
 PLUS_Source_Library_Definitions ____ ______ _______ ___________

 by

 Alan Ballard

 Computing Centre

 UNIVERSITY OF BRITISH COLUMBIA
 6356 Agricultural Road
 Vancouver, B.C., Canada V6T 1W5

 September 1979
 Revised January 1983
 Copyright (c) 1983

 Note ____

 This edition of the PLUS library manual corresponds to version
 24 of the 470 PLUS compiler (distributed in July, 1982).
 Revision bars indicate changes since the previous (October,
 1981) version.

 Table_of_Contents _____ __ ________

 A. INTRODUCTION ...1

 B. STANDARD PLUS RUN-TIME SUPPORT2

 C. PLUS LANGUAGE EXTENSIONS7

 D. STANDARD DEFINITIONS11

 E. MACHINE-DEPENDENT DEFINITIONS12

 F. STRING-HANDLING AND CONVERSION ROUTINES15

 G. NUMERIC ROUTINES ..34

 H. I/O INTERFACING DEFINITIONS37

 I. MTS SYSTEM FACILITIES47

 INDEX ...134

 UBC PLUS LIBRARY
 1

 A. INTRODUCTION ____________

 The file *PLUS.SOURCELIB is a PLUS source library containing
 many declarations that may be useful when writing PLUS
 programs. This library is assumed by default if unit 0 is
 not specified when running the PLUS compiler. If the
 standard source library is required in addition to a private
 library, then *PLUS.SOURCELIB should be concatenated to the
 private library when running the compiler.

 Any definitions required from *PLUS.SOURCELIB must be
 explicitly included with the %Include compiler procedure. In
 general, each library member contains %Includes for any other
 library definitions that it requires.

 The contents of *PLUS.SOURCELIB fall roughly into the
 following classes:

 1. Definitions for standard run-time support. The standard
 PLUS execution environment is implemented by a number of
 PLUS procedures. It is possible to replace some or all of
 this environment with routines written by the user. The
 declarations for the standard routines are contained in
 | the library. The object for the standard versions of
 | these routines is in a resident system library.

 2. Macros and procedures which provide extensions to the PLUS
 language. These facilities will be incorporated (in some
 form) into a future version of the language.

 3. Useful common types and constants. Several common types
 and constants (e.g., "Integer", "Boolean") which are not
 built-in are defined by declarations in the library.

 4. Definitions of a number of 370/470-dependent types,
 constants, etc.

 5. String-handling and conversion routines. A number of
 useful procedures for processing character strings and for
 | converting between numeric and string values are contained
 | in the resident system. The declarations required to use
 these routines are in *PLUS.SOURCELIB.

 6. Numeric routines. The resident PLUS library also contains
 some useful simple numeric routines whose declarations are
 in *PLUS.SOURCELIB.

 7. I/O interfacing definitions. *PLUS.SOURCELIB contains
 several macros and definitions for interfacing with the
 MTS I/O subroutines.

 8. MTS system subroutines definitions. *PLUS.SOURCELIB
 contains procedure definitions for most of the MTS system
 subroutines. There are also various types required to
 describe parameters and results of these routines, and a
 number of auxiliary macros to simplify the use of some

 UBC PLUS LIBRARY
 2

 subroutines.

 A listing of any source library member is easily obtained by
 using the PLUS compiler. To obtain a listing of member
 "xxxx", run the compiler with input

 %List := 2;
 %Include(xxxx)

 | The entry points of PLUS procedures in the resident system
 | PLUS library are defined by a "low core symbol table" called
 | CCSYMBOL (for "Coding Conventions Symbols"). PLUS programs
 | using any resident PLUS routines must include appropriate
 | library records to reference this symbol table. In most
 | cases, it is also necessary to reference the predefined
 | pseudo-register definition QLCSPR. The necessary loader
 | records are generated by the compiler if the standard main __
 | program definition is used by %Include(Main), as described
 | below, or by setting the compiler option %Library to True.
 | The file *PLUS.ENDJUNK also contains a copy of the usual
 | loader records, which can be copied to the end of an object
 | file if the records were not produced by the compiler, or
 | have been discarded by *LINKEDIT or *OBJUTIL.

 B. STANDARD_PLUS_RUN-TIME_SUPPORT ________ ____ ________ _______

 | When entering a PLUS program from another environment, it is
 | necessary to establish the environment expected by PLUS. In
 | most cases this is done by a special "linkage routine" which
 | performs the necessary setup. The resident system contains
 | linkage routines that can be used for main programs written
 | in PLUS (i.e., entered from MTS command mode via $RUN), or
 | for procedure called with an OS S-type linkage as is used by
 | FORTRAN. To use one of these linkage routines, the PLUS
 | procedure being entered must specify it in the procedure
 | declaration LINKAGE phrase.
 |
 | The linkage procedure used when entering a main program
 | allocates a stack and storage for global variables, processes
 certain parameters from the PAR field of the $RUN command,
 and provides a simple program interrupt handler which
 | interprets PLUS run-time error conditions. The standard run-
 | time support should be adequate for most applications. The
 only run-time support actually required by PLUS is to set up
 a stack and global storage before entering any PLUS
 | procedure. A number of the pieces of the standard support
 | are defined in *PLUS.SOURCELIB to assist in "roll-your-own"
 | linkage requirements.
 |
 | See the PLUS User’s Manual for further information about PLUS
 | run-time organization, linkage options, and the %Entry and
 | %Library compiler options.

 UBC PLUS LIBRARY
 3

 The standard run-time support consists of the following
 components. The declaration for each is in *PLUS.SOURCELIB
 (except as noted), and may be Included if you wish to write
 your own version or use it in a special application.

 type_Check_Kind_Type ____ _______________

 Purpose

 Defines the values used for PLUS run-time error trap
 codes.

 Description

 This member consists of a PLUS identifier-list type
 defining the values used for PLUS run-time error codes.

 When a run-time error is detected, an invalid operation
 (operation code of 0) will be executed. The byte
 following the operation code contains the trap code.

 The library member also contains a constant array
 Check_Name, containing character-string descriptions of
 the trap kinds.

 procedure_Main _________ ____

 Purpose

 Defines the user main program.

 Parameters

 1- reference, character (0 to 256)

 The PAR string passed from the $RUN command, possibly
 modified by the linkage routine.

 Result

 Integer

 The result returned is set as the return code from the
 program.

 Description

 Procedure Main is written by the user.

 | %Include(Main) may be used to obtain the definition of a
 | main program, called Main, using linkage routine
 | "PLUSENTR".
 |
 | This library member also sets the program entry point to

 | UBC PLUS LIBRARY
 | 4
 |
 |
 | "MAIN" and sets the %Library option to True so the loader
 | records required to access the resident PLUS library will
 | be generated.
 |
 | The library declaration does not specify a stack size, but
 | leaves it up to PLUSENTR to determine the amount of stack
 | to be allocated.
 |
 | It is not necessary to use this declaration or to call ___
 | your main program MAIN. You can write an equivalent
 | declaration using any program name you prefer.

 linkage_procedure_PLUSENTR _______ _________ ________

 Purpose

 To set up for execution of a PLUS procedure called Main.

 Description

 | This procedure is a PLUS linkage routine to set up for
 | execution of a PLUS main program. It may be named in the
 | LINKAGE phrase of the procedure declaration for the main
 | program.
 |
 | The library member Main may be used to include such a
 | declaration. PLUSENTR itself is not defined in
 | *PLUS.SOURCELIB.

 This routine allocates a pseudo-register for global
 variables, and a small stack. It calls Runtime_Initialize
 to perform further initialization and allocate the actual
 stack to be used for execution of the main program. It
 then returns to the main program. When the main program
 returns, it calls Runtime_Highwater and Runtime_Terminate.
 The result of Main is returned by PLUSENTR as a return
 | code in register 15.
 |
 |
 | linkage_procedure_QSACHAIN _______ _________ ________
 |
 | Purpose
 |
 | To retrieve a PLUS execution environment by chasing back
 | the save-area chain.
 |
 | Description
 |
 | This procedure is a PLUS linkage routine to set up for
 | execution of a PLUS procedure called from an S-type
 | procedure which was itself called from a PLUS procedure.
 |
 | The routine is used by specifying QSACHAIN in the linkage
 | phrase of the declaration for the PLUS procedure to be
 | called. There is no definition of QSACHAIN in

 | UBC PLUS LIBRARY
 | 5
 |
 |
 | *PLUS.SOURCELIB.
 |
 | The routine retrieves the stack and pseudo-register vector
 | by chasing the savearea exactly_one level. _______ ___
 |
 | This can be used to define the linkage for procedures
 | called from the MTS system subroutine SDUMP and STDDMP,
 | and probably some others also.

 procedure_Runtime_Initialize _________ __________________

 Purpose

 To complete initialization for a PLUS main program.

 Parameters

 | 1- reference, pointer to character(0 to 256)

 A pointer to a character string containing the PAR field
 of the $RUN command.

 | 2- Integer
 |
 | The stack size specified in the procedure declaration for
 | the program being entered (or defined subsequently with a
 | DEF record).

 Result

 pointer to unknown

 Address of a stack allocated by the routine.

 Description

 Runtime_Initialize is called from the linkage routine. It
 has only a small (256 byte) stack, so should not make
 nested procedure calls or have many local variables. The
 global base has been set up before it is called.

 It is passed the MTS par-field as a parameter. It must ____
 allocate a stack and return the address of the stack
 | allocated. It must also leave the address, size and stack
 | limit and save the global base in the global
 | Runtime_Storage. It may modify the first parameter to
 | point to a different string that is to replace the
 | original PAR field passed to the main program.

 The standard support processes the STACK=... and
 HIGH_WATER parameters and sets up the standard program
 interrupt exit routine. The stack allocated by the
 | standard support is always "fenced" with a protected half-
 | page at the end to detect most stack overflows.

 UBC PLUS LIBRARY
 6

 procedure_Runtime_Highwater _________ _________________

 Purpose

 To process the PLUS HIGH_WATER parameter.

 Description

 Runtime_Highwater is called when the main program returns,
 using the stack allocated by initialization. The standard
 support produces the High_Water mark message if it was
 requested.

 procedure_Runtime_Terminate _________ _________________

 Purpose

 To free the stack allocated by initialization.

 Description

 Runtime_Terminate is called following the high_water
 routine. It has the small stack (256 bytes) used for
 initialization. The standard version frees the stack
 allocated by initialization.

 procedure_Runtime_Interrupt_Handler _________ _________________________

 Purpose

 To process program interrupts during execution of a
 program.

 Parameters

 1- pointer to Exit_Area_Type

 Points to a control block in which registers etc. have
 been saved. See "Exit_Definitions" for details.

 Description

 Runtime_Interrupt_Handler intercepts program interrupts
 (and run-time check errors, which cause an operation
 exception), and performs the standard PLUS processing.

 Note

 The macro Set_Exit may be used to set up an alternative
 program interrupt exit. If the PLUS program was compiled
 with run-time checks enabled, the exit routine should be
 prepared to handle any run-time error traps.

 UBC PLUS LIBRARY
 7

 global_Runtime_Storage ______ _______________

 Purpose

 Contains addresses of stack and global pseudo-register
 vector.

 Description

 Runtime_Storage is a global block containing the stack and
 global pseudo-register vector addresses etc. This is
 expected to be set up by the initialization. It will be
 | used when stack limit checking is implemented.
 |
 |
 | type_Plus_Linkage_Parameters_Type ____ ____________________________
 |
 | Purpose
 |
 | To describe the "parameters" passed to a linkage routine.
 |
 | Description
 |
 | When a PLUS linkage routine is entered, the return address
 | (in R15) provides access to a number of data items that
 | may be of interest to the linkage routine, including the
 | stack size requested, if any, and global size required.
 | These data items can be interpreted as "parameters" passed
 | to the linkage routine. This type definition may be
 | useful in interpreting the parameters.
 |
 |
 | global_Program_Interrupt_Definitions ______ _____________________________
 |
 | Purpose
 |
 | Defines global storage used by the standard program
 | interrupt handler.
 |
 | Description
 |
 | This library member defines a number of global variables
 | used by the standard PLUS runtime support. Generally,
 | they should not be touched by other programs.

 C. PLUS_LANGUAGE_EXTENSIONS ____ ________ __________

 UBC PLUS LIBRARY
 8

 procedure_Return_Code _________ ___________

 Purpose

 To set the return code from a PLUS procedure.

 Parameters

 1- bit(32)

 The return code to be given.

 Description

 This procedure provides an interim mechanism by which a
 PLUS procedure may deliver a return code in register 15 to
 its caller. The procedure wishing to deliver a return
 code should call Return_Code specifying the value to be
 returned.

 This value will be stored in the save area of the caller
 in such a way that it will be in register 15 when the
 caller eventually returns.

 Note

 It is planned to provide an option of the PLUS return
 statement to allow specification of the return code. At
 that time, this procedure will be removed.

 macro_Setup_Return_From _____ _________________

 Purpose

 To set up a control block to enable a subsequent return
 from the current procedure.

 Parameters

 1- reference, Return_Control_Block_Type

 A control block to save information about how to effect
 the return.

 2- name, any type

 The name of the return variable of the current procedure.
 Note that the procedure calling Setup_Return_From must
 have a result, and its name must be used here. The macro
 uses this parameter to determine both the location of the
 result where the result is to be returned, and the number
 of bytes to return.

 UBC PLUS LIBRARY
 9

 Description

 See description of Return_From for explanation of how this
 is used.

 type_Return_Control_Block_Type ____ _________________________

 Description

 See description of Return_From for explanation of how this
 is used.

 procedure_Return_From _________ ___________

 Purpose

 To return from a previous procedure call.

 Parameters

 1- reference, Return_Control_Block_Type

 A control block, previously initialized with
 Setup_Return_From, defining how to return.

 2- reference, value, unknown

 The result to be returned. Note that no type checking is
 possible here. The variable specified must be the same as
 the result of the procedure being returned from. Just
 assignment compatible is not enough -- it must occupy the
 same number of bytes.

 Description

 Setup_Return_From and Return_From together provide a form
 of multi-level procedure return. That is, a routine may
 force a return, not to the point from which it was called,
 but to the point from which its caller, or a higher-level
 caller, was called.

 A program which wishes to use this must declare a variable
 of type Return_Control_Block_Type. This will normally be
 global; in any case it must be accessible by both the
 routine to be returned from, and any routine which wants
 to force such a return.

 The routine from which a return is to be forced must
 initialize the control block, using the macro
 Setup_Return_From. This will save the return information.
 Subsequently, another procedure may cause a return, as if
 from the routine that called Setup_Return_From, by calling
 procedure Return_From. This is valid only when the
 original routine has not yet returned. Once it has

 UBC PLUS LIBRARY
 10

 returned -- either normally, or because of Return_From,
 the information in the Return_Control_Block is invalid and
 the effect of using it is undefined.

 It is possible to issue a Return_From from an interrupt
 routine (timer, attention, or program interrupt), as long
 as the procedure which initialized the control block has
 not yet returned. In effect, the interrupt routine can be
 viewed as being called asynchronously at some point during
 the execution of the subordinate routine.

 The call to Setup_Return_From specifies the return
 variable of the procedure to be returned from; the call to
 Return_From specifies a value to be returned. The value
 returned must be of the same size as the return variable.
 It should, of course, normally be the same type.

 Example

 %Include(Return_From, Setup_Return_From);
 procedure Sub1 is
 procedure
 result Success is Boolean
 end;
 procedure Sub2;
 variable Rcb is Return_Control_Block_Type;
 procedure Main
 definition
 ...
 if Sub1()
 then
 ...
 end if;
 end Main;
 definition Sub1
 Setup_Return_From(Rcb, Success);
 ...
 Sub2();
 return with True
 end Sub1;
 definition Sub2
 ...
 Return_From(Rcb, Boolean(False));
 ...
 end Sub2;

 If Sub2 calls Return_From, the effect will be to return to
 the point in procedure Main at which Sub1 was called, a
 return value of False. (Exactly as if Sub1 had executed a
 "return with False.)

 Note that the return value is given in the form of a
 display Boolean(False); this is to ensure that the type
 representation of the constant being returned is that of a
 Boolean.

 UBC PLUS LIBRARY
 11

 D. STANDARD_DEFINITIONS ________ ___________

 type_Boolean ____ _______

 Description

 Type Boolean is defined as (False to True).

 global_Numeric_Types ______ _____________

 Purpose

 To define standard integer numeric types and constants.

 Description

 This global defines the constants Maximum_Integer,
 Minimum_Integer, Maximum_Short_Integer and
 Minimum_Short_Integer.

 It defines the types Short_Integer (halfword) and Integer
 (fullword).

 Note

 In general, numeric variables in PLUS programs should be
 defined using an explicit range rather than the general
 type Integer.

 global_More_Numeric_Types ______ __________________

 Description

 This global defines some additional numeric types that are
 useful in some situations. The types defined are
 Positive_Integer, Non_Negative_Integer, Negative_Integer,
 Non_Positive_Integer, Positive_Short_Integer,
 Non_Negative_Short_Integer, Negative_Short_Integer, and
 Non_Positive_Short_Integer.

 global_Real_Types ______ __________

 Purpose

 To define some standard real (floating point) types and
 constants.

 Description

 This global defines the sizes of some "standard size"
 floating point types. Since real types are not yet ____
 implemented in PLUS, they are defined as bit types
 currently. The definitions will be replaced when type

 UBC PLUS LIBRARY
 12

 real is implemented.

 The global defines constants Maximum_Short_Real,
 Maximum_Long_Real and Maximum_Extended_Real (these
 constants are the number of decimal digits of precision in
 three standard-precision reals). It defines types
 Short_Real, Long_Real and Extended_Real.

 global_String_Types ______ ____________

 Purpose

 To define some useful string types and constants.

 Description

 This global defines fixed and varying length character
 strings of 255 characters. The types defined are used as
 parameters and results of various library procedures.

 Note that PLUS does not restrict character types to this ___
 length; however, this is considered to be a reasonable
 length for many applications.

 The types defined are called Fixed_String and
 Varying_String. The type Varying_String_Structure_Type is
 also defined as a record that may be equated to a
 Varying_String if it is desired to access the length and
 text parts.

 The constant Standard_String_Length is defined (as 255),
 and the type String_Length_Type is defined as a numeric
 range for the length of these standard string types.

 global_More_String_Types ______ _________________

 Description

 This global is similar to String_Types, but defines fixed
 and varying strings of up to 32767 characters.

 E. MACHINE-DEPENDENT_DEFINITIONS _________________ ___________

 type_Bc_Mode_Psw_Type ____ ________________

 Description

 This type describes the format of a BC-mode PSW for the
 IBM 370. See the library member, and IBM Principles of
 Operation for details.

 UBC PLUS LIBRARY
 13

 type_Ccw_Type ____ ________

 Description

 This type describes the format of an IBM Channel Command
 Word. See the library member, and IBM Principles of
 Operation for details.

 type_Csw_Type ____ ________

 Description

 This type describes the format of the IBM Channel Status
 Word. See the library member, and IBM Principles of
 Operation for details.

 global_S370_Interrupt_Code_Definitions ______ _______________________________

 Description

 This global contains constant declarations defining the
 program interrupt codes for the IBM 370.

