
&~re~ ~~~
. lJ:f' ~ 11 JJ. J] ~ ~ rtJi (f)) lD1 &

lBJ~&l1~
Jrre ~JfJi rtre

-------.-.-----... -.~~-.-------."-.------~---.--- .-.-.-------~-- ._._---------_ .. - -----_ .. _--------_ .. _--- ----~

The programmers that contributed to this document are:
Johnson Terry
Mohammadi Farzin
Necker Lee
Riscalla Daniel
Truyen Frank

'e f " \.... .'

This document was prepared using Wordperfect on the HP 835, Wordperfect on \-C\
the IBM and Wordperfect on the Macintosh.

The first draft for this document was completed on December 2, 1991

The Times Roman font was used and a Macintosh Laserwriter to print it.

All rights reserved. No part of this document may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of The Ultimate Corp .. Printed in the United States of America in
California on December 2, 1991.

UNIX is a registered trademark of UNIX Systems Laboratories

o

c

Table of contents December 4, 1991 4:43

Table of contents:

I. Introduction ... 9
II. Current performance analysis 10
m. New Basic overview 10

The old Basic compiler 12
OptImIZer .. 12
New object code generator 12

IV. Internal architecture 13
A. Runtime Architecture 13

1. Interpreted object versus direct C code 13
2. Non-stack architecture 15
3. Descriptor and string space management: 15
4. Math operations, numeric storage & representation 16
5. Interface between the new Basic environment and the

virtual system 16
6. Basic Debugger 17
7. File system access changes 18

a. Current performance analysis 18
b. Proposed implementation 19

B. New Basic Runtime implementation 20
1. Calling the New Basic runtime 20
2. Descriptor data structure 22
3. Basic variables and constants 24
4. Opcode templates 27

a. An opcode template 27
b. Accessing the Basic object and opcode arguments 30
c. Accessing descriptors 33
d. Dynamic memory allocation 34
e. Useful macros 35
f. Procedure for developing an opcode 35

C. The optimizer ,37
1. Architecture of the optimizer , 37
2. Support for the New Basic Runtime ":," 38
3. Optimization techniques used ,.,39

V. Compatibility with current Basic 39
A. Basic source compatibility 39

Page - 3 -
The Ultimate Corp.

Proprietary and Confidential

Table of contents December 4, 1991 4:43

B. Named Commons .
C. Calls
D. Basic Debugger
E. Library Calls
F. Execute / Chain / Data Statements
G. Interface from Recall and Update to Basic

VI. Issues and questions that need to be answered
VII. New Basic performance analysis
VIII. Project Implementation

A. Quality plan.
1. Templates
2. Macros
3. Code reviews
4. Virtual reference
5. Technical documentation

B. Phase 1
1. Goals
2. Resources
3. Schedule

C. Phase 2
1. Goals
2. Schedule

Appendix A: Basic READ/READU/WRITE flowcharts, as per release
210E

Appendix B: Conversion format string
Appendix C: Format string parsing rules

Introduction .. .
Parsing a date format string
Parsing a numeric format string

Appendix D: SYSTEM functions that are good candidates for optimization .
Appendix E: Named commons

Introduction .. .
Executing the named COMMON statement (Opcode x'ED')
Storing a value in a named common variable (Opcode x'E8')
Exit through Basic wrapup (see mode BRPll)
Implementation of named common in the optimized Basic

enVIronment
Appendix F: New Basic debugger full specifications

I. Objectives
II. Assumptions
Ill. Symbolic source debugging

Page - 4 -
The Ultimate Corp.

Proprietary and Confidenlial

39
40
41
41
42
43
44
45
45
46
46
46
46
47
47
47
47
48
48
49
49
49

51
77
81
81
82
82
85
87
87
87
89
90

90
91
91
91
93

r
~I

(~:\

Table of contents December 4, 1991 4:43

A. Commands and features 93
1. Upward compatibility 93
2. New Commands to implement when time permits 94
3. Some of the more important Basic debugger features . 96

B. Debugger Data Structures 97
1. breakpoint table : breakpoint[] 97
2. RUN options: options[] 98
3. Internal debugger information: db 99
4. symbol table: symbol_table 100
5. opcode infonnation : opcode[opcode_number] 100
6. logical expression : cond_struct 100
7. Trace table: trace_table[] 101
8. Number of loaded symbols : loaded_symbols 101

C. Debugging an non-optimized program 102
1. Control Flow 102
2. Debugger 105

D. Debugging an optimized program 107
IV. Non-source level debugging 108
V. Major components of the debugger 109

A. Initialization 109
B. DCD interface between Basic and the Debugger 110
C. Basic runtime error interface 110
D. Ultimate debugger commands parser 111
E. Ultimate commands processor 111
F. Parser for verbose set of commands 112
G. Verbose commands processor 117
H. Utilities 119

VI. Time estimates 121
Appendix G: Analysis of Math in Basic 123

Introduction .. 123
Today implementation 123

Format of the numeric variables 123
Algorithms 123
Optimized assembly code(Ultimate PLUS only) 123

Issues .. 124
Ultimate PLUS way of representing numbers 124
Ult/ix way of representing numbers 124

Proposed implementation for the BASIC project 126
Data structure for variables 126
Type conversion 126
Flavor binding 127

Page - 5 -
The Ultimate Corp.

Proprietary and Confidential

Table of contents December 4, 1991 4:43

1) illt/ix flavor 127 C' .'.:
2) illtimate flavor 127 _

Operators and C library routines used for computation 128
Performance Data(Basic Math) 128

Issues .. 129
Appendix H: Recall calling Basic subroutine 131

Format of this document 131
Steps taken at compile time 131
Steps taken at execution time 141
Steps taken upon return from the subroutine call 145
Steps taken on exit 145
Conclusions .. 146

Appendix I: Runtime Initialization 149
Tasks performed by the Basic runtime initialization 149
Conclusions .. 152

Appendix J: Library calls 155
Significance of Library calls to the Basic optimization project 155
Current interface between Basic and the Library calls 155
Interface with Optimized Basic 156

Transparent interface to Virtual 157
Direct interface to Virtual 158
String argument passing 158

Conclusion ... 159
Appendix K: String and space management 161

Introduction .. 161
Seamlessness 161
Space management in Basic 161
Heap manipulation 162
Debugging ... 162
Fairness ... 163

Appendix L: Current opcode table 165
Appendix M: Machine stack versus software stack 173

Advantages of the current stack architecture 173
Disadvantages, and reasons for not perpetuating the current design . 173
Disadvantages of not using the software stack -. 174

Appendix N: Call interface 175
Introduction .. 175
Section 1 : direct call- subroutine is first invoked 176
Section 2 : direct call- subroutine has been called before 176
Section 3 : indirect call- subroutine has not been opened 177
Section 4 : indirect call- subroutine has been previously opened 177

Page· '6 -
The Ultimate Corp.

Proprietary and Confidential

(

Table of contents December 4, 1991 4:43

Section 5 : common code 178
Section 6 : elements pushed on the Basic stack 179
Section 7 : fmding the object code from the subroutine name 180
Section 8 : executing the SUBROUTINE opcode 181
Section 9 : passing arguments from the caller to the subroutine 181
Section 10 : returning to the calling program 182
Questions concerning the current code 184
Proposal for Optimized Basic 184

Proposed object code for a direct call 185
Proposed object code for an indirect call 185
Information stored in the object header 186
Initializing the runtime environment 186
Calling from a Recall subroutine 187
Passing COMMON variables between programs 187
Access to the Basic Debugger 188
Passing argument values from caller to subroutine 188
Detecting the return condition 189

Returning values back to the calling program 189
Open issues 189

Appendix 0: The execute instruction 191
Scope of this appendix 191
Basic stack layout when the opcode (x'EB') is invoked 191
Steps taken during runtime execution 191
Issues in regard to Basic optimization 195

Appendix P: Enhancements survey results 197
Appendix Q: Compatibility between old Basic and new Basic 199

Page - 7 -
The Ultimate Corp.

Proprietary and Confidential

Table of contents

Page. 8 •
The Ultimate Corp.

Proprietary and Confidential

December 4. 1991 4:43

(--',

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

I, Introduction:

The purpose of this project is to achieve a level of performance of the
Basic runtime package that equals or surpasses the speed of our major
competitors, as measured through benchmark programs such as the X
rating and Probench.

This has to be attained with no compatibility loss (or very little if
unavoidable). This document lists all cases where the proposed
implementation does not follow this constraint.

The project is to be viewed as the first but very important step towards the
re-architecture of the Ultimate PLUS operating environment. This re
architecture in general will migrate the Ultimate PLUS environment to an
architecture that is more seamless with the UNIX operating system. Re
writes of other parts of the system will definitely follow (the file system,
recall etc ...) as they make sense to occur as well as the introduction of new
features like SQL or relational database access. From this project on, C (or
C++) will be the programming language of choice. Virtual assembly
programming will not be used unless absolutely necessary.

Therefore, this project being the first of a few, it has to be carefully
designed to not introduce any architectural limitations that would stand in
the way of some of the following projects (file system rewrite, SQL, ...).

The ultimate goal of the Basic rewrite is to provide a new Basic runtime
that at least equals our competitors in performance. The C code developed
will replace all current Virtual code related to the Basic runtime. Links
with other software modules as well as time constraints may limit the scope
of the first phase, resulting in some of the less frequently used or very
complex Basic operations to remain in Virtual.

In addition to the runtime re-write, an optimizer will be developed in this
project. That optimizer will use conventional compiler optimization
techniques (similar to the ones used today in most C compilers) to optimize
the user's Basic code. This should help us meet our performance goals
more easily.

Page - 9 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

Unless opposite advice from our Marketing people, the old runtime
environment will be available in parallel with the new Basic, providing a
backup for the user in case of emergency. It is understood that at some
point in time however, the old code is to be completely removed from the
system.

In order to limit the development cycle, and also to address the issue of
customers with no source code to their application, the basis for the
performance enhancement code is the output of the current compiler.
Options will be provided with the current compiler to produce a new
object code format and to enable the optimizer.

II. Current performance analysis:

When considering rewriting areas of Ultimate PLUS for performance
gains, the question that comes to mind is which area, if rewritten, would
provide the most gains in performance? To better answer that question,
various part of Ultimate PLUS were compared to Ult/ix. The Basic module
appears to be the one in which Ultimate PLUS suffers the most. Ultimate
PLUS seems to be about 2.5 times slower than Ult/ix when compared on C
the same machine. Recall on the other hand is comparable between the two
products. Considering that most dealers have a significant investment in
Basic programming (most dealer applications are written in Basic), it was
clear that enhancing the performance of Basic was the right thing to do.

The performance of Ultimate Plus' file system appears to be comparable to
the performance of Ult/ix's file system. In some test cases illtimate PLUS
is faster than Ult/ix and in some other cases Ult/ix is faster than Ultimate
PLUS. We will try to identify small enhancements that will make us over
all faster than Ult/ix for file accesses.

III. New Basic overview:

This section describes the architecture of the New Basic at a very high
level. From here on, Old Basic and Old object code will refer to the Basic
and object code that are currently released with Ultimate PLUS. New Basic
and New Object Code will refer to the Basic and object code that will result

- ---~- ------------~----

Page - 10 -
The Ultimate Corp.

Proprietary and Confidential

(~!
/'

c

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

from this rewrite.

The modules that make the New Basic are as follows:

(1) The old Basic compiler

(2) A new parser to parse the old object code

(3) An optimizer

(4) New object generator

Components of New Basic

As this list of modules seems to imply, the old compiler remains as part of

Page - 11 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

the current system. Here follows a description of every module:

The old Basic com.piler:

This module is practically unchanged from the current Ultimate
PLUS release. It is the good old Basic compiler that takes the user's
Basic sources and generates old object code. Some minor changes
might be made to support additional options to better control calls
and the behavior of subsequent modules. The reason the compiler
was kept is to simplify the scope of the project as we do not have to
worry about Basic parsing issues we rather can concentrate on the
runtime itself. There is not doubt that at some point in the future,
that old compiler will be taken out and a new Basic parser will be
implemented.

Parser of old object code:

After the user programs have been compiled into object, the new
compiler will go through the old object recognizing opcodes and
their arguments and building some data structures in memory that
form a representation of the program. These data structures are
appropriate for optimization algorithms (see detailed section about
optimizer). As the object is parsed, the parser will assemble some
significant information about the program being compiled and store
them in the mentioned data structures. That information will be
useful later on for a better code generation.

Optimizer:

The optimizer is then optionally called. It is not clear yet if the
default will be to call it or vice-versa, that can be determined later
on. When the optimizer is called, it will apply some traditional
compiler optimization techniques against the built data structures. It
will therefore massage the data structures resulting in a smaller,
more efficient, functionally equivalent set of data structures that
represent the original user program. This optimizer can be very
simple just including some obvious and easy techniques or can be
extremely complex. Its complexity will depend on the time we can
afford spending on it without compromising the runtime rewrite.

New object code ~enerator:

Page - 12 -
The Ultimate Corp.

Proprietary and Confidential

C'"
, '

/

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

This module is invoked last whether the optimizer was called or not.
It goes against the built data structures and produces object code that
is the new format. This module will take advantage of information
gathered throughout the compilation to try to generate smarter
object code.

Keeping the new compiler modularized into the modules just described
should help building a more stable product that is more easily modified.
For example, the compiler should be fully functional before any of the
optimizer is coded as the old object code parser produces data that is input
to the new object code generator.

IV. Internal architecture:

This section goes into a more detailed discussion of the internal
architecture of the Basic rewrite. It is sub-divided into three sections.

The first one addresses various architectural concepts and why one solution
was chosen instead of another. Most of the topics addressed have an
appendix that discusses the subject in a much more detailed fashion.

The second section will talk about the actual implementation architecture
getting into things like data structures, macros and templates. Whereas the
first section talked about concepts, this one talks about implementation;
they both relate though to the runtime.

The optimizer being a little special beast, it deserved a section all by itself.
That third section describes the optimizer architecture, the optimization
techniques it would use and how they would be implemented. This section
is merely a summary for numerous compiler material that was gathered
and analyzed.

A. Runtime Architecture:

1. Interpreted object versus direct C code:

When developing a language processor, there is always the
issue of whether the product should be an interpreter or a

Page - 13 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

compiler. Both have advantages and disadvantages. Whereas an C
interpreter is more flexible and more powerful because better • . J

in control of the runtime environment, a compiler
compensates by producing a faster model where the
interpretation of the instructions was done at compile time.

If implemented right, one can modify an interpreter to a
compiler and vice-versa with some limited efforts. That is to
say that conceptually they both are not so much apart (they
really both end up being interpreters one way or another, the
question is at what level is the interpretation being done).

We are choosing to remain an interpreter instead of translating
into C code. Translating into C code would most definitely
produce faster code but the difference should be under 10
percent. The disadvantage of translating into C code is that our
dependency on the C compiler of the machine would go up. It
is important to notice for example, that today, for the Ultimate
PLUS implementation, not all compiler options are valid.
Some options lead the C compiler (and this is true for all
machines we run on) to produce code that would fail.
Controlling the way the C compiler is invoked on a customer
machine would therefore become an additional responsibility
(it is true though that sooner or later we would have to deal
with that issue as we would allow customers to intermix C
code with their applications).

Moreover, our compile times would become significantly
dependant on the speed of the C compiler and that is not
something to take lightly. We have seen under different
implementation the C compile time represent over ninety
percent of the Basic to object code compile process.

One last issue is the issue of providing for dynamic linking
(indirect subroutine calls). That technique is not mature
enough today to the point where we can provide an easily
portable solution across all the platforms we support. UNIX
System V release 4 does make dynamic linking a standard but
this is not true for release 3.

I guess the conclusion is that a compilation in to C although

Page. 14 •
The Ultimtlte Corp.

Proprietary and Confidential

o

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

possible would end up presenting more problems than the
performance gain is worth. Moreover some tests we have done
seem to indicate that the performance gain between the two
schemes might not end up be higher than a few points.

2. Non-stack architecture:

The Unix systems that currently run Ult/PLUS are RISe based
platforms that use a fast stack architecture at the hardware
level, geared towards running e programs. Our goal is to take
the most advantage of this, without adding a software stack on
top of it.

Also from a perfonnance angle, using the machine stack shows
a clear advantage over using a software stack.

Some tests we have run indicate that the performance loss
because of a software stack can be as much as four times
slower. Implementing a model without a software stack will
definitely lead to a more complex structure but the
performance gains seem to make it worthwhile.

Refer to Appendix M for a more in depth discussion.

3. Descriptor and string space management:

The descriptor space is implemented as a piece of memory that
comes out of the UNIX/e process heap space. When a
program is started, a chunk of memory is allocated to fit the
necessary number of descriptors. A descriptor is defined as a
e structure that can hold different types of data representation.
These structures allow for a natural representation of native e
data types, such as floating point numbers, and are generated
by the e compiler with the proper alignment thereby resolving
the bus exception issue on the HP series.

String space is also acquired from the heap of the UNIX
process.

The heap itself is manipulated either through the use of
standard e library calls (mallocO/freeO/realloc) or through a

Page· 15 •
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

super set of these functions, under Ultimate's control.

Please refer to Appendix K for more details, and for some
side effects of this approach in regards to the debugger.

4. Math operations, numeric storage & representation:

In the new Basic runtime, numbers are represented as doubles.
Those are floating poin numbers with at least 32 (typicallyc 64
bits). Each program can run in one of two flavors, Ultimate
plus flavor, or Ult/ix flavor. The flavor is determined at basic
compile time. This means a compilation is required to switch
the flavor. The flavor can be controlled via an environment
variable, basic compile option, or a system wide option. In
both flavors the numbers are represented as doubles. However,
for the Ultimate flavor, each time a numeric variable is
updated, the variable is adjusted. The adjustment is based on
the scaling factor of the basic program and produces a
considerable overhead.

The basic math operations such as addition, subtraction,
multiplication and division are accomplished by using the C
operators '+', '_', '*' and 'I' on doubles. If string math is
necessary then the library routines to be coded by us will be
used to do the job.

Other math operations such as SIN, COS, LN, PWR, EXP,
SQRT etc. are accomplished by using the C library routines
sinO, cosO, logO, powO, expO, sqrtO etc.

Please refer to appendix G for a more detailed discussion of
the math issue.

5. Interface between the new Basic environment and· the
virtual system:

A uniform mechanism is going to be developed to interface
between the new Basic runtime and the virtual system.

Data structures are being represented differently in the new

Page - 16 -
The Ultimate Corp.

Proprietary and Confidential

o

c!

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

Basic runtime (no or very rare use of PCB data elements, no
use of linked frames or of workspaces etc ...). Therefore, a
documented (and coded if any code is necessary) API
(application programmer interface) is necessary to go from
the new Basic environment to virtual code or vice-versa. That
interface has to promote readability and ease of maintenance.
For example, if a piece of virtual code that is called from the
new Basic environment, is being modified, the virtual coder
needs to know that this is the case and the virtual coder needs
to understand how the interface is defined to make sure that
his changes preserve that interface.

The biggest beneficiary of that API will be the File System as
the new runtime will call virtual code for database access and
the Ultimate PLUS modules that call Basic but will not be
rewritten for the time being (like Recall and Update).

More detailed description of the interface between the new
Basic and the virtual system can be found in appendix R.

6. Basic Debugger:

The current debugger functionalities and commands will be
preserved in the new Basic debugger. This document is written
in complete accordance with the current debugger
requirements. However, to correct the cryptic nature of the
current debugger, the new Basic debugger has two command
modes of operation. They are the Ultimate command mode
and the verbose command mode. In the Ultimate command
mode, the debugger takes traditional debugger commands. In
the verbose command mode, a new English-like syntax is used
to issue the same commands and all the new commands. Users
should be encouraged to switch to the new verbose command
mode. Eventually, we may take away the Ultimate command
mode.

The debugger can perform symbolic source debugging for non
optimized programs. For optimized programs, the debugger
can only provide effectively a subroutine or an event level
debugging because the one-to-one relationship between object
and source code does not exist anymore. The capability to

Page. 17 •
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

point out which line caused a runtime error is to be
implemented for both types of programs. In addition, the 0
debugger also provides an opcode level debugging of all
programs for use by people who are so inclined (for internal
use mostly).

Currently, the Basic debugger can set a breakpoint on a line
number, on logical conditions and on CALL/RETURN
instructions. To further facilitate debugging of a Basic
program, there is now conditional break point on a source
line, break point on a variable when it changes, break point
inside a subroutine when it is called. The user may switch the
debugging terminal to another port on the system which will
help debugging screen type application. The entire debug
session may be logged to a Unix file. Furthermore, there is an
indexed help facility for the verbose set of commands.

Our design takes all of the desired new features into
consideration. Those new features though, will only be
implemented as time permits.

7. File system access changes:

--- --.~ --.~.--~ .. _------------

a. Current performance analysis: File I/O in Basic is
roughly the same speed on Ultimate Plus as on Ult/ix, so we
are not proposing major changes to the Ultimate file system
now.

In general, Ult Plus is fast in these cases:
- Random access
- Large items
- Repeated access on other than the RS/6000
- The Basic SELECT statement
- Very large files

Ult/ix is fast in these cases:
- Any Recall statement
- Sequential access

Just where the dividing lines between the above categories lie
is unclear. Some tests show that Ult Plus becomes fast when
item sizes approach 100 bytes, while other tests show the

Page - 18 -
The Ultimate Corp.

Proprietary and Confidential

(

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

dividing line to be around 500 bytes.
Which operations are fast and which are slow sometimes
depends on the hardware platform. For example, Vlt Plus
uses shared memory as a cache of file data, so repeated
accesses to a file do not require disk reads, which would
generally give VL T Plus a speed advantage over Ult/ix. This
is true on HP machines. However, the RS/6000 can use all of
memory as a cache of file data, so repeated accesses to a file
are improved in Vlt/ix, making the speeds of the systems
comparable.

h. Proposed implementation: Webb has just changed item
retrieval to only use read locks when there is a conflict with
another process updating the group that is being read. Retix
now returns a byte value representing the condition of the
group before the item was retrieved and a pointer to the
current byte value within the group. The caller of RETIX
may choose to copy the item from the file, then compare the
values, and if they are different, redo the item retrieval with
read locks. Basic and Recall now do this instead of always
setting read locks. There were some difficult problems (Webb
cannot remember exactly what they were) with putting all of
the responsibility for data integrity inside the file system.

The elimination of setting read locks most of the time has
resulted in about a 20% improvement in file accessing speed,
so this feature will be included in Vlt Plus.

The format of the interface to New Basic is still under design
because the present code requires a moderate amount of
interaction between Basic and the file system. For now, the
interaction will be minimized by making the Basic virtual code
that interfaces to the file system into a routine that can be
called from New Basic. It is possible that the interaction
between New Basic and the file system will be increased as the
design of the interface evolves.

We will therefore:
- Implement the new interface
- Tune the new interface
- Tune the file system, itself

Page - 19 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

Tuning the file system will be done as time permits and as
required to improve performance. This step consists of
making changes to file structure, such as storing the item size
in binary instead of ASCII.

Be New Basic Runtime implementation:

This section is more down to earth than the previous ones. It will
describe the environment necessary for developing code for the new
runtime. Data structures, templates and macros are among the topics
addressed in this section. Do not underestimate the importance of the
material in this section as significant R&D resources have been spent
to come up with the described environment. this was done to ensure
a stable and consistent environment that programmers will work in.
This will payoff with faster code development in the next few
months, more readable code and more consistent coding practices.

1. Calling the New Basic runtime:

Any programmer developing opcodes for the new Basic, will
go through a particular development cycle:

develop code - compile opcode - relink it with ultvirt -
test - make changes in code - compile opcode - relink ...

Being many of us (us = opcode developers), there will
typically be more than one person going through that cycle on
the some machine. The problem is that the relink it with
ultvirt portion of the cycle is time and machine resources
consuming. Therefore we want to develop an environment that
will make that procedure less painful for everybody.

Page· 20 •
The Ultimate Corp.

Proprietary and Confidential

c

c

c

Specifications for the Ultimate PLUS Basic Rewrite

All virtual modes
+

runtime library

New
Basic

runtime
code

Ultvirt executable

December 4, 1991 4:43

dcd() code for

1---- requests from
rest of system

to Basic runtime

Released product

The way this is going to be done is by splitting the new
opcodes Gust for the purposes of development) into a separate
executable that is a lot easier to link (a few seconds compared
to a many minutes!).

The previous picture highlights how the code will be
architectured for the released product. The following picture
highlights how it will be architectured during the development
cycle. The switch from one to the other is completely
transparent to the new Basic runtime code.

Page - 21 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite

All virtual modes
+

runtime library

Ultvirt executable

dcdO axle for
requests from
rest of system

to Basic runtime

New
Basic

runtime
code

new Basic runtime is in a
different executable

December 4, 1991 4:43

Current runtime library
+

virtual modes called

Development product

As you can see in the picture, for development purposes, the
new runtime will be in a separate executable that contains all
of the runtime library plus whatever virtual modes are
directly referenced (those would certainly be less than the 700
or so linked today in ultvirt). An interface will be developed
between the dcdO code in ultvirt and that executable making
it completely transparent to the new Basic runtime that it is
running in a separate executable.

