C

UNIVAC

v s.0n @5 essmay mane € INTERCOMMUNICATION

ro. Commercial Branch Managers rrom vamex: He Lo Hughes

rocationaoare: King of Prussia, Jan. 17, 1965

oerantment: UDPDivision EDUCATION

cansonst Commercial Regional Managers ' sussecr: UNIVAC 1005 EMPLOYEE TRAINING

Je Lo Sturdevant

Product Marketing, Systems Programmlng, and the Curricula Development
section of Education have cooperated in developing a UNIVAC 1005 Manual.
It is structured to aid in easy learning. We have made every effort to
organize the material in a sound teaching format.

Final typlng, 111ustrat1ng, editing, prlntlng, collating and distribution
will require some additional time.

As an aid to you in providing your Sales Representatives and Systems
Analysts training on the 1005, we have made copies of. the rough draft.
THIS 1S INTENDED FOR |N-BRANCH USE ONLY AND SHOULD BE DESTROYED WHEN
THE FINISHED MANUAL IS RECEIVED BY YOU.

In order to insure complete accuracy of the finished manual, any errors
should be reported by mail immediately to Mr. Art Levin, UNIVAC Product
Marketing, P.0.Box 500, Blue Bell, Pennsylvania. Questions concerning

the Assembly System or the UN!I VAC 1005 should also be directed to
Mro Levin,

- He Lo Hughes
hlh/len

Attachment

S

7 ;
o

OPERATING PROCEDURY FOR 1005 ASSEMBLY

Machine Set up

Printer - Small Stock pape

Punch - Blank 5081s

Processor - 1005 Control Panel
Pass #1

1. Alteration Switch #1 on

2. Place 1005 assembly Deck followed by Source Deck in
Processor.

3. Press start, Clear, Feed and Run (1005 will.lcad assembly
Deck and Halt with Ind 1 on).

4. Turn off Alteration Switch #1 and Press Run
(1005 will now punch cards for Pass #2)

5. When Processor stops (Reader hopper Empty) Press Run
then Stop.

6. Hold Source deck for Programmer.

1. Remove cards from punch.

2. Place 1005 assembly Deckvfollowed by cards (Pass 2, step 1)
in Processor. L

3. Press Start clear feed and Run (1005 will punch out cards
for Pass #3 and print out listing of Pass #2)

4. When processor halts (Reader hopper empty)
Press Run then Step.

5. Seperate Assembly deck from Pass #2 cards and discard
Pass #2 cards.

*Pass #3 Final Pass
1. Remove Cards from punch.

2. Place 1005 assembly deck, followed by cards removed
from punch, in Readexr from Step 1 pass #3.

3. Press clear Start Feed and Run. (1005 will now punch
_out Final object deck and print out of program).

4. When processor halts press Run then Stop.

P -
*Pass {13 Final Pass (Continued)
{iij 5. Seperate Assembly deck from Pass #3 deck.
: 6. Discard cards used to punch out pass #3.
7. Remove cards from punch.
8. Put Run # on first card of assembled program deck.

9. Return source, Final object deck and listing to
programmer.

*If machine jams, check light on punch stops processor or any
other reason machine halt's during pass #2 or #3, that pass
must be restarted with a RESTART CARD in Front of Assembly
deck. There is one Restart Pass 2 card and one Restart Pass 3
card. If Restart Pass 2 card is used Remove it before starting
Pass 3.

~

/
ROUGH DRAFT

(' ' COMPANY CONF [DENTAL

UNIVAC 1005 ASSEMBLY SYSTEM

January 1966

(U NIVA C Data Processing Division - ©

DIVISION OF BPERAY RAND CORBPORATION Educqﬁon '966 S p err y R an d CO r p ora " '. on

TABLE OF CONTENTS

SECT ION PAGE
1.0 Introduction to the UNIVAC 1005 and Internally Stored

Programming 1

1.1 Addressing Technique 1

1.2 Basic Logic and Format | 4

1.3 Control Section Operation 5

1.4 Other Instruction Formats 7

1.5 Storage Allocation and Use 8

1.6 Indirect Addressing 9

1.7 Other Special Registers 13

1.8 Special Register Locations 14

1.9 Addressing and Use of Column 32 15

2.0 Introduction to Assembly Systems 16
2.1 Purpose of Assembly Systems ' 16

2,2 Mnemonic Coding 17

2.3 Symbolic Coding ' 18

2.4 Relative Coding 19

2.5 | Memory Mapping 20

2.6 Declarative Instructions 7 22

2.7 Assembler Processing 23

- 3.0 . Introduction to the UNIVAC 1005 Assembly System 25
3.1 Terminology Definitions 25

3.2 Coding Form | 25

3.3

3.4

3.5

3.2'1

Label
3.2.2 Operation
3.2.3 Operand 1
3.2.3.1 IA
3.2.3.2 Field A
3.2.3.3 + Inc
3,2.4 Operand 2
3.2.4.1 IA, Field B, * Inc
3.2.4.2 Field C, *+ Inc.
3.2.5 Remarks
3.2.6 Card Number
Operand 1 Address Specification
3.3.1 Symbolic Address (Label) Specification
3.3.2 Increments to Symbolic Addresses
3.3.3 Decimal Addressing
3.3.4 Row and Column Addressing
3.3.5 Instruction Location Counter (ILC)
Addressing
Operand 2 Address Specification
3.4.1 Operand 2, Field C, Blank’Addressing
3.4.2 . Operand 2 Indirect Addressing
Summary of Field A, Field B, and Field C
- Specifications ‘
3.5.1 Field A
3.5.2 Field B
3.5.3 Field C

25
27

28

28
28
28
29
29
29
30
30
31
31
33
34
34

36

37
37
39

41
4
41
41

Y

77N

S

4,0

3.6 Standard Systems Labels

UNIVAC 1005 Assembly Instructions

4.1 Legend

4.2 Length of Operands

4.3 Transfer Instructions
4.3.1 Transfer Descending
4,3.2 Transfer Ascending
4,3.3 Transfer Clear
-4,3.4 Transfer Numeric

4,3.5 Transfer Constant

4,3,5.1 Symbolic Address Substitution

4,3,5.,2 Row/Column and Decimal
Addressing

4,3.5.3 Binary Coded Constants
4,3.6 Transfer to Register X |
4,3.7 Translate |
4,4 Addition and Subtraction
4.4,1 Add Algebraic
4,4,2 Subtract Algebraic
4,4.3 Absolute Add
4,4.4 Absolute Subtract
4.4.5 Add Constant

42

44
44
49
49
52
55

57
61

62
63
66
68
71
73
75
76
1
8

4.5

4,6

4,7

4.8
4,9

4,10

Compare Instructions

4,5.1 Compare Numeric
4,5,2 Compare Absolute
4.,5.3 Compare Alphanumeric
4,5.4 Compare Constant
Condition Indicators

4,6.1 Set Condition
4,6,2 Stop

Sequence Control Instructions
4,71 Jump Condition
4,7.2 Jump Test

4,7.3 Unconditional Jump
4,7,4 Jump Return

4,7.5 Jump Compare

4,7.6 Jump Loop

4,7.7 Jump Indirect
Count

Edit Instructions

4.,9.1 Edit Logical

4.9.2 Edit Erase

4,9.3 Edit Super impose
4,9.4 Edit

Declarative |nstructions

4.10.1 Define Instruction Location Counter

4,10,2 Define Area

4,10,2.1 Define Sub-field
4,10,2,2 Redefine Standard Label

81
83
85
87
89
92
93
97
98
99
105
108
109
113
116
120
122
125
127
130
131

132

139
141
144
147
149

AN

3

4,10.3 Define Constant
4,10,3.1 In-1line Constant
4,10.3.2 In-line Comment
4,10.4 Define Indirect Address Constant
4.10.5 Define End
4.11 Multiplication Instructions
4,111 Multiply
4,11.2 Multiply (Long)
4,12 Dividé Instruction
4,12.1 Divide
4,13 Input Gutput Instructicns
4,13.1 Shor tened General Commands
4,13,2 General Commands
4,13.3 Read Magnetic Tape
4,13.4 Write Magnetic Tape
4,13.5 Receive Data Line
4,13.6 Send Data Line
4,13.7 Receive |nterface
4,13.8 Send Interface

5.0. Operating Instructions

151
154
155

157

161

162
164
167
169
171
174
175
176
182
184

186

187
189
191
193

A
(T
NS

E——— W ——

INTRODUCTION TO THE UNIVAC 1005

AND [NTERNALLY STORED FROGRAM{ ING

1.0 The UNIVAC 1005 is classified as a general purpose, stored program,
digital computer. The main store consists of either two or four banks
of core memory with 1024 locations per bank., In addition to providing
storage for instructions and data, two types of Special Registers are
provided in core memory to control the operation of the UNIVAC 1005.
The special registers are addressable and in some cases can be used
as additional data storage.

1.1 ADIRESS ING TECHNIQUE
Each bank of core memory consists of a 32 row by 32 column
matrix of 6-bit memory locations. Each location is addressed by
specifying its Row and Column coordinates. For example; the
first memory location has an address of Row 1, Column 13 the
last memory location has an address of Row 32, Column 32, These

address designations are abbreviated to R1/C1 and R32/C32.

In order to store the address of a single location in

memory, the six bits of two adjacent memory locations are required,
Five of the six bits of the left-hand location are used to specify
the Row coordinate, and five of the six bits of the right-hand
location are used to specify the Column coordinate, A combination
of the sixth bits of both locations is used to specify which of

the four possible banks of memory is involved.

The UNIVAC 1005 utilizes a special 5-bit concept which operates on

a logical rather than a binary arithmetic basis. Special combinations
of these five bits are employed for the values 1 to 31 used as row

" or column coordinates, These 5-bit combinations, plus the sixth

bit required for bank designation, correspond to the 64 characters of
the UNIVAC 1005. Thus, the address of any location in any bank of
core memory can be specified by the proper selection of two of these

6-bit characters.

The foregoing description indicates the similarity and compatibility

of the memory of the UNIVAC 1005 and the UNIVAC 1004.

For the purpose of stored-programming, the main store of the UNIVAC
1005 should be considered as 1922 (or 3844) consecutively numbered,
decimally addressed memory locations enclusive of the Special Registers
and Column 32 of card row. The physical arrangement o? main store
is then no longer a concern of the programmer. Using this method,

the main store of the UNIVAC 1005 takes on the following appearance:

Banks 1 and 2

1 100
1071 200
201 300

BANKS 1 and 2

I
b~~~ ANA~AN

1
1701 1800
1801 1999

1901 1922 |

1923 2000)

' 2001 2100
2100 2200
; S
BANKS 3 and 4 = 5) ?
| | |
3601 3700
3701 3500
3301 3844 |

Decimal addressing would then produce the following facility

for programming: Decimal Ad
ecima re

First location of Read Input Storage (Card Col. 1) 1
Last location of Read Input Storage (Card Col. 80) 80
First location of Print Storage (Print Pos, 1) 161
Last location of Print Storage (Print Pos., 132) 292
First location of Punch Storage (Card Col. 1) 293
Last location of Punch Storage (Card Col. 80) 372

Since Print Position 1 is located at address 161, Print Position

23, for example, is located 22 positions away at address 183.

This same convenience is extened to the addressing of the programmer's
data areas as well as to the other reserved areas of Input Output
storage. A complete description of decimal addressing as provided

by the UNIVAC 1005 Assembly System appears in Section ____ of

this manual.

1.2

BASIC LOGIC AND FCRMAT

The UNIVAC 1005 operates on a basic two address instruction logic.
A UNIVAC 1005 instruction contains the address of two pieces of
information called Operands, and an operation code for the process
to be performed with these Operands. The Operands are defined by
specifying the address of the most significant location
(abbreviated MSL), or the address of the least significant
location (abbreviated LSL), or both, depending on the operation

to be performed, Operations are specified by a one character code.

The majority of the UNIVAC 1005 instructions require seven character

locations in the following format: | ; OP is
oP A BiC]l.

a single character which specifies the operation to be performed.

A is the two character address of the location of either the MSL or
the LSL of Operand 1, B is the two character address of the
location of the MSL of Operand 2. C is the two character address

of the location of the LSL of Operand 2.

®

‘N

s

1.3

Instructions are executed in ascending (LSL to MSL) or descending

(MSL to LSL) mode. If the operation is performed in ascending

- mode, the A portion specifies the LSL of Operand 1, |If the

operation is performed in descending mode, the A portion specifies
the MSL of Operand 1. The use of UNIVAC 1005 character codes to
specify operation codes and addresses is called absolute coding

or machine coding, A table of these codes and their equivalents is
shown in Appendix ____. As will be explained in succeeding sections
of this manual, the UNIVAC 1005 Assembly System provides a
convenient method of specifying these codes. The output of the
Assembler processing is a deck of punched cards containing
instructions in machine code. These cards are read by the UNIVAC

1005 and the instructions stored in core memory under the control

" of a Load program which is provided for the UNIVAC 1005. The Load

program is initiated by a special header card which is placed in
the front of the instruction cards.

CONTROL SECT ION OPERAT ION

After the program has been loaded, operation of the UNIVAC 1005
proceeds under the control of the Instruction Control Counter(ICC).
The ICC is one of the Special Registers located in core memory .
The ICC is a two character register which contains the address

of the MSL of the instruction to be performed next by the UNIVAC
1005, As each instruction is accessed for execution, the contents
of the ICC are incremented by the number of characters in the
instructioﬁ—-usually seven, This increment is first added to

the right hand character of the ICC, the Column address portion.

When the Column count passes 31, an increment of one is added @:D“
to the Row address portion of the ICC, and the Column portion .
is returned to 1., Memory Bank specification is also advanced as
‘the Column count passes 31. Thus the access and execution of

instructions proceeds in a sequential manner., Instructions are

Row 32

provided to vary this sequential operation when required.
and Column 32 addresses are not included in the sequential advance of the ICC.

As each instruction. is accessed, according to the address in
the ICC, it is transferred to the Instruction Register (IR).

The IR is a seven character Special Register which is used to

examine the instruction., The bit configuration of the one character
Operation code is analyzed by the circuitry which establishes and
controls the functions necessary to perform the required operation.
The address portions of the IR are transferred to the internal P
storage address controls for OP 1 and OP 2. The normal operation
of the UNIVAC 1005 when executing instructions is to access the
first character from either the LSL or the MSL of OP 1, and the
corresponding character from OP 2 (LSL or MSL) and perform the
process. The determination of whether the LSL or the MSL is used

is based on the mode--ascending or descending--of the instruction.
After operating on the first characters from OP 1 and OP 2, the
operation proceeds with successive corresponding characters of OP 1
and OP 2 until the processing of the last character location of

OP 2 has been completed. This signals the end of the instruction.

During the execution of each instruction, the contents of the ICC
are incremented according to the number of characters in the
instruction itself, When the end operation signal is generated, ‘:i} %

the new address in the ICC is used to con{rol the access of the

1.4

next instruction (NI1). The execution of the program proceeds in
this manner to direct the UNIVAC 1005 to accomplish the desired
results,

OTHER INSTRUCTION FORMATS

The instruction repertoire of the UNIVAC 1005 includes a complete
set of commands for control of the operation of the system, In
addition to the type of commands previously mentioned--seven
characters, with an OP 1 and an OP 2 address--there is a second
type of command which provides for flexibility and ease

of control of the programming requirements necessary to internally
stored program operation.

The second type of instruction is five characters in length and

has the following format:

OP; A B
Where:
OP = a one character operation code
A = a two character constant whose value is used or whose
bit configuration is used to perform special functions
B = a two character address of the location in memory where

these operations and functions are performed.
As is the case with most stored program computers, there are
special commands in the UNIVAC 1005 with a format that does not
precisely conform to these two basic formats. These special
commands will be either five or seven characters in length, and
the format variation will be indicated élong with a complete

description of the operation,

1.5

STORAGE ALLOCATION AND USE

The main store of the UNIVAC 1005 is separated by the hardware into
two ma jor areas--input output store, and working store, Input output
store consists of selected portions of memory reserved for the
inférmation received from and transferred to the input/sutput
devices. When a reserved area is not required for a device

as input/%utput store due‘to the operations being performed, the

area can be used by the programmer for storage of instructions

or data. The working store consists of ‘those portions of memory

not reserved for input/éutput information--the remainder of

core memory,

The working store is separated by the programmer into two types
of areas according to his programming requirements. A portion of
working store is established by the programmer to store the |
information (other than inpug/éutput) to be processed., The re-

mainder of working store is used to store the program instructions.

A note should be made at this point that the addressing capability
of the instruction address extends to all of main store. This
means that the contents oF‘any memory location or locations can be
accessed as data to be processed. This includes those locations
used by the programmer to store instructions., The use of this
capability to operate on instructions as if they were data is

an important technique of internally stored programming.

O

’/ﬂ(\
A

1.6

INDIRECT ADDRESSING

Another facility provided by the UNIVAC 1005 is the ability to
perform Indirect Addressing., In the UNIVAC 1005, Indirect
Addressing is the ability to specify in the address portion of

an instruction the address of the memory location which contains

not the data to be processed, but a secondary address which
specifies the location of the data to be processed. From a hard-
ware standpoint, this is accomplished by using the primary address--
the address in the instruction-—to control the transfer of the
secondary address to the IR where ft is then used as the

address of the data to be processed.

From a programming standpoint, Indirect Addressing allows

the programmer to establish one series of instructions which
perform a programming operation on separately stored but related
items of information, This is accomplished by programming the
instructions once using primary addresses, and changing the
secondary address to refer to the proper item for each use of
the series of instructions. For example: a detail card contains
four twenty-column transaction items. Each itém contains four
five-column fields. The program is written using primary
addresses which refer to a table of secondary addresses. The
table is set up to refer to the address of the fields within

an item, A series of addresses in the form of constants is
created by the programmer and stored in a portion of working

store. There is a series of addresses for each of the transaction

items as they will appear in Read Input Storage. Before processing

the first transaction item, the program transfer the series of

addresses which refer to this item to the secondary address

-table locations referred to by the primary addresses in the

instructions. The first item is then processed. At the con-

clusion of the processing of the first item, the program then

transfers the series of addresses which refer to the second

transaction to the table of secondary addresses. The series of

instructions is then executed again, only this time, the table

of secondary address references tne locations of the fields of

the second transaction item causing it to be processed. The

program action of changing the contents of the secondary address

table is then repeated for the processing of the third and

fourth transaction items,

shown in Figure .

An explanation of this example is

®

e

|
o -
|
|

READ INPUT STORAGE

TRANSACTION TWO

' FIELD 2! FIELD 3 | FIELD 4 [/FIELD N FIELD 2 :
6 10 11 15116 20he1 2506 30 3
TRANSACT ION TH
FIELD 3! FIELD 4 FIELD 2 ! FIELD 3/ FIELD 4 J
3536 50: 51 55 56 60 61
TRANSACT 10N FO
FIELD T\ FIELD 2 |FIELD/3 | FIELD 4
H | i
6566 70" 71 75176 801 ~
SECONDARY ADIRESS TABLE N
NTRY 1 ENTRY 2 | ENTRY 3 | ENTRY 4 \
AIR. OF Y AIR. OF | AIR. OF | ADR. OF \
FIELD 1 FIELD 2 | FIELD 3 | FIELD 4 \
.)
\ msL{tst A msifrst | msiiist | wsLitsL /
« \M 234/ 12 34 1234 12 34 S
\\\~ //
.............. B
7 T s e
/
N T T CONSTANT STRAGE TTTTTITTTTTITTTTTN
ENTRY 1§ ADR. OF ADR. OF ADR, OF ADR. OF X
\ _ED, 1, ITEW 1 FD, 2, ITEM 1 | FD, 3, ITEN 1 FD, 4, ITEW 1 /
ENTRY 2 TADR, OF ~~~ ~~ TAR,OFT T T T AR, OFT T T T TTITTARL,OF T T T
FD, 1, ITEM 2 | FD, 2, ITEM 2 | FD, 3, ITEM 2 | FD, 4, ITEM 2
ENTRY 3 ADR. OF ADR, OF ADR. OF ADR. OF
FD, 1, ITEM 3 | FD, 2, ITEM 3 | FD, 3, ITEM 3 | FD, 4, ITEW 3
ENTRY 4 AIR. OF ADR. OF ADR. OF ADR. OF
FD, 1, ITEM 4 | FD, 2, ITEM 4 | FD, 3, ITEM 4 | FD, 4, ITEM 4

Processing Requires:

Calculate the sum of Fields 1, 2, and 3.

Field 4. Do this for each transaction..

Subtract the sum from

I

INSTRUCT IONS REQU IRED @:;; i

The * indicates Indirect Addressing

OPERAT ION FIELD A FIELD B FIELD C ACT ION
Instr, 1 TRF-D MSL of Entry MSL of LSL of Sec The MSL and LSL addresses
1 in constant Sec Adr Adr Table of the Fields of Trans-
storage Table action One are transferred

to the Sec Adr Table-

2 ADD-ALG *ADR of Loc 3 *ADR of *ADR of Loc The primary address in the

-~

Entry 1, Sec Loc 1 3 Entry 2 A position of the instruc-
Adr Table Entry 2, Sec Adr tion refers to the lower
(LSL Field) Sec Adr (LSL Fd 2) 2 characters of Entry 1

(MSL Fd 2) in the Sec Adr Table.
: These two characters are
then used as the A address
of this instruction. The
primary addresses in the {
B and C positions similar-
ly refer to the Sec Adr
Table Entry 2, and address
substitution occurs,

3 ADD-ALG *ADR of Loc 3 *ADR of Loc *AIR of Loc Same as for Instruction 2 .

Entry 2, Sec 1 Entry 3 3 Entry 3 except that substitutes |)
Adr (LSL Fd 2) Sec Adr Sec Adr are made from Entry 2 b
(MSL Fd. 3)(LSL Fd 3) and Entry 3,
4 SUB-ALG *ADR of Loc 3 *AIR of *ADR of Loc Same as for Instruction 3
Entry 3, Sec Loc 1 3 Entry 4 except that substitutions
Adr (LSL Fd 3) Entry 4, Sec Adr are made from Entry 3 and
Sec Adr (LSL Fd 4) Entry 4
(MSL Fd 4)
5 TRF-D MSL of Entry MSL of Sec LSL of Sec The addresses of the next
2, then 3, then Adr Table Adr Table item are set up in the
4, in constant Sec Adr Table
storage
6 Return to Transfer control to
Instruction instruction 2 to initiate
2 processing of the next
item,
NOTE: Additional programming techniques are necessary to control the
number of times these instructions are to be executed for each
- card read. They are not involved with the use of Indirect
Addressing, and were omitted in order to confine the example
to the discussion., They will be covered along with the UNIVAC \
1005 Operations which are used for the additional techniques. C

(See the JL and the CC instructions if desired.) W 4

1.7

The normal use of Indirect addressing is with data which
contains a multiple item format similar to the punched card
format in the preceding example. The multiple item concept is
generally used for magnetic tape master and detail files. The
use of the Indirect addressing capability of the UNIVAC 1005 is

not restricted to the multiple item concept.

Other UNIVAC 1005 Operations and capabilities designed to implement

stored programming techniques are described in this manual along
with an example of the application.of the technique.

OTHER SPECIAL REGISTERS

There are two Special Registers in addition to the Instruction
Control Counter and the Instruction Register., These are the
Multiply/Divide Register (MDR), and a multi-purpose register

called Register X (rX).

The MDR is 31 locations in length, and is used by the Multiply

and Divide instructions. When not required for this purpose, the least

significant 22 locations may be used for intermediate programhing results.

Register X is 31 locations in length and-is used primarily when

Add or Subtract operations involve Operands of unequal length,

When not required for this purpose, rX can be used for intermediate

results of programming operations.

13

1.8

A thorough explanation of the use of rX and the MDR is given in

this manual where the Operations which reference them are discussed.

It should be remembered that all Special Registers are located in

core memory, are explicitly addressable, and are in addition to

the basic two or four banks of main store.

SPECIAL REGISTER LOCAT IONS

The Instruction Register (IR), the
(1CC), and the Multiply/Divide Regi
extra row of core memory--ROW 32,

is in ROW 32 of BANK 1.

Instruction Control Counter
ster (MDR) constitute an

This set of special registers

1 COLUMN 3
’ -
ROW BANK 1
IR | ICC| MDR
32
17 89 10 31

Register X constitutes an extra row of core memory--ROW 32 of BANK 2.

1 COLUMN 3

ROW

BANK 2

rX
32

1
When the ICC is incremented for seq
it advances from R31/C31 of Bank 1
and Bank 3 respectively, thus bypas
use of decimal addressing dées not
addresses of the Special Registers.

Row/Column addressing provision of

31
uential access of instructions,
and Bank 2, to R1/C1 of Bank 2
sing the special registers. The
include the specification of the
They can be addressed using the

the UNIVAC 1005 Assembly System,

N

1.9

ADDRESSING AND USE OF COLUVN 32

Each of the 32 Rows of memory contains 32 columnar positions.
The allocation of memory by the Assembler program is made on
the basis of 31 Rows and 31 Columns per Bank. As described
in Section 1.8, Row 32 of Bank 1 and Bank 2 are excluded from
Assembler allocation and are used for the Special Registers.
The explanation of the advance of the Row and Column partions
of the Instruction Control Counter indicates that not only is
ROW 32 of memory bypassed, but also COLUMN 32 of each Row of

memory is also excluded fwem Assembler allocation.

Column 32 of each Row in Bank 2, 3, and 4 become a series of

one character locations which can be used by the programmer for
such things as single character constants, control settings,
program switches, etc. Decimal addressing does not include the
addressing of any Column 32. The Row/Column addressing provision
of the UNIVAC 1005 Assembly System provides the means of addressing
each of these single character locations.

NOTE: Column 32 of each of the Rows in Bank 1 are
reserved for hardware/software control purposes
and must not be used by the programmer.

Row 32 of Bank 3 and Bank 4 are also not included in the allocation
processing of the Assembler program. Row 32 of Bank 3 and Bank

4 can be used by the programmer for the storage of data and

intermediate results of processing.

¢

2.0

2.1

INTRODUCT ION TO ASSEMBLY SYSTEMS

NEED FOR ASSEMBLY SYSTEMS

Control of an internally stored program computer is accomplished by
providing the computer with a set of instructions which have

been designed to produce the desired results. These instructions
are created by the programmer according to the specific requirements
and capabilities of the computer. The instructions must be entered
in the computer memory in a specific sequence using a precise

set of characters. This set of characte}s constitutes the
vocabulary or language of the machine., Machine languages are
dictated by the design characteristics of the computer and seldom
bear any relationship to human language. Furthermore, machine
languages seldom follow any logical pattern that a person could

use when writing a program, In addition to the language barrier,
there are many clerical-type functions which a programmer must
perform when writing a program.

PLRPOSE OF ASSEMBLY SYSTEMS

In order to overcome the language barrier, and to provide the
programmer with clerical-type assistance, an assembly system

is usually provided as part of the software of an internally stored

program computer.,

The assembly system allows the programmer to use a machine-

oriented language which is also human oriented. The programmer

®

2.2

writes the instructions in assembly language according to the
rules of the assembly system, These instructions are punched
into cards and are read into the computer under the control of
a program called the assembler proéram. The assembler program
analyzes the assembly language instructions and translates or
converts this language into the precise machine language of the
computer. An output deck of punched cards is produced by the
assembler processing which contains the machine language.
instructions., This deck of cards is then read into the computer
under ‘the control of a load prograh which stores the instructions
in the required sequence. The computer is then instructed to

execute the program,

The deck of cards which contains the instructions written in
assembly language is called the source deck. The output deck of
cards which contains the instructions in machine language is
called the object deck. In some cases, the assembly language is
referred to as the source language or source code, and the
machine language is referred to as the object language or ob ject
code, 7

MNEMONIC CODING

The terms mnemonic, symbolic, and relative coding are sometimes
erroneously used as synonyms, Each term has a specific meaning,
and each one constitutes an important characteristic of an

assembler,

17

2.3

An assembly language usually contains a set of mnemonic codes
which represent the Operation codes of the computer. These
mnemonic codes are established to help the programmer remember

the code to be used for the Operation needed.

In addition to the mnemonic codes which correspond to the specific
commands of the computer, an assembler usually provides a set of
mnemonic codes for pseudo-operations. The pseudo-operations are
established for the stored-programming functions which the
programmer normally needs to implement his problem solution.

These pseudo-operations usually represent options of computer
Operation codes and are given mnemonics which make it easier

for the programmer to specify his needs. In some cases the
pseudo-operation represents a combination of two or more computer
instructions which are needed to implement a stored programming
technique.

SYMBOL IC CODING

Symbolic codes are a usual provision of an assembly language to
allow the programmer to assign meaningful names to impor tant
information within his program. For example, the fields of data
in a payroll card are known to the programmer by the type of
information they contain, such as Employee Number, Department,
Gross Pay, etc, There is normally a limitation on the length of
a symbolic name, However, this length is usually enough to permit
meaningful abbreviations or contractions. In the example above,

the Employee Number field could be named EMPNO3 the Department

-4

g g

2.4

field could be named DEPT,; the Gross Pay field could be named
GRPAY. As will be discussed in the section on memory mapping, thé
actual addresses of these fields in memory are assigned by the
assembler program., When the name or label appears anywhere in

the source language instructions, the assembler program will use

the assigned actual address in the object language instruction,

Symbolic labels are also assigned to instructions in the program
which are referenced by other instructions in the program., When
a non-sequential transfer of control is required from one series
of instructions to another, the programmer must specify the point
to which control is to be transferred. Since actual addresses are
assigned By the assembly program, the programmer cannot provide
the actual address. By labelling the instruction to which control
is to be transferred, he can use the symbolic address for the
same purpose.,

RELAT IVE CODING

Relative coding is another assembly system technique which

allows the programmer to specify the location of instructions and
data, even though the actual addresses are assigned by the
assembly program, To use the relative coding technique, the
programmer must have a thorough understanding of the memory
mapping operation of the assembler program., Once this is
understood, relative coding is a simple yet powerful stored
programming techknique. In the preceding section on symbolic

coding is an explanation of the assembler program assignment of

19

2.5

addresgfio symbolic labels., This creates a common fixed point

of reference between the programmer and the assembler program.

