
UBC PLUSThe Plus Programming Languageby Alan Ballard and Paul WhaleyOtober 1976Revised Otober 16, 1987

Computing CentreUNIVERSITY OF BRITISH COLUMBIA6356 Agriultural RoadVanouver, B.C., Canada V6T 1W5
Copyright c© 2010

NoteThis manual provides a desription of the systems programminglanguage Plus, developed at the University of British Columbia byAlan Ballard and Paul Whaley.This doument was originally prepared for the MTS Systems Work-shop at Ann Arbor (Otober 1976). A major revision inludingmany more details and examples was prepared for June, 1986.This edition inorporates information on the Motorola 68000 Plusompiler. It orresponds to version 28/13 of the Plus ompilers.The implementations of Plus are not yet omplete. This version ofthe manual has been annotated to indiate language features whihare not yet implemented in the ompilers.Plus/370 is fully supported by the UBC Computing Centre for useunder MTS. Plus-11 has not been oÆially released to ComputingCentre users, and the external support level has not yet been estab-lished. Plus/68000 is urrently undergoing initial testing.

iiiTable of ContentsI. The Plus Programming Language . 1A. Bakground . 1B. Language Goals . 11. Program Strutures . 12. Problem-Oriented Data Strutures 13. Readability and Understandability 24. Parameterization . 25. Compile-Time and Run-Time Cheking 26. EÆient Code . 37. Systems Programming Failities 38. Compiler EÆieny . 3II. Tutorial Introdution . 5A. A Program to Copy a File . 5B. Compiling and Running the Program 7C. Program Format . 7D. Delarations in Plus . 8E. The Soure Library . 8F. The Runtime Library . 9G. Types and Delarations . 91. Numeri Types . 92. String Types . 10H. Plus I/O . 11I. Table Searh Example . 11J. Program Struture . 171. Separate Compilation . 172. Global Bloks . 183. Proedure De�nitions . 18K. Delarations . 181. Sope of Delarations . 192. Constant Delarations . 213. Type Delarations . 214. Variable Delarations . 225. Proedure Delarations . 22L. Type Desriptions . 231. Basi Types . 232. Reord Types . 243. Array Types . 254. Pointer Types . 265. Proedure Types . 27a. Call-By-Value . 28b. Call-By-Referene . 28. Proedure Results . 29d. Other Proedure Type Desriptions 29e. Proedure Variables . 29M. Exeutable Statements . 311. Assignment . 31

iv Table of Contents2. Expressions . 323. Names and Values . 344. If Statements and Conditions 365. Looping Statements . 38a. Cyle Statements . 38b. Do Statements . 396. Return Statements . 39N. The Message Proedure . 40O. About the semiolons . 41P. The Rest of Plus . 42III. Language Details . 43A. Program Format . 43B. Compiler Input . 43C. Compilation Strutures . 431. Proedures . 442. Global Variables and Global Bloks 453. Global Environments . 464. External Variables . 485. Entry Constants . 496. External Symbols . 497. Maros . 50D. Identi�ers . 511. Uses of Identi�ers . 512. De�nition of Identi�ers . 523. Sope of Identi�ers . 52E. Type Desriptions . 531. Numeri Types . 542. Charater Types . 543. Bit Types . 554. Identi�er-List Types . 575. Real Types . 576. Index Types . 587. Subrange Types . 588. Set Types . 589. Array Types . 6010. Pointer Types . 6111. Reord Types . 6212. Variant Fields in Reords . 6313. Proedure Types . 6414. Global types . 67F. Type Attributes . 681. Aligned . 682. Environment . 693. Fast . 694. Left . 705. Paked . 706. Right . 717. Small . 718. System . 71

vTable of Contents9. Value . 72G. Delarations . 731. Constant Delarations . 732. Entry Spei�ation . 743. Type Delarations . 744. Variable Delarations . 745. Alloation Spei�ations . 75a. External Alloation . 75b. Register Alloation . 75. Absolute Alloation . 776. Proedure Delarations . 777. Proedure Spei�ations . 78a. External . 78b. Linkage . 78. Staksize . 78H. Constants . 791. Integer onstants . 792. Charater onstants . 793. Bit onstants . 794. Real onstants . 805. Constants of identi�er-list types 806. Proedure onstants . 817. Pointer onstants . 818. Constant Displays . 819. Constant storage representation 83I. Expressions . 831. Operands and Operations . 832. Coerions . 843. Logial Expressions . 84J. Assignment Statements . 85K. Proedure Calls . 861. Parameter Passing . 862. Return Codes . 873. Swithing Global Storage Environment 87L. Control Strutures . 881. If Statements . 882. Selet Statements . 893. Cyle Statements . 904. Do Statements . 915. Begin Bloks . 926. Compounds . 927. Exit Statements . 928. Repeat Statements . 939. Return Statements . 93M. Assert . 94N. Open Statements . 94O. Equate Statements . 95P. Proedure De�nitions . 961. Linkage Option . 96a. linkage "extname" . 97

vi Table of Contentsb. linkage system . 97. linkage none . 982. Environment Option . 98Q. Maro De�nitions . 99R. Built-in Proedures, Constants, and Variables 1001. Address . 1002. Alignment . 1003. Bit_Size . 1004. Byte_Size . 1015. Code_Base_Register . 1016. Condition . 1017. Environment_Base_Register 1028. External_Name . 1029. False . 10210. Frame_Base_Register . 10211. Global_Base_Register . 10212. Global_Size . 10213. High_Value . 10314. Inline . 103a. Inline for the System 370 103b. Inline for the PDP-11 105. Inline for the Motorola 68000 10515. Left_Justify . 10716. Length . 10717. Low_Value . 10718. Max . 10719. Min . 10720. Null . 10721. Offset . 10722. Predeessor . 10723. Program_Counter . 10824. Right_Justify . 10825. Size . 10826. Stak_Base_Register . 10827. Stak_Pointer . 10828. Substring . 10829. Suessor . 10930. True . 10931. Version . 109S. Compile-Time Statements . 1091. Compile-Time If Statements 1092. Compiler Variables . 1113. Compiler Proedures . 119IV. Using the System 370 Plus Compiler . 121A. Compiler Versions . 121B. Compiling a Program . 121C. Compiler Output . 1221. Soure Listing . 1222. Comment Paragraphing . 123

viiTable of Contents3. Paragraphed Copy . 1244. Cross-Referene . 1245. Errors . 124D. Running A Plus/370 Objet Program 125E. Loader Reords Required By Plus Programs 1261. %Linkage="OLD" . 1262. %Linkage="NEW" . 127F. Debugging Plus Programs . 127V. Using the PDP-11 Plus Compiler . 131A. Compiler Versions . 131B. Compiling a Program . 131C. Running a PDP-11 Program . 1311. Use of Link11 . 1312. Building A Test System . 131VI. Using the Motorola 68000 Plus Compiler 133A. Compiler Versions . 133B. Compiling a Program . 133C. Running a Motorola 68000 Program 133VII. Soure Libraries . 135A. Library Format . 135B. Speifying Libraries to the Compiler 135C. Inluding Soure From a Library . 135D. Soure Library Utilities . 1351. Plus Library Generator . 1352. Library Listing Program . 136VIII. Helpful Hints and Dirty Triks . 139A. Using Equate to Improve Code Generation 139B. Plus/370 Register Use . 139C. Exeution-time Array Dimensions 140D. Cheking For Optional Parameters 141E. Cheking Addresses . 142F. Moving Arbitrary Data . 143G. Pointer Arithmeti . 143H. Return Codes from Plus Proedures 144I. Multilevel Proedure Returns . 144J. Speial Linkage Routines . 146APPENDIX A { Implementation Notes and Current Status 147APPENDIX B { BNF Syntax . 149APPENDIX C { Plus Reserved Words . 157APPENDIX D { Plus/370 Linkage Conventions and Run-time Organization 159A. Register Usage . 159B. Stak and Global Organization . 159C. Plus Proedure Linkage . 160

viii Table of ContentsD. Stak Frame Layout . 164APPENDIX E { Plus-11 Linkage Conventions and Run-time Organization 165A. Objet Modules . 165B. Register Usage . 165C. Parameter Passing . 165D. Proedure Linkage . 165E. Stak Frame Layout . 167APPENDIX F { Plus/68000 Linkage Conventions and Run-time Organization 169A. Maintosh System Support . 1691. Maintosh Programmer's Workshop (MPW) 1692. Maintosh Development System (MDS) 169B. AMIGA System Support . 169C. Register Usage . 170D. Parameter Passing . 170E. Maintosh Proedure Linkage . 170F. AMIGA Proedure Linkage . 171G. Stak Frame Layout . 172APPENDIX G { Plus/68000 Inline Codes 173INDEX . 175

1I. The Plus Programming LanguageA. BakgroundPlus is based to a large extent on the Sue system language, whih was developed at theUniversity of Toronto, ira 1971, for the spei� purpose of implementing an operatingsystem for the IBM System 360 omputers.1 The Sue language was derived (partiularlyin its data struture failities) from Pasal. The same is true of Plus, although we haveprobably moved a little further from the atual syntax of Pasal. The Sue language had anumber of awkward onstruts and other syntati rough-spots whih we have tried to smoothover. Undoubtedly, some of the hanges we've made reet personal biases, and will not beunanimously viewed as improvements on either Pasal or Sue.Plus is super�ially quite di�erent from Sue or Pasal; however the underlying languagesemantis are really very similar. It also has muh in ommon with the struture and semantisof the programming language C. If you're familiar with any of these languages, you shouldn'thave muh trouble adapting to Plus.The Plus ompilers are written entirely in Plus. There are urrently three versions, generatingode for the IBM System 370-ompatible omputers, for DEC PDP-11's, and for the MotorolaM68000 family of miroproessors. All run on System 370-ompatible omputers under MTS.2The ode generated by the 370 ompiler is a standard MTS/IBM objet module. It doesnot depend on MTS operating system servies, exept for a small initialization proedurewhih must alloate storage. The PDP-11 ross-ompiler generates objet ode for the PDP-11 series in the form of a *Link11 objet module. The ode generated does not dependon the system running in the PDP-11, but expets a small run-time environment whih isprovided by assembler routines. The M68000 ross-ompiler generates objet ode for theMaintosh Programmer's Workshop, or the Maintosh 68000 Development System, or theAMIGA system.3B. Language GoalsThis setion desribes some of the design onsiderations and language philosophy of Plus.Most of these goals (and in fat, parts of the following desription) have been borrowed di-retly from Sue. The overriding onsiderations are that the language must ontribute to theprodution of orret, easily maintained, eÆient programs. This has a number of implia-tions:1. Program StruturesThe language provides only ontrol strutures whih enourage reasonable program stru-ture. It must provide an eÆient proedure alling/entry sequene, in order to enouragemodularity.2. Problem-Oriented Data StruturesThe data struturing failities of Plus are similar to those of Pasal. They allow de-
1 IBM is a trademark of International Business Machines Inc.

2 There is also a version of the 370 compiler which runs using a “fake MTS” interface under IBM’s VS-1 or MVS
operating systems. The interface was developed by Peter Ludemann of the Block Brothers Data Processing Centre
in Vancouver, B.C.

3 AMIGA is a trademark of Commodore-Amiga Inc., Macintosh is a trademark licensed to Apple Computer Inc.

2 The Plus Programming Languagesription of variables in more problem-oriented terms than most languages. That is,any item is desribed in terms of the values it will be assigned rather than the storageloations it is to oupy. For example, a numeri variable is de�ned in terms of the rangeof numbers it may be assigned, rather than the number of bits it requires. The datastruturing failities tend to be more self-doumenting than most languages. They alsoassist the ompiler in making intelligent storage alloation and ode generation deisionssine the ompiler is provided with a desription of the essential properties of variables.The information is also available for use in ompile-time or run-time heking.3. Readability and UnderstandabilityThis is an important requirement of the language and has inuened its design in manyways. Plus makes no attempt to be terse. In this respet our language di�ers in a major,philosophial, irreonilable way from what many people onsider a \good" language.Wherever possible, the language uses English keywords rather than strange puntuationmarks. Keywords annot be abbreviated. The language enourages the use of long,self-doumenting variable names and symboli onstants. While we haven't yet found away of preventing the use of Fortran-style remove-all-the-vowels ontrations, they are aviolation of the intended style.4A number of features ommonly found in modern programming languages|suh as theability to have assignments nested within more omplex expressions|have been left outof Plus beause we believe they lead to programs whih are unneessarily diÆult tounderstand. The small saving in soure program size, and possible saving in objet odesize (we hope our ompiler will eventually ath most of the situations where there wouldbe a saving) doesn't seem to justify the inlusion of suh features.To inrease the readability of soure program listings, the ompiler produes only a para-graphed listing showing ontrol strutures, et. by means of indentation. The ompileran also produe a paragraphed opy of the soure input that is suitable for use as inputfor subsequent runs of the ompiler.It is partiularly important for systems programs that another programmer should beable to pik up a listing and quikly aquire a general idea of how the program works.We believe that the Plus ontrol strutures and data strutures, together with reasonableidenti�ers and paragraphed listings, help onsiderably in ahieving this.4. ParameterizationTo redue maintenane diÆulties, it is generally important that a program be written toontain as few ourrenes of \magi numbers" as possible. As a general rule suh thingsas sizes of tables et., should be de�ned in one plae only and referened wherever elsethey are required by means of symboli onstants and expressions using the onstants.Plus ontains the ability to do this kind of parameterization.5. Compile-Time and Run-Time ChekingThe language is expeted to assist atively in the detetion and isolation of errors, atompile-time if possible. To this end, the language requires all variables to be delared
4 Within the Plus compiler itself, the average identifier length is about 13.5 characters—longer than the maximum

allowed by many languages.

3The Plus Programming Languageand performs full type heking of all expressions at ompile-time. Type heking inludesheking the types of parameters to proedures and the results of following pointers.The ompiler will also (optionally) generate extra ode to hek at run time for ertainerrors that annot be deteted at ompile time. In partiular, it an hek that valuesassigned to variables or used as subsripts are within the delared ranges.Writing the extensive delarations required is often a lot of work. However, our experienewith Plus has been that the heking the ompiler performs will ath many of the moreommon programming errors. Also, the extra are that is required in writing a programaording to Plus's stringent rules seems to result in programs with amazingly few bugs.We often �nd that it takes several runs to get a large program to ompile suessfully,but the resulting objet ode will work after only a very few attempts at running it.6. EÆient CodeA systems programming language must neessarily produe eÆient ode. One onse-quene of this is that we attempt to avoid inluding in the language any onstruts thatare inherently ineÆient, or whih produe objet ode larger than you might expetfrom the soure ode.A number of features of the language|inluding the ontrol strutures provided and thenature of the delarations|allow the ompiler to obtain information required to produegood ode.The urrent version of the Plus ompiler will generate quite good ode on a statement-by-statement basis, but is not lever enough to optimize its register use. Plus allowsyou to speify that ertain variables should be alloated in registers. This means youan assist the ompiler in generating good ode in ritial areas of the program. Wehope that future ompiler development will provide improvements in the ompiler's useof registers, and thus obviate the need for the programmer to speify register variables.7. Systems Programming FailitiesWhen you're using a high-level language you shouldn't normally need to worry aboutmahine idiosynrasies. However there are some situations where|either for reasonsof eÆieny, or to interfae with the hardware or external software|you may need toexerise preise ontrol over the instrutions generated and the alloation of storageand registers. There are also situations where, primarily for eÆieny reasons, ertainlanguage restritions may be unaeptable. The language provides failities whih an beused, if required, to ontrol size and alignment of variables, fore alloation of registers,or emit expliit mahine instrutions. It also inludes the ability to irumvent the usualtype-heking rules of the language.8. Compiler EÆienyThe Plus ompiler is reasonably eÆient, although this has not been a strong requirement.It's hard to do worse than the 370 assemblers. In fat Plus programs are generallyonsiderably heaper to ompile than equivalent size Assembler programs.The language provides failities for separate ompilation of parts of a program, in orderto keep ompilation osts reasonable for large programs.Some deisions in the ompiler implementation have been a�eted by ost onsiderationsfor use under MTS|for example we make extensive use of virtual memory rather than

4 The Plus Programming Languagesrath �les. Some restritions of the language result from ompilation ost onsidera-tions.

5II. Tutorial IntrodutionThis hapter provides a quik introdution to Plus. It will show you the basi elements of thelanguage by presenting and explaining a ouple of omplete programs.By the time you've read this hapter, you should be able to write simple Plus programs for yourself.However, this tutorial is not at all omplete, and not totally truthful, so if you want to use Plusfor real problems, please read the following hapters as well.Most of what is desribed in this hapter applies to all the Plus ompilers. However, several of thelibrary de�nitions and proedures desribed may only exist for Plus/370.A. A Program to Copy a FileWe'll start with a really simple example. Example 1 ontains a omplete Plus program. Thenumbers at the left are just for referene in the following explanations; they are not part ofthe program.The purpose of this program is to opy one �le to another, then write out a ount of thenumber of lines opied. We'll �rst explain the piees of this program very briey, then �ll insome details later.Lines 1 to 3 and line 5 are used to inlude a number of statements from a library of standardde�nitions. Library members typially ontain delarations for various onstants, types, andproedures. Symbols beginning with % are ompiler variables or ompiler proedures. Theyare used to request speial ompile-time servies.Line 5 inludes a delaration for the proedure Main from the library. Main is a standardname for the \main program", i.e., the proedure whih is going to begin exeuting when yourun the program. Some speial magi is required in the delaration of the main program toget things started up properly when you exeute the program. The delaration in the libraryprovides the neessary spei�ations. Later on, when you learn the details of the delarationof Main, you an all your main program something else, if you want to.Lines 7 though 10 are a omment. Anything between /* and */ is ignored by the ompiler.Other omments appear at lines 15{16, line 21, and line 27.Lines 11 through 30 onstitute the de�nition of the proedure Main. Between the headingdefinition Main and the ending end Main go delarations of identi�ers that are private toMain, and the exeutable statements that are to be performed whenever proedure Main isinvoked.Lines 12 and 13 delare three variables, Count, Return_Code, and String, whih are to beused in the following statements. Count and Return_Code are de�ned to be of type Integer,while String is de�ned to be of type Varying_String. We'll say more about these spei�types in a few minutes. At this point, note that every variable used in a Plus program mustbe delared, to assoiate a type with the variable. The variable an only be used in ontextsappropriate to its type.Line 14 is an assignment statement, whih sets the value of the variable Count to 0. Notethat Plus uses := for assignment.Lines 17 through 26 onstitute a loop, whih ontinues exeuting inde�nitely, until the exitstatement at line 22 is exeuted. That is, exeution ontinues from line 26 by returning toline 17. When the exit is performed, exeution ontinues at line 28, after the end of the loop.

6 Tutorial Introdution
[1℄ %Inlude(String_Types, Numeri_Types);[2℄ %Inlude(Sards_Varying, Spunh_Varying, Sprint_Varying);[3℄ %Inlude(Integer_To_Varying);[4℄[5℄ %Inlude(Main);[6℄[7℄ /* This is an example program. It opies an input file[8℄ to an output file and prints a message saying how[9℄ many reords were opied.[10℄ */[11℄ definition Main[12℄ variables Count, Return_Code are Integer,[13℄ String is Varying_String;[14℄ Count := 0;[15℄ /* Loop reading and writing reords, ounting number[16℄ opied. */[17℄ yle[18℄ Sards_Varying(String, Return_Code);[19℄ if Return_Code := 0[20℄ then[21℄ /* Terminate loop when no more input */[22℄ exit[23℄ end if;[24℄ Spunh_Varying(String);[25℄ Count := Count + 1[26℄ end yle;[27℄ /* Build and print a message. */[28℄ String := " Copied " || Integer_To_Varying(Count, 0) || " reords.";[29℄ Sprint_Varying(String)[30℄ end MainExample 1|File Copy ProgramLine 18 invokes a proedure1 Sards_Varying, whose de�nition was inluded from the libraryby line 2. Sards_Varying reads a line from MTS I/O unit Sards, and assigns the valueread to the �rst parameter, whih must be a suitable harater variable. It assigns the returnode of the operation to the seond parameter. Note that the proedure all just onsists ofthe name of the proedure followed by a list of its parameters. There is no \all" keyword.Lines 19 through 23 onstitute an if statement. Note that the if statement is terminated withan end if. (Just end is allowed also.) Between the keyword then and the end if, there ouldbe an arbitrary list of statements, although in this ase there is just the exit statement. Ingeneral, there might also be an else-part before the end if. This partiular if statement teststhe variable Return_Code, whih Sards_Varying sets to the return ode delivered by theSards all. If it is nonzero (indiating end-of-�le or an error), then the loop is terminated.

1 To be strictly accurate, Sards_Varying is not a procedure but a macro. This distinction is unimportant at

this point, and in fact we won’t discuss macros in this tutorial.

7Tutorial IntrodutionLine 22, the exit statement, terminates exeution of the loop. We ould atually have spei�edthe ondition as part of the exit statement, replaing all of lines 19 to 23 withexit when Return_Code := 0;Line 24 writes out the line just read to I/O unit Spunh.Line 25 adds one to the ounter of lines read. Atually, this statement isn't very good Plus.Instead, it should be written asCount +:= 1whih means the same asCount := Count + 1but may be more eÆient (besides being less typing).Line 28 builds a message speifying the number of reords opied. The operator || is used toonatenate harater strings. Integer_To_Varying is a library funtion (whose delarationwas inluded at line 3) whih onverts an integer to a harater string. The parameters ofInteger_To_Varying speify the number to be onverted, and a �eld width to use. 0 for the�eld width means to format it in the minimum number of haraters. Note that funtions inPlus an return arbitrary objets|in this ase, a variable length harater string is returned.Line 29 then prints out this message on I/O unit Sprint, using another library routine.After exeuting the last statement, the proedure automatially returns to its aller|in thisase terminating exeution and returning to the operating system.B. Compiling and Running the ProgramIf this program is in the �le Plusex1.s, it an be ompiled by issuing the MTS ommandRun *Plus Sards=Plusex1.sThis will produe a listing on I/O unit Sprint (whih normally defaults to your terminal orprinted output), and an objet module in the �le -Load. You an speify I/O unit Spunh onthe Run ommand to put the objet module somewhere else.The program (from �le -Load) an be exeuted by issuing a ommand likeRun -Load Sards=Infile Spunh=Outfilewhih opies �le Infile to Outfile.C. Program FormatPlus programs are free-format, with line boundaries being ignored. You may format the textin your soure �le any way you like, breaking lines wherever is onvenient, exept that youannot break in the middle of a single \token". That means you an't split an identi�er, akeyword, a string onstant, et., aross two lines. (A omment is treated as a sequene oftokens, so it an be ontinued aross any number of lines.)Statements are separated with semiolons. Thus, for example, lines 1, 14, 18, ontain onestatement eah. Line 17, on the other hand, is not a statement. It is just a part of theompound statement whih goes from line 17 to line 26. We'll say more later about just

8 Tutorial Introdutionwhen you need a semiolon and when you don't. In general, Plus is fairly forgiving if youput in some you don't really need. All the examples in this manual will inlude exatly thesemiolons that are required, with no extra ones.The listing produed by the Plus ompiler will always be formatted to indiate the strutureof your program, indenting the insides of loops, and so on. All the examples in this manualare formatted the way they would be by the ompiler. You an also ask the ompiler toprodue a opy of your program that is formatted in the same way, by assigning unit 1 onthe Run ommand. This an be useful to produe a leaned-up soure �le after you've editeda program extensively.Plus uses quite a lot of keywords to de�ne the various kinds of statements, operations andtypes, and to make them as readable as possible. These keywords are reserved|you an'tuse them as names for things you de�ne in your program. A omplete list of Plus's reservedwords appears in Appendix C. In the example program, and throughout this manual, thereserved words appear in all lowerase letters, while symbols whih are not reserved will havethe �rst letter of eah segment apitalized. So if, yle, program are reserved, but Integer,Return_Code, Numeri_Types are not. This same lowerase/apitalization onvention is usedby the Plus ompiler in any messages it produes. By using the ompiler option %Lower_Case,you an ask the ompiler to format identi�ers and keywords in the listing and reformattedopy this way too.This is only a onvention, however. The ompiler ignores upper/lower ase distintions ininterpreting its input. That is, IF, iF, If, and if are all interpreted as the reserved word if,and Count, ount, COUNT, et., are all the same variable.D. Delarations in PlusIn Plus, as in most languages, you will use identi�ers for several di�erent purposes|the namesof variables (of various types), proedures, �elds of reords, and so on.Most of these will be names whih are invented by you and are spei� to your program. Youmust de�ne all suh identi�ers in an appropriate delaration statement.Some identi�ers may be de�ned by inluding their delarations from a soure library. Thereare a few others that are prede�ned by the ompiler, but not reserved|you an use the samesymbol for your own purposes (although you probably shouldn't).The various kinds of delarations an appear in any order, and an be intermixed with ex-eutable statements. However, every identi�er has to be delared before the �rst time it isused in other ontexts.E. The Soure LibraryTo redue repetitive oding, and to help maintain onsistent de�nitions, the Plus ompilersprovide a soure library faility. The %Inlude proedure is used to input Plus soure odefrom suh a library. In e�et, the %Inlude statement is replaed by the ontents of thelibrary members whose names are given as parameters.The �le *Plus.Sourelib is a standard library that is searhed by default. It ontainsde�nitions of some useful onstants and types, the delarations of a number of library routines(suh as Integer_To_Varying), and delarations for most of the MTS system subroutines.Eah library member in turn inludes any other delarations on whih it depends.

9Tutorial IntrodutionThe de�nitions in *Plus.Sourelib are doumented by a separate writeup (UBC PLUSLIBRARY). This tutorial will just desribe a few of the more basi members.If you're writing a large Plus program, you will probably want to divide it up into a number of�les, whih you an then separately ompile and modify. You should put ommon delarationsin a private library, from whih they an be an be %Inluded by eah omponent, just likedelarations from the standard library. The libraries to be searhed by the ompiler arespei�ed on I/O unit 0 of the Run ommand. For example, if you want the private libraryMylib searhed as well as the default library, you would enterRun *Plus ... 0=Mylib+*Plus.SourelibChapter VII (page 135) desribes the format of a Plus library, as well as the programPlus:Libgen whih an be used to generate a library.F. The Runtime LibraryThere is a library of proedures that are often used by Plus programs (suh as Integer_To_Varying). These library proedures are in the MTS resident system. In order for the systemloader to �nd them when it loads your program, some speial loader reords must be presentin your objet �le (e.g. -Load). The delaration for Main that was inluded by line 5 alsoauses these reords to be added to the objet �le, so this simple program will run as is.However, when you deal with more omplex programs that have been ompiled as a numberof separate piees, you may have to make sure the reords needed are present and in the rightplae (generally at the end of the �le). Details of this are in Chapter IV (see page 127).G. Types and DelarationsThe program in Example 1 delares variables of two types, Integer and Varying_String.As the apitalization indiates, these are not reserved words. In fat, they are not built-intypes at all. Rather, the de�nitions of these two types also ome from the library, as a resultof the %Inlude at line 1.It might seem strange that these apparently basi types are not prede�ned as part of thelanguage. However, in Plus they are not really partiularly basi, as we will indiate in thefollowing setions.1. Numeri TypesThe library member Numeri_Types that is inluded at line 1 ontains a number ofdelarations that relate to integer numeri proessing.The following delarations are among those in the library member:onstant Maximum_Integer is 2147483647,Minimum_Integer is -Maximum_Integer - 1;type Integer is (Minimum_Integer to Maximum_Integer)The �rst statement (from the keyword onstant to the semiolon at the end of the seondline) is an example of a Plus onstant delaration. Suh a statement just assoiatesone or more identi�ers with onstants. Thereafter, the identi�er may be used insteadof repeating the onstant. Thus the identi�er Maximum_Integer refers to the onstant2147483647 (whih is, indeed, the maximum integer available on the 370 omputers).

10 Tutorial IntrodutionHaving de�ned Maximum_Integer, you an use it in any ontext where the onstantwould be allowed, with equivalent e�et.The value assoiated with the identi�er in a onstant delaration may be an expression, aslong as all the elements of the expression are themselves onstants. That is, the ompilermust be able to determine the value to be assoiated with the identi�er. The identi�erMinimum_Integer is assoiated with the value �2147483647� 1 = �2147483648.2The seond statement (beginning with the keyword type) is an example of a type de-laration. It assoiates the identi�er Integer with the type represented by the phrasefollowing is. The identi�er Integer an be used thereafter instead of repeating thephrase (Minimum_Integer to Maximum_Integer).This example illustrates the basi mehanism you use in Plus to de�ne a numeri type.You speify a range of values that are to be allowed for variables of the type. So thedelarationvariable Count is Integeris equivalent tovariable Count is (Minimum_Integer to Maximum_Integer)and means that variable Count may be legitimately assigned any number in the indiatedrange.The ompiler will (optionally) generate run-time tests to ensure that assignments tonumeri variables obey the range limitation indiated in the delaration. This run-timeheking is often very e�etive in deteting bugs in programs at an early stage. Youshould be as preise as possible in de�ning the range of variables, sine this gives theompiler the most opportunity to be helpful. (Moreover, the ompiler will take advantageof range information in some ases to improve the ode generated.)It should really be quite rare for you to need to use the type Integer. In fat, even for theexample program, it would be preferable to de�ne Count as (0 to Maximum_Integer),sine Count should never aquire a negative value.2. String TypesThe library member String_Types inludes the following delarations:onstant Standard_String_Length is 255;type Fixed_String is harater(Standard_String_Length),Varying_String is harater(0 to Standard_String_Length)The type delaration provides examples of two forms of harater string types imple-mented by Plus.An example of a �xed-length string type is provided byharater(Standard_String_Length)Variables of this type always ontain exatly 255 haraters (the value of the onstantStandard_String_Length). Assigning a longer value will generate an error message,
2 For obscure reasons, you can’t write this constant directly into a program, but you can get at it indirectly as in

this example.

11Tutorial Introdutionwhile a shorter value will leave the last haraters unhanged. (Short strings will not bepadded to the given length.)A varying-length string type is illustrated byharater(0 to Standard_String_Length)Variables of this type may be assigned harater string values ontaining anything from0 to 255 haraters. The variable will keep trak of the length of the value last assigned.The length 255 has been somewhat arbitrarily piked as the size of these string types inthe soure library de�nition. This is generally adequate for most programs for buildingmessages, et., without wasting too muh memory.Plus allows harater types (either �xed or varying length) of any length|they are notrestrited to the length 255. Note, however, that when a variable of a varying-lengthharater type is delared, enough memory is alloated for the maximum length spei�ed(plus a length �eld). So you should avoid de�ning overly-large harater variables whenpossible.H. Plus I/OThe Plus language doesn't inlude any input/output statements. Instead, it is assumed thatthe system I/O subroutines suh as Read, Write, Sards, et. will be used.To failitate use of these routines, there are several de�nitions in *Plus.Sourelib. Theseinlude delarations neessary to use the subroutines diretly, as well as some interfaingdelarations that simplify things for ommon situations.The routines Sards_Varying, Spunh_Varying, Sprint_Varying and similar ones for otherI/O units, provide a simple interfae for reading and writing standard Varying_String vari-ables, as desribed above. Other routines provide for I/O to or from arbitrary variables in aPlus program.The Plus library inludes a rather powerful proedure Message for produing formatted output(generally, \readable" messages). The Message routine an perform a variety of onversionsand substitute the results into a string whih it then prints. The next example programillustrates some simple uses of Message, but for all the details, see the separate doumentationfor the routine.The onversion routines in the Plus runtime library may also be useful in building formattedlines to be written.The Plus library also inludes a few simple routines for performing \input onversions"{ e.g.,String_To_Integer will onvert a harater string to an integer. However, most Plus pro-grammers prefer to use Clparser, the MTS \Command Language Parser" subroutine pakage,to perform input proessing. Clparser is desribed in the writeup UBC CLPARSER.I. Table Searh ExampleThe following pages ontain a muh more substantial example, ontaining most of the elementsof a typial Plus program. The program is a demonstration of linear and binary searhingalgorithms. It �rst reads a table of symbols, terminated with /end. Then it reads symbols tolook-up, searhes the table using eah of linear and binary searh tehniques, and prints outthe symbol position and number of aesses required to �nd it.

12 Tutorial Introdution
[1℄ %Title := "Plus Example Program - Linear and Binary Searhing";[2℄ /*frame,entre[3℄ Linear and Binary Searhing[4℄ *//*[5℄ This example program demonstrates linear and binary[6℄ searhing. It first reads a table of "symbols",[7℄ then reads "test ases" and looks eah up in the table[8℄ by both searh tehniques. It prints the position[9℄ of the searh item, and how many "probes" it took to[10℄ find it.[11℄ */[12℄ %Inlude(Numeri_Types, String_Types);[13℄ %Inlude(Sards_Varying);[14℄ %Inlude(Message_Initialize, Message, Message_Terminate);[15℄[16℄ global Searh_Example[17℄ /* Define limits on symbol length and number of[18℄ symbols. */[19℄ onstant Max_Sym_Length is 10;[20℄ onstant Max_Number_Symbols is 600;[21℄[22℄ /* Define types for symbols, table, et. */[23℄ type Symbol is harater(0 to Max_Sym_Length);[24℄ type Array_Index is (0 to Max_Number_Symbols),[25℄ Symbol_Array is array (1 to Max_Number_Symbols) of Symbol;[26℄[27℄ /* Delare the table that the symbols will be entered[28℄ into. */[29℄ variable Table is Symbol_Array,[30℄ Table_Size is Array_Index;[31℄[32℄ /* Delare ontrol blok for the message routine. */[33℄ variable Msg is pointer to Stream_Type[34℄[35℄ end global Searh_Example;[36℄[37℄ %Inlude(Main);[38℄[39℄ proedure Getsym is[40℄ proedure[41℄ result Sym is Symbol[42℄ end;[43℄Example 2 (part 1 of 5)|Table Searh Program

13Tutorial Introdution
[44℄ proedure Print_Result is[45℄ proedure[46℄ parameter Sym is Symbol,[47℄ Method is harater(1 to 10),[48℄ Pos is Array_Index,[49℄ Aesses is Integer[50℄ end;[51℄[52℄ proedures Linearsearh, Binarysearh are[53℄ proedure[54℄ parameter Element is Symbol,[55℄ referene parameter Aesses is Integer[56℄ result Position is Array_Index[57℄ end;[58℄[59℄ %Ejet();[60℄ definition Main[61℄ /* Main program reads in symbol table, terminated by /end, then reads[62℄ test ases and finds them by both linear and binary searh.[63℄ */[64℄ variable Return_Code is Integer;[65℄[66℄ /* Initialize the Message routines. */[67℄ Msg := Message_Initialize();[68℄[69℄ /* Display title and prompts... */[70℄ Message(Msg, "*** Demonstrate Linear and Binary Searh ***</>");[71℄ Message(Msg, "Enter symbol elements (in alphabetial order)</>");[72℄ Table_Size := 0;[73℄[74℄ /* Read in the test table. */[75℄ yle[76℄ variable Elem is Symbol;[77℄ Elem := Getsym();[78℄ exit when Length(Elem) = 0 or Elem = "/end";[79℄ if Table_Size >= Max_Number_Symbols[80℄ then[81℄ Message(Msg, "Error - too many symbols.</>");[82℄ exit[83℄ end if;[84℄ Table_Size +:= 1;[85℄ Table(Table_Size) := Elem[86℄ end yle;[87℄[88℄ Message(Msg, "<hi> data items read.</>", Table_Size);[89℄Example 2 (part 2 of 5)|Table Searh Program

14 Tutorial Introdution
[90℄ /* Read in the test ases and look up eah. */[91℄ yle[92℄ variable Test_Elem is Symbol,[93℄ Pos is Array_Index,[94℄ Aesses is Integer;[95℄ Message(Msg, "Enter data:</>");[96℄ Test_Elem := Getsym();[97℄ exit when Test_Elem = "";[98℄[99℄ /* Look up using linearsearh and output result. */[100℄ Pos := Linearsearh(Test_Elem, Aesses);[101℄ Print_Result(Test_Elem, "linear", Pos, Aesses);[102℄[103℄ /* Look up using binarysearh and output result. */[104℄ Pos := Binarysearh(Test_Elem, Aesses);[105℄ Print_Result(Test_Elem, "binary", Pos, Aesses)[106℄ end yle;[107℄[108℄ Message_Terminate(Msg)[109℄ end Main;[110℄ %Ejet();[111℄ definition Getsym[112℄ /* This proedure reads a symbol, and heks for[113℄ invalid strings. It returns null string at eof. */[114℄[115℄ variable Str is Varying_String,[116℄ Return_Code is Integer;[117℄[118℄ Sards_Varying(Str, Return_Code);[119℄[120℄ if Return_Code := 0[121℄ then[122℄ Sym := ""[123℄ elseif Length(Str) > Max_Sym_Length[124℄ then[125℄ Message(Msg, "Error - symbol too long</>");[126℄ Sym := Substring(Str, 0, Max_Sym_Length)[127℄ else[128℄ Sym := Str[129℄ end if[130℄ end Getsym;[131℄
Example 2 (part 3 of 5)|Table Searh Program

15Tutorial Introdution
[132℄ definition Print_Result[133℄ /* Prints out message saying where symbol was found[134℄ and how many aesses it took. Parameters[135℄ are the "searh method", the symbol, the[136℄ position and the number of aesses.[137℄ */[138℄[139℄ Message(Msg, "<v> searh: <v> ", Method, Sym);[140℄ if Pos = 0[141℄ then[142℄ Message(Msg, "not found")[143℄ else[144℄ Message(Msg, "found at <hi>", Pos)[145℄ end if;[146℄ Message(Msg, " in <i> aesses.</>", Aesses)[147℄ end Print_Result;[148℄[149℄ %Ejet();[150℄ definition Linearsearh[151℄ /* Searh linearly for Element in Table.[152℄[153℄ Table and Table_Size are global. The symbol[154℄ to searh for is passed as the parameter Element.[155℄[156℄ Returns the position as funtion result, or 0 if[157℄ the symbol is not found. Sets referene[158℄ parameter Aesses to the number of probes[159℄ required.[160℄ */[161℄ variable Pos is Array_Index;[162℄[163℄ Aesses := 0;[164℄ do Pos := 1 to Table_Size[165℄ Aesses +:= 1;[166℄ return when Table(Pos) = Element with Pos[167℄ end;[168℄ return with 0[169℄ end Linearsearh;
Example 2 (part 4 of 5)|Table Searh Program

16 Tutorial Introdution
[170℄ definition Binarysearh[171℄ /* Searh for Element in Table using a binary searh.[172℄[173℄ Table and Table_Size are global. The symbol[174℄ to searh for is passed as the parameter Element.[175℄[176℄ Returns the position as funtion result, or 0 if[177℄ the symbol is not found. Sets referene[178℄ parameter Aesses to the number of probes[179℄ required.[180℄ */[181℄ variables Low, High, Pos are Array_Index;[182℄ /* Low and High delimit the range of the table that[183℄ must ontain the element, if it is present. */[184℄ Low := 1;[185℄ High := Table_Size;[186℄ Aesses := 0;[187℄[188℄ yle[189℄ exit when Low > High;[190℄ /* Compute next ple to hek (midpoint[191℄ between low and high). */[192℄ Pos := (Low + High) / 2;[193℄ Aesses +:= 1;[194℄ return when Table(Pos) = Element with Pos;[195℄ if Element < Table(Pos)[196℄ then[197℄ /* If element is in table, it must be[198℄ between Low and Pos - 1 */[199℄ High := Pos - 1[200℄ else[201℄ /* If element is in table, it must be[202℄ between Pos + 1 and High. */[203℄ Low := Pos + 1[204℄ end if[205℄ end yle;[206℄ return with 0[207℄[208℄ end Binarysearh
Example 2 (part 5 of 5)|Table Searh Program

17Tutorial IntrodutionThe general organization of this program is harateristi of many Plus programs.It begins with spei�ation of a title to appear in the listing (line 1), and introdutory om-ments (lines 2 to 11). The words frame,entre3 immediately after the opening omment /*ause the ompiler to draw a frame of asterisks around the omment and to entre eah lineof the omment in the listing.Lines 12 through 14 inlude library de�nitions, as in the previous example. This exampleuses the library message formatting routines, whose delarations are inluded at line 14.Next ome a number of global delarations. Global delarations de�ne identi�ers (types,onstants and variables) that are to be available to all proedures of the program. They arenormally grouped in one or more global bloks. Eah global blok has a name, whih isused in assoiating the same global blok aross separate ompilations of piees of a program.In this ase, there is only one global blok, lines 16 to 35.A program may have any number of global bloks. Generally, you should group relatedde�nitions together as one global blok.Following the global bloks are a number of global delarations for the proedures making upthe program (lines 37 to 57). You must have a delaration for every proedure that is eitherde�ned in, or alled from the program. As in Example 1, the delaration for Main is inludedfrom a library.The remainder of the program onsists of the de�nitions of the proedures, eah beginningwith definition ... and ending with end as in the previous example.The order in whih these piees our is typial, and is generally onvenient. However, youaren't required to put the piees in any partiular order. It is quite permissible to have someglobal de�nitions followed by some proedures, followed by more global de�nitions, and soon. The only requirement is that you must delare eah identi�er before its �rst use.The remaining setions of this hapter will desribe the elements of Plus in a more orderlyway, using examples from this program.J. Program Struture1. Separate CompilationA omplete Plus program onsists of one or more separately ompilable piees. You'llprobably want to keep suh piees in separate �les. Eah piee ontains a sequene ofdelarations, globals bloks and proedure de�nitions. Proedure de�nitions may not benested inside other de�nitions. (Global bloks an be nested inside proedures or otherglobal bloks, although there is rarely any reason to do so.)You an divide a program up into piees however you like, exept that eah piee mustbe self-ontained to the extent of inluding de�nitions of all the identi�ers it referenes.Of ourse, you will usually hoose piees onsisting of groups of related proedures andthe global de�nitions they use.When a global blok ontains de�nitions that are required by more than one of theseparately-ompiled piees, you must repeat the entire global blok with eah piee. It's
3 Americans may substitute enter.

