
Computing Center Memo 815 August 1987 Revised: August 1988

Using LATEX on MTS

by Leslie Lamport, modified by U-M TEX support staff

University of Michigan Computing Center

Ann Arbor, Michigan

Contents

1 Getting Started 3

1.1 Running a Sample File . 3
1.2 Preparing and Running LATEX on Your Own Files 4

2 Carrying On 5

2.1 LATEX Files on MTS . 5
2.2 Document Styles . 6

2.2.1 The rackham Style . 6
2.2.2 The proc Style Option 6
2.2.3 The bezier Style Option 7
2.2.4 The ifthen Style Option 7
2.2.5 Letters . 8

2.3 Where the Files Are . 8
2.4 Running lablst.tex and idx.tex 8
2.5 Differences from the Manual 9
2.6 Using BibTEX . 9
2.7 Using SliTEX . 11
2.8 Fonts . 11
2.9 Special Versions . 11

Page 2

3 Errata and Additions to the Manual 12

A Bibliography-style Hacking 16

A.1 General description . 17
A.2 Commands . 18
A.3 The built-in functions . 20
A.4 Name formatting . 23

Computing Center Memo 815

1 GETTING STARTED Page 3

Using LATEX on MTS

LATEX runs on a variety of computers at many different sites. This doc-
ument tells you how to use LATEX using MTS on the UM and UB systems
at The University of Michigan. It is not about LATEX itself, which is de-
scribed by the manual—LATEX: A Document Preparation System, published

by Addison-Wesley, available at fine book stores everywhere.
If you have a question that you can’t answer by reading the manual and

this document, ask the TEX Support Staff. They should also be informed of
any possible LATEX bugs or undocumented anomalies. They can be reached
by $MESSAGE, send to TeX Support Staff.

1 Getting Started

1.1 Running a Sample File

Before preparing your own documents, you may want to get acquainted with
LATEX by running it on a sample input file. First make your own copy of the
file sample.tex by typing the following MTS command:

$duplicate tex:sample.tex sample.tex

(This and all other MTS commands are entered by pressing the return key.)
A copy of the file sample.tex is now stored on disk on your CCID; you can
edit it just like any other file. If you destroy or mess up your copy, typing
the above command again gets you a fresh one.

Next, run LATEX on the file sample.tex by typing:

$create sample.aux

$create sample.dvi

$create sample.xer

$run *latex par=sample

When LATEX has finished, it will have produced the file sample.dvi. You
can print this file by typing the commands

Computing Center Memo 815

1 GETTING STARTED Page 4

$run *Dvixer par=sample.dvi

$run *Pagepr scards=sample.xer

The output will be produced on a Xerox 9700 page printer, located either at

CNTR, UNYN, or NUBS. Type $HELP 9700 for more information on page
printer use.

After it has been printed, you can delete all the sample files by typing

$destroy sample.?

and answering yes to the prompt for confirmation.

1.2 Preparing and Running LATEX on Your Own Files

You must use a text editor to prepare an input file for LATEX. The User
Guide Introduction to the MTS File Editor–Getting it Right describes the
text editor available on MTS. You can also prepare files offline on a micro-
computer and telecopy them to MTS. Currently, the supported programs are
MacWrite for the Macintosh, and Microsoft Word for both the Macintosh
and for IBM PCs and PC-compatibles. The easiest way to start learning
about LATEX is by examining the file small.tex with your text editor. You
can obtain your own copy of this file, on your CCID, by typing the command

$duplicate tex:small.tex small.tex

After you have prepared your file, whose name should have the exten-
sion tex, you must run it through LATEX and print the output. Follow the
instructions in Section 1.1, except substitute the first name of your file for
“sample”. Remember to save disk charges by deleting the dvi and xer file
after you are all done with that document.

Since LATEX is not a text editor, some other software must be used to
enter the text of a LATEX document. Some text editors use control codes
that may not be visible but could cause bad characters to appear in the
input file and generate the

! Text line contains an invalid character.

error. With MTS, you can use the MTS Editor to edit documents without
entering any special control codes or non-printing characters. You can also
enter text offline using any of the microcomputer word processing programs
supported by the U-M Computing Center and telecopy it to MTS to use
as LATEX input without special character problems. Word documents must

Computing Center Memo 815

2 CARRYING ON Page 5

be saved as plain ASCII files in this case. In general, other editors or word
processors that produce ASCII output will not cause character problems,
but it is wise to test a sample file before committing yourself to the use of
a non-supported system.