By using this common fixed point of reference (the label) as a
base, the programmer can specify other locations by their position
relative to the base. For example, if the memory location

which is to contain the information from card column 1 has been
given a label of DETCD, then the memory location which is to con-
tain the information from card column 5‘wou1d be 4 locations away.
By specifying an Operand label of DETCD + 4, the programmer causes
the assembler program to assign the actual address of the operand
by mathematically adding the increment of 4 to the actual address
of DETCD. The assembly system usually provides for decrements to
symbolic labels as well as increments.

MEMCRY MAPP ING

In order to assign the location of instructions and data, the
assembler program must keep track of the locations that are used
as the assembler processing is performed. To do this, the
assembler program contains an Instruction Location Counter (ILC).
This is a program created device, not a piece of hardware. The
loading of the assembler program itself usually sets the ILC to
the actual address of the first memory location., The assembler
program then causes the reading of the first source language in-
struction. This instruction is assigned to an actual address
according to the present value of the ILC (in this case, the

first memory location), After the machine language for the

4:;

instruction has been created by the assembler processing, a card

is punched containing the machine language instruction. The

number of locations that will be required to store the instruction

is added by the assembler program %o the value of the ILC creating
a new value in the ILC. The assembler program then causes the
next source language instruction card to be read. This instruction
is assigned to an actual address according to the present value

of the [LC. Assume that the actual address assigned to the
preceding instruction had been R25/C1 and that the instruction

was seven characters in length, (R25/C1 becomes the address of
the MSL of the instruction.) The assembler program would then

add seven (the number of locations for the first instruction)

to the machine code equivalent storéd in the ILC, and arrive at
the machine code equivalent of R25/C8. This is the actual address

assigned to the second instruction assembled.

The use of this procedure by the assembler program insures that
the assignment of addresses to instructions follows the sequential
access of the instructions by the computer when the ob ject program

is executed.

In addition to an ILC, an assembler program may contain a Data
Location Counter (DLC). The DLC provides the programmer with the
ability to assign locations to his data in ah area of memory other
than the area to be used for instructions. Instructions are

usually assigned to locations starting with the first memory address
(low-numbered locations) and proceeding in éscending seauence.

Data is usually assigned to locations starting with the last memory

address (high-numbered locations) and proceeding in descending sequence.

]

2.6

DECLARATIVE INSTRUCT IONS
An assembly system with an ILC and a DLC usually provides a set

of pseudo-operations which allow the programmer to establish and

modify the value in the location counters. In addition to the

pseudo-operations which manipulate the ILC and the DLC, there

are usually other pseudo-operations which are required to instruct
the assembler program as to the manner in which the assembly
processing is to take place. These pseudo-operations are called
declarative instructions., Unlike the previously mentioned
pseudo-operations, declarative instructions, which are included

in the source language deck, do not produce instructions in

the object language deck., The declarative instructions are for
the use of the assembler program during the assembly processing,

and not for the computer as part of the object program.

An example of a declarative instruction would be one that updates
the DLC. Assume the problem called for storing the contents
of a header card to print headings on each new page. The
programmer would label the source language instruétion line, write
the mnemonic pseudo-operation code that decrements the DLC, and
indicate the value of the decrement (the number of locations to
be reserved for the data). Such a line of source code might
appear as

Label OP Code # of Locations

HDRCD DA 80
(stands for Define Area)

N
s

2.7

When this line of source coding is encountered, the DA tells the
assembler program to refer to the DLC. The contents of the

DLC are decremented by the number of locations to be reserved.

The new value of the DLC is assigned as the address of HDRCD. In
order to reference the information in the HDRCD area, the programmer

can use relative coding.

ASSEMBLER FROCESS NG

An assembler program consists of a set of machine code instructions
designed to produce specific results. As is the éase with any
computer program,bthe assembler program is designed to receive
specific information prepared in a precise format, |t is the
responsibility of the programmer to prepare the source language
program déck according to the rules of the assembly system. Any
errors in the source language will produce incorrect results from

the assembler processing.

In order to produce a complete object program, the assembler program
must read” the entire source program before producing any ob ject
instruction cards. During the reading of the source cards, the
assembler program performs a preliminary- analysis and converts

or translates from source language to object language wherever
possible, eg: the mnemonic operation codes. As each source card

is read and the mnemonic operation code is translated, the
assembler program determines the length of the instruction. The
instruction is assigned to an actual address, and the ILC is

updated. If the source language instruction has been assigned a

a3

symbolic address by the programmer, the label and the actual
address are stored in a table. When these labels appear in

the source language instructions as Operand addresses, the

assembler program searches the label table using the symbolic
address as the key, and secures the actual address assigned to
the label. The actual address is substituted for the programmer's

symbolic operand address.

The assembler program contains many other tables which it
references for conversion of the source ianguage to ob ject
language. After complete analysis and conversion of the source
language, the assémbler program causes the ob ject program to be

listed and punched.

24

——.

3.0

3.1

3.2

3.2.1

INTRODUCTION TO THE UNIVAC 1005 ASSEMBLY SYSTEM

Most of the programs for the UNIVAC 1005 will be written in

the language of the UNIVAC 1005 Assembly System. The UNIVAC 1005
Assembly System provides the programmer with the necessary
functions and convenience described in the preceding section,

The use of instruction forms not described in this manual deviates
from UNIVAC recommendations and must be the user's responsibility,
TERMINOLOGY DEF INITIONS

Alphabetic means a letter from the English alphabet (A through 7)
Numer ic means an Arabic numeral (0 through 9)

Alphanumer ic means the entire 64 character set of the UNIVAC 1005

which includes letters, numbers, and special characters.

CODING FORM

A coding form to be used to record the programmers instruction
for subsequent key punching and processing by the UNIVAC 1005
Assembler program is shown in Figure ____. The coding form is
set up in the same format as the punched card, and contains an
indication of the card columns to be used for each field.

{ LABEL
LABEL Columns 1 through 5 ,

1 5

This field is provided for the symbolic Léggiéth?bh are assigned
to those lines of coding which are referenced by the object
program instructions. A label may consist AF'F;om one to five-
characters (inclusive) and must begin in column 1 of the field.
The first (left-most) character of a Label must be an alphabetic

character. The remainder of the characters in a Label can be

alphabet{c or numeric, There4ié no limit‘to the number of Labels

in a source program, However, if more than 40 Labels are used,
extra processing is required by the Assembler program. This is
fully explained in the section on Operating the Assembler System,
Five positions are provided in the Label field to allow meaningful
assignment of programmer names. However, only the left-most three
positions of a Label are significant tovAssembler processing. The
first three positio5s of each Label must be unique within a

program, Extreme care should be taken when creating Labels,

Labels used in a single program must be unique and may appear
only once in the Label field. Labels will be used in the

Operand address portion of instruction lines and may aébear there
as often as necessary. The explanations in this manual of the
use of the relative coding technique of increments and decrements
to Labels should enable the programmer to address the data in his

program without an excess of Labels.

The Label of a line of coding becomes the symbolic address for
the left-most (MSL) position of the instruction, and is used
whenever the instruction is referenced, Labels are also used for
the lines of coding which define data areas, and become

the symbolic address for the left-most (MSL) position of the

area set aside for data.

O

AN

s

Since not all lines of coding require a label, the field may be left

blank, Some examples of labels are: LABEL
] Y

BEGIN

NEX, |
i—l_L._L.I_
£L!L_LJ_
—l 1 32 |
OPERAT [ON
3.2.2 OPERATION Columns 6 through 10] 10
b 1
-—l—J—M ~w—

This field is for the mnemonic operation codes provided by the
Assembler, Operation codes are usually alphabetic. The majority
of Assembler Operation codes are two characters in length, and

must begin in column 6,

Some examples of Operation codes are:
PERAT | ON

\

.

(o)
-
)

{iidid

J7

!

OPERAND _*
IT FIELD A [+| INC
A el-hs X

3,2,3 OPERAND 1
| W W 1 'y L
This is a heading for those columns which are normally used to

specify the address of the MSL or LSL of OP 1 depending on the
ascending or descending mode of the instruction. This portion of
the coding form is also used for other purposes, since not all
Operations involve an Operand 1. The following description of
the OPERAND 1 fields is based on the normal use to specify OP 1

addresses, A complete explanation of Operand 1 addressing

begins in Section _3,3.

3.2.3.1 1A Column [
This column is used to indicate Indirect Addressing., When the
OP 1 of an instruction is a primary address, an asterisk (*) is

placed in this column, It must be left blank at all other times.

3.2.3.2 FIELD A Columns 12 through 16 fr\}
S

This field of the form will normally contain a programmer's symbolic
address for the location of instructions and data within his
program., Any Labels which appear here must also appear in the
LABEL field of some line of coding. Field A is a five position
field for OP 1 Labels which normally begin in column 12,

3.2.3.3 t INC Columns 17 through 20
These columns are normally used to indicate an increment to the
address assigned to a Label. Increments are shown in decimal

numbers. If column 17 contains a plus sign (+) the increment is

added. If column 17 contains a minus sign (-) the increment becomes

a8

(' a decrement and is subtracted from the Label address. Increments

must be left-justified (begin in column 18). [orerAND -

T T ——

Some examples of OPERAND 1 addresses are: * 1;’ELD ?6 2‘18”\1%05
dewed| |,
o
l A 'y i 1]
| g.P"-T 1 -4!]
' 1
.' M 'y L I
,' T v 1

| ___QPERAND 2

2.4, AND 2 IN FIELD B |+]| INC FIetp ¢ [+] ine
3.2 OPER H*‘Z? 26 - gg 30 32 3617138 40

i T W W lI | - Jl

This is a heading for those columns which are normally used

to specify the MSL and LSL addresses of Operand 2 in the ins{ruction.
(i This portion of the form is also used for other purposes. The

following description of the OPERAND 2 fields is based on the

normal use to specify OP 2 addresses. A complete description of

OPERAND 2 addressing is found in Section 3.3.

3.2.4.1 1A, E1ELD B¥INC Columns 21 through 30
These fields are normally used to specify the most significant
location (MSL) of OP 2. The description'of the contents of

these fields is the same as the description of the contents of

OPERAND 1,
3.2.4,2 EIELD C, * INC Columns 32 - 40

These fields are normally used to specify the least significant
location (LSL) of OP 2,

- NOTE: The indication for OP 2 Indirect Addressing is
(" ' in column 21 only, Column 31 is not used as part of
. the specification for OP 2 LSL,

3.2,5

3.2.6.

The description of FIELD C and 1t INC is the same as the

corresponding fields of OPERAND 1, Cotm
T
5»5%“,,;‘

COMMENTS Columns 41 through 56 141 7 Y

4]11_1_‘JI|L!1 llJl

This portion of the form is provided to allow the programmsr

to include pertinent remarks as to the purpose of the line or

lines of coding. The remarks are not considered by the Assembler
processing and merely pass through to the printed and punched

output. These columns are also used to indicate constant values

which are to be included in the object program. This use is

described in the section which covers Constants, If the FEHARHS COMMENTS
exceed ;? positions, a COWENT line of coding may be used.

(See Section _____.)

CARD NUVBER Columns 62 through 66

This portion of the form is subdivided into three fields--

PAGE NUMBER, LINE NUMBER, and INSERT NUMBER. These columns are
used to indicate the number of the page of coding, and the number
of the line from which the key punched card was produced.

The Card Number field will assist the key punching effort as well
as provide for the re-sequencing of the cards in the event the

original sequence is disturbed. For proper assembly processing,

“it is necessary that the cards be read by the Assembler program in the

sequence in which they appear in the source program., The Card Number
field is used for external control purposes only. The Assembler program

does not check the sequence as it reads the card.

30

- T .

3.2.7

3.3

3.3.1

The INSERT NUMBER column is provided as a facility to insert
additional lines of coding in a source program, after the
initial effort, without disturbing the sequence established by

Page and Line Number,

During the assembly processing, the Assembler program assigns

a consecutive number to the output cards in the object program
deck. The Assembler assigned card number is punched into

columns 62 though 65, Column 66 is blank in the output card.

The remainder of the card columns are not examined by the
Assembler program, ‘and are available for whatever use the
programmer may determine. Such things as Job Number, Programmer's
Initials, and Date may be included on a repstitive punéhing basis.
These items will not appear in the object deck. Card Columns 67
through 73 are used for the object language instructions, and
columns 74 through 80 are used for instructions to the Load
program,

OPERAND 1 ADIRESS SPECIF |CAT ION

There are several methods of specifying operand addresses in the
UNIVAC 1005 Assembly System, A description of the three most

used methods follows below. The remainder of the methods are
described in Appendix ____.

SYMBOL IC ADDRESS (Label) SPECIFICATION

A definition of a symbolic address and some examples of lLabels
have been given in preceding sections., In the UNIVAC 1005

Assembly System, when a Label is used on a line of coding which

3/

defines a data area, that line of coding also includes the length L
of the area to be allocated to the data, The Label is then

used to specify the MSL of the data area, By placing a plus sign

(+) as a prefix to the Label when it is used as an operand addreés,

the programmer can specify the LSL of the data area,

Example: A Declarative has been used to establish a data area
of six positions with a Label NAME, Assume the data

1f

of area has been allocated in memory as:
COLUMN
Row [1]2 [314]5]6]7]8[9[10 11 [12] ‘
~———
NAVE (

The following use of the Label NAVE as an Operand 1

address of a TRF-D instruction would then cause a {
substitution of R25/C6, since a Label specifies the

MSL of the area.

LABEL JOPERATION| OPERAND
FIELD A 4] v
1 516 1012 61 le . S

| I | TIDI L2 lma 1 l} » o

The use of the plus sign (+) prefix to the Label NAVE
as an Operand 1 address in a TRF-A instruction would
then cause a substitution of R25/C11, the LSL of the area.

——

LABEL JOPERATION]__OQPERAND *
FIELD A [+ T'C
1 516 10)10 e l-1e o

Co IA] ENAM 1 |

NOTE: The plus sign.(+) can be used as a prefix to 5 character |
Labels by coding the first 4 characters only. The first
3 characters are significant to the Assembler program,

Labels must be coded starting in the left-hand position of Field A

(column 12). If the plus sign (+) prefix is used, it must appear in
column 12, and the Label starts in column 13, *

32

3.3.2

INCREMENTS TO SYMBOL!C ADDRESSESS

When a Label has been placed on a line of coding, the programmer
knows that the Assembler program is going to allocate the number

of memory locations required by that line of coding, and will also

assign an actual address to the Locations,

not know the actual a
thét the use of the same Label will cause the Assembler program
to substitute whatever actual address was assigned.
this knowledge, the programmer is then able to specify the address
of locations relative to his line of coding. This is accomplished

by indicating an increment or decrement to the Label in the

+

ddress which will be assigned, but he knows

-.INC field of the Coding form,

Assume that allocation has been made according to the previous

example,

The following coding would cause the Assembler program

to produce these substitute addresses:

[OPERAND 1 _
FIELD A [+] 'NC
+{12 16l-hg x

NAME,

L4 2 2

u

= address R25/C7 (MSL
= address R25/C11 (MSL
= address R25/C?0 (LSt

= address R25/C6 (LSL

The programmer does

+

1)
A5 = LSL)
1)
5 = MSL)

address R25/C3 (Outside of area)

address R25/C12 (Outside of area)

Based on

It should be noted that the use of increments is

not restricted to addresses within the area

allocated by the line of coding

33

3.3.3

3.3.4

by

When an increment is used, a plus or minus sign must appear in column 17, \
and the amount of the increment (in decimal numbers) must start in)
column 18,

DECIMAL ADDRESSING

As mentioned Section 1.1, decimal addressing is provided by the UNIVAC
1005 Assembly System, This technique allows the programmer to consider
the layout of Input Output, instructions, and data in a consecutive
sequential manner. This eliminates the problems associated with
advancing that takes place in Row and Column addressing.

When a decimal address is specified to the Assembler program, the
decimal number is converted to the two-character address required in
the object language.

Decimal addresses take the following form:

N through NNNN

the special character lozenge which indicates
to the Assembler program that what follows
is a decimal number.

I

N through NNNN a decimal number which must be left-justified.

AN
Indirect Addressing is allowed with decimal addressing. gkjj
Examples of decimal addressing
! OPERAND 1
bf FIELD A [+] e
sho 7 elthe @

L] = First location of Read Input Storage (R1/C1, Bank 1)

= Last location of Read Input Storage (R3/C18, Bank 1)
= First location in Bank 2 (R1/C1, Bank 2)
Last location in Bank 2 (R31/C31, Bank 2)

|

..
| .
I

When decimal addressing is used, the lozenge () must appear in column
12. The decimal number must begin in column 13. The deimal number cannot
exceed 4 digits, since the maximum address is 3844 (four bank system).

ROW AND COLUMN ADDRESSING

Row and Column addressing is used when the programmer knows the actual

address of the data., An actual or absolute address in the UNIVAC 1005 is
specified by two 6-bit characters which are converted by the computer

circuity into Row, Column and Bank, Row and Column addressing

in the UNIVAC 1005 Assembly System allows 1@::

34

the programmer to specify Row, Column, and Bank eliminating
the need to memorize or reference tables of the two-character

codes required in the object program.

The following format is used to specify Row and Column address:
$RRCCBN

$ is the indication to the Assembler program that what
follows is a Row and Column address

RR = the numeric Row Number (1 - 32)

CC = the numeric Column Number (1 - 32)
' +

B must be placed in the - column of the OPERAND field

n = the numeric Bank Number (1 - 4)

[OPERAND _1
FIELD A J+] INC
Example: *112 161718 X

JB0LOARIY, | | wst of Read Input

L 2 2 A l

_&Q&L&&;_L LSL of Read Input

AL 2 3] I

13330 L\SL of rX

Indirect Addressing can be specified with machine-oriented addresses
by placing an asterisk (*) in the appropriate column (11 or 21)

of the form,

The $ must appear in column 12, 22, or 32, and the letter B must
appear in column 18, 28, or 38, Increments to Row and Column

address are not allowed.

Row and Column address is also used to specify the address of the

Special Registers.

35

3.3.5

INSTRUCT ION LOCATION COUNTER (ILC) ADDRESSING

The ILC is the counter in the Assembler program which keeps

track of the allocation of memory locations to instructions.

The use of the current value of the ILC for addressing purposes

is provided by the UNIVAC 1005 Assembly System,

Proper use of

this technique is based on the programmer's knowledge of the

memory mapping process of the Assembler program,

(See Section 2.5).

The $ character, alone, in the left-hand position of Field A, Field

B, and Field C of the coding form, instructs the Assembler

program to use the current value of the ILC as the address for

the A, B, or C portion of the object instruction.

An increment

or decrement to the address currently in the ILC can also be

specified in‘the - INC fields for each address.

+

or decrement does not change the

This increment

value of the ILC itself, The

maximum increment or decrement is 961,

Fxample 1:.

Assume the value of the ILC is {745 (R25/C1. B1)

at the time the following descending transfer instructinn

1S 10 be assembled.

LABEL JOPERATION]__OPERAND 1 ‘
FIELD A [+ O

1 sl6 iollie tel e X
U ¢ WA B . | A

3b

e

N s

) (

3.4.

3.4.1

$ + 7 produces an address of 752 (745 + 7) which is the address

which will be assigned to the next instruction.Transfer will

begin at the MSL of the next instruction.

Example 2: The following coding of a descending transfer instruction

will cause the instruction itself to be transferred.

“LABEL PPERAT;ONI OPERAND 1
FIELD A |+] 'NC
ol 516 1012 1618 @

“_AL_n_q,,-.I;_.1. I |

OPERAND 2 ADDRESS SPECIFICATION

The rules for OPERAND 1 address specification.(Section 3.3) apply
to OPERAND 2 address specification.

OPERAND 2, FIELD C, BLANK ADIRESSING

The majority oF'UNIVAC 1005 Operations require the specificétion
of an A address (OP 1 MSL or LSL), a B address (OP 2, MSL), and
a C address (OP 2 LSL). The UNIVAC 1005 Assembly System

allows the programmer to leave the Field C portion of the source
language instruction blank when a symboiic address is used in
Field B, When a Label is used in the Field B portion of the
instruction, the Assembler program references the Label Table

to acquire the MSL address of the area it has assigned to the
Label. The same reference to the Label Table will also produce
the LSL address of the assigned area which the Assembler program
will then automatically include in the object instruétions as

the C address.

37

If Field B of the instruction does not contain a Label, automatic

(blank) addressing will not be performed.

If the Field C portion

of the instruction contains any information, automatic (blank)

addressing will not be performed, and the address specified in

Field C will be used.

If the LSL of the area indicated by the

Label in Field B is not to be used, the programmer must specify

the desired address in Field C.

For the following examples, DATA is the Label of a 6 character

Example 1:

Example 2:

Example 3:

field assigned by the Assembler program

to R25/C1, B1 (MSL) through R25/C6, B 1 (LSL)

{ QPERAND 2
WF'ELDB +| e FIELD ¢ l+] INC
2 26 e 30 |32 36138 0

SLEEIJRL I Y I I PR o

The Assembler program will automatically
assign R25/C6, B T as the C address.

L OPERAND 2
W 0B [+] IO FIELD C |+] Inc
22 2617128 0] 132 3617138 [0

LONeN Lol T

The coding in Field B.specifies that the LSL
of DATA (+ prefix) is to be the MSL of the
instruction, The blank Field C specifies
that the LSL of DATA is to be the LSL of the
instruction. This coding produces a one
character operand with an MSL and LSL of
R25/C6, B 1.

L QPERAND 2 P
Fﬁ FIELD B |+] InC FIELD C¢ |+] inC
il 2l 2517128 30l |s2 36 17138 i

DATA |43, | TR B

Field B specifies that the MSL of DATA plus
3 locations (R25/C4, B1) is the MSL of OP 2,
Again the blank Field C will automatically

produce the LSL of DATA (R25/C6, B1) as the
LSL of OP 2, OP 2 is a 3 character opsrand.

3%

AN

S

4:;

3.4.2

| OPER/ 2

Example 4: P F'ELD B 4] INC FIELD ¢ |+] INC
o 261718 ol |32 3 -8 0
| RYATAAE, | ADATA-L |

Field B specifies that the LSL of DATA
(+ sign) -3 (R25/C3, B1) is to be used

as OP 2, MSL. The presence of information

in Field C prevents the automatic (blank)
addressing of OP 2, LSL, Field C
specifies that the LSL of DATA (+ sign)
-1 (R25/C5, B1) is to be used as the LSL
of OP 2, OP 2 is a 3 character operand.
OPERAND 2 INDIRECT ADDRESSING
As explained in Section 1.6, Indirect Addressing utilizes a primary
address in the instruction which specifies the location of a

secondary address in memory which contains the address of the data

to be used in the Operation.

When Indirect Addressing is used for OP 2 of an instruction, the
primary address in the instruction must refer to the MSL of a

4 character location that contains the secondary address. A 4
character secondary address is neces;ary due to the fact that OP 2
of the ob ject instruction must specify a 2 character MSL address

and a 2 character LSL address.

The specification of Indirct Addressing will cause the UNIVAC 1005,
at ob ject execution time, to perform a 4 location descending
transfer from the address specified in the B portion of the
instruction to the B and C portions of the Instruction Register.
The OP 2 will then be accessed based on the new addresses in the

Instruction Register.

39

If a Label is used with OP 2 Indirect Addressing, the Label is

specified in Field B, and Field C is blank. The Label in Field

B must specify an assigned area of 4 characters which contain a

B and a C address. The UNIVAC 1005 Assémbly System provides a

pseudo-operation which is used for this purpose,

(See the DI

Operation, Section .) OP 2 Indirect Addressing is specified

by an asterisk (*) in the IA Field of OPERAND 2 (Column 21). No

indication is made in Column 31, since the Indirect Address

functions for both the MSL and LSL of OP 2.

Example:

Label JOE has been defined as the primary address for the

secondary address DATA,

character area,
801 through jx804,

¥ 745 through 3 750,

DATA has been defined as a 6

JOE has been assigned to locations XX
DATA has been assigned to locations

Thus, in location X 801 and

802 is the machine code equivalent of 745, and in location
> 803 and 3 804 is the machine code equivalent of X 750.

The following coding will produce a correct Indirect
Address reference to DATA as the OP 2 of an instruction.

L OPERANL 2

W F'CLD B |+] INC FIELD C |+] inC
il 2 2617128 3] |32 3-8 0
*IIO.E Y 1 Al,,.,. I § o b L l

When decimal or Row/Column Indirect Addressing is used, Field 3

must specify the MSL of the location of the 4 character secondary

Example 1:

Example 2:

address, ndehearaetee@det eyt

[- OPERAND 2
M F'ELD B |+| INC FIELD C |+] INC
. e 2617108 301 |3z 3|38 0
Lxgo.l- \ I | P N I :

L OPERAND 2

M F'ELD B |+] 'nC FIELD C |+] NG

o2 2ol les 3] |se 3ol-Bs 0

-{‘;Mn 1§

R25/C25, Bl =

meammn oy o s O SRS,

Same as above

801

Ho

VN
{ \

(o

(

3.5
3.5.1

3.5.2

3.5.3

SUMARY OF FIELD A, FIELD B, AND FIELD C SPECIFICATIONS
FIELD A

Field A of the source language instruction may specify:

LSL address of OP 1

MSL address of OP 1

Decimal digits

Octal digits

Test bit conditions

Destination address of JUMP TEST Operation
« Two machine language characters

L]

L]

~ oMb whihN —
.

FIELD B
Field B of the source language instruction may specify:

MSL address of OP 2

MSL address of OP 1

Set condition bits

Decimal digits

Octal digits

Destination address of JUMP Operations
Two-machine language characters

~N o0 Dhwh—
L]

FIELD C
Field C of the source language instruction may specify:

1. LSL address of OP 2
2. Two machine language characters

NOTE: Those specifications not previously explained will be
covered in the Section with the instructions that
require or allow the specification.

yl

3.6

M@’

é& %NDARD LABEL PREDESIGNATED AREA

W

R 80 Column Read Input X1 - X 80 R1/C1-R3/C18, B1

$R2 2nd Half of 160 Col. Read Xx81 - nri1e0 R3/C19-R6/C5, B
Code Image

$RC 160 Column Read Code Image X1 - 2160 R1/C1-R6/C5, B1

$PR 132 Column Print Storage o161 - M 292 R6/C6-R10/C13, B1

$P1 80 Column PUNCH Storage X 293 - X372 R10/C14-R12/C31, Bl

$P1 80 Column Read/Punch Read ¥ 293 - X 372 R10/C14-R12/C31, B1
Storage

$P2 80 Column Read/Punch Punch X373 - 5452 R13/C1-R15/C18, B1
Storage

$PC 160 Column Code lmage 293 - X452 R10/C14-R15/C18, B1
Punch Storage

$21 160 Column Read/Punch X293 - ¥452 R10/C14-R15/C18, B1
Code Image Read Storage

$z2 160 Column Read/Punch Code X453 - X612 R15/C19-R20/C23, B1

STANDARD SYSTEM LABELS

In addition to the programmer assigned symbolic Labels previously
discussed, the UNIVAC 1005 Assembly System provides 15 Standard
Labels for predesignated areas of main store. These Standard
Labels are not counted in with the number of Labels assigned by
the programmer. The purpose of the Standard Labels is to provide
uniformity of assignment of these predesignated areas, and reduce
the processing time of the Assembler program for handling
repetitive references to these areas.

K\\\\r\

r\.g

The Standard Labelsyand predesignated areas are:

Image Punch Storage

DECIMAL ADDRESS “ROW/COLUMN ADDRESS

AN
N/

«

STANDARD

$Bu

$IR

LABEL = PREDESIGNATED AREA DECIMAL ADIRESS ROW/COLUMN ADDRESS
First Location beyond Input Y 613 w R20/C24, B1
Output Storage
Instruction Register None | R32/C1-R32/C7, B1
Instruction Control Counter None R32/C8-R32/C9, B1
Register X None R32/C1-R32/C31, B2
- Translation Table W 1859 - 11922 R29/C30-R31/C31, B2

4y aA <por X 3781 - W3BA4 or R29/C30-R31/C31, B4

.
[GRtte '\‘\\,.A(,\N\»r g
PRSI ke 2. 9 e

i dhé Assembler processing associated with Standard Labels is the

same as for the Labels assigned by the programmer. That is, the use
of a Standard Label as an address specification within a line of
coding will cause the Assembler program to substitute the MSL

of the area identified by the Standard Label. The LSL address is
also specified and substituted in the same marner as for programmer's

Labels,

The Standard Label $TR refers to the required location for
translation tables when the hardware translate option of the

UNIVAC 1005 is part of the object system,

4,0

4.1

4,2

UNIVAC 1005 ASSEMBLY SYSTEM INSTRUCT IONS

This section of the manual covers the instruction repertoire

of the UNIVAC 1005 as programmed through the language of the

UNIVAC 1005 Assembly Systems and the declarative instructions which
direct the processing of the Assembler program,

LEGEND

The following abbreviations are used in the description of the

UNIVAC 1005 Assembly., SwsTws.

1L = Operand 1, LSL
M = Operand 1, MSL
2L = Operand 2, LSL
2 = Operand 2, MSL
K = any alphanumer ic character
D = any numeric character
CC = characters whose bit positions represoﬁt Condition Indicators
NI = the next sequential instruction
() = contents of the area specified within the parenthesis
~—>» = transfer to (
B = a blank column, (space code), used to establish
positional notation
IA = Indirect Addressing

NOTE: For a description of Operand 1, Operand 2, and the
UNIVAC 1005 machine language instructions, see
Section 1.2,
LENGTH OF OPERANDS
The length of the Operand(s) in a UNIVAC 1005 instruction is
normally defined by the addresses of Operand 2. An instruction
is normally terminated when the last location (LSL if descending mode,

MSL if ascending mode) A has been handled. This means that the number

of locations in OP 1 must be the same as the number of locations

in OP 2,

If the lengths of the Operands (as defined by the programmer) to be

fuy

TN

processed in an instruction are not the same, special programming
involving the use of Register X is required. The '"Transfer to
rX'" (TX) command allows the programmer to specify OP1, MSL and

OP 1, LSL, thus defining the length of OP 1., (See Section ____
for complete description of TX.) The destination (OP 2) of the
TX command is rX (31 positions). The TX instruction performs an
Ascending Transfer of OP 1 to rX, beginning at the LSL of each.
When the OP 1, MSL (as specified in the instruction) has been
transferred to rX, access of OP 1 is terminated. The TX instruction
continues, transferring space codes into the excess positions of
rX until the MSL of rX has been filled. This signals the end of

the instruction.

