
BCC 500
SPL LANGUAGE REFERENCE

MANUAL

Chuck Wall
Judy Simon

THE ALOHA SYSTEM
University of Hawaii

Document No. BCC/M-2
December 31, 1973

Contract NAS2-6700
Department of Defense

Advanced Research Projects Agency
ARPA Order No. 1956

1

ABSTRACT and CONTENTS

This is the reference manual for the BCC 500 System Programming

Language (SPL). The syntax and semantics of the language are defined.

This reference manual is an edited and updated version of a working paper

written by Butler W. Lampson.

2

TABLE OF CONTENTS

l. Introduction.. 5

2. Meta Language. 6

2.1 Syntax for Meta Language Equations....................... 7

2.2 Syntax of Meta Language Tokens........................... 8

3. Scopes and Program Format............................. l 0

3.1 Lexical Format... 11

3. 2 Scopes . 12

4. Allocation.. 15

4. l Permanency of Storage.................................... 15

4. 2 Layout of Core. 16

4. 3 Origins . 18

4.4 Fixed Environments....................................... 19

4. 5 Equivalence.. 20

4.6 Fixed Fields... 20

5. Declarations.. 21

5. l Names . 21

5.2 Declaration Statements................................... 21

5. 3 Attributes. 24

5. 4 Attribute Modifiers........... 27

5.4.l Dimensions.. 27

5.4.2 Length.. 28

5.4.3 Form.. 29

5.5 Equivalence.. 29

5.6 Initialization... 30

3

5.7 Constants.. 32

5.7.1 Integer Constants................................... 32

5.7.2 Real Constants...................................... 33

5. 7. 3 Doub 1 e Cons tan ts . 34

5.7.4 Imaginary Constants................................. 34

5. 7. 5 S tri ng Cons tan ts . 34

5. 7 .6 Label Constants..................................... 35

5.7.7 Constant Expressions................................ 35

5.8 Data Formats... 35

5.9 Function Declarations.................................... 38

5.9.l Formal Parameters................................... 38

5.9.2 FRETURNs................. 39

5.9.3 Special Entry Points................................ 39

5.lOMacros.. 43

6. Action:Statements............................... 45

6.1 Expressions.. 45

6.1.1 Precedence of Operators............................. 46

6.1.2 Syntax of Expressions............................... 47

6. l. 3 Types of Operands. 49

6.1.4 Semantics of Expressions............................ 53

6.1.5 Array Expressions................................... 57

6.1.6 Function Call and Return Expressions................ 59

6.1.6.1 Arguments.................................... 59

6.1.6.2 Returns...................................... 60

6. 1 . 6. 3 Fa i lure Ex i ts . 61

6.2 Expressions Used as Statements........................... 61

6. 2. l IF Statements.. 62

6.2.2 FOR Statements...................................... 63

4

6. 3 Assembly Language........................... 65

7. Intrinsic Functions... 67

7.1 Type Conversion Functions................................ 70

7. 2 String Functions............................ 72

7.3 Storage Allocation Functions............................. 75

7.4 Miscellaneous Functions.................................. 77

Appendix I - List of Keywords. 78

5

1. Introduction

The BCC-500 Systems Programming Language (SPL) was designed

for use in systems development, translator writing and high level

sub-system development. It is sufficiently flexible and generates

sufficiently efficient object code to replace assembly language in

almost all situations. SPL is highly interactive, simple to use from

a terminal and helpful in error situations.

This reference manual defines the syntax and the semantics of

the language. Details about the command language, the editor and

debugger will appear in another manual.

6

2. Meta Language

A syntax equation describes the form of some construction in

a language. For example, the following equations describe

simple arithmetic expressions.

expression= [11 +/ 11 - 11] term $((11 +11 /"- 11) term);

term =primary $((11* 11 /"/") primary);

primary = symbol I number I 11 (11 expression 11) 11 ;

The first equation reads 11 an expression has the form of an optional plus

or minus followed by a term followed by an arbitrary number (including ~)

of the constructs (denoted by 1 $1), either a plus or minus sign followed

by a term. 11 The last reads 11 a primary has the form of a symbol or a

number or a literal left parenthesis followed by an expression followed

by a right parenthesis. 11 Symbols such as 1 primary 1 , 1 term 1 and 1expression 1

are defined above and are called non-terminal symbols. 'Symbol 1 and

'number' are not defined above and are, therefore, called terminal symbols.

The construct 11 (11 is an example of a 1itera1.

7

2.1 Syntax for Meta Language Equations

equation =symbol 11 =11 alternation 11 ; 11 ;

alternation = catenation $("/" catenation);

catenation = term $tenn;

tenn = primary I optional I repetition / negation;

primary =symbol I literal / "(" alternation 11) 11 /

11 <11 text ">";

optional = "[" alternation 11] 11 ;

repetition = [integer] 11 $11 [integer] primary;

negation = primary 11 - 11 primary;

The alternation indicates that any alternative is legal; a catenation

indicates that the terms follow each other. The last alternative of

the definition of a primary is included to allow an "escape" to normal

English text. Naturally the text may not include a 11 >11 character.

This convention should be avoided if possible.

An 'optional' indicates zero or one occurrence of the alternatives

enclosed in brackets. The meaning of the four kinds of repetitions are:

Form

$ something
1$ something
$6 something
2$7 something

Meaning

arbitrary number of 1something 1 s 1

one or more 1 something 1 s'
zero to six 1 something 1 s 1

two to seven 'something's 1

The negation construct is used to make an exception. It translates

"any occurrence of the first primary except for an occcurrence of the

second primary."

8

2.2 Syntax of Meta Language Tokens

Many languages are bui,lt out of small units, called tokens. The tokens

of the metalanguage are symbols, integers, literals and certain punctuation

characters such as 11 /", 11 $11 and 11 ; 11 (see below). In such languages blanks

and carriage returns may appear between tokens without affecting the

meaning of the information. The usual rule is that blanks and carriage

returns delimit (or separate) tokens, but are otherwise ignored.

Unless the contrary is explicitly stated in our documents, the reader

may assume the treatment of blanks is as described above.

These equations define the tokens:

symbol = word $ (11 : 11 word) ;

word = 1 et te r $ (1 et te r / di g i t) ;

integer = di.gH $digit;

1itera1 = 1111 $charl 1111 I 11111 $char2 11111.

'

charl = character 1111.

'

char2 = character 11111.

'

A symbol is a sequence of words separated with colons. A word is at least

one letter optionally followed by letters or digit. An integer is

represented in the normal way. A literal is a string of either charl 1 s

enclosed by double quotes or char2 1 s enclosed by single quotes. The

first form is preferred. 1 charl 1 is any character except double quote;

1 char2 1 , any except single quote. Note that 11 ? 11 11 ! 11 is not the same

as 11 ?! 11 • The first form implies that the 11 ? 11 and 11 ! 11 may be separated by

blanks, while the second requires that the two characters appear

consecutively with no intervening blanks.

9

These three equations define the basic set of characters for defining

tokens.

character = letter I digit;

letter = 11 A11 /"B II / 11 C11 /"D 11 / 11 E11 I 11 F11 / 11 G11 I 11 H" I II I II I 11 J 11 /"KIII 11 L 11 /"M II I

digit

11 N11./"0" /"P 11 1"Q"I 11 R11 /"S 11 / "T" /"U "1"V"1 "W" / 11 X "/ "Y" 111 Z11 1

11 a11 / 11 b11 / 11 c11 / 11 d11 I 11 e 11 t 1f 11 I"g 11 /"h 11 / 11 i 11 I"j 11 / 11 k11 I 11 l 11/ 11m11 I

11n11111011;11p" t•q11/ llr" Ills "/11t11 /11u "I "v11 /"w" I "x" I "y" /" z" I

= 11011/"1";11211111311111411 /"5"/ "6" /"7 "I "8" /"9 II;

10

3. Scopes and Program Format

An SPL program is organized into blocks. A block begins

with a PROGRAM or COMMON statement and ends with an END

statement. It has a name which is given in its initial

statement. Block names must be unique over the entire

program. Thus the general format of a program is:

program

block

common: block

program: block

block: head

= $block;

= common:block / program:block;

= 11 COMMOW identifier

block: head

end:statement II. II,

' '

= 11 PROGRAM" identifier

block: head

$ ($ (1 abe l 11 : 11)

II, II

'

II • II

'

action:statement 11 ; 11)

end:statement 11 ; 11 ;

= $(include:statement 11 ; 11)

$(allocation:statement 11 ; 11)

$(declare: statement JI • II) •
' '

allocation:statement = fixed:statement I

origin: statement;

label = identifier;

i den ti fier = name;

11

Thus, statements must occur in a block in the order:

PROGRAM or COMMON statement

include: statements

allocation:statements

declare:statements

action: statements

end:statement

A corrmon:block must precede any blocks which INCLUDE it.

3.1 Lexical format

Every statement ends with a semi-colon.