2. Descriptor data structure:

The following data structure is the preliminary layout for the
Basic variable and constant data elements. It can be found in
the 'descriptor.h' file. The data structure has basically two
main pieces to it:

Page. 22 •
The Ultimate Corp.

Proprietary and Confidential

c " __ J

c

(

('\

)
;/

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

struct{

- The first one is the fixed portion. It contains the fields
that are always applicable no matter what type the
descriptor is. Those fields are the descriptor type, a
string pointer and the length of that string pointed to.

Basic variable Data Structure

struct(

} fIxed;
union (

union {
Part of the structure that is NOT overlaid.
Structure to hold the descriptor type.

unsigned short class_type; Both class and type fields
struct{

} byte;
} !liw;
struct(

char
int

} S1J:i.D.&;

struct(
double

} Qumeric;
struct(

int

char*

} ww;
struct(

} ilk;
struct(

int
int

unsigned char
unsigned char

class;
type;

upper byte of flags; class of data
lower byte of flags; the type

Structure to hold any type of string data information.
*ptr; pointer to character string.
len; length of the string.

Part of the structure that gets overlaid.
structure to hold a numeric value.
float_val; floating point numeric

value.

Structure for a select list variable.

count;

current-ptr;

count of elements in select
list.
pointer to last element
extracted.

Structure for ajile variable.
febI; openjile FCBl value;
feb2; openjile FCB2 value;

unsigned iot
union (

Structure for conversion constants.
flags; conversion flags

struct(numeric format mask
structure.

short decimal; decimal digits to output.
short scale; scaling factor;

Page - 23 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

} type;

} format;
struct{

} 11m;
sttuct{

shan
char

char
char

shon
shon
char

} &mUll;

Structure for a datefor1flJJt
mask.

group; group extract count.
year; number of year digits to

print.
group_sep; group extract separator.
outpucsep; date output separator.

Structure for group extract.
skip; number of fields to skip.
extract; number of fields to extract.
group_sep; group extract separator.

} conv;
} overlay;

} desc_struct;

- The second portion is the overlay part of the structure.
That part will be used differently depending on the type
of variable used. For most variables, it will contain the
floating point field for the numeric value. For file
variables, select variables, string format constants (and
some more special variables), this portion of the data
structure is overlaid with a structure that is more
appropriate for that type of descriptor.

The whole data structure and especially its sub-structures and
unions will be hidden from the programmer through the use
of various macros that are described later.

3. Basic variables and constants:

There are various types of descriptors that we have to deal
with. They are various not with respect to their type in Basic
(select variable etc ...) but rather with respect to their nature
like local variables, constants, commons, arrays etc ... In trying
to design an appropriate data structure for these different
types, one major goal was to again promote readability of the
code and ease of programming opcode to accelerate the
development cycle.

Page - 24 -
The Ultimate Corp.

Proprietary and Confidential

c

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

It would obviously be an additional headache if for every
opcode coded one had to worry where does the variable come
from. If it is a constant, I reference it this way; if it is a
common I reference it that way etc ... We therefore came up
with a data structure that makes it completely transparent to
the opcodes where the variable comes from. Meaning, the
opcode routines will not have to explicitly know that this
variable is a common or that one is a constant unless
specifically required by the nature of the opcode (some
opcodes for example will require an array as an argument).

The data structure in question is a double array. The first
array is an array of pointers to descriptor tables. A descriptor
is the data structure that was described in the previous section.
Every descriptor table represents one type of descriptors. For
example, the first one is for commons; the second one is for
arrays in commons (if we decide to split between the two); the
third one is for local variables; the last one is for constants
etc ... Then all variables are represented in the same manner.
Each one is uniquely identified by a tuple (a,b): a is the index
of the descriptor table it belongs to in the first array and b is
the index in the descriptor table itself.

For example, a local variable A would be represented by the
tuple (2, 4) where two indicates that A is a local variable
because all local variables belong to the third table (indexed as
2 because we start at 0) and A is the fifth local variable in the
descriptor table for local variables.

The new code generator module of the compiler will be
responsible for producing correct references in the object code
to the variables. The compiler will therefore evaluate the
characteristics of this double array as it has parsed the Basic
program old object code. It will determine how many elements
to each descriptor table, how many descriptor tables etc ... It
will also produce at the end of the new object code a copy of
the constant descriptor table so it can be loaded directly.

Page - 25 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December4.1991 4:43

Descriptor Array
for Commons

Descriptor Array
Ptr to Commons for Commons Arrays

d~tormmy -i __ --------------------------------~~ Ptr to Commons arrays _
descriptor array

Ptr to Constants
descriptor mmy

Ptr to Constants
descriptor array

Descriptor Array
for Constants

Descriptor Array
for Locals

I
I
I

Double array for all descriptors

I
I
I

One significant advantage of this data structure is how call
becomes simplified with respect to handling local variables. To
give the program a new set of local variables, all that has to
happen is save the address of the caller's local variables
descriptor table and make the corresponding entry in the first
array point to a newly allocated callee local variables
descriptor table.

A different approach could have been used for representing
the descriptors with a single array. The problem would have
been that arrays and commons would have probably required
some handling and special cases in the opcodes. The advantage
of such an approach is that only one indirection is necessary to

Page. 26 •
The Ultimate Corp.

Proprietary and Confidential

c

c

(

c

Specifications for the Ultimate PLUS Basic Rewrite December 4. 1991 4:43

get to the descriptor instead of the two in the other scheme.
We have done some timings and determined that the
performance difference between the two is null as the
additional de-referencing has no weight on the overall time
spent in an opcode.

4. Opcode templates:

As the largest portion of the Basic rewrite will consist of
rewriting hundreds of opcodes, we have identified the need to
develop a template for those opcodes. That template would
provide the programmers with a starting point when they want
to write the code for a new opcode shortening the development
cycle.

This section presents the template for an opcode. We have
actually coded a real opcode and done numerous passes on it to
detennine what is the best way for the code to look, best
macros etc ...

a. An opcode template:

Here follows the template for a typical opcode. The
various concepts and macros used throughout this listing
are explained in the following few sections.

/***/
/* OPCODE.c */
/* Proprietary Information * /
/* Copyright (C) Ultimate Corporation */
/* (This work is unpublished) */
/* All Rights Reserved */
/***/
/* Description: * /
/* ------------ */
/* This fIle contains the code for the OPCODE function. */
/***/
#include "basic.h"
#include "opcode.h"

/***/
/* External variables specific to the instruction. */

Page - 27 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

/***/
/* Purpose: This routine implements the OPCODE function for basic. */
/* It expects to receive from the object stream N */
1* arguments. * /
1* Some optimization are done within this implementation */
1* to handle some common cases faster: * /
1* - If both the first and second arguments are */
1* of type string, we can make some assumptions... */
1* - If both the first and second arguments are */
1* of type string, and it is a full moon outside, */
/* we can make some assumptions... */
/* The algorithm used to implement this opcode is blabla... */
/* Arguments: No arguments for the C function but this opcode expects */
/* the following arguments from the object stream: */
/* - Arg! is the descriptor of the variable to */
/* return the result into. */
/* - Arg2 is the mask for ... */
/* - Argn is the ... */
I*~~: ~
/***/
int
OPCODEO
{

char
int
char
double

*frrscar~ptr;
firscarg_Iength;
* second_ar~ptr,
thircCarg_dbl;

/* Ptr to frrst argument
/* length of first argument
/* Ptr to second argument
/* Double value of third arg

*/
*/
*/
*/

/***/
/***/
/* PARSE SOURCE ARGUMENT FLAGS. */
/* ASSIGN LOCAL DATA STRUCfURES FROM SOURCE ARGUMENTS. */
/* FORCE DATA TYPES IF NECESSARY. */
/***/
/***/

/***/
/* There are four arguments: */
/* Arg 0: the destination argument: */
/* This argument is the descriptor where the result of the */
/* operation should go. TO_BE_FILLED_IN */
/* Arg 1: source arg 1: */
/* The first argument for this opcode ... TO_BE_FllLED_IN */
/* Arg 2: source arg 2: */
/* The second ar ment for this 0 code... TO_BE_FTI J .ED_IN */

Page· 28 •
The Ultimate Corp.

Proprietary and Confidential

c

(~-"". , ,-

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

I'" Arg N: source arg N: 'fC I
1* The Nth argument for this opcode ... TO_BE_FU.I ,ED_IN */
/***/

/***/
/* Prepare the first argument which is TO_BE_FllLED_IN */
/***/
if (TYPE(OBJ_DESC(1)).type != STRING_TYPE)

FORCE_DESC_TO_STRING(OBJ_DESC(1));

/***/
/* Prepare the second argument which is TO_BE_FU.IED_IN */
/***/
if (TYPE(OBJ_DESC(2)).type != STRING_TYPE)

FORCE_DESC_TO_STRING(OBJ_DESC(2»;

/***/
/* Prepare the third argument which is TO_BEYllLED_IN */
/***/
if (TYPE(OB1_DESC(3)).type != NUMERIC_TYPE)

FORCE_DESC_TO_NUMERIC(OBJ_DESC(3));

/***/
/* Setup some local variables: */
/***/
frrscarg_ptr = STRING(OB1_DESC(1)).ptr;
frrscarg_len = STRING(OBl _DESC(1)).len;
second_arg_ptr = STRING(OB1_DESC(2)).ptr;
third_arg_dbl = NUMERIC(OBJ_DESC(3)).floacval;

/***/
/***/
/* INSTRUCTION SPECIFIC CODE */
/***/
/***/
{

/* CODE SPECIFIC TO THIS OPCODE

Page - 29 -
The Ultimate Corp.

Proprietary and Confidential

*/

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

}

/***/
1* UPDATE TIlE DESCRIPTOR VALUE FOR TIlE RESULT. */
/***/
/***/

if (resuicstring...ptr != NULL)(
/***/

}
else (

/* COpy A NON NULL RESULT STRING TO TIlE TARGET */
/* DESCRIPTOR. */
/***/
DESC_MALLOC(OBLDESC(0), DISCARD, resulclen);
stmcpy(STRING(OBJ_DESC(0)).ptr,

resulcstring...ptr, resulClen);
STRING(OBJ_DESC(0)).ptr[targecstrinLlen] = '\0';
TYPE(OBJ_DESC(0)).type = STRING_TYPE;

/***/
/* SET THE DESTINATION DESCRIPTOR TO A NULL STRING. */
/***/
SET_DESC_TO_NULL_STRING(~(O));

~
~-:iX:S

/***/
/***/
/* INCREMENT TIIE OBJECT CODE POINTER PAST TIllS INSTRUCTION */
/***/
/***/
INCREMENT_OBJECT _fYl'R;

/***/
/* OPCODE.c(end) */
/***/

b. Accessing the Basic object and opcode arguments:

An external uchar * named object_code_ptr will
always be pointing into the object code. The main
parsing loop will decode the opcode and position the
object _code _ptr at the byte following the opcode.

Each opcode.c file should have a corresponding
opcode.h file. That include file should have in it first a

Page - 30 -
The Ultimate Corp.

Proprietary and ConfidentUll

o

c

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

typedef struct {

definition for the object code fonnat for that opcode.
For example if my opcode expects two variables and a
two byte length after the opcode in the object, my
structure defmition should look as follows:

arfLstruct arg[2]; /* Two variables
/* two bytes length

*/
*/ shon length;

}opcode_objeccstruct;

typedef struct (
shon

shon

) arfLstruct;

Any variables should always be put together into an
array in that structure and should be of type
arg struct. The structure arg struct is defined for
the tIme being as follows (it could very well change as
the project evolves):

vector_index; /* index of the descriptor table in
/* the main vector

desc_index; /* index of the variable in the
/* descriptor table

*/
*/
*/
*/

Notice that this structure basically defines the way a
variable is represented in the object stream.

Note that throughout the code the word desc will
always refer to a descriptor!

The file opcode.h will also have one more declaration.
That is the declaration for the variable
object_code_ptr. Here we are going to cheat. That
variable was defined as a char * but we are going to
declare it differently in every opcode.h file. It will be
declared as of type opcode _ struct *. This allows us in
the C code for that opcode (opcode.c file) to be able to
say object_code_ptr->Iength for example to get the
two bytes field from the object stream. The advantage of

Page - 31 -
The Ultimate Corp.

Proprietary and Confidential

Speciflcations for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

doing that is that our code will not do any byte
arithmetic as the C compiler will align the data
structures accordingly (and on the HP automatically
avoid bus exceptions!). The draw back is that if the
compiler on different machines aligns the data
differently, the new Basic object will not be
compatible between those different machines.
Notice though that some effort can be invested to
attempt to provide object code compatibility on the
machines we support through the way we declare the
data structures. If some incompatibility can happen
though, the runtime should be capable of identifying the
fact that the object code that is attempted to run is not
compatible with the machine being run on.
Therefore we will do the work to ensure that the data
structures are aligned similarly on different machines.

As you notice, the template has as a last line
INCREMENT OBJECT PTR (a macro). That
positions the object_code_ptr past the opcode
arguments onto the next opcode. The reason this is done
in the opcode code itself is that because of the way the
object _code _ptr variable was declared, this macro
equates to ++object_code_ptr. The C -compiler
calculates how many bytes it is appropriate to increment
the pointer by.

On the other side of the fence, the new object code
generator will be using the same data structures and
include files opcode.h to produce the object ensuring
proper handshake between the compiler and the
runtime.

We consider the concepts described in this section as
pretty critical. That is because we will not be doing any
byte arithmetic in this project minimizing the number
of bugs we will have in our code and increasing our
productivity!! !

So we basically have to deal with three types of
elements: object code, arguments and descriptors. We

Page - 32 -
The Ultimate Corp.

Proprietary and Confidential

------- ---- -~".-------

c~

c

(-

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

#define

#define

#define

have defined macros to go from one type to another.

OBJ_ARG(n) objecccode_ptr->arg[(n)]

ARG_DESC(arg) vector[(arg).vector_index][(arg).desc_index]

OBLDESC(n) ARG_DESC(OBJ_ARG(n))

Vector is the pointer to the base of the two dimentional
array that represents all of the variable on the system.

Note that the first element of the ar g array in the
opcode struct structure should always be the descriptor
to where the result is going if that is applicable for that
opcode. This allows us to rely on the fact that the
destination will always be OBJ_DESC(0).

c. Accessing descriptors:

The following macros give us access to the different
fields in the desc struct structure. Those macros
practically hide the-different levels in the desc_struct
structure (unions and sub-structures) giving a single
level of access (there will be one occurence of the 'dot'
command)
They are all defined in the desc.h source file.

#define TYPE(desc)

#define STRING(desc)

#defme NUMERIC(desc)

#defme FILE(desc)

#define SELECf(desc) o

DE ((desc)).fixed.flags.byte.t~e
SC((desc)).fixed.string (\

C((desc)).overlay.select

#defme FORMA T(desc) 0

Page. 33 •
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

There will definitely be more definitions in that file as C
the desc _struct structure evolves. The concept though
should remain the same. Notice that we practically can
get to any field in the structure by using a reference of
the form DESC_type(ARG(n)).field. That makes
it consistent throughout the code.

d. Dynamic memory allocation:

Heap management suddenly becomes an important issue
with this rewrite. Up till now, most heap requirements
for Ultimate PLUS were channeled through the frame
manager as all of the memory used has been in frames.
With this rewrite, workspaces for Basic programs are
no more in frames but rather in the process's heap.
Dynamic memory management is one area where bugs
in C get pretty nasty. For that reason, we are going to
channel all of our dynamic memory requests through an
interface that will evolve to provide elaborate debugging
capabilities. No code in the system should be doing any
malloc() or realloc() or free (). Instead the following
set of macros should be used:

DESC_MALLOC(arg, flags, length)

The first argument is of type arg_struct, the second is a
flag that affects the behavior of the heap manager and
the last one is the desired length of the memory piece to
allocate. That macro will allocate a piece of memory of
size length and will make the string pointer field of the
descriptor point to it. If the string field of the descriptor
was already pointing to a piece of memory of less or
equal size, the macro will just return without doing
much. The flag can be used to indicate if the data that is
currently in the string field of the descriptor needs to be
preserved or not. If the flag PRESERVE is used, after
the new chunk of memory is allocated the data from the
old string field of the descriptor is copied into the new
chunk of memory. If the flag DISCARD is used no
data is copied.

Page - 34 -
The Ultimate Corp.

Proprietary and Confidential

c

(

C-',
- ,

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

If the string field of the descriptor is already pointing to
a previously allocated chunk of memory,
DESC_MALLOC will take care of freeing it.

DESC_FREE(arg)
The macro DESC_FREE takes an argument of type
arg_ struct and frees the memory that is pointed to by
string pointer field for the passed descriptor.

Both of those macros might evolve some more over the
next month or two as people start programming and
further needs are identified. It is in our intention to
provide tracing and accounting capabilities within those
two heap management macros. This should for example
help identify a piece of code that does not free memory
as it should making the process grow his heap
indefinitely.

The macros in the first cut will most probably make use
of the C runtime library malloc() ,free(), and realloc()
although this might change if those routines are found
inappropriate in the future for performance reasons.
The use of the macros allows us to modify the heap
management implementation without having to modify
the source code.

e. Useful macros:

A macro that is worth mentioning is the one used at the
end of the template:

SET DESC TO NULL STRING(arg).
That macro-will set the String field of a descriptor to an
empty string.

f. Procedure for developing an opcode:

Here is a brief listing of the steps to follow when a new
opcode is being coded:

- If this opcode has a corresponding ope ode in the old

Page - 35 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

object code, print out a listing of the virtual mode(s) for C...
this opcode and go through it making sure you get a
thorough understanding of the functionality of that
opcode. Not all the functionality is highlighted in the
user manual!! That is why going through the virtual
code is important.

- Run some benchmarks on Ultimate PLUS 21xEn and
on a competitive implementation (Ult/ix or Pick Blue)
that exercises this opcode. The purpose of this exercise
is to set a perfonnance goal for this opcode rewrite! We
have to be able to be at least equal to our competitors
performance.

- Make a copy of the files opcode.c and opcode.h and
rename them according to the opcode being developed.

- Define the opcode structure opcode struct in the
include file by understanding the arguments that this
opcode is being passed.

- Communicate to the programmer coding the compiler
that this new data" structure exists as he will need to fill
it at compile time.

- Customize the comments in the opcode.c file
describing the functionality of this opcode, its
arguments, its result and the algorithm used and
anything else appropriate. Do not leave the comment to
the end!!!

- Customize the first section of opcode.c where all the
arguments are forced to the appropriate type.

- Develop the code specific to the opcode.

- Do some preliminary testing.

- Print out a listing for the newly written code and
choose another programmer from the Basic rewrite
team and review the code with him. Make sure that the

Page. 36 •
The Ultimate Corp.

Proprietary and ConfideruiaJ

(

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

person you picked is responsive and helpful otherwise it
is of no benefit to anybody.

c. The optimizer:

1. Architecture of the optimizer:

What has commonly been referred to so far as the optimizer is
really a little bit more than that. The compiler for the new
Basic is really made of the old Basic compiler plus some
additional modules that we are to develop. These additional
modules have been referred to so far as the optimizer although
the optimizer is really just a piece of it (a significant one).
This new piece is made of three modules:

- A parser: The parser will parse the old object code
and generate some data structures that are suitable for
optimization. That parser is pretty straight forward to
implement. The hard part is the data structures that it
will be filling out. Those will change as they are found
appropriate for the optimization algorithms.

- An optimizer: This is really the optimizer. It will
use traditional compiler optimization techniques to
squeeze as much performance as possible from the
user's code. The fact that this optimizer should produce
some measurable performance gains is in no way a
reflection on the user's bad coding. Some optimizations
that the optimizer is capable of doing are pretty hard to
foresee for a human being. Moreover as dealer's
applications grow with time, they will fatten with
inefficiencies because the code gets modified in pieces
and stops being as compact as on the first day.

The optimizer will operate on the data structures that
were built by the parser and will result in the same data
structures but may be shrinked or reshuffled.

- A code generator: This module will run against the
data structure that the parser generated and that the
optimizer optimized. It will produce out of it a stream

Page - 37 -
The Ultimate Corp.

Proprietary and Confidential

----~-,.---.. -- --

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

of object in the new Basic object code format. The most .
critical responsibility of this module is to generate C
object code that looks like the runtime expects it (the
opcode.h structures are used for that purpose). It is also
important that this code generator can be easily
modified to generate different object. This is important
because we foresee that the object code format might
change over the life of this project and especially in the
frrst few weeks.

2. Support for the New Basic Runtime:

Out of the three modules described in the previous section, the
parser and the code generator are in the critical path for
the release (with the runtime rewrite). We therefore will
complete those two before we work on any optimization
techniques. The optimizer will only be implemented as time
permits.

Other than just producing object code in a format that is
appropriate for the runtime, some other tasks are expected
from the code generator: C

- Temporary variables management: The object
should contains explicit references to temporary
descriptors in the temporary descriptor table. This will
be done by the code generator.

- Constants descriptor table: A constant descriptor
table will be produced at the end of the object to be
loaded by the runtime at initialization time. The object
will contain the proper references to those constants
where appropriate.

- Source/Object map: The new Basic debugger will
expect a table at the end of the object that will contain a
mapping of line number's between the initial Basic
sources and the' produced object. This is to help
symbolic debugging.

- Symbol table: A symbol table will also be produced

Page - 38 -
The Ultimate Corp.

Proprietary and Confidential

o

(.

CC;
. ,

Specifications for the Ultimate PLUS Basic Rewrite December4,1991 4:43

at the end of the object to help symbolic debugging with
variable names ...

- Debugging: The code generator should be capable of
producing a dump of its internal data structures in a
humanly readable form to help track down any
problems with it.

3. Optimization techniques used:

v. Compatibility with current Basic:

This section discusses topics that are a little bit touchy as they may
represent design or implementation challenges in our seek for a fully
compatible implementation. Any things that we do not think we will
support are highlighted in their respective sections. Most of the topics
covered in this section are backed by a full appendix that reflects the
research that was done.

A. Basic source compatibility:

It is the intent of this project to maintain full compatibility with
Ultimate's Basic implementation. All the functionality should be the
same. It is not clear what should be done about things that tum out to
be bugs in the old Basic as some customers could be relying on them.
Those need to be reviewed and assessed one by one.

B. Named Commons:

The 'named common' data concept is fully supported by optimized
Basic. Data can be shared between both the old and the new runtime
environments.

The implementation requirements are as follows:

The compiler part of the optimizer stores, in the constants
section of the new object code, the name of the common

Page - 39 -
The Ultimate Corp.

Proprietary and Confidenlial

Specifications for the Ultimate PLUS Basic Rewrite December 4. 1991 4:43

block(s) that the runtime may access.

During runtime, when the 'named common' instruction is
executed, a new routine loads the current values of the named
common block into the runtime environment. These values are
stored in the old ten byte descriptor fonnat. Conversion to the
appropriate descriptor type and scaling factor occurs at that
time.
This new piece of code interfaces to the current virtual modes
in order to scan the 'named common' table and fetch the block
address.

As part of the clean up code when the program terminates (via
opcodes EXIT or CHAIN, or via the debugger), a similar
routine writes out the new data values of the common block, in
the old descriptor format, with all numeric values converted to
string.

A special case is the EXECUTE instruction which may invoke
a Basic program using the same common data block. In this
phase of the project we are going to update and restore the
data values of the 'named common' block for this instruction.

Refer to Appendix E for an in depth overview of the 'named
common' feature.

C. Calls:

Optimized Basic can not CALL old object code, and vice versa,
because of the complexity involved in building a bridge interface
between the two environments, especially in regard to common
variables.

Both direct and indirect call formats are supported.

The implementation requirements are:

The CALL opcode interfaces with parts of the current virtual
code to retrieve the object code for the called routine.

Page. 40 •
The Ultimate Corp.

Proprietary and Confidential

c

()

(

C-.-.. -'
..

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

A descriptor is kept for each direct call, so that the object
location only needs to be resolved once.

For indirect calls, the OPEN 'SUB' instruction is supported.

The called routine inherits the primary descriptor vector table
(refer to Section IV .B.3 about Basic variables and constants)
from the caller (like other global variables) thereby gaining
access to the 'common' data variables. Sections of the vector
table that are unique to the subroutine (local variables
descriptor table, local constants table, ...) are saved and
initialized to the new addresses.

The CALL instruction and the subroutine both contain a count
of the number of arguments passed, which must match.
Arguments are copied between environments in a manner
similar to the current implementation.

Refer to Appendix N for an in depth discussion of CALL.

D. Basic Debu~~er:

All of the current debugger functionality will be provided in the
rewrite. Some more features have identified as desirable and may be
implemented as time permits. It is desirable for some of those
features to even replace some old ones as time goes by. The
debugger will look different in functionality when a program has
been fully optimized as some capabilities are either too hard or
impossible to provide in that situation. Please refer to appendix F for
any more detailed information.

E. Librarv CaUs.·

The majority of the existing library calls do not have to be supported
since they are used for hardware specific tasks that are not available
on the Ult/PLUS platform (Vterm, 1400 diskette driver, IBM
performance monitor, ...). However a number of them are used in
general purpose Basic routines and need to be supported.

The interface between the new runtime and the virtual code is the

Page - 41 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

same as for other instances where virtual code needs to be invoked.

In the new environment, the advantage of using library calls over
conversion user exits is not so strong because descriptor values can
no longer be updated in place.