After transferring the smaller of the two Opsrands to rX, the
programmer then uses the appropriate location in rX as the OP 1
address of the instruction which does the required processing.

This insures the use of space codes in the locations which are
added to make the length of OP 1 equal the length of OP 2, This
condition is particularly important for the Arithmetic, the Compare,

and the Transfer instructions,.

Following is an example of the incorrect use of unequal length
Operands and the erroneous result produced, as well as an example
of the use of the TX command to produce correct results.

OP 1

Given:

{2z [x] x[x] XxI x] X] Y] Y] Locations 2703 - %708

701 703 708 710 contain the OP 1 data
(6 locations).

y<

P)
A T R I
801 808

Example 1:

Locations ¥ 801 - 2808 is to
be the OP 2 (8 Locations)

If an Ascending Transfer of OP 1 to OP 2 is executed,

the results in the OP 2 locations would be

[Z 1T Z I X T X [XTI X[X]

X

801

808

since the length of OP 2 (8 Locations) determines the

length of the Operand 1.

Example 2:

If a Descending Transfer of OP 1 to OP 2 is executed, the

results in the OP 2 locations would be

(X XX IxX IX

[x 1Y [v]

801 '308

since the length of OP 2 (8 Locations) determines the

length of Operand 1.

In Examples 1 and 2, extraneous locations (the Z's and Y's) which

are not part of OP 1 would be transferred.

If an Arithmetic

instruction was executed using the same operands, the locations con-

taining the Z's would become part of the OP 1 and would be combined

with the values in X801 and ®802, producing an erroneous result,

Using the same conditions given for the preceding examples, the

following example methods can be used to produce correct results,

Example 3: Instruction 1.

Transfer OP 1 to rX using the TX

command. The TX command provides for specification of
OP 1, MSL and LSL.
OP 1
A e —
X I x [X ITXTX[X]
703 708
X
R32, 8 1 | BT PIF I X T X IX [X X X]
1 25 26 31

46

C

Example 4:

Row 32, B 1

Row 32, B 1

Example 5:

Instruction 2: Ascending Transfer specifying the LSL of
rX (323B1) as OP 1, LSL to the
destination OP 2 (i 801 - X808), The
length of the OP 2 (8 locations) will cause
the low-order 8 locations of rX to be
transferred, This will produce the following
results in OP 2,

LB TE IXIX [XX]X]X]

801 808

In order to perfrom Arithmetic instructions on Operands

of unequal length, the type of operation performed in
Instruction 1, Example 3 would establish OP 1 in rX, The
length of the OP 2 of the Arithmetic instruction would then
control the number of locations to be used from rX
(including high order spaces).

Instruction 1: Transfer OP 1 to rX

L5 155151 5T15]

703 708
(et fATTFFFTFFFF Ty 5[5 [5 [5 [5[5]
i 25 26 31

Instruction 2: Assume ani ADD-ALG instruction
' OP 1

T T T T T T U T 177 RIBITHI51515151515]

1 24

il

Original OP 2

212 121221212121

801

Final OP 2

2 l2 717 T7T7717 71171

801

In order to perfrom a Descending Transfer producing a result
of the smaller OP 1 left-justified (in the most significant
locations) in OP 2 and spaces in the remaining low-order
positions of OP 2, two instructions are required.
Instruction 1: Descending Transfer, specifying the portion of
the OP 2 locations which are to receive the significant data, .
as the OP 2 of the TD instruction.

OP 1

—

X I I X XTI XTIxT

703 708 L'U"

e N

OP 2

L X | X\l unk | unk |

XTI XXX
807

Instruction 2:

806 gp7 808

Use the Transfer Constant (TK) instruction
to transfer space codes to the low-order
positions of OP 2. (See Section ____ for a

" description of the TK instruction.) This
will produce the desired result.

x| x| x]x

801

t

IxIxlg 8]
808

48

&

4,3
4,31

TRANSFER INSTRUCT IONS

TRANSFER DESCENDING

MNEMONIC:

™D

MODE «

DESCEND ING

LENGTH:

7

|A:

YES

1 >

LABEL JOPERATION]

6

OPERAND °

QPERAND _ 2

".O-\k

F

10
s

IELD A |+
el

‘NC JIN FELD

. KR

26

o

INC

3C

FIELD C

5 36

NG
U

P a_an

FUNCT ION:

Example 1:

TD.I_._I._I_‘,

M.,

Transfer descending beginning from OP 1 - MSL specified by

' ,,l_._g

M,

&L,

Field Ay to 0P 2 - MSL specified by Field B, until OP 2 - LSL

specified by Field C has been filled.

FIELD Ay OP 1, MSL:

The Standard Label R1 specifies the MSL of
Read Input Storage (the location of card column 1).

The increment of +3 causes the MSL of this OP 1
Hre—trae—ot

to be the location of card column 4,
$0104B1 or 3y 4 can be used to specify the same OP 1,
MSL since the location is known to the programmer.

Given: A 6 location area with the Label CAT has been
allocated to R31/C1 through R31/C6 in Bank 1
(3193 through X 936).
Problem: Transfer Descending the data from card columns
4 through 9 to the area CAT.
LABEL JOPERATION| _OPERAND 1 i QPERAND 2
Fl FIELD A J+{ 'NC P FIELL 5 |4} INC FIELD C INC
1 516 ol il el 20RFfee 261712 30 32 36 3~ 0
[V I T ‘mn A 8.‘{‘4“ ' +§J__._L__JC'IA-1.- . : ' Y N I T 3 1 l

%9

FIELD By OP 2, MSL: The programmer's Label CAT specifies the MSL of the Q:jg
7
area assigned to CAT by the Assembler program.
NOTE: $3101B1 or X930 could not be used since the
programmer does not know the actual address
which will be assigned to area CAT.
FIELD C; OP 2, LSL: Blank addressing will cause the Assembler program
to use the LSL address of the area specified by the
Label in Field B. The programmer can also use CAT + 5,
or +CAT in Field C and produce the same result.
Example 2:
Given: The same area with the Label CAT from example 1. Also,
A 6 location area with the Label DOG has been
allocated to R1/C1 through R1/C6 of Bank 2 (X 962
through X 967).

Problem: Transfer Descending the (CAT) to DOG.

LABEL JOPERATION| __ OPERAND - 1 QPERAND 2
FIELD A f+] 'Nc PN FELD B [+] INC FIELD C |+] INC
1 516 siol G e i i Y 20 1o 3ot 132 30 -3 0 N
D CAT, Poa ||, SR

_ffﬁtﬁli; 051; NSL: The Label CAT spec1f1es the MSL 'address of the area
assigned to CAT,

FIELD By OP 2, MSL: The Label DOG specifies the MSL address of the area
assigned to DOG.

FIELD C3 OP 2, LSL: Blank addressing will cause the Assembler program
to use the LSL address of the area specified by the
Label in Field B, The programmer can also use
DOG + 5, or + Dog in Field C and produce the same result.
NOTE: Row/Column or Decimal Addressing can not be used

for any of the addresses, since the actual

locations of the data are not known by the
programmer ,

YO

Example 3:

Problem: Transfer the entire contents of the card in Read
Storage to the first 80 print positions of Print

Storage.
LABEL JOPERATIONT OPERAND 1 | OPERAND 2
HFIELDA +] INC Fn F'ELD B |+] INC FIELD C |+] INC
1 516 102 16171 - o+ 2617 12- 30)32 3 - B 0

— > J8R4 11 I1BoR 11, 11182&_ 474,

FIELD Ay OP 1, MSL: The Standard Label §R1 specifies the MSL of the
Read Input Storage area. $0101B1 or j 1 could
have been used.

FIELD By OP 2, MSL: The Standard Label $PR specifies the MSL of the
Print Storage area $0606B1 or Y 161 could have
been used,

FIELD Gy OP 2, LSL: Blank addressing can not be used, since this would
cause the Assembler program to use the LSL of $PR,
the last column of the Print Storage area. $PR + 79
is the address of Print position 80 which should be the
LSL of OP 2. $0823B1 or *7 240 could have been used.

Example 4:

Problem: Transfer the data from column 80 of an input card
to column 80 of an output card.

LABEL JOPERATION| _OPERAND - | OPERAND _ 2
B FIELD A [+ 'NC M FIELD B [|+] INC FIELD C [+] INC
1 21 [Sl e i N Bl o 261q2- 30l 432 E128 il CERRE)

+.L$.g4&. | ﬂ.QA‘. | Lotoad o

FIELD Ay OP 1, MSL: The plus sign (+) prefix to the Standard Label $R1
specifies the LSL of Read Input Storage as the MSL
of OP 1. $0318B1 or 7 80 could have been used.

[I S T | | il W T {

FIELD B; OP 2, MSL: The plus sign (+) prefix to the Standard Label $P 1
specifies the LSL of Punch Storage as the MSL of
OP 2. $1231B1 or sr372 could have been used.

FIELD Cy OP 2, LSL: Blank addressing in Field C specifies the LSL of the
area whose Label is in Field B. (The plus sign in
Field B does not constitute part of the Label. It
instructs the Assembler program to use the LSL address
of the labelled area,) $1231B1 or X 372 could have
been used.

NOTE: Since OP 2, MSL and OP 2, LSL specify the
same address, a one location Operand is produced.

<l

4,3.2 TRANSFER ASCENDING

MNEMONIC: TA MODE: ASCENDING LENGTH: 7 IA: YES

LABEL [OPERATION| _OPERAND 1 QPERAND _ 2
FIELD A [+] ‘NC PN FELn B [+ e FIELD © [+] e
1 ole oo i i N i soltlo- o e 0 il EENIY

SN WPV | TlAL A1 L\'- A1 2 l AIMA [T _J__I ;\ILI 11 1 I

FUNCTION: Transfer ascending beginning from OP 1 - LSL specified by
Field A; to OP 2 - LSL specified by Field C, until OP 2- MSL
specified by Field B has been filled,

Example 1:

Given: A 6 location area with the Label CAT has been allocated
to R31/C1 through R31/C6 in Bank 1 (37930 through){935).

Problem: Transfer Ascending the data from zard columns 4
through 9 to the area CAT,

LABEL [OPERATION |__OPERAND 1 QPERAND _ 2

M FIELD A [+] ‘N PN FEcD B [+ e FIELD C |+] INC
1 516 o2 1R I R K e 2o I PR S J b1%8 I SN
L2 4 1 TtAn il &« 11 L + 8- ' C\AT- [- 1 ' o v 1 _,j_,_J____

FIELD Ay OP 1, LSL: #R1 is the Standard Label for the MSL of Read Input
Storage (the location of card column 1). The
increment of +8 causes the LSL of this OP 1 to be
the location of card column 9. #$010981 or ¥ 9
can be used to specify the same OP 1, LSL since the
location is known to the programmer.

FIELD B85 OP 2, MSL: The programmer's Label CAT specifies the MSL of the
area assigned to CAT by the Assembler program,

NOTE: $3101B1 or X930 could not be used since the
programmer ‘does not know the actual address
which will be assigned to area CAT,

FIELD C3 OP 1, LSL: Blank addressing will cause the Assembler program to
use the LSL address of the area specified by the
Label in Field B. The programmer can also use
CAT + 5, or + CAT in Field C and produce the same
result.

Example 2:

Given: The same area with the Label CAT from Example 1.
Also, a 6 location area with the Label DOG has
been allocated to R1/C1 through R1/C6 of Bank 2
(37 962 through Y1 967).,

Problem: Transfer Ascending the (CAT) to DOG

LABEL JOPERATIONY OPERAND | OPERAND 2
H FIELD A [+] 'nC FIN FELD B 4] NG FIELD C [+] INC
1 516 oo S N R piol i PR el I B 313 a0

1,..T-A..1 +|C'.AT. o 1 m10.@. | L1 o4 |

FIELD A; OP 1, LSL: The Label CAT with a plus sign (+) prefix specifies
the LSL of the area assigned to CAT.

FIELD By OP 2, MSL: The Label DOG specifies the MSL of the area assigned
to DOG.

FIELD C5 OP 2, LSL: Blank addressing will cause the Assembler program
to use the LSL address of the area specified by the
Label in Field B, The programmer can also use
DOG +5, or +DOG in Field T and produce the same
result. :

NOTE: Row/Colunn or Decimal Addressing can not be
used for any of the addresses, since the
actual locations of the data are not known by
the programmer,

Example 3:

Given: A 7 position location with the Label XT 1 is the last
instruction of a subroutine.

Problem: Transfer Ascending the previous 7 character
instruction to the exit line XT 1 of the subroutine,

LABEL POPERATION|__OPERAND PERAND 2

|
Pi FIELD A [+] '\C luf FIELD B [+] INC FIELD C |#]| INO
] 586 042 el I N I P 261 1o- 300 132 1ol el CEE

o A TE e XA

4-_,-11 W T ll

FIELD Ay OP 1, LSL: $-1 instructs the Assembler program to use the
current value of the ILC minus one as the address
of OP 1, LSL of this instruction. The current
value of the ILC is the MSL of this instruction.
The MSL of this instruction minus one is the LSL of
the previous instruction.)

53

FIELD B

FIELD C;

OP 2, MSL:

OP 1, LSL:

The Label XT 1 specifies the MSL of the locations
assigned to that instruction by the Assembler
program,

Blank addressing will cause the Assembler program
to use the LSL of the locations assigned to the
instruction stored at XT 1,

A
.

C

»

4.3.3

TRANSFER CLEAR

MNEMONIC: ~ TC ~ MODE: ASCENDING ~ LENGTH: 7 IA: YES
LABEL [OPERATION] _OPERAND | QPERAND 2
p FIELD A [+ 'nC PN FIELD B O[+] hO FIELD C INC
1 5 Bel i e el N i o colfes el e el 0

| ST W |

T.C

L S)

N

lILl T |

|

FUNCT ION

This instruction performs exactly the same as a TA (Transfer Ascending)

instruction,

locations to_space

codes during the process.

MSL specified by Field B has been filled.

Transfer ascending beginning from OP 1 - LSL specified by
Field Ay to OP 2 - LSL specified by Field C, until OP 2 -

Clear the OP 1

The only difference is that as the characters are

accessed from the OP 1 locations, they are not returned to the OP 1

locations,

The effect of this instruction lerves the OP 1 characters

cleared to space codes,

The rules for coding a TC instruction are the same as the rules for

coding the TA instruction (See Section 4.3.2.)

4.3.4

TRANSFER ONLY NUMERIC BITS (
N J,’
MNEMONIC: TN NODE: ASCENDING LENGTH: 7 IA: YES
LABEL [OPERAT ION |__OPERAND QPERAND 2)
FIELD A |+] 'NC Jfr'ma | e FieLe © [+] e
1 516 ol 1 ot i N K P il R I K 0 il Y
Lo A A Tan Al 1_;‘1 AL . | AIMA T ' | J'l\"l 1.1 . 1 l

FUNCTION: Transfer ascending beginning from the OP 1 - LSL specified
by Field Aj to OP 2 - LSL specified by Field C, until OP 2 -
MSL specified by Field B has been filled, Delete the X

and Y bit-positions of the data delivered to OP 2,

This instruction performs exactly like the TA (Transfer Ascending)
instruction, The only difference is that before the characters are
stored in the OP 2 locations, the zone bits (X and Y bit-positions) are

stripped off (set to binary zero). The contents of OP 1 remain unchanged. .
L'\,,/‘

The rules for coding a TN instruction are the same as the rules for

coding the TA instruction (See Section 4.3.2.)

4,3.5 TRANSFER CONSTANT

MNEMONIC: TK MODE: ASCENDING LENGTH: 7. IA: YES
LABEL JOPERATION| OPERAND ¢ 1 ERAND 2
HFIELDA +| NC PA F'ELD B |+| INC FIELD C |+] inC
1 586 o] & e 16071 - 2o)xe2 26 1712- 30] 132 BTl Bl CERY
l‘ PO U T:K AL L\&K i1 P | PJM, e 1 B ILL Al 4

FUNCTION: Transfer ascending beginning from location 3 of the
Instruction Register (IR); to OP 2 - LSL specified by
Field C, until OP 2 - MSL specified by Field B has been
filleds Transfer a maximum of 2 locations (KK) from the
IR, If OP 2 is more than two locations in length, space-
fill the unentered high-order locations of OP 2,
When a TK instruction is brought to the IR for execution, the two
alphanumer ic characters KK will occupy locations 2 and 3 of the IR,
These two locations are used similar to an OP 1 in an Ascending
Transfer. However, the Operation code (TK) will cause the transfer
from OP 1 to cease after the second transfer. The execution of the
instruction wjli continue until OP 2, MSL has been filled. If there
are more than two locations in OP 2, the excess high-order locations
of OP 2 will be filled with space codes. If there are exactly two
locations in OP 2, the instruction will transfer locations 2 and 3
of the IR (the constant KK). |If there is only one location in OP 2,
only position 3 of the IR will be transferred.
NOTE: The character ¥ (lozenge) may not be used as the

first character of a constant in Field A of this

instruction. Code in its bit configuration. (See
Section 4.3.5.3)

£

Example 1:

: -
Problem: GStore the letters (R in the last (low-order)
two locations of Print Storage.
LABEL JOPERATION |__OPERAND 1 1 QPERAND 2]
UTFIELDA + ‘NC PN FIELD B [+] InC FIELD C |+] INC
516 OfF2 1617 - XLp*]22 2o740- 30) 32 3617 13- 40
L.anlKnnl QKII . | +J3APA& -Lll I . | |l
FIELD A3 KK: The letters CR.
FIELD B; OP 2, MSL: $MR is the Standard Label for the Print Storage
area, The plus sign instructs the Assembler
program to use the LSL of Print Storage, and
the minus one causes the address of Print position
131 to become the MSL of this instruction.
FIELD C; OP 2, LSL: Blank addressing will cause the Assembler program
to use the LSL address of the area specified by
the Label in Field B. The use of the plus sign and
the increment in Field B have no effect on this
Assembler program procedure.
Example 2: N
.

Problem: Store a minus sign (=) in the LSL of the 10
character area assigned to FOX. Clear the high-
order 9 locations of FOX to spaces.

LABEL JOPERATIONI _ OPERAND 1 | P 2 i]
FIELD A [+] '\C F'IELD B [+ InC FIELD ¢ |+] inC -
1 516 ool & i 16171 = 2olxe 26 1712: 30] 132 3e|-B: 40

I‘ P W Y -rl\<1 il :L 41 i l FQD-XA A JAl\ L_“_u,,lvl 1.4 4 [

=y

FIELD A; KK: The B (space code) becomes location 2, and the minus sign
(-) becomes location 3 of the IR. After they are trans-
ferred, the remainder of FOX is space filled.

FIELD By OP 2, MSL: The MSL of the area assigned to FOX becomes the
MSL of this instruction.

FIELD Cy OP 2, LSL: Blank addressing causes the Assembler program to use
the LSL of the area assigned to the Label in Field
B (FOX) as the LSL of this instruction.

NOTE: See Example 5 for a description of negative
constants.,

)
;// ‘

Example 3:

Given: Several fields of the print line are to have a
printed sign of plus (+) or minus (-) based on a
condition developed by the program,

Problem: Store the proper sign indication in each of the
fields using the TK instruction with Indirect

Addressing.
LABEL BOPERATIONE OPERAND | QPERAN 2 J
FIELD A |+ 'Nnc PN FiELD B [+] INC FIELD ¢ [+] ine
1 516 042 16170 X xper 261712 301 132 361" B:- 40
M Tl\(t L.l - 11] *l? D;l A ; I i S S . | L I
[T T W | TIKI A _1! I +;FJ¥AA 1 l | U W N 1 l
I . | TIK. 1 2] - L J +|“';§151 s I [HR U W | 1

Solution:

»

The location immediately preceding the instruction labelled
SIGN has been established as the secondary address location

for the Indirect Addressing to be performed in the
instruction SIGN,

The processing in the program will previously determine the
sign requirements of the printed fields. This same portion of
the program will then transfer the appropriate character to
location SIGN - 1, and execute a Jump instruction which
transfers control to SIGN.

The instruction in SIGN is then brought to the Instruction
Registar, Before it is executed the instruction is examined
by the hardware to see if it calls for Indirect Addressing.
In this case, it does.

The hardware then automatically uses the address in the A
portion of the IR as theMSL of a two location transfer from
memory to the A portion of the IR, The hardware then examines
the Operation code and performs the TK instruction using the
"new" contents of the A portion of the IR as the two

character constant KK,

Field B specifies that the LSL of FD 1 is to be used as the
MSL of the instruction, Blank addressing in Field C will
cause the same address to be the LSL of the instruction thus
creating a one character OP 2, Each of the instructions will
then transfer the appropriate sign indication to the LSL of
each of the print fields.

Example 4:

Problem:

Clear Bank 2 to space codes.

LABEL

1 o216

PERAT |ON

0

QPERAND 2

e

OPERAND ¢
FIELD A
i N 10

+

A

'NC P

ez

FIELD B
26

+

- 2~

INC

o] 52

FIELD C.

3

+| INC

i CE

FIELD Aj

FIELD Bj

FIELD C;

Solution:

-FASL.;Qn“AaEEL—éut

KK

space codes.

OP 2, MSL:

OP 2, LSL:

v

29,63

A

%1924

-—h

H 962 ié the decimal address for the first

The blank columns in the Field A will cause KK to become

location in Bank 2, which becomes the MSL of OP 2,

Y 1922 is the decimal address of the last location
in Bank 2, which becomes the LSL of OP 2,

This instruction will first transfer the two space codes, and
then space-fill the remainder of OP 2---the rest of Bank 2.

If the KK portion of a TK instruction is to contain a hegative constant,

the minus sign (-) is used as a prefix to the two decimal digit constant,

The Assembler program will place an X-bit over both of the numerals

in KK,

{
\

If the negative constant is to be a value from -1 through -9,

a zero must be coded between the minus sign and the decimal numeral,

I the KK portion of a TK instruction is to contain a positive constant,'

no sign indication is required.

Example 5:

Problem: Store a -1 in the 2 location area assigned to COUNT,

]

LABEL rOPERATION OPERAND 1 | QPERAND 2
FIELD A |+4] 'NC rl F'ELD B [+] INC FIELD C |+ I]NC
1 5}6 10 1* 2 16171 2Lir22 2617 12- 301 132 36113 /0
',r..l& -2 ~41|] LN | l_._. C_g_g:y'-“:r A 'IA __!_ | - — i l

e A

FIELD Ay KK:

The minus sign causes the Assembler program to place a

binary 1 in the X bit position of both the # and the 1 in
the ob ject language instruction,

(See Section 4.4)

o

TN

o

FIELD B; OP 2, MSL: The address of the MSL of the area assigned to
COUNT is used as the MSL of this instruction.

FIELD C; OP 2, LSL: Blank addressing causes the Assembler program to
use the address of the LSL of the area assigned to

COUNT as the LSL of this instruction.

NOTE: The minus sign (-) symbol can not be used as
the first character of a constant in the TK,
instruction. Code in its bit configuration,
(See 4.5.3.)

4.3.5.,1 SYMBOLIC ADIRESS SUBSTITUTION
The TK instruction can also be used to change the A, B, or C address
of an instruction. The UNIVAC 1005 Assembly System provides for source
language coding of Labels in the Field A protion of a TK instruction.
These Labels are converted to the two character machine language address

assigned by the Assembler program and stored as KK in the A portion of

the object language TK instruction.

The symbol colon (:) is used in colymn 12 as a prefix to the Label

whose assigned address is to become KK,

Example e
Problem: Change the A address portion of a TA instruction
stored in DOG to refer to CAT.
LABEL [OPERATION]___OPERAND 1] OPERAND o T/
. FIELD A |+] 'nc M F'ELD B [+] INC FIELD C |+]| INC
A 516 O 2 16171 = 222 26 1712- 30 32 3617 13- 40
,'—*J*L_—-‘:I‘S_A_I —__;J_tg_té:r ~ _.l_l | D__L,Q-Lﬂ*l JQ_LQ 1 ._F-Ll l

Gl

FIELD Aj KK: The symbol colon (:) informs the Assembler program that a (
Label appears in Field A of this TK instruction. The
plus sign (+) prefix instructs the Assembler to use
the LSL address of the area assigned to CAT as KK in this
instruction. (The LSL is required due to the ascending
mode of the TA instruction.)

O

FIELD B; OP 2, MSL: The MSL of the TA instruction stored at DOG contains
. the Operation code. Therefore, the MSL of the A
portion of that instruction is stored at DOG +1,
which becomes the MSL of the TK instruction.

FIELD C5 OP 2, LSL: DOG +2 is the address of the LSL of the A portion of
' “the TA instruction stored at DOG. This address is
used as the LSL of OP 2 of the TK instruction.

NOTE: If the symbol colon (:) is to be used as the
constant K, it must be coded in its bit
configuration. (See Section 4.3.5.3 below.)

4.3.5.2 ROW/COLUMN and DECIMAL ADIRESSING

Row/Column and Decimal Addressing can also be used to cause a machine

language address to be placed in the A portion of the TK instruction.

-
Example 4 ./
Problem: Store the machine language of decimal location

H 1x000 as the LSL of a 7 character instruction
stored in FOX.
" LABEL JOPERATION|__OPERAND - T OPERAND 2]
i FIELD A |41 'NC FIELD B |4} INC FIELD C {+} INC
1 516 02 16171 1*P2 26"2& 30 32 36 1" B= 40

e, A2 | [Fox. Mo [],] 1

el ¥ 1 eme

FIELD A; KK: The Assembler program will use the two character code for
address Yl 14000 as KK in this instruction,

FIELD By OP 2, MSL: FOX is the MSL address of the 7 character instruction.
The LSL address portion (the C portion) of FOX is
therefore FOX +6, which will be used is the OP 2
MSL of this instruction. :

FIELD Cy OP 2, LSL: Blank addressing will cause the Assembler program A
to use the LSL of the area assigned to FOX as the &:)
OP 2, LSL of this instruction. This is the LSL of /

the C portion of FOX,
oo

4,3.5.3

Example g:

1000 is the decimal address of R2/C8, Bank 2. The
coding for Example 7 could have read as follows, and
produce the same result.

o i S
' LABEL [JOPERATION[__OPERAND - 1 QPERAND 2

, M FIELD A [+] ‘NC I F'ELD B [+] iNO FIELD C [+] INC
I 516 ope S i e b 2ol 1o 308 fse E1 il CERRIV

et TTBeas B, TRox e [T, T
BINARY CODED CONSTANTS |

The basic level of machine code is a series of binary bits, In the

UNTVAC 1005, 6 binary digits (bits) are stored in each memory location.
The UNIVAC 1005 Assembly System allows the programmer to use binary

indications, if necessary, to code his program,

In order to reduce the number of source language columns required

for binary indicatién, the UNIVAC 1005 Assembly System prov&des*?or
octal coding. An octal code is made up of three ad jacent binary
digits. Thus two octal digits can be used to express the contents of
one UNIVAC 1005 location. To determine the octal equivalent of the
6-bit binary code, the following is suggested.

(CNNC A EC R AN O] W
UNTVAC 1005 bit position X Y 8 4 2 1

Octal Digit # Octal Digit #2
Jolud
Add the binary eem of the bits in the 4, 2, and 1-bit positions
(maximum sum = 7) to create Octal Digit #2, Using the same values
(4, 2, 1) add the sum of the X, Y, and 8-bit positions (maximum 7)

to create Octal Digit #1. Write as a two place number.

(63

For example: the bit configuration of the letter A equals @:;

X Y 8 4 2 1
0o 1 0 1T 0 90

Position 1 =0
2=0
4=4 "
sum 4 equals Octal Digit 2
Position 8 = 0
Y =2
X=0

sum 2 equals Octal Digit¥i

Thus the octal form of the letter A is 24, In the same manner, any

six bit éonfiguration can be shown by using the two digit octal form,
AN

The symbol for number (#) is used as a prefix to indicate the Assembler s

program that octal coding has been used, followed by four octal digits,

Example %

Problem: Store two lozenge symbols (M%) in the least i
significant locations of the area assigned to
RAT. (Reminder, the lozenge symbol cannot

be used for KK in the TK instruction.) = 111 101
I LABEL JOPERATION OPERAND 1 | OPERAND 2

FIELD A [+] INC BN F'ELD B |+] INC FIELD C [|+] INC
4 s]e o2 aells albe el ol fse seltbe o
- v a_ a2 T‘IK\,,_‘_ » *7-5 l7 '{ . ' hR-ATL " lLJ L1 11 ‘1 l

FIELD A; KK: The number symbol (#) indicates to the Assembler program
that what follows is octal coding., The Assembler program
then forms the two characters KK,

FIELD 85 OP 2, MSL: + RAT -1 is the second least significat location

o o €

FIELD C; OP 2, LSL:

Blank addressing causes the Assembler program to
use the LSL of the area assigned to RAT as the
LSL of this instruction,

NOTE: Octal coding can also be used as a method
for addressing in the UNIVAC 1005 Assembly
System. See Appendix ___ for a complete
description.

A

4.3.6 TRANSFER TO REGISTER X

MNEMONIC: TX MODE: ASCENDING LENGTH: 5 Az NO

e r— e

oPERAND 11 "OPERAND 2

FIELD A |+ rtmop FIELD B |+| INC FIELD C |+

T LABEL OPERATION H
*

i 5

ool & SR e P K 22BN el PEEO] I PR T e C

o7

=112

.L. .1;\-. 1 ll"\w.. | L1

"

FUNCTION: (OP 2 in the TX command is rX.) Transfer ascending
| beginning from OP 1 - LSL; DoelemiR; continuing until
OP 1 - MSL has been transferred, Space fill any un-
entered high order positions of rX. Maximum OP 1 operand
length is 31 locations. (See Section 4.2 for further
information,)
This instruction has an implied OP 2 of rX, which is indicated by the
Operation code. The purpose of this instruction is to provide for
the handling of unequal length operands, Complete specification of the
length of OP 1 is made in Field A and Field B (two addresses), and rX

is OP 2, The TX instruction is a 5 character instruction.