Carriage returns and blanks are treated according to

the following rules:

l) inside string constants or character constants

blanks are treated like ordinary characters.

Carriage returns are illegal in string and

character constants (unless written with the 1 &1

escape convention).

2) elsewhere a string of carrtage returns and blanks

is equivalent to a single blank.

3) a blank may appear anywhere except in the mi_ddle

of a token. Tokens include names, reserved words,

constants, the sequences"<=" 11 >= 11 11 **" "//"that

are SPL two character operators.

12

To sunmarize these rules somewhat sloppily we say that carriage

returns and blanks are ignored except in string constants,

names, and reserved words.

A comment has the form:

comment = <carriage return> 11*11 <arbitrary

string of characters not including

carriage return> <carriage return> /

11 /* 11 <arbitrary string of characters

not including "*/" or carriage return>

(11* /" I <carriage return>);

The first form of comments is exactly equivalent to a

carriage return. The second form is equivalent to a blank

if it ends with 11* /", a carriage return if it ends with a

carriage return; the difference is apparent only if it is.

immediately followed by 11*11

Note that a multi-line comment must have an* or /* at the

start of each line.

3.2 Scopes

Eacn vari_able is declared 1n some block and is said to be

local to that block. The same identifier may refer to two

different variables which are local to different blocks.

The variable name together with the block name, however,

is sufficient to identify the variable uniquely. A

variable is said to be LOCAL in scope if it is local to a

program block, COMMON if it is local to a common block.

13

Function names (i.e. names which appear immediately after

FUNCTION or ENTRY) are GLOBAL in scope, however.

A variable may be referenced only in a block in which H is

defined. Any variable is defined in the block to which it is

local. Suppose that block C includes COMMON blocks Bi

(i=l, ... ,n) in that order. Then a variable defined in Bj

is also defined in C unless it is local to C or defined in

Bi, i>j. A block includes Bi if Bi appears in the identifier: list

of an include:statement in the block.

include:statement = "INCLUDE" i.dentifier:list;

identifier:list = identifier$("," identifier);

A 11 GLOBAL v a ri ab 1 es. a re considered to be defined in a GLOBAL

COMMON block which is considered to be included in every block.

The effect of this convention is that declarations in

COMMON blocks can be overridden by other declarations nearer

the point of use. Exception: a MACRO name cannot be overridden.

Note that if B includes A and C includes B, then the variables

local to A are defined in C (unless variables of the same

name are local to B or C). A declaration overri.ding an INCLUDE

must occur before any reference to the variable involved.

See figure l. for an illustration.

14

Figure 1: Determining Defined Variables
(In the following figure <F>P means P local to F)

COMMON A;
DECLARE P,Q;

Defined: <F>U,<G>V,<A>P,Q

COMMON C;
INCLUDE A;

DECLARE M,N,P;
Defined: <F>U,<G>V,

<A>Q,<C>M,N,P

PROGRAM F;
INCLUDE C ,D;

DECLARE L;
ENTRY P;
ENTRY U;

GLOBAL variables

Defined: <F>P,U,<G>V

COMMON B;
DECLARE R,S,;

Defined: <F>P,U,<G>V,R,S

COMMON D;
INCLUDE A;

DECLARE I ,J ,M;
Defined: <F>U,<G>V,

<A>P ,Q ,<D> I ,J ,M

COMMON E;
INCLUDE B,D;

DECLARE J,R;
Defined: <F>U,<G>V,S,

<A>P,Q,<D>I,M,
<E>J,R

PROGRAM G;
INCLUDE E;
DECLARE J,K;

ENTRY V;

Defined: <F>L,P,U,<G>V,
<A>Q~<D>I,J,M,<C>N

Defined: <F>U,<G>V,J,K,S,
<A>P,Q,<D>I,M,<E>R

15

4. Allocation

SPL has a considerable amount of machinery for controlling

the allocation of storage for programs and data. Much of

this machinery is of limited interest, but a few parts of

it are important to nearly all programmers. This section

discusses the topics of general interest first, before

going on to the others. The reader is advised to break

off when he encounters material of no relevance to his needs.

4. 1 Permanency of Storage

Data in SPL is of two kinds: permanent and stacked.

Permanent data stays around for the life of a program, i.e.

the value of a permanent data item, once set, survives until

explicitly changed by the program. All data declared in

COMMON blocks is permanent. Data declared in PROGRAM

blocks is permanent if the block includes a

fixed:statement = 11 FIXED 11 [11 , 11 11 0RIGIN 11 expr];

The function of the ORIGIN clause is explained in Section 4.3. This

statement, if it is present, must appear between the include:statement

and the declare:statements of the block. The FIXED

program block may not be entered recursively (by funtion calls)

during execution. This error is not checked for.

16

If a program block is not FIXED, all the variables local to

it are stacked. This means that their values are undefined

when the block is entered (by a call to one of its functions),

may become defined by the action of the program and disappear

when the function returns. The block may be entered recursively,

and the values of its local variables for each level

of recursion are completely distinct.

4.2 Layout of Core

The arrangement of memory relative to G' (the global environment)

is designed to group read-only objects together

and on separate pages from writeable things, so that the

former can be protected by the hardware from modification.

Later improvements will permit small programs to be packed

together better.

Space is allocated in four main regions

GI :WGS-+ +RSGS:G 1 +40000B:CS-+ :3777776

WGS: Writeable Global Storage, starting at G'. Tnis area is

allocated by a general storage allocator in the compiler in a

piecemeal fashion: no attempt is made to keep related things together.

All the writeable variables which appear in common blocks, together

with fixed local environments are put here.

Some of the first 128 words may also be used for field and array

17

descriptors, at the discretion of the compiler, except in

the monitor ring, where this will never be done (unless forced

by equivalences). The first few words, of course, are used for

objects whose location is fixed by the hardware, like the stack

descriptor. The allocation strategy for this area may be modified by

ORIGIN statements; see below.

Collision of this area with RSGS is a fatal error.

The stack (where stacked data is stored) is allocated space at

the end of this area. Its size depends on the number of

non-FIXED PROGRAM blocks entered but not exited.

RSGS: Read-only Scalar Global Storage. Here are put the constant

scalars (e.g. array descriptors and initialized scalars)

from common blocks, as well as function descriptors. This area

is allocated by another incarnation of the general storage allocation

used for WGS and on the same piecemeal basis.

CS: Code Storage. Space here is allocated by block. All the

code and constants generated by one program block, or all the

non-scalar constants (strings, arrays, etc.) generated by

one common block, are collected together and allocated contiguously

in that region. Transfer vectors also appear here. If block A

precedes block B lexically (in the source), then the

18

CS for A will precede the CS for B.

4.3 Origins

The ortgtn:statement penntts (most of the) storage of a block

to be allocated at a fixed place.

origin:statement = "ORIGIW [expr];

The expression, whose value is called the origin of the block,

must evaluate to an integer at compile-time. The statement

must appear in the block after any include:statement and before

anything else.

If the block is a program block or a conman block with no

writeable variables declared, the origin tells where to start

its space in CS. If the space for the preceding block in CS extends

past the specified origin, an error is recorded and the statement

is ignored. This implies that origined blocks must appear

in order of increasing origins. Note that the scalar storage

of a common block is allocated in RSGS and is not affected by

origin:statements.

19

If the block is a common block with writeable storage, then the

origin tells when to start this storage. Two restrictions

apply

1) The block must have no requirements for CS.

2) All blocks with origined WGS must appear before any

non-origined blocks which require WGS, so that the

space taken by origined blocks can be properly

removed from the control of the storage allocator.

All the WGS for an origined block is allocated together. A

subsequent block may omit the expr from its origin:statement,

in which case its WGS is allocated immediately following that

of the preceding block.

4.4 Fixed Environments

The location of a fixed local environment may be specified by

the fixed:statement, thus:

FIXED, ORIGIN expr;

The origin clause tells where to put the environment. The prograrrrner

is responsible for the security of the area he chooses,

which is not checked by the compiler. In the absence of the

ORIGIN, the compiler will allocate the storage in WGS at its

discretion.

20

4.5 Equivalence

An equivalence can be used to fix the location of a scalar or

an array descriptor by writing an integer-valued expression

for the object of the equivalence. Thus

DECLARE A = 408, ARRAY 8[30] = 418;

allocates A at 40 and the descriptor for the array 8 at locations

41 and 42 octal. The array itself is allocated according to the default

rules. Restriction: the value of the equivalence must be in

the range [G' ,G'+377778]. An equivalence overrides all other

methods of storage allocation. If a variable V has been equivalenced

to a constant, or is declared in a common block, then

@V is a constant whose value is the address assigned to V.

4.6 Fixed Fields

Descriptors for part-word fields are normally allocated in the

first 128 words of the global environment by the compiler if

there is room. This allocation can be suppressed and the

field allocated in the function or common block like any other

constant by prefixing FIXED to [SIGNED] FIELD in the declaration.