18 Tutorial Introdutionbest to put the de�nition of the global blok in a private soure library and use %Inludeto inlude it in eah piee.If you hange any of the delaration in a global blok, generally you must reompile allomponents that referene that global blok.2. Global BloksA global blok ontains a sequene of delarative statements, separated by semiolons.Eah global blok has a name (Searh_Example in line 16 of Example 2), whih be-omes an external symbol of the program and is used in assoiating the de�nitions fromindependently-ompiled piees.A global blok is muh like a Fortran named-ommon blok, exept that it may ontaindelarations of types, onstants and proedures as well as variables. Moreover, Plusglobals are usually implemented in a way that is fully reentrant (whih Fortran ommonisn't).3. Proedure De�nitionsA proedure in Plus onsists of two parts, a proedure delaration whih spei�esthe type of the proedure, and a proedure de�nition whih ontains delarationsand statements to be exeuted when the proedure is alled. Thus, for example, theproedure Linearsearh is delared at lines 52{57, and the de�nition is given at lines150{169. Note more than one proedure an be delared in the same delaration, whenthey have idential types.The type of the proedure tells what identi�ers are to be used by the de�nition to referto its parameters and return value. It also spei�es the types of the parameters andreturn value.A proedure with a result is a funtion and is used as an element of expressions. A proe-dure with no result is a subroutine and is alled as a separate statement. Getsym (delaredat line 39, alled at lines 77 and 96) is an example of a funtion with no parameters.Linearsearh and Binarysearh are eah funtions with parameters. Print_Result(delared at line 44, alled at lines 101 and 105) is an example of a subroutine.The de�nition of a proedure must be preeded by its delaration. Any all of a proeduremust be preeded by a delaration of the proedure alled. The easiest way to ensurethe orret ordering is to simply plae all proedure delarations before any de�nitions,as in the examples.When writing programs that are to be ompiled in piees, you may �nd it helpful toalways plae the delarations of proedures in a soure library. Then the �le ontainingthe proedure de�nition, and any �les ontaining alls to it, an all inlude the samedelaration.K. DelarationsThere are four important delarative statements in Plus. These are onstant, type, variableand proedure delarations. All of these have been illustrated already. In this setion, we'll�ll in a few more details.The four delarations have a somewhat similar overall syntax. The basi form of eah isillustrated by

19Tutorial Introdutiononstant Max_Sym_Length is 10;type Symbol is harater(0 to Max_Sym_Length);variable Msg is pointer to Stream_Type;proedure Getsym isproedureresult Sym is SymbolendWhen there are a number of variables to be de�ned with the same type, you an put a list ofidenti�ers in plae of the single identi�er in these examples. Thus, for example,variables Low, High, Pos are Array_Indexat line 181 is a shorthand forvariable Low is Array_Index;variable High is Array_Index;variable Pos is Array_Index(The keywords is and are are equivalent, as are variable and variables. You an usewhihever is grammatially appropriate.)You an also run a series of variable delarations together. So, for example,variable Table is Symbol_Array,Table_Size is Array_Indexat lines 29{30, is equivalent tovariable Table is Symbol_Array;variable Table_Size is Array_IndexSimilar short-uts are allowed for eah of the other kinds of delarations.1. Sope of DelarationsIdenti�ers that are delared in a global blok (or outside of any proedure de�nition) arealled global. Suh identi�ers may be referened from any subsequent statement in theprogram. In the example program, all of the identi�ers delared in lines 1{58 are global.Thus, for example, the two searh proedures an referene the variable Table withoutit having to be passed to them as a parameter.Identi�ers (type, onstant, variable, or proedure) that are delared inside a proedurede�nition are loal to that proedure. The delarations are not \known" outside ofthe proedure. So the delaration of the variable Return_Code at line 64 in proedureMain an't be referened outside of Main. The proedure Getsym has its own variableReturn_Code delared at line 116. These are two totally di�erent variables, even thoughthey happen to have the same identi�er. The referenes inside Main use the variabledelared in Main, while those inside Getsym use the one delared in Getsym. If you tried

20 Tutorial Introdutionto referene Return_Code in Print_Result or one of the other proedures, you'd get aomplaint from the ompiler about it being undelared.In fat, the sope of a delaration may be restrited further still. Like Algol and mostof its desendants, Plus provides for sope bloks whih delimit groups of statementswithin whih a given delaration is known. Unlike most suh languages, you don't have touse lots of begin ... end groups to introdue loal delarations. In Plus, the statementlist inside eah \braketed" ontrol struture suh as the yle...end loop or either partof the if...then...else...end statement, is a separate sope blok. Delarations thatour inside suh a statement list are in e�et only for the remainder of the statementlist. This makes it easy to introdue a temporary variable at the point where you needit.For example, somewhere inside a sorting program, you might have a statement of theformif Table(I) > Table(J)then/* Interhange Ith and Jth elements. */variable Temp is Symbol_Table_Element;Temp := Table(I);Table(I) := Table(J);Table(J) := Tempend ifThe variable Temp is delared only for the remainder of the statement list in the then-part. It is unde�ned outside of the if statement, or in the else-part of the statement (hadthere been one).There might already be a de�nition of Temp in e�et at the beginning of the if statement,if it had been delared either globally or earlier in the statement list ontaining theif statement. The de�nition inside the if statement is still allowed, and temporarilyoverrides the outer de�nition. At the end of the then-part, the previous de�nition omesbak into e�et.For example, in a sequene of statements suh as[1℄ variable Temp is Integer;...[2℄ Temp := 1;[3℄ if ...[4℄ then[5℄ variable Temp is Symbol_Table_Element;[6℄ Temp := Table(I);...[7℄ end if;[8℄ X := Tempthe statements at lines 2 and 8 both refer to the variable delared at line 1; its value isnot a�eted by the assignment statement at line 6. The assignment at line 6 refers tothe variable delared at line 5. Its value is independent of the variable delared at line 1.

21Tutorial Introdution2. Constant DelarationsThe onstant delaration just lets you assoiate an identi�er with a onstant value. Fromthen on, you an use the identi�er instead of writing out the onstant eah time.This helps to \parameterize" the program so that it is easier to hange in the future.Example 2 assumes that the symbols it has to deal with will be no longer than 10, andthat there will be no more than 600 of them. If either of these assumptions turned outto be inadequate, you would just have to hange the delaration at line 19 or 20 andreompile the program, without having to searh through the program looking for all theplaes that depend on these limits.A seond advantage of using onstant delarations is that they often make it easier tounderstand the program, sine the purpose of a well-hosen mnemoni identi�er may bemuh learer than an anonymous onstant.3. Type DelarationsSimilarly, a type delaration lets you assoiate an identi�er with a type desription. Oneagain, this is useful for parameterizing your program, and may make it easier to read.A type delaration is in some ways like an assembler dset (espeially when the typeis a reord). It de�nes a template desribing an area of storage, but does not alloatestorage. The variable delaration is used to alloate storage for an item of a given type.Type delarations may be required in some situations to assoiate an identi�er with atype desription whih you need to use in more than one plae. Plus doesn't attemptto determine if two omplex type desriptions are \equivalent". For example, if you hadtwo reord variables (we'll explain reords soon) delared asvariable Element1 isreordSymbol is Symbol_Type,Referene_Count is Integerend;variable Element2 isreordSymbol is Symbol_Type,Referene_Count is Integerendthe types of Element1 and Element2 will be onsidered inompatible, so you wouldn't beable to assign one to the other or otherwise intermix them. You must use the same typede�nition for eah. The usual way to do this is to de�ne the type with a type delarationand then use its name:type Symbol_Table_Element isreordSymbol is Symbol_Type,Referene_Count is Integerend;variable Element1 is Symbol_Table_Element;

22 Tutorial Introdutionvariable Element2 is Symbol_Table_Element(If there is no other requirement for the type Symbol_Table_Element, you ould alter-natively delare both in one variable delaration:variables Element1, Element2 arereordSymbol is Symbol_Type,Referene_Count is IntegerendBut generally, it is better to use the type delaration.)The requirement that a type desription appear in only one plae helps to minimizethe danger of introduing bugs when the de�nitions are hanged. (It also eliminatesa potentially very expensive ompile-time ation in determining if two de�nitions are\equivalent".)4. Variable DelarationsVariable delarations are used to alloate memory for a variable or variables of a spei�edtype. A global variable (one delared in a global blok) is alloated one, at the time theprogram begins exeution. A loal variable (one delared inside a proedure) is alloatedeah time the sope blok ontaining it begins exeution, and is released at the end ofthe sope blok. Thus, for example, a variable delared inside a loop is released at theend of the statement list forming the body of the loop|you may not assume it will keepits value from one iteration to the next.We should perhaps emphasize that there is no run-time overhead to alloating andreleasing variables inside a sope blok|all the storage alloation alulations are doneat ompile-time. Loal variables are alloated using a run-time \stak" mehanism. Theonly atual alloation overhead ours at entry to the proedure, at whih point thestak is adjusted to allow for all the loal variables delared within the proedure andtemporary storage required by the generated ode. Hene you may freely delare loal\temporary" variables at the point where they are required.5. Proedure DelarationsA proedure delaration is used to speify the type of a proedure. The delaration atlines 52{57 says that both Linearsearh and Binarysearh are proedures with typeproedureparameter Element is Symbol,referene parameter Aesses is Integerresult Position is Array_IndexendThe type of a proedure must be a proedure type, as you might expet. (You'll learnsome of the details of proedure types in Setion L{5, page 27.) Most often, the typewill be spei�ed diretly in the proedure delaration, as in this example. But as withall other types, it is quite permissible to de�ne the type in a type delaration and use itsname. So lines 52{57 ould be replaed with

23Tutorial Introdutiontype Table_Searh_Proedure isproedureparameter Element is Symbol,referene parameter Aesses is Integerresult Position is Array_Indexend;...proedures Linearsearh, Binarysearh are Table_Searh_ProedureA proedure with no parameters and no result may be delared as justproedure Prowhih is equivalent to the delarationproedure Pro isproedureendL. Type DesriptionsA type desription is a program fragment that you use to de�ne a data type. Plus providessome primitive data types, and some methods of building new types out of simpler ones. InSetion G we desribed a ouple of the basi data types of Plus, numeri types and stringtypes. In this setion we'll tell you about some of the other types, and how they are used ina program. This is just an outline, however. For all the details, see Chapter III.Type desriptions appear in several ontexts in the language. The most important ontextsare variable and type delarations and in the desription of more omplex types.1. Basi TypesPlus's numeri and string types were desribed in Setion G. Other basi types in Plusarea. bit(n), where n is an integer onstant. This just desribes the spei�ed number ofbits of memory. For example:variable X is bit(32)spei�es that the variable X is to be alloated as 32 bits. Depending on ontext,bit types may behave like various other types (integers, strings, and others). Theyare very mahine-dependent, so you should generally avoid using them unless youreally need to.b. real(n), where n is an integer onstant. This spei�es a \oating-point" data item.The number n indiates how many digits of preision are required.You an't do muh with oating-point in Plus at the moment, but you an de�nevariables.. identi�er-lists. An identi�er-list type allows you to reate new basi types byenumerating a list of identi�ers whih are to be the elements of the type. (Pasalalls this type an \enumerated type".) For example:

24 Tutorial Introdution(Printer, Reader, Punh, Tape_Drive, Disk_Drive, Terminal)If this desription appears in a program, it de�nes a new type. The elements of theidenti�er list are automatially delared to be symboli onstants of the given type(and must therefore not be previously delared in the same sope). The ompiler isfree to hoose values to represent eah of the onstants.Most often, suh types appear in a type delaration, so that you have a name withwhih to refer to them later:type Devie_Type is (Printer, Reader, Punh, Tape_Drive,Disk_Drive, Terminal)After this delaration you might de�ne a variable, asvariable Devie is Devie_Typeassign the variable a value:Devie := Disk_Drivetest it in if statements:if Devie = Readerthen...end ifand so forth.Identi�er-list types are very useful for variables whose values have no intrinsi nu-meri meaning. Use of these types is a signi�ant aid to writing self-doumentingode. These types do the kind of thing a good programmer might do in assemblerwith equates (exept that the ompiler rather than the programmer does all thebookkeeping to deide whih value to use for eah item).2. Reord TypesIn this example program, the symbol table to be searhed ontains just the atual symbols(identi�ers). If you were writing a \real" program using a symbol table, however, youwould almost ertainly need to assoiate some information with eah element of thetable. Suh a olletion of assoiated information is implemented in Plus, as in manyother languages, by using reord types.Suppose eah entry of the symbol table is to ontain the atual symbol and an assoiatedinteger whih just ounts how many times it has been referened. The elements of thesymbol table ould then be represented in Plus by the type desriptionreordSymbol is Symbol_Type,Referene_Count is IntegerendThis might be used in a type delaration as

25Tutorial Introdutiontype Symbol_Table_Element isreordSymbol is Symbol_Type,Referene_Count is Integerendand the de�nition of the atual symbol table type (line 25) might be replaed bytype Symbol_Array is array(1 to Max_Number_Symbols) of Symbol_Table_ElementThe individual items in the reord type are known as �elds. Of ourse, a reord type anhave any number of �elds, and eah �eld an be of any type, inluding another reordtype.The individual �elds of a reord are referened using a dot (\."). Continuing the example,if you delarevariable Sym is Symbol_Table_Elementyou an set the �elds of the variable asSym.Symbol := Elem;Sym.Referene_Count := 0and inrement the referene ount asSym.Referene_Count +:= 1and so forth.3. Array TypesTo desribe an array in Plus, you speify the range of the allowed subsripts and the typeof data item making up the array. So the type desription ontained in line 25 spei�esan array of 600 elements (1 through Max_Number_Symbols). Eah element of the arrayin this ase is a Symbol. Note the lower-bound of an array doesn't have to be one; anyrange is allowed.Individual elements of an array are aessed in a program using parentheses around asubsript expression. SoTable(Table_Size)in line 85 of the example aesses the element at position Table_Size in the array.An array an be omposed of any type of data item. As desribed in the previous setion,a realisti symbol table appliation might use an array, for whih eah element is a reord.You an reate multi-dimensional arrays by using arrays of arrays. If you need to workwith 50 by 100 matries of integers, you might use a type of the formarray (1 to 50) of array (1 to 100) of IntegerThis de�nes an array of 50 elements (array (1 to 50) of ...) eah element of whihis an array of 100 integers.If Matrix is a variable of suh a type, then

26 Tutorial IntrodutionMatrix(I)refers to the I'th row of the matrix, andMatrix(I)(J)refers to the J'th element of the I'th row. This an also be expressed asMatrix(I, J)Array subsripts an be ombined with reord �eld seletion in an expression. If thearray in the example were replaed with an array of reords you might replae line 85withTable(Table_Size).Symbol := Elemwhih sets the �eld Symbol of the reord at position Table_Size in the array.4. Pointer TypesA pointer in Plus is the mahine address of a data item. A ommon use of pointers tobuild linked-lists and other omplex data strutures in whih eah data item \points to"the next item of the list.For example, if you are building a symbol table, but don't want to have an a priori limiton the number of elements in the table, you might hoose to use a linked list for thetable. (It would, however, be diÆult to implement a binary searh for suh a table.Other tehniques for fast searhing would be appropriate.) To do so, you'd de�ne eahelement of the table as a reord, something like:type Symbol_Table_Element isreordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referene_Count is IntegerendThe type desription pointer to Symbol_Table_Element within the reord is a pointertype. A pointer type always spei�es what type of objet it points to, so that when youuse the pointer in an expression, Plus knows what type of objet it is dealing with.If you used pointers in this way, instead of de�ning an array in the global blok, youwould just de�ne a variable to point to the �rst element:variable Symbol_Table is pointer to Symbol_Table_Element(You might also want a seond variable to keep trak of the end of the list.) The list anbe initialized to indiate it ontains no elements by using the speial pointer value Null:Symbol_Table := NullTo add another element to the list, you would all some kind of a memory alloationproedure. For examples, MTS's Getspae routine ould be alled diretly:variable New_Elem is pointer to Symbol_Table_Element;...New_Elem := Getspae(0, Byte_Size(Symbol_Table_Element))

27Tutorial IntrodutionHere, a built-in proedure Byte_Size is used to determine the size of the element tobe alloated. This number is passed to the MTS subroutine Getspae. It alloates therequested amount of memory and returns a pointer to it, whih is then assigned to thevariable New_Elem. (Other methods of alloating list entries might be appropriate insome situations.)The memory loations pointed at by New_Elem are referred to with an expression of theform New_Elem�. That is, the at sign is used to \follow" a pointer to the item it pointsto. Then the �elds of the new item an be aessed with the usual \dot" syntax:New_Elem�.Symbol := Elemwould assign the value of the variable Elem to the �eld Symbol of the variable thatNew_Elem points to.The element ould be hooked into the list (at the front), by statements of the formNew_Elem�.Next_Symbol := Symbol_Table;Symbol_Table := New_ElemThe �rst of these makes the new element point to the rest of the list, and the seondpoints the head-of-list to the new element.Notie the di�erene betweenSymbol_Table := New_Elemand Symbol_Table� := New_Elem�The �rst of these is simply an assignment of the urrent value of the variable New_Elemto Symbol_Table. That is, it opies the pointer, so afterwards both pointers aess thesame memory loation. The seond, however, assigns the objet pointed at by New_Elem to the loation pointed at by Symbol_Table. That is, it opies the reord of typeSymbol_Table_Element. It would only be valid if you had previously set Symbol_Tableto point to a suitable variable. (And it doesn't make muh sense in this example!)The built-in proedure Address an be used to get a pointer to a variable. For example,if for some reason you wished to make New_Elem point to the variable Item, you oulduse New_Elem := Address(Item)This would only be valid if Item was a variable of type Symbol_Element_Type, so thatAddress(Elem) would be of type pointer to Symbol_Element_Type.5. Proedure TypesA proedure type desription is used to desribe a proedure. The desription spei�esthe names and types of the parameters and of the result, if any.The delaration of Print_Result at lines 44{50 illustrates a proedure with four pa-rameters and no result. When it is alled, as at lines 101 and 105, the all must passvalues that are ompatible with the spei�ed types of the parameters. Thus the �rstparameter must be a Symbol (harater(10)), the seond a harater(1 to 10), and

28 Tutorial Introdutionso on. Sine the proedure returns no result, its all must appear as a statement in theprogram|you an't use it as part of an expression.a. Call-By-ValueBy default, Plus passes parameters from the aller to the alled proedure by opyingthe value into a loal variable within the alled proedure. Within Print_Result,therefore, the parameter names Sym, Method, et., at just like loal variables thathave been preset to the values spei�ed in the proedure all. This opying is a one-way proess. If Print_Result were to assign a new value to one if its parameters,it would a�et only the value of this loal variable within Print_Result. It wouldnot be reeted bak to the alling proedure. So if Print_Result were to hangethe value of the parameter Sym, it would have no e�et on the value of the variableTest_Elem that is passed in the alls from Main. This type of parameter passing isknown as all-by-value.b. Call-By-RefereneSometimes, of ourse, you want a proedure to be able to hange the value of one ofthe variables that is passed to it. This an be aomplished in either of two ways:�� You an pass a pointer to the variable instead of the atual variable. If Print_Result needed to be able to hange its �rst parameter, you ould hange theproedure delaration to speifyparameter Sym is pointer to Symboland the all toPrint_Result(Address(Test_Elem), ...)Then inside Print_Result, the identi�er Sym would be a loal variable whosevalue was a pointer to Test_Elem, so Print_Result ould hange Test_Elemindiretly with a statement suh asSym� := ...�� You an speify in the proedure type that the parameter is to be a refereneparameter. This is really equivalent to the �rst solution, but auses theompiler to automatially pass a pointer and dereferene it at eah use insidethe alled proedure. This form of parameter passing is ommonly known asall-by-referene.The delaration of Linearsearh and Binarysearh at lines 52{57 spei�esthat the parameter Aesses is a referene parameter. Thus the alls at lines100 and 104 pass the address of the variable Aesses (a loal variable in Main,delared at line 94). The statements at lines 163 and 165 in Linearsearh thathange the parameter Aesses follow the pointer and update the variable towhih it points|i.e., the loal variable Aesses in Main is what atually getshanged.As a rule, using all-by-referene instead of all-by-value results in the proedureall being somewhat more eÆient, beause the aller doesn't have to do the workof opying the value. The di�erene may be signi�ant when large data items(array, reords, long harater strings) are involved. Call-by-value also requires

29Tutorial Introdutionextra memory to hold the opy of suh objets. On the other hand, all-by-refereneresults in the ode inside the alled proedure being rather less eÆient, sine ithas to hase an extra level of indiretion eah time the parameter is used. Withreferene parameters, it may also be unlear to somebody reading the program thatwhen the proedure is alled, the parameter passed is subjet to hange. The useof expliit pointers and the Address makes this rather more obvious.Generally, you should probably use all-by-value when the parameter is small (in-teger, short string, et.), and there is no requirement for the alled proedure to beable to \pass bak" a hanged value to the aller. You should use all-by-refereneor expliit pointers when the parameter is large, or is used to pass bak information.. Proedure ResultsProedures Linearsearh and Binarysearh also speify a result, with the phraseresult Position is Array_IndexThus the proedures are used as funtions within the aller (lines 100 and 104). Theyreturn a value of type Array_Index and may be used in any ontext appropriate tothat type. In this ase, the value returned is simply assigned to the variable Pos.Within the proedure Linearsearh, Position ats like a loal variable of typeArray_Index. Whatever value was last assigned to this variable is returned as theresult of the funtion. Alternatively, the return statement may diretly speify aresult to pass bak, whih then overrides the value of the result variable.Any kind of data type an be returned as the result of a proedure. For example,Getsym passes bak a harater string. However, it probably isn't a very good ideato return very large data items as funtion results, beause of the extra memoryrequired, and the overhead of opying the result. Instead, you should use a refereneparameter or expliit pointer parameter if you are writing a proedure that needsto set the value of a large variable in the aller.d. Other Proedure Type DesriptionsPlus programs often need to all proedures that are written in other languages withdi�erent alling onventions. Thus Plus provides quite a few options for proeduretype desriptions to allow aessing suh routines. It is possible, for example, tomake sure the all is ompatible with the OS Type I (\Fortran") linkage, to speifythat parameters are to be passed in registers, that some parameters are optional,to aess the \return ode" from a proedure and so forth. For all the details, seeChapter III.e. Proedure VariablesProedure types are most often used in a proedure delaration, but they are notlimited to suh use. You an also have proedure variables, arrays of proedures,reord �elds that are proedures, and so on.The value assigned to a proedure variable must be a proedure name (as delaredin a proedure delaration) or another proedure variable of the same type. Youan also assign the value Null as a speial \no value" indiator.A proedure variable is alled just like a proedure value. For example, if youdelared

30 Tutorial Introdutiontype Table_Searh_Proedure isproedureparameter Element is Symbol,referene parameter Aesses is Integerresult Position is Array_Indexend;proedures Linearsearh, Binarysearh are Table_Searh_Proedure;variable Searh_Routine is Table_Searh_Proedureyou ould assign the variable a value:Searh_Routine := Linearsearhand all the proedure assigned to Searh_Routine asPos := Searh_Routine(Test_Elem, Aesses)Notie the di�erene betweenPos := Linearsearh(Elem, Aesses)and Searh_Routine := LinearsearhSine the �rst spei�es parameters, it is a proedure all. Linearsearh is alled andthe result returned is assigned to Pos. The seond does not speify parameters, soit is not a proedure all. It represents the proedure \value" whih is then assigneddiretly to the variable Searh_Routine. To all a proedure with no parametersyou must still speify a parameter list onsisting of just the parentheses (), in orderto distinguish the all from an assignment of the proedure value.It is sometimes useful to be able to pass the name of a proedure as a parameter toanother proedure. If you wanted to generalize Example 2 to implement a proedurethat ould be used for testing other \table searhing" proedures, you might delareproedure Test_Searh isproedureparameter Sym is Symbol,Searh_Routine is Table_Searh_Proedure,Method is harater(1 to 10)endLines 99{105 of Main ould be replaed withTest_Searh(Test_Elem, Linearsearh, "linear");Test_Searh(Test_Elem, Binarysearh, "binary")and the de�nition of Test_Searh would be simplydefinition Test_Searhvariable Pos is Array_Index,Aesses is Integer;Pos := Searh_Routine(Sym, Aesses);

31Tutorial IntrodutionPrint_Result(Sym, Method, Pos, Aesses)end Test_SearhM. Exeutable Statements1. AssignmentA simple Plus assignment statement is of the formVar := Exprwhere Var is a variable to whih a value is to be assigned, and Expr is an expressionyielding the value.You an assign any type of variable, not just simple values, in an assignment statement.An entire array or reord an be opied with one assignment. But the two sides of theassignment must be of the same type.The left-hand-side of the assignment may atually be any expression whih results in a\name"|for example, a subsripted array, a �eld of a reord, the loation referened bya pointer. We'll say more about names and values soon.You an assign the same value to more than one variable in a single statement, by writingthe left-hand-sides separated by ommas. For example,Low, High := 0assigns zero to both variables. The right-hand-side of suh a multiple assignment isevaluated one only.Plus also lets you speify an operator in onjuntion with assignment. The statementTable_Size +:= 1(line 68) is a shorthand forTable_Size := Table_Size + 1You an use similar notation for any of the binary operators +, -, *, /, mod, ||, |, &, orxor, and for any left-hand-side expression.The ombination of the operator with the := sometimes allows the ompiler to generatebetter ode. For example, in a statement likeCount(Pos + 1) +:= 1(where Count is an array), the array subsript alulation only has to be done one.If Str is a varying-length harater string, thenStr ||:= " something"is equivalent toStr := Str || " something"However, it appends the right-hand-side diretly to the end of Str, without ever needingto ompute the expression Str || " something". As a matter of fat, the form

32 Tutorial IntrodutionStr := Str || " something"is not really orret Plus. For expressions involving harater types, you should avoidusing the left-hand-side variable as part of the right-hand-side. This is beause the resultis built diretly in the left-hand-side variable. It happens to be harmless in this ase,but for a statement likeVar1 := Var2 || Var1the wrong result will our, sine exeution will �rst move the value of Var2 into Var1,and then aess the wrong value when Var1 is onatenated onto it.At the moment, this situation is not usually deteted by the ompiler.2. ExpressionsExpressions in Plus are formed in the usual way, by ombining various operands withappropriate operators and parentheses.The primitive operands out of whih you ompose an expression inlude onstants, sym-boli onstants, variable names and funtion names. The repertoire of operations youan use inludes:a. The usual arithmeti, bitstring and logial operators. For details, see Setion I inChapter III (page 83).Expressions involving arithmeti operators follow normal preedene rules. That is,A + B * Cis interpreted as if it wereA + (B * C)Rather than introduing a omplex preedene hierarhy, several other operatorsare given preedene equal to the arithmeti operators. The omplete preedenehierarhy is given on page 84. You an always use parentheses to override thestandard preedene or to larify an expression.b. Array subsripting, denoted by a parenthesized expression following the array name,as in:Table(Table_Size). Seletion of a �eld of a reord, denoted by the operator \.". If Elem is of typereordSymbol is Symbol_Type,Referene_Count is Integerendthen Elem.Symbol is the �rst �eld and Elem.Referene_Count is the seond.d. Proedure alling, indiated by a parenthesized list of parameters following theproedure name. For example

33Tutorial IntrodutionLinearsearh(Test_Elem, Aesses)alls Linearsearh. A proedure with no parameters is alled with an empty pa-rameter list, as inGetsym()e. Following a pointer. The � operator is used to \dereferene" a pointer to aess theitem that is pointed at. For example, if Sym is of type pointer to Symbol, thenSym�is the Symbol that it points to.Plus stritly ontrols whih operators may be applied to di�erent types of operands. Forexample, + an be applied to numeri operands, but not to harater ones. In a similarway, you an only use array subsripts for arrays, �eld seletion for reords, and so on.The result of eah operation has a type whih is derived from the type of the operand oroperands and the operator used.Notie that for eah omposite type there is a orresponding operation that aessesthe element. The struture of a omplex expression orresponds quite diretly to thestruture of a type. For example, if Ptr is of typepointer to array (1 to 100) ofreordField isproedureend,...endthen Ptr� is an objet of typearray (1 to 100) ofreordField isproedureend,...endand Ptr�(I) is of typereordField isproedureend,...endand Ptr�(I).Field is of type

34 Tutorial Introdutionproedureendwhih is a proedure with no result, hene may be alled asPtr�(I).Field()This is rather more ompliated than the kind of types and expressions you are likely touse.3. Names and ValuesA name is an expression whih orresponds to a memory loation. The results of someexpressions in Plus are names. Certain ontexts in Plus (for example the left-hand-sideof an assignment) require name expressions.A value is a quantity that may be stored in a memory loation. All onstants arevalues, and the result of most expressions is a value. Operands for most operators mustbe values. If a name expression ours in a ontext that requires a value, the ompilerwill always \dename" the expression and use the ontents of the spei�ed loation asa value. The onverse is not true|that is, if a value expression ours in a ontextrequiring a name, the ompiler does not automatially generate a name.The simplest name expressions are variable identi�ers. The operations of subsriptingand �eld seletion, when applied to a name result in a name. When these operationsare applied to a value, the result is a value. Similarly, the built-in proedure Substringresults in a name if the �rst parameter is a name and the length of the substring isonstant, and a value otherwise.The dereferening operator � takes a value of a pointer type, and onverts it to a nameof the resulting objet type.The built-in proedure Address takes a name-expression of any type as an argumentand gives as its result a value whih is a pointer to the argument.The left-hand-side of an assignment must be a name. The parameter of Address mustusually be a name. When a proedure parameter is de�ned as a referene parameter,the orresponding argument of a proedure all must be a name.Plus provides an attribute value (see page 72) whih may be spei�ed for a type toindiate that an expression of the type may only be used in a \value" ontext. This isimplemented by automatially \denaming" the name any time it is used in the program,so it won't be valid if the ontext requires a name. That means you an't store into itby using it on the left-hand-side of an assignment, or pass it to a proedure in suh away that the proedure ould store into it.If � is applied to a pointer whose objet type has the value attribute (i.e, of type pointerto value ...), after dereferening, the resulting name is immediately \denamed", againresulting in a value and so guaranteeing it annnot be stored into.Address may also be used with a onstant as a parameter. This will result in a valuewhih is a pointer to a value. (And hene, you an't use this pointer as an indiretway of orrupting the onstant.) Similarly, a onstant may be passed to a referene

35Tutorial Introdutionparameter, but only if the parameter type spei�es value. Currently, Address andreferene parameters annot be used with any kind of value exept onstants.The following examples may help larify these interations. Assume these delarations:type T1 is array (1 to 100) of harater(1);variables Ind is (1 to 100),V1 is T1,V2 is harater(1),P1 is pointer to T1,P2 is pointer to value harater(1);proedure Sub1 isproedureresult R is T1end;proedure Sub2 isproedureresult R is pointer to T1end;Then the statementV2 := V1(5)the subsripting operation results in a name (of type harater(1)). This is thendenamed automatially to obtain a value whih is assigned to the name V2.In the statementV1 := Sub1()Sub1 is a proedure onstant , and hene a value. The all results in a value of type T1whih is then assigned to V1.In V1 := Sub1the right-hand-side is a onstant of a proedure type while the left-hand-side is a nameof an array type; hene a type error message will be given. (The proedure Sub1 is notautomatiallly alled.)The statementSub1() := V1is illegal, sine the result of the all is a value.In the statementV1 := Sub2()�the all results in a value of type pointer to T1. The dereferening operator � thenprodues a name of type T1, whih is then automatially denamed to obtain the valueto assign to the name V1.

36 Tutorial IntrodutionIn this ase,Sub2()� := V1would be legal, sine the left-hand-side results in a name. (Sub2 returns a pointer to somememory loation, then the value of V1 is assigned to whatever loation was returned.)In P2 := Address("X")the all of Address results in a pointer to a value of type harater(1). This may thenbe assigned to P2, sine it is de�ned as a pointer to a value.P2 := Address(V2)would also be legal. (A pointer to a name may be assigned to a pointer to value.)V2 := P2�would assign the harater at whih P2 points, to the variable V2. The sequene ofoperations involved is: P2 is denamed, resulting in a value of type pointer to valueharater(1). This is then dereferened resulting in a name whih is immediatelydenamed beause of the value attribute. It results in a value of type harater(1),whih is then assigned to V2.P2� := "Z"would be illegal; after the dereferene, the left-hand-side is a value of type harater(1),hene an assignment to it is not allowed.4. If Statements and ConditionsIf statements allow you test expressions and hoose between alternatives. So, in lines195{204:if Element < Table(Pos)thenHigh := Pos - 1elseLow := Pos + 1end ifthe value of Element is ompared to Table(Pos). If it is \less", the statements in thethen-part are exeuted; otherwise the statements in the else-part are exeuted. Aftereither alternative, of ourse, exeution ontinues with the statement following end if.You an put an arbitrary list of statements (inluding other if statements, loops, et.),in either part of the if statement. The keyword else and following statements may beomitted entirely if there is nothing to be done in that ase. For example, the if statementat lines 79{83 has no else-part.A sequene of nested if's an be abbreviated using elseif, as in the if statement that runsfrom line 120 through 129. It is equivalent to the following pair of nested if statements:

37Tutorial Introdutionif Return_Code := 0thenSym := ""elseif Length(Str) > Max_Sym_LengththenMessage(Msg, "Error - symbol too long</>");Sym := Substring(Str, 0, Max_Sym_Length)elseSym := Strend ifend ifThe sequene of ... elseif ... an be repeated many times.4 Notie that when theelseif form is used, there is only one end if to terminate the whole if... then...elseif... then... else... end if onstrution.A long hain of elseif's an sometimes be replaed by a selet statement. In suh situ-ations, the selet statement will generally be muh more eÆient. The selet statementis desribed in Chapter III, page 89.The expression in an if statement must be one that evaluates to a numeri value. Itis onsidered \true" if the value is non-zero and \false" if the value is zero. There isno built-in type \logial" or \Boolean" in Plus. The identi�ers True and False areprede�ned as onstants with the values 1 and 0 respetively.Operators like <, <=, =, et., ompare the two operands spei�ed, and result in a valueof 1 if the spei�ed relationship is true, and 0 if it isn't. So, in exeuting the aboveif statement, the expression Return_Code := 0, is �rst evaluated. The result of thisis an integer, either 0 or 1. This result is then tested for 0/non-0, and the if branhesaordingly.Compound onditions an be built up using and and or. For example, if you writeif I <= Max_Number_Symbols and Table(I) := Test_Elemthen...end ifthe then-part is exeuted only if both onditions are true. When you use suh a ompoundondition, the seond ondition will be evaluated only if neessary. That is, if the �rstondition is false, then it doesn't matter what the value of the seond ondition is|theoverall e�et must be false. So Plus doesn't bother to evaluate the seond ondition.Another way to express this is that the if statement is evaluated as if you had writtenif I <= Max_Number_Symbolsthenif Table(I) := Test_Elemthen...
4 The current compilers limit it to a total of about 25.

38 Tutorial Introdutionend ifend ifThis form of evaluation is not only more eÆient than evaluating both expressions;it also means you an use ompound onditions where the seond ondition might beunde�ned or otherwise invalid if the �rst was false. In this example, if I is greater thanMax_Number_Symbols, an array subsript error might arise if Plus attempted to evaluateTable(I).Analogous onsiderations apply to ompound onditions using or. If the �rst onditionis true, then the value of the seond is irrelevant, so it isn't evaluated.More omplex ompound onditions an be used, but if you mix and's and or's in anexpression, you must parenthesize to make the order of evaluation learer.Conditions and ompound onditions suh as these are just expressions whih evaluateto 0 or 1. They most often appear in the ontext of if statements, but they an be usedin any appropriate ontext, suh as assignment to a numeri variable. The standard Plussoure library inludes a de�nition for type Boolean as (False to True)| i.e, (0 to1). You might use this for \ag" variables in a program as invariable Found is Boolean;...Found := I <= Max_Number_Symbols and Table(I) := Test_Elem;...if Foundthen...end if5. Looping StatementsPlus provides two looping statements, the yle statement and the do statement.a. Cyle StatementsThe yle statement is very general. It just spei�es that the statements betweenthe keyword yle and the mathing end yle (or just end) are to be be repeatedinde�nitely, until an exit statement inside the loop is performed. For example, lines75{86 are repeated until either the exit at line 78, or the one at line 82 terminates it.In either ase, exeution ontinues after the end of the yle (at line 88). The exitat line 78 spei�es a ondition; this exit terminates the loop only if the ondition istrue (non-zero). It is exatly equivalent toif Length(Elem) = 0 or Elem = "\end"thenexitend ifA yle may also be terminated by exeuting a return statement in the loop, sinethat terminates the entire proedure ontaining the loop.

