
DESIGN FEATIJRES OF THE

BCC 500 CPU

Charles F. Wall

Technical Report R-1
Issued January 3, 1974

TI-IE ALOHA SYSTEM, Task II
Department of Electrical Engineering

University of Hawaii

Sponsored by
Advanced Research Projects Agency

ARPA Order No. 1956
Contract No. NAS2-6700

TI-ffi ALOHA SYSTEM, Task II, is affiliated with the Department of Electrical
Engineering at the University of Hawaii, and is currently conducting
studies into the design and fabrication of secure multiprocessor oper­
ating systems.

This research was supported by the Advanced Researd1 Projects Agency
of the Department of Defense and was monitored by NASA, Ames Research
Center l.ll1der Contract No. NAS2-6700.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency of the United States Govenunent.

ACKNOWLEDG1ENf S

I would like to express sincere appreciation to Dr. Wayne Lichtenberger

and Dr. Melvin Pirtle for their expert guidance and assistance in the

production of this report, to Dr. Butler Lampson who designed the BCC 500

CPU and to Mr. Charles Simonyi who implemented the microcode.

Finally, and most importantly, I would like to acknowledge the efforts

of Mr. Jack Freeman. It is fair to say that this report lvould have suf­

fered greatly in its scope and accuracy were it not for his unselfish

efforts.

i

ABSTRACT

'!his report describes the design features of the BCC 500 Central

Processing Unit. '!he CPU was designed to directly implement most of the

features of a high level interactive Systems Progrannning Language (SPL).

It directly implements in hardware the following features: a function call

and return mechanism, descriptors, a powerful addressing structure and a wide

variety of floating point features.

ii

TABLE OF CONTENTS

Acknowledgments

Abstract

o.

1.

2.

3.

4.

5.

6.

7.

Background and Overview

Introduction

Function Call and Return Mechanism .

Full-Word and Part-Word Field Accessing

String Processing Features .

Array Referencing

Addressing .

Instructions

Page

i

ii

1

3

7

14

19

21

26

37

8. Floating Point Features 39

9. Physical Characteristics and Operating Environment .. 41

10. Virtual Machine Environment

11. Mapping Facilities .

References

Appendix .

I . Address Modes.

II.

III.

IV.

v.

SPL Operations

Machine Instructions

SPL Program to Define BLL

Fixed Traps

iii

44

48

56

57

. 58

61

62

68

73

-1-

O. Background and Overview

The BCC 500 computing system was designed to provide a large number of

users with simultaneous remote access to centralized, general-purpose computing

and file storage facilities. '!he system was developed for a wide variety

of commercial and scientific applications and to support batch, remote-batch,

interactive and real-time jobs. Emphasis was given to providing rapid

response for large numbers of small jobs requiring moderate computational

capabilities.

To economically provide a utility of this nature the hardware configura­

tion consists of a number of specialized processors all connected to a

central memory. The operating system is distributed among these independent

processors, which communicate by means of the central memory. Each is

dedicated to one of the following tasks:

(a) process scheduling;

(b) memory management;

(c) character input/output from terminals;

(d) system supervision and monitoring;

(e) running user programs.

'!he task of n.mning user programs is performed by two independent

Central Processing Units (CPUs). A module of the operating system runs on

the CPU to provide users with protected access to system services. This

module is divided into a monitor and a utility section. The monitor is

common to all users. It may not be looked at or modified by user programs;

its services are accessed by a set of monitor calls. Each monitor call checks

-2-

the user's authorization to make the call, validates the parameters passed

and then proceeds to invoke the desired service, The utility can be unique

to each user (although only one has been produced to date). It contains a

number of useful functions that extend and individualize the users' inter­

face to the operating system. Viewed in another way, the monitor contains

a set of functions that provide the user with access to primitive operating

system services, and the utility uses these basic functions to provide users

with more convenient access, including the executive connnand language.

-3-

1. Introduction

In this paper we are concerned with describing the CPU. Many features

of the CPU architecture were influenced by the ideas and structures found in

the Burrough's B-50001 series of computers and in the MULTICS2 ' 3 system. The

CPU ~~s designed to implement in firmware10 and/or hardware most of the high

level features of an interactive Systems Prograrrnning Language (SPL) and to

function in a multiprograrrnned, multiple processor system.

SPL provides systems and applications designers with a high level develop­

ment and implementation tool to provide effective applications programs. The

CPU design efficiently supports these application programs by implementing

the following features:

• A function call and return mechanism;

Field Descriptors that permit full-word and part-word items in tables

to be accessed eff icientli;

• String Descriptors and string handling operations to speed up compiling

and non-nllllleric processing;

Array Descriptors that support complex array structures and pennit

multi-dimensional arrays to be accessed without any program multiplica-

tions;

• An addressing structtrre that provides for easy code relocation and

supports the basic data structures of SPL;

A simple instruction set that provides for easy mapping from SPL

operations to machine instru~tions;

• A wide variety of floating point features;

• A virtual machine for both user and system functions.

-4-

SPL motivates programmers to organize programs into a collection of

small procedures or routines called functions, with arguments and results

being explicitly comnrunicated by means of the function call and return

mechanism. In this way side effects are minimized and program debugging

is enhanced. Each function has a local storage area (called the local en­

vironment) that is separated from the code and is usually allocated on a

stack; storage for a function may be allocated in a fixed location, however,

to provide a FOR1RAN-like capability.

An important feature in SPL that is directly implemented on the CPU is

the use of descriptors to access various data structures. Information in

the descriptor allows the CPU to check and ensure that the access is correctly

specified. Descriptors are implemented on the CPU to provide efficient

access to fields, strings, and arrays. These descriptors along with the

address features and the instructions that support their use are discussed

in Sections 3, 4 and 5, respectively.

The addressing features of the CPU, beyond the modes that are used with

the various descriptors, are designed to support the basic data structures

found in SPL and to facilitate incremental compiling by providing for easy

code relocation. The CPU has a simple instruction set to facilitate easy

translation from SPL operations to machine operations. It also provides proc­

esses with an environment called a virtual or user machine. 5' 6' 8 A process

is considered to be a program in its virtual execution environment and is

individually scheduled. Each user process sees a virtual memory of 256K

words called its virtual address space.

-5-

The CPU contains a small number of registers that are an integral part

of the function of each process. We list and describe them now, as ·h·e Kill

be referring to them throughout the remainder of the paper. The information

in these registers nrust be saved when a process is blocked and the CPU is

assigned to a new process. In addition, we will refer to a few registers

which the CPU uses for its activities in executing a process, but are not

part of the state of the process. Figure 1.1 contains a list of these

registers.

The central registers AR, BR, CR, DR are used by various arithmetic

and logic operations which operate on single and double precision data.

The E-register (ER) is used in floating point operations to contain the

exponent. The local (L) and global (G) environment registers are base

registers that point to storage for the presently active function and to a

connnon storage area, respectively. At the start of each instruction cycle,

the indexing register (IR) and the source register (R) are set to the con­

tents of the index register (XR) and the program counter (P), respectively.

Both registers may take on other values as instruction execution proceeds.

-6-

• Central Registers

(AR) A - register

(BR) B - register

(CR) c - register

(DR) D - register

(ER) E - register

• Registers Used in Addressing

(XR)

(L)

(G)

(P)

(R)

(IR)

Index register
' Local environn,1ent register

Global environment register

Program Counter

Source register *

Indexing register *

• Other Special Registers

(SR)

(CTC)

(IT)

Status Register

Compute Time Clock

Interval Timer

*Not part of the state of a process

Figure 1.1 Machine Registers

-7-

2. Function Call and Return Mechanism

The function call and return mechanism is important since SPL

programs consist of a number of small functions. An instruction called BLL

(Branch and Load the Local-enviromnent register) implements this mechanism.

The BLL addresses a two-word branch (function or return) descriptor which

contains all the information necessary to accomplish function calls and

returns.

SPL provides a very flexible function call mechanism. A function may

have a number of argwnents and return any number of results. The arguments

may be arbitrary expressions. Results can be stored into any arbitrarily

specified variables. The value of the first result, if there is any, is the

value of the function. Thus a function call of the form:

PTR'TO'NODE + SEARQ-I'LIST(EMP'LIST,ID);

could cause a list of employees to be searched and return a pointer to the

node containing the information associated with a particular employee. SPL

allows for a "failure" return from a function. We could recode the above

function as follows:

PTR'1D'NODE + SEARCH'LIST(EMP'LIST,ID//NOT'FOUND);

If the desired employee is not found in the list, then a fail return 1vill

cause control to go to the statement labeled "NOT'FOUND". We could, of course,

code the search list function so that it returns the infonnation in a

node directly rather than returning a pointer to the node. The function call

would appear as follows:

-8-

SEARCH'LIST(EMP'LIST,ID;AGE,DEPT'NO,SEX//NOT'FOUND);

In this case the infonnation that might be contained in the node is directly

returned in the variables "AGE", 'DEPT'NO" and "SEX".