21

5. Declarations

5.1 Names

A name is a sequence of not more than 16 characters starting

with a letter, each of which must be either alphanumeric or

an 1 (apostrophe) .

5.2 Declaration Statements

A declaration consists of a list of names together with

specification of scope, type and mode, and possibly

of initialization and equivalence. Thus:

declare: state­
ment

declare: clause:
list

declare:clause

item

equivalence

= 11 DECLARE 11 declare:clause:list I

macro:statement;

= declare:clause $(11 , 11 declare:clause);

= [type] [mode] item;

= identifier [form I [dimension] I [length]]

[equivalence] [initialization];

= 11 =11 (identifier [subscript:list]/
(11 L111 / 11 G111) subscript:list I expression);

22

subscript: list = 11 [11 expression $(11 , 11 expression) 11] 11 ;

initialization = 11+ 11 (expression I 11 (11 expression

$(11 , 11 expression) 11) 11);

Where L' means local environment and G' means the global environment.

A declaration is processed from left to right. The attributes

are initialized as follows:

scope

type

mode

is determined by whether the declaration is in a

PROGRAM block (LOCAL) or a COMMON block (COMMON)

INTEGER

SCALAR

The values of the three attrtbutes are called the state of

the declaration. Occurrence of attribute specifiers may change

the state. A name is given the attributes which are in the

state when it is encountered, except that the form, dimension,

or length, if appropriate, may follow the name as indicated

in the syntax of item. FUNCTION, FIELD, and ARRAY are taken

as specifying mode unless immediately followed by a mode word,

in which case they specify type. Occurence of a type word

sets the mode to SCALAR; occurence of a mode word leaves the

type unchanged. UNKNOWN SCALARS are not allowed.

EXAMPLE:

23

DECLARE INTEGER A, B, STRING C, ARRAY D, E [5],

ARRAY [10] F, G (5:12);

declares integer scalars A and B, string scalar C, string

arrays D, E, F, and G. The array D is not assigned any

storage, but E is assigned 5 elements and F and G get 10.

Except for G, no space is assigned for the string values and

all the strings have 8-bit bytes; each element of G is

assigned space for 5 bytes at 12 bits each. All these things

are local.

24

5.3 Attributes

Every name has three attributes: scope, type, and mode. Each

is chosen from a fixed set of alternatives:

scope

type

ptype

ntype

integer

mode

= 11 COMMON 11 I 11 LOCAL 11 I 11 GLOBAL 11

= ntype I ptype I 11 STRING 11 [length]

= 11 PARAMETER 11 integer / 11 PARAMETER REAL" /

"PARAMETER DOUBLE 11 I 11 PARAMETER COMPLEX 11

= integer / 11 REAL 11 / 11 DOUBLE 11 / 11 COMPLEX 11 I

11 LABEL 11 I 11 LONG 11 I 11 LONGLONG 11 I

11 FUNCTION 11 I 11 FIELD 11 I 11 ARRAY" I

11 UNKNOWN 11 ;

= "INTEGER 11 I 11 0CTAL 11 I 11 CHARACTER 11 I

11 POINTER"

= 11 FUNCTION 11 / [11 FIXED 11] [11 SIGNED 11] 11 FIELD" [form] I

(11 ARRAY 11 / 11 ARRAYONE 11) [dimension]/

11 SCALAR 11

Note that if the type is not specified 11 INTEGER 11 is assumed.

25

Certain constructions permitted by .the above syntax are forbidden

because no reasonable meanings can be attached to them.

1) Objects of type ARRAY or STRING with mode FUNCTION

or FIELD do not need dimensions and lengths, and

to give them as part of the item is an error.

2) A form may appear only if the mode is FIELD, a

dimension only if the mode is ARRAY, a length

only if the type is STRING.

26

The type of scalar value determines its size: integer,

function and field are one word values; long, real, array, and

label, are two words each; string, double, longlong, and complex,

are four words each. An array is represented by a two-word descriptor,

as is a label scalar. A function scalar is represented by a pointer

to the two-word descriptor. A field scalar is either a

constant, if its form is specified, or occupies a single

word. The four cases of integer are inc 1 uded to permit

intelligent printout of the value during debugging. The

compiler recognizes only one type of integer, and the others will

not be mentioned again.

If a name has mode ARRAY (or ARRAYONE; they are identical

except that the latter causes subscripts to start at

rather than~), subscripted references to it will be compiled

on the assumption that indirection through the descriptor

will produce the effective address. It is also possible to subscript

INTEGER SCALARS; such references will add the value of the name to

the subscript to produce the effective address.

If a name is a field without a form, tailing c· .11 , 11 $11 or

11 @11) wi 11 cause i ndi recti on through the 1 ocati on a 11 ocated

to it. If it has a form, it is treated as a constant and

27

and the code compiled depends on whether it is full-word or

part-word. If a field appears without tailing, it is

treated as an integer whose value is the field descriptor

if the field had a form, and the contents of the location

allocated to it otherwise. If a field is SIGNED, the top

bit will be copied into all the higher bit positions of a

24-bit word when the field is used to fetch a datum. Other­

wise, these bit positions (if any) will be filled with zeros.

5.4 Attribute Modifiers

The shapes and sizes of arrays and strings are specified by modifiers

(dimensions, lengths and forms) which have already appeared

in the syntax for attribute names. Throughout, the expressions

must evaluate to constants at compile time. This

means that a 11 the operands must be constant. See "Cons tan ts"

in Section 5.7 for a discussion of what operands are regarded as

constant.

5 . 4 . l Di mens i on s

dimension = "[" expr $("," expr)

[11 : 11 [expr] [11 , 11 expr]] 11] 11 ;

Arrays of any dimensionality up to 7 are allowed. The first

expression following the colon specifies the number of words

allocated to each element of the array; this makes it easy

to create tables with multi-word entries, The size of an

element is limited to 64 words. If it is not specified, it

28

is taken to be the size of the scalar object with the same

attributes as the declared array. If an array is given an

element size different from the one implied by its type,

then subscripting it yields an expression of type UNKNOWN.

See 11 Expression 11 (Section 6.1) for the implications of this.

The second expression following the colon tells where to

allocate the first word of the array. If it is absent,

the array is allocated using standard policies described

in Section 4 11 Allocation. 11

5.4.2 Length

length = 11 (11 expr [11 : 11 [expr] [11 , 11 expr]] 11) 11

The string length is specified in bytes by the first expression.

The second expression gives the byte size, chosen from

6, 8, 12, and 24; 8 is the default value. The third expression

tells where to allocate the first word of the string.

If an array or string lacks dimension or length, no space

is allocated and no descriptor created by the compiler. In

this case an array is assumed to take one subscript.

If these elements are present, space is assigned to the local

environment if the scope is LOCAL and the descriptors are

initialized at function entry. If the scope is COMMON,

space is assigned in the proper common block and descriptors

compiled into this block. See Section 4 on 11 Alloq3.tion 11 for details.

29

5.4.3 Form

form = 11 C' word:displacement [11 : 11

starting: bit

II) II ;

word:displace-
ment = expr;

starting:bit = expr;

ending:bit = expr;

II II , ending: bit]

A form specifies the word displacement and left- and right­

most bits of a field. If the bit numbers are omitted, ~ and

23 are used. A field may not cross a word boundary.

5.5 Equivalence

An equivalence has the following meaning: the identifier

following the ;1=11 , called the object, must be previously declared;

if subscripts appear, it must be a dimensioned array

and the number of subscripts must match the number of dimensions.

The effect is to assign the same storage to the identifier

preceding the 11 =11 , called the subject, as has already

been assigned to the object. If the identifier in the object is

L' or G', the subject is assigned to the designated location in

the local or global environment respectively. If the subject is

30

a dimensioned array or a string, its descriptor is assigned to

the same location as the object (to allocate the storage for

array or string values, see above); otherwise the subject

itself is assigned to the same location as the object. No

account is taken of the possibility that the subject may

occupy more space than has been allocated for the object.

For some details and restrictions, see 11 Al locati on 11 (Section 4).

5.6 Initialization

Initialization of SCALARs has the following meaning: if no

equivalence is present, the identifier being declared becomes

synonymous with the initialization quantity. For INTEGERs

which lie in [-20008, 17778], no space is allocated; for all

other types, and for INTEGERs outside this range, space is

allocated to hold the constant value in RSGS (for COMMON

blocks) or CS (for PROGRAMs). If an equivalence ippears, the

object must be an absolute location (see "Allocation"), a

scalar or array element with scope = COMMON, or an element

of an initialized local array, and the initialization

quantity will be stored into the variable, wherever it may be.

For each type of SCALAR, the initialization quantity must be

a constant of that type. A LONG or a LONGLONG may be

initialized with a string constant or with a list of integers;

this is the only way of introducing cons tan ts of these types

into an SPL program. An initialized STRING must not have

a length.