 The global also defines a constant array Interrupt_Name
 containing character string descriptions of the interrupt
 codes. The codes serve as indexes into the array to
 select the description.

 global_S370_Opcodes ______ ____________

 Description

 This global contains constant declarations defining all
 IBM 370 operation code mnemonics. It is primarily used in
 conjunction with Inline.

 All mnemonics are the standard assembler ones, except that
 the OR instruction is defined as OR#, since or is a __
 reserved word in PLUS.

 constant_Opcode_Mnemonics ________ ________________

 Description

 This library member defines a constant array containing
 the mnemonics for all IBM-370 operation codes. An
 operation code can be used as an index into the array to
 select the mnemonic. All array entries are character(4),
 padded on the right with blanks if necessary.

 The member also defines constant array Bc_Mnemonics and
 Bcr_Mnemonics which contain the branch code mnemonics.

 UBC PLUS LIBRARY
 14

 For these arrays, the branch condition mask is used as an
 index into the array.

 global_Machine_Carriage_Control_Definitions ______ ____________________________________

 Description

 This global defines the codes used for machine carriage
 control and CCW operation codes for the IBM 1403/3211
 printers.

 See *PLUS.SOURCELIB for details of the constant names
 used. See IBM documentation for further information.

 global_Machine_Storage_Types ______ _____________________

 Purpose

 To define machine-dependent constants and storage types.

 Description

 This global provides definitions of the machine dependent
 constants Bits_Per_Byte, Bits_Per_Halfword, Bits_Per_Word,
 Bits_Per_Address, Characters_Per_Word, Maximum_Address and
 Maximum_Displacement.

 It defines the types Byte, Halfword, Fullword, Doubleword

 type_Psw_Type ____ ________

 Description

 This type defines the format of the PSW for the IBM 370.
 It currently defines only the BC-mode PSW. (See
 Bc_Mode_Psw_Type.)

 global_Savearea_Types ______ ______________

 Description

 This global defines two common savearea formats used
 various places within MTS.

 It consists of types Register_Savearea_Type (an array of
 16 fullwords) and Os_Savearea_Type (an 18-word record with
 the standard OS savearea organization).

 UBC PLUS LIBRARY
 15

 F. STRING-HANDLING_AND_CONVERSION_ROUTINES _______________ ___ __________ ________

 This section describes various routines for converting to and
 from character form, and performing other character handling.
 They can be divided into roughly the following categories.

 1. "Input Conversion" routines. These are procedures to
 convert character strings to various internal forms. The
 following procedures are in this group:

 Hex_String_To_Bits
 Hex_String_To_Varying
 String_To_Integer
 String_To_Real

 The following are also input conversion routines, but are
 "lower-level" routines called from the above. These may
 also be used directly when appropriate.

 Hex_Chars_To_Bits
 Hex_Chars_To_Varying
 Digits_To_Integer
 Construct_Real

 2. "Output Conversion" routines. These are procedures which
 take various internal forms and produce character strings.
 The following procedures are in this group:

 Address_To_Varying
 Bits_To_Hex_Varying
 Chars_To_Hex_Varying
 Integer_To_Varying
 | Line_Number_To_Varying
 Picture_Format
 String_To_Hex_Varying

 3. Miscellaneous character handling routines. The following
 are in this group:

 Append_Varying
 Case_Conversion
 Fill
 Fill_Fixed_String
 Fill_Varying_String
 Pad
 Pad_Varying_String

 The descriptions of all these follow, in alphabetical order.

 UBC PLUS LIBRARY
 16

 procedure_Address_To_Varying _________ __________________

 Purpose

 To convert an address to a string of the form
 "symbol+offset" if possible.

 Parameters

 1- bit(24)

 A value to be interpreted as an address. Normally, type
 cheating will be required to provide this.

 Result

 Varying_String

 A string containing the converted address.

 Description

 If the address is in a csect of the loaded program, it is
 returned in the form "symbol+offset", where symbol is the
 closest entry point, and "offset" is a hexadecimal string
 giving the offset from the entry point. The "+offset"
 part is omitted if the address is equal to an entry point
 address.

 If the address is not in a csect of a loaded routine, it
 is returned as a hexadecimal string.

 procedure_Append_Varying _________ ______________

 Purpose

 To append one string to another.

 Parameters

 1- reference, Varying_String

 The string to be appended to.

 2- reference, value, Varying_String

 The string to append.

 Description

 The second parameter string is appended to the first.
 However, if the result would be too long for a
 Varying_String, it will be truncated to fit.

 UBC PLUS LIBRARY
 17

 procedure_Bits_To_Hex_Varying _________ ___________________

 Purpose

 To convert a numeric bit-value to a hexadecimal character
 string.

 Parameters

 1- bit(32)

 A number of bit value to be converted.

 2- String_Length_Type (a numeric value)

 A field width for the result.

 Result

 Varying_String

 A string of hexadecimal characters.

 Description

 This routine converts a numeric or bit value to
 hexadecimal.

 The second parameter specifies the length of result
 wanted. If this is less than eight, the right-most
 characters of the result are returned. (Thus, for
 example, a single byte can be converted by specifying an
 output width of 2.) If the length specified is greater
 than eight, the value will be converted to eight
 characters, then padded on the left with blanks.

 macro_Case_Conversion _____ _______________

 Purpose

 To convert lower-case to upper case.

 Parameters

 1- name, unknown

 The location of the region to be converted.

 2- value, numeric

 The number of characters to be converted. Must be ð 256.

 UBC PLUS LIBRARY
 18

 Description

 Uses Inline and the MTS case-conversion table CASECONV to
 convert a given number of characters from lower to upper
 case.

 Note

 If the string to be converted is a varying length
 character string "x", a call of the form

 Case_Conversion(Substring(x,0,0), Length(x))

 may be used.

 procedure_Chars_To_Hex_Varying _________ ____________________

 Purpose

 To convert a specified number of bytes to hexadecimal
 characters.

 Parameters

 1- pointer to value unknown

 A pointer to the first byte to be converted.

 2- numeric value

 The number of bytes to be converted. Must be <= 127.

 Result

 Varying_String

 The hexadecimal representation of the locations specified.

 Description

 This procedure converts an arbitrary value to a
 hexadecimal string.

 Example

 variable Char, Res are Varying_String;
 ...
 Res := Chars_To_Hex_Varying(
 Address(Substring(Char,0,0)),
 Length(Char));

 This illustrates how the routine might be used to convert
 the value of a Varying_String.

 UBC PLUS LIBRARY
 19

 Note

 See also String_To_Hex_Varying.

 procedure_Construct_Real _________ ______________

 Purpose

 To convert a string of decimal digits to a real number.

 Note

 This is an internal routine used by procedure
 String_To_Real. It may be called directly when
 appropriate.

 Parameters

 1- pointer to Varying_String

 A pointer to a string of decimal digits. The string must
 contain only decimal characters "0" to "9". The result is
 undefined if other characters are included.

 2- Integer

 A scale factor to be applied to the number.

 3- Boolean

 True if the number is to be made negative, false if
 positive.

 4- pointer to Integer

 Points to an integer which is set to the number of
 significant digits in the converted number.

 5- pointer to Varying_String

 Points to a string which is used to return an error
 message if the conversion fails.

 Null may be used for this parameter to ignore errors and
 return a default value.

 Result

 bit(128)

 The internal form of an extended-precision real containing
 the converted number. This will be returned as a value of
 type real, when real is implemented.

 UBC PLUS LIBRARY
 20

 Description

 This routine is called with the "parsed" pieces of a real
 number. These are a string containing a string of digits,
 with the decimal point assumed to be at the right-hand
 end, a integer scale factor, and whether or not the number
 has a negative sign.

 It converts the number to an extended precision real.

 procedure_Digits_To_Integer _________ _________________

 Purpose

 To convert a sequence of decimal digits to a binary
 integer.

 Note

 This is an internal routine used by procedure
 String_To_Integer. It may be called directly when
 appropriate.

 Parameters

 1- pointer to unknown

 A pointer to the first digit to be converted.

 2- String_Length_Type (a numeric value)

 The number of digits to be converted. The specified
 number of bytes, starting at the position specified by the
 first parameter, must contain only decimal characters "0"
 to "9". The result is undefined if it contains any other
 characters.

 3- Boolean

 True if the number is to be made negative, False if
 positive.

 4- pointer to Varying_String

 Points to a string which is used to return an error
 message if the conversion fails because the number is out
 of the machine range.

 If Null is used for this parameter, no error indication
 will be returned, and a default value will be returned.

 UBC PLUS LIBRARY
 21

 Result

 Integer

 The converted value.

 Description

 This routine is used to convert the string of digits to a
 binary integer. It differs from String_To_Integer in that
 it does not check for valid digits, and is passed a
 pointer and length rather than the string.

 macro_Fill _____ ____

 Purpose

 To fill an area of memory with a specified byte-value.

 Parameters

 1- name, unknown

 The first location to be filled.

 2- value, numeric

 The number of bytes to be filled.

 3- value, bit(8)

 Value to be used to fill the specified locations. May be
 any type compatible with bit(8).

 Description

 This macro uses Inline to fill an arbitrary number of
 bytes of memory with the specified value.

 macro_Fill_Fixed_String _____ _________________

 Purpose

 To fill a fixed-length character string with a given
 value.

 Parameters

 1- name, character(n)

 A fixed-length character string.

 UBC PLUS LIBRARY
 22

 2- value, bit(8)

 Value to be used to fill the specified string. May be any
 type compatible with bit(8).

 Description

 This macro just uses the macro Fill to initialize the
 string variable to the given value.

 Example

 variable Char is character(10);
 ...
 Fill_Fixed_String(Char," ");

 This would initialize the string to all blanks.

 macro_Fill_Varying_String _____ ___________________

 Purpose

 To initialize a Varying_String with a given value.

 Parameters

 1- name, Varying_String

 A string to be initialized.

 2- value, numeric

 The length of the string to be assigned.

 3- value, bit(8)

 Value to be used to initialize the string. May be any
 type compatible with bit(8).

 Description

 This macro just uses the macro Fill to initialize the
 string variable to the specified length, using the given
 value for each character.

 Example

 variable Char is Varying_String’
 ...
 Fill_Varying_String(Char,80," ");

 This would initialize the variable to a string of 80
 blanks.

 UBC PLUS LIBRARY
 23

 procedure_Hex_Chars_To_Bits _________ _________________

 Purpose

 To convert a sequence of hexadecimal characters to a
 numeric binary value.

 Parameters

 1- pointer to value unknown

 The address of the first character to be converted.

 2- (0 to 8)

 The number of characters (starting at location specified
 by parameter 1) to be converted.

 The locations specified by the first two parameters must
 consist only of valid hexadecimal characters "0" to "9",
 "A" to "F", or "a" to "f".

 3- pointer to Varying_String

 A string in which to return an error message if the
 conversion fails (due to invalid characters).

 If Null is specified, the routine will return without any
 error indication.

 Result

 Integer

 The converted value.

 Description

 This procedure converts the locations specified by the
 first two parameters to a numeric value and returns it as
 a bit-type.

 Note

 See also Hex_String_To_Bits.

 procedure_Hex_Chars_To_Varying _________ ____________________

 Purpose

 To convert a sequence of hexadecimal characters to a
 character string.

 UBC PLUS LIBRARY
 24

 Parameters

 1- pointer to value unknown

 The address of the first character to be converted.

 2- String_Length_Type (a numeric value)

 The number of characters (starting at location specified
 by parameter 1) to be converted.

 The locations specified by the first two parameters should
 consist only of valid hexadecimal characters "0" to "9",
 "A" to "F", "a" to "f", with optional interspersed commas
 and blanks allowed.

 3- pointer to Boolean

 A flag which is set False if the conversion fails (due to
 invalid characters). In this case, an error message is
 returned as the value of the procedure instead of the
 converted value.

 If Null is specified, the routine will return the error
 message without an indication that an error occurred.

 | 4- reference, Varying_String
 |
 | The converted value.

 Description

 This procedure converts the locations specified by the
 first two parameters to a character value which is
 returned in the string passed as the fourth parameter.

 Note

 See also Hex_String_To_Varying.

 procedure_Hex_String_To_Bits _________ __________________

 Purpose

 To convert a sequence of hexadecimal characters to a
 numeric binary value.

 Parameters

 1- value, Varying_String

 A string containing at most 8 hexadecimal characters
 (digits 0-9, letters a-f, or A-F).

 UBC PLUS LIBRARY
 25

 2- pointer to Varying_String

 A string in which to return an error message if the
 conversion fails (due to invalid characters).

 If Null is specified, the routine will return without any
 error indication.

 Result

 Integer

 The converted value.

 Description

 This procedure converts the string specified by the first
 parameters to a numeric value and returns it as a bit-
 type.

 Note

 See also Hex_Chars_To_Bits.

 procedure_Hex_String_To_Varying _________ _____________________

 Purpose

 To convert a string of hexadecimal characters to their
 internal value.

 Parameters

 1- value, Varying_String

 A string containing a sequence of hexadecimal characters
 (digits 0-9, letters a-f or A-F), with optionally
 interspersed blanks or commas.

 2- pointer to Boolean

 If non-null, set to indicate the success or failure of the
 conversion.

 Result

 Varying_String

 The converted value.

 UBC PLUS LIBRARY
 26

 Description

 The hex characters from the first parameter are converted
 to a character string (two hex characters per byte) and
 returned.

 If the parameter contains invalid hexadecimal characters,
 an error message is returned as the result, and the second
 parameter is set to false.

 Note

 See also Hex_Chars_To_Varying.

 procedure_Integer_To_Varying _________ __________________

 Purpose

 To convert an integer to a character string.

 Parameters

 1- value, Integer

 The number to be converted.

 2- String_Length_Type (a numeric value)

 The desired field width of the result.

 Result

 Varying_String

 The character string representation.

 Description

 The number is converted to EBCDIC and returned as a
 string. It will be padded on the left with blanks to the
 specified field width. If it will not fit in the
 specified width, it will be returned in the smallest
 number of positions in which it fits. Thus a field width
 of 0 can be used to convert to the minimum length
 character representation.

 | procedure_Line_Number_To_Varying _________ ______________________
 |
 | Purpose
 |
 | To convert an integer to the external representation for
 | an MTS file line number.
 |

 | UBC PLUS LIBRARY
 | 27
 |
 |
 | Parameters
 |
 | 1- Integer
 |
 | The internal representation of the line number to be
 | converted.
 |
 | 2- String_Length_Type (a numeric value)
 |
 | The field width in which to generate the line number
 | representation.
 |
 | Result
 |
 | Varying_String
 |
 | The external representation of the line number.
 |
 | Description
 |
 | The integer given is converted to the external format for
 | MTS file line numbers, namely
 |
 | nnnnnnnn.nnn
 |
 | Trailing zeros after the decimal point are suppressed.
 | Leading zeros are suppressed. A maximum of ten digits is
 | printed in the specified field width. If the specified
 | field width is greater than the length of the
 | representation, it is padded on the left with blanks. The
 | representation is never truncated, regardless of the field
 | width.

 procedure_Pad _________ ___

 Purpose

 To pad a string with blanks.

 Parameters

 1- reference, Varying_String

 The string to be padded.

 2- String_Length_Type (a numeric value)

 The length to pad it to.

 Description

 The given Varying_String is padded on the right with
 blanks to the specified length. If it is already longer,
 it is left unchanged.

 UBC PLUS LIBRARY
 28

 macro_Pad_Varying_String _____ __________________

 Purpose

 To pad a Varying_String with a specified character.

 Parameters

 1- name, Varying_String

 A Varying_String that is to be padded.

 2- value, numeric

 The length to which the string is to be expanded.

 3- value, bit(8)

 A byte value to be used for fill characters added to the
 string.

 Description

 This macro uses the given fill character to expand the
 specified string from its previous length to the length
 specified by parameter 2.

 procedure_Picture_Format _________ ______________

 Purpose

 To convert a binary integer to a character string
 according to a picture format.

 Parameters

 1- value, Integer

 The numeric value to be converted.

 2- value, Varying_String

 A character string containing a "picture" describing the
 conversion.

 3- pointer to Boolean

 If non-null, the Boolean variable pointed at is set to
 indicate success (True) or failure (False) of the
 conversion. If set false, an error message is returned as
 the value of the procedure.

 UBC PLUS LIBRARY
 29

 Result

 Varying_String

 The result returned contains either the converted integer
 of an error message.

 Description

 This routine can be used to convert numeric values to many
 different forms of character representation. The form of
 the output string is described by a "picture"
 specification similar to those of Cobol or PL/1.

 The number is first converted to a sequence of digits,
 which is then edited under control of the picture.
 Pictures can be used to effect scaling, left-or-right zero
 suppression, comma and decimal point insertion, fixed or
 varying field width of the converted item.

 Pictures

 A picture is sequence of characters describing the format
 desired for the converted string. The characters forming
 the picture may be any of the following:

 9 specifies the position is to be occupied by a
 digit.

 blank used in place of "9" to indicate replacement
 of leading or trailing zeros with blanks.

 Z, z used in place of "9" to indicate suppression
 of leading or trailing zeros.

 . specifies literal insertion of a ".", if the
 position is followed by a digit. That is,
 decimal does not appear if it is passed over
 by right zero suppression. If it is preceded
 or followed by a blank, it will be replaced by
 a blank.

 D, d specifies literal insertion of a "." even if
 there is no following character.

 , specifies literal insertion of a comma;
 suppressed if not both preceded and followed
 by a digit. If it is preceded or followed by
 a blank, it will be replaced by a blank.

 V, v indicates the position at which to align the
 decimal point of the number being converted
 (i.e., the right-hand end of the number). If
 this is omitted, it is assumed to be at the
 right-hand end of the picture. The "V" has
 the effect of scaling the value.

 UBC PLUS LIBRARY
 30

 P, p is used to allow a "V" to appear past the last
 digit character of the picture. "P"’s may
 appear only at the right of the picture. They
 have the effect of discarding the right-most
 digits.

 A valid picture may have a format like

 (Z)(blank)(9)Ý.(9)(blank)(Z)(P)¨

 where (?) indicates 0 or more occurrences of the "?", and
 everything in Ý¨ is optional. Commas may appear anywhere
 in the picture, and a "D" may appear instead of ".". One
 "V" may appear, with the restriction that "Z", blank, and
 "P" are not allowed to the right of the "V".

 If the number is negative, a sign will be placed in the
 right-most unused "Z" or " " position left of the decimal.
 The pattern must provide at least one "Z" or blank if the
 number may be negative.

 Examples

 The general form of a call is

 %Include(Picture_Format);
 ...
 Str := Picture_Format(<value>,<picture>,Address(<boolean

 The following table indicates the results returned for
 some possible combinations of value and picture.