In the CPU implementation of BLL the tl\U-word branch descriptor contains

fields specifying:

• The address of the called routine's entry point;

• Whether the transfer is a function call or a return;

• Whether the storage for the function IlD.lst be allocated from a stack;

• Whether arguements or results are to be copied;

• Whether the function is a FORTRAN-type function;

·A field called the envirornnent field, used to detennine the.new local

envirornnent register value in a manner to be described.

All the features of the SPL call mechanism and most of the subroutine

call features of FORTRAN are implemented in hardware by the BLL instruction

which, in conjunction with the branch descriptor, provides for all of the

following actions:

On calling it:

1) Calculates the effective address of the entry point in the called

routine;

2) Acquires the new local envirornnent and obtains storage if the

function allocates space for its local envirornnent on the stack;

3) Copies argtnnents and checks them for correct type and number;

4) Computes the return descriptor and saves it in the first two

words of the new local envirornnent;

-9-

5) Transfers control to the called routine.

On returning it:

1) Obtains the old local environment from the return descriptor;

2) Copies results and checks them for correct type and nl.ll'l1ber;

3) Returns control.

We now describe these actions in detail.

When the BLL instruction is executed, the first step is to compute the

address of the entry point for the called routine. The new local environ-

ment is acquired. If the called function has a fixed local environment then

1;he environment field of the branch descriptor is taken as the new value of

the local environment register L, which we call NEWL. Space for a fixed

function's local environment is allocated at all times and its contents are

preserved between function calls. Nonnally, space for a function's local
I
~nvironment is allocated from the stack. Two words in the global environment

describe this stack. The stack pointer (SP) addresses the first unused word

and the stack limit (SL) addresses the last word allocated for the stack. For

stacked functions the environment field: in the function descriptor indicates the si:e

rather than the address of the new local environment. NEWL is set to the value

of the stack pointer and the stack pointer is incremented by the environment

field. (See Fig. 2.1).

Arglll'l1ents are copied next if there are any. The calling function

supplies a list of parameter addresses called actual arglll'l1ent words (ALU~)

and the called routine contains a corresponding list of formal argl.ll'l1ent

.--------------. SL

unused stack
space

-10-

1-------..... -E~ - - -

return
descriptor

current
envirorment

L ..--------..--- --
space used
for previous
environments

--------• start of stack
BEFORE

.---------------.SL

unused stack
space

s~ 1---------t----

OLDL

OLDP

E locations
for new
environment

NEWL ---------.. - - - --

space used
for previous
environments

.._ ___________ ~start of stack

AFTER

Figure 2.1 Allocating a Local Environment on the

Stack During a Call

-11-

words (FAW) . .An actual argument word contains the following infonnation:

Structure of the argtunent:

variable

computed scalar

array element

array

Type:

End flag

integer

long

long long

real

double

complex

string

label

pointer

unknown

Address of argument

(1 word)

(2 words - a 48-bit integer)

(4 words - a 96-bit integer)

(2 words - a 48-bit floating point ntunber)

(4 words - a 96-bit floating point number)

(4 words - a 48-bit real and 48-bit

imaginary)

(4 words - a string descriptor)

(2 words - a BLL descriptor)

(1 word - address of a memory location)

The formal argument word contains similar information for the type, end

flag and the address of the formal argtunent; the structure of a formal argument

is specified as either scalar or array. The FAW indicates whether the address

of the argtunent is copied or the value is copied.· Arguments are copied one

-12-

at a time. An error occurs if the ANN type is not the same as the FAW type

llllless one and only one of them is of type unknown. The structure of the

actual argument is checked with the structure of the fonnal argument accord-

ing to the following table:

FAW's

Scalar Array

Variable OK Error

OK OK if
FORTRAN type f n Computed scalar

ANN's
Array element OK Error

Array OK if OK FORTRAN type fn

Copying continues lllltil an end flag occurs. If both end flags (MW and FAW)

do not appear at the same argument level then the wrong number of arguments

have been supplied and an error occurs. The BLL does not provide for type

conversion.

A return descriptor is computed and stored at NEWL and control is passed

to the called routine. The return descriptor contains the old program counter

and old L in the environment field.

On a return, if the fllllction had its local environment on the stack, the

stack is unwolllld by setting the stack pointer to L and NEWL to the contents

of the envirornnent field in the return descriptor. If the return is from a

fllllction with a fixed envirornnent then OLDL was saved in the envirornnent

field of the return descriptor and is used to reset L. Failure returns are

accomplished by addressing a return descriptor that may cause a return to a

non-local label and may cause several stacked environments to be removed from

-13-

the stack. Results are copied in the same manner and with the same checks

that are provided for the call. Control is returned to the calling routine

or to the latest incarnation of the routine containing the failure return

label if a fail return occurs.

-14-

3. Full- Word and Part-Word Field Accessing

SPL derives a considerable amount of its flexibility and versatility

from the use of fields (the notation was adopted from Bell Labs' L6

language). For example, asslllile we wanted to create the following data

structure:

ID

Age Department Sex Marital No. Dependents Status

Chain pointer to next node

where the node contains an employee's ID (social security nlllilber), age,

..

department, sex, marital status, nlllilber of dependents and a pointer to the

next employee on the list. We can define this structure in SPL by the

following declarations:

DECLARE FIELD ID(~);

DECLARE FIELD AGE(l:~,S),

DEPT(l:6,12),

SEX(l:l3,13),

MAR'STAT(l:l4,14),

NUM'DEP(l:lS,23);

DECLARE FIELD CHAIN(2);

where the fields in words zero and two of the node are referred to as full­

word fields and the various fields in word one are called part-word fields.

-15-

If P is a pointer to a node of this type, in SPL the statement

P .AGE + P .AGE+l;

will increment the age field. Component selection by a field can be used

anywhere in place of a simple datum. We can extract the department number

simply by coding

DEPT'NO + P.DEPT;

and can insert a new department number by coding

P.DEPT + NEW'DEPT'NJ;

where the extraction operation right justifies the department field in

the result and the insertion operatioh puts the new department munber in

the proper bit locations. A field may be a signed quantity and if so its

sign is extended on extraction.

The field facilities of SPL are supported by a hardware implemented

field descriptor and two CPU addressing modes. A field descriptor is

composed of a single field indirect address word which contains the

following information:

• Size of the field in bits

• Address of first bit of the field

• Sign extension flag

• Signed displacement field

If we assume we have the following structure:

FIRST .. ID

CHAIN rnAIN -1

-16-

Given that FIRST is a pointer to the starting node, then the SPL code to

find a node that contains a particular department ntunber is as follows:

GOTO FOUND IF PTR.DEPT~DEPT'NJ FOR P1R+FIRST,J?TR.CI-IAIN WHILE PTRf-1;

The machine code generated for the statement is as follows;

LDA FIRST Load A-register with first pointer

BRU R'12J Branch source relative plus 2

l.DA P1R.2 Pointer-Displacement addressing (PD)

STA PTR

ICP -1

BEQ R' [5]

LDA DEPT[PTRJ

ICPDEPT'NO

BEQ FOUND

BRU R' [-7B]

Store the A-register in PTR

Compare A-register with -1

Branch if equal to sourq~ relative plus 5

Base-Index addressing (BX)

Compare with DEPT'NO

Branch on equal tp found

Branch to LDA PTR.2

This code simply loads the A-register with the pointer to the first r.;ode

on entry or loads the A-register with the pointer from the chain field of a

node on subsequent traverses of the loop. The content of the A-register is

stored in a variable called PTR and compared with -1 to see if the end of

the list has been reached. If the A-register is equal to -1 then the machine

branches out of the loop by transferring control five instructions beyond the

present instruction. If the A-register is not equal to -1 the department

field of the node presently pointed to by P1R is loaded into the A-register

and is compared with the department ntunber desired. If equal, then the

routine branches to the instruction labeled FOUND, otherwise the routine loops

and continues searching the list.

tag

-17-

Two instructions in this sequence directly reference fields in the nodes.

The "LDA P'IR. 2" instruction extracts the full-word field "CHA.IN" from the

presently accessed node and loads it into the A-register. This instruction

is accomplished using the pointer-displacement mode of addressing (see Fig.

3 .1) .

Instruction
Displ Pointer

opcode address field

One of the first 128 words
of the local environment

P'IR

Fig. 3.1 PD Addressing for LDA PTR.2

A-Register

-18-

The "LDA DEPT[P1R]" instruction extracts the part-word field ''DEPT" from

the presently accessed node and loads it right justified in the A-register.

