
‘ T 1
7 : L
F 4 ; '
7 7 !
* |
N ~— S ~— I ——"
Field I Field II . Field III
2) General Description of Read-and Write-Channels
The "Bull" Card Unit possesses two channels, the right-hand "Read" channel
and the left-hand "Write" channel. These channels consist of an input
hopper, 5 stations, and the output stacker: ‘
Stations
/ AN
Input Output
Hopper, 1 ° 3 4 5 Stacker
/ \\
1, M

-51-

The card on the bottom of the input hopper is picked up and placed into
station 1; '

the card which is advanced from station 5 into the output stacker is
placed on top of the &tack.

The reading of a card is done in station 2 of the "Read™ channel, whereas
the punch mechanism has to be set after the card arrived in station 3 of
the "Write" channel. Actual punching is performed during the advancing
of the card from station 3 to station 4.

Selection of Card Unit Operations, Bit Assignment

Any operation of the card unit has to be initiated by an EF -v instruction,
where (v) contains the proper bits for the operation to be performed.

The following operations are possible:

. Select Card Unit (Start.Cycle) - vgs =.1 . ("Master Bit)

‘This bit selects the card unit as external equipment and must, therefore,
‘be present in any (v) of an‘EF -v which refers to this unit, It also
advances all cards in station 2 through 5 one station in both channels,
‘i.e. card in station 2 goes into station 3,, card in station 5 is
placed on top of stack in output stacker,

Pick Read Card - vy =1
This bit causes the card unit to pick a card from the base of the "Read”

‘channel and to place it into station 1. It also advances the ‘card in
station 1 of the "Read" channel into station 2.

" Pick Punch Card - vg =1
_ Similar to "Pick Read Card".

‘Read -~ Vo = 1

' This bit enables the sensing brushes to "read" the cara which movés from
.station 1 to.station 2 in the "Read" channél, "It does not initiate”a
movement of the card from station 1 to station 2,

Punch - vy =1

This selection enables the punch mechanism to receive information from
I0A and I0B, and prepares it to punch the card at the beginning of its
movement from station 3 to station 4.

‘Free Bun - v5 =1

This bit causes a continuous operation of the card unit- by retaining all
~selections made together with the Free Run bit in:the same (v) of EF -v.
The Free Run has to be stopped by programming an EF -v, wherelbv) contains
v35 = 1 and

Stop Free Run - vq =1

-59-

4)

5)

All selection made for the Free Run operation are dropped by this bit.
However, one more cycle of operations as performed during the Free Run
will be executed after the "Stop" has been given.

Example: If cards are read in Free Run and the "Stop" is given by an
EF -v instruction one more card will be read by the card unit. The
program has, therefore, to provide the proper instructions for reading
this card as described later,

Interrupt - Ve = 1

This bit causes the Interrupt Facility of the 1103-A (or 1105) to work

in connection with the card unit. An explanation of this will be given
during the discussion of the Interrupt Feature.

Reading of Cards

A card is read row after row beginning with row 9. Thus the last row
to be read is row 12.

A hole at the intersection of any row and column is transmitted to the
computer as "1", the absence of a hole denotes a "0". Since one row
contains 80 "ones"” and "zeros" in any combination it is impossible to
read the whole row at a time. The transmission of the data of one row
is, therefore, made in three steps:

1., Field IIT = 8 bits— I0A
2, Field I = 36 bits— 10B
3. Field ITI = 36 bits—I10B
Thus the following three instructions have to be executed for each row:
ER 00000 u (I0A)=—u7 U4
ER 10000 v (I0B) = v
ER 10000 w (I0B)—w

To read the whole card this group of instructions has to be executed 12 times.
The transmission of data from Field III to IOA may be omitted by manually
setting the "Enable Field III" switch on the Card Unit Control Cabinet

to its "out” position. In this case the ER 00000 u must not be executed,

(see under 'Faults"). For reading all three fields the above mentioned
switch has to be set to its "Normal" position.

"Writing" on Cards

In order to punch data on a card the punch mechanism has to be set for

each row beginning with row 9. Again three instructions have to transfer
the information, which is to be punched into one row, to I0A and I0B,

respectively, This information has to be given in the sequence:
for Field III
N |
" II

6)

Thus

the following group of three instructions has to be executed for

each

row:

EW 00000 u Uz eeees Uy — I0A
EW 10000 v (v) — 10B

EW 10000 w (w) — I0B

If the "Enable Field III" switch is set to its "out™ position the

EW 00000 u must not be executed (see under "Faults™). If this switch is
set to "Normal" this EW 00000 u has to be executed.

Summary on Programming "Read"” and "Write" Operations

a) Read Operation

1.

The card to be read must be picked up from the read input hopper
by an EF -v, where (v) = 40 00000 00004. This instruction places
the card into station 1,

In order to . advance the card from station 1 to station 2 the "Pick
Read Card” must be given again. 1In addition the "Read" selection
has to be made now, These operations are initiated by EF -v, where
(v) = 40 00000 00005. Now the card which is to be read is placed
into station 2, but another card is picked from the input hopper and

-placed into station 1 of the "Read” channel. This cannot be avodided

even if it is not intended to read this second card.

Now the group of three instructions as described in paragraph 4) has
to be executed 12 times.

In order to move the cardjust read, out of the read channel an EF -v
with (v) = 40 00000 00000 has to be executed 4 times. Notice that
the card which was read is placed into the ougput stacker, but the
second card still remains in station 1.

b) Write Operation

1.

2.

The card to be punched must be picked up from the write input
hopper and placed into station 1 by an EF -v, where (v) = 40 00000 00010.

Another EF -v with the same (v) has to place this card into station 2,
but will also pick one more card and place it into station 1.
The card in station 2 must be placed into station 3 and the punch

mechanism enabled for receiving information. This is done by an
EF -v instruction, where (v) = 40 00000 00002.

Now the group of three instructions as described in paragraph S)
has to be executed 12 times.

In order to move the card just phnched, out of the write channel
an EF -v with (v) = 40 00000 00000 has to be executed 3 times.

Notice that the card which was placed into station 1 during step 2
still remains in this station.

Exact programming and timing for reading and punching cards is given
in the appendix. 51

7) Faults

a)

b)

Program Faults:

During a "Read" Operation the following situations might occur:

1. If the 3 ER's are.ggg given 12 times for each card, i.e. each row
is not picked up from.IOA and I0B, respectively, an I0-Fault
(B-Fault) occurs. This is due to the fact that the first row for
which no ER's are provided causes a transmission to IOB twice.
Since the first data (from Field I) have not been removed the
second transfer of data (from Field II) will find the I0B-lockout
still in its "1" state thus causing the I0O-Fault.

2. If the time available between rows is exceeded, i.e. the 3 ER's
are not given early enough, the computer is also stopped with an
I0-Fault due to the lockout condition of IOA.

3. If the Enable Field III switch is set to "out” and the ER 00000 v
is initiated the execution of this instruction cannot be performed,
since no data have been transferred to IOA. Thus the two follewing
ER's for IOB cannot be executed which again results in an I0-Fault
as described under 1,

4, If the Enable Field III switch is set to "normal" and the ER 00000 v

instruction is omitted the second transfer of data to IOA causes an
I0-Fault as mentioned under 2.

During a "Write" operation the same 4 situations might occur as during
the reading process. They ‘all result in a computer B-Fault, and the
"No Information™ Light on the Card Unit Control Cabinet is illuminated.

No Card in Reader: .

If card reading is supposed to occur and no card is present in the
reading station a computer B-Fault is generated and the "No Card in
"Reader" light on the Card Unit Control Cabinet is illuminated.

No Card in Punch:

If punching is attempted and no card will be present beneath-the punch
die during the next cycle (i.e. no card is present in statien 3 which
could be punched during its movement from 3 to 4) a computer B-Fault
is generated and the "No Card in Punch” light on the Card Unit Control
Cabinet is illuminated.

Other Faults:
The following fault conditions will cause the card equipment to stop
illuminating the "stop™ light on the Card Unit Control Cabinet:

-55-

1, Read output stacker full

2. Write output stacker full

3. Read input hopper empty

4. Write input hopper empty

5. "Stop" button depressed

6. Punch jam occurs

7. "Standbv" switch to forward vnosition

Se SRl pPre s vave

(i.e. away from operator of card unit)
Notice that these conditions stop the card unit only, but not the computer.
As a result computer operation continues, e.g. if cards are read and the
read input hopper is empty the card unit stops and the program hangs up,
if the first attempt is made to read (IOA). Operation can be resumed
after placing cards into the read input hopper.
Notice also that during a reading or writing operation at least one card
has to be present in the input hopper not used during the operation.

8) Manual Preparation of Card Unit for Program Controlled Operation
The card unit is prepared for program controlled operation by following
the steps below:
1. Set the "Enable Field III" switch in the Control Cabinet to the
position as required by the program (see paragraphs 4) and 5)).
2. Place the cards into the read and write channel face (printed side)

down, so that row 9 enters the channels first. Place the metal wéights
on top of decks.

3. Set the switches on the card unit in the following manner:

MOTOR away from operator
DC left

DUPL. away from operator
PUNCH away from operator
READ away from operator
PICK READ towards operator
PICK PUNCH towards operator
STANDBY towards operator

Notice: In order to clear both channels manually before starting the
program the following operation has to be performed:

1. Remove all cards from input heppers.

2. Set PICK READ and PICK PUNCH switches away from operator.

3. Press "Start"” and "Clear™ button on the card unit simultaneously,
until all cards left the channels,

4, Place cards into channels and do not forget to set PICK READ and

PICK PUNCH towards operator.

9) 1In addition to the timing mentioned in the appendix keep in mind that the
theoretical time which is available to the computer between reading or wrxtxng
consecutive rows is approximately 27,8 m sec.

-56-

- — omam —— — e . . - e — e - —

The paragraphs below contain a description of the blagnetic Tape System, as
it is used with an 1103A computer equipped with Uniservo I1 Magnetic Tape
Handlers. However, they also represent a description of either one of

the Magnetic Tape Control Units of the 1105 computer and the programming
of Bypass Mode operations, as performed there. (1105 computers are always
equipped with Uniservo II's). 1105 programmers may, therefore, carefully
study the explanations given below, since they will not be repeated.

1103A computers equipped with Uniservo I kagnetic Tape Handlers require
slightly different programming methods for reading tape in Fixed and
Variable Block Length Format. Informations about these methods is omitted

in this manual and may be found in the appropriate literature.

I. Fixed Block Length
A) Representation of Data on Tape

One line of magnetic tape consists of 8§ bits: 6 data bits, a parity bit,
and the sprocket bit.

The sprocket bit is used during the reading process. It is always a "1"
and causes a sprocket pulse thus indicating that data (and not blank space)

is being read.

The 6 data bits represent the information stored on the tape. They may
represent two octal digits in 1103-A (or 1105) machine language or a 6 bit
character in any code, e.g. in Univac Excess Three code.

The parity bit is automatically inserted on each line during the writing
process. It makes the number of "ones” on each line odd {sprocket bit not

included) enabling the equipment which reads Unitape to check the accuracy
of the information on a line.

B) Tape Format
The tape is divided into blocks. Each block consists of 6 blockettes, one
blockette consists of 120jg lines. Therefore; 1 block = 6 blockettes = 720;
lines = 120y, computer words.

Blocks are separated by block spaces of either 1.2 or 2.4".
The blockette space may be 0", .1" or 1.2". When writing on tape a high or

low density (lines per inch) can be selected. It is 20030 and 126; lines
per inch, respectively.

C) Registers of the hagnetic Tape Control Unit
The following registers are automatically employed, if a magnetic tape
operation is selected.

D)

Tape Register TR 26 bits: 6 lires are assembled in TR
duriag the reading process. It also holds
a word which is to be written on tape.

Tape Control Register TCR 14 bits: when a tape operation is selected
10Bgs thru IOByo is transferred to TCR. It

selects and controls the operation to be
performed with a Uniservo.

Align Input Register AIR 7 bits: it holds the 6 data bits plus the
parity bit during a reading operation.

Tape Shift Counter TSK 3 bits: counts the shifting of TR

Line Counter LK 3 bits: if LK = 6, it initiates a pulse

which advances the WK by 1, and is cleared.

Word Counter WK S bits: if WK = 2010, BTK is advanced by 1
and WK is cleared.

Blockette Counter BTK 3 bits: if BTK = 6, it initietes an "end of

block" signal and is cleared. During the "move"

operation it also sends a signal to BK
decreasing it by 1.

Block Counter BK 12 bits: it holds.IOBj; thru I0Bj during a

"move' operation, i.e. the number of blocks
to be moved forward or backward.

Selection of iagnetic Tape Gperations
A reference to the magnetic tape system has to be made by an EF -v
instruction where (v) contains a "1" in vg; ("Master Bit").

Notice that the exerwtion of an EF -v instruction just places (v) inte
I0B. vgy = 10333 = 1 i1l then cause a transmission of I0Bp5 thru IOBy,

to TCR which now can select the operation as specifed in (v).
The following tape operations and contents of v are possible:

Operation Contents of v includes bits for
Read forward (or backward) Select llagnetic Tape

Read forward (or backward)
Uniservo number
Stop (see "Free Run")

Write Select Magnetic Tape
Write, Density
Block space, Blockette space

Uniservo number
Stop (see "Free Run'")

-56-

Operation Contents of v includes bits for

Move forward (or backward) Select Magnetic Tape

Move forward (or backward)
Uniservo number
Number of Blocks to be moved

Rewind Select llagnetic Tape

Rewind (or Rewind with Interlock)
Uniservo number

Change Bias Select Magnetic Tape

Change Bias to Lew (or High or Normal)
Notice: No other operations may be
specified in this (v).

E) Discussion of Modes of Operation

1)

2)

3)

Read Forward

6 data bits plus parity bit are sent to AIR. Now the parity check

is made. In any case the 6 data bits are transmitted to TR35 thru TR3p,
and AIR is cleared. (TR) is then shifted left 6 places and the next
line sent to TR35 thru TR3p etc. 6 left shifts of 6 places each will
take place altogether. After one complete word is assembled in TR it

is sent to IOB and TR is cleared. Now (IOB) can be removed into a
storage by an ER 10000 v instruction, '

Since it is only possible to read complete (not part of a block as e.g.
one word) blocks the programmer must provide 120y, ER's for each
block he intends to read.

Read backwards

This operation is performed like the "read forward". Only exception
is: (TR) is shifted right 6 places and only 5 right shifts will take place.

Write

Thereis only a "write forward" operation because of the physical structure
of the Uniserveo. This unit possesses an Erase Head which is located

about 4" ahead of the Read/Write Head. During the "write" operation the
Erase Head erases the old informations which might be-on -the tape.
Therefore, writing may be started either at the very beginning

of the tape or at a point where the previous writing operation has been
stopped.

An EW 10000 v instruction has to transfer (v)-——I10B. The computer then
transfers (I0B)-—TR. This is shifted left 6 places and TRy thru TRO
written on one line of tape; a parity bit and sprocket bit is also
generated for each line. After (TR) has been shifted 6 times and 6 lines
have been written on tape TR is cleared and the next transfer (I0B)—> TR
may occur. The machine also inserts block and blockette spaces as
specified by the EF -v instruction which initiated the "write" operation.
Notice that only complete blocks can be written on tape. Therefore, 12010

EW's have to be given for each block.
-59-

4) Move forward or backward

When this mode of operation is selected a transfer 10B;; thru 1035—>BK
occurs. For each block passed a "1™ is subtracted from (BK).

If (BK) = O tape movement stops autcmatically.

5) Rewind

The selection of a "Rewind”™ operation for a Uniservo causes this tape
to be rewound to its very beginning and then to stop autcmatically.