If you want to stop LATEX in the middle of its execution, perhaps because
it is printing a seemingly unending string of uninformative error messages,
hit the Break or Attn key, or type Control-e (press e while holding down
the key labeled CTRL). This will make LATEX stop and return you to MTS
command mode. If you change your mind you can type $Restart to con-
tinue.

2 Carrying On

2.1 LATEX Files on MTS

The only special concern in using LATEX that is caused by the way files are
handled by TEX on MTS arises because when a TEX program starts to write

a file, it destroys the previous version of that file. Thus, if an error forces
you to stop LATEX prematurely (by typing Break or Attn), then the files
that LATEX was writing are incomplete, and the previous complete versions
have been destroyed. You probably don’t care about the output on the dvi
file, but, if you are making a table of contents or using cross-referencing
commands, then LATEX also writes one or more auxiliary files that it reads
the next time it processes the same input file. If the auxiliary files are
incomplete because LATEX was stopped before reaching the end of its input
file, then the table of contents and cross-references will be incorrect the
next time LATEX is run on the same input file. You will have to run LATEX
a second time to get them right. If you want to avoid having to run LATEX
twice after making an error—for example, if your input is very long—then
you should save copies of these auxiliary files before running LATEX. An input
file named myfile.tex and all the auxiliary files produced by LATEX from it

are included in the MTS file pattern myfile.?. Use the MTS $duplicate

command to save copies of these files.
The second possible problem in using LATEX on MTS involves the way

that LATEX on MTS searches public and user CCIDs for the files that LATEX
reads. In addition to reading your document’s text input file, LATEX also
reads the files specified by \input and \include commands. LATEX will
look for these files first on your CCID and next on the CCID TEX. It will
have no problem finding the correct files if you follow two simple rules:

Computing Center Memo 815

2 CARRYING ON Page 6

1. To avoid confusion, give your files unique names, not the same file
names as the public files that reside on the TEX CCID.

2. If you want to use an input file from another CCID, specify the name
of the file fully in the form ccid:filename.

2.2 Document Styles

There are four document styles and style options available on MTS that are
not described in the manual: the rackham document style for dissertations
submitted to U-M’s Rackham School of Graduate Studies; the proc style
option for making camera-ready copy for conference proceedings, the bezier
option for drawing curves, and the ifthen option for implementing if-then-
else and while-do control structures. They are described below.

2.2.1 The rackham Style

The rackham style is a separate document style. It produces output in the
format required by the Rackham School of Graduate Studies for doctoral
dissertations. It was written by Doug Maus for CAEN (the Computer-Aided
Engineering Network) and is modelled after the TEX dissertation package
documented in CC Memo 814, “TEX and LATEX Macros for Formatting a
Rackham Dissertation.” The revised version of Memo 814 describes how to
use it. The CAEN documentation for it is available at Dollar Bill Copying.

2.2.2 The proc Style Option

The proc option is used with the article document style. It produces two-
column output for ACM and IEEE conference proceedings. The command
\copyrightspace makes the blank space at the bottom of the first column
of the first page, where the proceedings editor will insert a copyright notice.
This command works by producing a blank footnote, so it is placed in the
text of the first column. It must go after any \footnote command that

generates a footnote in that column.
LATEX automatically numbers the output pages. It’s a good idea to

identify the paper on each page of output. Placing the command

\markright{Jones---Foo}

in the preamble (before the \begin{document} command) prints “Jones—
Foo” at the bottom of each page.

Computing Center Memo 815

2 CARRYING ON Page 7

2.2.3 The bezier Style Option

This option defines a single command, \bezier, that draws a curved line in
a picture environment. Let Pi be the point with coordinates (xi, yi), for
i = 1, 2, and 3. The command

\bezier{n}(x1,y1)(x2,y2)(x3,y3)

draws n points on the quadratic Bezier spline determined by the three points
P1, P2, and P3. The locus of points on this spline is a parabolic arc from P1

to P3 having the line P1P2 tangent to it at P1 and the line P2P3 tangent to
it at P3. Note that P2 is not on this arc unless P1, P2, and P3 are colinear,
in which case the arc is a straight line. Bezier splines are useful because it’s
easy to join two of them together smoothly by giving them the same tangent
line where they meet.

It takes roughly 75 points per inch to form a solid line, depending upon
the line thickness. See Section C.13.3 of the LATEX manual for commands

to specify line thickness in a picture environment. This command is very
slow, and TEX has enough memory to hold only about 1000 points plus a
page of text. (Remember that TEX keeps the current page plus all as yet
unprinted figures in memory.) So, the bezier command should be used for
only a small number of small curves.