In a few words, there does not appear to be any problem in
implementing the library interface. The code for the generic
interface to a virtual mode will be used here to interface to the
virtual code for libraries.

Refer to Appendix J for a more detailed description of the 'library
call' interface.

F. Execute / Chain / Data Statements:

Execute: New and old format Basic programs can be executed from
the optimized runtime environment.
The implementation requirements are:

Using the standard interface from optimized Basic to current
virtual, a number of arguments need to passed to virtual,
either as data or as pointers.

Through simulation of the current interface, or through a new
routine, the 'execute' Tel level needs access to some of the
passed arguments from the Basic runtime.

With the use of routines to update descriptor data, information
returned by the execute command needs to be passed back to
the Basic runtime environment.

For a detailed description, refer to Appendix O.

Chain/Enter: The 'CHAIN ... (1)' command and the 'ENTER'
instruction are NOT supported because:

The complexity of the code involved and the likelihood of
causing problems & bugs;

Page - 42 -
The Ultimate Corp.

Proprietary and Confidential

o

c

Specifications for the IDtimate PLUS Basic Rewrite December 4, 1991 4:43

It makes optimization at the descriptor level impossible since
there is no way to know if and when a program will be
ENTERed, and how the previous descriptor space is going to
map to the new one.

The reason for the existence of these features is that in the old
days the object size was limited to 32K, and this was the only
way to bypass that restriction. In the new environment object
sizes can be large enough so that this is no longer an issue.
Source code can easily be kept in small portions via the
$INCLUDE directive.

So the "CHAIN ... (I)" and the ENTER instruction will not be
implemented in the first phase. If there is a need for any of those two
features, it will be implemented in phase 2. Other 'CHAIN'
commands are supported.

G. Interface from Recall and Update to Basic:

The complexity involved in pre-initializing a descriptor table,
accessing it from within virtual and maintaining the runtime
environment in between calls, all make these features difficult and
time consuming to implement.

In the case of Recall subroutines, the time usually spent inside the
Basic routine is very short, and the performance gain to be expected
from optimization can only be small compared to all of the Recall
processing. Because of the common variables section that must be
included, these subroutines can only be used from Recall.

The easy solution will be to take advantage of the fact that the old
Basic runtime will remain part of the Ultimate PLUS system. We
would therefore still invoke the same virtual code as today. In the
second phase of the project we can make sure that these are
implemented.

Refer to Appendix H for a detailed description of the Recall calling
Basic interface and of the issues involved in optimizing it.

Page - 43 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

YIp Issues and Questions that need to be answered;

This section lists issues and questions arising from this design effort. These
need to be resolved as soon as possible to ensure that the project is on the
right track. Every one's input will be valuable from our management to
our marketing department.

- How much more space is it acceptable for the new object to occupy
without becoming an issue! If a Basic program produces today a lKb
object item, how big can it be for this rewrite? Same? 10 Kb? ...

- In view of the analysis done on the math, how many flavors of
arithmetic do we really need to implement: Ult/ix flavor, Ultimate
flavor, correct math, others ...

- Is string arithmetic still a requirement for this implementation
considering that the overflow situation in the new implementation is
different (see Appendix G).

- Is Basic object code compatibility required between different
Ultimate PLUS implementations? See section about Accessing the
Basic object.

- Testing the compatibility of the rewrite will be a real challenge.
The ideal case would be for us to have some test software (automated
test) that can validate the rewrite. Such a product would help the
stability of the rewrite tremendously. It is not clear at this point if
this product could be purchased or has to be completely developed in
house.

- Documentation, QA, alpha and Beta are topics that complement the
R&D work to make the Basic rewrite become a releasable product.
Therefore a commitement and a final schedule are necessary from
the responsible groups.

- Supporting the "chain .•• (I)" and the "enter" statements
requires some significant effort. Is it acceptable to not provide
support for these statements in the first cut? Is it acceptable to not
provide support for those statements ever?

Page - 44 -
The Ultimate Corp.

Proprietary and Confidential

c

o

(-

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

YII. New Basic performance analysis;

The questions that every one is going to ask when reading this document
are how fast will new Basic be? How do you know you are going to reach
your goals? etc ...

These are tough questions to answer as they will commit the team to
specific performance numbers before most of the code has been written. So
let me try to summarize our thoughts about this topic. There is no doubt
what so ever that the rewrite will produce a system that is substantially
faster than the current basic. Our goal is to be comparable with our
competition meaning worst case is same speed as competitors and best case
is faster. There is very little choice about whether or not we will reach the
goal; we have to be comparable.

Some facts now to try to substantiate the feeling that we will meet our
performance goals. First, since many of our constraints (machine,
memory, compiler, math routines ...) are the same as our competitors, we
should .be able to produce comparable results. Second we have actually
rewritten some opcodes already. For some of those rewritten opcodes,
(very few) out first pass implementation obtained a performance level that
is much higher than todays Ultimate PLUS but still slower than Ult/ix's.
For most of the opcodes that were rewritten, we did end up with a
performance level equal or higher than Ult/ix. Generally the rewritten
opcode was two to three times faster than the current Ultimate PLUS
implementation. Those timings though do not guarantee the overall desired
result, as the architecture was not fully defined when they were done. But
those timings do confirm our gut feeling that we can meet the goals. The
month of February will be critical in producing more firm timings
information that will better reflect the end result.

One last thing; the optimizer is our wildcard. None of our competitors
currently have a real optimizer. So the optimizer will help us gain some
additional performance in our new implementation. The question here is
how much of the optimizer we will be able to implement in the first phase.

VIII. Project Implementation;

The project is basically divided in two phases. The first one to complete in

Page - 4S -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

the first half of 1992 will contain a fully rewritten Basic runtime. Some .
odd pieces might have not been implemented in the first phase to be able to 0
meet the required deadline. Two such pieces will be be Recall calling Basic
and perhaps the optimizer (the part that does the real optimization).

A. Quality plan;

It is our goal during the implementation of this project to maximize
as much as possible the quality of the code produced to allow the
product to stabilize as quickly as possible. We all are human, and
therefore the product will have bugs (specially considering the scope
of the rewrite). But through good methodology and some procedures
we will hopefully succeed in keeping the programming mistakes to a
minimum. Here is a list of the things we are doing or we plan on
doing during the implementation of this project:

1. Templates: Considering that many many opcodes are going to
be written, it made sense to define an opcode template. That
template is a piece of code that contains the framework that
would be common for most opcodes. On one hand it will
standardize the way the newly written opcode routines look
and on the other hand it will minimize mistakes in the portion
of the code that is similar for most opcodes. Templates also
shorten the time the programmers spend on each opcode as
they would not have to worry about code that is common to
many opcodes.

2. Macros: Instead of defining macros, data structures and include
files as the project evolves, we have decided to try to do the
most important ones up-front.. We have invested a
considerable amount of time up front to design the macros,
data structures and include files that will be useful throughout
the project. This is leading to better thought and better
designed macros. These are important as every programmer
will use them throughout the project. When those are
designed, emphasis is being put on their readability.

3. Code reviews: As a programmer on the Basic project develops
new opcodes, he will choose another programmer from the
team that he wants to review his work. This is not an easy
concept to implement as it has to not be confrontational but

Page - 46 -
The Ultimate Corp.

Proprietary and Confidential

o

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

rather productive in finding deficiencies and educational as
various programmers share their knowledge. All Basic team
members have agreed to have their code reviewed by others.

4. Virtual reference: Considering that we are rewriting an
existing piece of code, it is very important that we take
advantage of the information that is in the old code. We will
therefore, for every opcode that we rewrite, use the existing
virtual code as a reference to ensure that the new version
behaves as the old one. The appendices at the end of this
document indicate that we have already thoroughly examined
various pieces of the current virtual implementation to better
understand the pitfalls.

5. Technical documentation: During the work for this
document, a lot of technical information about the current
system was gathered and summarized in the appendixes at the
end of this document. As we proceed with the implementation,
more knowledge will be gathered about the current system and
about the new system. We will make sure that the knowledge
gathered is put back into the appendixes to this document.

B. Phase 1:

1. Goals:

The main goal of this first phase is to provide a Basic
implementation for Ultimate PLUS that is comparable to the
Basic performance of our competitors namely Universe and
Pick Systems and at least two and a half times faster than
today's Ultimate PLUS Basic performance. This phase has to
be on schedule and has to stabilize fairly quickly! Any tasks
that are identified to not be critical to the overall performance
can be delayed to phase two of this implementation. This will
allow us to maximize our chances of meeting our goals. One
good example can be update calling Basic. If that represents a
significant piece of work we might delay its implementation
until phase two.

As it is most important for the runtime implementation to

Page - 47 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4. 1991 4:43

complete (there is not much of a product without it), we will C
delay any work on the optimizer until we feel comfortable that . .)
the project is proceeding on schedule. Not all of the
optimization techniques need to be implemented in the first
phase. Some of the more complex ones can be delayed until the
second phase.

2. Resources:

From an R&D stand point, the five people currently on the
project are enough for a timely completion of the
development. We will have to be carefull that these resources
do not get side tracked on other emergencies frequently.

From a machine stand point, it does not seem necessary at this
time to have more resources than what we currently are
working with. We will try to scatter our efforts on more than
one machine.

Testing is an issue at this time. It would be very helpfull to
have a test suite for Basic to help the product stabilize more
rapidely. If such software can not be purchased, it might make
sense to allocate some resources (at a later time, may be when
the Mips project is complete) to develop such test suite.

It is not clear yet what resources would be required from
documentation and from QA. This would have to be
determined at a later time.

3. Schedule:

Dec. 3 Coding starts

Jan. 31 Functional prototype for the new Basic.

Feb. 28 The C-rating runs with the new Basic without the
execute part and the spooler part of the test.

April 20 Demoable system, ready to be QAed for the
dealer show

Page· 48 •
The Ultimate Corp.

Proprietary and Confidential

o

(

(~.' . . .
/

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

April 20 Start work on the functional specification for the
compatibility document between the old and the
new Basic. See Appendix Q.

May I Probench runs with the new Basic.

May 15 Working demo version for the dealer show.

June 1 Ultimate PLUS release 227 with the Basic rewrite
goes to QA.

July 1 227 Alpha starts

July 15 227 Beta starts.

August 1 227 is ready to ship!!

The RS6000 release (228) will lag behing the HP release of
227 by a month. Note that the documentation, QA, alpha and
beta schedules commit resources that are outside of the Basic
rewrite team. Therefore the dates that relate to QA, alpha and
beta are suggested dates that can change.

The order of 227 and 228 releases can be switch if necessary.

c. Phase 2:

1. Goals:

Complete any pieces that were left out in the first phase. This
would include enhancing the optimizer with any optimization
techniques we would not have had the time to put in. Other
modules that might have not been implemented in the first
phase could be Recall calling Basic or further enhancements in
the basic debugger.

2. Schedule:

It is not clear yet what the deadline will be for this phase as we

Page - 49 -
The Ultimate Corp.

Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

do not know yet for sure which things would be included in
there. ~

Page· 50 •
The Ultimate Corp.

Proprietary and Confidential

o

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

Appendix A: Basic
READ/READU/WRITE flowcharts,

per release 210E

TopIc: Steps taken by the BasIc WRITE
instruction. specifically with regards to
locking

Thursday. September 5.1991

Bosie write

Calculate hash based
on the item-id

Set write lock for the
group

Scan group for
item-Id. Assume Item

IS found

Update the group with
the new data

Page

Mode BRP02

Mode DISKFIO-I

See chart Page 3

Mode DISKFIO-I

Mode WRAPUP-II

r-----YES----~------NO----~

Page - 51 -
The Ultimate Corp_

Proprietary and Confidential

as

Appendix A: READIREADUIWRITE flowcharts

~
Remove my item lock

for this group and
hash value

I

See chart
Page2

... -
DONE

Page - 52 -
The Ultimate Corp.

December 4, 1991 4:43

~
Unlock write lock and See chart

Page 4 first read lock

J

Proprietary and Confidential

n
\1' "-./'

o

(-

Appendix A:. READIREADUfWRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic WRITE
instruction. specifically with regards to

loCking.

Thursday, september 5,1991

Set write lock for the group

Lock the group table
frame based on the

hash value

Scan for the group
lock entry in the trame

selected

NO

Scan group lock
frame for available

entry

Page - 53 -
The Ulumflte Corp.

Proprietary and Confidential

Page 3

Mode GLOCK

Mode GLOCK

Mode GLOCK

'-__ ----YES------~

Appendix A: READIREADUIWRITE flowcharts

YES

Unlock the table
frame
Rqm

Set scan byte in
upper table &

HOST:FID in the
selected entry

YES

Release ALL read
locks that I have for

this group

I Page. 54 •
The Ultimate Corp.

December 4, 1991 4:43

Mode RLOCK-III

~------NO------~

Mode RLOCK-II

Proprietary and Confidential

c

(... ":
/

c"

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

">----NO-----,

YES

>------YES----~~

NO

Unlock the group
table frame. activate
the other user & Rqm

Store the HOST PIB
value In the group lock

entry.

,----RETRY -====it:---~

YES

Unlock the group table
frame. activate tne toO
reaO lock user & Rqm

Page - 55 -
The Ultimate Corp.

Proprietary and Confidential

NO

Release the group
table lock
RETURN

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

TopIc: Steps taken by the Basic WRITE
Instruction, specifically with regards to
locking.

Thursdoy, September 5, 1991

Remoue my item lock for
this group lind hosh uolue

Lock the group table
frame based on the

hash value

Scan for the group
lock entry In the frame

selected

Recalculate the hash
value based on the

item-id

YES

~-----NO-------<

Page - S6 -
The Ultimate Corp.

Page 2

Mode LOCK3

Mode GLOCK

Mode GLOCK

Mode RLOCK-I

">------NO------.

Proprietary and Confidential

o

o

(-

('

Appendix A: READIREADUIWRITE flowcharts

YES

Remove the first
readlock entry found
set by this HOST:PIB

YES

Clear HOST:PIB field
in item lock entry.

Remove entry from
list & add to available

queue.

NO

Page - 57 -
The Ultimate Corp.

Proprietary and Confidential

December 4, 1991 4:43

Clear the HOST:P!B
(write lock) field in the

group lock entry

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

TopIc: Steps taken by the Basic WRITE
Instruction, specifically with regards to
locking.

Thursday, September 5, 1991

Unlock write lock and first
read lock

Lock the group table
frame based on the

hash value

Scan for the group
lock entry in the frame

selected

YES

NO

I

Page - 58 -
The Ultimate Corp.

Page 4

Mode GLOCK

NO

Release group table
lock.

RETURN

Clear the HOST:PIB
YES field (write lock) in the

group lock entry

Proprietary and Confidential

o

o

Appendix A: READIREADUfWRITE flowcharts

YES

Remove the first
readlock entry found
set by this HOST:PIB

Page. 59 •
The Ultimate Corp.

NO

Proprietary and Confidential

December 4, 1991 4:43

Release group table
lock.

RETURN

Mode RLOCK-II

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

TopIc: Steps taken by the Basic READ
Instruction. specifically with regards to
locking.

Thursdoy, september 5, 1991

Bosie reod y
Calculate hash based

on the item-id

+
Set Read lock for

the group

i.
Scan group tor

item-Id. Assume Item
is found

~

Copy the item into a
Basic descriptor

~

Unlock write lock and
first read lock

* (,--_D_O_NE __)

Page - 60 -
The Ultimate Corp.

Proprietary and ConfidenliaI

Page

Mode BRP02

Mode DISKFIO-I

See chart Page 3

Mode DISKFIO-I

Modes BRP02 & BRP24

See chart Page 4

CO'

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

TopIc: Steps taken by the BasIc READ
instruction. specifically with regards to
locking.

Thursday, September 5, 1991

set Read loclc for the group

Lock the group table
frame based on the

hash value

Scan for the group
lock entry In the frame

selected

Page 3

Mode GLOCK

Mode GLOCK

>-------YES------~

NO

•
Scan group lock

frame for available
entry

Page· 61 •
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READIREADUIWRrrE flowcharts

NO

Unlock the table
frame
Rqm

Set scan byte in
upper table & part of
the hash value in the

selected entry

YES

NO
I

Page - 62 -
The Ultimate Corp.

Proprietary and Confidential

December 4, 1991 4:43

o

>-____ NO-----,

~ ____ --YES------~

o

c:
Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

~------YES------~

NO

Unlock the group
table frame, activate
the other user & Rqm

Add a read lock entry
to the corresponding

read lock frame
See chart Page 2

,---- NO ___ -1-___ YES ------,

Unlock the group
table frame & Rqm

Page - 63 -
The Ultimate Corp.

Proprietary and Corfulential

e

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

TopIc: Steps taken by the Basic READ Thursday, September 5, 1991

instruction. specifically with regards to
locking.

Rdd a read lock entry to the
corresponding read lock frame

Page 2

Mode RLOCK-III

>-_______ YES ______ ~

Unlock the table
frame. ROM

NO

Get entry from avail
queue. Store HOST:P1B
in entry. Update offset In

Group lock entry. Unlock
the group table frame.

Page. 64 •
The Ultimate Corp.

Proprietary and Confidential

Acquire a frame
from overflOW &

attach it to the table

C', . ;

o

C·.~\ .'

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READ Thursday, September 5, 1991

instruction. specifically with regards to
locking.

Unlock write lock and first read lock

Lock the group table
frame based on the

hash value

Scan for the group
lock entry in the frame

selected

YES

NO

I

Page. 65 •
The Ultimate Corp.

Proprietary and Confidential

Page 4

Mode GLOCK

NO

Release group table
lock.

RETURN

Clear the HOST:PIB
YES field (write lock) in the

group lock entry

Appendix A: READIREADUIWRITE flowcharts

Remove the first
readlock entry found
set by this HOST:PIB

NO

Page - 66 -
The Ultimate Corp.

December 4, 1991 4:43

Release group table
lock.

RETURN

Mode RLOCK-II

Proprietary and Confidential

- -------~----- -------------------- -------

o

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READU
instruction, specifically with regards to

locking.

Thursday, September 5, 1991

Basic readu

Page

Mode BRP02

Calculate hash based Mode DISKFIO-I
on the item-id

Set Item lock for the See chart Page 3
group

Scan group for Mode DISKFIO-I
item-id. Assume item

is found

Copy the item into a Modes BRP02 & BRP24
Basic descriptor

Unlock write lock and See chart Page 4
first read lock

Page. 67 •
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READIREADUIWRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READU
instruction. specifically with regards to
locking.

Thursday, September 5, 1991

Page 2

Rdd a read lock entry to the
corresponding read lock frame

Unlock the table
frame. ROM

Mode RLOCK-III

~ _______ YES-------.

NO

Get entry from avail
queue. Store HOST:P1B
in entry. Update offset in
Group lock entry. Unlock

the group table frame.

Page. 68 •
The Ultimate Corp.

Acquire a frame
from overflow &

attach it to the table

Proprietary and Confidential

o

('~
, ~

Appendix A: READIREADu/WRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READU
instruction, specifically with regards to
locking.

Thursday, September 5, 1991

set Item lock for the group

Lock the group table
frame based on the

hash value

Scan for the group
lock entry in the frame

selected

Page 3

Mode LaCKO

Mode GLOCK

Mode GLOCK

~------YES------~

NO ..
Scan group lock

frame for available
entry

Page - 69 -
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READIREADUIWRITE flowcharts

NO

Unlock the table
frame
Rqm

Set scan byte in
upper table & store

part of the hash in the
selected entry

NO
I

Page - 70 -
The Ultimate Corp.

Proprieraryand Confidential

--- ---------

December 4, 1991 4:43

. } C·

YES-----~

C\
,l

c

Appendix A: READIREADUIWRITE flowcharts December 4. 1991 4:43

~ ______ YES----~~

NO

Unlock the group
table frame, activate
the other user & Rqm

Calculate the hash
value for the item-id

YES

NO
I

Page - 71 -
The Ultimate Corp.

Mode RLOCK-I

'>------NO -----0

~-----YES--~~~

Proprietary and Confidential

Appendix A: READIREADUIWRITE flowcharts

Unlock the group
table frame. activate
the other user & Rqm

December 4, 1991 4:43

"">----NO----.

Unlock the group
table frame & Rqm

Get entry trom available
queue. Set forward link of

entry to zero. Store HOST:PIB
and hash value in entry.

~------RETRY-=====~======~------------~

.---~--~--- ----------- --~-- --~~~-

Add a read lock entry
to the corresponding

read lock frame

Page - 72 -
The Ultimate Corp.

Proprietary and Confidential

See chart Page 2

o

o

(~'

/

Appendix A: READIREADU/WRrrE flowcharts

•
Rqm (out of disk

space ???)

Page - 73 -
The Ultimate Corp.

Proprietary and Confidential

December 4, 1991 4:43

Appendix A: READIREADUIWRrrE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READU
instruction, specifically with regards to
locking.

Thursday, September 5, 1991

Unlock write lock and first read lock

Lock the group table
frame based on the

hash value

Scan for the group
lock entry in the frame

selected

NO

I

Page. 74 •
The Ultimate Corp.

Proprietary and Confidential

Page 4

Mode GLOCK

Release group table
lock.

RETURN

Clear the HOST:PIB
field (write lock) in the

group lock entry

o

('

Appendix A: READIREADUIWRITE flowcharts

Remove the first

December 4, 1991 4:43

Release group table
lock.

NO RETURN

read lock entry found Mode RLOCK-II
set by this HOST:PIB

Page • 7S •
The Ultimate Corp.

Proprietary and. Confidential

Appendix A: READIREADUIWRITE flowcharts

Page • 76 •
The Ultimate Corp.

Proprietary and Confidential

December 4, 1991 4:43

o

~ ..

Appendix B: ICONVIOCONV and user exits December 4, 1991 4:43

(,"' Appendix B: Conversion format string

If the second argument of a ICONV /OCONV instruction is a literal string,
the optimizer can parse it , initialize a data 'constant' data structure setting
values and flags, and change the argument type (possibly the argument field
also) to reflect the optimization.

The following is a suggested parser for some of the most used conversion
codes.

Check the first character of the string for:

M Mask. Accept any of the following sub-codes:
R
L
D numeric and/or string format mask. Handle the same way as

Basic FMT instruction (see 'Format' document).

T time format. Can be optionally followed by:
H twelve hour format;
S include seconds;

C x some of the character conversion codes could be handled easily
(ex: MCU, MCL).

D Date format. Handle the same way as in the Basic FMT instruction
(see 'Format string parsing' document)

G Group extract. Is followed optionally by:
m a number indicating the count of fields to skip before

doing the extract;

Is followed mandatorily by:
<sep>n a single character group separator (any non

numeric except a minus sign or a system
delimiter), followed by the count of fields to
extract.

Page. 77 •
The Ultimate Corp.

Proprietary and Confidential

Appendix B: ICONV/OCONV and user exits December 4. 1991 4:43

L Length. Not used frequently but easy to implement.

U User exits. The following is a list of user exits that could either be
replaced by 'in line' code fairly easily or be converted to an already
existing system function (see· the 'System' document):

US072

U8072

USOBB

Return current system privilege level (0,1,2). Can be
done in line by looking at PCB bits SYSPRIVI and
SYSPRIV2, or by using SYSTEM function 23;
Return a null string or a 'I', depending on the status of
PCB bit DOCCFLG;
Return process number and current account name (like
WHO verb). We could use a combination of SYSTEM

U60BB

functions 19 and 26. The process number can also be J
fetched from the PIB directly. J
Return the current accouat. Ra~ Use SYSTEM ~ '-(\l.. L~
instead. ~ ~ #I
Return the current PCB fid as a 6 byte ASCII hex U4117

USl17

U3121

U0122

US158

U6158

U71S8

U018D
U218D

string. Can be fetched directly from the pm.
Return the PCB fid of line 0 (the LOGON PCB) as a 6
byte ASCII hex string. Can be fetched out of frame
127.
Return the system REV level, as a string. Can be fetched
out of frame 127.
Return current number of PIBS. Can be fetched out of
frame 127 or from the shared memory structure.
Return input from specified line number, if any is
available. Equivalent to peripheral read. Call the code in
test_inp.c and periph.c directly.
Write given output to specified line, then return input
from that line , if any is available. Equivalent to
peripheral write followed by peripheral read. Call the
code in tescinp.c and periph.c directly.
Return the type-ahead count of a given line. Use the
test_inp.c code directly.

Increment the Basic break-off counter and set the
INHmrr bit in the PCB. Assuming the break counter is
kept in a global variable this can be done in line.

Page - 78 -
The Ultimate Corp.

Proprietary and Confidenlial

c

Appendix B: ICONVIOCONV and user exits December 4, 1991 4:43

Remarks;

Ul18D
U318D Decrement the Basic break -off counter and reset the

INHffiIT bit in the PCB. Assuming the break counter is
kept in a global variable this can be done in line.

Even though no statistics are available it is reasonable to assume that output
conversions are used much more frequently that input conversions (most
user exits work the same either way). Therefore we should first
implement OCONV optimization of the above codes and perhaps only
speed up a subset for ICONV.

Page - 79 -
The Ultimate Corp.

Proprietary and Confidential

Appendix B: ICONVIOCONV and user exits

Page. 80 •
The Ultimate Corp.