As soon as the "rewind” operation was initiated TCR is cleared and the

tape control unit free fer other tape operations. After a "Rewind with
Interlock™ nc further reference to this Uniservo can be made by the

computer until the interlock is removed manually at the Uniservo.

6) Change Bias
Provision has been made for a change of the "read” bias which enables
the programmer to re-read a block after a parity error by either suppress-
ing too strong signals ("noise™) or reading weak signals also.
Notice that a "change bias"™ operation will change the bias for all Uniscrvos.
7) Free Run Opcratiors

A "rcad™ or "write”™ operaticn may be done either for one block or any
number of blocks. If only one block is to be read (written) the "stop

bits may be included in (v) of the EF -v instructiocn which selects

recading (writing). If more than one bleck is to be read (written), the
operation can be done in Frec Run such that nc "stop” bits are included

in (v). After the proper number of blocks has been rcad (written) ancther
EF -v must be executed where (v) now contains the Sclect liagnetic Tape

bit and the "stop”™ bits. The
since TCR still contains the
ancd the sccond transfer of 10395 ...103j9 to TCR ("oncs transmission
will provice "stop™ bits in TCR. Thus Uniservo number and step bits are
present in TCQ causing a step signal for the Uniservo in acticn whickh
will be effective if the "end of bleck™ signal from BTK is alsc present.

niserve number nced not be selected again,
ts which selected the read (writc) cperatics,
")

U
bi

After the stop TCR is cleared and another tape operation may be initiated.
F) Checks made during "Read" Operation
1) Parity check

During a "Read forward™ or "Rezd backward”™ operation a parity check is
made by the computer for each lirne ou tape. If one or more parity errors
occur within a block the following indication is given to the programmer
at the end of the block:

a) "1"—>1I0ap and I0A - lockout is set to "1™

b) Tape movement stops in interblock space.

-60-

Tuerefore the content of I0A has to be examined by the programmer at the
end of each block. e.g. by giving an ER 00000 A and then testing (A).
After a parity error was found the programmer may provide a change of the
bias level and re-read the block.

2) Sprocket Error Check
In addition to the parity check the computer counts the number of lines N
of a block. If N} 720;5 or N{720,(,, a socalled Sprocket Error occurs.
In this case:

a) 1-—I0A3, set IOA-Read Lockout to "1%
b) Tape stops automatically

Reading and testing (I0A) at the end of each block reveals the occurrence
of this error.

3) End of Block without Error:
If neither a parity nor a sprocket error occurred, the I0A-Read Lockout
is merely set to "1™ in order to enable the program to execute the
ER 00000 v at the end of each block. Thus, finding (I0A) = O the programmer
knows that the current block was read successfully.

4) Occurrence of Parity and Sprocket Error:
If both errors are detected for a block, I0Ay and 1053 are set to "1".

Thus, finding (I04) = 11g the programmer knows that this situation occurrec.
Tape movement was stopped automatically.

G) Most Frequent Programming Faults
1) An ER 10000 v instruction has to transfer (I0B)— Core before the next trans-
mission of (TR)— IOB occurs. If (IOB) has not been removed at the time
when (TR) — I0B is due a computer B-Fault (I0-Fault) is initisted and the
tape movement stops at the end of the block.

2) During the "Write”™ operation an BW 10000 v has to transfer a word to 103
thus enabling a transmission (I0B) — TR. If the Tape Control Unit is about
to execute this transfer and no word has been sent to IOB a computer B-Fault
(NT-Fault) is initiated, the "No Information™ light in the Tape Control
cabinet or on the Desk Console is illuminated, and the tape movement stops
at the end of the block.

3) "Too Many™ EW 10000 v instructions will result either in a "No Information”
Fault or in a "wait" position of the computer (i.e. computation “hangs up”).
If more than 120,45 n BEW's are programmed for writing n blocks on tape in
Free Run the first extra External Write is executed at the end of writing
the nth block and the word written on tape, after the block space was inserted
behind this block since tape movement was not stopped by an EF stop instruction.
Writing continues with the execution of the Extra EW's until an EF stop instruc-
tion is initiated. This stop, however, cannot become effective, because a
transmission 10325 ...10Bj5—TCR is not possible except between blocks. Ta>e

movement continues, and the "too many™ EW's are now interpreted as "too few"
EW's (for the (nt1)St block)

-61-

resulting in a No .ufoswation Fault.
If a "Write on Block and Stop™ operation is programmed followed by more
than 120;5 EW's tape movement is stopped at the end of the block but the

1215t EW initiates an I0B lockout condition which is established when
the next EW or EF instruction is attempted. Then the computer “hangs up”.

4) "Too Many™ or "Too Few™ ER's also set up either faults or cause the computer
to "“hang up”. Which situation occurs depends upon the operation and the
amount of ER's executed. They are not discussed here, but the reader
should try to find out what happens for various cases as e.g. Read one
block and stop using 119;5 ER's; read one block and stop using 11810 (or
less) ER's etc. This should not be too hard for the reader if he under-
stands the functioning of the IOB lockouts and the sequence of the EF -

instruction as explained earlier, and will be a good exercise. If questions
arise, refer to Programming Manual U 1519 and/or Manuscript Copy of Section
on Magnetic Tapes, Oct. 30, 57.

5) If two Number Selectien switches for the Uniservos are set to the same
number a computer B-Fault (MT-Fault) is generated at the time the computer
is started. In addition the "Selection Error™ light on the Tape Control
Cabinet is illuminated.

6) If a tape is "Rewound with Interlock™ and a reference to this tape is
attempted by an EF -v the fellowing eccurs:

(v) of this EF is sent to 10B. Then 10825 thru I0B)s is transferred to
TCR. The selection of the tape operation, however, cannot be initiated
because of the interlock. On the other hand the computer program continues
with the instruction immediately following the above EF -v.

What happens in the future depends entirely upon further references of
any of the tape units (for 1105: tape units of the same TCU as the tape

rewound with interlock). Sooner or later the cemputer will hang up with
an EF, ER, or E¥, if such references are made. '

H) Miscellaneous
A "Rewind™ eperation initiated fer a tape which is rewound already will not
cause any fault. Computatien preceeds nermally.
A computer “"Master Clear”™ sets the bias te nermal.

The speed ef the tape is 10010 inches per secend. Netice that in Fixed Bleck
Mode tape movement can be stepped in an interblock space only, never within

a block.

-62-

J) Sample Programs (for Bit Assignments refer to the table in the appendix)

1) Rewind Uniservo 3. Then write ene block of data frem 05000, 05001, etc.
on Uniservo 3 in low density, 1.2" Blockette and 1.2" Block. Spaces.
(High Speed Printer Format)

a EF 00000 b b 02 00200 30000
atl EF 00000 b+l 1103A: b+l 02 00656 30000
at2 RP 10170 at+4 1105: b+l 02 00646 30000
at3 BEW 10000 05000
at4 NI F] MJ 00000 30000

2) Write 1010 blocks in Fres Run, density etc. as in example 1. Then:meve
back 1019 blocks.

a EF 00000 b 1103A: b 02 00056 30000
atl RP 12260 at3 1105: b 02 00046 30000
at2 E& 10000 05000 b+l 02 00600 00000
at3 EF 00000 b+l b+2 02 00014 30012

at4 EF 00000 b+2

2) Read forward one block from Uniservo & into 06000, 06001, etc.

a EF 00000 b b 02 00603 00000
atl RP 10170 atd b+l 00 00000 00001
at2 ER 10000 06000 bp+t2 00 0000 00010
at3 ER 00000 32000
at4d 2ZJ g5 OK
atd EJ b7l P
atr6b EJ b+2 S

at7 Beginning of "Parity and Sprocket Error”

As you see: at the end of the block (I0A) is tested. If it is = 0, a jump
to "OK" occurs, i.e. everything is fine and we continue in the normal program.

If (I0a) = 1, we know a parity error occurred. We, therefore, jump to the
place where this Parity Error Routine begins (at address "P").

If (10A) = 10g, a sprocket error existed and a jump to "S" is made.
If (I04) # 0, # 1, and # 10g, it must be = 11g. In this case a parity

and sprocket error occurred. Starting at at7 we, therefore, have the steps
provided for this situation.

The steps to be taken after occurrence of errors will generally be the
following: Re-read the block which caused the error by changing the bias
level to high, low, and possibly normal again. If after several tries the
data can not be read successfully, one can indicate this (possibly by a
short Print-out on flexowriter) and stop the program.

-63-

II) variable Block Length

A) Data Representation and Tape Format
In Variable Block Length one line on magnetic tape consists of 6 data
bits, a parity bit, and a sprocket bit, i.e. it is equal to a line
recorded in Fixed Block Length Mode.

s £.11 2
LUl

. . .
Slnce Gn}} 0610 blt WOoT [e 1 + [NP 1.

be transmitted between the computer
and the magnetic tape, each block must contain an integral number of
words. Its length may, therefore, vary from one computer word up to
the capacity of core storage.

Blocks are recorded with a high density, the inter-block space is

always 1.4".

-
1

o ~n
o van

B) "Write Operation”
A "Write" operation is initiated by the execution of an EF -v instruction,
where (v) has to contain the following information:
Select Hagnetic Tape bit
Variable Block Length/Continous Data Input bits
lirite Selection bits
Uniservo Number
One EW 10000 v instruction has to be executed for each word to be
written on tape.

Notice that "stop" bits must not be included in the EF-instruction which
selects the "write" operation., This is due to the fact that TCR is
inspected for stop bits after cach word. A "Write" operation has,
therefore, to be stopped by programming an EF "stop" instruction. (See
under D) after the cxecution of the desired number of EW's.

Also notice that density and inter-block spaces need not be selected.
However, if bits specifying other density or block spaceg§%Qgh density
and 1.4" space are contained in (v) of EF -v which selected the "kKrite"
operation, these bits arc ignored.

C) "Read" Operaticn
A "Read Forward" (or '"lead backward") operation is initiated by an
EF -v instruction, where (v) has to contain the following bits:
Select llagnetic Tape
Read Forward (or Backward)
Variable Dlock-Length/Continous Data Input

Uniserqo Number
Stop Bits (if no Free Run desired)

One word is assembled in TR, and then (TR) is transferred to IOB. Thus,
one ER 10000 v has to be executed for each word of a block.

Due to the nature of the Variable Block Length Mode the occurrence of
the following situations requires a special indication in IOA:
Parity error, end of block detection, mod 6 error, and end of record
detection.
~64-

1) End of Bleck Detectien

The number of words contained in a block is variable and in general
unknown to the programmer. However, each word has to be picked up by
an ER 10000 v instruction. There may net be less or more ER's than
vwords in the bleck. In order to enable the program to decide whether
cr not a word has been assembled the following indications are sent
te I0A:

If one word has been assembled from tape, the
I0A-Read Lockout is set to "1", Thus testing
104 and finding (IOA) = O the program knows:
there is a word in I0B. Therefore, pick it up
by ER 10000 v. In other words:

Read I0A first. If and only if (I0A) = O, a
word is in IOB and can be picked up. If (IOA)
0, no word is in IOB.

The end of block is detected after a lack of sprocket pulses for
approximately 600 u sec. If this time elapses without occurrence of
a sprocket pulse

1—103;; Set IOA-Read Lockout to "17.

Assune there is only one word in a block. You test IOA first, and since
a word (the only one) has been assembled (I0A) = O, Finding this you
execute ER 10000 v. Now you return to your test of IOA. DBecause of the
assumption that there is no other word (and provided no error occurs
during reading) 600 u sec. will elapse. Then 1— ICij. Reading and
testing I04 you find (I0a) = 2. This indicates to you that there is no
werd, but that the end of the block has been reached without § "Read
Error®™. Therefeore, do not execute an ER 10000 v!
buring reading the tape parity or sprocket errors (here called: mod ¢
errcrs) might occur. This is discussed in the following paragraphs.

eril

If during reading of a block one or more parity errors occur, an indication
cf this situation is given to the program at the end of the block.

Tihis indication is:

1—=1040
This 1s made precisely at the time the end of block is detected, i.e.
a parity error (but not a mod 6 error) occurred, one will find

(I1C.) = 3
because IGiy = 1 (end of block)
= 1 (parity error)

xed Block Length: a parity error in Variable Block kode
an autematic stop of tape movenent,

3) Mod 6 Error (Sprocket Error)
A block has to contain an integral multiple of 6 lines. If 1 thru 5
lines are missing (a situation detected at the end of the block, naturally)

1— IOA3
Thus, assuming this error occurs only, one will find
(10a) = 12g
because of
I0A3 =1 (mod 6 error)
I0A; = 1 (end of block)

Tape movement is not stopped automatically.

4) Parity and kod 6 Error
If both errors occur in a block,

(10A) = 135

because of
10A5 =1 (mod 6 error)
10A; =1 (end of block)
I0Ag = 1 (parity error)

Again tape movenment is not stopped automatically.

5) End of Record Detection
If during a "Read”™ operation, a lack of sprocket pulses is detected for
a distance of approximately 4® an end of record signal generates

a) 1—1I0ap
b) Stop Tape movement automatically

6) Sumnmary
The following cuntents of IOA are possible:

Content of I04 (uctal) Condition
0 Word in 103
2 End of good block
3 End of block with parity error
12 End of block with mod 6 error
13 End of block with parity and mod 6 error.
4 End of Record

Thus there are 3 different possibilities:

(10A) = C : YWord in IO03

(I0A) = 2 or 3 or 12g or 13g: No Word in I0B, but End of block
reached without or with error(s).

(104}

[
'S

End of Record, Tape stopped automatically.

-66-

Start

Flow Diagram for

in Variable Block Length Mode

“\

) "Read” \
(1}—J Opemuo,‘,' }ﬂ z){(lo;\)mo A Qs (1) = 02 1i0--
I — Ynsl,
g (IOB) >V F~~ e
(X:was it the g) J Continue
3)" —% Stop Tape |~ > Normal
) £3§EWP{2352»’ i Program

NO

()

r \\h
If parity

error is to
be ignored,

go to CD

N , .
Qé/f Parity Error not ignored
‘If S~
e |mod 6 errcr
is to be
(5\) Stop Tape ignored, go
tody |

-~4 Stop Tape

]

e e

'Move Back
1 Block

* If reading of n blocks is de

sired

Mod_6_Error not_ ignored

Notice: This flow diagram r
The necessary housekeeping

(o)& W = 1397)-—-No

I

"Read Forward™ Operation

YES

(a)

End of
Record

if desired

Change Bias

Done Several
Times?

Move Back
1 Block

>

Change Bias
if desired

S

Tried Several

Times?

Give up

YES
—> Give up

epresents a logical solution only.
instructions are not shown here.

D) Stop Tape Operation

Since the only automatic stop of tape movement occurs after the detection of
an end of record, i.e. approximately 4™ of blank space, * the programmer has

to provide an EF -v instruction, which stops tape movement after a "Write”

- PR PR Y - PN S - LR
or "Read” operation. Here (v) has to contain the following bits:

Select Magnetic Tape

Stop Code
After a "Write™ operation the EF "Stop” instruction produces the inter-block
space.

Since the EF_"Stop” instruction also clears TR no mis-assembly of the words
contained in the next block will occur after a mod 6 error.

E) Move Forward (or Backward)
This operation is initiated by an EF -v instruction, where (v) has to contain
the following bits:
Select Magnetic Tape
Variable Block Length/Continuous Data Input
Move Forward (or Backward)
Uniservo Number
Number of Blocks to be roved.

The number of blocks specified in (v) is sent to BK. An end oi uslock detection
is used to decrease (BK) by 1. If (BK) = O moving is stopped automatically.

No parity or mod 6 check is made during a “Move” operation. There is also no
end of block or end of record indication in IOA. Therefore (IOA) must not be
read during or after a "iiove"™ operation.

F) Rewind, Rewind with Interlock, Change Bias Operations
The Variable Block Length/Continuous Data Input bits have no significance
for these operations. They need, therefore, not be included in (v) of the
EF -v instructions which select these operations.