39Tutorial Introdutionb. Do StatementsSine looping with an inreasing or dereasing index is a very ommon situation, Plusprovides a simple \do loop" to simplify writing suh loops. Lines 164{167 providean example. The statements between the heading do ... and the mathing endare repeated, with the variable Pos assigned suessive values. The loop terminatesafter it has been exeuted with the value of Pos equal to Table_Size. It mayalso terminate \early" by exeuting the return statement inside it. You an alsoterminate a do loop before the �nal value is reahed by exeuting an exit statement.A do loop of the formdo Index := Start_Value to End_Value/* statement list */...end dois exatly equivalent to a yle statement of the formif Start_Value <= End_ValuethenIndex := Start_Value;yle/* statement list */...exit when Index = End_Value;Index +:= 1end yleend ifNote that after the loop �nishes, the value of Index will be the value that it hadthe last time it exeuted, and that if Start_Value is bigger than End_Value, thebody of the loop is never exeuted and the value of Index is unhanged.Plus also allows a loop to \ount down" by speifying downto instead of to in theloop heading.Do loops always inrement or derement by one. Use the yle statement if yourequire more general loop ontrol.6. Return StatementsThe return statement is just used to terminate a proedure and go bak to the aller.You an speify a return value as part of the statement, soreturn with 0at line 168 is equivalent toPosition := 0;return(Position is the identi�er delared as the result.) You an also speify a ondition, so

40 Tutorial Introdutionreturn when Table(Pos) = Elem with Posat line 166 is equivalent toif Table(Pos) = Elemthenreturn with Posend ifIf both when and with are used, they an our in either order, so line 166 ould also bewritten asreturn with Pos when Table(Pos) = ElemN. The Message ProedureExample 2 illustrates simple use of a Plus library routine, Message, whih produes formattedoutput. Message is not a part of the Plus language. It is a proedure, written entirely inPlus, that has been put into the standard Plus library beause it has proven useful in manyPlus programs.Before using Message you must initialize it by alling the proedure Message_Initialize,as at line 67. Message_Initialize returns a pointer to a ontrol blok (of type pointer toStream_Type) whih Message uses to keep trak of what it is doing. This pointer is passed asthe �rst parameter in all alls to Message. You should not attempt to hange anything insidethe ontrol blok returned by Message_Initialize|it is entirely private to the messageroutines.The seond parameter to Message is a string to be emitted as the message. The messagestring may speify points at whih values are to be substituted via odes surrounded with <and >. After the message string, there may be zero or more additional parameters, whih arethe values to be onverted and substituted into the string. For example, at line 139, the allMessage(Msg, "<v> searh: <v> ", Method, Sym)emits the string as a message, with the value of Method substituted for the �rst <v> and thevalue of Sym substituted for the seond. Here, <v> is a ode for \varying string" and indiatesthe orresponding parameter is a Plus varying-length harater string to be inserted in themessage.A message may be built up aross a series of alls to the message routine. It is atuallyemitted only when the sequene </> is enountered in the string. Proedure Print_Resulttherefore prints only a one line message, reated by three alls to the proedure (either lines139, 142, and 146 or lines 139, 144, 146). It is terminated by the </> at line 146.You an also emit more than one line in a single all to Message|eah </> terminates a lineand begins a new one. The two alls at line 70{71 ould be replaed with a single all withone very long string for the seond parameter.The all to Message_Terminate at line 108 emits any inomplete messages, then releases theontrol blok that was alloated by Message_Initialize.There are a large number of odes that may be spei�ed between < and >. These may speifyinsertion and various onversions to be applied to subsequent parameters, as well as variousother operations suh as emitting the line, tabbing to a spei�ed position, padding the next

41Tutorial Introdutionparameter, and so on. Unfortunately, the message routine has no way of determining thetypes and size of the parameters to be substituted, so it is up to you to speify this in thesubstitution odes. This may require some intuition as to how Plus alloates variables. Forexample, the variable Pos is delared as (0 to 600); this will be alloated as a halfword.The ode <hi> used in line 120 means the orresponding parameter is a halfword integer,to be onverted to an integer string. However, Aesses is delared as as Integer (= (-2147483648 to 2147483647)) whih is alloated as a fullword integer. For this, the ode <i>is used as at line 144. Method is delared as harater(1 to 10), whih will be alloated asa one byte length �eld followed by the haraters. For this, the ode <v> is used.There are other odes for one byte integers, varying strings with a halfword or fullword length�eld, �xed length strings, oating-point (of various lengths), hexadeimal onversion, and soon. Eah ode has a short (one or two harater) form, and a longer, more mnemoni form.<halfwordinteger> and <integer> ould have been used in plae of <hi> and <i>.By default, the message routine produes its output on Sprint. However, there are odesthat an be used to diret the output to other output units or spei� �les and devies. Youan set up an arbitrary number of independent output streams by making repeated alls toMessage_Initialize.For all the details see the writeup for the Message routine.O. About the semiolonsIn this setion, we'll explain just when a semiolon is needed in a list of statements, and whenit isn't. You don't really need to understand this ompletely, sine the Plus ompiler willusually let you get away with inserting unneessary ones in \reasonable" plaes.Plus follows the Algol tradition of using the semiolon as a separator between statementsin a list of statements. To fully understand this, you must be aware of what onstitutes astatement.The program fragmentyleTable(Table_Size) := Getsym();Table_Size +:= 1endontains a list of two assignment statements in the loop, so they are separated by a semiolon.end, however, is not a statement|it is just one of the puntuation marks that makes up theloop|so there's no need for a semiolon at the end of the seond assignment. You may preferto always put a semiolon there, however, so you don't have to remember to add it if youlater add a third statement to the loop.Similarly, yle is not a statement by itself, so you don't follow it with a semiolon. And inan if statement likeif R := 0thenSym := ""elseSym := Strend if

42 Tutorial Introdutionyou don't have to separate the keywords (then and else) from the statements in the then-part or else-part. (But again, when a list of statements appears in either alternative, theindividual statements of the list must be separated by semiolons.)Now, the entire yle or if statement is itself a statement, so if this appears as part of a largerlist of statements, it must be separated from its suessor. Thus inyleTable(Table_Size) := Getsym();...Table_Size +:= 1end;Sprint_String("Input Complete")the semiolon after the end is required to separate the entire yle ... end statement fromthe following Sprint_String proedure all.P. The Rest of PlusThis hapter has overed the basi features of Plus in some detail. However, there is more toPlus that we haven't mentioned here. There are several additional statements, a large numberof built-in proedures, and lots of additional options for types, delarations and proedurede�nitions.All these are explained in the next hapter.

43III. Language DetailsThis hapter presents a more advaned desription of Plus. The desription is quite informal, andrelies a lot on examples.1 However, it attempts to be aurate and omplete. A omplete BNFde�nition of the urrent syntax appears as Appendix B.The Plus ompilers are still under development. Some features of the language desribed hereinare partially or totally unimplemented in some ompilers. Restritions and other properties ofthe urrent implementations of Plus are desribed throughout this hapter. We've attempted,however, to distinguish at all times between the design of the language and the status of itsurrent implementations. Exept as otherwise noted, everything in this hapter should apply toall ompilers.A. Program FormatPrograms are ompletely free-format, with the restrition that a single lexeme annot besplit aross two lines. Comments are surrounded by /* and */ as in PL/I or C, and mayontinue aross an arbitrary number of lines. The semiolon is required as a separator betweentwo statements in a list of statements. The syntax is fairly forgiving, and extra semiolonsgenerally won't ause any problems.Keywords of the language are reserved words. A omplete list of the keywords appears asAppendix C.Case is not signi�ant in input to the ompiler.B. Compiler InputInput to the ompiler onsists of a sequene of statements eah of whih may be a delaration,a global blok, a proedure de�nition, or a ompile-time statement. See Examples 1 and 2 inthe previous hapter.Delarations whih are not ontained in a proedure de�nition de�ne global identi�ers whihmay be referened by all subsequent proedure de�nitions or statements. Delarations whihare ontained within a proedure de�nition are loal to that proedure.A proedure de�nition ontains exeutable statements and delarations. Exeutable state-ments are allowed only within a proedure de�nition or inside a maro body.Compile-time statements allow onditional ompilation and a variety of other ompile-timeations.C. Compilation StruturesPlus probably departs furthest from its Pasal heritage in the area of ompilation units andglobal variables. Pasal provides nested proedure de�nitions, with variables at one levelaessible by all proedures nested within it. The problem with this approah is that itdoes not allow for separate ompilation of the individual proedures|separately ompilableproedures generally annot share variables exept via their parameter lists.The approah taken by Plus is similar to that of C or Fortran. A program onsists of aset of non-nested, separately-ompilable proedures. Communiation among proedures is by
1 Some day, we’ll add a more precise description of the syntax and semantics!

44 Language Detailsmeans of parameters and global variables. Global variables may be de�ned either by meansof variable delarations whih are external to all proedures, or by inlusion in a sort of\ommon area" alled a global blok. (Global bloks are implemented by the PDP-11 andSystem 370 ompilers by using pseudo-register vetors. This allows the ode to be ompletelyreentrant and independent of operating system servies. The Motorola 68000 ompiler usesthe appliation's global area on the Maintosh, and \bss" spae on the AMIGA.)1. ProeduresA proedure in Plus onsists of two parts, a proedure delaration and a proedurede�nition. The proedure delaration spei�es the type of the proedure. The typespei�es the names and types of its parameters and return value (if any). The type mayspeify that some parameters are optional, and that others may be repeated an arbitrarynumber of times. It may also speify that parameters are to be passed in registers, and/orthat the address of the parameter is to be passed rather than its value. The type mayalso request (via the keyword system) that alls to the proedure must onform to thestandard linkage used in the operating system. See Setion F{8 (page 71) for details ofthis attribute. See Setion E{13 (page 64) for details of other aspets of the proeduretype.The proedure de�nition ontains the series of statements to be exeuted when theproedure is alled. The heading of the de�nition may speify that non-standard entryode is to be generated. The end of the de�nition is indiated by one of end, endproedure, end definition, or any of these followed by the name of the proedure.The proedure delaration ontains information that must be known to both the de�ni-tion part and to any other proedure that wishes to all it.The de�nition of a proedure must be preeded by its delaration. Any all of a proeduremust be preeded by a delaration of the proedure alled.The delaration and de�nition of a proedure may be presented separately. For example:proedure Print_Result isproedureparameter Sym is Symbol,Method is harater(1 to 10),Pos is Array_Index,Aesses is Integerend;.../* other delarations, globals, definitions,et. */...definition Print_Result...end Print_ResultAlternatively, the delaration and de�nition may be ombined in a single onstrut ofthe form

45Language Detailsproedure Print_Result isproedureparameter Sym is Symbol,Method is harater(1 to 10),Pos is Array_Index,Aesses is Integerenddefinition...end Print_ResultWhen the proedure delaration and de�nition are ombined, the proedure identi�er isnot repeated following the keyword definition.Proedure delarations and de�nitions may be presented separately either to failitateseparate ompilation or to permit irular alling sequenes. In the ase of separateompilation, note that eah ompilation whih ontains a all to a proedure must ontaina delaration for that proedure.2. Global Variables and Global BloksGlobal variables may be aessed by any proedure provided the appropriate delarationsare present. A variable may be made global in either of two ways:a. by plaing the variable delaration inside a global blok. This is the preferredmethod when there are a number of global variables, sine it redues the run-timeregister requirements;b. by plaing the variable delaration outside of any proedure delaration. Suh aglobal variable ats exatly as if it were in a (nameless) global blok by itself.A global blok may ontain any of the delarative statements of the language desribedin Setion G (see page 73). A global blok may appear in the ompiler input eitheroutside of any proedure (in whih ase the de�nitions it ontains remain for all followingproedures) or internally to a proedure (in whih ase it is disarded at the end of thesope blok in whih it ours). There is no limit on the number of global bloks in aprogram. However, ode quality may su�er somewhat if a single proedure referenesvariables from a large number of separate global bloks.The heading of a global blok may speify an external symbol to be used for the globalarea instead of the default symbol generated from the global blok's identi�er. The endof a global blok is indiated by end or end global, or either followed by the name ofthe global blok.At exeution time, all proedures aess the same opy of any global variable, regardlessof where the delaration ours.On the System 370 and PDP-11 the ode is kept fully reentrant by using pseudo-registersto implement global variables. Eah global blok will be one pseudo-register; individualde�nitions within global bloks will not generate external symbols. A variable that isneither inside a proedure nor inside a global blok is a separate pseudo-register.On the Maintosh, eah global blok or global variable is alloated spae in the applia-tion's global storage area, addressed from A5.

46 Language DetailsOn the AMIGA, eah global blok or global variable de�nes a separate \bss hunk".3. Global EnvironmentsNormally, the global storage aessible onsists of all global variables de�ned in theprogram, and remains \�xed" throughout exeution of a program.However, Plus provides a way for a family of proedures to have its own global storagethat is independent of the global storage used in the rest of the program. Swithing fromone global storage to another an be performed at the time of a proedure all, either bythe aller, or by the entry sequene of the alled proedure. Plus implements the oneptof a global environment to support swithing global storage.NoteGlobal environments are an \advaned topi". Most programmers should notneed to be aware of the ompliations desribed below.System 370 NoteThis faility in Plus/370 mathes that of the MTS \Coding Conventions", butimplements the additional mehanism of swithing during the entry sequene ofthe alled proedure.Implementation Restrition (PDP-11)Plus-11 does not support the mehanisms for swithing global storage environ-ments.Motorola 68000 NotePlus/68000 supports the swithing of global storage environments, but this isprobably only useful on the AMIGA, when alling \system library" proedures.Every Plus proedure has an assoiated environment type. An environment type maybe either a speial type global(n), where n is a bit(32) onstant, or it may be a pointerto a reord type. It may also be spei�ed as unknown. The environment for a proedureis spei�ed with the environment attribute; see Setion F{2, page 69.An environment of type global(n) means that the global storage is de�ned by the usualmethod of de�ning global storage. A value of suh a type is just the base address of aregion of storage alloated for the global variables. All global variables delared in aninput �le to the ompiler are onsidered to be part of one global environment, of typeglobal(%Global_Id), where %Global_Id is a settable ompiler option (it defaults to"PLUS").Implementation Restrition (System 370)In Plus/370, a pointer to a reord type an only be used for an environment ifthe initial portion of the reord ontains ertain reserved �elds and is initializedappropriately as required by the MTS \Coding Conventions". This is desribedin Appendix D.

47Language DetailsOne proedure may all another only if either a) the aller's environment type is om-patible with the environment type of the alled proedures, or b) the aller provides avalue of a ompatible environment type as part of the proedure all.Examples:proedure P1 is environment global("QQSV")proedure...end,P2 is environment global("FOO")proedure...end,P3 is environment pointer to Re_Typeproedure...end,P4 isproedure...end,P5 is environment unknownproedure...endGiven the above, any of P1, P2, P3 or P4 ould all P5 and vie-versa.P1 ould not all P2 (or vie-versa) unless it provided an appropriate environment valueto swith to, sine they have di�erent global types for environments. Similarly, P1 or P2ould not all P3 (or vie-versa) unless they provided an appropriate environment valueto swith to. Setion K{3, page 87 desribes the syntax used to swith environments atthe time of a all.The environment of P4 is the default, whih is global(%Global_Id). Thus, P1 ouldall P4 diretly if and only if %Global_Id had the value "QQSV".The entry sequene of a proedure may also swith environments by speifying a newenvironment as part of the proedure heading, as desribed by Setion P{2, page 98.When this is used, the aller must still all with the appropriate environment type. Thisenvironment is in e�et for the evaluation of the expression in the entry ode whih loadsthe new environment. The new environment will be in e�et for any alls from withinthe proedures, so will be used in determining ompatibility of subsequent alls.A Plus proedure an referene Plus global variables only if it is exeuting with en-vironment global(%Global_Id); otherwise the global variables are hidden inside theproedure, sine they are part of a di�erent environment. If the environment attributeis not given, global(%Global_Id) is assumed, so by default all proedures an aessglobal variables.Note that all global variables in a given ompiler run are part of one global type. Youan speify the name of that environment, but an't have some parts of the program use

48 Language Detailsone and some parts use another. It is possible to have separately ompiled piees of theprogram use di�erent global types.Implementation Restrition (System 370)MTS urrently only provides rudimentary support for loading programs that usemore than one independent PRV. Generally, this is only pratial with separatelyloaded omponents, so it is mainly used with pre-loaded subroutine pakages.Implementation Restrition (Motorola 68000)The Maintosh system and appliation struture e�etively prohibit indepen-dent global storages, and neither the MPW nor MDS linkers have any supportfor them. Plus/68000does implement the use of environments whih are pointersto reord types.If the proedure environment is de�ned by a pointer to a reord, Plus global variablesare not aessible inside the proedure. However, in this ase the �elds of the reordtype will be made aessible inside the proedure as if they were global variables; i.e.,they may be referened without quali�ation.If a proedure also has a speial linkage option, the parameters in the prologue that arepassed to the linkage routine inlude the size of the environment and, for environmentsof type global(n), the value of the onstant n.The prede�ned register variable Environment_Base_Register always has the same typeas the urrent environment and may be used if neessary to aess the environmentvalue. However, it may be used for setting the environment only in a routine that hasthe linkage none option (and then, only by experts). The ode generated by the Plusompiler assumes the environment is hanged only as allowed by the proedure all andentry sequene options, and hanges made at other times may not work as \expeted".4. External VariablesA variable may be delared external (see page 75). In this ase the ompiler will aessit through an external symbol referene. It will not alloate storage for the variable,either as a loal or global variable.External variables must be de�ned at load-time either by methods outside of the Pluslanguage (e.g., assembler), or by the use of an entry onstant.System 370 NoteExternal variables an be used to aess data in Fortran ommon bloks on theSystem 370. To do so, the external variable would be delared as a reord whose�elds orrespond to the variables of the Fortran ommon blok.Motorola 68000 NoteExternal variables are urrently assumed to be in the global data area. This islargely so that they an be de�ned by an entry onstant.

49Language Details5. Entry ConstantsA onstant delaration in Plus may inlude the spei�ation entry (see page 74), whihauses generation of an objet module ontaining the value of the onstant. This isnormally used with onstant arrays and reords to generate tables et. The onstant maythen be referened from other omponents or other languages by means of an appropriateexternal delaration.Implementation Restrition (Motorola 68000)When %Target_Operating_System has the value "MAC/MDS", entry onstantsare not implemented beause the basi MDS linker does not have the meha-nisms to initialize data areas.6. External SymbolsEah proedure, global blok, external variable, eah global variable whih is not a mem-ber of a global blok, and eah entry onstant, requires an \external symbol". Individualvariables within a global blok do not require external symbols.External symbols must obey restritions imposed by the system linker. In partiular, theMTS loader and *Link11 require that all external symbols be at most eight haraterslong. The Maintosh and AMIGA loaders do not impose suh a restrition.The external symbol to be used may be spei�ed by a string onstant in the delarationof a proedure or an external variable, or in the heading of a global blok. If an externalsymbol is not expliitly given, then the Plus identi�er is used. If this is longer than thesystem linker allows, the ompiler will form an external symbol. Plus/370 and Plus-11take the �rst four and last four haraters of the identi�er. The ompilers will hek,within a single run, that any suh generated symbols are unique; i.e, do not onit withother external symbols. It is unable to hek aross separately ompiled portions of aprogram.Note that the external symbol for a global variable whih is not part of a global blokis always obtained from its identi�er (if the external spei�ation is used, the variablebeomes an external variable, not a Plus global variable). To speify the external symbol,the variable must be enlosed in a global blok.Example:global Global_Onevariable V1 is (1 to 100);...end Global_One;variable External_One is (1 to 100);variable Caseonv is harater(256) external;proedure Pro1;proedure Pro2 external "P2";

50 Language Detailsdefinition Pro1global Global_Two external "G2"variable V2 is (1 to 100)end Global_Two;...end Pro1;definition Pro2...end Pro2;Using Plus/370 or Plus-11 in the above examples, Global_One is an external global withthe external name GLOB_ONE. The variables delared within it may be referened withinany proedure that follows. These variables are not external symbols. External_One is aglobal variable, with the external name EXTE_ONE whih may be referened anywhere inthe following proedures. Caseonv is an external variable whih must be de�ned outsideof Plus. Its external name is CASECONV; an alternate external symbol ould be spei�edby a string onstant following the keyword external. Global_Two has external name G2.The variables delared within it may be referened only within proedure Pro1, unlessthe de�nition of Global_Two is repeated elsewhere. Pro1 has external name PROC1, andPro2 has external name P2.The only di�erenes using Plus/68000 are that Global_One has the external nameGLOBAL_ONE and External_One has the external name EXTERNAL_ONE.7. MarosPlus urrently does not provide \internal proedures" as suh. However, maros areprovided to handle some of the situations where internal proedures might be useful.A maro assoiates a name with a piee of program text. The text is then substitutedinto the program whenever the name of the maro is subsequently enountered in anexeutable statement. Maros may have parameters, with the text given as the argumentwhen the maro is invoked being substituted for the parameter name in the maro body.Maro substitution is at the \lexeme" level. That is, the maro body or maro argu-ment is interpreted as a sequene of tokens (keywords, identi�ers, symbols), before anysubstitution ours. The sequene of tokens is substituted where the name of the maroor a maro parameter ours as an identi�er.The body of the maro may be either of two syntati onstruts|a parenthesizedexpression, or a sope blok. (Basially, a sope blok is a statement or sequene ofstatements.) A maro may only be invoked in plaes where the body is syntatiallyvalid.Maros are generally used for one of three reasons. They may be used to avoid theoverhead of a proedure all for small sequenes of ode required in several plaes. Theyare onvenient for de�ning interfae ode to non-Plus proedures, whih may requirethe use of Inline, and/or type heating of parameters. They are also useful for top-down programming, to allow a program to use a name for an ation that will be de�nedseparately.Maros may be de�ned either inside or outside of a proedure. Eah identi�er usedwithin a maro is normally assoiated with the de�nition in e�et at the point where

51Language Detailsthe maro is de�ned. It is possible, however, for a maro to have \free variables", whihare assoiated at expansion time. (Any identi�er whih is used in a maro, but is notde�ned at the point where the maro is de�ned, is assoiated at expansion time.)Further details and examples of maros are given in Setion Q, page 99.NoteMaros as desribed above may be removed from a future version of Plus infavour of internal or \inline" proedures. We reommend that maros be usedonly in ways that are ompatible with proedures.D. Identi�ersAn identi�er in Plus is a sequene of up to 100 haraters, whih may be letters, digits, or theharaters $, #, or _. The �rst harater may not be a digit. Upper or lower ase letters maybe used, but are onsidered equivalent. Thus the identi�er FALSE is the same as the identi�erFaLsE.1. Uses of Identi�ersIdenti�ers are used in Plus for the purposes listed below. Eah type of identi�er isdesribed in more detail elsewhere.a. Proedure Names|Proedure names are spei�ed in the proedure delarationsand in the proedure de�nition if it ours separately. They are used to invoke theproedure. See Setion C{6, page 49 for restritions on identi�ers used as proedurenames.b. Global Blok Names|Global blok names appear only in the heading of theglobal blok. Again, see restritions in Setion C{6, page 49.. Maro Names|Maro names appear in maro de�nitions and are used to invokethe maro.d. Symboli Constants|Symboli onstants are de�ned expliitly by means of theonstant delaration, or impliitly by ourrene of the identi�er in the list of an\identi�er-list type" de�nition, desribed in setion E{4, page 57.e. Type Identi�ers|Types may be given names in a type delaration. These namesmay then be used in any other situation requiring a type desription.f. Variable Names|Variables are delared with the variable and equate statements.Eah variable is assoiated with a type by its delaration.g. Proedure Parameters and Results|Proedure parameters and results aregiven names as part of the proedure type. Eah parameter and/or the result isgiven a type, and is treated as a variable of that type within the proedure de�ni-tion.h. Maro Parameters|Maro parameters are de�ned in the heading of the maro,but are not assoiated with types. Maro parameters may be replaed by expressionsof any type at maro expansion time. The spei�ed expressions must be type-ompatible with whatever ontext the assoiated parameters are used in.

52 Language Detailsi. Reord Fields|The de�nition of a reord type assoiates an identi�er with eah�eld of the reord. The reord �eld name is used to qualify the name of a variableof the reord type, in aessing the partiular �eld.j. Exit Labels|Certain onstruts in Plus may be labelled by preeding and follow-ing them with an identi�er enlosed in the symbols < and >. These labels are usedto designate the points to whih \esapes" may be made from within the onstrut.k. Compiler Variables|Compiler variables are speial prede�ned identi�ers whihare used to set and test various ompiler options. They always begin with %.l. Compiler Proedures|Compiler proedures, like ompiler variables, are identi-�ers beginning with %, and are used to invoke speial ompile-time ations of theompiler.2. De�nition of Identi�ersEvery identi�er used in a program must be de�ned, usually by an appropriate delarativestatement. There are a few built-in proedures and onstants whih are prede�nedidenti�ers.With one exeption, any identi�er must be de�ned before it is �rst used.The one exeption is that a pointer type desription may refer to an unde�ned identi�eras its objet type. This allows for irular de�nitions in reord types|e.g., a reord oftype T1 may have a �eld whih points to an objet of type T2, whih in turn may ontaina pointer to another objet of type T1.The type of the objet type identi�er must be de�ned before any exeutable statementwhih aesses the objet of the pointer. However, if no statement within the ompilationmanipulates the objet (i.e., dereferenes the pointer), the objet type is allowed toremain unde�ned. (This provides an aid to separate ompilation, sine a separatelyompiled proedure need only inlude delarations for those objets whih it manipulates,even if it referenes strutures ontaining pointers to other objets.)Examples:variables V1, V2 are pointer to Undef;...V1 := V2;V1� := 5;...type Undef is (1 to 100);V2� := 5;The assignment of V1 to V2 is valid, sine it does not aess the objet of the pointer. Thedereferening operator � (at sign) is used to aess the objet pointed at by its operand;hene the assignment to V1� will result in an error message beause the objet of V1 isof type Undef whih is not yet de�ned. The assignment to V2� is valid, sine the objettype is de�ned previously.3. Sope of Identi�ersIdenti�ers obey sope rules like those of Algol or PL/I. Identi�ers delared in one sopean be referened in any sope nested within it, unless the same identi�er is delared in

53Language Detailsa nested sope. Identi�ers may not be referened outside of the sope in whih they aredelared. Variables delared within a sope do not exist outside of that sope.The statement list inside any \braketed" ontrol struture forms a separate sope inPlus. Extra begin...end bloks are not required. A sope may ontain delarationsand exeutable statements intermixed.The use of unde�ned identi�ers as pointer objet types interats with the sope rules inthe following way. If an unde�ned identi�er ours as the objet of a pointer type in onesope, it is assumed to be impliitly de�ned in that sope. If it is subsequently used asthe objet of a pointer within a nested sope, the seond use will be assumed to referto the same type. In this situation, it will be invalid to de�ne the identi�er within thenested sope (whih would ause the pointer type in the outer sope to refer to a typede�ned in the inner sope).For example, in the sequenevariable V1 is pointer to Undef;begintype Undef is ...variable V2 is pointer to Undef;...endthe de�nition of Undef within the begin blok de�nes a new type. Therefore, the variablesV1 and V2 are of di�erent types. On the other hand, in the sequenevariable V1 is pointer to Undef;beginvariable V2 is pointer to Undef;...endthe use of the symbol Undef in the begin blok is assumed to be the same as the usethat is impliitly de�ned in the outer sope, and hene the two variables are of the sametype. If a subsequent statement within the begin blok attempts to de�ne Undef (as atype, or as anything else), an error message will be issued.E. Type DesriptionsA type is a desription of the values whih may be assigned to variables of that type. Thereare ertain basi salar types in the language, and rules for onstruting more omplex typeslike arrays and reords out of basi types.Type desriptions may appear in several ontexts in the language. The most importantontexts are variable and type delarations and in the desriptions of more omplex types.A type delaration simply assoiates an identi�er with a type desription. Thereafter, theidenti�er may be used in other type de�nitions in any ontext. The ability to give a nameto a type allows you to de�ne a type in one plae and then use it elsewhere without furtheronern for the details of its representation.

54 Language DetailsFor eah salar type, Plus provides a way of expressing onstants of the type. For eah type,ertain operations are allowed. Every expression has a type, derived from the types of theoperands and the operator involved.The following setions desribe the types provided and appliable operations.1. Numeri TypesA numeri type is a type whose values may be integers in a given range.Examples:type Number is (0 to 32767);type MTS_Line_Number_Type is (-99999999 to 99999999);/* False and True are predefined onstants. */type Boolean is (False to True)The operations de�ned for this type area. arithmeti operators +, -, *, / and mod,2 and unary operations +, - and abs.b. relational operators <, <=, >, >=, = and :=, whih perform an arithmeti ompare,giving a result of 0 (false) or 1 (true).Any numeri type is ompatible, for assignment and for all the above operations, withany other numeri type or with ertain bit types. The ompiler will optionally providerun-time range heking to detet assignments of values out of the delared range.2. Charater TypesA harater type is a type whose values may be harater strings. There are two kinds ofharater types, �xed length types and varying-length types. A varying-length haratertype is expressed by giving the range of lengths that assigned strings may be. (Thisinformation may be used for run-time heking, and also sometimes allows the ompilerto generate better ode.)The maximum length of a varying harater type is used in alloating storage for avariable of that type.Examples:/* Note Standard_String_Length and Max_Symbol_Length areonstants. */type Fixed_String is harater(Standard_String_Length);type Symbol is harater(0 to Max_Sym_Length)Operations allowed for harater types are onatenation (denoted by ||), and the re-lational (omparison) operators. There is also a built-in proedure Substring whihselets substrings of harater names or values, and a built-in proedure Length whihreturns the length of a harater value.
2 Note mod is an operator, not a built-in function. Thus it is used in an expression as X mod Y, not as mod(X,Y),

as Fortran programmers might expect.

55Language DetailsCharater types are ompatible, for the purposes of assignment and the above operations,with other harater types, even of di�erent lengths. Strings are never extended (withblanks or anything else) during operations. Charater types are also ompatible withertain bit types.The length assigned by an assignment statement is always determined from the soure(right-hand-side). It is an error to attempt to assign a value that is too long for thedestination. The ompiler will optionally generate ode to test at run-time for invalidstring-lengths that annot be deteted at ompile time.Charater omparison is done lexiographially. That is, "A" < "AB" < "B" < "BB".For strings of the same length, this is exatly what results for the System 370 from aCLC operation. For strings of di�erent lengths the number of haraters of the shorterare ompared �rst. If these are equal, then the shorter string is onsidered less than thelonger.Implementation Restrition (System 370)The urrent implementation heats slightly on this de�nition by omparing thestrings as if the shorter were padded with (binary) zeros to the required length.(Thus if one string is longer than the other, but ends in zeros, the strings maybe found equal, although the shorter might be less than the longer aording tothe de�nition.)Examples:String := "";String ||:= Integer_To_Varying(Count,0) || " reords"Note that ||:= has the e�et of appending the right-hand-side to the left-hand-side,provided the destination is a varying length string.3. Bit TypesBit types are a mahine-oriented type that allows speifying storage alloation in termsof a �xed number of bits. For example:type Mahine_Address is bit(24)Bit types will be oered when neessary to other salar types, so that bit values an beused to express other types in a mahine-dependent way.Plus distinguishes two kinds of bit types, right-justifying (or \index-like") bit types andleft-justifying (or \string-like") bit types. The distintion is important when bit-typesof di�erent lengths are mixed in expressions, or when bit-types are mixed in expressionswith other salar types. The distintion is usually based on the word-size of the objetmahine. In the following disussion, Word_Size is 32 for the 370 and 68000 ompilersand 16 for the PDP-11 ompiler.A bit-type is usually interpreted as right-justifying if its length is less than or equal toWord_Size, and as left-justifying if its length is greater than Word_Size. The attributeleft may be used in a type desription to fore a short bit-type to be treated as left-justifying. The urrent implementations require that a right-justifying bit-type have

56 Language Detailslength <= Word_Size. The 370 and 68000 implementations further require that a right-justifying bit type must be ontained within four or fewer bytes. The PDP-11 ompilerrequires that it be ontained within a word (i.e., it may not ross a word boundary).A left-justifying bit-type must have a length whih is a multiple of 8 bits, and must bealloated at a byte boundary.Right-justifying bit-types are ompatible with any index-type (de�ned on page 58), in-luding other right-justifying bit-types of di�erent lengths. They are also ompatiblewith left-justifying bit-types of the same length. Right-justifying bit-type values will beoered to other index types if used as operands of operators requiring another type.Note that in the oerion to an index type, some right-justifying bit-types are treated assigned and some are not, depending on the atual bit length. It is up to the partiularimplementation to determine whih bit lengths will be signed and whih will not.A left-justifying bit-type is ompatible with any harater type, with other left-justifyingbit-types (of any length) and with right-justifying bit-types of the same length. Left-justifying bit types of length n behave similarly to harater-types of length n=8.The logial operators |, &, xor and : are de�ned for ompatible bit-types. (That is,for types of the same justi�ation or the same length.) Index types will be oeredto right-justifying bit-types (of length Word_Size), and harater types will be oeredto left-justifying bit-types if they are used as operands of these operators. When theoperators are applied to a pair of left-justifying operands, the bit-strings are aligned atthe left end, and the length of the result is the length of the shorter. When applied toa pair of right-justifying operands, the right ends are aligned, and the result is always abit string of length Word_Size. When one operand is left-justifying and the other right-justifying (in whih ase the lengths must be the same), the result is a right-justifyingbit(Word_Size).When omparison operators <, <=, > and >= are used to ompare two bit-types, anarithmeti omparison will be performed if the types are right-justifying or of oppositejusti�ation and a logial omparison if they are left-justifying. The Left_Justifybuilt-in funtion an be used to oere a right-justifying operand into a left-justifyingexpression.System 370 NoteWord_Size is 32 for Plus/370 and bit(16) and bit(32) are signed. A right-justifying bit type must be ontained within four or fewer bytes.PDP-11 NoteWord_Size is 16 for Plus-11 and bit(16) is signed. A right-justifying bit typemust be ontained within a word (i.e., it may not ross a word boundary). |,& and : are not implemented for left-justifying bit types (exept for onstantexpressions).Motorola 68000 NoteWord_Size is 32 for Plus/68000 and bit(16) and bit(32) are signed. A right-justifying bit type must be ontained within four or fewer bytes.

57Language Details4. Identi�er-List TypesThe identi�er-list type allows you to reate new basi types by enumerating a list ofidenti�ers whih are to be the elements of the type.Example:type Devie_Type is (Printer, Reader, Punh, Tape_Drive, Disk_Drive,Terminal)The elements of the identi�er list are automatially delared to be symboli onstants ofthe given type (and must therefore not be previously delared in the same sope).The ompiler is free to hoose an appropriate internal representation for eah element ofthe type. In fat, the representation used will be suessive integers, starting with zero,but you annot make use of this fat exept by type-heating.The relational operators are de�ned for identi�er-list types, with the values onsideredordered as they appear in the identi�er list (the �rst is smallest). Values of an identi�er-list type are ompatible only with other values of the same type, or with right-justifyingbit types.5. Real TypesReal types are used for oating-point numbers. The type de�nition spei�es the numberof deimal digits of preision wanted.Examples:type Short_Real is real(7),Long_Real is real(16);variable V1 is real(5),V2 is Long_RealReal types are ompatible with bit types of appropriate size.System 370 NoteFor the 370 implementation, the preision n in real(n) is interpreted as1 <= n <= 7 results in 370 single preision (4 bytes)8 <= n <= 16 results in 370 double preision (8 bytes)17 <= n <= 34 results in 370 extended preision (16 bytes)Currently, real variables of di�erent sizes annot be mixed, even aross assign-ment, so it is neessary to use type heating or Inline to assign from a real ofone size to a real of another.Currently, there are no operations implemented for real types, exept assign-ment. Comparison operations may be used, but will perform a logial ompari-son (string omparison), not a oating point omparison.Implementation Restrition (PDP-11)Real types are not implemented for Plus-11.

58 Language DetailsImplementation Restrition (Motorola 68000)Real types are not implemented for Plus/68000.6. Index TypesA ertain subset of the preeding salar types are known as index types. Index typesmay be used for ontrol variables in do loops, for subsripting arrays, and in ertain otherontexts. The index types inlude all numeri types, identi�er-list types, harater(1)types, and right-justifying bit-types.The built in proedures Low_Value, High_Value, Suessor, Predeessor, Min, andMax are de�ned for any index type.7. Subrange TypesAny subrange of an index type is itself an index type. Subranges are indiated by givingthe lowest and highest values of the type. (In fat, any numeri type is really a subrangeof a prede�ned, unspei�able type `integer'.)Subrange types allow the same operations as their \base type". Any subrange is om-patible with any other subrange of the same type.Examples:/* Following is a subrange of Devie_Type */type Unit_Reord_Type is (Reader to Punh);/* Following is a subrange of type harater(1). */type Digit is ("0" to "9")8. Set TypesImplementation Restrition (all ompilers)Set types and all related operations are urrently not implemented.Set types allow de�ning variables whose values may be arbitrary sets of values from agiven index type. Sets provide a very onvenient way of expressing some programmingonstruts that in other languages would have to be represented by arrays of Booleansor bit strings.Example:type Mts_Modifiers_Type is (Indexed, Binary, Carriage_Control, Prefix,Peel, Mahine_C, Trim, Speial, I, Case_Conversion);variables Required, Exluded are set of Mts_Modifiers_TypeA variable of type Mts_Modifiers_Type an be assigned a set of values; e.g.,

59Language DetailsRequired := {Indexed, Trim};Exluded := {Carriage_Control, Case_Conversion}Theoretially, any index type an be used as the base of a set, although there will besome implementation restrition on the possible size of the range. Sets are implementedusing bit strings. The presene of an element in the set is indiated by an on-bit.The set braes { and } (the alternative notation (| and |) may be used for devies whihhave no left-brae and right-brae) allow onstrution of sets. The operators |, & and- are de�ned to mean set union, intersetion, and di�erene when applied to set types.The relational operator subset an be used to test whether one set value is a subset ofanother. The relational operator in an be used to test whether a partiular value ofthe base type is in a given set.Values of two set types are type-ompatible if their \base types" are ompatible. That is,set of (1 to 10) is ompatible with set of (5 to 20). The result of a set operationon these two might be of type set of (1 to 20).A value of a salar type will be oered into a set ontaining only that value when ontextrequires it. For example:Required |:= Iis equivalent toRequired |:= {I}whih meansRequired := Required | {I}This therefore has the e�et of adding the value I to the set Required.A type-identi�er for an index type may be used in a ontext requiring a set of that type,and is equivalent to the set ontaining all values of the index type.Sets frequently allow the onstrution of eÆient algorithms whih would be diÆult todo in most high-level languages. The above example indiates how a onept similarto the MTS I/O modi�er pairs might be expressed in this language. Instead of usingadjaent pairs of bits for modi�ers, two sets are used. The set Required spei�es thoseoptions whih have been seleted (e.g, �I results in I being plaed in set Required).The set Exluded spei�es those modi�ers whih are spei�ally not to be applied (e.g,�:I results in I being plaed in set Exluded). With this sense of modi�ers, themodi�er amalgamation algorithm required to ombine the Fdname modi�ers3 with theoperation modi�ers an be expressed as:Combined_Required := (Fdname_Required - Op_Exluded) | Op_Required;Combined_Exluded := (Fdname_Exluded - Op_Required) | Op_ExludedThis will generate ode that is very nearly as good as that in the assembler version.
3 Under MTS, I/O modifiers may be specified as part of a “file or device name” to apply to all operations on that

Fdname, and may also specified on each I/O operation. At each level, the modifier may be asserted as “on” or

“off” or defaulted. In case of conflict, the operation modifiers have precedence over the Fdname modifiers.

60 Language DetailsAs a �nal example, note the following is allowed:if Devie in {Reader, Printer}then...end;This means the same asif Devie = Reader or Devie = Printerthen...endbut the �rst will generate better ode, and is probably at least as easily understood.9. Array TypesAn array type is onstruted out of two other types, an index type (whih de�nes thetype and range of the subsripts allowed) and an arbitrary type whih de�nes the typeof the elements. Note that any index type is allowed as the subsript type. It is possibleto have arrays indexed by harater, or by identi�er-list types, as well as by numbers.Examples:variable Translate_Table is array harater(1) of harater(1);type Symbol_Array is array (1 to Max_Number_Symbols) of SymbolThe elements of an array may be of any type, inluding another array type. Thus multi-dimensional arrays an be onstruted out of arrays of arrays. Note that there is no wayto de�ne an array whose size is determined at run-time (but see Chapter VIII, page 140).The only operations that an be performed on arrays are assignment, subsripting andomparison. An array of a given type an only be assigned to an array of the sametype. Subsripting is denoted in the usual way, by means of a parenthesized expressionfollowing the array name. The subsript expression must be type-ompatible with thespei�ed index type of the array, e.g.Translate_Table("a") := "A"Two arrays of the same type an be ompared, using the operators = and := only.However, some aution is required when omparing entire arrays. In some ases, thealloation of an array may require padding elements to maintain alignment requirements.When arrays are ompared with a single omparison, this padding will be inluded inthe loations ompared. The result of the omparison may then be inorret, sine thepadding bytes are likely uninitialized. This situation is not deteted by the ompiler.For onveniene in aessing elements of arrays of arrays, multiple levels of parenthesizedexpressions may be ondensed into an expression list. For example, given the delarationvariable Matrix is array (1 to 10) of array (10 to 20) of Numberthe I,J'th element may be referred to as either

61Language DetailsMatrix(I)(J)or Matrix(I,J)When a onstant subsript is applied to a onstant array, the result is a onstant whihmay be used in any ontext requiring a onstant. A variable subsript applied to aonstant array does not result in a onstant, sine it requires a run-time alulation.Hene it annot be used in ontexts requiring a onstant.10. Pointer TypesPointers in Plus must usually be de�ned in terms of the type of objet that they point to.This allows full heking of the types resulting from use of the pointers. Given any type,pointer to that type is another valid type. The values of the pointer type are addressesof variables of the objet type. It is also possible to have a pointer to a onstant. In thisase the value will be the address of a loation ontaining that onstant. See Setion H,page 81.Example:variables First_Elem, Last_Elem are pointer to Symbol_Table_ElementThe suÆx operator � may be used to follow (or \dereferene") a pointer. The result ofapplying this operator is a name of an element of the given objet type. (If the pointeris a pointer to a value, � results in a value, not a name.)A pointer to a variable is reated by means of the built-in proedure Address. Theargument of Address must be a name or a onstant of any type. The result is a valueof type pointer to the type of the argument. Thus,variable Item is Symbol_Table_Element,First_Elem is pointer to Symbol_Table_Element;First_Elem := Address(Item)will ause the variable First_Elem to be assigned a pointer to the variable Item.The relational operators (=, :=, <, <=, >, >=) are allowed for pointers.A pointer value is ompatible with a pointer name (for assignment or omparison) only ifthe objet types, and the ranges and attributes of the types are ompatible. For example,given the delarationsvariable V1 is pointer to (1 to 100);variable V2 is pointer to (50 to 200)assignment of V1 to V2 or vie-versa would not be allowed beause the ranges are di�erent.(This strit type ompatibility is neessary to enfore range-heking of assignments.)In general, pointer assignment is permitted in situations whih don't allow violatingrange delarations or \orrupting" values.More spei�ally, a pointer to value T annot be assigned to a pointer to T, buta pointer to T an be assigned to a pointer to value T. The range restritions on

62 Language Detailspointer assignments are relaxed slightly in the presene of value. For example a pointerto (1 to 5) an be assigned to a pointer to value (0 to 10) and a pointer toharater(0 to 10) an be assigned to a pointer to value harater(0 to 100).The range (or length range) of the right-hand-side of the assignment must be withinthat of the left-hand-side. The ranges or attributes must still be suh that the storagerepresentations of the objet types are the same. Thus a pointer to (1 to 5) annotbe assigned to a pointer to value (0 to 10000), beause the �rst numeri type usesone byte while the seond uses two bytes.The prede�ned onstant Null is ompatible with any pointer type. It may be used as adistinguished value to indiate the end of a linked list, et.The speial type unknown may be used as the objet of a pointer type.4 The typepointer to unknown is ompatible with any other pointer type, but values of this typemay not be used to aess an objet. The result of dereferening a pointer to unknownis an expression of type unknown. This annot be assigned to or fethed. It is possible tospeify its type with an open or equate statement however, or to pass it on to a proedureexpeting a referene parameter.Type pointer to unknown is intended for use in interfaing to external (non-Plus)subroutines for whih it is not onvenient or not reasonable to provide a proper typede�nition for all parameters. Variables of type pointer to unknown may also be used asa way of type-heating, to onvert one pointer type to another. (The equate statementprovides a muh more diret way of performing suh type heating.)11. Reord TypesA reord type is used to group a series of items of other types as one oneptual unit.Eah item of the reord is alled a �eld and is named with an identi�er. The end of areord type is spei�ed by end or end reord.Example:type Symbol_Table_Element isreordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referene_Count is IntegerendAssignment of reord types is allowed. The variables assigned must be the identialreord type (see Setion K{3 in Chapter II, page 21). The operation of �eld seletion,indiated by \." is also de�ned. Thus givenvariable Sym is Symbol_Table_Elementthe �eld Referene_Count of variable Sym is aessed as inSym.Referene_Count := 0Field seletion may be applied to expressions whih result in a reord; for example
4 Or, equivalently, as the type of a referene parameter in a procedure type description.