Proprietary and Confidential

December 4, 1991 4:43

o

o

(:

Appendix C: Format string parsing December 4, 1991 4:43

Appendix C: Format string parsing
rules

Iptroductiop;

If the second argument of a FORMAT instruction is a literal string, the
optimizer can parse it, initialize a data 'constant' data structure setting
values and flags, and change the argument type (possibly the argument field
also) to reflect the optimization.

The following is a suggested parser:

if the first character is a D then
parse for a date mask,

else
if the first character is an M ignore it;
if the next character is a D (MD), treat it the same as R;
accept any of the following justification codes:

R,L,V,U,T

R sets right justification, all other codes indicate left
justification.
Parse the rest of the string for a numeric format mask.

After parsing for the date mask, if any data is left in the mask,
check for the following justification codes ONLY:

R,L,V

If the first remaining character matches any of these three then:
- set the justification flag accordingly ;
- set another flag to indicate a string format mask is present;
- store a pointer to the remainder of the mask.

Any other code causes the rest of the mask to be ignored.

After parsing for a numeric format, if any data is left in the mask, then set
a flag to indicate a string format mask is present and save a pointer to the

Page - 81 -
The Ultimate Corp.

Proprietary and Confidential

---------_._-

Appendix C: Formtltstring parsing December 4, 1991 4:43

remaining string.

Parsipe a date format stripe:

Accept any of the following options, setting appropriate flags in the data
structure, in the sequence that they are listed here (note: none of these
options are mandatory):

n number of digits to show the year in (between 0 and 4,
the default is 4);

<sep> m a group extraction separator followed by a count. This
separator is a single character which can be anything
except a ';' or a system delimiter. The count specifies
the number of fields to skip prior to the start of the date
information. It needs to be converted to binary and
saved in the data structure, along with the separator.

<sep> a single character, to become the separator between the
day, month and year information. If present, the month
shows as a 2 byte number. Otherwise it is printed in a 3
character abbreviation format.

OR exclusive condition: either <sep> or one of the next
codes:

DJMQY respectively show only the Day of month, Julienne date,
Month of year, Quarter or Year. Only one of these can
be present.

Parsjn2 a numeric format strine

Past the justification code:

check for a single digit specifying the maximum number of decimal
positions to output. If omitted, the default is zero;

a single digit precision. The default is zero when used inside a
converSIOn, or equal to the precision value if called as a Basic

---------'---- -_._--_._------- -

Page. 82 •
The Ultimate Corp.

Proprietary and Confidential

o

Appendix c: Format string parsing December 4, 1991 4:43

instruction.

Accept and set flags for any of the following codes, which appear in any
order:

$
,
Z
N
CDME

precede output with a monetary sign;
separate every 3 integer positions with a comma;
suppress leading zeroes from the output;
do not output the sign indicator if negative;

one of four credit indicators.

If any of the above conditions is true (at least one of the digits or one of the
flags settings) the fonnat mask is considered to be of a numeric type. Note
that this mask may be followed by an output fonnat string.

Page - 83 -
The Ultimate Corp.

Proprietary and Confidential

Appendix c: Format string parsing

Page. 84 •
The Ultimate Corp.

Proprietary and Confidential

December 4, 1991 4:43

C" '.:,' /

o

C:

Appendix D: SYSTEMO functions December 4, 1991 4:43

Appendix D: SYSTEM functions that
are good candidates for optimization

What follows is a list of SYSTEM functions that could be easily done in
line:

1. Return the NUMBER ° or 1, depending on the value of the PCB
bit LPBIT.
2. Return the current value of PCB element OBSIZE, as a
NUMBER.
3. Return the current value of PCB element PAGSIZE, as a
NUMBER.
4. Return the current value, as a NUMBER, of

SCB elements FOOTCTR-LINCTR,
if FOOTCTR > PAGSIZE;

SCB elements P AGSIZE-LINCTR otherwise.
5. Return the current value of SCB element PAGNUM, as a
NUMBER.
6 Return the current value of SCB element LINCTR, as a NUMBER.
7. Return the current terminal type value of PCB element
TERMTYPE, as a STRING.
8. Return the current tape record length of SCB element TPRECL,
as a NUMBER.
10. Return the current system type from frame 127, as a STRING.
16. Return cause of ABORT when in TRAP subroutine. If stored in
global space, this can be done in line.
19. Return the current process number, from the PCB or the pm,
as a NUMBER.
21 Return the current execute level from the QCB, as a NUMBER.
22 Return the current spooler hold file number. If stored in global
space, this can be done in line.
23 Return system privilege level (0,1,2), from the PCB settings of
bits SYSPRIV 1 and SYSPRIV2.
25 Return the item count from the currently active select list. If
stored in global space, this can be done in line.

Page. 85 •
The Ultimate Corp.

Proprietary and Confidential

Appendix D: SYSTEM() functions December 4, 1991 4:43

Remarks;

The functions for which a reference is made to 'global space' currently
have the data stored in the Basic stack workspace frame, prior to HSBEG.

Page - 86 -
The Ultimate Corp.

Proprietary and Confidential

o

Appendix E: Named commons December 4, 1991 4:43

Appendix E: Named commons

Introduction;

At the contrary of a regular COMMON declaration, named COMMON is a
runtime statement.

The variables declared in named common are stored in a permanent area of
the user's workspace, for the duration of a LOGON session. The data can
thus be shared among various independently called programs and even
across TCL levels.

The total number of variables declared in a named common block must be
the same in each of the programs that wish to use it. Each needs to execute
a COMMON statement before any of the variables can be accessed. The
precision level does NOT have to be identical for each of the programs.

Any type of variable can be declared in named common, with the exception
of variably dimensioned arrays.

A maximum of 50 named common blocks can be active at any point in
time. The total length of all the names may not exceed the size of one
frame.

Executine the named COMMON statement (Opcode x'ED');

Three entries have been pushed on the stack. From top to bottom:

- The number of columns in the common block (always 1 and
ignored by virtual);
- The number of rows (the number of descriptors in the block);
- The name of the common block.

The opcode is followed by the offset to the target descriptor.

Two tables are used to manage the common blocks for each process:

Page - 87 -
The Ultimate Corp.

Proprietary and Confidential

Appendix E: Named commons December 4, 1991 4:43

The first one, hereafter referred to as TABLEl, is located in frame
PCB+48. It contains a list of all the names of the currently active 0
common blocks.

The second one, hereafter referred to as T ABLE2, is located in
frame PCB+49 and contains the primary descriptor for each of the
blocks, in the same sequence as the names in TABLEt.

The runtime for opcode x'ED' scans TABLEl for the name that it found
on the stack.
If the name can not be located (new declaration):

the named is added into TABLE l;

a contiguous block of frames is obtained from overflow large
enough to fit the count of descriptors (row count from stack);

the top frame is initialized as a type x'60' descriptor with a SUbtype
of 5. The primary descriptor type is later changed to x'20', to
uniquely identify a pointer to a named common block;

in the header portion of the top frame, the following information is
saved:

the total descriptor size, in bytes;
the row and column counts for the block;
the precision value of the current program.

the target descriptor, now initialized as a type x'20' with a SR
pointer to the top frame, is copied into TABLE2, at an offset relative
to its position in TABLEl, each entry taking 10 bytes.

If the name is found in the list:

the position in TABLEI is multiplied by 10 to obtain the offset to the
primary descriptor in T ABLE2;

via the SR in that descriptor, the header section of the top frame is
examined to check if:

the number of elements in the block is the same as the count
declared in the current program (number of rows). If not, the

---- --- - -----------------------------------

Page - 88 -
The Ultimate Corp.

Proprietary and Confidential

o

Appendix E: Named commons December 4, 1991 4:43

program abandons execution and drops into the Basic
debugger;

the precision value in the block is the same as the one in the
current program (SCALE#). If not, the current scale and
precision values are temporarily restored to the values from
the common block, after which each of its descriptors that has
a type code x'Ol' (direct number) is converted (via
MBDNA TURAL) to a string. The string is stored either inside
the descriptor if it fits (type x'02') or inside a frame obtained
from overflow and initialized as a type x'60' descriptor.

The descriptor from T ABLE2 is copied into the current program's
descriptor space, at the offset found in the object code.

Storing a yalue in a named common yariable (Opcode x'E8'),

The opcode is followed by 8 bytes of vector/matrix information:

ddddrrrrccccoooo

- > For matrix elements only, the offset
to the first descriptor of that row.

! ---> For matrix elements, the column
index. Otherwise set to 1.

!-------->

!------------->

For non matrix elements, the row
index in the common block.
The offset to the primary descriptor.

The top of the stack, which contains the value to be stored, is pushed up
one entry, to satisfy the STORE interface, and a vector (type x'lO') is
pushed in its place, containing the address of the target descriptor inside the
common block.
The address is computed based on the row/column/offset information from
the object code.

The subtype of this vector entry is set to x'CO', as a flag to the STORE
routine: when a string needs to be stored in a named common block, it
either needs to fit inside the descriptor or it must be stored inside a type
x'60' descriptor. It can NOT be stored in freespace.

Page - 89 -
The Ultimate Corp.

Proprietary and Confidential

~ -.~---.~~.

Appendix E: Named commons December 4, 1991 4:43

Exit throueh Basic wrapup (see mode BRPlll

Each of the descriptors in the block that has a type code x'O!' (direct
number) is converted (via MBDNATURAL) to a string. The string is
stored either inside the descriptor if it fits (type x'02') or inside a frame
obtained from overflow and initialized as a type x'60' descriptor.

Implementation of named common in the optimized Basic
enYiropment;

A program can be developed to load the descriptors from the virtual modes
into the C runtime data structures.

The major issue is when to write the descriptors back out to virtual keeping
in mind that 'chained' or 'executed' programs may be not in 'Optimized
Basic' format. Here are some possibilities:

update virtual every time a named common variable gets updated.
This is equivalent to the current implementation;

update virtual only when encountering a CALL, EXECUTE or
CHAIN instruction. For CALL and EXECUTE, the values also need
to be reloaded when returning back to the program;

store the named common blocks in shared memory, and have the
runtime check for previously loaded blocks there before going to
virtual;

store the common block in heap space, but when invoking CALL,
EXECUTE, ... pass a pointer to a list of common variable blocks, as
part of the argument list. This way the data can be shared and only
on the final exit would we need to update virtual.

Note that if we want non optimized programs to access the named common
blocks we must write the descriptors out to virtual in their current format,
and also do the number to string conversions.

Page· 90 •
The Ultimate Corp.

Proprietary and Confidential

o

o

('"
-'

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

Appendix F: New Basic debugger full
specifications

I. Objectives;

To provide 2 levels of debugging of New Basic programs. They are
debugging for (1) programs with no optimization, (2) programs with
optimizations.
Symbolic source level debugging is possible in the first level of debugging.
As for the second level of debugging, it would not be source level
debugging at all.

II. Assumptions;

Some assumptions are as followed:

1. A map of detailing relationship between source line number and
pc.

2. A symbol table.

3. A flag (e.g. run_slow) to allow debugger to check for
breakpoints and other conditions to drop into the debugger and some
way to tell a break-key has been pressed (break_pressed).

4. A mechanism for the Basic runtime to call debugger directly
when certain error conditions occurs and when a DEBUG statement
is inserted in the source code (invoke_debugger).

5. A programs array that contains programs that the Basic runtime
has loaded so far on the execute level. In the each programs array
entry, there is information of filename and item that is loaded. A
call stack has a programs_index that tells which program is at the
stack entry. In the each programs entry, there is at least a pointer to
the breakpoint and trace tables.

Page - 91 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

}

int
int
brealcstruct
trace_entry
char
char

mmcbreaks;
mmctrace;
*breakpoints;
*trace_table;
source_flle[52];
source_item[52];

6. Some standard file subroutines to get at the source. This
should exists for the regular Basic already.

e.g. status = openyfile(filename, descriptor)
status = read yitem(descriptor, item)

7. System debugger interface from Basic debugger.

8. A way to access ERRMSG file and also way to pass parameters to
standard error processing routines.

9. It would be very helpful for all concerned if the object generator
would output an essentially disassemble listing of the object file. For
example:

line# pc> opcode mnemonic
000 1 70> OOOF Loadstring 9 A "abcdefghi"
0002 100> OOOA Store A B
0003 106> OOOA Store B C
0004 112> OOOF Loadstring 4 $0 KILL
0004 122> 006E Call $0 1
0005 132> OOA4 PrintCRLF A
0006 136> 0074 Exit

10. A terminal I/O interfaces(includes interface to Ultimate
Spooler) for read/write to the terminal so that we can have a focal
point to access terminal and utilize paging in our output or even
windowing in the future. A control block for each of our_fd so that

Page - 92 -
The Ultimate Corp.

Proprietary and Confidential

o

o

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

characteristics of the 'virtual' terminal can be kept (current lines,
pager_on, spooler, etc). There will be at least 3 our_fd's. They are
UL T +, sapphire debugger and basic debugger. On each new execute
level, there are 3 more.

High-level:
uprint/(our Jd, "format string", arg ...);

Low-level:
term_set(our Jd, FLAGS);
term_open(our Jd, path);
term_reopen(our Jd, path); /*switch phy. device*/
term_writer our Jd, buffer, len);
term_read(our Jd, buffer, len);
term_writeread(our Jd, buffer, wlen, rlen);

11. Some cleanup routines needs to de-allocate memory allocated by
the debugger. (e.g. breakpoint and trace tables).

III. Symbolic source debugging:

As noted earlier, the symbolic source level debugging is possible in the
first level of debugging. Since we can implement all of the commands and
features of the current debugger, all commands and features are identical
to the current debugger. See 6929-3 Ultimate Basic (p.g. 4-3) for more
infonnation.

A. Commands and features:
Some of the more important commands are discussed here:

1. Upward compatibility:

a. Breakpoint: Bvoc(&voc} or B$on
Set breakpoint on logical condition where
v is variable
o is logical operator <,>,=,#
c is condition to meet
n is line number when preceded by B$o

b. Call/Retum breakpoint : C
c. Escape to system debugger: DE(BUG}
d. Single/multiple step execution: E{n}

Page - 93 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December4,1991 4:43

e. Continue program execution at specific line: G{n}
f. Remove breakpoints : K {n} or K { {/} var }
g. Display specified source code current lines : L
h. Toggle output of Basic PRINT statement between terminal
and printer : LP
i. Bypass breakpoints/steps before reentering debugger: Nn
j. OFF
k. Inhibit/enable output from the program : P
I. Printer-close output spooler: PC
m. Display GOSUB return stack: R
n. Toggle display of source code lines and line numbers : S
o. End program execution; if executed from PROC, return to
PROC, return to PROC : STOP
p. Tum trace table on/off : T
q. Tum specified variable 'v' : T{/}v
r. Remove traces: U{n} or U{ {/}v}
s. Display current program name and line number; verify
object code : $, *, ?
t. Display value of variable or if dimensioned array, entire
array with paging : /m
u. Display value of element in array: /m(x (,y})
v. Display value of element in dynamic array: /m<a{,v{,s} }>
w. Display entire symbol table: /*
x. Specify substring to display in subsequent variable display:
[x,y]
y. Specify substring to be display in whole : [

2. New Commands to implement when time permits:

a. Provide a verbose mode so that a more verbose commands
set for the above functions can be used. Like BREAK for B,
TRACE for T, STEP for E and so on.
In addition, new features will only available on this verbose
mode to avoid conflicting commands. It is not necessary for
user to type the whole word(command or modifier) in most
cases. User just have to type enough of the word to make it
unique among the many commands that we provide. Briefly,
they are:

BREAK set breakpoint by line, opcode, variable, pc

Page - 94 -
The Ultimate Corp.

Proprietary and Confidential

o

o

(~

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

CLEAR

conditionally or unconditionally; display
breakpoints and tum breakpoints on/off.
Clear selectively different types of breakpoints;
clear all breakpoints.

DISPLAY Display value of a variable by name or by

END
GO

descriptor number.
leave debugger and exit program.
resume the program at a different line number or
just continue.

HELP Get help on any topic or command.
IGNORE ignore breakpoint; only display trace table

INFO

LIST
LOG
MODIFY
PROC

infonnation if any.
display current line and optionally include all call
and return stack infonnation.
list object in a disassemble fonn.
Log all output to a specified unix file.
Change value of a variable.
tenninate basic program and return to PROC if
any.

QUIT same as END
SETBREAK set size of the breakpoint to a larger size

SETTRACE
than number of used entries.
set size of the trace table to a large size than
number for used entries.

SHOW various table at the end of the object.
SOURCE Display source program at any line number;

STEP
change source file; source on
step through program by # of lines or # of
opcodes

SWITCH switch debugging tenninal to another port under

TRACE
control of ULT+.
display values of on variables at breakpoints as
well as turning trace on and off.

UNTRACE untrace variable(s)
VERBOSE tum this verbose mode on/off.

b. Repeat the last command for repeatable commands.

GO: <CR> will automatically execute the 'GO'
debugger command. (G command)

SOURCE: <CR> will cause same number of lines to be

Page • 9S -
The Ultimate Corp.

Proprietary and Confidentiai

Appendix F: New BASIC debugger specifications December4,1991 4:43

display as the last LIST command.{L command) 0,

DISPLA Y : <CR> will cause to display the next variable

c. Log all debugger output to specified Unix file: LOG
unix_file

d. From a port in Basic debugger, we can switch the
debugging tenninal to another port : SWITCH p

e. Break on a line n:
BREAK [PC] <n> [IF voc [{AND lOR} voc]]
BREAK IF voc ...

Break on a line number or Break on a line number if certain
condition(s)(e.g. A=10) is true. It can be used to break at pc (
PC modifier is used).

f. Break on an opcode : BREAK apCODE opcode-name

g. Break when a variable changes its value : BREAK
VARIABLE P

h. A way to turn breakpoint selectively on/off and turn on/off
all breakpoints: BREAK [<n>] { ON I OFF }
i. Getting into the Basic debugger from the sapphire
debugger. To be defined.

3. Some of the more important Basic debugger features:

a. DEBUG statement in source code which allows a program
execution be transferred to debugger if the program execution
is invoked with option D.
b. Pressing break-key to drop program into debugger.
c. Certain errors causes program to drop into debugger.

[B51 Incorrect number of subroutine parameters
[B 121 File has not been opened
[B 171 Array subscript out of range
[B 18] Attribute less than 1 is specified in READY or and attribute number less that

-1 is specified in WRITEV statement
[B22] STORAGE parameter less that 10 or not a multiple of 10.

Page - 96 -
The Ultimate Corp.

Proprietary and Confidential

o

C'

c

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

I

[B26]

[B27]
[B31]
[B33]

[B36]

[B37]

[B41]

file and was not cataloged or if cataloged, not found in the file specified in
the MD.
'UNLOCK C' attempted before LOCK. (does not issue this error any more
)
RETURN executed with no GOSUB
Workspace underflow, register B. (FLZ; Reg=15 Abort @1066.103)
Precision declared in subprogram 'C' is different from that declared in the
mainline program.
Arrays in calling program and subroutine must both be either fixed
dimensions or both variable dimensions
Variable dimensioned array element referenced before array was initialized
by a DIM statement
Lock number is greater that 47. (It now take the modulo of 47 of that
number and use it as the lock number. e.g. LOCK 48 is equivalent to
LOCK I)

[B42-44] About named COMMON block
[B45]
[B 107]
[B209]

Program named in CALL statement is not a subroutine.
LOOP statements is more that 50 levels deep.
File is access protected.

d. It is unfortunate that we are going from a Ultimate object
file to generate our object file because source line information
is lost on the Ultimate object file for all included files. One
would think that it is possible to improve the traditional
compiler so that it put line number information in the object
and includes source file information at the end of the object.

B. Debue,e,er Data Structures:

In order to support commands and features of the debugger, Several
data structures are needed to be kept in each execute level.

1. breakpoint table : breakpoint[]

There is actually a breakpoint table for each program in which
the Basic runtime has ever loaded during a run. It can be part
of the programs array we mentioned earlier. This is needed
because breakpoints exists across subroutine calls. There is no
practical limit on the number of breakpoints one can have in a
program.

Page - 97 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

LYPC;W:;l struct l
short
OPCODE
INT
INT
CHAR
INT
descr_struct
cond_struct
cond_struct

} breakpoincstruct;

type; /* types of breakpoint
opcode;
line_number;
pc; 1* program counter
var[52]; 1* variable name
descriptocnumber;
des; 1* descriptor
condl;
cond2;

type: not_used, break._on_line_number,
break_on_pc, break._on_opcode,
break_ on_descriptor _mod,
break_on_logical_cond,
break_on_subr

opcode: New Basic opcode number.
line_number:

*/

*/
*/

*/

hold a line number before it is converted to pc.
pc : program counter or something equivalent
var : for storing variable name for display purpose or

it contains the subroutine itemname for
break on subr.

descriptor_number -:
b rea k _ 0 n _ des c rip t o,r _ mod : internal
descriptor number of var

des : a copy of the descriptor used for companng
current value with.

if_cond: Used verbose mode: hold the logical operators (
o = unconditional 1 = AND or 2 = OR).

condllcond2: (see (6) below)

Note: type break_on_logical_cond is for Bvoc[&voc] in the
traditional debugger.

2. RUN options: options[]

options[]: an array where we can check what options are
turned on. For example: "RUN BP TEST (E" will
cause options[OPT_E] to have value of 1. This is
more for regular Basic runtime than debugger.

Page - 98 -
"The Ultimate Corp.

Proprietary and Confidential

('"
, .".,,'

\ "."

c-

c

.~--- ----,- ---'---

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

3. Internal debugger information : db

typedef struct (
INT

CHAR
FILE

} debug_info_struct;

The debugger will be driven by this structure.

verbose, source_on, break_on, bases, lascsteps, debugger_steps,
call_return, entry_param, substring, substring_len, ignore_entry,
ignore_count, switched, tracing, logging;
entry_code;
*lo~stream, *istream, *ostream.

verbose: flag whether verbose is on.
verbose -> DEBUG> as prompt and accept new
verbose set of commands.
not verbose -> * as prompt and the good old
debugger is in effect.

break_on: flag whether we want to break on breakpoints
source_on: flag to whether to display next source line when

the program drops into the debugger.
bases: flag whether to display variable values in

hexadecimal(16),octal(8),binary(2) or decimal(O)
lascsteps: how many steps last time
debugger_steps: current debugger steps as in the E command(

< 0 for line stepping and > 0 for opcodes stepping
).

entry _param: Used in conjunction with entry_code that tells
which breakpoint send program into debugger

calCreturn: flag whether CALL/RETURN breakpoint IS

turned on
substring: the index of the string to start display
substring_len: the length from which the substring starts to

display
ignore_entry: number of time entry to the debugger to be

ignored (as in the N command)
ignore_count: just counting number of times debugger did

ignore entry to the debugger
switched: 0 or contains the port + 1 that the debugger has

been switched to.

Page - 99 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

tracing: flag whether tracing is on
logging: logging to a unix file. affects termio C!
entry_code: option D (D), error_cond(E), break_interrupt(I),

break_point(B), call(C), retum(R)
streams: streams for input/output and log file.

4. symbol table: symbol_table

typedef struct {
char name[50];
short length;
short common;
int address;

} symbol_table_struct;

(Question: How do we represent named COMMON?)

5. opcode information : opcode[opcode number]

typedef struct {
int
char

} opcode_entry;

opcode_length;
opcode_name[16];

opcode_length: Fix-length opcode : the length of the opcode
in bytes.
Variable length opcode: -63. The real
length of the opcode is to be calculated
from the opcode fixed part. For example:

[<----------- fix part --------->]
Loadstring length_of_string target string

opcode_name: a name given to an opcode.

6. logical expression : cODd _ struct

This struct is used to hold the conditions to be tested.

Page. 100 -
The Ultimate Corp.

Proprietary and Confidential

c·

("

"

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

typedef struct (
int
short
short
union (
DESCRIPTOR
int
)

} cond_struct;

frrsc value;
IOlLoP;
desc_flag;

value;
desc;

firsC value:
log_op:

value/desc:

a symbol_table index of the variable.
EQ, LT, GT, NE, LE, GE for =, <, >, #, <=, >=
respectively. LE and GE are set in verbose mode
only.
flag whether second value is a variable (desc) or
a literal(value).
is the value to which first value is compared to. It
could be a string literal or a numeric literal
defined by value or a symbol_table index of the
variable.

7. Trace table : trace _ table[]

typedef struct {
int
int

} trace_entry;

There is actually a trace_table for each program that Basic
runtime has even loaded during a run. Therefore, this can be
part of the programs array element. There is no practical limit
on the size of the table.

symbol"num;
dim!, dim2;

symbol num:
dim}: -
dim2:

index of the symbol table of the variable
row dimension
column dimension

8. Number of loaded symbols : loaded symbols

Page - 101 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

Since it is not necessary to load symbol table for every
program we run, we will use this variable to flag whether
debugger needs to load symbol table before going further.
This variable has to be updated by CALL/RETURN opcode or
by a generalized subroutine that changes current program.
The value of -1 means symbol table need to be loaded. The
value of 0 means program has no symbol table. A positive
value will indicate that the symbol table for the current
program is loaded and it has a symbol table.

C. Debugging an non-optimized program:

In this section, we will describe how the control is given to debugger
and how the data structures are used to provide features and
commands of the new Basic debugger for debugging an non
optimized program.