G) Selection of Variable or Continuous Input Mode
Since the bits 10320 10819 ll2
Continuous Input mode, the selection of one of these two modes is discussed

cause an operation in either Variable or

in the following paragraphs.

& Except "Nove™ and "Rewind”

-60-

1) A preceding computer Master Clear determines that Variable Block Length
mode is chosen by the Variable/Continuous bits _

2) A preceding computer laster Clear followed by an EF "Change liode™ instruction
deternines that Continuous Data Input is chosen by the Variable/Continuous
bits.

3) If Continuous Data Input was selected another EF "Change Mode” instruction
executed later switches the computer back to Variable Block Length mode, etc.

Notice: Any EF -v instruction for magnetic tape which does not specify Variable/
Continuous mode, automatically causes an operation in Fixed Block Length.

H) Sample Programs (Variable Block Length Format)

1) Write 2010 words into one block on Uniservo 5. (Assume tape is rewound or
writing starts where previous writing operation had been stopped.) Words
to be taken from 13000, 15001, etc.

a EF 00000 b b 02 00066 50000
arl RP 10024 at3 b+l 02 00600 00000
at2 EY 10000 15000
at3 EF 00000 b+l

2) Read forward two blecks from Uniservo 7 into 20000, 20001, etc. After
parity errer re-read the bleck one more time without changing the bias. If
again unspecessful, stop with NS j = 3.

If a "med 6% errcr occurs stop computation with a liS j = 1. 1In case of a
"parity and mcd 67 error, step with a KS j = 2.

a-1 EF (0000 b

a TV av3 bt+6 b 02 00062 70000
avl ER (CC000 32000 b+l 00 00000 006001
at2 2J atb at3 b+2 00 0C000 00002
at3 ER 1C000 [20000} b+3 00 00000 00003
atd Ra at3 b+l b+4 00 00000 00012
ats [.J CQ0C0 arl b+3 00 00000 00001
até EJ bT2 avl2 b+6 00 00000 20000
av? EF 00000 b+7 b+7 02 005600 00000
atl0 EJ b3 c b+10 02 00074 70001
arll L.J 000U d b+il 00 00000 00001
atl2 TP bl b+ll
avld IJ brS a d EJ b d+2
arl4 EF 000CO b+7 d+l LS 20000 ----
avld I d+2 LS 10000 w-—-

¢ EF 00000 b+10
ctl TV b6 atd
ct2 IJ btll a-1
ct3d LS 30000 ———

-69-

J)

Continuous Data Input

This mode of operation which is s.ailable automatically, if the computer
is equipped with Variable Block Length Format, represents a special
input method. A discussion of it is omitted here. However, it is
pointed out that the data representation on tape is completely different
from Fixed or Variable Format. One line on tape consists of 4 data bits,
2 code bits, one parity, and one sprocket bit. 3 lines are called a
Data Entry lord, ctc.

Detailed information may be found in the lanuscript Copy of Section on
Magnetic Tapes, Programming lanual, Oct. 57.

-70-

III, Tape Format Required by Off-line High Speed Printer

In order to prepare a magnetic tape which is to be read by the off-line
High Speed Printer the tape has to be prepared in the following format: *

None ity a0

e h]
vvno;b}, 4 S

b |
Block Space: 1.2"
e

Furthermore the High Speed Printer requires a special code for each
number, letter, etc, This is the so called "Univac Excess Three" code,
Each line of the tape results in the printing of one character, i.e.
one 36-bit computer word results in printing of 6 characters. One
Blockette gives us 120 characters. These are printed on one line of

the High Speed Printer paper. This unit is capable of printing up to
60010 of such lines per minute,

The "Univac Excess Three" Code and the conversion from binary to excess~three
and visa versa is omitted here, since it represents a special programming
situation which can be solved easily by any person who knows how to program
the 1103A or 1105,

70 b

A)

B)

General Introduction to the 1105 Buffer System

As explained under "1103A Magnetic Tape System, 1105 Bypass Mode Operations"
the communication between computer and Uniservos is made word by word

using the buffer-register I0B. During transfers of data the computer

cannot be used for other operations except during the time which is
available between transfers of two words. This time, however, is very
short, and a significant part of calculations cannot be performed in many
kinds of applications.

Because of this fact a "Buffer System"-has been added to the computer
which will allow computer operations to occur during a transfer from
Buffer to Tape Units. These operations, Computer to Buffers and Buffers
to Uniservos, are explained in the following paragraphs. However, it is
pointed out that the representation of data on tape, the selection of
operations of Uniservos, and the physical structure of the 1105 Magnetic
Tape System are identical to those used with the 1103A computer. The only
difference is that the 1105 computer possesses two. Magnetic Tape Control
Units which are independent from each other. But each of these is built
exactly as explained for the 1103A. 1105 programmers may, therefore,
carefully study chapter f) before continuing reading at B) chapterVI).

As already said: A data transfer from computer to Uniservos using the
Buffers is accomplished in two steps: at first all data (up to 120,,
computer words) are placed into a buffer memory, and then the contents

of this buffer is written on a selected Uniservo. The transfer computer
to Buffer is equivalent with a core-to-core transfer and very fast. The
transfer Buffer to Uniservo is initiated by one command and then performed
independently from the computer. Thus, the time needed for writing up to
120y words on tape is completely available for other computer operations.

The same situations occur, if a transfer tape — computer is made. All
these facts are discussed in the following paragraphs. But to say it
again: read them only if you understand the structure, processes and
operations of the Magnetic Tape System as explained under f), Input-Output
Section.

Physical Structure of the Buffer System
The 1105 Buffer System comprises two Buffers.
Each Buffer contains
a core memory of 120;jp registers
a word counter
an Input-Output Transfer Register IOT
and communicates directly with one Magnetic Tape Control Unit (TCU).

-71-
* as far as programming is concerned.

C)

Therefore we possess 2 Buffers, 2 Tape Control Units (one for each Buffer),
and 2010 Uniservos (10j0 Uniserves for each TCU).*
In order to be able to distinguish between buffers, tape control units,
and Uniservos the fellowing numbering is applied:
Buffer #1 TCUl, Uniservos 1 thru 10;4

“a as ¥ =3

Buffer #2, TCU2, Uniservos 1 thru 10jq

Keep in mind: Buffer 1 can communicate with TCU 1 only, never with TCU 2.
In the same way, Buffer 2 can communicate with TCU 2 only, never with
TCU 1. Since the Uniserves have numbers from 1 thru 10, we have always
to specify whether we mean e.g. Uniservo 3 connected with TCU 1, or
Uniservo 3 connected with TCU 2.

The I0T-register is a 36-bit register. Each word transferred to or from
the buffer has to go via IOT.

The Buffer Word Counter is increased by one, if a word enters the buffer,
and decreased by one if a word leaves the buffer. Its use during machine

operations and programming situations will be explained later.

Information Flow via Buffers

1) Computer €& Buffer
Assume 120y, words are to be sent to a buffer, say buffer 1. In order
to accomplish that we have to make sure that the buffer is ready to
receive data (this is made by instructions explained later). If it is
ready the following flow of data occurs:

One word has to be sent to IOB. This is done by an EW 10000 v instruction,
Since the buffer is "informed” that we send words to IOB, it picks the
word up from IOB, puts it into IOT, and finally places it into one buffer
memory register increasing its Word Counter by "1". In order to fill

the buffer completely 1201 words have to be sent to it, i.e. 12010 EW's
must be executed to fill the buffer. As you see: this is the amount of
words needed to write one block on tape in Fixed Block Length.

Assume buffer 1 is filled completely, and all words have to be placed
into the computer. At first we have to "tell™ the buffer to send the
words to the computer (by an instruction explained later). The buffer
then sends one word at a time to IOT and from there to IOB. The computer
has to pick up each word from I0B by an ER 10000 v instruction,

As the above mentioned cases indicate: the computer program controls
only the transfer from computer to IOB and from IOB to computer. The
other transfer, buffer «—910B, occurs automatically, whenever the buffer
"realizes" that either I0B contains a word which can be picked up (I0B =

Buffer), or 10B is emptv and the next word can be placed into it (Buffer —

10B), provided the proper selection of the buffer operation has been made.

* in the future, up to 12y Uniservos per TCU!

-72-

2) Buffer «Tape

Assume buffer 1 is filled, i.e. contains 120j9 words. We intend to write
these words on tape in Fixed Block Length. In order to do so we have to
give a command which initiates writing. This command, however, has to
specify: TCU 1, Uniservo No, Write, density, block and blockette spaces,
and stop bits, if no free run is desired. Compare this with an EF -v
instruction for Bypass Mode. There we have to specify the same informa-
tion to write one block on tape. The only exception is the TCU No.

instead of the former "Master Bit". As you probably guess: the instruction
which initiates writing of the contents of a buffer on tape, is an EF
"Write" instruction, where (v) contains the same bit selections as explaine
under Bypass Mode, except "Master Bit". This "Master Bit" is now replaced
by two bits, one for TCU 1 and another bit for TCU 2.

If we give this command: Buffer 1 write on Uniservo, the buffer
begins the information transfer to the tape and continues to do so, until
the whole content of the buffer is written on tape. This means: one
command initiates the writing of up to 12010_words on tape. This writing
process is automatically performed by the buffer and need not (and cannot)
be controlled by the computer program. Notice that the computer, there-
fore, is free for other operations and can use the whole time needed for
the writing process. The information flow is: buffer memory -I10T—TR —
tape. Keep in mind: IOB is not used during a transfer buffer —»tape.

Now we want to examine the transfer tape —ybuffer. This transfer is
initiated by an EF "Read" instruction where (v) has to specify TCU No.,
Read (forward or backward), Uniservo No, and stop bits, if necessary.

If e.g. TCU 2 was selected, then word after word enters buffer 2, until
one block (up to 1200 words) has been transferred to it. IOB Is not
used during this transfer, since one word goes from tape -*TR—>I0T->buffer
memory. The operation is, as the buffer —tape transfer, initiated by
one command, and from now on it is performed automatically, i,e. the
computer is free for other operations.

D) Buffer States
1) "Load" and "Unload"
As you saw in the preceding paragraphs: each buffer possesses an I0T-regist

Buffer memory communicates with this register directly.
Let us examine the case that a buffer has to receive data, say from tape,

As already explained one instruction (an EF "Read" instruetion) initiates
the transfer of one block to the buffer. mord after word goes from TR

to I0T and has to enter the buffer memory automatically. This can be
done only if the buffer is really ready to receive data from IOT.

The other case is that the buffer has to transfer words, say to the
computer. This means that one word after the other has to be sent from
buffer memory to IOT (and then to IOB).

-73-

Again this automatic sequence (buffer memory -»IO0T) can take place only
if the buffer is ready to do so.

The result of these considerations is that a buffer has to be in one of
two states:

in the "load" state, to receive data regardless of whether

if it is
&
the data comes from computer or tape

(2]

in the "unload" state, if it is to transfer data to computer or tape.

The question is: how is the switching from one state to the other accomplished?
Upon starting computer operations the programmer expects that the buffers

are completely empty and ready to receive data, either from tape or from

the computer. This is the case.

A computer liaster Clear clears both buffer memories, sets both
Word Counters to "0", and sets both buffers to the "load" state.

From now on switching to "unload" and "load" depends upon the Word
Counter or the End of Block Signal. It may be said now, that buffer
operations in Fixed and Variable Block Length lLiode are possible. Let us

discuss switching for both.

Fixed Block Length:

Here one block consists of 1201y computer words, i.e. is equal to the

capacity of one buffer. As long as this mode of operation is selected
switching of the buffer from "load" to "unload" and visa versa is fully
automatic. It means:

After computer =9 buffer transfer:
If the Vord Counter is = 120y, the buffer is switched to "unload".

After tape - buffer transfer:

If the "End of Block" signal is generated, the buffer is switched
to "unload".

After buffer — computer and buffer —»tape transfers:

If the Vord Counter is = 0, the buffer is switched to "load".

Variable Block Length:
Because of the capacity of each buffer, a block in Variable Format may
not exceed 120jp words, i.e. it may contain 1,2,3,.....,120 words, but
not more. Variable Blocks which contain more than 1205 words have to
be read in Bypass lode.

The switching of the buffer from "load"™ to "unload” and visa versa is
fully automatic after the following data transfers:

buffer — computer
tape —> buffer

buffer —> tape. -74-

The transfer computer = buffer, however, does not switch the buffer
to "unload” automatically. This switching of the buffer has to be

"

accomplished by an EF "End Transfer" command as explained later.

The following may be pointed out here:
The EF "End Transfer” has to be given, if less than 120,, words are
sent to the buffer (from the computer). If exactly 120y, words are
sent to the buffer and are to be written on tape in Variable Format,
we have to distinquish between the following two situations:
Either the EF "lrite on Tape in Variable Format" has been given before
the transfer computer —sbuffer was made: then an EF "End Transfer"”
has to be made (this will be the normal case, namely Free Run).
Cr the SF "Write on Tape in Variable Format" is given after the transfer
of 12019 words to the buffer: then an EF "End Transfer" need not be
given. lLowever, if it is executed the program proceeds normzlly, This
means for a programnmer:
If you wish to write in Vecriable Format alvays give an EF
"End Transfer™ after the comnuter —buffer transfer.

Buffer "Activity"

As you have seen earlier: the transfers buffer — tape and tape —buffer
are made independently from the computer as soon as a command initiated
then. The computer program will naturally use the time which elapses
during such a transfer in order to perform other operaticns. After a
certain time has been used in this way the computer might try to refer
to a buffer which just communicated (or still communicates) with a tape
unit.
In order to handle such situations in a proper way the following has
been made:
A buffer is "active", if it

either receives data from tape,

or transnmits data to a Uniservo,

or if one of its Uniservos performs a "love" operation.

A buffer is “inactive", if its memory

either is not receiving data from tape and the

switch "load"” to "uiload" has been comnleted,

or is not transnitting data to a Uriservo and the

switch from "unload" to "load" has been completed,

or if nore ¢I its Uniservos is performing a "Move" oneration.
A detection of buffer activity is made by LkJ jv instructions with
j = 4 or 5, as explained below.

E) Programming for Write Operations using Buffers
A "Write" operation using a buffer involves the following program steps
in the sequence given:
L) Fixed Block Length

1) Test for Buffer Activity

2)

3)

4)

MJ 40000 v If buffer 1 is active, jump to v.
If buffer 1 is inactive, take N.I.

MJ 50000 v Same as above for buffer 2.

These instructions have to be applied, whenever the programmer
suspects that a previous buffer¢stape data transfer or a Move
Tape operation might not be finished at the time he tries to

initiate another operation involving the same buffer and/or TCU.

EF ™Write Buffer™ instruction
This instruction prepares the buffer for the computer — buffer
data transfer. The (v) of the EF -instruction contains bits for

"Buffer No"
"Write Buffer"”

Data Transfer from Computer to Buffer
120lo words have to be sent to the buffer, i.?. we have to execute
1204 FEW's. The fastest way te do it is by using a RP -command, i.e.

RP 10170 w
EW 10000 v

Buffer — Tape Transfer

In order to write 120 _ words of a buffer on tape an EF "Write Tape"
instruction has to be given, where (v) contains bits for

TCU No. (corresponding to Buffer No.)

Write, Density

Uniserve No.

Spaces

Stop (if no Free Run desired)
This instruction is identical in function and coding to the EF "Write
Tape" instruction used for the 1103A computer with the exception:
the old "Master Bit" is now replaced by a TCU No.

Notice: The EF "Write Tape" instruction sets the buffer to "active”.