63Language DetailsFirst_Elem�.Referene_Countaesses �eld Referene_Count of whatever reord First_Elem points at. If the expres-sion results in a name, then the result of the �eld seletion is a name; if the expression isa value the result of �eld seletion is a value. If the expression is a onstant display, the�eld seletion will result in a onstant|the value will be determined at ompile time.Note that in order to referene a �eld of a reord, full quali�ation is normally required.The open statement, desribed in Setion N, page 94, provides a way of eliminating someof the quali�ation.Comparison operators = and := are also allowed for reords, but with the same aveatas for array types: there may be padding bytes within the reord layout whih are notinitialized and hene lead to spurious results when the reords are ompared.12. Variant Fields in ReordsA reord type desription may inlude a setion at the end whih may ontain di�erenttypes of items under di�erent irumstanes. Suh an area is alled a variant part. Theheading of the variant part normally de�nes a seletor �eld whose value determineshow the remainder of the variant is supposed to be interpreted. It is permissible to omitthe seletor �eld.Example:type Symbol_Table_Element isreordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referene_Count is Integer,variant Devie of Devie_Type fromase Reader, Printer, Punh:Reord_Length is Integerase Disk_Drive:Blok_Size is Integerase Terminal:Rows, Columns are IntegerendDevie is de�ned as a �eld of the reord type, whih is alled the seletor �eld. Thevalue of this �eld is supposed to determine whih of the ases that follow is in e�et.The ases following may ontain arbitrary lists of �eld de�nitions. The storage for anyase overlays that of the other ases. The labels on the ases identify the values of theseletor �eld for whih the shared storage area should be interpreted aording to thefollowing �eld list. There may be more than one value spei�ed as part of a ase label.The seletor �eld is not set automatially when the variant �elds are hanged. Variantreords provide one way of type-heating in Plus, sine it is possible to store into ashared area by referening it with one �eld name and retrieve from it via another name,assoiated with a di�erent type. However, the equate statement provides a muh morediret way of type-heating.The ompiler may eventually provide optional run-time failities to hek orrespondeneof referened �elds and the value of the seletor �eld. The seletor �eld may be omitted

64 Language Details(by simply not speifying an identi�er). In this ase, of ourse, no run-time heking ispossible. Note that a seletor type and ase labels of that type are still required in thedesription of a variant reord. For example:type Symbol_Table_Element isreordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referene_Count is Integer,variant Devie_Type fromase Reader, Printer, Punh:Reord_Length is Integerase Disk_Drive:Blok_Size is Integerase Terminal:Rows, Columns are Integerendis similar to the previous example, but there is no �eld Devie in the reord. Theappliation program using suh a variant reord is assumed to know by ontext whihvariant applies.A given reord type an only ontain one variant part whih must always be at the endof the reord. However, any �eld may be a nested reord type whih itself has a variantpart.13. Proedure TypesA proedure type de�nes the names and types of the parameters and result of a lass ofproedures.The parameters and/or result are spei�ed in a de�nition similar to a reord de�nition.Proedures with no parameters and no result are spei�ed as typeproedureendThe parameters and result names and types are spei�ed similarly to reord �elds, as in:type Table_Searh_Proedure isproedureparameter Element is Symbol,referene parameter Aesses is Integerresult Position is Array_Indexend;/* Proedure with result but no parameters. */proedure Getsym isproedureresult Sym is Symbolend

65Language DetailsThe keyword referene preeding a parameter spei�ation auses the parameters thatfollow to be passed by referene instead of by value. The orresponding arguments of aall of the proedure must be names or onstants of the appropriate types; the addressesof the arguments are passed. A onstant may only be used if the parameter type spei�esthe attribute value. The e�et is exatly the same as delaring the parameters as typepointer to ..., using the Address proedure in the all to obtain the pointer to pass,and then dereferening the parameter at eah use in the alled proedure.The keyword name may be used instead of referene. This is a mostly-obsolete feature.name ats just like referene from the point of the alling routine (i.e., the addressof a variable is passed). Automati dereferening is not done inside the alled routine,however. That is, the parameter will appear as a pointer within the alled routine.Optional parameters may be spei�ed following the keyword optional. Any optionalparameters must follow all required parameters in the parameter delarations.For example, givenproedure Pro2 isproedureparameter P1 is (1 to 100),optional parameter P2 is harater(1),P3 is (1 to 100),optional referene parameter P4 is (1 to 100)endall the following would be legal alls of this proedure:Pro2(1, "A", 10, X);Pro2(1, "A", 10);Pro2(1, "A");Pro2(1);Proedures written in Plus may have optional parameters; however, there is urrently nobuilt-in way for them to determine the number of parameters that were passed.System 370 NoteFor ompatibility with Fortran or other Type I, S-type linkage routines, if thelast parameter passed is a referene (or name) parameter it will be agged inthe high-order bit. If it is not a referene-parameter, then the alled routine willhave to have some way of determining the number of parameters for itself.There is urrently no built-in method for a proedure written in Plus to test thishigh-order bit in order to determine how many parameters were passed (but seeChapter VIII, page 141).A group of parameters that may be repeated an arbitrary number of times may bespei�ed following the keyword repeated. This is only useful in interfaing to non-Plusroutines, sine there is urrently no way of aessing the parameters from within a Plusproedure. For example, given

66 Language Detailsproedure Pro3 isproedureparameter P1 is (1 to 100),repeated parameter P2 is (1 to 100),P3 is harater(1)endAll the following would be allowed:Pro3(X);Pro3(X, 1, "A");Pro3(X, 1, "A", 2, "B");...But not:Pro3(X, 1, "A", 2)Implementation Restrition (all ompilers)Repeated parameters are not implemented yet.Parameters may be passed in registers by using the register spei�ation in the param-eters delaration. Similarly, the result of a proedure may be delared to be returnedin a register or several registers.5 See Setion G{5, page 75 for details of the registerspei�ation.The delaration of register parameters or result only ontrols the way that the parame-ter/result passing is implemented. Within the body of a proedure, the parameters/resultare not neessarily retained in registers.The result of a proedure may be delared to be optional. This just means that the pro-edure may be used in either an expression ontext (requiring a result) or in a statementontext (the result is to be ignored).Example:proedure Read issystem proedurereferene parametersBuffer is unknown,Buffer_Length is Number,Modifiers is MTS_Modifier_Reord_Type,Line_Number is MTS_Line_Number_Type,Fdub is Fdub_Typeoptional resultIo_Result is Dsri_Return_Typesend
5 Note that the normal System 370 Type I linkage convention (result in register 0) is not currently assumed, even for

procedures with the system attribute or linkage specification. It must be explicitly stated in the type declaration.

67Language DetailsThis might be used as inNotifiation := Read(Buffer ...)or (when the result is to be ignored):Read(Buffer ...)There is also an \unspei�ed" proedure type. The syntax isproedureunknownendAn unknown proedure annot be alled, but it an be passed as a parameter or assignedto a proedure variable. The type proedure unknown end is ompatible with any otherproedure type. (It is analogous to the pointer to unknown type). It is intendedfor use in de�ning variables and parameters whih take di�erent types of proedurevalues, depending on ontext. Some kind of type heating is neessary if the proedureis eventually to be alled.The type attributes system and environment ... may be applied to a proedure typedesription. Both a�et details of the proedure all. See Setion F, pages 69 and 71 fordetails.Proedure type values are ompatible only with other values of the idential type, withthe prede�ned onstant Null, or with the \unknown" proedure type. All parameterlessproedures are onsidered ompatible.The only operations implemented for proedure types are assignment, proedure alling,and omparison. Comparison of proedure values may speify only = or :=.14. Global typesGlobal types are used only for values to be used as the \global storage environment" ofa proedure.Example:variable Pset is global("TEST")The variable Pset holds a value whih may be used to set the global storage for proe-dures whih are de�ned to require environment global("TEST").The expression in parentheses following the keyword global is alled the global id. Itis a bit(32) onstant, or other onstant that is ompatible with bit(32).The global id serves only to identify a lass of ompatible proedure environments. Twoglobal types are ompatible if and only if their global ids are equal. Global types arealso ompatible with the prede�ned onstant Null.The operations of assignment and omparison (<, <=, =, :=, >, >=) are de�ned.For details of proedure environments see Setion C{3, page 46.

68 Language DetailsImplementation Restrition (PDP-11)The type global(...) is not implemented for Plus-11.F. Type AttributesThere are a number of attributes that an be applied to a type desription. Attributes alwayspreede the type desription and modify its interpretation in some way.1. AlignedThe aligned attribute is used to speify alignment of variables of a given type.For the purposes of this attribute, the objet mahine is assumed to have a bit-address-able memory. Aligned spei�es an alloation boundary requirement, an optional o�setfrom that boundary, and whether the left or right end of the variable is to be so aligned.This attribute an only be used to strengthen the default alignment of a variable. Forbit types, the alignment spei�ation also overrides the default left- or right-justi�ationof the type.Examples:type Aligned_Chars is aligned 64 left harater(4);Variables of this type are 4-byte harater �elds, aligned suh that the left-hand end isat an address whih is a multiple of 64 bits (i.e., doubleword aligned).type Bit_24 is aligned 8 in 32 left bit(24)Variables of this type are aligned suh that the left-hand end is 8 bits from a fullwordboundary. This is the same as speifyingtype Bit_24 is aligned 32 right bit(24)exept that the �rst would also ause type Bit_24 to be a left-justifying bit type, whilethe seond would ause it to be right-justifying.Aligned does not a�et the alloated size of a variable. It just inserts or removes \�ller"bytes to ensure the requested alignment.type Aligned_Byte is aligned 32 right bit(8)A variable of this type oupies a single byte, alloated suh that the right-hand end ison a fullword boundary.System 370 NoteFor the 370 implementation, the boundary spei�ation may be a number from1 to 64. The o�set may be a number from 0 to the spei�ed boundary. For indextypes, the variable must be ontained entirely within four or fewer bytes.PDP-11 NoteAligned is ignored by the PDP-11 ompiler, exept for the �elds of a reord. Forindex types, the variable must be ontained entirely within a (16-bit) word.

69Language DetailsMotorola 68000 NoteFor Plus/68000, the boundary spei�ation may be a number from 1 to 64. Theo�set may be a number from 0 to the spei�ed boundary. Note, however, thatmany storage alloation mehanisms only give 16-bit alignment whih mightresult in variables only being 16-bit aligned during exeution.For index types, the variable must be ontained entirely within four or fewerbytes.2. EnvironmentThe environment attribute is allowed only for proedure types. It spei�es the type ofglobal storage environment that must be in e�et when the proedure is alled.Example:proedure Getfrom is environment Dsr_Pset_Typeproedure...endThe attribute keyword environment must be followed by a type desription for theenvironment of the routine. The environment type must be one ofa. global(n) where n is a bit(32) or ompatible onstant. This indiates that theproedure uses a pseudo-register vetor (\PRV") for its global storage. The onstantvalue is required to distinguish distint PRV environments. The default for theenvironment attribute is global(%Global_Id).b. unknown. The proedure's global environment is unde�ned. It may be alled withany environment, and may make alls to proedures of any environment. You mustensure all suh alls provide a suitable environment.. pointer to r , where r is a reord type. This means that the global environmentis de�ned by the spei�ed reord. For the System 370, to be usable as a globalenvironment the �rst part of the reord must have a spei� format, as desribed inAppendix D.Implementation Restrition (PDP-11)environment isn't implemented for Plus-11.See Setion C{3, page 46 for further information about proedure environments.3. FastThis attribute requests the ompiler to alloate variables of the type in suh a way thataess to them is fast if possible. This may mean using a register, or alloating in ahalfword rather than a byte, et.Example:type Subsript_Type is fast (1 to 100)

70 Language Details4. LeftThe attribute leftmay be used to fore a type (normally, a bit type), to be left-justifying.Example:type Four_Chars is left bit(32)5. PakedThe paked attribute is used to request that items of the type be storage paked verylosely. This generally means there will be no slak bits left exept as required byalignment onsiderations.Example:type T1 is paked (0 to 15);variable V1, V2 are T1Without the attribute paked, V1 and V2 would eah be alloated in a separate byte.With the attribute, the two will be paked into one byte.paked may be spei�ed for the �elds of a reord type, or the element type of an array,in order to ause the data struture to be paked.Examples:type Flags isreordF1, F2, F3, F4, F5, F6, F7, F8 are paked Booleanend;type Flag_Array is array (0 to 7) of paked BooleanBoth the above data strutures use only a single byte, with eah element oupying onebit.Note that speifying paked for an overall reord type does not ause the elements withinit to be paked. Thustype Flags is pakedreordF1, F2, F3, F4 are Booleanendwould oupy four bytes. The attribute in this ase only a�ets the overall alloationof variables of type Flags. Sine they would be byte-aligned anyway, it atually has noe�et.The objet of a pointer type may speify paked only if the type oupies an integralnumber of bytes, so that all objets of the type will start at an exat byte address.System 370 NoteFor index types, a variable must be ontained in four or fewer bytes.

71Language DetailsPDP-11 Notepaked is ignored by the PDP-11 ompiler exept when applied to the �elds of areord. Paked �elds of a reord are alloated starting from the least signi�antbits of eah word. For index types, a variable must be ontained entirely withina (16-bit) word.Motorola 68000 NoteFor index types, a variable must be ontained in four or fewer bytes.6. RightThe attribute right may be used to fore a type (normally, a bit type), to be right-justifying.Example:type Fullword is right bit(32)7. Smallsmall requests the ompiler to optimize the size of the type in preferene to the aesstime. It does not result in the extreme storage paking fored by the paked attribute. Itis the inverse of the attribute fast. Sine small is the default, it is never really needed.8. SystemThe attribute system may be spei�ed only for a proedure type. It indiates that allsto the proedure must be ompatible with the standard linkage used in the operatingsystem.The system attribute a�ets only the ode generated for proedure alls and is gener-ally used for delaring proedures written in another language. It does not a�et theentry/exit ode generated as part of the proedure de�nition if the proedure is writtenin Plus. See the linkage option in Setion P, page 96 for related information.System 370 NoteFor the 370 version, the system attribute guarantees ompatibility with the OSType I linkage.The linkage onventions used internally in Plus are undergoing a hange at thetime of this edition of this doument. For the older version (%Linkage="OLD"),the attribute system has no e�et. With the newer version, %Linkage="NEW",this attribute auses the proedure all to update a stak desriptor, so that itis later possible for the OS linkage routine to all bak to another Plus linkageroutine.PDP-11 NoteThe attribute system is ignored by Plus-11.

72 Language DetailsMotorola 68000 NoteFor Plus/68000, the e�et of the system attribute depends on the %Target_Operating_System ompiler variable.When %Target_Operating_System has the value "MAC/MPW" or "MAC/MDS",then the system attribute auses the ompiler to generate a speial instru-tion to all the proedure, usually an \A-line trap". The atual instrution usedis given by the external name of the proedure, whih must be an even num-ber of bytes (haraters) in length, usually spei�ed as a hexadeimal onstant.Note that this implies that there annot be variables of a system proeduretype, as there is no implemented way to all them.When %Target_Operating_System has the value "AMIGA", then the systemattribute auses the ompiler to all the proedure via an o�set from the globalbase register (whih may �rst be loaded by any with phrase in the proedureall). This is used to all \system library" routines.For example with the Maintoshproedure Set_Port is systemproedureparameter Gp is Graf_Ptrend external 'A873'de�nes the Set_Port routine to be the A-line trap A873. For the AMIGA,proedure Open_Window_Proedure isenvironment pointer to Intuition_Base_Typesystem proedurereferene parameter New_Window is value New_Window_Typein register A0,result Window is pointer to Window_Typein register D0,end external "_LVOOpenWindow"de�nes the window opening proedure for the \Intuition" library. When this proedureis alled, the all will be made relative to the Intuition_Base_Type that is supplied onthe all.See Appendies D, E and F for further information about Plus linkage onventions.9. ValueThe value attribute spei�es that names of the type are to be automatially denamedinto values whenever referened in the program. Thus, the value attribute preventsassignment. It is mainly used as an attribute of the objet type for a pointer, in orderto allow the pointer to point to a onstant.For example, givenvariable P is pointer to value harater(10)the assignment

73Language DetailsP� := "abdefghij"would be invalid, sine dereferening P produes a value, whih annot be assigned to.The ompiler knows that the objet pointed at by P annot be hanged, so P is allowedto point to a onstant:P := Address("ABCDEFGHIJ")would be allowed. The Address funtion produes a pointer to a value when its argumentis a onstant. This an only be assigned to a type with the value attribute. The pointervariable with the value objet may, however, have a pointer to a name assigned to it.The attribute value may also be useful when an external variable is to be treated as\read-only" within the program. For example:variable Caseonv is value harater(256) externalguarantees that the ompiler will issue an error message if the program ontains anystatement that might attempt to store in Caseonv (either diretly or indiretly via apointer).G. DelarationsThe onstant, variable and type delarations have similar syntax. Examples of delarationsare: onstant Max_Sym_Length is 10;type Symbol is harater(0 to Max_Sym_Length);variable Msg is pointer to Stream_Type;proedure Getsym isproedureresult Sym is SymbolendA list of identi�ers may appear where the single identi�er is delared in eah of the above (onthe left of the keyword is). It is also permissible to ombine a series of delarations with asingle use of the appropriate keyword. Thus:variables Low, High, Pos are Array_Index,Str is Varying_String1. Constant DelarationsThe onstant delaration is used to assoiate an identi�er with a onstant value of anytype. The value may be expressed as a onstant or as an expression all of whose terms areonstants. One a onstant-identi�er has been delared it may be used in any situationrequiring a onstant.Examples:onstant Max_Sym_Length is 10;onstant Max_Number_Symbols is 600

74 Language Details2. Entry Spei�ationA onstant delaration may speify the keyword entry following the onstant expression.This auses the onstant to be generated as a separate set in the objet module.Example:type Proedure_Vetor_Type is array (Open#, Do_It, Close) ofproedureend;onstant Proedure_Vetor is Proedure_Vetor_Type(Open_Proedure,Do_It_Proedure, Close_Proedure) entry "PROCVECT";will produe a set ontaining the addresses of the three proedures.The entry keyword may be followed by a string speifying the external symbol to use|PROCVECT in the above. If the external name is not given, it will be generated from theonstant identi�er by taking the �rst four letters and the last four letters.Entry-onstant delarations are most often used with struture (array and reord) on-stants, so that eah routine referening the onstant doesn't have its own opy of theonstant.For simple onstants, it is possible that a routine may have its own opy of the onstantvalue, even if an entry onstant delaration is used to de�ne it. This is beause theompiler uses various tehniques in aessing onstants, some of whih do not atuallyrequire a value in the literal pool of the program.Implementation Restrition (Motorola 68000)When %Target_Operating_System has the value "MAC/MDS", Plus/68000 doesnot implement entry onstants, due to limitations in the MDS linker.3. Type DelarationsThe type delaration is used to assoiate an identi�er with a type desription. Manyexamples have already been given.It is not neessary to assoiate an identi�er with every type by means of a type dela-ration. It is perfetly permissible to use the type desription diretly within a variabledelaration. However, be warned that Plus does absolutely no equivalene alulationsfor reord, array or proedure types in determining type ompatibility. For these types,a single type desription is required, either by using a type delaration, or by delaringall relevant variables in the same variable delaration. See Setion K{3 in Chapter II,page 21.4. Variable DelarationsThe variable delaration is used to alloate storage for a variable of a spei�ed type.Alloation for loal variables is normally done on a stak, whih is pushed and poppedat proedure entry and exit only. The stak-top at di�erent points within a proedure(i.e., as sopes are begun and ended) is determined at ompile time. Global variables arealloated in global storage at program load time.

75Language DetailsIt should perhaps be noted, for those familiar with Algol-W reords, that reords in Plusare treated no di�erently from any other type. They are not dynamially reated byreferenes to them.An external dynami-alloation mehanism is easily implemented within the languageby de�ning a routine to return a pointer to a reord of the required type. This routineould then alloate a reord by alling the MTS Getspae routine.5. Alloation Spei�ationsThere are several additional spei�ations that may appear in the variable delaration,following the type. They a�et the way the variable is alloated or aessed.a. External AlloationThe external phrase may be used in a variable delaration to speify that thevariable is alloated (at load time), externally to the Plus program. This is typiallyused to aess tables de�ned by other programs. Plus entry onstants may also beused to de�ne suh tables.The external symbol to be used may also be spei�ed as a string onstant followingthe keyword external. If the symbol is not spei�ed, one is generated from thevariable name, as desribed in Setion C{6, page 49.Example:variable Caseonv is harater(256) external;variable Parsetab is Syntax_Tables_Type external;variable Asii_To_Ebdi is harater(256) external "ASCEBC"b. Register AlloationThe delaration of a variable may speify that the variable is to be alloated in ageneral register or a range of ontiguous registers.This spei�ation may also be applied to the delaration of proedure parametersand results in a proedure type desription. When it is used for parameters orresults, the spei�ation a�ets only the way that the data is passed between thealler and alled proedure. It does not neessarily ause the variable to remain ina register inside the alled proedure.Examples:variable Temp is Integer in register; /* any register may be used. */variable Temp2 is Integer in register 2;proedure Freespa issystem proedureparameter Flag is Fullword in register 0referene parameter Loation is unknown in register 1end;

76 Language Detailsproedure Julgrgtm issystem proedureparameter Jultim is Integer is register 1result Grgtim is harater(16) in registers 0 to 3endThe ompiler may reserve ertain registers for its own use and not allow themto be used for register variables. Eah ompiler provides ertain prede�ned registervariables that allow aess to any reserved registers that may have to be manipulatedfor speial linkage appliations. See Setion R, page 100 for details. An errormessage will be issued if you attempt to use a register that is in use by the ompiler.The register spei�ation may be used for eÆieny reasons, to assist the ompiler inode-generation. However, we expet the ompiler to do a reasonable job of registeralloation (eventually).The register spei�ation should also be used in onjuntion with the Inline proe-dure, to speify variables for the registers required when generating mahine-ode.A variable that is alloated in a register annot be passed by referene to anotherproedure, nor an it be used with the Address built-in proedure.A parameter or result that spei�es register alloation may be passed to anotherproedure by referene or used with Address under some irumstanes. The reg-ister spei�ation fores the parameter to be alloated as the size of the register(32 bits for Plus/370 and Plus/68000, 16 bits for Plus-11). If this is di�erent fromthe normal size of the type, it will not be possible to pass it by referene, beausethe alled proedure would not orretly aess the storage area. A ompiler errormessage will be issued.Implementation Restrition (System 370)Currently, register may not be spei�ed for array, reord, harater, realor left-justifying bit type variables, but may be used for parameters andresults of any type provided the appropriate number of registers are spei-�ed.If the register attribute is used for a parameter of type real(n), a generalregister, not a oating point register will be used.A range of registers may be used for parameters and results, but not forvariables.A proedure whih returns more than one result in registers may be de�nedby �rst de�ning a reord-type orresponding to the set of values returned,then delaring the proedure to return this reord type in the appropriateregister range.Implementation Restrition (PDP-11)register may not be spei�ed for array, reord, harater, or left-justifyingbit type variables, parameters or results.A range of registers may not be spei�ed for the register alloation.

77Language DetailsImplementation Restrition (Motorola 68000)register may not be spei�ed for array, reord, harater, or left-justifyingbit type variables, parameters or results.A range of registers may not be spei�ed for the register alloation.The register numbers 0 through 7 indiate registers D0 through D7, with8 through 15 used for A0 through A7.. Absolute AlloationThe absolute phrase may be used in a variable delaration to speify that thevariable is loated at a spei�ed mahine address. This, of ourse, is mainly usefulin generating highly mahine-oriented ode. For example:Examples:variable Sv_Old_Psw is Psw_Type at absolute 20;variable Memory is array bit(24) of bit(8) at absolute 0The latter delaration allows any byte of memory to be aessed using its addressas an index.6. Proedure DelarationsThe proedure delaration is used to de�ne an identi�er or list of identi�ers to be proe-dure onstants. The proedure delaration normally spei�es the type of the proedure,whih in turn determines the identi�ers and types of the parameters and result. The typemay be omitted from a proedure delaration, in whih ase the simple type proedureend is assumed.A proedure identi�er must be delared before the proedure an be de�ned, alled,or assigned to a proedure variable. Proedure delarations obey the same sope rulesas other delarations. Thus a delaration given inside a proedure or nested sope isforgotten at the end of that sope while an external delaration remains in e�et for theremainder of the ompilation.A proedure delaration may be ombined with the proedure de�nition. In this ase,the proedure delaration is onsidered external to the proedure.Examples:proedures Read, Write are Io_Parameter_Type;proedure Parameterless_ProedureThe latter is equivalent toproedure Parameterless_Proedure isproedureendNote that if a series of proedure delarations are onneted together (as with variableor type delarations), the type may be omitted only from the last list. That is, thedelaration

78 Language Detailsproedures Read, Write is Io_Parameter_Type,Parameterless_Proedureis equivalent toproedure Read is Io_Parameter_Type;proedure Write is Io_Parameter_Type;proedure Parameterless_Proedure;7. Proedure Spei�ationsThere are several additional spei�ations that may appear in a proedure delaration,following the proedure type. When more than one is used, they may appear in anyorder.a. ExternalA proedure delaration may speify an external symbol to be used instead of theproedure identi�er.Examples:proedure Get_From_User is Io_Parameter_Type external "GUSER";proedure Get_User_Info isproedure...end external "GUINFO"b. LinkageThe linkage spei�ation is used to request a speial entry/exit sequene. It isgenerally given as part of the heading for a proedure de�nition, but may appear inthe proedure delaration instead. (For delarations that are to be inluded fromlibraries, it is sometimes more onvenient to attah the linkage spei�ation to thedelaration.)The allowed options are desribed in Setion P, page 96.Implementation Restrition (Motorola 68000)linkage is not implemented in Plus/68000.Example:proedure Main is Main_Proedure_Type linkage "PLUSENTR". StaksizeThe staksize spei�ation indiates the size of the run-time stak that should beprovided when the proedure is alled.

79Language DetailsThis option is urrently used only as part of the entry/exit ode of a proedure. Itis ignored by the aller.The staksize spei�ation is mainly used by proedures that have speial entry/exitode to initialize the Plus run-time setup. The value is made available to the entryode, whih an use it in alloating a stak.For Plus/370, if the staksize spei�ation is given and the ompiler option %Stak_Chek is True, the ode generated will hek the amount of stak available againstthe value of staksize, rather than using the atual requirements of the proedure.See Appendies D, E and F for details of the entry/exit ode and stak setup re-quired.Example:proedure Speial is Main_Proedure_Type staksize 4096H. ConstantsA Plus program may ontain onstants of various types. For eah salar type, the languagede�nes a denotation for values of that type. For strutured types (arrays and reords),onstants are onstruted by using a type name, and a list of values for the omponents ofthe struture, as desribed below.Certain \onstants" have values whih are determined at the time the program is loaded, andhene are unknown at ompile time. Suh onstants are not valid in ontexts whih requireknowing the value at ompile-time, suh as array dimensions, onstant expressions, et.1. Integer onstantsInteger onstants have the normal deimal representation. The range of values dependson the objet mahine; it will always inlude all integers whih the objet mahinesupports as the basi instrution level.2. Charater onstantsCharater onstants are enlosed in the harater quote ("). A quote within a onstantis represented by two quotes.The harater set is mahine-dependent. For the System 370 version, EBCDIC is as-sumed. For the PDP-11 and Motorola 68000 version, harater onstants are translatedto ASCII.3. Bit onstantsBit onstants are denoted by enlosing a series of digits in apostrophes (). By defaultthe digits are onsidered to be hexadeimal, but a di�erent base may be spei�ed.Examples:onstant S8_Punh is E0;onstant Bit_Example is (1)10 (3)707

80 Language DetailsA base is spei�ed by giving a power-of-two radix in parentheses as part of the bit string.Thus the seond example denotes a bit string of 11 bits, onsisting of 10 in binary (base2j1) followed by 707 in otal (base 2j3); i.e, the binary value is 10111000111.4. Real onstantsImplementation Restrition (PDP-11)Real onstants are not implemented for Plus-11.Implementation Restrition (Motorola 68000)Real onstants are not implemented for Plus/68000.Real onstants have the same syntax as in Fortran and many other languages, i.e., adeimal integer and/or fration followed by an optional signed exponent. Up to 34signi�ant digits are allowed by the 370 implementation. The following are all legalexamples:1.010.579.52E-603.14E20Exponents are always indiated with E (or e)|the \D" and \Q" forms used in Fortranare not used.All real onstants in Plus programs are onverted to extended preision (16 byte) forms.A onstant an be expliitly oered to a shorter length by using a onstant display asin the following example:type Short_Real is real(7);...onstant Pi is 3.1415926535879, /* extended preision */Short_Pi is Short_Real(Pi) /* single preision */A real onstant will be rounded when it is onverted to a shorter length.Implementation Restrition (System 370)It is intended that onstants should be automatially oered to shorter formsas required by ontext, but this is not implemented yet. Expliit onversion asdesribed above must be used.5. Constants of identi�er-list typesThe names of the elements of the type form the onstants of that type. See Setion E{4,page 57.

81Language Details6. Proedure onstantsThe name of a proedure is a proedure onstant of the spei�ed type. A proedureonstant is always a \load-time" onstant; i.e., the value is not known at ompile-time.7. Pointer onstantsUnder ertain irumstanes, the result of the Address(: : :) funtion will be a onstant.Currently, this will happen if and only if the argument of Address is a onstant or anexternal variable. Pointer onstants are always load-time onstants; i.e., the value isunknown at ompile time.Implementation Restrition (Motorola 68000)When %Target_Operating_System is set to "MAC/MDS", then Plus/68000 doesnot implement pointer onstants, due to limitations in the MDS linker.8. Constant DisplaysA onstant display is a type name followed by a parenthesized list of onstants. It isused to reate a onstant of the given type. This is most often used for the reationof struture (array and reord) onstants. A onstant display may be used with salartypes to ontrol the storage representation of the value (see examples below).For array types, the onstants in the list must be suitable for the elements of the array.The number of elements must agree with the bounds of the array. For reord types,the onstants must be suitable for the �elds of the reord. If the reord has variants, aonstant must be spei�ed for the seletor tag, even if the seletor is not de�ned as a�eld. The onstants whih follow the tag are then the ones required for that variant, ifany. With any other type, there will be only one element in the list, and it must be aonstant whose type is ompatible with the type-name of the display.Examples:type Awry is array (1 to 5) of harater(1),Re1 isreordF1 is harater(2),variant (Red, Green, Blue) fromase Red:F2 is harater(0 to 5)elseF3 is (-32768 to 32767)end,Re2 isreordF1 is harater(1),variant F2 is (0 to 10) fromase 1:F3 is fast bit(6)end,

82 Language DetailsL_Bit_32 is aligned 32 left bit(32),Short_Real is real(7)Given the above de�nitions, the following are valid onstant displays:Awry("a", "B", "", "d", "e");Awry(00, "Z", 40, " ", "0")Note that all �ve elements must be given.Re1("ab", Red, "ab");Re1(00, Green, 5)Note that the seletor �eld for the variant is given, although it does not appear inthe atual onstant. The seletor �eld determines whih ase of the variant is used tointerpret the onstants that follow it.Re2("a", 0);Re2("B", 1, 0)In this ase, the seletor �eld forms an element of the onstant. When it has the value0, there are no other �elds in the reord.L_Bit_32("ABCD");L_Bit_32(0001)This example shows the use of a onstant display to fore the spei�ed onstants tobe treated as fullword-aligned, left-justi�ed, bit(32). Without the display, the �rstonstant ("ABCD") would be a harater(4) (byte aligned), and the seond would be aright-justi�ed bit(32).Short_Real(10.5)This example shows the use of a onstant display to fore 10.5 to be single preision.Constant displays an be used in any ontext in whih a simple onstant is allowed. Forexample, a table might be de�ned in Plus using a onstant delaration suh asonstant Speial_Charaters is Awry("+", "-", "*", "/", """")whih ould then be used as appropriate in the program:do I := 1 to 5return when Char = Speial_Charaters(I)endet.As another example, a reord might be initialized using a reord onstant:variable V is Re1;...V := Re1("ab", Red, "ab")

83Language DetailsNoteA onstant display will be alloated as a separate objet module only if it isdelared in a onstant delaration with the entry attribute. Otherwise it maybe emitted as part of the \onstant pool" for eah proedure that referenes it.Implementation Restrition (System 370)Constants whih should be doubleword-aligned (i.e, the type is aligned...64)will get the spei�ed alignment only if they are within a reord or array.9. Constant storage representationA onstant may appear as a parameter of Address(...), or as a referene-parameter (insome situations).In order that the resulting pointer objet an be proessed onsistently, and type- andrange-heked where neessary, all non-struture onstants have assoiated with them adefault storage representation.6 This, in e�et, provides a more spei� type-de�nitionfor the pointer reated.The default storage representation an be hanged by using a onstant display.The default representations used are:integer fullword (32 bits on 370 and 68000, 16 on PDP-11).harater harater(n), where n is the length of the string.bitstring if the length is less than the word size, then fullword, otherwise thealloation is harater(byte-length).pointer fullwordproedure fullwordid-list type fullwordreal extended preision (16 bytes)I. ExpressionsExpressions in Plus are formed in the usual way, by ombining various operands with appro-priate operators and parentheses.1. Operands and OperationsThe primitive operands out of whih an expression is omposed inlude onstants, sym-boli onstants, variable names and proedure names. The repertoire of operations in-ludes all the usual arithmeti and logial operators, subsripting array names, seleting�elds of reords, following pointers, and alling proedures with an appropriate list ofparameters.
6 The storage representation of a structure constant is determined by the type of the constant.

84 Language DetailsThe language stritly ontrols whih operators may be applied to di�erent types ofoperands. Certain operators an be applied to various types of operands, but the seman-tis may depend on the types of the operands. For example if V1 and V2 are numeri-typevariables, then V1 < V2 denotes the arithmeti omparison of their values, while if V1and V2 are harater types, it denotes a logial omparison.Plus expressions follow normal preedene rules for the arithmeti operators. Rather thanintroduing a omplex preedene hierarhy, most other operators are given preedeneequal to the arithmetis. The omplete preedene hierarhy is as follows:1 (highest) unary operators +, -, :, not, abs2 multiplying operators *, /, mod, &3 adding operators +, -, ||, |, xor4 relational operators <, <=, >, >=, =, in, subset, and negation of eah.Negations may be spei�ed with : or not| e.g., not=, :=, not<=, :<=,et.5 and6 (lowest) or2. CoerionsPlus will perform a ertain set of operations automatially if the operations are requiredby the ontext in order to make operands of other operators type-ompatible. In Algol-68 terminology, suh operations are oerions. The oerions that Plus will performinlude fething the value of a storage loation (denaming), onverting a value into asingleton set ontaining that value, onversion in either diretion between bit-types andother salar types. Details of the operations and oerions appliable to di�erent types,together with examples, are given in the setions desribing the types.3. Logial ExpressionsA logial expression is really just an expression whose value may be zero (false) orone (true). Any numeri value may be used as a logial expression, however, with anynon-zero value treated as true. The main use of logial expressions is in if statements,although they may be used in other ontexts. The omparison operators (<, >, =, :=, et.)result in logial expressions. Logial expressions an be ombined by using the speiallogial operators and and or. These operators are sometimes alled the \MCarthy-and"and \MCarthy-or". The semantis are suh that the seond operand is not evaluated ifthe outome of the logial expression an be determined from the �rst. Thus,if I <= Max_Number_Symbols and Table(I) := Test_Elemthen...end ifis exeuted as if it were:if I <= Max_Number_Symbolsthen

85Language Detailsif Table(I) := Test_Elemthen...end ifend ifArbitrarily omplex logial expressions an be built up out of and and or; however, toavoid misunderstandings, the language requires that if the two operators are ombinedin an expression, parentheses must be used to indiate the intended order of evaluation.The logial operator not is de�ned to give a result of zero or one always. It is zero if andonly if its operand is non-zero.WarningThe operator : is a bit-string operator whose result is the omplement of itsoperand. This does not give the same result as the logial operator not.: false = : 0 = FFFFFFFF = -1 = true: true = : 1 = FFFFFFFE = -2 = trueThus both at as True if used in a logial expression.J. Assignment StatementsSimple assignment is denoted by := in Plus. Multiple assignments may be spei�ed by sepa-rating left-hand-sides by ommas. The right-hand-side of a multiple assignment is evaluatedone only.Example:Low, High := 0You an also speify an operator in onjuntion with assignment. The statementTable_Size +:= 1is a shorthand forTable_Size := Table_Size + 1Similar notation an be used for any of the binary operators +, -, *, /, mod, ||, |, & or xor,and for any left-hand-side expression.WarningCertain assignments (mainly of harater types) may build the result diretly in theleft-hand-side variable. Thus the expression forming the right-hand-side should notdepend on the previous value of the left-hand-side. For example,Var1 := Var2 || Var1will �rst move the value of Var2 into Var1, and therefore produe the wrong resultwhen Var1 is onatenated onto it.At the moment, this situation is not usually deteted by the ompiler.

86 Language DetailsK. Proedure CallsProedures may be alled as self-ontained statements, or as elements of expressions in otherstatements. Proedures with no return value are alled by simply speifying the proedureidenti�er, with parameter list (possibly null), as a separate statement, as in Algol. Proeduresthat are delared to return a value are alled in an expression in the usual way, with param-eters, if any, given as a parenthesized list following the proedure identi�er (or expressionresulting in a proedure value). In both ases, if the proedure has no parameters, an emptyparenthesis pair () must appear after the identi�er.Examples:Elem := Getsym();Message(Msg, "Error - too many symbols.</>");Pos := Linearsearh(Test_Elem, Aesses)1. Parameter PassingParameters may be passed by opying the value (this is traditionally known as \all-by-value"), or by passing a pointer to the argument (known as \all-by-referene"). Thetype of the proedure's type desription spei�es whih kind of parameter passing isrequired for eah parameter.The default is all-by-value. This applies to any parameter type, inluding arrays andreords. In general, if an array or reord is to be used as a parameter, it is preferableto pass a pointer to it, either expliitly (by delaring the parameter type as pointer to... and passing Address(...)), or impliitly by using a referene parameter.When all-by-referene is used, there are restritions on the possible arguments thatmay be used. A referene argument must be a name (or in some ases a onstant).Expressions, exept those resulting in a name, are not possible. In addition to beingassignment-ompatible with the type of the parameter, the type of the argument mustobey the stronger requirements of pointer ompatibility, as desribed in Setion E{10,page 61.A onstant may be passed by referene only if the parameter type has the attributevalue, whih guarantees that the pointer objet annot be stored into from the alledroutine.When a onstant is passed by referene, the ompiler will perform a oerion on theonstant to the form required by the parameter, if possible, before obtaining the address.This oerion is equivalent to impliitly using a onstant display to set the onstant type.For example, givenproedure Test isproedurereferene parameters Str is value harater(1 to 10),Num is value fast (0 to 10)endthen the all

87Language DetailsTest("abd", 9)will result in the passing of a pointer to a varying string onsisting of the length 4 (ina byte) and the haraters "abd" for the parameter Str, and a pointer to a halfword(System 370) onstant 9 for the parameter Num. (Without the impliit oerion, theonstant "abd" would be of type harater(4), and 9 would be a fullword integer.The pointers to these would then be inompatible with the referene-parameters.)2. Return CodesFor ompatibility with proedures written in other languages, whih may return a \returnode", the value of the return ode may be obtained by speifying a return ode variableas part of the all. For example:variable R is Number;Sards(Buffer, Buflen, Mods, Lnum, return ode R);if R := 0then ...end ifThe expression following the phrase return ode must be a name expression of anyindex type.There is urrently no built-in method for a proedure written in Plus to set a returnode to return to its aller. Generally, funtion results or referene parameters are usedto return information to the aller.7System 370 NoteThe System 370 return ode is assumed to be returned in general register 15.Implementation Restrition (PDP-11)return ode is not implemented in the PDP-11 version.Motorola 68000 NotePlus/68000 assumes the return ode is in register D0.3. Swithing Global Storage EnvironmentIf the proedure being alled requires a di�erent global storage environment from thealler, the proedure all must provide the address of the required global storage. Thisis done by using the with phrase in the proedure all.Given the following delarations:
7 However, see Chapter VIII, page 144.