2.2.4 The ifthen Style Option

This option provides two programming language features that are useful only
for people who already know how to program. It defines the two commands

\ifthenelse{test}{then clause}{else clause}

\whiledo{test}{do clause}

that implement the following two Pascal language structures

if test then then clause

else else clause

while test do do clause

The then , else, and do clauses are ordinary LATEX input; test is one of the
following:

• A relation between two numbers formed with <, >, or =; for example,
\value{page}>3.

Computing Center Memo 815

2 CARRYING ON Page 8

• \equal{string1}{string2}, which evaluates to true if string1 and
string2 are the same strings of characters after all commands have
been replaced by their definitions. (Upper- and lowercase letters are
unequal.)

• A logical combination of the above two kinds of tests using the opera-
tors \or, \and, and \not and the parentheses \(and \)—for example:

\not \(\value{section} = 1

\and \equal{Jones}{\myname} \)

These commands, together with \renewcommand and the commands of Sec-
tion C.7.4 for manipulating counters, open up a whole new world of hacking.

2.2.5 Letters

The letters document style, described in the manual, should be used for
generating personal letters. At the moment there is no special style available
for generating letters to be copied onto U-M letterhead. There are no fea-
tures for making letters other than those described in the manual. However,
suggestions will be accepted for such options.

2.3 Where the Files Are

All LATEX files mentioned in the LATEX manual, including the sty and doc

files, are on the CCID TEX. The tfm files used by TEX are on TEX, but
the pixel files used by the Xerox 9700 are not accessible online.

2.4 Running lablst.tex and idx.tex

A list of labels and citations in an input file is printed by running LATEX on
the input file lablst.tex, which is done by typing

$Run *latex par=lablst

LATEX will then ask for the name of the input file, which should be typed
without an extension, and for the name of the main document style (e.g.,
article), used by that file.

The index entries on an idx file are printed by running LATEX on the file

idx.tex, which is done by typing

$Run *latex par=idx

Computing Center Memo 815

2 CARRYING ON Page 9

LATEX will ask for the name of the idx file, which is typed without an
extension.

2.5 Differences from the Manual

All LATEX features described in the manual are provided by the implemen-
tation at U-M on MTS. However, SliTEX is unavailable.

Disks and circles are available in sizes from 1 to 15 points, in 1-point
increments, and 1/4 circle or oval ‘corners’ in sizes that produce 4, 8, 12,
16, 20, 24, 28, 32, 36 and 40-point circles.

2.6 Using BibTEX

BibTEX is a program for compiling a reference list for a document from a
bibliographic database. The current MTS version of BibTEX, Version .98i,
corresponds to our current LATEX version 2.09, but was not installed when
LATEX was originally made available.

If you are using LATEX and BibTEX on a variety of computing systems,
pay attention to the version numbers involved, since .98i .bst files are in-
compatible with .99a and vice-versa. PCTEX uses .98i. BibTEX’s author,
Oren Patashnik, has announced that he will freeze the program at v.1.00,
after which there will be bug fixes only, so the MTS version will probably
be upgraded when 1.00 is available.

BibTEX is run by typing

$Run *BIBTEX par=myfile

where myfile.tex is the name of your LATEX input file. This reads the
file myfile.aux, which was generated when you ran LATEX on myfile.tex,
and produces the file myfile.bbl. BibTEX should be run from the CCID
containing myfile.tex (which should be the same CCID from which LATEX
was run on that file).

If the bib file is not on the same CCID as the LATEX input file—for
example, if you’re using someone else’s bib file—then you must include a
CCID as part of the file name specified by the \bibliography command.
For example, the LATEX command

\bibliography{1XYZ:gnus}

specifies the file gnus.bib kept by Jones on his 1XYZ CCID.

Computing Center Memo 815

2 CARRYING ON Page 10

There is now no formal provision for sharing bibliographic database in-
formation, nor are there programs to assist in making your own bib files.
Suggestions for forming one or more common bib files are welcome.

In addition to the bibliography styles described in the manual, there is
a ieeetr style that formats entries in the style of the IEEE transactions.
Users can also customize styles to their particular requirements. Details on
how to customize styles are provided in Appendix A of this writeup.