}?) Variable Block Length

In

order to write one block on tape in Variable Format apply the

following steps:

1)
2)

as in Fixed Block Lengtk
as in Fixed Block Length

¢« provided the buffer is in the "unload™ state

®

3) the data transfer te a buffer invelves the transfer of less than
12010 words. But as in Fixed Block Length the proper number ef
words can be transmitted by the sequence:

RP jn w
EN 10000 v

<
where n = 12010.

3a) EF "End Transfer”
(v) of this EF contains bits for

*Buffer No”™
"End Transfer™

This command switches the buffer to "unload™.

4) as in Fixed Block Length with the addition that bits for Variable
Format have to be included in (v). If writing of one block is
attempted only, then “Step” bits can be included in (v). (This is
different from the 11034 and 1105 Bypass operations in Variable Block
Length Lode.)

F) Preogramming for Read Operations using Buffers
The program steps which have te be executed in order to read information
from tape into the computer via a buffer are the follewing:

&) Fixecd Block Length
1)} EF "Read Tape" instruction

This information which initiates the transfer of one (or more) blocks

from tape into a buffer makes use of a (v) with the selectien bits for
TCU No
Read forward (er backward)
Uniservo No
Stop (if no Free Run desired)

Thus, if TCU 1 is selected, a block goes into buffer 1; if TCU 2 is
selected, a block is sent te buffer 2.

Notice: The EF "Read Tape™ instruction sets the buffer to “active". ¥
The transfer of one block from tape to buffer is now an automatic sequence.

The time necessary to perform this transfer will, in moest cases, be used
by the programmer. He, therefore, has to test for buffer activity, when

he wants te continue with an operation invelving the buffer which was used
for the tape — buffer transfer.

2) Read Error

If the buffer was found to be inactive the programmer may test whether

or not an error eccurred during the reading process. This is done with

an J j = 6or T:

MJ 60000 v If an error occurred during reading inte buffer 1, take
N.I. If there was no error, jump to v.

MJ 70000 v Equivalent te above command, but refers to buffer 2.

The Read Error can be a parity error, sprocket error, or end of record. If
either one occurs the tape movement is automatically stopped in the following
bleck space. It does not result in_a computer fault.

*provided the buffer is in the “"load™ state ~ ‘'~

In order to determine the nature of the errer the following method has to be
applied:

Read the corresponding Buffer Word Counter (see page 79) and test it.

If (BWK) = 120, there was a parity error

If (BwK) # 120 and # O, there was a sprocket error ¥

If (B4K) = 0, there was an end of record, i.e. no words are in the buffer.

Keep in mind: In normal mode (buffer mode) I0A is not used for error indications.

3) EF "Read Buffer™ instruction *#
This cemmand initiates the transfer buffer —scomputer. (v) of this EF -v
has to contain bits fer

"Buffer No"
"Read Buffer”

4) (108)— Computer Transfer
Each word sent to I0B by the buffer has to be picked up by am ER 10000 v.
If all 120} words are to be read, the fastest way of doing it is
RP 10170 w
ER 10000 v
However, keep in mind that you nced not pick up all words! If e.g. reading of
the first word is intended only, then cne ER is sufficient. Dut the second word
is sent to _I03 fronm the buffer! There arc now two possibilities: either the first
word is only operated cn and, after some time, the reading of the buffer is continued.
In this case, the programmer has to give the rcnaining 11934 ER's.

The second possibility is that after reading the first word another EF-instructien

is given in order to select a different input/output equipment. In this case (IOB) =
second werd is erased, i.e. it is lest. It may be said that an EF-instruction may
net select a read c¢neoraticn with the secend buffer or any other equipment.

4a) In any case: if conly part of the centent cf a buffer is rcad into the computer
and the remaining words are not wanted the switch from "unload™ to "load™ and a
cleaxing of the buffer memory is accomplished by an
EF "Clear Buffer” instruction:
(v) contains bits for
"Buffer No"
"Clear Buffer”
The instruction accomplishes:
Set Buffer Wcrd Ceunter to "07

Clear Buffer liemory
Switch Buffer from “unlecad™ te "load”™

¥ Notice: If mere than 7203(¢ lines per block are detected, each additienal line

advances the Buffer Word Ccunter by cne, until it reads 127)9 = 1774
#% See remarks on bottom page {4

-76-

/9) Variable Block Length

1)
2)

2a)

3)
4)

4a)

as in Fixed Block Length; only include bits for Variable Block Length.
Test for Read Error like in Fixed Mode. 1In Variable Mode there are,
however, three types of Read Errors:

parity error, sprocket ("mod 6") error, end of record.
The End of Record is detected by the machine like in Bypass lode, i.e.
after approximately 4" of blank space have been passed following the
end of the last block. This causes the tape to stop automatically.
It can be found by reading the Buffer Word Counter and testing it. If
it is = 0, there was an end of record.

If the BUK # O, the nature of the read error (parity or sprocket error)

can be determined only by re-reading the block in bypass mode. The
tape movement, however, stopped automatically in the following block space.

Notice: IOA is not used for error indications.

EF "Read Word Counter"

Since the length of the block read into the buffer from the tape is
unknown to the programmer, but the exact number of ER's has to be given

for the transfer buffer — computer, an instruction is provided which
picks up the content of a Buffer Word Counter. This is the EF "Read

Word Counter". (v) of this instruction has to contain:
"Buffer No"
"Read Word Counter" bits

The sequence of steps set up by this command is:

Content of Buffer Word Counter —>10B,
Therefore, an ER 10000 v can take (IOB) ard place it into the computer.

It is obvious that this number represents the exact number of ER's which
have to be executed. It is actually our "n" for a RP-command, and we

have only to put it into this place. This, by the way, is the reason
why the Buffer Word Counter is sent. to the u-part of IOB.
as in Fixed Block Length

as in Fixed Block Length. The "n" of the RP-command has been found out
by the method explained under 2a) EF "Read Word Counter". If all words
which entered the buffer from tape are placed into the computer the
switch from "unload™ to "load" is made automatically.

If only part of the content of a buffer is read into computer memory,
the switch from "unload" to "load" has to be made by the EF "Clear Buffer"

instruction as explained for Fixed Block Length.

-79-

G) Stop after Read or Write Opesations
'If the tape is to be written or read a block at a time, the stop bits may
be included in the EF "Write Tape" or EF "Read Tape” instructien (Fixed
or Variable Format).

When reading or writing in free run mode, tape movement must be stopped
by an EF "Stop Tape” instruction. (v) of this command has to centain
"TCU No™
"Stop bits"
When has this command to be executed?
In order to terminate a "Read" operation, the EF "Stop Tape™ must be
executed either before or after the instructions which complete the transfer
of the last block from buffer to computer.
In order to terminate a "Write" operation, the EF "Stop Tape" must be
executed after the last block has been written on tape, i.e. after the
last transfer buffer —)tape.

A rule which covers both, reading and writing, is:

In order to terminate a Free Run operation, execute the EF "Stop Tape"
instruction not earlier than at the time, when the last transfer tape->buffer
or buffer —tape is finished.

It is not possible in Buffer Mode to execute an EF "Stop Tape" instruction
" too late, This is explained under "Automatic Tape Controller”.

H} Selection of "Bypass Buffer Mode"
Tape operations can be performed without using a buffer, i.e. it is possible
to "bypass” or disregard either of the buffers. If this is intended, an
EF "Bypass Buffer"” instruction has to be executed, where (v) contains bits

for wgyffer No"
"Bypass Buffer"

Assume that this instruction is given in order to bypass Buffer 1. As a
result all following tape operations referring to TCU 1 will be made in

exactly the same way as described under Vf) "The 1103A Magnetic Tape System,
1105 Bypass Mode Cperations”. This means that the flow of information is
computer — I0B = TR (of TCU 1) —>tape
or tape = TR (of TCU 1) — IOB — computer.

However, tape operations referring to TCU 2 still employ buffer 2. It is
naturally pessible to bypass both buffers simultanequsly. But keep in
mind that in this case reading and/or writing cannot occur simultaneously,
as it is possible in normal (buffer) mode.

In order to return to the normal mode, (i.e. to use buffer 1 again in
above example), one of the following instructions has to be executed:

-80-

EF "Clear Buffer"
EF "End Transfer"
EF "Read Word Counter”
EF "Urite Buffer"
EF "Jead Buffer"

Which of these instructions is used depends upon the current state of
the buffer, i.e. upon the programming situation given by the problem

to be solved.

The "Bypass" l‘ode has to be selected:
in order to read or write blocks in Variable Format consisting
of more than 1.1 words;
in order to distinguish between parity and sprocket error in
Variable Format.

It may be selected for any other tape operation.

J) Automatic Tape Controller ATC
Let us assume we perform a Free Run operation, say Writing, in Bypass liode.
Block after block is written ontape. The tape does not stop, until we
give an EF "Stop Tape" instruction. This forces the programmer to carefully
calculate the timing for his problem. Between the last word of one block
and the first word of the next block the programmer has a certain time
which he may not exceed. There is also a limit for the time which may pass,
until an EF "Stop Tape" instruction has to be given after writing the last
word on tape.

During Free Run operation which employs a Buffer the situation is completely
different.

Reading in Free Run via a buffer:
If one block of data entered the buffer and is not picked up by the
computer tape movement is stopped temporarily. .This stop occurs
after a nominal 3 m sec. time lapse following the detection of the
end of the block, if during this time an ZF "Read Buffer" has nut
been given.

Tape movement is automatically started again, when the IF "Read

Buffer" instruction is executed.

If the block transferred from tape to buffer was the last block

and the ZF "Stop Tape" instruction has not been executed within

3 m eec. following the end of Llock detection the autcmatic stop
is also initiated. an CZF "Stop Tare"” instruction executed later
will effect a permanent halt of tage movement.

Lriting in Free Nun via a bufrer:
If one block of data has been written on tape and the transfer of
the next block from computer to bufler is not initiated within a

-El~

nominal 3 m sec. time lapse following writing of the last word

on tape, an automatic stop of tape movement is made. Tape movement
is started automatically, when the transfer computer —»buffer is
initiated by an EF "Write Buffer™ instruction,

h

If the block written on tape was
n ck written on tape was

the
stop occurred an EF "Stop Tape" will cause a permanent halt of
tape movement.

last bhloc

w

and the automatic

The following example will illustrate the situation completely.

Assume you write in Free Run via buffer 1. You send the first block to
the buffer, and writirg on tape is started. This takes 36 m sec., if a
density of 200 lines per inch is selected and 120y words are written.
The program naturally uses this time for other operations. Assume
further, that 50 m sec. elapse before you initiate the next transfer
computer —buffer. What happened? After 36 m sec. the last word of
the first block was written ontape. Now the block space is inserted.
If 1.2™ are selected, it takes 12 m sec. to pass this space. However,

after 36 + 3 = 39 m sec. the Tape Control realizes that the next block
is not being transferred from computer to buffer 1. It, therefore,
initiates the automatic stop of the tape. Just imagine for a moment
this would not be so. In this case the tape would require the first
word of the second block not later than 48 m sec. after the start of
the writing of the first block. Since it was assumed that 50 m sec.
pass this example would cause troubles for the programmer. Therefore,
keep in mind: you can never be too late during Free Run operations.
"Too early” is naturally a different situation. Properly programmed
MJ's (j = 4 or 5) prevent a too early reference to a buffer.

K) Some Timing *
a) Transfer Buffer 3 Tape
The tape moves with a speed of 100" per sec. Therefore, the transfer
of 120jp words with 200 lines per inch density requires 36 m sec.

b) Spaces
To pass a block space of 1.2" or 2.4" a time of 12 m sec. or 24 m sec.,
respectively, is required. Similar for Blockette Spaces.

¢) Transfer Buffer ¢>Computer

Buffer— Computer: If repeated ER's are used one word is transferred
every 16 p sec. 120,, words are, therefore, placed
into the computer within approximately 1.9 m sec.

Computer — Buffer: If repeated EW's are used one word is transferred
every 20 p sec., 120;5 words within approx. 2.4 m sec.

For more timing refer to "1105 Prog. Manual, U 1513".

¥ See "Preliminary Programming Manual for the 1105 Computer”,
US 10€, page 20 and 21

-£92-

L) Faults

M)

All faults occurring during Buffer operations are "B" Faults. The
following classes of faults are possible:

"Select Fault":

This fault occurs in either one of the following two cases:

a) Buffer is in the "load" state and inactive,
but an EF "Read Buffer" is executed.

b) Buffer is in the "unload" state and inactive,
but an EF "Write Buffer" is executed.

"I0-Fault":
This fault occurs, if a reading of tape is attempted, but the buffer
is already filled.

Examples: Reading of a block of more than 120y words.
EF "Read Tape" and Buffer is in "unload" state.
The above fault is generated at the time when the second word from
tape tries to enter I0T, while the first word is still there.
An "Address Fault" (see below) will automatically select an "I0O-Fault".

"Address-Fault":

As a checking device a buffer counts the words as they enter the buffer.
If a word has not been stored in its proper buffer memory location the
"Address Fault" is generated.

"Transfer Fault":

Each "B-Fault" generated during computer and/or buffer operations is
sent to the Tape System where it generates a "Transfer Fault" which

will stop tape movement in the next block space.

Sample Programs (for Bit Assignments see Appendix)

1) Write one block of numbers stored at 20000, 20001, ... on Uniservo 5,
TCU 1 using high density, 1.2" Blockette Space, 1.2" Block Space,
Fixed Block Length. At first test for Buffer Activity. If Buffer 1
is active wait until it is available. (It is assumed that the operation
of the buffer is a "Write on Tape" operation. If buffer is inactive you
know that it must be in the "load™ state.)
a MJ 40000 a Wait until buffer 1 is inactive.
atl EF 00000 b Select "lrite into Buffer 1"
at2 RP 10170 a+4 Send 120, words
at3 EW 10000 20000 to Buffer 1
at4 EF 00000 btl Write on tape
atd NI

b 00 10000 00400 Constant
b+1 01 00646 50000 Constant

«63-~

2)

3)

Notice how we accomplish the waiting for a previous buffer -y tape
operation. (a) is an MJ 40000 a. This means: as long as Buffer 1
is active, we jump to a, i.e., to the same command. In the moment
the buffer is inactive, no such jump will occur, but we now continue
in sequence and perform the buffer and tape operations.

Read forward one block from Uniservo 3, TCU 2, into 10000, 10001,
Fixed Block Length. Test for Buffer Activity first and wait, if not
available. (It is assumed that a previous operation leaves the buffer
in the "load" state.)
a MJ 50000 a Wait, until Buffer 2 is inactive
atl EF 00000 b Read Tape into Buffer 2

a+2| available for computation;
i pat least about 46 m sec.
atn-1J may be used

atn MNJ 50000 atn Wait, until Buffer 2 is inactive
atntl MJ 70000 at+nt3 Test for Read Error
atn+2 RJ v Return Jump to Error Routine

atn+4 RP 10170 a+n+6
atnt> ER 10000 10000

b 02 00602 30000 Constant
b+l 00 20000 00200 Constant

u
atn+3 EF 00000 b+l Select "Read from Buffer 2"
> Buffer 2 -3 Computer

Krite one block of data consisting of 19jp words on Uniservo 1, TCU 2,
in Variable Block Length. Assume Buffer 2 is ready for the operation.

a EF 00000 b Select "Write into Buffer 2"
a+tl RP 10023 a+3 Send words to Buffer 2
at2 EW 10000 035000 from 05000, 05001,
at3 EF 00000 b+l Switch Buffer 2 to "unload"
at4 EF 00000 b+2 Krite on Tape

b 00 20000 00400 Constant
b+1 00 20000 01000 "
b+2 02 00666 10000 "

Notice the EF "End Transfer" at a+3 which accomplishes a switching
of Buffer 2 from "load" to "unload".