 UBC PLUS LIBRARY
 31

 value picture result _____ _______ ______

 123456 "999999" "123456"
 123456 "ZZZZZ9" "123456"
 123456 "ZZ,ZZ9.99" "1,234.56"
 123456 " 9.ZZZ" " 123.456"
 123456 "Z .ZZZ" " 123.456"
 123456 "" see note 1
 123456 "ZZZZ" see note 1
 123456 " .PPPV" " 123 "
 0 "999999" "000000"
 0 "ZZZZZ9" "0"
 0 "Z,ZZZ,9.99" "0.00"
 0 " 9.ZZZ" " 0"
 0 "Z .ZZZ" " "
 0 "" ""
 0 "ZZZZ" ""
 0 " .PPPV" " "
 -1 "999999" see note 2
 -1 "ZZZZZ9" "-1"
 -1 "Z,ZZZ,9.99" "-0.01"
 -1 " 9.ZZZ" " -0.001"
 -1 "Z .ZZZ" " -.001"
 -1 "" see note 1
 -1 "ZZZZ" "-1"
 -1 " .PPPV" " - "
 3000 " 9.999" " 3.000"
 3000 " 9. " " 3 "
 3000 "ZZZZZZZ9DZZZ" "3."
 3000 "ZZZZZZZ9.ZZZ" "3"
 -123 "999V" see note 2
 -123 "999" see note 2
 -123 " 999" "-123"
 -123 "Z999" "-123"

 Note 1: The returned value is the error message
 "Picture_Format: number too big for picture".

 Note 2: The returned value is the error message
 "Picture_Format: no room for sign".

 procedure_String_To_Hex_Varying _________ _____________________

 Purpose

 To convert a string to hexadecimal characters.

 Parameters

 1- value, Varying_String

 A string to be converted to a sequence of hexadecimal
 characters.

 UBC PLUS LIBRARY
 32

 Result

 Varying_String

 The hexadecimal representation of the string.

 Description

 This procedure converts an arbitrary string to a
 hexadecimal string.

 Example

 variable Char, Res are Varying_String;
 ...
 Res := String_To_Hex_Varying(Char);

 Note

 See also Chars_To_Hex_Varying.

 procedure_String_To_Integer _________ _________________

 Purpose

 To convert a character string to an integer.

 Parameters

 1- value, Varying_String

 A string containing the EBCDIC representation of an
 integer in the range allowed for type Integer. It may
 consist of a string of digits, optionally preceded and/or
 followed by blanks. An optional plus or minus sign may
 precede it.

 2- pointer to Varying_String

 Varying_String used to indicated the success or failure of
 the conversion.

 Result

 Integer

 The converted value.

 Description

 If the first parameter contains a valid integer
 representation, then it is returned and the second
 parameter is set to "". Otherwise, the smallest possible
 integer value is returned and the second parameter is set
 to an error message.

 UBC PLUS LIBRARY
 33

 A null pointer may be passed for the second parameter, in
 which case no error indication will be returned.

 procedure_String_To_Real _________ ______________

 Purpose

 To convert a character string to a floating-point (PLUS
 type real) value.

 Note

 Since real is not yet implemented in PLUS, this routine
 currently returns a bit-type result.

 Parameters

 1- value, Varying_String

 A string containing the EBCDIC representation of a real
 constant in the range valid for the machine. It consists
 of a sign, integer part, decimal point, fractional part,
 and exponent part. Each of these pieces is optional. The
 exponent part consists of the letter "E" (or "e"), an
 optional sign, and an integer. Leading and/or trailing
 blanks are also allowed.

 Note that the format is similar to that of Fortran real
 constants, except that the exponent is always introduced
 with "E".

 2- pointer to Varying_String

 Varying_String used to indicated the success or failure of
 the conversion.

 Result

 bit(128)

 The converted value as an extended-precision real.

 Description

 If the first parameter contains a valid real
 representation, then it is returned and the second
 parameter is set to "". Otherwise, a value of 0.0 is
 returned and the the second parameter is set to an error
 message.

 A null pointer may be passed for the second parameter, in
 which case no error indication will be returned.

 UBC PLUS LIBRARY
 34

 G. NUMERIC_ROUTINES _______ ________

 procedure_Log2 _________ ____

 Purpose

 To compute integer base 2 "logarithms".

 Parameters

 1- Integer

 Result

 Integer

 A number in the range 0 to 31.

 Description

 Given a parameter n1, returns the smallest number n2 such __ __
 that 2**n2 > n1. (That is, returns the number of bits in __ __
 the binary representation of n1.) __

 procedure_Power2 _________ ______

 Purpose

 To compute integer powers of 2.

 Parameters

 1- (0 to 31)

 Result

 Integer

 Description

 Given parameter n1, returns 2**n1. __ __

 procedure_Random_Integer _________ ______________

 Purpose

 To generate sequences of pseudo-random numbers.

 Parameters

 UBC PLUS LIBRARY
 35

 1- reference, Integer

 A "seed" for the random number generator.

 2- value, Integer

 The desired upper bound, ub, for the random numbers. __

 Result

 Integer

 A number in the range 1 to ub (inclusive). __

 Description

 If called with the ub parameter = 0, the random number __
 generator is seeded from the time-of-day clock; otherwise
 the next random number in sequence is generated.

 Note that the "seed" parameter must be maintained
 unchanged between calls. Thus it must not be a local
 variable in a scope that is exited between calls.

 procedure_Round_Down _________ __________

 Purpose

 To truncate an integer down to the next lowest multiple of
 another number.

 Parameters

 1- Integer

 The number to be rounded down.

 2- Integer

 The number of which a multiple is required.

 Result

 Integer

 procedure_Round_Up _________ ________

 Purpose

 To round an integer up to the nearest multiple of another
 number.

 UBC PLUS LIBRARY
 36

 Parameters

 1- Integer

 The number to be rounded up.

 2- Integer

 The number of which a multiple is required.

 Result

 Integer

 procedure_Shift_Left _________ __________

 Purpose

 To shift a word left a given number of bits.

 Parameters

 1- Fullword

 The value to be shifted.

 2- (-32 to 32)

 The number of bits to shift by.

 Result

 Fullword

 Description

 Performs a logical shift of the first parameter. If the
 second parameter is negative, the value is shifted right
 instead of left.

 procedure_Shift_Right _________ ___________

 Purpose

 To shift a word right a given number of bits.

 Parameters

 1- Fullword

 The value to be shifted.

 UBC PLUS LIBRARY
 37

 2- (-32 to 32)

 The number of bits to shift by.

 Result

 Fullword

 Description

 Performs a logical shift of the first parameter. If the
 second parameter is negative, the value is shifted left
 instead of right.

 H. I/O_INTERFACING_DEFINITIONS ___ ___________ ___________

 The source library contains definitions and macros to
 simplify the use of MTS I/O from PLUS programs.

 A PLUS program can perform I/O at one of three levels:

 1. By using a set of macros which read and write character
 strings from appropriate MTS logical units. These macros
 build the required parameter lists for calling MTS I/O
 subroutines.

 The macros in this group are:

 Sprint_String
 Sprint_Varying
 Sercom_String
 Sercom_Varying
 Spunch_String
 Spunch_Varying
 Scards_Varying
 Guser_Varying

 2. By using a set of macros which take as one parameter a
 control block of type Mts_File_Type. The control block is
 used to contain various parameters which must be pre-
 initialized. Macros are also provided to set fields of
 the control block.

 These macros and types allow full access to the MTS I/O
 facilities. The macros simplify the job of calling the
 procedures, and improve the efficiency by requiring
 parameters to be initialized only once.

 The macros in this group are

 | Free_File
 Initialize_File
 | Initialize_File_With_Name

 | UBC PLUS LIBRARY
 38

 Initialize_File_With_Unit#
 Read_File
 Write_File
 Read_Varying
 Write_Varying
 Write_String
 Read_Record
 Write_Record
 Set_Buffer
 Set_Specific_Line
 Set_Next_Line
 Set_First_Line
 Set_Last_Line

 3. By using the system subroutines Read, Write, etc.,
 directly. Definitions of all the I/O subroutines are
 provided by *PLUS.SOURCELIB. They are described in the
 next section, "MTS System Facilities".

 The I/O macros are described below, in alphabetical order.

 | macro_Free_File _____ _________
 |
 | Purpose
 |
 | To free the FDUB in a control block which has been
 | initialized via Initialize_File_With_Name.
 |
 | Parameters
 |
 | 1- name, Mts_File_Type
 |
 | The control block containing the FDUB to be freed.
 |
 | Note
 |
 | An error will result if the control block was initialized
 | using a logical I/O unit name or number, rather than an
 | explicit file name. Only control blocks initialized via
 | Initialize_File_With_Name are valid parameters.

 macro_Guser_Varying _____ _____________

 Purpose

 To read a string from logical unit GUSER.

 Parameters

 1- name, Varying_String

 A variable into which the line will be read.

 UBC PLUS LIBRARY
 39

 2- name, any numeric type

 A variable to which the return code from the read
 operation will be assigned.

 Note

 A line is read using the @MAXLEN modifier to prevent
 reading data longer than the maximum length for a
 Varying_String.

 macro_Initialize_File _____ _______________

 Purpose

 To initialize some fields of an Mts_File_Type record.

 Parameters

 1- name, Mts_File_Type

 The control block to be initialized.

 2- character(8)

 A logical unit name to be used.

 3- bit(32) or numeric value

 The modifiers to be used for operations on the file.

 Note

 | This macro should only be used to initialize control
 | blocks which are to correspond to named MTS I/O units.
 | Control blocks which are to correspond to numbered units
 | or explicitly named files must be initialized using
 | Initialize_File_With_Unit# and Initialize_File_With_Name,
 | respectively.
 |
 |
 | macro_Initialize_File_With_Name _____ _________________________
 |
 | Purpose
 |
 | To initialize an Mts_File_Type record, making it
 | correspond to an explicitly named file.
 |
 | Parameters
 |
 | 1- name, Mts_File_Type
 |
 | The control block to be initialized.
 |

 | UBC PLUS LIBRARY
 | 40
 |
 |
 | 2- Varying_String
 |
 | The file name to be used.
 |
 | 3- bit(32) or numeric value
 |
 | The modifiers to be used for operations on the file.
 |
 | 4- name, Integer
 |
 | A location into which the return code from Getfd may be
 | placed.
 |
 |
 | macro_Initialize_File_With_Unit# _____ __________________________
 |
 | Purpose
 |
 | To initialize an Mts_File_Type record, making it
 | correspond to a numbered I/O unit.
 |
 | Parameters
 |
 | 1- name, Mts_File_Type
 |
 | The control block to be initialized.
 |
 | 2- numeric, 0 to 19
 |
 | A logical unit number to be used.
 |
 | 3- bit(32) or numeric value
 |
 | The modifiers to be used for operations on the file.
 |
 | Note
 |
 | This macro should only be used when a control block is
 | desired for a numbered I/O unit. To initialize a control ________
 | block with a named I/O unit, use Initialize_File.

 type_Mts_File_Type ____ _____________

 Purpose

 To keep track of the parameters and status of I/O on an
 MTS logical unit or FDUB.

 Description

 MTS_File_Type is a control block in which the parameters
 and status information for I/O on a logical unit or Fdub
 is kept.

 Normally, a variable of type MTS_File_Type is declared for

 UBC PLUS LIBRARY
 41

 each I/O stream used. These will usually be global
 variables. The macro Initialize_File can be used to
 initialize fields of the record. Other macros are
 provided to perform I/O on a given file, and to set
 various parameters.

 The definition of this record uses definitions of various
 types defined in global Mts_Io_Types (described below).
 The record contains fields File_Modifiers,
 File_Line_Number and File_Unit, with obvious usage.
 File_Buffer may be set to the address of a buffer to be
 used by Read_File and Write_File. File_Length is a record
 (of type Mts_Io_Length_Type) consisting of three halfwords
 (for use with @MAXLEN). File_Simple_Length is equated to
 the first of these three. Field Last_Return_Code is set
 to the return code for each I/O operation performed.
 Last_Result is the result of the last operation,
 significant only if @NOTIFY or @NOPROMPT was specified.

 macro_Read_File _____ _________

 Purpose

 To read a line using a given Mts_File_Type control block.

 Parameters

 1- name, Mts_File_Type

 Description

 Calls READ, using parameters which must have been
 previously set in the control block. The return code and
 result (notification etc., if requested) are left in the
 control block.

 macro_Read_Record _____ ___________

 Purpose

 To read a line into an arbitrary variable.

 Parameters

 1- name, Mts_File_Type

 2- name, unknown

 The location into which the record is to be read.

 UBC PLUS LIBRARY
 42

 Description

 Calls READ to input a value for the given variable. All
 other parameters must have been previously set in the
 Mts_File_Type control block. The return code and result
 (notification etc., if requested) are left in the control
 block.

 The maximum-length parameter will be set to the size of
 the variable (parameter 2) before calling READ. It is up
 to the caller to set the @MAXLEN modifier in the control
 block before the call, if @MAXLEN is desired.

 macro_Read_Varying _____ ____________

 Purpose

 To read a string using a given Mts_File_Type control
 block.

 Parameters

 1- name, Mts_File_Type

 2- name, Varying_String

 A variable into which a line is to be read.

 Description

 Calls READ to input a string into the given
 Varying_String. All other parameters must have been
 previously set in the control block. The return code and
 result (notification etc., if requested) are left in the
 control block.

 The maximum-length parameter will be set to the size of a
 Varying_String before calling READ. It is up to the
 caller to set the @MAXLEN modifier in the control block
 before the call, if @MAXLEN is desired.

 macro_Scards_Varying _____ ______________

 Description

 This is similar to Guser_Varying, except that logical unit
 SCARDS is used.

 UBC PLUS LIBRARY
 43

 macro_Sercom_String _____ _____________

 Purpose

 To output a character string to logical unit SERCOM.

 Parameters

 1- string value

 The string to be printed. This may be any string
 expression, provided the length is ð 255.

 Description

 The string is copied to a Varying_String, which is then
 output with all default modifiers.

 macro_Sercom_Varying _____ ______________

 Purpose

 To output a Varying_String to logical unit SERCOM.

 Parameters

 1- name, Varying_String

 The string to be printed.

 Description

 The string is output with all default modifiers.

 Note

 The difference between Sercom_String and Sercom_Varying is
 that Sercom_String copies the expression to a variable to
 be passed to SERCOM, while Sercom_Varying requires a
 variable (name) as its parameter.

 macro_Set_Buffer _____ __________

 Purpose

 To set the address of the buffer to be read or written by
 Read_File and Write_File.

 Parameters

 UBC PLUS LIBRARY
 44

 1- name, Mts_File_Type

 2- name, unknown

 The location to read to or write from.

 Note

 The maximum-length parameter will be set to the size of a
 variable specified. It is up to the caller to set the
 @MAXLEN modifier in the control block if @MAXLEN is
 desired.

 macro_Set_First_Line _____ ______________

 Purpose

 To set an Mts_File_Type to access the first line of the
 file next.

 Parameters

 1- name, Mts_File_Type

 Description

 This macro gets the line number of the first line of the
 file, and sets the @INDEXED modifier to cause it to be
 accessed by the next I/O operation. Note that the
 modifier must be explicitly reset if it is intended to
 then read sequentially from that point.

 macro_Set_Last_Line _____ _____________

 Description

 This is similar to Set_First_Line, with the obvious
 difference.

 macro_Set_Next_Line _____ _____________

 Purpose

 To set an Mts_File_Type record for sequential I/O.

 Parameters

 1- name, Mts_File_Type

 UBC PLUS LIBRARY
 45

 Description

 This macro just turns off the @INDEXED modifier.

 macro_Set_Specific_Line _____ _________________

 Purpose

 To cause the next operation on a given file to read or
 write a specific line.

 Parameters

 1- name, Mts_File_Type

 2- value, integer

 The internal line number of the line to be accessed.

 Description

 This macro sets the line number parameter and the @INDEXED
 modifier.

 Note

 If it is desired to continue reading sequentially from the
 given line, the modifier must be reset after reading the
 specified line.

 macro_Sprint_String _____ _____________

 Description

 This is similar to Sercom_String, except that logical unit
 SPRINT is used.

 macro_Sprint_Varying _____ ______________

 Description

 This is similar to Sercom_Varying, except that logical
 unit SPRINT is used.

 macro_Spunch_String _____ _____________

 Description

 This is similar to Sercom_String, except that logical unit
 SPUNCH is used.

 UBC PLUS LIBRARY
 46

 macro_Spunch_Varying _____ ______________

 Description

 This is similar to Sercom_Varying, except that logical
 unit SPUNCH is used.

 macro_Write_File _____ __________

 Purpose

 To write a line using a given Mts_File_Type control block.

 Parameters

 1- name, Mts_File_Type

 Description

 Calls WRITE, using parameters which must have been
 previously set in the control block. The return code and
 result (notification etc., if requested) are left in the
 control block.

 macro_Write_Record _____ ____________

 Purpose

 To write out an arbitrary variable to an MTS file or
 device.

 Parameters

 1- name, Mts_File_Type

 2- name, unknown

 The variable to be written.

 Description

 Calls WRITE to output the given variable. The size of the
 type of variable determines the number of bytes to be
 written. All other parameters must have been previously
 set in the Mts_File_Type control block. The return code
 and result (notification etc., if requested) are left in
 the control block.

 UBC PLUS LIBRARY
 47

 macro_Write_String _____ ____________

 Purpose

 To write a string using a given Mts_File_Type control
 block.

 Parameters

 1- name, Mts_File_Type

 2- value, string

 An arbitrary string expression, of length ð 255, to be
 written.

 Description

 Calls WRITE to output the given string. All other
 parameters must have been previously set in the control
 block. The return code and result (notification etc., if
 requested) are left in the control block.

 macro_Write_Varying _____ _____________

 Purpose

 To write the value of a Varying_String using a given
 Mts_File_Type control block.

 Parameters

 1- name, Mts_File_Type

 2- name, Varying_String

 A variable whose value is to be written.

 Description

 Calls WRITE to output the given string, using its current
 length. All other parameters must have been previously
 set in the control block. The return code and result
 (notification etc., if requested) are left in the control
 block.

 I. MTS_SYSTEM_FACILITIES ___ ______ __________

 This section outlines the definitions for MTS System
 Subroutines that are included in *PLUS.SOURCELIB.

 The library includes members defining most of the system

 UBC PLUS LIBRARY
 48

 procedures, and some additional macros, types, and constants
 | that are useful in interfacing to these procedures. Most
 | procedure declarations include constant declarations for
 | return codes or parameters, which are provided when the
 | procedures are %Included. While the constants are not named
 | herein, their names may be determined by looking at the
 | appropriate library members.

 Many system subroutines involve input-output facilities. The
 member Mts_Io_Types defines several types which are used
 consistently in the definitions of these subroutines. The
 types defined include Mts_Io_Unit_Type, which is defined as a
 record which may contain a Fdub pointer, an 8-character
 logical unit name, or an integer logical unit number. This
 | type is used in numerous system subroutines. The global
 | Io_Subroutine_Return_Codes provides constants for the return
 | codes from various input-output subroutines.

 Note that most of the system subroutines require an OS S-type
 linkage sequence; hence the parameter definitions use PLUS
 reference parameters. The parameters are defined to be
 "reference value" parameters in cases where the subroutine
 will not change the value of the parameter. This allows the
 use of a constant in places where it is safe. Expressions,
 however, cannot be used for reference parameters.

 This section of the writeup is intended to supplement, not
 replace, MTS Volume 3 and/or UBC System Subroutines.

 procedure_Attntrp _________ _______

 Purpose

 To allow control to be returned to the user on an
 attention interrupt.

 Parameters

 1- system procedure

 A procedure to be called when an attention interrupt
 occurs, or Null.

 2- reference, unknown

 An area to save the registers and PSW when the interrupt
 occurs. This will normally be a variable of type
 Mts_Exit_Area_Type. (See Exit_Definitions.)