Example 1:

Problem: Transfer the 5 characters from card columns 1
thru 5 to the 8 character field assigned to CAT.
NOTE: This requires two instructions,

| UABEL JOPERATION] OPERAND 1 | QPERAND 2
FIELD A |+] 'NC W™ F'ELD B |+] INC FIELD C [+] I’
1 516 10f|12 16171 20]xeo 261712 301 |32 36 |- =

N e S B VXL A A

L1 TA_FJL Elsg.an MI AA.-rl; 1 1) oo

Instruction 1 >

FIELD Ay OP 1, LSL: The Standard Label $R1 + 4 specifies that the address
of the fifth position of Read Input storage is
to be the LSL of this instruction,

FIELD By OP 1, MSL: The Standard Label #R1 specifies that the address
of the first position is to be the MSL of this
instruction,

FIELD Cs lgnored
Instruction 1 transfers locations 1 through 5 of Read Input
storage to the low order 5 locations of rX (R32/C27, Bank 2
through R32/C31, Bank 2). The remainder of rX (R32/C1 Bank
2 through R32/026 Bank 2) is filled with space codes.

Instruction 2 TA

FIELD Ay OP 1, LSL: $3231B2 specifies that the LSL of rX is to be used
as the OP 1, LSL of this instruction,

FIELD By OP 2, MSL: The MSL address of the area assigned to CAT is to
be used as the OP 2, MSL of this instruction,

FIELD Cy OP 2, LSL: Blank addressing specifies that the LSL address of
the area assigned to CAT is to be used as the OP 2,
LSL address of this instruction.

The ascending transfer in Instruction 2 calls for an 8 location transfer

(the length of OP 2, CAT). The low order 5 locations of CAT will

contain the 5 characters from the card which were transferred to the low

order positions of rX by Instruction 1. The 3 high order positions of

CAT will contain space codes from the un-entered portion of rX,

G1

4.3.7

TRANSLATE (OPT IONAL)

NOTE: The Translate instruction can only be QSed if the
UNIVAC 1005 system for which the program is being
assembled has the hardware translate option,

MNEMONIC: TR MODE: DESCENDING LENGTH: 7 [A: YES

[ABEL JOPERATION | __OPERAND l GEERAND 2
FIELD A |#] 1 P Fcioe [+ e [[reto o [+ e
1 a1 [oo el eofee peltlee o} o LB 00

|A..-r_|le L1 | m..v~1..|‘]lg\,g\-lnn |

FUNCTION: Translate each of the characters in the field defined as OP 2
(except the LSL) according to the Translation Table stored in
the last 64 locations of memory (exclusive of Special Registers).
Return the translated character to OP 2,
The use of the Translate option on the UNIVAC 1005 requires that the
translated characters be returned to the same locations from which the
characters to be translated were obtained. Thus 2M and 2L not only AN
Ny //
define OP 2, they also define OP 1. Furthermore, the Translate option -
also requires that OP 2 be one location longer than OP 1 at the LSL end of
OP 2, 2M specifies both OP 1 and OP 2 MSL, 2L specifies the OP_2 LSL, and

the hardware automatically uses 2L-1 as the OP 1, LSL.

The Translation Table contains the code configuration of the '"new"
characters arranged according to the ascending octal sequence of the
equivalent "old" characters. For example: assume the following "old"

codes are to be translated to UNIVAC 1005 XS-3.

OLD
Char Binary Octal
Space 000 000 - 00
A 020 001 o1
B 000 010 02

L3 O

e

The Translation Table sequence would

Location

MsL (00)
MSL + 1 (01)
MSL + 2 (02)

KS—3 f&ingry

000 000
010 100
010 101

be

Char

Space

The Translation Table must be stored in locations R29/C30, Bank 2 (MSL)

through R31/C31, Bank 2 (LSL) of a 2 bank UNIVAC 1005 system; or in

R29/C30, Bank 4 (MSL) through R31/C31, Bank 4 of a 4 bank UNIVAC 1005

system. More than one Translation Table can be used in a program

provided that the program transfer the proper set of translation

. codes to the Translation Table locations prior to each change in use.

Example 1:

Given:

A field of 80 characters received in a communication

code stored in an 80 location area assigned the Label

INVSG.

A table of communication codes arranged in XS-3

A table of XS-3 codes arranged in communication code
sequence stored in a 64 location area assigned the
Label XS3.

code sequence stored in a 54 location area assigned

the Label COMCD,

Instructionx 1

™

FIELD A; OP 1, MSL:

LABEL JOPERAT[ON OPERAND 1 | OPERAND 2]
FIELD A [+] 'nC M FIELD B [+] INC FIELD C [+] INC

1 516 NAON d 16171 -)22 201°12- 301 132 - 361~ 13- 40
1 o) Tl AL XAS.SL; A J TA& A 1 I U . | F l

TR] s | | sl

The Label XS3 specifies that the MSL address of
the XS-3 table is to be used as OP 1, MSL,

ey

FIELD By OP 2, MSL: The Standard Label $TR specifies that the MSL of
the area required for the Translation Table is to
be used as OP 2, MSL of this instruction.

FIELD C; OP 2, LSL: Blank addressing specifies that the LSL of the area
specified by $TR is to be used as the LSL of this
instruction.

Instruction 1 loads the Translation Table with the correct translation

characters.

Instruction 2 TR =

FIELD A; lIgnored

FIELD By OP 1 and OP 2 MSL: The characters to be translated must be
obtained from and replaced in the same
locations by the translated characters. The
address of the MSL of the area assigned to
INUSG will be used as OP 1 and OP 2 MSL
of this instruction.

FIELD C5 OP 2, LSL: This must specify the location +1 of the last
character to be translated. The character in this
location is not disturbed +INMS (four characters of
the INWSG) specifies the address of the LSL of the
characters to be translated. +INVS +1 specifies
the correct OP 2, LSL for this instruction.

If the results of processing are to be translated from XS-3 to
Communication code, two similar instructions could be used. Instruction

T would load the Translation Table locations from the COMCD table, and

Instruction 2 would cause the translation,

LABEL JOPERAT ION|_ _OPERAND 1 1 OPERAND 2
FIELD A [+] 'NC FEto B [+#] inc [TFE ¢ [+ inc
1 516 ol reltlc olxe oel-los 30 d32 3ef-B w0

o lleomed! Lo LA Lol ot

1 an:K: L L s s a1l A s | *1;1!1!£ijjiq]

A

70

4,4

ADDITION AND SUBTRACT ION

Addition is accomplished in the UNIVAC 1005 in ascending mode usingv

a one character adder. The LSL of OP 1 is placed in the adder. The
LSL of OP 2 is then added, and the sum digit is returned to the LSL
of OP 2. The adder circuitry retains the presence of a carry, if any.
The next corresponding locations are added from OP 1 and OP 2 (and
the preceding carry, if any) and the sum digit is returned to OP 2.
This process continues until the sum digit bhas been returned to the
MSL of OP 2. Thus OP 2 defines the length of both Operands. Sub-

traction is accomplished by adding the tens complement of OP 1 to OP 2.

There are two types of addition and subtraction in the UNIVAC 1005--

Algebraic and absolute.

For Algebraic Add and Subtract operations, the presence of a binary

1 in the X bit position ofht?‘éperand indicates a negative value..

A negative result will have a binary 1 in the X bit position of both
the MSL and the LSL. A zero result will have a binary 1.in the Y bit
position of the MSL and will have the sign of OP 2. Spaces in OP 1 and

OP 2 are treated as zeroes, and zeroes will be placed in result locations

which do not contain 1 through 9.

For Absolute Add and Subtract, the signs of OP 1 and OP 2 are ignored.
Absolute Add can produce only a positive result. Absolute Subtract is
performed by complemented addition and may produce a negative result.
However the negative sign indication is not stored. A zero result will

have a binary 1 in the Y bit of the MSL .

|

Associated with the adder circuitry is a Sign Comparator. As a result
of every arithmetic operation, the Sign Comparatorx is set to one of
three conditions--plus, minus, or zero. The condition of the Sign
Comparator can be tested, for sequential control purposes. (See

Section JC instruction.)

—_—

In the event that a carry is produced as a result of adding the OP 1
and OP 2 MSL, an Overflow indicator is set. This condition can also

be tested. (See Section _ _, JC instruction.)

The conditions of the Sign Comparator and the Overflow indicator are set
following every arithmetic operation, and must be tested, if required,

before the next arithmetic operation,

X

If the Operands for a required arithmetic operation are'\of‘ equal length,
the shorter of the two must be transferred to rX using the TX instruction.

X
4& can then be used as OP 1 from—r¢,

13

N
o

N

-

4.4.1

ADD ALGEBRAIC

MNEMONIC: AD MODE: ASCENDING LENGTH: 7 IA: YES
LABEL [PERATION] OPERAND -+] QPERAND 2]
r\' FIELD A [+] nC uf FIELD B [+#] INC FIELD C |+] INC
] 516 oo i i B K P 2oldo- 3ol ls2 3el-B- g
—t. T A:&n T | LLL A A l ,_-,M A_d 1'| a*ll'l - | i .,l,
FUNCTION: Condition the adder circuitry according to the sign bits

of OP 1 and OP 2. Ascending add the OP 1-LSL specified by
Field A to the OP 2-LSL specified by Field C; replacing

OP 2-LSL with the sum digit. Continue until a sum digit
has been placed in OP 2-MSL specified by Field B. Set the
Sign Comparator. Set the Overflow indicator, if necessary.
The arithmetic is performed according to the rules for
algebraic addition.

Example 1 EQUAL LENGTH OPERANDS
Problem: Add Quantity 1 from card columns 1 through 5 to
Quantity 2 from card columns 6 through 10. Store
the result in the Quantity 2 locations.
CABEL Jorera iony GoeRAWD 1 1 QPERAND 2
FFIELDA + 'NC I FELD B [+] INC FIELD C |+] INC
] 516 SO0 il (SN S 261°12- 301 132 361713 40
Li;llAlblll wIsnll :' KQ_ILJ Jl n‘11"16‘11 LI
FIELD A; OP 1, LSL: H 5 is the decimal address for the LSL of Quantity 1,
FIELD By OP 2, MSL: W 6 is the decimal address of the MSL of Quantity 2.
FIELD C; OP 2, LSL: 10 is the decimal address of the LSL of Quantity 2.
Example 2 UNEQUAL LENGTH OPERANDS
Given: Input Amount is in card columns 61 through 65,
TOTAL is the Label assigned to an area of 10 locations.
Problem: Add Input Amount to TOTAL
LABEL JOPERATION | _OPERAND 1 1 GECOAND 2 ~
M FIELD A [+] ‘NC luf F'ELD B [#] INC FIELD C [+] INC
1 [5 ool K PR e Sl R Sl Rl N B 3] 0
i;an—lX|1| A1 ll K“J Jl 4 L2 1 jl
141l A:bn L1 ﬁs.x-& P | TQII&AL»_.__L_J-A) U W 1 l

Instruction] X

FIELD A; OP 1, lasL:
FIELD B3 OP 1,MSL:

FIELD C; lgnored

Instruction 2 AD

FIELD A; OP 1, LSL:

FIELD B; OP 2, MSL:

FIELD C; OP 2, LSL:

% 68 is the decimal address of the MSL of Input
Amount in Read Input Storage.

t 64 is the decimal address of the MSL of Input

_ Amount in Read Input Storage.

This instruction transfers the 5 character Input
Amount field to the low order 5 locations of rX,

high order locations of rX are space filled.

R is the Standard Label for the MSL of rX, +PXR
specifies the LSL of rX.

The Label TOYAL specifies the MSL of the area assi

to TOTAL.

i/((\\
&

The

gned

Blank addressing causes the Assembler program to use

the LSL of the arma assigned to TOTAL,

AN

\ ;
Mo’

This instruction specifies a 10 character OP 1 and OP 2,

The 10 character OP 1 will consist of the 5 low or
locations of rX that were transferred from Input
Amount, and the next 5 locations of rX known to

contain space codes.

der

4.4,2 SUBTRACT ALGEBRAIC

MNEMONIC: SU MODE: ASCENDING LENGTH: 7 lA: YES

LABEL [JoPERATION] oOPERAND 1+ | OPERAND 2
FIELD A T+ e PR FED B [#] e FIELD ¢ f+]
] 516 2l W i ol Y K 2 2 ol PERE] W EP R

i..;SlLL.. 1;._,.... | RM;.. 1l. A‘lLl‘n.l

FUNCTION: This instruction performs exactly the same as ADD ALGEBRAIC
(Section 4.4.1).

NOTE: OP 1 is subtracted from OP 2 and the result is
delivered to OP 2,

4,4.3

ABSOLUTE ADD (ADD MAGN | TUDE)

VMNEMONIC: AM VMODE: ASCENDING LENGTH: 7 Az YES
LABEL JoPeRATION] _oPeman. 1 | QPEFAND 2
‘ . FIELD A |+] 'NC F'ELD B J#] 'MC FIELD C INC
1 516 02 67l - X}*pR2 el z- 20 i . 3% =40
j.l‘L&Ml.n AL -' b\m.- Jl H‘Lll nl
s — t T :
FUNCTION: Ignore the signs of OP 1 and OP 2, Ascending add the

OP 1-LSL specified by Field A to the OP 2-LSL specified
by Field C, replacing OP 2-LSL with the sum digit.
Continue until a sum digit has been placed in OP 2-MSL
specified by Field B. Set the Sign Comparator. Set the
Overflow indicator if necessary.

This instruction performs the same as Algebraic Add except the sign
bits of OP 1 and OP 2 are ignored during the process. The X bit of
OP 2, LSLis not changed by this instruction.

AN

"‘«/

4.4.4 ABSOLUTE SUBTRACT (SUBTRACT MAGN I TUDE)

VNEMONIC: SW MODE: ASCENDING LENGTH: 7 [A: YES

LABEL JOPERATIONL OPERAND - 1 QPERAND 2
H FIELD A [+] ‘nCc PR FELD B [+ INC FIELD C |+
1 516 02 el - 2 2617 12- sl)iz 3¢ 1 B-

LJ;;J SM.... LL;.. J»l .J\.M..... l|;&\-ll.l

FUNCTION: This instruction performs exactly the same as ADD
MAGN | TUDE (Section 4.4.3).

NOTE: OP 1 is subtracted from OP 2 and the result is
delivered to OP 2,

Although the signs are ignored for the processing if a negative result

is produced, it will be stored in true (not égﬁﬁfgﬂtiﬁﬁ) form in OP 2,

For example: OP 1 =7, OP 2 = 3, 3-7=4 which is the result stored in
OP 2. The X bit of the original OP 2, LSL remains
unchanged.

1

4,4,5

ADD CONSTANT ' @i;x

MNEMONIC: AK MODE: ASCENDING LENGTH: 7 lA: YES

Tl Ko on_operA - L T OPERAND 2 o o
] FIgis » |+] e luT FELD B [+] N0 FIELD C |+] INC

1 516 sl i A N S R e g0l gso 3eltBe 0

Y B\ Ll AM L L1 {%ﬁ&?f .

FUNCTION: Add algebraic ascending beginning with location 3 of the
Instruction Register; to the OP 2-LSL specified by Field C,
until OP 2-MSL specified by Field B has received a sum
digit. Add a maximum of 2 locations (DD) from the IR, If
OP 2 is more than two locations in length, spaces are
considered as a prefix to DD, Set the Sign Comparator Set
the Overflow indicator if necessary.

DD must always appear as a two digit constant, If the value of DD is

less than {en,vplace a @ in column 12, The maximum value of DD .is 99,

Negative constants are specified by placing a minus sign (=) in column

. /‘(' ™
12 followed by a two digit DD. The Assembler program will use this &x,)
indication to place a binary 1 in the X bit position of both digits.
The X bit over the right hand digit becomes the sign of the constant
DD. The X bit over the left hand digit is ignored in the AK instruction.
Example 1
Problem: Add 1 to the value of a 4 location area assigﬁed to
COUNT
LABEL [JOPERAT [ON —OPERAND | R o
FIELD A [+] 'NC WM FIELD.B [4] INC FIELD C |+] INC
1 516 Sl % le]7) - 02 - 261712 30) J32 >t k- 40

S Y G 17 N S A A A

L]
e e e . e]

~ BLES

FIELD Aj

FIELD B;

FIELD Cy

DD:

OP 2, WSL:

OP 2, LSL:

The address of the MSL of the area assigned to

¥ 1 becomes the two characters in locations 2 and 3 of the
IR when this instruction is executed,.

COUNT is used as the OP 2, WSL of this instruction.

Blank addressing causes the Assembler program to
use the address of the LSL of COUNT as the OP 2,
LSL of this instruction,

- When the addition is performed, it operates the same as the Add Algebraic

(AD) instruction, except that if the OP 2 is more than two locations in

length (as in Example 1), space codes are added to the excess locations.

The carry, if any, also is added in the excess locations.

The AK

instruction terminates when a sum digit has been delivered to the

MSL of OP 2.

Example 2 '

Problem:

Subtract 1 from the value of a 4 location area

assigned to COUNT,

NOTE: Subtraction is performed by adding a negative
constant.
LABEL JOPERATIONT _OPERAND - | OPERAND 2
FIELD A [+] 'nc PN FECD B [+] INC FIELD C |+| INC
1 516 go] K B 167 aol#o 261712 30l 132 3¢ |- k- a0
~L—J«.+_L“L'AL’K'74 1 -lngl 1 LI !Clo-u.N-T ”l l ' lA [| 1 l

FIELD A; DD:

FIELD B; OP 2, MSL:

of position 2 is ignored in the AK instruction.

The address of the MSL of the area assigned to
COUNT is used as the OP 2, MSL of this instruction.

The minus sign (=) prefix to the constant 8 1 (DD) causes
the Assembler program to place a binary 1 in the X bit

positions of locations 2 and 3 of this instruction.
X bit of position 3 is the sign of the constant DD.
X bit

The
The

11

FIELD C; OP 2, LSL: Blank addressing causes the Assembler program
to use the address of the LSL of COUNT as the OP 2,
LSL of this instruction.

Space codes will be subtracted from the two high order locations of

COUNT, and borrows will occur, if any.

Vad B '\\

e

4.5

COMPARE INSTRUCT IONS

Comparison in the UNIVAC 1005 may be considered to consist of two
phases-—per forming the comparison, and testing the result of that

compar ison. The first phase-—performing the comparison is accomplished
through use of one of the Compare instructions. The purpose of a
Compare instruction is to establish (set) a condition in the

Comparator based on the relationship of the Operands which are compared.
The condition of the Comparator is then tested by means of a Jump

Test instruction, The Comparator which is set and tested by the Compare
and Jump Test instructions should ﬁot be confused with the Sign
Comparator which is set and tested by the Arithmetic and Jump

Condition instructions.

The condition of the Comparator is set as a result (the only result)
of the execution of a Compare instruction. The contents of OP 1

and OP 2 remain unchanged by a Compare instruction. The condition of
the Comparator will not change until another Compare instruction is

executed. The Comparator may be tested as often as required.

The Compare instructions operate in ascending mode. In the event of a
signed comparison, this enables the ciréuitry to first examine the sign
bits, which are located in the LSL of the Operands. Except for

sign considerations, the result condition of the Comparator is based

on the last difference, if any, encountered during the comparison.

The Operands in a Compare instruction must be of equal length. For

signed comparison of unequal length Operands, the shorter of the two

P

should be transferred to rX using the TX instruction (Section 4.3.6).

In

signed Compare instructions, space codes are considered equal to zeroes.

E

The maximum Operand length in a Compare instruction is 961 locations.

B,

o

N

S

4.5.1

COMPARE NUMERIC SIGNED COVPAR ISON

MNEMONIC: CN MODE: ASCENDING LENGTH: 7 IA: VYES
LABCL JOPERATION] _OPERAND - 1 . OPERAND 2
IR 2 I T, ISR IR B I 3 N
! sle oo deltle coleoo oel-lo- sof Jse seltb: <o
Y ,;!C—LNL) LL [| ' I 'AM A A 1 I AILI - | 4 I

FUNCTION: Compare ascending the OP 1-LSL (including sign) specified
by Field A, to the OP 2-LSL (including sign) specified by
Field C. Continue until the OP 2-LSL specified by Field B

has been compared. Ignore the X and Y bit positions of

OP 1 and OP 2 (except sign). Set the Comparator to one of

three conditions:

oOP1 POP2; OP1€ OP2: OP1 =0P2,

When a signed comparison is performed, the relationship of OP 1 and OP 2

can be established if the signs (X bit position of LSL) are not alike.

If the signs are alike, the values of OP 1 and OP 2 are then

automatically compared to determine the result.

If the signs are alike and both plus, the Operand with the larger

absolute value is the greater. |[f the signs are alike and both minus,

the Operand with the larger absolute value is the least.

are not alike, the Operand with the plus sign is the greater.

Only

if the signs are alike and the absolute values are the same is the

result equal.

In Compare Numeric (CN), the zone bits (X and Y positions) of OP 1

and OP 2 are ignored (except for the consideration of the sign bits).

Space codes are compared as equal to zeroes.

]

If the signs

The result of a CN instruction is set in the Comparator, and must be |
tested by a JT instruction (Section) before the execution of j
any subsequent Compare instruction,
Example 1
Problem: Compare Total Deductions from card columns 5 through
10 to the Gross Pay in a 6 character area assigned
to GRPAY.
LABEL [JOPERATION | __OPERAND | QPERAND _ 2
FIELD A |+#] 'NC P F'ELD B {#] INC FIELD € |J+] INC
1 516 RE0N Gl 1617 - XYxJeo 261°12- 301 132 3617 13- 40
B T ¢1NL . luli.a‘ A . | LR.P-A-\! A I /W - . 4 __l
FIELD A; OP 1, LSL: ¥ 10 is the decimal address of the LSL of Total
Deductions (column 10 of Read Input Storage). \W%

FIELD B; OP 2, MSL: The Label GRPAY specifies the MSL address of the area v
assigned to GRPAY,

FIELD C; OP 2, LSL: Blank addressing causes the Assembler program to use
: the LSL of the area assigned to GRPAY as the LSL
of this instruction,

1) If Total Deductions (OP 1) is more than Gross Pay
(OP 2), the Comparator is set to Greater Than.
OP 1% 0P 2.

2) |If Total Deductions (OP 1) is the same as Gross
Pay (OP 2), the Comparator is set to Equal.
OP 1 = 0P 2.

3) If Total Deductions (OP 1) is smaller than Gross

Pay (OP 2), the Comparator is set to Less Than.
oP 1<0P 2,

y O

4.5,2

COMPARE ABSOLUTE (MAGNITUDE) UNSIGNED COMPAR |SON

MNEMONIC: CM MODE: ASCENDING LENGTH: 7 IA: YES
LABEL !OPERATIONl OPERAND 1 1 QPERAND 2
H FIELD A [+['nc PN FiEtD B [+] inC FIELD ¢ [+] INC
1 516 0] & 161712 2aoxler 26 |12 30 {32 36 |- 3= 40
| I CM_L 2 1IL; | N | M. A3 'l l BJl:L (| it l

FUNCT ION:

Compare ascending the OP 1-LSL (excluding sign) specified by

Field A, to the OP 2-LSL specified by Field C.

Continue

until the OP 2-MSL specified by Field B has been compared.
lgnore the X and Y bit positions of OP 1 and OP 2 including

the sign bits.

Set the Comparator to one of three conditions:

oP1>0P2; oP1€ OP2; OP1=0P2,

The comparison is made on the absolute magnitude of the numeric (8, 4, 2, 1)

values OP 1 and OP 2.
(sign bits) are also excluded from consideration.

compare equal to a minus 3,

The X bit positions of OP 1, LSL and OP 2, LSL
Thus a plus 3 would

Space codes are compared as equal to zeroes.

The result of a CM instruction is set in the Comparator, and must be

tested by a JT instruction (Section

) before the execution of

any subsequent Compare instruction.,

Example 1

Problem:

Compare Actual Tolerance from the area assigned to
ACTOL (5 locations) to the Allowed Tolerance in the
area assigned to ALTOL (5 locations). -

- M L am— e e

LABEL JOPERATION] _ OPERAND - 1 OPERAWD 2 T

FIELD A [+] 'NC WA FELD B |#] INC FIELD C |+] INC

1 516 o2 161 = 2ol 2617122 30] |32 3¢ |-k a0
‘ PO W 1 CMA A1 "\.‘A‘C;Wlo A l A.L:T.D,L | l ~1 Lot i l

FIELD Ay OP 1, LSL:

The plus sign (+) prefix to the Label ACTO causes tle
Assembler to use the address of the LSL of the area
assigned to ACTOL,

/

SN

FIELD By OP 2, MSL: The address of the MSL of ALTOL is used as the

MSL of OP 2.

FIELD C; OP 2, LSL: Blank addressing causes the Assembler program to use

FIELD

the address of the LSL of ALTOL as LSL of OP 2.

+

Tolerances are usually = n. |f ALTOL contains n, the Actual Tolerance

(ACTOL) could have been calculated to a plus or minus value. The CM

instruction will ignore the signs, and compare to determine if the

absolute value of the Actual Tolerance is greater than the Allowed

Tolerance.

1)

2)

3)

If the Actual Tolerance (OP 1) is more than the Allowed
Tolerance (OP 2), the Comparator is set to Greater Than.
OP 1> OP 2,

If the Actual Tolerance (OP 1) is the same.as the Allowed
Tolerance (OP 2), the Comparator is set to Equal.
OP 1 =0P 2,

If the Actual Tolerance (OP 1) is smaller than the
Allowed Tolerance (OP 2), the Comparator is set to Less
Than, OP 1 £ OP 2,

+

If the Allowed Tolerance is 5, an Actual Tolerance of - 4
would compare Less Than,

18

AN

NS

—~.

/,

4,5.3

COMPARE ALPHANUVER IC UNSIGNED COMPAR | SON
MNEMONIC: CA MODE: ASCENDING LENGTH: 7 [A: YES

LABEL JOPERATION|__OPERAND - | OPERAND 2
FIELD A |+| 'NC FIELD B |+#] INC FIELD C |+] INC
1 516 ool il SERRT bl EEN) £ 727 261~ 12: 30] |32 36 |- 40
lel C;Alnl L\LIL ll M;Ll' lvl)\LI - . jl

FUNCTION: Compare ascending the bit pattern of OP 1-LSL specified by
Field A, to the bit pattern of OP 2-LSL specified by Field C.
Continue until the bit pattern of OP 2-MSL specified by Field
B has been compared. Exclude sign considerations, but include
sign bit positions, Set the Comparator to one of iwo conditions.

OP 1=0P 25 OP 1 # (unequal to) OP 2.
The purpose of the CA instruction is to determine if all bits in OP 1 are
exactly the same as all bits in OP 2, There are only two results: all
the bits of OP 1 are exactly the same (equal condition), or they are not

the same (unequal condition). Spaces do not equal zeroes.

The comparison is performed on an ascending basis using the X Y 8 4 2 1
bits of each corresponding location of OP 1 and OP 2 beginning with the
LSL. The determination of the condition which exists between the two
Operands is made as soon as any difference is detected between characters
in corresponding locations. |f all locations have been compared and

no difference is de{ected, an equal condition exists,

Example 1

Given: Employee Number (5 locations) and Employee Name, last
name first (24 locations) from a Payroll Master Card

have been stored in two adjacent areas assigned to
MNUM and MNAME .

. _
MNUM | MNAME]

Detail cards containing the Employee Number in columns
1 through 5 and the first four letters of the last name
of the employee are in columns 6 through 9,

FIELD A; OP 1, LSL:

FIELD B; OP 2, MSL:

FIELD C; OP 2, LSL:

Solution:

Problem: Compare Employee Number and Name from the detail s
card to MNUIM and the first four locations of MNAME,
LABEL JOPERAT|ON OPERAND 1 1 QPERAN 2
FIELD A |+ INCP‘ F'ELD B |+] INC FIELD C |+} INC
1 516 10§42 167 - 2012 261712- 301 132 361-B: 40
1’ Ao, CJAA Al nqu ALl 2 l MN.\,\M L l j&mﬁ 'il

W9 is the decimal address of the Read Input

Storage location which contains the information
from card column 9,

The Label MNUM causes the address of the MSL of the
area assigned to MNUIM to be used as the MSL of
this instruction.

MNAME + 3 is the address 6f the location of MNAME
that contains the fourth letter of last name stored

from the master card. This address becomes the
LSL of the CA instruction.

The 5 locations of MNUM and the first 4 (high order) locations

of MNAME become a 9 location OP 2, and are compared to the
information from card columns 1 through 9 in Read Input N
Storage. The assignment of the two Labelled Storage areas
(MNUM “and MNAME) to ad jacent memory locations is accomplished
by proper use of Declarative instructions.

< 4
g

The result of the CA instruction is set in the Comparator and
can be tested in the next or some subsequent instruction
(provided no intervening Compare instruction is executed).

(

4,5.4

COMPARE CONSTANT UNSIGNED COVMPAR ISON
MNEMONIC: CK MODE: ASCENDING LENGTH: 7 IA: YES

LABEL ERATIONL OPERAND 1 QPERAND 2
FIELD A [+ 'NC FIELD B |+] INC FIELD C]+ INC
6 *

02 16171 = 0)*]22 261712- 30] 132 361" B: 40

e, e I T T e L T

FUNCTION: Compare alphanumeric ascending the bit pattern of KK specified
in Field A; beginning with the bit pattern stored in the
location 2L specified by Field C3 continuing until the bit
pattern stored in the location 2M has been compared. Compare
all bits, If 2M and 2L specify the same address, a one
character comparison is made. |f 2\ and 2L specify more than
a 2 location OP 2, space codes (binary zeroesg are compared
to the excess positions of OP 2., Set the Comparator to one
of two conditions: KK = OP 23 KK # OP 2,

When a CK instruction is brought to the IR for execution, the two

alphanumer ic characters (KK) will occupy locations 2 and 3 of the IR,

These two locations are used similar to an OP 1 in a Compare Alphanumeric

instruction (Section 4.5.3). However, the Operation code CK will cause

the comparison to continue after the second character comparison has

been made. Space Qodés are compared to any additional locations of OP 2,

The CK instruction is an unsigned bit-for-bit compare instruction.
Spaces do not equal zeroes, and sign considerations are ignored. OP 2

will usually be a one or a two character 6perand.

The instruction is to be used to test for the presence of whole characters

in storage location. (The Jump Compare (JK) instruction (Section)

can be used to test for the presence of specific bits in a storage
location.) Binary coding (Section 4.,3.5.3) may be used, but should

not be necessary, since this is a character comparison,

(’m“
Example 1 W

Problem: Test the information in card column 80 for a 3.