Remarks: During a "Read Backwards" operation the word which was recorded

as last word is read as first word into the buffer, the word which was
recorded as first word (word #1) is read as last word. However, when
reading this block from buffer -» computer, word #1 is picked up first etc,
This means that a "Read Backward" operation essentially transfers all
words of a block to the computer in exactly the same order as they were

written on tape, if a buffer is used!

-64-

— — e -

A) General Explanation
The Program Interrupt Feature of the 1103A/1105 permits an external
equipment to interrupt the computer program automatically, when the
external equipment is ready to communicate with the computer. Proper
programming can interrupt the computer program upon occurrence of
the following situations:

Data sent to IOB or IOA by an ext. equip. have to be picked up by
the computer.

Data have to be sent to IOB or IOA by the computer, because the
external equipment is ready to receive them.

Either (or both) of the Buffers of the 1105 is ready to communicate
with the computer.

There is also the possibility to interrupt the computer by manually
pushing two buttons on the computer console.

Both the manual and the program controlled interruption generate a
so-called "Interrupt Signal" which results in a modification of the
normal sequence of steps the computer follows. This modification
affects Main Pulse 6 and is explained in the following paragraph.

B) Modification of the Computer Program by an Interrupt Signal and

Programming Consequences

1) When does the Interrupt become effective?
As already said: the Interrupt is nothing else but a signal (pulse)
Assume data are read into the computer, say from cards. After gne
row is placed into I0OB and IOA the Card Unit emits a signal thus
informing the computer that data are available in IOB and IOA.
This signal is the Interrupt Signal. What is the situation now?
The computer is operating, i.e. it is either picking up a command
from storage (MP 6 and 7) or executing a command (MP O thru 5).
The Interrupt Signal arrives at any of these Main Pulses, and the
question is: will it be effective at once, or will it have to wait?
The answer to this question is: '

The Interrupt Signal has to wait, until the
computer executed a command completely or
until a Repeat Sequence is terminated completely. ®

To make this absolutely clear: we have to distinguish between
two situations:

Either the interruption is attempted at a time a Repeat Sequence
is being executed. 1In this case the Interrupt Signal becomes
effective, after the command at address Fy has been completely

* To be precise: until the "Hold Repeat FF is 0" (refer to "Repeat Command")

-£5-

executed or a jump has been performed during repetition of an EJ or TJ.

Or the interruption is attempted and no Repeat Sequence is being
executed. In this case the Interrupt Signal becomes effective after
the execution of the command which the computer is operating on.

The following program might illustrate this:

a TD h il
-~

atl RA b

a
at2 RP 10100 a+4
at3d TP bt+2 c
atd NI

First case: The Interrupt Signal arrives during the execution of
the TP at a. In this case it has to wait, until this
command is executed completely. Then the signal is
effective and results in a modification of steps as
explained later.

Second case: The Interrupt Signal arrives during the execution of
the Repeat Sequence, say after the TP at at3 has been
executed 5 times. Now the interruption is delayed not

only until the TP at at3 is executed 100g times, but

also, until the command at Fj is executed completely.
(See under "Repeat Command" for details regarding the

execution of an RP jn w)

2) hNodification of NP 6 by the Interrupt Signal

Now we are ready for the discussion of the modifications performed

by the Interrupt Signal. At the moment this signal becomes effective
the computer is actually ready to continue with [P 6, i.e. the computer
tries to pick up the next command from a storage location given by

PAK. (Refer to "Program Address Counter"”, page 2 of this manual. There
is the discussion of the computer operations performed during MNP 6

and NP 7). The Interrupt modifies this KP 6 in the following way:

lear PCR . . .
¢ T Essentially SAR is set to address Fq = 00002,
and the word stored at this location is
MP 6, as Set SAR d M s d this
modified to F3 placed into X,
by the his is made without changing or using
Interrupt ~L: the address currently held in PAK.
Initiate Read:
Clear X
tvait Int. nef.

- o e e - - -

Example: Assume the Interrunt is generated during the execution of
(06235) = TP A 0. At this time P/H = 06236, At the cnd of the
execution of the TP, the Interrupt becomes effective, This means that
the next command to he executed is extracted frem C0CC2, PAK is left
unchanged ard reads C&235 at the beginning of the exccution of (00002).

-Cb-

3) Programming Consequences

The above example shows that the steps the computer has to follow

after picking up (00002) entirely depend upon the command stored

there. There are two possibilities:

&) (00002) is not a jump command
In this case (C0002) is executed and the computer proceeds with
extracting the next command from 006236, since PAK has not been
changed.

f?) (00002) is a jump command
Here Pak is erased by the new address to which we jump, and the
computer proceeds there. On the other hand it is obvious that we
want to come back to our main program sooner or later, and especially
to the point, where we left it (06236 in example). lie also want to
accomplish by the interruption a communication with external equip.,
i.e. starting at 00002 there has to be a small subroutine which has
to ; rform the communication. Illow can we do this? We have to save
the address of our main program held in PAK, and must exccute a
jump, since the above mentioned subroutine hardly consists of
(00002) only.

This can be done by one command, the RJ uv. Therefore:
If the Interrupt Feature is to be used, thenm
(00002) = LJ u v,

where v denotes the entrance of the subroutine, u denotes its exit.

Here you see the importance of a complete understanding of the RJ- command.
Its execution is made in the way:
PAK — U,
v —> PAK
Following our examnle and assuming the subroutine to be cxecuted after
an Interrupt starts at 05000 and end at 05500, we have to write:
(G0002) = J 05500 05000
with (03500) = }1J 00000 30000,
In this case 006236 —» 05500, so that now
(05500) = 11J 000CO 06236.

Ther 05000 =) PAK, 1.e. a jump to C3000 is made. After execution of
the whole subroutine we come to 03500, which brings us back to our
main progranm, namely G0206.

So far we have explained how te save the address of the main progran

to which we intend to return, =2nd how to jump to the subroutine which
has to be exccutcd, f[ici.ever, vou can see that this subroutine probably
uses A and § suring the execution of its commands. Cn the other hand
valuable numbers micht be left in A and 9§ at the moment the main program

-

- -

c)

is left. We certainly cannot afford to lose these numbers. Moreover,
before returning to the main program we have to restore A and Q such

that they contain the same numbers as at the mement we left the main
program. The result of these considerations is the following:

(00002) = RJ u v

(v) =TP A ws (AR) —Ws

(vtl) = LT 00000 ws+l (A)—»wstl

(VTZ) = TP Q ws+2 (Q) —> ws+2
E E Program which actually
\ ' performs the communication
: : with ext. equip.

(u=3) = TP ws+2 Q Restore Q

(u-2) = SP wstl 00044 Restore Ap

(u-1) = SA ws 00000 Restore Ag

(u) = MJ 00000 30000 Exit

The above program is a typical example for a subroutine which has to
be executed after the generation of an Interrupt Signal. It stores
(A)i and (Q);, performs its specific job, and restores (A) and (Q).

The Program Controlled Interrupt
1) The "Bull" Card Unit
The Interrupt Feature can be selected in connection with the on-line

card unit. One bit (v = 1) included in (v) of the EF-v which selects
a card unit operation enables this equipment to emit the Interrupt Signal.

Reading of Cards:

When cards are read the Interrupt Signal is emitted at the time IOB

and IOA contain data from one row, i.e. one row is ready to be picked

up from IOB and IOA. This means that the subroutine to which the

program jumps has to read I0B and I0A as explained under "Bull Card Unit."

Punching of Cards:

then cards are punched the Interrupt Signal is emitted at the time the
card unit requires new data for one row in IOB and IOA, i.e. the
subroutine has to send data for one row to IOA and I0OB as explained
earlier.

In either case it is important to understand that the interruption is
made for each row of a card.

The usefulness of the Interrupt Feature in conjunction with the card
unit is evident. It eliminates the task for the programmer to carefully
calculate the time he uses for other computer operations between

successive rows. The Interrupt Signal automatically "informs" the
computer that either (IOB) and (I0A) have to be picked up (reading)

-C6-

or cata have to be sent to IOA and IOB (punching). This means that

now these operations cannot be made too late. On the other hand it

also means that the programmer need not initiate these operations

too early and, therefore, "hang up" temporarily thus wasting valuable
computer time,

It is, however, pointed out that the main program may not contain any
Repeat Sequences which need more time for their executions than 1.5 m sec.

(if Interrupt for punching is used) or 10 m sec. (if Interrupt for
reading is used). These are the so called "receptive times" for the
card unit, i.e. time which may elapse between the beginning of -an
input or output cycle and the execution of the first EW or ER.

2) The 1105 Buffer System
The Interrupt can be used in connection with the 1105 Buffer System.
It is possible to select the Interrupt for either buffer or both buffers,
This selection is made by including Bit voy = 1 into (v) of one of the
following instructions: EF "Read Tape", EF "Write Tape", EF "Move Tape",

Reading from Tape via a Buffer:

The Interrupt Signal is generated at the time a whole block has been
transferred from tape to buffer. Actually the interruption is made by
the "end of block" signal, and at the same time the buffer is switched
from "load" to "unload”. The subroutine to which you jump because of

the RJ uv at 00002 can, therefore, perform the transfer buffer —computer.

Writing on Tape via a Buffer:

In this case the Interrupt Signal is generated, after the content of the
buffer has been written on tape and the buffer has been switched to the
"load" state. The subroutine to which you jump because of the Interrupt
can, therefore, perform the transfer 6f the next block from computer to
buffer.

In both cases you see that the Interrupt only means: A previous tape ¢
buffer operation is completed. Therefore, the buffer is ready to commun-
icate with the computer. However, the interruption does not mean that
the computer has to perform a buffer<—scomputer transfer, since even in
Free Run the Automatic Tape Controller would step the tape, if the next

reading or writing is not initiated in time, With other words, the
Interrupt for the Buffer System merely prevents the computer from waiting
for Buffer Inactivity. Thus it gives the programmer the possibility to
make the most efficient use of the time needed for tape ¢-buffer transfers.

As long as the Interrupt is chosen for use with one buffer at a time, no
MJ with j = 4 or 5 need to be executed after the jump to the subrouting,
because such a jump means that the buffer is inactive. However, if the
Interrupt is selected for both buffers simultaneously, these MJ's have

-89-

3)

to be executed in order to detect which buffer emitted the Interrupt Signal.
After the main program is interrupted once, all subsequent Interrupt Signals
initiated within 0.5 m sec are ignored.

Moving the Tape:

Tho ITntorront m
43T afivCadupe

this case the main program is interrupted after the tape has been moved
the specified number of blocks. (This does not apply for Bypass Mode
Move opesations!)

Other Equipments

The Interrupt may also be chosen for other equipments as e.g. the Ferranti
Tape Reader and the On-Line High Speed Printer. A discussion of these
operations is omitted. The existence of these possibilities is merely
mentioned here.

VIII) The 1103A/1105 Floating Point System
A) Representation of Numbers

A decimal number N is represented in the form

N =4 m2°

where % € m < 1.

With this restriction for m, there exists one and only one value

for c.
m is called "mantissa”
¢ is called "characteristic"

|

Lt b bhits | 27 hits
/ | T
Sicn "higsed” muntissa
Fit characteristic

=c T 1381n

&) Tepresentation of positive Numbers (112 0)

csa i placed into the rightmost 2

Since both, mantissa and characteristic, are to be placed into one
30-bit register, the following format has been chosen:

T1g bits of the register
~hoth al point is assumed to be between bit is- and iGQ
i.e. all 27 bits are fractional bits with the leftmost bit (iog)

The reusen for this method is the following:

¢ obi 25
and 11 111 111 (binary). It is, however, o
;c8¢ess a negative characteristi
This means that we have to b
negqutive exponents for a positive number.

bt P

wrresents a ¢ = 0, we _cannot represent &
se E bits the function of a
ver, would over-complicate the wh

L O
bty
ot
qw

te ucal with two sign bhits in one reqis

N s PATT ~red - . e e : r
iore, the iollgowlng reprosentation ior

corresponds to ¢ = O,

erved for the characteristic can

bvicus that a p

c, as e.q.

e able to repre

If we gssume th
¢

c €0, unless we
1

sign for the ch
ole matter, sin
ter.

[N

the character:

lie between 00 CGCU

08§

9]

o]
&}

Then:

10 000 001 = 201y represents ¢ = 1

10 000 010 = 2025 represents ¢ = 2

10 000 011 = 203, represents ¢ = 3
o g

11 111 111 = 377, représents ¢ = 127y

01 111 111 = 177y vrepresents ¢ = =1

01 111 110 = 176g represents ¢ = —-2

01 111 101 = 1755 represents ¢ = =3

00 00O €00 = O représents ¢ = =126

10

Applying this method we are able to represent cxponents ¢ in the range
A < -

Thus all numbers N>0 in the rangc

can be represented using this Floatlng Point" Format. (The range in
decimal is roughly 107°V£& N £10 ot
Zxamples
N = 3:
lere, 3=2C/1 2% i.c. m=3/4, ¢ =2,
Since 3/41 = 0/6 = .6(= 1109, we have:
/;fiaO 10 000 C19, 110€—3(0
w._—/\‘_y__—__—/

Sign C mantissa, 27 bits

In octal we have: 3 = 202 60&~—>0

Since I = 1§ - 2‘1, we cbtain m =1Lk, ¢ = —1.

herefore, 4 =0 01 111 111 10&——0 (binary)
or, LEITT 106—230 (cetal)
e

mantissa,
Notice: ¥ = 4/0 = g

No=1/5:

1/2 = 2/3 - 271 dile. m=2/3, ¢ =-1
In this case the conyersion of the decimal mantissa m = 2/3 into binary
(or octal) is not made as simply as in the above examples, where the

. X . e a
denominator always was 27 (x = 2 for N = 3, x =1 for N = 1/4). Therefore
we have to convert a decimal fraction to an octal fraction by multiplying

*

~99-

with 8;
1/3 = 666 666 666 ,...

L6606 666 . ©
5 [.333 326

you see: the result is actually 5.333 333 Therefore, we go on with

.333 333 - 8
2 | .666 664

ne——

Here the result is 2.666 666 This means we have to go on with .666 666...
which brings us back to where we started. Thus
2/3 = .525 252 525 525
Since the mantissa consists of 27yg bits we have to restrict ourselves
to 9 octal digits.
1/3=0 01 111 111 101 010 101 010 101 010 101 010 101,

°F 1/3 =177 525 252 525

) Representation of negative Numbers N <O.

A negative number is given by the complement of all 36 bits of its
absolute value. '

Example:

Since + 3 =0 10 000 010 110e—0, we obtain
- 3=1 01 111 101 00l¢&——1 (binary)

Notice: Sign bit, mantissa, and characteristic are complemented. On
the other hand, +3 has a characteristic ¢ = 2, and -3 = =3/4 '22 has also
a characteristic ¢ = 2. DBut nevertheless the © bits comprising the

characteristic portion of a negative number are given by the one's complement
of the true biased characteristic,

a‘) Representation of N = O,

The number "zero" is represented by 36;4 "zeros", i.e. all 36 bits of
the register are zeros.

A number N being represented in the above mentioned format is said to
be "normalized™ and "packed".

"Normalized" means: the most significant bit of the mantissa is in stage iog.

"Packed"” means: mantissa, biased characteristic, and sign bit are placed
into one register in the 1—8—27 format.

B) Floating Point Commands
During all Floating Point arithmetic processes the programmer possesses
the option to round or not to round the rightmost bit of the mantissa of
the result of such a process. This is handled by the command

-93-

Fi j- (Floating Point llourd CGrtion)

do not round results of all following

.
1
s

floating point operations

If j = 0O from now on round again all results of
all subsequent floating point operations.
This is also accomplished by a computer
Master Clear, i.e. rounding is the normal

operation of the machine.

J 1s determined as in PU jv etc.

FA uv (Floating Point Add)
Octal operation code = 04
Function:

(u) : normalized, packed Floating Point number
(v) : normalized, packed Floating Point number

Then (y) + (v)—0Q
where (Q)y = normalized, packed and rounded (optional) Floating
Point result.

