
TEXTFORM Reference Manual

January 1986

The University of Michigan
Computing Center

Ann Arbor, Michigan

Acknowledgement: This manual was written by the staff of Computing Services
at the University of Alberta, Edmonton, Alberta, Canada. Minor changes have been
made to reflect the differences between facilities at the two universities.

Table of Contents

Before You Begin . 1
Why Use TEXTFORM? . 1
A TEXTFORM Example . 1

Basic TEXTFORM . 5
Starting Lines . 5
Leaving Extra Space Between Lines . 7
Paragraphs . 8
Starting Pages . 8
Footnotes . 8
Lists of Points . 9
Underlining and Italics . 10
Spacing Words on the Line . 11

TEXTFORM Language in Detail . 25
What is Computer Text Formatting? . 25
Text Processing Concepts . 25
How Does TEXTFORM Work? . 26
Items That Can Appear in Command Mode . 27
Characters Which Have Special Uses in Text Mode . 29
Lengths in TEXTFORM . 31
Notation Used For Subsequent Parts of This Manual . 32
User-Defined Names in TEXTFORM . 34
Choose an Output Device for the Document . 34
Getting a Proof or Working Copy of a Document . 35
Sample Proof . 36

Character Appearance . 37
Underlining . 37
Fonts . 38
Typeface or Character Set . 39
Producing Special Characters . 40
Superscripts and Subscripts . 40
Overstruck Characters . 41
Overstriking Characters without Centring . 42
Automatically Replacing Text Characters in the Input 42
Typesize . 43
Other Modifications to Text Appearance . 44

Page Appearance . 46
Size of Page . 46
Margins . 46
Page Position Commands . 47
Blank Pages . 47
Front and Back Pages . 48
Page Numbers . 49
Keeping Text on the Same Page or Column . 50
Vertical Position of Text . 51
Commands Which Include Input at Special Positions . 54

Producing Columns on the Page . 74
Logical Pages . 75
Tables . 82
Defining Specific Columns in Logical Pages and Tables 91
Displaying the Logical Page or Table Dimensions . 92
Producing Columns Without Using DEFINE TABLE . 93

Variables . 95

v

Predefined Variables . 95
System Variables . 95
User-Defined Variables . 95
Values that can be Assigned to Variables . 97
Operators . 107
Expressions . 112

Macros . 113
Modifying the Action of the Macro When it is Used . 113
Changing the Macro . 116
Text Within Macros . 116
Sample Form Letter Macro . 116
More Control over Macros . 117
Details about the Macro Definition and Use . 119

Information about User-Defined Names . 122
Erasing Names . 122
Checking Whether Name Exists . 122
Checking Type of a Name . 122
Giving Attributes to a Name . 123
Information About the Attributes of a Name . 127

Table of Contents and Index . 129
Table of Contents . 129
Index . 135

Line Drawing . 144
Specifying Position of Line . 144
Drawing lines . 145

Program Control with TEXTFORM . 149
System Variables . 149
System Constants . 149
Information About Current Page Position . 150
Formatting Information . 151
Including Input If a Condition is True or False . 156
Including Input from a List of Choices . 158
Including Input WHILE a Condition is True . 159
Including Input FOR a Specific Number of Times . 159
Functions . 160
Calling TEXTFORM as a Subroutine . 163

TEXTFORM and MTS . 167
The RUN Command in Detail . 167
Ending the TEXTFORM Run . 168
Errors Which End the TEXTFORM Run . 169
System Information During the Run . 169
Output on SERCOM . 170
Output on SPRINT . 172
Running TEXTFORM Interactively by Giving GUSER Input 177
Interrupts in the TEXTFORM Run . 179

Appendix 1 – TEXTFORM Language . 184
Appendix 2 – TEXTFORM’s Internal Storage . 236
Index . 237
Index to TEXTFORM Language . 246
Error Messages . 251

vi

1

BEFORE YOU BEGIN

Why Use TEXTFORM?

TEXTFORM can produce a variety of documents, ranging from single-page memos
and letters to entire books. It is primarily aimed at the production of multi-page
documents, since it may be too costly for very short documents.

A computer text formatting system has a major advantage over conventional
document production. Once the contents of the document have been entered into
the computer, they can easily be modified. The powerful MTS File Editor allows
you to revise the contents of a document without having to be concerned about the
format. With the TEXTFORM program, you can change the format without
affecting the contents. Errors that are inevitably introduced when a document is
retyped are thus eliminated, and revisions and updates are no longer onerous
tasks.

It is important that you understand that there generally is not a one-to-one
correspondence between the lines you type and the lines of your document. One
input line (a line you have typed into your file) may generate several output

lines (lines on the final page), or several input lines may be needed to generate a
single output line.

A TEXTFORM Example

Create the Input File

MTS and File Editor commands must be used to create a file and insert into it the
text that is to be formatted. The following example of a session at a terminal
illustrates this. In this example, the characters #, ?, and : are produced by MTS; do
not type them. Italics indicate information specific to you.

signon abcd
? password
create trial
File “TRIAL” has been created.
edit trial
: insert
?The earliest computer programs were written in a
?rudimentary system of notation called machine language.
?The numerical codes of machine language were soon
?replaced by the mnemonic codes of a slightly higher-level
?language called assembly language.
?A separate program called an assembler was employed to
?transcribe assembly-language instructions into the machine

TEXTFORM Example

2

?codes that could be executed directly by the computer.
?Machine-language and assembly-language programs are
?detailed and repetitious.
?
: stop
#

The complete file looks like this:

list trial
> 1 The earliest computer programs were written in a
> 2 rudimentary system of notation called machine language.
> 3 The numerical codes of machine language were soon
> 4 replaced by the mnemonic codes of a slightly higher-level
> 5 language called assembly language.
> 6 A separate program called an assembler was employed to
> 7 transcribe assembly-language instructions into the machine
> 8 codes that could be executed directly by the computer.
> 9 Machine-language and assembly-language programs are
> 10 detailed and repetitious.
End of file

Here are a few tips to keep in mind when entering the input text:

– Since TEXTFORM normally recognizes only the first blank between words, make
generous use of blanks to make the input file as readable as possible. Indent
portions of the input text that have special meaning and separate sections by
blank lines provides for greater readability when editing files. This helps locate
certain portions of the input text for later revision.

– Keep the lines short—type 60 characters or less per line. TEXTFORM produces
an error if an input line exceeds 256 characters.

– Start each new sentence on a new line, to make editing easier.
– Be consistent in the spelling, capitalization, and placement of TEXTFORM

instructions within the input text, again, for ease of editing.

Run the TEXTFORM Program

To have the TEXTFORM program format the text, give an MTS command of the
following form:

run *textform scards=file spunch=result

From this model, replace file with the name of the file which contains the text, and
replace result with the name of an empty file, which can be a temporary file, as in:

run *textform scards=file spunch=–res

TEXTFORM Example

3

Print the Formatted Text

If for some reason there are TEXTFORM errors in your file, error messages may
appear at your terminal after you type the run command. If this happens, read the
next section on error messages before printing your document.

After the run command, the formatted text is in the file –res. To print it on the
Xerox 9700:

run *pagepr scards=-res
Execution begins

PRINT assigned receipt number 622643
PRINT 622643 held
This *PAGEPR run generated 406 lines, 5 pages, 5 images,
and 3 sheets.
PRINT 622643 released, 7 pages, route=CNTR,
printer=PAGE.

Execution terminated

The formatted text will appear on an 8.5 inches by 11 inches page, single-spaced,
with four 1-inch margins (although the following example is somewhat narrower,
and in a different typeface):

The earliest computer programs were written in a rudimentary system
of notation called machine language. The numerical codes of machine
language were soon replaced by the mnemonic codes of a slightly
higher-level language called assembly language. A separate program
called an assembler was employed to transcribe assembly-language
instructions into the machine codes that could be executed directly by
the computer. Machine-language and assembly-language programs are
detailed and repetitious.

How to Interpret Error Messages

The following sample file contains several TEXTFORM instructions, or commands.
The commands can be entered in upper or lower case.

list trial
> 1 The earliest computer programs were written in a
> 2 rudimentary system of notation called machine language.
> 3 <LINE>1. The numerical codes of machine language were soon
> 4 replaced by the mnemonic codes of a slightly higher-level
> 5 language called assembly language.
> 6 <LINE>2. A separate program called an assembler was used
> 7 to transcribe assembly-language instructions into the
> 8 machine codes that could be executed directly by the
> 9 computer. Machine-language and assembly-language programs
> 10 are detailed and repetitious.
End of file

If you enter a command that TEXTFORM does not recognize, perhaps as the result of
a typing error, TEXTFORM responds with an error message which it prints at your
terminal. For example, if line 6 of the file contained:

TEXTFORM Example

4

<LNE>2. A separate program called an assembler was used to

the following messages would appear at your terminal after you typed the RUN
command:

1 4 6 <LNE>2. A separate program called an assembler was used
to
Error 25: LNE is not defined. Ignored.
in column 1 ''LNE>2. A separate''

The information in the message helps you find the error in your file. The numbers 1,
4 and 6 on the first line indicate that the error occurred on page 1 of the document,
line 4 on the page, and that the input line containing the error was line 6 of the file.
All error messages are numbered; this is message 25. The ‘in column 1’ tells you that
TEXTFORM found the errant command starting at column 1 of input line 6. This lets
you go back into your file, correct the error, and rerun TEXTFORM.

In this manual, messages and information displayed by TEXTFORM appear in
italics. If you want to print a copy of these messages, set SERCOM in the RUN
command:

run *textform scards=file spunch=–res sercom=–error

Now the messages are stored in the file –error, which you can edit or copy to *print*.

TEXTFORM Example

5

BASIC TEXTFORM

This section of the manual describes basic TEXTFORM instructions. Once you have
read it and tried the examples, you will be able to produce a simple document. The
rest of the manual describes the TEXTFORM command language in more detail.

Previous examples showed that an input file containing only text can be
processed by TEXTFORM. This is because TEXTFORM has defaults —actions
which take place unless you specify otherwise. To get a more specific format, a
document must have TEXTFORM instructions inserted into the input file, along
with the text.

Starting Lines

The most frequently used TEXTFORM commands are LINE and LINEEND,
abbreviated as L and LEND. They are used when a new line must be started in the
document, since a new line in the input file does not start a new output line in the
document.

The earliest computer programs were written in a
rudimentary system of notation called machine language.
<LINE>1. The numerical codes of machine language were soon
replaced by the mnemonic codes of a slightly higher-level
language called assembly language.
<LINE>2. A separate program called an assembler was used to
transcribe assembly-language instructions.

produces:

The earliest computer programs were written in a rudimentary system
of notation called machine language.
1. The numerical codes of machine language were soon replaced by
the mnemonic codes of a slightly higher-level language called assembly
language.
2. A separate program called an assembler was used to transcribe
assembly-language instructions.

Each time the LINE command is used, TEXTFORM ends the current line, and
spaces down to start the next line. LINE makes sure that TEXTFORM is at the start
of a line, and has no result if this is already the case. Because of this, LINE, LINE is
the same as LINE.

The vertical spacing between lines is determined by LINESPACE. By default, it
is 1/6 of an inch, about .16 inches. On most devices, this gives the impression of
‘single spacing’. If you require 3 lines per inch, change LINESPACE:

<LINESPACE = .3INCH>

Basic TEXTFORM

6

Changes to LINESPACE depend on the capabilities of the output device. For
example, if you want 5 lines per inch, and set LINESPACE to .2 inches, the device
may be unable to produce this. It will then print 6 lines per inch, although
LINESPACE is still .2 inches.

Each time a line begins, TEXTFORM spaces down by the value in LINESPACE.
Therefore, when a LINE command is given, TEXTFORM moves LINESPACE down
from the previous line of text. A LINESPACE change after a LINE command then
affects subsequent lines.

<LINESPACE = .33INCH>
The earliest computer programs were written in a
rudimentary system of notation called machine language.
<LINE, LINESPACE = .16INCH>
1. The numerical codes of machine language were soon
replaced by the mnemonic codes of a slightly higher-level
language called assembly language.
<LINE>2. A separate program called an assembler was used to
transcribe assembly-language instructions.

produces:

The earliest computer programs were written in a rudimentary system

of notation called machine language.

1. The numerical codes of machine language were soon replaced by
the mnemonic codes of a slightly higher-level language called assembly
language.
2. A separate program called an assembler was used to transcribe
assembly-language instructions.

If you want the next line to use the new value of LINESPACE, change LINESPACE
before the next line:

1. The numerical codes of machine language were soon
replaced by the mnemonic codes of a slightly higher-level
language called assembly language.
<LINE>2. A separate program called an assembler was used to
transcribe assembly-language instructions.
<LINEEND, LINESPACE = .33INCH>
The earliest computer programs were written in a
rudimentary system of notation called machine language.

produces:

1. The numerical codes of machine language were soon replaced by
the mnemonic codes of a slightly higher-level language called assembly
language.
2. A separate program called an assembler was used to transcribe
assembly-language instructions.

The earliest computer programs were written in a rudimentary system

Basic TEXTFORM

7

of notation called machine language.

The second line-positioning command, called LINEEND, can be used to end the
current line without spacing down to the start of the next line. Instead of
LINESPACE=.33INCH, LINE you can say LINEEND, LINESPACE=.33INCH.

LINEEND ends a line only if one has been started. Since the command LINE
‘starts’ a line, the commands LINE, LINEEND produce an empty line. If you want
extra vertical space between lines or at the top of a page, use the VERTSPACE
command, described next.

Leaving Extra Space Between Lines

The vertical space generated by the LINE command is always LINESPACE high.
The VERTSPACE, or VS command, spaces down immediately by the length
specified. It does not change the horizontal position. The following example leaves
half an inch of white space, and starts a line:

Half<VERTSPACE .5INCH, LINE>an inch

produces:

Half

an inch

As with changes to LINESPACE, the amount of vertical space that appears may not
be exactly what you requested if the output device cannot produce it. The vertical
position of text following this command may be adjusted upwards by specifying a
negative length. In this manner, superscript and subscript characters can be
produced, as described on page 40.

Up <VERTSPACE –.16INCH>a<VERTSPACE .16INCH>bit

produces:

Up
a

bit

More details about vertical spacing on the page are given on page 51.

Basic TEXTFORM

8

Paragraphs

The command to begin a new paragraph is NEWPARA, or NP. This command ends
the current line, begins a new line, and spaces the first line in the paragraph in
.5 inch from the left margin:

Ask not for whom the bell tolls; it tolls for thee.
<NEWPARA> Ask not for whom the bell tolls; it tolls for thee. Ask
not for whom the bell tolls; it tolls for thee.

produces:

Ask not for whom the bell tolls; it tolls for thee.

Ask not for whom the bell tolls; it tolls for thee. Ask not for
whom the bell tolls; it tolls for thee.

TEXTFORM will not begin a new paragraph on the last line of the page. If there is
only one line left when NEWPARA is encountered, a new page is started before the
paragraph is formatted.

By default, paragraphs are indented by .5 inch. If you want to change this,
change PARAIND, usually at the beginning of your source file:

<PARAIND = 1INCH>

If you do not want the blank line that separates paragraphs from the preceding text,
enter:

<PARASEP = 0INCH>

Starting Pages

When the current page is full of text, TEXTFORM automatically starts the next
page. However, the command PAGE, or P, forces the immediate start of a page, even
when the previous page is not full of text. More details about the appearance of the
page are given starting on page 46.

Footnotes

The FOOTNOTE, or FOOT, command lets you enter a footnote without knowing
where you are in relation to the bottom of the page. Text is saved and printed at the
bottom of the page, and is numbered with superscript arabic numerals. Enter the
footnote immediately after you refer to it in the text, without a space before the
FOOTNOTE command. End the text of the footnote with ENDFOOTNOTE, or
EFOOT:

reference in the text.<FOOTNOTE>This footnote is at the bottom of
the page. <ENDFOOTNOTE> Text continues

Basic TEXTFORM

9

produces in the text:

reference in the text.† Text continues

The footnote appears at the bottom of this page. Notice footnotes are separated from
the rest of the text on the page with a separating line. Complete details about
footnotes are given on page 56.

Lists of Points

TEXTFORM provides an automatic facility for numbering lists. The command to do
the numbering is PT. The list is ended with EPT.

which fall into the following groups:
<PT> Slightly modified classical histological techniques with fluid
fixation, wax embedding, and aqueous mounting.
<PT> Sandwich technique with separate processing of tissue and
photographic film after exposure.
<PT> Protective coating of tissue to prevent leaching during
application of stripping film or liquid emulsion.
<EPT> One can also mount the frozen sections on emulsion, using
heat or adhesive liquids.

produces:

which fall into the following groups:
1. Slightly modified classical histological techniques with fluid

fixation, wax embedding, and aqueous mounting.
2. Sandwich technique with separate processing of tissue and

photographic film after exposure.
3. Protective coating of tissue to prevent leaching during application

of stripping film or liquid emulsion.
One can also mount the frozen sections on emulsion, using heat or
adhesive liquids.

The format of the list can be modified in many ways, as described in the PT
description on page 219. One of the changes produces the list without numbering.
This format is often used for bibliographies.

which fall into the following groups:
<PT(HANG)> Slightly modified classical histological techniques with
fluid fixation, wax embedding, and aqueous mounting.
<PT> Sandwich technique with separate processing of tissue and
photographic film after exposure.
<PT> Protective coating of tissue to prevent leaching during
application of stripping film or liquid emulsion.
<EPT> One can also mount the frozen sections on emulsion, using
heat or adhesive liquids.

produces:

†This footnote is at the bottom of the page.

Basic TEXTFORM

10

which fall into the following groups:
Slightly modified classical histological techniques with fluid fixation,

wax embedding, and aqueous mounting.
Sandwich technique with separate processing of tissue and

photographic film after exposure.
Protective coating of tissue to prevent leaching during application of

stripping film or liquid emulsion.
One can also mount the frozen sections on emulsion, using heat or
adhesive liquids.

If you always want extra spacing before, between or after lists of points, this can be
done automatically.

which fall into the following groups:
<PTPREGAP = PTPREGAP + .16INCH>
<PTPOSTGAP = PTPOSTGAP + .16INCH>
<PT> Slightly modified classical histological techniques with fluid
fixation, wax embedding, and aqueous mounting.
<PT> Sandwich technique with separate processing of tissue and
photographic film after exposure.
<PT> Protective coating of tissue to prevent leaching during
application of stripping film or liquid emulsion.
<EPT> One can also mount the frozen sections on emulsion, using
heat or adhesive liquids.

produces:

which fall into the following groups:

1. Slightly modified classical histological techniques with fluid
fixation, wax embedding, and aqueous mounting.

2. Sandwich technique with separate processing of tissue and
photographic film after exposure.

3. Protective coating of tissue to prevent leaching during application
of stripping film or liquid emulsion.

One can also mount the frozen sections on emulsion, using heat or
adhesive liquids.

Underlining and Italics

Text can be emphasized with underlining and italics. The command UNDERLINE
controls underlining, and the command FONT is used for italics, as in the following
examples. More details on these commands, and other ways to change character
appearance, are given on page 37.

Titles of publications, such as TEXTFORM Manual
are usually italicized, although some authors use underlining, as in
<UNDERLINE ON>TEXTFORM Manual<UNDERLINE OFF>.

produces:

Basic TEXTFORM

11

Titles of publications, such as TEXTFORM Manual are usually
italicized, although some authors use underlining, as in TEXTFORM
Manual.

Spacing Words on the Line

TEXTFORM recognizes a word as any non-blank character or characters followed by
one or more blanks, or followed by the end of the input line. (A character is a letter,
numeral, symbol, or mark of punctuation.) The following line contains 5 words:

word 1889 1982-1982 the end

The word ‘end’ does not need a blank after it because it is at the end of the input line.

TEXTFORM places the text, word by word, on the formatted page with one space
between each word (this is the word space). When a word does not fit at the end of
the line TEXTFORM begins a new line. If there are too many characters in one word
to fit within the margins, TEXTFORM produces the error Unable to keep
non-line-breaking words within the margins and then prints the word. This problem
can be corrected by indicating where TEXTFORM may hyphenate or break the word,
as described on page 22.

Alignment of Text

Alignment is a term describing the way text is placed in relation to the current
margins. When text is aligned to the left margin, it is said to be left-aligned, and
lines are different lengths. This is the default. When text is aligned to both margins,
or justified, extra spaces are inserted between the words. If you want to change the
way text is aligned, change ALIGNMENT to one of:

LEFT
RIGHT
CENTER or CENTRE
JUSTIFY or BOTH

For example, to centre text, use:

<ALIGNMENT = CENTER>
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom

Basic TEXTFORM

12

the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.
<LINEEND, ALIGNMENT=LEFT>

produces:

Ask not for whom the bell tolls; it tolls for thee. Ask not for
whom the bell tolls; it tolls for thee. Ask not for whom the

bell tolls; it tolls for thee. Ask not for whom the bell tolls; it
tolls for thee.

If you are changing ALIGNMENT for only several lines, end the line of text before
resetting ALIGNMENT back to its previous value (because TEXTFORM only checks
the value of ALIGNMENT at the end of each line). In the above example, it was
ended with a LINEEND command. Any other command which ends the line, such as
NEWPARA, could have been used.

If ALIGNMENT=BOTH, lines are justified only when text overflows onto the
next line. TEXTFORM does not justify the line which is ended as the result of a
command such as LINE, LINEEND, or NEWPARA.

Although justified text may seem easier to read, this has not proven to be the
case. Extra spaces must be inserted between words to make the lines the same
length; this may be distracting to the reader, especially when line lengths are short.

If you want to be warned whenever a large justification space has been inserted,
you can reduce the value of MAXWORDSPACE. When justifying, TEXTFORM will
not insert a space greater than MAXWORDSPACE, which is initially 5 inches. To be
warned of a justification space greater than .5 inches, enter in your file:

<MAXWORDSPACE = .5INCH>

When a larger space is inserted, TEXTFORM produces the warning Justification
space required is greater than MAXWORDSPACE. MAXWORDSPACE used. You can
then make adjustments, perhaps by indicating where TEXTFORM can hyphenate or
break the word, as described on page 22. TEXTFORM does not do automatic letter
spacing.

Changing the Alignment of a Single Line

In most cases the same alignment is used throughout a document, although special
lines may require a different alignment than that of the main body of text.
Alignment can be changed, on a one-time basis, in the LINEEND command, by
specifying the type of alignment required. This is simpler than resetting
ALIGNMENT.

<LINE> Yours truly, <LINEEND RIGHT>

produces:

Yours truly,

This one-time change to the LINEEND command affects the output line only. This

Basic TEXTFORM

13

may be misleading, if one input line produces two output lines. The first output line,
which overflows normally, uses ALIGNMENT. Only the second line uses the
alignment given on the LINEEND command. When specifying alignment on the
LINEEND command, it can be given as:

CENTRE or C
JUSTIFY or BOTH or J or B
LEFT or L
RIGHT or R

In this command, the alignment is a keyword to the LINEEND command. A
keyword further describes how a command acts. When a command has one or more
keywords, as this one does, the keywords are separated by blank spaces, and not
commas. The comma is used between distinct commands, not parts of the same
command.

Changing the Line Length with Indents

The size of a page and its margins cannot be changed once the page is begun.
However, an indent, which temporarily changes the margins, can be used. The
command to do this is INDENT, or I.

This discussion deals initially with indents from the left margin. The sizes of the
left indents are in a list called LEFTINDENTS. By default, the list contains:

(.4IN, .8IN, 1.2IN, . . . , 8IN)

To use the first left indent, which is .4 inches, use:

<INDENT LEFT 1>

This INDENT LEFT command positions TEXTFORM .4 inches (the first value in the
LEFTINDENTS list) in from the left margin. When INDENT LEFT 1 is in effect,
each line of text appears not closer than .4 inches to the left margin. To turn the
indent off, any of the following commands can be used:

<INDENT LEFT OFF> or
<INDENT LEFT 0> (zero) or
<INDENT LEFT>

These commands set the indent to zero; subsequent text begins on a new line at the
left margin.

If the current text position is to the left of the indent requested in an INDENT
command, the current text position stays on the same line. If the current text
position is to the right of the requested indent, TEXTFORM must start a new line to
get to that point. Since the actions differ depending on where the current text
position is, most often, INDENT commands are given after a LINEEND command, as
in the following examples:

Basic TEXTFORM

14

<ALIGNMENT=BOTH>
<INDENT LEFT 4>
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.
<LINEEND>
<INDENT LEFT 2>
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.
<LINEEND>
<INDENT LEFT OFF>
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.

produces:

Ask not for whom the bell tolls; it tolls for thee. Ask
not for whom the bell tolls; it tolls for thee. Ask not
for whom the bell tolls; it tolls for thee. Ask not for
whom the bell tolls; it tolls for thee.

Ask not for whom the bell tolls; it tolls for thee. Ask not for
whom the bell tolls; it tolls for thee. Ask not for whom the
bell tolls; it tolls for thee. Ask not for whom the bell tolls; it
tolls for thee.

Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.

The right indent works similarly, using lengths in the list called
RIGHTINDENTS.

<ALIGNMENT=BOTH>
<INDENT RIGHT 4>
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.
<LINEEND>
<INDENT RIGHT 2>
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.
<LINEEND>
<INDENT RIGHT OFF>
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.

produces:

Ask not for whom the bell tolls; it tolls for thee. Ask
not for whom the bell tolls; it tolls for thee. Ask not

Basic TEXTFORM

15

for whom the bell tolls; it tolls for thee. Ask not for
whom the bell tolls; it tolls for thee.
Ask not for whom the bell tolls; it tolls for thee. Ask not for
whom the bell tolls; it tolls for thee. Ask not for whom the
bell tolls; it tolls for thee. Ask not for whom the bell tolls; it
tolls for thee.
Ask not for whom the bell tolls; it tolls for thee. Ask not for whom
the bell tolls; it tolls for thee. Ask not for whom the bell tolls; it tolls
for thee. Ask not for whom the bell tolls; it tolls for thee.

Left and right indents can both be set together. The command:

<INDENT BOTH 2 3>

uses the second left and third right indents. If only one value is specified, such as
INDENT BOTH 2, the second value is used from both LEFTINDENTS and
RIGHTINDENTS. To turn off both indents in the same command, use:

<INDENT BOTH OFF>

The following lines indent a quotation:

The earliest computer programs were written in a rudimentary system
of notation called machine language. The numerical codes of machine
language were soon replaced by the mnemonic codes of a slightly
higher-level language called assembly language.
<LINE, INDENT BOTH 1>
A separate program called an assembler was used to transcribe
assembly-language instructions into the machine codes that could be
executed directly by the computer.
<LINEEND, INDENT OFF>
Machine-language and assembly-language programs are detailed and
repetitious.

produce:

The earliest computer programs were written in a rudimentary system
of notation called machine language. The numerical codes of machine
language were soon replaced by the mnemonic codes of a slightly
higher-level language called assembly language.

A separate program called an assembler was used to
transcribe assembly-language instructions into the machine
codes that could be executed directly by the computer.

Machine-language and assembly-language programs are detailed and
repetitious.

If you want a single spaced quotation in double spaced text:

The earliest computer programs were written in a rudimentary system
of notation called machine language. The numerical codes of machine
language were soon replaced by the mnemonic codes of a slightly
higher-level language called assembly language.
<LINE, LINESPACE = .16IN, INDENT BOTH 1>
A separate program called an assembler was used to transcribe

Basic TEXTFORM

16

assembly-language instructions into the machine codes that could be
executed directly by the computer.
<LINEEND, INDENT OFF, LINESPACE = .33IN>
Machine-language and assembly-language programs are detailed and
repetitious.

and produce:

The earliest computer programs were written in a rudimentary system

of notation called machine language. The numerical codes of machine

language were soon replaced by the mnemonic codes of a slightly

higher-level language called assembly language.

A separate program called an assembler was used to
transcribe assembly-language instructions into the machine
codes that could be executed directly by the computer.

Machine-language and assembly-language programs are detailed and

repetitious.

Changing the size of the indent

The sizes of the left and right indents are in two lists called LEFTINDENTS and
RIGHTINDENTS. By default, these lists both contain:

(.4IN, .8IN, 1.2IN, . . . , 4IN)

If you require left indents of 1 inch and 2 inches, change LEFTINDENTS:†

<LEFTINDENTS = (1IN, 2IN)>

Although the lengths in the list don’t need to be in ascending order, it is a good
practice because they are easier to remember. When LEFTINDENTS or
RIGHTINDENTS are changed, the actual indent in effect does not change until the
next INDENT command. There are several other ways to change a list such as
LEFTINDENTS. See examples on page 103.

Delayed Indents

The INDENT command takes effect immediately. However, if:

HANG=number

appears in the command, the specified indent is delayed until ‘number’ of lines
appear in the output. This is called a hanging indent, and is often used in
bibliographies. The following example produces the same results as PT(HANG),

†Changing LEFTINDENTS will also affect the indentation of lists formatted with
the PT macro.

Basic TEXTFORM

17

described earlier:

<INDENT LEFT OFF, LINESPACE = .16IN>
<INDENT HANG=1 LEFT 2>
Adams, Robert. “Langland and the Liturgy Revisited.” Studies in
Phililogy 73(1976):266-284.
<LINEEND, INDENT LEFT OFF, VERTSPACE .16IN>
<INDENT HANG=1 LEFT 2>
Alford, John Alexander. “A Note on Piers Plowman B.xviii. 390: ‘Til
Parce it Hote’.” Modern Philology 69(1972):323-325.
<LINEEND, INDENT LEFT OFF, VERTSPACE .16IN>
<INDENT HANG=1 LEFT 2>
Alford, John Alexander. “Some Unidentified Quotations in Piers
Plowman.” Modern Philology 72(1975):390-399.
<LINEEND, INDENT LEFT OFF, VERTSPACE .16IN>

produces:

Adams, Robert. “Langland and the Liturgy Revisited.” Studies in
Phililogy 73(1976):266-284.

Alford, John Alexander. “A Note on Piers Plowman B.xviii. 390: ‘Til
Parce it Hote’.” Modern Philology 69(1972):323-325.

Alford, John Alexander. “Some Unidentified Quotations in Piers
Plowman.” Modern Philology 72(1975):390-399.

Examples of Indents and Alignment

This example uses two values for ALIGNMENT on the same line. The item counters
are centered and the items themselves are left aligned. Whenever an INDENT LEFT
command is used to move to a new position on the line, TEXTFORM aligns the
previous part of the line using the current value of ALIGNMENT:

<LINE, I L 0, ALIGNMENT=CENTRE>9.
<I L 2, ALIGNMENT=LEFT> This is the ninth item in a list where
the counters are centred.
<LINE, I L 0, ALIGNMENT=CENTRE>110.
<I L 2, ALIGNMENT=LEFT> This is an item later in the list.

produces:

9. This is the ninth item in a list where the counters are
centred.

110. This is an item later in the list.

The next example modifies left and right indents on the same line. It shows that the
INDENT LEFT command can be used as a temporary right margin. If
ALIGNMENT=RIGHT, the commands I R 0, I L 6 treat LEFTINDENTS(6) as the
right margin, and align text to the right to LEFTINDENTS(6). Then the command
I L 8 causes LEFTINDENTS(8) to be the new temporary left margin.

<lend,i b 0>
<rightindents(10)=remaining(1)-leftindents(6)>

Basic TEXTFORM

18

<lend,i b 0,i r 10,alignment=right>
In this brief example the
word that stands out is
<i r 0 , i l 6, i l 8, alignment=left, i h=1 l 10>
immediately apparent and is followed by more text here which flows
over several lines.

produces:

In this brief
example the word
that stands out is immediately apparent and is followed by more

text here which flows over several
lines.

Information about Indents

LINDENT and RINDENT contain the lengths of the current indents. For example,
set up a left indent .5 inch greater than the current indent with:

< LEFTINDENTS(9) = LINDENT+.5IN >

LINDENTINDEX and RINDENTINDEX contain the current indent numbers. For
example, after an INDENT RIGHT 3 command RINDENTINDEX contains 3. To
indent to the next left indent, without knowing the current indent, give the
command:

<INDENT LEFT LINDENTINDEX+1>

Any (perhaps unknown) pending hanging indents can be turned off using the
following command, which re-issues the current indent settings:

<INDENT BOTH LINDENTINDEX RINDENTINDEX>

Horizontal Space within a Line

Each word is separated by the value of WORDSPACE. When you need a space wider
than WORDSPACE, there are several options, described here.

By default, WORDSPACE is .1 inch, which is usually the width of a character. If
you are using proportional characters, (where the characters have varying widths—
the letter ‘m’ is much wider than the letter ‘l’) you may want to make WORDSPACE
the same width as an average character. A good way to do this is to use
TEXTWIDTH, which calculates the width of one or more characters.

<WORDSPACE = TEXTWIDTH('N')>

When text is being justified, TEXTFORM automatically adds extra space, in addition
to word space, to make all lines the same length. You should make WORDSPACE
somewhat smaller when proportional text is being justified, to compensate for the
extra space that will be added.

<WORDSPACE = TEXTWIDTH('i')>

Basic TEXTFORM

19

To control the maximum justification space that can be inserted, change
MAXWORDSPACE as shown on page 12.

TEXTFORM also has a method of recognizing sentence endings, if you want
extra spacing there. SENTSEP is the amount of space inserted at each sentence
ending. In most cases, SENTSEP is set to be the same as WORDSPACE with the
command:

<SENTSEP = WORDSPACE>

Extra Horizontal Space

The HORSPACE, or HS command inserts a horizontal space in the output which
replaces the wordspace.

a<HORSPACE 1IN>b

produces:

a b

If blanks occur on either side of the HORSPACE command, they are ignored.

text1<HORSPACE 1IN>text2
text1 <HORSPACE 1IN> text2

both produce:

text1 text2

The horizontal space is underlined if UNDERLINEWORDSPACE is true (see
underlining on page 37). Since HORSPACE replaces WORDSPACE, TEXTFORM
may insert justification spaces where the HORSPACE command appears, in addition
to the length requested, when ALIGNMENT=BOTH. If you do not want this, use
BLANKCHARACTER, described below.

The length specified in a HORSPACE command may be positive or negative:

– If the horizontal space requested is greater than that remaining on the line,
TEXTFORM goes to the next line (without aligning) and then produces the
horizontal space.

– If the space requested is greater than the line width, an error message is given:
Requested horizontal space exceeds line width. One blank line produced.

– If the length is negative, as in –1IN, the text following the HORSPACE
command is positioned over the text which precedes the command. You cannot
horizontally space into the margins.

<LINE>abc<HORSPACE -1IN>

produces the message Negative horizontal space stopped at the left indent.
– If the length is 0, no word space appears unless one is inserted by justification.

Basic TEXTFORM

20

Horizontal Space for Characters

The command BLANKCHARACTER, or BC, leaves a blank space in the output
which is treated as a character in a word.

A + B = C<BC>xy <BC> ***

produces:

A + B = C xy ***

Spaces which appear around the BLANKCHARACTER are treated as normal
wordspaces. When underlining is on, the space produced by BC is underlined.

The space produced by BLANKCHARACTER is the width of the current
character size (on devices that cannot change typesize this is usually .1 inch). A
length can be given with the command to produce a larger space:

text<BLANKCHARACTER 1INCH>text

produces:

text text

The length may be negative, for example BC –1INCH.

When the characters are not all the same width, BC,BC,BC may not produce the
same amount of space as three characters would:

abc This must line up
<LINE,BC,BC,BC> This must line up

produces:

abc This must line up
This must line up

To produce a blank space the exact width of certain characters, use TEXTWIDTH,
which calculates the width of the characters given, and inserts that width into the
BC command:

abc This must line up
<LINE, BC TEXTWIDTH('abc')> This will line up

produces:

abc This must line up
This will line up

Basic TEXTFORM

21

Spacing Text Across a Line

The SPLIT, or SP command can be used to space text across a line. The commands:

<LINE> text <SPLIT> text <LINEEND>

produce:

text text

It is also a good idea to use commands to start and end the line to be split, to ensure
exactly what is being split apart.

<LINE>abc <SPLIT> def <SPLIT> ghi <LINEEND>

produces:

abc def ghi

The SPLIT uses the characters in SPLITSTRING to split the parts of the line. By
default, SPLITSTRING contains blanks, as in the previous example. To split a line
with the character ‘.’, change the value of SPLITSTRING and give the SPLIT
command. Notice that blanks around the command are treated as wordspaces.

<SPLITSTRING = '.'>
<LINE> longer text <SPLIT> text <LINEEND>

produces:

longer text ... text

or supply the characters in the command itself, if you do not want those in
SPLITSTRING used:

text<SPLIT '*/' >text

produces:

text /*/ text

The contents of SPLITSTRING, or the characters given in the SPLIT command are
not interpreted by TEXTFORM, so there can be no commands in the split characters
given.

TEXT<split 'a<f 2>b<f>' >TEXT

produces:

TEXT 2>b<f>a<f 2>b<f>a<f 2>b<f>a<f 2>b<f>a<f 2>b<f>a<f TEXT

The names of special characters can be used in the SPLIT commmand. For example,
if the character EMDASH is available:

<LINE, SPLIT EMDASH, LINEEND>

Basic TEXTFORM

22

produces:

———————————————————————————————————

The first complete split string is positioned an even multiple of the width of the
string from the left margin, or current left indent. A portion of the split string, or
horizontal space, may fill the space before the first complete split string. If the left
indent changes, SPLIT works between the old and the new indent settings. The next
example aligns numbers on the decimal point by changing left indents.

<LINE,I L 0,SP> 8.<I L 2,I L 3>First item in list is
<LEND> several lines long.
<LINE,I L 0,SP> 9.<I L 2,I L 3>Second item in list<SP '.'>
<LINE,I L 0,SP>10.<I L 2,I L 3>Third item in list.

produces:

8. First item in list is
several lines long.

9. Second item in list ..
10. Third item in list.

Hyphenating and Breaking Words

TEXTFORM does not hyphenate or break any words, even those containing hyphens,
unless it is instructed to do so. This can be done in several ways—by indicating
where a word can be hyphenated with discretionary hyphens, by indicating where a
word can be broken, or by turning on automatic hyphenation.

Discretionary Hyphen

A discretionary hyphen in a word is <–>, and indicates that the word may be
hyphenated at that point, if necessary. You can use discretionary hyphens at any
point within a document, even if automatic hyphenation is not in effect.

hy<–>phen<–>a<–>tion

produces, if the word overflows the line:

hyphen–
ation

Allow Line Break Without Hyphen

You may want to permit a long word to be broken only if it appears at the end of a
line. The command to do this is ALLOWLINEBREAK, or ALB. In the following
example, TEXTFORM could end the line with ‘major/’ and put ‘minor’ on the next
line, if necessary. No hyphens are inserted:

major/<ALB>minor

produces:

Basic TEXTFORM

23

major/minor

or, if the word overflows the line:

major/
minor

Automatic Hyphenation

TEXTFORM can do automatic hyphenation in one of two ways:

1. Algorithmically, that is, following the rules based on syllabification. However,
many words cannot be hyphenated according to standard rules, and some may be
hyphenated incorrectly by the algorithm.

2. By dictionary lookup. Words that are exceptions to rules of hyphenation have
been stored in a file, and TEXTFORM looks up all words to be hyphenated in
this file before it tries to hyphenate algorithmically.

To begin hyphenation, enter the command HYPHENATION ON, or HYPHEN ON,
followed by one or both of ALGORITHM or DICT. If you want words hyphenated by
either method (TEXTFORM hyphenates by algorithm when the word is not in the
dictionary), the command is:

<HYPHENATION ON ALGORITHM DICT>

Throughout the rest of the document, HYPHEN OFF and HYPHEN ON can be used
to stop or resume hyphenation. To prevent hyphenation around a specific word, be
sure you have ended the word (with a blank) before turning hyphenation back on:

<HYPHEN OFF> specificword <HYPHEN ON>

Words containing ¬ (see page 29) or <BC> are not hyphenated.

If you want only algorithmic hyphenation, the command is:

<HYPHENATION ON ALG>

The algorithm attempts to hyphenate words according to English rules of
syllabification. If your document is French, use the command:

<HYPHENATION ON ALG=FRENCH>

If you want all hyphenation to be done by dictionary look-up (to ensure total
acccuracy), the command is:

<HYPHENATION ON DICT>

After this command, TEXTFORM hyphenates only those words that are in the file
*TXTFHYPHDICT. If you edit this file, you will see that words are entered with
hyphens indicating where the word can be broken. When a word overflows a line, and
HYPHENATION ON DICT is in effect, TEXTFORM checks whether the word is in
this file, and hyphenates accordingly.

Basic TEXTFORM

24

You can add to this list of words by creating such a file yourself, for example,
MYDICT, and then giving the command

<HYPHENATION ON DICT='ETC:TXTFHYPHDICT+MYDICT'>

In a hyphenation dictionary file, the words do not have to be in alphabetic order, and
more than one word may appear on a line (up to 512 characters per line). This file
may be edited to add or modify words. Upper and lower cases of the same word must
be entered separately (TEXTFORM will not hyphenate ‘UNIVERSITY’ or ‘University’
if only ‘university’ is in the dictionary, in case you do not want the first word of a
sentence to be hyphenated). However, TEXTFORM removes punctuation from the
beginning and ending of a word before looking it up in a hyphenation dictionary.
Lines beginning with ‘*’ are comment lines.

list mywords
> 1 al-ba-tross
> 2 com-pe-tent
> 3 to-geth-er
End of file

If the word is a hyphenated word, such as ‘pre-defined’ or ‘write-up’, enter it in the
hyphenation dictionary with two hyphens:

4 pre--defined
5 write--up

These words are broken only at the hyphen; in the above list the word ‘pre-defined’
would not hyphenate ‘defined’ unless the following appeared:

4 pre--de-fined

If you use automatic hyphenation, you can use the LIST HYPHENATION
command (see Appendix 1) to produce a list of all words which were hyphenated by
TEXTFORM. This lets you check which words have been hyphenated incorrectly;
these should be added to your hyphenation dictionary file.

The shortest hyphenated word fragment contains MINHYPH or more letters
(words must be at least twice the size of MINHYPH before hyphenation is
attempted.) By default MINHYPH=2. If you do not want a word hyphenated unless
at least 3 letters have appeared on the line, change MINHYPH:

<MINHYPH = 3>

If you have a large dictionary file, or a long TEXTFORM run, you can use an
internal form of dictionary file to save costs. See page 201.

Basic TEXTFORM

25

TEXTFORM LANGUAGE IN DETAIL

What is Computer Text Formatting?

Text formatting is the display of the written word—the arrangement and placement
of text. Text is formatted in order to enhance the message and make it easier for the
reader to understand what is being said.

Text can be formatted using a computer text processing program. TEXTFORM
is a text processing program developed at The University of Alberta. It provides the
user with the means of controlling all aspects of the format of a document.

TEXTFORM can produce text on several different devices. These include the
IBM 1403 line printer, the Xerox 9700 page printer, the CalComp plotter, the
Autologic APS5 and APSmicro5 phototypesetters, and the IBM 6670 printer.

Text Processing Concepts

Before you begin to learn more about TEXTFORM, you should become familiar with
some of the basic text processing concepts and terminology.

As mentioned above, TEXTFORM is a text processing program. Text refers to
the words that appear on the pages of your document. TEXTFORM distinguishes
text from the formatting instructions (TEXTFORM commands) that control the way
the text looks on the page but that do not themselves appear in the final product.
Both text and TEXTFORM commands are entered into the input file (or source file),
the file that TEXTFORM processes in order to produce the formatted document (the
output file or print file). The machine on which your document is finally produced is
called an output device. The default output device is the Xerox 9700 page printer,
except at RPI, NCL and DUR universities, where it is the IBM 1403 line printer.
TEXTFORM is often said to be device independent because you do not need to
learn a different set of formatting commands for each device. Often, a simple change
or two in the source file allows a document to be produced on another device.

In TEXTFORM, the term page means the size of page for which TEXTFORM
prepares your document to be printed. On the page printer, for example,
TEXTFORM assumes your page to be 8 1/2 x 11 inches in size. Margins, the white
space around the page in which no text is printed, are considered to be part of the
page. Within this page lies the text area, i.e., the area in which text will actually
appear. The text area of an 8 1/2 x 11 inch page with four 1-inch margins is thus
6 1/2 x 9 inches in size. These dimensions can be changed, depending on the
capabilities of the output device.

A character is a single element of text, i.e., a letter, number, or punctuation
mark. A group of characters that are similar in design are called, collectively, a
character set. Character sets usually consist of the entire range of alphabetic and

TEXTFORM Language Details

26

numeric characters plus a number of nonalphabetic and nonnumeric ones—
punctuation marks, special symbols, etc. Within most character sets are a variety of
type styles or fonts. Normal or Roman font characters are printed straight up and
down; italics are slanted to the right; bold characters are heavier and darker than
normal.

Character sets also have the quality of being proportional or monospaced. If
proportional, each character has a different width. The letter “i”, for example, is
thinner (i.e., takes up less room on the line) than the letter “o”. Uppercase characters
are generally wider than their lowercase counterparts. Monospaced, or
nonproportional characters, on the other hand, are all the same width. A document
that is printed in a proportional character set takes fewer pages (usually about 1/3
fewer) to print than one that is printed in a monospaced character set. Most
typewriters have monospace characters; most newspapers and books are prepared
with proportional characters.

How Does TEXTFORM Work?

TEXTFORM processes text word by word, line by line, and page by page. A word is
one or more nonblank characters followed by a blank, blanks, or the end of a line. (A
word at the end of an input line does not need a blank after it.) The margins that are
in effect tell TEXTFORM the length of a line on the output page. TEXTFORM puts
as many words as it can on a line. When a word does not fit on the current line,
TEXTFORM starts a new line. If this occurs at the bottom of a page, TEXTFORM
starts a new page. TEXTFORM does not break a word across two lines unless the
hyphenation facility is in effect. You can, of course, control line and page breaks
yourself, with LINE and PAGE commands.

TEXTFORM has two main states or modes — text mode and command mode.
When TEXTFORM encounters a < in text mode, it switches to command mode and
expects to process one or more instructions, until it encounters a >.† Blanks around
these characters are optional. If you want to have a < appear in the text, enter two in
the input (<< produces <). If you want to have a > appear in the text, enter it as a
normal character.

TEXTFORM instructions may be typed in any combination of uppercase and
lowercase letters. Using the COMMENT command as an illustration, here are some
ways in which TEXTFORM commands may appear in the source file:

one command <comment> in text
several commands <comment,comment, comment>together
a command right in the mid<comment>dle of a word.
< comment ><comment>

The characters > and , end the COMMENT command. If two commands appear in
succession, they may be entered within the same < and > by separating them with a
comma, the command separator. Blanks on either side of the comma are optional.
When a command has keywords, the keywords are separated by blank spaces, and
not commas. The comma is used between distinct commands, not parts of the same

†However, if the < or > appear in an IF command (see page 156) they do not indicate
the start or end of command mode.

TEXTFORM Language Details

27

command.

If you want to continue commands onto the next line, you must use the
– (hyphen or continuation character) which is the character on your keyboard:

<COMMENT, COMMENT, –
COMMENT, COMMENT this is a long –
comment >

The continuation character must be the last character on the line; no blanks may
follow it.† (Hyphens elsewhere in the text are treated as normal text characters.)

If you fail to end a command line with the command terminator or continuation
character, TEXTFORM prints an error message Missing continuation line character,
and then switches to text mode. The result of this could be undesirable since
TEXTFORM will now process the following line of commands as text.

To summarize, the following characters have special uses in command mode:

command terminator >
continue line –
command separator ,

Items That Can Appear in Command Mode

Within command mode, TEXTFORM recognizes only certain types of items. Any
unrecognizable items cause error messages.

Commands have an immediate effect—for example they begin a line or
paragraph. LINE, NEWPARA, and PAGE are commands. Most commands have
abbreviations, because they are typed frequently. Many commands correspond to an
action at a typewriter. The NEWPARA command is like hitting return and spacing in
five spaces at the typewriter.

Other items have been described which contain information, such as
LINESPACE and ALIGNMENT. These are called variables, and are values that
TEXTFORM uses periodically. You can recognize a variable by the equal sign (=)
that is used to give a new value to the variable, as in LINESPACE=8MM. On a
typewriter, a mechanical setting such as the line spacing or tab stops achieves the
same result as variables do in TEXTFORM.

Although commands and variables have been distinguished here, throughout the
manual you will find that most sequences of instructions within < and > are called
TEXTFORM commands, even though they may contain variables. All the commands
and variables are listed in Appendix 1, along with other items that will be referred to
in this manual.

Another type of item that appears in command mode is a string, used when it is
necessary to supply text while in command mode. A string is enclosed within
matching delimiters, either ' (single quotes) or '' (double quotes):

†At NCL and DUR universities it must be the last non-blank character on the line.

TEXTFORM Language Details

28

<comment, 'text text', comment>

produces:

text text

Within a string, TEXTFORM is once again in text mode. (TEXTFORM cannot be
both in command and text mode simultaneously.) If the text of the string itself
contains a quote, you can use the alternate delimiter, or double the quote where it
appears in the text:

<comment, 'That''s it!'>
<comment, ''That's it!''>

both produce:

That's it!

A continuation character cannot be used to continue a string over two lines. Instead,
put a delimiter at the end of the first part of the string, followed by a : (colon) (the
catenation operator) and a continuation character (–). Then put the second half of the
string, within delimiters, on the next line. For example:

< 'This is a string ': –
'which spans two lines' >

is equivalent to:

< 'This is a string which spans two lines' >

The continuation character can also be used in text mode, where it prevents a blank
from being inserted at the end of a line:

a word kept toget–
her over two lines

produces:

a word kept together over two lines

However, it is simpler to start a new word on a new line than to use the continuation
character in text.

Several forms of TEXTFORM instructions expect information to be supplied.
This information, called a parameter, appears within matched parentheses:

<COMMAND('This is the information')>

If the information is a string, it can be broken across two lines:

<COMMAND('This is a string ': –
'which spans two lines')>

is equivalent to:

TEXTFORM Language Details

29

<COMMAND('This is a string which spans two lines')>

Characters Which Have Special Uses in Text Mode

Text mode is TEXTFORM’s normal mode. Most text characters in the input appear
in the output. However, there are five characters which perform special functions
when encountered in text mode. They are called meta-characters because rather
than being a normal text character, they cause a special action on what follows. The
meta-characters are:

non-line-breaking word space ¬
emphasize next character _
capitalize next character @
command initiator <
continue line –

Non-Line-Breaking Character

The not sign ¬ provides a non-line-breaking word space in text mode. It may be
inserted instead of a blank. During formatting the non-line-breaking character is
replaced by a word space, but words on either side of the character are forced to
appear on the same output line. If there is not enough room on the current line, the
words will appear on the next line:

Dr.¬W.¬A.¬Gonzo, alias Huntress¬Thompson
Address:¬13¬Willow¬Valley¬Mountain¬Top
Phone:¬432-1313

produces:

Dr. W. A. Gonzo, alias Huntress Thompson
Address: 13 Willow Valley Mountain Top Phone: 432-1313

To force the not sign to be printed in text, repeat it once for each one required:

2+2 ¬¬= 5

produces:

2+2 ¬= 5

To reduce editing, insert this character between phrases such as ‘et¬al’, ‘30¬May’, or
‘J.¬O.¬Bloe’ when you type the text into a file. This ensures that these phrases are
not broken across two lines.