LABEL FDPERAT!ON OPERAND 1 1 QPERA 2
FIELD A |+] 'NC FIELD B |+] INC FIELD C |+] INC
1 516 MVl 1617 - Xpx*|22 264742- 301 132 361- 3z 40

N (e 1S R 057 A TR A XA

FIELD A; KK: The B 3 in the KK positions of Field A will be in locations
2 and 3 of the IR when this instruction is executed.

FIELD By OP 2, MSL: H 80 is the decimal address of the location in
Read Input Storage which contains the information
- from card column 80,

FIELD C; OP 2, LSL: W 80 is the decimal address of the location in
Read Input Storage which contains the information
from card column 80,

Solution: Since the OP 2-MSL and OP 2-LSL specify the same location,
a one character comparison is made, using the 3 from location
3 of the IR (the right-hand K). The space code (¥) is
required to position the 3 so that it is in the right-hand
K position (column 13 of the form). |If card column 80 ~
contained only a 3 punch, the Comparator is set to equal. If
card column 80 contained any other punches (or none at all),
the Comparator is set to unequal. The Comparator is tested
by use of the Jump Test (JT) instruction.

Example 2
Given: A two location counter is being arithmetically
reduced by 1. The counter is stored in the two
locations assigned to COUNT,
Problem: Test the value of COUNT to see if it is equal to
zero,
LABEL JOPERATION OPERAND 1 | OPERAND _ 2
FIELD A [+ 'NC WA FIELD B [+| INC FIELD C [+] INC
1 5)6 0% 2 6l - 082 26 l712- 30] 132 3613 401
.' PN {x Ad ?IA AL A l QO.L‘}N-r A I - I J_”

FIELD A3 KK: The characters ?0 in the KK positions of Field A become

locations 2 and 3 of the IR when this instruction is
executed.

FIELD Bj OP 2, MSL: The address of the MSL of the area assigned to

COUNT is used as the OP 2, MSL of this instruction.

FIELD C; OP 2, LSL: Blank addressing causes the Assembler prograﬁ to

Solution:

use the address of the LSL of the area assigned to
COUNT as the OP 2, LSL of this instruction.

The contents of COUNT are being arithmetically reduced by

1. When the value of COUNT is reduced to zero, the operation
of the Arithmetic unt of the UNIVAC 1005 will cause a Y bit
to be placed over the MSL of the result. The internal code
for the question mark (?) is the same as an XS-3 zero with

a Y bit., The CK instruction performs a bit-for-bit
comparison. When COUNT is reduced to zero, this CK
instruction will set the €ompar i&8% to equal.

NOTE: Addresses can also be specified in the KK portion of a
CK instruction by using the same notation described in
Sections 4.3.5.13 4.3.5.25 and 4.3.5.3.

91

4,6

CONDITION INDICATICRS

The UNIVAC 1005 provides for two program controlled sensing switches,

Sense #1 and Sense #2.

the programmer can turn these switches ON (Set to 1) or OFF (reset to

By using the Set Condition (SC) instruction,

@) during the execution of a program. The condition of the Sense

switches can be used to control the sequence of the execution of

instructions during the program through use of the Jump Condition (JC)

instruction.

condition of the switches.

the transfer of control will occur. If the Sense switch being tested

The Jump Condition instruction is used to test for the ON

If the Sense switch being tested is ON (Set),

is OFF (reset), the program proceeds with the next sequential instruction

(NI1).

There are other uses for the Set Condtion and Jump Condition instruction.

A complete description of both instructions is given below.

T4

A
N

4,6.1

SET CONDITION

LENGTH: 5

MNEMONIC: SC TYPE: SPECIAL 1A: NO
LABEL ERATIONhOPERAND 1 oP 2
FIELD A [+] 'NC FIELD B |+| INC FIELD C INC
1 546 10412 16171 20)*2 26]1712= 301 |32 %R 40

§ BT

SC. .,

S .

T W . |

Ml

N . |

o

FUNCT I ON:

Each of the bit postiions of CC correspond to a Condition fndicator or

a Control setfing. The presence of a binary 1 in a bit position of CC

in Field A,

Set or reset the €onditions or Controls which correspond to
each bit position of CC which contains a binary 1 as specified

will cause the Condition or Control to be set or reset by the SC

instruction.

change the status of a Condition or Control.

Although coded in Field A (to assist the key punching operatién), the

The presence of a binary zero in a bit position will not

bit patterns of CC occupy locations 4 and 5 (the B portion) of the

instruction. Locations @ and 3 are ignored by the UNIVAC 1005, and

should be blank.

24 and 25 through 30 of the instruction.

The Conditions and Controls which correspond to the bit position of CC

are as follows:

93

Locations 4 and 5 constitute bit positions 19 through

i
3

//(“\
BIT POS{TION CONDIT | ON/CONTROL "
19X (o SET ODD PARITY (See Section __)
N 20 () AR SET EVEN PARRITY
21 (8) SET SENSE 2 (ON)
. 22 (47— « ¢ SET SENSE 1 (ON)
VT3 (2) N\~ RESET SENSE 2 (OFF)
24 (1) % RESET SENSE 1 (OFF)
5 (X) (Reserved)
i},26 (Y) _ (Reserved) :
L (0 27 (8) SET SERVO 2 (See Section)
N, 8 (4) A SET SERVO 1 (See Section)
v 9 (2) SET CONSOLE INDICATCR 2 (ON) and HALT
0 (1) SET CONSOLE INDICATOR 1 (ON) and HALT
- The Condition Indicatgrs and Controls can be set (or reset) individually
or in multiples as the programmer requires.
NOTE: Caution should be used when coding multiple bits in CC, in
order to prevent illogical bit pattersn which require the
UNIVAC 1005 to establish opposing conditions. The results
of such a conflict are unpredictable.)
N
Binary coding is normally used to specify a multiple bit pattern for CC ~—
(See Section 4.3.5.3). Field A must always contain a number sign (#) in
column 12 followed by four octal digits for binary coding.
The UNIVAC 1005 Assembly System provides the following mnemonic
Switch Names if only a single Condition or control is to be set (or reset)
by the SC instruction. A number sign (#) must appear in column 12
followed by the two-place mnemonic Switch Name in columns 13 and 14.
SWITCH NAME ' 'BIT POSITION CONDIT | ON/CONTROL
#S0 (alpha) 19 SET ODD PARITY
#SE 20 SET EVEN PARITY
#+2 21 SET SENSE 2 (ON)
#+1 22 SET SENSE 1 (ON)
#2 23 - BESET SENSE 2 (OFF)
1 24 RESET SENSE 1 (OFF)
#52 21 SET SERVO 2 -
#51 28 SET SERVO 1 Q{u
#2 29 CONSOLE INDICAT(R 2 and HALT
A1 30 CONSOLE INDICATCR 1 and HALT

9

It should be noted that the Switch Names for the Sense switches have

a plus sign (+) for \(ON) and a minus sign () for reset (OFF); the

Controls for magnetic tape operations have a prefix of the letter S;

and the Halt and Console Indicators have a prefix of the letter H,

Example 1

Problem:

Set Sense 1 (ON)

LABEL JOPERATION OPERAND

1

FIELD A; CC:

QPER 2
FIELD A |+] INC FIELD B |#] INC FIELD C |+] INC
1 516 of12 tel s o0« 26l 12c 30] [32 3e]-PB: 40)
l;ljslclll A1 -l § WS W W 1 ll | W . nl

The Switch Name #41 causes the Assembler program to create

a binary 1 in bit position 22, and binary zeroes in all
other bit positions of CC.

The octal coded cons

NOTE s
same CC,
FIELD B and C Blanks
Example 2
Problem:

tant #9409 would produce the

Reset Sense 2 (OFF) and Halt the UNIVAC 1005 with
Console Indicator # ON,

LABEL [JOPERAT[ON OPERAND

1

|

QPER 2
FIELD A |4} INC FIELD B |4} INC FIELD C |+ jNC
1 516 02 16 171 = 20]*22 261712- 301 132 3613 40
1 Alslclnl #IK l Ll i T W W ll U S . | Ll

FIELD A; CC:

The bit pattern of the octal constant #0201 will cause a
binary 1 in bit positions 23 and 30, and binary zeroes in
all other bit positions of CC.

NOTE: Switch Names cannot be used since multiple bits are
required.

L

4,6.2 STOP (HALT)
MNEMONIC: STOP MODE: SPECIAL LENGTH: 5 IA: NO

LABEL JOPERATION I __OPERAND 1 PERAND 2
FIELD A [+] '\C FIELD B [+] INC FIELD C [+] INC

1 516 1012 16171 20)*]22 2641°12- 301 132 361" B: 40

.'..;S:r.'dg. |)';_.LL | 21 a1 LL

gt

FUNCTION: The STOP command is a variation of the SC instruction
(Section 4.6.1) provided in the UNIVAC 1005 Assembly System %o
enable the programmer to easily specify and rapidly recognize
those instructions which STOP (HALT) the operation of the
UNIVAC 1005 during the execution of the object program.
Permissable specifications in Field A are Switch Names #H1 or

2.

11

4,7

SEQUENCE CONTROL
Instructions in the UNIVAC 1005 are stored accessed, and executed in
serial sequence. This sequential operation is used as long as the

program does not require branching.

The accessing of instructions is under.the control of the Instruction
Control Counters., There are two countersj one for Row, and one for
Column, The Column Counter is automatically incremented by five or
seven as each instruction is transferred to the Instruction Register.
The increment is determined by instruction type. The Row Counter is
advanced by one each time the Column Counter advances beyond thirty-one
and returns to one., Bank specification is also modified when the Row
Counter passes 31, The Instruction Control Counters provide the Control

Unit with the address of the next instruction (NI),

JWP instructions are used in the UNIVAC 1005 to vary the normal
instruction sequence. The JWMP instructions change the contents of
the Instruction Control Counters only if conditions specified by the
JWP instruction are present. If not, the céntents of the Instruction

Control Counters remain unchanged, and the normal execution sequence

(NI) is followed.

The UNIVAC 1005 instruction repertoiere contains seven Jump instructions

for sequence variation,

4,71 JUMP CONDITION
MNEMONIC: JC MODE: SPECIAL LENGTH: 5 fA: NO

LABEL [JOPERATION| __OPERAND 1 OPERAND _ 2
FIELD A |+] INC FIELD B [+] INC FIELD C |+] INC
1 516 10912 1617 1'= 2012 261°12- 301 132 3613 401
) 4 . =
‘] ' . |,I¢.Q U Y C[cﬁ Aol lf‘ v.'KA..~._ - 1 l . N -} . l
} FUNCTION: If any of the conditions are met which correspond to
binary 1 bits of CC specified by Field A; transfer
i control (JUMP) to the Jump Address (JA) specified by

Field B, Otherwise, execute the next sequential
instruction (NI).

NOTE: In some cases, the indicators
specified by 1 bits in CC are
reset by this instruction.
The JA specified by Field B must be the address of the SL
of the instruction to which control is to be trénsferred if the
(; Jump oceurs. Since instruction addresses are aséigned by the
Assembler p;ogram, Field B will norﬁally contain a programmer's
Label. The current value of the ILC maintained by the Assembler
program during assembly processing can also be used by specifying
the dollar sign symbol (§) with Incréme;t. The JA occupies loca-
tions 4 and 5 of the instruction,
The bit patterns of CC occupy locations 2 and 3 of the JC
instruction., Locations 2 and 3 constitute bit positions 7 through
12 and 13 through 18 of the instruction. If a binéryv1 bit appears
in any of the bit positions of CC and tﬁ:}:gﬁé?ﬁ%sz(indicator)
is set (ON), the Jump will occur. |f multiple 1 bits are present
in CC and any one of thSESHSTE tonad (indicators) is set (ON), the

Jump will occur. Otherwise, the next sequential instruction is

(executed,

0

The conditions and indicators which correspond to the bit

positions of CC are as follows:

BIT POSITION
7(X)

8(Y)

7 and 8(X,Y)

9 (8)

10 (4)

NOTE:

CONDITION/INDICATOR

Form Overflow. Form Overflow is set
when the Form Overflow position of

the Forms Control Tape is sensed by
the carriage.

Form Overflow is reset when tested,

Arithmetic Overflow. Arithmetic
Overflow is set when the result of
an Arithmetic ADD or SUBTRACT in-

struction exceeds the capacity of
oP2,

Arithmetic Overflow is not reset when
tested,

Form Overflow and Arithmetic Overflow
cannot be tested in th 1nstruction,

(See below)

End of Tape., End of Tape is set
when that condition is detected by

a Uniservo., The presence of binary
1's in bits 7 and 8 of CC constitute
a specific test for End of Tape.

If both bits are present, Form Over-
flow and Arithmetic Overflow are

not tested or changed.

End of Tape ? reset when
tested.

Sense 2. The Sense 2 Indicator is
set by the SC instruction,

Sense 2 is not reset when tested.

Sense 1. The Sense 1 Indicator is
set by the SC instruction,

Sense 1 1s not reset when tested.

/|00

. \\«;t_ /’s

Ne

11 (2)

12 (1)

13 (X)

14 (Y)

15 (8)

16 (4)

Alternate Hold 2, Alternate Hold 2
is set (ON) when the Alternate Hold

Switch #2 console light is turned ON
by depression of the switch,

Alternate Hold 2 js not reset when
tested,

Alternate Hold 1. Alternate Hold 1
is set (ON) when the Alternate Hold

Switch #1 console light is turned ON
by depression of the switch,

Alternate Hold 1 is hgi reset when
tested.

Interrupt, Interrupt is set when the
UNIVAC 1005 receives an Interrupt ,

Signal from a peripheral Mm&k.

Interrupt is not reset when tested.
Unjt Alert. Unit Alert is set when
a peripheral Unit is in an abnormal
condition.

Unit Alert‘ig not reset when tested,

Parity Error, Parity Error is get
when a parity error is detected.

Parity Error js reset when tested.
Sign Comparator Plus. The Sign
Comparator is set to Plus when the
result of an Arithmetic instruction

is positive, and not zero,

The Sign Comparator is not reset when
tested.

/01

17 (2)

Sign’Comoarath Zero., The Sign

18 (1)

The conditions may be t

(except Form Overflow and Ari

Comparator is set to Zero when the
result of an Arithmetic instruction
is zero.

The Sign Comparator is not reset when

tested,

Sign Comparator Minus. The Sign

Comparator is gset to Minus when the
result of an Arithmetic instruction
is negative.

The Sign Comparator is not reset when

tested,

ested individually or in multiples

thmetic Overflow) as the programmer

requires. Binary coding is normally used to specify a multiple

bit pattern for CC (See Secti
contain a number sign (#) in
digits for binary coding.,

The UNIVAC 1005 Assembl

on 4.3.5.,3.). Field A must always

column 12 followed by four octal

y System provides the following

mnemonic Condition Names if only a single condition is to be

tested by the JC instruction.

A number sign (#) must appear in

column 12 followed by the two-place mnemonic Condition Name in

columns 13 and 14,

] O

®

AN

o

CONDITION NAME BIT POSITION CONDIT10ON

#FF 7 Form Overflow

#AF 8 | Ar ithmetic Overflow
2 9 Sense 2

#+1 - 10 : Sense 1

#-2 1" Alternate Hold 2 (ON)
#-1 12 Alternate Hold 1 (ON)
#IN 13 Interrupt

HUA | 14 Unit Alert

#PE 15 Parity Error

#AP : 16 Sign Comparator Plus
#AZ 17 Sign Comparator Zero
#AM 18 Sign Comparator Minus
#T 1 and 8 End of Tape

When the JGC command is executed by the UNIVAG 1UU> at object
time, and the jump is to occur, locations 4 and 5 of the IR are
transferred to the Instruction antrol Counter. Locations 4 and 5
of the IR contain the jump address specified in the JC command.
These two characters become the address used by the ICC to control

the access of the next instruction.

| 04

A

Example 1
Problem: Transfer control to the instruction labelled
FOF if Form Overflow has occurred.
LABEL JOPERAT[ON OPERAND 1 1 QPERAND 2
FIELD A [+] NC rfF DB [4] INC FIELD C [+] INC
1 516 10 %412 16171 02 201712- 301 132 361713 404
P SltLL A &lvg?. A N | EOAFI A 2 l B W | 1 l
FIELD A; CC: #fF is the Condition Name for Form Overflow and causes
the Assembler program to place a binary 1 in position
7, and binary zeroes in all other positions of CC.
#4,Q¢¢#(would produce the same pattern for CC.
FIELD Bs JA: The programmer's label FOF causes the Assembler
program to use the address of the MSL of that instruc-
tion as the JA of this instruction. [f Form Overflow
has been sensed, the jump will occur.
Example 2 . A
~

Problem: Do not jump to the instruction labelled
ERROR if the last previously executed Arith-

metic instruction produced a positive result
without Arithmetic Overflow,

LABEL FOPERAT ION OPERAND 1 | CPERAN 2 ~
FIELD A |#] INC Fl FIELD B |+] INC FIELD C |+] INC

1 516 10112 16171 20)*]22 ‘121’";530 32 361 13- 40

»_|___._ A c;gﬁi T _.;ﬂﬂlz A I e\"\&.o.« 1 l . T - | J l

FIELD Aj CC:

The octal coding will produce ¥ binary Tgto test
Arithmetic Overflow, Sign Comparator Zero, and
Sign Comparator Minus.

FIELD By JA: The address of the MSL of the instruction labelled

ERROR will be used as the jump address in this
instruction.

Solution: The jump will occur if any of the three conditions tested

does exist, The jump will not occur if none of the
three conditions tested exists.

4,7,2

JUMP TEST

MNEMONIC s

JT

MODE:

SPECIAL

LENGTH: 5

1A

NO

LABEL

1)

OPERAND

1

1

QPERAN

2

FIELD A
16

+

INC W
<

FIELD B

NG
2- 30

FIELD ©
32 36

+| INC
3z 40

JOPERATION
6 10 {12

A

1

o 26

AN

.l

| W - |

i .

FUNCTION:

N A

SAA,

Test the condition established in the Comparator by
the last previously executed Compare instruction, [f
equal, transfer control to instruction JA1 specified

by Field A.

I'f less than (or unequal, for alphanu-

mer ic comparison), transfer control to instruction
JA2 specified by Field B.
control to pass to the next sequential instruction

(N1),

I'f greater than, allow

The result of a Compare instruction is the setting of the

Comparator based on the relationship of OP1 to OP2,

If the

Compare was a numeric comparison, the Comparator is set to one

of three conditions:

equal, less than, or greater than,

[f the

Compare was an alphanumeric comparison, the Comparator is set to

one of itwo conditions:

equal, or unequal,

set until another Compare instruction is executed,

The Comparator remains

The purpose of the JT instruction is to test the setting of

the Comparator, and transfer control to the addresses specified

in the JT instruction, based on the setting.

There are three

possible settings of the Comparator as a result of a numeric

compar ison, and only two addresses in the JT instruction,

The

necessary ""third" address is implied, and is the instruction which

immediately follows the JT instruction,

If the previously executed

compar ison was an alphanumeric comparison, only two settings are

/

) 08

possible,

Thus the JT instruction will always jump to one of the
two addresses specified in the instruction, &O“@W“CQW ‘J"?\“"‘M Compuriion

Since the Assembler program assigns addresses to instructions,

the addresses specified in the JT instruction will usually be

programmer's labels,

The current value of the ILC maintained by

the Assembler program during Assembly processing can also be used,

by specifying the dollar sign symbol (§) with increment.

Example 1

Given:

A comparison has been made of the Quantity

Ordered (OP1) to the Quantity on Hand (OP2),

Problem: If the Quantity Ordered is equal to Quantity
on Hand, transfer control to the instruction

labelled SAME,

I the Quantity Ordered is

less than the Quantity on Hand, transfer
control to the instruction labelled SHIP,
(If the Quantity Ordered is greater than the
Quantity on Hand, control will automatically
pass to the next instruction.)

LABEL ?OPERATIONI OPERAND 1 | PERAND 2
FIELD A |#] INC FIELD B |4} INC FIELD C J+] INC
1 516 10%412 16171’ 20]*22 261 12- 301 132 361" Bs 40
S S:Sn Ad. . Slm A l Sl*’.‘:;Pn '] | | -4 l
FIELD A; JA1 (equal): |If the Comparator is set to equal, the

address of the MSL of the instruction labelled

SAWE,

locations 2 and 3 of the JT instruction,

is transferred to the I1CC.

FIELD B; JA 2 (less than):

If the Comparator is set to less than,
the address of the MSL of the instruc-
tion labelled SHIP, locations 4 and 5
of the JT instruction, is transferred
to the ICC,

| 0b

C

N

i

Example 2

Given:

The Employee Name from a detail card (OP1)

has been compared to the Employee Name from
a Master Card,

Problem:

If the Names are equal, transfer control
to the address which follows the LSL of

the JT instruction,

unequal,

If the names are

transfer control to the instruc-
tion labelled ERROR,

FIELD Aj

FIELD Bj

JA1 (equal):

JA2 (unequal):

Solution:

LABEL JOPERATION[__OPERAND 1 1 QPERAND 2
FIELD A 4] INC FIELD B INC FIELD C |+] INC
1 516 10§12 16171 0)*e2 -~ 26]1712- 30] 132 301" 0
1 llIKITJII &\ll +SL1 E&&Q‘& l_' e ll

The dollar sign symbol ($) causes the
Assembler program to use the current
value of the Instructior~ Location Counter
with an increment of 5 <5 the JA1 address
of the JT instruction.,

The address of the MSL of the instruction

labelled ERROR is used as the JA2 address.

The source language instruction taken from
the card which immediately follows the JT

instruction during the Assembly processing,
will be assigned to the address which fol-

lows the LSL of the JT instruction.

During

the Assembly processing of the JT instruc-
tion, the ILC contains the address which is

assigned to the JT instruction MSL,

The JT

instruction will occupy that location, and
Thus the ILC ($) plus an increment
of 5 will be the same address that will be
assigned to the instruction which is as-

sembled after the JT,

4 more,

J 07

O |

4,7.3 UNCONDITIONAL JUMP
MNEMONIC: J MODE: SPECIAL LENGTH: 5 1A: NO

LABEL H'OPERATIONL OPERAND 1 ! OPERAND _ 2
FIELD A [+ 'Nc PN FIELD B [+] INC | | FIELD C [+ INC
] 516 oo telTl: 00 2e]-fo- 30] f32 36" B¢ 40

.‘ILISLLILMLIL' ll i T W W 1 l| A 11 1 ll

FUNCTION: Transfer control to instruction JA specified by
Field A,
When this instruction is executed, an unconditional transfer
is made of the JA to the ICC. Thus the address specified in
Field A becomes the address of the next instructionvto be executed.

In many cases, a J instruction will be the last instruction of

a sub-routine which has been entered through use of the JR instruc- ~

tion,

The JA address occupies locations 4 and 5 in the instruction.

4,7.4

JUMP RETURN
MNEMONIC: R MODE: SPECIAL LENGTH: 7 IA: NO

LABEL F)PERATION OPERAND 1 1 QPERAND 2
FIELD A [+] 'NC FII1F!ELDB +| INC FIELD C |+] INC
*

1 516 10012 16171 - 20h*2 261712- 301 132 3ol B 401

;.Jxl—.R..L SL#. 21 IJ\L.;L | RAI.n.;l

FUNCTION: Transfer ascending, locations 3 and 2 of the IR (RA)
specified by Field C; beginning with the address 2L specified
by Field B, Then transfer the JA specified by Field A to the
ICC.

The ob ject language instruction produced from a source language JR

instruction has the format and will appear in the Instruction Register

as follows:

IR Locations 1 23 45 67
R RA JA A

The two characters produced from the RA (Retrun Address) are stored in
locations 2 and 3. The two characters produced from the JA are stored

in locations 4 and 5. The two characters‘produced from 2L are stored

in locations 6 and 7. These location numbers refer to the positions

of the object instruction as it is stored in memory, and to the positions
the instruction will occupy in the Instruction Register (IR) when the

instruction is executed.

When the instruction is executed, the following operations are auto-

matically performed:

1. Locations 2 and 3 of the IR are transferred (ascending)
beginning at the memory location whose address is in
positions 6 and 7 of the IR,

2. Locations 4 and 5 of the IR are transferred to the

Instruction Control Counter (ICC) and are used to control
the access of the instruction to be executed next.

) 04

The purpose of the R instruction is to provide a simple method of
interrupting the sequential execution of instructions in order to

execute a special subroutine, After the execution of the special

subroutine, control is to be returned to the instruction whiéh

sequentially follows the R instruction.

The special subfoutine is called a closed subroutine., This means that
the entrance (the first instruction executed) is closed as far as the
initiation of the subroutine by the sequential advance of the ICC. It
also means that thé exit (the last instruction executed) is closed to

prevent resumption of the program through the sequential advance of the ICC.

A closed subroutine normally has the following form:

1. The first instruction to be executed (the entrance line)
has a label which is the name of the subroutine,

2. The last instruction to be executed (the exit line) has

a label, and is usually an unconditional jump instruction
(Operation J).

3. If there are multiple points within the subroutine from
which exit might occur, they must transfer control to
the exit line.

Using this form for closed subroutines, the JR instruction is then set
up as follows:

FIELD A; JA: contains the label of the entrance line of the subroutine.

L
FIELD By 2L: contains the address of the LI of the exit line of the
subroutine.

FIELD Cy RA: contains the label of the address of the MSL of the

instruction to which control is to be transferred after
the subroutine has been executed,

110

NOTE: If the return address (RA) of the (R instruction is
to be the address of the instruction stored sequentially
following the R instruction (§ + 7), Field C of the
R instruction may be left blank. The Assembler program
will automatically insert the address equivalent :
of $ + 7 in locations 2 and 3 of the object instruction.
If the return address (RA) of the R instruction is
to be anything other than § + 7, the required address
must be coded in Field C according to the rules for
Assembly System addressing.

Example 1
Given: A subroutine has been established to calculate
square root. The entrance line is labelled SQRT.

The exit line is a J instruction labelled EXIT.

Problem: Execute the subroutiney and return control to the
next sequential instruction.

LABEL JOPERATION OPERAND 1 1 QPERAND 2
FIELD A |#{ INC FIELD B [|+} INC FIELD C |+

[
1 516, 10412 16171 20)*]22 2o1-12- 301 132 361- I3

AP A S B XS v I 0% o B T B P B

FIELD A; JA: The address of the MSL of SRT is used in Locations 4 and
5 of the object instruction,

FIELD By 2L: The plus.sign (+) prefix to the label EXIT causes the
address of the LSL of that instruction to be used as
the locations 6 and 7 of this instruction.

FIELD C5 RA: Blanks in Field C cause the Assembler program to use the
current value of the ILC (the address of the JR instruction)
plus 7 as the address RA in locations 2 and 3 of this
instruction.

Solution: At the time the R instruction is assembled, the ILC contains
the address assigned to the JR instruction., The implied
$ + 7 is the same as the value which will be in the ILC
when the Assembler program assigns an address to the next
instruction. At execution time, this two character address
of the next instruction is transferred automatically in
ascending mode, from locations 3 and 2 of the IR to the
LSL and LSL minus one of the instruction EXIT. These two
locations of the instruction EXIT constitute the JA of an
unconditional jump (J) instruction.

)1

After setting up the RA in the exit line, the two characters
from locations 4 and 5 of the JR instruction are automatically
transferred to the IEC. This causes the instruction stored

at SQRT to become the next instruction executed.

After the execution of the instructions in the subroutine,
the instruction EXIT will be executed. The J instruction
stored at EXIT now contains a JA address set up by the R
instruction. This JA address is the address of the instruction
stored sequentially following the R instruction. Thus
control is returned to the main chain of the program.

When the square root subroutine is reused at another point in the

program, the entry is also made by a similar JR instruction., This R

instruction will set up a new RA in the exit line (EXIT) which will

return control to the instruction which follows the new JR instruction.

The effect of the R instruction can be produced by using a TK instruction

followed by a J instruction.

LABEL JOPERATION OPERAND 1 1 OPERAND 2
FIELD A J+] INC FIELD B f+| INC FIELD C |4] INC
1 516 1012 1617 Ls 202 26 {712c 304 |32 36 1- s 40

P | 1 A B L\ N eI, 1 | [FExET] |

ILL_LSLnn. SIQ&TI_ a1 PO T y | - 11

The instruction which is to follow the execution of the square ro&{

subroutine is the‘one which will be coded and assembled following the
J instruction. The address which will be assigned to that instruction
is the value of the ILC at the time {he TK is assigned, plus 7 for the

length of the TK instruction, plus 5 for the length of the J instruction—-
$ + 12,

The use of the IR instruction thus saves the memory locations required
for the J instruction, the access time of the J instruction, and the

programmer time to calculate the return address.

[

A

R

e

C

4,7,5 JUMP COMPARE

MNEMONIC: JK MODE: SPECIAL LENGTH: 7 “TA: NO

LABEL JOPERATION OPERAND 1 1 QPERA 2

: FIELD A [+#] 'NC WA F'ElD B [+] INC | [FIECD C |+] InC
1 sl6 o2 el olxpe 26)lo: 30f |32 3el-B: 40

NP Y B S B a1 b,]

FUNCTION: Using the bit positions of K, specified in Field A,
: which contain binary 1 bits; test the corresponding
bit positions of the memory location whose address is
specified by 2L in Field C, If the bit positions of
2L which correspond to binary 1 bit positions of K
- all contain binary 1 bits, transfer control to the JA address
-specified in Field B, |f any of the bit positions of 2L
which correspond to binary 1 bit positions of K do not con-
tain a binary 1 bit, proceed with the next sequential in-
struction (NI), :
NOTE: Bit positions of 2L which correspond
to binary zero positions of K are
ignored by the test and may contain
binary zero or binary one.