FS uv (Floating Point Subtract)
Octal operation code = 65
Function:
(u) — (v)—™Q
where (u), (v), and (Q)f are normalized, packed numbers, and (Q)f
is rounded (optional).

FM uv (Floating Point Nultiply)
Octal operation code = 66
Function:
(u) « (v)—Q
where (u), (v) and (Q)s are normalized, packed numbers, and (Q)¢
is rounded (optional).

FD uv (Floating Point Divide)
Octal operation code = 67
Function:

{u)
(v)

(u), (v) and (Q)f are normalized, packed numbers, and (Q)¢ is
rounded (optional).

FP uy (Floating Point Polynomial Hultiply)

Octal Operation code = 01
Function:
(W) (Q); + (v)—Q
(u), (QJ;, and (v) have to be normalized and packed Floating Point
numbers. (Q}f is also normalized and packed, and it is rounded
(optional). This rounding process is performed in the following
way: At first the product (u).(Q); is rounded. Then the sum (u)-(Q);
+ (v) is rounded again. If no rounding is wanted, ncither the product
nor the sum are rounded.
The usefulness of this command is illustrated by the following example:
Compute o - :
TagxY +oan XUt ... a; X + ag,

where

(00100) = ag
(00101) = a
(00102) = ag
(00107) = ay
(00110) = an
‘and (0007T) = x
Solution:
b TP 00100) ag — Q

1 &P 100iC b+3 levelop
2 Fp 00077 00Ol f A + a5 —Q
124
J

T

4

FI uwv (Floating Point Inner Product)
Gctal coperation code = 02
Function:

(wi-(v) = Q) —0Q
(u), (v), and (Q)j have to be normalized and packed. (Q)¢ is also
normalized, packed and rounded (optional). As in the FP uv, either
beth, product (u)«(v) and sum (u)-(v) + (Q);, are rounded, or neither
one is rounded,.

-

otice: Leocation F, = 00003 _is used for temporary storage of (Q);.

This command is useful for computing sums of products us e.q.

/L
22:31 by

&z g
“xample: Let o = 5 and
(010 = g (00200) = by
ool = ey (CO201) = by
(GO103) = az (00205) = b

b3
To develop the sum Z oai b; = ag ho + a; bl + ---- + a5 b
” =
we write the program:

¢ Fam 00100 00200 ap bp—0Q
¢+l RP 300CS c+3 } compute
c+2 FI 00101 00201 a0 by + ---- + ag bs—sQ
ct3 NI

UP_uv (Unpack)
Cctal operation code = 03

Function:
Assume (u) is a packed, normalized Floating Point number, Unpack
(u) in the following way:

(u)m-—eum, sign bit ugs is also placed into ugy thru usy

If (w2 0: (We—ov, v35 and v, thru vy
} are all "zeros”

I1f (u) € O: (u)é._;vc
Definition:

(u), is the martissa part of the number

(u), is the characteristic part of the number

u . means: bits Uog evens uO

Ve means: bits Vay seoes Vo7

Example:

(u);

O!.O 0CO 011 101 e—0 = + 5=%' 2
C m

Unpack (u) gives the result:

(u)e = 0 00 COO 000 101 0e—0
(v)¢ = 0 10 000 011 Oé————0

(1) = 1 01 111 100 010 le——1= -5 = < - 23
Unpack (u):

(W = 111 111 111 010 le—>1

(v)f = 0 10 000 011 0e——>0

As you see: hen unpacking (u) the rightmost 2719 bits of (u)y (mantissa
part) are equal to those of (u);, but the other 9 bits are all sign bits.

lowever, (v)¢ contains always the true biased characteristic of the
number (u);. This means that the characteristic part of (u)j €0 is at

first complemented and then placed into the proper part of v (in above
example (u); =-5: (u), = 01 111 100 is complemented and 10 000 011 —v.)

-96-

NP uv (Normalize Pack)
Octal operation code = 04
Function:
Assume(u)j is an unpacked mantissa, normalized or not, i.e. the binary
point is assumed to be between Ug7 and U, but the most significant
bit of the mantissa may or may not be at ugg.
Assume further that (v);j contains an unpacked true biased characteristic
in the characteristic part.
Normalize and pack in the following way:
(u)j is normalized and rounded (optional) such that now
the mantissa is in up.
(v); is adjusted according to the number of shifts which were

needed to normalize (u)j, and sent to u,. If (u); was

negative, complemtnt (v). and then send it to ug.
As you see: (u); contains a mantissa which may or may not be normalized.
However the binary point is assumed to be between use and Upg . Therefore,
if e.g. the most significant bit of the mantissa was in uog, two right
shifts are needed to bring it into upq. This is equivalent to a multipli-
cation with 2-2, Therefore the true biased characteristic is increased
by two. Then the machine determines whether (u); is positive or negative.
If positive the adjusted characteristic is sent to u,. If negative the
complement of the adjusted characteristic is sent to uc. In any case
(u)f is a normalized, packed and rounded (optional) Floating Point number.

Example:
Let (u); = 000 000 101 O————0 =m
binary point
(v); = 010 000 001 O=—0

Normalizing (u)j means: shift it 3 places to the right, i.e.
multiply mantissa @ with 2-3, Now (u)j = 000 000 000 101 O 0
contains m-2—3, Therefore a "3" is added to the biased character-
istic in v: (v)g¢ = 0 10 000 100 O 0.
Then (V)¢ —> uc:
(w)g = 0 10 000 100 101 O
= 1030

0

What we actually produced was this:

We have m and C = 20lg, i.e. ¢ = 1,

The number we are looking for is, therefore, m * 2!

But m was not in the range-%>é m €1, since it was = 5. As a
result m + 2=° =-g—was produced. However, in order to keep the
value m-2'. we now have to add 3 to the characteristic, since

' = . -3 .]3_*;3.'
i 24 @\3" 2 \———» characteristic
%‘ = mantissa €1

¢

-97-

C)

D)

Some Remarks on Machine Operations occurting during Floating Point
Arithmetic Processes.

Assume we give the command FA uv. In order to add (u) and (v) the machine
obviously has to unpack both numbers, align the mantissas according to the
difference of the characteristics, add the mantissas, round the result
(pptional), and normalize and pack the result in Q. Without going into
details the following is stated: .

During Floating Point Arithmetic operations the Accumulator is

used. This means that (A)j is destroyed, whereas (A)s contains

the mantissa of the result such that the most significant bit

of the mantissa is in Agp (i.e. m is given by the rightmost 2710

bits of Aj). If a result is a "zero?, then (A)f = 0, (Q)g = O.

During the "unpack” prodedure the two characteristics are saved in two

special registers, C and D. The characteristic of the result is developed
in another register, called S-register.

Since there is no room for going into details of sequences of Floating
Point commands, the use of A and Q as operands and the results of such
operations are not explained here. It is, therefore, pointed out that

the reader may check the appropriate literature on the Floating Point
System before using A and/or Q as u and/or v in these instructions.

During addition, subtraction, multiplication, division, and normalizing,
one of the two following situations may occur:

1) The characteristic of the result is too large, i.e. ¢ would be > 127,4.
If this is detected, a computer "A" Fault is generated, and the
"char. overflow" light on the console is illuminated.
2) The characteristic of the result is too small, i.e. ¢ would be
<—128. 1In this case the result is replaced by "0", i.e. A and Q
are cleared.

Use of "Transmit™ and "Compare"” Instructions for Floating Point Numbers.

Because of the format chosen for the representation of numbers in Floating
Point, the use of the following instructions is preserved for operations
with Floating Point numbers:

TP wv EJ uv
™ uv TJ uv
T™N uv SJ uv
ZJ uv

Examples:

Assume (u) = 010 000 011 101 O———0 2= + 5
After TN u v we have ’

(v) = 101 111 100 010 1} 1=-5

-98-

Assume you want to compare (u) and (utl).

Then: a TP u A
atl EJ utl v

Assume you performed an arithmetic operation in Floating Point. In
order to find out whether or not this number is positive, just give

a SJ uv without transferring the result from Q to A. This is possible,
because (A)y contains the resulting mantissa and naturally Sign bits.
In order to find out whether the result is "0", just give a ZJ uv,
since (A)f has to be = 0, if result = 0.

-99-

TABLE I
Sample Card Unit Routines
READ SINGLE CARDS

The computer instructions below withdraw two cards from the read
card feed hopper, position the first card for reading and transmit its
contents to the computer, and continue ddvancing it through the read
channel until it reaches its final position in the receiving stacker.
(The second card withdrawn from the hopper is left in the first station.)

EF-v (v) = 40 00000 00004 1 cycle
(START, PICK READ CARD)

EF-v (v) = 40 00000 00005 1 cycle
(START, PICK READ CARD, READ)

Within 140 ms. of the execution of this
instruction, the execution of the follow-
ing three instructions should be initiated:

ERjv (j=0) Repeat for each card row, each repetition
ERjv (j=1) being initiated not later than 10 ms. after
ERjv (j=1) the beginning of the coreesponding row
point., ‘

EF-v (v) = 40 00000 00000 1 cycle
(START)

EF-v (v) = 40 00000 00000 1 cycle
(START)

EF-v (v) = 40 00000 00000 1 cycle
(START)

EF-v (v) = 40 00000 00000 1 cycle
(START)

(card read now placed in receiving
stacker)

* This means (here and in following tables): After you read one
row and used already 27.6 m sec. you may give the first ER after
an additional 10 m sec. However, as you probably see: do not try
to do this for each row again and again, because these additional
m sec. will soon increase such that a "B"-Fault has to occurl

A

TABLE II

READ CONSECUTIVE CARDS
A. Single Card Mode

To transmit information from n consecutive cards, without selecting
the FREE QUN bit, a routine similar to the one above for READ SINGLE CARD
is executed:

EF-v (v) = 40 00000 00004 1 cycle
(START, PICK READ CARD)
EF-v (v) = 40 00000 00005 1 cycle

(START, PICK READ CARD, READ)

Within 140 ms. of the execution of this
instruction the execution of the following
three instructions should be initiated:

Rjv (j=1) being initiated not later than 10 ms. after

ERjv (j=0) } Repeat for each card row, each repetition
ERjv (j=1) the beginning of the corresponding row point.

EF-v (v) = 40 00000 00005 n-1 cycles
(START, PICK READ CARD, READ)

Execute this instruction within 10 ms. of
the beginning of row point 12 of the previous
cycle. Within 170 ms. of the execution of this
instruction, the execution of the following
three instructions should be initiated:

ERjv (j=1))i being initiated not later than 10 ms. after

ERjv (j=0) [| Repcat for each card row, each repetition
ERjv (j=1) the beginning of the coreesponding row point.

Execute this same instruction (n-2) more times,
initiating each execution with 10 ms. of row
point 12 of the previous card cycle. After
each such instruction is executed, initiate
execution of its associated External Read
Instructions within 170 ms.

EF-v * (v) = 40 00000 00000 1 cycle
' (START)

EF-v * (v) = 40 00000 00000 1 cycle
(START)

EF-v # (v) = 40 00000 00000 1 cycle
(START)

EF-v * (v) = 40 00000 00000 1 cycle
(START)

At the conclusion of the above program, the nth card (or last card read) is
found in the receiving stacker; an (n+1)th card is in the first reading station
sSEmTTESnRN—
* Execute these instructions within 10 ms. of row point 12 of the previous
cycle to obtain continuous card cycles from the Card Unit.

A2

65

B. Free lun lode

TABLE 111

The computer instructions below withdraw n+l cards from the read card feed

hopper,

one at a time,

position n of them for reading and transmit their

information content to the computer, and contirue advancing these n cards
through the read channel until the last card reaches its final position in

the receiving stacker. (The n+15t card is left in the first reading station.)

EF -v (v) = 40 C0000 00CC. 1 cycle
(T T\" rlch QA‘;;D C:;.xD)

EF-v (v) = 40 00000 00045 1 cycle
(START, FREEZ RUN, PICK READ CARD, READ) (first
vithin 140 ms. of the execution of this free run
instruction, the exccution of the following cycle)
three instructions should be initiated.

Znjv (j=0) Repeat for each card row, each repetition

Cijv (j=1) being initiated not later than 10 ms. after

Eijv (j=1) the beginning of the correspording row point.

(A series of card cycles is initiated.)

ERjv (j=0)
T‘PJV (J 1)
ERjv (j=1)

)i

J

170 ms. from the completion of the External
Read Instructicn for row 12 of the previous
card cycle, execution of the following three
instructions should be initiated.

Repeat for each card row each repetition
being iritiated not later than 10 ms. after
the beginning of the corresponding row
peint

Same procedure for next (n-4) cycles

(n-3) cycles
(intermediate
free run
cycles)

Enjv (j=0)
ERjv (j=1)
ERjv (=1)

EF-v

B R

170 ms. from the completion of the Exteraal
llead Instructions for row 12 of the last
previous card cycle, execution of the follow-
ing three instructions is initiated.

Lepeat for each card row, each repetition
being initiated not later than 10 ms. after
the beginning of the corresponding row point,

= 40 00005 00020
nT, 5T0R)

(v)
(STA
This irspruction must be executed within
1C ms. of the beginning of row point 12
of this cycle.

1 cycle

(the next to
last cycle
of free run)

con'T.

A3

TABLE III (Continued)

ERjv (j=0)
Eijv (j=1)
ERjv (j=1)

170 ms. from the completion of the External

Read Instructions for row 12 of the previous
card cycle, execution of the following three
instructions is initiated:

Repeat for each card row, each repetition
being initiated not later than 10 ms. after

the beginning of the corresponding row point,

(nth card read during this cycle and free
run selections are drepped.)

1 cycle
(last cycle
of free run)

EF-v * (v) = 40 00000 00000 1 cycle
(START)
EF-v * (v) = 40 00000 00000 1 cycle
(START)
EF-v * (v) = 40 00000 00000 1 cycle
)
EF-v (v) = 40 00000 00000 1 cyele

(START)

* [Execute these instructions within 10 ms. of row point 12 of
the previous card cycle to obtain continuous card cycles from
the Card Unit.

PUNCH S1:

N8
NAT el

TABLE IV

T
CACLLD

The computer instructions below withdraw two

cards from the punch

card feed hopper, position the first card for punching and punch infor-

mation in it,

and certinue advancing it through the
it reaches its final position in the receiving stacker.

card withdrawn from the hopper is left in Station 1.)

punch channel until
(The second

EF-v (v) = 40 00000 00010 1 cycle
(START, PICK PUXNCH CARD)
EF-v (v) = 40 00G00 00010 1 cycle
(Sln xT PICK PURCH CnnD)
CF-v (v) = 40 0G0CO 00002 1 cycle
(START, PUNCH)
Within 140 ms., of the execution of this
instruction, the execution of the following
three instructions should be initiated:
Zugv (3=0) Zepcat for each card row, each repetition
glv (i=1) being initiated not later than 1.5 ms. after
Ciujv (j=1) the beginning of the corresponding row point.*
CF-v (v) = 40 00000 06000 1 cycle
(STalT)
§ (Card is punched in this cycle)
i
Ef-v (v) = 40 00000 00000 1 cycle
(STanT
EF-v {v) = 40 00000 00000 1 cycle
\ST;"x J
* See remaris on Table 1

TABLE V

A. SINGLE CARD MODE

To punch n cards without selecting the FREE RUN bit,

EF-v (v) = 40 00000 00010 1 cycle
(START, PICK PUNCH CARD)
EF-v (v) = 40 00000 00010 1 cycle
(START, PICK PUNCH CARD)
EF-v (v) = 40 00000 00012
(START, PICK PUNCH CARD, PUNCH)
Within 140 ms. of the execution of this
instruction, the execution of the follow-
ing three instructions should be initiated.| (n-1) cycles
EWjv (j=0) Repeat for each card row. Each repetition
E¥jv (j=1) being initiated no later than 1.5 ms. after
EWjv (j=1) beginning of each row point.
Execute the above sequence of instructions
n-1 times. Each sequence starting with the
EF, and given no later than 170 ms. of the
previous row point.
EF-v (v) = 40 00000 00002 1 cycle
EWjv (j=0) (START PUNCH)
EWjv (j=1)
Eljv (j=1) Timing as above.
nth card punched in this cycle.
EF-v (v) = 40 00000 00000 3 cycles
EF-v (START)
EF-v

Each EF within 10 ms. of row point 12
of previous instruction

At the conclusion of the above program a single card is left in
Station 1, and all cards punched are in the stacker.