In addition to the usual three-letter abbreviations for the months, the
following abbreviations are defined by the bibliography styles:

acmcs ACM Computing Surveys

acta Acta Informatica

cacm Communications of the ACM

ibmjrd IBM Journal of Research and Development

ibmsj IBM Systems Journal

ieeese IEEE Transactions on Software Engineering

ieeetc IEEE Transactions on Computers

ieeetcad IEEE Transactions on Computer-Aided Design of Integrated

Circuits

ipl Information Processing Letters

jacm Journal of the ACM

jcss Journal of Computer and System Sciences

scp Science of Computer Programming

sicomp SIAM Journal on Computing

tocs ACM Transactions on Computer Systems

tods ACM Transactions on Database Systems

tog ACM Transactions on Graphics

toms ACM Transactions on Mathematical Software

toois ACM Transactions on Office Information Systems

toplas ACM Transactions on Programming Languages and Systems

Computing Center Memo 815

2 CARRYING ON Page 11

size default (10pt) 11pt option 12pt option
\tiny 5pt 6pt 6pt
\scriptsize 7pt 8pt 8pt

\normalsize 10pt 11pt 12pt
\large 12pt 12pt 14pt
\Large 14pt 14pt 17pt
\LARGE 17pt 17pt 20pt
\huge 20pt 20pt 25pt
\Huge 25pt 25pt 25pt

Table 1: Type sizes for LATEX size-changing commands.

tcs Theoretical Computer Science

Note: All styles should share the same set of abbreviations.

2.7 Using SliTEX

SliTEX is a version of LATEX for making slides. This is presently unavailable.

2.8 Fonts

Almost all the symbols available on our fonts can be generated by ordinary
LATEX commands. However, there are type faces and sizes not obtainable by
LATEX’s size-changing commands with the ordinary document styles. Con-
sult CC Memo 811, “TEX Fonts Available on the Xerox 9700,” to find the
TEX name for such a font.

Tables 1 and 2 allow you to determine if the font for a type style at a
particular size is preloaded, loaded on demand, or unavailable. Table 1
tells you what size of type is used for each LATEX type-size command in the
various document-style options. For example, with the 12pt option, the
\large declaration causes LATEX to use 14pt type. Table 2 tells, for every

type size, to which class of fonts each type style belongs. For example, in
14pt type, \bf uses a preloaded font and the other five type-style commands
use load-on-demand fonts. Roman (\rm) and math italic (\mit) fonts are
all preloaded; the \em declaration uses either italic (\it) or roman.

2.9 Special Versions

No foreign-language or other special versions of LATEX are currently available
on MTS.

Computing Center Memo 815

3 ERRATA AND ADDITIONS TO THE MANUAL Page 12

\it \bf \sl \sf \sc \tt

5pt X D X X X X
6pt X D X X X X

7pt P D D D X D
8pt P D D D X D
9pt P P D D X P
10pt P P P P D P
11pt P P P P D P
12pt P P P P D P
14pt D P D D D D
17pt D P D D X D
20pt X X X D X X
25pt X X X D X X

Table 2: Font classes: P = preloaded, D = loaded on demand, X = unavail-

able.

3 Errata and Additions to the Manual

These are all the errors and omissions to the manual, LATEX: A Document

Preparation System reported by 16 January 1986.

page xiii

Add Mike Urban to the list of people thanked in the third paragraph.

page 2

In the first paragraph of Section 1.1, replace the three instances of
sample.tex by small.tex.

page 15, line 18

Replace “thay” by “that”.

Section 3.3.5, page 49

The name of the environment is eqnarray. There are two instances on this
page of the incorrect name “eqnarry” that should be changed.

Computing Center Memo 815

3 ERRATA AND ADDITIONS TO THE MANUAL Page 13

page 52, last line

Replace “instead of
∫ ∫

ydxdy” by “instead of
∫ ∫

zdxdy”.

pages 55–58, 124, and 173–174

Commands that define or redefine a command or environment, such as the
\newcommand and \renewenvironment commands, should not be nested
within one another. Doing so may result in the following TEX error:

! Illegal parameter number in definition of

page 60, line −7

Replace “one of these environments” by “a figure or table environment”.

page 75, line 15

Change \thebibliography to \bibliography.

page 88, line 27

Change “entire the paragraph”to “the entire paragraph”.

page 89, line 16

Change “page-breaking” to “line-breaking”.

page 95, line 5

Replace “{.01in}” by “{1.01in}”.

page 96

In the penultimate paragraph of Section 5.4.2, replace

The \vfill command is an abbreviation for \vspace{\fill}.

with the following:

The \vfill command is equivalent to a blank line followed by
\vspace{\fill}.