The purpose of the JK instruction is to perform a test for
bit(s) present in the contents of a memory location. If K contains
only é.single binary 1 in the X bit position, and the contents of
the memory location specified by Field C also contains a binary 1
in the X bit position, the jump to JA will occur, |f the memory
location specified by Field C does not contain a binary 1 in the X
bit position, the jump will not occur, and the program continues
with the next sequential instruction (NI)., The presence or absence
of binary 1 in the other bit positions of 2L are not involved in
the operation, and have no effect on the result,

If K contains multiple binary 1 bits, then each corresponding

bit position of 2L must also contain a binary 1, or the jump will

not occur,

1A

Example 1

Problem:

Test the information stored from column 80
for the presence of a binary 1 in the X bit

position. |f present, transfer control to
CRDT,

LABEL JOPERATION| _OPERAND 1 | QPERAND _ 2
FIELD A |+] ‘N A FIELD B [+] INC FIELD C [+] INC
1 516 10412 16]7ls 0fxpo 26 f-f>c 30] 32 36]- Bt 40

| .

X.\(‘ i

et lerde ol m3o AL

FIELD A

K

FIELD By JA:

The apostrophe (') is the UNIVAC 1005 character which
contains a binary 1 in only the X bit position.

The address of the MSL of the instfuction labelled
CRDT is used as the JA of this instruction.

FIELD C; JA: M80 is the decimal address of the location which
contains the information from card column 80 of Read

Solution:

Input.

If the information stored from card column 80 contains
a binary 1 in the X bit position, the jump to CRDT will

occur,
Example 2
Problem: |f card column 25 contains only the letter D,
transfer control to DED, |If card column 25
contains anything other than the letter D,
transfer control to NOTD,
D=1010 111
LABEL JOPERATION] __OPERAND 1 1 QPERAND 2
_ FIELD A |+ |NCP FIELD B |+] INC FIELD C {+] INC
1 516 10412 16171z 20]*J2? 261712- 301 132 361- B 40}
R

| T . 1

AR S

lllvl N | Np:r.b. ll mil nl

[- |

3K

S’I’l.n 1 M& b MS". L

i T W .

IK

Dllnl» L 3.£Ann | nnais/nn ' |

A

A

nl-;A-‘Ll A b A L 11 | 411

A

e

Instruction 1:

Instruction 2:

Instryction 3:

If card column 25 contains a binary 1 in the X bit
position, it does not contain only the letter D,
and control is transferred to NOTD, :

If card column 25 contains a binary 1 in the 8 bit
position (X53 code for 5), it does not contain only
the letter D, and control is transferred to NOTD.

The previous two instructions have eliminated the
possibility of the presence of binary 1 in the X
bit and the 8 bit positions, [f the remaining
positions all contain binary 1 bits, this instruc-
tion will transfer control to DED, |[f card column
25 did not contain a D, this instruction will pot
Jjump, and control will sequential pass to the next
instruction--which is NOTD.

The character K will appear in location 2 of the object in-

struction, Location 3 is not used,

the JA address,

Locations 4 and 5 will contain

Locations 6 and 7 will contain the address of the

location to be tested.

NOTE: Octal coding may be used in Field A to specify
K of the JK instruction., Column 12 must contain

a number sign (#), and columns 13 and 14 must

contain two octal digits whose bit pattern will

produce the required K. Columns 15 and 16
must contain @@. Location 3 of the JK
instruction is ignored.

\:{W,/
4,7.6 JUMP LOOP
MNEMONIC: JL MODE: SPECIAL LENGTH: 7 [A: NO
LABEL OPERATION [__OPERAND 1 l PERAND 2 '
FIELD A |+] 'NC FIELD B [+] INC FIELD C |+] INC
1 516 1012 16171 = 20§22 261712- 30} 132 361- 1B 40
| + AL ;JLI A) DLA 1 Ll TA- A4 . L l iLl”_f_“l - L I
FUNCTION: Subtract 1 from locations 2 and 3 of the IR (which
will contain DD specified by Field A) leaving DD
unchanged in memory, Transfer ascending the result from
locations 2 and 3 of the IR to 2L specified by Field C
If the result is positive or zero;. transfer ifer
control to the JA specified in Field B. It the result
is negative, proceed with the next se quentxal in<
struction,
NOTE: 2L usually specifies § + 2, the address of the least)
significant D. If Field Cis blank, the address of § + 2.
is placed in the object language lnstructlon. Maximum DD = 99, .
The purpose oF the JL instruction is to provide a means to ~

control the number of times a series of instructions are to be
repetitively executed., The series of instructions is called a
loop.
A loop is established to perform a common operation on each of
a set of similar data, thus eliminating the need for a separate
series of instructi ons for each eé=the set of data.
A loop consists of four sections
l. Intialization
2. Processing
3. Modification

4, Control

The Intialization section prepares the loop to be used for the
first of the repetitive executions. The Processing section consists
of the operations to be performed on the data., The Modification
section changes the addresses in the Processing instructions to
refer to the next set of data. The Control section determines when
the loop has been executed the required number of times,

The Control section of a loop in the UNIVAC 1005 wili usually
consist of‘a single JL instruction. The DD portion of the JL
instruction must be set to a beginning condition in the Initialization
section, due to the fact that DD is changed during the execution
of the loop. Assume a loop is to be executed three times, DD will
be @2 in the JL instruction at load time; After the execution of
the Processing and Modification sections, thé JL instruction is
executed for the first time., 2L specifies the memory address of

DD. DD is reduced by 1 in the IR and the result (#1) is stored at

2L, replacing the §2. The result is not negative, so
the jump occurs to JAywhich usually specifies the first instruction
in the Processing section. After the execution of the Processing

and Modification sections, the JL instruction is executed the second

time. DD, which now is @1, is again reduced by one in the IR,
and the result (@) is stored at 2L, replacing the #1. The result
is not negative,bso the jump occurs to JA, After the

execution of the Processing and Modification sections, the JL in-

struction is executed the third time; DD, which now is ¢1; is again

1

reduced by one in the IR, and the result (-§1) is s{ored at 2L,

replacing the @, This time, the result is negative. There-

fore the jump to JA does not occur, and the program continues

with the instruction (NI) which sequentially follows the JL instruc—

tion. The "number of times" minus one is used as éD;—tWO in

this example, Howeve(; the value of DD in the stored JL instruc-

tion has been changed by the execution of the loop and now reads
-th Before the loopA is executed again, the value of DD must be

re-stored to the correct number of times the loop is to be exe-

cuted. This is usually-accomplished in the Intialization section

by using a TK instruction with KK equal to the initial value of DD,

The 2M and 2L of the TK instruction specifies the address of the DD

portion of the JL instruction.

A skeleton example of the coding for the previously described

loop is as follows:

LABEL . PERATIONI OPERAND 1 1 QPFRA 2
P FIELD A J+] INC Fl FIELD B J+] INC FIELD C |+
1 516 1012 16 |71 = 01*22 261712- 301 132 361~
cendl il S 17 S i A S G R R
‘d — — ——
A1 11 | W S WY | N 1 A PR S S 41 L 1
?l‘{IOIQIg m Al ; 1 -\ A [S - /.\.r‘—i i 1 A
. A Py - -
ltnll'lnn'l"\n—l’;\:_—' wawﬁm
D F m A Ad A{~ A AA AL » A L 1 2
l o~ -
| O | l/}.n/-l\"' A1 i) \1 l A A _a 1 i l Al‘\l-'n— i
CNTRAMIL, [lo@], 0] PRoeS|] L1 | [GNTRY

The loop is entered by executing the instruction labelled
INIT. This set DD equal to P& in the JL instruction, Iaselled
CNTRL, There are usually other operations required in the Initiali-
zation section, The fact that DD is @& when loaded, and is reset
to P& for the first use of the loop should not be of concern to the
programmer, Notice that Field C specifies the address of DD in
memory, ‘

The Modification section will usually involve the use of the
COUNT (CC) instruction, which is explained in Section 4.8,

Section 1.6 (page 12) on Indirect Addressing contains an example
of the use of a loop. In the example, Instruction 6 would be a JL
instruction with a DD of 08, and a JA of the address of Instruction 1,
the first instruction of the Processing section. Instruction 5 would
be replaced by the instructions necessary to perform the Modification
section requirements, Instruction 1 would be preceded by the Initial-
ization section instructions including a TK instruction which sets

the DD of the JL instruction to 08,

W4

4,7.7

&

JUMP INDIRECT

MNEMONIC: JI ~ MODE: SPECIAL LENGTH: (7) IA: YES

LABEL JOPERATION OPERAND 1 | OPERAN 2
FIELD A |41 'NC FIELD B |+] INC FIELD C |+ }NC
1 5|6 o2 tell: oldee oef-los 30] 32 3ef-Pr o)
l’.ll n‘nn I‘-S‘YA.'._ - N | | N W O ll [N | LJ_

FUNCTION: Transfer descending two locations beginning with the
IJA (Indirect Jump Address) specified in Field A to
the Instruction Control Counter (ICC).

NOTE: If Indirect Addressing is specified
(asterisk in column 1%) two levels of I|JA
will occur,

Field A of a Jump instruction (J) specifies the address to
which control is to be transferred. Field A of the Jump Indirect
instruction (JI) specifies the address of the address to which
control is to be transferred. , hd

The JI instruction is a pseudo-operation in the UNIVAC 1005
Assembly System, The JI instruction produces a TD command which
has an OP 1 of the lJA, and an OP2 of the ICC. OP1 contains the
address of an instruction (2 characters). When these two characters
are transferred to the ICC, they are used to control the access of
the next instruction. Thus control is transferred, not to the IJA,
but to the address stored in the locations specified by the IJA,

Assume there are several points in a closed subroutine at
which the processing is concluded. Each one of these points must

return control to the instruction which follows the JR instruction

used to enter the closed subroutine. This can be accomplished by

PY

coding a Jump (J) instruction at each of the ending points in

the subroutine which transfers control to the exit instruction. The

JA of the exit instruction was set up by the JR instruction to

transfer control to the instruction following the JR instruction.

However, by coding a Jump Indirect (JI) instruction at each of the

ending points with an IJA that refers to the JA portion of the exit

instruction, the execution of the second jump is eliminafed.

Assumevthat EXIT is the label of the exit instruction of a

closed subroutine.

the following instruction:

Each of the ending points would conclude with

When the JI instruction is executed, the two character address

stored in locations 4 and 5 of EXIT, by the JR instruction, are

transferred to the ICC,

instruction following the JR instruction.

This effectively transfers control to the

LABEL FOPERAUON OPERAND 1 | QPERAND 2
FIELD A [+] INC FIELD B INC FIELD C INC
1 516 102 1671 = 20)+p2 26 | 12¢ 304 |32 361~ B 40
et 1;&_‘__&.. EQT' M ,3., | S T 2| Ll L

4.8

COUNT QL,f
MNEMONIC: CC MODE: SPECIAL LENGTH: 5 IA: NO
LABEL FOPERATION OPERAND 1 1 QPERAND 2
FIELD A [+] 'NC FIELD B |+] INC FIELD C |+] INC
1 5)6 o] &l WPl 1617z 20)x2 261712= 30 J32 3el-B¢ 40

‘—9-‘—'—‘—‘&-(.‘\.;@,"-‘, 3&. NI I . QM s y 1 el | |

FUNCTION: Using address arithmetic, modify by DD, specified in Field
Aj the two character Row, Column, and Bank address stored
beginning at 2V, specified by Field B.

The purpose of the CC instruction is to provide a means of address
modification accoréing to the special logic of row, column, and bank
addressing employed in the UNIVAC 1005, Addresses are specified by the
full 6 bit positions of two adjacent characters. The Arithmetic Unit of
the UNIVAC 1005 operates on a 4 bit numeric basis. Thus the Add and

Subtract instructions cannot be used for address: modification, o

The CC instruction operates on the full 6 bits of the two character
addresslstored in the locations specified by 2M using the decimal
value of DD as the modifier. If the address is to be decremented, a
minus sign (=) is placed in column 12 of Field A, and DD is placed in
columns 13 and 14, If the address is to be incremented, DD is placed
in columns 12 and 13 and assumed to be plus. DD must always be two
digits (7 through 99 maximum). If DD is less than ten, a @ is placed
in column 12, When DD is a decrement, the Assembler program places

an X bit over both of the numeric digits in the object instruction.

2 usually specifies the address of the MSL of the A portion of another

instruction which is to be modified to reference a new set of data.

4:;

AP N

Section 2.6 (page 12) on Indirect Addressing contains an example of
the use of a loop. The Modification section of the loop would consist
of a single CC instruction that would replace Instruction 5. The CC
instruction would modify the A portion of Instruction 1 by the number
of locations required for each entry in constant storage. Since two
characters are required for MSL and two for the LSL of each of the

four fields in a‘T}ansaction, the value of DD must be 16.

Assume that Entry 1 of the constant storage area was labelled ENT 1, and

the Secondary Address Table was labelled SECAT, Instruction 1

would be:
LABEL ERATION OPERAND 1 1 OPERAN 2
. FIELD A +{ INC FIELD B f+] INC FIELD C [+] INC
1 516 10p 2 1617z 2022 2617 12c 301 132 361 Bs 40

PRocATY | |ENTA, [[, 1] [SecaT|], 1] [sEcATHIql

The first execution of this instruction will cause a descending transfer
beginning with the MSL of ENT 1 (Entry 1 of constant storage) to the
MSL of SECAT (the Secondary Address Table). The transfer will

Ul secomdauny, ol detss Xakela,
continue until the LSL of m has been
filled. The remainder of the processing will then operate on

Transaction 1.

Before Instruction 1 is executed the second time, the two characters
in locations 2 and 3 of Instruction 1 must be modified to transfer
from Entrx 2 of constant storage to the Secondary Address Table. The
following CC instruction would be used to modify PROCS (lInstruction 1,

locations 2 and 3).

[&3

LABEL JOPERATION OPERAND 1 OPERAND 2

FIELD A [+] 'nC lulF@ELD +| InC FIELD C f+] InC

B
1 516 012 16]7) - Lh*fe2 26]712- 301 132 36173 40

s e o dPRoesiMA T

Each time thi; CC instruction is executed, the OP 1-MSL address in
PROCS is incremented by 16. This will cause successive transfers of
each of the entries in constant storage. However, after the last
execution of the loop, the A portion of PROCS will have an address of
the location which follows the last locatién of constant storage. The
Initialization section szt then contain the following TK instruction

which is executed before PROCS:

LABEL JOPERATIONL_OPERAND L PERAND 2

FIELD A |+] 'nc PN FiELD B |+]| INC FIELD ¢ |+] INC
1 5)6 02 1617 = 202 26 17 10- 301 |32 361~ B~ 40

o T JBENT Al L o] [PRoess, 1] [PROCS]H |

The use of the colon (:) will cause the Assembler to use the address of
ENT 1 as KK in the TK instruction., These two characters are transferred
to locations 2 and 3 of PROCS, so that each first execution of

FROCS will refer to Entry 1 of constant storage.

The complete coding for the loop is as follows:

LABEL [OPERAT| ON OPERAND 1 QPERAND 2
FIELD A |+#] 'NC FIELD B |+] INC FIELD C |+] INC
1 516 10942 1617z 20§*|22 261°12- 301 132 Je 1 13z 40

INTT I . @! L |g;t\.1.&3..ig,1 CNT RN
L TR P ENTA L] PRocSIHAL g | [PR0cS

]
+] .'
L JENY A Lo JISReAT]] L ISECAT R |

ECAT|H SE AT LI
, neix CCATMHR, 1],
o B0 ox epxMdAN Il Ty
Mm. - i M | P.R.Q&L ‘\'A-_.l L1 1

|y

Ihy A AV Y- W B TR BT YR B R R R KA |

/(‘ ~. s
) S

4.9

EDIT INSTRUCTIONS

The UNIVAC 1005 instruction repertoire includes two types of
instructions which perform editting and logical operations., The
logical operations provide for the deletion (erasing) of 1 bits and
the -insertion (superimposing) of 1 bits on the bit positions of a
memory location., The edit instruction provideé for the preparation
of output data for printing and punching. The edit functions include

such things as zero suppression, character insertion, asterisk

fill, etc.

The erase function performs logical (or binary) multiplication of

the corresponding bit positions of a constant and the contents of a
memory location and stores the bit by bit product back in the same
memory location. A binary zero ﬂ?eﬁther or both corresponding bit
positions of the constant or the contents of a memory location will
produce a zero bit in the product. Only if both bit positions contain
a binary 1 will the product bit be binary 1. Thus @ x # =6, 0 x 1 = @,
1x@8=0,1x1=1

The super impose function performs logical (or binary) addition,without
carryyof the corresponding bit positions'bf a constant and the contents
of a memo}y location, and stores the bit by bit sum back in the same
memory locationX. A binary 1 in eithef or both corresponding

bit positions of the constant or the contents of a memory location

will produce a binary 1 as the sum, Only if both bit positions contain
a binary zero will the sum be a binary zero. Thus @ + @ = §,

g+1=1,1+04=1,1+1=1,

9
vV~

The edit instruction requires the use of a pattern of characters

called a mask to control the alteration of a field or fields of data for

The mask pattern must be transferred to rX before the

output.
execution of the edit instruction.

b

4,91

EDIT LOGICAL
MNEMONIC: EL MODE: SPECIAL LENGTH: 7 IA: NO
LABEL ﬂOPERATION OPERAND 1 QPERA| 2
FIELD A J41 'NC FIELD B |+#| INC FIELD C |+] INC
1 516 o2 tells oo 26112 301 132 36]-Be 40
j'.nlEanl KKIJ -' LM-A l' Ad ll

FUNCT ION:

The two characters (KK) in the A portion are used individually,

Erase the bit positions of the contents of location 1M

specified in Field B which correspond to the bit positions

of location 2 of the IR (the left hand K) which contain binary

zero,

Then, superimpose a binary 1 on the bit positions of

M specified in Field C which correspond to bit positions
of location 3 of the IR (the right hand K) which contain
a binary 1.

NOTE ¢

precedes the superimposey Ow

If 1M and 2M specify the same location, the erase

Locodhon. .

The

instruction uses the left hand character (which appears in location 2 of

the IR when the instruction is executed) as the bit pattern for the

erase function,

3 of the IR) is used as the bit pattern for the superimpose function.

The erase function is performed on the character in the location (1M)
specified in Field B.

character in the location (2M) specified in Field C.

The right hand character (which appears in location

The super impose function is performed on the

The erase and

super impose can be performed on the same character by specifying the

same location in 1M and 2M,

The character whose zero bits are used to erase is coded in column 12,

NOTE:

The UNIVAC 1005 Assembly System provides an

instruction to erase only (EE) and an instruction
to superimpose only (ES).

The character whose one bits will be superimposed is coded in column 13.

kY

Example 1

*

Given: A card field in columns 6 through 9 will contain
an X punch over column 9 if it is negative. This
field will be transferred to print position 66
through-69. All of Print storage has been cleared
as a result of the previous PRINT, EXECUTE command.
Problem: Provide the instruction which will print a minus
sign from print position 70, and delete the X
bit over the information from card column 9.

LABEL JOPERAT|ON

OPERAND 1 | ,
FIELD A |+] 'NC MW FIELD B |+
6 10412 16l s 2p*2 26|

ERAND 2
INc [[FriELD ¢ [+] inc
2: 300 32 36]-P= 40

Bb == LI Il i [BPR . [4ed

FIELD A; KK:

FIELD Bj

FIELD C; 2 $PR is the Standard label for the MSL of Print storage. ~

Solution:

M

The bit configuration of the equal sign (=) in column 12
is 11 111, The bit configuration of the minus sign (-)

is @09 714.

I‘ 9 is the decimal address of the location in Read
storage which contains the information from card column
9. This becomes the erase address.

$R + 69 is the address of print position 70, This becomes

the super impose address.,

The binary zero 'in the X bit position of the equal sign will
erase the X bit position of Read storage for column 9. The
binary 1 in each of the other bit positions of the equal
sign will prevent the erase of the corresponding bit
positions of Read storage for column 9,

The fact that Print storage is cleared after a PR INT, EXECUTE
allows the superimpose of the binary 1 in the 2 bit position
of the minus signyon the binary zero in the 2 bit position of
print position go If print position 70 was not known to be
all binary zeroes, two steps would be required to solve this
problem,

The TK instruction can be used to replace a single
character in memory, rather than erase with space and
super impose with the character.

NOTE:

|28

Octal coding can be used to specify the bit configuration of KK

in the EL instruction. The number sign (#) is coded in column 12

followed by four octal digits. The coding for the previous solution

in octal would be:

LABEL JOPERATION] __OPERAND 1 QPERAND 2
FIELD A |+] NC FIELD B |+] INC FIELD C |+] INC
1 516 10412 16471: 0)*2 261°12= 30] 132 36]-Bs 40
l‘ Fa S QL. U) Jm A | FQA A4 L l l@j((l A *

The binary configuration of octal 37 is @11 111,
of octal @2 is @00 #10.

The binary configuration

Qo
S

4.9.2 EDIT ERASE
MNEMONIC: EE MODE: SPECIAL LENGTH: 7 lA: NO

ABEL JOPERATON OPERAND 1 OPERA 2
: H FIELD A |+] 'NC FIELD B |4} INC FIELD C {+] INC
1 516 100+ 2 16171z 012

2 261702s 30] 132 36]-Db= 40l

;AAIE‘E!.l'l lKLll_ Al Ad ll | - | 1'

FUNCTION: Erase the bit positions of the character stored at 1M s‘uu%ﬁxn
‘ by Field B which correspond to bit positions of K,
specified in column 12 of Field A, which contain binary
zero,
This instruction is a Pseudo-operation provided by the Assembly System
\which is a variation of the EL instruction. The operation code EE
causes the assembler program to automatically use the address of 1M in

locations 4 and 5, and 6 and 7 (2M of an EL instruction). The blank

column 13 will produce binary zeroes so that no bits are super imposed,

If octal coding is used, the number sign followed by four octal digits
must be specifiedyjand the last two must be @4,

NOTE: If a memory location is to be cleared to binary
zeroes, use a TK with KK equal to K.

4.9.3 EDIT SUPER IMPOSE

MNEMONIC: ES MODE: SPECIAL LENGTH: 7 lA: NO
LABEL JOPERAT|ON OPERAND 1 QPERAND - 2
FIELD A |+] 'NC FIELD B |4} INC FIELD C |+] INC
1 516 1012 1617z 2)*p2 261712 301 132 3el- 3= 40}
Le s &L " K Ak o hm__. . |] I N | |

FUNCTION: Super impose the binary 1 bit positions of K, specified in
column 12 of Field A, on the corresponding bit position of
the character stored in 2M specified in Field B.

This instruction is a pseudo-operation provided by the Assembly System

which is a variation of the EL instruction. The operation code ES

causes the Assembler program to automatically use the address of 2M

in locations 4 and 5 (1M of an EL instruction), and 6 and 7. The

Assembler prograh also automatiéally places K in location 3, and puts

all binary 1's in location 2 so that no bits are erased.

If octal coding is used, the number sign followed by four octal digits

must be specified, and the first two must be .

By

4,9.4

EDIT
MNEMONIC: ED MODE: DESCENDING LENGTH: 7 IA: YES

" LABEL PPERATION OPERAND 1 1 QPER 2
FIELD A |4] 'NC FIELD B |+] INC FIELD C INC
i 516 10912 16171 i*e2 261712 301 132 3613z 40
:’nlLakLl ‘ nn'_ n‘]]&M.;’ll I&Llnl nl

FUNCTION: Transfer descending beginning at OP1-MSL specified

in Field A; according to the manner specified by the

corresponding special characters in the edit mask in

rX; to the OP2-MSL specified in Field B, Continue

untils the OP2-LSL has been filled; or a sentinel

(#) is detected in the edit mask; or the LSL of rX

has been handled, .

NOTE: The maximum length of the edited
data delivered to OP2 is 31 loca-
tions, ' : .
The Edit (ED) instruction performs a location by location
transfer of the characters from OP1 to the locations of OP2
L[4

according to the edit functions specified by special characters
placed in corresponding locations of rX, The length of OP 2 is
dictated by thevlength of the mask in rX (31 locations maximum).
The result character to be stored in OP2 will be either the
character from OP1 processed abcordingAto the edit action specified
by the special characters in the mask; or a character to be in-
serted from the mask. The mask is usually stored as a constant
and is transferred to rX before the execution of the ED ins{ruction.

The mask is not changed by the ED instruction, and can be used

repetitively for identical edit operati;ns.

AN

Indirect Addressing can be specified for the address of the

data to be edited (OP1) and for the destination of the edited

output (0P2).

The following éymbols are used as special characters in the

mask to specify the edit action:

\\ (Backward.Slash).

A (Delta symbol).

When this special character is detected
in the mask, it will cause zeroes and
spaces from OP1 to be replaced with
asterisks (*) until a character which is
not a zero or a space is recognized from
OP1. The asterisk fill operation started
by the backward slash can be restarted
during the ED instruction by placing
additional backward slashes in the mask.

When this special character is detected

in the mask, it will cause zeroes and
spaces from OP1 to be replaced with space
codes (binary zeroes) until a character
which is not a zero or space is recognized
from OP1, The zero suppress operation
started by the Delta symbol can be re-
started during the.ED instruction by
placing additional Delta symbols in the
mask.

NOTE: |f a comma appears in the mask and
a previously started asterisk fill
or zero suppress function has not
detected a significant character,
the comma will be replaced by an
asterisk or a space code.

123

)1 (Lozenge) When this character is detected in the
mask, it allows the current correspond-
ing character from OP1 to be trans-
ferred to OP2, If asterisk fill or zero
suppress has been previously started, the
character from OP1 is handled accordingly.

(Unequal symbol). When this character is detected in the mask

it will terminate the ED instruction,
The current character from OP1 will not
be transferred,

A1l characters other than backward slash, Delta, lozenge,
and unequal which appear in the mask will be inserted in OP2
prior to the current character from OP1,

The function of the ED instruction when executed is to first
examine the MSL of rX, At this precise'boint in time, the current
character from OP1 is OP1-MSL, What hapbens next is based on
the characfer in the MSL of rX. Basically, one of two possibili-
ties exist: the character in the MSL of rX is not one of the
four special characters, or it is one of the four special characters,

If the character in the MSL of rX is not one of the four special
characters, the character from rX will be inserted in the MSL of
OP2, The next character in the mask will then be examined. At

this point in time, the current character from OP1 is still the

OP1-MSL, If the second character in the mask is not one of the

four special characters, it will also be inserted. This examination

and insertion will continue until one of the four special characters
is detected. (If the mask does not contain a backward slash, a

Delta, or a lozenge, the ED becomes a TD of rX to OP2,)

Y

CEEREN

When a special character is detected in the mask (other than
the unequal symbol), the current character from OP1 (which in this
example is still the OP1-MSL) is transferred to the nekt most
significant location of OP2, When this occurs, the next most
significant character of OP1 becomes the current character from OP1,
Mask examination is also advanced to the next most significant
location of rX, This operation is continued until the first of the
following occurs: 1. The mask examination detects the unequal signal,

The ED instruction terminates, and the current
character from OP1 is not handled.

2. A character has been stored in the LSL of OP2
(specified in Field C) before the LSL of rX
has been examined. The ED instruction is then
terminated.

3. The action following the examination of the
LSL of rX has resulted in a character being
stored in OP2, The ED instruction is then
terminated.

The length of OP2 cannot be greater than the length of the mask
(maximum 31 locations). I|f OP2 is smaller than the mask, the excess
positions of the mask are not examined., If the mask is less than 31
characters in length, the unequal sign should be used as the least
significant character in the mask, but is not counted in the length
of the mask or the length of 0OPZ2,

o

The length of OP1 is determined by the number of locations in the
mask which contain special characters other than the unequal sign,
presuming that the length of OP2 and the mask are the same. The

presence of any of the special characters in OP1 will not change the

operation of the ED instruction,

13€

Example 1

Given: A ten

Problem:

contai

1.

O whN

Contents of SUM:

location operand labelled SUM which
ns dollars and cents,

Print the contents of SUM as follows:

Precede with a dollar sign.

Lero suppress

Insert commas

Insert the decimal point

Print the word "TOTAL" two print
positions to the left of the dollar
sign, and s&ﬂcing in print position 101.

—
: ~N

rirrs
>

Constant stored at MASK:

T

oY

NP

IR

2

3

4 |5 (6 |7

7]
—
o
—
=
—
~
—
w

14 (15 116 {17 [18 {19 |20 |21 ZZI

Instructions:

LABEL JOPERATION OPERAND 1 OPE 2
FIELD A J+] 'NC FIELD B 4| INC FIELD C |+] INC
10412 1617z 20§*p2 261712c 30] |32 361-Bs 40

6

. .,
EN

fﬁ%"' N ClHad |
Sum | [, 1 TIBPR, . PR, . i

Instruction 1. The mask is transferred from MASK to the high order

end of rX.

3

C

Instruction 2 (See Figure

).

The MSL of SUM becomes the current .
character from OP1, The MSL of rX
contains the letter "T" which is not
a special character, The '"T" is
therefore inserted in the MSL of
OP2--print position 1@1. The next
position of the mask (rX) is examined,
and the letter "0" is transferred to
the next position of OP2, The examina-
tion and transfers continue until the
dollar sign ($) has been transferred
to OP2, The MSL of OP1 is still the
current character of OP1,

Delta (location 9) is the next
character in the mask, This starts

the zero suppress function, and

causes the transfer of the current
character from OP1, The @ from OP1-
MSL is changed to a space code, and
transferred to the next location of
OP2., The next position of the mask
(location 1f) contains a lozenge,

which causes the new current character
from OP1 (location 2) to be transferred
to OP2 (with zero suppression). The
next position of the mask (location 11)
is examined and is found to contain a
comma, Since zero suppress is still
active, the comma is changed to a

space which is inserted in OP2,

The next location of the mask (loca-
tion 12) contains a lozenge which causes
the transfer of the current character
from OP1 (location 3) to be trans-
ferred to OP2 (with zero suppression).
The next position of the mask (location
13) contains a lozenge which causes the
current character from OP1 (location 4)
to be transferred to OP2, However, the
current character from OP1 is not a
zero or a space, This terminates

the zero suppress function, Trans-
fers of OP1 to OP2 continue for the
next two locations. At this point the
location in the mask (location 15)
contains a comma. Since zero suppress

is no longer active, the comma is
inserted in OP2, The next three loca-
tions from OP1 (locations 6, 7, and 8)
are transferred to OP2, The next
location of the mask (location 15)
contains a period, which is inserted
in OP2, The next two locations from -
OP1 (locations 9 and 10) are trans-
ferred to OP2, At this point, the
LSL of OP2 has been filled, thus
terminating the ED instruction,

AN
‘.\N//,

3

AN

0

3l

.’