The character simply ensures that words appear on the same line. It does not
determine the amount of space that appears between the words. If the text is being
justified by the program, TEXTFORM may insert justification space where the
non-line-breaking character appears. If a justification space is not desired, use the
BLANKCHARACTER command.

TEXTFORM Language Details

30

The non-line-breaking character may not have a blank on either side of it. For
example:

et¬ al

produces the error Non-line-breaking word space specified incorrectly. It is ignored.

Emphasize Next Character

The underscore character _ can be used to emphasize the character following it, as
described on page 38:

_T_E_X_T_F_O_R_M

produces:

TEXTFORM

The underscore must be entered twice if you want one in the output:

_ _H_ _i

produces:

_H_i

Capitalize Next Character

Upper case letters are normally entered using the shift key at the terminal.
However, the at sign @ may be used to force the next letter to be converted to upper
case.† Two at signs together produce one at sign in the output.

@text@@

produces:

Text@

If there is no capital for the next character, a Character is not available. A blank is
provided as replacement message may be generated, and the capitalization process
ignored.

†This facility is seldom used, unless you need to force the first character of a word to
appear in upper case, as on page 98. See CAP, UPPERCASEINPUT, UC, and LC in
Appendix 1 for other ways to control whether characters are upper or lower case.

TEXTFORM Language Details

31

Command Initiator

The command initiator < tells TEXTFORM to switch into command mode. If you
need to produce the < character in a document, enter two for each one that you
require. This can only be done from text mode. You cannot enter << while in
command mode to produce that character in the output.

The > character has no special use in text mode, so it is not doubled. In command
mode, it indicates the end of the command.

Continue Line Character

In text, the character – is a normal text character, unless it is the last character on a
line. In this case, it prevents the end of a word, and thus prevents a word space from
being inserted. If it is followed by a blank, or if it appears in a hyphenated word,
such as write-up, it is a normal character.

Lengths in TEXTFORM

Lengths are numbers with associated units of measurement. For example,
LINESPACE=.33INCH gives the length .33 inches to the variable LINESPACE.
When TEXTFORM requires a length, the length can be given in any of the following
units. Notice that there must be no blanks between the number and the unit of
measurement—the correct form is 9IN and not 9 IN.

INCH, INCHES or IN
MILLIMETER, MILLIMETRE, MILLIMETERS, MILLIMETRES or MM
PICA, PICAS or PI
POINT, POINTS or PO
UNIT, UNITS or UN
LINE, LINES or LI

When a length is given in a horizontal or vertical direction, the actual length
produced is the closest the output device and character set can produce. For example,
if you request a LINESPACE of .2 inch, it may actually be .16 inch on some output
devices, although the variable still contains .2 inch.

If a length is expected, but no unit of length is indicated, a default unit of
length is used. This default units value is stored in DEFUNITS. At the start of a run,
DEFUNITS contains MILLIMETERS, so the command LINESPACE=4 is treated as
LINESPACE=4MILLIMETERS. DEFUNITS can be changed to contain other units of
length:

<defunits = inches>
<linespace = .16>

More information on lengths is given on page 100.

TEXTFORM Language Details

32

Notation Used For Subsequent Parts of This Manual

The following notation is used in this manual to define TEXTFORM instructions,
and is used in Appendix 1. Italics indicate messages and information displayed by
TEXTFORM during the run.

[]

When [and] appear, what they enclose is optional.

. . .

indicates that the last item may be repeated as many times as necessary (e.g. ‘kwd
. . .’ means that you may include any number of the keywords, each separated by one
or more blank spaces).

body

is any valid TEXTFORM input. It may be a number of commands, some text, or both.
It need not all be on the same input line.

c

single character string.

CAPITAL letters

Letters which are CAPITALIZED must appear (although you may enter them in
upper or lower case). The characters which appear in bold are an allowable
abbreviation.

expression

any expression containing valid variable names (subscripting and substringing is
allowed), and/or valid function calls, and/or valid literals; separated by operators. A
complete description of expressions is found on page 112. If a command takes an
expression, as in <UNDERLINE expression>, ‘expression’ may be a string variable:

<DEF &ON='ON'>
<UNDERLINE &ON>

kwd

must be one of the keywords described following it. The keywords are capitalized in
the description and are separated by blanks. If a keyword in a command is preceded
by ¬ or – the effect is to negate the action of the keyword.

If a command takes a keyword, and the keyword is in a string variable, as in
DEFINE &T='TRY', the variable must be executed (see page 108) if it is used in a
command:

<HYPHENATION ON $&T>

TEXTFORM Language Details

33

length

is any valid expression. If the result of the expression is not a length, the default
length units (in DEFUNITS) is used to convert the result to a length.

logical value

either TRUE, (ON, YES are synonyms), or FALSE, (OFF, NO are synonyms). An
expression which returns the value 1 (TRUE), or 0 (FALSE) may also be used.

name

a valid name. Predefined names start with a letter (a-z). A user-defined name must
start with an &, and may contain any of the characters a-z, _, &, or 0-9. The
characters in the name may be in upper case, lower case, or both; so the names
&ABC and &Abc are the same. The name may be of any length.

name = expression

is the form of an assignment. ‘name’ may simply be a name, or a subscripted name
(which will change the structure element of ‘name’ which has the specified subscript).
‘name’ may also refer to a substring, in which case a substring of ‘name’ will be
changed.

number

is any valid expression which results in a number (or a string which can be converted
to a number). If the result of the expression is a length, DEFUNITS is used to
convert it to a number. If the result of the expression is a scaled number, it is
rounded (in most cases — note that ‘number’ in some cases may be scaled).

par

a function parameter. Each parameter may normally be an expression; however in
cases where the function parameter RETURNS something or TAKES a NAME, the
parameter must be the name of a variable. See the LOAD command on page 210 for
a description of TAKES, NAME and RETURNS.

string

any characters between paired quotes (either '' or ').

structure

A structure is either the name of a variable containing a structure, or
(expression, expression2, . . ., expressionn)

TEXTFORM Language Details

34

User-Defined Names in TEXTFORM

Much of the rest of this manual deals with user-defined items. This section gives
information about user-defined names.

Before a name is used, it must be defined so that TEXTFORM can add it to the
list of of all names that it recognizes. You can define a name one time only. If you try
to define the same name twice, the second definition is ignored and you get the error
message name is already defined. However, using a name that is not defined causes
the error 'name' is not defined. Ignored.

The DEFINE command defines a name:

<DEFINE [kwd] name >

kwd
may be given to indicate the type of cross referencing for ‘name’. Cross references are
described on page 176.

name
– must start with an & (ampersand)
– may contain the characters of the alphabet (a–z), the 10 digits (0–9), and the

character & (ampersand) and _ (underscore). No other characters are allowed.
– may be of any length up to 256 characters
– All names are converted to upper case by TEXTFORM, so &IND is the same as

&ind.

Choose an Output Device for the Document

The output device is where the final copy of a document appears. It may be a
terminal, printer, phototypesetter, or plotter.

At the beginning of a TEXTFORM run, before any text is formatted, an output
device should be chosen. If you do not do this, TEXTFORM uses the default, which is
the Xerox 9700 page printer (at RPI, NCL and DUR universities, the default is the
IBM 1403 line printer). The command to specify the device is:

<OUTPUTDEVICE [expression [expression2 [expression3 [expression4]]
]] >

There must be a space between the parts of this command. It is usually used as
follows:

<outputdevice 'x9700' 'univers'>

‘X9700’ represents the output device, the Xerox 9700 page printer. ‘UNIVERS’ is one
of the available character sets on this device. ‘expression3’ and ‘expression4’ are
described in Appendix 1.

Each output device may have several sets of characters. On some devices, only
one set can be used in a single TEXTFORM run. Instructions on using the various
devices may be found in CC Memos. Appropriate documentation for each device is

TEXTFORM Language Details

35

also listed.

Once the OUTPUTDEVICE command has been given, the part of the program
that deals with that device becomes loaded. Once the output device has been loaded,
it cannot be changed for the rest of the run. If you do not give an OUTPUTDEVICE
command, TEXTFORM still loads the default output device when it encounters text,
or when it encounters a command containing a length or a command that uses a
length.

Getting a Proof or Working Copy of a Document

At the time of publication, the facilities described in this section were not
properly implemented at U of M. When implementation has been completed, a full
writeup will be issued.

TEXTFORM can produce the formatted text in a manner which eases the
process of making corrections and changes. If the PROOFDEVICE command
appears, the formatted copy is produced with source line numbers running down the
left hand side, just as you saw on the listing of the input file. These line numbers
make it easy to find the appropriate line in the input file for changes or additions.

The PROOFDEVICE command is similar to the OUTPUTDEVICE command:

<PROOFDEVICE [expression [expression2]] >

It must be used after the OUTPUTDEVICE command.

<od 'x9700' 'tn'>
<pd 'x9700' 'tn'>

When the PROOFDEVICE command appears, the proofed text and the statistics are
produced on SPRINT. The command to run TEXTFORM becomes:

run *textform scards=file sprint=result

Although proofs are often used for working copies, they are especially useful in cases
where the output device is expensive, has poor turnaround, or is slow, which may be
the case with phototypesetters. When used for such a device, the proof device
attempts to approximate the appearance of the output page. If it has fewer
capabilities (for example, the printers cannot change typesize) than the intended
output device, messages are printed indicating the action which will take place on
the output device.

The following table lists the devices which can be used as proof devices. Not all
output devices have proof devices. When the proof device is the same as the output
device, specify SPRINT instead of SPUNCH in the RUN command.

TEXTFORM Language Details

36

device

1403

X9700

RASTER

produces proofs for

1403
APS5
X9700
APS5

APS5

using characterset__
same as odcharacterset
TITAN10TN
same as odcharacterset
TN
TITAN10TN
DEFAULT

Sample Proof

list file

> 1 <OD 'X9700' 'TITAN10TN', PD 'X9700' 'TITAN10TN'>
> 2
> 3
> 4 Quotations from Gulliver's Travels
> 5 <lineend, vertspace linespace, newpara, font normal>
> 6 And he gave if for his opinion, that
> 7 whoever could make two ears of corn or two blades
> 8 of grass to grow upon a spot of ground where only one
> 9 grew before, would deserve better of mankind,
> 10 and do more essential service to his country,
> 11 than the whole race of politicians put together.
> 12
> 13 <newpara>
> 14 He had been eight years upon a project for extracting
> 15 sunbeams out of cucumbers, which were to be put in vials
> 16 hermetically sealed, and let out to warm the air in raw
> 17 inclement summers.
> 18
> 19 <lineend, vertspace linespace> Jonathan Swift
End of file

run *textform scards=file sprint=–result
14:23:16 RC=0
copy –result *sink*

4 Quotations from Gulliver’s Travels

6
7
8

10
11

And he gave if for his opinion, that whoever could make
two ears of corn or two blades of grass to grow upon a spot
of ground where only one grew before, would deserve better of
mankind, and do more essential service to his country,
than the whole race of politicians put together.

14
15
16
17

He had been eight years upon a project for extracting
sunbeams out of cucumbers, which were to be put in vials
hermetically sealed, and let out to warm the air in raw
inclement summers.

19 Jonathan Swift

TEXTFORM Language Details

37

CHARACTER APPEARANCE

Underlining

Underlining is controlled with the UNDERLINE command.

<UNDERLINE [expression]>

UNDERLINE ON, or UNDERLINE, or U, begins underlining; UNDERLINE OFF
stops it.

Underlining <U> is done in this manner: <BC 1IN><U OFF>.

produces:

Underlining is done in this manner: .

The effect of this command can be modified in several ways. The variable
UNDERLINEWORDSPACE determines whether word spaces are underlined. By
default, it is FALSE. If you want word spaces to be underlined, set it TRUE:

<UNDERLINEWORDSPACE=TRUE>Underlining <U> is done in this
manner: <BC 1IN><U OFF>.

produces:

Underlining is done in this manner: .

The variable UNDERLINESTRING contains the character that is used for
underlining. At the start of the run, it is ‘_’. It can be changed on some devices (see
the CC Memo for each device for details), as in the following example:

<UNDERLINESTRING = LIGHTRL,U ON>lightrule<U OFF>

produces:

lightrule

CURUNDERLINE also gives information about underlining. It is 1 when
underlining is on, and 0 when underlining is off. For example, to test whether an
UNDERLINE command has been given, use:

<IF CURUNDERLINE = 1, THEN, . . . >

The variable UNDERLINEDISPLACEMENT can be used on APS5 and CALCOMP
output devices to change the vertical position of the underline character, which
touches the bottom of characters. It can be changed to a positive or negative length.
To place UNDERLINESTRING 1 point lower:

Character Appearance

38

<UNDERLINEDISPLACEMENT = 1POINT>

Fonts

In many instances, fonts which change the appearance of the character are used to
emphasize text, delimit text, or to indicate special meaning. There are different fonts
for each character set, but most character sets have the same basic fonts. Fonts are
specified by the FONT command:

The commands FONT 1, FONT, or F, return to the normal font. Valid fonts are:

 or is normal text
 or is italic text
 or is bold text

Some character sets have four or more fonts:

FONT 4 is BOLDITALIC

FONT 5 is EXTRABOLD
FONT 6 is EXTRABOLDITALIC
FONT 7 is LIGHT
FONT 8 is LIGHTITALIC

Emphasis can also be accomplished without specifying the actual font desired. The
emphasize next character, the underscore _ , may be used to do this:

_e_m_p_h_a_s_i_s

produces:

emphasis

Depending on the current font, the emphasis character uses a emphasis font that will
emphasize the next character. Not all fonts have an emphasis font in which case the
error Emphasis is not available in the current FONT. Emphasis ignored is produced.
The font chosen depends on the capabilities of the output device. This is indicated in
the individual device write-ups. For example:

this is a _t_e_s_t for emphasis

this is a _t_e_s_t for emphasis

produces:

this is a test for emphasis this is a test for emphasis

CURFONT and CUREMPFONT provide information about the current font.
TEXTFORM puts the font number in CURFONT whenever you give a FONT
command. This lets you get the current font number, change fonts, and return to the

Character Appearance

39

original font without even knowing what that original font was:

<define &save = curfont, font 3> Title

CUREMPFONT is the number of the emphasis font for the current font. If there is
no emphasis font, it contains 0.

Typeface or Character Set

Many output devices have several typefaces, or character sets. This is specified in the
OUTPUTDEVICE command, after the output device name. In the following example
TN is the character set.

<OUTPUTDEVICE '1403' 'TN'>

Some devices permit you to change typefaces during one TEXTFORM run by using
the CHARACTERSET command which has the form:

<CHARACTERSET string>

The character set name is a string, enclosed in delimiters, and is hyphenated if it is
two words. It cannot contain blanks. The CHARACTERSET command is used after
the OUTPUTDEVICE command, not as the first command in a run. For example, in
the Postscript output, you might begin with the CENTURY-SCHOOLBOOK
character set:

<OUTPUTDEVICE 'POSTSCRIPT' 'CENTURY-SCHOOLBOOK'>

but later need a fixed-pitch font for an example:

The statement <CS 'COURIER'>READ(5,101) XVEC, YVEC<CS
'CENTURY-SCHOOLBOOK'>reads a . . .

produces:

The statement READ(5,101) XVEC, YVEC reads a . . .

The variables CURCS and ODCHARACTERSET are related to this command.
CURCS is an upper case string containing the current character set name. It is
changed by TEXTFORM whenever you give a CHARACTERSET command. For
example:

<IF CURCS = 'GREEK', THEN, . . . >

ODCHARACTERSET is an uppercase string containing the character set name that
was given in the OUTPUTDEVICE command. This character set is used at the start
of all footnotes (see the discussion of default state on page 55).

Character Appearance

40

Producing Special Characters

Many character sets contain characters that are not available on the terminal
keyboard. To produce these characters in the output document, enter the name of the
character as a command. For example, produce a superscript one or an umlaut or an
integral with the commands:

<sup1> <umlaut> <integral>

No one character set contains all special characters. Consult the documentation for
each of the output devices to see which characters are available in each character set.

If the requested character is not available in the character set being used, an
error message is produced: Character is not available. A blank is provided as
replacement. You can often prevent this error by using CHAREXIST to check
whether the character exists in the current character set before using it. For
example, if you require a copyright symbol, but are willing to use the letter ‘C’ if
there is no copyright symbol:

<if charexist(copyright) = true, then, copyright, else>C<endif>

Some characters are not available in all fonts. When TEXTFORM replaces the
character with one from another font, it produces a warning. For example, if the = is
not available in FONT 2, the commands:

<OUTPUTDEVICE 'APS5'>
4 + 4 = 8

produce the warning Character is not available in the current font. A replacement is
provided by an alternate font. This is not an error message. It is merely warning that
the character may have a different appearance.

If you are using a large number of special character names from the APL
character set, you may be able to reduce typing by using the KEYBOARD command,
described in Appendix 1.

Superscripts and Subscripts

Some character sets have a limited number of super or subscript characters
(characters which are positioned slightly above or below the normal text characters).
These can be produced by names such as <SUP5> and <SUB3>. The characters are
available only if they appear in the write-up for the character set.

C<sup1,sup2>

produces:

C12

When a device can space vertically in amounts less than LINESPACE, it may be
possible to generate super and subscript characters by issuing vertical space
commands and reducing the typesize (if the device can do it).

Character Appearance

41

<define &supa=''<bc 0, vs –tsize/2, 'A', vs tsize/2>''>

These commands shift an A up half the current typesize. The BC command ensures
that the word is started in the correct position on the line, before the negative
vertical space.

When VS is used to produce subscripts, use KEEP and ENDKEEP so that the
VS command does not overflow the page in the middle of a line.

<define macro &SUB,
bc 0, vs tsize/2, keep, par(1), vs –tsize/2, endkeep, –

edef macro &SUB>

Overstruck Characters

Characters can be overstruck by using the LOGICALBACKSPACE command.

c<LOGICALBACKSPACE>c

This is how accents are positioned over letters, if the current character set contains
accents.

u<lbs, umlaut>

produces ü . When this command is used, the character which follows is backspaced
and centred over the previous character. Commands to change fonts or character sets
can appear between the LBS command and the characters.

<EMDASH, LOGICALBACKSPACE, FONT 3>|

produces:

—|

Neither character around the LBS command may be a blank; this produces an error.

abc <LBS>d

produces the error Logical backspacing used incorrectly. Ignored. and the output:

abc d

If a BC command appears immediately before or after an LBS command, it is the
‘character’ that is used in the LBS sequence. When working with the meta-
characters, remember to double them:

_ _<LBS>@@ <'@@', LBS, '__'>

both produce:

@ _

Character Appearance

42

Overstriking Characters without Centring

Negative horizontal movements can be used to overstrike characters, without
centring the characters on one another. For example, overstrike a vertical bar one
third of the way from the previous character:

–<BC –TEXTWIDTH('–')/3, VBAR>

produces –| if the output device can move a distance less than the width of a
character.

Automatically Replacing Text Characters in the Input

The AT TEXTCHARACTER, or AT TC command, lets you include a TEXTFORM
name instead of a character whenever that character appears in the text. For
example,

<DEFINE &BREAK = '/<ALLOWLINEBREAK>' >
<AT TEXTCHARACTER '/' &BREAK>

inserts &BREAK, which is ‘/<allowlinebreak>’, whenever a ‘/’ appears in the input
text. It is not in effect in command mode. While &BREAK is being included, the ATs
for the ‘/’ character are disabled, although ATs for all other characters are still in
effect. The command can also be used with special character names, as in

<AT TC INTEGRAL &INT>

The AT command could be used to ‘turn off’ meta-characters. If you want the @ to be
a normal character, use:

<DEFINE &ATCHAR = '@@' >
<AT TC '@' &ATCHAR>

Two characters are special cases when this command is used.

1. If you specify AT TC ‘<’, the AT is done only when two command initiators
appear in the input. It is not done for a single command initiator.

2. If you specify AT TC ‘–’, the AT is not done when the ‘–’ is used as a continuation
line character. However, it is done elsewhere on the line.

More than one AT can be given for a character. The ATs are done in a last-in
first-out order, so that the most recently specified AT for a character is done first.
Characters with associated ATs can be used in PREFORMATTED mode, but must
not be used in ASIS mode, because TEXTFORM does not recognize the commands
necessary to do the AT during ASIS mode. If KEYBOARD is APL1 or APL2, ATs are
not in effect.

During a table of contents or index entry, the AT remains in effect, and the
contents of the name, rather than the original text character, are stored. However,
when a SPLIT command is used, as in SPLIT '.', the ATs for the split string character
are not done.

Character Appearance

43

To stop an AT for a character, use the SUSPEND AT TEXTCHARACTER 'x', or
SUS AT TC 'x' command. For example, to suspend all the ATs for the character ‘*’
use:

<SUSPEND AT TEXTCHARACTER '*'>

To suspend a specific AT, e.g. the one with the name &REPLACE for the character
LEFTA, use:

<SUS AT TC LEFTA &REPLACE>

AT_INFO, as shown in Appendix 1, tells what AT names are associated with a text
character.

Typesize

Some devices let you change the size of characters. This is known as typesize. If
your device does not have this capability, this section will not apply to you, because
any attempt to change typesize produces the warning TYPESIZE command not
allowed for this output device. Command ignored.

To change the typesize, issue the command:

<TYPESIZE length>

On devices that can change typesize, the default typesize is 10 points (points are a
typesetting unit of length—there about 72 points in an inch). To change the
character size to 24 points, enter the following command:

<TYPESIZE 24POINTS>

Since typesize is actually a measurement, you can express it by using any of the
length measurements accepted by TEXTFORM, although points are most commonly
used. If the device cannot produce the exact size that you request, TEXTFORM
produces the closest possible value. The device write-ups describe the capabilities of
each device.

Although typesize refers to the vertical size of the characters, it cannot be
precisely measured with a ruler. All the different type styles of 12 point characters,
for instance, are approximately the same size, but there is some variation. Only with
considerable experience will you be able to determine the typesize of a character. The
closest test is to measure the line spacing by measuring the vertical distance between
baselines (the imaginary line on which the text seems to rest). Typesize is usually
one or more points smaller than the line spacing.

If you change typesize, you will usually adjust the value of LINESPACE to be
several points larger than the typesize. WORDSPACE is usually adjusted at the
same time.

During a TEXTFORM run, TSIZE contains the typesize. It is changed by
TEXTFORM whenever you give a TYPESIZE command. For example:

Character Appearance

44

<define &oldtsize = tsize>
<typesize 8point, linespace = tsize + 2point>
text
<typesize &oldtsize, linespace = tsize + 2point>

Other Modifications to Text Appearance

ALPHABETIC converts integer to an alphabetic counter.

<ALPHABETIC(2)> <ALPHABETIC(28)> <ALPHABETIC(26*2+10)>

produces:

b ab bj

ENGLISH converts number to lowercase cardinal English.

<ENGLISH(17)>

produces:

seventeen

FRENCH converts an integer number, to lowercase French text.

<FRENCH(68)>

produces:

soixante-huit

ROMAN converts a number to roman numbers.

<ROMAN(3)>

produces:

iii

LOWERCASE converts text to lower case.

<LOWERCASE('TITLE 1')>

produces:

title 1

UPPERCASE converts text to upper case.

<UPPERCASE('parameter')>

produces:

Character Appearance

45

PARAMETER

These techniques of modifying text appearance can be used together. For example, to
convert a number to an uppercase roman number:

<UPPERCASE(ROMAN(3))>

produces:

III

Character Appearance

46

PAGE APPEARANCE

Size of Page

The default page size is 8.5 inches by 11 inches. The page size can be changed by a
command of the form:

<PAGESIZE=(horizontal length, vertical length)>

for instance:

<PAGESIZE=(7.5IN,11IN)>

makes TEXTFORM format text for a page 7.5 inches wide and 11 inches long.

There are also values which can be used to produce metric page sizes. See A0–A8
in Appendix 1.

The size of the page must conform to the confines of the output device being
used. The line printer (IBM 1403) has a maximum of 13.2 inches by 11 inches, the
page printer has a maximum of 8.5 inches by 11 inches (or 11 inches by 8.5 inches)
and the APSmicro5 has a maximum of 11.67 inches by 45 inches.

A change of page size does not take effect until the next page is begun. Either
change the page size at the start of the document, before any text is given, or be sure
to begin a new page after the change.

Once a page has been started, TEXTFORM stores the size of the page currently
being formatted in CURPAGESIZE; if you change PAGESIZE, it says what size to
make the next page.

Margins

The area in which text is printed is determined after the four margins are subtracted
from the page size. The four page margins are called:

TOPMARGIN
BOTMARGIN
LEFTMARGIN
RIGHTMARGIN

Their default values are all 1 inch. Change LEFTMARGIN with:

<LEFTMARGIN=1.5IN>

As with PAGESIZE, changes to the margins take place only when TEXTFORM
begins a new page, even though you may have entered the command in the middle of

Page Appearance

47

the previous page. The INDENT command, which has already been discussed, can be
used to temporarily modify the left and right margins.

Once a page has been started, CURLEFTMARGIN, CURRIGHTMARGIN,
CURTOPMARGIN, and CURBOTMARGIN contain the lengths for the page
currently being formatted. Any changes to LEFTMARGIN, RIGHTMARGIN,
TOPMARGIN and BOTMARGIN specify the margins for the next page.

Refer to the section Front and Back Pages if you want to make the margins
different for front and back pages.

Page Position Commands

When the current page is full, TEXTFORM starts the next page. However, the
command

<PAGEEND>

forces the immediate end of the page, if one has been started. Page size and margin
changes can then be made before starting the next page. For example:

<PAGEEND>
<PAGESIZE = (11IN,8.5IN)>
This text is on the next page.

An alternate page positioning command is PAGE:

<PAGE>

This command actually starts the new page, using the current value of PAGESIZE
and margins.

If the text is being produced with more than one column per page (see page 78),
the COLUMN command starts the next column. If used on the last column of the
page, this command has the same result as the PAGE command.

Blank Pages

If you are currently at the end of a page, and no text has been placed on the page,
PAGEEND does not force a blank page. The commands:

<PAGE, PAGEEND>

are needed to create a blank page. When you want the next page to be left empty,
without issuing a PAGEEND command, use the following command, described in
detail starting on page 60.

<FLOAT VERY TOP PAGE PAGEEND>

Page Appearance

48

Front and Back Pages

Pages can be referred to as they would appear in a book. There are LEFT (or BACK)
pages and RIGHT (or FRONT) pages. Pages with odd numbers are RIGHT pages
while even numbered pages are LEFT pages.

In a TEXTFORM run, THISPAGE contains LEFT or RIGHT to indicate which
page is currently being formatted. You do not change this variable—TEXTFORM
changes it at the end of each page, immediately after a page overflows or after a
PAGEEND command. TEXTFORM determines the value for THISPAGE by checking
PNCTR, the page number counter. If PNCTR is an odd number, THISPAGE is set to
RIGHT; if PNCTR is an even number, THISPAGE is set to LEFT. If you want text to
start on a RIGHT (or FRONT) page use the following test:

<pageend>
<if thispage = left, then, page, pageend, endif>
<comment now start a front page>

The variable PRINTON allows TEXTFORM more control over devices that can
print on both sides of the paper. It defaults to PRINTON=BOTH, and can be BOTH,
RIGHT, LEFT, FRONT, or BACK. The setting of PRINTON affects how THISPAGE
is changed.

If PRINTON has a value of BOTH, then THISPAGE is cycled between LEFT and
RIGHT. In addition the choice of printing side is determined by the value of the
variable PNCTR. If PNCTR is odd, then this is a RIGHT page; an even PNCTR
implies a LEFT page.

If PRINTON is RIGHT or FRONT, then THISPAGE is always RIGHT. Likewise,
a PRINTON setting of LEFT or BACK makes THISPAGE always LEFT. Note that
when PRINTON is anything other than BOTH, THISPAGE and PNCTR are not
logically connected.

Special care should be taken when setting PRINTON to anything but BOTH.
Other features of the TEXTFORM language, like FLOAT or RESERVE, allow items
to be reserved for a particular side of the page. If PRINTON=FRONT at the end of a
run, the floats and reserves specifically for BACK pages will never appear.

Page Appearance

49

When the inside margin (the one closest to the binding) must be larger to allow
space for binding, the following instructions in your file will cause TEXTFORM to
change the margins appropriately if your document is being printed on front and
back pages.†

<define &INMARGIN=2IN, define &OUTMARGIN=1IN>
<leftmargin = &inmargin, rightmargin = &outmargin>
<def &bf = '<leftmargin=&outmargin, rightmargin=&inmargin>'>
<def &bb = '<leftmargin=&inmargin, rightmargin=&outmargin>'>
<comment to cycle margins>
<reserve bottom front page size default 0in &bf>
<reserve bottom back page size default 0in &bb>

Page Numbers

A TEXTFORM run starts on page 1, with THISPAGE=RIGHT. When a page ends
(due to text overflowing the page or a PAGEEND command) the value of THISPAGE
changes, and PNCTR, the variable containing the page number, is increased by one.
PNCTR can be changed at any point, and is changed immediately:

<PAGEEND, PNCTR=5>
<COMMENT now start page 5>

or

<PNCTR = PNCTR + 3>

Although PNCTR is always incremented, it is not automatically printed. Page
numbers are produced with the RESERVE command, described in detail on page 63.
To cause the page number to be printed on the upper right of each page, do the
following once:

<define &ur = '<pnctr, lineend right>'>
<topmargin = .5in>
<reserve top size 6.5in .5in &ur>

To start page numbers at 1 after a title page:

Title page <pageend, pnctr = 1>
<define &ur = '<pnctr, lineend right>'>
<topmargin = .5in>
<reserve top size 6.5in .5in &ur>

†If you are using a logical page, described later in the manual, issue the RESERVE
commands after you USE the logical page.

Page Appearance

50

Keeping Text on the Same Page or Column

The KEEP and ENDKEEP commands ensure that text which appears between the
commands appears in the same output column.

<KEEP . . . ENDKEEP>

These commands can be used to prevent widows (single lines alone at the bottom of
a column) and orphans (words appearing alone at the top of a column).

If a KEEP is used, and the end of the column occurs before an ENDKEEP
command is encountered, TEXTFORM moves the text that it has formatted since the
KEEP to the top of the next column, and then continues processing text as normal. If
a command to end the page occurs within a keep, it produces the warning A
NEWPAGE or PAGEEND command given within a KEEP. The KEEP is stopped. A
similar warning appears if a column ending command appears.

KEEP can be used anywhere on the line. When the command is used, the
boundary of the keep starts at the beginning of the line TEXTFORM is formatting.
As a result, all of the following text is kept together, which probably isn’t what you
want:

. . .the end of this sentence.
<KEEP>
<LINE> This keep includes the previous line.
<ENDKEEP>

The previous example should be changed to:

. . .the end of this sentence.
<LINE, KEEP> This keep does not include the previous line.
<ENDKEEP>

Note that KEEP and ENDKEEP do not affect TEXTFORM’s line ending decisions.
They merely start ‘keeping’ text from the current formatted line (rather than input
line) until the end of the keep. If a keep was previously in effect on the current
formatted line, the two keep’s are treated as one, as in this example:

<KEEP> This text will all be treated as
one ‘keep’.
<ENDKEEP>
<KEEP>
<LINE> This is still part of the same keep. <ENDKEEP>

To treat the text of the previous example as two keeps, it should be:

<KEEP> This text will all be treated as
one ‘keep’.
<ENDKEEP>
<LINE>
<KEEP> This is a new keep since the KEEP command is given on a
new formatted line. <ENDKEEP>

KEEPs are also ‘nestable’: the commands KEEP . . . KEEP . . . ENDKEEP . . .

Page Appearance

51

ENDKEEP . . . are treated as one KEEP.

KEEPs cannot be used within tables, and should not be used around tables.
KEEPs may not be used in footnotes or around text which contains FOOTNOTE and
ENDFOOTNOTE. This will cause the error FLOAT, FOOTNOTE, or KEEP is
already being built. You can't build one inside another, sorry.

As described above, when the text within the keep is taken to a column on a new
page, the text appears exactly as it would have appeared on the previous page. For
example, if the keep starts with:

<KEEP>This is page <PNCTR>.

then TEXTFORM will place the current value of PNCTR on the formatted line.
However, if the keep is subsequently carried to the next page, the text will contain
the value of PNCTR for the previous page. If you are merely storing the value of
PNCTR, one way to minimize the problem is to do it immediately before the
ENDKEEP command, because by that point TEXTFORM will have determined
whether the keep will fit or be carried over.

Vertical Position of Text

Extra Vertical Space

The commands VERTSPACE, or VS, and VERTGAP, or VG, insert extra vertical
space on a page or column of a page.

VERTSPACE spaces down immediately by the length specified, without
changing the horizontal position. If the length is negative, it spaces back up the
column. On the first line of a column, you can space vertically upwards by any
amount less than LINESPACE. You cannot space back into the margins, although
from a bottom reserve you can space upwards to print in a top reserve.

When a VERTSPACE command overflows a column, and it is not part of a word
(for instance, after a blank), only the available length left in the column is used: the
rest does not appear at the top of the next column. If VERTSPACE appears at the
start of a column (PAGE,VS . . .), or after the column overflows, it does appear.

For an exact amount of vertical space, say 5 inches, that may be split over two
columns, do the following:

<define &rem = remaining(2), –
comment distance remaining on page, –
if &rem > 5in, then, vertspace 5in, –
else, vertspace &rem, columnend, vertspace 5in–&rem, endif>

For an exact amount of vertical space that may not be broken across the columns and
must appear at the top of the next page if it cannot fit on the current page, do the
following:

<lineend, if remaining(2) > 5in, then, vertspace 5in, else>

Page Appearance

52

<float top size 6.5in 4in comment>
<endif>

When a word containing a VERTSPACE overflows a column vertically, (perhaps
being used to produce a subscript) then the word starts a new column. If it still
doesn’t fit, the VERTSPACE produced is only the amount of space available on the
column. All subsequent VERTSPACE commands in the same word are ignored.
Horizontal alignment is done on the last line of the column when the column
overflows.

When a word containing a VERTSPACE overflows the line horizontally, the
word is moved to a new line (or hyphenated if HYPHENATION is requested) before
the VERTSPACE is done.

When successive VERTSPACE commands appear on a column, all the lengths
requested appear. The VERTGAP, or VG command, however, produces only the
largest length of all those requested. This command ends the current line, and
produces a vertical space from the preceding baseline.

Text<VERTGAP 1IN>
<VERTGAP .5IN>Text2

produces:

Text

Text2

Notice that the baselines of ‘Text’ and ‘Text2’ are separated by a gap of 1 inch plus
the LINESPACE used for the line containing ‘Text2’.

If the VERTGAP requested is greater than the vertical space remaining on the
column, the rest of the vertical gap does not appear at the top of the next column.

If a VERTGAP command is used at the very top or bottom of a column, or at the
top of a reserve or float, it is ignored. Use VERTSPACE instead.

Spacing Text on a Column

The SPLIT command can be used to cause all the empty vertical space remaining on
the column to appear when the command is used.

<SPLIT VERTICAL>

This command causes no change to the horizontal position of the line.

<PAGE>
Text <LINEEND>

Page Appearance

53

<SPLIT VERTICAL>
Text <LINEEND>
<PAGE>

puts the words ‘Text’ on the first and last line of the page.

The SPLIT VERTICAL command can be used several times per column. When
this is done, the vertical white space on the page is divided by the number of times
the SPLIT VERTICAL command appears.

<PAGE,SPLIT VERTICAL>
Text <SPLIT VERTICAL, PAGE>

puts the word ‘Text’ on the middle of the page. This command can be used only in
open text — normal text which is placed on the page by TEXTFORM, as opposed to
text which is placed in special locations, such as footnotes, keeps, floats or reserves.
(These items are described later in the manual.)

Aligning Text Vertically in the Column

Whenever text overflows the column (or a one-column page), any extra vertical white
space for the column appears at the bottom. More control over the vertical
positioning of the text on the column is available by changing the variable
VERTALIGNMENT, which is TOP by default. (But whenever SPLIT VERTICAL
appears in a column or page, it is done instead of the vertical alignment for that page
or column.) It can be:

TOP
BOTTOM
CENTRE or CENTER
BOTH

When VERTALIGNMENT=CENTRE, the text is centred vertically on the column
when the column overflows or is ended with a COLUMNEND command. When
VERTALIGNMENT=BOTTOM, the empty space on the column appears at the top of
the column. Like the LINEEND command, alignment can also be specified on the
COLUMNEND command if you want to change the alignment of a specific column:

<COLUMNEND CENTRE>

If you want to vertically align the column with the current value of
VERTALIGNMENT, but you do not know what it is, use:

<COLUMNEND $VERTALIGNMENT>

where the ‘$’ causes TEXTFORM to insert the current value of VERTALIGNMENT
into the command (see page 108 for more details about the ‘$’ operator). If the
previous line will be part of a macro, use:

<'<COLUMNEND $VERTALIGNMENT>'>

If you want each column to be exactly the same length (vertically justified), this is a
special case, because TEXTFORM assumes that there are no default points for extra

Page Appearance

54

spaces to be added, even when VERTALIGNMENT=BOTH. (In the horizontal
direction, blanks between words indicate where the space may be inserted.) You
must indicate vertical justification points by inserting the VERTJUST command
wherever you are willing to have extra space inserted; justification is not done unless
these commands appear on the column. (No warning message is printed if
justification is not done.)

The VERTJUST command, or VJ, is used to indicate where extra vertical space
may be inserted when VERTALIGNMENT=BOTH. Only those columns which
overflow or end with COLUMNEND BOTH are vertically justified. If COLUMNEND
or PAGEEND ends a column, it is not vertically justified. (In the same manner, a
line ended with LINEEND is not justified horizontally.) The last page of a document
is not vertically justified.

Space is distributed evenly among all VJ commands in the column (presently,
vertical justification is not done in reserves, floats, footnotes, or tables). Two VJ
commands in a row produce twice as much space as one. The VERTJUST command
should be given at the beginning or end of a formatted line, since it does not end the
line.

Since there are no automatic vertical justification points, you will probably use
macros to insert the VJ commands in the input. For instance, a major heading macro
might include:

. . . LEND, VERTSPACE 3*LINESPACE, VJ, VJ, VJ, . . .

whereas a minor heading macro might include:

. . . LEND, VERTSPACE LINESPACE, VJ, . . .

so that more justification is inserted before major headings. You will probably want
to insert VJ before and after block quotes and points. You may also insert VJ points
at every paragraph with:

<DEFINE &NP='<LEND, VJ, NP>'>

Note that VJ points are done even if they are the very first, or very last things in a
column. If the &NP macro causes the column to overflow, there may be vertical
justification at the bottom of the column. A more sophisticated &NP variable might
do the following:

<lend, if remaining(2)>2*linespace, then, vj, eif, np>

Commands Which Include Input at Special Positions

In a file containing TEXTFORM commands, text and commands are formatted as
they are encountered, and placed immediately on the open text area of the page.
There are several commands that cause text and/or commands to be formatted at a
later time in the document, or at a specific location on the page. These are discussed
here, and include the FOOTNOTE, FLOAT, and RESERVE commands. AT and

Page Appearance

55

DELAY commands also cause text to appear at special locations.

Default State

Before using these commands, you should be familiar with the concept of a default

state. At the start of a run, there is a default linespace, underlining is off, font
normal is in effect, alignment=left, etc. Your document may later change these
values. It is necessary to ensure that all footnotes, floats and reserves (items that are
not part of the open text area) have the same appearance, rather than some being
single-spaced and others being double-spaced, for example. To do this, at the
beginning of each, TEXTFORM saves the current values of all items in the default
list, reverts to the default state, does the footnote, etc., and then restores the saved
values. Within a footnote you might change any of these defaults, but the footnote
always starts with the default values.

The items that are restored to their default value at the beginning of a footnote,
float or reserve are:

wordspace is .1 inch
sentsep is .1 inch
typesize is .1389 inches, or 10 points
linespace is .1667 inches, or 12.0507 points
font is normal
characterset is odcharacterset
underline is off
underlinewordspace is false
underlinestring is '_'
indents are off
alignment is left

Page Appearance

56

cap is false
keyboard is standard

When a top float or reserve appears, TEXTFORM positions down TSIZE to ensure
that the text line on each page is in the same position, regardless of whether single
or double spacing is used. At the bottom of a column or page, when a footnote, or
bottom float or reserve begins, TEXTFORM is positioned down LINESPACE from
the top boundary of the item. In either case, if you need to be positioned further
down, use a VERTSPACE command. Then, you may also want to change alignment,
typesize, or linespace to a new value. For example:

<FOOTNOTE,ALIGNMENT=BOTH>This is the footnote.
<ENDFOOTNOTE>

Footnotes at Bottom of the Column

The footnote commands let you enter the text of a footnote without knowing where
you are in relation to the bottom of the column.

<FOOTNOTE> . . . <ENDFOOTNOTE>

Text entered between these commands is saved and printed at the bottom of the
column, in the default state (see page 55) and is numbered with superscript arabic
numerals.

The text of the footnote is entered immediately after the reference to it in the
text—the FOOTNOTE command is used immediately after the text, without a blank
space. However, to use the program most efficiently, there should be a blank space
before the ENDFOOTNOTE command.

reference in the text.<foot>This is the text of footnote. <efoot> Text
continues

produces in the text:

reference in the text.† Text continues

If a blank space appears between the FOOTNOTE command and the preceding
word, or if the FOOTNOTE command is the first command on the line, this indicates
where TEXTFORM may end the word. You may have justification inserted here, or
worse, the footnote counter may appear on the following line. If a blank space
appears between the FOOTNOTE command and the first word in the footnote, a
word space appears between the reference in the footnote and the first word.

Footnotes cannot be used in tables, reserves, or bottom floats. If you forget an
ENDFOOTNOTE command, and begin another footnote, you get the error FLOAT or
FOOTNOTE is already being built. You can't build one inside another, sorry. There is
a bug in the TEXTFORM program which causes it to occasionally miss the
ENDFOOTNOTE command, even when it is entered correctly. The problem occurs
when the last word of the footnote overflows the last line of the page, and the
ENDFOOTNOTE command appears immediately after the word, without a

†This is the text of footnote.

Page Appearance

57

preceding blank. If you get the errors ENDFOOTNOTE command does not have a
preceding FOOTNOTE command. Ignored. or End of file encountered while using a
FOOTNOTE you may be able to avoid the problem by inserting a blank before the
ENDFOOTNOTE command.

Footnotes are separated from the rest of the text on the page with a separating
line:

The commands to produce this line are in the variable FOOTSEP, which can be
changed. Its default value is:

<FOOTSEP = '' <REP(18,'-'),LEND> ''>

On the X9700 output device, you can produce a solid line with:

<FOOTSEP = '' <REP(20, '_'), LEND> ''>

which repeats the character ‘_’ 20 times. This produces 10 in the output, since it is a
meta-character. If the character set has a LIGHTRL character, use it:

<FOOTSEP = '' <REP(18, LIGHTRL),LEND> ''>

If FOOTSEP is changed, the output it produces must not exceed one line. If it does,
this may cause the error RESERVEs on page leave no room for text.

Footnotes on a column can be separated by a string or space if you change
FOOTDIVIDE. Although it is initially '', you can place one blank line between each
footnote with:

<FOOTDIVIDE = '<vertspace linespace>'>

To separate each footnote with ‘***’:

<FOOTDIVIDE = '***<lend>'>

Like FOOTSEP, the output from FOOTDIVIDE should not be more than one line
high.

When TEXTFORM cannot fit the entire footnote on the column, the word
“cont’d” and the rest of the footnote appear at the bottom of the next column. The
word “cont’d” is in the variable FOOTCONTINUE, and can be changed. For example:

<FOOTCONTINUE = 'continued . . . ' >

Each footnote is numbered consecutively throughout the document. The command
<AT ENDOFPAGE RESETFOOTNOTE> or <AT EOP RSFOOT> causes footnotes to
be numbered from 1 on each page. The AT command is described in more detail on
page 69.

You can make further changes to how the footnotes are numbered, by adjusting
the FOOTCTR and FOOTINDEX variables. By default, FOOTCTR = 1. It is
incremented and appears as a superscript for each footnote.

Page Appearance

58

If FOOTCTR is changed to a structure, it is indexed by FOOTINDEX, and the
items in the structure are then used to number the footnotes. For example, footnotes
are frequently itemized with the characters * and †. If there are more than two
footnotes in the column, multiples of these characters are used: **, ††, ***, and so on.
FOOTINDEX indexes the structure element which appears with the footnote. When
FOOTINDEX exceeds the number of elements in the structure, multiples of the
structure elements are used.

<AT ENDOFPAGE RESETFOOTNOTE>
<FOOTINDEX = 1>
<FOOTCTR = ('*', '<DAGGER>')>

This<foot>FOOTINDEX is 1 for first footnote on the page <efoot> is
an example<foot>FOOTINDEX is now 2 <efoot> of how
FOOTCTR<foot>FOOTINDEX is 3 so FOOTCTR(1) will appear twice
<efoot> FOOTCTR can be changed.

produces:

This* is an example† of how** FOOTCTR can be changed.

If you do not want to have footnotes numbered, enter the command:

<FOOTCTR = (' ')>

Footnotes at the End of a Chapter

The FOOTNOTE command prints footnotes at the bottom of each column. You may
prefer to collect them until the end of each chapter, or perhaps until the end of the
document. Instructions for doing this follow. Instead of using FOOTNOTE and
ENDFOOTNOTE, enter each footnote as follows:

<&FOOT>This is a footnote<$&EFOOT>

When you want the footnotes to be printed, enter the command:

<&PRINTNOTES>

Here are the instructions to use (they are also available online; see TXFM:INDEX for
the file name):

<DISABLE MESSAGE 227 228>
<LOAD TOSUP &PRINTSUP –

TAKES STYPE LEN STRING –
RETURNS R0 PTR VALUE LEN STRING>

<COMMENT Ignore the warning from this command>

<DEFINE MACRO &PRINTNOTES, –
LINEEND, –

*FOOTINDEX is 1 for first footnote on the page
†FOOTINDEX is now 2
**FOOTINDEX is 3 so FOOTCTR(1) will appear twice

Page Appearance

59

FOR '&FN=1' UNTIL '&FNMAX' DO &PRINTFOOT, –
&FN = 1, –
EDEF MACRO &PRINTNOTES>

<DEFINE &FN = 1, DEFINE &FNMAX>
<DEFINE &PRINTFOOT = '<LINEEND,VS LINESPACE, $&AP,
ERASE $&AP>' >

<DEFINE MACRO &FOOT, –
DEFINE &EFOOT = &XEFOOT, –
&PRINTSUP(&FN), –
DEFINE MACRO $&AP, &FN, HORSPACE WORDSPACE, –
EDEF MACRO &FOOT>

<DEFINE &XEFOOT = '$&EAP, &FNMAX=&FN, &FN=&FN+1,
ERASE &EFOOT'>
<DEFINE &AP = ('&',@&FN)>
<DEFINE &EAP = ('EDEF MACRO &', @&FN)>

The HORSPACE WORDSPACE command in the above example can be replaced by '.
' if you require punctuation in the list of footnotes after the numbers.

Here is an example using the above intructions. Be especially careful to end each
footnote you enter with <$&EFOOT> because errors in using these instructions can
be costly.

Chapter 1
<LINEEND CENTRE> This is the start of a chapter that contains
some footnotes.<&FOOT> This is a footnote<$&EFOOT>
This is some text that will appear in the chapter.<&FOOT> And
another footnote.<$&EFOOT>
Now more text on the page, and then print the footnotes.
<&PRINTNOTES>
<LEND,VS 2*LINESPACE> Chapter 2
<LINEEND CENTRE> This is another chapter that will contain more
footnotes<&FOOT> This footnote will begin at one.<$&EFOOT> and
this chapter continues. Now, here are the footnotes for this chapter.
<&PRINTNOTES>

produces:

Chapter 1
This is the start of a chapter that contains footnotes.1 This is some text that
will appear in the chapter.2 Now more text on the page, and then print the
footnotes.

1 This is a footnote

2 And another footnote.

Chapter 2

Page Appearance

60

This is another chapter that will contain more footnotes
1

and this chapter
continues. Now, here are the footnotes for this chapter.

1
This footnote will begin at one.

Input at a Specific Location

The FLOAT command can be used to have a portion of text, or blank space for an
insertion, appear in a special position, while the regular input text continues to fill
the current column. The text after the FLOAT command may appear before, around,
or after the floated text appears in the output, depending on how the float is
specified. In contrast, the KEEP command ensures only that portions of text appear
in the same column. If the text must begin in a new column to do this, the bottom of
the previous column is left blank.

Floats save text until a specified condition becomes true. If some text is in a
variable, and you want the text at the top of a page, use the following FLOAT
command:

<DEF &TOP = 'A float from previous page. <LEND R, SP ''. '',
LEND, VS 4MM>'>
<FLOAT &TOP>

The contents of &TOP are not evaluated until the FLOAT appears on the page. This
means that the current page is finished, the next page is started, and then
TEXTFORM checks for top floats. If any are waiting, such as &TOP, the contents of
&TOP are then included as TEXTFORM input. If &TOP is changed after the float
command, but before the page ends, the new contents of &TOP are evaluated on the
next page.

All float text appears in the default state, as described on page 55. The first
floats specified appear closest to the margins. If several FLOAT TOP commands are
given, the first one appears at the top of the next page (after the reserves, if any)
followed immediately by the second, and so on. TEXTFORM does not check that the
entire FLOAT will fit on the same page unless specific keywords are used in the
command. The keywords of the FLOAT command let you control where the text is
placed on the page, and the size of the space in which the text appears (this is useful
if you want to float blank space instead of text). The complete list of keywords are in
Appendix 1.