1. Control Flow:

Initially, the basic debugger can be entered via a break-key, an
error conditions or an option D at the command line. The
debugger can be re-entered via a breakpoint, CALL/RETURN
breakpoint, error condition , a break-key or a DEBUG
statement (with option D).

The following is to appear within the Basic runtime opcode
decode loop. In addition, for CALL/RETURN breakpoint to
work, those two opcodes should look at db.calI_return and set
run_slow, options[OPT_D] and db.entry_code appropriately.

if (run_slow) { /* see note (a) */
/* see note (b) */ if (break_pressed) {

break_pressed = 0;
options[OPT_D] = I;
db.entry _code = '1';

}
/* Interrupt */

/* see note (c) */
if (db.break_on && programs[cp].breakpoints && !options[OPT_D]) {

for (i=I;i<=programs[cp].max_break;i++){
switch (ro s[c].bre int[i].t e){

Page. 102 •
The Ultimate Corp.

Proprietary and Confidential

0',
~ >

r

c

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

brealcon_line_number:
break_on_pc:

if (.. breakpoint[i].pc==Codeptr)(
if (.. breakpoint[i].iCconf){

checkcond();

} else {

}

db.entry _param = i;
options[OPT_DJ = 1;

break;
break_on_opcode:

if (.. breakpoint[i]. opcode = Codeptr->opcode) {/* note
(d) */
< see above>

break_on_descriptor_mod:
cur= ref(.. breakpoint[i].descriptocnumber);
if (cur == .. breakpoint[iJ.des) 1\

} else {

}
break;

(they are string and they are the same) {
/* no modification * /

db.entry _param = i;
options[OPT_DJ = 1;
.. breakpoint[iJ.des <- cur;

break_on_logical_condition:
pI =ref(.. breakpoint.cond l.flrsc value);
... obtain p2 from desc/value ...
cond I_met = 0;
if (evaluate(pI ,p2)) {

cond I_met= I;

if (.. breakpoint[iJ.cond2.flrscvalue)(
< evaluate cond2 >

} else

if (condl_met && cond2_met){
db. entry _param = i;
options[OPT_DJ = 1;

}
break;

}/* end of switch */
} /* end of for */
if (options[OPT_DJ)

db.entry_code = 'B';

Page - 103 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

1

)

. e ugger_steps >
/* step by opcode
db.debugger_steps--;
if (!db.debugger_steps) {

options[OPT_Dl=l;
entry _code='E';

}

see note (0 */

if (db.debuggecsteps < 0 && !options[OPT_Dl)(
/* step by line */
<detennine whether this is EOL>
if(EOL)

db.debugger_steps++;
}
if (!db.debuggecsteps) {

options[OPT_DJ=l;
entry 30de='E'

if (options[OPT _D] && < !nocenterin~debug >)
invoke_debugger; /* see note (g) */

if (run_slow && db.debugger_steps == 0 &&
db. breakpoints == 0)
run_slow = 0;

<dcd be ins ... >

Notes:

(1) run_slow is a flag (does not have to be boolean)
that tells the Basic runtime to check conditions that may
suspend Basic programs. In our case, we check for
break-key, breakpoints, debug steps and
options[OPT_D]. As you may have suspected, run_slow
needed to be set before options[OPT_D] is checked(
Initially, if options[OPT_D], sets run_slow).
(2) break_pressed or other equivalent flag that tells
Basic a break-key was pressed. It has to be set by a
interrupt catching routine (e.g. checkpoint).
(3) cp is the index into the programs array for which
the Basic is running.
(4) Just to illustrate one way to access' current opcode.
In reality, the opcode may be accessed in entirely

Page - 104 -
The Ultimate Corp.

Proprietary and Confidential

--------~ ~~ ----~.---~----~- ~--~-~~--~-----

o

o

c

c

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

different way. The Codeptr is a prototype opcode
pointer.
(5) If first_value is not a symbol table index, it must
have been a B$on source line breakpoint. pc and
Codeptr are used interchangeably because at this point it
is not known how we access opcode in object file.
(6) As noted earlier, debugger_steps is actually two
mutually exclusive counters. When it is > 0, it is a
opcode counter. When it is < 0, it is a source line
counter. In both case, it is time to enter debugger once
the counter reaches zero.
(7) a macro that do all the necessary steps to invoke
debugger. It includes 1) update trace_table in the db
structure 2) update the last_steps in the db structure
after debugger has return.

2. Debugger:

Once Basic runtime decided to drop into the debugger, the
debugger will take control until a GO command is initiated.
While in the debugger, user can display variable information,
set breakpoint for next entry into the debugger and tum on/off
debugger options. Here we will give detail description of what
debugger has to do to accomplish features and commands that
has been described in earlier sections.

C all Parameter: The Basic debugger is called with db
structure as parameter because each Basic runtime has
its own debug environment. This is apparent when you
execute a Basic program. For example : debugger(db)
where db is defined inside Basic runtime. Another way
will be to allocate db structure each execute level and
save/restore db pointer every time Basic enter/exit an
execute level. Case in point, db is a small structure.

Debugger skeleton: When called, it has to initialize itself. It
returns if it should ignore this call. Then it takes
commands from terminal and execute them. It
relinquishes control when the command is GO. Note :
we only depict how the verbose mode is going to look
here. A parallel structure will be in for the non-

Page· 105 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications

verbose(ultimate compatible) mode.

initO;
if (db. source_on)

display _stats();

/* note (a)

/* note (b)
else

display -program_infoO;
display _trace_table();
db.ignore_count++;
if (db.ignore_count <= db.ignore_entry)

return;
db.ignore_count = 0;

while (options[OPT_D])(
prompt(lfDEBUG>If);
tenn_read(command_line,command_len);
check_break; ...
if (!command_len and repeatable H/* note (c) */

)

command_len = lasccommand_len;
command_line <- lasccommand_line;
repeatable = 0;

lasccommand_len = command_len;
lasccommand_line <- command_line;
if (command_len) (

/* note (d)
CtUsed = 0;
NextcO;
1* note (e)
perfonn_ Vcommand(NextToken(word»;

Notes:

December 4, 1991 4:43

*/

*/

*/

*1

(a) read symbol table if needed, initialize
last_command if db.last_steps is set, locate source
file, etc.
(b) display 1 source line if possible or display 1
opcode information based on optimization levels.
(c) repeatable is set by preform_ V command to
tell debugger that this is a repeatable command.
(d) set CtUsed to the beginning of the
command_line for NextcO. The NextcO will
return the first character in c and the type of

Page - 106 -
The Ultimate Corp.

Proprietary and Confidenlial

o

o

(
~ .

. '"

Appendix F: New BASIC debugger specifications December 4. 1991 4:43

character in Ctype.
(e) One of the command that
perfonn_ V command does is the GO command.
The GO command will reset options[OPT_D] to
cause debugger to return to Basic. It also handles
errors and tokens that are not commands.

D. Deburrinr an optimized prorram:

An optimized program has object that does not necessary have one to
one relationship with source code and basic variables attain values
not necessary in the order that appeared in the source code. These
facts make 1) stepping through the source program impossible 2)
displaying values of a variable hazardous.

There may be 4 ways we can do this.

a. No debugging for an optimized program or only provides
low level (opcode level) debugging.
Problem with this approach is that nobody really want to
debug at such a low level.

b. Only let basic program drops into debugger at the end of a
basic block. At which point, we have good idea where the
program is at and values of variables are known.
Problem with this approach is that program may well have
runtime error within a basic block. At which point debugger
lacks the knowledge to point out exactly which source line is
the cause of the error and Basic runtime would not let the
program run until the end of the basic block before it lets
program drops into debugger anyway. Because of this
problem, it will not work as is. It can probably be part of (3)
below. That means (3) can allow user to set break point at the
end of a basic block.

c. Embedded in the Basic object the dags of all basic blocks
annotated with infonnation about which variables hold the
value corresponding to a node in the dags at what times in both
the source and optimized program. With this infonnation, a)
we can infer from the infonnation which line of the source

Page - 107 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

code caused the runtime error and b) gives values of variables
in most cases while program is in debugger (due to error or C)
otherwise).
Problem with this approach is that the dags of all basic blocks
does not seem to be easy to generate and the size of this
infonnation is probably as big as the object.

d. A map detailing what source line(s) corresponding to a pc
is kept at the end of the object. With this information, a) we
can probably tell which line caused an runtime error if we
pick the first source line that is involved. b) However, we
cannot give the user with any degree of certainty that a
variable having a certain value at any point of a source
program (including where the program apparently has an
runtime error) . We can tell them however in the optimized
world what the values of variables are now.

The option 4 is agreed upon and adopted. User should be aware of
all this happen because it is an optimized program. As mentioned
above, we have very limited capability to debug a program with this
information. User may be forced to do opcode level debugging as
described in section 4.0.

IY. Non-source leyel debu22in2:

Debugging without source is needed because there is no source, the line
number information is not in object or the object is optimized to include
global code movement. User may get a copy of the object listing and step
through the program if desired.
Since all correspondence to the original source code is too convoluted to
try to sort out, the only recourse for users to debug their programs will be
to obtain disassemble listings of their programs from the BASIC verb or
from the debugger LIST command. Users will be restricted to the opcode
level debugging. That means if users use command that refers to a line
number, they will be warned that this is an optimized program and the
command will be rejected.

Additionally, the debugger can provide a new breakpoint called opcode
breakpoint (BREAK OPCODE opcode). This is useful for user to get
some idea what the program is doing at certain part of the program. For

Page. 108 •
The Ultimate Corp.

Proprietary and Confidential

c

c

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

example, user can stop at a READ opcode (i.e. BREAK OPCODE READ)
and an ICONV (i.e. BREAK OPCODE ICONV) opcode and display
values of variables before and after the opcode operation.

V. Major components of the debueeeri

initO
{

There are 8 major components in the Basic Debugger. They are 1)
initialization 2) code that exists in the dcd code to determine whether to
drop into the debugger; 3) many Basic opcode calls to debugger (or
debugger utility routine like pc_to_line) due to runtime errors; 4) parser
for standard Ultimate commands; 5) command processor or perhaps
subroutines that execute the Ultimate debugger commands; 6) token parser
for the new verbose mode of the debugger; 7) the command processor or
perhaps subroutines that execute new verbose set of commands; 8) utilities
(e.g. pc_to_line, line_to_pc).
In the first phase of the implementation, the verbose mode may not be
implemented. That means only the 6 components needed to be implemented
by Apr 1992.

A note for implementation, the debugger should have a focal point to do
terminal I/O so that LOG and SWITCH commands will not cause too much
duplicated code.

A, Initialization:

Initialization of all debugger data structures should be done every
time the Basic runtime is invoked. In addition, the debugger has to
do the following every time it is called:

SA VE_IO_ENV; /* note (a) */
system_mode = In_debugger; /* note (b) */
if (loaded_symbol = -1)

read_symbol_table();
program_sourceO; /* note (c) */
db. debugger_steps = 0;
lasccommand_len = 0;
if (db.lascsteps)(/* note (d) */

if (db. verbose) {
repeatable = 1; /* <CR> => step cmd */
last command line <- "STEP";

Page - 109 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

}
else

db. debugger_steps = db.lascsteps;

Notes:
a. This is needed only if we have a tenninal I/O environment
that is shared by debugger and regular Basic. The debugger
should not affect any current tenninal I/O environment
variable. (e.g. paging, redirecting Output to spooler and so on
)
b. system_mode or something equivalent that tells the rest of
the system that we are running with the Basic debugger. At the
least, this affects Basic runtime error handling. See the section
5.3.
c. get the source file names and 'open' the file.
d. lascsteps is made equal to the debugger_steps last time. As
you may recall that debugger_steps is actually two mutually
exclusive counts in one. One is for opcode stepping and the
other is for lines stepping.

B. DCD interface between Basic and the Debueeer.'

This interface has been described in detail in section 3.3.1. However,
the data structures like descriptor space and structure, call_stack,
programs and data elements like run_slow, options and
break_pressed need to be finalized before one can proceed to
implement this piece of code.

C. Basic runtime error interface:

All Basic opcodes should go to a common routine for error
handling. We will call this basic error(error number). The
reasons for this are: - -

a. The same Basic runtime error requires different treatments
based on run option(s). For example, when the option E is
used to run the program, the program will go into the

Page - 110 -
The Ultimate Corp.

Proprietary and Confidential

o

C:

c

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

debugger for any runtime error.)
b. Some errors will cause the program to go into debugger.
All errors mentioned under Basic debugger features in section
3.1 are this category.
c. Some errors are reported and 'ignored' by Basic. For
example, an unassigned variable is used as zero.
d. Based upon whether the program is in debugger already, an
runtime error needs different treatments. Any error that
normally causes program to abort will go into the debugger if
the program is running with the debugger.With this common
error handling routine, we can handle all the above mentioned
situations in one place and call the debugger if situation
warrants.

Food for thought: Situation arises when a variable is used before
it is assigned. We gives an error pointing out the error and
uses an zero for its value. The program keeps running. But the
variable in this case does not get assigned a value of zero. The
variable is still unassigned. What is the mechanism to tell
opcode to use this zero value not the unassigned variable for
its operation?

Dr Ultimate debugger commands parser:

Most of the Ultimate debugger commands are single character
commands and there is no space(s) between parameter(s). This setup
does not lean itself to a tokenized parser. Therefore, this parser is
just going to look at the first character and call the designated
command subroutines. Any further parsing is deferred to the
subroutines that execute the command. Obviously, it has to report
error if the first character does not matches any command.

Er Ultimate commands processor:

It is made up of many subroutines that is going to parse the rest of
the command line and execute the command or report an error.
These subroutines are as followed :

Commands
$,*,?

Page - III -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4. 1991 4:43

'- . \.I. :c -'! .y "

[: U _substringO
B: U _breakpointO
BYE:
C: U_callretumO
D: U _display _tableO
DE: U _system_debuggerO
E: U_secstepO
END:
G: U_goO
H: U_helpO
HX:
K: U_clear()
L: U _line_number()
LP: U_outputO

N: U _setjgnoreO
0: U _display _optionsO
OFF:
P/PC: U _printer()
R: U _display ~osubO
S: U_sourceO
STOP: U _return_to _procO
T: U_traceO
U: U_untraceO
V: U _program_infoO
Z: U 3hange_source0

F. Parser for verbose set of commands:

Verbose commands:

keys: { } : have to choose one
o : optional
<> : user supplied argument
v : variable
n : number

BREAK { [PC] <n> I OPCODE <opcode> }
[IF <logical30nd> [{ AND lOR} <logical_cond>]]

BREAK [{ VARIABLE <v> [{,<v>} ..] I SUBR <subroutine>
I [<n>] { ON I OFF} }]

Page. 112·
The Ultimate Corp.

Proprietary and Confidential

0

/~

~J

o

Appendix F: New BASIC debugger specifications December 4. 1991 4:43

CLEAR [{ <n> I LINE I PC I OPCODE I VARIABLE I SUBR}]

DISPLA Y { ALL I <v> I <n> }

END

GO[<n>][PC]

HELP [{ COMMANDS I <command> }]

IGNORE <n>

INFO [ALL]

LIST <pc 1 > - <pc2>

LOG { ON I OFF I TO <filename> }

MODIFY <v>

PROC

QUIT

SETBREAK <n>

SETTRACE <n>

SHOW { SYMBOL I MAP I ? }

SOURCE { .[<n> [FOR <n>]] I
OPEN <filename> <itemname> I
ON I OFF}

STEP <n> [OPCODES]

SWITCH [<port-number>]

TRACE VARIABLES <v>[{,<v>} ..]

TRACE [{ ON I OFF }]

UNTRACE [{ <n> I VARIABLES <v> [,{<v>} ..] }]

VERBOSE

It is a token parser. It consists of NextcO and NextToken(type). The

Page - 113 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

NextToken(type) returns a token from the words matrix. The Nextc C: ~.'.\
returns character types (Ctypes : white space, letters, digits, period,
prefix, single, illegal, eol) to NextToken and also the character itself (c).

The words matrix has an entry for each command and modifier. In each
entry, it includes the name, number of characters make the name unique
and the help file index.

lQk~D# ~ uniQue help index
CNE or 1 "# " 1 0
CLEFrP "(" 1 0
CRIGHTP It) " 1 0
CCOMMA , 1 0
CLT "< " 2** 0
CEQ = " 2** 0
CGT It> " 2** 0
CGE ">= " 2 0
CLE or 8 "<= 2 0

"AIJ... " 2 0
"AND " 2 0
"BREAK 1 1
"CLEAR 2 2
"COMMANDS " 2 0
"DISPLA Y 1 3
"END " 3* 4
"FOR " 1 0
"GO " 1 5
"HELP " 1 6
"IF " 2 0
"IGNORE " 2 7
"INFO " 2 8
"LIST " 3 9
"LINE " 3 0
"LOG " 2 10
"MAP " 2 11
"MODIFY " 2 12
"OFF " 3* 13
"ON " 2 0
"OPCODES " 3 0
"OPEN " 3 0
"OR " 2 0
"PC " 1 0
"PROC " 2 14
"QUIT " 4* 4
"SETBREAK " 4 15
"SEITRACE " 4 16

Page· 114 •
The Ultimate Corp.

Proprietary and Confidential

Ci

('"~
-,

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

"SHOW " 2 17
"SOURCE " 2 18
"STEP " 2 19
"SUBR " 2 0
"SWITCH " 2 20
"SYMBOL " 2 0
''TRACE " 2 21
"TO " 2 0
"VARIABLES " 2 0
"UNTRACE " 1 22

C VERBOSE or 45 "VERBOSE " 2 23
cnumber ----------
cvariable ----------
cstring ----------
copcode ----------
Ceoi

**.

*.
Hint:

Needs special handling because they can be part of other token.
(prefix Ctype for ">" and "<")
Make sure user means it.
enum tokens { CNE= 1, ... }
char dlms[] = "#0,<=>";

For example: BREAK 100 IF B = 10

The NextToken would return in successive calls the following: t_BREAK,
t_number, t_IF, t_ variable, t_EQ, t_number and t_eoi. In case of
cnumber, the break subroutine has to convert the 100 number in LexBuf
to numeric line number and the 10 to a scaled number. The t_eoi is
returned when NextToken reaches the end of input. In case of t_ variable,
another variable has the symbol table index (call it symbol_index).

NextToken(type = { word, symbol, opcode }) {

#DEFINE AppendC = {
LexBuf[LexLen] = c;
LexLen++;
if (c != \0')

Nextc;

Page· 1/5 .
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

pyl pn - U;
WHILE (Ctype = white_spaces)

NextcO;
if (Ctype = eol)

return (ceoi);
CASE Ctype of {

letter: {

digit,
period :

quote: {

prefix:

Do{

}

if ($ALPHA(c»
c = c & %xdf; /* upshift */

AppendC;

until (Ctype ! = letter && Ctype ! = digit
&& Ctype != period);

CASE type of {
word: token = Lookup_ wordmatrixO;
symbol : token = C variable;

symbol_index = Lookup_symboIO;
opcode : token = copcode;

opcode_index = Lookup_opcodeO;
}
return(token);

}

While (Ctype = digit)
AppendC; /* integer part * /

IF (Ctype == period) {
{ AppendC;

WHll..E (Ctype == digit)
AppendC;

return (cnumber);

DO AppendC;
until (c == LexBuf[O] II Ctype == eol);
if (Ctype = eol){

<error>
} else

NextcO;
return(cstring);

AppendC;
LexBuf[LexLen] = c;
LexLen++;
if (!(token == Lookup_wordmatrixO){

/* single delimiter */
for (i = 0; dlms[i] != \n'; i++){

if (dlms[i] = LexBuf[O])
break;

Page - 116 -
The Ultimate Corp.

Proprietary and Confidential

c

C:

Appendix F: New BASIC debugger specifications

single: (

default:
}

}

token -1 + 1;
} else

NextcO;
retum(token);

for .. <see above>
NextcO;
retum(token);

retum(0);

G. Verbose commands processor:

December 4, 1991 4:43

It is made up of command subroutines. Each command subroutine is
going to structure around the command syntax. It would call the
NextToken every time it needs one. If it finds the token returned is
out of place or illegal, it would report an error and returns.
Otherwise, it would process the entire input and execute the
command.

For example:

v _clear()(

/* CLEAR [{ <n> I LINE I VARIABLE I OPCODE I PC I SUBR}] */

token = NextToken(word);
switch token {
Ceoi: for (i=O;i<=programs[cp].max_break,i++)

clean_break(programs[cp]. breakpoint[i]);

cnumber:

cLINE:

CVAR:

break;
number = atoi(LexBuf);
clean_break(programs[cp].breakpoint[number]);
for (...)
if (programs[cp].breakpoint[i].type =

break_on_line_number)
clean_break(programs(cp]. breakpoint[i]);

for (...)
if (programs[cp].breakpoints[i].type

break_on_descriptor_mod)
clean break(programs[cp]. breakpoint[i]);

Page - 117 -
The Ultinu:zte Corp.

Proprietary and Confidential

-----~-------.. -------

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

DreaK;
COPCODE: ...
CPC: ...
CSUBR:
default: <error>
}

if (NextToken(word) != ceoi)
<error>

}

There are 22 commands in the verbose set of commands. They are as
followed:

BREAK

CLEAR

Set breakpoint by line, opcode, variable, pc
conditionally or unconditionally; display breakpoints
and tum breakpoints on/off. Additionally, the debugger
can break inside a subroutine every time a subroutine is
called.
Clear selectively different types of breakpoints; clear all
breakpoints.

DISPLA Y Display value of a variable by name or by descriptor

END
GO

number.
Leave debugger and exit program.
Resume the program at a different line number or just
continue.

HELP Get help on any topic or command.
IGNORE Ignore breakpoint; only display trace table information

INFO
if any.
Display current line and optionally include all call and
return stack information. In case of the program has
been optimized, the debugger will show the current
opcode.

LIST List object in a disassemble form.
LOG Log all output to a specified unix file.
MODIFY Change value of a variable.
PROC Terminate basic program and return to PROC if any.
QUIT Same as END
SETBREAK Set size of the breakpoint to a larger size than number

of used entries.
SETTRACE Set size of the trace table to a large size than number

Page. 118 •
The Ultimate Corp.

Proprietary and Confidential

c

c"

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

for used entries.
SHOW Show various tables at the end of the object.
SOURCE Display source program at any line number; change

source file; source on/off. In case of an optimized
program, typing "SOURCE" to display from current
line will cause a warning. If it is still possible to come
up with one line number, the debugger will display
from that line for 12 line(s). But if it cannot, it will not
display a line.

STEP Step through program by # of lines or # of opcodes.
SWITCH Switch debugging terminal to another port under

control of UL T +. (This port can first trap the target
port and switch the debugging terminal to the target
port afterward. This way there is no security breach
because the original port is already in debugger.) To
switch back, type "SWITCH".

TRACE Set trace on variables; displays trace table, trace on/off.
A trace on a variable would cause debugger to display
the value of the variable at breakpoints.

UNTRACE Untrace variable(s)
VERBOSE Tum this verbose mode on/off.

H. Utilities:

pc_to_line : maps a particular pc to the source line number. It
would use the map at the end of the object for such a calculation. If
the object is non-optimized, there is exactly one line number for one
specific pc. There may be more the one line number for a pc in a
optimized program. This routine should be used by runtime error
reporting as well as by the debugger.

line _ to _pc : maps a user specified line number to a pc for setting
breakpoints. This is only meaningful it the program is not optimized.
It should not even be called if it is a optimized program.

terminal I/O routines: It may be a good idea to have the Basic
debugger's own input stream and output stream because they are not
in any way related to the program input and output streams other

Page - 119 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

than the fact that initially they refer to the same terminal. The P 0
command in the debugger will suppress all output from the rest of
the ULT+ system but not from the Basic debugger. The new LOG
command will redirect debugger output to a Unix file. The new
SWITCH command will switch the input and output streams of the
debugger to another terminal altogether.

If we are going to implement a standard TERMIO for the whole
system, the TERMIO had better be able to deal with different
streams, characteristics and these streams may be changed to
reference another physical device during the life of the UL T +
system. This is unlikely to be implemented for this project.

If we are going to use the existing terminal I/O code, the Basic
debugger may be forced to create its own set of routines to deal with
its terminal I/O needs:

Initially, istream = stdin, ostream = stdout. The SWITCH command
obtains the terminal path to the new physical device and makes
istream and ostream to come from there. When the user desire to
SWITCH back, the debugger will close the istream and ostream and
makes them stdin and stdout again (remember to flush ostream).
The new LOG command will cause output to go to the ostream as
well as to the Unix file. Somewhat related, the Ultimate debugger P
command will cause the debugger to toggle a flag in virtual space to
tell VIRTUAL to suppress output to the terminal. The Ultimate
debugger LP command will use whatever mechanism that is set up
for the PRINTER ON/OFF Basic statements to redirect the output of
the Basic PRINT statements between terminal and printer.

Complication: the output of /var command and many others
commands start at the end of the input command line and it is not
affected by the Ultimate TERM type. It can be done with no echo of
<CR/LF> at the end of the input command line. But there is no such
stty attribute to help us do that. Maybe, (1) a transparent mode
character-by-character input is needed; (2) We may just have to live
with the <CR/LF> at the end of the input; or (3) The debugger uses
the Unix $TERM to pick up the escape sequence for cursor-up and
cursor-right. Here are the needed informauon:

Using curses termcap emulation:

Page - 120 -
The Ultimate Corp.