—

F

j oo

10

22 123 {24 |25 126 |27 |28 |29

30

k)

Figure

i oP2

4,10

DECLARATIVE INSTRUCTIONS

Declarative instructions are instructions from the programmer
to the Assembler program to control its operation during assembly
processing., No object language instructions are produced from a
source language Declarative, However the source language information
is carried through to the ob ject deck, in the event re-assembly is
desired at a later time.

Declrative instructions include provision for establi;hing
constants in the ob ject progfam. The output from a Declarative which
sets up a constant will include the constant, and instructions to the
Load routine for loading the constant.

The Assembler program maintains two counters which control
the assignment of memory locations and addresses of the instructions,
and the working storage for the object program. The Instruction
Location Counter (ILC) is incremented by the Assembler program when
allocating memory for instructions and in-line constants. The Data
Location Counter (DLC) is decremented by the Assembler program when
allocating memory for working storage and Declarative constants.

These counters are not hardware, but are program locations
established and updated by the operation of the Assembler program,
When the AssemBler program is loaded, the €yitial value of thé ILC is

Puonels,
set to address of the first location following the Read/Punchpstorage
area--Row 20, Column 24, Bank 1., Unless otherwise specified, this will
be the address assigned to the MSL of the first object language instruc-
tion assembled., A Declarative instruction is provided which allows

the programmer to place a new value in the ILC.

139

The initial value of the DLC is the address of the last location
in memory--Row 31, Column 31, Bank 2 for a two bank system, or Row 31,
Column 31, Bank 4 for a four bank sys{em. No provision is made for
specifically placing a new value in the DLC, The value of the DLC
is decremented as working storage areas and Declarative constant

are cailed for by the aourse language program.

4,10.1 DEFINE INSTRUCTION LOCATION COUNTER

MNEMONIC: DL
LABEL ERATlONh OPERAND 1 1 QPERA 2
’ FIELD A |+] 'NC PN FIELD B [+] INC FIELD C |+| INC
1 516 10912 16171 X01*]22 2617 12- 301 132 el B 0

[PO ¥ Dj\-. i Xlw N I-‘_;,_,.J__.._l‘,-.l ' l I U T T | | ‘.l

FUNCTION: Set the value of the Instruction Location Counter to
the known address specified in Field A,

NOTE: A plus or minus increment may also
be used.

When the current (or initial) value of the ILC is not the
address desired by the programmer for the allocation of the next
instruction, the DL Declarative is used to establish a new value
in the ILC before the next instruction is allocated. Caution must
be exercized by the programmer when changing the value of the ILC to

insure that an address is not assigned more than once by the Assembler

program,
Example 1
Given: The Read/Punch Unit is not used by the ob ject
program,
Problem: Start the allocation of instructions in the
first location following the Print storage area.
LABEL JOPERATION OPERAND 1 1 OPERAND 2
FIELD A [+ 'NC PN FIELD B [+] INC FIELD C |+]| INC
1 516 10%112 lel7 -)2 261712- 301 132 361713 40
i;llblLlnl pLill nl N T VW ¥ lJ S - | nl

Field A:

Solution:

Example 2

$P1 is the Standard Label for the MSL of the Punch
(Read/Punch Read) storage area.

This card must be the first source language input card
which effects the ILC, The known value of the Standard
Label $P1 (R1@, Cl4, Bl) is stored by the Assembler
program in the ILC, and is used as the address of the
first instruction assembled. $1@14B1 orY293 could also

have been used in Field A to produce the same value in the
ILC.

NOTE: Prbgrammer's labels cannot be used in
Field A,

Given: Code Image and Punch storage are not used by

the object program.

Problem: Use these areas for instructions

LABEL [JOPERATION | _OPERAND 1 |

QPERAND 2
FIELD A [+] 'NC FIELD B |[+] INC | [FIELD C |+] |
oo el 2olxee 2el-los 30 f32 36|t

law)
A

DY S

Kg.;n nl [N W Y | jl 1111.11“\&//

a
:Ef§ A A— : : [
S lm LA 4 | T o | Al A 3 | ' U Y W ¥ A
A'lﬁ | T Ao a a1 A l A2 A A A l [Y. A
La_A4 1l A2 AL 2 '] —tid A) N i1 1 42 S
AL 22 ;1 a QL A 2 l L2 2 a2l 12 1 3 1 l
1 11 BILI U | PLL A] | a2 a1 A l A1 a2 A l
P '
[U W | [B U 1 . Al 2 4 A] U W . | n l L1 1 3 1 |
A ,“W-«,_,«w ' . .
T W T Y | Y [. | L v [W W | I l

Instruction 1.

This instruction sets the value of the ILC to the
- address of the first location following Read Storage.

Instructions 2 through n. These lines of coding beginning at START
are assigned to addresses beginning with
H 81 and continuing according to the number
and length of the instructions., The pro-
grammer must determine when the ILC bisw\“ Wowor,
been incremented to the point where it
contains the value which is six less than
the value of the first location of Print
storage. At that point he must code the
J instruction to prevent the sequential
advance of the ICC at object time from
securing instructions from the Print
storage area., He must then code the
second DL declarative to prevent the ILC
from assigning instructions to addresg\ln
Print storage during Assembly processing.

43

4,10,2 DEFINE AREA N
MNEMONIC: DA

LABEL JOPERAT |ON OPERAND 1 1 OPERAND 2
FIELD A |+] 'NC WA FIELD B [+] INC FIELD C |+] INC
1 516 102 el e 26l-|os 30] 32 3el-b: o)
';_-lj _AJ" WJ[Ll A2) II . . | lI

FUNCTION: Allocate an area of working storage with a length as
specified in Field A, Subtract the number of locations
in the area from the value of the DLC. Use the new value +1
of the DLC as the MSL of the area.

NOTE: This instruction will usually have a Label
to be used for referencing by the programmer.

The loading of the Assembly program sets the initial value of
the DLC to the last Location of memory--R31/C31, B2 or R31/C31, B4,
When an area of working storage is required, the programmer uses the
DA declarative to cause the Assembler program to allocate the re-
quired number of locations. This allocation begins at the last
location of memory and @md proceeds toward the first location of
memory, by decrementing the value of the DLC by the size of the area
required.

The number of locations to be allotted by the DA declarative is
coded in columns 12, 13, and 14 of Field A, The maximum number of
locations which can be allotted by a single DA instruction is 961.

The use of the DA declaratives to allocate working storage does
not prevent the same locations from being assigned to instructions.

In the event of a lengthy program, the assignment of instructions

may increment the value of the ILC until it is greater than the value

) i

of the DLC. The programmer can recognize whether or not this situation
has occurred by examination of the ob ject printout from the Assembly
processing.

The DA declaratives should be coded on a separate page of coding
paper, This will enable the programmer to obtain a "picture" of
the full area of working storage. It will also enable the programmer
to assess the possibility of exceeding the total memory capacity
for working storage and instructions. The number of instructions

whade co

times 7 is the maximum number of locationsprequired for instructions.
That product added to the starting value of the ILC will produce the
maximum value of the ILC. The sum of the numbers in Field A of the
DA and DC declaratives subtracted from the starting value of the
DLC will produce the lowest value of the DLC, The number of loca-
tions set aside for in-line constants and Indirect Address constants,
if any, should be included.

The Define sub-field declarative is used in conjunction with
the DA declarative to provide definition and labelling of sub—Fiﬂgds
within the locations allocated by a DA declarative (See Section
4.10.2.1.) ”

The contents of the memory locations allocated by a DA declara-

tive are not entered at object load time.

Example 1

Problem:

Establish a working storage area of ten
locationsy to be used in the accumulation of

a total.

»

LABEL

[OPERATION | OPERAND 1 1

OPERAN

2

10 p*

FIELD A 4] 'NC FIELD B |+

INC
25 30

FIELD C
32 36

+

INC

2 tefl: ofxeo o6l

£ 40

A l 1 A A A

| S . |

Solution:

%, .

Assume that this is the first DA declara-

tive to be assembled for an object program

to be run on a two bank UNIVAC 1005,

The

loading of the Assembly program set the
initial value of the DLC to W 1922, The area
TOTAL would be assigned to locations ¥1913

toH 1922 inclusive.

The label TOTAL is then

used to specify the MSL of this 1@ location

The new value
of the DLC is m1912 (1922 minus 1f)

area throughout the program,

| ko

C

4,10,2,1 DEFINE SUB-FIELD

The Define Sub-field declarative can only be used following a
DA declarative. The Define Sub-field declarative does not change
the value of either the ILC or the DLC. It does not allocate
memory .,

The purpose of the Define Sub-field declarative is to establish
labels for fields within an area that has been allocated by the
immediately preceding DA declarative. The address assigned to
the label of a Define Sub-field declarative is determined by the
Assembler program by calculating its location relative to the MSL
of the area allocated by the DA declarative,

The Define Sub-field declarative is specified by placing a
minus sign (-) in column 6, Complete specification of the Define

sub-field declarative is as follows:

LABEL FOPERATION OPERAND 1 1 OPERAND 2
FIELD A [+] 'nc PR FIELD B [+] INC FIELD ¢ [+] InC
1 516 o2 1l ohxo 2e]7le: 30] 132 - 3ed-PB: 40

i PURE S .l LA} Xx-x; ' A l YIY|Y- i I 1 I - [i I

Where XXX is the number of the least significant location of the
sub-field,

YYY is the number of locations within the sub-field.
In order to define the sub-fields within an area allocated by a
DA declarative, definition should begin with the MSL of the area and

proceed to the LSL of the area, Overlapping sub-fields may be defined,

| T

Example 1

Given: A master card is to be read and transferred to
working storage for the subsequent processing of
detail cards,

Problem: Define an 8f location area with sub-fields
according to the following master card format:

Card Columns 1 through 7 Stock Number
8 through 30 Description
31 through 40 Balance on Hand
41 through 50 Shipped to Date
51 through 60 Shipped this Week
61 through 70 On Order
71 through 80 Minimum Level

LABEL DPERATION! OPERAND 1] QPERAND 2
FIELD A J#] INC FIELD B |+] INC FIELD C 14} INC
1 516 10pA2 161 1" 20)*J22 261°12- 301 132 361-3c 401
S A .. m A B | Lo |
ST, il VPP i N L L 1 Lo |
N | 3]!.'. 2 L A v 1o | T‘
SR AL A N N A N R B B
- ...\ ., N R B N
— A NN T |
a1l 7‘!; - - o 1 ; . |
TRV N | A AP N B R I

Solution: The DA instruction allocates an area of 80 locations with
an MSL identified by the label MASTR, When the Master card
is to be transferred from Read Input storage, the following
single instruction can be used to transfer all 80 columns.

N — Py

LABEL JOPERAT ION RAND 1 OPERAND 2
' hFIEL‘DA +['NC BN FiecoB [#] INC | | FIELD C |+#] Ine
6 x]oo :

15 102 1el]: _26l7os 30f |r2 36]-DBe 40

FN YR TRl

Subsequent coding can then refer to the MSL of the fields in -
the Master card by using the labeis of the Define sub-field
declaratives.

143

4,10.2,2

REDEFINE STANDARD LABELS

There is a second use of the DA declarative which does not
allocate working storage area. The purpose of this second use
of the DA declarative is to enable the programmer to establish
his own labels for the areas of memory which have been assigned
Standard Labels. Since these areas are "known'" to the Assembler
program, no allocatjon is made by the DA declarative.

The DA declarative specifies a Standard Label in Field A,
and is followed by Define sub-field declaratives. The Define
sub-field declaratives are used to redefine the area assigned

to the Standard Label according to the field configuration

required by the programmer .

The labels assigned by the programmer

to the Define sub-field declaratives can then be used to reference

these fields, T‘h& NAWED OSS ’&&'&Lc. A% W LQ\«M\.o\M‘V,

Example 1

Given: A card format as follows:
Card Columns 1 through 10 ID Number
11 through 20 Quantity 1
21 through 40 Quantity 2
41 through 60 Quantity 3
61 through 80 Quantity 4
Problem: Redefine Read Input storage giving labels
to the card fields.
LABEL [OPERATION|__OPERAND 1 | OPERAND 2
M FIELD A |+] ‘N BN FIELD B [4] INC FIELD C |+] INC
1 516 102 1617V 22 26 17 12- 30 32 3617 B> 40
’LAIL ALI ML | 22 2 ll 1 a1 1|
_glll-lln- WLLl ll A2 ll i U W W ll
m'll’liln ".l 11 m;; JJ a1 1) 3 1
Qlill-llnl H@l-- | wnnn . T |
‘Qall‘lALA.@Lnl 1' ij ll B N W T ||
MLL—IJLI Ml'l Al A o Ll o4 |

Ly

There is no restriction to the number of times an area

assigned to a Standard Label may be redefined in this manner,

4.10.3

DEFINE CONSTANT

MNEMONICs DC

LABEL JOPERATION OPERAND 1 QPERAN 2
FIELD A J+] 'NC FIELD B |+} INC FIELD C J+] INC
1 516 102 16171 Xh*e2 261712- 30] 132 3¢~ B= 40
[I W }n. Al &Dn 1_”‘ CLQ{JQ’?. 2 M | [el \‘1 l)

The purpose of the DC declarative is to enter constant
values in the object program at load time. The DC declarative
usually has a label that is used to specify the MSL of the con-
stant. The address assigned to the constant is determined by
subtracting the number of locations in the constant, specified
by Field A, from the current value of the DLC plus 1. The
Assembler output card in the ob ject deck will contain the con-
stant, and the instruction to the Load routine to enter the
constant in the assigned address.

The constant is coded beginning in column 18 of the coding
form. The sign of the constant {plus or minus) is coded in
column 17 and is not included in the length of the constant. The
maximum length of a negative constant is 25 locations. The
maximum number of characters which can be specified in a single
card for a positive constant is 44,

Provision is made for the continuation of a positive con-
stant of more than 44 characters by placing a comma (,) in column
6 of the next card, and continuing the characters in column 18,

A maximum of 961 characters can be entered as a signle constant

this
in & manner. The length of the constant is specified in only

the DC card.

The action of the Load program is to use the length specified

in Field A to determine the number of the columns,beginning at

column 18,a%e to be stored (as punched) in memory.

If the number

of characters punched as the constant S& not agree with the number

in Field A, the number of columns specified by Field A is used.,

f\

Rxe

1.0,

999

Mha4. .

Example 1
LABEL JOPERATION OPERAND 1 OPERAND 2
FIELD A |+f INC FIELD B INC FIELD C INC
1 516 1042 1617 1'c 0)*22 261712 301 132 361- 13 40!
A *TOK ‘ A !mni? aul“null ‘ |
71& a ‘\'xXIS_O.C.\\)‘.N ' | ko i

M N U W Y 71'.!-‘ 7ll LA L A 'l
MASK is the constant used as the mask in Example 1 of the ED ~
instruction, : :
HEAD might be used to print the headings on an inventory report.
(The actual constant would continue through column 61 before
starting again in column 18 of the continuation card.
LIMIT is a 7 digit constant with a value of minus 9999999 which
would be stored as 999999R.
If it is desired, the DC declarative can be used to allocate
a working storage area whose initial contents should be space codes.
LABEL [OPERAT[ON PERAND 1 OPERAND 2
FIELD A |+] !NC FIELD B INC FIELD C INC
1 516 10412 167 : X04*p2 261°12- 30] 132 36 £_40
;lo;;JsL3|E. A A) + 4 ' Vj.; T | | | I A 1 2 A A I
f "
%,—/’

ER

The area assigned to TOTAL will be entered with the 1§
space codes from columns 18 through 27 of the DC card. Caution
should be exercized by the programmer when using this technique
due to the fact that the area will not be cleared if a re-start is
required,

If the programmer codes the constants on a separate page and
enters the source language cards for constants after the cards
from the DP\ page, a single TK instruction can be used to clear all

of working storage to spaces.

Example 3
Given: The above recommended procedure is followed,
and the last source language D\ card has a
label of LAST,
Problem: Clear working storages to space codes.
LABEL JOPERAT ION|__OP_CAND -] OPERAND 2
M FiEtD A [+ NG PN FELD B [+] INC FIELD C |+] INC
1 516 02 el - opreo 201712~ 30 |32 367 13: 40

o Ik L kAasT Ll magas |

Solution: The allocation of all preceding DA cards began with a
DLC value of 1922 (two bank system). The value of the
DLC was reduced by each DM\ card including the card -
labelled LAST, Thus the MSL of all of working storage is
also the MSL of LAST., The 2 space codes from the TK are
transferred beginning at the LSL of OP2, (H1922). Since
OP2 is larger than two locations, the remainder of OP2 is
cleared to spaces.

NOTE: If the Translate option is to be used in the
object program, a DC ipstruction is used to
establish the translatﬁt table, and must
be the first language instruction
assembled which effects the value of the DLC,

4,10.3.1

AN

IN-LINE CONSTANTS

The term in-line constant refers to the allocation of a constant
in the portion of memory usually allocated to object language
instructions.

The UNIVAC 1005 Assembly System provides for in-line constants
through use of the asterisk (*) in column 6 of the coding form, The
reaminder of the in-line constant format is the same as for a DC
declarative. No continuation cards may be used for in-line constants.
The in-line constant is allocated based on the current value of the

ILC, and usually carries a label for identification.

LABEL PPERATION OPERAND 1 1 QPERAND 2
FIELD A |+] 'NC Itj_F!ELDB +| INC FIELD C |#] INC |
1 516 10p2 1671 s)22 264712: 30] 132 Jef-Be 40l

X . .1y .. Hewdde ottt bt T

(X

The maximum length (DD) of a negative in-line constant is 25
locations. The maximum length (DD) of a positivefconstant is 44
locations,

also

The in-line constant mayAbe used to enter constants in the memor y
locations between Read Input storage and Print storage. The in-line
constants should be preceded by a DL with a Field A of H81 and
followed by a DL with a Field A of the Address for the first instruction

to be assembled. These cards must then precede the first instruction

when assembling.,

4,10.3.2

IN-LINE COMMENTS

£6

Columns 41 through B{ of the coding form are headed "Gomments"

and can be used by the programmer to make notes regarding the lines

of coding.

the Assembly processing.

These comments will also appear on the final printout of

documentation.

They provide an excellent assist to good

As a further means to good documentation, the UNIVAC 1005

Assembly System provides for in-line comments.

An in-line comment

allows the programmer to use most of the columns of the form for

headings and notes,

in the object program,

The in-line comment is not allocated to memory

It is merely printed and punched by the

Assembly program, The in-line comment may appear anywhere in the

sourcey PYOoyaw

1

OPERA 2

LABEL [JOPERATION]__OPERAND -~ 1 .
M FIELD A |4] ‘NG PN FIELD B [+] INC FIELD C |+] INC
1 516 2 B 13 i e 26 17 12- 30] |32 36 |- - Ao
s Keedde—~ —H s H T T o

The in-line Comment is specified by placing a period (.) in

column 6 followed by a blank (space) in column 7.

itself may appear anywhere in the coding line from columns 8 through

The Comment

61. If the required comment is longer than 54 characters, additional

in-line Comments should be coded with a period in column 6 and a

space in column 7,

In order to assist in the documentation, it is suggested that
theAin-line comments be used as the first card or cards of the
program to be assembled.

Example

Problem: Print the Program Name, Author's Name,
and Date Written as the heading of the
Assembler printout,

LABEL JOPERATION]| OPERAND 1 QPERAND 2
FIELD A [+] 'Nnc BN FiELD B [+] INC FIELD ¢ |+| INC
1 516 102 1617s 0o 26|-12c 30f |32 3613 40

, . 9 =B, o [PAY.RoLl] GRlolss, xpl [nerm

f||||" o1k.: y | L a1
e DA 1T i1?ﬂ§iii;ifNES)u_fMJA-Llélgjl—J—L—

4.10.4 DEFINE INDIRECT ADIRESS CONSTANT

MNEMONIC: DI

LABEL JOPERATION | _OPERAND * | QPERAND 2
FIELD A [+] 'NC M FIELD B 4] INC FIELD C |+] INC
1 516 ol i el el] - x)+o2 264712- 301 132 el B 40

PR () A I .. I O 8 NG T N T I X B

The purpose of the DI address constant is to provide the programmer with

the means to allocate, identify, and establish the initial contents of

a secondary address. An instruction which calls for Indirect Addressing
contains a primary address for the A or the B and C portions of the
instruction. The locations referred to by the primary address must
contain a secondary address which is the address of the data to be

processed by the instruction,

Indirect Addressing is specified in an instruction by placing an
asterisk (*) in column 11 for OP 1yor column 21 for OP 2 (or both, if
required). The asterisk causes the Assembler program to place a binary
1 in the X bit position of location 6 for OP 1 IAjor location 7 for OP 2
IA (or both), At object time, when the instruction is transferred to
the Instruction Register, the UNIVAC 1005 first examines these two bit

positions.,

If the X bit of location 6 contains binary 1, a fwo location descending
transfer is made beginning at the address in the A portion of the IR,

to locations 2 and 3 (the A portion) of the IR. |If the X bit of

location 7 contains a binary 1, a four location descending transfer is

£

. . R
made beginning at the address in the B portion (locations 4 and 5) of -
the IR, to locations 4 through 7 (the B and C portions) of the IR. After
performing these functions, the instruction is then executed using
the addresses currently in the IR, The contents of the instruction
as stored in memory remain unchanged.

In order to provide the locations in the object program for secondary
addresses, the DI constant declarative is used as follows:
FIELD A: The specification of an address in Field A establishes a two
location secondary address in the object program. The initial
contents of the two location secondary address will be the
machine language code for the specified address.
FIELD B: The specification of an address in Field B establishes a four
location secondary address in the ob ject program., The
initial contents of the four location secondary address will
be established according to the rules for Assembly System B
OP 2 addressing. If Field B contains a label (Standard or N
programmer), the two character address of the MSL of the ~

area assigned to the label will be used as the initial

contents of the left hand two locations of the secondary address.
If Field B contains a label, Field C may be left blank, and

the two character address of the LSL of the area assigned

to the label will be used as the initial contents of the

right hand two locations of the secondary address.

FIELD C: If Field B does not contain a label, or if the LSL address
of the area assigned to the label in Field B is not to be
used as the initial value of the right hand two locations
of the secondary address, Field C must contain an address.

NOTE: The DI constant will usually have a label which is used
as the primary address in the instruction which calls
for Indirect Addressing.

Example 1 _
CABEL JOPERATION|__OPERAND OPERAND 2]
FIELD A J#] 'NC WA rico B [#] N | T FIELD C 1+] INC
1 sle o2 16l olxpe oeflos 0] |32 3ei-ke 4

M&Q&A A B L e i

]

.—l%—l—%l-. Lo a0 'Y | &h.‘-.. ' | L4 41
Lh& & |
]

L. L | Tr. N R
MovE DT L ITRA L e],

~

CAT becomes the MSL address of a iwo location secondary address
which initially contains the MSL address of the area assigned
to DOG. CAT may then be used as the primary address in the
A portion of an instruction. When that instruction is
executed, the address stored in CAT replaces the address of
CAT in the R.

FOX becomes the MSL address of a four location secondary address
which initially contains the MSL and the LSL address of the
area assigned to RAT,

cow becomes the MSL address of a six location constant which
initially contains (from left to right) the address of the
MSL of the area assigned to PIG, the address of the MSL of
the area assigned to ANT, and the address of the LSL of the
area assigned to ANT,

MOVE becomes the MSL address of a sgix locat;on constant which N
. initially contains (from left to right) the address of de01mal \ocafam,
thw abdwss 5&&9‘*’*02« location 724, the address of decimal location 733,

The Assembler processing for the allocation of locations to the DI
constants is the same as for the allocation of the DC and the DA
declaratives. This means that the locations assigned to the DI constants
in the previous example will be in the reverse sequence in which they

are assembled, The characters within each constant will appear in the

correct sequence,

Assume the value of the DLC is 1700 when CAT is to be assembled. The

addresses assigned to the lables in the example would be as follows:

CAT 1699
FOX 1695
COow 1689
VMOVE 1683

This condition may have an effect on the sequence of coding DI

constants when establishing a table of Indirect Addresskd In the

example of Indirect Addressing (page 11), a table of secondary addresses
was established with a label of SECAT. The coding to establish the

table is as follows:

¥4

LABEL [JOPERATION |___OPERAND - 1 QPERANS o
FIELD A [+ lNCP FIELD B [+] INC FIELD C [+]| inC
1 516 0l &l WP 161712 20)xeo 264702c 301 132 36]-B¢ 40

> [. | EL@. o
| P .| m'n 1_[

XAS,

!1;]‘: 1

A ll’nl«-ll wnll ll
A L'IJ-. | 7'5‘.11 .l

Using this sequence causes SECAT to be the address of the

MSL of the

Secondary Address Table. The LSL of the table is SECAT + 19. Refer

to the cbding of the loop in Section 4.8 for the use of an Indirect

Address table. (The constant storage referred to in the e*ample on

Page 12 would also be set up in the same manner,)

|60

AN
S

O

C

4,10,5 DEFINE END

MNEMONIC: END
LABEL POPERATION OPERAND _* 1 OPERAND _ 2
FIELD A |+] ‘nC PN FELD B |+] INC FIELD C |+} INC
] 516 o2 S i e i 261712- o] 132 3617140
l:nnEu“_&a XXJXAI -l | S W T % LI I T | |l

The purpose of the Define End declarative is to provide for the

automatic start of the object program when it is loaded by the Load

routine,

Field A specifies the address of the MSL of the first instruction to

be executed in the ob ject program,

programmer's label,

Field A usually contains a

No allocation is made, and the address in Field

A is not stored in memory,

Example 1
LABEL JOPERATIONL OPERAN. 1 1 QPERAND 2
' r\' FIELD A [+] 'nC M FIELD B |+] INC FIELD C |+] INC
1 516 02 6l s 2)xler 26 1742- 3010 132 361~ B= 40
N S | E—‘M‘ A SKLLAAKT ' l | IS T) l ed b Y l

START is the label of the source language ipstruction which is to be

executed first at the time the ob ject program is loaded.

The source

language instruction START need not be the first instruction assembled.

NOTE:

The Assembler output card produced from the END

declarative must be the last card loaded by the
Load routine, and should be followed immediately
by the input data to be processed.

MULTIPLICATION - |
Multiplication in the UNIVAC 1005 is performed using fixed length operands
for the multiplier, the multiplicénd, and the product. When a Multiply
instruction is executed by the UNIVAC 1005, the fixed length multiplier

and multiplicand are transferred from memory to positions in Row 32,

Bank 1 where they are then operated upon to produce the product--also

in Row 32, Bank 1. The product is then automatically transferred from

Row 32, Bank 1 to memory. During the execution, the locations in

Row 32, Bank 1 normally reserved by the IR and the ICC are used in theA
caloulation of the product. The contents of the ICC are preserved and

are restored to the ICC automatically, to initiate the next instruction.

Multiplication is performed using the absolute (unsigned) values of the
multiplier and multiplicand, producing an absolute (unsigned) value as
the product. Locations in the product which do not contain a significant

digit (1 through 9) will contain a zero (). Values are treated as

integers.

Since there are three operands in multiplication, the multiply command
of the UNIVAC 1005 utilize a 3 address logic: OP 1 is the multiplicand,
OP 2 is the multiplier, and OP 3 is the product.

There are two letiply instructions in the command structure of the
UNIVAC 1005, Multiply (MU) and Multiply Long (ML). The difference

between the two is the size of the fixed length multiplier, mﬁltiplicand

and product.

b

~

Multiply utilizes a multiplier of exactly six digits, a multiplicand

of exactly four digits, and produces a product of exactly ten digits.

Multiply Long utilizes a multiplier of exactly eleven digits, a
multiplicand of exactly nine digits, and produces a product of exactly

twenty digits.

If the programmers multiplier and multiplicand do not conform exactly
to the requirements of one or the other of the multiplication instructions,
a Multiply Working Storage (MWS) should be established by the programmer
(using DA declaratives) for a multiplier, multiplicand, and product of |
these lengths, The programmer should then transfer his variable length
operands to the MWS before executing a multiply instruction. The
transfers to MWS should be made via rX using the TX instruction. An

ahos

example of the use oﬂAMWS is included in the explanation of each of the

multiplication instructions,.

\ed

AN
{
N

4,11.,1 MULTIPLY

MNEMONIC: MU MODE: SPECIAL LENGTH: 7 lA: NO

LABEL ERATION OPERAND _* QPER 2
FIELD A |+] 'NC FIELD B |4} INC FIELD C |+] INC
1 516 101*)°2 16171 - X2 261712- 301 132 361- B 40

(Y

AR X' S I <SS I B I8N T - S B

FUNCTION: Transfer ascending the four digits beginning at the LSL
specified in Field A to the multiplicand positions of Row
32, Bank 1, . Transfer descending the six digits beginning
at the MSL specified in Field B to the multiplier positions
of Row 32, Bank 1. Multiply., Transfer ascending from the
product positions of Row 32, Bank 1 to the ten locations
beginning with the LSL specified in Field C.

NOTE: After completion of the MU instruction, the product
is also available in Row 32, Column 21 through Row 32,
Column 30 of Bank 1, until the execution of another
multiplication or division instruction.

Example 1

R

Given: A four digit Quantity in card columns 1 through 4,
A six digit Price in columns 5 through 14.

Problem: Multiply Quantity times Price and store the product
in the ten location area labelled AMT,

LABEL JOPERATIONL OPERAND 1 1 QPERAND 2
FIELD A J+] 'NC FIELD B [+ Inc [] FiELD ¢ [+ inc
1 516 o2 16171 2?2 2612 30| 132 36 |- B 40

coaa e b g] e AMT (]

FIELD A: T 1 is the decimal address of the MSL of Quantity
FIELD B: . Y 10 is the decimal address of the LSL of Price
FIELD C: +AMT is the address of the LSL of the area assigned to AMT,

N

0
(RT

In the event the size of the operands are not the exact length required
by the MU command, rX (Row 32, Bank 2) can be used as a Multiply
Working Storage. The multiplicand (4 digits or less) is transferred to
rX using a TX command. This fills the high order positions of rX with
space codes. A TA command is used to transfer the multiplier to rX

as follows: Field A contains the LSL address of the multiplier in
memory; Field C specifies $32 27 B2; and Field B specifies a location

in rX based on the actual length of the programmer's multiplier. If
the multiplier is 5 digits, the Field B address would be $32 23 B2,

The high order positions of the fixed length multiplicand and multiplier

will then contain space codes.