A6

TABLE VI

B. FREE RUN MODE

The computer instructions below withdraw nt2 cards from the punch feed
hopper, one at a time: the first n cards are advanced through the punching
channel, punched and sent to the receiving stacker; the (n+1)St card is
advanced to the Stacker; the (n+2)nd card is left in Station 1.

EF=-v (v) = 40 00000 00010 1 cycle
(START, PICK PUNCH CARD)
EF-v (v) = 40 00000 00010 1 cycle
(START, PICK PUNCH CARD)
EF-v (v) = 40 00000 00059 1 cycle
(START, FREE RUN, PICK PUNCH CARD, PUNCH) (first free
run cycle)

Within 140 ms. of the execution of this
instruction, the execution of the following
three instructions should be initiated:

EWjv (j=0) | Repeat for each card row, each repetition
EWjv (j=1) | being initiated not later than 1.5 ms. after
EWjv (j=1) | the beginning of the corresponding row point.

(A series of card cycles is initiated.)

170 ms. from the completion of the first (n-3) cycles
External Write Instruction (j=1) for row 12 (intermediate
of the previous card cycle, execution of the free run
following three instructions should be cycles)

initiated:

EWjv (j=0) | Repeat for each card row each repetition
EWjv (j=1) | being initiated not later than 1.5 ms. after
Ejv (j=1) | the beginning of the corresponding row point.

(Same procedure for next (n-4) cycles)

170 ms. from the completion of the External 1 cycle
Write Instructions for row 12 of the last (next to
previous card cycle, execution of the follow- last cycle
ing three instructions is initiated, of free run)

Ejv (j=0) | Repeat for each card row, each repetition
EWjv (j=1) | being initiated not later than 1.5 ms. after
EWjv (j=1) | the beginning of the corresponding row point,

EF-v (v) = 40 00000 00020 |
(START, STOCP) i
This instruction must be executed within

10 ms. of the beginning of row point 12 of
this cycle. i

CON'T.

TABLE VI (Continued)

Evjv (§j=0)

170 ms. from the completion of the External
frite Instructions for row 12 of the previous
card cycle, executiorn of the following three
instructions is initiated:

Repeat for each card row, each repetition

1 cycle
(last cycle
of free run)

Ehjv (=1 being initiated not later than 1.5 ms. after

wjv (g=1) the beginning of the corresponding row point,
(FREE RUN seleetions are dropped)

EF-v ¥ (v) = 40 00000 00000 1 cycle
(START) ‘
(nth card is punched)

EF-v # (v) = 40 00000 00000 1 cycle
(START)

EF-v * (v) = 40 00000 00000 1 cycle
(START)
(nth card put in punch receiving stacker)

EF-v * (v) = 40 00000 00000 1 cycle

(START)

st
(n + Y card is put in receiving stacker

* Execute these instructions within 10 ms. of row poiat 12 of
the previeus card cycle to obtain continuous card cycles from
the Card Unit.

TABLE VII

The computer instructions below:

1) Withdraw two cards, one at a time, from the punch feed hopper; the
first card withdrawn is punched and placed into the output stacker;
the second card withdrawn is left in Statien 1.

2) Withdraw two cards, one at a time, from the read feed hopper; the
first card withdrawn is read and sent to the receiving stacker; the
second card withdrawn is left in Station 1.

EF-v (v) = 40 00000 00010 1 cycle
(START, PICK PUNCH CARD)

EF-v (v) = 40 00000 00014 1 cycle
(START, PICK PUNCH CARD, PICK READ CARD)

EF-v (v) = 40 00000 00007 1 cycle
(START, PUNCH, PICK READ CARD, READ)

Within 140 ms. of the execution of this
instruction, the execution of the following
six instructions should be initiated:

EWjv (j=0)

E?QV EQ:%; Repeat for each card row, each repetition

Eggx (3=0) being initiated not later than 1.5 ms. after

ERjv (j=1) the beginning of the corresponding row point.!

ERJv G=1) | READ CARD read in this cycle)

EF-v (v) = 40 00000 00000 1 cycle
(START)
(PUNCH CARD punched in this cycle)

EF-v (v) = 40 00000 00000 1 cycle
(START)

EF-v (v) = 40 00000 00000 1 cycle
(START)
(PUNCH CARD put in punch receiving stacker)

EF-v (v) = 40 00000 00000 | 1 cycle

(START)

(READ CARD put in receiving stacker)

Simultaneous Reading and Punching of n cards can be done by applying a
similar method, either in Single Card Mode or in Free Run!

A9

TABLE VIII

1103A and 1105

Octal Magnetic Tape Functions

1103A

The table given below shows the octal equivalent of the bit assignments
for the selection of Magnetic Tape operations:

02

00
- 00

23

8888888 8

S8 83888 888 8 88

00000
00000

00000

.
.
.
.

:':.

00001

00001
00006

00016
00000 -

00020
00040
00000
00100

00002
00012

00004
00014
00000

00200

00400

00001
00001
00001

00060
00010

Examples: _
Write in high density on Uniservo 3 using Free Run, 1.2" Blockette Space,
1.2" Block Space:

02 00046 30000

Write in low density one block on Uniserve 9 using 0.0" Blockette Space,
2.4" Block Space:
02 00717 10000

(v) =

(v) =

00000

10000
20000

70000

00000

20000

- 00000

00000
00000
00000
Oxxxx

00000

00000

50000
60000
70000

00000
00000

Select Magnetic Tape ("Master Bit")

Uniservo:Number 1
” ” 2
' 1]
: . [
! : '
" '; %
” ': 8
" " io

Write;in'high density | Write in low densi?y’>no5!
Write in low density Write in high density
0.0" Blockette Space '

0.1" :

1 2" ” ™
1.2" Block Space
2.4" " ”

Read forward
Read backward

Stop (after "Read" or "Write" operation only)

Move forward

_Move backward

xxxx = Number of blocks ("Move" operatien only)

Rew1nd
Rewind with 1nterlock

Set "Read Bias" to Normal
” L 1] " ” LOW
y' 11] ” '»" High

Select Var. Bl. Length gg_Coht.'Data;Input
Change Mode '

A10

TABLE VIII (Continued)

Read forward in Free Run from Uniserve 6, Fixed Block Length:

(v) ¥ 02 00002 60000

niove backward Uniservo & 19 blocks; Fixed Block Length:

(v) = 02 00015 00023

Read forward from Uniserve 4 in Var. Block Length:

a)

b)

(v) = 02 00062 40000

1105

Bypass liode

In order to select tape operations without using a buffer, i.e. to
bypass a buffer, give an EF -v, where

(v) = 00 10000 04000 to bypass buffer 1

(v) = 00 20000 04000 to bypass buffer 2
Tape operations in Bypass liode are now selected as explained for 1103A
with the addition, that
ig; = 1 is Master Bit for TCU 2,
igp = 1 is Master Bit for TCU 1.
Either one of these bits can be used depending upon the buffer which
is to be bypassed (Both bits may not be specified!)

[}

Therefore:
If Buffer 1 is to be bypassed, EF "Tape" operations are selected

with a (v) = 0l XXXXX XXXXX.
If Buffer 2 is to be bypassed, EF "Tape" operations are selected

with a (v) = 02 xxxXXX XXXXX.

Normal (Buffer) Mode

Tape operations are selected as explained for 1103A, with the addition
that either one of the Tape Control Units can be specified (see under
Bypass lode)., Notice that "Write Density" for 1105 is reverse to 1103A.

Example:
Write in high density, Fixed Block Length, Unis. 3, Free Run,
1,2" Blockette Space, 1.2" Block Space,
TCU 1: EF -v with
(v) = 01 00C36 30000
The same for Unis. 3, TCU 2: EF -v with (v) = 02 00055 30000,

Interrupt Selection:
Bit voy = 1 in (v) of CF "Tape" instruction
Buffer operations

(v) of EF -v Function
00 10000 020C0 Clear Buffer 1 and switch to "load"
00 20000 (02000 " " 2 " " " "
00 100C0 01000 "ind Transfer”, Buffer 1 switch to "unload"”
00 20000 01000 " " " 2 " " "
00 10000 (C01C0 mrite Buffer™ 1 (similar for Buffer 2)
00 106C0 (C0250 "ead Suffer” 1 (similar for Buffer 2)
00 16000 0£016D iecad lord Counter of Duffer 1 into 10B,

0O 20000 00100 " " " " 5

£11

TABLE IX (Continued)

TAPE CPZRATION

DO

DON'T

liove Forward/

Designate in (v) of EF instruc-

Program a love Foriard/

N

Backward ‘ tion: Backward of more blocks
| 1) Magnetic Tape Master Bit than have-been recorded.
2) Move Forward/Backward Terminate a move opera-
3) Number of blecks to be tion with an EF Stop Tare
moved. instruction,
4) Uniservo Number
Rewind Designate in (v) of LF instruc--
tion:
1) Magnetic Tape laster Bit
2) Rewind
3) Uniservo Number
i
Rewind/ Designate in (v) of EF instruc- | Reference a uniservo
Interlock tion: rewound-with interlock

1) lagnetic Tape llaster Bit
2)

3) Urniservo Xumber

Rewind/Interlock

until the uniservo door
interlock switch has
been opened and closed.

. PR s

ey

i

Change Bias

s s mmen o

Designate in (v) of EF instruc-
tion:

1) Magnetic Tape ilaster Bit

2) Change bias level bits

Program a return to normal bias
level unless a computer liaster
Clear occurs which accomplishes
this.

i

Include any other tape
operation in the EF
Change Bias instructior.

Program two successive
changes to high or low
bias level.

t

A13

TABLE X

AVAILABLE COMPUTATION TIMES
Fixed Block Length Node

The following table shows the recommended programming times allow-
able for computation between tape operations., The safe times listed are
based on theoretical timing conditiorns and then adjusted to include a safety
factor, The safety factor takes into consideration fluctuations in normal
operating characteristics and unpredictable component variations. The
theoretical times do not include any execution time for the instructions
effecting the particular tape operation under consideration. DBecause of
possible adjustments on different machines, the theoretical times may vary
slightly from installation to installation,

Safe Time
Theoretical (based on the-
Situation Time oretical time)
READ OPERATION
Between EF Start Tape and first ER
1.2" block space 46.1 ms 31 ms
2.4" block space 56.9 ms 40 ms
. (See also leader and reversal delay) '
Between successive ER instructiens
at 120 lines per inch 468 us 350 ps
at 50 lines per inch 1200 s 900 ps
Across -the blockette space
1.2" blockette space 12 ms 9 ms
0.1" blockette space 1 ms 750-ys
Across the block space
1.2" block space 12 ms 9 ms
2.4" blockette spacc 24 ms 18 ms
Between last ER and EF Stop Tape
1.2" block space 3.75 ms l1ms®
2.4" Block space 17.25 ms 14 ms *

Ohservance of the stated time for this interval is important if reading
is continued. If the stop occurs too close to the first lines of the
next block, not enough time is allowed for the tape to accelerate before
the first lines arc encountered in the following reading operation.

AVA

TABLE X

(Continued)

If this should be the case, the first lines will not be sensed from the
tape. For a 1.2 inch block space, a zero time delay would be recommended
if it were feasible, as this would stop tape movement such that the
read/write head would be positioned midway through the inter-block space.
Where other instructions must be executed before the EF Stop Tape instruc-
tion, it is recommended that the minimum time does not exceed the value
shown in the table. The 2.4 inch case is not as critical, but again it
is recommended that the value shown is not exceeded.

% Next Page

-

N

} Safe Time
; Situation Theoretical | (based on the-
Time oretical time)
WRITE OPLERATION
Between EF Stert Tape and first EW
1.2" block space 46.1 ms 31 ms
2.4" block space 58.9 ms 40 ms
(Sce also leader and reversal delays)
Between successive EW irnstructions :
. . '
at 128 lires per inch t 468 ps 350 us
at 350 lines per inch | 1200 ps 900 ps
Across the blockette space %
1.2" blockette space : 12 ms 9 ms
0.1" blockette space 1.0 ms 750‘ps
Across the block space |
1.2" block space E 12 ns 9 ms
2.4" block space 24 ms 18 ms
Between last EW and CF Stop Tepe |
1.2" block space é 12 ms 1 ms **
2.4" block space E 24 ms l.ms *#
|
LEADER Doo-¥
L |
Starting reading or writing from I
rewound positiorn %
i 1.2" block space i 1346.1 ms 1237 ms
i , , ' —
i 2.4" block space o 1350.9 ms 1247 ms
; REVERSAL DELAYS Q
{ Reading or writing in !
; from previous tupe mov [oll.l ms 458 ms
L f

TABLE X (Continued)

% During writing, the limitation on this time is actually dependent
upon the block spacing. If the time allowed for block spacings
of 1.2 inch or 2.4 inch is exceeded, a No Information fault occurs.
For the sake of uniformity of block spacings, however, it is re-
commended that the time does not exceed one ms for either of the

tva cnnrince hatwaon hlanke
v Qtlu\l‘l‘uo My v wil MALUVUVAD ¢

afe Time
Situation Theoretical | (based on the-
Time oretical time)
REWIND INITIATION DELAYS
(preventing another I0OB to TCR transmission)
Previous forward direction 35 ms 22 ms
Previcus backward directicn 600 ms 450 ms
CHANGE BIAS DELAY
(preventing another. IOB to TCR transmission) -35 ms 22 ms

A16

VARIABLE BELOCK LENGTH KODEZ OPERATION

II

TAELE

SYNOPSIS OF

TAPE OPZRATION

00

DON'T

| Read Forward/

Designate in (v) of EF instruc-

Exceed allowable computa=-

backward | tion: tion time between the EF
1) Lagnetic Tape laster Bit Start instruction and the
. 2) head Forward/Backward lst ER, between successive
. 3) Uniserve Number ER instructions, or be-
{ 4) Variable/Continuous Bits tween the last ER and EF
: Stop Tape instruction,
. HKead and check content of I10A B
¢ before 108 is read; ther, read Irclude uniserve number
! 10A again or reac ICL. in EF Stop Tape instruc-
! : | tior.
i
Write Jesignate it (v) of EF instruc- | Exceed allowable -computa-
Ton: ‘ tion time between the EF
i) iagretic Tape dlaster Bit Start and lst EW, between
Z, Variable/Cortirnuous Bits successive EW's, and be-
) Unigervo Number tween the last EW and EF
L} wWrite Operstion Stop Tape instructions,
rrocram A ior ¢
cxct wors to be wriiven, | Include uniservo number
* in EF Stop Tape instruc-
prograz an EF Stop Tape instruc-{ tion.
¢ tion immediately after the
- last worc to be written in each
i block.
i
|
Stop f Designate in (v) of EF instruc- | Designate a uniservo
i

tion:
1) Magnetic Tape Master Bit
2) Stop Bits

pProgram an EF Stop Tape during
reading for all desired stops, !
except at end of record; during
writing, to terminate tape move-
ment and create block spacing.

in (v).

a7

TABLE XI (Cortinued)

TAPE OPERATION

DO

DON'T

Move Forward/

Designate in (v) of EF instruc-

Terminate Move Operation

Backward tion: with an EF Stop Tape
1) dagnetic Tape Master Bit instruction,
Program a Move Forward/
2) Mov? Forward/?ackward. Backward of more blocks
3) variable/Continuous Bits than are recorded in the
4) Number of blocks to be direction of the move-
moved ment,
S5) Uniservo Number
Rewind
Rewind
Enterlock See Fixed Block Length Mode Operation

‘Change Bias

A18

TABLE XII

AVAILABLE COMPUTATION TIMES
Variable Block Length Mode

The following table shows the recommended programming times allow-
able for computation between tape operations. The safe times listed are
based on theoretical timing conditions and then adjusted to include a
safety factor. The safety factor takes into consideration fluctuations in
normal operating characteristics and unpredictable component variations. The
theoretical times do not include any execution time for the instructions
effecting the particular tape operation under consideration. Because of
possible adjustments on different machines, bhe theoretical times may vary
slightly from installation to installation,

Safe Time
Theoretical (Based on the-
Situation Time oretical time)

READ OPERATION

Between EF Start Tape and first ER 50,85 ms 33 ms
(1.4" block space)

(See also leader and reversal
delays) ‘

Between successive ER instructions 468}15 350)13
(at 126 lines per inch)

Across the block space 14 ms 10 ms
(1.4" block space)

Between last ER and EF Stop Tape]
Inter-block stop 7.0 ms 1 ms
Intra-block stop 468 s 250 yus

¢ (Observance of the stated time for this interval is important if read-
ing is continued, If the stop occurs too close to the first lines of
the next block, not enough time is allowed for the tape to accelerate
before the first lines are enceuntered in the following reading opera-
tion, If this should be the case, the first lines will not be sensed
from the tape. For a l.4 inch block space, a zero time delay would be
recommended if it were feasible, as this would stop tape movement such
that the read/write head would be positioned midway through the inter-
blotk space. Where other instructions must be executed before the EF
Stop Tape instruction, it is recommended that the minimum time does
not exceed the value shown in the table.