31

Numeric initialized variables, if not equivalenced, may be

re-initialized. This is primarily useful for things like

defining fields, etc., using a compile-time counter. If

block A includes block B, re-initialization by a declaration

in A of a variable acquired from B has no effect on B

or any other block that includes B.

Initialization of FUNCTIONs is done with a single name;

otherwise the comments above apply. Initialization of

FIELDs is illegal; the way to do this is to specify the

form explicitly.

An ARRAY is initialized with a list of constants of the

appropriate type. (Elements of the list are separated by

commas and the list is enclosed in parentheses, as usual.)

A FIELD ARRAY may be initialized with constant FIELD SCALARs;

an ARRAY ARRAY may be initialized with names of arrays which

have been declared with dimensions. The elements of the list

go into successive elements of the array, starting with the

first one. For multi-dimensional arrays, the last subscript

varies most rapidly, just as the array is actually stored.

32

A special feature allows initialization, at a later time,

of further elements of an array some of whose elements

have already been initialized. If X is a declared,

initialized array, then the appearance of

X subscript:list initialization

as a declare:clause will cause the expression(s) in the

initialization to be stored into elements of the array

starting at the one designated by the subscript:list. Of

course, all the subscripts must be constant.

5. 7 Cons tan ts

For each type there is a syntax for constants representing

values of this type.

5.7.l Integer Constants

integer:constant = simple:integer / character:constant;

simple:integer = digit $(digit) [11 811 [digit]];

If B appears, it causes the digits to be interpreted as octal;

otherwise they are taken to be decimal. If a digit n follows

the B, it is a scale factor, i.e., it is equivalent to n zeros

preceding the B.

character: constant =

pseudo:character =

33

(11 6 111 $4(pseudo:character)/

(118 I II / 11111) $3 {pseudo:character))

11111.
'

<character other than & or '>/

II & II letter I II && II I II & • II I • & II • I
11 &11 3$3 digit;

A character constant allows up to three 8-bit or four 6-bit

characters to be right-justified in a 24-bit word to make an

integer. Pseudo:characters permit quotes and control characters

to appear; the latter are specified by the letter whose

code is less by 1008.

5.7.2 Real Constants

real:constant = simple:real:constant [exponent]

digits exponent;

I

simple:real:constant = digits II II $(di git) I II II digits;

exponent = 11E11 s i g n di g its ;

sign = [11+11 I 11_11];

digits = 1$(digit};

The meaning of this should be obvious; the given decimal

approximation to a real number is converted to the closest

approximation possible in the machine's 48-bit binary representation.

34

5.7.3 Double Constants

double:constant = (simple:real:constant /digits) 11 0 11

[II+ II I 11 _ II] di g i ts ;

In this case the machine 1 s 96-bit binary representation is

used. Note that D must appear in a double constant, and

that either . or E must appear in a real constant.

5.7.4 Imaginary Constants

imaginary:constant = (real:constant /digits) 11 ! 11 ;

Complex constants may be constructed by arithmetic on real:constants

and imaginary:constants; such arithmetic is performed at compile time,

resulting in a single complex constant in the object code.

5.7.5 String Constants

string:constant = (1 6111 / 1 8111 / 1111) $(pseudo:character)

The value is a string with the specified sequence of characters

encoded in 8-bit (default case) or 6-bit bytes as specified.

I 111 •

'

35

5.7.6 Label Constants

label:constant =identifier;

The identifier must not appear in a DECLARE statement; it must

appear as a label exactly once in the function, i.e., at the

beginning of a statement and followed by a colon.

5.7.7 Constant Expressions

The compiler will evaluate any expression consisting entirely

of constants and standard functions and thus will treat it

like a single constant.

5.8 Data Formats

The formats of the various kinds of values (i.e. the binary

representations) are in great part determined by the hardware

of the machine. We summarize them here for completeness,

and to specify a few conventions established by SPL. Refer

to the CPU manual for the exact word layouts.

Integers are 24-bit two 1 s complement.

Longs are 48-bit quantities. No operations are defined

on them except general ones for moving and decomposing

any data object.

Longlongs are 96-bit, but otherwise identical to longs.

Reals are 48-bit: sign, 11-bit exponent and 36-bit fraction.

36

Double precision real numbers are 96-bit; the format is

identical to that for reals, except that the fraction

is 84-bi t.

Complex numbers are 96-bit and consist of two reals.

The real part is the first, the imaginary, the second.

Strings are four-word (96-bit) objects called descriptors.

Each word is a hardware string indirect address word:

Bits Function

0- 1 =2, to specify a string des cri pt or

2-3 byte size: 0=6-bit, 1=8-bit, 2=12-bit,

3=24-bit

4-5 byte number in word, counting from left

6-23 word address

The four words are used as follows:

0: start of string, points to byte before first

1 : reader pointer, points to 1 as t byte read

2: writer pointer, points to last byte written

3: end of string, points to last byte available

Labels use the hardware's BLL descriptor, which is too

complex to be described here. Functions are represented by

pointers to their BLL descriptors.

byte of string

in string

37

Fields use the hardware•s field descriptor, which is a one word

object with the following form:

0-1

2

3-7

8-12

13-23

=l, to specify a field descriptor

set ior SIGNED field

length in bits

bit address of first blt

word displacement

Arrays use the hardware's array descriptor, which is a two-word

object with the following form:

Ii' 0-1 =3, to specify an array descriptor

Ii' 2 lower bound (0 or l) on subscript

!i' 3 set for marginal index descriptors (see below)

0 4 large element bit

0 5-6 or
5-10 multiplier (element size)

0 7-23 or
11-23 upper bound on subscript

6-23 address of first word of array

Array of dimension >l are handled by marginal indexing;

see the discussion of arrays in Section 6. 1.5.

Intrinsic functions will exist to decompose and construct

all these descriptors.

38

5.9 Function Declarations

The syntax is

function:statement = ftype (''FUNCTIOW/ "ENTRY")

identifier 11 (11 [declare:clause:

list] ")" ["," "FRETURN"] [function:

location];

ftype = ntype / "STRING";

function:location =","("MONITOR"/ "UTILITY'1 I "POP" I

"TRAP I ENTRY" I "FTRAP I ENTRY" I

"SP'ENTRY" / "SYSPOP") [11+- 11 expression];

For example

FUNCTION F (I, REAL J, STRING ARRAY K);

ENTRY and FUNCTION are synonyms.

5.9.l Formal Parameters

The declare:clause:list must not include lengths or forms.

It may include dimensions, but only the number of subscripts

is counted, not the values, and the subscripts may be null

(e.g. A[,] for a matrix). Arrays are assumed to have one

subscript if no dimension appears.

Any identifiers in the declare:clause:list which have not

already been declared are declared as though they had appeared

in a DECLARE statement with the same attributes. If any such

identifier has already been used, an error comment results.

For each identifier which has already been declared either:

39

1) the attributes specified for it in the function

declaration must exactly agree with the attributes

already declared for it, or

2) no attribute specifiers may precede it in the

declare:clause:list.

Otherwise there will be an error comment.

The identifiers in the declare:clause:list constitute the

formal arguments in the order in which they are written.

When the function is called (see 11 function calls 11 below)

an equal number of actual parameters must be supplied, and

they must agree in type and mode. No automatic c0nversions

are done. The agreement is checked when the call occurs.

5. 9. 2 FRETURNs

The FRETURN clause must be included if the function returns

with FRETURN. In this case it must always be called with

a failure clause. If any function in a program block has a

FRETURN, the first one must.

5.9.3 Special Entr¥ Points

The function:location specifies that the function is to be

entered in one of the system-defined transfer vectors at

the location specified by the expression. In the case of

40

POP, SPL will supply a location if none is specified. The

possibilities are:

POP the function is to be callable as a POP

TRAP'ENTRY the function is to be called when the

specified (ring-dependent) hardware

trap occurs.

SP'ENTRY the function is to be called when the

sub-process in which it runs is entered

at the specified entry point.

The remaining ones are of interest only to system programmers:

FTRAP'ENTRY the function is to be called when the

specified (fixed) trap occurs.

MONITOR

UTILITY

the function is to be called when the

specified MCALL is executed.

These two make sense only if the function

is in the monitor.

the function is to be called when the

specified UCALL is executed. This makes

sense only tf the function is in a utility.

If any function in a program block has a

MONITOR or UTILITY function:location, the

first one must have it.

41

SYSPOP the function is to be called when the

specified syspop is executed.

The following tables summarize the treatment of the various

special kinds of entry points.

Type of function Call with Return with Put descriptor

Ordinary

MONITOR

UTILITY

POP

TRAP 1 ENTRY

FTRAP 1 ENTRY

SYS POP

SP 1 ENTRY

BLL

MCALL

UCALL

Pop

BLL

BLL

BLL

BLL

MCALL Transfer Vector

UCALL TV

POP TV

Not applicable. A trap 1entry is not really
a function. It does not have arguments.
The address of the first word of code
should be put into the TRAP TV. It is a
programming error to reference any local
variables or do a return.