Examples of Floats

To leave a space of fifteen blank lines at the bottom of a page which is 6.5 inches
wide, the commands are:

<DEFINE &FL>
<FLOAT BOTTOM PAGE SIZE 6.5IN 15*LINESPACE &FL>

If the horizontal width of the page is unknown, it may be given as:

<FL B S DEFAULT 15*LINESPACE &FL>

To float an entire blank page (this is not the same as including the commands

Page Appearance

61

A float from previous page.
.

PAGE, PAGEEND in the input, which may leave part of the current page empty) use
the following commands. It is not necessary to do this exactly at the end of a page. It
can be done anywhere, and several times in a row if you need more than one blank
page.

<FLOAT VERY TOP PAGE PAGEEND>

The size of a bottom float must be specified (if you need to estimate, estimate on the
high side). Bottom floats do not require PAGEEND commands (it causes an error)
because no text appears on the page after the float (except footnotes).

<DEFINE MACRO &BTM>
This text appears at the bottom of a column.

<ENDDEFINE MACRO &BTM>

<FLOAT BOTTOM COLUMN SIZE 3.5IN .33IN &BTM>

A convenient method of handling figures and tables is to put each one in a macro
with a suitable name, and then to float the macro when the figure is referenced. For
example, if you have a table called &TAB, you might do the following:

<DEFINE MACRO &FIG1>
<DEFINE TABLE &TAB>
<COLUMNS = 3>
<ENDDEFINE TABLE &TAB>

<USE &TAB>
This <TAB 2> is a sample <TAB 3>table.
<USE, &TAB>

<ENDDEFINE MACRO &FIG1>

In the text, when you refer to Figure 1, you can then float the macro you have
defined:

. . .as illustrated in Figure 1. <FLOAT TOP &FIG1>

You can build macros which float space to the top of the next page when there is not
enough room to leave the space on the current page. This is useful if you are leaving
space to insert photographs or figures. The following macro, &FIG, takes a
parameter which specifies the vertical dimension of the space to be left blank. The
macro calculates the page width between margins, so it can be used even when you
do not know the pagesize. If there is enough room on the current page, a blank space
is left. If there is not enough room on the page, the message ‘(see following page)’ is
printed, and the space is floated to the top of the next page.

Page Appearance

62

<define &message = '(see following page)'> <define &figctr = 1>
<attribute &figctr incr = '1'>
<define &figtitle = '<vs linespace>figure <&figctr, lend centre>'>

<define macro &fig, –
if remaining(2) >= par(1) then, –
&figtitle, vertspace par(1)–(3*linespace), –
else, &message, –
float size default par(1) &figtitle, –
endif, –

enddefine macro &fig>

some text . . .
<&fig(1inch)>The text resumes one inch from the preceding text on
the page.

produces:

some text . . .

Figure 1

The text resumes one inch from the preceding text on the page.

In the next example, &FLFIG generates a float command of a specified size when
given three parameters: vertical depth of float (if omitted, 18*linespace+.5IN),
number for figure, and the title to appear at the bottom of the figure.

<disable message 228>
<define &flctr=1>

<define macro &flfig, –
if par(1)='',then, –

local &distance=18*linespace+.5in, –
def $&fl='<vs 18*linespace>':par(2):par(3):'<lend c>', –

else, –
local &distance=par(1)+.5in, –
def $&fl='<vs ':par(1):'>':par(2):par(3):'<lend c>', –

endif, –
if remaining(2) < &distance, –

then fl top page size default &distance $&fl, –
else fl bottom page size default &distance $&fl, –

endif, –
&flctr=&flctr+1, –
enddefine macro &flfig>

<define &fl=('&flfigno',@&flctr)>

Use it as follows:

<&FLFIG(10*linespace, '1', 'Title of Figure')>
<&FLFIG(15*linespace, '2', 'Title of Next Figure')>

Page Appearance

63

Include Float

The INCLUDE command includes items which have not yet appeared, such as
FLOATs. This is useful at the end of a chapter or section.

<INCLUDE FLOAT [VERY] [kwd2] [kwd3] [kwd4]>

It takes up to five keywords, where the first is FLOAT and the others are the same
as for the FLOAT command. Only the FLOAT keyword is compulsory; all the other
keywords are optional. If a keyword is not given, all floats waiting are included:

<INCLUDE FLOAT>

If neither TOP nor BOTTOM is specified, then floats for both the TOP and the
BOTTOM are included. The same is true for the FRONT or BACK pair of keywords
as well as PAGE or COLUMN.

INCLUDE FLOAT ends the current line, and starts a column, if one has not
been started already. Then, if a float is found, it places it on the column and ends the
column, unless it is the last column containing a top float. While processing the
requested floats, the INCLUDE FLOAT command may cause other floats to appear,
along with the ones requested. For example, the command INCLUDE FLOAT TOP
does not prevent bottom floats from appearing if any are pending and will fit.

At the end of a run, all floats that have not yet appeared are automatically
included. However, if a float has been given with dimensions that are too large to fit
on a page, it will not appear.

Information About Floats

FLOAT_INFO provides information about pending floats. It is similar to
RESERVE_INFO, described on page 67.

Repeated Input at a Specific Location

The FLOAT command prints text in a special position on the page. This floated text
appears one time only. If text is to appear in a special position on every page, use the
RESERVE command instead (see Appendix 1 for the command syntax, which is like
the FLOAT command). This is how page numbers, headers, and footers are produced.

Examples of Reserves

In the following example, space for a title is reserved at the top of the page. First, a
variable is defined to contain the title.

<DEFINE &TITLE = 'Rules of Court<LINEEND CENTRE,VS
LINESPACE>'>

To cause this variable to be printed at the top of every page, the command is:

<RESERVE TOP &TITLE>

This reserve uses two lines at the top of every page. One line contains the title ‘Rules

Page Appearance

64

of Court’; one empty line follows as a result of the VS command. Reserves appear on
the page after the top margin, or before the bottom margin. If TOPMARGIN is one
inch (six lines), text begins on the ninth line of the page in this example. Those
reserves given first appear closest to the margins. As with floats, the reserve starts
in the default state.

Margins are often reduced if a reserve is being used. In the above example, the
TOPMARGIN could be reduced to .66 inch to compensate for the .33 inch occupied by
&TITLE.

The value of THISPAGE can be used to align the page number:

<DEFINE &TOP = '<PNCTR, LINEEND $THISPAGE>'>
<TOPMARGIN = .5IN>
<RESERVE TOP SIZE 6.5IN .5IN &TOP>

produces either a LINEEND LEFT or a LINEEND RIGHT command depending on
the current value of THISPAGE.

Notice that the top margin has been reduced by the vertical size of the reserve.
As a result, the total white space at the top of the page will be 1 inch, although the
page numbers appears in this space.

The following example prints the page number in the right corner of the page,
but also puts a centred title on the same line:

<DEFINE MACRO &HEADER, –
PNCTR, LINEEND RIGHT, VERTSPACE –LINESPACE, –
'Title Goes Here', LINEEND CENTRE, –

ENDDEFINE MACRO &HEADER>
<RESERVE TOP &HEADER>

This would produce:

Title Goes Here 23

It is easiest to change the reserve if it is produced by a variable rather than a macro.
For example, set up a reserve which prints the variable &TITLE. The following
macro ends the current page, changes &TITLE so that it prints nothing, prints a
chapter heading at the top of a new page, and then resets &TITLE to appear on
subsequent pages:

<DEFINE MACRO &CHAP, –
PAGEEND, &TITLE=' ', PAR(1), LEND, VS LINESPACE, –
&TITLE = PAR(1), –

ENDDEFINE MACRO &CHAP>

When you print the page number at the bottom of the page, remember to include
vertical space before PNCTR is printed, so that there is blank space between the
bottom line of text on the page and the page number.

<DEFINE &BOTCEN = '<VERTSPACE LINESPACE, PNCTR, LEND
C>'>

Page Appearance

65

<RESERVE BOTTOM SIZE 6.5IN .5IN &BOTCEN>

If you want the page number printed as a roman numeral, use the ATTRIBUTE
command, on page 123.

<ATT PNCTR DISPLAY ROMAN LC>

The contents of the reserved item can be changed at any time if contained in a
variable. In a bottom reserve, this change is reflected at the bottom of the page.

Because a top reserve is printed whenever a PAGE command causes a new page
to begin, or when a page overflows, the change does not appear until the next page.
However, a TOP reserve can be changed after a PAGEEND command and takes
effect for the page following. You can issue negative vertical space commands from
bottom reserves to print text in a top reserve. This is illustrated in the
dictionary-type example which follows.

To change the contents of the reserve before the next page begins, you might use the
commands:

<PAGEEND, &TITLE = 'New Section<LINEEND CENTRE,VS
LINESPACE>'>

The following commands will not work, because the PAGE command will make the
top reserve appear before the contents of &TITLE are changed.

<PAGE, &TITLE = 'New Section<LEND C, VS LINESPACE>'>

If &TITLE is changed to '' the reserve does not print any text, but it is still in effect.
It is not as easy to change the reserve if it is a macro, because the macro must be
erased and defined again. (The command is ERASE name, as described on page 116.)
To stop a reserve entirely, it is ‘suspended’, described next.

The full form of the RESERVE command, shown in Appendix 1, is similar to the
FLOAT command. There are several differences: by default, reserves appear on the
page instead of the column; reserves cannot use the VERY keyword; and reserves
must have a name so that they can be suspended.

Stopping Reserves

The SUSPEND command stops reserves:

<SUSPEND kwd>

kwd
indicates which facility to suspend. In the case of RESERVES, kwd is

RESERVE [kwd1] [name1]

kwd1
may be provided to specify a ‘name1’ which appears on more than one reserve list. If
‘kwd1’ is omitted, ‘name1’ is removed from all reserve lists.

Page Appearance

66

TOP – remove from the RESERVE TOP list
BOTTOM – remove from the RESERVE BOTTOM list
FRONT – remove from the RESERVE FRONT list
BACK – remove from the RESERVE BACK list

name1
if specified, indicates the name to remove from from the reserve list. If ‘name1’ is not
found, it generates the error No reserve by that name. SUSPEND command is
ignored. If ‘name1’ is not specified, all names on the list are removed.

To stop all reserves in effect at the top of the page:

<SUSPEND RESERVE TOP>

To remove the name &TOP from all reserve lists:

<SUSPEND RESERVE &TOP>

To remove the name &TOP from all reserve TOP lists:

<SUSPEND RESERVE TOP &TOP>

Example of Dictionary-Type Page Titles

In a dictionary-type document, you may want the first and last keyword on the page
to appear at the top of the page. However, the top reserve does not know what the
last word on the page will be. To solve this problem, use a bottom reserve which
spaces vertically back to the top of the page.

If your pagesize is (8.5IN,11IN), set top and bottom margins to zero. Reserve a
1 inch space at the top and bottom of the page. When the bottom reserve begins, it is
ready to begin printing on the first line of the reserve. At this point, a VERTSPACE
–10IN command moves the baseline (the imaginary line on which the letters seem to
rest) to the first line of the top reserve, i.e. the top line of the page. A VERTSPACE
–9.5IN command moves the baseline to the fourth line of the top reserve.

Be sure that the negative VERTSPACE command positions you in a blank part
of the page (i.e. in a top reserve). If the negative VERTSPACE requested would take
you past the top of the page, the following error appears: You cannot back up any
farther than the top of the page. Stopped at the top of the page.

To print a dictionary-type heading at the top of each page, two variables are
used.
– One remembers only the first entry on the page. In the following example,

&SETFIRST sets &FIRST once per page, then it sets itself to NULL. The bottom
reserve restores &SETFIRST so that it will reset &FIRST at the top of the next
page.

– A second variable must be set with each successive entry so that it contains the
last entry on the page whenever the page overflows. In the following example,
the entry macro &E sets &LAST each time it prints a new entry.

Page Appearance

67

<pagesize = (8.5in,11in)>
<topmargin = 0in>
<botmargin = 0in>
<define &top>
<reserve top page size 6.5in 1in &top>
<reserve bottom page size 6.5in 1in &bot>

<define macro &bot, –
vertspace –9.5in, &first, '–', &last, –
&setfirst = '<&first = par(1), &setfirst = '' '' >', –

enddefine macro &bot>

<define &first, define &last>
<define &setfirst = '<&first = par(1), &setfirst = '' '' > '>

<define macro &e, –
line, vertspace linespace, font 2, par(1), font 1, –
&setfirst, &last = par(1), –

enddefine macro &e>

After the above commands, each entry would appear as:

<&E('cats')> . . .
<&E('dogs')> . . .
.
.
<&E('rats')> . . .
<&E('rhinos')> . . .

If ‘dogs’ and ‘rhinos’ were the first and last entries on the page, ‘dogs–rhinos’ would
appear in the top reserve area.

Information About Reserves

RESERVE_INFO provides information about reserves presently in effect. It is used
with a list of search terms which it uses to limit the results provided. The results are
in the form of a structure of strings, with each separate string containing the
complete reserve command which was found. The SEPARATE function can be used
to extract single words from these strings. FLOAT_INFO provides similar
information; the differences are described below.

The list of search terms can include:

TOP
BOTTOM
FRONT
BACK
PAGE
COLUMN
SIZE
name of reserve

For these examples, there are these reserves on the page.

RESERVE TOP PAGE &1
RESERVE TOP FRONT PAGE &2
RESERVE TOP BACK PAGE &3

Page Appearance

68

RESERVE BOTTOM PAGE SIZE 6.5IN 1IN &4

<&RESULT = RESERVE_INFO>

No parameter was given, so &RESULT is now a four element stucture containing

1 RESERVE TOP PAGE &1
2 RESERVE TOP FRONT PAGE &2
3 RESERVE TOP BACK PAGE &3
4 RESERVE BOTTOM PAGE SIZE 6.5IN 1IN &4

Now, only TOP reserves are requested, so the result of

<&RESULT = RESERVE_INFO(''TOP'')>

&RESULT is a three element structure containing

1 RESERVE TOP PAGE &1
2 RESERVE TOP FRONT PAGE &2
3 RESERVE TOP BACK PAGE &3

The next test uses two parameters. They ask information about all the reserves that
are both TOP and FRONT. Note that &RESULT contains information on all reserves
which are done for front pages, not just those reserves which are done for only front
pages.

<&RESULT = RESERVE_INFO(''TOP'',''FRONT'')>

produces:

1 RESERVE TOP PAGE &1
2 RESERVE TOP FRONT PAGE &2

In the following example, all column reserves will be returned, but since there aren’t
any defined in this example, &RESULT contains a null string.

<&RESULT = RESERVE_INFO(''COLUMN'')>

Now, any reserve with the name &3 is found. There may be several with that name,
but in these examples there are only one, so

<&RESULT = RESERVE_INFO(''&3'')>

produces:

3 RESERVE TOP BACK PAGE &3

Note:

1. If nothing matches the search list, the result is not a structure with no elements,
but is a null string instead.

2. The search terms are not checked for a rigorous syntax like they are on the
FLOAT or RESERVE command. If you mistype one of the terms, these functions
will assume that you meant that term to be a name to look for. Also, the search

Page Appearance

69

terms do not have to be in the same order as they are on the RESERVE or
FLOAT command.

3. The command returned is not identical to the one you typed in. If you allowed
some of the keyword to use their default values, those will be included. For
example, if you said FLOAT &name it would return
FLOAT TOP COLUMN &name.

4. In unusual circumstances, it is possible to have so many RESERVEs or FLOATs
queued that the resulting structure becomes too large and overflows, causing
TEXTFORM to terminate.

5. FLOATs may be found up until the time they are used. For instance, if you are
in the middle of a column, the FLOATs for the TOP have already been used and
removed. However, the FLOATs for the BOTTOM of the column have not yet
been done, so they can be found by FLOAT_INFO.

AT Points

If you want to perform a specific action repeatedly after an event occurs, use the AT
command. The event can be:

an assignment to a variable (e.g. <&A=1>)
when a name is referenced (e.g. <PEND>)
a specific text character
end of word
end of line
start or end of column
end of page
end of file

The first three cases are done when TEXTFORM encounters the specific item in your
input file, and are called synchronous ats. The others are done when a condition
becomes true during the TEXTFORM run—at the end of a line or end of a page.
These are called asynchronous ats, and occur whether or not you use a specific
command to force the condition to become true. The format of the command is:

<AT kwd name>

kwd

ASSIGN name2
ENDOFCOLUMN
ENDOFFILE
ENDOFLINE
ENDOFPAGE
ENDOFWORD
REFERENCE name2
STARTOFCOLUMN
TEXTCHARACTER c

name
is done, even within tables, floats, and reserves. TEXTFORM does not return to the
default state before including the name. As many ATs may be queued as desired.
However, do not use ATs when INPUTMODE is ASIS. More than one AT may be
queued for each 'kwd'; however they must be queued in separate commands. The ATs

Page Appearance

70

queued for a particular 'kwd' will be carried out in a last-queued first-done order. The
'name' in an AT will automatically be de-queued if for some reason the 'name' cannot
be queued. This causes the error &name is not defined. Deleted from AT-list.

When an AT ENDOF. . . generates text, the text appears in the next open text
area. For example, AT ENDOFPAGE text appears at the first open text area of the
next page, after reserves and floats.

Examples of ATs

Footnote counters are reset by using an AT. By default, FOOTCTR is incremented
throughout the document. To reset the counter to 1 at the end of every page, enter
the following command at the beginning of the document:

<AT ENDOFPAGE RESETFOOTNOTE>

WORDSPACE and SENTSEP are often adjusted when TYPESIZE or ALIGNMENT
are changed. The following example shows how to do this automatically by using AT
ASSIGN. AT ASSIGN ‘name2’ occurs whenever a value is assigned to ‘name2’. It is
only meaningful when ‘name2’ is a variable name. This condition does not occur
when TEXTFORM changes a system variable.

<def &a=tsize>
<def &b='<wordspace=wordspace*(tsize/&a),&a=tsize>'>
<at reference typesize &b>
<at reference typ &b>

<def ma &c, –
if alignment=both then wordspace=textwidth('i'), –
else wordspace=textwidth('n'), eif, –

edef ma &c>
<at assign alignment &c>

AT ENDOFFILE name comes true when TEXTFORM reads an end-of-file from
SCARDS, i.e. finishes reading your file. The following commands cause the index to
be automatically printed at the end of the run.

<DEFINE &PRINTINDEX = '<X(0)>'>
<AT ENDOFFILE &PRINTINDEX>

AT ENDOFLINE name occurs whenever the output overflows from one line to the
next, or when a line is ended as the result of a command. To prevent formatting
errors, TEXTFORM does not do AT ENDOFLINEs in bottom reserves. The following
example automatically numbers lines.

<DEF &LINES = 1,ATTRIBUTE &LINES INCR = '1'>
<DEF &LNCT = '<&LINES>'>
<AT ENDOFLINE &LNCT>
<NEWPARA>Whenever a line overflows to the next line, the contents
of &LNCT are inserted in the input. If &LNCT causes text to be
printed, this text will appear at the beginning of the next line.
<SUSPEND AT ENDOFLINE &LNCT>

produces:

Page Appearance

71
1
2

Whenever a line overflows to the next line, the contents of
3 &LNCT are inserted in the input. If &LNCT causes text to be
4 printed, this text will appear at the beginning of the next line.

AT ENDOFWORD ‘name’ is done at the end of every word. It can be used to count
the number of words in a body of text. AT REFERENCE name2 occurs whenever
‘name2’ is referenced. But AT REFERENCE NP is not done when NEWPARA is
referenced.

<DEFINE &COUNT = 1>
<DEFINE &PARAS='<&COUNT,''. '',&COUNT=&COUNT+1>'>
<AT REFERENCE NEWPARA &PARAS>
<NEWPARA> Whenever the command NEWPARA appears in the text,
the contents of &PARAS are inserted in the text.
<NEWPARA>This causes the number to appear before the text of each
paragraph.
<LINEEND, &PARAS= ' ', SUSPEND AT REFERENCE NEWPARA
&PARAS>
<NEWPARA>However, suspending the at-point requires the command
NEWPARA to be used. This causes the at-point condition to become
true again.

produces:

1. Whenever the command NEWPARA appears in the text, the
contents of &PARAS are inserted in the text.

2. This causes the number to appear before the text of each
paragraph.

However, suspending the at-point requires the command
NEWPARA to be used. This causes the at-point condition to become
true again.

AT STARTOFCOLUMN name becomes true when TEXTFORM begins a column. See
page 152 for details. AT TEXTCHARACTER c has been discussed earlier on page 42.

Stopping ATs

The SUSPEND command stops ATs:

<SUSPEND kwd>

kwd
indicates which facility to suspend. In the case of ATs, kwd is

AT kwd2 [name2]

kwd2
indicates which kind of AT to suspend (e.g., ENDOFPAGE), and must be included.

Page Appearance

72

name2
if given, causes TEXTFORM to remove only that name from the AT list. If not given,
all names are removed.

Information About ATs

AT_INFO provides information about which AT points are active. It is used with the
same keywords as the AT command. For example:

<define &dis = '<display thispage>', –
at eop &dis, –
at endofpage resetfootnote>

<define &show = at_info('eop')>
<display &show>

1 RESETFOOTNOTE
2 &DIS

Delayed Input

The DELAY command allows an action to be delayed for some measure. The delay
measure may be a given distance or a number of lines. An action can be delayed
vertically or horizontally. The format of the command is:

<DELAY [kwd] kwd2=expression name>

kwd
is the direction to delay.

VERTICAL – vertically down from the current position.
HORIZONTAL – horizontally to the right of the current position.

kwd2
is the distance to delay.

LENGTH – if used, ‘expression’ is the distance to wait before doing
the delay.
LINES – if used, ‘expression’ is the number of lines of text to wait
before doing the delay. This can only be used with vertical delay.

name
is the name of the item (variable or macro) containing the text and/or commands of
the delay. If it is a macro, parameters are not allowed. If it is a variable, the variable
can be changed or assigned a null value.

In the horizontal direction, the counting of the delay measure is done at the end
of every word and after all HORSPACE commands. In the vertical direction, the
counting of the delay measure is done at the start of a line and also after all
VERTSPACE, VERTGAP, and SPLIT VERTICAL commands. A delay will awake
when at some point (a line boundary or word boundary), the vertical or horizontal
distance is exceeded. However, this may not be the exact distance specified in the
DELAY command.

Page Appearance

73

<DEFINE &ACTION=’<F 3>Delay Stuff. <F>’>
This is some text <L, DELAY LINES=2 &ACTION>
This is some more text <L>
This is text which appears just before the delay stuff. <L>
And this is text which appears after the delay stuff.

produces:

This is some text
This is some more text
This is text which appears just before the delay stuff.
Delay Stuff. And this is text which appears after the delay stuff.

If two DELAYs come true at the same location, for example:

<L,DELAY LINES=2 &ONE>text
<L,DELAY LINES=1 &TWO>text

the first DELAY specified appears first. However, if two DELAYs come true at the
same location, but one has a more negative value, for example:

<DELAY HORIZONTAL LENGTH = –1IN &1>
<DELAY HORIZONTAL LENGTH = –2IN &2>

the one with the more negative value appears first. If a DELAY is given and an end
of file is reached before the DELAY comes true, then the DELAY will not appear and
TEXTFORM will issue the warning DELAY was pending but was not done.

DELAYs are active only in the type of item in which they are given. For example,
if a DELAY is given in normal text, it is temporarily suspended whenever footnotes,
floats and reserves are being done. TEXTFORM will continue to check for the
DELAY to come true when it resumes formatting normal text. However, if DELAYs
are given within a footnote, float or reserve and if they do not come true before that
item is done, the pending DELAYs would be cancelled.

Page Appearance

74

PRODUCING COLUMNS ON THE PAGE

Columns on the page can be produced in several ways—tables, logical pages, and
input mode. These three techniques are described in this section.

If you want TEXTFORM to fill a column to the bottom of the page, and then
begin at the top of the next column, use logical pages. However, if you want control
over the vertical position of the text in each column, you should treat the text as a
table. When you want to enter text exactly as it is to be produced, change the
INPUTMODE variable to tell TEXTFORM to stop formatting the text.

Before using these options, you should know several new TEXTFORM terms.
The physical page is the size of the page TEXTFORM works with, although the
exact sheet may be larger (as in the 1403 output device). One physical page may be
divided into several logical pages, or columns. On a physical page or logical page,
tables may produce further columns. The command which tells TEXTFORM where to
place text — on the physical page, the logical page, or in the columns of a table, is the
USE command. It has the format:

<USE [name]>

name

– if not given, or if PHYSICALPAGE, causes TEXTFORM to place text on the
physical page. Whenever the physical page becomes full, or when a PAGEEND
command is encountered, TEXTFORM sends the page to the output device.

– if the name of a logical page, as in USE &2COL, causes TEXTFORM to place
text according to the dimensions of logical page called &2COL. Whenever that
page becomes full, or is ended with a PAGEEND command, the page is sent to
the output device.

– if the name of a table, causes TEXTFORM to direct text to column 1 of that
table.

Whenever the USE name command is given, TEXTFORM changes CURLP to an
upper case string containing ‘name’. If ‘name’ is not given, CURLP contains
PHYSICALPAGE. So CURLP can contain one of:

– the name of the current logical page
– the name of the current table
– PHYSICALPAGE

Producing Columns on the Page

75

Logical Pages

The following example defines and uses a logical page.

First, define the logical page. The one in this example has two
columns, with .5 inch space between columns.

<DEFINE LOGICALPAGE &TWOCOL, –
COLUMNS = 2, –
DEFCOLGAP = .5IN, –

ENDDEFINE LOGICALPAGE &TWOCOL>

To format text in two columns, USE the logical page:
<PAGEEND>

<USE &TWOCOL>

This text is formatted in two columns. The USE command positions at
the beginning of the first column (unless the logical page already has
text on it). The command COLUMN

<COLUMN>

causes TEXTFORM to begin at the top of the next column. If the
COLUMN command appears in the last column of the page, it has
the same effect as a PAGE command. Now end the two column page
with PAGEEND and continue on the physical page.
<PAGEEND, USE PHYSICALPAGE>

produces:

First, define the logical page. The one in this example has
two columns, with .5 inch space between columns. To format
text in two columns, USE the logical page:

This text is formatted in
two columns. The USE
command positions at the
beginning of the first
column (unless the
logical page already has
text on it). The command
COLUMN

causes TEXTFORM to
begin at the top of the
next column. If the
COLUMN command
appears in the last
column of the page, it
has the same effect as a
PAGE command. Now
end the two column page
with PAGEEND and
continue on the physical
page.

Defining the Logical Page

Text can be formatted in one or more columns on the physical page by defining and
using a logical page. To produce text in columns 1) define the appearance of the
logical page by specifying the number of columns and where they appear on the page
2) tell TEXTFORM to place text on the logical page with the USE command 3) use
the COLUMN and COLUMNEND commands to control your position on the column

Producing Columns on the Page

76

The logical page is built within the total area available for text on the physical
page, i.e., within the margins. Any number of logical pages can be defined; each
logical page can have one or more columns. If a reserve, float, or footnote is in effect
on the physical page, it has no effect on the dimensions of the logical page being
defined. If the reserves are producing page numbers on the physical page, they will
not appear on the logical page.

The following list describes keywords which are valid within the logical page
definition between the commands:

<DEFINE [kwd] LOGICALPAGE name>
keywords ...
<ENDDEFINE LOGICALPAGE name>

kwd
may be one of the AXR or NXR. See
cross references on page 176.

name
is the name of the logical page to be
defined. Any number of logical pages
can be defined.
keywords
Information within parentheses is the
default used if the item is not
specified. Any unspecified column
width or gap size information is
calculated when the definition is
closed with the ENDDEFINE
LOGICALPAGE command.

COLUMNS = expression (= 1)
The logical page will have ‘expression’
columns. To further describe each
column, the DEFINE COLUMN
command (see page 91) may be used
within the logical page definition. If
COLUMNS= is not specified, the
number of columns is taken from the
highest column defined. COLUMNS=
can appear before or after DEFINE
COLUMN. If DEFINE COLUMN is
not used, the width of each column is
taken from DEFCOLWIDTH, and the
width of the column gaps from
DEFCOLGAP.

If the specified number of columns cannot fit across the page, an error is issued:
Defined columns and their gaps leave no room for text. Automatic sizing invoked.
Then the column width is adjusted to fit the desired number of columns across the
page.

DEFINE COLUMN . . .
See the DEFINE COLUMN command on page 91.

Producing Columns on the Page

77

DEFCOLWIDTH = length (depends on page width)
This is the column width. If it is not specified, TEXTFORM calculates the column
width, fitting the columns evenly. If neither DEFCOLGAP and DEFCOLWIDTH are
specified, DEFCOLGAP is set to 10% of the column width necessary to use the entire
page width.

DEFCOLGAP = length (depends on page width)
This is the gap between columns. If DEFCOLGAP is not specified (or is set to zero or
a negative number), TEXTFORM calculates the column gap, fitting the columns
evenly across the page.

LEFTGAP = length (= 0)
This is the gap between the left margin and column 1. If a negative number is
specified, TEXTFORM makes the gap 10% of the column width.

RIGHTGAP = length (= 0)
This is the gap between the last column and the right margin. If a negative number
is specified, TEXTFORM makes the gap 10% of the column width.

COMMENT body
A comment may appear.

PAGESIZE = length structure (= PAGESIZE)
When defined, a logical page is the same size as PAGESIZE. To change the size of
the logical page, specify PAGESIZE in the definition.

TOPMARGIN = length (= TOPMARGIN)
This is the top margin of the logical page. If it is not specified the current value of
TOPMARGIN is used. If it is specified, it is added to the current value of
TOPMARGIN.

BOTMARGIN = length (= BOTMARGIN)
This is the bottom margin of the logical page. If it is not specified the current value of
BOTMARGIN is used. If it is specified, it is added to the current value of
BOTMARGIN.

LEFTMARGIN = length (= LEFTMARGIN)
This is the left margin of the logical page. If it is not specified the current value of
LEFTMARGIN is used. If it is specified, it is added to the current value of
LEFTMARGIN.

RIGHTMARGIN = length (= RIGHTMARGIN)
This is the right margin of the logical page. If it is not specified the current value of
RIGHTMARGIN is used. If it is specified, it is added to the current value of
RIGHTMARGIN.

Assignments made to the following keywords during logical page definition are
ignored because they have not been implemented.

LEFTGAPSTRING
RIGHTGAPSTRING
DEFCOLGAPSTRING

Producing Columns on the Page

78

Any other commands encountered in the definition produce the error: Not allowed in
this type of definition. Ignored.

Putting Text on the Logical Page

If &TWOCOL is the name of a logical page that has been defined, the command
USE &TWOCOL causes text to be formatted on that logical page, rather than the
physical page.

Several logical pages may be defined, but only one may be used on each physical
page. To change to another logical page, give the USE command with the name of the
new logical page. The command USE, without a name, returns to the physical page.

TEXTFORM sends a page to the output device when the page is full, or when a
PAGEEND or PAGE command is issued. If you USE a logical page, and then USE
the physical page, the logical page will not appear if it was not ended. Instead,
TEXTFORM will generate it when it becomes full, or failing that, at the end of the
run. To produce the logical page as soon as it is used, include PAGEEND before
USEing the logical page, and return to the physical page with
PAGEEND, USE PHYSICALPAGE. This technique is used in the following
examples.

The COLUMN command begins the next column. This command has the same
effect as PAGE if the current column is the last on the page, or if the page has only
one column. In the command:

<COLUMN [kwd] >

‘kwd’ can be used to specify the number of the column to start.

The COLUMNEND command ends the current column, if one was started. On
the last column of a page, it has the same effect as the PAGEEND command.

<COLUMNEND [kwd] >

‘kwd’ describes how to vertically justify the text in the column, described on page 54.

TEXTFORM is unable to evenly balance the length of the columns across the
logical page, if there is not enough text to fill each column. In some cases, your needs
may be met by using the TABLE command. See the example on page 88.

TEXTFORM is unable to switch from columns to full width text and back to
columns on the same page. However, you can place full width text at the top or
bottom of a logical page by using the FLOAT command, as shown in the following
examples.

Examples of Logical Pages

This example illustrates how to handle page numbers while using physical and
logical pages.

Producing Columns on the Page

79

<topmargin = 0in>

<define macro &topage, –
lend, vs 2*linespace, pnctr, lend $thispage, –

edef macro &topage>

<reserve top page size default 1in &topage>

<define logicalpage &two, columns = 2, edef logicalpage &two>

<use &two>
<reserve top page size default 1in &topage>

<define macro &topcol, –
'Column ', curcol, lend c, vs linespace, –

edef macro &topcol>
<reserve top column size default .5in &topcol>
<use> This text is on the physical page. <pageend, use &two>
<alignment = both>
To produce page numbers, the same RESERVE was specified twice —
once on the physical page, and once while the logical page was being
USEd. There is also a reserve for each column on the logical page.
<column> Footnotes<foot>Remember that footnotes use the
_d_e_f_a_u_l_t values of LINESPACE, TYPESIZE, ALIGNMENT, etc.,
so this footnote is not justified as is the rest of the text on the page.
<efoot> appear at the bottom of the current column.

produces:

1

This text is on the physical page.

Producing Columns on the Page

80

2

Column 1

To produce page
numbers, the same
RESERVE was specified
twice — once on the
physical page, and once
while the logical page
was being USEd. There
is also a reserve for each
column on the logical
page.

Column 2

Footnotes1 appear at the
bottom of the current
column.

1
Remember that footnotes

use the default values of
LINESPACE, TYPESIZE,
ALIGNMENT, etc., so
this footnote is not
justified as is the rest of
the text on the page.

The following example defines a three column logical page, and with a title above the
three columns.

<define logicalpage &triple, –
columns = 3, –
defcolwidth = 9pica, –
defcolgap = 2pica, –

enddefine logicalpage &triple>
<use &triple>

<def &ttl = 'A Three-Column Page With a Very Long Title<vs 4mm>'>
<float top page &ttl>
This logical page has three columns. When both DEFCOLWIDTH and
DEFCOLGAP are specified, TEXTFORM adds the remaining space to
LEFTGAP and RIGHTGAP.
<COLUMN> Notice how the title was FLOATed to the top of the
page, so that it could span more than one column.
<COLUMN> FLOATs can also appear at the tops of columns.

produces:

Producing Columns on the Page

81

This logical page
has three columns.
When both
DEFCOLWIDTH
and DEFCOLGAP
are specified,
TEXTFORM adds
the remaining
space to LEFTGAP
and RIGHTGAP.

Notice how the
title was FLOATed
to the top of the
page, so that it
could span more
than one column.

A Three-Column Page With a Very Long Title

FLOATs can also
appear at the tops
of columns.

Logical Pages and the Default State

The first time you USE each logical page, the default state described on page 55 is in
effect. If you want to change the defaults, do it after you USE the logical page. Any
changes made remain in effect the next time the logical page is used.

Logical Pages With Reserves, Floats and Layouts

The physical page and each logical page have independent reserves and floats. If a
reserve is in effect when a logical page is defined it does not automatically appear
when the logical page is USEd. To produce a reserve on a logical page, USE the
logical page and then issue the RESERVE command. This is illustrated in examples
below. Remember than reserves, and floats, can be given for either pages or columns.

Logical pages may be defined and used with TEXTFORM layouts. To produce
page numbers, most layouts set TOPMARGIN and BOTMARGIN to 0 inches, and
then RESERVE 1 inch areas at the top and bottom of the page.

– If you define the logical page before you issue the LAYOUT command, all four
margins will be 1 inch.

– If you define the logical page after you issue the LAYOUT command,
TOPMARGIN and BOTMARGIN will be 0 inches for most layouts. You may
want to respecify these values in the logical page definition.

In either case, the page numbers which are generated by the layout will not appear
after you issue a USE name command. You will have to produce your own
RESERVEs after you USE the logical page. To do this, see the example on page 79.

Information about Logical Pages

Information about the dimensions of a logical page is provided by using
TABLE_INFO, as described on page 91, or by using the DISPLAY command as
shown on page 92.

During a run, CURCOL contains the current column number. TEXTFORM
changes it as soon as a column overflows, or is ended after a COLUMNEND. On the
physical page, in page reserves and floats, and on a one column logical page,

Producing Columns on the Page

82

CURCOL contains 0.

Tables

The INDENT command can achieve the effect of a table by moving to the next indent
position on a line. Because this works only when the text does not overflow the line,
TEXTFORM has a more flexible facility to handle tables.

There are three steps: 1) give the table dimensions by defining it, 2) enter the
text into the table with the TAB command, which works the same way as the tab key
on a typewriter (this step is called filling or using the table), 3) place the table on the
formatted page (this is called including the table in the input). This empties the
table, leaving it ready to be filled again. The following example produces a simple
table, using these three steps.

<comment Define the table>
<DEFINE TABLE &T1>

<COLUMNS = 3>
<ENDDEFINE TABLE &T1>

<comment Now put text in the table>
<USE &T1>
Column 1 <TAB 2> Column 2
<TAB 3> Column 3
<TAB 1> 11638 <TAB 2> 663404
<TAB 3> 93884
<TAB 1> 55672 <TAB 2> 557344 <TAB 3> 44725662
<TAB 2 3, SPLIT '–' >
<USE>

<comment No longer putting text in table>
<comment Include the table as input>
<&T1>

produces:

Column 1
11638
55672

Column 2
663404
557344

Column 3
93884
44725662

–––––––––––––––––––––––––––––––––

Defining the Table

When the DEFINE TABLE command is given, the table is built within the current
column. If a logical page is being USEd, it is built to fit within the current column on
the logical page. A table may be defined and then filled later in a document. If you
often change PAGESIZE within a document, it is best to define a table near where it
will be used, so that it is defined with the correct dimensions. A defined table does
not change dimensions to fit the page on which it is used.

Producing Columns on the Page

83

<DEFINE [kwd] TABLE name>
keywords ...
<ENDDEFINE TABLE name>

The keywords that appear within a
table definition are the same as those
for a logical page definition, on
page 76. However, assignments should
not be made to the following keywords
in a table definition, since the result is
incorrect:

PAGESIZE
LEFTMARGIN
RIGHTMARGIN
TOPMARGIN
BOTMARGIN

Putting Text in the Table

Text is placed in the table after the
USE name command, where name is
the name of the table. For example,

<USE &T1>

Within the table, the TAB command indicates the column, just as the tab key on a
typewriter tabs across the columns. However, unlike a typewriter, once you have
TABbed to a particular column, all text that you type before the next TAB command
is kept in the tab column. This allows you to type multi-line entries for each tab
column and let TEXTFORM fit them within the tab columns. TAB has the format:

<TAB [m [n]] >

If simply TAB, or T is given, all the text which follows appears in the next tab
column. A table entry is the text between <TAB> and the next <TAB> command. If m
is given, the text which follows appears in column m. If both m and n are given, as in
TAB 2 3, text which follows is placed in a column that is the width of columns
m through n (and all the formatting values used, such as font and alignment, are
those of column n).

Since TAB starts a line in the next column, TAB, LINE produces the same result
as just TAB.

Placing the Table on the Page

After the table has been filled, the USE command causes subsequent text to be
included on the normal physical page. USE implies a LINEEND command as well. If
&name is the name of a table, as &T1, <&name> ends the current line, causes the
table to be placed as text on the page, and then empties the table. It may then be
filled again. If you need to print the same table with the same contents more than
once, put the commands to fill and include it in a macro, and use the macro whenever

Producing Columns on the Page

84

you need the table. <&name = ' '> also empties the table, without including it as
input.

Extra Vertical Space In Tables

If you want extra vertical space to appear across all columns, give these commands to
insert one blank line:

<TAB 1, BC, TAB 1>

The following macro lets you insert a variable amount of vertical space:

<DEF MA &TSEP, –
T 1, –
IF NRPARS=0 THEN, BC, ELSE, VS PAR(1), ENDIF, –
T 1, –

EDEF MA &TSEP>

For example, &tsep(6po). The following two sequences are usually incorrect:

<TAB 3>text <VERTSPACE 4MM, TAB 1>

inserts the vertical space in column 3 only, while

<TAB 1,VERTSPACE 4MM>text

inserts the vertical space in column 1 only.

To end a page in tabular material, for example in table &TAB, use the
commands:

<USE, &TAB, PAGEEND, USE &TAB>

To end a page in tabular material which is being placed on a logical page, use the
commands:

<USE &logicalpage, &TAB, PAGEEND, USE &TAB>

PAGE, COLUMN, PAGEEND, or COLUMNEND commands cannot appear while a
table is being USEd.

Error Messages Related to Tables

If the specified number of columns defined cannot fit across the page, an error is
issued: xxxx more than the width of the logical page or table has been assigned.
Automatic sizing invoked

If the space for text in a table column is too narrow, this may produce the error
Unable to keep non-line-breaking words within the margins. If no indents are in
effect, you can define the specific column to be wider than other columns.

Producing Columns on the Page

85

The TAB command is valid only when a table is being USEd. At any other time,
it causes the error The TAB command is only valid inside tables. Ignored. An
attempt to tab past the last column in the table produces the error Attempt to TAB
past last column of table. Tabbing to Column 1. When you start to enter text in a
table with the USE command, you are positioned at TAB 1, so a TAB 1 command is
redundant at that point.

A table entry must fit on one column of a page. If it does not, TEXTFORM ends
the run with the error Table entry is too long to fit on the page. Terminating.
However, a complete table may span several pages, as long as the individual entries
are each less than a page (or a column on a page).

TEXTFORM will not split a table entry across two pages, so the KEEP command
is unnecessary. PAGE, COLUMN, PAGEEND, or COLUMNEND commands cannot
appear while a table is being USEd. These commands produce the error PAGE,
COLUMN, PAGEEND and COLUMNEND commands are not allowed in tables.
Command ignored.

When a table is being used, do not issue FOOTNOTE, FLOAT, VERTJUST, or
KEEP commands. To produce a footnote, enter only the superscript number in the
table (for example <SUP1>) and then type the same number and the contents of the
footnote as regular text after the table has been placed on the page.

Tables and the Default State

1) When defining the table, the values for font and alignment in each column are
the current values, unless these are changed by a DEFINE COLUMN command. If
an indent is in effect while the table is being defined or filled, the indent is saved, set
to zero, and restored after the definition.

2) When putting text in the table, with a USE &table command, TEXTFORM
stores the values in the default state list (described on page 55). When a USE
command is given to stop putting text in the table, these values are restored. This
means that any changes to these values inside the table don’t affect text which
follows the table.

Inside the table, any font or alignment changes affect only the column in which
the change occurs. These changes remain in effect throughout the column, unless
they are reset. They also remain in effect for that column if a table is placed on the
page, and then USEd again.

In contrast, indent commands affect not only the current column, but subsequent
columns, until the indent is reset. In a column, the indent is from the left of the
column. If the space for text remaining in the column is too narrow for text, it may
produce the error Unable to keep non-line-breaking words within the margins. See
the DEFINE COLUMN command on page 91 to define a column of a specific width.

3) When placing the table on the page, the table will be the full width it was
when defined. If an indent is in effect, the table may overflow the margins.

Producing Columns on the Page

86

Examples of Tables

The first example specifies the physical dimensions of the table. In this manual,
examples are indented from the left margin. When the table is placed on the page,
this indent appears, then the LEFTGAP of .5 inch, and then the table. If the table
had been defined to be a full 6.5 inches, and was placed on the page while an indent
was in effect, it would overflow into the right margin.

<def table &t4, –
defcolwidth=1in, –
defcolgap=0in, –
leftgap=.5in, –
rightgap=.5in, –
columns=4, –

edef table &t4>
<use &t4>
23<split '.', tab 2>66<split '.'>
<tab 3>27<split '.', tab 4>47<split '.'>
<tab 1>55<split '.', tab 2>87<split '.'>
<tab 3>64<split '.', tab 4>51<split '.'>
<tab 1>46<split '.', tab 2>96<split '.'>
<tab 3 4>98<split '.'>88
<use, &t4>

produces:

23.....................
55.....................
46.....................

66.....................
87.....................
96.....................

27.....................
64.....................

47.....................
51.....................

98... 88

This example uses the DEFINE COLUMN command to describe each column in the
table. For more information about this command, see page 91.

<define table &t5, –
defcolwidth=30mm, –
defcolgap=5mm, –
columns=4, –
define column 1, –

alignment=right, edef column 1, –
define column 2, –

alignment=centre, edef column 2, –
define column 3, –

alignment=left, edef column 3, –
define column 4, –

width = textwidth('Totals'), –
edef column 4, –

edef table &t5, –
leftindents=(.3in), –
use &t5> 636 <tab 2> 1832 <tab 3> A. <indent left 1> Initial rate of
de<->cline <tab 4,i l 0> Totals
<tab 1, bc, tab 1> 80655 <tab 2>199730 <tab 3, indent left 0>
B. <indent left 1>Percen<->tage decrease <tab 4,i l 0> Totals
<use,&t5>

Producing Columns on the Page

87

produces:

636

80655

1832

199730

A. Initial rate
of decline

B. Percentage
decrease

Totals

Totals

The next example defines a table when indents are in effect (perhaps as the result of
a layout). The LEFTGAP of the table is set to the value of the current left indent, so
that the first column of the table aligns with the text above and below it.

This is some indented text. The table will be defined so that it aligns
with this text.
<define &lin = lindent>
<define &lindx = lindentindex>
<define table &t6, –

columns = 5, –
leftgap = &lin, –

edef table &t6>

<use &t6>
<t 1> aaaa <t> dddd <t>123 <t>123 <t>000
<t 1> bbbb <t> eeee <t>456 <t>123 <t>000
<t 1> cccc <t> ffff <t>789 <t>123 <t>000
<use, &t6, indent left &lindx>
Now reset the indent that was saved and continue the regular text.

produces:

This is some indented text. The table will be defined so that it aligns
with this text.
aaaa
bbbb
cccc

dddd
eeee
ffff

123
456
789

123
123
123

000
000
000

Now reset the indent that was saved and continue the regular text.

When the table is described only by the number of columns it contains, TEXTFORM
calculates the width of columns and gaps. In the following example, columns 1
through 11 are defined; the last column will have all the remaining space in the
table. This may be useful if you know the required width of certain columns, and
want the rest of the space to be spread among the remaining columns.

<def table &t7, columns=12, –
leftgap=.5IN, defcolgap=0, –
def col 1, width=1.2IN, edef col 1, –
def col 2, width=.2IN, edef col 2, –
def col 3, width=.2IN, edef col 3, –
def col 4, width=.2IN, edef col 4, –
def col 5, width=.2IN, edef col 5, –
def col 6, width=.2IN, edef col 6, –
def col 7, width=.2IN, edef col 7, –
def col 8, width=.2IN, edef col 8, –
def col 9, width=.2IN, edef col 9, –

Producing Columns on the Page

88

def col 10, width=.2IN, edef col 10, –
def col 11, width=.1IN, edef col 11, –
edef table &t7>

<use &t7> Card <t 8> 1 <t>1 <t> 1 <t 12> Values read into TSP
<t 1> Column <t>1 <t>2 <T>3 <t>4 <t>5 <t>6 <t>7 <t>8 <t>9
<t 6>1 <t>2 <t>3 <t>6 <t>7 <t 12> 12367.32
<t 2>1 <t>2 <t 12>1200000000.00
<t 9>1 <t>2 <t 12>.12
<t 7>1 <t>2 <t>0 <t>0 <t 12>12200.00
<use, &t7>

produces:

Card
Column 1

1

2

2

3 4 5
1

6
2

1

1
7
3

2

1
8
6

1
0

1
9
7

2
0

Values read into TSP

12367.32
1200000000.00
.12
12200.00

The following example uses the table facility to give the appearance of multi-column
text. Tables are used so that the two columns can be balanced throughout the page;
this cannot be done with logical pages. The table is placed on the page after each row
of entries so that the table entries do not become too large. Remember that the entry
must fit on one column of a page. Note that the TAB 1 command is unnecessary
immediately after the USE command:

<define table &bylaw, –
columns=2, –
leftgap=0.5409IN,–
define column 1, –

alignment=left, –
width=1in, font 2 –

edef column 1, –
define column 2, –

alignment=both, –
width=3in, –

edef column 2, –
edef table &bylaw>

Bridge Regulations
<USE &BYLAW> 804 <LEND> Traffic Regulations
<TAB> (1) No person shall operate any vehicle which is steered or
controlled by a system of levers nor any bulldozer with a blade upon
the roadway traffic deck of the High Level Bridge.
<USE, &BYLAW, LEND, USE &BYLAW>
804.1<TAB> (2) No person shall park a vehicle upon the roadway
traffic deck of the High Level Bridge.
<USE, &BYLAW>

produces:

Producing Columns on the Page

89

Bridge Regulations

804
Traffic
Regulations

(1) No person shall operate any vehicle
which is steered or controlled by a system
of levers nor any bulldozer with a blade
upon the roadway traffic deck of the High
Level Bridge.

804.1 (2) No person shall park a vehicle upon
the roadway traffic deck of the High Level
Bridge.

Putting Text in a Table by Row or Column

You can change an entry in the table any time after table definition, or after the
table has been filled.

<define table &change, columns = 4, enddefine table &change>
<use &change, 'aaa', tab 2, 'bbb'>
<tab 3, 'ccc', tab 4, 'ddd'>
<use, &change(2,1) = 'x', &change>

These commands produce the message A table entry with this index (1,1) has already
been inserted. It will be deleted. The following table is produced:

aaa X ccc ddd

This method also lets you fill a table by columns rather than by rows.

<&change(3,1) = 'column 3'>
<&change(2,1) = 'column 2'>
<&change(1,1) = 'column 1'>
<&change>

produces:

column 1 column 2 column 3

Tables with Reserves, Floats and Logical Pages

If you want to produce text within reserves in the same table format as text on the
page, define two tables with similar dimensions, and use the second table in the
reserve. Do not use the same table for both open text and reserves.

If a table is defined on a logical page, after text has appeared on the logical page,
the width of the table is determined by the width of the column. However, the
following commands are not enough to cause TEXTFORM to define a table the width
of one column:

<DEFINE LP &2COL, COLUMNS=2, EDEF LP &2COL>
<USE &2COL>
<DEFINE TABLE &T, . . .

Producing Columns on the Page

90

This is because the USE command does not cause TEXTFORM to adjust
CURPAGESIZE. This is done only after text is placed on the logical page. The best
procedure is to start the column with a COLUMN command, or a title for the table,
and then define the table.