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 49

 Note

 The macro Set_Exit may be used to set up a PLUS procedure
 as an attention-exit routine.

 procedure_Blokletr _________ ________

 Purpose

 To convert a character string into block letters.

 Parameters

 1- reference, value, unknown

 A variable containing the string of characters to be
 converted. Normally, a PLUS fixed-length string type.

 2- reference, value, Integer

 A number from 1 to 12 specifying which line of the block-
 letter form is to be returned.

 3- reference, unknown

 The place to put the line of block-letters, which must be
 at least 14 times the length of the string to be
 converted. Normally a PLUS fixed-length string type will
 be used.

 4- reference, value, Integer

 The length of the string to be converted.

 Description

 See MTS Volume 3

 procedure_Bsrf _________ ____

 Purpose

 To backward space records (lines) in a line file or
 sequential file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the file or device.

 UBC PLUS LIBRARY
 50

 2- reference, value, Integer

 Specifies the number of records to skip.

 Description

 | See MTS Volume 3
 |
 | Note
 |
 | Constants for the return codes of this procedure are in
 | the global Fsrf_Bsrf_Return_Codes, which is included along _
 | with it.

 procedure_Canreply _________ ________

 Purpose

 To determine whether the user is running in conversational
 mode or batch mode.

 Result

 | This routine sets the return code instead of returning a
 | result. The constants Can_Reply and Cannot_Reply are
 | provided for comparison with the return code.

 Description

 See MTS Volume 3

 | global_Carriage_Control_Characters ______ ___________________________
 |
 | Purpose
 |
 | To define mnemonic constants for the carriage control
 | characters.
 |
 | Description
 |
 | The following constants are defined.
 |
 | Double_Space_Cc ("0")
 | First_Line_Cc (";")
 | Half_Page_Cc ("2")
 | Hang_On_Eol_Cc ("&") (for terminals only)
 | Page_Bottom_Cc ("<")
 | Page_Front_Cc (":")
 | Page_Top_Cc ("1")
 | Quarter_Page_Cc ("4")
 | Single_Space_Cc (" ")
 | Single_Space_Noskip_Cc ("9")
 | Triple_Space_Cc ("-")

 UBC PLUS LIBRARY
 51

 procedure_Cfdub _________ _____

 Purpose

 To determine whether two FDUB-pointers, logical I/O unit
 numbers, or logical I/O unit names refer to the same file
 or device.

 Parameters

 Two references of type value Mts_Io_Unit_Type specifying
 the items to be compared.

 Result

 The return code is set rather than a result.

 Description

 See MTS Volume 3

 | procedure_Charge _________ ______
 |
 | Purpose
 |
 | To computer the charge for the given quantities of
 | resources using the current rates for the signed on CCid.
 |
 | Parameters
 |
 | 1- reference, value, Integer
 |
 | The number of elements of the second (and possibly third)
 | parameter(s) to be used.
 |
 | 2- reference, value, array (1 to 14) of Integer
 |
 | An array specifying amounts of resources for which the
 | charge is to be calculated.
 |
 | 3- reference, value, array (1 to 14) of Integer
 |
 | An array specifying what resources the amounts in the
 | second parameter represent.
 |
 | Result
 |
 | Integer
 |
 | The amount that would be charged for the indicated
 | resources in centicents. (ten-thousandths of a dollar).

 UBC PLUS LIBRARY
 52

 procedure_Chgfsz _________ ______

 Purpose

 To change the size or maxsize of a file either absolutely
 or incrementally.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the file to be changed.

 2- reference, value, Integer

 The size or increment in pages.

 3- reference, value, Integer

 Flag specifying how size is to be changed.

 Description

 See MTS Volume 3

 Note

 This library member also defines constants that may be
 used as the third parameter. The constants defined are

 Absolute_Size (0)
 Change_In_Size (1)
 Absolute_Maxsize (2)
 Change_In_Maxsize (3)

 procedure_Chgmbc _________ ______

 Purpose

 To change dynamically the number of page-sized buffers
 used by the file system to read and write a particular
 file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the file whose buffer allocation is to be
 changed.

 UBC PLUS LIBRARY
 53

 2- reference, value, Integer

 The maximum number of buffers to use.

 Description

 See MTS Volume 3

 procedure_Chgxf _________ _____

 Purpose

 To change the expansion factor of a file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the file to be changed.

 2- reference, value, Integer

 The new expansion factor.

 Description

 See MTS Volume 3

 procedure_Chkacc _________ ______

 Purpose

 To determine the access that a signon ID, project number,
 and program key "triple" has to a particular file.

 Parameters

 1- reference, value, unknown

 Location containing the file name, with a trailing blank.
 Normally, this will be a PLUS fixed-length string type.

 2- reference, value, unknown

 Location containing the CCID, project, and program key
 (with a trailing blank) for which access is to be checked.
 This will normally be a PLUS fixed-length string type or a
 record type.

 UBC PLUS LIBRARY
 54

 Result

 bit(32)

 Specifies the access. The possible values (or’d together)
 are described by Mts_File_Access_Codes.

 Description

 See MTS Volume 3

 procedure_Chkfdub _________ _______

 Purpose

 To obtain a FDUB-pointer for a specified logical I/O unit;
 to verify that a given FDUB-pointer is legal.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 Result

 optional, Mts_Fdub_Type

 The returned Fdub.

 Note that the return code indicates whether an invalid
 Fdub or unassigned logical unit was specified.

 Description

 See MTS Volume 3

 procedure_Chkfile _________ _______

 Purpose

 To determine whether a file exists, as well as what access
 the calling program has to the file.

 Parameters

 1- reference, value, unknown

 Location containing the file name, with a terminating
 blank. This will usually be a PLUS fixed-length string
 type.

 UBC PLUS LIBRARY
 55

 Result

 optional, bit(32)

 Specifies the access allowed. The possible values are
 described by Mts_File_Access_Codes.

 Note that the return code specifies whether the file
 exists.

 Description

 See MTS Volume 3

 procedure_Closefil _________ ________

 Purpose

 To close a file and release its file buffers.

 Parameters

 1- reference, value, MTS_Io_Unit_Type

 Specifies the logical unit or Fdub.

 Description

 See MTS Volume 3

 | procedure_Command _________ _______
 |
 | Purpose
 |
 | To execute an MTS command from a program and return to the
 | program after the command has been executed.
 |
 | Parameters
 |
 | 1- reference, value, unknown
 |
 | A location containing the MTS command. This will usually
 | be a PLUS fixed-length string type.
 |
 | 2- reference, value, Integer
 |
 | The length of the command.
 |
 | 3- reference, value, bit(24)
 |
 | A series of switches indicating whether the command and
 | any output generated by the command is to be echoed. The
 | two sets of constants, Command_Echo_Never and
 | Command_Echo_Always, and Command_Commentary_Never and

 | UBC PLUS LIBRARY
 | 56
 |
 |
 | Command_Commentary_Always are supplied. A zero value
 | indicates that the routine is to follow the setting of the
 | MTS echo switch.
 |
 | Description
 |
 | See MTS Volume 3

 procedure_Cmd _________ ___

 Purpose

 To execute an MTS command from a program and return to the
 program after the command has been executed.

 Parameters

 1- reference, value, unknown

 A location containing the MTS command. This will usually
 be a PLUS fixed-length string type.

 2- reference, value, Integer

 The length of the command.

 Description

 See MTS Volume 3

 Example

 The following program segment issues the MTS command
 "$DISPLAY VMSIZE".

 %Include(Cmd);
 ...
 constant Display_Cmd is "$DISPLAY VMSIZE";
 ...
 Cmd(Display_Cmd, Length(Display_Cmd));
 ...
 Note that, in this example, Length(...) can be used
 because it is a constant, and the parameter allows a
 value.

 procedure_Cmdnoe _________ ______

 Purpose

 To execute an MTS command from a program and return to the
 program after the command has been executed.

 UBC PLUS LIBRARY
 57

 Parameters

 1- reference, value, unknown

 A location containing the MTS command. This will usually
 be a PLUS fixed-length string type.

 2- reference, value, Integer

 The length of the command.

 Description

 See MTS Volume 3

 external_variable_Cnfginfo ________ ________ ________

 Purpose

 To obtain information about the system on which the
 program is running.

 Description

 CNFGINFO is a system table containing various items about
 the current system. The PLUS definition describes it as a
 complex PLUS record definition.

 See the contents of the library member Cnfginfo, and MTS
 Volume 3, for details.

 procedure_Cntlnr _________ ______

 Purpose

 To count all or a subset of the lines in a line file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, value, Mts_Line_Number_Type

 Specifies the line number of the first line to be counted.

 3- reference, value, Mts_Line_Number_Type

 Specifies the line number of the last line to be counted.

 UBC PLUS LIBRARY
 58

 4- reference, Integer

 Specifies a location in which to store the count.

 See Mts_Io_Types for descriptions of the types of the
 first parameters.

 Description

 See MTS Volume 3

 procedure_Control _________ _______

 Purpose

 To perform control operations on files and devices.

 Parameters

 1- reference, unknown

 Specifies the control information. This will usually be a
 PLUS fixed-length string type. Note that a constant is
 not allowed, since Control may return information in this
 parameter (e.g., for the SNS control command).

 2- reference, Short_Integer

 A halfword integer giving the length of the control
 information.

 3- reference, value, Mts_Io_Unit_Type

 Specifies the unit or Fdub to be controlled.

 4- optional, reference, Control_Return_Info_Type

 A location at which the error information is returned.
 Control_Return_Info_Type is described below.

 Description

 See MTS Volume 3

 Note

 Control_Return_Info_Type describes the structure of the
 returned information. Its definition is included with
 library member Control. The definition is as follows:

 record
 Dsr_Return_Code is Integer,
 Dsr_Message_Length is Integer,
 Dsr_Message is character(100)
 end

 UBC PLUS LIBRARY
 59

 procedure_Cost _________ ____

 Purpose

 To obtain the accumulated costs incurred by the current
 signon.

 Result

 Integer

 Returns the cost in centicents.

 Description

 See MTS Volume 3

 procedure_Create _________ ______

 Purpose

 To create a file.

 Parameters

 1- reference, value, unknown

 Specifies the name of the file, with a trailing blank.
 This is usually a PLUS fixed-length string type.

 2- reference, value, Create_Size_Type

 A record specifying the maximum and initial sizes of the
 file. Create_Size_Type is described below.

 3- reference, value, unknown

 The volume. This is normally a location of type Integer,
 containing the value 0.

 4- reference, value, Integer

 A code specifying the type of file to create.

 Library member Mts_File_Organizations contains constants
 which may be assigned to a variable to be used for this
 parameter. Normally, 256 should be added to those codes
 to indicate that the size is specified in pages.

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 60

 Note

 The definition of Create_Size_Type is included in library
 member Create. It is the following record:

 record
 Maximum_Size, Initial_Size are Short_Integer
 end

 Example

 The following creates a line file of 10 pages, with name
 "-LOAD":

 %Include(Create, Mts_File_Organizations);
 ...
 constant Default_File_Name is "-LOAD ",
 Create_Size is Create_Size_Type(0,10); /* 10P, no maximum */
 Create_Kind is Line_File+256; /* Line, size in pages */
 ...
 Create(Default_File_Name, Create_Size, 0, Create_Kind);

 procedure_Cuinfo _________ ______

 Purpose

 To change various items of information about the user or
 task.

 Parameters

 1- reference, value, unknown

 Specifies the item to change. May be a character(8) or an
 Integer.

 2- reference, value, unknown

 Specifies the new value. The type and format depends on
 the item being changed.

 Description

 See MTS Volume 3

 Note

 | Constants for information returned from Cuinfo can be had
 | by %Include-ing Guinfo_Cuinfo_Constants. Return code
 | constants are in the global Guinfo_Cuinfo_Return_Codes.

 UBC PLUS LIBRARY
 61

 procedure_Destroy _________ _______

 Purpose

 To destroy a file.

 Parameters

 1- reference, value, unknown

 The name of the file to destroy, with trailing blank.
 This is usually a PLUS fixed-length string type.

 Description

 See MTS Volume 3

 procedure_Dismount _________ ________

 Purpose

 To release magnetic and paper tapes, network devices, etc.

 Parameters

 1- reference, value, unknown

 Specifies the pseudo-device(s) to dismount. This may be a
 PLUS fixed-length string type (if parameter (2) is given),
 or a character(0 to 256) (halfword length followed by the
 text).

 2- optional, reference, value, Short_Integer

 Gives the length of the first parameter.

 Description

 See MTS Volume 3

 Example

 To dismount the pseudo-devices *T1* and *T2*, either of
 the following forms might be used.

 constant Pdns is "*T1* *T2*";
 ...
 Dismount(Pdns, Short_Integer(Length(Pdns)));
 ...
 Dismount(Long_Varying_String(Pdns));

 Note the use of constant displays to force the constants
 passed into the correct form for the procedure.

 UBC PLUS LIBRARY
 62

 procedure_Edit _________ ____

 Purpose

 To call the MTS system editor from a program.

 Note

 This is an extremely complex system subroutine. The
 procedure definition in *PLUS.SOURCELIB is designed to be
 as convenient as possible for the most common cases.
 However, some type-cheating will often be required in
 building parameters to be passed.

 Parameters

 1- reference, pointer to unknown

 Points to editor dsect allocated by the editor. The
 pointer passed should be null on the first call.

 | 2- reference, value, Cls_Transfer_Vector_Type

 System subroutines transfer vector. For most purposes,
 however, a fullword -1 will be passed instead of a
 transfer vector, causing use of the standard system
 subroutines.

 | 3- reference, value, Ed_Special_Io_Type

 Transfer vector of routines to replace normal edit file
 interface routines. For most purposes, a fullword -1 will
 be passed instead of a transfer vector.

 4- reference, value, unknown

 The name of the file to edit. Normally a fixed-length
 character string.

 5- reference, value, Integer

 The length of the file-name passed as parameter 4.

 6- reference, value, unknown

 An initial edit command to be executed.

 7- reference, value, Integer

 The length of the edit command passed as parameter 6.

 8- reference, value, Mts_Line_Number_Type

 The minimum line number to be allowed, in internal form.

 UBC PLUS LIBRARY
 63

 9- reference, value, Mts_Line_Number_Type

 The maximum line number to be allowed, in internal form.

 10-
 reference, value, Integer

 A line-number relocation factor to be subtracted from real
 line numbers.

 11-
 reference, value, Ed_Preprocess_Procedure_Type

 A routine called by the editor to examine each command
 before it is processed by the editor. For most purposes,
 a fullword -1 will be passed instead of a procedure,
 meaning no routine is to be called.

 12-
 reference, value, Integer

 This parameter is not used, but must be passed as a
 fullword -1.

 13-
 reference, value, bit(32)

 A fullword of bit-switches specifying various edit
 subroutine options. Note that the setting of various bits
 in this word determine whether certain other parameters
 are processed or ignored. See description below.

 14-
 reference, character(20)

 Variable in which the current file name may be stored on
 return.

 15-
 reference, Mts_Line_Number_Type

 Variable in which the number of the editor current line
 may be returned.

 16-
 reference, bit(32)

 Variable in which a set of return-status switches may be
 returned. See below.

 Description

 See MTS Volume 3 for a description of how the EDIT
 subroutine operates.

 The library member also includes a number of type and

 UBC PLUS LIBRARY
 64

 constant definitions that may be useful when using Edit.
 The other definitions are:

 return-code definitions

 Constants defining the return codes from the EDIT
 subroutine. The constants defined are:

 Ed_Rc_Normal_Unloaded (0)
 Ed_Rc_Normal_Loaded (4)
 Ed_Rc_Error_Loaded (8)
 Ed_Rc_Error_System (12)

 procedure type definitions

 A number of procedure types, with names of the form
 Rtn_Ed..._Type, for the special file-interface
 procedures that may be provided. Note that if these
 | procedures are written in PLUS, the procedure
 | declaration should specify "linkage system" or an
 | alternate linkage procedure to reestablish the
 | stack, since an S-type call is performed by the
 | editor.

 Ed_Special_Io_Type

 Defines the transfer vector which may be used for
 parameter 3.

 Ed_Preprocess_Procedure_Type

 The type of the procedure that may be used for
 | parameter 11. If this is written in PLUS, it is
 | necessary to specify linakge system or an alternate
 | linkage to reestablish the stack, since an S-type
 call is performed by the editor.

 control switch constants

 A number of bit-type constants which may be used to
 specify the value of parameter 13. A number of
 constants may be or’d together to set groups of
 options.

 The constants defined are

 Ed_Control_Sw_Use_Filename (’00000001’)
 Ed_Control_Sw_Initial_Ed_Cmd (’00000002’)
 Ed_Control_Sw_Cmds_Source (’00000004’)
 Ed_Control_Sw_Unload (’00000008’)
 Ed_Control_Sw_Inhibit_Edit (’00000010’)
 Ed_Control_Sw_Inhibit_Mts (’00000020’)
 Ed_Control_Sw_Inhibit_Copy (’00000040’)
 Ed_Control_Sw_Return_Any_Error (’00000080’)
 Ed_Control_Sw_Return_On_Null (’00000100’)
 Ed_Control_Sw_Return_On_Attn (’00000200’)

 UBC PLUS LIBRARY
 65

 Ed_Control_Sw_No_Unload (’00000400’)
 Ed_Control_Sw_Set_Current_Line (’00000800’)
 | Ed_Control_Sw_Ignore_Initfile (’00001000’)

 return switches constants

 Constants defining the codes which may be returned
 (possibly in combination), as the value of parameter
 16. The constants defined are:

 Ed_Proc_Eof_Enabled (1) Ed_Proc_Success_Enabled (2)
 Ed_Return_Stop_Or_Eof (4)

 See *PLUS.SOURCELIB members Edit and Edit_Definitions for
 further details of these types and constants.

 Example

 The following illustrates a sequence of instructions that
 might be used to edit the file specified by the
 Varying_String Filename, and issue the initial command
 "VISUAL".

 constant Visual_Cmd is "VISUAL",
 Switches is Ed_Control_Sw_Use_Filename
 | Ed_Control_Sw_Initial_Ed_Command
 | Ed_Control_Sw_Cmds_Source;

 variable Ed_Cls_Vector is pointer to
 value Cls_Transfer_Vector_Type,
 Ed_Special_Io_Vector is pointer to
 value Ed_Special_Io_Type,
 Ed_Preprocess_Procedure is Ed_Preprocess_Procedure_Type,
 Ed_Dsect is pointer to unknown,
 Filenamelen is Integer,
 Rc is Integer,
 Return_File is character(20),
 Current_Line is Mts_Line_Number_Type,
 Return_Switches is bit(32);

 /* Do the type-cheating needed to pass -1’s to the
 editor for some of the parameters. */
 equate Cheat1 to Ed_Cls_Vector as pointer to value Integer,
 Cheat2 to Ed_Special_Io_Vector as pointer to
 value Integer,
 Cheat3 to Ed_Preprocess_Procedure as Integer;
 Cheat3 := -1;
 /* Make others point to a fullword -1... */
 Cheat1, Cheat2 := Address(Cheat3);

 /* Initialize the dsect. */
 Ed_Dsect := Null;
 ...
 ...
 Filenamelen := Length(Filename);
 Edit(Ed_Dsect, ED_Cls_Vector@, Ed_Special_Io_Vector@,

 UBC PLUS LIBRARY
 66

 Substring(Filename,0,0), Filenamelen,
 Visual_Cmd, Length(Visual_Cmd),
 Minimum_Integer, Maximum_Integer, 0,
 Ed_Preprocess_Procedure, -1,
 Switches, Return_File, Current_Line, Return_Switches,
 return code Rc);

 procedure_Empty _________ _____

 Purpose

 To empty a file without destroying it.