A19

TABLE XII (Continued)

Safe time
Theoretical {[(based on the-
Situation Time oretical time)
WRITE OPERATION
Between EF Start Tape and first EW 50,85 ms 33 ms
(1.4" block space)
(See also leader and reversal delays)
Between successive EW instructions 468 ps 350 ps
(at 126 lines per inch)
Across the block space 14 ms 10 ms
(1.4" bleck space)
Between last EW and EF Stop Tape 468 ps ¢ 250 ps
(1.4" block space)
LEADER DELAY
Starting reading or writing from 1550.85 ms 1240 ms
rewound position
REVERSAL DELAY
Reading or writing in opposite 615.65 ms 462 ms
direction from previous tape movement
{
REWIND INITIATION DELAYS
(preventing another 10B to TCR
transmission)
Previous forward direction 35 ms 22 ms
Previous backward direction 600 ms 450 ms
CHANGE BIAS DELAY
(preventing anether IOB to TCR
transmission) 35 ms 22 ms

% During writing, the limitation on this time is actually dependent
upon the block spacing. If the time allowed for the block spacing
of 1.4 inch is exceeded, a No Information occurs,

Special Remarks on the Buffer System

The following remarks dedicated to the design of the buffer system might,
at first glance, seem to be unnecessary from a programmer's point of view.
However, these engineering details (modified to "programmer's language" as
much as possible) affect the programming of buffer and tape operations to
a great extent. They are, therefore, presented here and might help to
clarify some peculiar programming situations occuring during 1105 magnetic
tape and buffer operations.

I. Handling of Buffer Activity and Inactivity

Each buffer possesses a so-called "Buffer Active Flip-Flop".
If it is in the "1" state, the buffer is "active". If it is in the
20" state, the buffer is "inactive".

a) Khich operations set a buffer to "active", and when?

A buffer is set to "active" in either one of the following three
situations:
1) "kiove Enable" from TCU
2) "lWrite Enable" from TCU AXD buffer "Unload FF" in its
"1" state (i.e. buffer in "unload” state)
3) "Read Enable"” from TCU AND buffer "Unload FF" in its
"0" state (i.e. buffer in "load" state)

Programming consequences:
A buffer is set to "active" by one of the following three instructions:

1) EF "Move Tape n blocks"
2) EF "Write Tape" provided the buffer is in the "unload" state.
3) EF "Read Tape" provided the buffer is in the "load" state.

(It is assumed that the buffer was "inactive™ upon execution of these
instructions, and that "Bypass hiode™ has not been selected.)

- - ——— —— —— e e . e P - G - Gh e G N G G - W e W W w = -

The "Buffer Active FF" can be set to "O", if and
only if a computer Hain Pulse 5 occurs.

This IiP 5 in conjunction with some other pulses twhich essentially

mean that the tape operation is completed, see below) set a buffer

to "inactive".
Programmning consequence:
Assume the computer stalled, i.e. hung up at one instruction such that no
I:P 5 can be generated by the machine. In this case a buffer cannot be set
to "inactive™, even if the corresponding tape operation which caused buffer
activity is finished!

AA-1

1) Read Tape operation:

Assume a tape is read (Free Rum or not). One block enters a buffer.
During this time the buffer is "active”. When is it set to "inactive"?

The buffer is set to "inactive" during the occurrence
of the first MP 5 which follows the detection of an
interblock space.

This is accomplished in the following way:
The above mentioned interblock space generates an End of Block signal
which in turn generates a "Stop™ signal in the Buffer Stop Control.

This sets the "Run FF" (which was set to "1" earlier, essentially at

the time the "Active FF" was set to "1") to "O". The fact "Run FF # 1
and Buffer in Unload State" means that the "Active FF" is set to "O".

When is buffer activity resumed, if we are in Free Run?

The buffer is set back to "actiye" after its content
has been transferred to the computer and the switch
from "unload" to "load" has been accomplished.

This is almost obvious because of a) #3. After the transfer buffer —
computer and the switching to the "load" state we possess the "Read
Enable" from TCU (because of the Free Run) and the "Unload FF = O"
pulse (because buffer is in "load" state). These two will cause a
pulse "Set Buffer Active", and activity is, therefore, resumed.

(At the same time the Run FF is set to "1" again, since buffer is in
"load" state again.)

2) Write Tape operation:
Switching of the buffer from "active” to "inactive"” and back to "active"
(if Free Run) during a Write Tape operation is accomplished in a manner
similar to that of a Read Tape operation.

The buffer is set to "inactive" during the occurrence of

the first MP 5 which follows the detection of a buffer

"Limit Count" (meaning: buffer is empty, i.e. BWK = 1 and
"Back BWK" pulse).

The buffer is set back to "active" (Free Run operation) after
the transfer of the next block of data from computer to
buffer and the switch from "load" to "unload".

3) Move Tape operation
Assume a tape is moved n blocks. The buffer connected with the same
TCU is set to "active™ at the start of this operation, as we saw earlier.
When is buffer activity dropped?

The buffer is set to "inactive" after the completion
of the hove operation,

AA-2

1)

2)

This is done in the following way: The "Move" operation placed the
number n (= number of blocks to be moved) into the Block Counter. As
long as this BLK # O, the buffer cannot be set to "inactive". But
precisely at the time BLK = O, the buffer "Active FF" is set to "O".
As you see: BLk = 0 also means: [iove operation is finished.

Notice: Assume a moving of 3 blocks is attempted. Although TCU detects

an Interblock Space after the first and second block, buffer activity
is not dropped, since BLK # O.

Writing on Tape
As explained the EF "Write Tape" instruction sets the buffer connected

with the same TCU to "active" omly if the buffer is in the "unload"
state. If the buffer is in the "load" state and such an EF-instruction

is given the buffer will not be set to "active". The tape, however,
starts right away.

Let us assume we have the following situation:

The buffer is in the "load" state (say, it is empty and inactive) and

an EF "krite Tape" is executed (Free Run or not). What Happens? The
tape movement is started, and within a certain time the TCU will require
data from the buffer. This means that the buffer must be filled with
data (from the computer) and must have completed the switch from "load"
to "unload"™, before the TCU requires the first word. If the switch to
"unload" is made, the buffer "Active FF" will now be set to "1" according
to a) #2.

[low much time is available between the ZF "krite Tape" and EF "Write
Buffer" cannot be determined exactly at the present time. It depends
upon the start delay of the Uniservo II plus the time needed for moving
to the beginring of the block which is to be written. However, 6 m sec.
seem to be a gafe time in any case. This time might be larger, but has
to be determined by examining the appropriate literature, if available.
Assume the ZF "UWrite Tape" is given, the buffer is in the "load" state,
and the program does not fill the buffer with the first block (to be
writteq}within the time available. 1In this case a No Information ("B")
Fault is generated in the tape system, when the TCU requires the first
word from the buffer (from I0T), and there is no word. This shows that
a programmer who gives an EF "lrite Tape" with the buffer in the "load"
state creates a timing problem for himself, (namely for the first block),
because before the first block is written on tape the Automatic Tape
Control will not be effective, i.c. will not stop the tapel! (Refer to
"Automatic Tape Control")

Reading of Tape
During reading magnetic tape a situation similar to that of writing on
tape can occur, i.e. an EF "Read Tape" is given at the time the buffer

An=3

involved is in the "wnload” state (and inactive). As already explained
the buffer will not be set to "active”, but the tape movement is started.
This means that the program has a certain time (see: c) ¥1) to transfer
the content of the buffer to the computer. If this and the switch to
"load" is accomplished in time, the buffer will be set to "active”
because of a) #3.

If, however, the buffer content is not removed, before the transmissicn
from tape to buffer is started, an "IQ"-Fault occurs at the time the
second word tries to enter 10T, whereas the first word is still there.

This again creates a timing problem for the programmer, namely for
the first block to be read, since the Automatic Tape Control does rot
become effective before reading the first block.

II1.Selection of Buffer Operations (EF '"Buffer" instructions)

Serious trouble can occur for a program, if an EF "Buffer" instruction is
given during the time the buffer is "active". It is true that this situation
should never occur, because a programmer may execute a command referencing

a buffer, if and only if he knows that the buffer is "inactive”. However,
errors in a program might lead to such a situation.

a) How can the selection attempted by an EF "Buffer” instruction become

— — e — — o m— — — —— — o— . — - — = e e -

effective?

computer is now satisfied, i.e., continues with the next instruction in
sequence. The code word in IOB, however, is used to send pulses to the
Start Control of the buffer referenced which are to set up an operatiox
of this buffer,

If the buffer is "inactive", the selection is performed and IOB cleared
for further use.

If, however, the buffer is "active™, the selection cannot be performed,
and I03 will nct be cleared, but the program continues in sequencel

It is, therefore, very important that a programmer keeps in mind:

k)

A

An EF "Buffer" instruction can perform the selection, if and
only if the buffer is "inactive"” upon its execution. In any
case (whether the selec.ion could be made or not) the program
continues in sequence.

short explanation of how this is made in the buffer control is given below:

A pulse from "Buffer active FF = O" is used in the buffer Start Control to
allow the pulses from I0B to pass through the appropriate gates and initiate
those pulses which will set up the buffer for its operation. If the buffer
is "active", the "Active FF" is in its "1" state and the buffer Start
Control can, therefore, not initiate the operation.

On the other hand the Start Control initiates a "Resume" signal, if the
operation attempted could be selected properly. This "Resume" signal is

AA-4

used (via Buffer Command Timing Circuitry) to generate a "Clear IOB and

nesume" pulse. This means that IC3 can be cleared only if the operation

selected by the EF "Buffer" instruction can be performed. ' Gtherwise I(OB

continues holding the code, and any further reference of I(OB establishes

an 105 Lockout condition.

Illustrative Ixample:

The example below is a program which essentially is used after detection
ead e. it tries to accomplish the fellowing: lLiove batk one

, l.e.

Lead frrward one block; Test for Read Error; if none, place buffer

mputer and proceed. (TCU 1, Uniservo 2)

¢ Lf = b
atl 7 — b+l
atl g 4CCLC at2
ars L.J olGCC atd
atd B3 u v
ats IZF = b+2
aro P 10170 atl0
et? I 10000 c

20001
20000
60200

in -

is executed properly, i.e. the "love" code is sent to
be started. At the same time the buffer is set to

Tre I at aduress atl will now be executed to the extent that the code

T
terc

(bti)— 103, but not further, since TC.d is locked out because of the "iove"
operation., The computer, however, proceeds.

The JJ 4 at gt2 finds the buffer in its "active” state. It was programmed

to wait fcr the completion of the "Read Tape" operation, lowever, the
computer nou weits at this point, until the "iove" operation will be finished.

, the computer program continues at a+3, where
it tries tc cetect g Dead r. Since at this time reading has not even
been sturted, no j.cax Zrror can be detected and the program will proceed at
atJ. A4t the sanme time (brl) which was in I03 has been sent to TCR, where
it set up the "lead"” operation, i.e. the buffer is "active" again.
uted such that the code (b+2)—ICB. The proper
er operation ("Read Buffer") cannot be made because

is

AS soon as moving is complete

-

The Lrf
selection of the @
of the fact that the buffer

at atd is ex

.

The computer, however, continues at a+6, a+7. The first ER will, therefore,
hang up, since no word entered I0B from the buffer. This hanging-up
occurs at KP 1, i.e. no kP 5 can be issued! This in turn means that the
buffer never can be set to "inastive", and a permanent hanging-up is
accomplishedi

The above program is wrong because of the fact that another tape operation
was initiated at the time the buffer was still "active" with moving. The
instruction at a+l should be executed only if the buffer was found to be
"inactive" i,e. an NJ 4 between a and a+l would correct the program.

On the other hand you saw that the EF at at+l itself did not stall the
computer, not even the EF at at+5. Had we arrived at at3 at the time

when reading was finished, there would not have been any hanging-upl

Cnly the fact that (a+d) was executed during buffer activity caused the
computer to stall at the first ER.

The above example will certainly stress the fact that the programmer has
to test buffer activity first and initiate an operation which involves
this buffer, if and only if he found the buffer to be inactive. It will
also illustrate, how careful a faulty program has to be examined in order
to find the real trouble source.

111 The Autcmatic Tape Controller

It is well known that the automatic Tape Controller is used to stop tape
movement temperarily during '"Mead Tape" or "Write Tape" operations., The
following remarks are maue to define the exact situation which causes the
AIC to become vifcctive.
a) Head Tape rree iun
During this operation the ~TC becomes effective after the first (second,
third,) block has been read. If within approximately 3 m sec. from
the detection of the Znd of Block no EF "Regd DBuffer" has been cxecuteud,
ATC issues a "Stop" signal to TCU which causes a temporary stoep of tape
movemert. an ZF “Bead DBuffer"” will then cause the tape to start again.
b) urite Tape Free ifux
liere the .sutomatic Tape Controller becomes effective after the first
(second, third, ,....) block has been written on tape. If within approx-
imately 3 m sec. from the time at which the last word has been written on
tape an EZF “WriteBuffer" has not been given, ATC stops tape movement. An
EF "Write uffer” will then initiate the restart of the tape.
¢) Conseguences
Keep in mind: when you ficad Tape or Write Tape, ATC will not stop the
tape in front of the first block, since neither an "Ernd of Block" sigral
(during reading) nor a "Last lord VWrite" signal from TCU was present.

Guenther F. Paprotny

Ad-6 September 22, 1956

	000
	001
	002
	003
	004
	005
	006
	01_AdrSystem
	02_PAK
	03
	04
	05_OnesTransm
	06_1103_1105_Cmds
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39_1103A_IO
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	70b
	71_1105_Tape
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85_Interrupts
	86
	87
	88
	89
	90
	91_FloatingPt
	92
	93
	94
	95
	96
	97
	98
	99
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	AA-1
	AA-2
	AA-3
	AA-4
	AA-5
	AA-6