When including the table on a logical page, a common mistake is to say
USE,&TABLE, which will put the table on the PHYSICALPAGE instead of the
logical page. If the logical page is &2COL, and the table is &TABLE, do the
following:

<USE &2COL>
This text appears in the column.
<USE &TABLE>
This text fills the table.
<USE &2COL>
<comment now back on the column>
<&TABLE>
<comment include the table>

If you do not know the name of the logical page, you can save it as follows (use of the
$ operator is described on page 108):

<DEF &SAVELP = CURLP>
<USE &TABLE>
This text fills the table.
<USE $&SAVELP, &TABLE>

If you require a table in a float on a logical page, for example &2COL, your float
should be treated as follows:

<use &2col>
this text is on the two column page. Now we need a bottom PAGE
float that contains a table.
<define macro &fltab>

<comment define a table>
<use &table> <comment fill the table>
<use &2col> <&table>
<comment the table will be the width of the PAGE>

<enddefine macro &fltab>
<float bottom page size default 3in &fltab>

If we use a float bottom column command, the float will be the width
of the column.

Information about Tables

CURTABLINE contains the number of the current line in the table. Outside of a
table it is 0.

<define table &t1>
<columns = 5>
<edef table &t1>

<use &t1>aaa <curtabline>

Producing Columns on the Page

91

<tab 1>bbb <curtabline>
<nl>ccc <curtabline>
<use, &t1>

produces:

aaa 1
bbb 2
ccc 2

TABLE_INFO can be used to get information about the dimensions of a table, or
logical page. The following example stores a length in LEFTINDENTS(30) that is the
width of column 1 and the gap between column 1 and column 2 of the table.

<define table &tab, –
columns=6, –
define column 1, font 3, edef column 1,–

edef table &tab>

<def &wwid = table_info(&tab, 'width',1)>
<&wwid = &wwid+table_info(&tab, 'gap',2)>
<leftindents(30)=&wwid>

Information about the dimensions of table can also be displayed by using the
DISPLAY command as shown on page 92.

Defining Specific Columns in Logical Pages and Tables

In a logical page or table definition, any number of columns can be defined. Note that
some of the keywords are valid only when the column is being defined inside a table.

<DEFINE [kwd] COLUMN expression>
keywords ...
<ENDDEFINE COLUMN expression>

kwd
may be one of the AXR or NXR. See cross references on page 176.

expression
is the number of the column being defined. It must be 1 or greater.

keywords
GAP = length (= DEFCOLGAP)
This is the gap between the preceding column and the column. Column 1 may not
have a GAP (use LEFTGAP). If GAP is not specified, or is –1, its width is determined
after all the columns in the logical page or table are defined.

Producing Columns on the Page

92

WIDTH = length (= DEFCOLWIDTH)
This is the width of the column. If not specified, it is determined by TEXTFORM
after all the columns in the logical page or table are defined. To make the width of
the column wide enough for a specific word, use TEXTWIDTH:

<WIDTH = TEXTWIDTH('Specifications ')>

If the total width of the columns in a logical page or table is too wide, the following
error appears: xxxx more than the width of the logical page or table has been
assigned. Automatic sizing invoked.

ALIGNMENT = kwd (= current value of ALIGNMENT)
This is the alignment of the text in the column. If not specified, the current value of
ALIGNMENT is used. This command is only valid in COLUMN definitions for
tables.

FONT [expression] (= CURFONT)
Text in the column will appear in this font. This command is only valid in COLUMN
definitions for tables.

COMMENT body
A comment may appear.

Displaying the Logical Page or Table Dimensions

If LIST SOURCE (see page 172) is in effect, the characteristics of the logical page or
table are displayed in the listing, using DEFUNITS as the unit of length. This same
information can be displayed on SERCOM, as in the following example.

<pagesize = (8.5in, 11in)>
<leftmargin=1in, rightmargin=1in>
<topmargin=1in, botmargin=1in>
<define logicalpage &twocol, –

columns = 2, –
defcolgap = .5in, –

edef logicalpage &twocol>

<defunits=in, display &twocol>

produces:

ORIGIN=(1IN,1IN) PAGESIZE=(7.5IN,10IN)
LEFTMARGIN=1IN RIGHTMARGIN=0IN TOPMARGIN=1IN
BOTMARGIN=0IN
LEFTGAP=0IN LEFTGAPSTRING=
RIGHTGAP=0IN RIGHTGAPSTRING=
Column Gap Width Gapstring
1 3IN
2 0.5IN 3IN

Use the displayed information to confirm the width of the columns, the gap between
columns, and the left and right gap. You can also display variables, but cannot
display logical page or table keywords such as COLUMNS, etc. However, you can use

Producing Columns on the Page

93

TABLE_INFO to store information about logical page or table keywords in variables
which you can then display.

In the following example, TEXTFORM calculates the widths of the columns and
gaps; the gaps are set to 10% of the column width needed to fill the page:

<define logicalpage &3col, –
columns = 3, –
leftgap = –1, rightgap = –1, –

enddefine logicalpage &3col>

<defunits=in, display &3col>

produces:

ORIGIN=(1IN,1IN) PAGESIZE=(7.5IN,10IN)
LEFTMARGIN=1IN RIGHTMARGIN=0IN TOPMARGIN=1IN
BOTMARGIN=0IN
LEFTGAP=0.1912IN LEFTGAPSTRING=
RIGHTGAP=0.1912IN RIGHTGAPSTRING=
Column Gap Width Gapstring
1 1.9118IN
2 0.1912IN 1.9118IN
3 0.1912IN 1.9118IN

TEXTFORM spreads the three columns across 6.5 inches
(PAGESIZE(1)–LEFTMARGIN–RIGHTMARGIN) allowing for the width of the
columns (3 × 1.9118), the width of LEFTGAP and RIGHTGAP (2 × .1912), and the
width of DEFCOLGAP (2 × .1912). The gaps are all set to 10% of the column width.

Producing Columns Without Using DEFINE TABLE

TEXTFORM allows three different modes for incoming text (UNFORMATTED,
ASIS, and PREFORMATTED). Two of these modes can be used to produce tabular
material, in certain cases only.

The default is UNFORMATTED mode, where TEXTFORM makes all formatting
decisions. This mode is in effect at the beginning of a TEXTFORM run. In this mode,
all multiple occurrences of blanks are reduced to a single blank. TEXTFORM
attempts to put as many words onto a line as possible without overflowing the
margins. All TEXTFORM commands are honoured and acted upon. This mode is
produced with the command:

<INPUTMODE=UNFORMATTED>

When it is desirable to enter text exactly as it is to appear on the page, but still have
commands acted upon, use PREFORMATTED. This mode is used only when the
characters on the intended output device are the same width. Return to normal
processing by setting INPUTMODE back to UNFORMATTED:

<INPUTMODE=PREFORMATTED>
= * * <CAP = TRUE> =
aaaaa bbbbb

Producing Columns on the Page

94

<INPUTMODE=UNFORMATTED>

produces:

= * * =
AAAAA BBBBB

PREFORMATTED mode uses the alignment specified explicitly on LINEEND
commands, but it does not use the value of ALIGNMENT at any time. Blank lines in
the input produce blank lines in the output. Command lines do not produce blank
lines in the output unless blanks appear around the command.

The third mode of input, ASIS, also attempts to duplicate the input data on the
output device, but commands and meta-characters (¬ @ _) are not honoured. Like
PREFORMATTED, ASIS mode is useful only if the intended output device has
characters which are all the same width (as is the case on the line printer).
Otherwise the output will not closely resemble the input. To end ASIS mode and
return to normal processing, enter the commands:

<INPUTMODE=UNFORMATTED> or
<INPUTMODE=PREFORMATTED>

in column 1 of the input. Blanks may not appear around the equal sign in these
commands. For example:

<INPUTMODE=ASIS>
= ¬ ¬ <CAP = TRUE> =
aaaaa bbbbb
<INPUTMODE=UNFORMATTED>

produces:

= ¬ ¬ <CAP = TRUE> =
aaaaa bbbbb

Within ASIS and PREFORMATTED mode, when the width of the characters on one
input line exceeds the allowed width of an output line:

– the line is broken if it contains blank spaces, and the subsequent portion of the
line appears on the next line. This causes the error: Line width exceeded in ASIS
or PREFORMATTED mode.

– the line will extend into the margins if it contains no blank spaces, producing the
errors Line width exceeded in ASIS or PREFORMATTED mode. Unable to keep
non-line-break words within the margins.

Note that the use of PREFORMATTED and ASIS modes prevents a document from
being completely device independent, and also makes editing extremely difficult,
since spaces are important. Whenever possible, use the indent, table, or column
facilities rather than ASIS or PREFORMATTED modes. Do not use AT points when
INPUTMODE is ASIS, because commands are not honoured.

Producing Columns on the Page

95

VARIABLES

Predefined Variables

Several variables such as LINESPACE, PAGESIZE, and ALIGNMENT have already
been described in this manual. Because they are available at the beginning of a
TEXTFORM run, and contain default values, these variables are called predefined

variables. You may change the values of predefined variables, unless the variable
becomes constant during the run.

System Variables

Throughout this manual there have been references to variables in TEXTFORM
which change to convey information about the current state. You may check the
value of these variables, but not change them yourself. These are called system

variables. For example, THISPAGE is a system variable which contains LEFT or
RIGHT. See the Index to TEXTFORM Language for a complete list of system
variables.

User-Defined Variables

You may define and use your own variables with the DEFINE command:

<DEFINE name [= expression] >

For example:

<DEFINE &EF>
<DEFINE &EFA = 'Encrinurus (Frammia) articus'>

In the DEFINE command, ‘expression’ is the initial value to be assigned to the
variable. If ‘expression’ is omitted, as in DEFINE &EF, the variable is given a null

string as its value. A null string is ' ', which means it has no value, or is empty.

To use a variable, enter its name as a TEXTFORM command in the text. When
TEXTFORM encounters it, the variable is replaced by its value:

<define &long = ''a long phrase I'm tired of typing''>
Now when I come to <&long>, I put in the variable name.

produces:

Now when I come to a long phrase I'm tired of typing, I put in the
variable name.

Variables

96

If you have values (numbers or strings) which are likely to change in the future,
those values should be placed in variables. It is also a good practice to place these
variable definitions at the beginning of a source file. When you need to change these
values later, they will be easier to find. In this way the document can be reformatted
with a minimum amount of effort.

A variable may contain TEXTFORM names. This includes commands or other
variable names:

<DEFINE &2 = 'Text and <F 2>TEXTFORM commands<F>'>
<DEFINE &ET = 'et¬al<F>'>

The contents of a variable may be changed by assigning a new value,or by making it
null:

<&ET = 'Encrinurus (Frammia) articus'>
<&ET = ' ' >

Choose names for your variables that are short (to save typing) but meaningful (in
case you have a great number of them).

Variables may be created that contain a group of often repeated TEXTFORM
commands. Here is an example that uses the INDENT command to create a
bibliography.

<DEF &BIB = '<LEND, I OFF, VS 4MM, I H=1 L 3>'>

<&BIB> 1946. U.S. Army Ordnance Corps.
''Mathematics by Robot,'' <U>Army Ordnance<U OFF>,
Vol. XXX, No. 156 (May-June), pp. 239-331.

<&BIB> 1961. Weik, Martin H. ''The ENIAC Story,''
<F 2>Army Ordnance<F>, Vol. XLV, No. 244
(January-February), pp. 571-575.

produces:

1946. U.S. Army Ordnance Corps. ''Mathematics by Robot,'' Army
Ordnance, Vol. XXX, No. 156 (May-June), pp. 239-331.

1961. Weik, Martin H. ''The ENIAC Story,'' Army Ordnance, Vol. XLV,
No. 244 (January-February), pp. 571-575.

Variables

97

Values that can be Assigned to Variables

Several types of items, described below, may be assigned to a variable. They are:

string
number (integer, scaled, or length)
logical value
pointer
hex
structure

Strings

Strings are specified as characters between single (') or double ('') paired quotes. The
single or double quote is used as a delimiter.

To assign the string ‘Chapter 1’ to the variable &COUNT, the command is:

<&COUNT = 'Chapter 1'> or <&COUNT = ''Chapter 1''>

A variable may be changed to contain a string even though the variable may
previously have contained another type of data item. Both delimiters must appear on
a string. The command:

<&COUNT = 'Chapter >

produces String delimiter missing.

The character being used as a string delimiter may be used in the string by
entering the character twice:

<&COUNT = 'It''s not confusing'>

or by using the alternate delimiter around the string:

<&COUNT = ''Let's quit''>

There can be several levels of command mode within strings, as long as you can keep
them straight:

c<'o<''n''''f''>us' 'in'>g

produces:

con''fus'ing

The variable length cannot exceed 256 characters if it is going to be included in the
input. A variable longer than this can be displayed, but if it is included in the input it
causes the error: Input line longer than 256 characters. Truncated. To include a long
variable in the input, use substringing, below.

CHARS, TEXTONLY and SEPARATE are provided to manipulate portions of
strings. SEPARATE is described on page 107. CHARS determines the number of

Variables

98

characters in a string:

<CHARS('abcdef')>

produces 6.

You can force the first character of a string to be capitalized as follows:

<DEFINE &AA = 'title' >
< '@':&aa >

produces:

Title

TEXTONLY removes commands from strings, and leaves only special character
names.

<DEFINE &ALL = 'This is an emphasized<F> <integral>.'>
<DEFINE &ALLOUT = TEXTONLY(&ALL) >

makes &ALLOUT:

‘This is an emphasized <integral>.’

REP repeats a string of characters in the input.

<FOOTSEP = '<REP(18,''-''),LEND>'>

produces the footnote separator:

Substrings

A substring is described as a ‘name’ followed by a substring descriptor; (a
parenthesised pair of ‘expression’s separated by a substring operator).

– Strings have a 1 origin index—the first character of the string has an index of
one, the second an index of two, etc. Neither ‘expression’ may be zero or negative.

– If the value of ‘name’ is not a string, it is copied and converted to a string for the
substring operation.

– If the value of ‘name’ is not long enough to contain the whole substring being
requested, the substring returned will contain all that it can from ‘name’. The
substring will then be padded out to the requested length with blanks.

Substringing is available in two forms; as a from-to pair, or as a from-length pair.
This requires two substring operators:

Variables

99

from-to expression1 ; expression2

The substring of ‘name’ returned is from ‘expression1’ to ‘expression2’. If &A is
'abcdefghij' then:

<&A(1;5)> is 'abcde', and
<&A(3;6)> is 'cdef'.

from-length expression1 | expression2

The substring of ‘name’ returned is from ‘expression1’ for a length of ‘expression2’. If
&A is 'abcdefghij' then:

<&A(1|5)> is 'abcde', and
<&A(3|6)> is 'cdefgh'.

Note that when ‘expression1’ is 1, both ; and | produce the same result.

If a name contains more than 256 characters, it cannot be directly included in
the input. Substringing can be used in include the contents of the name in parts. In
the following example, assume the string is less than 512 characters:

< &name(1;255), &name(256;chars(&name)) >

Numbers

Numbers may be integer, such as 1, 4, 212, 1000000. They may have negative values.
The largest and smallest numbers are:

2147483647
-2147483648

Mathematical operations may be done on numbers, as described on page 110:

<DEFINE &CNT=1, &CNT=&CNT+1>

Scaled Numbers

Scaled numbers may have up to four decimal places, such as 4.8856, and may contain
negative values. If you try to provide more than four decimal places, as in:

<&COUNT = 1.23456>

produces the error Number truncated to 4 decimal places.

The largest and smallest scaled numbers are:

214748.3647
-214748.3648

Variables

100

Lengths

A length is entered either as a number or scaled number followed by a length
indicator, one of:

– MILLIMETRE, MILLIMETER, MILLIMETRES, MILLIMETERS or MM
– INCH, INCHES or IN
– PICA, PICAS or PI
– POINT, POINTS or PO
– LINE, LINES or LI – the smallest amount the device can move in a vertical

direction; should be used only for vertical directions
– UNIT, UNITS or UN – the smallest amount the device can move in a horizontal

direction, and should be used only for horizontal directions. Units depend on
typesize, so that 30 units in 6 point type are narrower than 30 units in 18 point
type.

Lengths are stored internally in 100ths of a micron. Generally, lengths are not
negative, but negative lengths are allowed with the VERTSPACE,
BLANKCHARACTER and HORSPACE commands. As operands for these
commands, a negative length implies direction (towards the top of the page, or
towards the left margin respectively).

Although lengths are stored internally in 100ths of a micron, the smallest usable
length is actually governed by the output device in use. For example, the smallest
horizontal space on the 1403 line printer is 1/10 of an inch and the smallest vertical
space is 1/6 of an inch. The largest length that TEXTFORM can store in a variable is
845.4663 inches.

If a length is expected and no unit of length is given, the value contained in the
variable DEFUNITS is used as the length.

The following errors may appear when assigning lengths:

<&A = 1IN * 3IN>

produces Both arguments of multiplication have type LENGTH.

<&A = 1 + 3IN>

produces Only one argument of addition or subtraction has type LENGTH. However,
this rule is relaxed when 0 is used in the addition or subtraction.

The values of INCHES, MILLIMETERS, POINTS and PICA are device
independent—they can be used on any output device, although the device may not be
able to produce the exact length specified. The following table shows the relationship
between these lengths:

IN

MM

PI

PO

IN

1
0.0394
0.1667
0.0139

MM

25.4
1
4.2333
0.3528

PI

6.025
0.2362
1
0.0833

PO

72.3008
2.8346
11.9999
1

The values of UNIT and LINE are device units. A UNIT represents the smallest

Variables

101

horizontal movement the output device is capable of moving; the value may depend
on the current character size, or typesize. A LINE is the smallest vertical movement
the output device is capable of moving. You should be familiar with the output device
being used if you are going to give lengths in UNITS or LINES. On the line printer,
the size of a unit is the same width as a letter. On the phototypesetter, its size
depends on the typesize being used.

Since a line is the smallest vertical space the device can move, this too may
change according to the device and character set being used. It is always 1/6 of an
inch on the line printer, but varies according to the character set on some other
devices.

Units and lines are very device dependent and should be used sparingly. Because
they make your document dependent upon one output device, lengths specified in
units for one device may produce disastrous results on another device.

Determining the Width (Length) of a String

TEXTWIDTH is used to determine the length of one or more characters:

<TEXTWIDTH(expression)>

The value returned is device-dependent, because it depends on the current character
set, typesize, and font:

<defunits = units>
<od '1403' 'tn'>
<define &wid = textwidth('123')>

makes &WID=3units, while:

<defunits = units>
<od 'aps5' 'geneva'>
<typesize 10points>
<define &wid = textwidth('123')>

makes &WID=168units.

If you include commands within the string, the commands are not evaluated.
The result returned contains the width of all characters. Blanks are treated as being
WORDSPACE wide; when consecutive blanks are encountered in the string, the
value of one WORDSPACE is used:

<DEFUNITS=IN, DEF &WID = TEXTWIDTH('word in ')>

makes &WID=1.6IN if the character set is TN. It is convenient to set indents based
on the width of characters. However, note that:

<DEFINE &1 = '<TEXTWIDTH(''abc'')>'>

makes &1 a string, instead of a length, so that:

<LEFTINDENTS(1) = &1 >

Variables

102

will not work. Instead, make &1 a length with:

<DEFINE &1 = TEXTWIDTH('abc')>

or use:

<LEFTINDENTS(1) = TEXTWIDTH('abc') >

to produce a length. You can also use the name of a variable with TEXTWIDTH, or
use the length calculated by TEXTWIDTH in other commands:

<define &footer = 'This book' >
<blankcharacter textwidth(&footer)>

Logical Values

Logical values may be specified as 0, OFF, NO, FALSE; or 1, ON, YES, or TRUE. An
example of a variable which contains a logical value is ODLOADED. The result of
any comparison is either TRUE or FALSE.

Pointers

Pointers point to some other name. Pointers are entered as an @ followed by the
name you wish to point to (e.g., @&B is a pointer to &B). See details about pointers
on page 108.

Hex

Hexadecimal information is entered as an even number of hexadecimal digits
delimited by the hexadecimal delimiter #.

Input in <#C885A7#>.

produces:

Input in Hex.

If you assign a hex value to a variable, it becomes a NUMBER. Note that numbers
may only have a length of 1, 2, 3, or 4 bytes (2, 4, 6, or 8 hexadecimal digits).

If you use a hex value where a string is required, and catenate it to a null string,
it becomes a string: #5C#:'' becomes a *. This can be used in the
AT TEXTCHARACTER command for hex values that do not have TEXTFORM
special character names.

Variables

103

Structures

Structures are a special form of variable—a parenthesized list of values separated
by command separators. Each value in the structure is called an element of the
structure, and contains the same types of information that a variable contains. The
elements must be enclosed in parentheses, even if there is only one element. In
TEXTFORM, structures are defined like variables, and the name has the same form
as a variable name:

<DEFINE &LIST = (2, 4, 6)>

defines a structure with three elements, or parts. The types of the structure elements
need not be the same. For example:

<DEFINE &STUFF = (36, 'some text', 3IN)>

is a valid structure.

The structure may be treated as a whole or by the individual parts:

<&STUFF>

produces:

36some text3IN

while:

<&STUFF(3)>

produces:

3IN

If you need to use indents and don’t want to change those already in effect, change
an un-used indent:

<LEFTINDENTS(23) = 5IN>

which will not modify any indent other than the twenty-third indent. When you refer
to part of a structure, as in LEFTINDENTS(23), you are indexing the structure. An
index of 23 refers to the twenty-third element in the structure. An index of 0 refers to
the entire structure, so &STUFF(0) is the same as &STUFF.

Mathematical operations can be performed on the structure. If
&LIST = (2, 4, 6), then:

<&LIST = &LIST * 2>

makes &LIST equal to:

(4, 8, 12)

while:

Variables

104

<&LIST = &LIST:'abc'>

makes &LIST equal to:

('2abc', '4abc', '6abc')

Operations can also be done on parts of the structure. If &LIST = (2, 4, 6) then:

<&LIST(2) = &LIST(2)+100>

makes the structure:

(2, 104, 6)

Notice where the parentheses appear when you define a one element structure, such
as LEFTINDENTS=(1IN), and when you change only the first element of the
structure, with LEFTINDENTS(1)=1IN. In this manual, several structures have
already been discussed. These are PAGESIZE, LEFTINDENTS, and
RIGHTINDENTS. PAGESIZE is initially (8.5IN, 11IN). If you want to reduce the
size by one half, you could type either:

<PAGESIZE = (4.25IN, 5.5IN)>

or:

<PAGESIZE = PAGESIZE / 2 >

or:

<PAGESIZE = PAGESIZE * .5>

A variable can be turned into a structure by subscripting its name.

<&A(3) = 11>

will make &A a structure (if it isn’t already), then make its third element 11. Note
that if &A is not a structure, its current value is not included as the first element of
the new &A. If it is a structure and doesn’t have three elements, TEXTFORM makes
it have three elements (those without values are made into null strings):

<DEFINE &SUM = 5>
<&SUM(3) = 11>

makes &SUM equal to (, , 11). It is not (5, ,11). Structures and pointers are often
used together. For example:

<DEFINE &CTR = 1>
<DEFINE &TITLE = ('Chapter ', @&CTR, '. ')>
<&TITLE>

produces:

Chapter 1.

Variables

105

If the value of &CTR changes, so does the value of &TITLE:

<&CTR=3, &TITLE>

produces:

Chapter 3.

You could also change &CTR in this way:

<&TITLE(2)=5, &TITLE>

produces:

Chapter 5.

Information about Variables and Structures

VTYPE tells you the type of a variable; it produces a string that is a multiple of 16
characters long.

<DEFINE &TEST = @LINESPACE>
<VTYPE(&TEST)>

produces:

POINTER

VECLEN tells you the the number of elements in a structure.

<DEFINE &LEN = (2, 4, 'abc', @&D)>
<VECLEN(&LEN)>

produces:

4

MEMBER tells you the index of a specified element in a structure. To use it, give the
element you are looking for, followed by the structure. TEXTFORM then scans the
structure for the element. If the element is found, its index is returned; otherwise the
result is zero.

<MEMBER('abc', (34, 'thing', 'abc', 211)) >

produces:

3

SUBSTRUC produces a substructure of a given structure. To use it, give the name of
the initial structure and two substructure indices.

<DEFINE &STRUC = ('A','B','C','D')>
<DEFINE &SUB = SUBSTRUC(&STRUC,2,3)>

Variables

106

The resulting structure &SUB is:

('B','C')

STRUCTURE catenates two or three structures into a new structure.

<DEF &A = ('A','B'), DEF &B = (1,2) >
<DEF &C = STRUCTURE(&A, &B)>

The resulting structure &C is:

('A','B',1,2)

STRUC forms a structure.

<define &len = 1in>
<define &s = struc(('abc', 123, &len))>

produces the structure &S:

('abc', 123, 25.4MILLIMETRES)

MAX and MIN scan through a structure and find the maximum or minimum
value. To use them, give the type of comparison desired within string delimiters
(length, string, number) followed by the structure or structure name. For instance, if
you indicate a comparison as ‘LENGTH’, then, every element in the structure is
treated as lengths. Conversion is done automatically if the element was not given as
a length.

<DEF &MAX = MAX('NUMBER', (2,'3',67,'67',1)), DISPLAY &MAX>

produces:

1 67
2 3
3 4

<DEF &MIN = MIN('NUMBER', (2,'3',67,'67',1)), DISPLAY &MIN>

produces:

1 1
2 5

Note: When comparing lengths, the result depends on DEFUNITS that is in effect at
that time. The following examples demonstrate this fact.

<defunits=in, &min = min('length', (2in,3mm,'1'))>

The resulting structure &MIN is &MIN = (0.1181IN,2)

<defunits=mm, &min = min('length', (2in,3mm,'1'))>

The resulting structure &MIN is &MIN = (1MM,3)

Variables

107

SEPARATE breaks a string into elements of a structure based either on a string,
or a number. It is particularly useful to examine the results of RESERVE_INFO and
FLOAT_INFO. The following example breaks the string at each blank, so each
element of the resulting structure contains one word.

<define &string = 'Break at the blanks' >
<define &structure = SEPARATE(' ', &string) >

The resulting structure contains:

&STRUCTURE = ('Break', 'at', 'the', 'blanks')

The next example causes SEPARATE to make each element of the resulting
structure three characters:

<define &structure = SEPARATE(3, 'Break at the blanks')>

makes the resulting structure:

&STRUCTURE = ('Bre', 'ak ', 'at ', 'the', ' bl', 'ank', 's ')

SEPARATE scans the string to be separated. When the break character is found, the
portion of the string scanned from the character after the last break character (or the
start of the string) up to but not including the found break character, is moved to the
next structure element. The break character is then skipped over in the string to be
separated, and scanning continues. The next portion of the string is moved to the
next element in the structure.

Operators

TEXTFORM has five binary operators (they take two arguments, one on each side of
the operator), and four unary operators (they take one argument, which follows the
operator). There may be any number of blanks on either side of any operator. Unary
operators are evaluated before binary operators.

Unary Operators

Minus Operator –

When the minus sign precedes a number the number becomes negative.

<DEF &NEG = –3 >

Since the minus operator is both unary and binary, there are several places in the
TEXTFORM command language where this can lead to confusion if used incorrectly
or when it is not necessary. For example, the command:

<INDENT BOTH 3 -2>

produces:

Variables

108

<INDENT BOTH 1>

Plus Operator +

The plus character + is seldom used, since all numbers are positive unless otherwise
stated. Like the minus operator, the plus operator is both unary and binary, so its
use in the following command is unnecessary, and produces incorrect results:

<INDENT BOTH +3 +2>

produces:

<INDENT BOTH 5>

Pointer Operator @

The @ is the pointer operator. It points to a name. Pointers may only be used in
assignment operations, and never in expressions. Pointers may never be subscripted
or substringed. Pointers are entered as an @ followed by the name you wish to point
to (e.g., @&B is a pointer to &B). The validity of a pointer is only checked when it is
used. The name pointed to need not be defined until you actually point to it. If you
say

<&A = @&B>

this defines a pointer. If you say

<&A = 10>

this sets &B to 10.

The only way to un-point a pointer is with the ATTRIBUTE command

<ATTRIBUTE &A STRING>

would change the pointer (@&B) in &A to a string '&B'. Note that if you make &B a
pointer to &A, and &A a pointer to &B, this creates an endless pointer loop.
TEXTFORM will detect this error when you attempt to use either &A or &B. with:
Endless pointer chain detected. 'name' assumed 'not defined'.

Execute Operator $

The $ is the execute operator. It must be followed by the name of a variable. The
contents of the variable are converted to a string (if necessary) and treated as
command input. The variable name may be subscripted or substringed. Executed
variables may appear anywhere in command mode. The executed text will be
included in the source listing if the LIST EVALUATION command has been given.

<&A = 'PAGE'>
<$&A>

would cause the PAGE command to be executed. In the next example, if your source
file has strings which must be used as lengths, you can execute the string to produce
a length when required. To make the parameter to macro &CHECK('4in') be a

Variables

109

length, define &CHECK to be:

<define macro &check, –
local &var = par(1), –
if remaining(2) < $&var, then, . . .

When a command takes a ‘keyword’ (this is indicated in the list of command
prototypes later in the manual) the keyword may be stored in a variable and then
executed.† The LINEEND command can be given a keyword to specify the type of
alignment, as in:

<LINEEND CENTRE>

or

<DEFINE &CEN = 'CENTRE' >
<LINEEND $&CEN>

If THISPAGE contains the desired alignment, it too must be executed since it is a
string:

<LINEEND $THISPAGE>

The execute operator lets you define names based on the contents of other variables,
rather than actually typing in the name being defined. This technique is used in the
FLOAT example on page 62. (The : character used in this example is described on
page 111):

<DEFINE &A = '&CTR', DEFINE &B = 1>
<DEFINE &EX = &A:&B>
<DEFINE $&EX>
<&B = &B + 1>
<DEFINE $&EX>

defines variables &CTR1 and &CTR2.

If the execute operator is used in a macro, the contents of the executed name are
stored in the macro, rather than the name itself. This produces a warning message,
although it may be what you want. For example, you may need a macro which
always returns to the current value of linespace, although you do not presently know
that value. In the macro, include:

<LINESPACE = $LINESPACE>

If LINESPACE is 4MM, this will store LINESPACE = 4MM in the macro.

In many cases, you will not want the contents of the executed item stored in the
macro. There are two ways to prevent this. If you do not want a LINEEND LEFT
command to be stored in the following macro:

<define macro &top, –

†If the command takes an ‘expression’ it is not necessary to execute it, as described
on page 32.

Variables

110

pnctr, lineend $thispage, –
edef macro &top>

give the command containing the executed name as a string. The contents of the
string are not evaluated until the macro (and therefore the string) is included in the
input:

<define macro &top, –
pnctr, '<lineend $thispage>', –

edef macro &top>

Alternately, if the name is not defined, its contents will not be stored in the macro,
although a warning is produced.

<DEFINE &FLCTR=1>
<DEFINE MACRO &FLFIG, –

DEF $&FL='<VS 3IN>', –
.

<ENDDEFINE MACRO &FLFIG>

<DEF &FL=('&', @&FLCTR)>

<&FLFIG>

produces the warning &FL is not yet defined. Execution of &FL deferred until macro
is used.

If the definition of &FL appears before &FLFIG is defined, it produces the
warning Contents of &FL included in macro definition.

Binary Operators

TEXTFORM will convert the types of the binary arguments to match the type
required by the operator. Not all conversions can be made however, and in this case
TEXTFORM gives an error, and returns the first argument as the result. Here are
the five binary operators, examples of their use, and type of result, depending on the
arguments. Note that the + and – operators can be unary or binary.

Addition Operator + and Subtraction Operator –

addition or
subtraction
length
scaled
number
hex

length

length
error
error
error

scaled

error
scaled
scaled
scaled

number

error
scaled
number
number

hex

error
scaled
number
hex

Operations with one argument of type length, and the other argument a zero are
allowed.

<&a = 5> <&b = 3>
<&a+&b> is 8
<10+&b> is 13
<2-&b> is –1

Variables

111

Multiplication Operator *

multiplication

length
scaled
number
hex

length
error

length
length
length

scaled
length

scaled
scaled
scaled

number
length

scaled
number
number

hex
length

scaled
number
hex

<&a = 5> <&b = 3>
<&a*&b> is 15
<10*&b> is 30

Division Operator /

Where two types of result appear in the table (scaled and number), the result will
only be converted to number if all four decimal places are zero.

division

length

scaled

number

hex

length
scaled
number
error

error

error

scaled
length

scaled
number
scaled
number
scaled
number

number
length

scaled
number
scaled
number
scaled
number

hex
length

scaled
number
scaled
number
hex

<&a = 5> <&b = 3>
<&a/&b> is 1.6666
<10/&a> is 2

There is another way to do integer division, by using DIV, which treats two numbers
as integers (rounding if necessary) and divides:

<DIV(5,3)>

produces 1. REM performs integer division, but produces the remainder from the
division.

<REM(13.7,5)>

produces 4.

Catenation Operator :

Catenation joins two items into one string. The two items are converted to strings,
if necessary (there can be no error).

<&A:14> is '514'
<'some words':' more words'> is 'some words more words'

Catenation can be used to force TEXTFORM to immediately evaluate text entered in
command mode. (The execute operator, described earlier, causes TEXTFORM to
evaluate commands immediately.) This is used in table of contents examples on

Variables

112

page 130.

Expressions

Expressions are items in command mode that must be evaluated by TEXTFORM,
such as 1+2. They are evaluated from left to right. There is no operator priority
(except for the unary operator execute, $, which is evaluated immediately). If parts of
an expression are enclosed in parentheses, they are evaluated first. If a parenthesis
is the first thing encountered in the expression, it makes the expression into a
structure.

<&a = 3>
<&b = 5>
<&c = 10>

<&A+4-10:'22'+9> is -313
<&A:&b:&C> is 3510
<2+(4*&A)> is 14
<1in*1in/1in> produces the error Both arguments of multiplication have
type LENGTH.

If ‘expression’ appears, the expression is evaluated, and its result is displayed in the
text. Any variables used in the calculation will have their DISPLAY attributes (see
page 123) applied before the expression is done.

Variables

113

MACROS

Macros are collections or commands and/or text which can be stored under a
user-defined name. A macro is created with a DEFINE MACRO command, and
terminated with an ENDDEFINE MACRO command. The macro is identified by a
name following the same rules as variable names.

<DEFINE MACRO &M1>
<I B 3>
Macros can contain much more text than variables.
<F 2>You may switch between text and command mode
as often as you wish. The macro is terminated by
an ENDDEFINE MACRO command: don’t forget it!
<F, I B 0, ENDDEFINE MACRO &M1>

By placing <&M1> in the subsequent text you produce:

Macros can contain much more text than variables. You may
switch between text and command mode as often as you wish.
The macro is terminated by an ENDDEFINE MACRO
command: don’t forget it!

Any valid TEXTFORM input can appear between:

<DEFINE MACRO name>
<ENDDEF MACRO name>

However, before you use macros, remember that there are a few things which can
cause errors that are difficult to find:

– starting but not ending definition of a second macro inside the first macro. This
causes an error when the first macro is used.

– forgetting the ENDIF for an IF command (described on page 156) inside a macro.
This causes an error at the end of the run.

Modifying the Action of the Macro When it is Used

In the previous example, the action of the macro could not be modified. Once defined,
the macro did the same thing each time it was used. Macros become more versatile
with the addition of parameters, which allow you to replace or supply information
when you use the macro. Parameters are referenced through the name PAR, and
must be referred to by number. That is, the first parameter to each macro is PAR(1),
the eighth is PAR(8). PAR or PAR(0) refers to all the parameters in a macro. Up to
65 parameters are allowed.

The following macro accepts one parameter. It centres it, in FONT 2, at the top
of a page.

Macros

114

<DEFINE MACRO &CHAP, –
PAGE, FONT 2, PAR(1), –
FONT 1, LINEEND CENTRE, NEWPARA, –

ENDDEFINE MACRO &CHAP>

To supply parameters to a macro, give the name of the macro, followed by the
parameters within parentheses. Blanks before or after the parentheses are optional.
If the parameter is a string of text, as a chapter title might be, enclose the text
within delimiters:

<&CHAP('In The Beginning')>

If the parameter is in a variable:

<DEFINE &BEG = 'In The Beginning' >
<&CHAP(&BEG) >

TEXTFORM replaces the PAR(1) part of the macro with the parameter, and on a
new page prints:

In The Beginning

If you use the macro with a different parameter, TEXTFORM will carry out the same
instructions but insert the new parameter. Parameters may be strings, numbers,
variables, etc.

The following macro accepts two parameters:

<DEFINE MACRO &TA, –
LEND, VS 4MM, FONT 3, –
PAR(1), LEND, FONT 2, –
PAR(2), FONT 1, NEWPARA, –

ENDDEFINE MACRO &TA>

When you use the macro, separate the parameters with a command separator:

<&TA('Introduction' , 'D. Johnston')>

produces:
Introduction

D. Johnston

To omit one of the parameters, leave that position between the commas blank. This
is the same as the null parameter ''. To check if a parameter has been omitted, the
test is:

<IF PAR(1) = '', . . .

TEXTFORM carries out all the commands within a macro, even if some parameters
are missing. If there are no parameters, the parenthesized list need not appear.

In the following examples, the first parameter is null:

<&TA(, 'D. Johnston')> <&TA('', 'D. Johnston')>

Macros

115

produces:

D. Johnston

If you make errors in entering the parameters (for example, forget to enter a
delimiter) several errors messages are produced, including String delimiter missed,
Bad parameter list format, and Unmatched parentheses.

The continuation character can be used between parameters to enter them on
two lines:

<&TA('Introduction', –
'D. Johnston')>

If a single parameter is too long to enter on one line, it can be split as follows:

<&TA(' A long parameter may be ': –
'entered on several lines')>

You cannot do the following:

<&TA(' A long parameter may not be –
entered on several lines like this')>

A long parameter may also be entered as a variable:

<DEFINE &HDNG = ' This is the long heading ' >
<&TA(&HDNG)>

The same effect would be produced with:

<&TA('<&HDNG>')>

If the parameter contains a footnote reference, as in

Written by Jones and White1

do not enter the entire footnote in the parameter if a table of contents entry is being
made by the macro. If you do this, the footnote commands and text will also be stored
in the table of contents file, and will reappear when the contents are generated.
Instead, do the following:

<DEFINE &F1='<FOOT>This is the footnote.<EFOOT>'>
<&HEAD('Written by Jones and White<&F1>')>
<&F1=' '>

so that &F1 is empty when the contents are generated. If the text of the footnote is
too long for a variable, it must be stored in a macro, which should be erased and
redefined as an empty macro or variable after the heading macro.

Macros

116

Changing the Macro

To change a macro permanently, it must be erased and then defined again. The
format of the ERASE command is:

<ERASE name>

Text Within Macros

Each line ended with a command terminator, or without a continuation character,
indicates a word ending, where a word space will be inserted. If you define the
macro:

<DEFINE MACRO &EA>
et¬al
<ENDDEFINE MACRO &EA>

there will always be a word space after the word ‘al’. To prevent this, stay within
command mode inside the macro, and include the text as a string:

<DEFINE MACRO &EA, –
FONT 2, –
'et¬al', –
FONT 1, –
ENDDEFINE MACRO &EA>

or:

<DEFINE MACRO &EA, –
FONT 2>et¬al<FONT 1, –
ENDDEFINE MACRO &EA>

Sample Form Letter Macro

The following example shows a sample form letter in which only the name and
address, and several details are changed. Every use of the &LETTER macro prints a
complete letter.

<DEFINE MACRO &LETTER>
<PAGE, VERTSPACE 1IN, DATE>
<MONTH, ' ', YEAR>
<LINE> P.D.Q. Parts Ltd.
<LINE> Anywhere, Allstate.

<LINEEND, VERTSPACE 8MM, PAR(1)>
<LINE, PAR(2)>
<LINE, PAR(3)>
<LINE, PAR(4)>

<LINE, VERTSPACE 8MM> Dear <PAR(1)>:

Macros

117

<NEWPARA> This is to advise you that your <PAR(5)>, which you
ordered in

<PAR(6)> of <PAR(7)>, has arrived and may be collected
at the above address. Thank you for your
<IF PAR(7) ¬= YEAR, THEN, 'extreme', ENDIF> patience.

<LINEEND, VERTSPACE LINESPACE>
Sincerely,
<LINEEND, VERTSPACE .5IN> J. Smith
<LINE> Parts Department

<ENDDEFINE MACRO &LETTER>

<&LETTER('Mrs. Jones', '123 4th Ave', 'Your town', –
'Your province', 'widget', 'September', '1966')>

20 January 2010
P.D.Q. Parts Ltd.
Anywhere, Allstate.

Mrs. Jones
123 4th Ave
Your town
Your province

Dear Mrs. Jones:

This is to advise you that your widget, which you ordered in
September of 1966, has arrived and may be collected at the above
address. Thank you for your extreme patience.

Sincerely,

J. Smith
Parts Department

More Control over Macros

You can have more control over the macro when you check the type or number of the
parameters supplied to a macro. You can also control where the text produced by the
macro appears. This is useful to prevent widows (headings standing alone at the
bottom of a column).

For example, you may write a macro to print a heading and test the amount of
space remaining on a page. If the macro is not used with two parameters (the system
variable NRPARS contains the number of parameters to a macro), an error message

Macros

118

is produced:

<DEFINE MACRO &TEST>
<IF NRPARS ¬= 2, THEN, –

ERROR 4 '&TEST parameters must be heading, length', ENDIF>
<LINEEND, VERTSPACE 2*LINESPACE>
<IF REMAINING(2) < PAR(2), THEN, PAGEEND, ENDIF>

<ENDDEFINE MACRO &TA>

The second parameter supplied to this macro must be a length, as in

<&TEST('Heading', 3IN)>

It indicates how much space must be remaining on the page before the heading can
be printed. A simpler test is:

<IF REMAINING(2) < 3IN, THEN, PAGEEND, ENDIF>

Inside a macro, TEXTFORM cannot evaluate &A=PAR(n)(1;3). Put PAR(n) into a
local variable before trying to substring it.

TYPE and VTYPE can be used to check parameters to a macro. STACK and
UNSTACK save and restore the values of variables, and are often used within
macros.

<DEFINE MACRO &HEAD, –
STACK(ALIGNMENT), ALIGNMENT=CENTRE, –
PAR(1),LINEEEND, UNSTACK(ALIGNMENT), –
NEWPARA, –

ENDDEFINE MACRO &HEAD>

You can only STACK names of variables which you are allowed to change. A system
variable, such as CURFONT, which TEXTFORM changes, cannot be stacked. In this
case, do the following:

<DEFINE &SAVEFONT>
<DEFINE MACRO &HEAD, –

INDENT BOTH 0, &SAVEFONT = CURFONT, –
PAR(1), FONT &SAVEFONT, –

ENDDEFINE MACRO &HEAD>

When input is being generated from a macro, the system variable MACFLAG is set
to TRUE. It is FALSE when source lines are being processed.

<DEFINE MACRO &TEST,-
'The value of MACFLAG is ',MACFLAG,-
ENDDEFINE MACRO &TEST>
<&TEST>

produces:

The value of MACFLAG is #01#

Macros

119

Details about the Macro Definition and Use

When a macro is defined, its name and contents (in their original form), are
saved in the symbol table. After the DEFINE MACRO . . . line, you may give
any valid TEXTFORM input, and you may either stay in command mode, or
return to text mode. If a macro is defined within a macro, parameter
replacement (from the outer macro), will not occur in the internally defined
macro. Executed variables which appear in the definition will generate a
warning, whether or not they are defined. Regardless of whether the executed
variable is defined or not, the macro being defined will be executable. If you
do not want the variable executed during the macro definition, it must not be
defined at the time of the definition. If it is defined at the time of the macro
definition, its contents will replace its reference in the macro definition.

If you wish one of the parameters to the outer macro to appear as part
of the definition of the inner macro, you must use an executed variable.

<DEFINE MACRO &X>
. . .
<LOCAL &A = PAR(1)>
. . .
<DEFINE MACRO &Y>
. . .
<$&A>
. . .
<ENDDEFINE MACRO &Y>
. . .
<ENDDEFINE MACRO &X>

When a macro call is recognized, TEXTFORM saves the parameters, then suspends
the input line at the end of the parameter list. If LIST EXPANSION has been
specified:

– the macro name, and nesting level, are printed in the source listing.
– when execution of the macro ends, the macro name and nesting level are again

printed in the source listing.
– if TEXTFORM is returning to another macro at this point, its name is printed in

the source listing.

TEXTFORM now queues the body of the macro for input. A queue is a list of items
to be processed; in this case, the contents of the macro. The body of the macro
appears in the input exactly as it was defined; the only exception being that
wherever a PAR(expression) appears, it is replaced with the exact parameter which
appeared in the macro call. If parameter ‘expression’ did not appear a null string will
be used. If the LIST EXPANSION command has been given, the macro text (as
defined) will appear in the source listing. (There will be no indication of parameter
replacement in the source listing unless LIST PARTRACE has been specified). Note
that the current INPUTMODE, and input translation, will be applied to this queued
input. Here are some errors which are peculiar to PAR(expression): If parameter,
such as parameter 4, has been omitted, assignment to it will cause an error. For
example, if PAR(4) was omitted,

<PAR(4) = 116>

Macros

120

is the same as:

<'' = 116>

which is an error.

If the type of the parameter is improper, errors may be generated. If PAR(3) is 'some
words'

<PAR(3) = PAR(3)+1>

is the same as

<'some words' = 'some words'+1>

which has several errors in it.

Storing a Macro in a Separate File

There is a method in TEXTFORM to let you store the contents of a macro, or
variable, in a separate file. See page 162. This might be useful, for example, if you
want to save certain macros for a separate TEXTFORM run.

Recursion

A macro which calls itself is a recursive macro. Macros may call themselves, either
directly or indirectly. Recursion must be used with conditional control (discussed on
page 156), otherwise there is no way to terminate the recursion. This would
eventually result in macro storage overflow. In general, if a FOR or WHILE
command can be used instead of recursion, it is cheaper.

The following macro prints par(1) until its value reaches par(2):

<DEFINE MACRO &N, –
PAR(1)>
<IF PAR(1)<PAR(2) THEN &N(PAR(1)+1, PAR(2)), –
ENDIF, –

ENDDEFINE MACRO &N>

<&N(1,3)>

produces:

1 2 3

Local Variables

The LOCAL command is used to define a variable inside a macro. The variable can
only be used inside the macro, and disappears when execution of the macro ends.
This is in contrast to a global variable, which can be used anywhere in a
TEXTFORM run, once it has been defined. Note that the more LOCAL variables that
you use in a macro, the slower TEXTFORM will run in command mode, so only use

Macros

121

LOCAL variables when a global variable cannot be used.

The command to define a local variable is:

<LOCAL name>

‘name’ is the name to define. It has the same characteristics as a variable. If no value
is specified, a null string is used.

<LOCAL &QUICK>

An initial value can be assigned when the variable is defined:

<LOCAL &QUICK = 1>

Macros

122

INFORMATION ABOUT USER-DEFINED NAMES

Erasing Names

User-defined names can be erased with the command:

<ERASE name>

When this command is given, the name becomes un-defined and can no longer be
referenced. You can redefine an item with the same name as one which has been
erased.

Checking Whether Name Exists

You can use EXIST to tell you whether a name has been defined. Its result is TRUE
or FALSE.

<IF EXIST(&NAME) = FALSE, THEN, –
DEFINE &NAME , –

ENDIF>

Checking Type of a Name

Using TYPE tells you the type of a name as one of:

VARIABLE
MACRO
FUNCTION
COMMAND
PAGE (for both logical page and table definitions)

For example:

<TYPE(LINESPACE)>

produces:

VARIABLE

Information about User-Defined Names

123

Giving Attributes to a Name

The ATTRIBUTE command changes or assigns attributes of user-defined names,
variables, commands, macros, or structure elements. Not all of these items can be
given all of the attributes. Some are allowed only for variables, while others are only
for commands. The format of the command is:

<ATTRIBUTE name kwd . . . >

‘name’ can have more than one attribute given to it in the same command. Each
‘kwd’ represents one attribute. The complete list of attributes is Appendix 1. If you
want a value such as &A to remain constant, for example, so that it can never be
changed, give it this attribute:

<ATTRIBUTE &A CONSTANT>

Any subsequent attempt to change &A will produce the error Attempt to change a
constant. The only 'change' allowed is erasure.

Some attributes are only allowed for variables; others may be used with
commands, macros, or structure elements. If a command name is given, the
attribute(s) given apply only to that form of the command (for example, an attribute
for NP does not apply to NEWPARA). Here is the list of attributes:

kwd

The following attributes are valid for all items:

AXR

Every reference to ‘name’ will be cross referenced, regardless of the cross
reference settings.

NXR

‘name’ will never be cross referenced.

RESTRICTED

Changes to ‘name’ (if it is a variable), or use of ‘name’ (if it is anything else), will
only be allowed from predefined (i.e. TEXTFORM’s) macros. Any other attempts
will result in the error: Assignment to this item is RESTRICTED.

The following attributes are valid for variables:

CONSTANT

The value of ‘name’ may not be changed in future, but may be ERASEd if it is
user-defined.

Information about User-Defined Names

124

DISPLAY type

DISPLAY controls the way in which variables are printed in the text. ‘type’ may
be any of the following (but only up to one from each group):

type (valid only for integer numbers or strings which can be converted to
integer numbers):
ARABIC – digits
ENGLISH – words
FRENCH – words
ROMAN – roman numerals
ALPHABETIC – letters (a-z, aa-zz etc.)

which may be in (valid for all variables):
UPPERCASE – upper case
LOWERCASE – lower case

<DEFINE &YEAR = YEAR>
<ATTRIBUTE &YEAR DISPLAY ROMAN LC>
<&YEAR>

produces:

mmx

INCR = string3

Increment ‘name’ by ‘string3’ after display. This may not appear with ‘LIST’.

<DEFINE &CTR = 1>
<ATTRIBUTE &CTR INCR = '1'>
<&CTR, NEWLINE, &CTR, NEWLINE, &CTR>

produces:

1
2
3

LIKE name2

assume attributes of ‘name2’. Attributes which follow LIKE override the
attributes copied from name2. The current value of ‘name’ is not checked for
validity.

LIST = structure†

‘structure’ contains allowable values. The current value of ‘name’ is not checked
for validity. ‘LIST’ may not appear with ‘INCR’.

<DEFINE &A = 1, ATTRIBUTE &A LIST = (1,2,3,4,5)>

† If any of MAX, MIN, or LIST are specified, all assignments containing this variable
name will be checked, and an error produced if the conditions are not met.

Information about User-Defined Names

125

<&A = 9>
The value of &A is: <&A>

produces:

Value not found in values list.
The value of &A is: 1

MAX = string4

maximum value that may be assigned. The current value of ‘name’ is not
checked for validity.