Proprietary and Confidential

C·', "', \
r

o

Appendix F: New BASIC debugger specifications

a) codename for cursor-up: up
b) codename for parrn_right_cursor : RI

(Not all terminals support this)
c) codename for cursor-right: nd

#include <curses.h>
char up[25], rc[25]; /* we could allocate these */
char *str, *area;

int OUf_putc(c)
charc;
{ /* if tty */

putc(c, ostream);

/* Do this once at system initialization
initscr();
area = up;
str = tgetstr("up", &area);
area = rc;
str = tgetstr("nd", &area);
endwinO;

/* to cursor up
tputs(up, 1, (int (*)0)our_putc);
/* to cursor right non-desttuctively 14 spaces
for (i = 1; i <= 14; i++)

tputs(rc, 1, (int (*)0)our_putc);

vI. Time estimates:

*/

*/

December 4, 1991 4:43

*/

The coding for the debugger should ideally begin when the rest of the
system has been finalized. But since time is the essence, about 80% of the
code can be written and tested without much difficulty. For every place
that interfaces with the rest of the system, a stub is used for it and a
comment of "/*"*/" is marked on the source files so that they can be easily
identified. The debugger subroutines should have broken down into
functional entities so that when the time comes to integrate, it should not
present much difficulty (e.g. load_symbol_table, find_symbol,
V_breakpoint, V_breakpoint, clear_breakpoint, pc_to_line,
display_variable, term_write, term_read, etc).

Page - 121 -
The Ultimate Corp.

Proprietary and Confidential

Appendix F: New BASIC debugger specifications

Development :
!asks.
0) Getting Ready
1) Init
2) DCO interface
3) Basic Errors
4) UL T parser
5) UL T commands
6) utilities
7) V. cmd parser
8) V. Commands

Testing:

man-brs
04
04
16
16
04
118
40
16
110

1) UL T commands 32
2) Verbose 32

Page. 122 •
The Ultimate Corp.

subtotals

202

126

64

Proprietary and Confidential

~----------------------.--.------

December 4, 1991 4:43

o

328

64

392 or 49 days

o

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

C Appendix G: Analysis of Math in Basic

c

Introduction;
This document discusses the implementation of math operations. First
today's implementation is discussed and then an alternative
implementation is proposed for Optimized Basic.

Today implementation;

Format of the numeric variables:

- The numeric variables are stored as a six-byte scaled numbers,
representing the numbers in the range (-(21\47)/lOI\SCALE) to (
(21\47 -1)/1 OI\SCALE).
- The numbers that are outside of the specified range are represented
as strings.

Algorithms:

- The virtual code performs the basic math operations, such as
addition or multiplication in numeric format. If any of the operands,
or the result of the operation, are too big(small) to be represented as
a scaled 48-bit binary representation, the operands are converted to
strings and string math is used.

- The string math operations such as, SADD or SMUL use the paper
and pencil algorithm to calculate the result as a string.

- The other math operations such as SIN, COS, EXP, PWR, LN, and
SQRT are implemented as subroutines in the virtual code. Each of
these subroutines uses an algorithm associated with that operation to
calculate the result. The EXP, PWR, LN use their operands as
string, consequently they are very slow.

Optimized assembly code(Ultimate PLUS only):

For performance reasons the basic math operations are implemented
in assembly code. The assembly code is used only if the two operands

Page - 123 -
The Ultimate Corp.

Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

Issues;

are numeric. If the result of the operation overflows the assembly
code bails out to virtual code.

Ultimate PLUS way of Tepresentine numbers:

- Since the numbers internally are presented as scaled integers,
precision is lost during the computations. For example 3.1479 *
10000 = 31400 if the precision is 2. This occurs because 3.1479 is
internally stored as a scaled number 314.

Ult/ix way of representinr numbers:

- The numbers are represented in double. The data type double is a
64-bit quantity, where 53 bits are used to represent the mantissa, and
11 bits are used to represent the exponent.

- The computations are more precise for numbers with mantissa in
the range (-4,503,599,627,370,496 to 4,503,599,627,370,495). The
precision is guaranteed only for up to 15 digits. because of the ,r-'

number of bits used in representing the mantissa.

The following piece of code demonstrates the difference between the
Ultimate and Ult/ix. This program will print 1234 on Ult/ix
implementation and 1200 on Ultimate implementation.

PRECISION 2
A = .1234
B=A*lOOO
PRINTB

- No string math is used for big numbers. Consequently, Ult/ix does
not come up with right values for very big numbers (numbers with
more than 15 digits for mantissa). The double type can represent
numbers as large as 1.79 +308(The 11 bits are used to represent
exponents -1023 to 1024, the exponent represents a binary base).

Page - 124 •
The Ultimate Corp.

Proprietary and Confidential

C::

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

- The doubles are difficult to use in logical operations. Two numbers
may be extremely close but not equal. Ult/ix uses a delta for
comparisons. For example the two variable A and B are compared to
see if they are equal:

if (abs(a - b) < delta)
TRUE

else
FALSE

The value for delta is set by an environment variable. This can be
tuned per tenninal. The value of the delta is selected independently
from the precision of the basic program. This causes some of the
comparisons to fail. They resolve the problem by suggesting a
different value for delta. The following example demonstrates the
problem with delta selection:

A =.1
B=O
FORI= ITO 10000

B=B+A
B = B * 100000000000
A = A * 1000000000000000
PRINT A
PRINT B
IF A = B THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"

OUTPUT:
100000000000000
100000000000016
NOT EQUAL

This occurs because the precision is guaranteed for up to 15 digits,
and the multiply operation magnifies the discrepancy between A and
B. No reasonable delta can be selected to avoid this problem.

Page - 125 -
The Ultimate Corp.

Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

Proposed implementation for the BASIC project;

The proposed implementation can run in two flavors, Ultimate plus flavor,
or Ult/ix flavor. It is compatible with Ult/ix, because the variables are
internally stored in the same form. However, in order to be compatible
with Ultimate PLUS the double representation of the numbers need to be
adjusted each time they are modified. The adjustment directly depends on
the scaling factor of the basic program(see detailed explanation on the
following pages). The following sections will include the data structures
used, and the algorithms, and issues.

Data structure for variables:
The variables in basic will be presented as a structure with a
minimum of 3 fields.

typedef struct {
int type;
double dbl_ value;
char *stc value;

} var_type;

type field:
Specifies the type of the variable, string or double

dbl value field:
- If the type field is DBL_ TYPE, then this field represents the

current value of the variable.
str value field:

- If the type field is STR_ TYPE, then this field represents the
current value of the variable.

TYJle conversion;

During the execution of a basic program a variable may be
converted from string to double or double to string several times.
This conversion can be accomplished via C library routines, or they
can be coded by us if the C library routines prove to be costly. A
flag field in the structure can be used to indicate if the string value

Page - 126 -
The Ultimate Corp.

Proprietary and Confidential

o

o

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

and the double value are up to date to avoid extraneous conversions.

F lavQr binding:

The flavor is determined at basic compile time. This means a
compilation is required to switch the flavor. The flavor will be
controlled via an environment variable, basic compile option, or a
system wide option. It is also possible to set the flavor in any of the
following 2 forms:

- The flavor is determined at runtime. This means no
recompilation is required to switch the flavor. The flavor will
be controlled via an environment variable, runtime option, or
a system wide option.

- Bind the flavor per variable. This will require change to the
BASIC language, to somehow identify those variables.

1) Ult/ix flavor:
- The numeric variables are always presented as double,
meaning they are not converted to strings to gain more
precision. In the proposed implementation we can go to string
math subroutines to get better precision for huge numbers.

- The scale factor of the BASIC has no effect in the internal
representation of the number, and it will only be used for
external representation of the numbers.

- The Ult/ix flavor of the proposed implementation differs
with the Ult/ix implementation, only in selection of delta,
since the selection of delta is not a compatibility issue. The
proposed implementation will avoid some of the problems
encountered during logical operations of Ult/ix
implementation. The delta is selected based on the value of the
preCISIOn.
delta = 0.5/10Aprecision

2) Ultimate flavor:
- Each time a numeric variable is updated, the variable is
adjusted based on the following formula:

Page - 127 -
The Ultimate Corp.

Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

A = floor(A * SCALE + delta) / SCALE

SCALE I()l\PRECISION (l()()()() for precision 4)
floor() truncates the number
delta O.5/SCALE

Where floorO is C library routine to truncate, by elimination
the fraction portion of the number. On some machines such as
HP the floorO routine will be rewritten in assembly to get a
better performance.

The string field will be used if the operands, or the result are
too big to be represented as a double or if the precision of the
double is not acceptable.

Operators and C library routines used for computation:

- The basic math operations such as addition, subtraction,
multiplication and division are accomplished by using the C
operators '+', '-', '*' and 'f on doubles. If string math is necessary
then the library routines to be coded by us will be used to do the job.

- Other math operations such as SIN, COS, LN, PWR, EXP, SQRT
etc. are accomplished by using the C library routines sinO, cosO,
logO, powO, expO, sqrtO etc.

Performance Data' Basic Math);

The first two columns are today implementation of Ultimate plus and
Ult/ix. The next two columns are the proposed implementation in both
flavors. The last column is today assembly code called by a stand alone C
program, to help estimate Basic runtime overhead. The numbers are in
units of microseconds per operation.

----~-~----~~-~

Page. 128 •
The Ultimate Corp.

Proprietary and Confidential

o

c

C

Appendix G: Analysis of Math in Basic

Oneration Toda~
Ultimate
PLUS

Add(HP) 67
Mul(HP) 78
Div(HP) 76
Add(RIOS)
Mul(RIOS)
Div(RIOS)
EXP(HP) 6100
LOG(HP) 12500
PWR(HP) 10300
SQRT(HP) 4700
SIN(HP) 1000
COS(HP) 1000

Toda~
Ultlix

28
25
27

30
30
90
30
31
30

mtimate
PLUS
Flavor

14.4
14.2
14.5
4.0
4.1
4.7
36
37
98
37
36
37

Ultlix
Flavor

7.2
7.0
7.3
1.2
1.2
1.7
30
30
88
31
30
31

December 4, 1991 4:43

Toda~
Assembly
Code

9.3
18.5
16.5
1.3
7.9
8.3

Note that the first two columns were timed within the real systems
(Basic programs) where as the last three columns were timed in
stand alone C programs. The difference between the first and the last
column highlights the overhead due to the architecture of Ultimate
PLUS where as the difference between the second and the fourth
highlights the anticipated overhead of Ult/ix' s architecture
(anticipated because the test of column four was done based on our
general knowledge of the way Ult/ix does math).

Issues:

- If the purpose of the strin~ math is to take care of overflow the
Ultimate flavor will not test for precision each time. However, if
strin~ math is required to obtain more precision, the variables must
be tested after each math operation to see if they need to be
converted to string. If the test is not required the math operations
will have 5-6 percent less overhead for all numbers . For example
14.4 will become 13.7 in the previous table.

Page - 129 -
The Ultimate Corp.

Proprietary and Confidential

Appendix G: Analysis of Math in Basic

Page - 130 -
The Ultimate Corp.

Proprietary and Confidential

December 4, 1991 4:43

C·· .. "' ...
'" ,

.. '"

c

c

Appendix H: Recall calling Basic subroutine December 4, 1991 4:43

Appendix H: Recall calling Basic
subroutine

Format of this documegt

This document describes how the current interface between Recall and
Basic works.
Whenever it appears that the Optimized Basic may require changes to the
existing code, the document will go into a columnar format, with on the
left side the current step and on the right side a proposal of a new step to
take by Optimized Basic, based on the following conventions:

Keep

Equivalent

Out
?

Note n

step should be done the same way in the new
runtime;

step should be done but the new architecture imposes
different code;

no longer needed;
undetermined at this time;
See note number 'n' at the end of the list;

Steps taken at compile time:

For efficiency reasons, most of the work required to initialize the Basic
workspace is done during the compilation phase of the Recall sentence.
Each time a conversion of the type 'B' is encountered, the code (in
RCL-SUBS3) which is explained here gets called.
The very first time only, the following steps are taken:

A frame is obtained from overflow and becomes the Recall Control
Block (ReB) header. A pointer to it (in linked format) is saved in
SCB element RCTLBSR (overlays S9).

An automatic Xmode handler is enabled for this frame, to let the
control block grow up to a maximum of 128K, as required by
Recall.

The first ID.DA TFRM.SIZE bytes of the control block are reserved

Page - 131 -
The Ultimate Corp.

Proprietary and Confidential

Appendix H: Recall calling Basic subroutine December 4, 1991 4:43

for global element storage.

The next 4 sections, each ID.DA TFRM.SIZE bytes long, are:
- a save area for the Recall PCB when switching from Recall
to Basic;
- a save area for the Recall SCB;
- a save are for the Basic PCB when switching from the Basic
environment back to Recall;
- a save area for the Basic SCB;

Pointers to the start of each area are saved in the RCB.

A pointer is set to the remaining space, to be used as TS workspace
by Recall, which can grow to a maximum of 128K bytes.

A wrapup routine is setup in WMODE to release these frames when
done.

The current (Recall) PCB/SCB are saved in the RCB.

Various bits and flags, WMODE and XMODE are reset.

RCLFLG is turned on, as a flag to the Basic initialize and to both
runtime environments.

The HS, IS, OS and TS workspace pointers are re-initialized via
ISINIT and TSINIT calls.

! Current step ! New step
!---, " . .,

! Set OSBEG and R6 to dummy object code !
(descriptor size = 1000 bytes) and
call a subroutine of the Basic
initialize code ...

... BSL B.INIT which does:
BSL INITSTK : initialize STKBEG,

STKEND for DATA StInts.
BSL BD-SETUP : initialize Basic

debugger. ,
Initialize CfRO to 20000 bytes to

preserve in the ISlaS buffers

Page - 132 -
The Ultimate Corp.

Proprietary and Confidential

!
!Note 1
!

!
! Keep
!
! Note 2
!
! Note 3

c

Appendix H: Recall calling Basic subroutine

BSL HSSET : set R3 to the start of
the HS buffer (PCB + 64)

MOV R3,PAGHEAD; INC R3,1500 :
initialize 1500 byte area for
heading/footing

MOV R3,UPDBEG; MOV BUFSIZES,C567:
initialize free space pointer
& sizes

INC R5,CTRO: set R5 at start of
temp space

MOV ISBEG,R4; INC R4,CTRO;
MOV R4,BDESCTBL : initialize
start of the descriptor table

BSL DESCINIT : initialize the
descriptor space + 90 bytes
for the debugger to Ox02FF
(null string)

BSL FREEINIT: initialize freespace
pointer and buffer sizes

BSL INITISTACK :
Set R3 to special stack frame

!
! Keep
!
!
! Keep
!
!

December 4, 1991 4:43

! 0ut/Note4
!
! Keep/Note 3
!
!
! Out/Note 5
!
!
!
Notes 5&6
!
! Out/Note 4
!

& setup automatic xmode ! Out/Note 7
MOV BWRAPUP,WMODE : set Basic!

wrapup ! Equivalent
Initialize 200 byte save area !

prior to R3 (for COLI,
COL2, INMA T ...) ! Note 8

MOV R3,HSBEG; MOV R3,HSEND! Out/Note 7
MOV BSPACE,xMODE: for temp !

space ! Keep/N ote 3
Store the following elements !
in the save area:

BASE of program file;
BASE of SYSLID file;
INHIBITH;

Reserve a 1500 byte area prior

!
! Notes 8&9

to the start of temp !
space (IS END) for the !

INPUT@ messages ! Keep
Store scaling factor from !

object header in PCB !
SCALE# (for format mask) ! Keep/NotelO

Calculate the scale value and !
store in PCB SCALE. ! Notes 10& 11

MOV X'8000',COMDSP: for access !
to COMMOM variables ! Out/Note 12

ZB SB8; ZB SB9 ! ?????
ZERO PFILE, init PRMPC, !
SB BASICFLG, SB NOBLNK, !

set I CB bits ! Keep
Copy 10 byte object header !

Page - 133 •
The Ultimate Corp.

Proprietary and Confidential

Appendix H: Recall calling Basic subroutine December 4. 1991 4:43

into descriptor 0
BSL INPUT@.INIT : initialize the

INPUT@ message area with the
ERRMSG text strings.

Core lock the OPCODES frame & save
the buffer address in BOPS for
the firmware

INC R6 : set on dummy byte x'OI '-why?

MOV BDESCfBL.BAS.DESCfBL : save start
of common descriptor space in RCB

SB PAGINATE: different for normal init

MOV R.WRAPUP,WMODE : set wrapup mode

BSL U-STOREFll...EVARS (in UPD-Cl):
Initialize common descriptor at

offset 40 as a FILE DESCRIPTOR
and store BASE & MODSEP of the
current me (FFCB 1) into it.
Clear the write enabled bit.

Initialize common descriptor at
offset 30 as a FILE DESCRIPTOR
and store BASE & MODSEP of the
current diet (DFCBl) into it.
Clear the write enabled bit.

Initialize common descriptor at offset
110 as a STRING DESCRIPTOR and
and store the Recall file name into!
the descriptor (short string) or! Note 14
get a freespace buffer for it!! ! Note 15

MOV HSEND,RI5; INC R15; MCI SM,RI5
put SM in Basic stack to mark the
subroutine table empty.

Core lock OPCODES frame in memory and
save the buffer address in BOPS:
already done in B.INIT. Why again?

Notes. as they appear in the 'New step' column:

! Out/Note 13
!
!
! Keep
!
!
! Out
!
! ??-Chandru
!
!
! Note 5
!
! ??-Chandru
!
! Equivalent
!

I

! Note 14
!

!
! Note 14
!

!
! Keep/Notel6
!
!
!
! ??-Chandru

1: we could do something similar, but a less kludgy
method would be nice.

2: if we keep the current debugger, the same

Page - 134 -
The Ultimate Corp.

Proprietary and Confidential

. !

C· \ , ,

Appendix H: Recall calling Basic subroutine December 4, 1991 4:43

Appendix H: Recall calling Basic subroutine

13:

interface.

the copy of the object header into descriptor 0
is specifically done for 'Recall calling Basic'
and is used to store the TOTAL size of the
descriptor space (common + 90 bytes for the
debugger + each subroutine's descriptor size).
In our new runtime this should not be needed but
there could be some value in knowing the LARGEST
descriptor size so that one CONTIGUOUS block of
memory could be initialized large enough to
contain the COMMON descriptors and ANY of the
subroutine's descriptors.

14: a routine is needed to pre-initialize certain
descriptors with values from virtual. The input
interface could be flag bits in T4 and data in
DO and 01.

15: Note that the space acquired to store the
data must somehow be 'static'.

16: During Recall compilation a table is built
the Basic stack containing the names of the
subroutines that have been encountered. See
following steps below.

December 4, 1991 4:43

If not the first time, the current Recall PCB/SCB is saved in the RCB
and the Basic PCB/SCB is restored, to switch to the Basic
environment.

For each of the 'B' conversions found, the following steps are taken:

if the subroutine is preceded by a file name (not catalogued),
open the DICT of the file.