 Parameters

 1- value, Mts_Fdub_Type

 A Fdub for the file to be emptied.

 Description

 See MTS Volume 3

 procedure_Emptys _________ ______

 Purpose

 To empty a file without destroying it.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 Description

 See MTS Volume 3

 Note

 This routine is called Emptyf at installations other than
 UBC.

 procedure_Error _________ _____

 Purpose

 To suspend execution with an error indication.

 UBC PLUS LIBRARY
 67

 Description

 See MTS Volume 3

 global_Exit_Definitions ______ ________________

 Purpose

 Defines a number of types that are useful for program,
 timer and attention interrupt exit routines.

 Description

 This member contains a number of type definitions that can
 be used in interfacing between a PLUS program and the MTS
 timer, program and attention interrupt routines (PGNTTRP,
 TIMNTRP and ATTNTRP).

 A PLUS exit routine is normally called via an interface
 routine in PLUS:OBJLIB. The exit routine is called with a
 different stack from the "main program". The stack to use
 is specified at the time the exit is set up. The exit
 routine can access global variables as usual. Normally it
 will eventually restart the interrupted program. The
 macro Set_Exit can be used to set up a PLUS exit routine.
 See the description of Set_Exit for further details and an
 example.

 The types defined by Exit_Definitions are as follows:

 Stack_Type

 defines a stack as a very large doubleword-aligned
 array. One should not attempt to allocate a variable
 of type Stack_Type, but should instead allocate the
 required amount of space, and use equate if necessary ______
 to treat it as Stack_Type.

 Note that a different stack must be provided for each
 exit that is to be simultaneously enabled.

 Exit_Routine_Type

 defines a PLUS exit routine. The exit routine has one
 parameter (Exit_Area) which is of type pointer to
 Exit_Area_Type.

 Exit_Area_Type

 is a control block containing the registers and PSW at
 the time of the interrupt, as well as the information
 needed by the interface routine to call the PLUS exit
 handler.

 UBC PLUS LIBRARY
 68

 Mts_Exit_Area_Type

 is a region (within Exit_Area_Type) containing the
 information passed by Mts to an exit routine. Note
 this varies slightly between timer exits and other
 exits.

 Exit_Save_Type

 is a region (within Mts_Exit_Area_Type) containing the
 registers and PSW at the time of the interrupt.

 procedure_Fpsect _________ ______

 Purpose

 To free psect (dsect) storage allocations.

 Parameters

 1- value, bit(32)

 The psect-id.

 Description

 See MTS Volume 3

 | procedure_Fread _________ _____
 |
 | Purpose
 |
 | Fread is an input routine for reading data in a free
 | format.
 |
 | Parameters
 |
 | 1- reference, value, unknown
 |
 | This must be an Mts_Io_Unit_Type or user buffer.
 |
 | Twenty other reference, optional parameters are defined, all
 | of type unknown.
 |
 | Description
 |
 | See MTS Volume 3

 UBC PLUS LIBRARY
 69

 procedure_Freefd _________ ______

 Purpose

 To free a file or device acquired by the Getfd subroutine.

 Parameters

 1- value, Mts_Fdub_Type

 The Fdub to be released.

 Description

 See MTS Volume 3

 procedure_Freespac _________ ________

 Purpose

 To release storage acquired by the GETSPACE subroutine.

 Parameters

 1- value, numeric

 The length of the region to be freed (or zero).

 2- pointer to unknown

 Any pointer specifying the locations to be freed.

 Description

 See MTS Volume 3

 procedure_Fsize _________ _____

 Purpose

 To determine (via repeated calls) the file size required
 to contain a certain amount of information without
 actually writing the file.

 Parameters

 1- reference, value, Integer

 Specifies the file organization. The possible values are
 described by global Mts_File_Organizations.

 UBC PLUS LIBRARY
 70

 2- reference, value, Integer

 The length of data.

 3- reference, Fsize_Workarea_Type

 See below for description of Fsize_Workarea_Type.

 Description

 See MTS Volume 3

 Note

 Fsize_Workarea_Type is included with member Fsize. It is
 a record containing the current file size and working
 space for Fsize. Its definition is as follows

 record
 Current_Size is Integer,
 Last_Pointer is bit(32),
 Scratch is character(56)
 end

 procedure_Fsrf _________ ____

 Purpose

 To forward space records (lines) in a line file or
 sequential file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the file or device.

 2- reference, value, Integer

 Specifies the the number of records to skip.

 Description

 | See MTS Volume 3
 |
 | Note
 |
 | Constants for the return codes of this procedure are in
 | the global Fsrf_Bsrf_Return_Codes, which is included along _
 | with it.

 UBC PLUS LIBRARY
 71

 | global_Fsrf_Bsrf_Return_Codes ______ ______________________
 |
 | Purpose
 |
 | The constants defined herein may be compared with the
 | return codes from the Bsrf and Fsrf procedures.
 |
 | Description
 |
 | The following constants are defined.
 |
 | Fsrf_End_Of_File (4)
 | Fsrf_Illegal_Unit (8)
 | Fsrf_Read_Or_Write_Access_Not_Allowed (12)
 | Fsrf_Deadlock_Detected (16)
 | Fsrf_Wait_Cancelled (20)
 | Fsrf_File_Does_Not_Exist (24)

 procedure_Gdinf _________ _____

 Purpose

 To obtain information returned from the subroutine Gdinfo
 in a Fortran environment.

 Parameters

 1- reference, value, Mts_Io_Unit_type

 Specifies the file or device for which to obtain
 information.

 2- reference, Gdinfo_Result_Type

 Specifies the region in which the information is to be
 returned. See description of Gdinfo_Result_Type.

 Note

 The fields Gd_Fdname and Gd_Error_Msg should not be
 accessed following a call to Gdinf, since the locations
 pointed to will have been freespaced (a bug in Gdinf).

 Description

 See MTS Volume 3

 procedure_Gdinfo _________ ______

 UBC PLUS LIBRARY
 72

 Purpose

 To obtain information about a file or device.

 Parameters

 1- Mts_Io_Unit_Type

 Specifies the file or device for which information is
 requested.

 Result

 pointer to Gdinfo_Result_Type

 (See member Gdinfo_Result_Type.) A region contain the
 information is returned. It must be explicitly freed by
 calling Freespac when no longer required.

 Description

 See MTS Volume 3

 procedure_Gdinfo2 _________ _______

 Purpose

 To get information about a file or device.

 Parameters

 See description of Gdinfo.

 Description

 See MTS Volume 3

 procedure_Gdinfo3 _________ _______

 Purpose

 To get information about a file or device.

 Parameters

 See description of Gdinfo.

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 73

 type_Gdinfo_Result_Type ____ __________________

 Purpose

 To define the return information for Gdinfo and related
 procedures.

 Description

 This member declares a record type corresponding to the
 Assembler dsect in *GDINFODSECT.

 It also declares a number of constants defining the
 possible values of the fields Gd_Use_Code and
 Gd_Device_Code.

 See *PLUS.SOURCELIB for details.

 macro_Get_Time_And_Date _____ _________________

 Purpose

 To set up and call the Time subroutine.

 Parameters

 1- value, integer

 A numeric code for the item to be returned.

 2- reference, unknown

 The location at which to return the requested item. The
 type required depends on the item requested.

 Description

 This macro sets up a call to Time, defaulting the second
 parameter so that the item is to be returned only (not
 printed).

 procedure_Getfd _________ _____

 Purpose

 To obtain a file or device.

 Parameters

 1- reference, value, unknown

 Specifies the file or device, with trailing blank. This
 is normally a fixed-length string type.

 UBC PLUS LIBRARY
 74

 Result

 Mts_Fdub_Type

 The Fdub for the file or device, if return-code is 0.

 Description

 See MTS Volume 3

 procedure_Getfst _________ ______

 Purpose

 To return the line number associated with the first line
 in a file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, Mts_Line_Number_Type

 Specifies the location where the line number is to be
 returned.

 Description

 See MTS Volume 3

 Note

 | Constants for the return codes for this procedure are in
 | the global Getfst_Getlst_Return_Codes.

 | global_Getfst_Getlst_Return_Codes ______ __________________________
 |
 | Purpose
 |
 | To provide constants for return codes from the procedures
 | Getfst and Getlst.
 |
 | Description
 |
 | The following constants are defined.
 |
 | Getfst_Empty_File (4)
 | Getfst_Hardware_Or_Software_Error (8)
 | Getfst_No_Access (12)
 | Getfst_Deadlock_Detected (16)
 | Getfst_Wait_Cancelled (20)
 | Getfst_File_Does_Not_Exist (24)

 UBC PLUS LIBRARY
 75

 procedure_Getime _________ ______

 Purpose

 To return the time remaining until a specified timer
 interrupt will occur without cancelling the interrupt.

 Parameters

 1- reference, value, bit(32)

 The code used to identify the timer when it was set.

 2- reference, unknown

 The time remaining until the interrupt will occur. The
 format depends on the value of the first parameter to
 Setime when the timer was set.

 3- reference, unknown

 The exit area specified when the timer was set.

 Description

 See MTS Volume 3

 procedure_Getlst _________ ______

 Purpose

 To return the line number associated with the last line in
 a file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, Mts_Line_Number_Type

 Specifies the location where the line number is to be
 returned.

 Description

 See MTS Volume 3

 Note

 | Constants for the return codes for this procedure are in
 | the global Getfst_Getlst_Return_Codes.

 UBC PLUS LIBRARY
 76

 procedure_Getspace _________ ________

 Purpose

 To acquire storage.

 Parameters

 1- value, bit(32)

 A word of switches affecting the allocation.

 2- value, Integer

 The number of bytes to be allocated.

 3- optional, value, Integer

 A storage index number to be used if the flag
 Storage_Index_Number_Given is specified in parameter 1.

 Result

 pointer to unknown

 An address is returned, which may be assigned to an
 appropriate pointer variable.

 Description

 See MTS Volume 3

 Note

 Member Getspace also includes the following constant
 definitions which may be used (possibly in combination) as
 the value of the first parameter:

 Dont_Return_If_Not_Available (’00000001’)
 Current_Link_Level (’00000002’)
 System_Storage (’00000004’)
 Storage_Index_Number_Given (’00000008’)

 Example

 The following segment indicates how a record could be
 dynamically allocated in PLUS.

 %Include(Getspace);
 ...
 type List_Element is
 record
 ...
 end;
 variable Next is pointer to List_Element;
 ...

 UBC PLUS LIBRARY
 77

 Next := Getspace(Dont_Return_If_Not_Available
 | Current_Link_Level, Byte_Size(List_Element));

 procedure_Gfinfo _________ ______

 Purpose

 To obtain information about a particular file or all of
 the files in a particular catalog.

 Parameters

 1- reference, value, unknown

 Specifies what file or catalog. The type depends on the
 value of parameter 3. Normally it will be either an
 Integer of a fixed-length string type.

 2- reference, Returned_File_Type

 See below.

 3- reference, value, bit(32)

 A flag specifying what kind of parameter is passed as
 parameter 1. A number of constant definitions which may
 be assigned to a variable to be used for this parameter
 are included with the definition of Gfinfo.

 4- reference, Catalog_Info_Type

 Returns requested catalog information. See below.

 5- reference, File_Info_Type

 Returns requested file information. See below.

 6- reference, Sharing_Info_Type

 Returns sharing information. See below.

 7- optional, reference, Integer

 Returns error code.

 8- optional, reference, character(80)

 Returns an error message corresponding to the error code.

 Description

 This library member defines procedure Gfinfo, and several
 associated PLUS types and constants.

 See MTS Volume 3 for a description of the operation of

 UBC PLUS LIBRARY
 78

 Gfinfo; see *PLUS.SOURCELIB for details of the types
 defined.

 The other definitions included with Gfinfo are:

 Returned_File_Type

 This is record consisting of a character string
 (Rtn_File_Name) in which a file name may be returned,
 and a scratch area required by Gfinfo. Note that this
 record must be set to zero before the first call to
 Gfinfo.

 constants for parameter 3

 The identifiers Gf_Release_Storage, Gf_File_Name,
 Gf_Fdub, Gf_Catalog_Name and Gf_No_Expensive_Info are
 defined for use as parameter 3 when calling Gfinfo.

 Catalog_Info_Type

 This is a record type defining the "catalog information
 dsect". Note that the first element, Ci_Array_Length
 must be set before calling Gfinfo.

 constants for device type code

 Constants Device_2311, Device_2314, Device_3221,
 Device_3330 are defined. These are the possible values
 of field Ci_Device_Type_Code of Catalog_Info_Type.

 File_Info_Type

 This defines the "file information dsect". Note that
 field Fi_Array_Length must be set before calling
 Gfinfo.

 Sharing_Info_Type

 Defines the "sharing information dsect". Note that
 field Si_Array_Length must be set before calling
 Gfinfo.

 Sharing_List_Type

 This defines the overall form of the sharing list
 pointed at by field Si_Sharing_List of
 Sharing_Info_Type. It is necessary to use type
 cheating to define and access the individual sharing
 list elements.

 Sharing_List_Element_Type

 Defines an element of the sharing list.

 UBC PLUS LIBRARY
 79

 constants for accessor specification

 The constants Project_Accessor, Userid_Accessor,
 Pkey_Accessor, Project_And_Pkey_Accessor and
 Userid_And_Pkey_Accessor are defined as the possible
 values of field Sl_Accessor in a sharing list element.

 | constants for the possible return codes

 procedure_Gpsect _________ ______

 Purpose

 To acquire psect (dsect) storage allocations.

 Parameters

 1- value, bit(32)

 The psect-id to be used.

 2- value, integer

 The number of bytes to be allocated.

 Result

 pointer to unknown

 The address of the allocated area.

 Note that a return code of 0 indicates the psect was
 previously allocated; a return code of 4 indicates it was
 allocated by this call.

 Description

 See MTS Volume 3

 procedure_Grgjuldt _________ ________

 Purpose

 To convert the Gregorian date to the corresponding Julian
 date.

 Parameters

 1- character(8)

 The Gregorian date (mm/dd/yy).

 UBC PLUS LIBRARY
 80

 Result

 Integer

 The corresponding Julian date (days since March 1, 1900).

 Description

 See MTS Volume 3

 procedure_Grgjultm _________ ________

 Purpose

 To convert the Gregorian date and time to the
 corresponding Julian time.

 Parameters

 1- character(16)

 The Gregorian date and time (mm/dd/yyhh:mm:ss).

 Result

 Integer

 The corresponding Julian time in minutes from March 1,
 1900.

 Description

 See MTS Volume 3

 procedure_Grjldt _________ ______

 Purpose

 Provides an S-type call to Grgjuldt.

 Parameters

 1- reference, value, unknown

 The Gregorian date. This will usually be character(8).

 Result

 Integer

 The corresponding Julian day.

 UBC PLUS LIBRARY
 81

 Description

 See MTS Volume 3

 procedure_Grjlsec _________ _______

 Purpose

 To convert the Gregorian date and time to Julian seconds.

 Parameters

 1- character(16)

 The Gregorian date and time (mm/dd/yyhh:mm:ss).

 Result

 Integer

 The corresponding Julian time in seconds from March 1
 1900.

 Description

 See MTS Volume 3

 procedure_Grjltm _________ ______

 Purpose

 Provides an S-type call to Grgjultm.

 Parameters

 1- reference, value, unknown

 The Gregorian date and time. This will usually be
 character(16).

 Result

 Integer

 The corresponding Julian time in minutes from March 1
 1900.

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 82

 procedure_Grosdt _________ ______

 Purpose

 To convert the Gregorian date to the corresponding OS-
 format date.

 Parameters

 1- reference, value, character(8)

 The Gregorian date to be converted (mm/dd/yy).

 2- reference, character(8)

 Location where the date is stored in the OS form yyddd,
 with three leading blanks.

 Description

 See MTS Volume 3

 procedure_Gtdjms _________ ______

 Purpose

 S-type interface for Gtdjmsr.

 Parameters

 1- reference, value, character(16)

 The Gregorian time and date.

 2- reference, bit(64)

 A doubleword integer in which the Julian microseconds is
 stored.

 Description

 See MTS Volume 3

 procedure_Gtdjmsr _________ _______

 Purpose

 To convert the Gregorian time and date into Julian
 microseconds.

 UBC PLUS LIBRARY
 83

 Parameters

 1- character(16)

 The Gregorian time and date in the format
 hh:mm:ssdd/yy/mm.

 Result

 bit(64)

 A doubleword integer specifying the number of microseconds
 from March 1 1900.

 Description

 See MTS Volume 3

 procedure_Guinfo _________ ______

 Purpose

 To allow the user to obtain information about her status
 and her task.

 Parameters

 1- reference, value, unknown

 Key specifying what item is to be returned. This may be
 an integer or a character(8).

 2- reference, unknown

 The location at which the information is to be returned.
 The type required depends in the value of the first
 parameter.

 Description

 See MTS Volume 3

 Note

 | Constants for information returned from Guinfo can be had
 | by %Include-ing Guinfo_Cuinfo_Constants. Return code
 | constants are in the global Guinfo_Cuinfo_Return_Codes.

 UBC PLUS LIBRARY
 84

 | global_Guinfo_Cuinfo_Constants ______ _______________________
 |
 | Purpose
 |
 | To provide constants corresponding to values passed
 | to/returned from the Cuinfo/Guinfo subroutines.
 |
 | Description
 |
 | The following constants are defined.
 |
 | Guinfo_Switch_On (1)
 | Guinfo_Switch_Off (0)
 |
 | Guinfo_Errordump_Off (0)
 | Guinfo_Errordump_On (1)
 | Guinfo_Errordump_Full (2)
 |
 | Guinfo_Loader_Suppress_Prmap (’80’)
 | Guinfo_Loader_Suppress_Pdmap (’40’)
 | Guinfo_Loader_Print_Usmsg (’20’)
 | Guinfo_Loader_Print_Uxref (’10’)
 | Guinfo_Loader_Print_Xref (’08’)
 | Guinfo_Loader_Print_Mapdots (’04’)
 | Guinfo_Loader_Print_Map (’02’)
 | Guinfo_Loader_Print_Warnings (’01’)
 |
 | Guinfo_Signoff_Long (0)
 | Guinfo_Signoff_Short (1)
 | Guinfo_Signoff_$ (2)
 |
 | Guinfo_Endfile_Never (0)
 | Guinfo_Endfile_Off (1)
 | Guinfo_Endfile_On (2)
 |
 | Guinfo_Task_Is_Terminal (0)
 | Guinfo_Task_Is_Local_Batch (1)
 | Guinfo_Task_Is_Remote_Batch (2)
 | Guinfo_Task_Is_Normal_Batch (3)
 | Guinfo_Task_Is_Asterisk_File (4)
 | Guinfo_Task_Is_Operator (5)
 |
 | Guinfo_Spellcor_Off (0)
 | Guinfo_Spellcor_On (1)
 | Guinfo_Spellcor_Prompt (3)
 |
 | Guinfo_Rcprint_Never (0)
 | Guinfo_Rcprint_Positive (1)
 | Guinfo_Rcprint_Non_Negative (2)
 | Guinfo_Rcprint_Always (3)
 |
 | Guinfo_Overloaded_Processor (’80’)
 | Guinfo_Overloaded_Paging (’40’)
 | Guinfo_Overloaded_Disk_Io (’20’)
 | Guinfo_Overloaded_Io_Activity (’10’)
 | Guinfo_Overloaded_Drum_Space (’08’)

 | UBC PLUS LIBRARY
 | 85
 |
 |
 | Guinfo_Low_Priority (0)
 | Guinfo_Normal_Priority (1)
 | Guinfo_High_Priority (2)

 | global_Guinfo_Cuinfo_Return_Codes ______ __________________________
 |
 | Purpose
 |
 | To provide constants for comparison with return codes from
 | Guinfo and Cuinfo.
 |
 | Description
 |
 | The following constants are defined.
 |
 | Guinfo_Invalid_Item_Number (4)
 | Guinfo_Item_Name_Not_In_List (8)
 | Guinfo_Illegal_To_Change_Item (12)
 | Guinfo_Illegal_Parameter_Address (16)

 procedure_Guinfupd _________ ________

 Purpose

 To update certain items obtainable via the GUINFO
 subroutine.