This instruction is accomplished using the base-index mode of address-

ing in conjunction with the field descriptor for ''DEPT" (see Fig. 3.2).

Instruction

Field Descri tor for DEPT

ize=7,FB=6 DISP=l

one of the first 128 words

one of the first 32 words
of the local environment

PTR

PTR

Indexing Register

of the local or global environment

A-Register

ID

CHAIN

J1 I DEPT

Fig. 3. 2 BX Addressing in Conjunction with the Field Descr1,ptor by DEPT

Insertion of a new department number into a node would be accomplished by

storing the contents of the A-register ("STA DEPT[PTR)").

-19-

4. String Processing Features

In SPL a string is described by a four-word string descriptor of the

following fonn:

Begin Pointer (BP) - points to character before first character in

string storage area

Read Pointer (RP) - points to last character read from string

Write Pointer (WP) - points to last character written onto string

End Pointer (EP) - points to last character in the string storage

area

Each pointer is a string indirect address word and contains the following

information:

String type IAW

Character size: 6, 8, 12 or 24 bit characters

Character position in word

Word address

A typical example of a "new" string and a string after some ''reads" and

''writes" is given in Fig. 4.1 which shows where the various pointers in the

string descriptor point.

A. "New" String (empty string storage area)

First C Last C
Position IPa;ition

D: 1
~EP

'WP

B. After a few Reads and Writes

First Last C La.st C
Char Read

BP RP WP EP

Fig. 4.1 String Descriptors and Where They Point

-20-

SPL operations on strings have low level counterparts in CPU instructions

as shown in the following chart:

SPL Operations

Read and Write Characters

Compute Length of String

Copy or Move String

Compare Strings

CPU Instructions

Increment String Descriptor (ISD)

Decrement String Descriptor (DSD)

Add to String Pointer (ASP)

Compute Length of String (CLS)

Move String

Compare String

(J>lVS)

(CPS)

The increment and decrement string descriptor (ISD and DSD) instructions

work with pairs of string indirect words in the string descriptor. During

a read operation the read pointer is checked in conjunction with the write

pointer to make sure that any attempt to read beyond the write pointer is

trapped. The ISD and DSD instructions facilitate character reading and

writing while the ASP instruction facilitates accessing the Nth character

in a string. The actual characters in the string are read by loading

indirectly through the read pointer string IAW and written by storing

indirectly through the write pointer string IAW.

-21-

5. Array Referencing

Arrays in SPL may be of any dimensionality from 1 to 7. Marginal

indexing4 is used to access arrays that are stored in row major order. For

example if we declare a real array A as follows:

DECLARE REAL ARRAY A[3,4,S]

then A is an array descriptor, which points to an array of three array

descriptors, which in turn point to an array of four array descriptors each

of which points to the first element of a five element row of the array.

Figure 5.1 illustrates this array which has 120 words of contiguous storage

allocated for the real numbers.

The CPU supports the SPL array structure and array referencing by

directly implementing and providing low level operations on array descriptors.

An array descriptor is two words long and is composed of an array indirect

address word and a pointer to the first word of the array and contains the

following infonnation:

• Lower bound (zero or one)

• A trap bit to facilitate subscript checking

• Multiplier to allow for array elements up to 64 words

• Upper bound

-22-

A

I • 4 a ...
4 h
4

'""'

~

'-+

A l:ox: I nl I
represents a
array of siz

descriptor for an
e n.

A simple box: I I
represents a real number.

..

A[l] v 5
5
5
5

'

A[2]
5
5
5

--s- ___...

,.......

A[3]
5

~ 5
5
5

Figure 5.1 Marginally Indexed Array Structure

A[l,l]

A[l,2]

A[l,3]

A[l,4]

. . .
A[3,l]

l

A[3,2]

A[3 ,3]

A[3,4]

A"f3,4,5J

-23-

This information allows the following functions to be accomplished:

• Allows a zero or one lower bound

• Performs bounds check on the subscript

• .Multiplies the subscript by the size of the array element, allowing

for element sizes up to 64

Checks to see that the mnnber of subscripts supplied is the nwnber

expected

• Provides an 18-bit base address for the array

Arrays are referenced using either the base-index or base-index-displacement

mode of addressing. This is similar to the method used for accessing part-word

fields, only in this case we can reference elements that are full words or

larger. If we consider the following 3 by 3 integer array:

A[l,l] Afl,2] A[l,3]

A= Af2,1J Af2,2] A[2,3]

A[3,l] A[3,2] A[3,3]

Fig. 5.2 Array A

we would set up this structure in ~PL by the follmving declaration:

DECLARE INI'EGER ARRA.YONE A[3,3];

This array is stored contiguously in row major order and is addressed by

marginal indexing as follows:

-24-

A LB=l,TRAP,MULT=2,UB=3

Row Descriptors

Array Descriptor

Row 1

LB=l,.MULT=l,UB=3

Row 2

LB=l,MULT=l,UB=3

Row 3

Row Descriptors

Figure 5. 3 Marginal Indexing

A[3,2]
A[3 ,3]

A points to an array descriptor, which in turn points to an array of row

descriptors, each of which points to the first element of a row of array

A. Assume that row index K and co1UIIU1 index L are located within the first

32 words of the local envirorunent. Also, assume that K=3 and 1=3, then the

code generated for B+A[K,L] is as follows:

LAX A[KJ (BX addressing)

This !:_oad f::!ray inde! instiuction leaves the address of the descriptor for

the Kth row in the X-register

LB=l,TRAP,MULT=2,UB=3

Row Descri tors

LAX A[K]

I Address
X-reg r ---<r-----

* MULT-+ IR---J ...

(3-1) * 2 = 4

Row 1

LB=l ,.MULT=l ,UB=3

Row 2

LB=l ,~ULT=l, UB=3

Row 3

Figure 5.4 Diagram of LAX A[KJ Execution

-25-

followed by:

LDA ($X') [LJ (BXD addressing)

STA B

Row 3

X-reg

LDA ($X')

['
(IR-LB) * .MJLT ~ IR

(3-1) * 1 = 3

A[l, lJ

Afl,2

A 1 3

Af2 ,lJ

Af 2 ,2_]

Af2,3J

A-reg

Location B

Figure 5.5 Extracting A[3,3] and Storing it in B

The LAX · (~oad f:Fray inde!) instruction treats the trap bit in the array

descriptor as if it were complemented in order to facilitate checking the

number of subscripts as the array referencing proceeds from one level of

indices to another. Bounds checking occurs at each and every indirection

through a descriptor.

The CPU facilitates efficient and effective array referencing by

the use of array descriptors combined with the base-index and base-index­

displacement modes of addressing and a special instruction that lo,3.ds an

array index.

-26-

6. .Addressing

The addressing modes are designed for SPL addressing requirements.

In the case of descriptors we have seen three addressing modes (pointer­

displacement, base-index, and base-index-displacement) that access field,

string and array structures. In the discussion to follow, the various

addressing modes will be considered and described in conjunction with the

requirements of SPL and the virtual address space . Some of the more important

factors to be considered are as follows:

~ Programs are organized into a collection of small, self contained

routines called functions. Each function has some local storage

area of its own called its local enviromnent. Normally a function

references objects that are either in the local environment or are

passed as parameters. Functions can access shared data in a global

environment;

• Code nrust be easily relocatable;

• The data manipulation operations of SPL nrust be directly supported;

• To save register loading and. allocation it is desirable to be able

to use core locations as ir~ex and pointer values;

• It is necessary to be able to conveniently address a 256K (18-bit)

address space, even though an instruction has only up to a 14-bit

address field.

In order to be able to address storage in the various environments

relative to the instruction or base address and to allow for easy code

relocation, three relative addressing modes called G-relative, L-relative and

-27-

Source-relative are provided. The effective address in the G-relative

mode is given by a 14-bit address field in the instruction plus the contents

of the global environment register. This permits the direct addressing of

any location in the 16K global storage area (see Fig. 6.1).

Global Environraent WORD 0

G-rel OPCODE 14-bit address field

16 ~

37777B
.... ------------------~----

Fig. 6.1 G-Rel Addressing

-28-

The effective address in the L-relative mode is given by an 11-bit address

field in the instruction plus the contents of the local environment register.

This allows any location in the 2K local storage area to be addressed directly

(see Fig. 6.2).

Local Environment WORD 0

2K

3777B

Fig. 6.2 L-Rel Addressing

-29-

The effective address in the Source-relative mode is given by the source

register and the 12-bit signed address field in the instruction. 1his

pennits locations up to 2K on either side of an instruction to be addressed

(see Fig. 6.3).