88 Language DetailsExamples:proedure P1 is environment global("QQSV")proedure...end,P2 is environment global("FOO")proedure...end,P3 is environment pointer to Re_Typeproedure...end;variable V1 is pointer to Re_Type,V2 is global("QQSV"),V3 is global("FOO")the following would be legal alls from any environment:P1(..., with V2);P2(..., with V3);P3(..., with V1)If return ode and with are both used, they may our in either order.Implementation Restrition (PDP-11)Plus-11 does not support the mehanisms for swithing global storage environ-ments.L. Control StruturesPlus inludes ontrol strutures for seleting between alternatives (the if statement and theselet statement), for looping (the yle and do statements), and for exiting and repeating ablok of statements. There is no goto statement.1. If StatementsThe if statement in Plus is a braketed onstrut, terminated by end (or end if). Thethen-part and else-part are eah a sope blok. That is, a sequene of delarations and ex-eutable statements may appear as the body, without requiring the use of begin...end.The else-part is optional.Example:if Element < Table(Pos)thenHigh := Pos - 1elseLow := Pos + 1end if

89Language DetailsNested if statements may be abbreviated using the elseif lause. The statementif Return_Code := 0thenSym := ""elseif Length(Str) > Max_Sym_LengththenMessage(Msg, "Error - symbol too long</>");Sym := Substring(Str, 0, Max_Sym_Length)elseSym := Strend ifend ifmay be replaed byif Return_Code := 0thenSym := ""elseif Length(Str) > Max_Sym_LengththenMessage(Msg, "Error - symbol too long</>");Sym := Substring(Str, 0, Max_Sym_Length)elseSym := Strend ifThis proess may, of ourse, be repeated for further nested if's. There is only one endif to terminate an arbitrary if... elseif... elseif... sequene.Implementation Restrition (all ompilers)Currently, a ompiler \parse stak overow" will our if an if statement ontainsa sequene of more than about 25 elseif's.2. Selet StatementsThe selet statement allows a multiple-way branh aording to the value of a givenexpression. In e�et, it is a generalization of the if statement to types other than Boolean.(This statement is similar to what is alled a ase statement in Pasal.)The heading of the selet statement spei�es an expression whose value determines thease to be exeuted. Note that the range is not restrited to numeri types; any \indextype" (see Setion E{6, page 58) is allowed.The body of a selet statement is a series of ases. Eah ase onsists of a sope blok,preeded by a label speifying one or more onstants whih are the values of the seletionexpression for whih this ase is to be performed. After ompletion of exeution of thestatements in the seleted ase, exeution ontinues following the selet statement. Theend of the selet statement is delimited by end or end selet.

90 Language DetailsNote that a given onstant may be used as a label on at most one ase. A list of valuesmay be given for the label on a ase. The selet statement may speify an else asewhih is to be exeuted for any values that have not been spei�ed.Example:selet Devie fromase Reader, Punh:Reord_Length := 80ase Printer:Reord_Length := 132ase Terminal:Rows := 25;Cols := 80elseSnark()end seletSelet statements are urrently implemented in all ompilers by using branh tables.This provides for fast exeution, but the branh table may get quite large. The branhtable will ontain one entry for every value between the lowest and highest ase labelsused. So, for example,selet I fromase 1: ...ase 1000: ...end seletwill generate a branh table with 1000 entries (two bytes eah), even though there areonly two atual ases spei�ed.Eventually there may be a \skip-hain" implementation of sparse selet statements. Atpresent, it may be preferable to use if... then... elseif... then... end if in somesituations.3. Cyle StatementsThe yle statement is a general looping onstrut. The body of the yle (whih is againa sope), is exeuted repeatedly until terminated by exeution of either a return or exitstatement, desribed below. The end of the yle statement is marked by end or endyle.Example:ylevariable Elem is Symbol;Elem := Getsym();exit when Length(Elem) = 0 or Elem = "/end";if Table_Size >= Max_Number_SymbolsthenMessage(Msg, "Error - too many symbols.</>");exit

91Language Detailsend if;Table_Size +:= 1;Table(Table_Size) := Elemend yle4. Do StatementsPlus ontains two limited forms of do statements.One form allows for looping with an inreasing or dereasing index. It is restrited to aninrement or derement of one only. An inreasing loop is indiated by the keyword to,while a dereasing loop is indiated by downto.Example:do Pos := 1 to Table_SizeAesses +:= 1;return when Table(Pos) = Element with PosendThe seond form of do loop is intended ultimately to allow stepping through the membersof a spei�ed set value. Currently, this is implemented only for a speial ase in whih atype-identi�er is given to speify the set of values to be stepped through.Example:type Devie_Type is (Printer, Reader, Punh, Tape_Drive, Disk_Drive,Terminal);variable D is Devie_Type;do D := eah Devie_Type...endThe order in whih the do...eah form steps through the set is up to the ompiler|ifa partiular order is required you should use do...to or do...downto to speify it.The limits of the loop are determined at the time exeution of the loop begins; modi�-ation of the �nal value of a do...to or do...downto loop within the loop will have noe�et. It is possible (though generally not good pratie) to modify the ontrol variablewithin the loop.The body of a do loop is also a sope blok. The exit statement an be used to terminatea do loop before its limit is reahed. The end of a do loop is indiated by either end orend do.The value of the ontrol variable upon termination of a do loop is always the value thatit had during the last exeution of the loop. In the ase of a loop that exeutes zerotimes, the value of the ontrol variable will not be hanged from the value it had beforeexeution of the do loop heading.Implementation Restrition (all ompilers)The ontrol variable of a do loop must urrently be a simple variable identi�er|array elements and other name expressions are not allowed.

92 Language Details5. Begin BloksThe begin blok onsists simply of a sope blok surrounded by begin...end. It ismainly used for one of two reasons:a. To restrit the sope of loal variables, open statements and equate statements tothe series of statements for whih they are required.b. To delimit a series of statements from whih it is desired to esape with the exit orrepeat statements.Example:beginvariable Temp_Fdub is Fdub_Type;/* Exhange new and old Fdubs */Temp_Fdub := New_Fdub�;New_Fdub� := Old_Fdub�;Old_Fdub� := Temp_Fdubend6. CompoundsThe term ompound refers to yle statements, do loops, or begin bloks. The state-ments exit and repeatmay be used inside a ompound to branh to the end or beginning(respetively) of that ompound.A ompound may be labelled by preeding it with an identi�er surrounded by < and> (suh as <Outer> in the example below), and following it with the same identi�er.This label may be used in exit and repeat statements inside the ompound to refer toit. Normally, the exit or repeat statements refer to the losest enlosing ompound.Compound labels allow exiting more than one level.Note that only the spei�ed statements form ompounds; exit and repeat annot beused to branh out of if statements or selet statements, unless the statements are em-bedded in begin...end or another ompound.With labelled ompounds and multi-level exits, it is possible to synthesize omplex on-trol ows that in most languages ause one to resort to the use of goto statements.However, it should be noted that if they are used indisriminately, it is possible to pro-due programs that are just as entangled as if gotos were used.7. Exit StatementsThe exit statement is used to branh out of a ompound. The statement may speify aondition under whih the exit is to be taken. That is,exit when Somethingis equivalent toif Somethingthenexitend;

93Language DetailsExit onditions may also be spei�ed in the form exit unless....exit normally leaves the losest enlosing ompound. More than one level an be esapedby labelling the ompound to be exited and speifying the label in the exit statement.Example:<Outer>yle...do I := 1 to Max_Symbols...exit <Outer> when Elem = Table(I);...end;/* inner loop ompleted normally */...end <Outer>In this example, the exit statement inside the do loop will exit both the do loop and theyle ontaining it.8. Repeat StatementsThe repeat statement is similar to the exit statement, exept that instead of terminatingthe loop, it branhes bak to the beginning of the ompound, and resumes exeution ofthe ompound from that point.When used in a do loop, repeat \steps" to the next iteration of the loop. That is, theontrol variable will be inremented or deremented and ompared to the limit to deidewhether to re-enter the body of the loop or terminate the loop.Conditions and labels are allowed in repeat statements as for exit statements.Example:yleSards_Varying(Str, R);exit when R := 0;repeat when Length(Str) = 0;/* Proess the input reord. */...endIn this example, the loop terminates via the exit when Sards_Varying returns a non-zero return ode, but returns to the beginning of the loop and repeats the read if a nullline is read.9. Return StatementsThe return statement is used to return from the proedure ontaining it. A returnstatement may speify a ondition, as in exit and repeat statements. It may also speifya return value, if the proedure's type spei�es a return value.

94 Language DetailsIf a proedure is to return a value, its type desription spei�es an identi�er whose valueis returned by default when the proedure returns. If the return statement does notspeify a return value, then the value of this identi�er is used.If a ondition (when or unless) and a return value (with) are both spei�ed, they mayappear in either order.A return is automatially performed at the end of a proedure.Examples:return when Table(Pos) = Element with Pos;return with 0M. AssertThe assert statement an be used to inorporate speial run-time heks into a program fordebugging purposes. Code is generated for an assert statement only if the ompiler option%Assertion_Chek has the value true. If this option is false, the assert statement is treatedas a omment.The assert statement spei�es a logial expression whih is to be evaluated when the programis exeuted. If the expression is true, exeution ontinues normally. If it is false, exeution ofthe program is terminated (in MTS, in a RESTARTable way) with an error message.When oding an assert statement, you should take are that there are no side e�ets of thestatement that might ause the operation of the program to hange if assertion heking islater disabled. That is, the expression in the statement should not hange the value of anyvariables in the program or otherwise modify its operation.Example:assert P1 := Null;P1� := 0If P1 is Null when the assertion is exeuted, exeution will be terminated with an errormessage.N. Open StatementsThe open statement allows aessing �elds of a reord without the neessity of speifying thereord name. (It is similar to the \with reord" pre�x of Pasal.)The open statement is treated like a delarative statement, but may only our within aproedure body|it is not allowed in a global blok or external to a proedure. It is in e�etfrom the point at whih it ours, for the remainder of the sope blok. The e�et of thisstatement is to \redelare" the �elds of the spei�ed reord as if they were separate variables,for the duration of the sope.The open statement spei�es a name expression. It is possible to open elements of arrays ofreords or pointers to reords.

95Language DetailsExample:type Symbol_Table_Element isreordSymbol is Symbol_Type,Referene_Count is Integerend;variable Symbol_Table is array (1 to Max_Number_Symbols) of Symbol_Table_Element;...open Symbol_Table(I);...Referene_Count +:= 1Following the open statement, for the remainder of the sope blok ontaining it, the identi�erReferene_Count refers to that �eld of element Symbol_Table(I).Apart from notational onveniene, this an be an eÆieny onsideration, sine addressabilityto the required reord will be obtained at the time the open is performed.It should be noted that the name expression in an open statement is evaluated at the timethe open is performed. Subsequent hanges to pointers or array subsripts involved will haveno e�et on the loations aessed when the �eld names are used.The open statement may also speify a reord-type, whih rede�nes the type of the namebeing opened. For example,open Ptr� as Symbol_Table_Elementspei�es that, regardless of the atual type of Ptr�, it is to be treated as if it were Symbol_Table_Element for the purposes of the open. This provides another form of type heating inthe language. It is most often useful when proessing reords pointed at by pointers of typepointer to unknown, in order to speify the objet type of the pointer.O. Equate StatementsThe equate statement provides a way of assoiating a new identi�er with an existing storageloation, and optionally assoiating a di�erent type with the loation. The statement ine�et delares a new variable, and spei�es that it is to be overlayed on a storage area de�nedpreviously. The identi�er delared remains de�ned for the remainder of the sope in whihthe statement ours.Equate provides an \oÆial" way of type-heating in Plus. It is also sometimes onvenient touse an equate de�nition to avoid repeating long name expressions. Equate also ontributesto program eÆieny, sine addressability to the spei�ed loations is obtained (if neessary)at the time the equate statement is performed.Judiious use of this faility an improve program larity, by removing \lutter". It should beused sparingly, however, sine overuse may detrat from the understandability of the resultingprogram by providing multiple names for the same item.Examples:equate Elem to Symbol_Table(I);/* Elem has the same type as Symbol_Table(I). */

96 Language Detailsequate String to Buffer� as harater(255);/* String is of type harater(255) regardless of type of Buffer�. */Like the open statement, equate may appear only within a proedure body, and the spei�edname expression is evaluated at the time the statement is performed. Subsequent hanges topointers or subsripts will have no e�et.equate an also be used to assoiate a type with an objet of type unknown (i.e., the resultof dereferening a pointer of type pointer to unknown).P. Proedure De�nitionsA proedure de�nition ontains a sequene of delarations and exeutable statements on-stituting the body of the proedure. The names of the parameters and result are deter-mined from the type of the proedure, and are available as loal variables within the de�ni-tion.The heading of a proedure de�nition may be immediately followed by either or both of thelinkage and environment options. They may our in either order. A semi-olon is requiredafter the last option.1. Linkage OptionThe linkage option is used when a proedure requires a non-standard entry sequene.System 370 NoteThe entry sequene normally used by Plus/370 is ompatible with the MTSoding onventions standard. This provides eÆient proedure entry/exit/allbut requires a stak and global storage to be set up orretly by the aller.Speial linkages an be useful to establish the required set-up when entering aPlus program from a proedure that does not follow the Plus onventions.At the time of writing, the MTS onventions are undergoing an inompatiblehange. The urrent version of the Plus ompiler an be used with either theold or new forms, depending on the setting of the %Linkage ompiler variable.Implementation Restrition (Motorola 68000)Plus/68000 does not implement linkage.The linkage option is normally spei�ed as part of a proedure de�nition but may alter-natively be given with the proedure delaration.Examples:/* The following example illustrates the linkage optionas part of the proedure delaration. */proedure Main isproedure...end linkage "PLUSENTR";

97Language Details...definition Main...end Main;/* The following example illustrates the linkage option aspart of the proedure definition. */proedure Example isproedure...end;...definition Examplelinkage "PLUSENTR";...end ExampleThe following are allowed for the linkage option:a. linkage "extname"Given a proedure heading suh asdefinition prolinkage "extname";where "extname" is a 1 to 8 harater onstant, the ompiler generates speial entryode whih branhes from the entry sequene of pro to a speial linkage routinewith the external symbol extname. The ode at extname is expeted to set up stakand global storage and then return to the entry ode for pro. The requested staksize of the proedure, the \global id" for the proedure's environment, the size ofthe environment and some other data are provided in the entry sequene of proand are aessible by extname.If the speial linkage requires non-standard exit ode also, it must set up the registersin the stak in suh a way that when pro returns, the speial exit ode will gainontrol.The speial linkage routine an be written either in Assembler or in Plus by usinglinkage none and lots of Inline's.The details of the interfae between pro and extname for Plus/370 and Plus-11 areprovided in Appendies D and E.b. linkage systemlinkage system requests that the ompiler generate entry/exit ode that is om-patible with the standard \system" linkage.

98 Language DetailsSystem 370 NoteFor Plus/370, linkage system allows the proedure to be alled from anOS Type I (\Fortran") proedure. It is atually implemented by usinglinkage "QSYSENTR"; i.e., the speial linkage apability desribed above.If a proedure must be alled from both Plus and Fortran routines, itis neessary to use both the linkage system option (to request Fortran-ompatible entry/exit ode) and the type attribute system (see SetionF{8, page 71) for the proedure type (to request Fortran-ompatible allsto the proedure). You should not speify linkage system unless Fortran-allability is really required, sine it is muh less eÆient than the normalPlus linkage.PDP-11 NoteFor Plus-11, linkage system is treated the same as the normal Plus link-age; i.e., the option is ignored.. linkage noneGiven a proedure heading suh asdefinition prolinkage none;the ompiler will generate no entry ode whatsoever. It is intended to make itpossible|though not neessarily easy !|to write speial linkage routines within Plus.About the only thing you an do in a linkage none routine is to use Inline andregister variables to establish the required setup. A great deal of are is requiredwith suh routines, sine the ompiler will assume that various registers have beenset up orretly if any statements in the proedure require them. See AppendiesD and E for further details.2. Environment OptionThe environment option allows a proedure to swith its global storage environment aspart of the entry ode.Example:proedure Example isproedureparameter Re is pointer to Re_Type,...end;definition Exampleenvironment Re;...end

99Language DetailsThe entry ode would establish the value of Re as the urrent environment, and thetype of Re (pointer to Re_Type) as the environment type in e�et throughout theproedure. Hene Example ould refer to �elds of Re_Type diretly (without qualifyingthe referenes with the reord pointer), and ould all other proedures with environmentpointer to Re_Type without swithing environments at the all.The expression in the entry ode may be any kind of expression returning a type allowedfor proedure environments. It will usually be a parameter value (or obtained via aparameter), but might also be a proedure all, or an element of the environment providedby the aller.Note that the aller must still provide an environment ompatible with the environ-ment type of the proedure (from the environment attribute if any, or the defaultglobal(%Global_Id)). This environment is in e�et for the evaluation of the expressionin the entry ode. When setting up an environment from a parameter, as in this example,it will often be appropriate to de�ne the proedure to have the attribute environmentunknown, to allow it to be alled from any environment.Implementation Restrition (PDP-11)Plus-11 does not support the mehanisms for swithing global storage environ-ments.Q. Maro De�nitionsThe maro de�nition de�nes the name and parameter names of a maro. The body of themaro may be either a statement list, whih beomes a separate sope-blok, or a parenthe-sized expression. The end of a maro is indiated by either end, end maro, or either of thesefollowed by the name of the maro.A maro is invoked muh like a proedure by use of its name followed by an argument list.The body of the maro is then substituted for the maro name, with appropriate substitutionsof arguments.During expansion of the maro, any identi�ers used in it (but not delared within it) obtainthe de�nitions in e�et at the time the maro was de�ned . If an identi�er was not de�ned atthe point of the maro de�nition then it is a \free variable", and will assume the de�nitionin e�et at the point of expansion. (If there is no de�nition in e�et when it is expanded, itis simply an unde�ned identi�er and will result in an error message.)Example:onstant Sv is 0A,Sv_Getelt is 38;maro Get_Elapsed_Timeparameter is Time;variable Temp is Fullword in register 2;Inline(Sv, Sv_Getelt, Temp, 0, 1, 3); /* hanges r0 - r3 */Time := (10 * Temp) / 3 /* onvert to millises */end maroThis maro has one parameter, Time. Temp is a loal variable of the maro. The identi�ersSv, Sv_Getelt et., refer to the de�nitions preeding the de�nition of the maro.

100 Language DetailsThis maro would be used in a statement likeGet_Elapsed_Time(Elapsed)Example:maro Current_Charater;(Substring(Str,I,J))end Current_CharaterThis maro has no parameters. Its body is a parenthesized expression, so it is used in theontext of expressions, for example:Char := Current_Charater()NoteMaros as desribed above may be removed from a future version of the language infavour of internal or \inline" proedures. We reommend that maros be used onlyin ways that are ompatible with proedures.R. Built-in Proedures, Constants, and VariablesPlus provides a number of built-in proedures, and a few prede�ned onstants and variables.The names of these are prede�ned identi�ers. The built-in de�nitions may be overruled byexpliit delarations of the same identi�ers.1. AddressThe Address proedure is used to reate pointers. It takes as an argument a nameexpression or a onstant of any type. The result is a pointer to the spei�ed loation (avalue of type pointer to ... the argument type). When the argument is a onstant,the result type is pointer to value2. AlignmentThe Alignment proedure is used to return alignment. The �rst parameter may be aglobal blok identi�er, a name, or a type identi�er.Implementation Restrition (all ompilers)Currently, Alignment is implemented only for global blok identi�ers.When the parameter is a global blok identi�er, it returns the required byte-alignmentfator of the global blok as a number from 1 to 8. (1 means byte-aligned, 2 meanshalfword-aligned, and so forth).3. Bit_SizeThe argument of this proedure may be a type identi�er, a name or a global blokidenti�er. If a name is given, the alloated size of that name in bits is returned. If aglobal blok identi�er is given, the size of the global blok is returned. If a type identi�er

101Language Detailsis given the normal size of that type is returned. (The atual size of a variable of a giventype may be bigger than the size of the type, due to padding that may be provided whenvariables of the type are alloated.)The Bit_Size proedure is always performed at ompile time.Bit_Size may also be used to �nd the size of a variant of a reord. It then has twoparameters. The �rst is a type identi�er, the seond a onstant of the type of thevariant seletor. The seond parameter is allowed only when the �rst parameter is atype-identi�er for a reord type with variants.If the onstant spei�ed does not math one of the variant labels, Bit_Size returns thesize of the else variant, if any, or the size of the �xed part preeding the variant if elsewasn't given.If the seond parameter is not given, it returns the size of the largest variant.4. Byte_SizeThe arguments and results for this proedure are the same as for Bit_Size (see preedingitem) exept that the result represents the number of bytes alloated.5. Code_Base_RegisterCode_Base_Register is implemented only by Plus/370. It is a prede�ned register vari-able of type bit(32), orresponding to the register used for ode addressability (normallyR10). This is intended for use in speial linkage routines that set up the required exeu-tion environment for Plus.The ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix D for information about Plus register usage andentry/exit ode requirements.6. ConditionCondition is implemented only by Plus/370 and Plus/68000. It is used (normally inonjuntion with Inline) to examine the mahine ondition ode. It aepts a singleparameter whih spei�es whih ondition ode settings to test for, and returns true orfalse aording to the value of the ondition ode.The parameter is urrently a numeri or bit onstant in the range (0 to 15) and isinterpreted in the same way as a branh mask in an assembler branh instrution. In afuture version of Plus/370, the parameter will be a set of (0 to 3), speifying diretlywhih values to test for.Example:Inline(Ltr,1,1);if Condition(8)then /* ondition ode 0 - reg 1 was zero */...end

102 Language Details7. Environment_Base_RegisterThis is a prede�ned register variable of type t , where t is the environment type of theproedure referening it. It orresponds to the register ontaining environment address-ability (R11 for Plus/370, not implemented for Plus-11, A4 for the Maintosh and A6 forthe AMIGA). This is intended for use in speial linkage routines that set up the requiredexeution environment for Plus.The ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendies D, E and F for information about Plus registerusage and entry/exit ode requirements.8. External_NameThis proedure may have as a parameter a proedure, global blok, external variable orentry onstant identi�er. It returns the external (loader) name of the parameter.9. FalseFalse is prede�ned as a numeri onstant with value 0.10. Frame_Base_RegisterFrame_Base_Register is implemented by Plus-11 and Plus/68000. It is a prede�nedregister variable orresponding to the register used to address the loal stak frame. InPlus-11 this variable has type bit(16) and is normally R5. In Plus/68000 it has typebit(32) and is A6 for the Maintosh and A5 for the AMIGA. This is intended for use inspeial linkage routines that set up the required exeution environment for Plus.The ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix E for information about Plus register usage andentry/exit ode requirements.11. Global_Base_RegisterGlobal_Base_Register is usually a synonym for Environment_Base_Register but isof type bit(32) (bit(16) for Plus-11) instead of the environment type of the proedure.On the Maintosh, it is de�ned to be A5, the global data base, rather than A4, theenvironment base.12. Global_SizeGlobal_Size is a prede�ned onstant whose value is the total size of the globals requiredby a program. It is a \load-time" onstant (generated as a CXD), and annot be usedin situations requiring a ompile-time onstant.Implementation Restrition (PDP-11)This onstant is not available for the PDP-11 ompiler sine *LINK11 does notsupport the required load-time onstants.

103Language DetailsImplementation Restrition (Motorola 68000)This onstant is not implemented in Plus/68000 sine none of the linkers supportthe required load-time onstants.13. High_ValueThe High_Value funtion takes as an argument a type identi�er for an index type, or aname of some index type. If a name is given, the type of that name is used. It returnsthe highest value of the type.14. InlineThe Inline proedure an be used to emit spei� mahine instrutions. It is verysimilar to the proedure with the same name in XPL or Sue. However, Plus is aware ofthe format of spei� mahine instrutions and heks that the appropriate parametersare given.Inline aepts a variable number of parameters. The number and types depend on theobjet mahine for whih ode is being generated, and on the spei� mahine instrutionbeing emitted. In general, the parameters orrespond to the required operands of theinstrution, in the order that they appear in the mahine instrution (not the order theywould be spei�ed in an assembler instrution). Some exeptions to this rule may our,however.NoteUsing Inline is quite triky. It is often advisable to turn ode listing on andhand hek the generated ode.a. Inline for the System 370The �rst parameter of the System 370 Inline is always a numeri or bit-typeonstant whose value must be in the range 0 to 255. This parameter gives theop-ode for the instrution to be emitted.The subsequent parameters depend on the partiular mahine instrution beingemitted. They may be any of the following:�� A variable (or other name expression). Suh a parameter may be used toorrespond to a base/displaement pair of operands in a mahine instrution.The base/displaement may also be given as two separate parameters, a registerand a displaement.�� A register loal variable. This should be used for an operand that requires aregister.�� A salar onstant (any type). May be used for an \immediate" operand or fora displaement. Currently, a onstant may also be used for a register operand,but this will hange in a future version. In all ases, the onstant must be inthe appropriate range for the operand.

104 Language DetailsNote that, when oding operand lengths (for SS format instrutions), the \IBMlength" (atual data length�1) must be spei�ed. Inline will not automati-ally adjust the length.Examples:onstant L is 58,Ar is 1A,La is 41,Sla is 8B;variable R1 is Integer in register 1,R2 is Integer in register 2,Temp is Integer;Inline(L,R1,0,Temp); /* L 1,Temp(0) - same as R1 := Temp */Inline(L,R2,R1,Temp); /* L 2,Temp(1) */Inline(L,R2,0,R1,4); /* L 2,4(0,1) */Inline(La,R1,0,0," "); /* LA 1,C = LA 1,X40 = LA 1,64 */Inline(Ar,R1,R2); /* AR 1,2 - same as R1 +:= R2 */Inline(Sla,R1,0,4) /* SLA 1,4 -- note SLA has no index operand. */(Note that the above are examples only. For most of them, it would not be neessaryto use Inline to get the required mahine instrutions generated, sine Plus sourestatements would generate the appropriate ode when used with register variables.)WarningsThe urrent version of the ompiler attempts to ensure that the registersused in Inline are available, but does not urrently guarantee this. Insome situations, the ompiler may substitute a di�erent register for thespei�ed one. When it does so, a warning message will be issued. When aregister substitution is neessary, the ompiler will make the substitutiononsistently though all referenes to it in a sequene of onseutive Inlineinstrutions.The ompiler is also urrently unaware of registers used by an Inline'dinstrution but not expliitly referened (e.g., the odd register of even-oddpairs, the intermediate registers of LM and STM, any registers requiredby an SVC). Suh registers may be spei�ed by the programmer by ap-pending them as extra parameters of the Inline instrution, as in the nextexample.Example:variable Parlist is pointer to unknown in register 1,R14 is ... in register 14,R15 is ... in register 15;Parlist := Address(X);/* Register 1 is also required for the BALR. */Inline(Balr,R14,R15,Parlist)

105Language Detailsb. Inline for the PDP-11The �rst parameter of the PDP-11 Inline is always a numeri or bit(16) onstantwhose value is used to determine the op-ode enoding only for the instrution tobe emitted. Any bits whih are not part of the op-ode should be zero.For example, the op-ode for Mov should be given as 1000 (although only the�rst digit is atually part of the op-ode.)The subsequent parameters depend on the partiular mahine instrution beingemitted. As for the 370 version, the operands appear in the order that they ourin the mahine instrution, exept that the (mode, base, indexword) triplets ourtogether. This avoids having to inlude an index word if it is not spei�ed by themode.For example, a move from register one to o�set disp from register 3 would bevariable R1 is Integer in register 1,R4 is Integer in register 3;Inline(Mov,0,R1,6,R3,disp)In this example, 0 spei�es the mode of the �rst operand (register), R1 is the registervariable, 6 is the mode of the seond operand (index), R4 is the register and disp isthe o�set.The parameters for the PDP-11 Inline may be any of the following.�� A variable (or other name expression). Suh a parameter may be used toorrespond to a (mode, base, indexword) triple.If the variable is a register variable, then a mode of zero is assumed. Thus theabove example ould also beInline(Mov,R1,6,R3,disp)The triple may also be given as two or three separate parameters, the last beingomitted if index mode was not spei�ed.�� A register variable. This should be used for an operand that requires a register.�� A salar onstant (any type). May be used to indiate the mode or indexwordof an operand triple. A onstant may also be used to speify a register for anoperand, although the use of a register variable is preferred.See also the warnings for the System 370 Inline regarding registers.. Inline for the Motorola 68000The �rst parameter of the Motorola 68000 Inline is a harater string onstantgiving the operation ode, the size and any spei� e�etive addressing modes. Ithas the format:opode.size mode1,mode2The string must be entirely in lower ase. See Appendix G for a list of all thereognized opodes, sizes and modes.

106 Language DetailsThe opode is generally an operation ode as given in the Motorola \Programmer'sReferene Manual". For those \instrutions" that have more than one form, suhas ADD, the ompiler de�nes a name for eah form. Thus the ompiler reognizes"add" as the \ADD <ea>,Dn" form and "addm" as the \ADD Dn,<ea>" form. Thoseinstrutions that inlude ondition odes an be spei�ed with any of the onditionodes de�ned in the Motorola manual. Most 68000 instrutions have one generale�etive address mode operand and one spei� mode operand. For Plus/68000Inline, you must always speify the general operand �rst. Thus the \exlusive or"operation reognized by Plus/68000 is "eorm" (exlusive or to memory).The .size an be omitted. If the operation has no size, then it must be omitted. Ifthe operation has a size and none is spei�ed, then it defaults to the largest allowedby the operation.The mode1 and mode2 speify either the exat addressing modes to be used, or,by their omission, that a Plus storage referene is to be used and the ompilershould provide an appropriate mode. When an exat addressing mode is provided,the orresponding Inline operands must give exatly the parts of the mode, usingindex onstants for parts suh as displaements and register variables for registers.The parts are given in the same order as they would be spei�ed to an assembler.For indexed modes, a onstant 1 or 0 takes the plae of the assembler's .L or .W(respetively).Examples: /* Do an unsigned multiply of the longwords Int_1 andInt_2, produing the result in Produt. */variables Int_1, Int_2, Produt, Temp_1, Temp_2 areInteger in register;Temp_1 := Int_1;Inline("swap", Temp_1);Inline("mulu.w", Int_2, Temp_1);Temp_2 := Int_2;Inline("swap", Temp_2);Inline("mulu.w", Int_1, Temp_2);Temp_1 +:= Temp_2;Inline("swap", Temp_1);Inline("move.w #", 0, Temp_1);Variable Temp_3 is Integer in register;Temp_3 := Int_1;Inline("mulu.w", Int_2, Temp_3);Temp_3 +:= Temp_1;Produt := Temp_3;variable Base_Addr is pointer to unknown in register,Temp_Word is bit(32) in register;/* Load the (unaligned) 4 bytes pointed to by Base_Addrinto Temp_Word. */inline("move.b (ar)+,-(ar)", Base_Addr, Stak_Pointer);inline("move.w (ar)+,dr", Stak_Pointer, Temp_Word);inline("move.b (ar)+,dr", Base_Addr, Temp_Word);inline("swap.w dr", Temp_Word);

107Language Detailsinline("move.b (ar)+,-(ar)", Base_Addr, Stak_Pointer);inline("move.w (ar)+,dr", Stak_Pointer, Temp_Word);inline("move.b (ar)+,dr", Base_Addr, Temp_Word);15. Left_JustifyThis funtion oeres its operand to be a left-justifying (harater-string-like) expression.16. LengthThis proedure aepts as a parameter any �xed or varying harater expression. Itsresult is the length of the value in haraters. Length is performed at ompile-time ifpossible.17. Low_ValueThe Low_Value proedure takes as an argument a type identi�er for an index type, or aname of some index type. If a name is given, the type of that name is used. It returnsthe lowest value of the type.18. MaxThe Max funtion takes an arbitrary number of arguments of any index type, and returnsas its result the maximum of the values. The arguments must be type ompatible.19. MinThe Min proedure takes an arbitrary number of arguments of any index type, and returnsas its result the minimum of the values. The arguments must be type ompatible.20. NullNull is a prede�ned onstant that is ompatible with any pointer, proedure, or globaltype. It is used as a speial distinguished value, for example to indiate the end of alinked list.The value atually used to represent Null is 0.21. OffsetIf the �rst parameter of this proedure is a global blok identi�er, it returns the o�set(in bytes) of that global within the global area (pseudo-register vetor). This is a \load-time onstant" and thus, it ats like a onstant but annot be used as a ompile-timeonstant expression. It is equivalent to use of Q(extname) in an assembler program,where extname is the external symbol for the global.The �rst parameter may also be a reord type identi�er. In this ase, a seond parameter,whih must be the name of a �eld of the type, is also required. Offset then gives theo�set, in bytes, of the �eld from the beginning of the reord.22. PredeessorThe Predeessor proedure takes as its argument a value of any index type, and returnsas its result the next lower value of that type. The result is unde�ned if the argument isthe lowest value of the index type.

108 Language Details23. Program_CounterProgram_Counter is implemented only by Plus-11. It is a prede�ned register variableof type bit(16), orresponding to the PDP-11 program ounter register (R7). This isintended for use in speial linkage routines that set up the required exeution environmentfor Plus.The ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix E for information about Plus register usage andentry/exit ode requirements.24. Right_JustifyThis funtion oeres its operand to be a right-justifying (number-like) expression.25. SizeSize is urrently a synonym for Bit_Size. However, at some time in the future it willbeome a synonym for Byte_Size instead. It is strongly reommended that you use eitherByte_Size or Bit_Size as appropriate.26. Stak_Base_RegisterStak_Base_Register is implemented only by Plus/370. It is a prede�ned registervariable of type bit(32), orresponding to the register used to aess the stak (R12).This is intended for use in speial linkage routines that set up the required exeutionenvironment for Plus.The ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix D for information about Plus register usage andentry/exit ode requirements.27. Stak_PointerStak_Pointer is a prede�ned register variable orresponding to the stak pointer reg-ister. It is implemented by Plus-11 and Plus/68000. In Plus-11, it is of type bit(16)and orresponds to the PDP-11 stak pointer register, (R6). In Plus/68000, it is of typebit(32) and orresponds to A7. This is intended for use in speial linkage routines thatset up the required exeution environment for Plus.The ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendies E and F for information about Plus register usageand entry/exit ode requirements.28. SubstringThe Substring proedure is used to selet a substring from a �xed or varying-lengthharater expression.The proedure takes two or three parameters. The �rst parameter spei�es a stringexpression. The seond parameter spei�es a starting position within the string. Startingpositions are zero-relative; i.e., a value of zero selets a substring beginning at the �rstharater of the string. The third parameter, if given, spei�es the length of the string to

109Language Detailsselet. If it is omitted, the remainder of the string, from the spei�ed starting position,is assumed.The seond and third parameters must be suh that the seleted substring lies withinthe string spei�ed by the �rst parameter. The ompiler will optionally generate extraode to run-time hek the values of any substring parameters whose orretness annotbe determined at ompile time.If the �rst parameter of Substring is a name expression, and the length of the substringseleted is onstant then the result of Substring is also a name, and may be used onthe left-hand-side of an assignment statement.Examples:Substring(String�,I,1) := " ";Hex_Char := Substring("0123456789ABCDEF",I,1)29. SuessorThe Suessor funtion takes as its argument a value of any index type, and returnsas its result the next value of that type. The result is unde�ned if the argument is thehighest value of the index type.30. TrueTrue is prede�ned as a numeri onstant with value 1.31. VersionVersion is a prede�ned integer onstant giving the urrent ompiler version numberin the form of 1000 � release + hange, where release and hange are as desribed inChapter IV, page 121.S. Compile-Time StatementsPlus provides ompile-time if statements, ompiler variables and ompiler proedures.A ompiler variable or ompiler proedure is a prede�ned identi�er beginning with %. (Normalidenti�ers may not ontain %, so ompiler variables and proedures annot be onfused withnormal ones.) Compile-time if statements are also agged with %.1. Compile-Time If StatementsThe ompile-time if statement allows onditional ompilation of program segments. It issyntatially just like a regular if statement, exept eah keyword is preeded by %. Theexpression in the %if part must evaluate to a onstant at ompile time, whih is used todetermine whether the statements in the %then part or the %else part are inluded inthe program.The end of the %if statement may be indiated by %end, %end %if or %end if.

110 Language DetailsExample:onstant Debugging is True; /* Set False for prodution use. */...%if Debugging%then/* Do this only when debugging. */...%end %ifIn this example, the statements between %then and %end %if are inluded in the pro-gram, sine the onstant expression Debugging is true. If the onstant delaration ishanged toonstant Debugging is Falsethen the statements will be skipped.The %if statement may appear anywhere a statement is allowed in Plus, inside or outsideof proedures or global bloks. The %then part or %else part is inluded in the enlosinglist of statements and must be appropriate for its ontext. That is, if the %if statement isnot inside a proedure, then the statement list it ontains must onsist only of delarationstatements (or other ompile-time statements).The statement list in the %then part or %else part must be syntatially valid even if itis skipped. However, skipped statements may inlude referenes to undelared variablesand other \semanti errors" without omplaint from the ompiler.Note that proedure de�nitions and global bloks are syntatially allowed as statements,so that entire proedures or global bloks may be inluded or skipped by a %if statement.A sequene of nested %if's an be ombined using %elseif as with regular if statements.Example:%if %Installation = "UBC"%thenonstant Site_Name is "University of B.C."%elseif %Installation = "UM"%thenonstant Site_Name is "University of Mihigan"%elseif %Installation = "SFU"%thenonstant Site_Name is "Simon Fraser University"%elseonstant Site_Name is "?"%end %ifIn this example, the delaration of Site_Name is seleted aording to the value of %In-stallation.Note that a normal if statement is quite di�erent:

111Language Detailsif %Installation = "UBC"thenonstant Site_Name is "University of B.C."...end ifis an exeutable statement and is only allowed inside a proedure, while the %if may goanywhere. In any ase, the body of the if statement is a separate sope blok, so thedelarations it ontains are disarded at the end of the if statement, while the delarationsin a %if statement beome part of the sope ontaining it.2. Compiler VariablesCompiler variables are used to set various ompiler options, and to aess their values.A ompiler variable may appear on the left-hand-side of an assignment statement. Theright-hand-side must be a onstant (or onstant expression) of an appropriate type. Thisvalue beomes the new value of the ompiler variable while ompiling the remainder ofthe program (or until hanged again).A ompiler variable may also appear in any ontext where a onstant is allowed. It isalways replaed by its value at that point in the ompilation.Example:%Title := "This is the way the title is set";%List := True;Message(M, "Error at oordinate <i> in proedure || %Current_Proedure|| "</>", %Coordinate)Some of the options a�et ode generation (e.g., run-time heking). In general, the odegenerated will be determined by the values of the options at the end of the proedure.You annot have an option on for parts of the ode in a proedure and o� for other parts.The list of available ompiler variables is implementation-dependent. The following arethose whih are de�ned by the urrent ompilers. Exept as noted, they are implementedfor all ompilers.%Assertion_Chek := fTrue|Falseg default : TrueIf %Assertion_Chek is true, then ode is generated to hek the expressions in anyassert statements. If it is false, assert statements are treated as omments.%Assign_Chek := fTrue|Falseg default : False%Assign_Chek is intended to hek for assignments in whih the destination is usedas part of the soure, and is hanged before it is referened. For example:X := Y || XThis error is not urrently deteted exept in one or two speial ases.