Computing Center Memo 815

3 ERRATA AND ADDITIONS TO THE MANUAL Page 14

page 98, line 6

Remove an “i” from “directiion”.

page 102

In Figure 5.1, replace the two occurrences of “-1.8” by “−1.8”.

page 116, line 20

Change “fourteen-point Plus Roman” to “twelve-point Plus Roman”.

page 118, line −10

Change this line to:

... (myfile.tex [1] [2] [3] (part1.tex [4] [5]) (part2.tex [6] [7]

page 142

Add the following near the bottom of the page, just above the Titles head-

ing.

If an author or editor field has more names than you want to
type, just end the list of names with and others; the standard
styles convert this to the conventional et al.

page 160, top line

Change “(Section 5.6)” to “(Section 5.3)”.

page 160, line −9

Change the description of the openbib style option to: “Causes the bibliog-
raphy (Section 4.3) to be formatted in open style. (See van Leunen [7].)”

page 168, line −5

Replace “printed as \ ” by “printed as ”.

page 169, line −5

Change “first and third rows” to “first and third columns”.

Computing Center Memo 815

3 ERRATA AND ADDITIONS TO THE MANUAL Page 15

page 170

Add the following paragraph after line 5:

An overfull \hbox warning occurs if a formula extends beyond
the prevailing margins. However, if the formula does lie within
the margins, no warning is generated even if it extends far enough
to overprint the equation number.

page 176

Change the four lines immediately following the heading for Section C.8.1
to:

\begin{figure}[loc] body \end{figure}

\begin{figure*}[loc] body \end{figure*}

\begin{table}[loc] body \end{table}

\begin{table*}[loc] body \end{table*}

page 185, line −5

Replace “suppresses command” by “command suppresses”.

page 187, lines 15–17

The sentence “It also writes bib files . . . ” is redundant and can be eliminated.

page 191, line 13

The word “paragraph” misspelled.

page 191, line 14

Remove the space between \begin and {sloppypar}. (This is for consis-
tency only; LATEX ignores the space.)

page 199

Add the following sentence to the last paragraph on the page:

Words typeset in typewriter style or in two different styles are

not hyphenated except where permitted by \- commands.

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 16

(This is a change to LATEX made on 18 December 1985.) Also, add the fol-
lowing index entry citations to this page: “\-”, “hyphenation, suppressed”,
and “typewriter type style, no hyphenation in”.

page 217

Add the subentry “openbib, 160” to the index entry “document-style op-
tion”.

page 228

In index entry for \multicolumn, change “194” to “184”.

page 229

Add the index entry “openbib document-style option, 160”.

page 241

Add page 47 to the index entry for “van Leunen, Mary-Claire”.

Tear-Out Command Sheet

In the first column, sixth line after “Sentences and Paragraphs” heading,
replace “& &” by “& \&”.

A Bibliography-style Hacking

This section is not intended for ordinary LATEX users. Together with the
standard-style documentation in the LATEX manual, it should explain how to
modify existing style files and to produce new ones. If you’re a serious style

hacker you should be familiar (in order of importance) with van Leunen [6]
for points of style, with Lamport [3] and Knuth [2] for formatting matters,
and with Scribe [5] for compatibility details. And while you’re at it, if you
don’t read the great little book by Strunk and White [4], you should at least
look at its database and reference-list entries to see how BibTEX handles
multiple names.

If you find any bugs in the standard styles or if you can’t do things you’d
like with bibliography-style files, please complain to Oren Patashnik.

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 17

A.1 General description

You write bibliography-style files in a postfix stack language. It’s not too
hard to figure out how by looking at the standard-style documentation, but
this description fills in a few details (it will fill in more details if there’s a
demand for it).

Basically the style file is a program, written in an unnamed language,
that tells BibTEX how to format the entries that will go in the reference list
(henceforth “the entries” will be “the entry list” or simply “the list”, context
permitting). This programming language has ten commands, described in
the next subsection. These commands manipulate the language’s objects:
constants, variables, functions, the stack, and the entry list. (Warning: The
terminology in this documentation, chosen for ease of explanation, is slightly

different from BibTEX’s. For example, this documentation’s “variables” and
“functions” are both “functions” to BibTEX. Keep this in mind when inter-
preting BibTEX’s error messages.)