As for TRAP 1 ENTRY, but put the address of
the first word into the FTRAP TV.

As for TRAP 1 ENTRY, but put the address of
the first word of code into the TRAP TV
at 20B + syspop number.

SP 1 CALL SP I RETURN SP TV

A sp 1 entry is not really a function. It does not
have arguments. It is a programming error to reference
any local variables. The only proper way to call
an sp 1 entry is with an sp 1 call and to return with
an sp 1 return.

Table 5. 1 Summary of Function Call Conventions

Name of TV

MCALL

UCALL

POP

TRAP

FT RAP

SP

Location and contents
of descriptor

604000B; UB=MAXMCALL

4030148; U8=MAXUCALL

G1 [0]; U8=MAXPOP

G1 [6]; U8=128 except
for user ring, where
U8=208+MAXSYSPOP

6040028; U8=148

G1 [128]; U8=MAXSP

42

Contents of TV entry

Absolute address of
function descriptor.
Initialized to an
error function.

As for MCALL.

As for MCALL.

Absolute address of
code. Initialized
to a trap routine.

As for TRAP

As for MCALL

All descriptors are normal IAWs with indirect addressing; they

point to ARRAY IAWs with LB=0 (LB=l for TRAPS), MULT=l, BASE=indexed indirect

source-relative pointer to the transfer vector, which is

allocated in code space at the discretion of the compiler.

The MAX symbols are, for the moment, built into the compiler

with the following values:

MCALL = 4008, UCALL ~ 4008, POP = 1008, SYSPOP = 1008, SP = 208.

Table 5.2: Transfer Vectors

43

5.10 Macros

The language a 11 ows a simple form of token-subs ti tu tion

macro. A macro is defined by a

macro:statement = 11 MACR0 11 macro:name [11 (11 formal :list 11) 11]

11 +- 11 macro: body;

macro:name = identifier

formal:list =[formal $(11 , 11 formal)]

formal = identifier

macro:body = compact:token:string;

compact: token:
string =<arbitrary string of tokens not including 11 ; 11 >

Once a macro:name has been defined (i.e. has appeared in a

macro:statement) it can only be used in a macro:call. A

macro:call may appear anywhere except in a string or character

constant. It is

macro:call = macro:name [11 (11 actual:list 11) 11]

actual:list = [actual$(11 , 11 actual)]

actual = balanced:token:string

balanced:token:
string = <compact:token:string balanced with

respect to parentheses, and not including

II II , except in parentheses, or carriage return>;

44

The actual:list must be present if and only if the formal:list

was present in the macro:statement, and must be of the same

length as the formal:list. The macro:call is replaced by the

macro:body, except that each occurrence of a formal in the

macro:body is replaced by the corresponding actual. The

result is then scanned again for further macros.

Macros in a macro:body are expanded at definition time (unless

they have not yet been defined, in which case they are expanded

at call time according to the rescanning rule stated above).

If expanded at call time, their actuals must not include

any forma 1 s.

Note that a macro is expanded strictly by token substitution:

there is no requirement that any of the token strings involved

make syntactic or semantic sense.

45

6. Action:Statements

An action:statement is defined by:

action:statement = expression/

if:statement/elseif:statement/endif:statement/

for:statement/endfor:statement/

II II . assembler:statement/

6.1 Expressions

This section provides the following information about SPL

expressions:

approximate syntax, based on the precedence of the
operators

exact syntax

rules for types of operands

the semantics of the various operators

46

6.1.1 Precedence of Operators

Expressions are made up of operators and operands. The operators,

in order from low to high precedence, are:

FOR WHILE loops

IF ELSE

WHERE

&

RETURN FRETURN

OR

AND

NOT (unary)

= # > >= < <=

+ (on right)

MOD

* I LSH RSH LCY

RCY A1

**
+ - N1 (unary)

GOTO

+ (on left)

$ @

$ @ (unary)

[] ()

conditionals

sequential evaluation

sequential evaluation

function returns

boolean 11 or 11

boolean 11 and 11

boolean 11 not 11

relations

assignment

modulo or remainder

add, subtract, logical or, logical

exclusive or

multiply, divide, left shift, right shift,

left cycle, right cycle, logical and

exponentiate

unary + - , logical not

transfer

assignment

field operations

indirection, reference

subscripting, function call

The operands are:

constants

names

47

parenthesized expressions

6.1.2 Syntax of Expressions

The section 6.1.1 Operators by Precedence List, while convenient

for qui ck reference, does not suffice to specify the syntax of

expressions. We therefore state the complete syntax; explanations

of the meaning of the operators follow in section 6.1.3:

expression

f orexp

forclause

if exp

whrexp

catexp

retexp

alternation

conjunction

negation

relation

= forexp;

= if exp $ (11 FOR 11 forclause / 11 WHILE 11 ifexp);

= identifier 11 +- 11 remainder ([11 , 11

alternation] 11 WHILE 11 ifexp / [11 BY 11

ifexp] [11 T0 11 ifexp])

= whrexp [i 1 IF 11 whrexp [11 ELSE 11 ifexp]];

= catexp [11 WHERE 11 whrexp];

= retexp $(11 &11 retexp);;

= alternation / ("RETURN" / 11 FRETURN 11)

(alternation/ 11 (11 ifexp $(11 , 11 ifexp)

11) II) ;

= conjunction $ (11 0R 11 conjunction) /

11 GOT0 11 tailing;

= negation $(11 AND 11 negation);

= [11 NOT 11] relation;

= assignment [(11 =11 I 11 #11 I 11 > 11 I 11 >= 11 I

11 < 11 I 11 <= 11) assignment];

remainder

assignment

sum

term

factor

power

tailing

a: tailing

v: tailing

tail

indirection

reference

arrayref

function: ca 11

a:primary

v:primary

48

= sum $("MOD" sum);

=·remainder/ a: tailing "+" assignment;

= term $((11 +" I "- 11 I "V'" I "E"') term);

= factor $(("*" I "!" I "LSH" I "RSH" I

"LCY 11 I "RCY" I "A' 11) factor);

= ["+" / 11 - 11 / 11 N'"] power;

= tailing[11** 11 factor];

= a:tailing I v:tailing

= indirection $(tail) I reference

$ (II, II fie 1 d) ;

= reference $(tail)

= ("."I"$" I"@") field

= l $("$") arrayref

= [11 @11] arrayref / function:call

= a:primary $("[" expression $(11 , 11

expression) "]") ;

= a:primary / v:primary

= identifier I "(" a:tailing 11) 11 ;

= constant/ 11 (11 expression ")" ;

Note: this grammar is ambiguous because a function:call can be parsed as

both a:primary and v:primary. a:primary parsing will be used if possible.

49

6.1.3 Types of Operands

The various operations have various requirements for the

types of operands permitted and the type of result produced.

The permitted combinations are summarized in Table 6.1, in

which the following conventions are used.

type abbreviations:

other abbreviations:

I integer

G long or long long

R rea 1

D double

c complex

s string

L label

u unknown

F suffix means mode = FIELD

T suffix means mode = FUNCTION

y suffix means mode = ARRAY

S suffix means mode = SCALAR

A means any type

N means I, R, Dor C (i.e. number)

M means I, R or D

Where A, Nor M is suffixed with a digit, different digits indicate

that different types may appear. See, for example, 11 WHERE 11 :

argument l and argument 2 may be different types. If the digits are

the same, or there is no digit, the types must be the same.

Note: A partial ordering on the numeric types is defined: I<R<D,

R<C. Where two Ns or Ms appear, the lower is converted to the higher

50

before the operation is evaluated. If the result is N or M,

it has the higher type also. See. for example,''+". If NSl

were 11 I 11 (integer) and NS2 were "R" (real), then NSl would be

converted to 11 R11 and the result would be "R 11 • It is illegal to have

one D argument and one C argument. Where A appears, the mode

is free except as fixed by suffixes. In all other cases mode

= SCALAR.

Constants receive special treatment. Any type N constant is

automatically converted to a higher type if that is required

for an assignment to be legal. This is not done for variables;

the explicit transfer functions described in the definition of

action:statement at the start of Section 6 must be used.

An object of type U may be used where A appears in Table 6.1.

It may also be used as one of the operands in

the lines marked *, in which case it is assumed to have the

type of the other.

Note the treatment of ARRAYs, FIELDs and FUNCTIONs of type

ARRAY, FIELD or FUNCTION. When such variables are applied

to subscripts, pointers or function arguments, they yield results

of type UNKNOWN and mode given by their type. Normally

such results must be assigned to something of known type

before they can be used because of the restrictions on the use

of type UNKNOWN; thus, for example, if we want A to be an

ARRAY of REAL FUNCTIONs we would write

51

DECLARE FUNCTION ARRAY A, REAL FUNCTION RA;

RA+- A[I];

RA(X,Y + 5); . . .