112 Language Details%Chek := fTrue|Falseg default : TrueWhen a new value is assigned to %Chek, eah of %Range_Chek, %String_Chek,%Assign_Chek, %Assertion_Chek and %Stak_Chek is automatially reset to thesame value. Thus %Chek := False may be used to turn o� all run-time heking.%Compile := fTrue|Falseg default : TrueIf this option is set o�, the ompiler will perform syntax heking only. It will notperform any other error heking or ompile-time proessing and will not generateobjet ode. One set to False, the option annot be reset during the run (sinesubsequent assignments to ompiler variables are not proessed).The ompiler will still produe a paragraphed opy of the soure if requested.%Compiler_Dumps := n default : 1This option ontrols the printing of linkage trae-baks and storage dumps if aprogram interrupt ours in the ompiler. It is primarily of interest to the ompilerimplementors.%Compiler_Debug := n default : 0This option ontrols various internal ompiler debugging options. It is of interestonly to the ompiler implementors.%Convert := fTrue|Falseg default : FalseThis option requests the ompiler to onvert the paragraphed opy to adjust forinompatible hanges to Plus that may have ourred.The exat e�et may vary from time to time. Currently, the ations performed are:1) Any symbol that has been %Unreserve'd will be onverted to a valid identi�er byappending a \#" in the opy produed on unit 1. Thus, for example, setting %Con-vert := True, in onjuntion with the ompiler proedure %Unreserve("entry"),will produe a paragraphed opy in whih all ourrenes of entry are replaed byEntry#2) Any uses of the built-in proedure Size will be onverted to use Bit_Size instead.%CoordinateContains the soure-oordinate of the urrent line, as an integer. This may be usefulin produing error messages for debugging purposes.%Current_ProedureContains the name of the proedure urrently being ompiled. This may be usefulin produing error messages for debugging purposes.%DateContains the date at the start of ompilation as a harater string in the form "daymon dd/yy".

113Language Details%Dump_Tree := fTrue|Falseg default : FalseIf true at the end of a proedure, the intermediate ode tree is printed. This isprimarily of interest to the ompiler implementors.%Entry := "string-onstant" default : ""This option is ignored by Plus-11.For Plus/370, the spei�ed harater string is used as the name of the entry pointof the program and is punhed in an ENT reord at the end of the ompilation. Ifit is a null string, "", as it is by default, no ENT reord is produed. (However, thestandard Plus/370 library de�nition of Main sets %Entry to "MAIN".)For Plus/68000 with %Target_Operating_System of "MAC/MPW", if a proedurewhose external name mathes the string spei�ed is de�ned, then it is marked asbeing the entry point of the program.%Footer := fTrue|Falseg default : TrueIf this is set false, footer lines (using arriage ontrol ` <') will not be printed in thesoure listing.%Installation default : installation dependentThis is intended to assist people writing programs that are used at more than oneMTS installation, but that must ontain installation-spei� ode. The value isinitialized to the CNFGINFO \share ode" �eld (for example, "UBC" at UBC, "UM"at the University of Mihigan, et.). Note it is a ompile-time value|it reets theCNFGINFO ode at the time a program is ompiled, not at the time it is exeuted.This may be tested in if statements or ompile-time %if statements to selet betweeninstallation-dependent alternatives.%Installation may be assigned another value to test out the ompilation of alter-nate versions. For example:Run *Plus ... Par=%Installation:="SFU"would ompile the \SFU" version of a program.%Global_Id := bit(32)-onstant default : "PLUS"%Global_Id is implemented only by Plus/370and Plus/68000. It spei�es the\global-id" for the global storage type ontaining all global variables in the pro-gram. See Setion C{3, page 46.%Instrution_Set := "string-onstant" default : Plus/370|"STANDARD"Plus-11|"EXTENDED"Plus/68000|"STANDARD"This option may be used to speify the instrution set available on the objet ma-hine. The possible values that may be spei�ed urrently are "STANDARD", "BASIC",or "EXTENDED". Currently it is ompletely ignored by Plus/370 and Plus/68000.For Plus-11, the option "STANDARD" may be used to generate ode for a mahinethat doesn't have the Mul, Div, and Ash instrutions, and the option "BASIC" maybe used if the mahine also doesn't have the Sob instrution.

114 Language Details%Library := fTrue|Falseg default : FalseThis option is ignored by Plus-11 and Plus/68000. For Plus/370, it ontrols whetherspeial loader reords are output at the end of the objet module. These reordsare needed to aess the resident system Plus library routines. %Library defaults tofalse (the reords are not punhed). (However, the standard Plus library de�nitionof Main also sets this option to True.) See Chapter IV, page 127 for informationabout the loader reords required to run a Plus/370 program.%Lines_Per_Page := n default : 60This option sets the number of lines that the Plus paragrapher will put onto a pageof the listing.%Linkage := "string-onstant" default : Plus/370|"NEW"Plus-11|"ALTERNATE"Plus/68000|"NEW"This option ontrols some details of the proedure linkage assumed by the ompilers.The allowed values are urrently "OLD" or "STANDARD" (whih are synonyms) and"NEW" or "ALTERNATE" (whih are also synonyms).For Plus/370, "OLD" or "STANDARD" means the old (pre-1986) form of the MTSoding onventions is to be used. "NEW" means the new (\1986") onventions areto be used. The default8 is "NEW".For Plus-11, the use of "ALTERNATE" reverses the ompiler's use of R4 and R5. SeeAppendix E.Plus/68000 ignores this option.%List := f0|1|2g default : 1This option ontrols the soure listing. If set to 0, no soure listing is produed. Ifset to 1, soure from Sards is listed, but any input inluded from a library is notlisted. If set to 2, all input is listed.The paragraphed soure opy on unit 1 is produed (if unit 1 is assigned) indepen-dently of the setting of %List. The opy will never inlude input from a library.%List_Code := fTrue|Falseg default : FalseIf this is true at the end of a proedure a listing of the objet ode for that proedureis produed.%List_Code may also be assigned the value 2 or 3, whih ause the intermediate oderepresentation and assoiated tables to be dumped. This information is probablyof interest to the ompiler implementors only.
8 As of July 1987. This is likely to change to "STANDARD" when the meaning of "STANDARD" is changed to be

synonymous with "NEW".

115Language Details%Listing_Charater_Set := "string-onstant" default : "MIXED"This ompiler variable an be used to indiate to the ompiler what haraters areavailable on the listing devie. This is only a hint|the ompiler will not neessarilyadhere. The values urrently allowed are:"MIXED" indiates upper and lower ase may be used."UPPERCASE" indiates only upper ase letters are available. The ompiler will nottranslate everything to upperase when this option is seleted; it justdoesn't bother onverting various things to lower ase."TN" means the IBM TN harater set may be used. Currently, this justauses use of TN box orners and edges for /*BOX ... omments.%Lower_Case := fTrue|Falseg default : FalseIf this is set true, the soure listing and paragraphed opy will be produed withall keywords and identi�ers onverted to a standard upper-and-lower ase format.String onstants and omments will be left in their original ase.%Lower_Case may also be assigned the value 2, in whih ase omments will beonverted to all lower-ase.%Merge_Unref := fTrue|Falseg default : Trueontrols whether the ross referene listing of unreferened identi�ers appears asa separate listing. If it is true at the end of ompilation, then the listing of anyunreferened symbols is merged in with the regular listing. If it is false at the endof ompilation, unreferened symbols appear as a separate ross referene listing.Note that in either ase, whether an identi�er with no referenes appears or not isontrolled by the setting of %Unref when the identi�er was delared.%Objet_Length := numberThe value of %Objet_Length at the end of a proedure determines the maximumlength of the objet module reords that will be punhed for that proedure.For Plus/370, by default, number is the same as the maximum output reord lengthof the �le or devie assigned to SPUNCH. It may not be set to a value less than 40or greater than the maximum length of the output devie.This option should not be set bigger than 255 with Plus-11, sine *Link11 doesn'tsupport long objet reords.This option is ignored by Plus/68000.%Optimize := f0|1|2|3g default : 0This option is urrently unimplemented. It will be used to selet the kind of opti-mization wanted.0 indiates no optimization.1 indiates optimization for a \reasonable ombination" of spae and speed.2 means optimize for spae.3 means optimize for speed.

116 Language Details%Page_Width := n default : 132This option sets the page width that the paragrapher uses to produe the listing.%Preempt := fTrue|Falseg default : TrueBy default, when the ompiler runs out of general registers during ode generation,it will ontinue by storing out some of the registers in use and restoring them whenneessary. If %Preempt is set to false, the ompiler will not generate this registerpreemption ode, but will abandon ode generation if it an't ompile a proedurewithout any register preemptions.This option is mainly used with linkage none routines, for whih preemption odemay not be safe (beause the stak may not be set up at all times). In suh proe-dures, it may be preferable to detet that the proedure required preemptions viathe resulting error message.As with other ompiler options a�eting ode generation, the value in e�et at theend of the proedure applies to the whole proedure. You an't set this option o�for only part of a proedure.This option isn't supported by Plus-11 or Plus/68000.%Produtions := fTrue|Falseg default : FalseIf this ompiler variable is assigned the value true, then a line will be printed givingthe number of eah syntax prodution as it is applied during the parsing of theprogram. This output is primarily of use to the ompiler implementors.%Range_Chek := fTrue|Falseg default : TrueIf %Range_Chek is true, the ompiler will generate extra ode for assignments andarray subsripts to hek that the value is within the delared range of the variableor array index. A run-time hek will not be generated if the ompiler is able todetermine at ompile time that the value should be within the delared range. Forexample, when assigning a variable to another with the same range, no run-timehek is performed.The range-heking failities will sometimes ath uninitialized variables, but annotbe relied on to do so.Cheking may be disabled by assigning %Range_Chek the value false.%Regression_Test := fTrue|Falseg default : FalseThis option alters the output of the ompiler to make it more independent of theompiler version number and the time of ompilation. It is intended to allow om-parison of the output of di�erent versions of the ompiler. This is primarily ofinterest to the ompiler implementors.%Segment := "string-onstant" default : "Main"This option is only implemented by Plus/68000 and is ignored unless %Target_Operating_System is set to "MAC/MPW". This option sets the loader \segment name"for the following proedures.

117Language Details%Soure_FileContains the urrent soure �le name as a harater string. This may be useful inproduing error messages for debugging purposes.%Soure_LineContains the MTS line-number of the urrent soure line, in internal form as aninteger. This may be useful in produing error messages for debugging purposes.%Stak_Chek := fTrue|Falseg default : TrueThis option is only implemented by Plus/370. If %Stak_Chek is true, and %Link-age is "NEW", the ompiler will generate ode as part of the entry sequene to hekfor stak overow. The option is ignored if %Linkage is "OLD".%Statistis := fTrue|Falseg default : FalseIf %Statistis is true at the end of the input to the ompiler, a number of messageswill be printed desribing the use of various ompiler tables, and the values of variousounters.This information is primarily of interest to the ompiler implementors.%String_Chek := fTrue|Falseg default : TrueIf %String_Chek is true, the ompiler will generate ode to hek for string assign-ments in whih the soure is longer than the destination, and to hek for Substringfuntions in whih the designated substring does not lie within the string.%Subtitle := "string-onstant" default : noneSets a subtitle to be printed on the third line of eah page.%Target_Mahine default : Plus/370|"IBM/370"Plus-11|"PDP-11"Plus/68000|"MC68000"This option ontains a string desribing whih ompiler is being used. It may beuseful in onditional ompilation statements to isolate mahine dependent state-ments.%Target_Operating_System := string-onstant default : Plus/370|"MTS"Plus-11|"UBCNET"Plus/68000|"MAC/MPW"This option spei�es the system that the ode is to run on. It may a�et odegenerated, partiularly for proedure alls and the implementation of loader objets.See the Index for more details.For Plus/370, the possible values are "MTS" and "MVS".This option is ignored by Plus-11, and may be set to any string.For Plus/68000, the possible values are "MAC/MPW", "MAC/MDS" and "AMIGA".

118 Language Details%Test := f0|1|2g default : 1For Plus/370, if this variable is non-zero, the ompiler will generate SYM reordsas part of the objet dek produed, to assist in debugging the objet program. Ifthe value is 1 (True), the objet program an be used with either the \urrent" or\new" versions of SDS. If it is 2, it an be used with the \new" version of SDS only.See Chapter IV, page 127 for details of the debugging information produed.For Plus-11, it auses some information about variable and reord o�sets to be\dumped" in the listing. This information may assist with debugging.Plus/68000 urrently ignores this option.%TimeContains the time-of-day at the start of ompilation in the form "hh:mm:ss".%Title := "string-onstant" default : ompiler version et.Sets the title to be printed on the �rst line of eah page.%Unref := fTrue|Falseg default : TrueControls printing of the ross referene for identi�ers that are never referened. Iftrue when an id is delared, then it appears in the ross referene even if there areno referenes. If false when an id is delared, that symbol will appear only if thereis at least one referene.Note that the e�et is determined at the point of the delaration of a symbol. Thismeans it is possible, for example, to set %Unref := False before inluding librarydelarations, so that inluded symbols whih are not used don't lutter up the rossreferene.%Xref := f0|1|2g default : 2Controls how muh information is entered in the ross referene. If it is set to 0,then nothing in entered in the ross referene. If it is set to 1, then delarations willbe entered, but referenes to the delared identi�ers will not be reported. If it is setto 2, then delarations and all referenes will be reported.Note that the information olleted for a given identi�er is determined at the pointof the delaration of the identi�er. That is, if the setting is 1 when a variable isdelared, then the delaration will be entered in the ross referene, but referenesto the identi�er will not be olleted, even if %Xref is subsequently hanged to 2.%Xref_Sope := f0| 1| 2| 3g default : 3Controls what identi�ers are inluded in the ross-referene. If it is set to 0, noidenti�ers are entered. This is the same e�et as %Xref := 0. If it is set to 1, onlyexternal symbols (proedures, globals, external variables) are entered. If set to 2,only global symbols (everything de�ned in global bloks or external to proedurede�nitions) are entered. If set to 3, all identi�ers are inluded.

119Language Details3. Compiler ProeduresCompiler proedures may appear syntatially anywhere a normal statement might ap-pear. The e�et depends on the spei� proedure invoked.Example:%Ejet();%Inlude(Integer, String_type)The list of available ompiler proedures is implementation-dependent. The following arethose whih are de�ned by the urrent ompilers. Exept as noted, they are implementedfor all ompilers.%Double([n℄)Causes the next output line to be preeded by a skip to a \double" page. %Double(1)ejets to a page with an odd page number (a \front" page). %Double(2) ejets toan even (\bak") page. With no parameter, it urrently behaves like %Double(2)at UBC. This may hange, however (and may di�er at other installations).%Dump()This proedure dumps the ontents of various pass 1 ompiler tables as they existat the point where %Dump ours. This information is primarily of interest to theompiler implementors.%Ejet()Causes the next output line to be preeded by a page skip.%Inlude(identi�er,...)%Inlude is used to onditionally inlude members of the soure libraries, as de-sribed in Chapter VII, page 135.%Map(name,...)%Map an be used to obtain a storage layout map for a reord type. It requires oneor more parameters, whih must be type-identi�ers or names of a reord type.This proedure is intended to help in ensuring that a Plus delaration orretlyreets a orresponding assembler dset. It produes a listing of all �elds of thereord, giving the \aess-address" and a hexadeimal mask indiating whih bitsare aessed by the �eld name. It will follow nested reord types to a depth of 5levels.%Message("string-onstant",...)%Message outputs the given string onstants to the soure listing, and to Serom ifit is di�erent from Sprint. Eah line is agged with *** Message".%Mts()Causes the ompiler to return immediately to the operating system, in a RESTART-able way.

120 Language Details%Pop(ompiler-variable,...)%Pop is used to restore the value of a ompiler variable previously saved with %Push.If there is no staked value for the spei�ed ompiler variable, the initial defaultvalue is restored.%Print("string-onstant", ...)%Print outputs the given string onstants to the listing �le, one line per string. Thisis useful for outputting listing ontrol lines. These lines are not examined, alteredor ounted by the paragrapher.%Punh("string-onstant", ...)%Punh outputs the given string onstants to the objet �le produed by the ompiler(one string per reord). This is useful for outputting $Continue with lines, orauxiliary loader ontrol reords.%Push(ompiler-variable,...)%Push may be used to stak the values of any ompiler variables. The ompilerproedure %Pop is used to restore the value. For example:%Push(%Title); /* save urrent title */%Title :=%Pop(%Title) /* restore saved title */A list of ompiler variables may be pushed in a single use of %Push.%Unreserve("string",...)This ompiler proedure an be used to indiate that the spei�ed strings are not tobe treated as reserved words for the remainder of the ompilation. This is intendedto allow programs written before the addition of new reserved words to ontinue toompile without other hanges. For example,%Unreserve("value","referene","entry")would ause these reserved words to still be treated as a identi�ers. If this is used,however, the failities implemented by the keywords will not be available.Note that %Unreserve an be used in onjuntion with %Convert to produe aopy of the program in whih the reserved words have been onverted to harmlessidenti�ers.

121IV. Using the System 370 Plus CompilerA. Compiler VersionsThe urrent stable version of the Plus/370 ompiler is found in the �le *Plus.The �le Plus:Plus> ontains the latest version for testing. The �le Plus:Plus< (when itexists) will ontain a bakup version of the ompiler. This version will normally exist onlyafter major hanges.At UBC, the �le Plus:Plus# will always ontain the most reently distributed version of theompiler. Any programs to be distributed to other installations should be ompiled with thisversion to ensure they do not depend on new features or bug �xes.Eah version of Plus has a version number (whih appears in the default title, and in theobjet module END reord). The version number is of the form `n{m.' `n' is the releasenumber; it is inremented by one eah time the ompiler is ompletely regenerated. `m' is thehange number, inremented for eah hange installed.All ompiler hanges are desribed in the *Forum onferene \Plus-Internals". New featuresand inompatible hanges are also announed in the *Forum onferene \Plus".B. Compiling a ProgramThe ompiler is invoked with an MTS Run ommand of the following form:Run *Plus [logial-units℄ [Par=statements℄The following logial units may be spei�ed on the Run ommand:Sards Spei�es the �le or devie ontaining the soure program. Input reords must notbe longer than 255 haraters.Sprint The paragraphed listing is produed on Sprint. See below.Serom Error messages and ertain other messages written to Sprint are ehoed to Seromif Sprint and Serom do not refer to the same �le or devie.Spunh The objet module is produed on Spunh. If Spunh is not spei�ed it defaultsto the �le -Load.If Spunh spei�es a temporary �le, it will be emptied automatially before use.If Spunh spei�es a permanent �le, the �le must be emptied by the user beforerunning the ompiler.If a �le (either permanent or temporary) is spei�ed with a line-number range,then the spei�ed range must be empty, but the whole �le does not need to beempty. The ompiler will not use the �le if it already ontains lines in the spei�edrange.0 Unit 0 is used to speify a soure library or libraries. If it is not spei�ed, thedefault library (*Plus.Sourelib) is assumed. This library ontains a numberof useful standard de�nitions, inluding delarations of many of the MTS systemsubroutines. Doumentation of the members of *Plus.Sourelib appears in thewriteup UBC PLUS LIBRARY.

122 Using the System 370 Plus CompilerNote if unit 0 is spei�ed, it is used instead of *Plus.Sourelib. If it is intendedto use both, *Plus.Sourelib must be onatenated to the private library.See Chapter VII for details of library format.1 If unit 1 is spei�ed, it will be used for a paragraphed opy of the soure suitablefor use as input to the ompiler. If unit 1 spei�es a temporary �le, it will beautomatially emptied. If it spei�es a permanent �le, the �le must be emptiedbefore running the ompiler.2 If unit 2 is spei�ed, it will be used for a mahine-readable log of the errors in thesoure.The Par= �eld may speify any valid Plus statements. This is passed to the ompiler (followedby a terminating semiolon), as the �rst input reord to be proessed. The Par= �eld isnormally used in this way as a means of speifying the initial settings of ompiler options.The ompiler passes bak a return-ode in R15. This is set as follows:0|no errors or warnings deteted.4|warnings but no errors deteted.8|errors deteted.The return ode may be tested by MTS ommand maros.C. Compiler Output1. Soure ListingThe soure listing is produed paragraphed aording to preise paragraphing rules,intended to learly indiate the ontrol struture of the program. Soure listing may beturned on and o� with the %List ompiler variable, desribed on page 114.To the left of the soure listing are two olumns of numbers. The �rst olumn ontains theinput line number orresponding to the text on the line. The seond ontains a \soureoordinate" whih is used in ompile-time and run-time error messages to indiate thepoint of the error. The soure oordinate is reset to 1 for eah proedure and globalblok and eah maro de�nition. It is inremented for eah \paragraphed line". It is notinremented when a paragraphed line is split aross two printer lines as a result of thepaper width limitation. The soure oordinate is also used in the SYM reords generatedby Plus for use with SDS (see Setion F, page 127).The input �le name appears to the right of the listing eah time it hanges, and on the�rst soure line of eah page.A blank line appears in the listing wherever (and only where) one appears in the input.Comments are normally formatted in the output with one blank between eah \word".The options frame, box, as_is, and entre may be spei�ed to ontrol the formattingof the omment|these are desribed below. If a omment is the �rst thing on an inputline, or if it is to be framed, it will begin a new line in the output.Certain annotations appear in the soure listing. Eah exit, repeat or return is markedwith \..." to indiate the level of the ompound being exited. A heading appears at thebeginning of a proedure de�nition, speifying the names of the parameters and resultof the proedure. (This is beause the proedure delaration in whih they are spei�edmay be elsewhere in the listing.)

123Using the System 370 Plus CompilerTitles and subtitles in the listing may be set by the %Title and %Subtitle ompilervariables. By default, the title spei�es the ompiler version and user id.The ompiler produes footer lines indiating the proedures and global bloks de�nedon eah page. This footer may be turned o� (e.g., if output is intended for a printer thatdoes not support footers), by means of the ompiler variable %Footer.2. Comment ParagraphingThe omment start symbol /* may be immediately followed (with no intervening blanks)by one or more of the options frame, box, as_is or entre(or enter) (separated byommas if more than one appears).If the option frame appears, the listing of the omment will be surrounded by a frameof *"s.If the option box appears, the listing of the omment will have a line-box drawn aroundit. If the %Listing_Charater_Set ompiler variable is set to "TN", the box will use theTN box haraters; otherwise it will use haraters from the PN harater set.If the option as_is appears, the omment will be output \as-is", with horizontal spaingpreserved from the ompiler input. The entire omment will be moved left or right toline up the \/*" with the urrent indentation level, but internal blanks will be preserved,and suessive lines of the omment will be moved left or right as neessary to maintainthe same relative position.If the option entre (or enter) appears, then the lines of the omment will be entredin the output. Eah input line generates one line of entred output. as_is is ignored ifentre is spei�ed.The words frame, box, as_is, or entre themselves do not appear in the listing.A new line is started in the listing following any omment. A null omment (\/**/")is suppressed in the listing, but still auses a new line. Hene it may be useful in somesituations where the line-breaks determined by the paragrapher are not adequate.For example, if the input isif Substring(Symbol, 0, Symbol_Length) = Test1 /**/or Substring(Symbol, 0, Symbol_Length) = Test2then...end ifthe paragraphed listing will appear asif Substring(Symbol, 0, Symbol_Length) = Test1or Substring(Symbol, 0, Symbol_Length) = Test2then...end ifWithout the /**/, the parapgrapher would �t some part of the seond line onto the �rst,and break the expression at a less appropriate plae.

124 Using the System 370 Plus CompilerIn a similar way, the sequene *//*" within a omment is suppressed from the listing,but still auses a new line. New omment options may follow the \/*". However, if aframe or box is in e�et, it will ontinue to the �nal end-of-omment.For example,/*box,entreLinear and Binary Searhing*//*This example program demonstrates...*/The entire omment will be surrounded by a \box" frame, but only the �rst part of theomment will be entred.3. Paragraphed CopyIf unit 1 is spei�ed on the Run ommand, a paragraphed opy suitable for use as inputto the ompiler is produed. The paragraphed opy is in most respets the same as thelisting; however, it is intended to be a more exat dupliate of the input than the sourelisting.The annotations added to the listing do not appear in the paragraphed opy. Inputwhih is inluded from a library (via %Inlude) does not appear in the paragraphedopy. (The %Inlude statement is ehoed however.)The omment options and the sequene /**/ or *//* are opied aross to the output.A frame or box will not appear around the paragraphed opy of a omment.The maximum length of an output line in the paragraphed opy is 68 (for onvenientfull-sreen editing), while in the soure listing it is 90. There is urrently no way tohange these lengths.4. Cross-RefereneThe soure listing is followed by a ross-referene of identi�ers used by the program.The exat ontents of the ross-referene are ontrolled by a number of ompiler variables.The option %Xref ontrols how muh is reported for eah identi�er. The options %Xref_Sope ontrols whih identi�ers are inluded in the ross referene. The options %Unrefand %Merge_Unref ontrol printing of identi�ers that are de�ned but never referened.See the desriptions of these ompiler variables for details.Entries in the ross referene indiate the general lass of identi�er (onstant, variable,type, et.). Referenes are given in the form `p : 1; 2; :::; n', where p is a page numberin the listing and 1; 2; :::; n are soure oordinates of referenes on that page. (Sineoordinates start over for eah proedure, and there may be more than one proedure ona page, this is not neessarily a ompletely preise referene.) Eah referene oordinatemay be followed by a one-harater ode indiating whether the program stores, deref-erenes, the symbol, et., at that line in the program. A key for the odes used appearsat the beginning of the ross-referene.5. ErrorsIf an error ours during pass 1 of the ompilation, the urrent line is output immediately,

125Using the System 370 Plus Compilerfollowed by the error message. The line listed will always ontain the urrent input linenumber and �le name. Errors enountered after pass 1 ause a message to be issued atthe end of the proedure listing.In all ases, error messages (and the urrent line if any) are also ehoed to Serom, ifSprint and Serom are di�erent. Whenever an error message is issued, the ag ***errors *** is plaed in the bottom right-hand orner of the listing for the next twopages. This helps �nd the error messages in a large listing.If unit 2 is spei�ed on the Run ommand, any errors will also be reorded in the spei�ed�le. This �le an be used to automatially step through the errors with an editor.D. Running A Plus/370 Objet ProgramIf the main proedure for a Plus/370 program is de�ned by inluding the library de�nition forMain, and the objet �le is defaulted to -load when the program is ompiled, the programan be exeuted with a Run ommand of the form:Run -load ... [Par=options; user-par℄The library de�nition of Main spei�es the speial linkage routine PLUSENTR is to be used andauses required loader ontrol reords to be emitted at the end of the objet �le.The speial linkage routine PLUSENTR may proess ertain options from the Par �eld of theRun ommand before it passes ontrol to the main proedure.If the proedure delaration for the main proedure spei�es a staksize option, or if aloader reord has been added to de�ne the external symbol STAKSIZE, then PLUSENTR ignoresall the options in the Par �eld.The following options will be proessed by the default linkage routine PLUSENTR when thestaksize has not been spei�ed.STACK={n|nB|nK|nP} spei�es the amount of memory to alloate for a stak. By default,one page is alloated. Speifying STACK=nK alloates n 1024 bytebloks, nP or just n spei�es the size in 4096 byte pages while nBis the size in bytes.HIGH_WATER will ause PLUSENTR to output a message at the end of exeutionwhih gives the amount of stak alloated and the amount hangedduring exeution.The proedure Main1 may optionally be delared to have a parameter and return-value, asfollows:proedure Main isproedurereferene optional parameter Par is harater(0 to 256) inregister 0result R is Integer in register 15end linkage "PLUSENTR"
1 It is not required that your main program be called “Main”. You can use any identifier, provided you specifylinkage "PLUSENTR".

126 Using the System 370 Plus CompilerThis is the delaration that will be inluded from the standard soure library if you speify%Inlude(Main).To de�ne the staksize to alloate as part of the delaration, this should be hanged toproedure Main isproedure...end linkage "PLUSENTR" staksize nwhere n is an integer onstant for the size (in bytes) you want.When Main is alled, it will be passed as a parameter that part of the Par= �eld following thesemiolon. The value returned by Main will be set in R15 as a return-ode from the program.The stak size is inreased to the nearest page (4096 byte) multiple. When %Linkage="OLD"is in e�et, an extra page is also alloated at the end. This extra page is proteted so that itwill ause a protetion exeption if a program attempts to use storage beyond the end of thestak. Thus a protetion exeption in a Plus program (espeially if at the entry sequene ora proedure), may be an indiation that a larger stak is required. The only time you mightnot get a protetion exeption is if you have a large but unused variable on the stak, andso \hop over" the stak fene. If %Linkage="NEW", the stak fene is not alloated, sine theompiler option %Stak_Chek an then be used to implement stak overow heking.The run-time heks performed by Plus are implemented by ausing a program interruptwhih is interpreted speially by the program interrupt handler set up by PLUSENTR. Thisnormally dumps the registers and a limited amount of memory and provides a trae bakfollowing any program interrupt. If the program is being exeuted under ontrol of SDS,however, this information will not be given. Instead just a message (for Plus run-time heks)is displayed, then the interrupt handler returns to SDS for further proessing.It is not neessary to use the run-time support provided by linkage "PLUSENTR", providedthe required stak and global storage environment are set up before an Plus proedure isexeuted. See Appendix D for further details of the requirements. Note that if the normalprogram interrupt handler is not used, the program must either be prepared to handle foritself any program interrupts resulting from run-time heks, or must be ompiled with allrun-time heks disabled.E. Loader Reords Required By Plus ProgramsIn order to load orretly, a Plus objet �le must ontain some speial loader reords tointerfae with proedures and global variables de�ned in the resident system. These reordsshould normally be at the end of the objet �le. The usual loader reords are generatedautomatially at the end of the objet dek if the option %Library is true. (This optiondefaults to false, but is set true if Main is inluded from *Plus.Sourelib.) However, forprograms ompiled in piees and later ombined, it may be neessary to add the reords \byhand".1. %Linkage="OLD"If %Linkage is "OLD", the following reord is normally required:$Continue With Old:OldCCLib

127Using the System 370 Plus CompilerThis reord auses the inlusion of the old version of the runtime library. Alternativelythis library ould be spei�ed on the MTS Run ommand:Run -load+Old:OldCCLib ... [Par=options; user-par℄2. %Linkage="NEW"If %Linkage is "NEW", the following reords are normally required:
column → 2 7 17RIP QLCSPRRIP CCSYMBOLLCS LCSYMBOLLCS CCSYMBOLLCSPR QLCSPRThe LCSPR reord for QLCSPR is required so that the global (PRV) variables used by theprogram being run will extend the global storage used by the normal Plus entry routinePLUSENTR. The new oding onventions require that the �rst two words of the globalstorage be speially de�ned. This LCSPR for QLCSPR ensures the required setup. AnLCSPR for QGLOBAL may be substituted to de�ne only the �rst two words, if the programdoes not use PLUSENTR. The program will not exeute orretly if neither QGLOBAL norQLCSPR is used.The LCS reord for CCSYMBOL is required to tell the loader to searh the symbol tableCCSYMBOL, in order to �nd any Plus library routines used. If the program doesn't useany of the Plus library routines, this reord may be omitted.The other reords are needed to tell the loader to �nd the de�nitions of QLCSPR andCCSYMBOL.A opy of these reords is in the �le Plus:Endjunk, whih an be opied to the end ofthe objet program.F. Debugging Plus ProgramsIf the ompiler variable %Test has the value 1 (as it does by default), the ompiler will generateSYM reords to assist in debugging the Plus program under SDS. If it has the value 2, theSYM reords will be generated for use with a new version of SDS.2The standard Plus run-time support sets up a program interrupt exit to interept programinterrupts within the program. When a program is run under ontrol of SDS, this defaultinterrupt handler will return to SDS with the state at the time of the interrupt intat; thusSDS ommands an be used to explore the problem. Note that run-time errors (range heks,assertion failures, et.) in Plus programs are signalled by a program interrupt (an operationexeption with an operation ode of zero). For these interrupts, the interrupt handler willdeode the hek ondition and output an appropriate message before returning to SDS.If the program is to be restarted following a run-time error interept, the ommandGO $PSW+2should be used rather than CONTINUE.

2 You may need to issue the MTS command Set Version(Sds)=New to use the new version.

128 Using the System 370 Plus CompilerThe support provided for debugging Plus with SDS is still rather rudimentary, sine SDS isnot prepared to ope with many of the basi onepts of Plus (suh as programmer de�nedtypes).Currently, SDS symboli information is generated as follows:1. Soure oordinates are emitted for all lines of the soure for whih there is generatedode. These are referened with symbols of the form #n (for soure oordinate n).2. The proedure name (Plus identi�er) is emitted as a label at the beginning of the odeset.3. A dset is generated for eah global blok. The dset name is the external name of theglobal (�rst four and last four haraters of the name).SYM information is generated for all variables in the global. In order to referene them,SDS must be told where the global is based. This requires two steps:a. Speify the base of the pseudo-register with the SDS ommandUSING PRAREA $GR11at any time after the pseudo register vetor is alloated.b. Tell SDS where the dset is based in the PRV. This is done with the SDS ommandUSING global globalfor the required dset global .4. A dset is generated for eah reord type whih has a name (i.e., is de�ned in a typedelaration). Eah �eld of the reord will appear as a variable in this dset. If %Test is 2,the name of the dset is the type identi�er. If %Test is 1, the dset name is generated bythe same rule as for external symbols (�rst four/last four haraters of the type name).In this ase, if the identi�er is longer than 8 haraters, the full form will be de�ned asa label at the beginning of the dset.5. A dset is generated for the loal variables of eah proedure. This dset has the name#pro where pro is the proedure name. If %Test is 1, it will be shortened to at most 8haraters by taking the �rst four/last four.A USING ommand must be given to tell SDS where the dset is based. This is eitherR13 at entry to the proedure or R12 after exeuting the entry sequene.6. A dset is generated for the parameter/result area of eah proedure. This dset has thename !pro, possibly shortened to 8 haraters as above. This dset is based on R1 atentry to the proedure. It may be based on another register at other points.Only the following SDS data types are used for variables and �elds of reords:F (with appropriate length) is used for all integer and programmer de�ned id-list types.C (with appropriate length) is used for �xed and varying length strings. Note thatfor a varying string, the length �eld is also printed as if it were harater, and thevariable is printed as the maximum length.

129Using the System 370 Plus CompilerA is used for pointers and proedure variables.X is used for anything else.A dupliation fator will be inluded for arrays. Note, however, that SDS always assumes thelower bound for array subsripts is 1.

130

131V. Using the PDP-11 Plus CompilerA. Compiler VersionsThe urrent stable version of the PDP-11 Plus ompiler is ontained in the �le *Plus11. The�le Plus:Plus11> ontains the latest version for testing. The versions of the Plus-11 ompilerare numbered using the same basi sheme as the Plus/370 ompiler.B. Compiling a ProgramThe ompiler is invoked with the Run ommand in a similar way to the 370 ompiler. Theuse of logial units and the Par= �eld are idential, with the exeption that unit 0 defaults tothe �le Plus:Sourelib11.The output produed by the ompiler is equivalent to that produed by the 370 version (withthe obvious mahine-dependent di�erenes).C. Running a PDP-11 ProgramThe PDP-11 version requires that some run-time support routines be provided. These rou-tines are used in the implementation of proedure entry and exit, run-time error heking,and ertain operations on string types. These routines are independent of the exeutionenvironment of the program.Other routines are required to set up the stak and global storage and initiate exeution of themain program (whih should be alled Main). Another group provide primitive I/O supportto the Dewriter onsole. These routines are system dependent.At UBC, the objet generated by the ompiler is ombined with the run-time support andany other required ode using *Link11 to generate a binary image whih an be loaded intothe PDP-11.1. Use of Link11The �le *Link11 ontains a version of Link11 whih supports pseudo-registers. Thissupports the ommands PR BEGIN and PR END.These ommands are used to \surround" the inlusion of all Plus modules whih are touse the same global area. (The omplete input to Link11 might inlude independentfamilies of proedures to be linked into one memory image.)2. Building A Test SystemThis setion desribes how a Plus program is urrently linked to build a binary image foruse with the Test Pdp-11 at UBC. This proess will be di�erent at other installationsand when building prodution systems at UBC.The �le Plus:Objlib11 ontains the objet for the run-time support routines used. The�le Plus:Freeore ontains a dummy set whih is linked after all ode to give therun-time support a handle on the beginning of the \free-ore" after all ode.Typial input to *Link11 to build a test system is therefore

132 Using the PDP-11 Plus CompilerSET �,0200 -- load at 200LINK PLUS:OBJLIB11PR BEGINLINK Plus_objet1LINK Plus_objet2...PR ENDLINK FEP:NEWDEBUG* -- inlude debug supportLINK PLUS:FREECORE -- mark endSET #,DEBUG -- enter at DEBUGMAP map_fileWRITE fep_load_fileSTOPPlus:Objlib11 ontains routines required by the objet ode generated for any Plusprogram. It also inludes objet for routines required only for Plus-11 programs ompiledwith the "BASIC" or "STANDARD" instrution sets. Other routines implement librarysubroutines delared in Plus:Sourelib11.Many appliations may wish to selet only some of these routines, or to provide substi-tutes for di�erent system or mahine environments. The soure, whih may be useful asa prototype, is ontained in the �les Plus:Lib11*sa (*11asr assembler routines) andPlus:Lib11*sq (Plus-11 soure routines.)

133VI. Using the Motorola 68000 Plus CompilerA. Compiler VersionsThe urrent stable version of the Motorola 68000 Plus ompiler is ontained in the �lePlus:Plus68. The �le Plus:Plus68> ontains the latest version for testing. The versions ofthe Plus/68000 ompiler are numbered using the same basi sheme as the Plus/370 ompiler.B. Compiling a ProgramThe ompiler is invoked with the Run ommand in a similar way to the 370 ompiler. Theuse of logial units and the Par= �eld are idential, with the exeption that unit 0 defaults tothe �le Plus:Masourelib.The output produed by the ompiler is equivalent to that produed by the 370 version (withthe obvious mahine-dependent di�erenes).C. Running a Motorola 68000 ProgramPlus/68000 requires that some run-time support routines be provided. These routines areused in the implementation of some operations on string types and long multipliation anddivision. These routines do not require any global storage. They are supplied in the �lesPlus:Obj68MPW, Plus:Obj68MDS and Plus:Obj68AMIThe objet generated by the ompiler is ombined with the run-time support and any otherrequired ode using the linker orresponding to the %Target_Operating_System ompilervariable. The �rst step in this proess is to transfer the objet �le from MTS to the targetsystem, using some binary transmission protool, suh as Kermit. The linking, running anddebugging then proeed on the target system.

134

135VII. Soure LibrariesA. Library FormatThe Plus ompilers support a soure-library faility whih allows segments of soure text tobe inluded from library �les.A library onsists of a diretory followed by 0 or more library members.The diretory onsists of 0 or more lines, terminated by either an end-of-�le or /end. A normaldiretory reord onsists of a library member name (whih must be a valid Plus identi�er)followed by an unsigned integer line number (separated by one or more blanks).The diretory portion may use impliit onatenation ($Continue with ... or $Continuewith ... return reords) to speify other libraries to be used. Blank lines and Plus-styleomments may also be inluded within the diretory portion.The line-number in a diretory reord indiates the line in the same �le at whih the librarymember begins. The reord at the spei�ed loation must be /begin membername, wheremembername is the identi�er spei�ed in the diretory. A library member ends with anend-of-�le or /end. Impliit onatenation may be used within a member.B. Speifying Libraries to the CompilerUnit 0 on the Run ommand is used to speify the library or libraries to be searhed. Multiplelibraries may be spei�ed by onatenation either expliitly or impliitly within a librarydiretory.In e�et, the Fdname spei�ed for unit 0 de�nes the diretory to be searhed. A librarymember is always obtained from the �le in whih its de�ning diretory entry is found. If anidenti�er appears more than one in the libraries to be searhed, the �rst ourrene will beused, without omplaint.C. Inluding Soure From a LibraryThe %Inlude ompiler proedure is used to onditionally inlude library members within asoure program.It appears in the form%Inlude(id1,id2,...,idn)An arbitrary number of idi's may be spei�ed. Eah id in the list is onsidered for inlusionin turn. If the id is not de�ned at the point where it is onsidered for inlusion, then thelibrary member with that name is inluded. If the id has been previously de�ned (as any kindof Plus identi�er: type, variable, onstant, et.) then the member is not read in. An errormessage will be issued if the id is not de�ned and is not in the diretory of any library.%Inlude(...) may be arbitrarily nested within library members.D. Soure Library UtilitiesThere are two utility programs under id Plus that may be of interest to Plus programmers.1. Plus Library GeneratorThe program Plus:Libgen is a simple program to generate or rereate a Plus library.