<DEFINE &A = 5>
<ATTRIBUTE &A MAX = '8'>
<&A = 10, &A>

produces:

Value higher than maximum allowed. Assignment not performed.
5

MIN = string5

minimum value that may be assigned. The current value of ‘name’ is not checked
for validity.

<DEFINE &B = 5>
<ATTRIBUTE &B MIN = '2'>
<&B = 1, &B>

produces:

Value lower than minimum allowed. Assignment not performed.
5

STRING

Not fully implemented – except POINTER to STRING. ‘name’ will be changed to
a string.

UPPERCASE

All values assigned to ‘name’ will be converted to upper case before being saved.
‘name’ is also given the FIXED attribute. The current value of ‘name’ is not
checked for validity. The contents of ‘name’ must be a STRING when the
attribute is specified, and the string must be assigned to itself for the attribute
to take effect on the current string.

<DEFINE &STR = 'title'>
<ATTRIBUTE &STR UPPERCASE, &STR = &STR>
<&STR, &STR = 'New title', LINE, &STR>

produces:

Information about User-Defined Names

126

TITLE
NEW TITLE

LOWERCASE

All values assigned to ‘name’ will be converted to lower case before being saved.
‘name’ is also given the FIXED attribute. The current value of ‘name’ is not
checked for validity. The contents of ‘name’ must be a STRING when the
attribute is specified, and the string must be assigned to itself for the attribute
to take effect on the current string.

STATIC

‘name’ must remain the same length or shorter. Using this feature, strings can
be forced to have fixed length.

<DEF &LEN = 'aaaa', ATTRIBUTE &LEN STATIC>
<&LEN = 'xxxxxxxxx', &LEN>

produces:

Item assigned is STATIC. Result of expression is too long. Result
truncated.
xxxx

DYNAMIC

‘name’ will be allowed to move in storage. (Opposite of STATIC.)

FIXED

The type of ‘name’ (e.g. STRING, LENGTH, etc.) will be fixed. All future
assignments to ‘name’ will be converted to its present type (if possible) before
assignment.

<&F = 1,ATTRIBUTE &F FIXED>
<&F = 'a'>
<&F>

produces:

Number too large to scale. Truncated to integer portion only.
0

VARTYPE

The type of ‘name’ will be freed. (Opposite of FIXED.)

The following attributes are valid for structures:

Information about User-Defined Names

127

FIXEDELTYPE

All assignments to elements of the structure will be forced to have the same type
as the first element of the structure.

<DEFINE &STRUC = (1)>
<ATTRIBUTE &STRUC FIXEDELTYPE>
<&STRUC = (1, 'a')>
<DISPLAY &STRUC>

produces:

Number too large to scale. Truncated to integer portion only.
1 1
2 0
3

FIXEDNRELS

Any assignment to the structure which would cause the number of elements in
the structure to change will be flagged as an error.

<DEFINE &STRUC = (1,2,3)>
<ATTRIBUTE &STRUC FIXEDNRELS>
<&STRUC(4) = 5>

produces:

Result of expression cannot be converted to FIXED type requested.
Assignment not performed.

Information About the Attributes of a Name

ITYPE produces a structure that contains an interpretation of all the attributes of a
name. For structures, if an index is provided after the name of the structure, the
attributes for that specific structure element are returned. For example:

<&x = ITYPE(linespace), display &x>

produces all the attributes for LINESPACE:

1 PREDEFINED
2 VARIABLE
3 NUMBER
4 NUCLEUS
5 STATIC
6 FIXED TYPE
7 LENGTH
8 AT ASSIGN

while:

Information about User-Defined Names

128

<&X = ITYPE(leftindents, 2), display &x>

produces the attributes for the second element of LEFTINDENTS:

1 VARIABLE
2 NUMBER
3 LENGTH

Information about User-Defined Names

129

TABLE OF CONTENTS AND INDEX

These two items may seem unrelated, but TEXTFORM handles them in the same
way. In both cases, you provide the entry and the page number, which TEXTFORM
stores in a separate file. You ask for the table of contents or index to be printed once
all the information has been collected. This is usually at the end of the TEXTFORM
run, so you must then move the table of contents pages to their proper location in the
front pages of the document.

Table of Contents

Here is a sample which generates a table of contents. The following discussion will
refer to this sample, and show how to change it. Notice that the page number of this
manual, 129, is used in this example.

<DEF &SB = 'Subgenus'>
<TOC(0, PNCTR, 'Genus')>
<TOC(1, 106, &SB)>

<TOC(0)>

produces, on a new page:

Table of Contents

Genus . 129
Subgenus . 106

Entries to Table of Contents

Each entry made using TOC indicates:

1. the level of importance in the table of contents, which is usually indicated by
indenting

2. the page number of the entry, which will appear in the contents
3. the heading itself, which will appear in the contents.

The command to store an entry in the contents has the format:

<TOC(level [, page, entry1 [, . . ., entry8]])>

level
is the level of the entry. Levels are 0 to 5, and are usually indicated by indents (see
the following instructions on modifying the format of the table of contents to change
this). The table of contents is printed when ‘level’ is negative, or the only parameter.
A main level entry in contents is entered as:

<TOC(0, . . .

Table of Contents and Index

130

The command to print the table of contents is:

<TOC(0)>

page
is the page number of the entry. You can insert the page number manually, as in:

<TOC(1, 66 . . .

or you can use PNCTR. This causes TEXTFORM to store the value of the current
page number, and is the recommended practice. It permits you to add or delete pages
from your document, and let TEXTFORM make the changes in the table of contents.

entry1 through entry8

are the entries, often headings, for the contents. They may contain parameters,
strings, variables, or other commands. In most instances, only ‘entry1’ is used. Up to
eight entries can be given, however, if you need to modify the format of the contents.
An example of this appears on page 134.

If you enter a string, enclose it in delimiters:

<TOC(0, PNCTR, 'Genus')>

If you enter a variable name, the contents of the variable are stored in the contents:

<TOC(1, 66, &SB)>

However, if the entry is:

<TOC(1, 66, '<&SB>')>

the name of the variable is stored in the contents. If the value of &SB is changed
before the contents are generated, the new value of &SB will appear, not the value
which was in effect when the entry was made.

You may want to italicize a variable when it appears in the contents. If &A
contains 'Subgenus', the following will not work, because it will not evaluate &A until
the table of contents is produced:

<TOC(0, PNCTR, '')>

The above would store '', and &A might be changed before
the table of contents. Instead, catenate &A to the FONT command to force
TEXTFORM to evaluate &A immediately:

<TOC(0, PNCTR, '':&A:'')>

This stores the following for the table of contents: 'Subgenus'.

If the entry is being made inside a macro, use the parameter to the macro,
PAR(1) in the next example, to supply the parameter to TOC. When doing this, don’t
forget the closing parenthesis:

<DEFINE MACRO &HEAD>

Table of Contents and Index

131

<TOC(0, PNCTR, PAR(1))>
<ENDDEFINE MACRO &HEAD>

<&HEAD('Subgenus')>

If &CT is a variable containing a counter:

<DEFINE &CT = 1>
<TOC(0, PNCTR, &CT:'. ':PAR(1))>

produces:

1. Subgenus . 131

If &CT has a display attribute (see the ATTRIBUTE command) it must be displayed
in the TOC entry using FORDIS. Otherwise, the value of &CT will appear as 1 in the
contents.

<DEFINE &CT = 1>
<ATTRIBUTE &CT DISPLAY ALPHABETIC UPPERCASE>
<TOC(0, PNCTR, FORDIS(&CT):'. ':PAR(1))>

produces:

A. Subgenus . 131

FORDIS converts its parameter as though it were to be displayed. Any INCREMENT
(see ATTRIBUTE) for the parameter is also done. The parameter cannot be
substringed or subscripted.

TEXTFORM provides other alternatives to change how a number is displayed. If
you want the page number to be a roman number in the table of contents, use:

<TOC(0, ROMAN(PNCTR), PAR(1))>

which produces:

Subgenus . cxxxi

If you want an upper case English page number, use:

<TOC(0, UPPERCASE(ENGLISH(PNCTR)), PAR(1))>

which provides:

Subgenus . ONE HUNDRED THIRTY-ONE

Printing the Table of Contents

You can generate a table of contents at any point in a TEXTFORM run, by making a
TOC entry with a negative ‘level’, or with only one parameter. When you do this,
TEXTFORM inserts a variable called TOCHEADER in the input to produce the title,
and then formats the contents. As shown in the next section, TOCHEADER begins a

Table of Contents and Index

132

page, sets its own indents, and prints ‘Table of Contents’. If you then continue to
make more TOC entries, the next table of contents will contain only what has been
entered since the last contents. New indents will also be in effect, unless you reset
them.

The table of contents can be printed automatically using the AT ENDOFFILE
command. The following lines, which would be inserted near the beginning of a file,
tell TEXTFORM to include the name &PRINTOC in the input at the end of the file.
&PRINTOC then generates the contents.

<DEFINE &PRINTOC = '<TOC(0)>'>
<AT ENDOFFILE &PRINTOC>

If you are producing page numbers with a reserve command, &PRINTOC could be
modified to end the page, suspend any reserves, begin page numbers at iii at the
bottom centre of the page, and then generate the table of contents.

<define &bot = '<vs .5in, roman(pnctr), lend c>' >

<define macro &printoc>
<pageend, suspend reserve top, suspend reserve bottom>
<topmargin=1in, botmargin=0in>
<reserve bottom page size default 1in &bot>
<pnctr = 3>
<toc(0)>

<edef macro &printoc>

How the Contents are Stored

When you make the first TOC entry, TEXTFORM checks to see if a file called
–TXTFTC01 exists. If it does, TEXTFORM empties it, otherwise it creates the file,
with a size of 10 pages. If you create the file, TEXTFORM does not destroy it after
the table of contents is generated. In this way you can keep a copy of the table of
contents entries.

If you want to ensure that the file is saved, create it as part of the TEXTFORM
run before the first TOC entry:

<MTSCMD('$create –txtftc01')>

The name of the file created is determined by the variable TOCINDEX, discussed in
the next section. By default, TOCINDEX=1 and the filename is –TXTFTC01.

Lines in these files contain the information you provided with the TOC entry,
and are stored as:

<$TOCMACROLIST(TOCINDEX)(level, –
''page'', –
''entry1'', ''entry2'', . . .)>

If necessary, you can check the file before the table of contents is produced if your file
contains:

<DEFINE &PRINTOC = '<TOC(0)>'>

Table of Contents and Index

133

<AT ENDOFFILE &PRINTOC>
<AT ENDOFFILE MTS>

Enter the command to run TEXTFORM, and wait for it to return to MTS. Then
check the file, and restart.

run *textform scards=file . . .
edit –txtftc01
:comment check the file
:comment do not change the format of macro calls
:stop
restart
#

Note: this file can be edited, but the form of the macro calls in it must remain as they
are created (ending with >) or there may be errors when the table of contents is
processed.

At the end of the TEXTFORM run, the following warning is printed if the table
of contents has not been generated: Table of Contents number nn contains text but
has not been produced.

Modifying the Format of the Table of Contents

Before the table of contents is printed, the variable TOCHEADER is placed in the
input by TEXTFORM. TOCHEADER is equivalent to the following:

'<PEND, ALIGNMENT=LEFT, I B 0, F 3> Table of Contents':–
'<F 1, LEND C, VG LINESPACE>':–
'<LEFTINDENTS=(.2IN,.4IN,.6IN,.8IN,1IN,1.2IN)>':–
'<RIGHTINDENTS=(.5IN), SPLITSTRING = ''.'' >'

By changing this variable, you can adjust the title which appears before the contents.
For example:

<TOCHEADER = '<LEND, VS LINESPACE, I B OFF, F
2>Contents<F, LEND>'>
<TOC(0)>

The above example spaces down, turns off indents, and prints a title Contents before
generating the table of contents. Indents are not changed.

When the TOC(0) command is given, the stored table of contents entries are
passed, one at a time, to a predefined macro called TOCMACRO, which formats the
contents. This macro contains:

LEND,I B PAR(1) 1, I H=1 L PAR(1)+1,KE,–
PAR(3),PAR(4),PAR(5),PAR(6),PAR(7),PAR(8),PAR(9),PAR(10),–
'' '',I R OFF,SP,PAR(2),EKE,LEND,–

Table of Contents and Index

134

Multiple Tables of Content

Multiple tables of content can be produced by changing the variable TOCINDEX. By
default, TOCINDEX=1 and all contents entries are stored in the file –TXTFTC01.
TOCINDEX can have a value from 1 to 99. If it is out of this range, no contents
entries are made. When TOCINDEX is within the range, entries are stored in a file
called –TXTFTCnn, where ‘nn’ is the value of TOCINDEX.

When the TOC(0) command is given, TEXTFORM checks a list of TOCHEADER
names stored in TOCHEADERLIST, and uses the name in position TOCINDEX of
this list. By default, TOCHEADERLIST contains:

('TOCHEADER', 'TOCHEADER', . . ., 'TOCHEADER')

To format the contents, TEXTFORM checks a list of macro names stored in
TOCMACROLIST, and uses the macro name in position TOCINDEX of this list. By
default, TOCMACROLIST contains:

('TOCMACRO', 'TOCMACRO', . . ., 'TOCMACRO')

Any of the 99 tables of content can be formatted with an alternate TOCHEADER or
TOCMACRO, by changing the names in the TOCHEADERLIST and
TOCMACROLIST lists.

<comment generate two tables of content>
<DEF &DOTOC = '<TOCINDEX=1,TOC(0),TOCINDEX=2,TOC(0)>'>
<AT EOF &DOTOC>

<comment The first table of contents uses defaults –
but change format for second contents>

<DEF &FIGHEADER='<PEND,''List of Figures'',LEND C>':–
'Figure <SP '' ''> Page <VS 4MM,LEND>'>

<DEF MA &FIGMAC,–
LEND, I B 0 1, VS 4MM, KE, PAR(3), I L PAR(1)+1, –
PAR(4), ' ', SP, PAR(2), EKE, –

EDEF MA &FIGMAC>

<TOCHEADERLIST(2) = '&FIGHEADER'>
<TOCMACROLIST(2) = '&FIGMAC'>

<comment make entry into second table of contents>
<TOCINDEX = 2>
<TOC(0, pnctr, '1.', 'This is figure heading')>
<TOCINDEX = 1>

Table of Contents and Index

135

Index

The index is produced in the same way as the table of contents (see the previous
section). The following sample illustrates how it is used:

Today let us talk about 'stuff'.
<X(0, 15, 'stuff')>
It will be our topic.
<X(0, 18, 'topic')>
There are several types of stuff, including important,
<X(0, 23, 'stuff', 'important')>
and, more often, irrelevant stuff.
<X(1, 25, 'irrelevant')>
We also talked about stuff on page 4. Put it in the index as well.
<X(0, 4, 'stuff')>

< X(0) > <comment print the index>

produces the following index, on a new page:

Index

stuff, 4, 15
important, 23
irrelevant, 25

topic, 18

Entries to Index

You must make an index entry for each occurrence of a specific word that you want
indexed. The entry must be made where the word occurs in the file. You cannot
indicate a list of words that you want indexed, and have TEXTFORM automatically
make the index entry whenever the word appears. The cost of doing this would be
prohibitive.

Like the table of contents, each index entry has the format:

<X(level [, page, entry1 [, . . ., entry8]])>

level
is the level of importance of the entry. Levels can be 0 to 3, and are usually indicated
by indents in the formatted index (see the following instructions on modifying the
format to change this). A main entry to the index begins with:

<X(0, . . .

The index is printed when a ‘level’ is negative, or the only parameter.

< X(0) >

page
is the page number of the reference. You can supply this yourself, or use PNCTR, or
use any other information that you want sorted, such as bibliography entries, as

Table of Contents and Index

136

shown on page 139.

<X(0, pnctr, . . .

entry1 through entry8

are entries and sub-entries. For example, to insert the entry ‘stuff’ into the index,
use:

<X(0, pnctr, 'stuff')>

If any of ‘entry1’ through ‘entry8’ are omitted, the value of that parameter from the
previous entry is copied. If you have made the index entry

<X(0, pnctr, 'stuff', 'green')>

then the following three entries all produce the same result in the index:

<X(0, PNCTR, 'stuff', 'blue')>
<X(0, PNCTR, , 'blue')>
<X(1, PNCTR, 'blue')>

If you enter a variable name, the contents of the variable are stored in the index:

<DEFINE &S= 'stuff' >
<X(0, 66, &S)>

However, if the entry is a string containing the variable name:

<X(0, 66, '<&S>')>

the name of the variable is stored in the index. If the value of &S is changed before
the index is generated, the new value of &S will appear, not the value which was in
effect when the entry was made. For example, If you want the page number to be
italicized, do not make the entry:

<X(0, '<F 2,PNCTR,F>', 'text')>

because PNCTR will not be evaluated until the index is generated. Instead, use
catenation to force the current value of PNCTR to be stored in the index entry (or
change XMACRO, described later):

<X(0, '<f 2>':pnctr:'<f>', 'text')>

It is convenient to use a macro to make index entries. The following example shows
how to define and use the macro.

<DEFINE MACRO &X, –
X(0, PNCTR, PAR(1)), –

ENDDEFINE MACRO &X>

<&X('index entry')>

The next macro accepts two parameters, and enters both in the index, using each as
a subentry for the other.

Table of Contents and Index

137

<DEFINE MACRO &X2, –
X(0, PNCTR, PAR(1), PAR(2)), –
X(0, PNCTR, PAR(2), PAR(1)), –

ENDDEFINE MACRO &X2>

<&X2('title', 'author')>

produces the following entries in the index:

author, title, 137
title, author, 137

Printing the Index

This is done in the same manner as printing a table of contents, described on
page 131. The variable XHEADER, described below, is placed in the input before the
index is generated.

If you want to produce both an index and a table of contents at the end of a
document, it is necessary to generate the index, turn off the page numbers, and then
generate the table of contents:

<DEFINE MACRO &PRINTALL, –
X(0), PEND, SUS RES T, SUS RES B, –
TOPMARGIN = 1IN, BOTMARGIN = 1IN, –
TOC(0), –

ENDDEFINE MACRO &PRINTALL>
<AT ENDOFFILE &PRINTALL>

How the Index Entries are Stored

During the run, TEXTFORM saves index entries and page numbers in the temporary
file –TXTFXI01, which it creates, (size=10 pages) if necessary. If you create the file,
TEXTFORM will not destroy it after the index is generated. The name of the file
created is determined by the variable XINDEX, discussed in the next section.

Before the index is generated, all the entries in the file –TXTFXI01 are sorted
and put into the file –TXTFXS01 (which it handles like –TXTFXI01). –TXTFXS01
then produces input lines, which are formatted by XMACRO (described below).

At the end of the TEXTFORM run, the following warning is printed if index nn
has not been generated: Index number nn contains text but has not been produced.

Modifying the Format of the Index

Before the index is printed, the variable XHEADER is placed in the input.
XHEADER, which is equivalent to the following, can be modified to change the title
which appears before the index is generated.

'<PEND,ALIGNMENT=LEFT,I B 0,F 3>Index <F 1,LEND C,VG
LINESPACE>':–
'<LEFTINDENTS=(.2IN,.4IN,.6IN,.8IN,1IN,1.2IN)>':–

Table of Contents and Index

138

'<RIGHTINDENTS=(.5IN)>'

Page numbers are sent to XMACRO to be formatted:

<XPAGENUM = (1, 3, 5, 9, 44, 100)>
<$XMACROLIST(XINDEX)(0, 6, 'pies', 'apple',)>

This is done automatically once a X(0) command has been given. The command
$XMACROLIST(XINDEX) causes XMACRO to be done. XMACRO is:

LEND, I B PAR(1) 0, I H=1 L PAR(1)+1, –
XPARS=NRPARS-1, PAR(3), –
com print entries, –

FOR 'XCOUNT=4' UNTIL 'XPARS' DO XPRINT, -
XPARS=PAR(2), –
com print page numbers, –
FOR 'XCOUNT=1' UNTIL 'XPARS' DO XPGPRINT, –

<XPRINT='<'', '', PAR(XCOUNT)>'>
<XPGPRINT='<'', '', XPAGENUM(XCOUNT)>'>
<com XPARS and XCOUNT are predefined>

In the macro, XPARS is given a value equal to the number of parameters minus 1
because the macro call ends with a null parameter.

Multiple Indices

XINDEX determines which index is being filled (just as TOCINDEX determines
which table of contents is being filled). The list of XHEADER names to use are stored
in XHEADERLIST. By default,

<XHEADERLIST = ('XHEADER', 'XHEADER', . . ., 'XHEADER')>

so that XHEADER is used for all 99 indices. Different names can be used for the
various indices by changing XHEADERLIST.

The structure XMACROLIST contains the macro names used to format the index
entries. By default,

<XMACROLIST=('XMACRO' , 'XMACRO', . . . , 'XMACRO')>

so that XMACRO is used for all 99 indices. You can supply your own macro name, as
described in the examples for multiple tables of content.

The following example shows how to combine the indices from two separate runs.
When doing this, LEVELS and MAXLEN must be the same in each run. These are
described on page 141.

Table of Contents and Index

139

RUN 1
<mtscmd('$create -txtfxi01')>
<comment so TEXTFORM does not destroy it>
<index on levels=3 maxlen=64>
<x(0,1,'AAAAA')> <x(0,2,'BBBBB')>
<x(0)>
<mtscmd('$rename -txtfxi01 INDEX1')>
<comment this saves the unsorted index>

RUN 2
<mtscmd('$create -txtfxi01')>
<comment so TEXTFORM does not destroy>
<index on levels=3 maxlen=64>
<x(0,1,'YYYYY')>
<x(0,2,'ZZZZZ')>
<def ma &storeindex, –

mtscmd(''$edit –txtfxi01 :i *l '$continue with INDEX1' ''), –
x(0), mtscmd(''$rename -txtfxi01 INDEX2''), –

edef ma &storeindex>
<at eof &storeindex>

Handling Large Indices

During a run, TEXTFORM checks whether lines have been read from SCARDS
during a specified interval of time. This interval of time is stored in TIMERLIMIT;
its default is 1 CPU second. As TEXTFORM reads the index lines from –TXTFXS01
this limit may be reached; you will be asked if you wish to continue. To prevent the
interrupt when you have a large index, increase the value of the variable
TIMERLIMIT before generating the index. For example, to double the value of
TIMERLIMIT:

<DEFINE &PRINTNDX = '<TIMERLIMIT = TIMERLIMIT*2, X(0)>' >

Using Index for Bibliography

If bibliography references are stored in macros, they can be used to produce a
bibliography where names are sorted, and appear only once regardless of how many
times in the document they are referenced:

Table of Contents and Index

140

<comment define two items for each reference>

<def &west=('West', ', Donald J.', '1973')>
<def ma &refwest>

Who Becomes Delinquent? London: Heinemann. <edef ma &refwest>

<def &west2=('West', ', Donald J.', '1977')>
<def ma &refwest2>

The Delinquent Way of Life. London: Heinemann.
<edef ma &refwest2>

<def &westj=('West', ', James H.', '1927')>
<def ma &refwestj>

Who Becomes Delinquent In the Twenties? New York: Oxford.
<edef ma &refwestj>

<def &smi=('Smith', ', John Q.', '1986')>
<def ma &refsmi>

Urban Turmoil: The Politics of Hope. New City: Polis Publishing
Co. <edef ma &refsmi>

<comment &REF puts the reference in the text –
and makes the bibliography entry using index 99>

<def ma &ref, –
comment first place reference in text, –
'(',par(1)(1),', ',par(1)(3),')', –
comment now make index entry, –
stack(xindex), xindex = 99, –
x(0,,par(1)(1):par(1)(2),par(1)(3):'. ':par(2)),unstack(xindex),–
edef ma &ref>

<comment &BIBHEAD and &BIBLIO format the index>

<def &bibhead = '<pageend>List of References<lend c, vs 4mm>'>
<xheaderlist(99) = '&bibhead'>

<def ma &biblio,–
lend, i b 0, i h=1 l 1, vs 4mm, keep, –
if par(1)=1, then, rep(12,'–'), ' ', –
par(3), else, par(3), ' ', par(4), eif, –
lend, endkeep, –

edef ma &biblio>
<xmacrolist(99)='&biblio'>

<def &final = '<xindex=99,x(0)>', at eof &final>
<comment disable error about extra-long index entries>
<disable m 268>

Table of Contents and Index

141

There are several factors leading up to delinquency.
<&ref(&west,'<&refwest>')>
In spite of the fact that large cities have a high number of
delinquents, there is hope. <&ref(&smi,'<&refsmi>')>
Even Donald West does not dispute this point.
<&ref(&west,'<&refwest>')>
However, Smith backs up his findings. <&ref(&smi,'<&refsmi>')>
In his second study, West detailed the delinquent way of life.
<&ref(&west2,'<&refwest2>')>
Much was repeated from his previous study.
<&ref(&west,'<&refwest>')>
James West's earlier study was more original.
<&ref(&westj,'<&refwestj>')>

produces:

There are several factors leading up to delinquency. (West, 1973) In
spite of the fact that large cities have a high number of delinquents,
there is hope. (Smith, 1986) Even Donald West does not dispute this
point. (West, 1973) However, Smith backs up his findings. (Smith,
1986) In his second study, West detailed the delinquent way of life.
(West, 1977) Much was repeated from his previous study. (West, 1973)
James West’s earlier study was more original. (West, 1927)

List of References

Smith, John Q. Urban Turmoil: The Politics of Hope. New City: Polis
Publishing Co., 1986

West, Donald J. The Delinquent Way of Life. London: Heinemann,
1977

------------ Who Becomes Delinquent? London: Heinemann, 1973

West, James H. Who Becomes Delinquent In the Twenties? New York:
Oxford, 1927

Controlling the Index Collection and Sorting

The INDEX command provides more control over the indices by letting you modify
how the entries are collected and stored. The format of the command is:

<INDEX kwd . . . >

It affects only the index determined by the current value of XINDEX, so use the
INDEX command after XINDEX is set. Any of the following kwds may appear in the
command (more than one may be given):

ON
permits the collection of index entries. If INDEX ON is not specified, the first index
entry encountered turns on indexing.

OFF
ignore all index entries made by X. If INDEX OFF appears before the first call to X,
no index will be collected until an INDEX ON is encountered.

Table of Contents and Index

142

LEVELS = expression
will reset the maximum number of index levels to ‘expression’. The default value is 3,
and the maximum is 8. If used, LEVELS must appear before the first index entry is
saved. The smaller that LEVELS and MAXLEN are, the faster the index will run. If
too many levels are used, the error is Too many levels specified for index entry. Entry
ignored. These entries may not appear in exactly the right place in the Index, but
their entire contents will appear.

MACROCOPY
The lines in the file –TXTFXSnn may be optionally stored in a file if the keyword
MACROCOPY has been specified in the INDEX command for the index of the value
of XINDEX. The file name would be –TXTFXMnn where ‘nn’ is the value of XINDEX.
The default is –MACROCOPY.

MAXLEN = expression
will reset the maximum allowable length for each entry at each level to ‘expression’.
The default is 64. If used, MAXLEN must appear before the first index entry is
saved. The smaller that LEVELS and MAXLEN are, the faster the index will run.

<INDEX MAXLEN = 10>
<X(0,PNCTR,'extralongword')>

produces the error Index entry too long to sort properly. Sorted entry may not appear
in the proper place in the Index.

ALL_LEVELS
If used, the output macro gets all the parameters even though the value of a
parameter may be the same as the value of the same parameter of the previous
entry.

<INDEX ALL_LEVELS>
<X(0,1,’red’,’blue’)>
<X(0,2,’red’,’green’)>

produces:

red, blue, 1
red, green, 2

COLLATE = expression
controls the index sorting sequence. By default, the index entries are sorted
according to the normal EBCDIC sorting sequence. If this is unsuitable, as it might
be for text in language other than English, the sorting sequence can be changed with
the following command:

<INDEX COLLATE = –
... #:–
... #:–
... #>

where ‘...’ represents the new sorting sequence. It contains hexadecimal values of all
the characters arrange in the order in which they are to be sorted. An example of a

Table of Contents and Index

143

sorting sequence suitable for the Russian language can be found in a file; see
TXFM:INDEX for the location. The COLLATE sequence is applied to the data passed
to the X and therefore should be given before the first use of X.

Table of Contents and Index

144

LINE DRAWING

The line drawing facility in TEXTFORM allows horizontal and vertical lines to be
drawn.

Specifying Position of Line

The position of a line can be given by using the LOCATION command. This
command allows a location be associated with any position on a page, within the
dimensions of PAGESIZE. The syntax of the LOCATION command is:

<LOCATION [kwd] expression1 [kwd] expression2 location-id>

kwd
may be one of:

RELATIVE – causes the length following to be adjusted through
vertical and/or horizontal justification.
ABSOLUTE – causes the length following to be fixed at that point
regardless of justification.

expression1
horizontal length measured from the top left corner of the page.

expression2
vertical length measured from the top left corner of the page.

location-id
is an alphanumeric id beginning with a letter that may be used in the DRAW
command (see below) or as a parameter to LOCATION_INFO. Do not precede this
name by ‘&’. After the page has been formatted, all location-ids become undefined,
and may be used again. If the same location-id is defined more than once on a page,
it generates the error LOCATION ID is already defined. This one ignored.

<LOCATION 1INCH 1INCH TOPLEFT>

places a location-id called TOPLEFT 1 inch from the top and left of the page.

<LOCATION PAGE_POSITION(1) PAGE_POSITION(2) HERE>

In this example, PAGE_POSITION is used to place a location-id at the current
horizontal and vertical location.

Line Drawing

145

Drawing lines

The DRAW command draws lines between two location-ids, using the current font,
typesize, and underlining values, and whatever box drawing characters are available
in the current character set. The resulting line must be either horizontal or vertical.
Otherwise, you get the error message Diagonal lines are not supported. The syntax of
the DRAW command is:

<DRAW [FROM] location-id1 [TO] location-id2 [structure-name]>

location-ids
are those defined by the LOCATION command before the end of the page.

structure-name

– if used, must be defined before the end of the page on which the actual drawing
is to be done.

– if omitted or is given as '' then default drawing takes effect. Default drawing
uses specific characters to draw the horizontal or vertical lines, depending on the
current character set. These specific characters are generally the VBAR (vertical
bar) for vertical lines and the DASH or LIGHTRL for horizontal lines. Default
drawing automatically joins horizontal and vertical lines with joining characters
(i.e. TLCORNER BLCORNER TRCORNER BRCORNER) if available. The lines
are formatted in the typesize, character set, and font which is in effect when the
DRAW command is encountered.

– if given, it is the name of a structure which contains drawing information to
replace default drawing. The structure can contain five or six elements:

1) a string that will contain the characters of the line segment, as in
&struc = ('*/', ... or &struc = (bullet, ...

2) a length that is the separation between string segments that make up
the line. For example, if &struc = ('*/', .1in, ... then a horizontal line
would look like

*/ */ */ */ */
3) a length giving the line thickness. Since most devices do not support line

thickness this element in the structure should be a zero length, as in
&struc = ('*', 0in, 0in, ...

4) the character set to use when the line is drawn, as in
&struc = ('*', 0in, 0in, curcs, ... or &struc = ('*', 0in, 0in, 'optimist', ...

5) the font number in the character set above, as in
&struc = ('*', 0in, 0in, curcs, 2)

6) the typesize (if supported) in which the line segment will appear. If the
output device does not allow typesize changes, this structure element
can be omitted.

For example:

<LOCATION 2IN PAGE_POSITION(2) LEFT>
<LOCATION 7.5IN PAGE_POSITION(2) RIGHT>
<DRAW FROM LEFT TO RIGHT>

produces:

Line Drawing

146

<LOCATION 2IN PAGE_POSITION(2) LL>
<LOCATION 7.5IN PAGE_POSITION(2) RR>
<DEFINE &STARS = ('*', WORDSPACE, 0IN, CURCS, 1)>
<DRAW FROM LL TO RR &STARS>

produces:

The following examples show the difference between absolute and relative locations.

This <LOCATION A PAGE_POSITION(1) A
PAGE_POSITION(2)–LINESPACE LTBOX>
<LOCATION A PAGE_POSITION(1) A
PAGE_POSITION(2)+LINESPACE LBBOX>
sample
<LOCATION A PAGE_POSITION(1) A
PAGE_POSITION(2)–LINESPACE RTBOX>
<LOCATION A PAGE_POSITION(1) A
PAGE_POSITION(2)+LINESPACE RBBOX>
is a sentence. <LEND JUSTIFY>
<DRAW FROM LTBOX TO RTBOX>
<DRAW FROM LTBOX TO LBBOX>
<DRAW FROM LBBOX TO RBBOX>
<DRAW FROM RTBOX TO RBBOX>

produces:

This sample is a sentence.

This <LOCATION R PAGE_POSITION(1) R
PAGE_POSITION(2)–LINESPACE LTBOX2>
<LOCATION R PAGE_POSITION(1) R
PAGE_POSITION(2)+LINESPACE LBBOX2>
sample <LOCATION R PAGE_POSITION(1) R
PAGE_POSITION(2)–LINESPACE RTBOX2>
<LOCATION R PAGE_POSITION(1) R
PAGE_POSITION(2)+LINESPACE RBBOX2>
is a sentence. <LEND JUSTIFY>
<DRAW FROM LTBOX2 TO RTBOX2>
<DRAW FROM RTBOX2 TO RBBOX2>
<DRAW FROM RBBOX2 TO LBBOX2>
<DRAW FROM LBBOX2 TO LTBOX2>

produces:

This sample is a sentence.

Location and draw commands can be put into a macro if desired. However, dynamic

location-id names should be used so that different locations are created each time the

Line Drawing

*

147

macro is used. (A value that is calculated by a program, rather than inserted
manually, is calculated dynamically.) The following example defines a macro that
will draw a horizontal line from the left margin to the right margin
Note: Disable the warning message ‘name’ is not yet defined. Execution of ‘name’
deferred until macro is used because you don’t want the variable to be defined until
the macro is called.

<DISABLE MESSAGE 228>
<DEFINE MACRO &HORZLINE>

<&TOPLEFT = 'HXX':&CTR, &TOPRIGHT = 'HX':&CTR>
<L>
<LOCATION A LEFTMARGIN A PAGE_POSITION(2) $&TOPLEFT>
<LOCATION A PAGESIZE(1)–RIGHTMARGIN A PAGE_POSITION(2)

$&TOPRIGHT>
<DRAW FROM $&TOPLEFT $&TOPRIGHT>
<&CTR=&CTR+1>

<EDEF MA &HORZLINE>

<DEF &TOPRIGHT,DEF &TOPLEFT>
<DEF &CTR=1>

<&HORZLINE>

produces:

Information of line position

LOCATION_INFO returns a structure containing information about the location-id
given. It takes the name of the location-id as parameter. For example:

<LOCATION A 2IN A 4IN CURRENT>
<DEFINE &LINFO>
<&LINFO = LOCATION_INFO('CURRENT')>
<DEFUNITS = IN>
<DISPLAY &LINFO>

produces:

1 ABSOLUTE
2 2IN
3 ABSOLUTE
4 4IN
5 CURRENT

If the location-id given is undefined, the structure returned will contain one null
element and FUNCTIONRC will be set to four.

Line Drawing

148

The following example shows how to draw a box 1 inch from the top and
bottom of the page, and halfway into the left and right margin as shown
on this page:

<DEFINE MACRO &PAGEBOX>
<LOCATION A LEFTMARGIN/2 ABSOLUTE 1IN TOP_LEFT>
<LOCATION A PAGESIZE(1)–(RIGHTMARGIN/2) A 1IN TOP_RIGHT>
<DRAW FROM TOP_LEFT TO TOP_RIGHT>
<LOCATION A LEFTMARGIN/2 A PAGESIZE(2)–1IN BOT_LEFT>
<LOCATION A PAGESIZE(1)–(RIGHTMARGIN/2) A PAGESIZE(2)–1IN
BOT_RIGHT>
<DRAW FROM BOT_LEFT TO BOT_RIGHT>
<DRAW FROM TOP_LEFT TO BOT_LEFT>
<DRAW FROM TOP_RIGHT TO BOT_RIGHT>
<ENDDEFINE MACRO &PAGEBOX>

To draw the box:
<&PAGEBOX>

The AT ENDOFPAGE or AT STARTOFCOLUMN commands can be used if you want
this box to appear repeatedly.

Line Drawing

149

PROGRAM CONTROL WITH TEXTFORM

The programming aspects of TEXTFORM can be used to provide dynamic control
over the format of a document. This section describes such facilities. Some have been
used in examples in earlier parts of the manual.

System Variables

System variables are used by TEXTFORM to store information; they often change as
the result of a command. You may display and use these variables for comparisons or
tests, but you cannot change them. Only TEXTFORM may do this. System variables
cannot be STACKed or UNSTACKed (to do this, you would be attempting to change
them) but you can store their values in another variable. For example:

<DEFINE &OLDT = TSIZE>
<TYPESIZE 12POINT> . . .
<TYPESIZE &OLDT>

System variables are often used in macros where they can be queried for information
about the current run by using the IF command. A short list of the most important
ones:

CURFONT – the current font
ODLOADED – becomes TRUE when the OUTPUTDEVICE command has been
given
THISPAGE – alternates between LEFT and RIGHT, changing when page begins
LINDENT and RINDENT – length of current left or right indent
LINDENTINDEX and RINDENTINDEX – the index of current left or right
index
PNCTR – the current page number

System Constants

These can be used like a system variable, (YEAR produces the 2010) but
TEXTFORM sets them only once per run. Some of the most useful are:

TIME – time at the start of the TEXTFORM run (00:00.00 – 23:59.59)
DAY – current day of the week
DATE – current date of the month (from 1 to 31)
MONTH – current month
YEAR – current year

Program Control with TEXTFORM

150

Information About Current Page Position

This section discusses ways to determine the position of text on the page through
facilities in the TEXTFORM program, and how to use these results.

Four names are provided to determine the current position on the page of text.
They are:

PAGE_POSITION
COLUMN_POSITION
POSITION
REMAINING

They differ in what they measure. PAGE_POSITION measures from the top
left-hand corner of the physical page (sheet). COLUMN_POSITION measures from
the top left-hand corner of the column, i.e., below the top page reserves if present.
POSITION measures from top left-hand corner of the current float, reserve, footnote,
or open text. (See TEXT_DESTINATION below). Normally this is measured from the
bottom of the column reserves and the left indent setting. In abnormal cases, such as
inside a FLOAT, the measurement is made from the top left-hand corner of the
FLOAT.

REMAINING is the only name that measures forward. It measures towards the
bottom right-hand corner of the float, reserve, footnote, or open text, telling how
much space remains to insert text.

These items return horizontal and vertical information, depending on how they
are used.

– If the parameter is 1, the horizontal position is returned.
– If the parameter is 2, the vertical position is returned.
– If no parameter is given, both horizontal and vertical positions are returned as a

structure containing two lengths.

Since these are functions that return information, the information returned must be
stored in a variable or used in a test. You cannot DISPLAY it. For example, to check
if there is enough space for a 5 inches bottom float in the current column:

<IF REMAINING(2) >= 5IN, THEN, . . .

The following conditions may cause unexpected answers.

– Within a table, REMAINING is always very large (not the actual value)
– Inside of RESERVEs or FLOATs which have a size specified, the remaining

vertical distance reflects the maximium size it can become, rather than the
actual specified size.

TEXT_DESTINATION can be used to determine the type of item that is currently
being built. It returns a one element structure containing a string. The string is one
of TEXT (for open text), KEEP,† FOOTNOTE, FLOAT, or RESERVE.

†KEEP will be returned if a KEEP ENDKEEP sequence has been processed and the
formatted line where TEXT_DESTINATION is executed is within the bounds of the
KEEP.

Program Control with TEXTFORM

151

Formatting Information

This section provides details about what TEXTFORM does at boundaries, and
reviews formatting information in more detail. The part of the TEXTFORM program
that controls page formatting decisions is called the page processor.

Pages

A page is started explicitly with the PAGE command, or by a command which forces
TEXTFORM to start the page, such as NP or KEEP. (When text overflows a page,
before TEXTFORM can place a character of open text on the next page, it starts the
new page implicitly.) PNCTR and THISPAGE are changed immediately. Several ATs
can occur at this point. The first is AT REFERENCE PAGEEND, (or
AT REFERENCE PEND); the second is AT ENDOFPAGE.

When TEXTFORM starts a new page, it uses the size in PAGESIZE. The side of
the page (LEFT or RIGHT) is determined by checking the values PRINTON and
PNCTR. Four variables control the margins: they are TOPMARGIN, BOTMARGIN,
LEFTMARGIN, and RIGHTMARGIN.

As all these variables are accessed and their values used, they are copied into a
set of shadow variables. These variables are named CURPAGESIZE (which points to
CURPAGEWIDTH and CURPAGEHEIGHT), CURTOPMARGIN,
CURBOTMARGIN, CURLEFTMARGIN, and CURRIGHTMARGIN. The purpose of
these variables is to allow two distinct questions to be asked: 1. What size is the page
I am currently formatting? Check CURPAGESIZE. 2. What size will the next page
be? Check PAGESIZE.

TEXTFORM then processes all the RESERVE PAGE, and FLOAT PAGE items
that are pending for this page. While these items are being processed, the system
variable CURCOL contains the value 0. When these items have been placed on the
page, TEXTFORM knows the space remaining on the page for open text. Once the
page has been started, space allocated for the bottom reserve cannot be recovered,
even if the reserve is suspended before the bottom of the page is reached.

The page is now started. If the page overflow was caused by a KEEP, the part of
the keep which appeared on the previous page is then copied to the current page. If
the page overflow was caused by text, or if AT ENDOFPAGE or AT REFERENCE
PAGEEND produced text, this text is now included in the open area of the page.

Any subsequent change to the size of the page, its margins, or its side, will not
take effect until the next page. Changing those variables will have no effect on the
page just started.

PAGE_POSITION can be used to determine the current position on the page of
text. It measures from the top left-hand corner of the physical page (sheet) and
returns two lengths: horizontal and vertical. In the following, &CHECK gives the
PAGE_POSITION of this page:

<DEFINE &CHECK = PAGE_POSITION>
<DISPLAY &CHECK>
1 2.1458IN
2 9.972IN

Program Control with TEXTFORM

152

If you want to check only the vertical position on the page:

<IF PAGE_POSITION(2) < 4IN, THEN, . . .

At the start of a run, PAGE_POSITION(2) is 0IN. After a PAGE command, which
starts the page, its value reflects the space used for top margins, reserves, and floats.
reserves, floats. When a page overflows, or when AT ENDOFPAGE becomes true,
POSITION, COLUMN_POSITION and PAGE_POSITION indicate the next position
where text can occur. REMAINING indicates the amount of horizontal and vertical
space remaining at that point.

Columns

A column overflow, like the page overflow, causes something to start. However, the
column overflow (or COLUMN or COLUMNEND commands) also have the power to
start something other than a column. If the page processor is positioned between
pages, the COLUMN command first must cause a page to be started before it can
start a column. This is a direct result of having to know the limits of how tall and
wide a column should be. It’s impossible to know those limits until the size of the
page, with all its margins and reserves, has been finalized.

The height of a column is the distance left after all the RESERVE PAGE and
FLOAT PAGE things have been included. The width of the column, or perhaps even
the number of the column, is determined by the LOGICALPAGE definition. If a
logical page is not in use, the default, called PHYSICALPAGE, is used.
PHYSICALPAGE has only one column, and has neither a LEFTGAP nor a
RIGHTGAP. This makes PHYSICALPAGE the full size between the left and right
margins in width, and between the top and bottom RESERVE PAGE or
FLOAT PAGE items.

Once the size of the column is finalized, the value of CURCOL is adjusted to the
column number, any RESERVE COLUMN and FLOAT COLUMN items are
included, and the column is officially started. As a review,

1. if TEXTFORM is between pages, an implied PAGE command is done
2. the height of the column is determined by whatever is left over after the page is

started
3. the width of the column is taken from the LOGICALPAGE definition
4. RESERVE COLUMN and FLOAT COLUMN items pending for this column are

included

To get a blank page, with only a page number, and without any column reserves or
floats on it, do

<PAGE,PAGEEND>

The page will be started, doing the page number, but no column will be started
before the page is finished. Therefore, there won’t be any column reserves or floats.

To get a page with page reserves and floats, and column reserves and floats, but
no open text, do the following, which says “keep dumping columns until the end of
the page”:

Program Control with TEXTFORM

153

<DEFINE &EMPTYCOL='<COLUMN,COLUMNEND>'>
<PAGE,&EMPTYCOL, comment that is the first one>
<WHILE 'CURCOL ¬= 1' DO &EMPTYCOL,Comment the rest>

COLUMN_POSITION can be used to determine the current position on the column.
It measures from the top left-hand corner of column, i.e., below the top page reserves
if present. As described on page 150, it returns two lengths: horizontal and vertical.
On a one-column page, COLUMN_POSITION(1) gives the distance from the left
margin.

<DEFINE &CHECK = COLUMN_POSITION, DISPLAY &CHECK>
1 0.8958IN
2 2.1388IN

When a column overflows, or AT ENDOFCOL becomes true, REMAINING,
POSITION, PAGE_POSITION and COLUMN_POSITION reflect information about
the next position where text can occur.

Lines

A line overflow, like the column and page overflow, requests that the next line be
started. If the page processor is not currently processing a column, then an implied
COLUMN command is generated. The LINE command has the same effect.

The horizontal limits of the line start out at the column boundaries, but are then
reduced inwards by the indent settings. On the left edge, there is the left indent,
LINDENT, and if this is the first line of a paragraph, then also the paragraph
indent, PARAIND. On the right edge there is only the right indent, RINDENT to be
subtracted.

The vertical position of the line is determined by LINESPACE. The value used is
then stored in CURLINESPACE. If LINESPACE is changed in mid-line, it reflects
the spacing that will be used for the next line while CURLINESPACE reflects the
spacing for the current line. However, to ensure that text starts at the same position
on each page, regardless of LINESPACE, the first line of each top reserve, top float,
and the first line of each column of open text starts TSIZE instead of LINESPACE
down from the bottom boundary of the preceding item. (For example, when using the
page printer with TOPMARGIN=1IN and no reserves or floats, open text always
starts on line 7, whether LINESPACE=.16IN or .33IN. This is because TSIZE is
.1389IN and the device cannot change typesize. This is rounded to .16IN, which
produces text on line 7.)

POSITION and REMAINING, described on page 150, can be used to determine
the amount used and remaining on the current line.

Words

Words in the input are delimited by blank spaces, or by the beginning or end of the
input line, or by the ALLOWLINEBREAK command. The current word being
processed by TEXTFORM is contained in the system variable CURWORD. You can
examine CURWORD but you cannot change it. CURWORD contains only the
characters of the word up to the last character processed, as the example below

Program Control with TEXTFORM

154

shows. After a blank is encountered, CURWORD is null.

If an input file contains the prime character available at the keyboard, rather
than LQUOTE and RQUOTE, the following macro can examine CURWORD and
produce the appropriate quote in the output. First, alter all primes in the file to &Q,
so that the quoted words are <&Q>word<&Q>.

<DEFINE MACRO &Q, –
IF CURWORD='', THEN, LQUOTE, ELSE, RQUOTE, ENDIF, –

ENDDEFINE MACRO &Q>

An AT ENDOFWORD command is available, as described on page 69. It lets actions
be carried out at the end of every word.

When the characters in a word have variable widths, TEXTWIDTH can be used
to determine the width of the word. POSITION provides the current position on the
line.

Portions of words or strings can be obtained using the substringing facilities,
described in the section on variables (page 98). For example, remove the word ‘The ’
from index entries with the following macro:

<define macro &x, –
&w = par(1), –
if uppercase(&w(1|4)) = 'THE ', –
then, &w = &w(5; chars(&w)), –
endif, –
x(0,pnctr,&w), –

edef macro &x>

<define &w, define &len>

Blanks

In the input, a blank (or end of line) is a ‘wordend’ command. Multiple blanks are
ignored (unless INPUTMODE is ASIS or PREFORMATTED):

– following another blank
– around any command which forces the end of a line and therefore the end of a

word: LINEEND, COLUMNEND, PAGEEND, NEWPARA, VERTGAP
– Before exitting a state. These are essentially implied LINEEND commands:

ENDFOOTNOTE, ENDFLOAT, ENDRESERVE, TAB, USE

Blanks do not affect the use of any commands other than INPUTMODE,
BLANKCHARACTER, and INDENT RIGHT. Blanks are not required at the
beginning or end of the input line. Errors are produced if blanks appear before or
after the LOGICALBACKSPACE command or the ¬ character.

In the output, all words are separated by a blank space equal to WORDSPACE if
ALIGNMENT=LEFT. Extra blank space must be produced via HORSPACE,
BLANKCHARACTER, or SPLIT commands.

Program Control with TEXTFORM

155

In command mode, blank spaces inside the initiator and terminator have no
special meaning other than to delimit keywords, except in the assignment to the
INPUTMODE variable. If text is generated from command mode, as in <'text string'>
or <MONTH>, you must allow for blank spaces around the text. TEXTFORM does
not insert a blank when it comes out of command mode, unless it also ends the input
line at the same time, as follows:

<comment command>
text
<comment command>

In the following example, blanks are not automatically inserted before and after the
text:

<comment command, –
'text', –
comment command>

A blank can be included in the string, as follows:

word<'text '>word

produces ‘wordtext word’. The sequence

<comment command, 'text text2'>

produces only one WORDSPACE between ‘text’ and ‘text2’ (unless INPUTMODE is
ASIS or PREFORMATTED) regardless of how many blanks appear between the
delimiters. To produce extra space, use HORSPACE or BLANKCHARACTER
commands.

Sentences

The amount of space at sentence end is controlled by SENTSEP. Both of the
following tests must succeed for TEXTFORM to recognize a sentence:

1. If a sentence end character . ! ? is the last character in the word, or is followed by
) ' ’ or ”, and the character is not the only character in a word, then this is the
end of a sentence.

2. If the first character of the word following a recognized sentence end is (' ‘ “ or a
capital, then a SENTSEP space rather than a WORDSPACE is inserted.

If necessary, the command NOSENTENCE, or NS, can be used to suppress
SENTSEP from being inserted. The command SENTENCE, or S, can be used when
TEXTFORM does not recognize a sentence ending by the above methods.