 Parameters

 This routine has no parameters and no return value.

 Description

 See MTS Volume 3

 procedure_Guser _________ _____

 Purpose

 To read an input record from the logical I/O unit GUSER.

 Parameters

 See description of Scards_Procedure_type.

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 86

 procedure_Guserid _________ _______

 Purpose

 To obtain the current 4-character CCID.

 Result

 character(4)

 The current user’s CCID.

 Description

 See MTS Volume 3

 | global_Io_Subroutine_Return_Codes ______ __________________________
 |
 | Purpose
 |
 | To provide constants for comparison against return codes
 | from input-output subroutines.
 |
 | Description
 |
 | See the library member for the constants defined.

 procedure_Jlgrdt _________ ______

 Purpose

 S-type interface to Julgrgdt.

 Parameters

 1- reference, value, Integer

 The Julian date.

 2- reference, unknown

 Location where Gregorian date is to be stored. This will
 usually be a character(8).

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 87

 procedure_Jlgrsec _________ _______

 Purpose

 To convert the number of seconds from March 1, 1900 to
 Gregorian date and time.

 Parameters

 1- Integer

 The Julian time in seconds since March 1, 1900.

 Result

 character(16)

 The corresponding Gregorian date and time in form
 dd/mm/yyhh:mm:ss.

 Description

 See MTS Volume 3

 procedure_Jlgrtm _________ ______

 Purpose

 S-type interface to Julgrgtm.

 Parameters

 1- reference, value, Integer

 The Julian time in minutes.

 2- reference, unknown

 Location where Gregorian date and time is to be stored.
 This will usually be a character(16).

 Description

 See MTS Volume 3

 procedure_Jmsgtd _________ ______

 Purpose

 S-type interface for Jmsgtdr.

 UBC PLUS LIBRARY
 88

 Parameters

 1- reference, value,, bit(64)

 A doubleword containing the Julian microseconds.

 2- reference, unknown

 Location where the corresponding Gregorian time and date
 will be returned. This will usually be a character(16)
 variable.

 Description

 See MTS Volume 3

 procedure_Jmsgtdr _________ _______

 Purpose

 To convert the Julian time in microseconds to the
 corresponding Gregorian time and date.

 Parameters

 1- bit(64)

 The Julian time in microseconds since March 1, 1900.

 Result

 character(16)

 The Gregorian time and date in form hh:mm:ssmm/dd/yy.

 Description

 See MTS Volume 3

 procedure_Jtugtd _________ ______

 Purpose

 S-type interface for Jtugtdr.

 Parameters

 1- reference, value,, bit(64)

 A doubleword containing the Julian timer units.

 UBC PLUS LIBRARY
 89

 2- reference, unknown

 Location where the corresponding Gregorian time and date
 will be returned. This will usually be a character(16)
 variable.

 Description

 See MTS Volume 3

 procedure_Jtugtdr _________ _______

 Purpose

 To convert the Julian time in timer units to the
 corresponding Gregorian time and date.

 Parameters

 1- bit(64)

 The Julian time in timer units from March 1, 1900.

 Result

 character(16)

 The Gregorian time and date (hh:mm:ssmm/dd/yy).

 Description

 See MTS Volume 3

 procedure_Julgrgdt _________ ________

 Purpose

 To convert the Julian date to the corresponding Gregorian
 date.

 Parameters

 1- value, Integer

 The Julian date (days from March 1, 1900).

 Result

 character(8)

 The corresponding Gregorian date (mm/dd/yy).

 UBC PLUS LIBRARY
 90

 Description

 See MTS Volume 3

 procedure_Julgrgtm _________ ________

 Purpose

 To convert the Julian time in minutes to the corresponding
 Gregorian date and time.

 Parameters

 1- value, Integer

 The Julian time (minutes from Match 1, 1900).

 Result

 character(16)

 The corresponding Gregorian date and time
 (mm/dd/yyhh:mm:ss).

 Description

 See MTS Volume 3

 | procedure_Kwscan _________ ______
 |
 | Purpose
 |
 | To scan a list of keywords and perform specified action(s)
 | for each keyword assignment.
 |
 | Parameters
 |
 |
 |
 | 1- reference, value, Short_Integer Length of left-hand table.
 |
 | 2- reference, unknown
 |
 | The left-hand table.
 |
 | 3- reference, unknown
 |
 | The execute table.
 |
 | 4- reference, value, unknown
 |
 | The text to be parsed.
 |

 | UBC PLUS LIBRARY
 | 91
 |
 |
 | 5- reference, unknown
 |
 | The right-hand table.
 |
 | 6- reference, value, Short_Integer
 |
 | The length of the text.
 |
 | 7- reference, value, bit (32)
 |
 | A fullword of switches.
 |
 | 8- reference, unknown
 |
 | The return vector.
 |
 | 9- reference, optional, unknown
 |
 | The delimiter list.
 |
 | 10-
 | reference, optional, unknown
 |
 | The separator list.
 |
 | Description
 |
 | See MTS Volume 3
 |
 | Note
 |
 | This routine is not very useful for PLUS programs.

 | global_Lcs_Types ______ _________
 |
 | Purpose
 |
 | To define types for low-core symbol tables and LCS PRV’s.
 |
 | Description
 |
 | This member contains the following types and macros. Some
 | of these also appear under Loader_Definitions, as that
 | member %Includes Lcs_Types.
 |
 | type Esd_List_Entry_Type
 |
 | Defines an element of a loader external symbol list.
 |
 | type Low_Core_Symbol_Type
 |
 | Defines an element of a low core symbol table.
 |

 | UBC PLUS LIBRARY
 | 92
 |
 |
 | type Lcspr_Entry_Type
 |
 | Defines an element of a low-core pseudo-register vector.
 |
 | type Lcspr_Type
 |
 | Defines a low-core pseudo-register vector.
 |
 | macro Lcs_Entry
 |
 | Used to generate a constant entry in an LCS.
 |
 | macro Null_Lcs_Entry
 |
 | Used to generate a null entry in an LCS.
 |
 | macro Lcspr_Entry
 |
 | Used to generate a constant entry in an LCSPR.

 procedure_Letgo _________ _____

 Purpose

 To periodically unlock and then relock a file.

 Parameters

 1- reference, value, Mts_Fdub_Type

 A Fdub for the file to be unlocked.

 2- reference, value, Integer

 A code specifying how the file is to be relocked.
 Constants defining possible values for this variable are
 included with the definition of the Lock subroutine.

 3- reference, value, Integer

 Specifies the interval at which the file is to be
 unlocked.

 Description

 See MTS Volume 3

 procedure_Link _________ ____

 UBC PLUS LIBRARY
 93

 Purpose

 To effect the dynamic loading and execution of a program.

 Parameters

 1- reference, value, unknown

 The input specifier. The type depends on parameter 2; it
 will normally be an Mts_Io_Unit_Type, a fixed-length
 string type (containing Fdname with trailing blank), or a
 system procedure.

 2- reference, value, unknown

 This may be either an Integer containing 0, or a
 Loader_Info_Parameter_Type (see Loader_Definitions).

 3- reference, value, unknown

 Specifies the parameter list to be passed to the loaded
 program. Note that when the parameter list contains only
 one entry, this parameter to Link will be a pointer. When
 there is more than one parameter, Link will be passed an
 array of pointers. If a variable-length parameter list is
 expected, the caller of Link must ensure the parameter
 list has the appropriate high-order bit set.

 4- optional, reference, unknown

 Normally a system procedure, called if an error occurs.

 5- optional, reference, unknown

 Normally a system procedure, specifies a routine to be
 called for output from the loader.

 6- optional, reference, bit(32)

 Specifies a "loader status word" of flags. Constants
 which may be assigned to a variable for use as this
 parameter are defined in Loader_Definitions.

 7- optional, reference, unknown

 Normally a system procedure; specifies a subroutine to be
 used in place of Getspace.

 8- optional, reference, unknown

 Normally a system procedure; specifies a subroutine to be
 used in place of Freespace.

 UBC PLUS LIBRARY
 94

 9- optional, reference, unknown

 Normally a system procedure; specifies a subroutine to be
 used in place of Point.

 Description

 See MTS Volume 3

 procedure_Load _________ ____

 Purpose

 To effect the dynamic loading of a program.

 Parameters

 1- reference, value, unknown

 The input specifier. The type depends on parameter 2; it
 will normally be an Mts_Io_Unit_Type, a fixed-length
 string type (containing Fdname with trailing blank), or a
 system procedure.

 2- reference, value, unknown

 This may be either an Integer containing 0, or a
 Loader_Info_Parameter_Type (see Loader_Definitions).

 3- reference, value, bit(32)

 Specifies a location containing Load control switches.

 4- pointer to unknown

 Specifies an area in which an ESD list is to be returned.

 5- optional, reference, unknown

 Normally a system procedure, called if an error occurs.

 6- optional, reference, unknown

 Normally a system procedure, specifies a routine to be
 called for output from the loader.

 7- optional, reference, bit(32)

 Specifies a "loader status word" of flags. Constants
 which may be assigned to a variable for use as this
 parameter are defined in Loader_Definitions.

 UBC PLUS LIBRARY
 95

 8- optional, reference, unknown

 Normally a system procedure; specifies a subroutine to be
 used in place of Getspace.

 9- optional, reference, unknown

 Normally a system procedure; specifies a subroutine to be
 used in place of Freespace.

 10-
 optional, reference, unknown

 Normally a system procedure; specifies a subroutine to be
 used in place of Point.

 Result

 Integer

 The storage index number used.

 Note that if loading was successful, the "return code"
 specifies the entry point.

 Description

 See MTS Volume 3

 global_Loader_Definitions ______ __________________

 Purpose

 Defines several constants and record types which are
 useful in calling the Link, Load and Xctl subroutines.

 Description

 This member contains the following:

 type Esd_List_Entry_Type

 Defines an element of a loader external symbol list.

 type Loader_Info_Parameter_Type

 Defines the "info" parameter used by the Link, Load and
 Xctl procedures to specify loader switches and initial
 ESD list.

 constants for loader switches

 A number of constants are defines that may be used in
 creating the value of a loader "info" parameter.

 UBC PLUS LIBRARY
 96

 constants for loader status word

 A number of constants are defined that may be assigned
 to a variable as the value of the loader status word
 parameter.

 See the contents of *PLUS.SOURCELIB, and MTS Volume 3
 for details.

 Note

 The PLUS declarations of the dynamic loading facilities of
 MTS do not currently attempt to define all the possible
 variations. It is expected that most uses of these
 definitions will require some type-cheating.

 procedure_Loadinfo _________ ________

 Purpose

 To return information about an external symbol or a
 virtual memory address.

 Parameters

 1- reference, value, Integer

 A code indicating what kind of parameter has been passed
 as parameter 2.

 2- reference, value, unknown

 The item for which information is to be returned. Member
 Loadinfo also defines constants that may be used for this
 parameter.

 3- reference, Loadinfo_Return_Bits_Type

 A record containing a series of switches which are set to
 indicate which items have been returned.

 4- reference, Loadinfo_Return_Vector_Type

 A record in which information is returned.

 Description

 See MTS Volume 3

 Note

 This member also defines the record types
 Loadinfo_Return_Bits_Type and Loadinfo_Return_Vector_Type.
 See *PLUS.SOURCELIB for details.

 UBC PLUS LIBRARY
 97

 procedure_Lock _________ ____

 Purpose

 To request that a file be locked in the indicated manner.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, value, Integer

 A flag specifying how the file is to be locked. See
 below.

 3- reference, value, Integer

 Specifies how long to wait if the file cannot be locked
 currently.

 Description

 See MTS Volume 3

 Note

 Member Lock also defines constants which can be used for
 the second parameter. The constants are:

 Lock_Read (1)
 Lock_Modify (0)
 Lock_Destroy (-1)

 procedure_Lodmap _________ ______

 Purpose

 To produce a loader map from the current contents of the
 loader tables.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies where the loader map is to be written.

 2- reference, value, bit(32)

 "Loader status word" switches controlling what is printed.
 Constants that may be assigned to a variable for use as
 this parameter are defined in member Loader_Definitions.

 UBC PLUS LIBRARY
 98

 Description

 See MTS Volume 3

 | macro_Model_Number _____ ____________
 |
 | Purpose
 |
 | To convert the compilation date to the MTS "model number"
 | format.
 |
 | Result
 |
 | Varying_String
 |
 | The converted date.
 |
 | Description
 |
 | The compilation date of the program being run is converted
 | to MTS "model number" format, for example "January 05,
 | 1983" becomes "AN053".

 procedure_Mount _________ _____

 Purpose

 To mount magnetic and paper tapes, network connections,
 etc.

 Parameters

 1- reference, value, unknown

 Location containing the mount command(s). Should be
 either a fixed-length string type or character(0 to 256).

 2- optional, reference, value, Short_Integer

 Halfword length of first parameter is it does not include
 length.

 Description

 See MTS Volume 3

 procedure_Mts _________ ___

 UBC PLUS LIBRARY
 99

 Purpose

 To suspend execution of a program and return to MTS
 command mode.

 Description

 See MTS Volume 3

 procedure_Mtscmd _________ ______

 Purpose

 To suspend execution of a program, return to MTS command
 mode, and feed a character string to the MTS command

 Parameters

 1- reference, value, unknown

 The command to be interpreted. This will usually be a
 PLUS fixed-length string type.

 2- reference, value, Integer

 The length of the command.

 Description

 See MTS Volume 3

 global_Mts_File_Access_Codes ______ _____________________

 Purpose

 To define the codes used for file-access.

 Description

 This global just contains a number of PLUS constant
 declarations giving the codes used by various system
 subroutines (e.g., PERMIT) for specifying access.

 The constants defined are:

 Read_Access (’01’)
 Write_Expand_Access (’02’)
 Write_Change_Access (’04’)
 Empty_Access (’04’)
 Truncate_Access (’08’)
 Renumber_Access (’08’)
 Destroy_Access (’10’)
 Rename_Access (’10’)
 Permit_Access (’20’)

 UBC PLUS LIBRARY
 100

 Default_Access (’80’) -- used by Permit only
 Write_Access (Write_Expand_Access |
 Write_Change_Access)
 Read_Write_Access (Read_Access | Write_Access)
 Unlim_Access (’3f’)

 global_Mts_File_Organizations ______ ______________________

 Purpose

 To define the codes used to define MTS file types.

 Description

 This global just contains PLUS constant declarations
 giving the codes used by Gfinfo, Create, etc. for file
 organization.

 The constants defined are:

 Line_File (0)
 Sequential_File (1)
 Seqwl_File (2)

 global_Mts_Io_Modifiers ______ ________________

 Purpose

 Defines the values of I/O modifiers

 Description

 This global just contains a number of constant
 declarations defining bitstring constants for the modifier
 values.

 The names of the constants are of the form Mts_Io_x or _
 Mts_Io_Not_x, where x is the name of the modifier. _ _

 See *PLUS.SOURCELIB for details.

 global_Mts_Io_Types ______ ____________

 Purpose

 Defines some types that are useful in interfacing to I/O
 subroutines under MTS.

 UBC PLUS LIBRARY
 101

 Description

 This global defines several types that are used in the
 definitions of MTS I/O subroutines.

 The types defined are

 Mts_Fdub_Type

 This is just defined as bit(32).

 Mts_Io_Modifiers_Type

 Also defined as bit(32). Note that member
 Mts_Io_Modifiers defines the various modifiers by means
 of constant declarations.

 Mts_Line_Number_Type

 This is also defined as bit(32), rather than using a
 numeric range.

 Mts_Io_Length_type

 Defines the form of the length parameter used with the
 @MAXLEN modifier. That is, it is a record consisting
 of three halfword-integer fields, called
 Transmitted_Length, Maximum_Length and Actual_Length.

 Mts_Io_Unit_Type

 Defines a record corresponding to the I/O unit-or-
 fdname parameter allowed by many I/O subroutines. It
 is a PLUS variant record which may contain a Fdub
 (field Fdub), a logical unit name (field Liounit -
 character(8)) or a logical unit number (field
 Lio_Number, type Integer).

 | macro_Mvcl_Instruction _____ ________________
 |
 | Purpose
 |
 | To move difficult-to-type data quickly from one location
 | to another.
 |
 | Parameters
 |
 | 1- pointer to unknown
 |
 | Pointer to the target storage location.
 |

 | UBC PLUS LIBRARY
 | 102
 |
 |
 | 2- numeric
 |
 | Length of the target storage area.
 |
 | 3- pointer to unknown
 |
 | Pointer to the source storage location.
 |
 | 4- numeric
 |
 | Length of the source storage area.
 |
 | 5- bit(8)
 |
 | Character to be used to pad the data.
 |
 | Description
 |
 | This macro uses Inline to issue the appropriate MVCL
 | instruction to move the data.
 |
 | Note
 |
 | This macro should not be used as a replacement for normal
 | assignation -- no type or run-time value checking is done.
 |
 | In general, it is possible via PLUS type cheating to
 | persuade the compiler to perform assignments and should be
 | unnecessary to resort to this macro.

 procedure_Note _________ ____

 Purpose

 To "remember" the values of the logical pointers for a
 sequential file. This information is used by the POINT
 subroutine to change the values of the logical pointers.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, Note_Point_Info_Type

 Location in which the pointers are to be returned. See
 member Note_Point_Info_Type.

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 103

 type_Note_Point_Info_Type ____ ____________________

 Purpose

 To define the note-point information used by the
 subroutines Note and Point.

 Description

 This member defines a record type containing fields
 Read_Pointer, Write_Pointer and Last_Pointer (all bit(32))
 and Last_Line_Number (Mts_Line_Number_Type), corresponding
 to the structure returned by Note and passed to Point.

 procedure_Osgrdt _________ ______

 Purpose

 To convert the OS-format date to the corresponding
 Gregorian date.

 Parameters

 1- reference, value, character(8)

 The date in OS format (yyddd), padded on the left to eight
 characters.

 2- reference, character(8)

 Location to return the corresponding Gregorian date
 (mm/dd/yy).