$32 21 B2 can be used as the LSL of the fixed length product of the
MU command, The programmer can then transfer from rX the actual number

of digits in his product.

Example 2
Given: A three digit Hours in columns 9 through 11 in the
form XX.X. A five digit Ratein columns 12 through
16 in the form X XXXX.
Problem: Multiply Hours times Rate and store the half
adjusted Gross in Punch storage positions for
columns 21 through 25 in the form XXX.XX.
LABEL JOPERATION| _OPERAND - | QPERAND _ 2
p FIELD A |4 'nC M FELD B [+ INC FIELD C [+] inC
1 516 o e el - Xpxe2 col 2. 301 J32 36143 40

R e 14 K W B R X | N

83221/85. 1|
3:2ARN,
q 1

i1 11 j&.. N TQQJSA. 2 1

I [(E2a34080
Lo 11 AA‘.. " ‘15; NS -

o oh B3 A88, .o, , [+lay

At the completion of the execution of the MU instruction, rX had the

following appearance.

PRODUCT MULTIPLICAND

2J66 666666 NRRRRIR ¥ NW

14 |15 |16 |17 |18 19|20‘21 22 123 |24 |25 |26 |27 |28 |29 |30 |31

MULTIPLIER

(

4,11,2 MULTIPLY (LONG)

MNEMONIC: WML MODE: SPECIAL LENGTH: 7 IA: NO
LABEL JOPERATION OPERAND _° 1 QPERAND 2
FIELD A |+] 'NC FIELD B |4#] INC FIELL C J#] INC
1 516 op2 3 i I s Pl FER o] W K 1 bl BRI,
LA lﬂllfj Al 1!\—; A s l h& PR 11 LLL AL A l

FUNCTION: Transfer ascending the nine digits beginning at the LSL
specified in Field A to the multiplicand positions of Row 32,

Bank 1. Transfer descending the eleven digits beginning at
the MSL specified in Field B to the multiplier positions of

Row 32, Bank 1. Multiply, Transfer ascending from the product
positions of Row 32, Bank 1 to the twenty locations beginning
with the LSL specified in Field C.

NOTE: After completion of the ML instruction, the product
is also available in Row 32, Column 11 through Row 32,
Column 3@ of Bank 1, until the execution of another
multiplication or division instruction,
The ML instruction is performed in the same manner as the MU instruction

except for the provision of longer values. The use of rX described in

the preceding Section 4,11.1 for the MU must be modified to take into

account the longer operands.

The TX instruction specifies the actual length of the multiplicand. The
TA instruction‘has an OP 2-LSL of $32 22 B2 and an OP 2-MSL predicated

on the actual length of the multiplier. Since the total number of digits
in the ML instruction multiplier, multiplicand and product exceeds 31
(the capacity of rX), the LSL of OP 3 of the ML instruction can specify
$32 3{ B1. This will cause the product to be transferred to the

identical locations in which it was developed.

\b"

Example 1

Given: A six digit Quantity in columns 1 through 6. A seven
digit Unit Cost in columns 7 through 13,

Problem: Multiply Quanti{y times Cost.

LABEL JOPERATION OPERAND 1 OPERAN 2
FIELD A]+ 'NC FIELD B 4] INC FIELD C |«] INC
1 516 10f+i2 1617]s 082 oe)-oc 30) [32 36i-Be 4
C X m.fg._&&g; TIRNIN
2211 TA, s iigl m_._ﬁ u.& R +l|'1-|
N TR I TTa A | 30346, |

4,12

DIVIDE INSTRUCTION

Division in the UNIVAC 1005 is performed using fixed length
operands for the divisor, the dividend, and the quotient. When
the Divide instruction is executed by the UNIVAC 1005, the fixed
length divisor is transferred to certain positions in rX (Row 32,
Bank 2), and the fixed length dividend is transferred to positions
in Row 32, Bank 1, where they are operated upon to produce the
quotient and the remainder--also in Row 32, Bank 1. The fixed
length quotient is then automatically transferred from Row 32,
Bank 1 to memory. During the execution of the Divide instruction,
the locations in Row 32, Bank 1 normally reserved by the IR and
the ICC are used in the caléulation of the quotient., The contents
of the ICC are preserved, and are restored to the ICC automatically,
to initiate the next instruction,

Division is performed using the absolute (unsigned) values of
the divisor and the dividend, producing an unsigned value as the
quotient, Locations in the quotient and remainder which do not
contain a significant digit (1 through 9) will contain a zero ().
Values are treated as integers,

Since there are three operands in division, the Divide instruc-

tion of the UNIVAC 1005 utilizes a 3 address logic: OP1 is the

divisor, OP2 is the dividend, and OP3 is the quotient.

The Divide instruction utilizes a divisor of exactly six
digits, a dividend of exactly eight digits, and produces a quotient

of.exactly eight digits. [f the length of the programmer's divisor,

\64

dividend and quotient do not all conform exacfly to the réquirements
of the Divide instruction, a DiQide Working Storage (DWS) should be
established by the programmer for a divisor, dividend, and quotient
of these lengths. The programmer should then transfer his variablel
length operands to the DWS before executing the Divide instruction,
An example of the use of Divide Working Storage is given following

the explanation of the Divide instruction.

\10

(4,12.1 DIVIDE -
MNEMONIC: DV MODE: SPECIAL LENGTH: 7 IA: YES

LABEL JOPERATION] OPERAND ° | QPERAND 2
FIELD A |+] 'NC pn FIELD B [+] InC FIELD C [+] INC
1 516 ol & 6l oo 2e]f2- s0f 132 36]~ Bz 40

YA TSN IR T INITYNNE

FUNCTION: Transfer ascending the six digits beginning at the LSL
specified in Field A to the Divisor positions of rX
(Row 32, Bank 2), Transfer descending the ejght digits
beginning at the MSL specified in Field B to the Dividend
positions of Row 32, Bank 1., Divide. Transfer a i
from the Quotient positions of Row 32, Bank 1 to the
gight éocations beginning with the LSL specified in

ield C,

NOTE: After completion of the Divide instruction,
the Remainder is available in Row 32,
Column 18 through Row 32, column 23 of
Bank 1, until the execution of another
multiply or divide instruction,

‘ Example 1
Given: An eight digit Total Cost in card columns
9 through 16, A six digit Total Units in
card columns 1 through 6,
Problem: Divide Total Cost by Total Units, and store
the quotient in the eight location area
labelled UNIT,
LABEL !OPERATION OPERAND 1 1 ' QPERA 2 i
FIELD A [+] 'NC PN FIELD B [+] INC FIELD C [+] INC
1 516 0112 1ol - 2hx[e2 2017 12- 301 32 36113 40

oo PV I i e L N]

FIELD A: Y6 is the decimal address of the LSL of Total Units
(the divisor).

FIELD B: M9 is the decimal address of the MSL of Total Cost
(the dividend).

\ i

AN
FIELD C: +UNIT is the address of the LSL of the area assigned L
to UNIT (the quotient).

NOTE: If the divisor is equal to zero,
the quotient is all zeroes and
the remainder is all zeroes., If
the dividend is all zeroes, the
quotient is all zeroes and the
remainder is all zeroes, If the
dividend is all spaces, the quo-
tient is all zeroes and the re-
mainder is all spaces, If the
divisor is greater than the divi-
dend, the quotient is all zeroes
and the remainder is the least
significant six digits of the
dividend.

In the event the size of the operands in the program are not
the exact length required by the DV commaﬁd, rX (Row 32, Bank 2)
can be used as a Divide Working Storage. The dividend is trans-
ferred to rX using a TX command, This fills the high order positions N
of rX with space codes. A TA command is used to transfer the |
divisor to rX as follows: Field A specifies the LSL address of
the divisor in memory; Field C specifies $XR + 15; and Field B
specifies a location in rX based on the aétual length of the pro-
grammer's divisor. For example, if the actual length of the divisor
is 5 digits, the Field B address would be $XR + 11, The high order
positions of the fixed length dividend and divisor would then con—
tain space codes. $XR + 7 can be used as the LSL of the fixed
length auotient produced by the DV instruction.

NOTE: If rX is used as DWS, the locations indicated
above must be used for the divisor,

Example 2

Given:

11 through 17,
columns 5 through 8.

Problem:

A seven digit Total Revenue in card columns
A four digit Total Tons in

Divide Total Revenue by Total Tons and store

the maximum 7 digit quotient in a 7 location
area labelled RPT,

LABEL JOPERATION| _OPERAND 1 | OPERAND 2
M FiErD A [+ v P FED B [+] ine FIELD C INC
1 516 0] il % (ESH I =l P 261712- 301 |32 361 PB- 40
N L V. A '1'7LVL 11 pdd N
21 11 TJA A 8L P LJ m; +LZ] ‘ijgl 1 15]_4
| bN; | Y ‘x& 1 +ilsl &1& n +2‘13| sliRJ 'y 7! L
1 2 11 TAA. P Y M& N *f" | van 2 1 J 11 a1

\13

INPUT OUTPUT INSTRUCTIONS | N

There are several types oF\input/output instructions in the
UNIVAC 1005 Assembly System, Each type is tailored to the require-
ments and the operating mode of the input/output device.

One type of input/output instruction is used for the devices
which transfer daté to or from fixed areas in memory reserved for
that purpose, or for commands to an input/output device which do
not involve a data transfer (eg. Space 1, Stacker Select, etc.)

This type is called General Command.

Each of the devices which do not have a reserved area for
input/output data transfers has its own type of command (eg. Magnetic
Tape, DLT, etc.) Each type is named for the device it controls.

In the case of the General Command, certain of the uses of
this command have been selected as Assembler pseudo-operations in
order to provide the programmer with a rapid method of specifying
often used commands. These pseudo-operations are called Shortened

General Commands.

ul

4,13,1

SHORTENED GENERAL COMMANDS *~

MNEMONIC: GCn MODE: 1,0 LENGTH: 7 IA: NO
N
LAGEL JOPERATION OPERAND 1 1 QPERAND 2
FIELD A [+] 'NC WA F'ELD B [+] INC FIELD C [+] INC
1 516 102 16171)22 26]1°12- 301 }32 361~ 1B- 40
L‘__l_&l -llJl ll | I W W J!lllnl f‘._l,
FUNCTION: Execute Reader, Printer and Punch input/output commands

specified by n, where n means the following:

1. Read, Execute

2, Test Punch, Punch, Clear

3. Combines GC1 and GC2

4. Space 1, Print, Execute

5. Combines GC1 and GC4

6. Combines GC2 and GC4

7. Combines GC1, GC2, and GC4

The GCn operations are pseudo-operation codes which select

specific Reader, Printer, and Punch operations from the structure
of the GC coded operations. When any of the specific input operations
indicated above are required, the GCn may be used.

Fields A, By and C must be blank, in the GCn instruction.

\1S

‘o
4,132 GENERAL COMMANDS W

MNEMONIC: GC MODE: 1/0 LENGTH: 7 lA: NO

s s L ey -

LABEL JOPERATION| OPERAND - QPERAND 2
Fl FIELD A |+] 'nC luf F'ELD B |+| INC FIELD C |+] INC
‘!O b3

1 516 12 1617 -)22 261712- 301 132 36173z 40k

L. BE e ML) ke 1 ICe a

The bit positions of locations 2 through 7 of the GC instruction

correspond to functions of the UNIVAC 1005 input/output devices which

have an implied data address, or which do not require a data address.

A thorough knowledge of the various input/output devices of the UNIVAC

1005 is required for proper use of the GC command.

Since the desired input/output functions are indicated by bit positions
of the least significant six locations of the GC instruction, octal
coding is used to specify CC in Fields A, B, and C. All three Fields e

must be specified.

Octal coding is specified by the number sign (#) followed by four
octal digits.‘ The bit configuration for the required input/output
- operations is used to determine the four octal digits,

NOTE: Caution should be exercised by the programmer to avoid
specification of bits which correspond to conflicting
input/output operations.

The following is a brief description of the input/output functions which
correspond to the bit positions in the GC instruction. The functions

are listed by the type of function. A table is also provided which indicates

the corresponding bit position in the GC instruction.

CARD AND PAPER TAPE
Card Read

Auxiliary Card Read

Read Punch Read

This bit sets the Read F.F. Card will be
read when Execute is given,

This bit must occur in the same GC as Execute
to cause card readings.

This bit sets the Read Punch Read F.F. Read
will occur when Punch Hold or Punch Clear is
given,

Paper Tape Read-Block This bit must occur in the same GC as Execute.

Will cause the reading of 80 characters from
paper tape.,

Paper Tape Read-Character This bit must occur in the same GC as

Execute, Will cause the reading of 1
character from paper tape.

End Read on All Bits This bit must occur in the same GC as Execute

Execute

PRINTING
Print
End Print at 90

Characters

Space 1

Space 2

and the bitswhich cause reading. During the
read, each character is tested for all 1
bits. ieneh-ohareeter . |f detected, reading

1s terminated.

This bit causes the devices to execute those
functions signalled, by various of the other
bits, either prior to or simultaneous with
Execute,

This bit sets the Print F.F. A line will be
printed when Execute is given.

This bit must occur in the same GC as Execute,
The Print function must be signalled prior to or
simultaneous with End Print.

This bit will cause an immediate line space unless
accompanied by Print, Execute. When accompanied
by Print, Execute, the line is printed before
spacing occurs.

This bit will cause two immediate line spaces
unless accompanied by Print, Execute. When ac-
companied by Print, Execute, the line is printed
before spacing occurs.

\ 71

Skip 1, 2 and 3

CARD AND PAPER TAPE
Punch Hold

Punch Clear

Punch Test

Punch Paper Tape=
Block

Punch Paper Tape -
Character

Punch Odd Parity-
Paper Tape

“or Punch Clear,

Any combination of these three bits will o
initiate an immediate forms skip, unless N
accompanied by Print, Execute. When accompanied ‘
by Print, Execute, the line is printed before

skip occurs.,

PUNCHING

This bit causes an The
punch storage area

punching.

immediate punch cycle.
is not cleared following

This bit causes an
-punch storage area
ing.

immediate punch cycle. The
is cleared following punch-

This bit causes a test to determine if the punch
storage area is still in use by the last punch
operation, |If it is in use, further execution
of UNIVAC 1005 instructions is inhibited, until
not in use.

This bit must occur in the same GC as Punch Hold:or
Punch Clear, When accompanied by Punch Hold or
Punch Clear, it causes 80 characters to be

punched in paper tape.

This bit must occur in the same GC as Punch Hold
When accompanied by Punch Hold

or Punch Clear it causes 1 character to be punched
in paper tape.

If this bit occurs in the same GC which causes paper
tape punching, Cdd Parity punching will occur,

PROCESSER INPUT/OUTPUT MODE

Code Image Read

*Code Image Punch

This bit must occur in the same GC which causes
reading. When accompanied by the bit or bits
which cause reading, it causes card and paper
tape reading in Code Image.

This bit must occur in the same GC which causes
punching., When accompanied by the bit or bits

which cause punching, it causes card and paper

tape punching in Code Image.

CARD SELECTION

Punch Stacker Select
or
Punch Even Parity-
Paper Tape

Auxiliary Reader
Stacker Select 1

Auxiliéry Reader
Stacker Select 2

DATA LINE CONTROL

Request to Transmit

MAGNETIC TAPE CONTROL

Rewind Magnetic Tape

Back Space Magnetic
Tape

Erase Flip Flop

If this bit occurs in the same GC which
causes card punching, it causes the card
being punched to be placed in the Select
Stacker on the next Punch cycle. |f this
bit occurs in the same GC which causes paper
tape punching, Even Parity punching will
occur,

This bit must occur in the same GC which
causes reading in the Auxiliary Reader. |t
causes the previous card read to be placed in
Stacker 1.

This bit must occur in the same GC which causes
reading in the Auxiliary Reader. It causes
the previous card read to be placed in Stacker

This bit sets a F.F. that requests data line
transmission, The F.F. must be set prior to
the execution of the instruction (SD) which

causes data transmission,

This bit causes an immediate rewind of tape
on the Servo last set by the Set Condition
(SC) instruction.

This bit causes an immediate backward movement
of tape, to the preceding intererecord gap,

on the Servo last set by the Set Condition
(SC) instruction.

This bit causes the Erase F.F. to be set.
When the next write tape (WT) instruction is
executed, 5.04 inches of tape will be erased
prior to writing the block of tape.

19

The bit positions which correspond to the previously listed

functions are shown in Figure The bit positions are indicated

by the Location within the GC instruction, on the left hand side of
the name of the function. On the right hand side of the function is
the value of the bit for octal coding purposes, At the bottom of each
Value column is a box for indicating the sum of the circled values.

These boxes are identical to the position of the octal digits in

each of the fields of the GC source language instruction,

) AN

LOCATION 2 LOCATION 3 ’
BITS VALUEl| BITS VALUEll BITS VALUE |l BITS VALUE
(~ NOT USED 4 4 SPACE1 4 X NOT USED |4 4 READ AUX. |4
Y RESERVED 2 2 READ 2 Y SELECT 2 2 READ |2
STACK 2 PUNCH READ
AUX. READ
8 PRINT 7 T EXECUTE I 8 SELECT 7 T READ CODE 1
STACK 1 IMAGE PAPER
AUX. READ TAPE OR
CARD
FIELD ACC = #
LOCATTON Z F[COCATION 5
BITS VALUE} | BITS VALUEll BITS VALUE || BITS VAL UE
X END READ ON |4 4 PAPER TAPE |4 X NOT USED |4 4 SKIP 1 4
ALL BITS READ
BLOCK
Y PAPER TAPE |2 2 PAPER TAPE 2 Y SKIP 4 2 2 SPACE 2 2
PUNCH ODD PUNCH CHAR
(PARITY
8 PAPER TAPE I T PAPER TAPE |1 8 SKIP 2 1 17 END PRINT |1 _
PUNCH READ CHAR AT 90
BLOCK
FIELD B CC = #
LOCATION 3 LOCAT[ON 7
BITS VALUE| | BITS VALUE|| BITS VALUE || BITS VALUE
X NOT USED 4 4 BACK SPACE |4 X NOT USED |4 4 PUNCH CLEAR|4
MAGNETIC
TAPE
Y REWIND 2 > ST > Y PUNCH > 2 PUNCH TEST |2
MAGNET IC REQUEST TO STACKER
TAPE TRANSM| T SELECTOR
PTPUNCH EVEN
| PARITY
8 SET ERASE f T RESERVED |1 8 PUNCH HOLD [0 T PUNCH CODE [
FLIP FLOP |MAGE PAPER
TAPE OR
(CARD
FIELD C CC = #
FIGURE___

\Q\

4,13.3

READ MAGNETIC TAPE
MNEMONIC: RT MODE: DESCENDING LENGTH: 7 lA: NO
LABEL JOPERATION| OPERAND 1 OPER 2
FIELD A [+| 'NC]uf F'ELD B |+] INC FIELD C |+] INC
1 516 02 i i) i 2 261712- 30} 132 36 1 B= 40
I’ PR W) IR__I_}_L_I‘ i .l.,*,,.‘__.‘,, 3 l %4 2 A I | W W | il l_

FUNCTION: Read forward, transfer descending from magnetic tape to
memory beginning at 2M specified in Field B, Continue
read and transfer until an inter-record gap is detected.

NOTE: The Servo on which reading will occur is
the Servo last set by a Set Condition
(SC) instruction.,
Field B specifies the address of the MSL of an area of memory
which is to receive the block of data from tape. Once initiated by

the RT command, reading will continue until the inter-record gap,

recorded on tape when it was written, is detected by the Servo. (\,
The area set aside should be at least as long as the longest block
to be read into memory plus one location,
NOTE: The information stored in memory will be the data
read from tape plus an additional space code as
the last character stored.
Example 1
Given: TPIN is the label of a DA declarative which
established a 251 location area. The longest
block of tape expected is 250 characters.
Problem: Read a block of magnetic tape beginning at
TPIN.
LABEL JOPERAT ION |__OPERAND 1 | PERAND 2
FIELD A J+] INC F'ELD B |+] INC FIELD C J+] INC
1 sl6 o2 teltls olxee 2ell2s 30 f32 3e]-B: 40
‘__.l_' Ade ;JRI;E,._._.J b L 2l Tm '] e - |

R

The machine language instruction produced by the RT source
language instruction will have the address of the MSL of the input

area (TPIN) in locations 4 and 5. Locations 2, 3, 6, and 7 will

be blank,

+ TPIN will contain a space code if a 250 character block is

read,

NOTE: If the 4 bit position of location 3 contains
a binary 1, reading is performed at high gain.
This is specified by placing #0004 in Field A.
If Field A is blank, reading occurs at normal

gain,

\ {3

4,13.4

., §§\
1

WRITE MAGNETIC TAPE
MNEMONIC: WT MODE: DESCENDING LENGTH: 7 lA: NO
LABEL F)PERATION OPERAND 1 OPERAND 2
FIELD A |+] INC F'ELD B |4] INC FIELD C j+| INC

1 516 02 1617 = 20122 261°12- 301 132 6B 40
IR " A B ¥ S O P B N
FUNCTION: Write forward, transfer descending beginning at

OP1-MSL specified in Field B until OP1-LSL

specified in Field A has been transferred.

Also, simultaneously transfer descending beginning

at OP1-MSL to OP2-MSL which is the same address as

OP1-MSL., Transfer ends at the location of OP2 which

coincides with OP1-LSL. The WT instruction continues

until OP2-LSL specified in Field C has been cycled.

P2 be OP1-LSL 3..
The OP1-LSL must be two locations beyond the last data character

to be written on tape. The charactérs in these two extra locations of SN

OP1 are not written on tape and are not disturbed in memory, The
contents of the 3 locations to the right of OP1-LSL are not disturbed.
Thus the five locations to the right of the location which contains
the last data character to be recorded on tape are included in the

machine function, but remain unchanged by the function.

Example 1
Given: TPOUT is the label of a DA declarative which
established a 400 location area.
Problem: Write a block of magnetic tape from TPOUT,
LABEL PPERATION " OPERAND 1 | OPERAND 2 :
FIELD A |+ lNCP FIELDB |+| INC V| FIELD C |+ !NC
1 536 10*‘L 161712 20)1*22 2617 12= 30 32 361 3= 40
. - N
N A o ;| TPOMTI [, | YT e 1

Consideration need not be given to the contents of the five
locations to the right of the LSL of TPOUT, since they are not
changed by this instruction.

NOTE: The Servo on which writing will occur is the Servo
last set by a Set Condition (SC) instruction,

A Servo must be set by an SC instruction before the first
magnetic tape operation is given., Console Clear leaves no Servo

set,

\3S

a

4.13.8 RECEIVE DATA LINE ' o

MNEMONIC: RD VMODE: DESCENDING LENGTH: 7 [A: NO

LABEL JOPERATION | _OPERAND 1] OPERAND _ 2
Iﬂ FIELD A [+] 'NC W FIELD B f+] INC FIELD C |+] INC
1 51 [o2 S il NS s PP 26]712- 300 132 3613z 40

Lo "Jﬁ .. nLlﬁf- 2 a1 ,:KN\IZL!!i | :EL!.: T I .

FUNCTION: Receive from the Data Line. Store descending beginning at
OP 2-MSL specified in Field B, continuing until OP 2-LSL
specified in Field C has been filled. The last two
characters stored in OP 2 will be the End of Message
character and the Longitudinal Parity Character. The
preceding characters will be the Data characters.

OP 2-MSL is automatically used as OP 1-MSL. Field A which specifies
OP 1-LSL should contain the same address as Field B. Thus OP 1 becomes
a one character location., There must be an OP 1 in an RD function for

control purposes. Blank addressing should not be used in Field C.

E 1 -
xample S
DA
Given: RDIN is the label of akgeclarative which established
an 82 location area.
Problem: Receive the contents of the card transmitted.
LABEL JOPERAT ION |__OPERAND 1 1 OPERAND 2
FIELD A |+] 'NC F'ELD B |+| .INC FIELD C |+ !NC
1 - 546 02 16171 P2 26 1712= 30 32 36 1" B= 40
‘ril". m—l—LM' ',l et - Jl * 'l

The contents of the transmitted card will be stored in RDIN through

RDIN + 79. RDIN + 80 will contain EOM, RDIN + 81 (+RDIN) will contain
th.e LPC .

4,13.€6 SEND DATA LINE

MNEMONIC: SD MODE: DESCENDING LENGTH: 7 lA: NO

LABEL FOPERAT!ON OPERAND 1 | QPERAND 2
FIELD A J+] 'NC Fl FIELD B [+] INC FIELD C [+] Inc
1 516 02 3 o] K22 2612 30] {32 36 |- B= 40

.’,,}@‘LA. L- N | ;s\n.nl.l

FUNCTION: Send via the Data Line. Transfer descending to the Data Line,
the information beginning at the MSL of OP T specified in
Field B, continuing until the LSL of OP 1 specified in Field
A has been transferred to the Data Line, Simultaneously
transfer descending, the same information to OP 2, The OP 1-
MSL is used as the OP 2-MSL., OP 2-LSL specified in Field C
must be the same as OP 1-LSL specified in Field A, Blank
addressing should not be used.

The information to be transferred from memory to the Data Line consists
of Transmission Control Characters, and the data; in the following format:

- OP 1, MSL to OP 1, MSL + 3 Four synchronizing characters

OP 1, MSL + 4 Space code
OP 1, MSL + 5 to n Data
OP 1, LSL - 3 Turn of f Request to Transmit--right hand
. parenthesis ())
OP 1, LSL - 2 End of Message Code

OP 1, LSL - 1 and OP 1, LSL Space codes

Example 1

Problem: Transmit the contents of a card.

LABEL [OPERATION] ~OPERAND 1 1 " OPERAND 2

FIELD A |+] 'NC FIELD B |+]| INC FIELD C || INC
N0) lel7 - Cyxe2 2617 12- 301 132 361~ 13- 401

*1![)n& ;--- A l
' | AL A 2 A LA\) ll

1 |
. L
1. 5:.. .| *'Sdiﬁﬁii N N | L 1 L
|
1
|
|

U 5

| S S | 4

E)
- o

b
po

EQM .
D ATA

|
r

La 1 1 LA) [T S || Al 3 A

| W i Jl A

il

a1 1
A

ll'in

Solution: The DC and DA declaratives allocate a message area of

storage which contains the 5 constant preamble (PREAM),
the data (DATA), and the ¥pconstant trailer. These are

allocated in reverse sequence to the order assembled.
The TD transfers the card data from Read Ihput storage to the

data portion of the message area. The GC sets Request to
Transmit, The SD does the sending.

\ 28

-

4.13.9

RECEIVE INTERFACE

MNEMONIC: RF MODE ¢ LENGTH: 7 IA: NO
LABEL JOPERATION | __OPERAND - 1 QPERAND 2
FIELD A [+] 'NC WA FELD B 4] IN\C FIELD ¢ [+] inc
1 56 02 16071 ol 26112- 30 P32 301-B- 40

ICC . .

|

M.

o

Llll

FUNCTION: Receive data from the Unit selected by bits in CC
specified in Field A, and store in the area whose
MSL is specified in Field B, and LSL is specified

in Field C.

The address specified in Field B becomes OP1-MSL and OP2-MSL,

and the address specified in Field C becomes OP1-LSL and OP2-LSL

during the RF function. The M address occupies locations 4 and 5,

and the L address occupies location 6 and 7,

The bit positions of CC appear in locations 2 and 3 and are

used to indicate Unit Number, Input Control, and Output Control.

Octal coding is used to specify the bit pattern of CC,

The num-

ber sign (#) followed by four octal digits is required to specify

octal coding.

The bit positions of CC and corresponding Unit Number and

Input/Output Control are as follows:

Location 2

X not used
Y Output Control 3
8 Output Control 2

4 Output Control 1
2 Unit 4
1 Unit 3

Location 3

X not used

Y Input Control 3
8 Input Control 2

4 Input Control 1

2 Unit 2
1 Unit 1

\39

/

N
Example 1
Problem: Receive an 80 column record from Unit 1
through Input Control 1 and store in an
80 location area labelled IN1,
LABEL JOPERATION | OPERAND - | " OPERAND 2
FIELD A [+] 'NC WM F'ELD B [+] INC FIELD ¢ [+] incC
1 5|6 oo tell - wolxo oef-lo- s0) 032 3ef-be 40f
... JRF. . . | #ofaS| | I ENA L | I HINL (],
Solution: #0005 is octal for P00 PP@ 0pY 101, which selects
Unit 1 and Input Control 1.

4.13.8

SEND INTERFACE

MNEMONIC: SF MODE : LENGTH: 7 IA: NO
" TABEL JOPERATION] __OPERAND T OPERAND 2
FIELD A [+] 'Nnc BN F'ELD B [4] INC FIELD C INC
1 586 o2 167 1= P2 261712 301 132 36 = 40
‘ P S ML Al icg Ao X 2 l h A2 2 A I L 3 A 2 l

FUNCTION: Send data to the Unit Selected by bits in CC specified
in Field Ay from the area whose MSL is specified in
Field B, and LSL is specified in Field C.

The address specified in Field B becomes the OP 1-MSL and
opP 2—MSL,and the address specified in Field C becomes the
OP 1-LSL and OP 2-LSL during the SF function, The M address
occupies locations 4 and 5, and the L address occupies locations
6 and 7.

The bit positions of CC appear in locations 2 and 3 and are
used to indicate Unit Number, Input Control, and Output Control.
Optal codingris used {o specify the bit pattern of CC., The number
sign (# followed by four octal digits is required to specify octal
coding.

The bit positions of CC and corresponding Unit Number and
Input/Output Control are listed in the section on Receive Interface

(Section 4.13.5).

\ 4\

Example 1
Problem: Send to Unit 2 through Output Control 1
the information stored jn a 160 location
area labelled OU2,
LABEL FOPERATION OPERAND 1 l OPERAN 2
FIELD A |+] 'NC WM F!ELD B [+| INC FIELD C INC
1 516 “0*"2 161712 2f*e2 261712 30} 132 36 3= 40
. ISE. . . Ikagddal [flous] 1 1oua |||
Solution: #(MQZ‘ is octal for QPQ 100 QPP P10 which selects
Unit 2 and Output Control 1.
SN