Program Control with TEXTFORM

156

Including Input If a Condition is True or False

The IF command causes text and/or commands to be included in the document,
depending on the result of a test. The format of the command is:

<IF comparison [,] [THEN [,] body] [,ELSE [,] body2] , ENDIF>

Both ‘THEN body’ and ‘ELSE body2’ are optional, although one of them must appear.
Note that the command separator must be included before the ENDIF, and before
the ELSE if it is present. Any amount of text and/or commands may appear in ‘body’
or ‘body2’, including further IF commands.

The comparison is the logical test which determines which part of the IF (‘body’
or ‘body2’) to include. If the result of the comparison is TRUE, ‘body’ is included,
otherwise ‘body2’ is included.

A missing ENDIF in a comparison produces, at the end of the run, the errors
Missing ENDIF for IF comparison in line xxx of source. End of file encountered while
skipping text.

When TEXTFORM is reading the input and looking for an ENDIF command, it
does not evaluate the contents of variables or macros. For this reason, TEXTFORM
would not find the ENDIF in the following example:

<DEFINE &TEST = '<IF VERSION=1.0, THEN>'>
<DEFINE &ETEST = '<ENDIF>'>
<&TEST> Include this text <&ETEST> and then continue

To make TEXTFORM immediately evaluate and act on the contents of &ETEST, use
the execute operator:

<DEFINE &TEST = 'ENDIF' >
<&TEST> Include this text <$&ETEST> and then continue

How Comparisons are Performed

In a comparison, type only one less than sign, <. It is not necessary to enter it twice.
The comparison has the form:

expression1 logical relation expression2

The two expressions on either side of the logical relation, often called arguments, are
evaluated, then

1. converted to the same type
2. and compared. The comparison indicates that the first expression is <, =, or >

than the second. According to this result, the logical relation which was specified
in the comparison is evaluated as TRUE or FALSE.

The expressions on either side of the comparison are converted as follows:

Program Control with TEXTFORM

157

expression 1

hex

number

scaled

length

string

hex

hex
number
scaled
length
string

number

number
number
scaled
length
string

scaled

scaled
scaled
scaled
length
string

length

length
length
length
length
string

expression 2__
string

string
string
string
string
string

All logical relations are allowed:
=
¬=
< or¬>=
<= or ¬>
> or ¬<=
>= or ¬<

(equal)
(not equal)
(less; not greater or equal)
(less or equal; not greater)
(greater; not less or equal)
(greater or equal; not less)

The logical result of the comparison (< = >) is applied to the ‘logical relation’
specified. The logical comparisons which are allowed are:

comparison result
logical relation
=
¬=
>= or ¬<
<= or ¬>
> or ¬<=
< or ¬>

<

false
true
false
true
false
true

=

true
false
true
true
false
false

>
__

false
true
true
false
true
false

The comparison is then flagged as either TRUE or FALSE according to the value in
the above table.

Strings are compared ‘as is’:

'a' ¬= 'A' and
'a ' ¬= 'a'

Since the variable ODNAME always contains an upper case string, the following test
will fail:

<if odname = 'x9700' . . .

If only one argument (of the comparison) is a string, then the other is converted to a
string. If both arguments are numbers they are converted to the same type of
number before comparison.

Structures are compared element by element. If the two structures being
compared have a different number of elements, the structure with the most elements
is considered greater than the smaller structure, regardless of its content.

When comparing lengths, you may want the test to succeed even though the
lengths are not precisely the same. The FUZZ variable is provided for this purpose. If
two arguments of a comparison are within FUZZ internal units, (one internal unit is
0.00001 millimeter), the two arguments will compare as equal. The default, which is:

Program Control with TEXTFORM

158

<FUZZ = 125>

is equivalent to saying that all lengths within .00125mm of each other will be
considered equal in comparisons. This is adequate in most cases, unless you want the
following type of test to succeed:

<DEFINE &LENGTH = .3333IN*3>
<FUZZ = 300>
<IF &LENGTH = 1IN, THEN, 'TRUE', ELSE, 'FALSE', ENDIF>

produces:

TRUE

Including Input from a List of Choices

The CASE statement lets you execute any item (usually a command) in a list
(structure) depending on the value of a given expression. It eliminates the need for
IF commands within IF commands. The format of the command is:

<CASE expression kwd structure>

expression
must evaluate to a number greater than 0, and no greater than the number of
elements in ‘structure’. If ‘expression’ does not fall into this range, it causes the error
CASE index out of range . . . Nothing executed.

kwd
must be OF or FROM. Both have equivalent meaning.

structure
may be a structure, or the name of a structure, which contains strings. The element
of ‘structure’ that is executed depends on the value of ‘expression’.

For example:

<CASE &TEST OF (' lend right ' , ' lend left ')>

If &TEST is equal to 1, the command <lend right> will be done; if &TEST is 2, it will
be <lend left>. In another example, you may have a macro that accepts one of four
parameters, and you want to set a variable to TRUE, depending on the parameter
supplied:

<case &zz+1 of ('error 8 ''illegal parameter to macro'' ', –
'&flag1=true', –
'&flag2=true', –
'&flag3=true', –
'&flag4=true') >

In this example, if &ZZ is 0 your error message appears. Otherwise, depending on

Program Control with TEXTFORM

159

the value of &ZZ, the CASE statement sets one of the four variables to TRUE.

Including Input WHILE a Condition is True

The WHILE command includes the input specified depending on the success of a
comparison:

<WHILE 'comparison' DO name>

comparison
is provided as a string. A component of ‘comparison’ must be changed in name to
terminate the looping, otherwise the WHILE will go on forever (unless the
comparison fails on the first try).

name
is done if the test described under ‘comparison’ succeeds. ‘name’ may be a variable,
macro, command, or function. It may not contain parameters if it is a macro,
function, or command; nor may it be substringed or subscripted if it is a variable.

<DEFINE &PRINT = '<&CNT, &CNT = &CNT+1, LEND>'>
<DEFINE &CNT=1>
<WHILE '&CNT<5' DO &PRINT>

produces:

1
2
3
4

Including Input FOR a Specific Number of Times

The FOR command includes a specified amount of input, depending on the value of a
control variable. The format of the command is:

<FOR 'name=expression' UNTIL 'limit' [STEP 'step'] DO name2>

‘STEP 'step'’ may appear before ‘UNTIL 'limit'’ if desired.

name = expression
‘name’ may be subscripted or substringed. It must be defined before the FOR is
issued. Note that the whole assignment (‘name = expression’) must be provided as a
string. ‘name’ (the control variable) may be modified during execution of the FOR.

limit
is executed for each iteration of the loop (therefore it may contain an expression),
testing its value against the value of ‘name’. If the value of ‘name’ is not greater than
the value of the executed ‘limit’ (<=), the contents of ‘name’ are included as input.

step

Program Control with TEXTFORM

160

(if specified), is added to the control variable after every execution of the specified
input. ‘step’ may contain an expression. If ‘step’ is not specified, ‘1’ is used in its
place.

name2
is included as input if the test described under ‘limit’ succeeds. Notice that name2 is
not provided as a string.

To print all the parameters in a macro, regardless of number, the following
commands may be used:

<define &a = 1>
<define &b = '<par(&a), lineend>'>
<def ma &printer>

<for '&a=1' until nrpars do &b>
<edef ma &printer>

To print every second parameter in the macro, include STEP 2 in the command:

<for '&a=1' until nrpars step '2' do &b>

Functions

A function is a program which may be predefined or available in MTS. Functions
supply information or perform operations that might otherwise be tedious or
awkward to do. Information passed to a function is a parameter. Another way of
stating this is that the function takes a parameter. A function may return a result, or
a VALUE, which can often be used in a comparison or as input. This result is stored
in the system variable R0. Most functions that have been described in this manual
can be used in this manner, as in DEFINE &REM=REMAINING(2). Functions that
do not return a result are TOC, X, and LISTING.

In MTS, after a program is run, a return code indicates the level of severity of
any errors. In the same way, TEXTFORM stores the return code of each function
called in FUNCTIONRC. return code from the last function called. A return code of 4
usually indicates invalid parameters were given to the function.

TEXTFORM Functions

Several functions are predefined in the language; some have already been used in
examples. For a complete list, look in Index to TEXTFORM Language.

Using Functions Which are Not Part of TEXTFORM

It is necessary for TEXTFORM to communicate with subroutines and system
subroutines. This is done by using functions. Most tasks that can be done in other
programming languages can be done in TEXTFORM; however programming certain
things in TEXTFORM can be either cumbersome, or expensive. This is also where
functions are of value. To use a function in TEXTFORM, you load it; this lets you
bring in an extra procedure which is used during the execution (running) of the

Program Control with TEXTFORM

161

program. The LOAD command (described in detail in Appendix 1) defines

– what parameters a function takes and/or returns
– whether it can be used in an expression
– what its value is if it is used in an expression.

Two types of functions can be loaded. These are MTS system subroutines, and
functions defined by the TEXTFORM supporters which are not part of the
TEXTFORM language. At present, user-written functions cannot be loaded.

Loading System Subroutines as Functions

Several examples are given here.

The system subroutine GUSERID does not take any information. However, it
does return a string in Register 1. LOAD the subroutine as follows:

<LOAD GUSERID &ID RETURNS R1 VALUE STRING>

The TEXTFORM function &ID now will store the signon ID in Register 1, i.e. the
system variable R1, and also return a value to be used in assignments or
comparisons:

<&ID>

produces:

TXTF

while the comparison:

<IF &ID = 'FORM' . . .

would fail.

If the word VALUE is omitted in the LOAD command, the signon ID is stored in
R1, but no value is returned. Thus &ID could not be used in comparisons or
assignments. Its only purpose would be to put a string in R1, which could then be
examined.

<LOAD CMDNOE &CMD TAKES STYPE STRING NUMBER>
<&CMD('CONTROL *PRINT*',15)>

produces:

PRINT assigned receipt number 889271

The system subroutine CMDNOE issues an MTS command without echoing it. The
function TAKES the command and the number of characters it contains.

Program Control with TEXTFORM

162

Loading TEXTFORM-Supplied Functions

The functions described in the next sections are provided by the TEXTFORM group,
but are not part of the TEXTFORM language. Therefore, they must be loaded before
you can use them.

Making Copies of Variables and Macros

The function MACWRITE writes the contents of a variable or macro to a file or a
logical I/O unit depending on the parameters passed. It should be loaded using the
following command as an example:

<load macwrite &mw takes stype len string getval optional getval>

The parameters to MACWRITE are as follows:

1. The variable or macro name to write, within delimiters
2. The logical I/O unit, FDUB, or filename as a variable.
3. An optional string, either TEXT or DEF.

a. for variables it must be TEXT.
b. for macros

1) DEF puts DEF MACRO name and EDEF MACRO name at the
beginning and end of the macro.

2) TEXT only writes the contents of the macro.

For macros a record is written for each line on which the macro was defined. A
variable occupies one output line.

<load macwrite &mw takes stype len string getval optional getval>

<def macro &test>
This is a test macro.
<edef macro &test>
<def &file='–p'>
<&mw('&test',&file,'DEF')>

The above example writes the contents of macro &TEST into the file –P.

Superscript and Subscript Functions

The functions TOSUP and TOSUB convert all digits, plus and minus signs in the
parameter to superscript or subscript characters. The rest of the characters are
printed unchanged. These functions are useful only when the current character set
contains SUP1, SUP2, etc. They are used as follows:

<load tosup &printsup takes stype len string
returns r0 ptr value len string>

<load tosub &printsub takes stype len string
returns r0 ptr value len string>

<&printsup('123')>

Program Control with TEXTFORM

163

produces
123

.

Automatically Doubling Meta-characters

The functions ATOTEXT and TOTEXT deal with the meta-characters ¬, <, _, and @.
ATOTEXT doubles these four meta-characters and the '' character. For example:

<load atotext &atotext takes stype len string
returns r0 ptr value len string>

<define &p = 'Testing if @ works.' >
<x(0, 1, &atotext(&p))>

makes the index entry with a doubled @, so that it appears correctly in the index.

TOTEXT doubles all meta-characters except the command initiator in the
parameter passed.

<load totext &totext takes stype len string returns r0 ptr value len
string>

Obtaining Values of Logical I/O Units

The function FNAME can be used to determine the value of an I/O unit during the
run. As a parameter, It takes a variable containing the name of the I/O unit, and
writes what was assigned to the I/O unit in the variable. For example,

<load fname &filename takes stype getval returns stype getval>
<define &iounit = 'scards', &filename(&iounit), display &iounit >

displays the current SCARDS file name on SERCOM.

Calling TEXTFORM as a Subroutine

TEXTFORM may be called as a program, via RUN, or as a subroutine. More than
one subroutine copy may be active at the same time.

Entry point names

TXOFRM for OLD:TEXTFORM
TXPFRM for *TEXTFORM
TXNFRM for NEW:TEXTFORM

Location

Either in the above files, or in some cases (*TEXTFORM and NEW:TEXTFORM) as
a predefined low core symbol.

Program Control with TEXTFORM

164

Calling Sequence

Program: STYPE

CALL TXPFRM(PARLST)

where PARLST, is a two byte integer length followed by a string (the parameter
list). TEXTFORM will use the SCARDS, SPRINT and SPUNCH assignments
from the RUN command.

Subroutine: STYPE

CALL TXPFRM(ID,FLAGS,SCAPAR,SPUPAR,SPRPAR)

where

ID is a four byte integer value used to identify the individual subroutine copies
of TEXTFORM. (Note that recursive calls back to this copy of TXTFRM are
not allowed and will cause a fatal return code.)

FLAGS
is four bytes of I/O flags for SCAPAR, SPUPAR, and SPRPAR (the fourth
byte is unused). Each byte may have one of the following values

00 same as last call (ignore parameter)
01 revert to default (ignore parameter)
02 fdub (as returned by GETFD)
03 file name (a two byte length followed by the file name)
04 routine entry point (a subroutine to use instead of SCARDS, SPRINT or

SPUNCH).
05 block (pointer to a block of storage, where the first word indicates the

number of bytes remaining in the block, the second word is an address
pointing to the next place to use in the block.) Lines within the block
will be half-word aligned, and will be a two byte integer line length
followed by the line itself.

Note that blocks used for SCAPAR will have their length decremented,
and storage pointer increased (first two words of the block) as
TEXTFORM reads the lines in the block.

Note that blocks used for SPUPAR or SPRPAR will have their length
decremented and storage pointer increased as TEXTFORM writes lines
into the block. If the block is too small to contain the next line to be
written TEXTFORM will act as though SPRINT or SPUNCH had
returned with a return code of 4 (and the line will not be written).

06 string (SCAPAR only; a two byte integer length followed by the data)

If FLAGS is a negative number, the copy of TEXTFORM denoted by ID will
be stopped, producing the final page and listing and freeing all storage used
by TEXTFORM. For example, to stop a copy of TEXTFORM use

CALL TXPFRM(ID,-1)

SCAPAR
(the SCARDS parameter) On first call, if FLAGS(1) is STRING, the

Program Control with TEXTFORM

165

parameter will be passed in the PAR= field.
SPUPAR

(optional) the SPUNCH parameter
SPRPAR

(optional) the SPRINT parameter

Return Codes

Program:
0 normal return or warnings only
4 minor errors
8 probable errors
12 definite errors
16 serious errors
20 fatal error
24 severe fatal error

Subroutine:
In addition to the return codes above
28 parameter error
32 recursive call attempted

Description

Program:
TEXTFORM will run to completion as though it were invoked by the RUN
command.

Subroutine:
Since TEXTFORM itself contains an ENTRY card, if you wish to call
TEXTFORM as a subroutine, your calling program must contain an ENTRY card
and be loaded before TEXTFORM otherwise TEXTFORM will be given control.

Text is processed from SCARDS as described by FLAGS(1), and distributed as
described by FLAGS(2) and FLAGS(3).

The return code is determined by TEXTFORM in the same way that it is when
run as a program except that on each call the return code is set to zero on entry
(i.e. the return code from each call reflects the errors for that call only). When
the subroutine call is finished (by calling with FLAGS=-1), the return code is
that for the whole run. If a fatal return code is given for any call, all future calls
for this copy will be ignored, and the fatal return code will be re-issued.

Upon first call a copy of TEXTFORM denoted by ID will be started. This means
that several copies may be active at any one time.

The operation of TEXTFORM is the same as in program mode, except that I/O is
under program control.

If NOPROLOGFILE is desired, it must be specified in the initial call as part of
the parameter list.

Program Control with TEXTFORM

166

Attention interrupts and timer interrupts are inactive. Program interrupts will
automatically generate a return code of 24.

LIST OFF NOTHING –COPY is the default when TEXTFORM is called as a
subroutine.

Program Control with TEXTFORM

167

TEXTFORM AND MTS

The RUN Command in Detail

TEXTFORM is invoked by the RUN command specifying *TEXTFORM as the object
file. TEXTFORM uses a number of logical input/output units. The logical units used
are:

SCARDS – is the logical unit containing the text and the commands to be formatted.
SCARDS defaults to *SOURCE* if it is not specified. Input lines longer than 256
characters are truncated (this may cause errors if part of a command is
truncated). Implicit catenation may be obtained by placing

$CONTINUE WITH fdname RETURN

beginning at column 1 within the input, where ‘fdname’ represents a file or
device name.

SPRINT – is the logical unit where the statistics, listing, and proof output are
written. See the description of LIST and PROOF to control this output.

SPUNCH – is the logical unit where the output document is written. SPUNCH has
no default setting, so if you are at a terminal and do not specify SPUNCH in
your RUN command, you will be prompted for it with Unit SPUNCH was
referenced but is not assigned. Enter a file/device name for it, ''CANCEL'', or
''HELP'' In a batch run, if you do not specify SPUNCH, *sink* is used if data
will be meaningful, as with the 9700 and 1403 output devices. For batch runs
where SPUNCH should usually be assigned to a file, but is not specified, the run
is terminated. This applies to output devices such as the CALCOMP, 6670,
APS5, etc.

SERCOM – defaults to *msink* if it is not specified. It receives the error listing, and
messages generated by the GUSER Command Interface. The value of SERERRS
controls error output.

GUSER – is the logical unit from which the GUSER Command Interface (GCI) reads
its commands. GUSER defaults to *MSOURCE* if it is not specified.

Other input/output units referenced:

If you have a file named TXTF.PROLOG, TEXTFORM automatically reads
commands (and text) from this file before reading from the logical I/O unit
SCARDS.

TEXTFORM accepts commands from the PAR= field of the RUN command before
processing commands and text from the file TXTF.PROLOG or the logical I/O
unit SCARDS. The PAR= field must be the last item in the RUN command.
Anything read from the PAR= field is in command mode. Once the PAR= field is
processed TEXTFORM switches back to text mode. If you have a file named
TXTF.PROLOG and do not want TEXTFORM to use this file, the first command
in the PAR= field must be NOPROLOGFILE (or NOPROLOG or NOPR). If a
LIST or CROSSREFERENCE command is supplied in the PAR= field, the
settings will remain in effect for the entire run and any other LIST or
CROSSREFERENCE commands will be ignored. The system variable RUNPAR,

TEXTFORM and MTS

168

which has no default value, can be used in the PAR field of the run command.

run *textform scards=file par=runpar=true
<IF RUNPAR = TRUE, . . .

Examples of the RUN command:

run *textform par=od 'x9700' 'univers'

Here input is supplied from the terminal because SCARDS defaults to *SOURCE*.
You will be requested to specify SPUNCH with:

Unit SPUNCH was referenced but is not assigned.
Enter a file/device name for it, ''CANCEL'', or ''HELP''.

Respond with:

sink

if you want the output sent to the terminal (do this only when the output can be read
at a terminal), or with a file name if you want the output stored in a file. SPRINT
output will not be produced because SPRINT was not assigned.

run *textform scards=file spunch=*print*

Here text is read from the file FILE, and output is sent to a printer; use this form
when the outputdevice is '1403'. When the outputdevice is 'X9700', use

run *textform scards=file spunch=-t
run *pagepr scards=-t

run *textform spunch=OUT par=noprolog

In this example input is supplied from the terminal, and output is stored in file OUT.
Commands and text in the file TXTF.PROLOG are not processed.

run *textform scards=file par=list off

In this run, a listing will not be produced, regardless of LIST commands in the file.
You will be prompted for SPUNCH if you are at a terminal. If submitted in a batch
job, SPUNCH will be produced only if it will be meaningful on the printer.

Ending the TEXTFORM Run

At the end of the run, when TEXTFORM encounters an end-of-file, it prints the
current output page, and then prints any unfinished logical pages, tables or floats. If
SPRINT has been assigned, it produces a listing, statistics, and cross references. Two
commands are also available to end the run.

In open text (as opposed to reserves, floats, etc.) you can use the STOP command
to halt execution as though an end-of-file were encountered. The ABORT command
causes the job to be terminated by calling the MTS subroutine ERROR; no listing or

TEXTFORM and MTS

169

statistics are produced. If you issue the MTS command RESTART after an ABORT
command, TEXTFORM produces the listing and cross references that have been
collected.

You may interrupt the run by using the command MTS, which returns you to
MTS. Then, as long as you haven’t typed a RUN, DEBUG, or UNLOAD command,
you can give the MTS command RESTART, and TEXTFORM will continue where it
left off in the run.

The system variable RC contains the return code which will be given to MTS at
the end of the run. You can change its value directly, or change it with the ERROR
command.

<ERROR 4 'Too many parameters to macro'>
<DISPLAY RC>

produces:

4

Errors Which End the TEXTFORM Run

Any error with a return code (RC) greater than 16 ends the TEXTFORM run. This is
because TEXTFORM cannot determine the correct action to continue the run. Such
errors are:

Table entry is longer than a page. Terminating.
RESERVES on page leave no room for text. Terminating.

System Information During the Run

During a TEXTFORM run, the function MTSCMD(par) will pass ‘par’ to MTS for
interpretation, returning to TEXTFORM immediately after. The $ character is
necessary in the command. The MTS commands RERUN, RUN, LOAD, and
UNLOAD should not be used.

<MTSCMD('$restart sercom=*sink*')>

The function SYSCMD is the same as MTSCMD. The function SYSCMDNOECHO is
also the same, but the command sent to MTS doesn’t appear at your terminal.

Several functions provide information about resources being used. SHOWCPU
returns the amount of CPU time in seconds used since the beginning of the run.
SHOWVM returns the number of pages of virtual memory in use by this job.

During the run, the system variable SOURCELNR contains the line number of
the last line read from SCARDS. This line number is in MTS internal form (i.e. times
1000). SOURCELNR contains –100000001 when AT ENDOFFILE becomes TRUE.

TEXTFORM and MTS

170

The system variable VERSION contains the version number of TEXTFORM that
is being run. It can be checked before new or de-emphasized commands are used:

<IF VERSION >= '1.40' THEN, PRINTON=BOTH, ENDIF>

Output on SERCOM

Error Messages and Warnings

In this manual, various TEXTFORM error messages are mentioned. These messages
give an error number, issue a message that explains the error, and have a return
code. Warning messages are less severe, and often indicate an adjustment made by
TEXTFORM.

These messages appear in the listing (on SPRINT), and, if SERERRS is TRUE,
on SERCOM. SERERRS automatically becomes FALSE at the start of a batch run. If
you do not want the messages to appear on SERCOM, set SERERRS to FALSE.

Individual messages can be suppressed and re-enabled with the DISABLE and
ENABLE commands, although fatal errors (which have a return code greater than 16
and end the run) are always printed. The format of these commands is:

<DISABLE MESSAGE expression . . . expressionn>
<ENABLE MESSAGE expression . . . expressionn>

where ‘expression’ is replaced with the number of the message. For example, to
disable the error

Error 186: Output Device is already loaded. Command ignored.

which might appear as the result of an OD command in the PAR field of the run
command, include the following before the OD command in your file:

<DISABLE MESSAGE 186>

Although DISABLE causes error messages to be suppressed, and ignored in the
ERROR count that appears in the listing, the return code in the system variable RC
is still changed to reflect the seriousness of the errors.

You can generate your own error messages with the ERROR command. For
example you might issue an error message if the proper number of parameters are
not supplied to a macro:

<if nrpars >=2 then, –
error 4 'incorrect number of parameters', endif>

The format of the command is:

<ERROR number [expression] >

number

TEXTFORM and MTS

171

If it is not larger already, the return code in the system variable RC is set to
‘number’. ‘number’ should be a multiple of four. (If ‘number’ is greater than 16,
TEXTFORM ends the run.)

expression
(if provided) will be issued as an error message if ‘number’ is not less than ERRORS
(see the LIST command in Appendix 1). This message will appear in the source
listing (on SPRINT), and on SERCOM (if SERERRS is TRUE). The message will be
flagged with a % to indicate that it is user generated.

<define macro &head>
<if nrpars > 2, then>
<error 4 'Too many parameters to &HEAD'>
<else, par(1), newline 2, par(2), endif>

<edef macro &head>

<&HEAD(1,2,3)>

produces

%Too many parameters to &HEAD

The ERROR command calls the function UERR. You can produce error messages
by calling this function directly, instead of using the ERROR command.

<UERR(4, 'Incorrect parameters')>

‘par1’ is the return code to assign. It should be a multiple of four. ‘par2’ is the
message to print.

The DISPLAY command

The DISPLAY command displays the requested information on SERCOM. It has
been used in examples in this manual; it is also used by GCI. The format of the
command is:

<DISPLAY kwd>

‘kwd’ may be one of:

name
the name of any variable, macro, table or logical page.

ATTRIBUTES name
The attributes of the name will be displayed. This display is the same as that
generated in the listing if LIST ATR has been specified.

QUEUE
The input queue will be displayed. The queue contains the current source line, and
all lines which are suspended pending the execution of some other line in the queue.
The place of suspension in each line is also indicated.

TEXTFORM and MTS

172

INPUT
the current input line, and the current position in it.

For information about the status or progress of your run, you can also display logical
I/O units if you use the FNAME function described on page 163.

Output on SPRINT

The Proof

If your file contains a PROOFDEVICE command, the proof copy appears on SPRINT
by default. When the proof device is the same as the output device, output will not
appear on SPUNCH.

The Listing

A listing can be produced on SPRINT, at the end of a TEXTFORM run, if SPRINT is
assigned in the RUN command, or if a LIST command is given in the PAR file of the
RUN command. The listing includes the contents of the input file, and may also
supply information about variables, macros, etc.

TEXTFORM saves the listing in a temporary file (–TXTFLIST), which it creates
(size=10 pages) if necessary. If you create the file, TEXTFORM will not destroy it at
the end of the run. The contents of the listing are controlled by the LIST command,
which has the format:

<LIST kwd . . . >

For example, if you want only hyphenated words listed, include the command:

<LIST OFF HYPHENATION>

kwd
one or more ‘kwd’s may be specified, as listed in Appendix 1. Any ‘kwd’ prefixed by a
– or ¬ will negate the effect of the ‘kwd’. Note that not all keywords may be prefixed
by the – or ¬.

If a LIST command is supplied in the PAR= field of the RUN command, the settings
remain in effect for the entire run and any other LIST commands are ignored.

Adding Information to the Listing

You can add your own information to the listing by using the LISTING function.

<LISTING('Start detailed proof-reading here.')>

TEXTFORM and MTS

173

Sample Listing

The following description refers to the sample listing which follows. The boldface
number for each item appears on the sample.

1 The first line states which version of TEXTFORM was run (this is different for
*TEXTFORM and NEW:TEXTFORM); the date; the signon ID which ran the
TEXTFORM job; and that the job was terminal or batch, in which case the receipt
number is displayed.

2 This line indicates whether the file TXTF.PROLOG was read, and how many
lines it contained. The prolog file is never listed.

3 Internal Page and Internal Line are internal TEXTFORM values, stored in
INTPAGENR and INTPAGELNR. Internal page is the page number of the current
page. It may differ from PNCTR. Internal line is the line number on the page. It is
increased by one with each line printed.

4 Source Line indicates the line in the source file where the input occurred (see
SOURCELNR). A blank in this column means the input was generated, and not in
the source file (for example, input from a macro).

5 These headings describe character flags which appear between the source line
number and the input line. Not all of these flags appear in a default listing.

6 Under GCI in Control, four columns left of the input line:

! indicates that processing in this part of the input was being controlled by
GCI.

7 Under Partial Use Flag, three columns left of the input line:

* indicates the line is resumed from a previously suspended line.

a blank indicates that the whole line is listed.

8 Under Input Use, two columns left of the input line, the character indicates
what is done with the input:

% the input is being saved in a macro definition

– the input is being skipped as result of an IF command

a blank indicates the input is being processed normally.

9 Under Input Origin, the character indicates the type of input. It may be:

! GCI input (a line entered using the GCI INSERT command)

. PAR field input

+ macro input

$ string input

a blank indicates input from the source file.

10 This section displays values which were assigned to the logical I/O units in the
MTS RUN command.

11 Under Input Line, the source from the file is printed. See the LIST SOURCE
command description.

TEXTFORM and MTS

174

INSERT LISTING SAMPLE HERE FROM R.MAN

TEXTFORM and MTS

175

12 Total number of commands, variables, etc., used in the run are printed (see
LIST TOTALS).

Commands Executed: total number of commands and variable
assignments

Macros Executed: total number of macros called

Functions Executed: total number of functions called

Expressions Executed: total number of expressions evaluated (for
example, in variable assignments)

of Controls: total number of commands, variables, strings,
etc., used in command mode. This includes, for
example, input generated as a result of
AT-points or macros.

of Control Strings: total number of command initiators, including
those generated by TEXTFORM

Number of Words

Number of Sentences

Text Lines Printed

Text Pages Printed

Number of Errors: messages which set the return code (RC) to 4 or
higher, except those that have been disabled.
Note that messages which set the return code
higher than 16 are fatal, and will cause the run
to stop without processing any more input.

Number of Warnings

13 Cross reference information, if collected, appears here. The collection of this
information is controlled by the CROSSREFERENCE command, described in the
next section.

14 Storage and run time statistics appear here. They indicate how much storage
was used by the symbol table (it contains every item—predefined or user-defined—
used in the TEXTFORM language, and its value and attributes (variable, command,
macro, special character, function)), and the amount of storage used and CPU time
spent in each phase of TEXTFORM. See the example in the cross reference sample.

In the sample listing given, extra list options have been requested to produce a more
detailed listing.

15 LIST ON provides EXPANSION, EVALUATION, and SOURCE source listing
options.

16 EXPANSION lists macro input, flagging it with +. In the Internal Page
column, +2 &name indicates the macro is being entered, &name indicates a return to
the macro (after evaluating a parameter or executing another macro), -2 &name
indicates the end of the macro. A recursive macro or macros which call other macros
might go down further levels, i.e. +2, +3, etc.

17 EVALUATION

18 SOURCE lists source lines; resumed lines are flagged with * (resumed means
TEXTFORM finishes reading a source line after executing some other commands,
such as the contents of a macro).

TEXTFORM and MTS

176

19 LIST VALUES lists the value of each variable or macro that appears in the
cross reference listing. If the item has been erased, no value is listed. This is the
same as doing a DISPLAY for every variable and macro which has not been erased.

20 CROSSREFERENCE ON: The cross references itemize the frequency and
type of use of variables, macros, and commands. –COMMANDS and –PVARIABLES
suppress the cross referencing of these items. See the CROSSREFERENCE
command for a description of the options available.

Statistics About the TEXTFORM Run

TEXTFORM provides statistics on SPRINT at the end of a run that has been
normally terminated, if SPRINT was given in the RUN command. (Some statistics
can be suppressed. Refer to the previous discussion on the LIST command.) See
items 12 and 14 in the preceding description of the sample listing.

Statistics about the run can be produced at any time by using STATS, which
generates the statistics which appear after the source listing. If STATS is used with
a parameter, the statistics are written on SERCOM, otherwise they are written in
the source listing.

Cross References

Cross reference information indicates where items are defined, referenced, or erased,
or assigned new values. Each item in the language can be given a cross reference
attribute at definition time, or by using the ATTRIBUTE command. The two
attributes, ‘AXR’ and ‘NXR’, mean ‘always cross reference’ and ‘never cross
reference’.

The format of the CROSSREFERENCE command is like the LIST command:

<CROSSREFERENCE kwd . . . >

‘kwds’ are listed in Appendix 1. Any ‘kwd’ prefixed by a – or ¬ will negate the effect of
the ‘kwd’. Note that not all may be prefixed by the – or ¬. If a CROSSREFERENCE
command is supplied in the PAR= field of the RUN command, the settings will
remain in effect for the entire run and any other CROSSREFERENCE commands
will be ignored.

Cross reference information is not collected unless the command
CROSSREFERENCE ON appears in a file, or unless an item has an ‘AXR’ attribute.
The cross reference information is not printed unless CROSSREFERENCE ON or
LIST ON (which includes CROSSREFERENCE) are given, or unless the item has an
‘AXR’ attribute. The cross reference listing is produced on SPRINT, after the source
listing and statistics.

TEXTFORM writes the cross reference information into a temporary file
(–TXTFXR1) just before producing it. TEXTFORM creates this file (size=10 pages) if
necessary. If you create the file, TEXTFORM will not destroy it at the end of the run.
Before the cross reference is generated, all the entries in the file –TXTFXR1 are
sorted, and put into the file –TXTFXR2. This file is treated in the same manner as
–TXTFXR1.

TEXTFORM and MTS

177

Each reference is indicated by source line number and type. After the references
are printed, the item’s current value is printed if it has not been erased. The
reference types indicated are:

A executed as a result of an AT-point
D defined
E erased
F function parameter
M macro parameter
R referenced
T used in a comparison
@ pointed to something else
$ executed
= assigned to

Sample Cross References

20 CROSSREFERENCE ON: The cross references itemize the use, by type, of use
of variables, macros, and commands. –COMMANDS and –PVARIABLES suppress
the cross referencing of these items.

21 For each item, the type of reference is indicated with the source line number of
its reference (the reference types are detailed under the CROSSREFERENCE
command). For example, &A was defined (D) and had a value assigned to it (=) at
line 3, was referenced (R) and used in a comparison (T) at line 9. &B was defined, but
never referenced. &C was executed ($) at line 8.

22 LIST VALUES causes the value of each item to appear in the cross references,
unless the item has been erased. For example, &C had the value 'font 2' at the end of
the run.

Running TEXTFORM Interactively by Giving GUSER Input

The INTERACTIVE, or INT command causes a Guser Command Interface (GCI)
interrupt. GCI is the same command as INT. TEXTFORM can then be run
interactively from the terminal, as in the following example, where all the commands
typed appear in italics. The GCI command can appear in a file, if you are running
TEXTFORM at a terminal; it can be given after you hit ATTN; it or can be given in
the PAR field of the RUN command.

run *textform scards=test spunch=–1 par=gci
15:02:49
! Guser Command Interface.
! Command ! break 50
! Command ! run
! At source line.
! Command! display queue
! 2 28 50 ! ! +,d q,

|
font 2,par(1),f, –

! 2 28 50 ! ! +<&test>
|

TEXTFORM and MTS

178

INSERT CROSSREF SAMPLE HERE FROM R.MAN

! Command! d lindent
! 0MILLIMETRES
! Command! d intpagelnr
! 28
! Command ! d &vertd
! <nl,linespace = 8po,typesize 6po>
! Command ! insert &vertd = '<lend,linespace =10po,typ 8po>'
! Command ! i list source
! Command ! st 20
! Commands stepped
! Command ! d &vertd
! <lend,linespace=10po,typ 8po>
! Command ! i list off
! Command ! i comment continue and then hit ATTN
! Command ! c
WHAT? gci
! Attention Interrupt.
! Command!

When in interactive mode the following commands are accepted. Type the commands
immediately after the space which follows the ‘!’ character, as in

! Command! display input

Although you cannot insert blanks before the first command on the line, several
commands may appear on one line:

TEXTFORM and MTS

179

! Command! display linespace, display alignment

RUN
same as CONTINUE

CONTINUE
to continue execution

STOP
to stop execution.

STEP number
If ‘number’ has a decimal point at the end of it, TEXTFORM will execute until that
‘number’ of source lines have been read, then it will cause a GCI interrupt; otherwise
it will execute ‘number’ commands.

SKIP number
If ‘number’ has a decimal point at the end of it, TEXTFORM will skip ‘number’ lines
of input; otherwise it will skip ‘number’ commands.

BREAK number
A GCI interrupt will occur if an input line having the line number ‘number’ is read.
At this time ‘number’ cannot be negative.

INSERT body
‘body’ will be executed as though it had appeared in the input. ‘body’ is started after
the blank after the INSERT command. ‘body’ is terminated by the end of the line.
‘body’ is assumed to start in command mode. A command separator is appended to
the end of ‘body’.

MTS
Return to MTS. TEXTFORM is RESTARTable, and will return to GCI for a new
command.

ERROR [number]
Generate a GCI interrupt if an error is issued which has a return code of ‘number’ or
greater. If ‘number’ is not specified, no GCI error interrupts will be issued.

DISPLAY pars
‘pars’ are any valid parameters for the DISPLAY command, described on page 171.

Interrupts in the TEXTFORM Run

A TEXTFORM run may be interrupted for several reasons. This section discusses
how to continue after these interrupts.

TEXTFORM and MTS

180

Attention Interrupts

When you hit the ATTENTION key (BREAK on some terminals), TEXTFORM will
respond:

WHAT?

The allowable responses are:

STOP or END-OF-FILE

The run is terminated as though an end-of-file were read, and the current output
page is not produced. AT ENDOFFILEs are not done. Use AT REFERENCE STOP to
have specific commands done after you use the STOP command.

CONTINUE, CONT

Continue from the point of interruption.

MTS or ATTENTION, or a CARRIAGE RETURN

Return to MTS, leaving TEXTFORM RESTARTable.

DUMP

Dump the contents of the registers at the point of interrupt. This is of interest only to
the TEXTFORM support group.

GCI

Set a GCI interrupt. GCI will gain control at the next opportunity. For details, see
GCI on page 177.

If you do not enter one of the above, TEXTFORM will respond with:

CONTINUE, STOP, MTS, DUMP OR GCI ARE VALID.
WHAT?

In some rare circumstances, TEXTFORM may not be interrupted. If this occurs, it
will not sit there ignoring you, but print:

PLEASE WAIT

If you hit attention a second time, you will be returned to MTS. If you do not hit
attention, TEXTFORM will get around to you as soon as it can.

The system variable ATTNS contains the number of attention interrupts which
TEXTFORM has processed in this run.

TEXTFORM and MTS

181

Timer Interrupts

TEXTFORM contains a facility which interrupts execution every TIMERLIMIT
seconds of CPU time, to ensure that endless loops or other errors do not use too many
resources.† When the interrupt occurs, the current input line is printed on SERCOM,
and you are asked whether you wish to continue.

TIMER INTERRUPT AT LINE . . .
display of current input line
DO YOU WISH TO CONTINUE?

The allowable responses are:

NO or end-of-file

The run is terminated as though an end-of-file were read. The current output page is
lost.

YES

Continue.

MTS or a carriage return

Return to MTS, leaving TEXTFORM RESTARTable.

GCI

Set a GCI interrupt. GCI will gain control at the next opportunity.

If you do not enter one of the above, TEXTFORM will respond with:

ENTER YES, NO, MTS, OR GCI.
DO YOU WISH TO CONTINUE?

The timer interrupt message will not normally be encountered; however it may arise
for one of the following reasons:

– during generation of a large index.
– during execution of a very large macro, or a very slow function. Respond YES a

few times, unless you know that it shouldn’t take this long; otherwise respond
NO.

– during endless macro recursion, or a WHILE or FOR which will never terminate.
Respond NO, if it is obvious that this is the case.

– due to a bug in TEXTFORM. Respond NO, if it is obvious that this is the case.
– due to an extremely long page which the output device processor is processing.

This situation will most likely occur when using the CALCOMP output device.

If you have macros or functions which repeatedly cause timer interrupts, and wish to

†There are other time limits on a TEXTFORM run if 1) it is a batch run; 2) if there
are global time limits for your signon id.

TEXTFORM and MTS

182

get rid of the nuisance (remember that you also get rid of the protection it offers), set
TIMERLIMIT to a larger value, such as TIMERLIMIT=TIMERLIMIT*3. It is a good
idea to only reset TIMERLIMIT where necessary; and not for the whole run. See an
example of this in the index example on page 139.

Program Interrupts

Any program interrupts should be taken to the MTS consultants, preferrably before
your source file is changed.

When a program interrupt occurs TEXTFORM will respond:

PGNT xxxxxxxx yyyyyyyy type module
NOW WHAT?

Where 'xxxxxxxx yyyyyyyy' is the PSW (Program Status Word) at the time of the
interrupt, ‘type’ is the interrupt type (e.g. PROTECTION etc.), and ‘module’ is the
CSECT name of the interrupt (if it is a TEXTFORM CSECT). This information is of
interest only to the TEXTFORM support staff. The allowable responses are:

STOP or end-of-file

The run is terminated as though an end-of-file were read. The current output page is
lost.

CONTINUE, CONT

Continue from the point of interruption.

MTS or a carriage return

Return to MTS, leaving TEXTFORM RESTARTable.

DUMP

Dump the general registers at the point of interruption. If you take this action, the
dump should be forwarded to the MTS consultants.

If you do not enter one of the above, TEXTFORM will respond with:

COMMAND ERROR
CONTINUE, STOP, MTS, DUMP OR GCI ARE VALID.
NOW WHAT?

If you get a program interrupt, try entering CONTINUE several times. If the
program interrupt still occurs, enter MTS and take your problem to the consultants.

If a program interrupt occurs during the processing of a program interrupt, MTS
will handle it.

TEXTFORM and MTS

183

The variable PGNTLIMIT is the maximum number of program interrupts that
TEXTFORM will allow in a batch job. Each time a program interrupt occurs,
PGNTLIMIT is decremented. When it reaches zero, TEXTFORM terminates. The
default number is 10.

PGNTS is a system variable containing the number of program interrupts that
have occurred in the run.

TEXTFORM and MTS

184

APPENDIX 1 – TEXTFORM LANGUAGE

All of the predefined items that are part of the TEXTFORM language are listed in
this appendix. If you encounter a predefined name that is not in this appendix, you
can assume that it is a special character name.

– If you are unfamiliar with the notation used to describe commands, see page 32.
– Defaults are underlined. Abbreviations are bold.
– When [– | ¬] appears after a keyword, it indicates that the action of the

keyword can be disabled by prefixing it with – or ¬.
– The type of item (command, variable, etc) appears on the right hand side of

the column. When a page number is given here, it indicates where more
information can be found about that item.

ABORT Command 168

ALB see ALLOWLINEBREAK Command 22

ALIGNMENT = kwd Variable 11

kwd

CENTER

CENTRE

JUSTIFY

RIGHT

LEFT

ALLOWLINEBREAK Command 22

ALPHABETIC(par) Function 44

ASIS Constant 93

AT kwd name Command 69

kwd

ASSIGN name2

ENDOFCOLUMN

ENDOFFILE

Appendix 1 – TEXTFORM Language

185

ENDOFLINE

ENDOFPAGE

ENDOFWORD

REFERENCE name2

STARTOFCOLUMN

TEXTCHARACTER c

c

a single character string, or
a special character name, or
a hex character entered as #FF#:'' which is treated as a single
character string.

AT_INFO(par1 [,par2]) Function 72

par1

ASSIGN name

ENDOFCOLUMN

ENDOFFILE

ENDOFLINE

ENDOFPAGE

ENDOFWORD

REFERENCE name

STARTOFCOLUMN

TEXTCHARACTER c

par2

required when ‘par1’ is ASSIGN, AS, REFERENCE, or REF,
TEXTCHARACTER or TC.

ATT see ATTRIBUTE Command 123

ATTNS System Variable 180

ATTRIBUTE name kwd . . . Command 123

name

is given the specified attribute(s)

kwd

Appendix 1 – TEXTFORM Language

186

The following attributes are valid for all items:

AXR

NXR

RESTRICTED

The following attributes are valid for variables:

CONSTANT

DISPLAY type
‘type’ may be any of the following (but only up to one from each group):

type (valid only for integer numbers or strings which can be
converted to integer numbers):
ARABIC – digits
ENGLISH – words
FRENCH – words
ROMAN – roman numerals
ALPHABETIC – letters (a-z, aa-zz etc.)

which may be in (valid for all variables):
UPPERCASE – upper case
LOWERCASE – lower case

INCR = string3 (may not appear with LIST)

LIKE name2

LIST = structure

MAX = string4

MIN = string5

STRING

UPPERCASE

LOWERCASE

STATIC

DYNAMIC

FIXED

VARTYPE

The following attributes are valid for structures:

FIXEDELTYPE

Appendix 1 – TEXTFORM Language

187

FIXEDNRELS

A0 – A8 Constant

These are predefined values which can be used to produce metric pagesizes.

A0 = (33.1102IN,46.811IN)
A1 = (23.3858IN,33.1102IN)
A2 = (16.5354IN,23.3858IN)
A3 = (11.6929IN,16.5354IN)
A4 = (8.2677IN,11.6929IN)
A5 = (5.8268IN,8.2677IN)
A6 = (4.1339IN,5.8268IN)
A7 = (2.9134IN,4.1339IN)
A8 = (2.0472IN,2.9134IN)

BACK Constant

BC see BLANKCHARACTER Command 20

BLANKCHARACTER [length] (= TYPESIZE) Command 20

BLANKLINE = length (= 0.1667IN) Variable

This is the vertical size of a blank line. It is used when a NEWLINE command is
used with a number greater than 1, which causes blank lines to appear on the
page. This variable is being de-emphasized. Use VERTSPACE instead.

BOLD (= 3) Constant 38

BOLDITALIC (= 4) Constant 38

BOTH Constant

BOTMARGIN = length (= 1IN) Variable 46

BOTTOM Constant

C see COLUMN Command 78

CAP = logical value (= FALSE) Variable

When CAP is TRUE all output is capitalized.

<CAP = TRUE> forces all text following to be in upper case.
<CAP = FALSE> And some text following.

produces:

FORCES ALL TEXT FOLLOWING TO BE IN UPPER CASE.
And some text following.

Appendix 1 – TEXTFORM Language

188

CAPNEXTCHAR (= '@') Constant 30

CASE expression kwd structure Command 158

kwd

OF

FROM

structure

structure or name of structure

CEND see COLUMNEND Command 78

CENTER Constant

CENTRE Constant

CHAP Layout Macro

CHARACTERSET [expression] (= ODCHARACTERSET) Command 39

CHAREXIST(par) Function 40

par

a single character string
a special character name
a hex character entered as #FF#:'' which is treated as a single character
string

CHARS(par) Function 98

CHHRZ Command

This command is automatically executed by TEXTFORM whenever assignment
is made to any horizontal length variable (e.g. WORDSPACE). You will never
need to issue it.

CHPSZ Command

This command is automatically executed by TEXTFORM whenever assignment
is made to PAGESIZE. You will never need to issue it.

CHVRT Command

This command is automatically executed by TEXTFORM whenever assignment
is made to any vertical length variable (e.g. LINESPACE). You will never need
to issue it.

COLUMN [expression] Command 78

expression

the number of the column to start. If not given, the next column is started.

Appendix 1 – TEXTFORM Language

189

COLUMN_POSITION [(expression)] Function 153

expression

1
returns horizontal length measured from the top left corner of the
column.

2
returns vertical length measured from the top left corner of the
column.

COLUMNEND [kwd] Command 78

kwd

TOP

BOTTOM

BOTH

CENTRE or CENTER

JUSTIFY

COLUMNS = expression Keyword 76

COMDINT (= '<') Constant 26

COMDSEP (= ',') Constant 27

COMDTERM (= '>') Constant 26

COMMENT or COMM [body] Command 27

CONCL Layout Macro

CONTLINECHAR (= '-') Constant 27

CR see CROSSREFERENCE Command 176

CROSSREFERENCE kwd . . . Command 176

kwd

ON
will cause all items to be cross referenced. This keyword may not be
prefixed by – or ¬.

OFF
will cause cross referencing to be shut off. This keyword may not be
prefixed by – or ¬.

Appendix 1 – TEXTFORM Language

190

COMMANDS [– | ¬]
will cause the use of commands to be cross referenced.

MACROS [– | ¬]
will cause all macro calls to be cross referenced.

FUNCTIONS [– | ¬]
will cause all function calls to be cross referenced.

VARIABLES [– | ¬]
will cause the use of variables to be cross referenced.

PMACROS [– | ¬]
will cause all predefined macro calls to be cross referenced.

PFUNCTIONS [– | ¬]
will cause all predefined function calls to be cross referenced.

PVARIABLES [– | ¬]
will cause the use of predefined variables to be cross referenced.

&MACROS [– | ¬]
will cause all user-defined macro calls to be cross referenced.

&FUNCTIONS [– | ¬]
will cause all user-defined function calls to be cross referenced.

&VARIABLES [– | ¬]
will cause the use of user-defined variables to be cross referenced.

CS see CHARACTERSET Command 39

CTR1 = 1 (ATTRIBUTE CTR1 DISPLAY ARABIC I=1) Variable

CTR2 = 1 (ATTRIBUTE CTR2 DISPLAY ALPHABETIC LC I=1) Variable

CTR3 = 1 (ATTRIBUTE CTR3 DISPLAY ARABIC I=1) Variable

CTR4 = 1 (ATTRIBUTE CTR4 DISPLAY ALPHABETIC LC I=1) Variable

CTR5 = 1 (ATTRIBUTE CTR5 DISPLAY ROMAN LC I=1) Variable

CTR6 = 0 Variable

CTR7 = 0 Variable

CTR8 = 0 Variable

CTR9 = 0 Variable

CTR10 = 0 Variable

Appendix 1 – TEXTFORM Language

191

CURBOTMARGIN (= 1IN) System Variable 151

CURCOL (= 1) System Variable 81

CURCS (= DEFAULT) System Variable 39

CUREMPFONT Function 38

CURFONT (= 1) System Variable 38

CURKEYBOARD (= STANDARD) see KEYBOARD System Variable

CURLEFTMARGIN (= 1IN) System Variable 151

CURLINESPACE (= 0.1667IN) System Variable 153

CURLP (= PHYSICALPAGE) System Variable 74

CURPAGEHEIGHT (= 11IN) System Variable 151

CURPAGESIZE (= (@CURPAGEWIDTH, @CURPAGEHEIGHT)) System
Variable 151

CURPAGEWIDTH (= 8.5IN) System Variable 151

CURRIGHTMARGIN (= 1IN) System Variable 151

CURTABLINE (= 0) System Variable 90

CURTOPMARGIN (= 1IN) System Variable 151

CURUNDERLINE (= 0) System Variable 37

CURWORD System Variable 153

D see DISPLAY Command 171

DATE Constant 149

DAY Constant 149

DEF see DEFINE Command 95

DEFCOLGAP = length (depends on table or page width) Keyword 77

DEFCOLWIDTH = length (depends on table or page width) Keyword 77

DEFINE [kwd] name [=expression] Command 95

kwd

AXR

NXR

Appendix 1 – TEXTFORM Language

192

name

is the name of the variable to be defined. A user-defined name must be
prefixed with an &, and may contain any of the characters a-z, _, &, or 0-9.
The characters in the name may be in upper case, lower case, or both. The
name may be of any length. ‘name’ may be subscripted (which will change
the structure element of ‘name’ which has the specified subscript). ‘name’
may also refer to a substring, in which case a substring of ‘name’ will be
changed. If the LIST ASTRACE command has been given, the new value of
‘name’ will be printed in the source listing.

expression

is the initial value to be assigned to the variable. It may be the result of any
valid expression (including calls to functions which return a VALUE). If
‘expression’ is omitted, the variable is given a NULL string as its initial
value. The contents of a variable are displayed by giving the variable name
as a command.