locate the subroutine name in the table built inside the Basic
stack. Compute an index value based on the position in the
table, each entry accounting for 20 bytes. If the name is NOT
located (not been called previously):

~~~~ .. - ... -- .... 

add the entry to the table; 

use a subroutine in mode BCALL to fetch the object 

Page - 136 -
The Ultimate Corp. 

Proprietary and Confidential 

o 



( '" 
. c 

Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

code. 

!-----------------------------------------------------------------------------------------! 
! Current step ! New step ! 
!-----------------------------------------------------------------------------------------! 

BSL CHECKREY : 
Check if the precision level 

from the object header 
matches the value in PCB 
SCALE# (always = 0 here). 

Check the Basic revision level 
by comparing the value in 
the object header to the 
one stored in mode BRPOO 

MOV BDESCfBL,RI5; MOY RI5,RI4: 
Set both registers to the 

object header copy in 
descriptor O. 

BSL SET.DSCRP: 
set the subroutine descriptor 
space start (ISBEG) past 

the last 'main' 
descriptor, as defined 
in the 'main' header 

calculate the new COMDSP based 
on the offset to ISBEG. 

get the subroutine descriptor 
size, +90 for the 
debugger and initialize 
the descriptors to NULL 
STRING. 

Calculate the offset from the 
'main' descriptor start to the 
last subroutine descriptor, 
-90 bytes for the debugger 
which is already allocated. 
Update the dummy header in 
descriptor 0 with that offset 

Starting at byte offset 300 in the 
'main' descriptor table, use 
the subroutine index value 
calculated earlier to position 
into this array of 'subroutine 
pointers'. The format of each 
20 byte entry is: 

Page - 137 -
The Ultimate Corp. 

Proprietary and Confidential 

! ! 

! 
! Note 20 
! Equivalent 
! 
! 
! Note 20 
! Equivalent 
! 

! 
! Note 13 

I 

! Note 21 
! 

! 
! Out/Note 13 
! 



Appendix H: Recall calling Basic subroutine 

!0102 030405060708 0910! 

!02ff object ptr repeat! 

!02ff desctbl ptr comdsp! 

The entry is updated by: 
saving the pointer to the 

object code (R6); 
setting the repeat count 

for multivalues to 0 
saving the pointer to the 

subroutine's 
descriptor's table 
start (ISBEG); 

saving the subroutine's ! 

December 4, 1991 4:43 

COMDSP value. ! Note 22 
! 

MOY X'8()()()',COMDSP: restore COMDSP ! Out 
! 

MOY BSPACE,XMODE: set for tempspace ! Keep 
! 

!-----------------------------------------------------------------------------------------! 
! Notes, as they appear in the 'New step' column: ! 
!-----------------------------------------------------------------------------------------! 

20: The assumption here is that the new object 
header will have a different fonnat than the 
old one. 

21: We need a routine to initialize a number of 
descriptors tb NULL string. It could return 
to virtual a 32 bit address pointer which 
can then be saved in the RCB. The space must 
be 'static'. We may have to initialize some 
debugger variables also. 

22: The current code stores the table in an 
unused portion of the 'main' descriptor 
table, probably for convenience. There is 
no real reason to have it there, and for our 
new runtime it makes little sense to do it 
the same way. We do however need to store 
the object code pointer and, if kept in 
virtual, the descriptor table pointer. One 
area we could use is the portion of the fIrst 
1000 bytes in the RCB that is currently 
available. 
Another possibility is the IS workspace. If 
the latter solution is taken, we need to 
skip the fIrst 20000 bytes of IS which is 
reserved for Recall. 

Page - 138 -
The Ultimate Corp. 

Proprietary and Confidential 

o 



Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

!-----------------------------------------------------------------------------------------! 

Store the subroutine index value inside the compiled Recall 
string, so that it can be used during the runtime to jump 
quickly to the appropriate table entry. 

Switch the PCB/SCB environment back to Recall, after saving 
the current Basic PCB/SCB. 

!-----------------------------------------------------------------------------------------------! 
! Current step ! New step 
!--------------------------------------------------------------------------------------------------! 

, 

For the first 'B' conversion only, 
MOY BAS.DESCfBL,BDESCfBL: store 
the pointer to the 'main' 
descriptor table in the Recall PCB. 

! ! 

, , 
! Note 25 

1--------------------------------------------------------------------------------------------------! 

Notes. as they appear in the 'New step' column: 
1--------------------------------------------------------------------------------------------------! 

25: This is done so that from the Recall PCB the 
entry for a subroutine can be found in the table 
located inside the 'main' descriptor space. If 
we move this table to some other area (see note 

! 22) we can remove this step. 
1--------------------------------------------------------------------------------------------------! 

Summary of the current interface, at the end of the Recall 
compilation: 

< ------------->< ---------------><----->< --------------> .... < ----> 
(1) (2) (2) (2) (2) 

(1): Common or 'main' descriptor table, including 90 bytes 
reserved for the debugger. Some of the descriptors are 
pre-initialized with values. Part of this space is used as a table 
where information is kept regarding each of the subroutines, 
for a maximum of 35 entries. 

Page - 139 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

(2): Subroutine's descriptor space, adjacent to the common 
block or to the last subroutine called. All descriptors are set to 
'null string'. 

Layout of the Recall Control Block: 

Save area for : 
Recall registers; 
Elements common to both 

environments; 
Pointers to Pcb/Scb save 

areas in the RCB; 
Pointer to pseudo 'TS' 

workspace; 

Available space up to the size 
of 1 frame. 

!--------------------------------------------------------------! 
! Save area (1 frame) for Recall PCB. ! 
!--------------------------------------------------------------! 
! Save area (1 frame) for Recall SCB ! 
!--------------------------------------------------------------! 
! Save area (1 frame) for Basic ! 

PCB, with: 
BDESCfBL -> 'main' 

descriptor space 
! SCALE# set to zero ! 
!--------------------------------------------------------------! 

Save area (1 frame) for Basic SCB 
!--------------------------------------------------------------! 

Pseudo 'TS' workspace, up to ! 
a maximum of 128K ! 

!--------------------------------------------------------------! 

Summary of the proposed new interface, at the end of Recall 
compilation: 

<-------------> <---------------> <-----------> .... <------> 
(1) (2) (2) (2) 

(1): Common or 'main' descriptor table, possibly including 
some area reserved for the debugger. Some of the descriptors 
are pre-initialized with values. If possible, enough contiguous 

----------_._----------------

Page - 140 -
The Ultimate Corp. 

Proprietary and Confidential 



c 
Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

space has been obtained to fit the common block and ANY of 
the subroutines that may be called. That way the common area 
never has to move (see also the CALL specification 
document). 

(2): Subroutine's independent descriptor space. All descriptors 
are set to 'null string'. 

Layout of the Recall Control Block: 

Basically the same as before. If the pointers to the 
common and subroutine descriptor blocks are kept in 
virtual (which is not mandatory), some elements will 
have to be defined differently (32 bit values instead of 
storage registers). Also, the SR type elements in the 
control block are not properly aligned for the HP 
systems. This needs to be fixed. 

Steps taken at execution time: 

The code starts at label 'CALL.BASIC' in RCL-SUBS 1. The input data has 
been stored by Recall in the 'pseudo' TS buffer, pointed to by TSBEG. 

Copy the current item-id into the BMS buffer, which would normally 
already be there except in the case we come from a SELECT. 

Save the Recall PCB/SCB and registers into the RCB. Do NOT switch to 
the Basic environment yet. 

Pick up, from the compiled string, the index number for this subroutine, as 
saved during compilation (see above). 

! Current step ! New step 
!---------------------------------------------------------------------------------------------------

MOV BDESCfBL,R15; INC R15,R.SUBPTRS, 
.... MOV R15,SUBS.PTR : set the register 
to the 'main' descriptor table, position 
to the 'subroutine pointer' table, use 
the index to position to the appropriate 
entry and save the resulting address in 

Page - 141 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix H: Recall calling Basic subroutine 

the RCB. 

December 4, 1991 4:43 

! Notes 22/25 
! 

If the 'repeat value' in the current entry is zero (no other multivalues to 
extract from previous data), the following steps are taken: 

a pointer to the current data string (TSBEG) is saved in the RCB. 

the values of CTR5, CTR12 and CTR13 (current attribute, value and 
subvalue position) are saved in the RCB. 

the values of CBIT/DBIT/Cl are examined and a resulting value is 
saved in the RCB. 

if not previously done, a pointer to the entire item (SRO) is saved in 
the RCB. 

the environment is switched to Basic by restoring the PCB/SCB from 
the save areas in the RCB. 

Current step 

SRA R6,XFF; MOV R6,SYSRO; MOV SYSRO,R6 
DCD R6,R3 : detach and reattach 
R6 and execute a dummy opcode to 
force a reload of the Basic 
elements known to the 7000 fmnware 

If not done on previous calls for the 
same item: 

BSL R.SA VE.ITEM: 
Initialize common descriptor 

at offset 60 with a 
pointer to the entire 
item (SRO), as saved in 
the RCB. 

Initialize common descriptor 
at offset 50 with a 
pointer to the item id, 
as saved in the BMS 
buffer. 

MARKRTN : start with a 'clean' stack 

Page - 142 -
The Ultimate Corp. 

Proprietary and Confidential 

, 
! Out 
! 

! 

! New step 

! Notes 14/15 
! 

! 
! 
! Notes 14/15 
! 
! Keep 
! 



( ', 
'" 

Appendix H: Recall calling Basic subroutine 

MOV x'7COl',R3;TO; ... BSL SA VE.RTN.PTRS 
INC R3,50 : push a return marker 
on the stack, and save ISBEG, OSBEG 
COMDSP, R6 and DAFIO on the stack 

Using the pointer to the 'subroutine 
entry' saved in the RCB, set R6, 
ISBEG and COMDSP to the values 
stored in the table. 

Initialize common descriptors at offset 
70, 80, 90 and 100 with the 
respective values of erRS, CI'R12, 
CI'R13 and CBIT/DBIT/Cl as saved in 
the RCB. 

Initialize the SUBROUTINE descriptor at 
offset 30 (first variable) with a 
pointer to the Recall data (TSBEG) 
as saved in the RCB. 

DEC R3,50 : reset the stack 

SB RCLFLG : set for runtime 

MOY R6,OSBEG : save pointer to object 
code start (including header). Done 
mostly for the debugger. 

INC R6,objeccheader_size+size_oCabon_ 
instruction : skip the header and 
the abon instruction. The abon is 
there to prevent the subroutine to 
be executed as stand alone code. 

Notes, as they appear in the 'New step' column: 

December4,1991 4:43 

! 
! Note 30 
! 

! 
! 
! Notes 22/31 
! 
! 

! 
! Note 14 
! 

, 
! 
! Note 14/15 
! 
! Note 30 
! 
! Keep 
! 

! 
! Keep 
! 

! 
! Note 20/ 
! Equivalent 
! 

30: The elements are pushed on the stack to simulate 
the CALL interface and to comply with the code 
done for RETURN. We should be able to avoid this 
(DAFlO may have to be saved and restored) 
especially since there are no 'main' values to 
restore. Refer to the CALL specifIcation. 

31: The new runtime needs to fetch the object code 
pointer and, if kept in virtual, the pointers 
to the 'main' and 'subroutine' descriptor tables, 
from the save area that we decided to use (see 

Page - 143 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

note 22). 

The code then falls into the CALL routine to validate argument 
passing (not needed in this case) before executing the first DCD 
instruction. 

If the repeat value in the subroutine table entry is greater than zero, it 
means that the return string from the last call contained multivalues which 
have not been passed to Recall yet. Until these multivalues are exhausted, 
there is no need to call the subroutine again: 

Current step 

A register is set pointing to the data 
string from offset 30 in the 
subroutine's descriptor space, 
which is the data last returned by 
the subroutine (C.DA TA). The repeat 
value is then used to scan to the 
appropriate multivalue and the 
resulting pointer is saved in the 
RCB. 

Notes, as they appear in the 'New step' column: 

35: We need a routine that can fetch the data from 
a descriptor and return it to virtual. In the 
case of a string, it should be able to return 
a pointer to the string as well as to copy the 
string into a virtual buffer. Refer to the 

! New step 

! 
! Note 35 
! 

LmRAR Y CALL specification for some thoughts on 
this subject. 

The code returns to Recall via the 'Steps taken on exit' (see below). 

Page. 144 • 
The Ultimate Corp. 

Proprietary and Confidential 

c 



c 

Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

Steps taken upon return from the subroutine calli 

Current step ! New step 

In the fmal RETURN opcode execution ! 
R6, OSBEG, DAFlO, ISBEG and COMDSP! 
are restored with the values saved ! 
on the stack. ! Note 30 

! 
BSL R.SA VE.BAS : Save the Basic PCB/SCB 

in the RCB. 

A register is set pointing to the data 
string from offset 30 in the 
subroutine's descriptor space, 
which is the data returned by the 
subroutine (C.DATA). The register 
is saved in the RCB. 

RTNMARK : clear return stack up to marker 

Steps taken on exit: 

! 
! Keep 
! 
! 

! 
! 
! 
! Note 35 
! 
! Keep 
! 

The Recall PCB/SCB and registers are restored from the RCB. 

The Item-id is copied back into the BMS buffer, in case the subroutine 
clobbered it (this buffer is used in both environments). 

Current step 

The return string, as pointed to by the 
saved SR in the RCB, is copied into 
Recall's TS buffer, up to the first 
SVM/VMIAM/SM found. 

Skip any subvalues and position at the next 
VM/AM/SM 

Using the pointer to the subroutine table 

Page - 145 -
The Ultimate Corp. 

Proprietary and ConfidenJial 

! New step 

! 
! 
! Note 35 
! 
! 
! Keep 
! 



Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

entry saved in the RCB, increment 
the repeat flag if the trailing marker 
is a VM (more multivalues to extract) 
or zero it otherwise. 

! 
! 
! Note 22 

- ! 
Set HBIT = 1 if more multivalues to extract. ! Keep 

! 

Conclusions; 

Some of the details of the current implementation need to be reviewed with 
Chandru. 

There is a need for a routine that can initialize a descriptor table (to either 
'non assigned variable' or to null string). This descriptor space must 
remain in place until the Basic runtime execution starts, and also in 
between each call to it. 

There is a need for a routine that can update a given descriptor with 
alphanumeric or string value. If the descriptor initialization routine returns 
a starting address to Virtual, the latter can then use this as an input 
argument to this new code, since we may have multiple descriptor spaces 
floating around. 

There is a need for a routine that can pass to Virtual either a pointer or a 
copy of a given descriptor value. 

The format of the call from Virtual to start the runtime execution could be 
something like: 

runtime( object_ptr, common_ptr, subr_ptr, flags ); 
! !!! 

! ->whatever; 
------->pointer to the 

subroutine's 
! descriptor space; 
->pointer to the common 

! variables descriptor space; 
->pointer to the object code, including 

Page • 146 • 
The Ultimate Corp. 

Proprietary and Confidential 

c; 

c 



I 
Appendix H: Recall calling Basic subroutine December 4, 1991 4:43 

the header. 

For nonnal Basic execution (ex: RUN verb), the pointers to the 
common and subroutine descriptor tables would be null since they 
are not pre-initialized. 

Page. 147 • 
The Ultimate Corp. 

Proprietary and Confidential 



Appendix H: Recall calling Basic subroutine 

Page - 148 -
The Ultimate Corp. 

Proprietary and Confidential 

December 4. 1991 4:43 



Appendix I: Runtime initialization December 4, 1991 4:43 

C Appendix I: Runtime Initialization 

c 

T k f d b h B · t· . ·t· •. t· as S per orrney t easle rup Irne Ipl la Iza lOP: 

What follows is a list of all the current steps the Basic initialize code goes 
through, when called by the RUN verb, before executing the first DeD 
instruction. A column to the right indicates the action to take by Optimized 
Basic, based on the following conventions: 

Keep step should be done the same way in the new 
runtime; 

Equivalent step should be done but the new architecture 
imposes different code; 

Out 
? 

no longer needed; 
undetermined at this time; 

Note n See note number 'n' at the end of the list; 

The list starts after the retrieval of the object code from the file system ( 
see mode BRPOO, label '!RUN3' ). At that point the new code can split 
away from the existing one to handle the Optimized Basic object code. 

The 'new steps' are set based on the following assumptions: 
- the descriptor table is no longer kept in virtual space; 
- strings are also kept outside virtual space and 'garbage collect' is 
either not needed or done inside the new runtime; 
- the Basic stack is either no longer used or is private to the new 
runtime; 
- the (I) option on the RUN is not supported; 
- the object header for the new runtime will have a different format 
than the one from the current object. 

! Current step 

Check Basic revision level by comparing the 
revision in the object header with the 
value stored in BRPOO. 

BSL INITSTK : initialize STKBEG, STKEND for 

Page - 149 -
The Ultimate Corp. 

Proprietary and Confidential 

! New step 

! 
! 
! Keep 
! 



Appendix I: RUIIlime initialization 

DATA statements. 

BSL BD-SETUP : initialize Basic debugger 

Initialize CfRO with the count of bytes in 
the primary workspace ( 6 frames) to 
preserve in the ISIOS buffers 

BSL HSSET : set R3 to the start of the HS 
buffer ( PCB + 64 ) 

MOY R3,PAGHEAD; INC R3,15oo : initialize 
1500 byte area for heading/footing 

MOY R3,UPDBEG; MOY BUFSlZES,C567 
Initialize free space pointer & sizes 

INC R5,CfRO : set R5 at start of temp space 

MOY ISBEG,R4; INC R4,CfRO; MOY R4,BDESCTBL 
Initialize the start of the descriptor 
table. 

BSL DESCINIT : initialize the descriptor 
space + 90 bytes for the debugger to 0 

BSL FREEINIT: initialize freespace table 
and counters 

BSL INIT ARGS : initialize argument fields 
for GET(ARG.) & pointer for GET(MSG.) 

BSL INITTSTACK : 
Set R3 to special stack frame & setup 

automatic xmode for it 
MOY BWRAPUP,WMODE : set Basic wrapup 
Initialize 200 byte save area prior to 

R3 (for COLI, COL2, INMAT ... ) 
MOY R3,HSBEG; MOY R3,HSEND 
MOY BSPACE,xMODE : init for temp space 
Store the following elements in the save 
area: 

BASE of program file; 
BASE of SYSLffi file; 
INHIBITIl; 

Reserve a 1500 byte area prior to the 
start of temp space (ISEND) for the 
INPUT@ messages 

Store scaling factor from object header 
in PCB SCALE# (used in format mask) 

Calculate the scale value and store 

Page. 150 • 
The Ultimate Corp. 

Proprietary and Confidential 

December 4, 1991 4:43 

!Keep 
! 
! Note 1 
! 
! 
! 
! Note 2 
! 
! 
! Keep 
! 
! 
! Keep 
! 
! 
! Out 
! 
! Keep/Note3 
! 

! 
! Out/Note 4 
! , 
! Notes 4&5 
! , 

Out 

Keep 

! 
!Out 
! Equivalent 
! 
! Note 6 
! Out ! 
! Keep/Note 3 ! 
! ! 

! 
! Notes 6&7 
! 
! 
! Keep 
! 
! Keep 
! 

! 

c 

c 



.. _------_ .. _------ .... _--

Appendix I: Runtime initialization December 4, 1991 4:43 

c 

in PCB SCALE. 
MOV X'8000',COMDSP: initialize for 

access to COMMON variables 
ZB SB8; ZB SB9 
ZERO PFILE, init PRMPC, SB BASICFLG 

SB NOBLNK, set ICB bits 
Copy 10 byte object header into 

descriptor 0 

BSL INPUT@.INIT : initialize the INPUT@ 
message area with the ERRMSG text 
strings. 

Core lock the OPCODES frame & save the 
buffer address in BOPS for the fmnware 

BSL SETLPTR; SB PBIT : init printer settings 
if PFLG set. 

ZB PAGINATE: tum pagination off 

Detach & reattach R6 for 7000 fmnware 

BSL INITSY : if an external select list is 
present (DAFIO = 1), get a frame from 
overflow, initialize it as a type 60 
descriptor pointing to a select list, 
set the data start & end to the top of 
the list (NEXTITM), and update 
descriptor 2 (SY) as a type 60. Also set 
@SELECfcount in the save area = D9. 

Notes, as referred to in the 'New step' column: 

! Note 8 
! 
! OutINote 9 
! ????? 
! 
! Keep 
! 
! Note 10 
! 

! 
! Keep 
! 
! 
!Out 
! 
! 
! Keep 
! 
! Keep , 
! Out 
! 

, 
! 
! Note 7 
! Note 11 
! 

1: if we keep the current debugger, the same routine can probably be 
used. If not, we may need to write equivalent code. 

2: keep for OS buffer. IS becomes available because the descriptors 
are kept in the Kernel. 

3: the temp space is likely to be used in some of the instructions that 
will remain in virtual. 

4: a routine needs to initialize the new runtime verSIOn of the 

Page - 151 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix I: Runtime initialization December 4, 1991 4:43 

descriptor table. This implies that the descriptor entries are static 
variables. 
Careful : SR9 still needs to be set = ISBEG for the !NIT ARGS 
routine! 

5: we may have to initialize some data structures for the debugger. 

6: for fast access, these elements need to be kept as global variables 
in the C runtime. They can be initialized at the same time as the 
descriptor table, as 'static' elements. 

7: the interface for 'Recall calling Basic' requires the capability of 
updating Basic descriptors with values from virtual. A similar 
routine can be used here to update these global elements. 

8: the value can be initialized when the new runtime gets started, 
based on the object header contents. 

9: the mechanism by which we can avoid the check for common on 
each descriptor access is explained in the document relative to the 
CALL interface. 

10: this is done for 'Recall calling Basic'. This should not be needed 
anymore. Refer to the RECALL document. 

11: something equivalent needs to be done. Depending on how the 
READNEXT instruction is handled ( in virtual or inside the new 
runtime ) it may make sense to copy the data into a C variable, for 
efficiency. 

Conclusions: 

I suggest that we do NOT support a mix of old and new program types ( 
old object CALLing optimized object, optimized object CHAINing old 
object, ... ) to avoid the complexity in the code. 

I also suggest to make a clean cut between the existing code and the new 
initialize routines, instead of having the same piece of code handle both 
environments. With a minimum effort in rearranging the current code, we 
should be able to avoid most of the duplication. 

Page - 152 -
The Ultimate Corp. 

Proprietary and Confidential 



(\ 

( 

Appendix I: Runtime initialization December 4, 1991 4:43 

There is a need to pre-initialize certain descriptors. 

There is a need to pre-initialize certain global variables. 

The issues raised in this document need to be addressed in conjunction with 
the ones from the 'Recall calling Basic', 'Update' and 'Call' documents. 

Page· 153 • 
The Ultimate Corp. 

Proprietary and Confidential 



Appendix I: Runtime initialization 

Page • 154 • 
The Ultimate Corp. 

Proprietary and Confidential 

December 4, 1991 4:43 



( 

c: 

· --.. --.--_._---_._._ .. _ .. _ ............ _._ ........• 

Appendix J: Library calls December 4, 1991 4:43 

Appendix J: Library calls 

Significance of Library calls to the Basic optimization project: 

The vast majority of the current Library calls are not currently used in the 
Ult/PLUS environment since they relate to Vterm, the Performance 
Monitor and the 1400 Diskette driver. The following is a list of the calls 
that are likely to be used in Ult/PLUS: 

upd$setupdflg 
upd$zeroupdflg 
vf$valprc 
vf$valaccount 
vf$valuser 
vf$getmax 
sf$bwhere 
sf$Iogoff 
sf$logon 
sf$sec.status 
sf$getxcb' 
sf$getrtn 
sf$getwsp' 
sf$translate.on 
sf$translate.off 
sf$create.iotrans 
sf$getlocks 

Current interface between Basic and the Library calls: 

The Basic compiler generates code similar to the normal CALL 
instruction. The Library definition in the R -module can request, for each 
argument in the call, to have it passed by value or by reference. The best 
way to illustrate the current mechanism is with an example: 

Library call 'sf$Iogoff is defined as having 4 arguments: 
10 push dope vector on stack 
OC push argument value on stack 

Page - 155 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix J: Library calls 

oc 
OC 

same 
same 

December4.1991 4:43 

The LOGOFF program in SYSLIB initializes 3 arguments, for 
example 

PROCESS=10 
OPTIONS=O 
TIME=200 

then calls the function 
CALL sf$logoff(USER,TIME,OPTIONS,PROCESS) 

The object code produced is 
BD 10xxxxOCxxxxOCxxxxOCxxxx09mmmmFF54 

where 
xxxx is a descriptor offset 
mmmm the ep and mode-id for the call 
BD markstack 
54 Library call opcode. 

The operands pushed on the stack are 
0100- 6 byte number-OOOO 
0100- 6 byte number-OOOO 
0100- 6 byte number-OOOO 
1000- descriptor address-
7COO- bottom stack mark-

To parse the arguments, the runtime does 