There are two types of functions: built-in ones that BibTEX provides
(these are described in Section A.3), and ones you define using either the
MACRO or FUNCTION command. As a style designer, creating or modifying
functions using the FUNCTION command will be your most time-consuming
task (actually, becoming familiar with the references listed above will be,
but assume for the moment that’s done).

Let’s look at a sample function fragment. Suppose you have a string vari-
able named label and an integer variable named lab.width, and suppose
you want to append the character a to label and increment lab.width:

...

’label label "a" * := % label := label * "a"

’lab.width lab.width #1 + := % lab.width := lab.width + 1

...

In the first line, ’label pushes the variable name onto the stack. Next,
label pushes its value, and "a" pushes the string constant a onto the stack.
Then the built-in function * pops the top two strings and pushes their con-

catenation. Finally, the built-in function := pops the concatenation and
variable name and performs the assignment. BibTEX treats the stuff follow-
ing the % as a comment. The second line is similar except that it uses #1
(with no intervening spaces) to push the integer constant.

The nonnull spacing here is arbitrary: multiple spaces, tabs, or newlines
are equivalent to a single one (except that you’re probably better off not
having blank lines within commands, as explained shortly).

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 18

For string constants, absolutely any printing character is legal between
two consecutive double quotes, but BibTEX here (and only here) treats
upper- and lower-case equivalents as different. Furthermore, spacing is rele-
vant within a string constant, and you mustn’t split a string constant across
lines (that is, the beginning and ending double quotes must be on the same
line).

Variable and function names may not begin with a numeral and may
not contain any of the ten restricted characters described earlier, but may
otherwise contain any printing characters. Also, BibTEX treats upper- and
lower-case equivalents as the same.

Integers and strings are the only value types for constants and variables
(booleans are simply 0-or-1 integers). There are three kinds of variables:

global variables These are either integer- or string-valued, declared using
an INTEGERS or STRINGS command.

entry variables These are either integer- or string-valued, declared using
the ENTRY command. Each has a value for each entry on the list
(example: a variable label might store the label string you’ll use for
the entry).

fields These are string-valued, read-only variables that store the informa-
tion from the database file, and whose values are set by the READ

command. As with entry variables, each has a value for each entry.

A.2 Commands

There are ten style-file commands: Five (ENTRY, FUNCTION, INTEGERS,
MACRO, and STRINGS) declare and define variables and functions, one (READ)
reads in the database information, and four (EXECUTE, ITERATE, REVERSE,
and SORT) manipulate the entries and produce output. Although the com-
mand names appear here in upper case, BibTEX ignores case differences.

The order restrictions are: There must be exactly one ENTRY and
one READ command; the ENTRY, all MACRO, and certain (see call.type$)

FUNCTION commands must precede the READ command; and the READ com-
mand must precede the four that manipulate the entries and produce output.

Also it’s best (but not essential) to leave at least one blank line between
commands and to leave no blank lines within a command; this helps BibTEX
recover from any syntax errors you make.

You must enclose each argument of every command in braces. Look at
the standard-style documentation for syntactic issues not described here.

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 19

ENTRY Declares the fields and entry variables. It has three arguments, each
a (possibly empty) list of variable names. The three lists are of: fields,
integer, and string entry variables. There is an additional string entry
variable that BibTEX automatically declares, sort.key$, used by the
SORT command. Each of these variables has a value for each entry on
the list.

EXECUTE Executes a single function. It has one argument, the function
name.

FUNCTION Defines a new function. It has two arguments; the first is the
function’s name and the second is its definition. You must define a
function before using it; recursive functions are thus illegal.

INTEGERS Declares global integer variables. It has one argument, a list of
variable names. You may have any number of these commands, but a

variable’s declaration must precede its use.

ITERATE Executes a single function, once for each entry in the list, in the
list’s current order (initially the list is in order of occurrence, but the
SORT command may change this). It has one argument, the function
name.

MACRO Defines a string macro. It has two arguments; the first is the macro’s
name, which is treated like any other variable or function name, and
the second is its definition, which must be double-quote-delimited.
You must have one for each three-letter month abbreviation; in ad-
dition, you should have one for common journal names. The user’s
database may override any definition you define using this command.
If you want to define a string the user can’t touch, use the FUNCTION

command, which has a compatible syntax.

READ Dredges up from the database file the field values for each entry in

the list. It has no arguments. If a database entry doesn’t have a value
for a field (and probably no database entry will have a value for every
field), that field variable is marked as missing for the entry.

REVERSE Exactly the same as the ITERATE command except that it executes
the function in reverse order of the entry list.