ARGl

A

Al

Al

*IS

*IS

OPT

IF

WHERE

&

OR

AND

NOT

52

ARG2

I ELSE A

A2

A2

IS

IS

RESULT

A

Al

A2

IS

IS

IS

NOTES

The A's are required
to be the same only
if the value of the
IF is used.

*NSl,AS = ,;.

IS

NS2,AS

MS2

IS

*MSl

*A

*MSl

*NSl

*NSl

*IS

IS

AS

IS

AY

IS

AT

*· .
**.

<,<=,>,>=

MOD

+,-,*,/

**

SHIFT,
A1 ,E 1 ,V 1

N'

+ ,-

GOTO

$

@

$

@

[IS ... ,

[IS]

(A2, ... , An)

A

MS2

NS2

NS2

IS

IS

NS

LS

AF

IF

IF

IS

A

IS]

IS

A

MS

NS

NS

IS

IS

NS

AS**

IS

IS

us

IS

AS**

us

AS**

but see details below

one operand may be U, and is assumed to have the type of the other.

if A is ARRAY, FIELD or FUNCTION, the result is type U, mode A.

Table 6.1 Permitted Operands and Type of Result

53

6. 1.4 Semantics of Expressions

We now complete the discussion of operations with comments

on the evaluation of each one, together with some remarks

which may clarify the syntax and type conversion rules given

above. The operands are referenced by the symbols which stand

for them in the expression schemata on the left.

FOR,WHILE

Al IF I ELSE A2

Al WHERE A2

are discussed in Section 6.2.2

evaluates I. If I ~ 0, evaluates
Al and returns its value, otherwise
evaluates A2 and returns its value,
or returns 0 if the ELSE is missing.

Typical usage is:

F(X) IF X < 4 ELSE G(X) IF X< 5 ELSE H(X);

Note that:

X + Y IF Y < 3 ELSE Y+l

alters X only if Y < 3. Therefore
write:

X + (Y IF X < 3 ELSE Y+ 1) ;

if this is intended.

evaluates A2, then evaluates Al
and returns its value.

Al & A2

RETURN, FRETURN

Il OR !2

Il AND !2

NOT I

Al (=,#,>,>=,<,<=)A2

Al +- A2

Ml MOD M2

Nl(+,-,*,/) N2

Il(A 1 ,V 1 ,E 1)I2

Il(LSH,RSH,LCY,RCY) !2

* see end of table.

54

evaluates Al, then evaluates A2
and returns its value. Several &'s
may be strung together.

See Section 6.1.6

evaluates 11, returns l if it
is ; 0. Otherwise evaluates 12,
returns l if it is ; 0, otherwise
returns !iL

evaluates 11, returns 0 if it is
;~. Otherwise evaluates 12, returns
0 if it is= 0, otherwise returns 1.

evaluates I and returns 1 if I =
0, otherwise returns 0.

*evaluates Al and A2 and then
evaluates the relation. The value
is 0 if the relation does not hold,
1 if it does. Note that only =
and H are legal on non-M types.

evaluates A2 and stores the resulting
value into Al. They must agree in type
and mode except for the special treatment
of constants, and except that one operand
may be of type U.

*evaluates Ml and M2, and returns
Ml-FIX(Ml/M2)*M2

*obvious

*compute the bitwise "and," "or," or
"exclusive-or" of the operands

*these are 24-bit logical shifts
(shift in 0s) or cycles

Nl ** N2

(+,-)N

N' I

GOTO L

I. AF

A $ IF

I @ IF

* see end of table.

55

*obvious, except that
Il **I2 is an error unless I2 is
positive. The error is not caught
until runtime if I2 is not a constant.

obvious.

computes the bitwise (1 's) complement
of I.

sends control to the statement
labeled by L. If this was passed
as a parameter, the correct environment
is res to red.

*evaluates I, takes it as an
absolute address A, and references
the bits of A+ word:displacement
(AF), from starting:bit (AF) to
ending:bit (AF). The result may
appear on either side of an
assignment. If the field is
SIGNED, the starting bit is copied
into all the higher bit positions
when the result is used as a
value; otherwise these positions
are filled with zeros.

*references the bits of the value of
A specified by IF. The word
displacement of IF should not be
greater than the number of words
in the value of A. (4 at most if
A is a variable). Sign extension
is handled as for"." above.

*returns T, where Tis the result
of:

T +- 0
T$IF +- I

i.e., the value of I positioned
in a word according to the field
IF.

$!

@A

AY[I, ... ,I]
IS[I]

Al(A2, ... ,A2)

AF(I)

56

references the value addressed by
the value of I taken as a hardware
indirect word. Normally the top
6 bits of I should be off, since
the hardware uses them to select
the type of indirection rather
than to specify the address.
The value is of type U.

returns the address of the value
of A. It makes sense (and is
legal) only if A can appear on
the left of~ or is a label constant.

references the element of the array
A specified by the subscript I, as
described in Section 6. 1.5. If
the first operand is IS, only l
subscript is allowed. This construct
is equivalent to (IS+ I).W0, where
we have declared FIELD W0(0).

returns the value of the function
Al after calling it with parameters
A2, as described in Section 6.1 .6.

equivalent to I.AF

An * preceding the description means that the order of

evaluation of simple operands (see Section 6.1.6.l) is

undefined. Compound operands are always evaluated left-to-right

if there are more than one. If the * is lacking, the

operands are always evaluated left-to-right.

57

6.1.5 Array expressions

Arrays of any dimensionality from 1 to 7 are allowed. If

the array has n dimensions, then a reference to it with n

integer subscripts yields a scalar of the same type, unless

the type is ARRAY, FIELD or FUNCTION. In this case the type

of the result is UNKNOWN and its mode is the type of the

array. Thus, after declaring:

l) INTEGER I, J, K, REAL ARRAY A[3, 4, 5]

we know that:

2) A [I, J+ l, K**2]

is a REAL SCALAR. It is also possible to write:

3) A [I, J+ l]

which is an UNKNOWN ARRAY. If it is assigned to the REAL

ARRAY B, then:

4) B [K**2]

references the same scalar referenced by (2). It is probably

not useful to do anything with an UNKNOWN array except to

assign it to something.

Marginal indexing is used to access arrays. In the above example (1),

the value of A is a descriptor for an array with three

entries. Each entry of this array is a descriptor for an array

with four entries. Each entry of the four-entry array is a descriptor

for an array with five entries, each of which is a real number.

The Figure 6.1.5 illustrates this. The 120 words allocated for the real

numbers are contiguous in storage and in the order indicated.

Note that Fortran arrays vary the first subscript first

and are therefore incompatible.

FIGURE 6. l. 5

A
I 3)t

A box: ._I ~n I ___ _.
represents a descriptor for an
array of size n.

A simple box:
represents a real nwnber

58

A 1
~ 5

5
5
5

A 2
~ 5

""'5---11-----

5
5

A[3] .. 5
5
5
5

A[l, 2]

A[l,3]

A 1 4

AI3,Jj

A_l3_,2]

AI3,3]

~
AT3.4J

AI3 ,4 ,SJ

59

6.1.6 Function call and return expressions

The syntax for a function call is

a:primary "C1 [expr $("," expr)] [stores]

["//" failure:result [stores]]")" ;

stores= 11 : 11 identifier$("," identifier)

failure:result = ["GOTO"] identifier/ ("RETURN" /

"FRETURN") [expr I expr:list] I "VALUE" expr ;

The a:primary must have mode=FUNCTION. The value of the

function is taken to be a SCALAR of type equal to the type

of the a:primary, unless this type is ARRAY, FIELD or

FUNCTION. In the latter case, the type of the result is UNKNOWN

and its mode is given by the type of the function.

6.1.6.l Arguments

The arguments immediately follow the function name. There

is no restriction on their number or type, except that an

initialized LOCAL label. or string array may not be used.

F(); F(X); F(X,Y(l,2),Z[3]**5,W,Q);

are function calls with 0, 1 and 5 arguments respectively.

Arguments are evaluated as follows. All the arguments which

are compound are evaluated, left to right, and their values

are saved. An argument is simple if it is one of the

following, compound otherwise:

constant
identifier

identifier 11 [11 identifier 11] 11

identifier II II . field

11 $11 identifier

60

11 S11 identifier II II full-word field

The value of each argument is then stored in the corresponding

formal argument of the function being called. No type

conversion is done; nonmatched types are a run-time error.

Control is then passed to the function.

6. 1.6.2 Returns

A return is done with an expression of the form:

RETURN (expr, expr, ... , expr)/

RETURN expr/

RETURN;

The expression list is treated exactly like the actual

parameter list of a function call. The value of the first

expression becomes the value of the function; it and subsequent

values are stored in the corresponding identifiers

following the 11 : 11 in the call, exactly as actual parameter

values are stored in formal parameters.

61

6.1.6.3 Failure Exits

If a failure exit is provided following the 11 //" in the call,

an FRETURN will send control as specified in the failure exit.