DEFINE [kwd] COLUMN expression, keywords, ENDDEFINE COLUMN
expression Command 91

kwd

AXR

NXR

expression

number of column being defined

keywords

GAP = length (= DEFCOLGAP) Keyword

WIDTH = length (depends on table or page width) Keyword

ALIGNMENT = kwd (= ALIGNMENT) Keyword

FONT [expression] (= CURFONT) Keyword

COMMENT or COMM [body] Keyword

DEFINE [kwd] LOGICALPAGE name, keywords, ENDDEFINE LOGICALPAGE
name Command 76

kwd

AXR

NXR

name

keywords

Appendix 1 – TEXTFORM Language

193

COLUMNS = expression (= 1) Keyword

DEFINE COLUMN expression, keywords,
ENDDEFINE COLUMN expression Keyword

DEFCOLWIDTH = length (depends on table or page width) Keyword

DEFCOLGAP = length (depends on table or page width) Keyword

LEFTGAP = length (= 0) Keyword

RIGHTGAP = length (= 0) Keyword

PAGESIZE = length structure (= CURPAGESIZE) Keyword

TOPMARGIN = length (= CURTOPMARGIN) Keyword

BOTMARGIN = length (= CURBOTMARGIN) Keyword

LEFTMARGIN = length (= CURLEFTMARGIN) Keyword

RIGHTMARGIN = length (= CURRIGHTMARGIN) Keyword

COMMENT or COMM [body] Keyword

DEFINE [kwd] MACRO name ,[body,] ENDDEFINE MACRO name
Command 113

kwd

AXR

NXR

name

body

any TEXTFORM input

DEFINE [kwd] TABLE name, keywords, ENDDEFINE TABLE name
Command 83

kwd

AXR

NXR

name

keywords

COLUMNS = expression (= 1) Keyword

Appendix 1 – TEXTFORM Language

194

DEFINE COLUMN expression, keywords, ENDDEFINE COLUMN
expression Keyword

DEFCOLWIDTH = length (depends on column width) Keyword

DEFCOLGAP = length (depends on column width) Keyword

LEFTGAP = length (=0) Keyword

RIGHTGAP = length (= 0) Keyword

COMMENT or COMM [body] Keyword

DEFUNITS = kwd Variable 31

kwd

INCH, INCHES, IN
MILLIMETER, MILLIMETRE, MILLIMETERS, MILLIMETRES, MM
PICA, PICAS, PI
POINT, POINTS, PO
UNIT, UNITS, UN
LINES

DELAY [kwd] kwd2=expression name Command 72

kwd

VERTICAL

HORIZONTAL

kwd2

LENGTH

LINES

DISABLE MESSAGE expression . . . Command 170

DISPLAY kwd Command 171

kwd

name

ATTRIBUTES name

QUEUE

INPUT

Appendix 1 – TEXTFORM Language

195

DIV(par1, par2) Function 111

DRAW [FROM] location-id1 [TO] location-id2 [structure-name] Command 145

location-ids

are those defined by the LOCATION command before the end of the page.

structure-name

– if used, must be defined before the end of the page on which the actual
drawing is to be done.

– if omitted or null, then default drawing takes effect. The lines are
formatted in the typesize, character set and font which is in effect
when the DRAW command is given.

– if given, it is the name of a structre which contains drawing
indformation to replace default drawing. The structure can contain five
or six elements:

1) a string that will contain the characters of the line segment.
2) a length that is the separation between string segments that

make up the line.
3) a length giving the line thickness. Since most devices do not

support line thickness this element in the structure should be
a zero length.

4) the character set to use when the line is drawn.
5) the font number in the character set above.
6) the typesize (if supported) in which the line segment will

appear. If the output device does not allow typesize changes,
this structure element can be omitted.

EDEF see DEFINE Command

EEX Layout Macro

EFOOT see FOOTNOTE Command 56

EIF see IF Command 156

EFL see FLOAT Command 60

EKE see KEEP Command 50

ELSE see IF Command 156

EMPHNEXTCHAR (= '_') Constant 38

ENABLE MESSAGE expression . . . Command 170

ENDDEF see DEFINE Command

ENDDEFINE see DEFINE Command

Appendix 1 – TEXTFORM Language

196

ENDFLOAT see FLOAT Command 60

ENDFOOTNOTE see FOOTNOTE Command 56

ENDIF see IF Command 156

ENDKEEP see KEEP Command 50

ENGLISH(par) Function 44

EPT Macro

EPT stops lists of points. This resets all of the point levels until a new list of
points is started. To stop points at any level and return to the previous level
supply the number of the current level, as EPT(3), or simply use EPT(PTLEV):

<PT(1)>An item at level 1
<PT>Another item at level 1
<PT(2)>An item at level 2
<PT>Another item at level 2
<EPT(2)>
<PT>Last item at level 1
<EPT(1)>

produces:

1. An item at level 1
2. Another item at level 1

a. An item at level 2
b. Another item at level 2

3. Last item at level 1

An example of a paragraph within points:

<PT>An item at level 1
<PT>This is the beginning of a paragraph in level 1.
<PT(PTLEV+1)>This is the first point within the paragraph
<PT>This is the second point within the paragraph
<EPT(PTLEV)> This is the rest of the paragraph in level 1. It
will continue onto the next line. Notice the indentation and lack
of new counter. This is due to an EPT with no PT directly
following.
<PT>This is the last item at level 1
<EPT(1)>

This example produces:

1. An item at level 1
2. This is the beginning of a paragraph in level 1.

a. This is the first point within the paragraph
b. This is the second point within the paragraph
This is the rest of the paragraph in level 1. It will continue
onto the next line. Notice the indentation and lack of new
counter. This is due to an EPT with no PT directly

Appendix 1 – TEXTFORM Language

197

following.
3. This is the last item at level 1

EQT Layout Macro

ER see ERASE Command

ERASE name Command 122

ERR see ERROR Command 170

ERROR number [expression] Command 170

EX Layout Macro

EXIST(name) Function 122

EXTRABOLD (= 5) Constant 38

EXTRABOLDITALIC (= 6) Constant 38

F see FONT Command 38

FALSE Constant 102

FL see FLOAT Command 60

FLOAT [kwd] [kwd2] [kwd3] [kwd4] [kwd5] name Command 60

kwd

VERY
when this keyword is used, the specified float will be the very first
TOP or last BOTTOM float on the column or page. The first top float
appears immediately after the last top reserve. Other floats may
appear between VERY TOP and VERY BOTTOM floats (without the
VERY keyword) if there is enough room for them on the column or
page.

kwd2

indicates where the float will appear on the page. It may be one of:

TOP
at the top of the page or column. Input text which follows the float will
appear on the current column, before the floated text.

BOTTOM
the float may appear at the bottom of the current page or column if
there is enough space. If not, the float will appear at the bottom of the
next page or column. ‘kwd5’, specifying the size of the float area, must
be given for bottom floats.

kwd3

indicates if the floated text is to appear on a front (right) or back (left) page.

Appendix 1 – TEXTFORM Language

198

The float can appear only when PRINTON has the specified value. If this
keyword is not specified, the FLOAT appears as soon as PAGE or
COLUMN becomes true.

FRONT or RIGHT

BACK or LEFT

kwd4

if specified, it may be one of:

COLUMN
The system variable CURCOL can be used to ensure that text appears
in a specific column:

<DEF &FLO='<IF CURCOL=2,THEN,&COL,ELSE, FL T COL
&FLO, EIF>'>

<FLOAT TOP COLUMN &FLO>

PAGE

kwd5

SIZE horizontal length vertical length
this specifies the size of the float, which will not appear until this size
is available on a page. SIZE must fit within the open text area of the
page, i.e. inside margins and reserves. If the size requested is larger
than the text area on the page, the float will not appear (unless the
text area is increased by changes to PAGESIZE, margins, or reserves).
If SIZE is not given, a top float uses as much room as necessary to
print the floated text (this may be more than one column or page).
When SIZE is not given, there is no guarantee the float will all appear
on the same page, since it may be the second or third float on the top
float queue. A bottom float must have a size specified.

horizontal length
can be a horizontal length, or the word DEFAULT. If DEFAULT
is given, it is the same as
PAGESIZE(1)–LEFTMARGIN–RIGHTMARGIN. If the horizontal
length given is wider than PAGESIZE(1), it produces the error
The RESERVE, or FLOAT is too wide. Maximum device width
used.

vertical length
is the vertical size the float will be, even if the float is empty. If
the size specified is too small to contain all the text, TEXTFORM
prints the error message Vertical size specified in RESERVE or
FLOAT is too small. If it is a bottom float, this message also
appears: The size of this page may be wrong.

These errors can be produced if you specify a vertical size of
12 points for the float, and TEXTFORM then tries to start the
float in the default LINESPACE, which is 12.0507 points.

name

Appendix 1 – TEXTFORM Language

199

may be the name of an item (command, variable, macro, or table)
containing the text and/or commands. ‘name’ is evaluated when the float is
printed. If ‘name’ is a macro, parameters can be given if the entire macro
call is treated as a string, as in:

<float top '¯otop(''Test'')' >

However, the entire macro call is converted to upper case. To preserve
lower case text:

<define &title = 'Test' >
<float top '¯otop(&title)' >

If the FLOAT command is ended without specifying a ‘name’ to float, text
may follow, ended by an ENDFLOAT command. In this case, text between
the FLOAT and ENDFLOAT commands is evaluated immediately, then
saved to be printed at the requested location. This form of the FLOAT
command is not fully implemented and should not be used.

FLOAT_INFO [(par. . .)] Function 67

par

TOP

BOTTOM

FRONT

BACK

PAGE

COLUMN

name of float

FOGS kwd Command

This command controls the collection of readability information, and produces
mathematical indices to measure the difficulty of your writing.

kwd

ON
If FOGS ON is included in the input, and HYPHENATION is ON with
ALG in effect, data is collected.

OFF
data is not collected.

Note: The collection of FOGS information will increase the cost of the
TEXTFORM run. This facility is not fully developed. The results provided
in the current version may not be correct.

Appendix 1 – TEXTFORM Language

200

The readability indices are printed at the end of the run, after the source
listing, and before the cross reference information, if the LIST
HISTOGRAMS command appears in the input.

Readability is measured by:
1. Word distribution by number of syllables.
2. Sentence distribution by length.
3. Gunning’s Fog Index provides the grade level of the document. Grade 9

is considered to be suitable reading. The index is calculated by the
formula:

SP + PS x 0.4 = School grade level, where:
SP = Average sentence length
PS = percentage of words of three or more syllables

4. Flesch’s Readability Index uses average sentence length and the
number of syllables per 100 words to calculate a reading difficulty
index on a scale of 100. 24% is considered ‘Difficult’
(high school/college).

FONT [expression] (NORMAL) Command 38

FOOTCONTINUE = expression (= ''(cont'd)'') Variable 57

FOOTCTR = expression (= 1) Variable 57

FOOTDIVIDE = expression (= '') Variable 57

FOOTINDEX = expression (= 1) Variable 58

FOOT see FOOTNOTE Command 56

FOOTNOTE [body] ENDFOOTNOTE Command 56

FOOTSEP = expression (= ''<REP(18,'-'), LEND>'') Variable 57

FOR 'name = expression' UNTIL string [STEP string2] DO
name2 Command 159

FORDIS(name) Function 131

FRENCH(par) Function 44

FRONT Constant

FUNCTIONRC System Variable 160

FUZZ = expression (= 125) Variable 157

GALLEY = logical value (= TRUE) Variable

During the TEXTFORM run, the value of GALLEY determines whether each
page is printed. Although it may be changed any time in a run, TEXTFORM
only checks it at the end of each page, before the page is sent to SPUNCH.

Appendix 1 – TEXTFORM Language

201

GAP = length (= DEFCOLGAP) Keyword 91

GARBAGECOUNT System Variable 236

GARBAGESPACE System Variable 236

GCI see INTERACTIVE Command 177

HEAD Layout Macro

HEXDELIM (= '#') Constant 102

HORSPACE length Command 19

HS see HORSPACE Command 19

HYPHENATION kwd . . . Command 23

kwd

ON

OFF

DICT [=expression] [– | ¬]
–DICT or ¬DICT will shut off dictionary lookup (in this case
‘expression’ may not be specified). If used, DICT must appear with the
ON keyword. If ‘expression’ is not provided and a dictionary has not
been read then TEXTFORM’s dictionary in the file *TXTFHYPHDICT
is used.

expression

if provided, specifies the name of the file containing the
hyphenation dictionary to use. ‘expression’ may be a string of
explicitly catenated filenames.

A hyphenation dictionary can be supplied in two forms—
external and internal. The external form is described on page 24.
If two or more dictionary file names are specified, the internal
form dictionary must precede the external forms in the list of file
names. Only one internal form dictionary file can be used in the
list of names.

An internal form dictionary is created as a result of the
WRITEDICT keyword. This file must not be changed in any way.
Large dictionaries should be kept in internal form to save costs.
Since only one internal form dictionary file can be used, you may
want to combine TEXTFORM’s hyphenation dictionary with your
own. If your hyphenation dictionary is in the file MYWORDS,
create a file called INTDICT and then insert the following
HYPHENATION command in your TEXTFORM file:

<HYPHENATION ON
DICT='*TXTFHYPHDICT+MYWORDS' –

Appendix 1 – TEXTFORM Language

202

WRITEDICT='INTDICT'>

Subsequent runs would then use the command:

<HYPHEN ON DICT='INTDICT'>

ALGORITHM [=expression] [– | ¬]

expression

ENGLISH

FRENCH

WRITEDICT = expression
causes the current dictionary that has been read to be written to the
file specified by ‘expression’, as illustrated in earlier examples. The file
is emptied before the current dictionary is written.

ERASEDICT
causes the storage occupied by the resident dictionary associated with
the current ALGORITHM to be released.

TRY [– | ¬]
this is the same keyword as ALGORITHM.

READDICT = expression
the same as DICT=expression.

I see INDENT Command 13

IF comparison [,] [THEN [,] body] [, ELSE [,] body2] , ENDIF Command 156

IN Constant 100

INC see INCLUDE Command 63

INCH Constant 100

INCHES Constant 100

INCLUDE kwd [kwd2] [kwd3] [kwd4] [name] Command 63

kwd

FLOAT

kwd2

TOP

BOTTOM

kwd3

Appendix 1 – TEXTFORM Language

203

FRONT or RIGHT

BACK or LEFT

kwd4

COLUMN

PAGE

INDENT [HANG = expression] kwd Command 13

[HANG = expression]
The change does not take effect until ‘expression’ formatted lines have
appeared.

kwd

LEFT number2
The INDENT LEFT command has an immediate action of ending the
current word and positioning at the specified left indent for the next
word. LINDENTINDEX is changed to contain ‘number2’, and
LINDENT is changed to contain the length in
LEFTINDENTS(number2). The specified left indent then becomes the
current left margin, which depends on the left margin of the page,
the left indent, and the position of the current column on the page.
Each line of text after a LINE command or line overflow begins at the
current left margin. The INDENT LEFT command forces a new line to
be started if:
– the line has been started, the specified indent is to the left of the

previous indent (if INDENT LEFT 1 is in effect,
LINE, INDENT LEFT 0 produces an empty line)

– the specified indent leaves no room for text on the current line
(perhaps a right indent is also in effect)

– the current position is less than one device unit to the specified
indent

If the specified indent does not cause a new line to begin, the text
which appears on the line between the old and new left indents is
aligned. The current value of ALIGNMENT is used, although
alignments of BOTH or JUSTIFY are overridden to LEFT (similar to
the LINEEND command).

RIGHT number3
When an INDENT RIGHT command is used, it does not end the
current word, but changes the current right margin. The current
right margin depends on the right margin, right indents, and the
position of the current column on the page. It is the last (farthest right)
position on the line where TEXTFORM will place text. Any word which
will not fit on the line, before the current right margin, will begin on a
new line at the current left margin. If the word contains ALB’s or
HYPHENATION is ON, the word will be broken at the closest point
before the end of line; the first part being placed on the current line,
and the last part being placed on the next line. As a result of the
INDENT RIGHT command, RINDENTINDEX is changed to contain

Appendix 1 – TEXTFORM Language

204

‘number3’, and RINDENT is changed to contain the length in
LEFTINDENTS(number3).

<LINE,INDENT BOTH 0>1. <INDENT BOTH 1 2>This
is a heading which is several lines long. This is a
heading which is several lines long.
<INDENT RIGHT 0,SPLIT '.'> 33

produces:

1. This is a heading which is several lines long. This
is a heading which is several lines long. 33

BOTH number4 [number5]

JUSTIFY number4 [number5]

OFF

INDEX kwd . . . Command 141

kwd

ALL_LEVELS

COLLATE = expression

ON

OFF

LEVELS = expression (= 3)

MACROCOPY [– | ¬]

MAXLEN = expression (= 64)

INPUTMODE = kwd Variable 93

kwd

UNFORMATTED

PREFORMATTED

ASIS

INT see INTERACTIVE Command 177

INTERACTIVE Command 177

RUN or RU

CONTINUE or CONT

Appendix 1 – TEXTFORM Language

205

STOP

STEP number

SKIP number

BREAK number

INSERT body

MTS or CARRIAGE RETURN

ERROR [number]

DISPLAY pars

INTPAGELNR System Variable 173

INTPAGENR System Variable 173

INTRO Layout Macro

ITALIC (= 2) Constant 38

ITYPE(name, [par2]) Function 127

JUSTIFY Constant

K see KEYBOARD Command

KEEP Command 50

KEYBOARD [name] Command

name

STANDARD

APL1

APL2

If the character set being used is APL (via the OD or CS command), APL
characters can be produced in a document by typing the special character
name. However, the KEYBOARD command provides an alternate way of
entering the special characters into a document.

Keyboard APL1 is used for DECwriter-type terminals. APL2 is used for
Lektromedia, IBM 3270 or AJ510 terminals. After TEXTFORM encounters
a KEYBOARD command in the file, it converts each output character to the
alternate character that appeared on the key of the specified keyboard. The
input text is not altered. If the current character set is APL and a
KEYBOARD command is issued, all lower case alphabetic letters in the
input will appear as APL letters and uppercase letters are translated to the

Appendix 1 – TEXTFORM Language

206

corresponding APL character on that key at the terminal. For example:

The function to accomplish this is
<LINEEND, KEYBOARD APL2> a <LEFTA> Q5 <K>

produces:

The function to accomplish this is
A ← ?5

To end keyboard translation, use KEYBOARD or
KEYBOARD STANDARD.

The procedure for using APL character sets differs slightly between the
1403 line printer and the X9700 page printer.

For OUTPUTDEVICE '1403' 'APL':
– the text appears with normal letters
– special character names can be used to produce individual APL

characters, or the KEYBOARD command can be used as described
above.

For OUTPUTDEVICE 'X9700':
– use character set TN when you want normal letters
– to produce individual APL characters, type:

<CS 'APL', UPA, CS 'TN'>

or the commands CS 'APL' and KEYBOARD name can be used as
described above.

When using an alternate keyboard, note the following:
– the translation takes place only in text mode. Commands are not

affected. Thus, the special TEXTFORM meta-characters <, @, ¬, and _
are treated as commands and are not translated.

– The series of characters <<, @@, etc. do not indicate special operators.
They are therefore treated as text, and are translated.

– Characters that are produced from command mode by naming them
are never translated. For example the command:

<DAGGER>

will produce that character regardless of the keyboard currently in
effect.

– The system variable CURKEYBOARD is a string containing the name
of the current keyboard.

L see LAYOUT Command

LAYNAME System Variable

LAYOUT name Command

LBS see LOGICALBACKSPACE Command 41

Appendix 1 – TEXTFORM Language

207

LC (= '<CAP=FALSE>') Variable

LEFT Constant

LEFTGAP = length (=0) Keyword 77

LEFTINDENTS = length structure (= (.4IN, .8IN, . . . , 8IN)) Variable 13

LEFTMARGIN = length (= 1IN) Variable 46

LEND see LINEEND Command 12

LI Constant 100

LIGHT (= 7) Constant 38

LIGHTITALIC (= 8) Constant 38

LINDENT System Variable 18

LINDENTINDEX System Variable 18

LINE Command 5

LINEEND [kwd] Command 12

kwd

CENTRE or CENTER

LEFT

RIGHT

BOTH

JUSTIFY

LINEREM Function

This function is de-emphasized. REMAINING(1) provides the same information.

LINES Constant 100

LINESPACE = length (= 0.1667IN) Variable 6

LINEUSED Function

This function is de-emphasized. COLUMN_POSITION(1) provides the same
information.

Appendix 1 – TEXTFORM Language

208

LIST kwd . . . Command 172

kwd

COMMANDS
List lines having commands.

EXPANSION
List macro input (listing flagged with +). In addition the macro nesting
level is shown when a macro is entered:

+macro name nesting level

and when it is left:

–macro name nesting level

If a macro exits back to a previous macro, the name of the macro
returned to is also printed:

macro name

EVALUATION
List executed strings (listing flagged with $).

SOURCE
List source lines (resumed lines are flagged with * in listing).

ERRORS [kwd2]

kwd2

TERSE
only the message number, source line and column number
are printed. Neither the text of the message, nor the input
text are printed. If the error is encountered in generated text
or a macro, that fact is indicated.

NORMAL

VERBOSE
NORMAL, plus the message severity and a traceback
through the input, like DISPLAY QUEUE.

ON
List all input (note that TRACE information is not included). This
keyword may not be prefixed by – or ¬.

OFF
Do not list any input (note that this does not affect the TRACE listing).
This keyword may not be prefixed by – or ¬.

ASTRACE
(ASsignment TRACE) List the new value (of the assigned variable)

Appendix 1 – TEXTFORM Language

209

after an assignment.

COMPTRACE
(COMParison TRACE) List the result of the two expressions used in
every comparison, and the result of the comparison.

PARTRACE
(PARameter TRACE) list the value of each macro parameter used
during the execution of a macro.

TRACE
ASTRACE, COMPTRACE and PARTRACE above.

ATTRIBUTES
List the attributes of each item, whether it has been cross referenced
or not. This listing appears as part of the cross reference listing.

VALUES
List the value of each variable or macro that appears in the cross
reference listing. If the item has been ERASEd, no value will be listed.

NOTHING
The listing does not appear, but is still collected, according to the other
keywords given to the LIST command, in the file –TXTFLIST.

SOMETHING
The listing is restored.

CROSSREFERENCE or XREF

List the cross reference information which has been collected.

TOTALS
total of the number of commands, macros, etc. executed during the run
will be printed after the source listing. Word, sentence, and error
counts will also be printed.

SYMTAB
list symbol table statistics after the source listing. These indicate how
much storage was used by the symbol table (it contains every item—
predefined or user-defined— used in the TEXTFORM language, and its
value and attributes (variable, command, macro, special character,
function), how efficiently the storage was used, and how efficient the
‘look-up’ mechanism was.

HISTOGRAMS
list collected fogs data, including histograms for both word and
sentence length. The statistics only reflect the data collected while
FOGS was in effect.

STATISTICS

same as HIST, SYMTAB and TOTALS combined.

HYPHENATION
list all words hyphenated and the hyphenation point, algorithm or

Appendix 1 – TEXTFORM Language

210

dictionary file used, and line number on page, page number, SCARDS
line number. LIST OFF HYPHENATION suppresses all listings except
the hyphenation listing.

COPY
File –TXTFLIST is copied to SPRINT and then emptied.

LISTING(par) Function 172

LOAD [kwd] string name [F=string2] [TAKES] [RETURNS] Command 160

This command loads a subroutine with the name ‘string’, giving it the name
‘name’ in TEXTFORM. It is loaded from the file ‘string2’ (if specified), or the
TEXTFORM library if not.

kwd

The following additional attributes may be specified:

AXR
The function will have the ‘always cross reference’ attribute.

NXR
The function will have the ‘never cross reference’ attribute.

string

the CSECT name to load

name

the TEXTFORM name to define

F=string2

the file containing the function. Before any function is loaded, a check is
made to see if it is currently loaded. If so, the loaded copy is used;
otherwise, the function is loaded from the library specified.

TAKES kwd2
The parameter types for TAKES are the same as those for RETURNS
below. If there is a TAKES parameter list, it must be described before the
RETURNS parameter list.

RETURNS kwd2
‘kwd2’ may be any of the following parameter types:

R0 [PTR] [VALUE] kwd2
Register 0 is used. This may not be specified if TTYPE or NAME are
used as well.

PTR

If PTR appears, the register will contain the address of the
parameter.

VALUE

VALUE may only appear in the RETURNS list. If VALUE does
appear, the parameter will be returned as the result of the

Appendix 1 – TEXTFORM Language

211

function. This type of function may be used in expressions. You
can use the value returned from the function in an assignment, or,
if you place the function call in the input, its value will appear in
the output. If a function which does not return a VALUE is used
in an expression a NULL string will be returned on its behalf.

kwd2

is the type of the parameter, as follows:

[kwd3] NUMBER
If ‘kwd3’ appears it must be one of BYTE, SHORT
(half-word), or LONG (double-word). If ‘kwd3’ does not
appear, WORD is assumed. If LONG appears, PTR must
have appeared.

[LEN] STRING [L = expression]
If LEN appears, PTR must have appeared. If LEN appears,
the string pointed to is a half-word string length, followed by
the string. If ‘expression’ appears, and is greater than 4, PTR
must have appeared. If neither LEN nor ‘expression’ appear,
and PTR appears, a length of 256 is assumed.

LENGTH
A length is passed

SCALED
A scaled number is passed. To convert from scaled to real,
divide by 10000.

GETVAL
PTR must have appeared. The parameter is passed in
TEXTFORM’s internal form.

THING
whatever is passed. If PTR is not coded the first 4 bytes of the
parameter are passed in the register. For RETURNS, the
PTYPE used will be that of the parameter.

R1 [PTR] [VALUE] kwd2
Register 1 is used. This may not be specified if STYPE or TTYPE are
used as well. The types of R1 parameters allowed are the same as
those for R0 above.

STYPE [VALUE] kwd2
An IBM S-type linkage is used. This may not be specified if R1, NAME
or TTYPE are used as well.

VALUE
VALUE may only appear in the RETURNS list. If VALUE does
appear, the parameter will be returned as the result of the
function. This type of function may be used in expressions. If a
function which does not return a VALUE is used in an expression
a NULL string will be returned on its behalf.

‘kwd2’ is the type of the parameter, as follows:

Appendix 1 – TEXTFORM Language

212

[kwd3] NUMBER
If ‘kwd3’ appears it must be one of BYTE, SHORT
(half-word), or LONG (double-word). If ‘kwd3’ does not appear
WORD is assumed.

[LEN] STRING [L = expression]
If LEN appears, the string pointed to is a half-word string
length, followed by the string. If neither LEN nor ‘expression’
appear, a length of 256 is assumed.

LENGTH
A length is passed.

SCALED
A scaled number is passed. To convert from scaled to real,
divide by 10000.

GETVAL
The parameter is passed in TEXTFORM’s internal form.

THING
whatever is passed. For RETURNS, the PTYPE used will be
that of the parameter.

TTYPE
A TEXTFORM t-type linkage is used. This may not be specified if R0,
R1, NAME or STYPE are used as well. The TTYPE linkage is:
– register 0 – the length of the parameter list pointed to by

register 1.
– register 1 – points to a half-word aligned list of parameters of the

form; half-word parameter length followed by the parameter. Each
parameter is half-word aligned. The whole list is terminated by a
zero length parameter. True zero length parameters are flagged
by a length of –1.

The allowable parameter types are the same as for an STYPE list.

NAME
A TTYPE parameter list containing the name of the parameter will be
passed. This may not be specified if R0, R1, STYPE, or TTYPE are
used as well.

<LOAD CMDNOE &CMD TAKES STYPE STRING
NUMBER>
<&CMD('CONTROL *PRINT*',15)>

produces:

PRINT assigned receipt number 889271

The system subroutine CMDNOE issues an MTS command without
echoing it. The function TAKES the command and the number of
characters it contains.

<LOAD GUSERID &ID RETURNS R0 VALUE STRING>

Appendix 1 – TEXTFORM Language

213

<&ID>

produces:

BOZO

The system subroutine GUSERID does not TAKE any information. In
this example, a TEXTFORM function is loaded with the name &ID. It
RETURNS a string in Register 1, which is BOZO if that was the
current signon id when the job was run.

LOCAL [kwd] name [=expression] Command 120

LOCATION [kwd] expression1 [kwd] expression2 location-id Command 144

kwd

RELATIVE

ABSOLUTE

expression1

horizontal length measured from the top left corner of the page

expression2

vertical length measured from the top left corner of the page

location-id

name (containing letters or numbers) beginning with a letter. An & is not
necessary. After the page has been formatted, all location-ids become
undefined and may be used again.

LOCATION_INFO(par) Function 144

LOGICALBACKSPACE Command 41

LOWERCASE(par) Function 44

MACFLAG (= 0) System Variable 118

MAX(par1,par2) Function 106

par1

'STRING'

'LENGTH'

'NUMBER'
For instance, if par1 is ‘LENGTH’, then, every element in the structure
specified by par2 is treated as lengths. Conversion is done
automatically if the element was not given as a length. When
comparing lengths, the result depends on DEFUNITS that is in effect
at that time.

Appendix 1 – TEXTFORM Language

214

par2

a structure.

MAXWORDSPACE = length (= 5IN) Variable 12

MEMBER(par,structure) Function 105

MILLIMETER Constant 100

MILLIMETERS Constant 100

MILLIMETRE Constant 100

MILLIMETRES Constant 100

MIN(par1,par2) Function 106

par1

'STRING'

'LENGTH'

'NUMBER'
For instance, if par1 is ‘LENGTH’, then, every element in the structure
specified by par2 is treated as lengths. Conversion is done
automatically if the element was not given as a length. When
comparing lengths, the result depends on DEFUNITS that is in effect
at that time.

par2

a structure.

MINHYPH = expression (= 2) Variable 24

MM Constant 100

MONTH Constant 149

MTS Command 169

MTSCMD(par) Function 169

NC see NEWCOL Command

NEWCOL [expression] Command

Begins a new column. This command is de-emphasized. See COLUMN.

NEWLINE [expression] [kwd] Command

Begins a new line. This command is de-emphasized. See LINE.

Appendix 1 – TEXTFORM Language

215

NEWPAGE Command

Begins a new page. This command is de-emphasized. See PAGE.

NEWPARA [length] [length2] Command 8

length (= PARAIND)

length2 (= PARASEP)

NL see NEWLINE Command

NO (= 0) Constant 102

NONLBWDSPACE (= '¬') Constant 29

NOPROLOGFILE or NOPROLOG Command 167

NORMAL (= 1) Constant 38

NOSENTENCE Command 155

NP see NEWPARA Command 8

NPAGE see NEWPAGE Command

NRPARS Function 117

NS see NOSENTENCE Command 155

OD see OUTPUTDEVICE Command 34

ODCHARACTERSET = expression (= 'DEFAULT') see OUTPUTDEVICE
Variable

ODFONT = expression (= 1) see OUTPUTDEVICE Variable

ODLOADED (= TRUE) see OUTPUTDEVICE System Variable

ODNAME = expression (= 'DEFAULT') see OUTPUTDEVICE Variable

ODTSIZE = length (= 0.1389IN) see OUTPUTDEVICE Variable

OFF (= 0) Constant 102

OLDPT Macro

If OLDPT is specified, TEXTFORM will use the PT macro defined before version
1.4. In this version of PT, PTSEP controls the vertical spacing between points.
e.g. when PTSEP=2, each point is separated by a NL 2 command.

Appendix 1 – TEXTFORM Language

216

ON (= 1) Constant 102

OUTPUTDEVICE [expression [expression2 [expression3 [expression4]]]]
Command 34

This command determines the output device. It must be given before text is
encountered, or before a command containing a length is given. Even a
command such as PAGE, which must check the PAGESIZE lengths, will cause
the output device to be loaded.

expression

indicates the output device. If not given, ODNAME is used. If ‘expression’ is
given, ODNAME is changed to contain ‘expression’. It is stored as an upper
case string. After the OUTPUTDEVICE command, ODNAME becomes
CONSTANT.

expression2

the name of the output device character set to use at the start of the run. If
it is not specified, ODCHARACTERSET is used. If ‘expression2’ is given,
ODCHARACTERSET is set to ‘expression2’. It is stored as an upper case
string. ODCHARACTERSET can be changed during the run. It is the
character set used by the default state. (If ‘expression2’ is given, then
‘expression’ must appear.)

expression3

the typesize to use at the start of the run. If it is not specified, ODTSIZE is
used. If ‘expression3’ is given, ODTSIZE is set to ‘expression3’. ODTSIZE
can be changed during the run. It is the typesize used by the default state.
(If ‘expression3’ is given, then ‘expression’ and ‘expression2’ must appear.)

expression4

the font number to use at the start of the run. If it is not specified,
ODFONT is used. If ‘expression4’ is given, ODFONT is set to ‘expression4’.
ODFONT can be changed during the run. It is the font used by the default
state. (If ‘expression4’ is given, the first three expressions must appear.)

Once the output device is loaded, the system variable ODLOADED becomes
TRUE. Any attempt to re-issue the OUTPUTDEVICE command after this
produces the error Output Device is already loaded. Command ignored.

During the TEXTFORM run, the value of GALLEY at the end of each page
determines whether the page is sent to SPUNCH.

OVERSTRIKE expression Command

overstrikes characters in ‘expression’ in the output. The overstruck characters
are centred on the largest of the group. This command is de-emphasized. Use
LOGICALBACKSPACE instead.

<OVERSTRIKE '0-'>

produces:

0 -

Appendix 1 – TEXTFORM Language

217

P see PAGE Command 47

PAGE Command 47

PAGEEND Command 47

PAGENUM (= (@PNHEAD, @PNCTR, @PNTRAIL)) Constant 49

PAGENUM is composed of pointers to the three predefined variables: PNHEAD
(the page number header), PNCTR (the automatically incremented page
counter), and PNTRAIL (the page number trailer). PAGENUM is a constant, but
because its elements are pointers to other variables, you may assign values to
the elements (but not the whole structure).

PAGE_POSITION [(expression)] Function 151

expression

1
returns horizontal position measured from the top left corner of the
physical page.

2
returns vertical position measured from the top left corner of the
physical page.

PAGEREM Function

This function is de-emphasized. REMAINING(2) provides the same information.

PAGESIZE = length structure (= (8.5IN,11IN)) Variable 46

PAGEUSED Function

This function is de-emphasized. Use PAGE_POSITION(1) instead.

PAR (expression) Command 113

PARAEND Command

This command ends the current paragraph. It has the same effect as LINEEND,
and is provided only for consistency.

PARAIND = length (= 0.5IN) Variable 8

PARASEP = length (= 0.1667IN) Variable 8

PART Layout Macro

PD see PROOFDEVICE Command 35

Appendix 1 – TEXTFORM Language

218

PDCHARACTERSET = expression (= 'DEFAULT') see PROOFDEVICE
Variable 35

PDLOADED (= TRUE) see PROOFDEVICE System Variable 35

PDNAME = expression (= 'DEFAULT') see PROOFDEVICE Variable 35

PE see PARAEND Command

PEND see PAGEEND Command 47

PGNTLIMIT = expression (= 10) Variable 183

PGNTS System Variable 183

PI Constant 100

PICA Constant 100

PICAS Constant 100

PNCTR = expression (= 0) Variable 49

PNHEAD = expression (= '') see PAGENUM Variable

PNTRAIL = expression (= '') see PAGENUM Variable

PO Constant 100

POINT Constant 100

POINTS Constant 100

POSITION [(expression)] Function 150

expression

1
returns horizontal position measured from the top left corner of the
current float, reserve, footnote, or open text.

2
returns vertical position measured from the top left corner of the
current float, reserve, footnote, or open text.

PREFORMATTED Constant 93

PRINTON = kwd Variable 48

kwd

BOTH

RIGHT

Appendix 1 – TEXTFORM Language

219

LEFT

FRONT

BACK

PROOF = logical value (= TRUE) Variable

Once the proof device is loaded, the value of PROOF determines whether a proof
is produced. If PROOF = TRUE proof output is produced. The value of PROOF
may be changed as many times as desired in a run, however the production of
each page of proofed text depends on the value of PROOF at the end of the page,
just before it is sent to SPRINT.

PROOFDEVICE [expression [expression2]] Command 35

This command works in the same way as the OUTPUTDEVICE command. The
associated variables are:

PDNAME
PDCHARACTERSET
PDLOADED
PROOF

PDNAME is the proof device, stored as an upper case string;
PDCHARACTERSET is the proof character set, stored as an upper case string.
At the beginning of a TEXTFORM run, the proof device is not loaded. To load it,
use the PROOFDEVICE command after the OUTPUTDEVICE has been loaded:
Once the proof device is loaded, PDLOADED is set to TRUE, and the value of
PROOF determines whether a proof is produced.

PT [(level [,expression, . . .])] Macro

The PT macro provides an automatic facility for producing enumerated lists
with indents. Parameters to the macro, described below, modify the action of the
PT macro on a short-term basis only.

level

is the level of indent to use for the PT. Use PTLEV to change this
dynamically.

expression

may be provided to change the counter for the current level. This remains
in effect only until EPT appears for that level. More than one ‘expression’
can be provided. ‘expression’ may be any of the following:

'string'
replace the counter with this string until EPT is given for this level.

<PT(1,'*')>This is an item at level 1
<PT>Another item at level 1
<PT(2,'#')>This is an item at level 2
<PT>Another item at level 2
<PT(1,'*')>This is the third item at level 1
<PT(2,'#')>Last item at level 2
<PT(1,'*')>Last item at level 1

Appendix 1 – TEXTFORM Language

220

<EPT(1)>

produces:

* This is an item at level 1
* Another item at level 1

This is an item at level 2
Another item at level 2

* This is the third item at level 1
Last item at level 2

* Last item at level 1

HANG
no counter is used until EPT appears for this level. The items are set
off by hanging indents.

NUMBER
forces the counter to be used. This is most useful when the default
points are not already numbered points, as when using PT('string') or
PT(HANG). PT(NUMBER) also allows you to add characters to the
front of the counter by saying PT('n',NUMBER).

<PT('A',NUMBER)>An item at level 1
<PT>This is the beginning of a paragraph in level 1.
<PT(PTLEV+1,NUMBER)>This is the first point within
the paragraph
<PT>This is the second point within the paragraph
<EPT(PTLEV)>
<PT>This is the last item at level 1
<EPT(1)>

produces:

A1 An item at level 1
A2 This is the beginning of a paragraph in level 1.

a. This is the first point within the paragraph
b. This is the second point within the paragraph

A3 This is the last item at level 1

Global changes to the action of the PT macro are made by changing related
variables and structures:

PTITEMGAP
PTPREGAP
PTPOSTGAP

PTCOUNTER – CTRn
PTPRESTRING
PTPOSTSTRING

PTPRELEVELSTRING
PTPOSTLEVELSTRING

control vertical space around points

control the appearance of the counters

can be used to automatically include
input before or after specific levels of
points.

Appendix 1 – TEXTFORM Language

221

PTPOSTINDENT
PTTEXTINDENT
PTPREINDENT
PTTEXTINDENTHANG

PTSAVE
PTRESTORE

determine indents used by points

save and restore changes to the above
variables.

When you use the PT macro, as in:

. . . this is some text preceding the list.
<pt(1)> This is first enumerated point.
<pt(1)> This is second enumerated point.
<ept> and back to normal text . . .

the commands done are:

. . . this is some text preceding the list.
< ptpostindent(1) = lindentindex >
< vertgap ptpregap(1) >
< ptprelevelstring(1) >
< indent left ptpreindent(1) >
< ptprestring(1)>
< ptcounter(1) >
< ptpoststring(1)>
< indent h=pttextindenthang(1) left pttextindent(1) >
This is first enumerated point.
< vertgap ptitemgap(1) >
< indent left ptpreindent(1) >
< ptprestring(1)>
< ptcounter(1) >
< ptpoststring(1)>
< indent h=pttextindenthang(1) left pttextindent(1) >
This is second enumerated point.
< vertgap ptpostgap(1) >
< ptpostlevelstring(1) >
< indent left ptpostindent(1) >

PTCOUNTER = structure (= (@CTR1,@CTR2,. . .,@CTR10)) Variable

this structure contains the counters used by PT. The counters at the various
levels can also be accessed by the variable CTRn, where n is the level.

<PTPRESTRING(1) = '*'>
<ATTRIBUTE CTR1 DISPLAY ALPHABETIC UPPERCASE>
<PTPOSTSTRING(1) = '*'>
<ATTRIBUTE CTR2 DISPLAY ARABIC>
<CTR3 = 0>
<PTPOSTSTRING(3) = '(#)'>
<PT>This is an item at level 1
<PT>Another item at level 1
<PT(2)>This is an item at level 2
<PT>Another item at level 2
<PT(3)>This is an item at level 3

Appendix 1 – TEXTFORM Language

222

<EPT(1)>

produces:

A This is an item at level 1
B Another item at level 1

1. This is an item at level 2
2. Another item at level 2

(#) This is an item at level 3

PTITEMGAP = length structure (= (0IN,0IN,. . .,0IN)) Variable

is the vertical space between items at the same level of points. Along with
PTPREGAP, the vertical space before a level of points, and PTPOSTGAP, the
space after a level of points, PTITEMGAP controls the space between points.

These GAP structures can be changed for all levels, as in:

<PTITEMGAP=PTITEMGAP+4MM>

or for individual levels of points, as in

<PTPREGAP(1)=4MM,PTPOSTGAP(1)=4MM>

which produces 4MM of space before and after level 1 points only.
PTPREGAP=4MM causes an error because PTPREGAP must always be a
structure with 10 lengths.

<LINESPACE=4MM, PTPREGAP = PTPREGAP+4MM>
<PTPOSTGAP = PTPOSTGAP+4MM>
<PTITEMGAP = PTITEMGAP+4MM>
<PT(HANG)>Adams, Robert. ''Langland and the Liturgy
Revisited.'' Studies in Phililogy 73(1976):266-284.
<PT(HANG)>Alford, John Alexander. ''A Note on Piers Plowman
B.xviii. 390: ‘Til Parce it Hote’.” Modern Philology
69(1972):323-325.
<PT(HANG)>Alford, John Alexander. ''Some Unidentified
Quotations in Piers Plowman.” Modern Philology 72(1975):390-399.
<EPT>

produces:

Adams, Robert. “Langland and the Liturgy Revisited.” Studies in
Phililogy 73(1976):266-284.

Alford, John Alexander. “A Note on Piers Plowman B.xviii. 390:
‘Til Parce it Hote’.” Modern Philology 69(1972):323-325.

Alford, John Alexander. “Some Unidentified Quotations in Piers
Plowman.” Modern Philology 72(1975):390-399.

PTLEV = expression (= 0) Variable

The variable PTLEV contains the PT level. It allows you to change levels
dynamically without knowing the current PT level. A value that is calculated

Appendix 1 – TEXTFORM Language

223

by a program, rather than inserted manually, is calculated dynamically. For
example:

<PT(PTLEV+1)>An item at level 1
<PT>Another item at level 1
<PT(PTLEV+1)>An item at level 2
<PT>Another item at level 2
<EPT(1)>

produces:

1. An item at level 1
2. Another item at level 1

a. An item at level 2
b. Another item at level 2

PTPOSTGAP = length structure (= (0IN,0IN,. . .,0IN)) Variable

space between last item in the level of points and the following text. Also, the
space between the last item in the level of points and the next item in the
previous level of points. For examples, see PTITEMGAP.

PTPOSTINDENT = structure (= (–1, –1, . . ., –1) Variable

If PTPOSTINDENT is –1 the first time PT is used at any level, the current
indent value is stored, and TEXTFORM returns to that indent when EPT for
that level is used.

PTPOSTLEVELSTRING = string structure (= ('','',. . .,'')) Variable

this string is included in the input before the PTPOSTGAP. See
PTPRELEVELSTRING for an example.

PTPOSTSTRING = string structure (= ('. ','. ',') ',') ',') ','– ','– ','– ','– ','– '))
Variable

this string appears after the counter when lists of points are numbered
automatically by PT. For examples, see PTCOUNTER and PTPOSTSTRING.

PTPREGAP = length structure (= (0IN,0IN,. . .,0IN)) Variable

is the space between preceding text and the first point at a particular level. For
examples, see PTITEMGAP.

PTPREINDENT = structure (= (0,1,2,3,4,5,6,7,8,9)) Variable

is the indent of the indent before the PTPRESTRING. The number is the index
into the LEFTINDENTS structure. To move all points over by two indents:

This is text before the points
<PTPREINDENT = PTPREINDENT+2>
<PTTEXTINDENT = PTTEXTINDENT+2>
<PT>An item at level 1
<PT>Another item at level 1

Appendix 1 – TEXTFORM Language

224

<PT(2)>An item at level 2
<PT>Another item at level 2
<PT(3)>An item at level 3
<PT(2)>Last item at level 2
<PT(1)>Last item at level 1
<EPT(1)>

produces:

This is text before the points
1. An item at level 1
2. Another item at level 1

a. An item at level 2
b. Another item at level 2

1) An item at level 3
c. Last item at level 2

3. Last item at level 1

PTPRELEVELSTRING = string structure (= ('','', . . .'')) Variable

this string is included in the input after the PTPREGAP. It can contain text or
commands.

<PTPRELEVELSTRING(1) = '<L,SP ''*'',LEND>'
<PTPOSTLEVELSTRING(1) = PTPRELEVELSTRING(1)>
<PT>An item at level 1
<PT>Another item at level 1
<PT>Third item at level 1
<EPT>

produces:

**
1. An item at level 1
2. Another item at level 1
3. Third item at level 1
**

PTPRESTRING = string structure (= ('','',. . .,'')) Variable

this string appears before the counter when lists of points are numbered
automatically by PT. For examples, see PTCOUNTER.

PTRESTORE see PTSAVE Macro

PTSAVE Macro

Within points there are global variables which, once changed will remain
changed for the remainder of the TEXTFORM run. These global variables are:

PTPREGAP
PTITEMGAP
PTPOSTGAP
PTPRELEVELSTRING
PTPREINDENT

Appendix 1 – TEXTFORM Language

225

PTPRESTRING
PTTEXTINDENT
PTTEXTINDENTHANG
PTPOSTLEVELSTRING
PTPOSTINDENT
PTPOSTSTRING
CTRn

PTSAVE, when issued before a list points, will save all of the global variables.
Then you can make changes to a list of points, which remain in effect only until
you issue PTRESTORE. The variables are then restored to their previous
values.

PTSEP see OLDPT Variable

PTTEXTINDENT = structure (= (1,2,3,4,5,6,7,8,9,10)) Variable

This structure controls the indent command issued after the counter and
PTPOSTSTRING. If you do not want the indent done for a level, set it to –1 for
that level. For example, to replace the PTTEXTINDENT with your own indent
command:

<pttextindent(1) = –1 >
<ptpoststring(1) = '<i l lindentindex+1, i h=2 l lindentindex–1>'>
This is text before the point.
<pt>This is a long test where points are several lines long. The
text around the counter is indented for two lines and then
returns to normal width. The text around the counter is indented
for two lines and then returns to normal width.
<pt>This is a long test where points are several lines long. The
text around the counter is indented for two lines and then
returns to normal width. The text around the counter is indented
for two lines and then returns to normal width.

produces:

This is text before the point.
1 This is a long test where points are several lines long. The

text around the counter is indented for two lines and then
returns to normal width. The text around the counter is indented
for two lines and then returns to normal width.
2 This is a long test where points are several lines long. The

text around the counter is indented for two lines and then
returns to normal width. The text around the counter is indented
for two lines and then returns to normal width.

PTTEXTINDENTHANG = structure (= (0,0,0,0,0,0,0,0,0,0)) Variable

controls whether the PTTEXTINDENT is done immediately, or on a later line.
This produces hanging points, which are also the result of changing
PTCOUNTER to zero, and changing PTPRESTRING and PTPOSTSTRING to
null. PT(HANG) is the same as

<PTTEXTINDENTHANG(1) = 1>

Appendix 1 – TEXTFORM Language

226

<PTCOUNTER(1) = 0>
<PTPOSTSTRING(1) = ''>

QT Layout Macro

RC System Variable 169

REM(par1, par2) Function 111

REMAINING [(expression)] Function 150

expression

1
returns horizontal length measured from the current location to the
bottom right-hand corner of the current footnote, float, reserve, or open
text.

2
returns vertical length measured from the current location to the
bottom right-hand corner of the current footnote, float, reserve, or open
text.

REP(par1, par2) Function 98

RESERVE kwd [kwd2] [kwd3] [kwd4] name Command 65

kwd

is where the reserve appears on the page.

TOP
at the top of the page or column.

BOTTOM
at the bottom of the page or column. ‘kwd4’, specifying the size of the
reserved area, must be given for bottom reserves.

kwd2

indicates if the reserve appears on front (right) or back (left) pages only. If
this keyword is not specified, the reserve appears on both sides of the page.

FRONT or RIGHT

BACK or LEFT

kwd3

COLUMN
the reserve appears in each column of a logical page. The CURCOL
system variable can be used to produce different results in different
columns.