 Description

 See MTS Volume 3

 procedure_Permit _________ ______

 Purpose

 To permit a file so that it can be shared by other users.

 Parameters

 1- reference, value, unknown

 Specifies what is to be permitted. Normally, this is
 either of type Mts_Io_Unit_Type, or a fixed-length string
 type containing a file-name with trailing blank.

 UBC PLUS LIBRARY
 104

 2- reference, value, bit(32)

 A location specifying the access to be allowed. Member
 Mts_File_Access_Codes defines some constants that may be
 used for this parameter.

 3- reference, value, Integer

 A location specifying what type of accessor is represented
 by parameter 5 (or parameters 5 and 8). Member Permit
 also defines some constants that may be used as for this
 parameter.

 4- reference, value, Integer

 Specifies the length of the next parameter.

 5- reference, value, unknown

 Normally a fixed-length string type. Specifies the
 "accessor".

 6- reference, value, Integer

 Determines whether the first parameter is treated as an
 Mts_Io_Unit_Type (value 1) or a file name (value 0).

 7- optional, reference, Integer

 If parameter 3 indicates that a CCID or department and a ___
 program key are specified, then this is the length of the
 program key.

 Otherwise, this is used to return an error code.

 Note that since it may return a value under some
 conditions, a constant cannot be used.

 8- optional, reference, unknown

 If parameter 3 indicates that a CCID or department and a ___
 program key are specified, then this is the program key.
 It may be any fixed-length string type.

 Otherwise, this is used to return an error message, and
 should be of type character(80).

 Note that since it may return a value under some
 conditions, a constant cannot be used.

 9- optional, reference, Integer

 If parameter 3 indicates that a CCID or department and a ___
 program key are specified, then this parameter may be used
 to return an error code instead of parameter 7.

 UBC PLUS LIBRARY
 105

 10-
 optional, reference, character(80)

 If parameter 3 indicates that a CCID or department and a ___
 program key are specified, then this parameter may be used
 to return an error message instead of parameter 8.

 Description

 See MTS Volume 3

 Note

 This member also defines the following constants, which
 may be assigned to a variable to be passed as parameter 3:

 Who_Is_Id (0)
 Who_Is_Project (1)
 Who_Is_Others (2)
 Who_Is_All (3)
 Who_Is_Me (4)
 Who_Is_Owner (5)
 Who_Is_Program_Key (6)
 Who_Is_Id_And_Key (7)
 Who_Is_Project_And_Key (8)

 | Constants corresponding to the possible values returned in
 | the Ercode parameter are also defined.

 procedure_Pgnttrp _________ _______

 Purpose

 To allow control to be returned to the user on a program
 interrupt.

 Parameters

 1- system procedure

 A procedure to be called when a program interrupt occurs,
 or Null.

 2- reference, unknown

 An area to save the registers and PSW when the interrupt
 occurs. This will normally be a variable of type
 Mts_Exit_Area_Type (see Exit_Definitions).

 UBC PLUS LIBRARY
 106

 Description

 See MTS Volume 3

 Note

 The macro Set_Exit may be used to set up a PLUS procedure
 as an program interrupt exit routine.

 | procedure_Pkey _________ ____
 |
 | Purpose
 |
 | To push and pop program keys.
 |
 | Parameters
 |
 | 1- reference, value, unknown
 |
 | Action to be taken by the Pkey procedure, terminated by a
 | blank. The action must be one of "PUSH ", "POP ", "SET "
 | or "RESET ".
 |
 | 2- optional, reference, value, unknown
 |
 | New pkey, terminated by a blank.
 |
 | Description
 |
 | See MTS Volume 3

 procedure_Point _________ _____

 Purpose

 To alter the values of any or all of the logical pointers
 for a sequential file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, Note_Point_Info_Type

 A record containing the new value or values. See member
 Note_Point_Info_Type.

 3- reference, value, bit(32)

 Code specifying which of the pointers are to be reset.
 See below.

 UBC PLUS LIBRARY
 107

 Description

 See MTS Volume 3

 Note

 Member Point also defines the following constants:

 Set_Read_Pointer (’00000001’)
 Set_Write_Pointer (’00000002’)
 Set_Last_Pointer (’00000004’)
 Set_Last_Line_Number (’00000008’)

 which may be assigned used (possibly in combination) for
 the third parameter.

 procedure_Qpsect _________ ______

 Purpose

 To retrieve psect (dsect) storage allocations.

 Parameters

 1- value, bit(32)

 The psect-id to be used.

 Result

 pointer to unknown

 The address of the allocated area, or Null if it has not
 been allocated.

 Note that a return code of 0 indicates the psect was
 found, a return code of 4 indicates it was not.

 Description

 See MTS Volume 3

 procedure_Quit _________ ____

 Purpose

 To cause the user to be signed off when the next MTS
 command is encountered.

 UBC PLUS LIBRARY
 108

 Description

 See MTS Volume 3

 procedure_Read _________ ____

 Purpose

 To read an input record from a specified logical I/O unit.

 Parameters

 1- reference, unknown

 Specifies the starting location of the buffer.

 2- reference, unknown

 This will normally be either a Short_Integer, or a record
 of type Mts_Io_Length_Type. It returns the number of
 bytes transmitted.

 3- reference, value, Mts_Io_Modifiers_Type

 The modifiers to be used.

 4- reference, Mts_Line_Number_Type

 The line number to use (if indexed), or returned line
 number of line read.

 5- reference, value, Mts_Io_Unit_Type

 Specifies the unit or Fdub to use.

 Result

 optional, numeric

 The return value if notification or noprompt is requested.

 Description

 See MTS Volume 3

 procedure_Rename _________ ______

 Purpose

 To change the name of a file.

 UBC PLUS LIBRARY
 109

 Parameters

 1- reference, value, unknown

 A fixed-length string type, specifying the old file name
 (with trailing blank).

 2- reference, value, unknown

 A fixed-length string type, specifying the new file name
 (with trailing blank).

 Description

 See MTS Volume 3

 procedure_Renumb _________ ______

 Purpose

 To renumber all or a subset of the lines in a line file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, value, Mts_Line_Number_Type

 The starting line number of the portion to be renumbered.

 3- reference, value, Mts_Line_Number_Type

 The ending line number of the portion to be renumbered.

 4- reference, value, Mts_Line_Number_Type

 The new beginning line number for the portion to be
 renumbered.

 5- reference, value, Mts_Line_Number_Type

 The increment to use for renumbering.

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 110

 procedure_Retlnr _________ ______

 Purpose

 To return all or a subset of the line numbers in a line
 file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, value, Mts_Line_Number_Type

 Specifies the first line number to be returned.

 3- reference, value, Mts_Line_Number_Type

 Specifies the last line number to be returned.

 4- reference, Integer

 A location is which the count of the number of lines in
 the specified range will be returned.

 5- reference, Retlnr_Buffer_Type

 A buffer or list of buffers in which the line numbers can
 be returned. See below.

 Description

 See MTS Volume 3

 Note

 Member Retlnr also includes the definition of type
 Retlnr_Buffer_Type, which is a record defining the format
 of the line-number buffers used by Retlnr and Setlnr.

 The definition is as follows:

 record
 Next_Buffer is pointer to Retlnr_Buffer_Type,
 Buffer_Length is Integer,
 Line_Numbers is array (1 to 32767) of
 Mts_Line_Number_Type
 end;

 Note that generally type cheating will be used to pass
 a storage area containing a smaller array than this.
 Also, the fields Next_Buffer and Buffer_Length must be
 preset before calling Retlnr.

 UBC PLUS LIBRARY
 111

 procedure_Rewind _________ ______

 Purpose

 To rewind a logical I/O unit in FORTRAN.

 Parameters

 1- reference, value, Integer

 Specifies the logical unit number (0 through 19) to be
 rewound.

 Description

 See MTS Volume 3

 procedure_Rewind# _________ _______

 Purpose

 To reset a magnetic tape or a file to be read from the
 beginning.

 Parameters

 1- Mts_Io_Unit_Type

 Specifies the file or device to be rewound.

 Description

 See MTS Volume 3

 procedure_Rstime _________ ______

 Purpose

 To cancel timer interrupts set up by the Setime subroutine
 and return the time remaining until the interrupt would
 have occurred.

 Parameters

 1- reference, value, bit(32)

 The code used to identify the timer in the call to Setime.

 2- reference, unknown

 Used to return the time remaining until the timer would
 have occurred. The format depends on the value of
 parameter 1.

 UBC PLUS LIBRARY
 112

 3- reference, unknown

 The exit area specified for this timer.

 Description

 See MTS Volume 3

 | procedure_Rssas _________ _____
 |
 | Purpose
 |
 | To reset *SOURCE* to *MSOURCE* and *SINK* to *MSINK*.
 |
 | Parameters
 |
 | 1- optional, reference, value, Integer
 |
 | A set of switches to control what is reset. Constants
 | Reset_Source_And_Sink, Reset_Source and Reset_Sink are
 | defined in the library member.
 |
 | Description
 |
 | See MTS Volume 3

 | procedure_Rtwait _________ ______
 |
 | Purpose
 |
 | To wait for a given amount of real time at a terminal
 | task.
 |
 | Parameters
 |
 | 1- reference, value, Integer
 |
 | Amount of real time to wait, in (seconds x 300), between 0
 | and 60 seconds (0 and 18000 units).
 |
 | Description
 |
 | This procedure causes a real-time wait for the indicated
 | length of time. The wait is only performed for terminal
 | tasks. If invoked in batch mode, this procedure will
 | return without effect.

 UBC PLUS LIBRARY
 113

 procedure_Scanstor _________ ________

 Purpose

 To "scan" storage blocks. For each block of allocated
 storage in the range specified, SCANSTOR will call a
 subroutine specified, giving it the location and length of
 that block.

 Parameters

 1- value, (-1 to 1)

 A switch indicating the range of storage index numbers to
 be scanned.

 2- value, Integer

 The storage index number or limit of storage index number
 range.

 3- system procedure

 A system_procedure to be called for each storage block. ______ _________
 Note this cannot currently be written in PLUS.

 Description

 See MTS Volume 3

 procedure_Scards _________ ______

 Purpose

 To read an input record from the logical I/O unit SCARDS.

 Parameters

 See description of Scards_Procedure_Type.

 Description

 See MTS Volume 3

 type_Scards_Procedure_Type ____ _____________________

 Purpose

 To define the type of Scards and similar procedures.

 UBC PLUS LIBRARY
 114

 Parameters

 1- reference, unknown

 Specifies the starting location of the buffer.

 2- reference, unknown

 This will normally be either a Short_Integer, or a record
 of type Mts_Io_Length_Type. It returns the number of
 bytes transmitted.

 3- reference, value, Mts_Io_Modifiers_Type

 The modifiers to be used.

 4- reference, Mts_Line_Number_Type

 The line number of the line read, or line to be read (if
 indexed).

 Result

 optional, numeric

 The return value if notification or noprompt is requested.

 Description

 This type declaration is used to define Scards and Guser.

 procedure_Sdump _________ _____

 Purpose

 To produce a dump of general registers, floating point
 registers, and/or a region of virtual memory.

 Parameters

 1- reference, value, Sdump_Bits_Type

 A word of switches specifying the format and contents of
 the dump. See below.

 2- Sprint_Procedure_Type

 A procedure to be called for each line of the dump. If
 | the procedure is written in PLUS, it requires special
 | linkage to retrieve the PLUS environment. Linkage
 | "QSACHAIN" can be used to set the environment up
 | efficiently.

 UBC PLUS LIBRARY
 115

 3- reference, Sdump_Workarea_Type

 A location to be used as scratch space by Sdump.

 4- bit(24)

 The address of the first location to be dumped. Normally
 type-cheating will be needed to specify this parameter.

 5- bit(24)

 The address of the last location to be dumped. Normally
 type-cheating will be needed to specify this parameter.

 Description

 See MTS Volume 3

 Note

 | Member Storage_Dump defines a macro that may be used to
 | interface to this routine.

 Member Sdump also defines the following types:

 Sdump_Workarea_Type

 specifies the working storage required by SDUMP.

 Sdump_Bits_Type

 is a record containing a number of Boolean switches
 that are set to determine the output from SDUMP.

 type_Sense_Data_Type ____ _______________

 Description

 This library member contains a record-type defining the
 format of the data returned by the CONTROL subroutine for
 the SNS control operation.

 It is the PLUS equivalent of *SNSDSECT.

 See *PLUS.SOURCELIB for details.

 procedure_Sercom _________ ______

 Purpose

 To write an output record on the logical I/O unit SERCOM.

 UBC PLUS LIBRARY
 116

 Parameters

 See description of Sprint_Procedure_Type.

 Description

 See MTS Volume 3

 macro_Set_Exit _____ ________

 Purpose

 To set up a PLUS routine as a program, attention or timer
 exit routine.

 Parameters

 1- system procedure

 One of the procedures ATTNTRP, PGNTTRP or TIMNTRP.

 2- Exit_Routine_Type

 A PLUS routine to call when an exit occurs.

 3- name, Exit_Area_Type

 An area in which the exit routine name, etc. are saved
 when the exit is set up. Contains the registers and PSW
 when the exit is taken.

 Note this space must not be changed or released until the
 exit is cancelled.

 4- name, Exit_Stack_Type

 A region to use as a stack when calling the exit routine.

 5- Boolean

 A flag indicating whether this setup call is to return
 (False), or restart (True) from a previous exit whose
 status was saved in the Exit_Area.

 Description

 This macro sets a timer, program or attention interrupt
 exit. The actual exit routine is set to be an assembler
 interface routine from PLUS:OBJLIB. This interface
 routine then calls the specified PLUS routine, with the
 specified stack, when the exit occurs. Generally, the
 exit routine will eventually restart the interrupted
 routine. It may also use the Return_From macro to abort
 part of the interrupted environment.

 UBC PLUS LIBRARY
 117

 Note

 See also Exit_Definitions.

 Example

 The following indicates how an attention handling routine
 might be written in PLUS.

 %Include(Exit_Definitions, Set_Exit, Attntrp);
 ...
 variable Attn_Stack is pointer to Stack_Type,
 Attn_Area is Exit_Area_Type;
 procedure Attn_Routine is Exit_Routine_Type;
 ...
 definition Setup
 Attn_Stack := Getspace(3,2048); /* half page
 stack */
 ...
 /* Set up the exit... */
 Set_Exit(Attntrp, Attn_Routine, Attn_Area,
 Attn_Stack@, False);
 ...
 end Setup;
 ...
 definition Attn_Routine
 /* do something about Attn... */
 ...
 /* Reset the exit and restart */
 Set_Exit(Attntrp, Attn_Routine, Exit_Area@,
 Attn_Stack@, True);
 end Attn_Routine;

 procedure_Setime _________ ______

 Purpose

 To set up a timer interrupt to occur after a specified
 time interval.

 Parameters

 1- reference, value, Integer

 A code indicating what kind of timer value has been given.
 See below.

 2- reference, value, bit(32)

 A code used to identify this timer in subsequent calls.

 UBC PLUS LIBRARY
 118

 3- reference, value, unknown

 The time when the interrupt is to occur. The format
 depends on the value of parameter 1.

 4- reference, unknown

 An exit area to be used for this timer. Normally this is
 of type Exit_Area_Type.

 Description

 See MTS Volume 3

 Note

 The member Setime also defines the following constants
 which may used for the first parameter.

 Task_Microseconds_From_Call (0)
 Real_Microseconds_From_Call (1)
 Task_Microseconds_From_Signon (2)
 Real_Microseconds_From_Signon (3)
 Task_Timer_Units_From_Call (4)
 Absolute_Time_And_Date (5)

 procedure_Setioerr _________ ________

 Purpose

 To allow users to regain control when I/O transmission
 errors that would otherwise be fatal occur during
 execution.

 Parameters

 1- Io_Error_Routine_Type

 Specifies the routine to be called for subsequent I/O
 errors.

 Description

 See MTS Volume 3

 Note

 The definition of Setioerr includes the definition of
 Io_Error_Routine_Type, as a system procedure.

 There is currently no provision for setting up a PLUS
 routine as an I/O exit routine.

 UBC PLUS LIBRARY
 119

 procedure_Setkey _________ ______

 Purpose

 To set the program key associated with a file.

 Parameters

 1- reference, value, unknown

 This will normally be either a variable of type
 Mts_Io_Unit_Type, or a fixed length string-type containing
 a file name with trailing blank.

 2- reference, value, unknown

 The new program key, with a trailing blank. This will
 normally be a fixed length string-type.

 3- reference, value, Integer

 Specifies what kind of parameter is passed for parameter
 1. (0 indicates a file name, 1 indicates
 Mts_Io_Unit_Type.)

 4- optional, reference, Integer

 Returns an error code if the return-code is non-zero.

 5- optional, reference, character(80)

 Returns an error message if return-code is non-zero.

 Description

 See MTS Volume 3

 Note

 | Constants corresponding to the possible values returned in
 | the Ercode parameter are also provided.

 procedure_Setlcl _________ ______

 Purpose

 To set a local time limit for the executing program.

 Parameters

 1- reference, value, Integer

 The time limit, in timer units.

 UBC PLUS LIBRARY
 120

 Result

 optional, Integer

 The timing remaining in the previously set time limit.

 Description

 See MTS Volume 3

 procedure_Setlio _________ ______

 Purpose

 To assign a file or device to a logical I/O unit.

 Parameters

 1- reference, value, character(8)

 Specifies the logical unit to be assigned.

 2- reference, value, unknown

 Specifies the Fdname (with trailing blank) to be assigned
 to it. This will usually be a PLUS fixed-length string
 type.

 Description

 See MTS Volume 3

 procedure_Setlnr _________ ______

 Purpose

 To set all or a subset of the line numbers in a line file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 2- reference, value, Mts_Line_Number_Type

 Specifies the first line number of the region to be reset.

 3- reference, value, Mts_Line_Number_Type

 Specifies the last line number to be reset.

 UBC PLUS LIBRARY
 121

 4- reference, value, Integer

 Specifies the number of lines to be reset.

 5- reference, Retlnr_Buffer_Type

 A buffer or list of buffers containing the linenumbers to
 be set. See description of Retlnr for details.

 Description

 See MTS Volume 3

 procedure_Setpfx _________ ______

 Purpose

 To set a single character input/output prefix character
 for the program currently executing.

 Parameters

 1- reference, value, character(1)

 The new prefix character.

 Result

 character(1)

 The previous prefix character.

 Note that return code 4 indicates that the previous prefix
 was more than one character.

 Description

 See MTS Volume 3

 procedure_Sioc _________ ____

 Purpose

 To perform floating-point, integer, logical and
 hexadecimal input/output conversions.

 Note

 This is a complex routine. Routines in PLUS:OBJLIB
 (described in section F, previously) will provide many
 similar conversion services, and are much easier to
 invoke.

 UBC PLUS LIBRARY
 122

 Parameters

 1- reference, unknown

 The buffer containing characters to be converted, or
 result of conversion.

 2- reference, Sioc_Data_Area_Type

 A control block containing parameters indicating the type
 of conversion and containing internal forms of data and a
 work-area for use by SIOC.

 Description

 See MTS Volume 3 for description of the use of Sioc. Note
 that the caller must provide and initialize many of the
 fields of the control block used for the second parameter.

 Library member Sioc also includes the following types:

 Sioc_Control_Type

 A field within the Sioc data area consisting of a
 number of control flags.