It may be a label, in which case control goes to that address; a

RETURN, in which case a return is made from the function containing

the failure exit; or a VALUE expression, in which case the value of the

expression becomes the value of the function. Just as for the

RETURN, any number of values may be returned; they are stored

in the corresponding 1oca1: i denti fi ers fa 11 owing the 11 : 11 •

When a function has a failure exit the normal or success return

is with RETURN, exactly as for a function with no error exit.

6.2 Expressions used as Statements

In order to catch some common errors in which the user inadvertently

writes an expression statement which does nothing,

a set of rules is enforced. They insure that evaluation of

the expression results in some change in the state of the

world; such an expression is called an action expression.

Here the principal operator is the one of lowest precedence

(i.e. first on the list in the Section 6.1. l on "Precedence of

Operators"), except that any operator enclosed in n sets of

parentheses is of higher precedence than any operator enclosed

in fewer than n sets of parentheses.

62

An expression is an action expression if the principal operator is:

a) +, GOTO, RETURN, FRETURN, or a function call

b) WHERE, &, FOR, WHILE, IF

If the operator is in group (b) then:

a) for 11 WHERE 11 or 11&11 , both operands are action

express ions,

b) for 11 FOR 11 or "WHILE", the body (first operand)

is an action expression,

c) for 11 1F/ELSE 11 , both of the consequents are

action expressions, or the second consequent

is missing.

6.2.l IF statements

We have seen that IF can be used as an operator. It can

also be used in the following way:

IF expression DO;

ELSEIF expression DO;

63

ELSE DO;

END IF;

Any number of ELSEIFs are allowed. The 11 ... 11 may be replaced

by any sequence of statements balanced with respect to IFs

and FORs. The ELSE may be omitted. The integer expressions after

the IF and ELSEIFs are evaluated in turn until a non-zero one is

found. The statements between it and the next ELSEIF, ELSE or ENDIF

are then executed, and control goes to the statement following the

ENDIF. THE ELSE DO is equivalent to ELSEIF 1 DO. If none of

the expressions are non-zero, nothing is done. It is good

practice to indent the statements represented by 11 " uniformly

3 or 4 spaces for clarity.

6.2.2 FOR statements

The same thing can be done with 11 FOR 11 as with 11 IF 11

for: statement;

ENDFOR;

Here we have

for:statement = (11 FOR 11 for:clause / 11 WHILE 11 expression) 11 D0 11 ;

for:clause = identifier 11 +- 11 (expressionl[11 BY 11 expression2]

[11 T0 11 expression3] / expressionl[11 , 11 expression2]

WHILE 11 expression3);

64

If the BY/TO form is used, the identifier must be of type M.

If BY is omitted, BY 1 is assumed. If TO is omitted the loop

can only terminate by an explicit transfer out.

The effect is that the statements represented by ... are executed

repeatedly for successive values of the controlled variable.

In the first case the variable starts at expressionl.

On each successive loop expression2 is added until the

variable passe~ beyond expression3. The definition of

11 beyond 11 depends on the sign of expression2. If expressionl

is beyond expression3, the loop body will not be

executed at all. If the expressions are compound (see Section 6.1.6 on

11 Function Calls 11), they are evaluated before the loop starts;

if simple, then each time around.

The second form initializes the controlled variable for

expressionl. Then it tests integer expression3. If it is

0, control passes beyond the ENDFOR. Otherwise the loop

body is executed, the value of expression2 (or expressionl

if expression2 is omitted) is assigned to the variable, and

the test is made again. The expressions are re-evaluated

each time around the loop.

A WHILE statement simply loops until the integer expression

is 0, without modifying anything.

When 11 FOR 11 or 11 WHILE 11 is used as an operator, exactly the same

facilities are provided. The first argument is evaluated

each time around the loop. The value is undefined. Thus

65

A[I,J] + ~ FOR I+l TON FOR J+l TOM;

would initialize the array A.

6.3 Assembly Language

An assembler:statement consists of one or more machine instructions

according to the following syntax:

assembler: statement = II II machine:instruction $(1 , 11 .
[11 • 11] machine:instruction);

machine:instruction = opcode [address];

opcode = i denti fi er I s imp 1 e : integer;

address = expression;

Since opcodes appear in a restricted context, the symbols used

for opcodes in the CPU Manual (which are all recognized by SPL)

may be used freely for other purposes as well. If an opcode

is an identifier and not predefined, it must be an INTEGER

constant. Such opcodes, as well as opcodes which are written

as integers, are treated as follows: if no address appears, the

value of the opcode is placed directly in the compiled program;

if an address does appear, bits 18-23 of the opcode

value are placed in bits 3-8 of the instruction word and bit

17 of the value is placed in bit 9 (the programmed operator

bit).

Any expression may appear as an address as long as it is

logically equivalent to either a constant (of any type and

mode) or one of the addressing formats of the CPU. These

66

formats are described in detail in the CPU Manual and are listed

below, together with the usual way of generating them. Note

the existence of the four reserved symbols X', L', G', and R'.

Addressing format Norma 1 syntax

D GI [NJ

I $GI [NJ

x X'[N]

PD P[N]

POI $P[N]

BX A[I]

BXD ($X')[I+N]

IM N

IMX X'+N

SR R'[N]

SRI $RI [NJ

LR L'[N]

LRI $LI [NJ

In the above list, N stands for an INTEGER constant quantity,

P and I stand for INTEGER SCALAR quantities, and A stands for

an ARRAY quantity. BX or PD addressing may also result from

tailing. Since the determination of the addressing format

is done on semantic, not syntactic, grounds, the exact

rules are quite complex.

67

7. I ntri ns i c Functions

Figure 7.1 lists all the intrinsic functions in SPL.

An intrinsic function is one which:

1.) Is recognized by the compiler without the need

for any declaration by the user;

2.) May have default argument values automatically

supplied by the compiler;

3.) Has the types of its arguments checked at compile

time;

4.) May compile into special open code.

In figure7.l, default values for arguments which the user

is allowed to omit are given in parentheses after the

argument type. For a 11 functions which have fai 1 ure returns, a

routine which prints an error message and causes a sub-

process trap will be supplied if the user fails to specify

a failure action.

The remainder of this section describes each intrinsic

function in detail. Type letters with subscripts

will be used to refer to the arguments of a function:

e.g. the arguments of CNS will be referred to as I1 ,s2,I 3 ,

and I4.

NAME

FIX

ENTIER

FLOAT

OFLOAT

RE

IM

CSN

CSR

CSD

CNS

CRS

CDS

INC DES

LNGOES

GCI

WCI

GCD

WCD

SETUP

ARGUMENT TYPES

R

R

I

I

c

c
S,1(10)

s

s
I,S,I(0),I(H~)

R,S,1(0)

D,S,1(0)

I, I

I , I

s
I ,S

s

I ,S

S,I,I,I(8)

I = integer

R = real

S = string

68

RESULT TYPE

I

I

R

0

R

R

I

R

0

s

s

s

I

I

I

I

I

I

s

FRETURN? ·

x
x
x
x

x

x

x
x
x
x

C = complex

A = array

D = double

Figure 7.1 List of intrinsic functions

OPEN CODE?

x

x

x
x

x

x
x
x
x
x
x

NAME

SETS

SETR

SETW

LENGTH

SCOPY

APPEND

GC

STORlNIT

MAKE

SETZONE

SET ARRAY

FREE

EXTZONE

FREEZONE

BCOPY

BSET

69

ARGUMENT TYPES RESULT TYPE

S,1(0),I(0)

S,1(0)

S,1(0)

s
S,S

S,S

s
l, I

1,1(0)

I

A

1,1(0)

l , l

1,1(0)

l,I,l(-1)

I,l,l(-1)

l = integer

R = rea 1

S = string

s

s

s

I

s

s

l

I

I

l

I

Figure 7.1 (continued)

FRETURN?

x
x

x
x
x
x
x
x
x

C = complex

A = array

D = double

OPEN CODE?

x
x
x
x

x

x
x

70

7. 1 Type Conversion Functions

FIX(R1) converts R1 to an integer by truncation towards

zero.

ENTIER(R1) converts R1 to the nearest integer.

FLOAT(I 1) converts '1 1 to single-precision floating point.

DFLOAT(I 1) converts 11 to double-precision floating point.

The four operators above are converted directly into machine

instructions. For details consult the part of the CPU

Manual which deals with handling of floating

point numbers.

RE(C1) gives the real part of c1 in single-precision

floating point.

IM(C1) gives the imaginary part of c1 in single-precision

floating point.

CSN(s 1,I2//F) expects to find an integer as the beginning

of s1, with syntax [1 +1 I 1 - 1] l$<digit in base r2>.

Digits above 9 are allowed if 12>10: the next digit after

9 is A, and so on. 12 is taken as 10 if not supplied. CSN

returns the integer, which it reads off the string, advancing

the reader pointer so that the next character to be read

is the non-digit which ends the integer, or to

71

the end of the string. CSN fails if s1 does not begin

with an integer in the proper format, leaving the reader

pointer unchanged.