136 Soure LibrariesIt is invoked with an MTS ommand of the formRun Plus:Libgen [logial-units℄ [Par=options℄The following logial units may be spei�ed on the Run ommand:0 spei�es a �le ontaining an existing Plus soure library, or a sequene oflibrary members.1 spei�es a �le in whih a new Plus library is to be built.Serom is used to display messages issued by the program.The Par �eld may speify either or both of the optionsBUILDdir indiates that the input from unit 0 has no diretory, so one should be builtfrom the information on the /begin lines in the input.SORTdir means that the members in the output library should be sorted alphabeti-ally, rather than preserving the order from the input diretory.(Upperase letters in the options above indiate allowed abbreviations.)The input on unit 0 is intended to be an existing Plus library, possibly with extramembers that aren't in the diretory. The program �nds all /begin lines in the input�le, and uses the names from these to build the output library.Line numbers in the input �le are ignored ompletely. Comments and blank lines fromthe input diretory, and the order of all members in the input diretory, will be preservedin the output library (unless SORTDIR is spei�ed).2. Library Listing ProgramThe �le Plus:Liblist ontains a simple program that an be used to produe a listingof a Plus soure library, with suitable headings et.It is invoked with a Run ommand of the formRun Plus:Liblist [logial-units℄ [Par=options℄The following logial units may be spei�ed:Sards spei�es the library �le to be listed.Sprint spei�es a �le or devie on whih the listing is to be produed.The default output is intended to be suitable for the Xerox 9700 in two-sided, portraitmode. The page numbers and titles are alternated for front/bak pages.The following options may be spei�ed in the Par �eld to modify the output produed.Upperase letters in the following indiate allowed abbreviations.FORMat=format-name where format-name may be one of LANDSCAPE, PORTRAIT, UNI-VERS_LF, TITAN_PF, or PLUSLIST. This spei�es the Xerox 9700format to be used for printing the listing.LANDsape The listing will be suitable for printing in \landsape" mode, usingan output width of 132.

137Soure LibrariesONEsided The output will be produed for printing onesided. In this asepage numbers and titles will not be alternated for front/bakpages.PAGELENgth=n where n is at least 8, spei�es the number of lines to be printedper page. The default is 60.PAGEWidth=n where n is between 76 and 254, spei�es the width of the page.The default is 76, whih is suitable for \portrait" listings.PORTrait The output will be suitable for printing in \portrait" mode, usingan output width of 76. This is the default.SPLit If this option is spei�ed, output lines longer than the page widthwill be split aross multiple lines. By default, they are just trun-ated.TWOsided The output will be produed for printing twosided. Page numbersand titles alternate between front page and bak page formats.This is the default.

138

139VIII. Helpful Hints and Dirty TriksThis hapter ontains a mixed bag of suggestions that should help you to use Plus more eÆientlyand more e�etively. It inludes ways of irumventing some of Plus's limitations. These aren'talways pretty, but they do work.Most of these points apply to Plus/370 under MTS, but similar onerns and approahes are oftenappliable to other environments.A. Using Equate to Improve Code GenerationWhen you use an equate statement, the expression being equated to is evaluated one only,at the point where the equate statement ours. Thus equate is sometimes useful as a way ofimproving ode generation by, in e�et, removing ommon subexpressions. For example, tointerhange two elements of an array, something of the following form an be used:equate Soure to Arr(I),Dest to Arr(I+1);variable Temp is ... in register;Temp := Dest;Dest := Soure;Soure := TempEah of the two subsript alulations has to be performed only one, instead of twie.In this ase, the saving is relatively small, and using the equate may make the program abit harder to read, so it might not really be an improvement unless the eÆieny of thesestatements was ritial. However, if a omplex expression is used many times in a proedure,the performane improvement ould be substantial, and the use of equate might even makereading the program easier.A somewhat obsure speial ase of this is to improve the ode generation required to aessa referene parameter. If a proedure has a parameter Par whih is passed by referene,every use of Par in the proedure is impliitly an expression dereferening a pointer; hene aseemingly useless equate likeequate Par# to Par(with Par# used through the rest of the proedure in plae of Par), an atually improve theode generation by eliminating this ommon expression. This is probably only worth doingif performane is ritial and the parameter is referened a lot of times.You shouldn't try to use equate in this way too muh, however, beause it uses up registersand may ause worse ode to be generated elsewhere, as desribed in the next setion.B. Plus/370 Register UseThe ompiler alloates the general registers for many purposes. Some registers are alloatedpermanently throughout a proedure, some have a fairly long-term use (aross many state-ments) and some are used during expression alulations. If a proedure needs more registersthan are available, the ompiler will generate \preemption" ode to save and restore registersso the same register an be used for more than one purpose. If this happens a lot, the qualityof the ode may su�er onsiderably. Thus it's a good idea to gain some understanding of howthe soure ode for your program a�ets the register alloation.

140 Helpful Hints and Dirty TriksOne register is alloated for eah page of objet ode and for eah page of \stak frame" (loalvariables, temporaries, et.) used by the proedure. Up to three registers may be used foreah. These registers are alloated for the entire proedure. By keeping proedures small andavoiding using the stak for large variables, you an redue the number of registers ommittedfor these purposes.If the proedure has any \storage" parameters, one register is alloated to hold the pointerto the parameter list. This is alloated for the entire proedure.Up to four registers may be alloated for addressing the most-often referened global bloks.This number will be redued if the proedure has more than one ode or stak base register,to avoid rowding the rest of the register alloation too muh. These registers are alloatedat the beginning of the proedure and remain alloated until the last referene to a variablein the global blok. For global bloks whose addresses aren't preloaded in the entry ode,extra instrutions are needed at eah referene. If you group your global variable delarationsso that eah proedure referenes only a fairly small number of global bloks, the generatedode will usually be better. Note that eah global variable that isn't in a global blok ats asif it were in a global blok by itself and so requires separate addressability.Eah open statement and equate statement that involves any expression alulation (inludingthe \impliit" expression involved in using a referene parameter) will require one register tohold the result of the address alulation. (Opens and equates of simple variables don't useup registers, sine the resulting variables an be addressed from the same base as the originalvariable.) These registers are in use from the point of the open or equate statement throughto the last referene to the identi�er or reord �elds de�ned by the statement. Similarly, eahregister variable requires a register from the point of the delaration through to the pointwhere it is last used.Overommitment of registers to equates, opens, and register variables is the most ommonause of the ompiler generating large numbers of register preemptions. You an minimizethe problem by making all suh statements as loal as possible. That is, don't just put themat the beginning of eah proedure, but move them as lose as possible to the point wherethey are really needed.If ompiling a proedure resulted in any register preemptions, a message is printed at the endsaying how many were required. Eah preemption means one store instrution and at leastone load instrution. From this you an make some guesses at how the register preemptionshave a�eted ode generation for the proedure. Note that a smallish number of preemptionsisn't neessarily bad|the performane gains from using register variables, opens, and equatesan often be muh greater than the losses from any extra preemptions that might result.C. Exeution-time Array DimensionsPlus does not have any built-in way to de�ne an array whose size is determined at exeutiontime. In pratie, however, it is possible to heat by delaring an array type whose dimensionsare the largest that might be required, then de�ning a pointer variable whih points to thearray type. The system storage alloation subroutines an then be used to alloate storagefor an array of any required size and store its address in the pointer. All referenes to thearray must then be indiretly through the pointer.For exampletype Dynami_Array_Type is array(1 to 9999999) of Integer;variable Array_Base is pointer to Dynami_Array_Type;

141Helpful Hints and Dirty Triks.../* Alloate array of N integers: */Array_Base := Getspae(0, N * Byte_Size(Integer));.../* Initialize the array: */do I := 1 to NArray_Base�(I) := 0endNote that the ompiler will be unable to do any useful subsript heking when an array isde�ned and alloated in this way, sine it believes that any number from 1 to 9999999 is avalid subsript.In this example, Byte_Size is used to determine the size of the array element, whih ismultiplied by the number of elements required to determine the number of bytes to alloate.Some are is needed when using Byte_Size in this way, sine the size may not inlude anyslak bytes required by alignment onsiderations if it is alloated as part of an array. To beabsolutely safe, the size of eah element of an array of elements of type t ould be omputedas: /* Dummy array to get element size: */type T1 is array(1 to 2) of t;onstant Element_Size is Byte_Size(T1) - Byte_Size(t)D. Cheking For Optional ParametersPlus doesn't urrently provide any built-in way that a proedure an determine whetheran optional parameter was supplied by the aller. However, when there are any optionalparameters in the delaration, and the last one supplied by the aller is passed by referene,Plus does ag it in the high bit as required by the S Type linkage onventions. With a littleingenuity and a lot of heating it is possible to test for this ag.The easiest way to aomplish this is to de�ne the parameters as name parameters rather thanreferene parameters in the proedure delaration. This doesn't make any di�erene to thealler, but means that the alled proedure an aess the pointer passed diretly; that is,the impliit dereferene is suppressed. (Whih means you must expliitly dereferene it whenyou want to aess that parameter passed.)You an then equate to the pointer in order to test the high-order bit. For example, given adelaration likeproedure Example isproedurename parameter P1 is ...optional name parameter P2 is ...endto determine if the aller provided the seond parameter, you an test the high-order bit ofthe pointer to the �rst:

142 Helpful Hints and Dirty Triksequate Test_Bit to P1 as paked Boolean;...if Test_Bitthen/* P1 is last parameter so P2 wasnt supplied. */...else/* P2 isnt last parameter. */...end ifIf all parameters are optional, there is no way to detet the situation in whih the allerprovided none. (This isn't supported by the S-Type linkage.)More generally, if there are a number of optional parameters and you need to determinewhih was the last one supplied, you an equate an array to the parameter list in order tostep through the pointers:proedure Example2 isproedurename parameter P1 is ...optional name parameters P2, P3, P4, P5, P6 are ...end;...definition Example2...equate Pararray to P1 as array (1 to 6) ofreordV_Bit is paked Boolean,Rest is paked bit(31)end;...do Number_Of_Parameters := 1 to 6exit when Pararray(Number_Of_Parameters).V_Bitend;/* At this point Number_Of_Parameters speifiesthe total number provided. */...end Example_2E. Cheking AddressesIn Assembler programs under MTS the BPI instrution1 is often used following a refereneto a \questionable" address to ath the program interrupt that will result if the address isinvalid. This is muh more onvenient than setting up a program interrupt exit to �eld suhproblems.There is no diret way to do this in Plus. However, *Plus.Sourelib ontains a pair of
1 BPI is not a real 370 machine instruction but is simulated by the MTS supervisor.

143Helpful Hints and Dirty Triksmaros, Feth_Chek and Store_Chek whih use Inline to test whether the loations ref-erened by a pointer an be fethed or stored into without a program interrupt ourring.For example,Feth_Chek(Ptr, Feth_Ok)will set Feth_Ok to True if Ptr� an be referened and to False if referening it auses aprogram interrupt. Store_Chek similarly heks if it an be stored into.These maros an only be used if the type of Ptr� has a size of less than 256 bytes. Theywill hek the entire objet an be fethed or stored, not just the �rst byte.Sine the maros inline a BPI instrution, they will only funtion for programs running underMTS.To see how the maros handle the Inline'd branh, look at the soure in *Plus.Sourelib.F. Moving Arbitrary DataSometimes it may be neessary to move a spei�ed number of bytes from one memory loationto another. If it isn't onvenient to use normal Plus types and assignment statements, theeasiest way to do this in Plus is to \type heat" the loations as string variables and useassignment of a Substring.For example, to move N bytes from the loation spei�ed by pointer Soure to the loationspei�ed by pointer Dest, whatever the types of Soure and Dest, you an use something ofthe form:equate S to Soure� as harater(Maximum_Address),D to Dest� as harater(Maximum_Address);D := Substring(S, 0, N)(where Maximum_Address is de�ned by the *Plus.Sourelib member Mahine_Storage_Types).G. Pointer ArithmetiIt is easy to add or subtrat from a pointer by \type heating" the pointer as an integer, andthen operating on the integer.This is most tidily done by hiding it inside a maro. For example, a maro to add an arbitrarynumeri value to an arbitrary pointer is:maro Inrement_Pointerparameters are Ptr, Inr;equate Cheat_Ptr to Ptr as (0 to Maximum_Address);Cheat_Ptr +:= Inrend maroA useful variation is a maro to inrement a pointer by the size of the item it points to:

144 Helpful Hints and Dirty Triksmaro Inrement_By_Sizeparameter is Ptr;equate Cheat_Ptr to Ptr as (0 to Maximum_Address);Cheat_Ptr +:= Byte_Size(Ptr�)end maroH. Return Codes from Plus ProeduresThere isn't urrently a built-in way for a proedure written in Plus to return a Type I linkagereturn ode. However, there is a proedure Return_Code in *Plus.Sourelib whih an beused to fake it.If a proedure ontainsReturn_Code(value)then when the proedure returns, value will be passed bak as the return ode. (The proedureaomplishes this by storing the value in the R15 loation in the savearea.)I. Multilevel Proedure ReturnsWhen a proedure detets an error, it is sometimes useful for it to be able to fore a returnthrough more than one level of proedure all. This avoids the neessity of passing bak errorindiations and testing them at all levels.There are proedures in *Plus.Sourelib that implement a simple form of multilevel return.To use them, the proedure that is to be returned from must all Setup_Return_From tosave neessary information, and the proedure foring the return alls Return_From to e�etit. The state information needed is saved in a variable of type Return_Control_Blok_Type.This must be aessible to both proedures, so global storage is usually used (although itould be passed down as a parameter).For example:%Inlude(Return_Control_Blok_Type, Setup_Return_From, Return_From);global Foovariable Rb is Return_Control_Blok_Type;...end Foo;proedure Level1;proedure Level2 isproedureresult Suess is Booleanend;proedure Level3;proedure Level4;

145Helpful Hints and Dirty Triksdefinition Level1...if Level2()then/* It worked OK */else/* Some error ourred. */end if;...end Level1;definition Level2/* Returns with False is anything goes wrong. */Setup_Return_From(Rb, Suess);...Level3();...return with Trueend Level2;definition Level3...if ...then/* Something wrong. Return all the way. */Return_From(Rb, False)end if;...Level4();...end Level3;definition Level4...if ...then/* Something wrong. Return all the way. */Return_From(Rb, False)end if;end Level4In this example, Level2 sets things up so that any of the proedures it alls (or any proeduresalled from proedures it alls: : :) an ause a return as if Level2 has returned itself. Theall to Setup_Return_From spei�es a variable whih is to be set to a return value. Usually,this will be the result value of the proedure alling Setup_Return_From. Eah of the allsto Return_From speify a value to be assigned to this variable before the return ours. Thuswhen Level3 or Level4 exeutes the Return_From, the e�et will be as if Level2 has assignedthe seond parameter to Suess and then returned.A all to Return_From is only valid as long as the proedure whih alled Setup_Return_Fromis still ative; i.e., it hasn't yet returned itself. It is possible to all Return_From from another

146 Helpful Hints and Dirty Triksroutine whih gains ontrol asynhronously, suh as an attention interrupt routine. In thissituation, onsiderable are is needed to ensure that the Return_From is not attempted afterthe setup routine has returned.J. Speial Linkage RoutinesThe best advie on speial linkage routines is \don't write them if you an possibly avoid it".The proess is very tedious and error-prone.There are a number of prede�ned linkage routines in the resident Plus library whih shouldhandle many of the more ommon situations requiring speial linkage. Some doumentationfor the existing routines an be found in the *Forum onferene \Plus". For more information,examine the soure in the �le Plus:News2l>sq.2Speial linkage routines an be written in Plus by using linkage none. That is, in thefollowing example, the routine Speial_Linkage ontains the entry ode required to enterroutine Speial.proedure Speial;proedure Speial_Linkage external "SPECLINK";definition Speiallinkage "SPECLINK";/* This routine requires speial entry/exit ode. It isperformed by Speial_Linkage. */...end Speial;definition Speial_Linkagelinkage none;/* Linkage routine used to enter routine Speial. */...end Speial_LinkageIf you must write your own linkage routines, there are a number of maros in *Plus.Soure-lib member Linkage_Maros whih may make it a bit easier. The soure for the standardlinkage routines, in Plus:News2l>sq may also be useful as a model.

2 This contains versions for use with %Linkage="NEW"

147APPENDIX A - Implementation Notes and Current StatusThe ompilers have the same overall organization. They are multi-pass ompilers.The �rst pass performs all delaration proessing, storage alloation and type heking and om-piles a tree-representation of the objet ode. The tree ontains a representation of all ode-generation semanti ations required. Pass 1 also builds tables desribing the variables used bythe program.The next pass tours the tree and produes a stream of pseudo-ode. This is very lose to the atualmahine ode that will be produed, but has not yet bound any register usage or determined atualbranh addresses. It assumes a slightly idealized mahine instrution set.The register usage is next examined to ombine registers where possible. Following this, registeralloation is performed.The pseudo-ode is then translated to objet mahine ode, and the objet module is written.At least the following language features are not implemented urrently in any ompiler:Anything to do with sets.Any operations involving reals.The following additional restritions of the 370 ompiler should also be noted:The loal storage of any proedure may not be bigger than three pages.The ode for any proedure may not be bigger than three pages.The following additional restritions apply to the PDP-11 version.Total size of all proedures must not be bigger than 64K bytes.Total size of the global pseudo-register area must not be bigger than 64K bytes.paked is only implemented for �elds of reords.Variables and onstants of type real are not implemented.The following are the additional restritions of the 68000 ompiler:The loal storage of any proedure may not be bigger than 32767 bytes.The ode for any proedure may not be bigger than 32767 bytes.For the Maintosh, the entire global data area may not be bigger than 32767 bytes. (For theMPW linker, this inludes all entry onstants and onstants whih ontain pointers.)For the MDS linker, entry onstants and onstants whih ontain pointers are not imple-mented.Variables and onstants of type real are not implemented.

148

149APPENDIX B - BNF SyntaxThe grammar that follows is a slightly simpli�ed version of the LALR(1) grammar used by theompiler. The atual grammar ontains rules required by the ompiler to perform semanti ationsat the appropriate points, rules used by the paragrapher to generate paragraphed listings, andadditional rules to make the language aept redundant semiolons and ommas in a variety ofontexts.<program> ::= <statement_list> end_of_�le<statement_list> ::= <statement>| <statement_list> ; <statement><statement> ::= <type_delaration>| <variable_delaration>| <onstant_delaration>| <proedure_delaration>| <maro_delaration>| <open_delaration>| <equate_delaration>| <esape>| <return>| <if_statement>| <%if_statement>| <selet_statement>| <assertion>| <assignment>| <ompound>| <storage_referene>| <proedure_de�nition>| <global_pak><global_pak> ::= global identi�er <external_name> <statement_list> <global_end><global_end> ::= end <optional_id>| end global <optional_id><optional_id> ::= identi�er| empty<external_name> ::= external <onstant_expression>| empty<type_delaration> ::= type <id_list> is <type>| <type_delaration> , <id_list> is <type><variable_delaration> ::= variable <delaration_element>| <variable_delaration> , <delaration_element><delaration_element> ::= <id_list> is <type> <alloation>

150 BNF Syntax<alloation> ::= in register| in register <onstant_expression>| in register <onstant_expression> to <onstant_expression>| in storage| at absolute <onstant_expression>| external| external <onstant_expression>| entry| entry <onstant_expression>| empty<onstant_delaration> ::= onstant <id_list> is <onstant_expression> <alloation>| <onstant_delaration> , <id_list> is <onstant_expression> <alloation><maro_delaration> ::= <maro_head> <maro_body> <maro_end><maro_end> ::= end <optional_id>| end maro <optional_id><maro_head> ::= maro identi�er <maro_parameters> ;<maro_parameters> ::= parameter is <id_list>| empty<maro_body> ::= <statement_list>| <parenthesized_expression><open_delaration> ::= open <open_element>| <open_delaration> , <open_element><open_element> ::= <storage_referene> <equate_type><equate_delaration> ::= equate <equate_element>| <equate_delaration> , <equate_element><equate_element> ::= identi�er to <storage_referene> <equate_type><equate_type> ::= as <type>| empty<proedure_delaration> ::= <proedure_head> <id_list> <pro_spei�ations>| <proedure_del><proedure_del> ::= proedure <id_list> is <type> <pro_spei�ations>| <proedure_del> , <id_list> is <type> <pro_spei�ations><pro_spei�ations> ::= <pro_spei�ations> external <onstant_expression>| <pro_spei�ations> <linkage>| <pro_spei�ations> staksize <onstant_expression>| empty

151BNF Syntax<linkage> ::= linkage <onstant_expression>| linkage system| linkage none<proedure_de�nition> ::= <de�nition_head> <statement_list> <proedure_end><de�nition_head> ::= definition identi�er| definition identi�er <entry_options> ;| <proedure_delaration> definition| <proedure_delaration> definition <entry_options> ;<entry_options> ::= <entry_option>| <entry_options> <entry_option><entry_option> ::= <linkage>| environment <storage_referene><proedure_end> ::= end <optional_id>| end proedure <optional_id>| end definition <optional_id><id_list> ::= identi�er| <id_list> , identi�er<type> ::= <attribute> <type>| <basi_type><basi_type> ::= (<id_list>)| bit (<onstant_expression>)| real (<onstant_expression>)| harater (<onstant_expression>)| harater (<onstant_expression> to <onstant_expression>)| (<onstant_expression> to <onstant_expression>)| <reord_type>| pointer to <type>| set of <type>| array <type> of <type>| <proedure_type>| unknown| global (<onstant_expression>)| identi�er<attribute> ::= paked| aligned <alignment> left| aligned <alignment> right| fast| small| value| left| right

152 BNF Syntax| environment <type>| system<alignment> ::= <onstant_expression>| <onstant_expression> in <onstant_expression><reord_type> ::= reord <�eld_list> <variant_part> <end_reord><end_reord> ::= end| end reord<�eld_list> ::= <delaration_element>| <�eld_list> , <delaration_element>| empty<variant_part> ::= <variant_list>| <variant_list> <variant_else>| empty<variant_list> ::= <variant_list> <variant_element>| <variant_head><variant_head> ::= variant identi�er of <type> from| variant <type> from<variant_element> ::= <variant_label_list> : <�eld_list><variant_label_list> ::= ase <onstant_expression>| <variant_label_list> , <expression><variant_else> ::= else <�eld_list><proedure_type> ::= proedure <parameter_list> <result_part> end<parameter_list> ::= <parameter_list> <parameter_part>| empty<parameter_part> ::= <parameter_kind> <delaration_element>| <parameter_part> , <delaration_element><parameter_kind> ::= <optional> <referene> parameter<optional> ::= optional| repeated| empty<referene> ::= name| referene| empty

153BNF Syntax<result_part> ::= result <delaration_element>| optional result <delaration_element>| empty<esape> ::= <esape_type> <optional_label> <when_unless><esape_type> ::= exit| repeat<optional_label> ::= <label>| empty<label> ::= < identi�er ><when_unless> ::= when <expression>| unless <expression>| empty<return> ::= return <when_unless> <with_part>| return <with_part> <when_unless>| return <when_unless><with_part> ::= with <expression><if_statement> ::= if <if_then_else> <end_if><if_then_else> ::= <expression> <then_part> <else_part><end_if> ::= end| end if<then_part> ::= then <statement_list><else_part> ::= else <statement_list>| elseif <if_then_else>| empty<%if_statement> ::= %if <%if_then_else> <%end_if><%if_then_else> ::= <onstant_expression> <%then_part> <%else_part><%end_if> ::= %end| %end %if| %end if<%then_part> ::= %then <statement_list><%else_part> ::= %else <statement_list>| %elseif <%if_then_else>| empty

154 BNF Syntax<selet_statement> ::= <selet_start> <selet_alternatives> <end_selet><selet_start> ::= selet <expression> from<end_selet> ::= end| end selet<selet_alternatives> ::= <selet_alternatives_list>| <selet_alternatives_list> else <statement_list><selet_alternatives_list> ::= <selet_alternatives_list> <selet_alternative>| empty<selet_alternative> ::= <selet_label_list> : <statement_list><selet_label_list> ::= ase <onstant_expression>| <selet_label_list> , <expression><assertion> ::= assert <expression><assignment> ::= <storage_referene> <assign_op> <expression>| <storage_referene> , <assignment><assign_op> ::= :=| <adding_op> :=| <multiplying_op> :=<ompound> ::= <label> <unlabelled_ompound> <label>| <unlabelled_ompound><unlabelled_ompound> ::= begin <statement_list> end| yle <statement_list> <end_yle>| <do_head> <statement_list> <end_do><end_yle> ::= end| end yle<end_do> ::= end| end do<do_head> ::= do <storage_referene> := <expression> <diretion> <expression>| do <storage_referene> := eah <expression><diretion> ::= to| downto<storage_referene> ::= identi�er| % identi�er| <proedure_or_array_referene>)| <storage_referene> (<return_ode>)| <storage_referene> . identi�er| <storage_referene> �

155BNF Syntax<proedure_or_array_referene> ::= <subsripted_referene>| <subsripted_referene_head>| <subsripted_with_return_ode><subsripted_referene> ::= <subsripted_referene_head> <expression><subsripted_referene_head> ::= <storage_referene> (| <subsripted_referene> ,<subsripted_with_return_ode> ::= <with_return_ode_head> return ode <storage_referene>| <with_return_ode_head> with <storage_referene><with_return_ode_head> ::= <subsripted_referene>| <subsripted_referene_head>| <subsripted_with_return_ode> ,| <subsripted_with_return_ode><onstant_expression> ::= <expression><expression> ::= <logial_formula>| <onjuntion>| <disjuntion><disjuntion> ::= <logial_formula> or <logial_formula>| <disjuntion> or <logial_formula><onjuntion> ::= <logial_formula> and <logial_formula>| <onjuntion> and <logial_formula><logial_formula> ::= <arithmeti_expression> <relation> <arithmeti_expression>| <arithmeti_expression><relation> ::= <relation_op>| : <relation_op>| not <relation_op><relation_op> ::= <| < =| < <| < < =| >| > =| > >| > > =| =| in| subset<arithmeti_expression> ::= <term>| <arithmeti_expression> <adding_op> <term>

156 BNF Syntax<adding_op> ::= +| -| ||| || xor<term> ::= <primary>| <term> <multiplying_op> <primary><multiplying_op> ::= *| /| mod| &<primary> ::= <unary_op> <primary>| <storage_referene>| number| bit_string| string| <parenthesized_expression>| <set> }| { }<parenthesized_expression> ::= (<expression>)<set> ::= { <expression>| <set> , <expression><unary_op> ::= +| -| :| not| abs

157APPENDIX C - Plus Reserved WordsThe following keywords are reserved in the urrent versions of Plus, and annot be used asprogrammer-de�ned identi�ers.abs absolute aligned andare array as assertat begin bit aseharater ode onstant onstantsyle definition do downtoeah else elseif endentry environment equate exitexternal fast from globalif in is leftlinkage maro mod namenone not of openoptional or paked parameterparameters pointer proedure proeduresreal reord referene registerregisters repeat repeated resultreturn right selet smallstaksize storage subset systemthen to type typesunknown unless use valuevariable variables variant whenwith xorThe following words will be reserved in a future version and should also be avoided.desriptor set signed unsigned

158

159APPENDIX D - Plus/370 Linkage Conventions and Run-time OrganizationThis appendix desribes linkage onventions used by Plus/370 and the assoiated run-time orga-nization required.A. Register UsageThe entry sequene of a Plus proedure loads the stak bases and then the ode bases. Theseare alloated from register 12 down, skipping register 11, using as many registers as required.Register 11 ontains the address of the global environment, normally set up before entry.Thus if a proedure requires one stak base and one ode base (the normal ase), register 12will be the stak base and register 10 the ode base.R13 is loaded with the \next stak frame" as part of the entry sequene, if the proedureontains any alls to other proedures.Other global addressability may be set up using registers below those needed for the odebases.B. Stak and Global OrganizationThe old version of the Coding Conventions linkage (%Linkage="OLD" or %Linkage="STAN-DARD") plaes no requirements on the organization of the stak and global storage. At entryto a Plus proedure, R11 should ontain the address of the global storage if the proedureuses any globals, and R13 should ontain the address of an area that an be used as a stak.These requirements are also present with %Linkage="NEW", but there are additional require-ments on the way global storage and the stak must be initialized at the time it is alloated.The bottom six words of the spae alloated as a stak must now be initialized to ontain astak desriptor. The stak desriptor ontains pointers to the �rst word of the stak spae,the last word of the stak spae (used for heking for stak overow), and a word in whihthe urrent top-of-stak is saved if a all is done to a proedure with the system attribute.It also ontains forward and bakward links to other staks that may be used for attentionand program interrupt routines et. The exat format of this stak desriptor is desribed byLong_Stak_Desriptor_Type in the library *Plus.Sourelib.It is also required that R11 be set to point to a global storage area, whether or not the pro-edure atually uses global variables. The �rst two words of global storage are now reserved.The �rst is reserved for a pointer to the \CLS transfer vetor" for internal system use. Thisshould normally be initialized to the value Address(Stdtv). The seond word must ontain apointer to a short stak desriptor. The short stak desriptor is a four word area that on-tains a opy of the �rst three words from the stak being used and a pointer to the long stakdesriptor. Its format is desribed by Short_Stak_Desriptor_Type in *Plus.Sourelib.The LCSPR's QLCSPR and QGLOBAL both de�ne symbols CLSTVPTR and STK_DESC for thesetwo words.The short stak desriptor is used to provide a level of indiretion in retrieving the stakfrom global storage. An appliation will only ever alloate one short stak desriptor. If theappliation is using more than one global storage environment, all environments must pointto the same short stak desriptor, whih will in turn point to the stak urrently in use.When initializing a stak desriptor, the stak end pointer should atually be set to 72 bytes

160 Plus/370 Linkage Conventions and Run-time Organizationbefore the true end, to allow room for registers to be saved in either a oding onventions orOS linkage entry sequene before any limit heking is done.Note that when the environment is de�ned as pointer to ..., the spei�ed reord type mustonform to the above requirements. That is, the �rst two words of the reord must be reservedfor the pointer to the CLS transfer vetor and the pointer to the short stak desriptor, andmust be appropriately initialized.C. Plus Proedure LinkageThe normal proedure linkage used is the MTS oding onventions linkage, exept that all(non-result) registers are restored on return from a all (and are presumed to be restored byany proedures alled).1The linkage ode onsists of:1. Prelude (performed by aller)Load register parameters, and assign storage parameters.Load R1 with address of storage parameters/result if any.For linkage none routines only, load R13 with the next stak frame address(in all other ases it is loaded in aller's entry sequene).If alled proedure has the system attribute, and if %Linkage="NEW", updatethe stak desriptor to indiate the top-of-stak at the point of the all.Load R15 with address of alled proedure.If the all spei�es with ..., load R11 with the spei�ed environment.Call proedure viaBALR R14,R152. Entry (performed by alled proedure)a. normal Plus linkage:Save all 16 general registers on the stak viaSTM R0,R15,0(R13)Save any register parameters as loal variables on the stak.Load ode base(s).Load stak base(s).If %Linkage="NEW" and %Stak_Chek is true, perform stak overow hek.If the proedure ontains any alls to other proedures, load the next stakframe.If the proedure has storage parameters, opy R1 to another register.If the de�nition spei�es the environment option, load R11 with the new en-vironment.
1 The new (1986) version of the coding conventions also assume this.

161Plus/370 Linkage Conventions and Run-time OrganizationLoad \permanently assigned" global base registers.Note the register parameters are re-saved separately from the entry save-area, sothat the aller an assume all non-result registers are restored.Register results are alloated in the save-area so that no speial ation is requiredby the return.b. linkage "extname":For a \speial linkage" routine, in plae of the �rst step (storing all registers on thestak), the ompiler generates ode whih transfers to the external symbol extnamefrom the entry sequene of the routine being entered (SUB1 in the following).The exat sequene generated isSUB1 L R15,LINKADDR Get address of linkage odeBALR R15,R15 And go thereBALR R15,0 Reestablish addressabilityB SUB1CONT Skip "parameters"DC FstaksizeDC FframesizeCXDLINKADDR DC V(extname) Address of linkage odeSELFADDR DC V(SUB1) Address of routine being enteredGLOBALID DC XL4global-id Global idSTAKOFF DC Q(STK_DESC) Offset of stak desriptorSUB1CONT L R10,SELFADDR Set ode addressabilityThus the linkage ode is entered with R15 ontaining the return address, and witha number of \parameters" aessible via o�sets from R15.The requested staksize is at 6(R15). If this was not spei�ed in the proeduredelaration, then it will be ompiled as a weak external referene to the symbolSTAKSIZE. This allows speifying the stak size at load time by inluding an absoluteDEF loader reord in the objet dek.The word at 10(R15) ontains the atual stak spae requirements of SUB1, whihmay be of interest to some linkage routines.The word at 14(R15) is the total global area size of the loaded program ontainingSUB1. (Note that in general, a linkage routine should use this as the global size,rather than inluding a CXD or use of Global_Size within the linkage ode itself.This is beause under some irumstanes, is is possible that the linkage routinesmight be part of an earlier load.) If the proedure's environment is spei�ed aspointer to reord-type, this word will ontain the size of the reord.If the proedure's environment is of type global(global-id), the word at 18(R15)ontains the value of global-id . Otherwise this word is 0. This value may be usefulas a ode to the Gpset subroutine for alloating or retrieving the global storage.The word at 22(R15) ontains the o�set of STK_DESC within the pseudo-registervetor. When %Linkage="NEW", this value must be 4. It is just used for error-heking purposes by linkage routines to test whether the required loader reords(see Chapter IV, page 127) were present when the program was loaded.

162 Plus/370 Linkage Conventions and Run-time OrganizationThe linkage ode is required to set the address of a stak in R13 (not Stak_Base_Register). The register values to be restored at return should be stored out intothe bottom of the stak. It should also load R11 (Global_Base_Register) with theaddress of the global environment. (R11 must be loaded when %Linkage="NEW".)The linkage routine returns to the alled proedure at the address in R15. If Sub1was alled with any register parameters, these must be in the original registers onreturn to Sub1, and if it has storage parameters, R1 must be preserved.The alled proedure will then ontinue the entry sequene as for a normal Plusprogram, as desribed above.When the alled proedure (Sub1) returns, it will load all 16 registers from thebottom of the stak, then branh on R14. Thus the linkage routine may interept thereturn by leaving an appropriate value in the 15th word of the savearea. Ultimately,of ourse, the linkage routine must ensure that the registers on return to the allerof Sub1 are onsistent with the environment expeted by the aller.The exat steps to be performed in the linkage ode will vary depending on thesituation. The following are the most ommon situations (with %Linkage="NEW"assumed):�� If initializing the entire appliation, alloate one or more staks and initializethe long stak desriptor at the bottom of eah. Alloate the short stakdesriptor, and set it up to orrespond to the �rst stak to be used. Alloatethe global storage for the routine being atually entered, and make it point tothe short stak desriptor.�� If initializing a subroutine that uses its own global storage, alloate the globalstorage and make it point to the existing short stak desriptor.�� If reentering the Plus world from a Fortran-type routine that was previouslyalled from a Plus routine, retrieve the global storage (somehow), and from it,obtain the short stak desriptor, and thene the top of stak at the point thatthe Plus routine alled the Fortran one.�� If entering a routine asynhronously (e.g., an attention interrupt handler),swith to a new stak. This is done by retrieving the global storage, fromit the short stak desriptor, and then the urrent stak. The short stak de-sriptor information is then opied to the long stak desriptor for the urrentstak. The next stak is then obtained, from the links in the urrent stak,or by alloating and initializing a new one, and the short stak desriptor isreinitialized from the new stak.In general, on returning from a proedure with speial linkage ode, the exit odeused should undo whatever was done in the entry ode. However, in some situationsit is more desirable to alloate spae the �rst time (via Gpset), and to not free iton return, so that subsequent alls will be heaper.. linkage system:linkage system is implemented by the ompiler as if linkage "QSYSENTR" hadbeen spei�ed. That is, entry ode is as desribed above, branhing to a speialentry routine in the resident system.

163Plus/370 Linkage Conventions and Run-time OrganizationThe following omments assume %Linkage="NEW". The operation of QSYSENTR issomewhat di�erent (and muh less eÆient) for the older linkage.The linkage routine uses the MTS subroutine Gpset to alloate (the �rst time)or retrieve (subsequently) the global storage, using the global-id from the linkageparameters. It retrieves the stak from global storage, or alloates it the �rst timeby using Getspae. The stak size spei�ed will be determined from the linkageparameters. A one page stak will be alloated if 0 is spei�ed.On return from the linkage system routine, the stak and global storage are notreleased.This linkage ode does not set up a program interrupt handler to interept run-timeerror onditions within the Plus ode.d. linkage none:For linkage none, no entry ode is generated. The proedure must use Inline andregister variables to \bootstrap" to the point where Plus ode an exeute orretly.The prede�ned register variables Code_Base_Register, Stak_Base_Register andEnvironment_Base_Register an be used in setting up the Plus entry requirements.A great deal of are is required sine the ompiler will assume the ode/stak/globalbases et. have been set up orretly if any statements in the proedure requirethem. It is advisable to turn ode listing on to see if all is as planned. It may alsobe prudent to set %Preempt to false, to prevent the ompiler for doing unexpetedregister preemptions, whih might interfere with the expeted ode.In partiular, note that the Code_Base_Register must be loaded with the address ofthe entry point of the routine before any branhes, (inluding run-time heking), orreferenes to the onstant pool. The Stak_Base_Register must be loaded with theaddress of a stak before any instrutions requiring temporaries, or referening loalvariables. The Environment_Base_Register must be loaded before any referenesto global variables.A linkage none routine returns by doing just a BR R14; you must make sure anyother required register restoration is done before returning.The exat details of how all this should be aomplished depend, of ourse, on theenvironment from whih the routine is being alled.3. Exit (performed by alled proedure)Restore all registers:LM R0,R15,0(R12)Return to allerBR R14For linkage none, only the BR is generated; the registers are not restored.4. Postlude (performed by aller)Restore R11 to the aller's environment if it was hanged before the all.Store the return ode (R15) if the return-ode phrase ours in the all.

164 Plus/370 Linkage Conventions and Run-time OrganizationD. Stak Frame LayoutThe usage of the stak by the Plus/370 ompiler is as follows:... high addressalled loal variablesproedure register parameter arearegister savearea (R0{R15) � R13 at all, R12 inside proedurex??? ... (possible temporaries)result (if any)alling storage parameters � R1 at all points hereproedure ... low address

165APPENDIX E - Plus-11 Linkage Conventions and Run-time OrganizationThis appendix desribes linkage onventions used by Plus-11 and the assoiated run-time organi-zation required.A. Objet ModulesPlus-11 generates objet modules in the form expeted by *Link11, whih is essentially thesame as the IBM objet module format used by MTS. The ode generated depends on auxiliaryroutines, provided by Plus:Objlib11 to perform proedure entry and exit sequenes, ertainPlus operations (harater handling), and for run-time hek proessing.B. Register UsageBy default, the ode generated by Plus-11 uses R5 to point to the loal stak frame of theurrent proedure, and R4 points to the base of the pseudo-register (global storage). If theoption %Linkage:="ALTERNATE" is spei�ed, the use of R4 and R5 is reversed.C. Parameter PassingParameters and results of Plus-11 proedures are normally passed through the stak. Spaefor the result (if any) is alloated on the stak by the alling proedure, and the values ofparameters are then pushed on the stak.The alled proedure aesses parameters and result loations by positive o�sets from theloal stak frame pointer (R5) and loal variables by negative o�sets from the frame pointer.D. Proedure LinkageProedure linkage in Plus-11 programs is performed by the following sequene:1. Prelude (performed by aller)Adjust SP to leave spae for result if any.Push parameters on the stak.Call proedure viaJSR PC,proname2. Entry (performed by alled proedure)a. normal Plus linkage:Save old stak frame pointer on the stak.Save registers R0 - R4 on the stak.Adjust SP to point above register save area.Adjust R5 to point to the new stak frame.Alloate spae for loal variables by adjusting the stak pointer.All but the last step is aomplished by a run-time routine PLUSENTR. The �rstinstrution of eah Plus-linkage proedure isJSR R5,PLUSENTR

166 Plus-11 Linkage Conventions and Run-time Organizationb. linkage "extname":For a \speial linkage" routine, in plae of the all to PLUSENTR, the ompiler gener-ates ode to branh to the external symbol extname from the entry sequene. Theexat sequene generated is:SUB1 JSR R5,extname Go to linkage odeBR SUB1CONT Skip "parameters"DC FstaksizeDC FframesizeDC F0 Reserved for global size somedaySUB1CONT ...The ode at extname should save the registers on the stak, set up global storage,et., as required. It should return with R5 set to point to the new stak frame. Fol-lowing the return from extname the entry ode will alloate spae for loal variablesas with the normal Plus linkage.. linkage system:Plus-11 ompiles linkage system the same as for the normal Plus linkage.d. linkage none:For linkage none, no entry ode is generated. The proedure must use Inline andregister variables to \bootstrap" to the point where Plus ode an exeute orretly.The prede�ned register variables Program_Counter, Stak_Pointer, Frame_Base_Register and Global_Base_Register an be used in setting up the Plus entryrequirements.A great deal of are is required sine the ompiler will assume the ode/stak/globalbases et. have been set up orretly if any statements in the proedure require them.It is advisable to turn ode listing on to see if all is as planned.In partiular, note that Frame_Base_Register must be set up before any referenesto loal variables, and Global_Base_Register must be set before any referenes toglobal variables.The exat details of how all this should be aomplished depend on the environmentfrom whih the routine is being alled.3. Exit (performed by alled proedure)For all linkage kinds exept linkage none, a Plus return is just ompiled intoJMP PLUSEXITThis undoes the entry sequene, leaving SP pointing to the top of the parameter area.A linkage none routine returns by doing just an RTS PC; you must make sure any otherrequired register restoration is done before returning.4. Postlude (performed by alling proedure)Collapses the spae for parameters (if any), leaving SP pointing to the result variable (ifthere is one).