-2048

2K

-1

+1

2K

+2047 -
Fig. 6.3 Source-Rel .Addressing

-30-

As we have seen with the field addressing example, it is desirable

to be able to access data in structures such as lists, trees, and

tables and other data structures common in systems code. Access to data

in these structures involves obtaining a pointer to a single node or the

start of the table along with a displacement to the location desired.

This facility is provided by the pointer-displacement addressing mode

(see Fig. 6.4).

ftJ 2 3 8 9 lf!J 15 16

I
I

I~ POINTER

I I I
PD I OPCODE

I
DISPL

16

2 3

2 3

I

Pointer = IR 10 0 I
16 17 23

= Contents (G + X) H x I
16 17 23

= Contents (L + X) I 1 I x I
Figure 6.4 Pointer-Displacement Structure

-31-

In this mode the address field is divided into an 8-bit pointer address and

a 6-bit signed displacement field. The high order bit of the pointer address

field specifies the environment (!=local, O=global) and the remaining 7-bits

address a pointer in one of the first 128 words of the selected environment.

If the pointer address field is zero the indexing register is used as the

pointer. The effective address is simply the smn of the pointer and the

displacement (see Fig. 6.5).

First 128 Words of the

Global or Local Environment

Pointer

Displ Pointer

Table

Fig. 6.5 Pointer-Displacement Addressing

-32-

Fa.ch of these addressing modes has an indirect counterpart which causes

indirection through the word they address. In this case the word they address is

called an indirect address word (IAW) . Each IAW causes a new stage of address cal -

culation by providing its own addressing information. An IAW can provide an 18-bit

address and can point to any location in the virtual memory.).r1 IA1v specifies

address modes in a manner similar to instructions, with three exceptions:

1) If the address mode is G-relative, indirect or indexed, an 18-bit

absolute address is supplied and the contents of the G-register is

not added;

2) If the addressing mode is L-relative, source-relative, L-relative

indirect or source-relative indirect 1 the offsets are 3 bits longer

and indexing is possible;

3) If the addressing mode is pointer-displacement or pointer-displace­

ment indirect, the mode is taken to be read-only G-relative and

read only X-relative, respectively. These behave exactly like

G-relative or indexed modes except that any attempt to store will

cause an error and will be trapped.

This is the normal indirect address word (IAN). We have already seen the

three other types of indirect address words (field, string and array) in the

descriptor sections.

To enable direct access to the entire address space an indexed address­

ing mode is provided. The effective address is formed by adding the contents

of the X-register to the 14-qit address field in the instruction to generate

an 18-bit address. Also, an instruction can contain an immediate operand field.

Index= IR

-33-

As we have seen, it is necessary to be able to address the various data

descriptors (field, string and array) and to provide them with run-time index­

ing information. Two similar addressing modes called base-index (see Fig. 6.6)

and base-index-displacement (see Fig. 6.7) are provided to accomplish this

task.

,0 2 3 8 9 1~ 15 16
·~ I BX I OPCODE I re INDEX I~ BASE J

1~ ,01 Base= IR 1,0 ,0 I
=Contents (G+X) 1,0 I x I =Contents (G+X) 1,01 x 1
=Contents (L+ X) I 1 l x I =Contents (L+X) I 1 I x J

• Base is calculated first

• Index is put into indexing regi!:>ter (IR)

• IA (Base)

Fig. 6.6 Base-Index Structure

-34-

0 2 3 8 9 10 15 16 23

I BXD I OPCODE I 1~ DISPL Ir INDEX I

Index :::: 0 (0 0 I

Contents (G+X) I 0 I x I
:::: Contents (L+X) I 1 I x I

•Base + IR

• IR + Index + Displacement

• IA (Base)

Fig. 6.7 Base-Index-Displacement Structure

The base-index mode provides an address field that is divided into an

8-bit base field and a 6-bit index. The high order bit of each field

specifies the envirornnent (l=local, O=global). The remaining 7-bits in the

base field address a location in the first 128 words of the selected environ-

ment that in turn points to a descriptor. The remaining 5-bits in the index

field address a location in the first 32 words of the selected environment

that is used to initialize the indexing register. If the index field is

zero, then the X-register is used to initialize the indexing register. With

all these actions taken, indirection through the descriptor is caused (see

Fig. 6.8). The base-index-displacern~nt is similar except that the base is

asswned to be in the Indexing Register.

First 32 Words of the

Global or Local Environment

BX OPCODE

Index

G
L

Field or .Array IAW

~ Base

-35-

Indexing Register

(t)-"""i.,..,. Object

Fig. 6.8 Base-Index Addressing Example

-36-

A sununary of all the addressing modes appears in Appendix I.

-37-

7. Instructions

The BCC 500 instruction set was designed to provide for easy translation

of SPL operations into machine instructions. Of course SPL supports a wide

variety of data types so the machine instructions generated depend on both

the operation to be performed and the type of data being accessed. . Nonetheless

it is reasonable to illustrate at least a partial mapping of SPL operations

to machine instructions as follows:

SPL operation class

Assignment

Arithmetic

Logical

Predicate

Machine instruction class

Data Transfer

Arithmetic

Logical

Test, Branch and Shift

Data Manipulation

Control

(Handled by descriptors and addressing modes)

Test arrl Branch

The detailed lists of SPL operations and CPU machine instructions are con­

tained in Appendices II and III, respectively.

An instruction is formatted as follows:

0 2 3 8 9 10 23

TAG .Address Field

The TAG field defines the addressing mode of the instruction. The OPCODE

field specifies the machine instruction. There are 61 opcodes that are defined.

One opcode, called an operate (OPR) instruction provides for various register

operations, special purpose operations, privileged operations and system calls.

-38-

The OPR instniction is given an immediate operand in bits 13-23. If the

operand is negative, the instniction is a system call. If the operand is

positive, it is decoded to detennine what operation is to be done. If the

POP bit is on, the instniction is interpreted as a rather peculiar kind of

subroutine call rather than an ordinary machine instruction. This facility

is similar to the Progrannned Operator (RJP) used in the XDS 940 system. 9

-39-

8. Floating Point Features

The CPU provides for single precision (48-bit) and double precision

(96-bit) floating point numbers, hardware (firm\ .. ;are) implemented operations,

program controllable traps, a soft underflow option and five program select­

able rounding modes. A single precision number is composed of an 11-bit

binary exponent (numbers up to approximately 10300) and a 36-bit fraction

(11 decimal digits). Double precision numbers have an 84-bit fraction

(25 decimal digits). A special undefined floating point number is provided

for all real variables that have not been defined. This is provided to

assist the programmer in debugging. The following instructions are provided

by the hardware (firmware) :

FLD - Floating Load

STF - Floating Store

FAD - Floating Add

FSB - Floating Subtract

FMP - Floating Multiply

FDV - Floating Divide

FCP - Floating Compare

FLX - Convert floating point to fixed and load X with result

FNA - Floating Negate

FIX - Convert floating point to fixed and load A with result

FLOAT - Convert to floating point

All floating operations have single (SP) and double (DP) precision variants,

bit TDFLAG in the status register s~lects the mode to be used. The user's

-40-

program can elect to handle overflow, underflow and division by zero traps.

The program can specify soft underflow which allows numbers to drift toKard

zero rather than causing an underflow trap. Finally, there is a 3-bit

field in the status register that allows the program to select one of the

following rounding modes.

Nearest m.unber

Floor (toward 0)

Ceiling (away from O)

Away from co

Toward co

-41-

9. Physical Characteristics and Operating Fnvironment

The CPU is a 24-bit, word oriented, t\\U 1s complement processor whose

only task is to operate on user processes. It is implemented on a slightly

modified version of the BCC microprocessor, a processor having a basic cycle

time of 100 nanoseconds. The basic microprocessor design provides for inter­

processor conmrunication,9111 access to the central memory, and includes an

arithmetic and logic unit and a control unit. There are 64 hardware testable

branch conditions that allow for testing the state of various busses, registers

and flip-flops and 64 special functions that are used by the microprocessor to

speed up the execution of certain functions. The processor contains, in

addition to a number of registers, a control store of 2K words of 90-bit

··ead only memory and a 64 word scratchpad (200 nanosecond) memory. .Modifica-

tions to the basic microprocessor for the CPU include an instruction fetch

1.lltlt, which gets the next sequential instruction while the current instruction

is being decoded and executed, a hardware IIBlltiplier, a set of 128 physical

MAP registers, an interval timer and a compute time clock.