CSR(S 1//F) expects to find, at the beginning of s1,

a real number in any of the formats allowed by SPL for REAL

quantities. It returns a single-precision floating point

number. Otherwise the action is the same as for CSN.

CSD(s1;;F) is the same as CSR except that it returns

a double-precision floating point result. Either SPL

REAL or DOUBLE syntax is acceptable; in the former case,

the number is accumulated in double precision.

CNS(I 1 ,s2,1 3,I 4//F) converts the value of 11 to a

string of characters, which it appends to s2. The radix

is 14, assumed to be 10 if omitted. If bit 0 of 13 is on,

r1 is converted unsigned (e.g. -2 will appear as 77777776

in radix 8); otherwise, a '-' precedes the converted absolute

value if 11 is negative. Bits 18-23 of 13 give the

number of characters to generate: enough blanks are written

before the converted value to give the total number of

characters required. If the converted value does not fit

into this many characters, it is truncated on the left with

no error indication. If the character count is 0, the converted

value is neither padded nor truncated. 13 is taken as 0 (signed,

no formatting) if omitted. CNS fails only if there is insufficient

room to write the necessary number of characters onto s2: leaving

the writer pointer is unaffected.

72

CRS(R1,s2,I 3//F) appends the converted value of

R1 to s2. The failure condition is the same as for CNS.

13 specifies the format in some as yet unspecified way;

I3 = 0 is assumed if I3 is omitted, results in some

reasonable unformatted conversion.

CDS(o1,s2,I3//F) is exactly like CRS except that the

converted value is in DOUBLE rather than REAL fonnat.

7.2 String Functions

In this section the following abbreviations are used:

BP = beginning pointer, RP = reader pointer, WP = writer

pointer, EP = end pointer. These correspond to the 4

words of an SPL string descriptor, in order.

INCDES(I 1,I 2) assumes that 11 is a character pointer

(hardware string indirect word), such as one of the 4

words in an SPL string descriptor. The value is r1

incremented by 12 character positions. See CPU Manual

for the exact specification of this operation, which is

done with the ASP instruction.

LNGDES(I 1,I 2) assumes that 11 and 12 are both

character pointers. It returns the length of the string

which they bracket. See the CLS instruction in CPU Manual

for details.

73

GCI(S1//F) fails if s1 is empty, i.e. RP= WP.

Otherwise it increments RP by one character position then

returns the character pointed to by RP.

WCI(I 1,s2//F) fails if s2 is full, i.e. WP= EP.

Otherwise it increments WP then writes r1 at the character position

pointed to by WP. The value of WCI is 11.

GCD(S 1//F) fails if s1 is empty. Otherwise it returns the character

pointed to by WP and then decrements WP.

WCD(I 1,s2//F) fails if s2 is initialized, i.e. BP= RP.

Otherwise it writes 11 at the character position pointed to by

RP and then decrements RP. The value of WCD is r1.

SETUP(S1,I 2,I 3I4) puts into s1 a string descriptor for

a string of r2 characters starting with the first character of

the word pointed to by 13. The character size is 14, defaulting to

8. The value of SETUP is the string descriptor it creates. If I3

is omitted, MAKE is called to assign space. BP = RP = WP in the

created string descriptor.

SETS(s1,I 2,r 3) is exactly equivalent to SETW(s1,r 3)

followed by SETR(S1,I 2): see below. I2 and 13 are taken

as 0 if omitted.

74

SETR(S1,I2) sets sl 1 S RP to point 12 characters beyond

BP. IF I2<0, it is taken as 0; if I2>LNGDES(BP,WP), it is

taken as this quantity; if I2 is omitted, it is taken as 0.

The effect is that the RP remains between the BP and the WP.

SETW(S 1,I 2) sets s11 s WP to point 12 characters beyond

BP. There are four cases: I2<0 leads to WP+RP+BP; 0.:::_I 2

<LNGDES(BP,RP) leads to WP+RP+INCDES(BP,I 2); LNGDES(BP,RP)

.:::_I 2.:::_LNGDES(BP,EP) leads to WP+INCDES(BP,I 2); and I2>LNGDES

(BP,EP) leads to WP+EP. Again, the effect is to guarantee

the correct order of BP, RP, WP, and EP.

LENGTH(S1) gives the number of GCI 1 s that can be done

on s1 without failing, i.e. LNGDES(RP,WP).

GC(S 1) returns the character pointed to by RP. This

is garbage if s1 is empty, but no check is made.

SCOPY(S 1,s2;;F) copies the string s2 into the string

s1. s2 is not affected; for s1, RP+BP and WP+INCDES

(BP, LENGTH(S2)). Failure occurs only if there is not enough room

in s1 and no pointers are affected.

APPEND(s1,s2) appends the string s2 to the string s1,

advancing s11 s WP by LENGTH(S 2). The failure condition is the

same as for SCOPY.

75

7.3 Storage Allocation Functions

There is a standard mechanism for allocating and releasing

arbitrary-sized blocks of storage in arbitrary order called

the storage allocator. It is driven by the following

standard functions:

STORINIT (1 1,1 2) initializes the storage allocator

to use an area of storage beginning at 11 and occupying 12

number of words for its machinations. It is not necessary

to call STORINIT; a standard area will be reserved if

STORINIT has not been called when the first request is made

for a block. The value of STORINIT is a pointer to the zone

just created; this pointer is also put into the predeclared

global pointer variables INFINITY'ZONE and CURRENT'ZONE.

MAKE(l 1,I 2) creates a block of storage of I1 words

and returns a pointer to it. An extra cell is assigned by

the system; it immediately precedes the block and contains

the length in the bottom 18 bits and flags in the top 6.

The cell is for system use only. Space is normally

allocated directly from the area specified by STORINIT

(or the standard default area); this area is called the

infinity zone. The user may set up zones of his own; for

example, if he wishes to create some fairly complex

temporary structure and then delete it in its entirety,

76

it is more efficient to create it in a separate zone

and then release the entire zone. 12, which is optional,

is a pointer to a user zone; if it is omitted, the zone

pointed to by CURRENT 1 ZONE is used. CURRENT'ZONE is

set by the function SETZONE(l 1) which provides compatibility

with the (hardware) storage allocator. A user zone is

created by the function STORINlT.

SETARRAY(A1) which makes the space occupied by the

array A1 into a new zone by setting up some machinery

inside it. CURRENT'ZONE is not set by this function.

Blocks are released by the function FREE.

FREE(I 1,I 2) where the block pointed to by 11 must

fall within the zone optionally given by 12. When a

zone is full, i.e., a call on MAKE finds insufficient

space, an overflow function is executed. The address of

the descriptor for this function is in word l of the zone;

it is initialized to a system error routine when the zone is

created. The user, of course, may change it at any time.

The function receives the arguments of MAKE as its arguments .

. Frequently the proper course of action is to acquire additional

space and attach it to the zone: this is done by EXTZONE.

EXTZONE(I 1,I 2) adds all the space in the block

12 to the zone pointed to by 11. When a zone reaches the

end of its usefulness, all the space occupied by the

zone must be released using the function FREEZONE.

77

FREEZONE(I 1,r 2) releases all the space (including

extra extensions) occupied by the zone I1 into the zone

r2. If the extensions were allocated out of more than

one zone, the user must release them individually with FREE.

7.4 Miscellaneous Functions

BCOPY(I 1,I 2,I 3) copies I3 words starting at r2 to

13 words starting at I1. Copying is done in the appropriate

direction (i.e. starting at the beginning or the end

of the block) to ensure that no information is lost. If

I3 is omitted, I2.SIZE is used, where FIELD SIZE (-1:6,23);

this is where the storage allocator hides the block size.

The intention is that I3 should be omitted if the block

pointed to by r2 was created with MAKE, since other objects

in SPL such as arrays and strings do not have this word.

BSET(I 1,I 2,I 3) initializes I3 words starting at I1

to the value I2. If r3 is omitted, 11.SIZE is used as in

BCOPY.

A'
AND
ARRAY
ARRAYONE

BY

CHARACTER
COMMON
COMPLEX

DECLARE
DO
DOUBLE

E'
ELSE
ELSE IF
END
ENDFOR
END IF
ENTRY
EXTERNAL

FIELD
FIXED
FOR
FRETURN
FTRAP'ENTRY
FUNCTION

G'
GOTO

IF
INCLUDE
INTEGER

L'
LABEL
LCY
LONG
LONG LONG
LSH

78

Appendix I
List of Keywords

MACRO
MOD
MONITOR

N'
NOT

OCTAL
OR
ORIGIN

PARAMETER
POINTER
POP
PROGRAM

R'
RCY
REAL
RETURN
RSH

SCALAR
SIGNED
SP'ENTRY
STRING
SYS POP

TO
TRAP'ENTRY

UNKNOWN
UTILITY

V'
VALUE

WHERE
WHILE

X'