SORT Sorts the entry list using the values of the string entry variable
sort.key$. It has no arguments.

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 20

STRINGS Declares global string variables. It has one argument, a list of
variable names. You may have any number of these commands, but a
variable’s declaration must precede its use.

A.3 The built-in functions

There are currently 32 built-in functions. Every built-in function with a
letter in its name ends with a $. In what follows, “first”, “second”, etc.
refer to the order popped. A “literal” is an element on the stack, and it
will be either an integer value, a string value, a variable or function name,

or a special value denoting a missing field. If any popped literal has an
incorrect type, BibTEX complains and pushes the integer 0 or the null string,
depending on whether the function was supposed to push an integer or
string.

> Pops the top two (integer) literals, compares them, and pushes the integer
1 if the second is greater than the first, 0 otherwise.

< Analogous.

= Pops the top two (both integer or both string) literals, compares them,
and pushes the integer 1 if they’re equal, 0 otherwise.

+ Pops the top two (integer) literals and pushes their sum.

- Pops the top two (integer) literals and pushes their difference (the first

subtracted from the second).

* Pops the top two (string) literals, concatenates them (in reverse order,
that is, the order in which pushed), and pushes the resulting string.

:= Pops the top two literals and assigns to the second (which must be a
global or entry variable) the value of the first.

add.period$ Pops the top (string) literal, adds a “.” to it if the last non“}”
character isn’t a “.”, “?”, or “!”, and pushes this resulting string.

call.type$ Executes the function whose name is the entry type of an entry.
For example if an entry is of type book, this function executes the
book function. When given as an argument to the ITERATE command,
call.type$ actually produces the output for the entries. For an entry
with an unknown type, it executes the function default.type. Thus

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 21

you should define (before the READ command) one function for each
standard entry type as well as a default.type function.

change.case$ Pops the top two (string) literals; it changes the case of the
second according to the specifications of the first, as follows. (Note:
The word “letters” in the next sentence refers only to those at brace-
level 0, the top-most brace level; no other characters are changed.)
If the first literal is the string ul, it converts all letters to lower case
except the very first character in the string, which it converts to upper
case; if it’s the string uu, it converts all letters to upper case; and if it’s
the string ll or lu, it converts analogously. It then pushes this result-
ing string. (Note: It ignores case differences in the specification string;
for example, the strings Ul and ul are equivalent for the purposes of

this built-in function.)

chr.to.int$ Pops the top (string) literal, makes sure it’s a single character,
converts it to the corresponding ASCII integer, and pushes this integer.

cite$ Pushes the string that was the \cite-command argument for this
entry.

duplicate$ Pops the top literal from the stack and pushes two copies of it.

format.name$ Pops the top three literals (they are a string, an integer, and
a string literal, in that order). The last string literal represents a name
list (each name corresponding to a person), the integer literal specifies
which name to pick from this list, and the first string literal specifies
how to format this name, as explained in the next subsection. Finally,
this function pushes the formatted name.

if$ Pops the top three literals (they are two function literals and an integer
literal, in that order); if the integer is greater than 0, it executes the
second literal, else it executes the first.

int.to.chr$ Pops the top (integer) literal, interpreted as the ASCII integer
value of a single character, converts it to the corresponding single-
character string, and pushes this string.

int.to.str$ Pops the top (integer) literal, converts it to its (unique) string
equivalent, and pushes this string.

missing$ Pops the top literal and pushes the integer 1 if it’s a missing field,
0 otherwise.

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 22

newline$ Writes onto the bbl file what’s accumulated in the output buffer.
It writes a blank line if and only if the output buffer is empty. Since
write$ does reasonable line breaking, you should use this function
only when you want a blank line or an explicit line break.

num.names$ Pops the top (string) literal and pushes the number of names
the string represents—one plus the number of occurrences of the sub-

string “and” (ignoring case differences) surrounded by nonnull white-
space at the top brace level.

pop$ Pops the top of the stack but doesn’t print it; this best gets rid of an
unwanted stack literal.

purify$ Pops the top (string) literal, removes from it nonalphanumeric
characters except for white-space characters (which get converted to
spaces), and pushes the resulting string.

quote$ Pushes the string consisting of the double-quote character.

skip$ Is a no-op.

stack$ Pops and prints the whole stack; it’s meant to be used for style
designers while debugging.

substring$ Pops the top three literals (they are the two integers literals len
and start and a string literal, in that order). It pushes the substring
of the (at most) len consecutive characters starting at the startth
character (assuming 1-based indexing) if start is positive, and ending
at the −startth character from the end if start is negative (where the
first character from the end is the last character).

swap$ Swaps the top two literals on the stack.

top$ Pops and prints the top of the stack on the terminal and log file. It’s
useful for giving the user warning and error messages.

type$ Pushes the current entry’s type (book, article, etc.), but pushes the
null string if the type is either unknown or undefined.

while$ Pops the top two (function) literals, and keeps executing the second
as long as the (integer) literal left on the stack by executing the first
is greater than 0.