The CPU at any particular moment is either running a user process,

switching from one user process to another or is idle until the

scheduling processor assigns the CPU to a new user process. We can illustrate

the general actions of the CPU with respect to the user process as follows:

IDLE: until the scheduling processor assigns a new process

THEN: clear the physical map registers

LOAD' STATE: vector from the context block of process

RUN'PROCESS: until it blocks or until a ''pirate ship appears on the horizon1112 t

SAVE'STATE: vector in the context block and go to IDLE

tPirate ships rarely appear in the system, so for all practical purposes
need not worry about them causing your process to stop running. Pirate
appearances were first reported in the character input/output processor
Paul Heckel.

you
ship
bv .;

-42-

The state vector for a process is composed of the following 12 elements:

Program Counter

4 Central Registers: A, B, C and D

Floating point exponent

Index register

Local environment (base) register

Global environment (base) register

Status register

Compute time clock

Interval timer

The central memory is but a portion of a hierarchical memory system. 9 ' 11

The memory system is designed to be composed of up to 512K words of core

storage, 16 million words of drum storage and 1 billion words of disk

storage. This multi-level or hierarchical memory system is organized into

2048 (2K) word blocks called pages (more correctly page slots). The

CPU may access information in pages only when they are in core storage.

It is the memory manager's job to put pages into core storage to be used by

the CPU and to remove them from core storage when the CPU is finished. Another

processor called the scheduling processor is responsible for assigning a CPU to a

user process, The memory management processor and the scheduling processor work

together to put a process into core and wake it up6 by assigning it a CPU.

Two other tasks that the distributed operating system handles for a process

are all character input/output to a terminal and file transfers to physical

storage devices such as tapes, printers, etc. Basically then, the ope:.ating
. '

-43-

system (which is distributed over several independent, concurrently run­

ning processors) provides for the services common to all users, while the

CPUs service only the individual needs of each user process.

-44-

10. Virtual Machine Environment

Each programmer using SPL has access to an environment provided by

the system called a user machine or a virtual machine environment. 5' 6 ' 7

The virtual machine is composed of a set of virtual operations and a virtual

memory structure. The set of operations includes all the user operations

provided by the physical CPU and all the services provided by the monitor

or utility portion* of the operating system. The virtual memory structure

for a user is defined by a directory that connects a user to all objects

in the system he can access. An object is one of the following whatnots:'

• File

• Process

• Resource allocation

· Access keys

• Free object

,Free objects are simply present to allow the system to be open-ended. Files

and processes are the basic objects that the user performs actions on and

with, respectively. Resource allocations provide the user with the ability

to control various resources such as response time, number of terminal lines,

etc., while the access keys allow for protection of various objects.

Basically, the virtual memory structure for a user consists of all the pages

in the set of objects he can access (see Fig. 10.1).

*Note that the variability of the utility allows the system to support dif­
ferent virtual machines.

t"Whatnots" were first proposed by Jack Freeman and are simply a "sor1ething
or other.''

-45-

VIRTIJAL MFM)RY STRUCTIJRE FOR A USER

All pages accessible to the user: This includes files and processes.

Pages in a single process

Pages in a dn.nn working set

Pages in core working set

Fig. 10.1 Virtual Memory Structure for a User

All the pages a process can reference are named in the process memory table in

the context block of the process. A process calls on the services provided by

the monitor either directly or indirectly through an individualized utility to

get more pages from a file to the process memory or to create new pages. Each

and every page that is created is given a 48-bit location-independent or unique

name. No two pages will ever have the same name and that unique name is used to

reference the page wherever it may be located in the multi-level physical

-46-

memory system. Each active process has direct access to a meroory of

256K words called its virtual address space which is organized into 128 (ZK

word) pages and is logically divided into a user, utility and a monitor area.

These three areas are protected from one another (see Fig. 10.2) and may be

conceptualized as a ring structure. The user ring is considered to be the

VIRTUAL ADDRESS SPACE -
0

USER USER RING
AREA

377777B

256K 4.0.00,0.0B

lITILI'IY
AREA

577777B

60.00.0.0B

M)NITOR
AREA

777777B -
Fig. 10.2 Virtual Address Space and Protection Rings

lowest ring and the monitor ring the highest. Services provided by either

the monitor or the utility may only be accessed through protected entry system

calls. Any other references from a lower ring to a high ring are illegal

and cause a memory access trap.

-47-

In order to increase the efficiency of a process a user can specify

that frequently accessed pages in the virtual address space be assigned to core

when the process is active. These pages are the so called "core working set"

of the process. Pages that are accessed less frequently may be assigned to

the "drum working set" of the process.

The systan does not practice demand paging. t

tBut it is not bad at it even though it doesn't practice.

-48-

11. Mapping Facilities

Every reference a process makes to an address in the virtual address

space is mapped into a physical address in core storage.. A reference

into the virtual address space consists of an 18-bit address com-

posed of a virtual page ntnnber (the top 7-bits) and a word ntnnber (the low

order 11-bits). TI-le CPU maps this 7-bit virtual page ntnnber into a physical

page ntnnber in a real core of up to 256 pages. First the CPU uses the process

map (which defines the virtual address space) and the process memory table

(which contains the "unique names" of every page lmown to the process) to

translate the virtual page number into a location-independent name. Now,

since the CPU is only able to directly address information in core it must

determine if the page is in core. To do this the CPU references a system

table that contains a list of all pages in core. If the desired page is in

core this table, called the core hash table, supplies an 8-bit physical page

number which locates the page in core. Appended to this 8-bit page number is

the 11-bit word ntnnber providing CPU with the 19-bit physical address it

needs to reference the desired word in a core storage that can contain up to

512K words. If the desired page is not in core, the process is blocked and

the CPU is assigned to a new process. The memory manager will insure that the

next time the original process becomes active the desired page will be in core.

Every memory reference a proe::ess.makes then requires a mapping from:

virtual page number -+ location-independent name

location-independent name -+ physical page number

This mapping process facilitates the checking needed to ensure that a virtual

-49-

reference does not address a page that does not exist and that the page is

in core. Once this mapping and checking process has been accomplished for

a particular virtual page it is possible to simply map from virtual page

number to physical page ntunber.

map that contains 128 registers.

CPU is assigned to a new process.

This facility is provided by a hardware
I

The hardware map is cleared each time the

When a virtual page is referenced the

mapping function loads the physical page number into the hardware map

register which corresponds to the virtual page number.

The various mechanisms for performing .. the mapping will ~ow be described

in detail. First, we will describe the data structures and hardware registers

used and then the mapping process performed by the CPU for each reference to

the virtual address space. It is convenient to consider the mapping process

performed by the CPU as being composed of a mapping function, a hardware map

and a hardware map loader. The mapping function together with the tables that

support it provide all the mechanism necessary to perform the mapping. The

hardware map facilitates rapid access to pages once they have been mapped and

the hardware map loader's function is to load these registers.

Two tables in the context block of the active process provide the CPU

with all the information it needs to translate the virtual page number into

a location-independent name. These two tables are called the process map and

the process memory table, The process map defines the virtual address space

for the process and is composed of 128 12-bit entries (see Fig. 11.1). Each

-so-

0 1 - 3 4 11

PMTI I
RO - Read Only Bit

PMTI - Process Memory Table Index

Fig, 11.1 Map F.ntry

entry of the µ-ocess contains a read-only (RO) bit and an index to an entry

in the process memory table or is empty (i.e., its value is zero) indicating

that a particular virtual page is not being used. If the read-only bit is

set the corresponding page may not be modified. The process memory table

contains a list of all the pages that the process can reference. Currently

this table contains 128 entries, but is expandable to 255 entries. Each

entry is 4 words long (see Fig. 11.2) and contains the following information

UNIQUE NAME

Disk Address

s
F

PREF - Page has been referenced flag

RO - Read only flag

SF - Page is scheduled for the process

Fig. 11. 2 Process Memory Table Entry

-51-

UNIQUE NAME: The location-independent name for the page.

DISK ADDRESS; The address at which the disk copy of the page is

stored.

READ.,.ONLY ;FLAG; . This ;flag is set for read-only pages by the basic file system

when a process places file pages in the process memory table.

REFERENCED FLAG: The CPU's hardware map loader sets this flag whenever

it lqads the associated page into its map, thus providing

an indication as to how frequently the page is referenced.

SCHEDULED FLAG: The memory management system sets this bit if a process

is authorized to access this particular page. That is,

the page is in the core working set of the process.

Infonnation about the current contents of core storage is maintained in

a core resident table called a core hash table. The table is composed of a

set of 256 index elements and a list of entries.

The index elements, called CHI'l, are an array of 256 pointers to lists

of CHf entries. Each index element is either an end marker or contains a

pointer to an entry a with the property that HASH(UN(a)) is the address of

the index element. If there are several pages in the core hash table with

the same value of HASH(UN), the index points to one entry, which points to the

next entry using a collision pointer field, and so on until all are chained

onto the list. The last entry in the list has an end flag in its collision

pointer field. The hashing function HASH is to take the exclusive or of the

6 8-bit bytes of the unique name (UN) of the page and then the exclusive or

of this result with 264B.