167Plus-11 Linkage Conventions and Run-time OrganizationE. Stak Frame LayoutAs a result of the above linkage onventions, the usage of the stak by a Plus11 proedure isas follows. (Note this illustration is the opposite way up from the preeding Plus/370 version,sine Plus-11 staks grow downwards in memory.)... high addressalling result (if any)proedure parameters (if any)old PC (return address)?y old stak frame (R5) � new R5 points hereregister save area (R0{R4)alled loal variablesproedure ... low addressNote loal variables are aessed by negative o�sets from R5, parameters and results areaessed by positive o�sets.

168

169APPENDIX F - Plus/68000 Linkage Conventions and Run-time OrganizationThis appendix desribes linkage onventions used by Plus/68000 and the assoiated run-timeorganization required. The details of this vary depending on whether the ode is generated for theAMIGA or the Maintosh, as spei�ed by the %Target_Operating_System ompiler variable.A. Maintosh System SupportThe Maintosh system provides a basi appliation runtime environment with a global dataarea addressed by register A5 and a series of independently loaded segments of ode. Thesystem uses the global data area with positive o�sets from A5, while the area with negativeo�sets is for the global storage of the program. This �ts fairly well with Plus's notion ofglobal storage, but it does not enourage the swithing of environments. For this reasonPlus/68000 implements environments whih are pointers to reord types by using register A4as the environment base register. One of the system data strutures in the positive o�set areais the jump table. This is used to do proedure alls from one segment to another. Suhalls an ause a segment to be impliitly loaded. When a segment is loaded, only the jumptable is reloated. No other reloation is done. This makes it diÆult to implement Plusonstants whih ontain pointers.1. Maintosh Programmer's Workshop (MPW)When the %Target_Operating_System ompiler variable has the value "MAC/MPW",Plus/68000 generates objet modules in the form expeted by the Maintosh Program-mer's Workshop (MPW) Linker. The MPW linker provides for the initialization ofthe global data area, inluding pointers whih point to other global data areas. Thuswith MPW, Plus/68000 uses the global data area for all \entry" onstants and for anyonstants whih ontain pointers. This does have the drawbaks of requiring all suhonstant data to be opied from the initialization segment (%A5_Init) to the global dataarea, and enlarging the global data area.The ode generated depends on auxiliary routines, provided by Plus:Obj68MPW, toperform some string operations, longword multiply and divide, and array of pakedoperations.2. Maintosh Development System (MDS)When the %Target_Operating_System ompiler variable has the value "MAC/MDS",Plus/68000 generates objet modules in the form expeted by the Maintosh Devel-opment System (MDS) Linker. The MDS linker does not provide for the initialization ofthe global data area. Thus with MDS, Plus/68000 does not implement \entry" onstantsor onstants whih ontain pointers.The ode generated depends on auxiliary routines, provided by Plus:Obj68MDS, to per-form some string operations, longword multiply and divide, and array of paked opera-tions.B. AMIGA System SupportWhen the %Target_Operating_System ompiler variable has the value "AMIGA", Plus/68000generates objet modules in the form expeted by the AMIGA linkers. The ode gener-ated depends on auxiliary routines, provided by Plus:Obj68AMIGA, to perform some stringoperations, longword multiply and divide, and array of paked operations.

170 Plus/68000 Linkage Conventions and Run-time OrganizationC. Register UsageThe ode generated by Plus/68000 for the Maintosh uses register A5 to point to the globaldata for the program, and A6 to point to the loal stak frame of the urrent proedure. Forthe AMIGA, the use of these two registers is reversed.D. Parameter PassingParameters and results of Plus/68000 proedures are normally passed through the stak.Spae for the result (if any) is alloated on the stak by the alling proedure, and the valuesof parameters are then pushed on the stak.The alled proedure aesses parameters and result loations by positive o�sets from theloal stak frame pointer and loal variables by negative o�sets from the frame pointer.E. Maintosh Proedure LinkageProedure linkage in Plus/68000 Maintosh programs is performed by the following sequene:1. Prelude (performed by aller)Adjust SP to leave spae for result, if any.Push parameters on the stak, in left to right order.Push spae on the stak for any omitted optional parameters.If the all spei�es with ..., load A4 with the spei�ed environment.Call proedure viaJSR PC,pronameor, for system proedures, the instrution supplied as the external name of theproedure.2. Entry (performed by alled proedure)If there are any loal variables, save the old stak frame pointer on the stak, adjuststak frame pointer to point to this saved value, and adjust stak pointer to alloatespae for the loal variables vialink A6,loal-stak-sizeSave any registers in D3-D7 or A2-A5 whih are modi�ed by the alled proedure,usually withmovem.l -(SP),register-maskIf the de�nition spei�es the environment option, load A4 with the new environ-ment.3. Exit (performed by alled proedure)Any saved registers are restored, usually withmovemfm.l (SP)+,register-maskIf there are any loal variables, the stak pointer is restored from the stak framepointer, then the stak frame pointer is restored by popping it o� the stak, via

171Plus/68000 Linkage Conventions and Run-time Organizationunlk A6If there are no parameters, the proedure returns viartsIf there are parameters, the alled proedure has to pop the saved PC viamovea.l (SP)+,A0remove the parameters viaaddq.l SP,#nor lea n(SP),SPthen return byjmp (A0)4. Postlude (performed by alling proedure)If the all spei�es with ..., restore the alling proedure's environment base reg-ister (A4).The result, if any, is popped after it has been used.F. AMIGA Proedure LinkageProedure linkage in Plus/68000 AMIGA programs is performed by the following sequene:1. Prelude (performed by aller)Adjust SP to leave spae for result, if any.Push parameters on the stak, in right to left order.If the all spei�es with ..., load A6 with the spei�ed environment.Call proedure viaJSR PC,pronameor, for system proeduresJSR PC,proname(A6)2. Entry (performed by alled proedure)If there are any loal variables, save the old stak frame pointer on the stak, adjuststak frame pointer to point to this saved value, and adjust stak pointer to alloatespae for the loal variables vialink A6,loal-stak-sizeSave any registers in D2-D7 or A2-A4 or A6 whih are modi�ed by the alled proe-dure, usually withmovem.l -(SP),register-maskIf the de�nition spei�es the environment option, load A5 with the new environ-ment.

172 Plus/68000 Linkage Conventions and Run-time Organization3. Exit (performed by alled proedure)Any saved registers are restored, usually withmovemfm.l (SP)+,register-maskIf there are any loal variables, the stak pointer is restored from the stak framepointer, then the stak frame pointer is restored by popping it o� the stak, viaunlk A6The proedure returns viarts4. Postlude (performed by alling proedure)The parameters are popped from the stak.If the all spei�es with ..., restore the alling proedure's environment base reg-ister (A6).The result, if any, is popped after it has been used.G. Stak Frame LayoutAs a result of the above linkage onventions, the usage of the stak by a Plus/68000 proedureis as follows. (Note this illustration is the opposite way up from the Plus/370 version, sinePlus/68000 staks grow downwards in memory.)... high addressalling result (if any)proedure parameters (if any)old PC (return address)?y old stak frame base � new stak frame base points hereloal variablesalled register save areaproedure ... low addressNote loal variables are aessed by negative o�sets from the stak frame base, parametersand results are aessed by positive o�sets.

173APPENDIX G - Plus/68000 Inline CodesThis appendix gives the strings that Plus/68000 reognizes for the �rst operand of inline.The reognized opodes are:abd add addm adda addiaddq addx and andm andiandi andis asl asr aslmasrm atrap bCC bhgd bhgblrd blr bsetd bset bsrbtstd btst hk lr mpmpa mpi mpm dbCC divsdivu eorm eori eori eorisexg ext illegal jmp jsrlea link lsl lsr lslmlsrm move movef move movesrmovefsr moveusp movefusp movea movemovef movem movemfm movep movepfmmoveq moves muls mulu nbdneg negx nop not ororm ori ori oris peareset rol ror rolm rormroxl roxr roxlm roxrm rtdrte rtr rts sbd sCCstop sub subm suba subisubq subx swap tas traptrapv tst unlkThe odes for the size part are the usual b for byte, w for word (two bytes), and l for long (fourbytes).Those opodes above that end in CC are formed by replaing the CC with one of the followingondition odes:t f hi ls hslo ne eq v vspl mi ge lt gtleAs well, is aepted for hs, s for lo, bra for bt and dbra for dbf.The addressing mode spei�ations are:dr ar (ar) (ar)+ -(ar)d(ar) d(ar,xr) abs.w abs.l d(p)d(p,xr) # =The = mode is used to indiate a PC relative referene to a onstant in the literal pool.

174

175INDEXabs (keyword), 54, 84absolute alloation, 77absolute (keyword), 77absolute variable, 77address, 61, 77Address, 27, 34, 61, 73, 81, 100addressability, 101, 102, 140, 159global blok, 140Algol, 52, 86Algol-W, 74Algol-68, 84aligned attribute, 68aligned (keyword), 68alignment,global, 100o�set, 68Alignment, 100alloation,absolute, 77dynami, 75external, 75paked, 70reord, 74register, 3, 75, 139size, 100storage, 22, 48, 55variable, 74"AMIGA",libraries, 72%Target_Operating_System, 72, 169and (keyword), 37, 84annotation,listing, 122append operator, 31, 55Apple,Maintosh, 1apple pie,
see motherhoodare (keyword), 73arithmeti,with pointers, 143arithmeti operator, 54, 83array, 60as parameter, 86onstant, 61, 74, 81dynami, 140exeution-time, 140multi-dimensional, 25, 60paked, 70run-time, 140

subsript, 32type, 25, 60array (keyword), 60ASCII, 79as_is, 123as (keyword), 95, 96assembler, 3listing, 114%Assertion_Chek, 94, 111, 112assert (keyword), 94assert statement, 94, 111%Assign_Chek, 111, 112assignment, 34array, 60multiple, 31, 85nested, 2operator, 5, 85operator with, 7, 31pointer, 27, 61prevention of, 72reord, 62statement, 5, 31, 85, 111string, 55, 117at (keyword), 77at-sign operator,
see dereferene operatorattribute, 68aligned, 68environment, 46, 69, 99fast, 69left, 55, 70paked, 70right, 71small, 71system, 71value, 34, 72, 86bakground, 1base register, 103, 108, 159basi instrution set, 113/begin, 135begin blok, 92begin (keyword), 92binary operator, 85binary searh, 11bit onstant, 79bit (keyword), 55bit operator, 56Bit_Size, 100bit type, 23, 55

176 INDEXoerion, 84omparison, 56blank line,in listing, 122blok,begin, 92global, 17, 18, 43, 45, 128sope, 20, 22, 52BNF syntax, 149Boolean, 38, 54Boolean, 37box, 123BPI, 142branhing, 89built-in,
see built-in proedure
see also prede�nedbuilt-in proedure, 52, 100Address, 27, 34, 61, 73, 81, 100Alignment, 100Bit_Size, 100Byte_Size, 27, 101, 141Condition, 101External_Name, 102High_Value, 58, 103Inline, 50, 76, 103, 143Left_Justify, 107Length, 54, 107Low_Value, 58, 107Max, 58, 107Min, 58, 107Offset, 107Predeessor, 58, 107Right_Justify, 108Size, 108Substring, 34, 54, 108, 143Suessor, 58, 109Byte_Size, 27, 101, 141C, 1, 43all, 47, 86maro, 99proedure, 6, 28, 32, 86all-by-referene, 28, 86all-by-value, 28, 86alling sequene,irular, 45
see also linkageapitalization, 8ase, 8, 43, 51, 115

ase (keyword), 63, 90ase label, 63, 89ase statement,
see selet statementCCSYMBOL, 127enter, 123entre, 123harater,omparison, 55onstant, 79type, 10, 54
see also stringharater (keyword), 54harater string,length, 107heating,type, 50, 62, 63, 95%Chek, 112heking,ompile-time, 2external symbol, 49parameter, 141pointer, 61, 142range, 3, 10, 54, 61run-time, 2, 10, 54, 94, 109, 116, 117, 126, 127stak overow, 117, 126, 160string length, 55subsript, 3Substring, 117type, 2irular alling sequene, 45irular de�nition, 52Clparser (ommand language parser), 11CLS transfer vetor, 159CLSTVPTR, 159ode,eÆieny, 3linkage, 160listing, 114reentrant, 43, 45size, 90Code_Base_Register, 101, 163ode generation, 76ode (keyword), 87oding onventions, 46, 160oerion, 84bit type, 55, 56onstant, 86denaming, 34parameter, 86

177INDEXreal, 80set, 59ommand,Run, 7, 9, 121, 125, 131, 133omment, 5, 17, 43, 122option, 17, 122paragrapher, 122, 123omment option,as_is, 123box, 123enter, 123entre, 123frame, 123Commodore AMIGA,
see "AMIGA"ommon,Fortran, 18, 48omparison,arithmeti, 54array, 60bit type, 56harater, 55lexial, 55operator, 54, 63, 84string, 55ompatibility,bit type, 56harater, 54environment, 47global type, 67identi�er-list, 57maro, 51name{value, 35numeri, 54parameter, 86pointer, 61proedure, 67real, 57set, 59subrange, 58type, 21, 84ompilation,onditional, 109error, 124separate, 3, 9, 17, 52struture, 43%Compile, 112ompiler, 7, 121, 131, 133eÆieny, 3implementation status, 147

input, 121listing, 121logial units, 121message, 121option, 52return ode, 122version, 131, 133version number, 109, 121%Compiler_Debug, 112%Compiler_Dumps, 112ompiler input, 43ompiler option,
see ompiler proedure
see also ompiler variableompiler proedure, 5, 52, 109, 119%Double, 119%Dump, 119%Ejet, 119%Inlude, 8, 18, 119, 124, 135%Linkage, 72%Map, 119%Message, 119%Mts, 119%Pop, 120%Print, 120%Punh, 120%Push, 120%Unreserve, 112, 120ompiler variable, 5, 52, 109, 111%Assertion_Chek, 94, 111, 112%Assign_Chek, 111, 112%Chek, 112%Compile, 112%Compiler_Debug, 112%Compiler_Dumps, 112%Convert, 112, 120%Coordinate, 112%Current_Proedure, 112%Date, 112%Dump_Tree, 113%Entry, 113%Footer, 113, 123%Global_Id, 46, 69, 113%Installation, 113%Instrution_Set, 113%Library, 114, 126%Lines_Per_Page, 114%Linkage, 114, 126%List, 114, 122%List_Code, 114

178 INDEX%Listing_Charater_Set, 115, 123%Lower_Case, 8, 115%Merge_Unref, 115, 124%Objet_Length, 115%Optimize, 115%Page_Width, 116%Preempt, 116, 163%Produtions, 116%Range_Chek, 112, 116%Regression_Test, 116%Segment, 116%Soure_File, 117%Soure_Line, 117%Stak_Chek, 79, 112, 117, 126%Statistis, 117%String_Chek, 112, 117%Subtitle, 117, 122%Target_Mahine, 117%Target_Operating_System, 117%Test, 118, 127%Time, 118%Title, 17, 118, 122%Unref, 115, 118, 124%Xref, 118, 124%Xref_Sope, 118, 124ompiler version, 121ompile-time,heking, 2if statement, 109statement, 5, 43, 109ompiling,program, 121, 131, 133omplement, 85ompound, 92exit, 93label, 92sope, 53ompound ondition, 37ompound statement, 7onatenation, 7, 32, 54, 55ondition,ompound, 37exit, 92repeat, 93return, 93Condition, 101onditional ompilation, 109ondition ode, 101onferene, 121onstant, 34, 79

array, 61, 74, 81as parameter, 64, 86base, 79bit, 79harater, 79oerion, 86ompiler variable as, 111delaration, 9, 21, 73default storage representation, 83display, 81entry, 48, 49, 83expression, 2, 10False, 102hexadeimal, 79identi�er, 73identi�er-list, 80integer, 79load-time, 79numeri, 79pointer, 81pointer to, 72preision, 80prede�ned, 100proedure, 77, 81real, 80reord, 74, 81storage representation, 81, 83string, 79struture, 81subsript, 61symboli, 2, 51, 57True, 109Version, 109
see also prede�ned onstantonstant (keyword), 73onstants,entry, 169pointer, 169onstants (keyword),
see onstantontrol setion,
see setontrol struture, 1, 88ontrol variable,do statement, 91onvention,assembler oding, 46, 160apitalization, 8onversion,input, 11

179INDEXoutput, 11, 40
see also oerion%Convert, 112, 120oordinate,soure, 112, 122%Coordinate, 112opy,paragraphed, 112, 114, 115, 122, 124soure program, 8opy program example, 5ross-referene, 115, 118, 124set, 49, 74, 83%Current_Proedure, 112CXD, 102yle (keyword), 90yle statement, 38, 90data struture, 1%Date, 112debugging, 118, 122, 127DEC, 1delaration, 18, 43, 73onstant, 9, 21, 73global, 17identi�er, 8MTS system subroutines, 121open, 94proedure, 17, 18, 22, 44, 77sope, 19type, 10, 21, 53, 74variable, 5, 22, 45, 74default storage representation,onstant, 83de�nition,identi�er, 8maro, 99proedure, 5, 18, 44, 77, 96definition (keyword), 44denaming, 34, 72, 84dereferene operator, 33, 34, 52, 61desription,type, 23, 53desriptor,stak, 159desriptor (keyword), 157di�erene (set operator), 59Digital Equipment Corporation,
see DECdiretory,library, 135

dirty triks, 139display,onstant, 81do (keyword), 91do loop,
see do statementdo statement, 39, 91repeat statement in, 93dot operator, 25, 32%Double, 119downto (keyword), 91dset, 21, 128map, 119%Dump, 119%Dump_Tree, 113dynami alloation, 75dynami array, 140eah (keyword), 91EBCDIC, 79eÆieny, 3assignment, 7, 31, 85ompiler, 3equate, 95, 139expression, 10, 38, 54global blok, 45linkage, 98open, 95parameter passing, 28register, 76selet, 37, 90set, 59storage alloation, 22%Ejet, 119element,array, 60elseif (keyword), 89%elseif (keyword), 110else (keyword), 88%else (keyword), 110/end, 135endjunk, 114, 126end (keyword), 62, 64, 88, 90, 91, 92, 96, 99%end (keyword), 110ENT reord, 113, 126entry, 169%Entry, 113entry ode,proedure, 97entry onstant, 48, 49, 83

180 INDEXentry (keyword), 49, 74, 75entry point, 113entry spei�ation, 74enumerated type,
see identi�er-list typeenvironment, 67, 98attribute, 46, 69, 99ompatibility, 47global, 46, 69, 87, 113null, 107pointer as, 69reord, 46, 48swithing, 47, 87, 98type, 46, 113unknown, 69Environment_Base_Register, 48, 102, 163environment (keyword), 47, 67, 69, 98equate (keyword), 96equate statement, 95, 139, 140equivalene,type, 21error,ompilation, 124error �le, 122error message, 121, 124esape, 52example program, 5, 11exeption, 126exeutable statement, 43exeution, 125exeution-time array, 140exit, 88from yle, 90from do statement, 91label, 52, 92multilevel, 93statement, 5, 7, 38, 92exit ode,proedure, 97exit (keyword), 92expansion,maro, 50, 99exponent,onstant, 80expression, 32, 83bit, 55onstant, 2, 10in open statement, 95logial, 84pointer in, 26

preedene, 84string, 32subsript, 60type, 53unknown, 62extended instrution set, 113external,alloation, 75name, 49, 102variable, 43, 48, 73
see also external symbolexternal (keyword), 48, 49, 75, 78External_Name, 102external symbol, 45, 48, 49, 74, 75, 78, 102heking, 49proedure, 78false, 37, 84False, 37, 102fast attribute, 69fast (keyword), 69Feth_Chek, 143�eld, 25aess, 94identi�er, 52name, 52o�set, 107reord, 62seletion, 25, 32, 62seletor, 63variant, 63�eld seletion, 34�le, 17Fixed_String, 10, 54oating point,
see realfollowing pointer,
see dereferene operator%Footer, 113, 123format,library, 135listing, 8program, 7, 43formatted output, 40formatter,
see paragrapherFortran, 43, 80ommon, 18, 48linkage, 98, 162*Forum, 121

181INDEXframe, 123Frame_Base_Register, 102, 166free variable, 50, 99from (keyword), 63, 90funtion, 7, 18, 29
see also proeduregeneration,ode, 76generator,library, 135Getspae, 75global,alignment, 100delaration, 17environment, 46, 69, 87, 113environment id, 67identi�er, 19, 43storage, 69, 159type, 46, 67variable, 43, 45, 74
see also global blokGlobal_Base_Register, 102, 166global blok, 17, 18, 43, 45, 128addressability, 140identi�er, 51name, 51nested, 17%Global_Id, 46, 69, 113global (keyword), 46, 49, 67, 69Global_Size, 102goals,language, 1goto, 88, 92Gpset, 161grammar, 19, 149helpful hints, 139hexadeimal onstant, 79High_Value, 58, 103HIGH_WATER, 125hints,helpful, 139history, 1IBM, 1identi�er, 8, 21, 51onstant, 73de�nition, 8, 52global, 19, 43

in maro, 99loal, 19maro, 50prede�ned, 8, 100proedure, 51, 77, 86sope, 52type, 53unde�ned, 52, 53use of, 51variable, 34identi�er-list,ompatibility, 57onstant, 80type, 23, 51, 57idiosynrasies,mahine, 3if (keyword), 88%if (keyword), 110if statement, 6, 36, 84ompile-time, 109nested, 36%if statement, 109implementation status,ompiler, 147%Inlude, 8, 18, 119, 124, 135Inrement_Pointer, 143indentation, 2index,array, 60do statement, 91type, 58initialization, 159in (keyword), 59, 68, 75, 84Inline, 50, 76, 103, 143Motorola 68000, 105PDP-11, 105System 370, 103Plus/68000 odes, 173input, 11ompiler, 43, 121onversion, 11in (set operator), 59%Installation, 113instrutions,mahine, 103instrution set, 113%Instrution_Set, 113integer,onstant, 79type, 54

182 INDEXInteger, 9Integer_To_Varying, 7interfaing, 3, 50, 62, 65internal proedure,
see marointernal representation, 57International Business Mahines,
see IBMintersetion, 59invoation,maro, 99I/O, 11is (keyword), 73keywords, 2, 8, 43, 120, 157
see also specific index entrieslabel,ase, 63, 89ompound, 92exit, 52, 92selet, 89<label>, 92LALR grammar, 149language goals, 1LCSPR, 127left attribute, 55, 70Left_Justify, 107left-justifying bit type, 55left (keyword), 55, 68, 70Length, 54, 107lexeme, 7, 50lexial omparison, 55libraries,"AMIGA", 72library,default, 8format, 135generator, 135lister, 136listing, 114objet module, 9private, 9, 18proedure, 9run-time, 9soure, 5, 8, 119, 121, 135utility program, 135%Library, 114, 126library member,Feth_Chek, 143

Linkage_Maros, 146Long_Stak_Desriptor_Type, 159Main, 5, 113, 114Numeri_Types, 9Return_Code, 144Short_Stak_Desriptor_Type, 159Store_Chek, 143String_Types, 10limits,do statement, 91linear searh, 11%Lines_Per_Page, 114linkage, 44, 78ode, 160Fortran, 98, 162none, 98option, 96, 114proedure, 160, 165, 170, 171routine, 146speial, 97, 146, 161, 166standard, 44S-Type, 65, 162system, 44, 97, 162, 166Type I, 29, 71, 98%Linkage, 72, 114, 126linkage (keyword), 71, 78, 96, 125Linkage_Maros, 146linkage none, 146, 163, 166linked list, 26, 62, 107linking,Plus-11, 131*Link11, 49, 131, 165list,linked, 26, 62, 107statement, 53%List, 114, 122%List_Code, 114lister,library, 136listing, 114, 116annotation, 122assembler, 114ode, 114ompiler, 121format, 8soure, 2, 114, 115, 122, 124%Listing_Charater_Set, 115, 123loader reords, 114, 126load-time onstant, 79loal identi�er, 19

183INDEXloal variable, 22, 74loation, 34logial, 37logial expression, 84logial operator, 56, 83, 84logial units,ompiler, 121longjump,
see multilevel returnLong_Stak_Desriptor_Type, 159loop, 5, 38looping, 88, 90, 91lowerase, 8, 43, 51, 115%Lower_Case, 8, 115Low_Value, 58, 107mahine, 117mahine address, 26mahine idiosynrasies, 3mahine instrutions, 103Maintosh, 1, 169Maintosh Development System,
see "MAC/MDS"Maintosh Programmer's Workshop,
see "MAC/MPW""MAC/MDS",restritions, 147%Target_Operating_System, 49, 72, 74, 81,169traps, 72"MAC/MPW",restritions, 147%Target_Operating_System, 72, 113, 116,169traps, 72maro, 50all, 99ompatibility, 51de�nition, 99expansion, 99identi�er, 50, 51invoation, 99name, 51parameter, 50, 51, 99use of, 50maro (keyword), 99magi number, 2Main, 5, 113, 114, 125main proedure, 113map,

dset, 119reord, 119storage, 119%Map, 119matrix, 25, 60Max, 58, 107Maximum_Integer, 10MCarthy and, 84MCarthy or, 84MDS,
see "MAC/MDS"memory, 34
see also storage%Merge_Unref, 115, 124message,ompiler, 121error, 124Message, 11, 40%Message, 119message building, 7Mihigan Terminal System,
see MTSMin, 58, 107Minimum_Integer, 10mod (keyword), 54, 84module, 17motherhood, 1Motorola, 1Motorola 68000,Inline, 105Motorola 68000 support,run-time, 133mouthwash, 20moving arbitrary data, 143MPW,
see "MAC/MPW"%Mts, 119MTS, 1, 3, 49, 113, 119, 126system subroutines, 8, 121MTS system subroutines, 1multi-dimensional array, 25, 60multilevel exit, 93multilevel return, 144multiple assignment, 31, 85multiple result, 76MVS, 1M68000, 1name, 34, 61, 63external, 49, 102

184 INDEXparameter, 65, 141
see also identi�ername (keyword), 65nested assignment, 2nested global blok, 17nested if statement, 36nested proedure, 43news, 121none (keyword), 98non-loal variable, 45not (keyword), 84, 85not operator, 85Null, 26, 29, 62, 67, 107numeri,ompatibility, 54onstant, 79operator, 54type, 54Numeri_Types, 9objet ode desription, 159, 165, 169%Objet_Length, 115objet mahine, 113word-size, 55objet module, 49, 115, 120, 121library, 9PDP-11, 165struture, 159, 165, 169o�set,alignment, 68reord, 107Offset, 107of (keyword), 58, 60, 63Old:OldCCLib, 126open (keyword), 95open statement, 63, 94, 140expression in, 95sope of, 94operand, 34, 83Operating System, 117operation,
see operatoroperation exeption, 127operator, 83and, 84append, 31, 55arithmeti, 54, 83assignment, 5, 85binary, 85bit, 56

omparison, 54, 63, 84onatenation, 7, 32, 54, 55dereferene, 33, 34, 52, 61dot, 25, 32�eld seletion, 25, 32, 34, 62logial, 56, 83, 84not, 85numeri, 54or, 84preedene, 84relational, 54, 57, 61set, 59string, 54subsript, 32, 34unary, 54with assignment, 7, 31, 85optimization, 3
see also eÆieny%Optimize, 115option,omment, 17, 122ompiler, 52
see also ompiler proedure
see also ompiler variableoptional (keyword), 65optional parameter, 44, 65, 141optional result, 66order, 17, 18, 44, 52, 57statement, 8or (keyword), 37, 84output, 11onversion, 11formatted, 40overlay, 63storage, 95paked,array, 70attribute, 70reord, 70with pointer objet, 70paked (keyword), 70page skip, 119%Page_Width, 116paragraphed opy, 112, 114, 115, 122, 124paragrapher, 2, 8, 122omment, 122, 123line breaks, 123parameter, 18, 43, 44all-by-referene, 86

185INDEXall-by-value, 86heking, 141oerion, 86ompatibility, 86onstant as, 64, 86identi�er, 51maro, 50, 51, 99name, 51, 141optional, 44, 141passing, 28, 86, 165, 170referene, 28, 34, 139register, 44, 66, 75repeated, 44value, 64parameter (keyword), 44, 64, 99parameterless proedure, 23, 64parameter list, 30, 140parameters,of Inline, 103parameters (keyword),
see parameterparser, 11parse stak overow, 89Par string,ompiler, 122for exeution, 125Pasal, 1, 43, 89, 94PDP-11, 1Inline, 105objet module, 165run-time support, 131perent (%), 5philosophy, 2PL/I, 43, 52*Plus, 7, 121Plus:Endjunk, 127PLUSENTR, 125, 126, 165Plus:Libgen, 135Plus:Liblist, 136Plus:Masourelib, 133Plus:Objlib11, 131Plus:Obj68AMIGA, 133Plus:Obj68MDS, 133Plus:Obj68MPW, 133Plus:Plus#, 121Plus:Plus68, 133*Plus.Sourelib, 8, 121Plus:Sourelib11, 131*Plus11, 131pointer, 169

arithmeti with, 143as environment, 69assignment, 27heking, 142ompatibility, 61onstant, 81in expression, 26null, 107to onstant, 72type, 26, 61pointer (keyword), 61pointer to unknown, 62in equate statement, 96in open statement, 95%Pop, 120preedene, 32, 84preision, 23, 80real, 57real onstant, 80Predeessor, 58, 107prede�ned onstant,False, 37, 102Global_Size, 102Null, 26, 29, 62, 67, 107True, 37, 109Version, 109prede�ned identi�er, 8, 52, 100prede�ned register variable,Code_Base_Register, 101, 163Environment_Base_Register, 48, 102, 163Frame_Base_Register, 102, 166Global_Base_Register, 102, 166Program_Counter, 108, 166Stak_Base_Register, 108, 163Stak_Pointer, 108, 166%Preempt, 116, 163preemption,register, 139prevention of assignment, 72%Print, 120private delaration,
see loal identi�erprivate library, 9, 18proedure, 44, 49built-in, 100all, 6, 28, 32, 47, 86ompatibility, 67ompiler, 5, 52, 119onstant, 77, 81delaration, 17, 18, 22, 77

186 INDEXde�nition, 5, 18, 77, 96environment, 46external symbol, 78identi�er, 77, 86library, 9linkage, 78, 160, 165, 170, 171main, 113Main, 5, 125multiple result, 76nested, 43null, 107parameterless, 23, 64result, 29resultess, 64return, 7return ode, 87return value, 93staksize spei�ation, 78system, 44type, 18, 22, 27, 64unknown, 67variable, 29proedure (keyword), 44, 64, 77, 96proedures (keyword),
see proedure%Produtions, 116program,example, 5, 11format, 7, 43how to ompile, 7, 121, 131, 133how to run, 7, 125, 131, 133main, 5soure, 121struture, 1Program_Counter, 108, 166program interrupt, 112, 126, 127protetion exeption, 126PRV,
see pseudo-register vetorpseudo-register, 45, 107pseudo-register vetor, 43, 45, 48, 69, 159with SDS, 128%Punh, 120%Push, 120Q-on, 107QGLOBAL, 127QLCSPR, 127QQSV, 47QSYSENTR, 98, 162

radix,bit-onstant, 80%Range_Chek, 112, 116range heking, 3, 10, 54, 61readability, 2, 21, 24, 95read-only variable, 73real,oerion, 80onstant, 80preision, 57type, 23, 57real (keyword), 57, 80reompilation, 18reord,alloation, 74as environment, 160as parameter, 86assignment, 62irular de�nition, 52onstant, 74, 81environment, 46, 48map, 119o�set, 107paked, 70SYM (for SDS), 122, 128type, 24, 62variant, 63reord (keyword), 62reentrany, 18reentrant ode, 43, 45referene (keyword), 64referene parameter, 28, 34, 64, 139register,alloation, 3, 75, 139base, 159parameter, 44, 66, 75preemption, 139result, 66, 75usage, 159, 165, 170use, 116, 139variable, 3, 75, 103, 105, 140
see also prede�ned register variableregister (keyword), 66, 75registers (keyword),
see register%Regression_Test, 116relational operator, 54, 57, 61repeated (keyword), 65repeated parameter, 44, 65repeat (keyword), 92, 93

187INDEXrepeat statement, 93in do statement, 93reserved words,
see keywordsrestritions,"MAC/MDS", 147"MAC/MPW", 147result, 18, 44, 93identi�er, 51multiple, 76name, 51optional, 66proedure, 29register, 66, 75resultess proedure, 64result (keyword), 64return,multilevel, 144proedure, 7statement, 29, 39, 93value, 44, 86, 93return ode, 29, 144ompiler, 122from exeution, 126return ode, 87Return_Code, 144Return_From,library member, 144return (keyword), 87, 94right attribute, 71Right_Justify, 108right-justifying bit type, 55right (keyword), 68, 71Run ommand, 7, 9, 121, 125, 131, 133run-time,array, 140heking, 2, 10, 54, 94, 109, 116, 117, 126, 127library, 9Motorola 68000 support, 133PDP-11 support, 131support, 126run-time option,HIGH_WATER, 125STACK_SIZE, 125salar onstant, 79salar type, 53, 58Sards_Varying, 6sope, 20, 22, 45, 52delaration, 19

in begin blok, 92in yle, 90in do statement, 91in if statement, 88in maro, 50, 99in selet, 89of open statement, 94rules, 52SDS, 118, 122, 126, 127searh program example, 11%Segment, 116selet,label, 89statement, 37, 89selet (keyword), 90seletor �eld, 63semiolon, 41, 43use of, 7separate ompilation, 3, 9, 17, 52set,oerion, 59ompatibility, 59operator, 59type, 58set (keyword), 58Setup_Return_From,library member, 144Short_Stak_Desriptor_Type, 159signed (keyword), 157size, 100Size, 108small attribute, 71small (keyword), 71soure,library, 5, 8, 119, 121, 135listing, 2, 114, 115, 122, 124program, 121soure oordinate, 112, 122, 128%Soure_File, 117%Soure_Line, 117speial linkage, 97, 146, 161, 166spelling, 17stak, 74, 108, 131, 159desriptor, 159frame, 102, 140, 164, 167, 172overow heking, 117, 126, 160size, 78, 125, 161use, 125Stak_Base_Register, 108, 163%Stak_Chek, 79, 112, 117, 126

188 INDEXStak_Pointer, 108, 166STACK_SIZE, 125staksize (keyword), 78, 126STAKSIZE, 161standard instrution set, 113standard linkage, 44statement, 43assert, 94, 111assignment, 5, 31, 85, 111ompile-time, 109ompile-time if, 109ompound, 7onstant, 73yle, 38, 90do, 39, 91equate, 95, 139, 140exit, 5, 7, 38, 92if, 6, 36, 84%if, 109list, 53open, 63, 94, 140order, 8repeat, 93return, 29, 39, 93selet, 37, 89%Statistis, 117STDTV, 159STK_DESC, 159, 161storage,alloation, 22, 48, 55, 70global, 67, 69, 159map, 119overlay, 95value, 34storage (keyword), 157storage representation,onstant, 81, 83Store_Chek, 143string,assignment, 55omparison, 55onstant, 79expression, 32length, 107length heking, 55operator, 54type, 10
see also harater%String_Chek, 112, 117String_Types, 10

struture,ompilation, 43onstant, 81ontrol, 1, 88data, 1objet module, 159, 165, 169program, 1
see also reordstyle, 2, 21, 24S-Type linkage, 65, 162subrange type, 58base type, 58subroutine, 18system, 8
see also proeduresubsript, 25, 32, 34, 60heking, 3subset (keyword), 59, 84subset (set operator), 59substitution,maro, 50Substring, 34, 54, 108, 143heking, 117%Subtitle, 117, 122Suessor, 58, 109Sue, 1, 94, 103support,run-time, 126swithing environment, 47, 87, 98symbol,external, 45, 48, 49, 74, 75, 78, 102SDS, 128
see also identi�ersymboli onstant, 2, 51, 57SYM reord, 118, 122, 128syntax,BNF, 149system,attribute, 71linkage, 44, 97, 162, 166proedure, 44system (keyword), 67, 71, 97system subroutines,delarations, 121MTS, 1, 8System 370, 1Inline, 103%Target_Mahine, 117%Target_Operating_System, 117, 133

189INDEX"AMIGA", 72, 169"MAC/MDS", 49, 72, 74, 81, 169"MAC/MPW", 72, 113, 116, 169temporary variable, 20, 22terseness, 2%Test, 118, 127test system,Plus-11, 131then (keyword), 88%then (keyword), 110%Time, 118title, 17%Title, 17, 118, 122TN harater set, 115token, 7, 50to (keyword), 61, 91, 96top-down programming, 50traps,"MAC/MDS", 72"MAC/MPW", 72triks,dirty, 139true, 37, 84True, 37, 109tutorial, 5type, 53array, 25, 60attribute, 68bit, 23, 55Boolean, 37harater, 10, 54heating, 50, 62, 63, 95heking, 2ompatibility, 21, 84delaration, 10, 21, 53, 74desription, 23, 53environment, 46equivalene, 21expression, 53global, 46, 67identi�er, 51, 53identi�er-list, 23, 51, 57index, 58integer, 54Integer, 9logial, 37name, 51numeri, 54pointer, 26, 61proedure, 18, 22, 27, 44, 64

real, 23, 57reord, 24, 62salar, 53, 58SDS, 128set, 58string, 10subrange, 58unde�ned, 52unknown, 62varying-length harater, 54varying-length string, 54varying string, 54Type I linkage, 29, 71, 98type (keyword), 73types (keyword),
see typeunary operator, 54unde�ned identi�er, 52, 53understandability, 2union (set operator), 59unknown environment, 69unknown (keyword), 62, 67, 69unknown proedure, 67unknown type, 62in equate statement, 96unless (keyword), 93%Unref, 115, 118, 124%Unreserve, 112, 120unsigned (keyword), 157unspei�ed proedure, 67upperase, 8, 43, 51, 115use (keyword), 157use of identi�er, 51use of maro, 50use of registers, 116use of SDS, 127use of semiolon, 41utility program, 135Plus:Libgen, 135Plus:Liblist, 136value, 34attribute, 72onstant, 49parameter, 64, 86pointer, 61proedure, 86, 93return, 44, 93value (keyword), 34, 72, 86

190 INDEXvariable,absolute, 77alloation, 74ompiler, 5, 52, 111delaration, 5, 22, 45, 74external, 43, 48, 73free, 50, 99global, 43, 45identi�er, 34, 51loal, 22name, 51non-loal, 45prede�ned, 100proedure, 29read-only, 73real, 57register, 3, 75, 103, 105, 140storage alloation, 48temporary, 20, 22variable (keyword), 73variables (keyword),
see variablevariant �eld, 63variant (keyword), 63variant reord, 63size of, 101varying-length harater type, 54varying-length string, 11varying-length string type, 54varying string,type, 54Varying_String, 11V-bit, 65, 141verbosity, 2version,ompiler, 121, 131, 133Version, 109version number,ompiler, 109, 121virtual memory, 4VS-1, 1when (keyword), 92with (keyword), 87, 94word-size,objet mahine, 55xor (keyword), 84XPL, 103Plus-11,

test system, 131Plus/68000 odes,Inline, 173xref,
see ross-referene%Xref, 118, 124%Xref_Sope, 118, 124