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 23

width$ Pops the top (string) literal and pushes the integer that represents
its width in some relative units (currently, hundredths of a point, as
specified by the July 1984 version of the amr10 font; the only white-
space character with nonzero width is the space). This is meant to be
used for comparing widths of label strings.

write$ Pops the top (string) literal and writes it on the output buffer (which

will result in stuff being written onto the bbl file if the buffer fills up).

Note that the built-in functions while$ and if$ require two function
literals on the stack. You get them there either by immediately preceding
the name of a function by a single quote, or, if you don’t feel like defining
a new function with the FUNCTION command, by simply giving its defini-
tion (that is, giving what would be the second argument to the FUNCTION

command, including the surrounding braces). For example the following
function fragment appends the character a if the string variable label is

nonnull:

...

label "" =

’skip$

{ ’label label "a" * := }

if$

...

A function whose name you quote needn’t be built in (unlike skip$ above)—
it may be one you’ve defined earlier.

A.4 Name formatting

What’s in a name? The LATEX manual [3] pretty much describes this. Each

name consists of four parts: First, von, Last, and Jr; each consists of a list
of name-tokens, and any list but Last may be empty for a nonnull name.
This subsection describes the format string you must supply to the built-in
function format.name$.

Suppose a database file has the field

AUTHOR="Charles Louis Xavier Joseph de la Vall\’ee Poussin"

in an entry [1], and suppose you want this formatted “last name comma
abbreviated first name”. If you use the format string

Computing Center Memo 815

A BIBLIOGRAPHY-STYLE HACKING Page 24

"{vv~}{ll}{, jj}{, f}?"

BibTEX will produce

de~la~Vall\’ee~Poussin, C.~L.~X.~J?

as the formatted string.
Let’s look at this example in detail. There are four brace-level 1 pieces

to this format string, one for each part of a name. If the corresponding part
of a name isn’t present (the Jr part for this name), everything in that piece
is ignored. Anything at brace-level 0 is output verbatim (the presumed typo
“?” for this name), but you probably won’t use this feature much.

Within each piece a double letter tells BibTEX to use whole tokens, and
a single letter to abbreviate them (these letters must be at brace-level 1);
everything else within the piece is used verbatim (well, almost everything—
read on). BibTEX puts default strings between tokens of a name part: For

whole tokens it uses a tie and for abbreviated ones it uses a period followed
by a tie. However it doesn’t use this default string after the last token in a
list; hence there’s no period following the “J” for our example. You should
have used

"{vv~}{ll}{, jj}{, f.}"

to get BibTEX to produce the same formatted string but with the question
mark replaced by a period. Note that the period should go inside the First-
name piece, rather than where the question mark was, in case a name has
no First part.

If you want to override BibTEX’s default between-token strings, you must
explicity specify a string. For example, suppose you want a label to contain
the first letter from each token in the von and Last parts, with no spaces;
you should use the format string

"{v{}}{l{}}"

so that BibTEX will produce

dlVP

as the formatted string for our example. You must give a string for each
piece whose default you want overridden (our example uses the null string
for both pieces), and this string must immediately follow either the single
or double letter for the piece. You may not have any other letters at brace-
level 1 in the format string.

Computing Center Memo 815

REFERENCES Page 25

References

[1] Charles Louis Xavier Joseph de la Vallée Poussin. A strong form of the
prime number theorem, 19th century.

[2] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, Mas-

sachusetts, 1984.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-
Wesley, Reading, Massachusetts, 1986.

[4] William Strunk, Jr. and E. B. White. The Elements of Style. Macmillan,
New York, third edition, 1979.

[5] Unilogic, Ltd., Pittsburgh. Scribe Document Production System User

Manual, April 1984. Chapter twelve and appendices E8 through E10
deal with bibliographies.

[6] Mary-Claire van Leunen. A Handbook for Scholars. Alfred A. Knopf,
New York, 1979.

Computing Center Memo 815