The core hash table entries are contained in an array which has one entry

per page of real core. This array of entries is called CHf2. The format of

-52-

an entry is given in rig. 11.3.

UNIQUE NAME

Disk Address

Core Page
Number

SCHED

Free Core List Pointer

Collision Pointer

DB - Dirty Bit

U - Unavailable Bit

SCHED - Nt.nnber of occurrences of this page in loaded
working sets

Fig. 11. 3 Core HA.SH Table Entry

Each entry is six words long and contains the following information:

• The unique name of the page;

• The disk address of the page;

A dirty bit which is set if the page in core is potentially different

from the copy on the dnnn. That is, a store into the page has occurred.

· An unavailable bit that prevents CPU access to the page when it is set.

• Core page number. This is also an index into CHT2.

• The scheduled count which gives the nlD1lber of occurrences of this

page in loaded working sets.

-53-

The hardware map is composed of 128 11-bit re~sters, one register for

each of the 128 pages in the virtual address space. Each register contains

an empty flag which is set if the register has not been loaded, a dirty

bit which is set if the page is modified~ a read-only bit and an 8-bit real

page number of a page in a core storage of up to 256 pages.

We now describe in detail the actions the CPU takes for each and every

virtual memory reference. These actions and the checking they support are

outlined in Fig. 11.4 and it will be useful to refer to this figure while

reading this description.

When a process becomes active by being assigned a CPU, the empty flag

is set in each of the 128 hardware registers of that ~PU. Each and every

address generated by a program in the process TIUJst be mapped to convert it

from a virtual address to a real addreso in core storage. This is done by

extracting the virtual page number (top 7-bits) from the 18-bit virtual address

and using it to index one of the 128 hardware map registers.

If the empty flag of the selected hardware map register is off then

the remainder of the register is returned. The physical page number (8-bits)

is prefixed to the word number (last 11-bits) of the virtual address to make a

19-bit real address. If the read-only flag is on and the access is a store,

the store is not allowed and "Read-only trap" is caused. If the read-only

flag is off, the dirty bit is off and the access is a store, the dirty bits

in the core hash table entry for the page and in the hardware map are set on.

The read-only flag is saved.

If the empty flag is on, the CPU TIUJSt execute its mapping function and

will load the hardware map when finished. In this case the virtual page

rrumber is used to index an entry in the process map. If this entry is zero,

M A P P I N G P R 0 C E S S

PAGE NO. + LOCATION-INDEPENDENT NAME LOCATION-INDEPENDENT NAME + PHYSICAL PAGE NO.

VIRTUAL
7-BIT PAGE NO.

MAP

ADDRESS (18-BIT)
11-BIT WORD NO.

PROCESS
MEMORY TABLE

l
T

.. '
-.... ~ UNIQUE NAME ~ '-.I

PAGE-NOT-IN-CORE ~

HASHING
ALGORITHM ------~/I 7,_ __________ ~

CORE HASH TABLE

-.... .,._ ______ ...
~ UNIQUE NAME ~

DISK ADDRESS

ROI PMf INDEX ~~--
EMPTY ~

4(' PAGE-NOT-IN-MAP)

r 8- mT PAGE NO. 1 11-BIT WORD NO.

REAL ADDRESS (19-BIT)

Fig. 11.4 ~lapping Process

l

I

(fl

+'-
'

-55-

the page does not exist and a ''page-not-in-map trap" is caused.

If the entry is not zero, the ind.ex into the process memory table is

extracted. The process memory table entry specified is accessed. If the

scheduled flag is off, the referenced page is not in the core working set

and a "page-not-in-core trap" is generated. The read-only flag is saved so

it may be merged with the read-only flag from the map and loaded into the

associated hardware map register. The referenced flag is set on. The

unique name is extracted from the process memory table entry. The core

hash table is searched using the HASH(UN) function. If the page is not in

the core hash table (this condition should not happen, but is checked for

anyway) then the memory manager made an error and a ''page-not-in-core trap"

is caused and the process is blocked. Otherwise an 8-bit page number is

supplied by the core hash table entry and appended to the top of the 11-bit

word number to provide an address in core. The 8-bit page number is also

loaded into the appropriate physical map register.

-56-

References

[l] "Operational Characteristics of the Processors for the Burroughs B5000,"
Burroughs Corp. , Detroit, Mich. , (Sept. 1961) .

[2] Corbatc5, F. J., Daggett, M. M. and Daley, R. C., "An Experimental Time
Sharing System," AF I PS Conference Proceedings, Vol. 21, (1962, FJCC),
pp. 335-344.

[3] Corbato, F. J. and Vyssotsky, V. A., "Introduction and Overview of the
.Multics System," AFIPS Conference Proceedings, Vol. 27, (1965, FJCC),
pp. 185-194.

[4] Iliffe, J. K. and Jodeit, J. G., "Dynamic Storage Allocation,'' Computer
Journal, Vol. 5, (Oct. 1962), p. 200.

[5) Lampson, B. W., ''Dynamic Protection Structures," AFIPS Conference
Proceedings, Vol. 35, (1969, FJCC), pp. 27-35.

[6] Lampson, B. W., "A Scheduling Philosophy for :Multi-Processing Systems,"
CACM, Vol. 11, No. 5, (May 1968), p. 347.

[7] Lampson, B. W., Lichtenberger, W. W., and Pirtle, M. W., "A User ~lachine
in a Time-Sharing System," Proc. IEEE, Vol. 54, No. 12, (Dec. 1966),
pp. 1766-1774.

[8] Lampson, B. W., "Scheduling and Protection in Interactive Multi-Processor
Systems," Thesis, Project Genie Document No. P-11, (Jan. 1967).

[9] Lichtenberger, W. W., and Pirtle, M, W., "A Facility for Experimentation
in Man-Machine Interaction," A.PIPS Conference Proceedings, Vol. 27, (1965,
FJCC), pp. 589-598.

[10] Opler, A., "Fourth Generation Software," Datamation, Vol. 13, (Jan. 1967),
pp. 22-24.

[11] Pirtle, M. W., "Intercorranunication of Processors and Memory," AFIPS
Conference Proceedings, Vol. 31; (1967, FJCC), pp. 621-634.

[12] Snoopy, "It Was a Dark and Stormy Nigh~--Part I," Snoopy's Publisher, :-J. Y.,
1970.

-57-

.APPENDIX

I. Addressing Modes

II. SPL Operations

III. Machine Instructions

Data Transfer

Integer Arithmetic

Test

Logical

Shift

Branch

Miscellaneous

OPR

Floating Point

IV. SPL Definition of BLL

v. Fixed Traps

-58-

I • ADDRESSING MODES

Notation used in defining addressing modes.

W[i,j]

CONTENTS(N)

IA(N)

means bits i to j of W (the address field of
the instruction) considered as a 24-bit number.
W[i,i] is represented by W[i].

means the contents of the memory location with
address N. Ring checking is performed with
R as source and N as target.

means that the indirect addressing sequence
is initiated by:

FUNCTION IA(N);
IAW + CONTENTS(N);
R + N;

*PROCEED TO PROCESS IAW

By the time it is finished, the IA function
will set the value of the address (Q) or the
operand (OP) •.

All instructions start with IR + XR & R + P;

Addressing J\Iodes (continued)

Abbr Name ,,Notation

D DIRECT OPC G' [W];

I INDIRECT OPC $G'[W];

x INDEXED OPC x I [W];

PD Pointer-Displacement OPC P(D];

PDI Pointer-Displacement Indirect OPC $P(D];

BX Base-Index OPC B[I] ;'

BXD Base-Index-Displacement OPC ($X')[I+D];

Revision 3/4/74

Addrees Computation

Q + W + G;
OP+ CONTENTS(Q);

IA(W + G);

Q + W + IR;
OP+ CONTENTS(Q);

PTR + IR IF W[l6,23] = JiJ ELSE
PTR + CONTENTS(G + W[17,23]) IF W(l6]
PTR + CONTENTS(L + W[17,23]);
DISP + SIGNED(W(lJiJ,15]);
Q + PTR + DISP;
OP+ CONTENTS(Q);

Q + PTR + DISP; * AS FOR PD MODE
IA (Q) ;

BASE + IR IF W[l6,23] = JiJ ELSE
BASE+ G + W(l7,23] IF W(l6] = JiJ ELSE
BASE+ L + W[l7,23];
IR+ IR IF W(lJiJ,15] = JiJ ELSE

JiJ ELSE

IR+ CONTENTS(G + W[ll,15]) IF W[lJiJ] JiJ ELSE
IR+ CONTENTS(L + W(ll,15]);
IA (BASE) ;

BASE «- IR;
INDEX + J IF W[l6,23] = JiJ ELSE
INDEX+ CONTENTS(G + W(l7,23]) IF W(l6]
INDEX+ CONTENTS(L + W(l7,23]);
DISP + SIGNED(W[lJiJ,15]);
IR + INDEX + DISP;
IA (BASE) :

JiJ ELS!::

I

(Jl
\.0

I

Addressing Morles (continueC:)

Name

LR L-Relative

LRI L-Relative-Indirect.