 Sioc_Picture_Type

 A field occurring twice within the Sioc data area to
 describe the fields to be converted, or the fields
 found.

 Sioc_Data_Area_Type

 A record describing the format of the Sioc work area
 passed as parameter two.

 See *PLUS.SOURCELIB for details of any of the above types.

 procedure_Skip _________ ____

 Purpose

 To space a magnetic tape or file either forward or
 backward a specified number of records or files.

 Parameters

 1- reference, value, Integer

 The number of files to skip.

 UBC PLUS LIBRARY
 123

 2- reference, value, Integer

 The number of records to skip.

 3- reference, value, Mts_Io_Unit_Type

 The unit to be repositioned.

 Description

 See MTS Volume 3

 procedure_Spellchk _________ ________

 Purpose

 To determine if a string is a possible misspelling of
 another string.

 Parameters

 1- reference, value, unknown

 Any fixed-length string type; this is a word that is known
 to be correctly spelled.

 2- reference, value, unknown

 Any fixed-length string type; the word that is to be
 compared with parameter 1.

 3- reference, value, Integer

 The length of the string specified for the first parameter
 (must be a number between 1 and 32).

 4- reference, value, Integer

 The length of the string specified for the second
 parameter (must be a number between 1 and 32).

 Result

 (-1 to 1)

 Code indicating the strings are identical, possible
 | misspelling or otherwise.
 |
 | The constants Spellchk_Words_Identical,
 | Spellchk_Possibly_Misspelled and Spellchk_Otherwise are
 | defined.

 UBC PLUS LIBRARY
 124

 Description

 See MTS Volume 3

 procedure_Sprint _________ ______

 Purpose

 To write an output record on the logical I/O unit SPRINT.

 Parameters

 See description of Sprint_Procedure_Type.

 Description

 See MTS Volume 3

 type_Sprint_Procedure_Type ____ _____________________

 Purpose

 To define the type of Sprint and similar procedures.

 Parameters

 1- reference, value, unknown

 Specifies the starting location of the buffer.

 2- reference, value, Short_Integer

 Specifies the number of bytes to be transmitted.

 3- reference, value, Mts_Io_Modifiers_Type

 The modifiers to be used.

 4- optional, reference, Mts_Line_Number_Type

 The line number to use (if indexed), or line written (if
 Getlinenumber modifier).

 Result

 optional, numeric

 The return value if notification or noprompt is requested.

 UBC PLUS LIBRARY
 125

 Description

 This type declaration is used to define Sprint, Spunch and
 Sercom, and those routines which require a "Sprint-like"
 procedure as a parameter.

 procedure_Spunch _________ ______

 Purpose

 To write an output record on the logical I/O unit SPUNCH.

 Parameters

 See description of Sprint_Procedure_Type.

 Description

 See MTS Volume 3

 macro_Standard_Dump _____ _____________

 Purpose

 | To interface to the STDDMP routine.

 Parameters

 1- reference, value, bit(32)

 Contains the storage index number and switches.

 2- Sprint_Procedure_Type

 Specifies a procedure to be called for each line of the
 | output. It must be declared as Sprint_Procedure_Type with
 | linkage "QSACHAIN".

 3- name, unknown

 Location containing the address of the first location to
 be dumped. This may be a variable of a pointer type.

 4- name, unknown

 Location containing the address of the last location to be
 dumped. This may be a variable of a pointer type.

 Description

 | This macro just type cheats to allow use with arbitrary
 | parameters, and provides the workarea required by STDDMP.

 UBC PLUS LIBRARY
 126

 procedure_Startf _________ ______

 Purpose

 To execute a program dynamically loaded by the subroutine
 LOADF.

 Parameters

 1- reference,, unknown

 Specifies the location to start. This is normally either
 of type Integer (specifying the storage index number
 returned by Loadf) or character(8) (specifying an entry-
 point name).

 2...7- optional, reference, unknown

 Up to six optional parameters to be passed to the loaded
 program as a parameter list.

 Description

 See MTS Volume 3

 procedure_Stddmp _________ ______

 Purpose

 To dump a region of the user’s virtual memory in the MTS
 standard format.

 Parameters

 1- reference, value, bit(32)

 A fullword specifying a storage index number and switches.
 Constants Stddmp_Nolib and Stddmp_Doublespace are defined
 for use in these switches.

 2- Sprint_Procedure_Type

 A procedure to be called for each line of the dump. If
 | the procedure is written in PLUS, it requires special
 | linkage to retrieve the PLUS environment. Linkage
 | "QSACHAIN" can be used to set the environment up
 | efficiently.

 3- reference, character(400)

 A location to be used as scratch space by Sdump.

 UBC PLUS LIBRARY
 127

 4- bit(24)

 The address of the first location to be dumped. Normally
 type-cheating will be needed to specify this parameter.

 5- bit(24)

 The address of the last location to be dumped. Normally
 type-cheating will be needed to specify this parameter.

 Description

 See MTS Volume 3

 Note

 | Member Standard_Dump defines a macro that may be useful to
 | interface to this routine.
 |
 | Constants are defined for return codes and the switches
 | parameter.

 macro_Storage_Dump _____ ____________

 Purpose

 | To interface to the SDUMP subroutine.

 Parameters

 1- reference, value, Sdump_Bits_Type

 Contains the switches.

 2- Sprint_Procedure_Type

 Specifies procedure to be called for each line of the
 | output. It must be declared as Sprint_Procedure_Type with
 | linkage "QSACHAIN".

 3- name, unknown

 Location containing the address of the first location to
 be dumped.

 4- name, unknown

 Location containing the address of the last location to be
 dumped.

 UBC PLUS LIBRARY
 128

 Description

 | This macro just type cheats to allow use with arbitrary
 | parameters, and provides the workarea required by SDUMP.

 procedure_System# _________ _______

 Purpose

 To terminate execution successfully.

 Description

 See MTS Volume 3

 procedure_Time _________ ____

 Purpose

 To obtain the elapsed time, CPU time used, time of day,
 and the date in various formats.

 Parameters

 1- reference, value, Integer

 A key specifying the item to be returned.

 2- reference, value, Integer

 A switch indicating whether the item is to be returned
 and/or printed on SPRINT.

 3- reference, unknown

 The location at which the requested item is to be
 returned. The type required depends on the item
 requested.

 Description

 See MTS Volume 3

 Note

 The macro Get_Time_And_Date may be useful in interfacing
 to this routine.

 UBC PLUS LIBRARY
 129

 procedure_Timntrp _________ _______

 Purpose

 To enable, disable, or return from timer interrupts set by
 the Setime subroutine.

 Parameters

 1- system procedure

 A procedure to be called when a timer interrupt occurs, or
 Null.

 2- reference, unknown

 An area to save the registers and PSW when the interrupt
 occurs. This will normally be a variable of type
 Mts_Exit_Area_Type (see Exit_Definitions).

 Description

 See MTS Volume 3

 Note

 The macro Set_Exit may be used to set up a PLUS procedure
 as a timer interrupt exit routine.

 | procedure_Trmtyp _________ ______
 |
 | Purpose
 |
 | To return the type and, optionally, the name associated
 | with the terminal attached to the current task.
 |
 | Parameters
 |
 | 1- reference, character(8)
 |
 | The "remote type" of the terminal. For network-attached
 | devices, this is the type as specified to the network.
 |
 | 2- optional, reference, character(24)
 |
 | The name of the terminal, or network address for network
 | devices.
 |
 | 3- optional, reference, character(4)
 |
 | The type of the device as known to the host (MTS). For
 | network devices, this is the type of network connection.
 |

 | UBC PLUS LIBRARY
 | 130
 |
 |
 | 4- optional, reference, character(4)
 |
 | The name of the device as known to the host. For network-
 | attached devices, this is a network-connection name.
 |
 | Description
 |
 | This routine is used to determine the name and type of
 | terminal at which the user is signed on. Generally only
 | the first two parameters are of any interest.

 procedure_Trunc _________ _____

 Purpose

 To deallocate unused space at the end of a file previously
 allocated to the file.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 Description

 See MTS Volume 3

 procedure_Twait _________ _____

 Purpose

 To wait for a specified real time interval.

 Parameters

 1- reference, value, Integer

 A code specifying the meaning of parameter 2. See below.

 2- reference, value, unknown

 Indicates how long to wait. Depending on the value of
 parameter 1, this may be bit(64) or character(16).

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 131

 Note

 Member Twait also defines the following constants, which
 may be used for as parameter 1:

 Microsec_From_Call (0)
 Julian_Microsec (1)
 Ebcdic_Time_And_Date (2)

 procedure_Unlk _________ ____

 Purpose

 To request that a file be unlocked.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 Description

 See MTS Volume 3

 procedure_Unload _________ ______

 Purpose

 To unload what was loaded on some previous call to the
 Load subroutine.

 Parameters

 1- reference, value, unknown

 The type of this parameter is determined by parameter 3.
 It will normally be a fullword or a fixed-length string
 type.

 2- reference, value, Integer

 Specifies a storage index number (used only if parameter 1
 is 0).

 3- reference, value, Integer

 Specifies the nature of the first parameter. See below.

 UBC PLUS LIBRARY
 132

 Description

 See MTS Volume 3

 Note

 Member Unload also defines the following constants that
 may be used for the third parameter:

 Unload_Fdname (0)
 Unload_Symbol (1)
 Unload_Address (2)

 procedure_Write _________ _____

 Purpose

 To write an output record on a specified logical I/O unit.

 Parameters

 1- reference, value, unknown

 Specifies the starting location of the buffer.

 2- reference, value, Short_Integer

 Specifies the number of bytes to transmitted.

 3- reference, value, Mts_Io_Modifiers_Type

 The modifiers to be used.

 4- reference, Mts_Line_Number_Type

 The line number to use (if indexed), or line written (if
 returnlinenumber modifier).

 5- reference, value, Mts_Io_Unit_Type

 Specifies the unit or Fdub to use.

 Result

 optional, numeric

 The return value if notification or noprompt is requested.

 Description

 See MTS Volume 3

 UBC PLUS LIBRARY
 133

 procedure_Writebuf _________ ________

 Purpose

 To write out all changed file buffers.

 Parameters

 1- reference, value, Mts_Io_Unit_Type

 Specifies the logical unit or Fdub.

 Description

 See MTS Volume 3

 procedure_Xctl _________ ____

 Purpose

 To effect the dynamic loading and execution of a program.

 Parameters

 The parameters to Xctl are the same as the parameters to
 Linkf.

 Description

 See MTS Volume 3

 134

 INDEX

 Address_To_Varying, Procedure, Fpsect, Procedure, 68
 16 Fread, Procedure, 68
 Append_Varying, Procedure, 16 Freefd, Procedure, 69
 Attntrp, Procedure, 48 Freespac, Procedure, 69
 Free_File, Macro, 38
 Bc_Mode_Psw_Type, Type, 12 Fsize, Procedure, 69
 Bits_To_Hex_Varying, Procedure, Fsrf, Procedure, 70
 17 Fsrf_Bsrf_Return_Codes, Global,
 Blokletr, Procedure, 49 71
 Boolean, Type, 11
 Bsrf, Procedure, 49 Gdinf, Procedure, 71
 Gdinfo, Procedure, 71
 Canreply, Procedure, 50 Gdinfo2, Procedure, 72
 Carriage_Control_Characters, Gdinfo3, Procedure, 72
 Global, 50 Gdinfo_Result_Type, Type, 73
 Case_Conversion, Macro, 17 Getfd, Procedure, 73
 Ccw_Type, Type, 13 Getfst, Procedure, 74
 Cfdub, Procedure, 51 Getfst_Getlst_Return_Codes,
 Charge, Procedure, 51 Global, 74
 Chars_To_Hex_Varying, Getime, Procedure, 75
 Procedure, 18 Getlst, Procedure, 75
 Check_Kind_Type, Type, 3 Getspace, Procedure, 76
 Chgfsz, Procedure, 52 Get_Time_And_Date, Macro, 73
 Chgmbc, Procedure, 52 Gfinfo, Procedure, 77
 Chgxf, Procedure, 53 Gpsect, Procedure, 79
 Chkacc, Procedure, 53 Grgjuldt, Procedure, 79
 Chkfdub, Procedure, 54 Grgjultm, Procedure, 80
 Chkfile, Procedure, 54 Grjldt, Procedure, 80
 Closefil, Procedure, 55 Grjlsec, Procedure, 81
 Cmd, Procedure, 56 Grjltm, Procedure, 81
 Cmdnoe, Procedure, 56 Grosdt, Procedure, 82
 Cnfginfo, External Variable, 57 Gtdjms, Procedure, 82
 Cntlnr, Procedure, 57 Gtdjmsr, Procedure, 82
 Command, Procedure, 55 Guinfo, Procedure, 83
 Construct_Real, Procedure, 19 Guinfo_Cuinfo_Constants,
 Control, Procedure, 58 Global, 84
 Cost, Procedure, 59 Guinfo_Cuinfo_Return_Codes,
 Create, Procedure, 59 Global, 85
 Csw_Type, Type, 13 Guinfupd, Procedure, 85
 Cuinfo, Procedure, 60 Guser, Procedure, 85
 Guserid, Procedure, 86
 Destroy, Procedure, 61 Guser_Varying, Macro, 38
 Digits_To_Integer, Procedure,
 20 Hex_Chars_To_Bits, Procedure,
 Dismount, Procedure, 61 23
 Hex_Chars_To_Varying,
 Edit, Procedure, 62 Procedure, 23
 Empty, Procedure, 66 Hex_String_To_Bits, Procedure,
 Emptys, Procedure, 66 24
 Error, Procedure, 66 Hex_String_To_Varying,
 Exit_Definitions, Global, 67 Procedure, 25

 Fill, Macro, 21 Initialize_File, Macro, 39
 Fill_Fixed_String, Macro, 21 Initialize_File_With_Name,
 Fill_Varying_String, Macro, 22 Macro, 39

 135

 INDEX

 Initialize_File_With_Unit#, Opcode_Mnemonics, Constant, 13
 Macro, 40 Osgrdt, Procedure, 103
 Integer_To_Varying, Procedure,
 26 Pad, Procedure, 27
 Io_Subroutine_Return_Codes, Pad_Varying_String, Macro, 28
 Global, 86 Permit, Procedure, 103
 Pgnttrp, Procedure, 105
 Jlgrdt, Procedure, 86 Picture_Format, Procedure, 28
 Jlgrsec, Procedure, 87 Pkey, Procedure, 106
 Jlgrtm, Procedure, 87 PLUSENTR, Linkage Procedure, 4
 Jmsgtd, Procedure, 87 Plus_Linkage_Parameters_Type,
 Jmsgtdr, Procedure, 88 Type, 7
 Jtugtd, Procedure, 88 Point, Procedure, 106
 Jtugtdr, Procedure, 89 Power2, Procedure , 34
 Julgrgdt, Procedure, 89 Program_Interrupt_Definitions,
 Julgrgtm, Procedure, 90 Global, 7
 Psw_Type, Type, 14
 Kwscan, Procedure, 90
 Qpsect, Procedure, 107
 Lcs_Types, Global, 91 QSACHAIN, Linkage Procedure, 4
 Letgo, Procedure, 92 Quit, Procedure, 107
 Line_Number_To_Varying,
 Procedure, 26 Random_Integer, Procedure, 34
 Link, Procedure, 92 Read, Procedure, 108
 Load, Procedure, 94 Read_File, Macro, 41
 Loader_Definitions, Global, 95 Read_Record, Macro, 41
 Loadinfo, Procedure, 96 Read_Varying, Macro, 42
 Lock, Procedure, 97 Real_Types, Global, 11
 Lodmap, Procedure, 97 Rename, Procedure, 108
 Log2, Procedure, 34 Renumb, Procedure, 109
 Retlnr, Procedure, 110
 Machine_Carriage- Return_Code, Procedure, 8
 _Control_Definitions, Return_Control_Block_Type,
 Global, 14 Type, 9
 Machine_Storage_Types, Global, Return_From, Procedure, 9
 14 Rewind#, Procedure, 111
 Main, Procedure, 3 Round_Down, Procedure, 35
 Model_Number, Macro, 98 Round_Up, Procedure, 35
 More_Numeric_Types, Global, 11 Rssas, Procedure, 112
 More_String_Types, Global, 12 Rstime, Procedure, 111
 Mount, Procedure, 98 Rtwait, Procedure, 112
 Mts, Procedure, 98 Runtime_Highwater, Procedure, 6
 Mtscmd, Procedure, 99 Runtime_Initialize, Procedure,
 Mts_File_Access_Codes, Global, 5
 99 Runtime_Interrupt_Handler,
 Mts_File_Organizations, Global, Procedure, 6
 100 Runtime_Storage, Global, 7
 Mts_File_Type, Type, 40 Runtime_Terminate, Procedure, 6
 Mts_Io_Modifiers, Global, 100
 Mts_Io_Types, Global, 100 Savearea_Types, Global, 14
 Mvcl_Instruction, Macro, 101 Scanstor, Procedure, 113
 Scards, Procedure, 113
 Note, Procedure, 102 Scards_Procedure_Type, Type,
 Note_Point_Info_Type, Type, 103 113
 Numeric_Types, Global, 11 Scards_Varying, Macro, 42

 136

 INDEX

 Sdump, Procedure, 114 Unload, Procedure, 131
 Sense_Data_Type, Type, 115
 Sercom, Procedure, 115 Write, Procedure, 132
 Sercom_String, Macro, 43 Writebuf, Procedure, 133
 Sercom_Varying, Macro, 43 Write_File, Macro, 46
 Setime, Procedure, 117 Write_Record, Macro, 46
 Setioerr, Procedure, 118 Write_String, Macro, 47
 Setkey, Procedure, 119 Write_Varying, Macro, 47
 Setlcl, Procedure, 119
 Setlio, Procedure, 120 Xctl, Procedure, 133
 Setlnr, Procedure, 120
 Setpfx, Procedure, 121
 Setup_Return_From, Macro, 8
 Set_Buffer, Macro, 43
 Set_Exit, Macro, 116
 Set_First_Line, Macro, 44
 Set_Last_Line, Macro, 44
 Set_Next_Line, Macro, 44
 Set_Specific_Line, Macro, 45
 Shift_Left, Procedure, 36
 Shift_Right, Procedure, 36
 Sioc, Procedure, 121
 Skip, Procedure, 122
 Spellchk, Procedure, 123
 Sprint, Procedure, 124
 Sprint_Procedure_Type, Type,
 124
 Sprint_String, Macro, 45
 Sprint_Varying, Macro, 45
 Spunch, Procedure, 125
 Spunch_String, Macro, 45
 Spunch_Varying, Macro, 46
 Standard_Dump, Macro, 125
 Startf, Procedure, 126
 Stddmp, Procedure, 126
 Storage_Dump, Macro, 127
 String_To_Hex_Varying,
 Procedure, 31
 String_To_Integer, Procedure,
 32
 String_To_Real, Procedure, 33
 String_Types, Global, 12
 System#, Procedure, 128
 S370_Interrupt-
 _Code_Definitions, Global,
 13
 S370_Opcodes, Global, 13

 Time, Procedure, 128
 Timntrp, Procedure, 129
 Trmtyp, Procedure, 129
 Trunc, Procedure, 130
 Twait, Procedure, 130

 Unlk, Procedure, 131