PAGE

Appendix 1 – TEXTFORM Language

227

kwd4

SIZE horizontal length vertical length
this specifies the size of the reserve. SIZE must fit within the text area
of the page, i.e. inside margins. If SIZE is not given, a top reserve uses
as much room as necessary. A bottom reserve must have a size
specified.

horizontal length
can be a horizontal length, or the word DEFAULT. If DEFAULT
is given, it is the same as
PAGESIZE(1)–LEFTMARGIN–RIGHTMARGIN. If the horizontal
length given is wider than the text area between left and right
margins, but less than PAGESIZE(1), the reserve appears, but the
left side of the reserve starts at the left margin. If the horizontal
length given is wider than PAGESIZE(1), it produces the error
The RESERVE, or FLOAT is too wide. Maximum device width
used.

vertical length
If the size requested is larger than the text area on the page, the
TEXTFORM run ends with: RESERVES on page leave no room for
text. Terminating. If the size specified is too small to contain all
the text, TEXTFORM prints the error message Vertical size
specified in RESERVE or FLOAT is too small. If it is a bottom
reserve, this message also appears: The size of this page may be
wrong.

These errors can be produced if you specify a vertical size of
12 points for the reserve, and TEXTFORM then tries to start the
reserve in the default LINESPACE, which is 12.0507 points.

name

may be the name of an item (command, variable, macro, or table)
containing the text and/or commands. ‘name’ is evaluated when the reserve
is printed. If ‘name’ is a macro, parameters can be given if the entire macro
call is treated as a string, as in

<reserve top '¯otop(''Test'')' >

However, the entire macro call is converted to upper case. To preserve
lower case text:

<define &title = 'Test' >
<float top '¯otop(&title)' >

All reserves need a name, so that they may be suspended. If the name is
omitted, the following error appears: All RESERVEs must have a 'name'.
RESERVE ignored.

RESERVE_INFO [(par, . . .)] Function 67

par

TOP

Appendix 1 – TEXTFORM Language

228

BOTTOM

FRONT

BACK

PAGE

COLUMN

SIZE

name of reserve

RESETFOOTNOTE Command 57

RIGHT Constant 48

RIGHTGAP = length (=0) Keyword 77

RIGHTINDENTS = length structure (= (.4IN,.8IN, . . ., 8IN)) Variable 14

RIGHTMARGIN = length (= 1IN) Variable 46

RINDENT System Variable 18

RINDENTINDEX System Variable 18

ROMAN(par) Function 44

RSFOOT see RESETFOOTNOTE Command 57

RUNPAR Variable 168

R0 = expression (= '') Variable

This variable TAKES and RETURNS values for functions which use register 0.
The value in R0 will be converted to the required type before a call. If the
function needs register 0 to be a pointer (PTR), then when the actual function
call is made, register 0 will point to a copy of the contents of this variable (of the
requested type).

R1 = expression (= '') Variable

This variable TAKES and RETURNS values for functions which use register 1.
The value in R1 will be converted to the required type before a call. If the
function needs register 1 to be a pointer (PTR), then when the actual function
call is made, register 1 will point to a copy of the contents of this variable (of the
requested type). See the description of the LOAD command for more details.

SCNTN (= a structure) Constant

a structure containing all of the special character names that are truly special
characters.

Appendix 1 – TEXTFORM Language

229

S see SENTENCE Command 155

SENTENCE Command 155

SENTSEP = length (= 0.1IN) Variable 155

SEPARATE(par1, par2) Function 107

SERERRS = logical value (= TRUE) Variable 170

SHOWCPU Function 169

SHOWVM Function 169

SIZE Layout Macro

SOURCELNR System Variable 169

SP see SPLIT Command 21

SPLIT [kwd] [expression] Command 21

kwd

VERTICAL
If this keyword is used, ‘expression’ cannot be given.

expression (= SPLITSTRING)
‘expression’ may be null, or contain one or more characters, but commands
are not evaluated.

SPLITSTRING = expression (= ' ') Variable 21

STACK(name) Function 118

STATS [(par)] Function 176

generates the statistics which appear after the source listing. If any ‘par’ is
passed, the statistics are written on SERCOM, otherwise they are written in the
source listing.

STOP Command 168

STRING(par) Function

STRUC(structure) Function 106

STRUCTURE(par1,par2, [par3]) Function 106

SUB Layout Macro

Appendix 1 – TEXTFORM Language

230

SUBSTRUC(par1,par2,par3) Function 105

SUS see SUSPEND Command 65

SUSPEND kwd Command 65

kwd

‘kwd’ is the facility to suspend:

RESERVE [kwd1] [name1]

kwd1

may be provided to specify a ‘name’ which appears on more than
one reserve list. If ‘kwd1’ is omitted, ‘name’ will be removed from
all reserve lists.

TOP
Search the RESERVE TOP list.

BOTTOM
Search the RESERVE BOTTOM list.

FRONT
Search the RESERVE FRONT list.

BACK
Search the RESERVE BACK list.

name1

if ‘name1’ appears, the list of names maintained by RESERVE is
searched, and the name is removed if found. If ‘name1’ is not
found, an error is generated: No reserve by that name. SUSPEND
command ignored. If ‘name1’ is not supplied, all names on the list
are removed.

AT kwd2 [name2]

kwd2

must be provided to specify which list ‘name’ will be on.

ASSIGN name3

ENDOFCOLUMN

ENDOFFILE

ENDOFLINE

ENDOFPAGE

ENDOFWORD

REFERENCE name3

Appendix 1 – TEXTFORM Language

231

STARTOFCOLUMN

TEXTCHARACTER c

name2

if ‘name2’ appears, the list of names maintained by AT is
searched, and the name is removed if found. If ‘name2’ is not
found, an error is generated. If ‘name2’ is not supplied, all names
on the list are removed.

SYMMAX = expression (= 104976) Variable 236

SYMSIZE = expression (= 57344) System Variable 236

SYSCMD(par) Function 169

SYSCMDNOECHO(par) Function 169

T see TAB Command 83

TAB [expression [expression]] Command 83

TABLE_INFO(par1, par2 [,par3]) Function 91

par1

name of table or logicalpage

par2 (a string)

COLUMNS
returns the number of columns

WIDTH
returns the WIDTH of the column specified by ‘par3’

GAP
returns the width of GAP for the column specified by ‘par3’

LEFTGAP
returns the width of LEFTGAP

RIGHTGAP
returns the width of RIGHTGAP

ROWS
returns the number of rows (tables only)

HEIGHT
returns the vertical size of row n if ‘par3’ is specified, otherwise it
returns the vertical size of the whole table (tables only)

ALIGNMENT
returns the ALIGNMENT of the column specified by ‘par3’ (tables
only)

Appendix 1 – TEXTFORM Language

232

FONT
returns the FONT of the column specified by ‘par3’ (tables only)

par3

number of column required by some parameters as described above

TEXTONLY(par) Function 98

TEXT_DESTINATION Function 150

TEXTWIDTH(par) Function 101

THEN see IF Command 156

THISPAGE (= RIGHT) System Variable 48

TIME Constant 149

TIMERLIMIT = expression (= 1.0) Variable 181

TITLE Layout Macro

TOC(par1 [,par2, par3, . . ., par10]) Function 129

TOCHEADER = expression Variable 131

'<PEND,ALIGNMENT=LEFT,I B 0,F 3>Table of Contents':-
'<F 1,LEND C, VG LINESPACE>':-
'<LEFTINDENTS=(.2IN,.4IN,.6IN,.8IN,. . .,1.8IN,2IN)>':-
'<RIGHTINDENTS=(.5in),SPLITSTRING=''.''>'

TOCHEADERLIST = structure (= (TOCHEADER, . . . ,TOCHEADER))
Variable 134

TOCINDEX = expression (= 1) Variable 134

expression

a value from 0 to 99

TOCMACRO Macro 133

The contents of the macro are:
<LEND, I B PAR(1) 1, I H=1 L PAR(1)+1,KE,-
PAR(3), . . ., PAR(10), I R OFF, '' '', SP,-
PAR(2), EKE, LEND>

TOCMACROLIST = structure (= ('TOCMACRO', . . . ,'TOCMACRO'))
Variable 134

TOP Constant 53

Appendix 1 – TEXTFORM Language

233

TOOD expression Command

expression

hexadecimal string

TOPD expression Command

expression

string

TOPMARGIN = length (= 1IN) Variable 46

TRANSLATE kwd character1 character2 Command

This command is de-emphasized. Use AT TEXTCHARACTER instead.

TRUE (= 1) Constant 102

TSIZE (= 0.1389IN) System Variable 43

TYP see TYPESIZE Command 43

TYPE(name) Function 122

TYPESIZE length (0.1389IN) Command 43

U see UNDERLINE Command 37

UC (= '<CAP=TRUE>') Variable

UERR(par1 [,par2]) Function 171

UN Constant

UNDERLINE [expression] Command 37

expression

OFF

ON

UNDERLINEDISPLACEMENT = length (= 0) Variable 37

UNDERLINESTRING = expression (= '_') Variable 37

UNDERLINEWORDSPACE = logical value (= FALSE) Variable 37

UNFORMATTED Constant 93

UNIT Constant

Appendix 1 – TEXTFORM Language

234

UNITS Constant

UNSTACK(name) Function 118

UPPERCASE(par) Function 44

UPPERCASEINPUT = logical value (= FALSE) Variable

If this varible is TRUE, all input will be translated to lower case before being
processed by TEXTFORM. Translation does not begin until the next line.

USE [name] (PHYSICALPAGE) Command 74

VECLEN(name) Function 105

VERSION (= string) (= 1.50) Constant 170

VERTALIGNMENT = kwd Variable 53

kwd

TOP

BOTTOM

CENTRE or CENTER

BOTH

JUSTIFY

VERTGAP length Command 52

VERTJUST Command 54

VERTSPACE length Command 51

VG see VERTGAP Command 52

VJ see VERTJUST Command 54

VS see VERTSPACE Command 51

VTYPE(name) Function 105

WHILE 'comparison' DO name Command 159

WIDTH = length Keyword 91

WORDSPACE = length (= 0.1IN) Variable 18

Appendix 1 – TEXTFORM Language

235

X(par1 [,par2, par3, . . ., par10]) Function 135

XCOUNT = expression Variable 138

XHEADER = expression Variable 137

'<PEND,ALIGNMENT=LEFT,I B 0,F 3>Index':–
'<F 1,LEND C,VG LINESPACE>':–
'<LEFTINDENTS=(.2IN,.4IN,.6IN,.8IN,. . .,1.8IN,2IN)>':–
'<RIGHTINDENTS=(.5IN)>'

XHEADERLIST = structure (= ('XHEADER', . . ., 'XHEADER')) Variable 138

XINDEX = expression (= 1) Variable 138

expression

a value from 0 to 99

XMACRO Macro 138

The contents of the macro are:
<LEND,I B PAR(1) 0,I H=1 L PAR(1)+1, –
XPARS=NRPARS-1,PAR(3), –
com print entries, FOR 'XCOUNT=4' UNTIL 'XPARS' DO XPRINT, –
XPARS=PAR(2), –
com print pagenos, FOR 'XCOUNT=1' UNTIL 'XPARS' DO
XPGPRINT>

XMACROLIST = structure (= ('XMACRO', . . . , 'XMACRO')) Variable 138

XPARS = expression Variable 138

XPGPRINT = expression (= '<'', '',XPAGENUM(XCOUNT)>') Variable 138

XPRINT = expression (= '<'', '',PAR(XCOUNT)>') Variable 138

YEAR Constant 149

YES (= 1) Constant 102

Appendix 1 – TEXTFORM Language

236

APPENDIX 2 – TEXTFORM’S INTERNAL STORAGE

In the TEXTFORM program, the symbol table contains every item—predefined or
user-defined—used in the TEXTFORM language, and its value and attributes
(variable, command, macro, special character, function). Any item encountered
within command mode must be a recognized item in the symbol table. Specifically, a
command causes an immediate formatting action or change to the symbol table.
Alternately, any string which appears in command mode will appear in the text.

Predefined items are defined by TEXTFORM, and are in the symbol table at the
beginning of a TEXTFORM run. A predefined item may not be erased. User-defined
items are added to the symbol table via the DEFINE command, and may be changed
or erased.

In the symbol table, garbage space may be created when the user (or a layout
macro, or TEXTFORM itself) changes the value of a variable, or erases something,
leaving extra storage space available. For example, if a variable (such as a string or
structure) becomes longer, and it was not the last variable defined, it must be moved
in storage. This results in garbage space. If an item is erased, and it was not the last
item defined, this also results in garbage space.

GARBAGESPACE contains the number of bytes of waste space in the symbol
table. Garbage collection occurs when the GARBAGESPACE exceeds 25% of the
symbol table size (SYMSIZE). If symbol table size exceeds the maximum allowed
(SYMMAX), a garbage collection is performed, and SYMMAX is doubled.
GARBAGECOUNT contains the number of garbage collections of the symbol table
during the run.

Garbage collection is accomplished by getting enough space to hold the current
contents (SYMSIZE–GARBAGESPACE), then copying the current contents of the
symbol table to the new area, and releasing the old. Garbage collection will generally
not occur unless the document is large (over 300 pages), a large number of items are
created and erased, or one or more items are continually getting larger. Documents
in these categories can benefit from changing SYMMAX, or by careful definition and
setting of ‘highly mobile’ variables. For example, if a structure will eventually have
100 elements, added one by one, indicate this when you define the structure name, as
in:

<define &structure, &structure(100) = ' ' >

Appendix 2 – TEXTFORM’s Internal Storage

237

INDEX

Bold page numbers indicate where the word is defined.

abbreviation, of TEXTFORM
commands, 32

ABORT command, 168, 184
addition, addition (+) operator, 110
alignment, 11

and indent changes, 17
in ASIS or PREFORMATTED

mode, 94
left right centre or both, 203

ALIGNMENT keyword, 92
ALIGNMENT variable, 11, 184
ALLOWLINEBREAK command, 22, 184
alphabetic, counter, 186

integer displayed as, 44, 186
alphabetic counters, 124
ALPHABETIC function, 44, 184
APL characters, 40, 205
arabic numerals, 124, 186
as is mode, 93
ASIS constant, 94, 184
assign values to variables, 69, 96
asynchronous, 69

AT, AT-points, 69, 151, 184, 230
suspending AT-points, 230

AT command, 42, 69, 132, 184
AT_INFO function, 185
attention interrupt, 180
ATTNS system variable, 180, 185
ATTRIBUTE command, 123, 185
attribute of variables, 112, 123, 131,

209, 221
A0 – A8 constant, 187
BACK constant, 187
back page, 198, 226
backspace, 41
balanced columns, 88
baseline, 43

begin, column, 78
line, 6
page, 8
paragraph, 8

bibliography, 96, 139
formatting, 9

blank space, 19, 20, 21
blank pages, 60, 152
character, 11
recommended before endfootnote

command, 56
when allowed in a command, 13
when not allowed at end of input

line, 27
when not allowed in input, 94
when not allowed in interactive

input, 179
BLANKCHARACTER command, 20, 42,

154, 187
BLANKLINE variable, 187
body, in TEXTFORM notation, 32

BOLD constant, 187
BOLDITALIC constant, 187
BOTH constant, 187
BOTMARGIN keyword, 77
BOTMARGIN variable, 46, 151, 187
bottom, column, 197, 226

page, 197, 226
BOTTOM constant, 187
boxes, 144
BREAK GCI command, 179
CalComp, 181
CAP variable, 187
capital letters, in commands, 3

in TEXTFORM notation, 32
CAPNEXTCHAR (@) constant, 30, 188
CASE command, 158, 188
catenation, catenation ($) operator, 111

catenation (:) operator, 28
implicit, 167
structure, 106

CENTER constant, 188
CENTRE constant, 188
centred text, 11, 12
character, 11, 25, 30, 107, 154

. . ., 32
<, 31
+, 108, 110
|, 99
&, 34
$, 108
*, 111
;, 99
/, 111
_, 38
:, 111
#, 102

238

@, 30, 102, 108
', 97
'', 97
=, 27
[, 32
replacing automatically, 42

character set, 25, 39, 205
CHARACTERSET command, 39, 188
CHAREXIST function, 40, 188
CHARS function, 98, 188
CHHRZ command, 188
CHPSZ command, 188
CHVRT command, 188
column, 152, 198, 226

balanced columns, 78, 87, 88
begin, 78
column width, 77, 91, 150
defining a specific, 91
defining columns, 192
defining columns in tables, 87
defining columns on logical page,

76
multiple columns on page, 76
number of the current, 81

COLUMN command, 78, 188
COLUMN_POSITION function, 150,

153, 189
COLUMNEND command, 53, 78, 189
COLUMNS keyword, 189

in logical page, 76, 193
COMDINT (<) constant, 31, 189
COMDSEP (,) constant, 189
COMDTERM (>) constant, 31, 189
command, 25, 27

command initiator and terminator,
26, 31

command mode, 119, 167
command separator, 26, 156

COMMENT command, 26, 189
comparison, 156, 159
conditional control, 120, 149

AT, 69
CASE, 158
FOR, 159, 181
IF, 156
WHILE, 159, 181

constant, 123

TEXTFORM, 149
contents, 129

appearance of table of contents
entries, 129

contents page, 131
creating contents entries, 129
macro to create entries in table of

contents, 115

multiple tables of content, 134
TOC (contents) function, 129

continuation, 27, 28, 31, 115
CONTINUE GCI command, 179
CONTLINECHAR (-) constant, 31, 189
cross reference, 176, 209

sample, 176, 177
CROSSREFERENCE command, 167,

176, 189
CTRn variable, 190
CURBOTMARGIN system variable, 47,

151, 191
CURCOL system variable, 81, 191
CURCS system variable, 39, 191
CUREMPFONT function, 38, 191
CURFONT system variable, 38, 149,

191
CURKEYBOARD system variable, 191,

206
CURLEFTMARGIN system variable,

47, 151, 191
CURLINESPACE system variable, 153,

191
CURLP system variable, 74, 191
CURPAGEHEIGHT system variable,

151, 191
CURPAGESIZE system variable, 46,

151, 191
CURPAGEWIDTH system variable,

151, 191
CURRIGHTMARGIN system variable,

47, 151, 191
CURTABLINE system variable, 90, 191
CURTOPMARGIN system variable, 47,

151, 191
CURUNDERLINE system variable, 37,

191
DATE constant, 149, 191
DAY constant, 149, 191
default, 5, 55

keyword, 198
default state, 55

default units, 31

DEFCOLGAP keyword, 76, 77, 191
DEFCOLWIDTH keyword, 76, 77, 191
define, 34

column in table or logical page, 91
logical page, 75
macro, 113
table, 82
variable, 95

DEFINE COLUMN command, 76, 91,
192

DEFINE command, 34, 95, 191
DEFINE LOGICALPAGE command, 75,

239

192
DEFINE MACRO command, 113, 193
DEFINE TABLE command, 82, 193
DEFUNITS variable, 31, 194
DELAY command, 72, 194
delimiter, 27

string delimiters, 97, 114
delimiter (') character, 27
device independent, 25

dictionary-style page titles, 66
DISABLE MESSAGE command, 170,

194
discretionary hyphen, 22

DISPLAY command, 92, 171, 194
DISPLAY GCI command, 179
DIV function, 111, 195
division, division (/) operator, 111

integer, 111
remainder of, 111

DO keyword, 159, 200
document, compose a document, 1
double space, 15
DRAW command, 145, 195
dynamic, 222

element in structure, 103

ELSE command, 156, 202
emphasis, 10

emphasis character, 30
font, 39

EMPHNEXTCHAR (_) constant, 38, 195
ENABLE MESSAGE command, 170,

195
end, column, 69, 78

line, 69
page, 69
sentence, 19, 155
word, 69, 71, 154

end of file, 69, 70, 132, 168
ENDDEFINE command, 191

column, 91
logical page, 75
macro, 113
table, 82

ENDFLOAT command, 197
ENDFOOTNOTE command, 56, 200
ENDIF command, 156, 202
ENDKEEP command, 50, 205
English, hyphenation, 23

integer displayed as, 44
ENGLISH function, 44, 196
EPT macro, 9, 196
erase, 123

macro, 116
name, 116, 122

ERASE command, 116, 122, 197

error, 169
error messages, 170
error messages in listing, 175
generating your own error

messages, 170
how to interpret error messages, 3
how to stop expected error

messages from printing, 170
ERROR command, 117, 169, 170, 197
ERROR GCI command, 179
execute, 119

execute ($) operator, 108

EXIST function, 122, 197
expression, 112

in command, 32, 109
in TEXTFORM notation, 32

EXTRABOLD constant, 197
EXTRABOLDITALIC constant, 197
FALSE constant, 197
figure, figure captions, 61
file editor, 1
files related to TEXTFORM,

TXTF:TXTF.MACROS, 58
files used by TEXTFORM, –TXTFLIST,

172, 209
–TXTFTC01, 132
–TXTFXI01, 137
–TXTFXM01, 142
–TXTFXR1, 176
–TXTFXR2, 176
–TXTFXS01, 137
*TXTFHYPHDICT, 23
ETC:TXTFHYPHDICT, 24
TXTF.PROLOG, 167

float, appearance of floated text, 60
bottom, 61
float table or figure space, 61
top, 60
very top or bottom, 61

FLOAT command, 60, 197
FLOAT_INFO function, 199
FOGS command, 199
font, 26, 38

bold font, 38
current, 39
emphasis font, 38
italic font, 10, 38, 130

FONT command, 38, 200
FONT keyword, 92
FOOTCONTINUE variable, 57, 200
FOOTCTR variable, 57, 70, 200
FOOTDIVIDE variable, 57, 200
FOOTINDEX variable, 57, 200
footnote, 56

at end of chapter, 58

240

continued on next page, 57
counter, 57, 70
in tables, 85
on logical page, 79
separated from text, 9, 57

FOOTNOTE command, 56, 200
FOOTSEP variable, 57, 200
FOR command, 159, 200
FORDIS function, 131, 200
format, 25

formatting actions taken by
TEXTFORM, 151

French, hyphenation, 23
integer displayed as, 44

FRENCH function, 44, 200
FRONT constant, 200
front page, 198, 226
function, 160

FUNCTIONRC system variable, 160,
200

FUZZ variable, 157, 200
GALLEY variable, 200, 216
GAP keyword, 91, 201
garbage collection, 236

garbage space, 236

GARBAGECOUNT system variable,
201, 236

GARBAGESPACE system variable, 201,
236

GCI command, 177, 236
global variable, 120

GUSER I/O unit, 167
HANG keyword, 16
hanging indent, 16

hexadecimal, 102
HEXDELIM (#) constant, 201
highlight, 38
horizontal space, 18, 21, 229
HORSPACE command, 19, 154, 201
hyphenation, 22, 209

algorithm, 23
dictionary, 23
discretionary hyphen, 22
internal dictionary, 201

HYPHENATION command, 23, 201
I/O unit, 163, 167
IF command, 156, 202
IN constant, 202
INCH constant, 202
INCHES constant, 202
INCLUDE command, 63, 202
indent, 13

current number, 18
delayed, 16
hanging, 16

in tables, 85
left and right, 13, 153
of paragraph, 8
paragraph indent, 153
size, 18

INDENT command, 13, 203
index, 135

appearance of index, 137
creating index entries, 135
index page, 137
maximum length of entries, 138,

142
multiple indexes, 138
number of levels of indexing, 138,

142
of a structure element, 103

sorting sequence for index, 142
TIMERLIMIT while printing, 139
X (index) function, 135

INDEX command, 141, 204
input, 1, 25

blanks in input, 2, 11
input line length, 2
line number, 169
maximum number of characters in

input line, 167
preparing input, 2
uppercase or lowercase or mixed

case, 30
INPUTMODE variable, 93, 119, 204
INSERT GCI command, 179
inside margin, 49

INTERACTIVE command, 177, 204
INTPAGELNR command, 205
INTPAGELNR system variable, 173
INTPAGENR command, 205
INTPAGENR system variable, 173
ITALIC constant, 205
italic text, 10, 38
ITYPE function, 127, 205
justified column, 53
justified text, 11, 12, 19, 29
justify, 11

JUSTIFY constant, 205
KEEP command, 50, 205
keep text together, 50
keep words on same line, 29
KEYBOARD command, 40, 205
keyword, as executed variable, 109

in a command, 13, 32
in TEXTFORM notation, 32
preceded by ¬ or –, 32

kwd, in TEXTFORM notation, 32
LAYNAME system variable, 206
layout (prepared formats), and logical

241

pages, 81
LAYOUT command, 206
LC variable, 207
left alignment, 11, 12, 203
LEFT constant, 207
left indent, 13, 203
left margin, current, 203

LEFTGAP keyword, 77, 87, 207
LEFTINDENTS variable, 13, 203, 207
LEFTMARGIN keyword, 77
LEFTMARGIN variable, 46, 151, 207
length, in TEXTFORM notation, 33

length of column, 203
negative lengths, 100
units of measurement, 31, 100

letter, form letter, 116
letter space, 12
LI constant, 207
LIGHT constant, 207
LIGHTITALIC constant, 207
LINDENT system variable, 149, 203,

207
LINDENTINDEX system variable, 149,

203, 207
line, at top of page, 7

beginning a line, 5
end of line, 153
unit of measurement, 101

LINE command, 5, 207
line drawing, 144

appearence of line, 145
information of line position, 147
position of line, 144

LINEEND command, 5, 12, 207
LINES constant, 207
linespace, single space, 15
LINESPACE variable, 5, 207
list, enumerated list, 9, 44, 196, 215,

219
LIST command, 172, 208

and contents of macro, 119
and par= in run command, 167
display of table or logical page, 92
example of use, 175

listing, 172, 208
inserting text into, 172

load, 160

LOAD command, 160, 210
loaded, 35

LOCAL command, 120, 213
local variable, 120
LOCATION command, 144, 213
LOCATION_INFO function, 147, 213
logical page, 74, 152

and layouts, 81

defining logical page, 75
information about dimensions, 76,

92
name of current, 74
page number on logical page, 81
reserve on logical page, 81
tables on, 90
using logical page, 74, 75, 78

logical value, 102, 156
in TEXTFORM notation, 33

logical variable, 102
LOGICALBACKSPACE command, 41,

154, 213
lower case, 44, 126
LOWERCASE function, 44, 213
MACFLAG system variable, 118, 213
macro, 109, 113, 118, 208

changing a macro, 116
index entries, 136
parameters, 113

MACWRITE function, 162
margin, 25, 46
MAX function, 106, 213
MAXWORDSPACE variable, 12, 214
measurement, 100
MEMBER function, 105, 214
meta-character, 29

disabling, 42
MILLIMETER constant, 214
MILLIMETERS constant, 214
MILLIMETRE constant, 214
MILLIMETRES constant, 214
MIN function, 106, 214
MINHYPH variable, 24, 214
MM constant, 214
monospace, 26

MONTH constant, 149, 214
MTS command, CONTINUE with, 167

CREATE, 1
EDIT, 1
RESTART, 169
RUN, 2, 167
SIGNON, 1

MTS GCI command, 179
MTSCMD function, 132, 169, 214
multiplication, multiplication (*)

operator, 111
name, 34, 122

in TEXTFORM notation, 33

NEWLINE command, 214
NEWPARA command, 8, 215
NO constant, 215
non-linebreaking word space, 29
NONLBWDSPACE (¬sign) constant,

29, 215

242

NOPROLOGFILE command, 167, 215
NORMAL constant, 215
NOSENTENCE command, 155, 215
NRPARS function, 117, 215
null parameter, 114
null string, 95, 114
number, 99

in TEXTFORM notation, 33
scaled, 99

numbering, 124, 219
ODCHARACTERSET variable, 39, 215
ODLOADED system variable, 149, 215,

216
ODNAME variable, 215
OFF constant, 215
OLDPT macro, 215
ON constant, 216
open text, 53, 54

operator, 99, 102, 107
orphan, 50
output device, 25, 34, 216

page printer, 48
output line, 1

OUTPUTDEVICE command, 34, 216
page, 25, 151, 198

blank page, 47, 60
end of page, 3, 151
front and back (left and right), 48
logical page, 74
page dimensions, 46, 90, 150, 151,

187
physical page, 74

PAGE command, 8, 47, 217
page number, 48, 49, 217

in table of contents entries, 129,
130

on logical page, 81
page printer, 206
page processor, 151

PAGE_POSITION function, 150, 151,
217

PAGEEND command, 47, 217
PAGENUM constant, 217
PAGESIZE keyword, 77
PAGESIZE variable, 46, 151, 217
PAR command, 113, 217
par field, 167
PARAEND command, 217
paragraph, 8, 71
PARAIND variable, 8, 217
parameter, 28, 33

function, 160
macro parameters, 113, 160
null parameter, 114
number of parameters passed to

macro, 117
PARASEP variable, 8, 217
PDCHARACTERSET variable, 218, 219
PDLOADED system variable, 218, 219
PDNAME variable, 218, 219
PGNTLIMIT variable, 183, 218
PGNTS system variable, 183, 218
physical page, 74

PHYSICALPAGE, 74
PI constant, 218
PICA constant, 218
PICAS constant, 218
PNCTR variable, 81, 130, 149, 151, 217,

218
PNHEAD variable, 217, 218
PNTRAIL variable, 217, 218
PO constant, 218
point, unit of length, 43

POINT constant, 218
pointer, 102

pointer (@) operator, 108
POINTS constant, 218
POSITION function, 150, 154, 218
predefined variable, 95

PREFORMATTED constant, 93, 218
print (*PRINT*), 3
printed output, 3, 168
printer, 25, 206
PRINTON variable, 48, 151, 218
program interrupt, 182
prolog file, 167
proof, 172, 219

proof device, 35, 172, 219
sample of a proof, 36, 173

PROOF variable, 219
PROOFDEVICE command, 35, 172, 219
proportional, 26

PT macro, 9, 219
CTRn variables, 221
PT... variables, 196, 219, 221

queue, 119

RC system variable, 169, 171, 226
readability measurement, 199
recursion, 120

references, 58
REM function, 111, 226
REMAINING function, 118, 150, 152,

226
REP function, 98
replacement character, 40
reserve, 49, 152, 230
RESERVE command, 63, 226
RESERVE_INFO function, 227
RESETFOOTNOTE command, 57, 228
return code, 160, 171

243

right alignment, 11, 12, 203
RIGHT constant, 228
right margin, current, 203

RIGHTGAP keyword, 77, 228
RIGHTINDENTS command, 14
RIGHTINDENTS variable, 203, 228
RIGHTMARGIN keyword, 77
RIGHTMARGIN variable, 46, 151, 228
RINDENT system variable, 149, 203,

207
RINDENTINDEX system variable, 149,

203, 207
roman, character, 26

integer displayed as, 44
ROMAN function, 44, 228
run, errors which end the run, 169

restarting the run, 169
TEXTFORM run, 2, 129, 167

RUN GCI command, 179
RUNPAR variable, 168, 228
R0 variable, 228
R1 variable, 161, 228
sample documents formatted with

TEXTFORM, form letter, 116
save values of variables, 118
SCARDS I/O unit, 167
SCNTN constant, 228
sentence, 19, 155
SENTENCE command, 229
SENTSEP variable, 19, 155, 229
SEPARATE function, 107, 229
SERCOM I/O unit, 4, 92, 167, 170
SERERRS variable, 170, 229
SHOWCPU function, 169
SHOWVM function, 169
single space, 15
size of characters, 43
SKIP GCI command, 179
source file, 25

source line, 173
SOURCELNR system variable, 169, 229
space, between columns, 77

between letters, 12
between words, 12
between words in a macro, 116

space (blank space character), 20, 154
underlining, 20, 37

space (horizontal space), 19, 150
for float, 198
from preceding column, 91
remaining on line, 150
split, 21, 229

space (vertical space), 53, 61, 150
at top of page or column, 51
between footnotes, 57

between rows in table, 84
for float, 198
on the column, 51
preceding paragraph, 8
remaining on column, 150
split vertical, 229
VERTGAP, 52

special character, 29, 40, 94, 205, 228
SPLIT command, 21, 52, 154, 229
SPLITSTRING variable, 21, 22, 229
SPRINT I/O unit, 35, 167, 172, 176
SPUNCH I/O unit, 35, 167, 200
STACK function, 118, 229
start, column, 47, 152

line, 7, 153
page, 8, 151

paragraph, 8
statistics, 175, 176, 209, 229

about readability, 199
STATS function, 229
STEP GCI command, 179
STEP keyword, 159, 200
STOP command, 168, 229
STOP GCI command, 179
string, 27, 33, 130, 229

doubling meta-character in, 163
null, 95

number of characters in, 98, 126
substring from-length (|) operator,

98
substring from-to (;) operator, 98
variables, 97

STRING function, 229
STRUC function, 106, 229
structure, 103, 124, 127, 157

catenation, 106
defining a structure, 103
efficient use of large, 236
finding index of an element, 105
finding maximum or minimum

element, 106
finding number of elements, 105
in TEXTFORM notation, 33
index of structure, 103

substructure, 105
STRUCTURE function, 106, 229
subroutine, 160

MTS system subroutine, 160, 210
TEXTFORM called as, 163
user-written, 161

subscript, 40, 162
substring, 98, 118
SUBSTRUC function, 105
superscript, 40, 57, 162
suspend, at points, 71

244

reserves, 65
SUSPEND command, 65, 71, 230
symbol table, 197, 209, 234, 236

SYMMAX variable, 231, 236
SYMSIZE system variable, 231, 236
synchronous, 69

SYSCMD function, 169, 231
SYSCMDNOECHO function, 169, 231
system variable, 95, 118, 149
TAB command, 83, 231
table, 61, 82, 150

changing an entry in a table, 89
creating a table, 82, 89
emptying a table, 82
entry, 83
filling a table, 82, 83
in reserve, 89
indents in, 85
information about dimensions, 91
placing footnote in, 85
printing a table, 82
reusing a table, 83
using a table, 83
using a table on logical page, 90

TABLE_INFO function, 91, 231
text, 25

bold italic normal, 38
emphasis, 10
kept together, 29, 60
removing commands from, 98
reproduced as entered, 93, 119, 154
size, 43
special positioning, 153
text mode, 29, 119

text processing, 25

TEXT_DESTINATION function, 150,
232

TEXTONLY function, 98, 232
TEXTWIDTH function, 18, 20, 101, 154,

232
THEN command, 156, 202
THISPAGE system variable, 48, 149,

151, 232
TIME constant, 149, 232
timer interrupt, 181, 232
TIMERLIMIT variable, 139, 181, 232
TOC function, 129, 232
TOCHEADER variable, 131, 133, 232
TOCHEADERLIST variable, 134, 232
TOCINDEX variable, 134, 232
TOCMACRO macro, 133, 232
TOCMACROLIST variable, 134, 232
TOOD command, 233
top, column, 197, 226

page, 197, 226

TOP constant, 232
TOPD command, 233
TOPMARGIN keyword, 77
TOPMARGIN variable, 46, 151, 233
TRUE (#00#) constant, 233
TSIZE system variable, 43, 233
TXTF.PROLOG, 167
TYPE function, 122, 233
typesetting, 43, 101
typesize, 43

current typesize, 43
TYPESIZE command, 43, 233
UC variable, 233
UERR function, 171, 233
UN constant, 233
underline, 37

how to underline blanks, 37
underline character, 38

UNDERLINE command, 37, 233
UNDERLINEDISPLACEMENT

variable, 37, 233
UNDERLINESTRING variable, 37, 233
UNDERLINEWORDSPACE variable,

37, 233
UNFORMATTED constant, 93, 233
unit, unit of measurement, 100
UNIT constant, 233
unit of measurement, 100

UNITS constant, 233
UNSTACK function, 118, 234
UNTIL keyword, 159, 200
upper case, 44, 125, 187, 234

commands, 3
forcing characters to be, 30

UPPERCASE function, 44, 234
UPPERCASEINPUT variable, 234
USE command, 74, 75, 78, 83, 84, 234
value, 124, 209

maximum value, 125
minimum value, 125

variable, 27, 95, 159
defining a variable, 34, 95
displaying a variable, 112, 124, 131
executing a variable, 108, 119
global variable, 120

local variable, 120
predefined variable, 95

save and restore value of variable,
118

system variable, 95, 149
user-defined variable, 95

VECLEN function, 105, 234
VERSION constant, 170, 234
VERTALIGNMENT variable, 53, 234
VERTGAP command, 52, 234

245

vertical space, 51, 52, 53, 61, 229
in tables, 84

VERTJUST command, 54, 234
VERTSPACE command, 7, 234
VTYPE function, 105, 234
WHILE command, 159, 234
widow, 50

preventing via macro, 117
width, width of a character, 18, 26

width of column, 77, 91
width of text, 101

WIDTH keyword, 91, 234
word, 11, 26

current word, 153
words don't fit on output line, 22,

26
word space, 18, 154
WORDSPACE variable, 18, 154, 234
X function, 135, 235
XCOUNT variable, 138, 235
XHEADER variable, 137, 235
XHEADERLIST variable, 138, 235
XINDEX variable, 138, 235
XMACRO macro, 138, 235
XMACROLIST variable, 138, 235
XPARS variable, 138, 235
XPGPRINT variable, 138, 235
XPRINT variable, 235
YEAR constant, 149, 235
YES constant, 235

246

INDEX TO TEXTFORM LANGUAGE

command, ABORT, 184
ALB, 184
ALLOWLINEBREAK, 184
AT, 184
ATT, 185
ATTRIBUTE, 185
BC, 187
BLANKCHARACTER, 187
C, 187
CASE, 188
CEND, 188
CHARACTERSET, 188
CHHRZ, 188
CHPSZ, 188
CHVRT, 188
COLUMN, 188
COLUMNEND, 189
COMMENT, 189
CR, 189
CROSSREFERENCE, 189
CS, 190
D, 191
DEF, 191
DEFINE, 191
DEFINE [kwd] COLUMN, 192
DEFINE [kwd] LOGICALPAGE

name, keywords,, 192
DEFINE [kwd] MACRO, 193
DEFINE [kwd] TABLE, 193
DELAY, 194
DISABLE, 194
DISPLAY, 194
DRAW, 195
EDEF, 195
EFL, 195
EFOOT, 195
EIF, 195
EKE, 195
ELSE, 195
ENABLE, 195
ENDDEF, 195
ENDDEFINE, 195
ENDFLOAT, 196
ENDFOOTNOTE, 196
ENDIF, 196
ENDKEEP, 196
ER, 197
ERASE, 197
ERR, 197

ERROR, 197
F, 197
FL, 197
FLOAT, 197
FOGS, 199
FONT, 200
FOOT, 200
FOOTNOTE, 200
FOR, 200
GCI, 201
HORSPACE, 201
HS, 201
HYPHENATION, 201
I, 202
IF, 202
INC, 202
INCLUDE, 202
INDENT, 203
INDEX, 204
INT, 204
INTERACTIVE, 204
K, 205
KEEP, 205
KEYBOARD, 205
L, 206
LAYOUT, 206
LBS, 206
LEND, 207
LINE, 207
LINEEND, 207
LIST, 208
LOAD, 210
LOCAL, 213
LOCATION, 213
LOGICALBACKSPACE, 213
MTS, 214
NC, 214
NEWCOL, 214
NEWLINE, 214
NEWPAGE, 215
NEWPARA, 215
NL, 215
NOPROLOGFILE, 215
NOSENTENCE, 215
NP, 215
NPAGE, 215
NS, 215
OD, 215
OUTPUTDEVICE, 216

247

OVERSTRIKE, 216
P, 217
PAGE, 217
PAGEEND, 217
PAR, 217
PARAEND, 217
PD, 217
PE, 218
PEND, 218
PROOFDEVICE, 219
RESERVE, 226
RESETFOOTNOTE, 228
RSFOOT, 228
S, 229
SENTENCE, 229
SP, 229
SPLIT, 229
STOP, 229
SUS, 230
SUSPEND, 230
T, 231
TAB, 231
THEN, 232
TOOD, 233
TOPD, 233
TRANSLATE, 233
TYP, 233
TYPESIZE, 233
U, 233
UNDERLINE, 233
USE, 234
VERTGAP, 234
VERTJUST, 234
VERTSPACE, 234
VG, 234
VJ, 234
VS, 234
WHILE, 234

constant, ASIS, 184
A0 – A8, 187
BACK, 187
BOLD, 187
BOLDITALIC, 187
BOTH, 187
BOTTOM, 187
CAPNEXTCHAR, 188
CENTER, 188
CENTRE, 188
COMDINT, 189
COMDSEP, 189
COMDTERM, 189
CONTLINECHAR, 189
DATE, 191
DAY, 191
EMPHNEXTCHAR, 195

EXTRABOLD, 197
EXTRABOLDITALIC, 197
FALSE, 197
FRONT, 200
HEXDELIM, 201
IN, 202
INCH, 202
INCHES, 202
ITALIC, 205
JUSTIFY, 205
LEFT, 207
LI, 207
LIGHT, 207
LIGHTITALIC, 207
LINES, 207
MILLIMETER, 214
MILLIMETERS, 214
MILLIMETRE, 214
MILLIMETRES, 214
MM, 214
MONTH, 214
NO, 215
NONLBWDSPACE, 215
NORMAL, 215
OFF, 215
ON, 216
PAGENUM, 217
PI, 218
PICA, 218
PICAS, 218
PO, 218
POINT, 218
POINTS, 218
PREFORMATTED, 218
RIGHT, 228
SCNTN, 228
TIME, 232
TOP, 232
TRUE, 233
UN, 233
UNFORMATTED, 233
UNIT, 233
UNITS, 234
VERSION, 234
YEAR, 235
YES, 235

function, ALPHABETIC(par), 184
AT_INFO(par1 [,par2]), 185
CHAREXIST(par), 188
CHARS(par), 188
COLUMN_POSITION

[(expression)], 189
CUREMPFONT, 191
DIV(par1, par2), 195
ENGLISH(par), 196

248

EXIST(name), 197
FLOAT_INFO [(par. . .)], 199
FORDIS(name), 200
FRENCH(par), 200
ITYPE(name, [par2]), 205
LINEREM, 207
LINEUSED, 207
LISTING(par), 210
LOCATION_INFO(par), 213
LOWERCASE(par), 213
MAX(par1,par2), 213
MEMBER(par,structure), 214
MIN(par1,par2), 214
MTSCMD(par), 214
NRPARS, 215
PAGE_POSITION [(expression)],

217
PAGEREM, 217
PAGEUSED, 217
POSITION [(expression)], 218
REM(par1, par2), 226
REMAINING [(expression)], 226
REP(par1, par2), 226
RESERVE_INFO [(par, . . .)], 227
ROMAN(par), 228
SEPARATE(par1, par2), 229
SHOWCPU, 229
SHOWVM, 229
STACK(name), 229
STATS [(par)], 229
STRING(par), 229
STRUC(structure), 229
STRUCTURE(par1,par2, [par3]),

229
SUBSTRUC(par1,par2,par3), 230
SYSCMD(par), 231
SYSCMDNOECHO(par), 231
TABLE_INFO(par1, par2 [,par3]),

231
TEXT_DESTINATION, 232
TEXTONLY(par), 232
TEXTWIDTH(par), 232
TOC(par1 [,par2, par3, . . ., par10]),

232
TYPE(name), 233
UERR(par1 [,par2]), 233
UNSTACK(name), 234
UPPERCASE(par), 234
VECLEN(name), 234
VTYPE(name), 234
X(par1 [,par2, par3, . . ., par10]),

235
keyword, ALIGNMENT = kwd, 192

BOTMARGIN = length, 193
COLUMNS = expression, 189, 193

DEFCOLGAP = length, 191, 193,
194

DEFCOLWIDTH = length, 191,
193, 194

GAP = length, 192, 201
LEFTGAP = length, 193, 194, 207
LEFTMARGIN = length, 193
PAGESIZE = length structure, 193
RIGHTGAP = length, 193, 194, 228
RIGHTMARGIN = length, 193
TOPMARGIN = length, 193
WIDTH = length, 192, 234

layout macro, CHAP, 188
CONCL, 189
EEX, 195
EQT, 197
EX, 197
HEAD, 201
INTRO, 205
PART, 217
QT, 226
SIZE, 229
SUB, 229
TITLE, 232

macro, EPT, 196
OLDPT, 215
PT, 219
PTRESTORE, 224
PTSAVE, 224
TOCMACRO, 232
XMACRO, 235

system variable, ATTNS, 185
CURBOTMARGIN, 191
CURCOL, 191
CURCS, 191
CURFONT, 191
CURKEYBOARD, 191
CURLEFTMARGIN, 191
CURLINESPACE , 191
CURLP, 191
CURPAGEHEIGHT, 191
CURPAGESIZE, 191
CURPAGEWIDTH, 191
CURRIGHTMARGIN, 191
CURTABLINE, 191
CURTOPMARGIN, 191
CURUNDERLINE, 191
CURWORD, 191
FUNCTIONRC, 200
GARBAGECOUNT, 201
GARBAGESPACE, 201
INTPAGELNR, 205
INTPAGENR, 205
LAYNAME, 206
LINDENT, 207

249

LINDENTINDEX, 207
MACFLAG, 213
ODLOADED, 215
PDLOADED, 218
PGNTS, 218
RC, 226
RINDENT, 228
RINDENTINDEX, 228
SOURCELNR, 229
SYMSIZE, 231
THISPAGE, 232
TSIZE, 233

variable, ALIGNMENT = kwd, 184
BLANKLINE = length, 187
BOTMARGIN = length, 187
CAP = logical value, 187
CTR1 = 1, 190
CTR10 = 0, 190
CTR2 = 1, 190
CTR3 = 1, 190
CTR4 = 1, 190
CTR5 = 1, 190
CTR6 = 0, 190
CTR7 = 0, 190
CTR8 = 0, 190
CTR9 = 0, 190
DEFUNITS = kwd, 194
FOOTCONTINUE = expression,

200
FOOTCTR = expression, 200
FOOTDIVIDE = expression, 200
FOOTINDEX = expression, 200
FOOTSEP = expression, 200
FUZZ = expression, 200
GALLEY = logical value, 200
INPUTMODE = kwd, 204
LC, 207
LEFTINDENTS = length structure,

207
LEFTMARGIN = length, 207
LINESPACE = length, 207
MAXWORDSPACE = length, 214
MINHYPH = expression, 214
ODCHARACTERSET = expression

, 215
ODFONT, 215
ODNAME = expression, 215
ODTSIZE, 215
PAGESIZE = length structure, 217
PARAIND = length, 217
PARASEP = length, 217
PDCHARACTERSET = expression,

218
PDNAME = expression, 218
PGNTLIMIT = expression , 218

PNCTR = expression, 218
PNHEAD = expression, 218
PNTRAIL = expression, 218
PRINTON = kwd, 218
PROOF = logical value, 219
PTCOUNTER = structure, 221
PTITEMGAP = length structure,

222
PTLEV = expression, 222
PTPOSTGAP = length structure,

223
PTPOSTINDENT = structure, 223
PTPOSTLEVELSTRING = string

structure, 223
PTPOSTSTRING = string

structure, 223
PTPREGAP = length structure, 223
PTPREINDENT = structure, 223
PTPRELEVELSTRING = string

structure, 224
PTPRESTRING = string structure,

224
PTSEP, 225
PTTEXTINDENT = structure, 225
PTTEXTINDENTHANG =

structure, 225
RIGHTINDENTS = length

structure, 228
RIGHTMARGIN = length, 228
RUNPAR, 228
R0 = expression, 228
R1 = expression, 228
SENTSEP = length, 229
SERERRS = logical value, 229
SPLITSTRING = expression, 229
SYMMAX = expression, 231
TIMERLIMIT = expression, 232
TOCHEADER = expression, 232
TOCHEADERLIST = structure,

232
TOCINDEX = expression, 232
TOCMACROLIST = structure, 232
TOPMARGIN = length, 233
UC, 233
UNDERLINEDISPLACEMENT =

length, 233
UNDERLINESTRING =

expression, 233
UNDERLINEWORDSPACE =

logical value, 233
UPPERCASEINPUT = logical

value, 234
VERTALIGNMENT = kwd, 234
WORDSPACE = length, 234
XCOUNT = expression, 235

250

XHEADER = expression, 235
XHEADERLIST = structure, 235
XINDEX = expression, 235
XMACROLIST = structure, 235
XPARS = expression, 235
XPGPRINT = expression, 235
XPRINT = expression, 235

251

ERROR MESSAGES

'name' is not yet define. . ., 147
&FL is not yet defined. . . ., 110
&name is not defined. De. . ., 70
%Too many parameters to . . ., 171
'name' is . . ., 34
A NEWPAGE or PAGEEND com. . ., 50
A table entry with this . . ., 89
All RESERVEs must have a. . ., 227
Assignment to this item . . ., 123
Attempt to change a cons. . ., 123
Attempt to TAB past last. . ., 85
Bad parameter list forma. . ., 115
Both arguments of multip. . ., 100, 112
CASE index out of range . . ., 158
Character is not availab. . ., 30, 40
Contents of &FL included. . ., 110
Defined columns and thei. . ., 76
DELAY was pending but wa. . ., 73
Diagonal lines are not s. . ., 145
Emphasis is not availabl. . ., 38
End of file encountered . . ., 57, 156
ENDFOOTNOTE command does. . ., 57
Endless pointer chain de. . ., 108
FLOAT or FOOTNOTE is alr. . ., 56
FLOAT, FOOTNOTE, or KEEP. . ., 51
Index entry too long to . . ., 142
Index number nn contai. . ., 137
Input line longer than 2. . ., 97
Item assigned is STATIC.. . ., 126
Justification space requ. . ., 12
Line width exceeded in A. . ., 94
LNE is not defined. Igno. . ., 4
LOCATION ID is already d. . ., 144
Logical backspacing used. . ., 41
Missing continuation lin. . ., 27
Missing ENDIF for IF com. . ., 156
name is already defi. . ., 34
Negative horizontal spac. . ., 19
No reserve by that name.. . ., 66, 230
Non-line-breaking word s. . ., 30
Not allowed in this type. . ., 78
Number too large to sca. . ., 126
Number too large to scal. . ., 127
Number truncated to 4 de. . ., 99
Only one argument of add. . ., 100
Output Device is already. . ., 170, 216
PAGE, COLUMN, PAGEEND a. . ., 85
Requested horizontal spa. . ., 19
RESERVEs on page leave n. . ., 57, 169,

227
Result of expression can. . ., 127
String delimiter missed, 115
String delimiter missing. . ., 97
Table entry is longer th. . ., 169
Table entry is too long . . ., 85
Table of Contents number. . ., 133
The RESERVE, or FLOAT is. . ., 198,

227
The size of this page ma. . ., 198, 227
The TAB command is only . . ., 85
Too many levels specifie. . ., 142
TYPESIZE command not all. . ., 43
Unable to keep non-line-. . ., 11, 84, 85,

94
Unit SPUNCH was referenc. . ., 167, 168
Unmatched parentheses, 115
Value higher than maximu. . ., 125
Value lower than minimum. . ., 125
Value not found in value. . ., 125
Vertical size specified . . ., 198, 227
xxxx more than the width. . ., 84, 92
You cannot back up any f. . ., 66

Error Messages