Field

String

Array

Revision 3/4/74

Notation

OPC L' [D];

OPC $L' [D];

SE(2), SIZE(3,7),
FB(8,12), DISP(l3,23)

CSIZE(2,3), CPOS(4,S),
WA(6,23)

LB(2), ATRAP(3), LEB(4),
MULTS(S,6), MULTL(S,l~),
UBS(7 ,23), UBL(ll,23)

Address Computation

DISP + W[l3,23];
Q + L + DISP;
OP+ CONTENTS{Q);

DISP + W[l3,23];
Q + L + DISP;
IA(Q);

Q + IR + DISP;
U + CONTENTS (Q) ;
OP+ U[FB,FB+SIZE-1);
OP + OP - 2** {24-FB) IF SE = 1 AND OP [FB,FB]

Select byte CPOS of CSIZE from word WA of
string.

TRAP'ABE(R) IF IR < LB;
IATRP(R) IF (ATRAP=l) AND (INSTRILAX);
IATRP(R) IF {ATRAP=~) AND (INSTR=LAX);
IF LEB = ~ DO;

TRAP'ABE{R) IF IR > UBS;
IR+ (IR-LB) * {MULTS+l);

ELSE DO;
TRAP'ABE{R) IF IR > UBL;
IR+ {IR-LB) * {MULTL+l);

ENDIF;
T + R + l;
NORMAL' IA(T);

l;

I
Q'\

0
I

Arithmetic:

Logical:

Predicate:

-61-

Appendix I I : SPL Operations

+ - * I ** (exponentiation)

- (negation) MOD

A' (bitwise AND) V' (bitwise OR)

E' (bitwise exclusive OR)

N' (l's complement)

LSH RSH (logical shifts)

LCY RCY (cyclic shifts)

= # < > >= <=

AND OR IDT

Data Manipulation: I] (subscripting)

Control:

. $ (field operations)

$ (unary, indirection)

@ (pointer)

@ (binary, field placement)

GOTO

RE1URN, FRE1URN

& WHERE

IF ELSE

FOR WHILE

-62-

Appendix III: Machine Instructions

A. Data Transfer

LDA - Load A register

LDB - Load B register

LDX - Load X register

LDD - Load double

EAX - Effective address to X

LAX - Load Array index

LNX - Load Negative to X

STA - Store A register

STB - Store B register

STX - Store X register

STD - Store Double

XMA. - Exchange memory and_A

B. Integer Arithmetic

ADD - Add memory to A register

SUB - Subtract memory from A register

AOC - .Add memory and carry to A register

SUC - Subtract memory from A register + carry

MIN - Memory increment

MDC - Memory decrement

.ADM - Add to memory

ADX - Add to X

MJL - Multiply memory and A register

DIV - Divide memory into A and B registers

-63-

C. Test

ICP - Integer compare A register and memory

CPZ - Compare A register with zero

CMZ - Compare A register AND memory with zero

ISD - Increment string descriptor

DSD - Decrement string descriptor

D. Logical

E1R - AND A register and memory

IOR - OR A register and memory

EOR - Exclusive OR A register and memory

E. Shift

ASHD - Arithmetic shift double (A and B register)

ASHA - Arithmetic shift A register

LSHD - Logical shift double

LSHA - Logical shift A register

CYD - Cycle double '

Cf A - Cycle A register

F. Branch

BRU - Branch unconditionally

BLT - Branch on result less than zero

BLE - Branch on result less than or equal to zero

BEQ - Branch on result equal to zero

BNE - Branch on result not equal to zero

BGE - Branch on result greater than or equal to zero

BGT - Branch on result greater than zero

-64-

BRX - Branch on index less than zero

BSX - Branch and set index register to p-counter + 1

BLL - Branch and load the local environment register

G. Miscellaneous

HLT - Halt, causes the TI trap

EXU - Execute

EAC - Effective address computation

SRS - Set or reset status bits

TSB - Test status bits

H. Opr

If the OPR operand is negative, the instruction is a system call, other-

wise it is decoded as one of the following:

CAB - Copy A to B

XAB - Exchange A and B

CBA - Copy B to A

CBX - Copy B to X

XXB - Exchange X and B

CXB - Copy X to B

CAX - Copy A to X

XXA - Exchange X and A

CXA - Copy X to A

CNA - Negate A

CNX Negate X

ZOA - Clear A

ZAB - Clear A and B

ZOB - Clear B

CGA - Copy G to A

XGA - Exchange G and A

CLA - Copy L to A

XLA - Exchange L and A

CSA - Copy SR to A

XSA - Exchange SR and A

CTA - Copy interval timer to A

CCA - Copy Compute time clock to A

NOP - No operation

MVB - Move block

MVC - Move constant

MVS - Move string

CPS - Compare string

CLS - Compute length of string

ASP - Add to string pointer

LLT - Locate leading transition

COB - Count one bits

LO.ADS - Load state

STORS - Store state

LSC - Load string constant

-65-

-66-

*The following OPR's are privileged and may only be executed in the monitor

ring.

SLOK - Set CPU lock

RLOK - Reset CPU lock

ALD - Absolute load A

AST - Absolute store A

AAX - Absolute address to X

PRO - Protect

UNPRO - Unprotect

ATIN - Attention

USCL - Micro-scheduler call

CMAP - Clear physical map

CAT - Copy A to interval timer

CAC - Copy A to compute time clock

RUN - Read Unique Name

I. Floating point instructions and OPR' s

FAD - Floating Add

FMP - Floating multiply

FDV - Floating divide

FCP - Floating compare

FLX - Fix and load X

FNA - Floating negate

FIX - (OPR) Similar to FLX, but operand taken from floating point

accumulator and put in A-register

FLOAT - (OPR) Produces floating point number from fixed in A-register

FLD - Floating load

STF - Floating store

-67-

-68-

IV. SPL PROGRAM TO DEFINE BLL

* SPL PROGRAM TO DEFINE BLL

BLL: N+g; SPEC+~; MCAL+$iY; NEWG+G; GOTO BLLl;
BLLN: N+l; SPEC+g; MCAL+~; NEWG+G; GOTO BLLl;

* OPR WITH NEGATIVE OPERAND:
OPR: OP+ -OP;

*

N+OP $ BIT15; SPEC+g;
MCAL+OP $ BIT14+1;
(NEWG+4~~~~~B & R+4gg~l4B) IF MCAL=l ELSE
(NEWG+6g)3'~~~B & R+6g4)3')3'~B);
IR+OP $ BIT16THRU23; IA(R); GOTO BLLl;

POP: POPW+CONTENTS(P); IR+POPW $ FOPC; N+g
SPEC+l; MCAL+g; NEWG+G;
IA(G); TI() IF IMMEDIATE=l; GOTO BLLl;

* BLLl: NEWPW+CONTENTS(Q);

*

BLLERR(l) IF NEWPW $ BITS;
NEWP+(NEWPW $ FLW IF NEWPW $ BIT4=~

ELSE Q+NEWPW $ FSRW);
BRD+CONTENTS(Q+l) FTNATF+g;
CLL+BRD $ BIT)3'; STK+BRD $ BITl;
CPA+BRD $ BIT2;
CPR+BRD $ BIT3 IF CLL=l ELSE UWSTK+BRD $ BIT3;
REL+BRD $ BIT4; FTN+BRD $ BITS;
NEWL+E+BRD $ FE;
IF RING(NEWP}<RING(P) DO;

NEWG+G[l4]; RET+l;
ENDIF;

* OBTAIN NEW LOCAL ENVIRONMENT

*

*

IF STK=l DO;
IF CLL=~ DO;

IF UWSTK=g; SP+L;
ELSE DO; SP+E; NEWL+E·FE;
ENDIF;

ELSE DO;
SP+NEWG(2]+E; ST1'?V() IF SP>=~~EWG[3];
NEWL+NEWG[2];

ENDIF;
ELSE DO;

NEWL+L IF NEWL=)3';
ENDIF;

RINGCHECK(NEWP);

-69-

* * COPY ARGUMENTS

* BLLERR(2) IF N=CPA;
NAW+P+l;
IF CPA#') DO;

FOR NFW+NEWP BY 1 DO;
R+NEWP; FP+CONTENTS(NFW);
FTYPE+FP $ TYPE;
IF SPEC=l DO;

SPEC+'); AP+POPW; NAW+NAW-1;
ATYPE+FTYPE; ASTR+FP $ FSTR; AENDF+FP $ ENDF;

ELSE DO;
L9: R+P; AP+CONTENTS(NAW);

ATYPE+AP $ TYPE; ASTR+AP $ STR;
AENDF+AP $ ENDF;

ENDIF;
IF ATYPE=9 DO;

* JUMP IN ACTUAL ARGUMENT LIST
R+P; IR+XR; EA(NAW);
BLLERR(S) IF IMMEDIATE;
NAW+Q;
GOTO L~;

ELSE DO;
BLLERR(2) IF AENDF#FP $ ENDF;
IF ATYPE#FTYPE DO;

* TYPES DISAGREE. ERROR UNLESS ONE IS JOKER, JOKER IS CHECKED
* FOR BELOW UNLESS CADDR=l OR FSTR=ARRAY, IN WHICH CASE IT IS
* NOT CHECKED.

IF ATYPE#l4 DO;
BLLERR(3) IF FTYPE#l4;
FTYPE+ATYPE;

ENDIF;
ENDIF;
NAWP+NAW;
IF ASTR=') OR ASTR=2 DO;

NAW+NAW+l IF ASTR=2;
IF FP $ FSTR=') AND ASTR=2 OR FP $ FSTR=l

AND ASTR=') DO;
BLLERR(3) IF FTN=9; FTNATF+l;
TEMP+NAW+lB6;
GOTO Ll;

ENDIF;
ELSE DO;

BLLERR(3) IF FP $ FSTR=');
ENDIF;

* CHECK FOR ACTUAL ARG IN ACCUMULATOR
IF (AP AND 7')')37777B)#') DO;

R+P; IR+XR; EA(NAWP); ARGADR+Q;
IF FP $ CADDR=l DO;

IF IHMEDIATE=l DO;
* CONSTRUCT IMMEDIATE IAW

TEMP+OP AND 3777B OR 1634B4;
ELSE DO;

RINGCHECK(ARGADR); TEMP+ARGADR;

-70-

* MAKE THE IAW READ-ONLY IF NECESSARY
TEMP+TEMP+lB7 IF READONLY=l OR ASTR=3;

ENDIF;
* FIX UP SO THE COPY VALUE CODE WILL COPY THE ADDRESS IN TEMP
Ll: FTYPE+l; FP $ FSTR+l;

ELSE DO;
IF IMMEDIATE=l DO;

BLLERR(S) IF FTYPE#l OR FP $ FSTR=fJ;
ENDIF;
TEMP+(OP IF FTYPE=l ELSE CONTENTS(ARGADR));

ENDIF;
OLDR+R;
CPYADR+((FP AND 3777B)+NEWL IF FP<fJ ELSE

(FP AND 37777B)+NEWG);
GOTO ARRAY IF FP $ FSTR=fJ;
COUNT+(l IF FTYPE=l OR FTYPE=9 ELSE

2 IF FTYPE=2 OR FTYPE=3 ELSE
4 IF FTYPE=4 OR FTYPE=S OR FTYPE=6

ELSE GOTO STRING IF FTYPE=7
ELSE GOTO LABEL IF FTYPE=8
ELSE BLLERR(4));

UFN'TRAP() IF(FTYPE=3 OR FTYPE=4)
AND UNDEFINED(TEMP);

L2: R+NEWP; $CPYADR+TEMP; COUNT+COUNT-1;
IF COUNT#!] DO;

R+OLDR; Q+Q+l;
CPYADR+CPYADR+l;
TEMP+CONTENTS(Q); GOTO L2;

ENDIF;
ELSE DO;

BLLERR(S) IF FP $ CADDR=l OR FP $ FSTR=fJ;
CPYADR+ ((FP AND 3·777B) +NEWL IF FP<fJ ELSE

(FP AND 37777B)+NEWG);
IF TYPE=3 OR TYPE=4 DO;

STF (CPYADR) ;
ELSE DO;

COUNT+(l IF FTYPE=l OR FTYPE=9 ELSE
2 IF FTYPE=2 ELSE
4 IF FTYPE=S OR FTYPE=6 ELSE
BLLERR(4));

R+NEWP;
STORE(CPYADR, A);
IF COUNT#l DO;

STORE(CPYADR+l, B);
IF COUNT#2 DO;

STORE(CPYADR+2, C);
STORE(CPYADR+3, D);

ENDIF;
ENDIF;

ENDIF;
ENDIF;
NAW+NAW+l;

-71-

L3: ENDIF;
INTERRUPT'CHECK();
GOTO L4 IF FP $ ENDF=l;

ENDFOR;
L4 : NEWP+NFW+ 1;

ENDIF;

* * COMPUTE RETURN DESCRIPTOR
IF CLL=l DO;

R+NEWP;
NEWL[9]+NAW;
NEWL[l]+L+2B7*STK+lB7*CPR;
NEWG[l4B]+G IF MCAL>9 AND RING{NEWP)>RING(P);

ENDIF;
IF STK=l DO;

IF CLL=l DO
R+NEWP; NEWG[2]+SP;

ELSE DO;
R+P; G[2]+SP;

ENDIF;
ENDIF;
IF MCAL=2 DO;

MENTER: PROTECT(4);
SET I LOCK () ;

ENDIF;
SR $ TDFLAG+SR $ PDFLAG+9 IF MCAL>9;
L+NEWL; G+NEWG; OLDP+P; P+NEWP;
IF RET=l DO;

IF OLDP>=6B5 DO;
MEXIT: UNPROTECT(4);

*

RESET' LOCK();
XMON'TRAP() IF SR $ XMONT;

ELSE DO
XUTIL'TRAP() IF SR $ XUTILT;

ENDIF;
ENDIF;
P+P+l IF FTN=l AND FTNATF=9;

* EXIT FROM BLL
GOTO NEXT'INSTRUCTION;

* STRING: COUNT+4; GOTO L2 IF MCAL=9
FORM+TEMP AND 14B6 OR 4B7; OLDT+9;
FOR I+9 BY 1 DO;

R+P; RINGCHECK(TEMP);
BLLERR(6) IF OLDT $ WA>TEMP $ WA OR

OLDT $ WA=TEMP $ WA AND
OLDT $ CPOS>TEMP $ CPOS;

R+NEWP; $(CPYADR+I)+TEMP AND NOT 74B6 OR FORM;
GOTO L3 IF I=3; R+OLDR; OLDT+TEMP;
TEMP+CONTENTS(ARGADR+I+l};

ENDFOR;

-72-

* LABEL: Q+(TEMP $ FLW IF TEMP $ BIT4=~

*

ELSE ARGADR+TEMP $ FSRW);
RINGCHECK(Q) IF MCAL>~;
R+NEWP;
STORE(CPYADR, Q AND NOT 75B6 OR TEMP AND 75B6);
R+OLDR; BRD+CONTENTS(ARGADR+l);
IF BRD $ FE=~ AND BRD $ FSTK=~ DO;

BRD+BRD AND NOT 4B7 IF MCAL>~;
BRD+BRD OR (L IF STK=~ ELSE NEWL+2B7+4B6);

ELSE DO;
BLLERR(6) IF MCAL>~;

ENDIF;
R+NEWP;
STORE(COPYADR+l,BRD); GOTO L2;

ARRAY: R+NEWP; $CPYADR+TEMP;
BLLERR(6) IF TEMP $ IAT#3;
IF MCAL>~ DO;

IF+(TEMP $ UBl IF TEMP$ LEB=~ ELSE TEMP$ UB2);
IA(ARGADR+l); RINGCHECK(Q);

ENDIF;
IR+~; R+ARGADR; IA(ARGADR+l);
BLLERR(6) IF IMMEDIATE=l;
RINGCHECK(Q) IF MCAL>~;
R+NEWP;
$(CPYADR+l)+(Q+(4B6 IF READONLY=~ ELSE 12B6));
GOTO L3;

Number Name

1 MACC

2 PRO

3 PNIM

4 PNIC

5 TO

6 PI

7 'l'I

8 XMON

9 XUTIL

11 ILIM

12 MAB

-73-

V. FIXED TRAPS

Caused by

Memory access error - attempted
access to monitor from below M
or utility from below U

attempted write of RO page

attempted reference to page not
in map

attempted reference to page not
in core

timer overflow - not in monitor
mode

privileged instruction

trapped instruction

on exit from monitor via any
BLL or LOADS if XMONT is set in
the state

on exit from utility via any
BLL or LOADS if XUTILT is set
in the state

indirect limit exceeded

map abort

Parameter

Q+(RING(R)-1)*1B6

Q

Q

Q

address of IAW