POPN R3 
DIVX SCALE 

To update the return value, from FPO, it does 
MULXSCALE 
BSLSTOREN 

Ipterface with Optimized Basic: 

Since the old interface uses the stack, the proposed interface is the same as 
for other cases where Virtual code needs to be invoked. 
Two possible interfaces are described here. 

Page - 156 • 
The Ultimate Corp. 

Proprietary and Confidential 

c 



Appendix J: Library calls December 4, 1991 4:43 

Transparent interface to Virtual: 

Inside the new runtime, set up arguments from the object code: 
argl = V ALUE_FROM_DESCRIPTOR( INDEXl ); 
arg2 = V ALUE_FROM_DESCRIPTOR( INDEX2 ); 

then call a C function that is the front end to the Virtual code: 

logoff( *argl, arg2, arg3, arg4 ) 

This C code is located inside the Virtual mode, and initializes the 
Pcb/Scb elements: 

CTR 1 0 = arg2; 
T4 = arg3; 
T5 = arg4; 

It then falls through into the Virtual code. At the end of it, another 
small piece of C code provides the return interface: 

*argl = CTRll; 
returnO; 

The runtime now updates the descriptor table with the new value: 

DESCRIPTOR_ VALUE( INDEXl ) = argl; 

NOTE : the C code shown here is for illustration purposes only. If 
implemented, it is likely to look quite different, for example by 
avoiding some of the assignments. 

Advantage: 

The interface is clean, providing a clear distinction between 
the new Basic runtime and existing virtual code. A virtual 
coder does not need to modify the Basic runtime in order to 
change the Virtual element usage of the routine. 

Page - 157 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix J: Library calls December 4, 1991 4:43 

Disadvantage: 

Performance loss due to the extra interface layer ( 
kernel_table -> C argument -> Virtual argument ). 

Direct interface to Virtual: 

Inside the new runtime, directly initialize the Virtual elements: 
CTRIO = VALUE_FROM_DESCRIPTOR( INDEXI ); 
T4 = V ALUE_FROM_DESCRIPTOR( INDEX2 ); 

then call the virtual code: 
pick_subcall( BSL_ TYPE, ep_from_obj, fid_from_obj ) 

The virtual code ends with a RTN instruction. The runtime updates 
the descriptor table directly from virtual: 

DESCRIPTOR_ V ALUE( INDEX3 ) = CTRll; 

NOTE : the C code shown here is for illustration purposes only. If 
implemented, it is likely to look quite different, depending for 
example on how numeric values are stored internally. 

Advantage: 

This interface is fast. 

Disad vantage: 

The new runtime and the Virtual code are completely 
imbricated. Changes to the element usage requue 
modifications in both environments. 

Strine areument passinc 

Either scenario needs to deal with passing strings from the C runtime 
environment to virtual. The easy way is to write a routine that copies 

Page - 158 -
The Ultimate Corp. 

Proprietary and Confidential 

C\ 
.: " 



(.'" 

j 

Appendix J: Library calls December 4, 1991 4:43 

data from one environment to the other and systematically copy the 
data. 
In some instances however, when it is determined that the string is 
not passed down to processors other than Basic, it would be nice if it 
did not need to be copied. 

Here are some thoughts: 

Conclysion: 

- keep a flag associated with the register that points to the 
string, indicating it is located outside virtual space. All string 
instructions must be changed to look at that flag. Instead of a 
flag we could also use register numbers greater than 15. 

- provide a new class of instructions that know how to deal 
with C strings. This implies that changes need to be made to 
virtual to specifically use these instructions. 

I suggest a Team meeting to discuss the issues listed above and possibly 
consider some alternatives. 
Three considerations should guide the final decision: 

- performance, 
- transparency of the code to the virtual coder ( make it easy to 
change ), 
- readability of the code. 

pqge - 159 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix J: Library calls 

Page - 160 -
The Ultimate Corp. 

Propriela!J and Confidential 

December 4, 1991 4:43 

o 



Appendix K: String and space management December 4, 1991 4:43 

Appendix K: String and space 
management 

Introduction; 

This paper discusses the implementation of Basic descriptor space and Basic 
string space. Both today are implemented as frames in shared memory. The 
descriptor space is implemented in the user secondary workspace where as 
the string space is taken out of the workspace and the overflow. 

Seamlessness: 

One major reason for the slowness of Ultimate PLUS is the fact that the 
product was not originally architectured for UNIX. Tools were 
architectured to allow the traditional architecture to run under UNIX. The 
effect of that is that some operations that used to be native operations on 
the traditional machine became software operations in UNIX that do not 
necessarily take full advantage of the native operations in UNIX. 

One area that falls in this category is descriptor and heap space 
management. Basic makes use of both descriptors and a heap. Both are 
implemented in virtual frames using concepts such as register attachments 
and frame faulting. 

The idea is to try to implement both concepts by using features that are a 
lot more natural to UNIX. 

Space manaa:ement in Basic: 

The descriptor space can be implemented as a piece of memory that comes 
out of the UNIX/C process heap space. When a Basic program is started, a 
chunk of memory would be allocated to fit the necessary number of 
descriptors. A descriptor would be defined as a C data structure that can 
hold all the different types of descriptors (we would not be limited to the 
ten byte descriptor length anymore). The same approach would be used for 

Page. 161 • 
The Ultimate Corp. 

Proprietary and Confidential 



Appendix K: String and space management December 4, 1991 4:43 

strings. 

This approach will allow the Basic runtime to avoid dealing with attaching 
registers and frame faulting. Further more, because C structures are being 
used to represent descriptors, the C compiler would generate proper 
alignment resolving the bus exception issue on the HP series. C structures 
will also allow a more natural representation of native C types that would 
be used in Basic (floating point is an example if it turns out to be feasible to 
use). 

Basically, as we have concerned ourselves so far with the seamlessness of 
Ultimate PLUS with UNIX at the user level, this type of design will allow 
us to be more seamless at an architecture level. The heap of a running 
program becomes the same as the heap of that UNIX process instead of 
being some data structure implemented on top. 

Heap manipulation: 

The traditional way to manipulate the UNIX heap is through the use of the 
malloc( )/free( )/realloc() set of C library calls. In our case, these routines 
might turn out to not be powerful enough for two types of reasons: 
efficient garbage collection and powerful debugging capabilities. 

Whereas the C library routines will do fine to get the project moving, I 
anticipate a time where we will have to write a customized version that 
would resolve those deficiencies. This task is a tricky one and can require 
as much as two weeks of someone's time. 

One important side effect of this implementation is the fact that both 
descriptor and string space are being moved from a memory that all users 
running on that same virtual machine can see and reference to one that is 
local to the process. This might force us to put in place a mechanism by 
which a program running Basic can copy his descriptor and string space to 
a piece of shared memory when requested. This would allow another 
process to be able to look at him. 

Page. 162 • 
The Ultimate Corp. 

Proprietary and Confidential 



(:" 

Appendix K: String and space management December 4. 1991 4:43 

Fairpess; 

To be fair more than one approach should have been considered. But, in 
this case, the old mechanism is so obviously deficient under UNIX and the 
proposed one so natural, that no other solution could be figured out as of 
now. 

Page - 163 -
The Ultimate Corp. 

Proprietary and Confuiential 



Appendix K: String and space management 

Page - 164 -
The Ultimate Corp. 

Proprietary and Confidential 

December 4, 1991 4:43 

C•·· j 



Appendix L: Currelll opcode table December 4. 1991 4:43 

(:', Appendix L: Current opcode table 

.00 MODEM ERROR 

.01 MODEM BD-EOL 

.02 MODEM 3,BRP06 

.03 MODEM 6,BRP07 

.04 MODEM 9,BRP04 

.05 MODEM ERROR 

.06 MODEM 3,BRP41 

.07 MODEM I5,BRP06 

.08 MODEM 0,BRP06 

.09 MODEM 6,BRP43 

.OA MODEM 8,BRP41 

.OB MODEM 9,BRP41 

.OC MODEM 3,BRP3I 

.00 MODEM 6,BRPOI 

.OE MODEM 0,BRP31 

.OF MODEM 6,BRP06 

.10 MODEM 0,BRP37 

.11 MODEM 1,BRP49 

.12 MODEM 6,BRP41 

.13 MODEM 6,BRP41 

.14 MODEM ERROR 

.15 MODEM ERROR 

.16 MODEM ERROR 

.17 MODEM ERROR 

.18 MODEM ERROR 

.19 MODEM 5,BRP4I 

.1 A MODEM 2,BRP43 

.1 B MODEM 6,BRP34 

.IC MODEM ERROR 

.10 MODEM 7,BRP41 

.IE MODEM 4,BRP41 

.IF MODEM IO,BRP41 

.20 MODEM ERROR 

.21 MODEM 5,BRP06 

.22 MODEM ERROR 

.23 MODEM ERROR 

.24 MODEM ERROR 

EOL 
POP NUMBER (POPN) error handler 
PUSH DESC (PUSHD) error handler 
POP STRING (POPS) 
PUSH NUMBER (PUSHN) 
BRANCH 
PUSH I 
PUSH 0 
PUSH STRING 
COND BRANCH TRUE 
COND BRANCH FALSE 
PUSH ADDRESS 
STORE at ADDRESS (STOREA) 
EQUAL 
NOT( .. ) 
PUSH ABS ADDRESS 
INCREMENT 
BRANCH EQUAL LIT STRING 
BRANCH UNEQUAL LIT STRING 
STRING BRANCH TRUE (Defer) 
STRING BRANCH FALSE (Defer) 

Fast FOR 
MULTICAT (1 byte subopcode follows) 
PASSMAT 

GOSUB 
FORNEXT 
RETURN TO 
DUMMY AFTER REMOVE 
OR 

Page - 165 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix L: Current opcode table 

.25 MODEM 1,BRP31 

.26 MODEM 8,BRP06 

.27 MODEM 2,BRP53 

.28 MODEM ERROR 

.29 MODEM 3,BRP02 

.2A MODEM 0,BRP27 

.2B MODEM 0,BRP30 

.2e MODEM 1,BRP36 

.2D MODEM 1,BRP30 

.2E MODEM ERROR 

.2F MODEM 0,BRP32 

.30(0) MODEM 3,BRP05 

.31(1) MODEM 1,BRP02 

.32(2) MODEM 15,BRP08 

.33(3) MODEM 0,BRP16 

.34(4) MODEM 6,BRP02 

.35(5) MODEM 3,BRP02 

.36(6) MODEM 4,BRP02 

.37(7) MODEM 0,BRP58 

.38(8) MODEM 6,BRP02 

.39(9) MODEM 7,BRP02 

.3A MODEM 9,BRP18 

.3B MODEM 4,DYNAMIC 

.3C MODEM 2,BRP31 

.3D MODEM 1,BRP05 

. 3E MODEM 1,BRP36 

.3F MODEM O,BRP57 
AO(@) MODEM 3,BRP50 
Al(A) MODEM 3,BRP26 
A2(B) MODEM 1,BRP03 
A3(C) MODEM 7,BRP18 
A4(D) MODEM O,BRPI7 
A5(E) MODEM 4,BRPll 
A6(F) MODEM 2,BRPI5 
A7(G) MODEM 0,BRP24 
A8(H) MODEM 10,BRP03 
049(1) MODEM ERROR 
AA(J) MODEM O,BRPI0 
AB(K) MODEM 11 ,BRP51 
AC(L) MODEM I,BRPI6 
AD(M) MODEM I,BRP59 

LESS THAN OR EQUAL 
AND 
PROMPT 

READVU 
MULTIPLY 
ADD 
MATREADU 
SUBTRACf 

DIVIDE 
OPEN x,y ... 
DELETE [fileitem] 
CLEARFILE 

December 4, 1991 4:43 

SELECT (1 byte subopcode follows) 
READU 
READV 
WRlTEV 
SELECT BY index 
READ 
WRITE 
INPUTCLEAR 
PVF A push value from address 
LESS THAN 
OPEN x ... 
MATREAD 
MATWRlTE 
ONGOTO 
ABS( ... ) 
PRINTER 
INPUT ONE BYTE (INPUTZERO) 
INPUT 
EXIT 
GET(. .. ) 
SUBSTR 
HEADING FOOTING (1 byte subopcode follows) 

FMT(. .. ) 
INPUTCONTROL 
READNEXT VAR (1 byte subopcode follows) 
READPREV V AR (1 byte subopcode follows) 

Page - 166 -
The Ultimate Corp. 

Proprietary and Confidential 

o 

C) 



Appendix L: Current opcode table 

AE(N) MODEM 1,BRP27 
AF(O) MODEM 0,BRP04 
.50(P) MODEM 8,BRP03 
.51(Q) MODEM 9,BRP03 
.52(R) MODEM 0,BRP34 
.53(S) MODEM 4,BRP43 
.54(T) MODEM 4,BCALLI 
.55(U) MODEM ERROR 
.56(V) MODEM 0,BRP54 

.57(W) MODEM 2,BRP13 

.58(X) MODEM 4,BRP18 

.59(Y) MODEM 2,BRP06 

.5A(Z) MODEM 8,BRP03 

.5B MODEM 0,BRP48 

.5C MODEM 5,BRP03 

.5D MODEM 7,BRP06 

.5E MODEM 2,BRP03 

.5F MODEM 6,BRPOl 

.60 MODEM 8,BRP08 

.61 MODEM 3,BRP43 

.62 MODEM 2,BRP04 

.63 MODEM 3,BRP04 

.64 MODEM 2,BRP54 

.65 MODEM 1,BRP52 

.66 MODEM 0,BRP43 

.67 MODEM 4,BRP04 

.68 MODEM 5,BRP04 

.69 MODEM 2,BRP50 

.6A MODEM 7,BRPll 

.6B MODEM 8,BRP04 

.6C MODEM 1,BRP50 

.6D MODEM 5,BRP50 

.6E MODEM 2,BRP21 

.6F MODEM 3,BRP21 

.70 MODEM 6,BRP49 

.71 MODEM 4,BRP09 

.72 MODEM 5,BRP09 

.73 MODEM 5,BRP43 

.74 MODEM 3,BRP54 

.75 MODEM I,BRP54 

NEGATE 
TAB 
PRINTCRLF 
CRLF 
RETURN 
SPACE(. .. ) 
LmRARY function call 

December 4, 1991 4:43 

reserved for RETURN expression 
BITAND( .. )IBITOR( .. )/BITXOR(..) one byte 
subcode follows 
TAN( ... ) 
PRINTERR 
NUM( ... ) 
PRINTCAT 
RELEASE COMMON 
PRINT ON 
ERRSETUP 
RQM SLEEP 
STORE 
RND( ... ) 
TRIM{B,F}( ... ) (1 byte subopcode follows) 
MATCH( ... ) 
CHAR( ... ) 
DATEO 
CHAIN 
FIELD( ... ) 
COLI0 
COL20 
INT 
CLEAR 
SEQ 
LEN( ... ) 
MAT 
ICONV(. .. ) 
OCONV( ... ) 
PAGE (1 byte subopcode follows) 
ASCII( ... ) 
EBCDIC( ... ) 
STR( ... ) 
TIMEDATEO 
TIMEO (1 byte subopcode follows) 

Page - 167 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix L: Current opcode table 

.76 MODEM 6,BRP20 

.77 MODEM 3,BRP36 

.78 MODEM 10,BRP18 

.79 MODEM 6,BRP18 

.7 A MODEM 15,BRP18 

.7B MODEM 8,BRP03 

.7C MODEM 8,BRP03 

.7D MODEM 3,BRP34 

.7E MODEM 0,BRP50 

.7F MODEM 2,BRP07 

.80 MODEM O,BRP13 

.81 MODEM 1,BRP13 

.82 MODEM 0,BRP25 

.83 MODEM 0,BRP26 

.84 MODEM 3,BRP13 

.85 MODEM 0,BRP14 

.86 MODEM 3,BRP19 

.87 MODEM 2,BRP05 

.88 MODEM 0,BRP22 

.89 MODEM 0,BRP32 

.8A MODEM 3,BRP25 

.88 MODEM 1,BRP53 

.8C MODFM 3,BRP42 

.80 MODEM 0,BRP56 

.8E MODEM 4,BRP50 

.8F MODEM 1,BRP21 

.90 MODEM 6,BRP21 

.91 MODEM O,DYNAMIC 

.92 MODEM 0,BRP29 

.93 MODEM l,BRP28 

.94 MODEM 0,BRP28 

.95 MODEM 0,BRP61 

.96 MODEM ERROR 

.97 MODEM 3,BCALL 

.98 MODEM ERROR 

.99 MODEM 4,BRP13 

.9A MODEM 7,BRP02 

.9B MODEM 4,BRP02 

.9C MODEM 0,BRP57 

.90 MODEM O,BCALL 

CLOSE 
MATCOPY 
INDEX( ... ) 
CURSOR( ... ), @( ... ) 
CURSOR(x) (one parameter) 
DISPLAYCAT 
DISPLA YCRLF 
SUBR 
SORT( ... ) 
WEOF 
SIN( ... ) 
COS( ... ) 
LN(. .. ) 
EXP( ... ) 
SQRT( ... ) 
PWR( ... ) 

December 4, 1991 4:43 

FILEINFO(.) INDEXINFO(.) (l byte subopcode 
follows) 
COUNT( ... ) 
SYSTEM ( ... ) 
REM( ... ) MOD( ... ) 
STOP 
RELEASE ALL 
DATA 
BEGIN SCREEN 
ONGOSUB 
BREAK ON-OFF 
ECHO ON-OFF 
INSERT( ... ) INS 
REPLACE( ... ) <.>= 
EXTRACT(. .. ) <.> 
DELETE(. .. ) DEL 
LOCATE( ... ) 

CALL @ (INDIRECT) 

ALPHA( ... ) 
WRITEU 
WRITEVU 
MAlWRlTEU 
CALL direct 

Page - 168 -
The Ultimate Corp. 

Proprietary and Confidential 

o 



Appendix L: Current opcode table December 4, 1991 4:43 

(~ 
.9E MODEM 4,BRPII ABORT 
.9F MODEM 2,BRPOS DCOUNT(. .. ) 
.AO MODEM DEBUG DEBUG 
.AI MODEM S,BRPOS LOCK 
.A2 MODEM 7,BRPOS LOCK ELSE 
.A3 MODEM ERROR 
.A4 MODEM ERROR 
.AS MODEM ERROR 
.A6 MODEM 6,BRPOS UNLOCK UNLOCKALL (I byte subopcode 

follows) 
.A7 MODEM ERROR 
.AS MODEM 2,BRPS2 ENTER 
.A9 MODEM ERROR 
.AA MODEM 6,BRP02 RELEASE 
.AB MODEM O,BRP07 READT{fXffL (1 byte subopcode follows) 
.AC MODEM 1,BRP07 WRlTETffXffL (1 byte subopcode follows) 
.AD MODEM 3,BRP07 REWIND 
.AE MODEM 9,BRP51 PUSH ABSOLUTE DOPE VECTOR 
.AF MODEM 9,BRP51 PUSH ABSOLUTE ARRAY ADDRESS 
.BO MODEM 6,BRP03 PROCREAD 
.B 1 MODEM 7,BRP03 PROCWRITE 

<_. .B2 MODEM 1,BRP61 LOCATE 
.B3 MODEM ERROR 
.B4 MODEM 2,BRP38 EXECMARKST ACK (1 byte subopcode follows) 
.BS MODEM O,BRP15 PUT( ... ) 
.B6 MODEM ERROR 
.B7 MODEM 6,BRP02 READULOCK 
.B8 MODEM 3,BRP02 READVULOCK 
.B9 MODEM I,BRP36 MATREADU LOCK 
.BA MODEM ERROR reserved for FILE LOCK/UNLOCK 
.BB MODEM ERROR 
.BC MODEM 11 ,BRP41 MODIFY DOPEVECTOR 
.BD MODEM 1,BRP34 MARKSTACK 
.BE MODEM 1,BRPlS SEEK(. .. ) 
.BF MODEM 3,BRPI5 EOF( ... ) 
.CO MODEM O,XMATH6 STORAGE 
.CI MODEM I,BRP45 MA TCHFIELD( ... ) 
.C2 MODEM O,XMATHI FADD( ... ) 
.C3 MODEM I,XMATHI FSUB( ... ) 
.C4 MODEM 2,XMATHl FMUL( ... ) 
.CS MODEM 3,XMATHl FDIV( ... ) 

C 
Page - 169 -

The Ultimate Corp. 
Proprietary and Confidential 



Appendix L: Current opcode table 

.C6 MODEM 2,XMA TH2 

.Ll MODEM 1,XMATH2 

.CS MODEMO,XMATH2 

.C9 MODEM 3,XMATH4 

.CA MODEM 4,XMA TH4 

.CB MODEM 2,xMATHS 

.CC MODEM 3,XMA TH6 

.CD MODEM 1,XMATH6 

.CE MODEM 1,BRP39 

.CF MODEM 3,BRP39 

.DO MODEM 6,BRP42 

.Dl MODEM 1,BRP43 

.D2 MODEM O,BRP3S 

.D3 MODEM 2,BRP28 

.D4 MODEM 2,BRP36 

.DS MODEM I,BRP42 

.D6 MODEM 2,BRP42 

.D7 MODEM ERROR 

.DS MODEM O,BRP52 

.D9 MODEM ERROR 

.DA MODEM ERROR 

.DB MODEM 5,BRP42 

.DC MODEM 6,BRP04 

.DD MODEM ERROR 

.DE MODEM I,XMATHS 

.DF MODEM 2,BRP34 

.EO MODEM 4,BRP42 

.El MODEM O,BRP42 

.E2 MODEM O,BRP44 

.E3 MODEM 3,BRP37 

.E4 MODEM 4,BRP37 

.ES MODEM S,BRP37 

.E6 MODEM 6,BRP37 

.E7 MODEM 2,BRP49 

.ES MODEM S,BRP37 

.E9 MODEM 9,BRP37 

.EA MODEM 10,BRP37 

.EB MODEM 1,BRP38 

.EC MODEM O,BRP23 

.ED MODEM O,BRP47 

* 

FCMP( ... ) 
FFIX( ... ) 
FFLT( ... ) 
SADD( ... ) 
SSUB( ... ) 
SMUL( ... ) 
SDIV( ... ) 
SCMP( ... ) 
ERRTEXT( ... ) 
USERTEXT ( ... ) 
TRAP ON 
MULTI FIELD( ... ) 
FIELD STORE 
LEFT EXTRACT 
MATPARSE 
CONVERT 
CLEARDATA 
reserved for ATAN( ... ) 
SUBSTRING STORE 
reserved for MAXIMUM( ... ) 
reserved for MINIMUM(. .. ) 
LET THEN 
INMATO 

ONECAT 
REUSEO 
Duplicate stack 
REMOVE 
SUMO 
VECTORDESC 
VECfORADDR 
MATRIXDESC 
MATRIXADDR 
NUMOBJ INCREMENT 
NUMOBJ STORE 
NUMOBJ PUSH DESC 
NUMOBJ PUSH ADDR 
EXECUTE 
Runtime variable DIM 
NAMED COMMON 

Page - 170 -
The Ultimate Corp. 

Proprietary and Confidential 

December4.1991 4:43 

o 

o 



( "," 

," 

c 

Appendix L: Current opcode table December 4, 1991 4:43 

* END run-time OPCODES - The remainder are reserved by the compiler 
* for use during pass 2 - 4 of compilation. 
* ** except F2, F3, F6, F7, FA, FB, FD ** 
* 
.EE MODEM ERROR 
.EF MODEM ERROR 
.FO MODEM ERROR 
.FI MODEM ERROR 
.F2 MODEM 6,BRP4I 

.F3 MODEM 6,BRP41 

.F4 MODEM ERROR 

.FS MODEM ERROR 

.F6 MODEM 12,BRP41 

.F7 MODEM IO,BRP41 

.F8 MODEM ERROR 

.F9 MODEM ERROR 

.FA MODEM 14,BRP41 

.FB MODEM lS,BRP41 

.FC MODEM ERROR 

.FD MODEM 13,BRP41 

.FE MODEM ERROR 

.FF MODEM 4,RCL-SUBS 1 

! DIMENSION 
! EQU NUMERIC LIT 
! EQU STRING LIT 
! EQU CHAR(XX) 
EXTENDED BRANCH EQ LIT! EQU SIMPLE 
VAR 
EXTENDED BRANCH NE LIT ! EQU SIMPLE 
TO ARRAY ELEMENT 
! EQU ARRAY OVERLA Y 
! COMMON SIMPLE V AR 
EXTENDED BRANCH! COMMON ARRAY 
EXTENDED RETURN TO 
! STOREA OF ARRAY WITH NUM SUBS 
! LOAD OF ARRAY WITH NUM SUBS 
EXTENDED CONDo BRANCH TRUE! NOP ! 
EXTENDED COND. BRANCH FALSE 
! LABEL AT COMPILE TIME 
EXTENDED GOSUB 
unusable 

Page· 171 • 
The Ultimate Corp. 

Proprietary and Confidential 



Appendix L: Current opcode table 

Page - 172 -
The Ultimate Corp. 

Proprietary and Confidential 

December 4. 1991 4:43 

C,· , 
,1 ) 

.1/0' 

C' 
( , 

;> 



c 

c 

Appendix M: Machine stack versus software stack December 4. 1991 4:43 

Appendix M: Machine stack versus 
software stack 

Adyanta2es of the current stack architecture; 

it provides a convenient vehicle for passing values and pointers from one 
opcode to the next; 

our firmware implementations can execute primitives that manipulate the 
stack directly, without going to virtual. 

Disadvantages. and reasons for not perpetuating the current design; 

software implementations, such as Ult/PLUS, do not have proprietary 
hardware available to execute stack related instructions; 

loading values, pointers or descriptor indexes from the object code 
requires pushing these elements on the stack, when they could be accessed 
directly, after being loaded once into a constants area; 

often results of functions can be stored directly in the target descriptor. 
Having to push the result first, then pop it off adds overhead for no 
purpose; 

the Unix systems that currently run Ult/PLUS are RISe based platforms 
that use a fast stack architecture at the hardware level, geared towards 
running e programs. We should try to take the most advantage of this, 
without adding a software stack on top of it. 

from a perfOlmance angle, using the machine stack shows a clear advantage 
over using a software stack. Take the following example: 

FOR 1 = 0 TO 500000 
X =1 
Y=I+2 
Z=Y -3 
R=X+Y+Z 

Page - 173 -
The Ultimate Corp. 

Proprietary and Confidential 



I 

Appendix M: Machine stack versus software stack 

NEXTl 

Tested with a stack architecture, the code is: 

Main: 
PUSH X 
PUSHY 
ADD 
PUSHZ 
ADD 
POPR 

ADD subroutine: 
POP A 
POPB 
PUSH(A+B) 
RETURN 

December 4, 1991 4:43 

On the HP 835, the timing for it varies between 4.20 and 4.40 
seconds. 

Tested with the machine stack, the code is: 

Main: 
R = ADD( X, ADDIT( Y, Z ) ) 

ADD( A, B ) subroutine: 
RETIJRN( A + B ) 

On the HP 835, the timing varies between 1.10 and 1.20 seconds, 
showing an almost 4 to 1 gain. 

Djsadyapta&:es of not psin&: the software stack; 

The optimizer, the object code format and the runtime code require a more 
complex design in order to eliminate the need of such a stack. 

Page· 174 • 
The Ultimate Corp. 

Proprietary and Conjidential. 



L C" 
, " 

Appendix N: Call interface December 4, 1991 4:43 

Appendix N: Call interface 

Introduction 

This document first lists the current steps done by CALL, then proposes an 
alternative solution in the framework of Optimized Basic. 

There are two CALL opcodes: 

Opcode x'9D' is a DIRECT call: the name of the subroutine to 
invoke is a string constant which follows the opcode. The top entry 
on the stack is an offset to a reserved descriptor for this subroutine 
call. 

Opcode x'97' is an INDIRECT call: the top of the stack is a copy of a 
descriptor which points to the subroutine name (or contains it in case 
of a short string). If the subroutine is opened, prior to the call, by an 
" OPEN 'SUB', name TO var " type instruction, the subroutine name 
has already been resolved and the 'var' descriptor will contain a 
pointer to the object code, with a displacement value of x'8001 '. The 
high order bit is set by the OPEN routine as a flag to the CALL 
interface. 

If any arguments are passed to the subroutine they are already on the stack 
by the time the CALL opcode gets executed. If an argument is a variable, 
the stack will contain a dope vector (pointer to the descriptor) for it. If it's 
a constant, the stack will either contain the value (numeric) or a pointer to 
the constant (string). 
The bottom entry on the stack is always a stack marker, even if no 
arguments are passed. 

Different cases of CALL are examined here. Portions of the code that are 
common to all cases are explained in the later sections. 

One case is not documented: the call to an assembler mode (CM pointer in 
MD). This interface has never been documented and, to the best of my 
knowledge, is not used internally. Its functionality has been superseded by 
the Library function call. I suggest that we do not support it in the new 
implementation. 

Page - 175 -
The Ultimate Corp. 

Proprietary and Confidential 



Appendix N: Gall interface December 4, 1991 4:43 

Section 1 ; direct call· subroutine is first invoked; 

Position R6 past the name in the object code. 

Set R12, via SETDD, to the descriptor who's offset is on top of the stack. 
If the calling program is the TRAP handler (YBIT=l), set R12 via SR8 
instead if ISBEG (refer to the 'Trap handler' specification). 

Verify the descriptor type is not x'40' (subroutine called before). 

Copy the subroutine name into the BMS buffer. 

Save elements on the Basic stack, to restore when RETURNing (see Section 
6 below). 

If the current descriptor type is greater than x'48', call the ABANDON 
routine to free the descriptor. This is ONLY possible if the calling 
program was ENTERED from a routine with a different descriptor table 
layout. 

Fetch the object code address of the subroutine (see Section 7 below). 

Store the object code address (R6) in the descriptor and set the type to 
x'40', so that the next call (if any) to this routine knows the name has been 
resolved. 

Join common code - see Section 5. 

Section 2 ; direct call· subroutine has been called before; 

Position R6 past the name in the object code. 

Set R12, via SETDD, to the descriptor who's offset is on top of the stack. 
If the calling program is the TRAP handler (YBIT=l), set R12 via SR8 
instead if ISBEG. 

Verify the descriptor type is x'40' (subroutine called before). 

Page - 176 -
The Ultimate Corp. 

Proprietary and Confidential 

o 

c 



Appendix N: Call inter/ace December 4, 1991 4:43 

Save elements on the Basic stack, to restore when RETURNing (see Section 
6 below). 

Join common code - see Section 5. 

Section 3 : indirect call- subroutine has not been opened: 

Ensure the top stack entry is not a number (type x'Ol') followed by 
x'800l '. 

Set a register, via POPS, to the subroutine name. 

Set R12 to a scratch location (AF buffer) because indirect calls do not have 
a dedicated descriptor. Fake the descriptor type by storing a x'OO' at Rl2. 
This is done so that common code can be used later on. 

Copy the subroutine name into the BMS buffer. 

Save elements on the Basic stack, to restore when RETURNing (see Section 
6 below). 

Fetch the object code address of the subroutine (see Section 7 below). 

Store the object code address (R6) in the fake descriptor and set the type to 
x'40'. 
This is NOT used later on. 

Join common code - see Section 5. 

Section 4 : indirect call- subroutine has been preyiously opened: 

Ensure the top stack entry is a number (type x'Ol ') followed by x'8001 '. 

Save elements on the Basic stack, to restore when RETURNing (see Section 
6 below). 

Reset the high order bit of the displacement field in the stack, and set R6 to 
the object code. 

Page - 177 -
The Ultimate Corp. 

Proprietary and Confidential 



- ----------------------------

Appendix N: Call interface December 4, 1991 4:43 

Join common code - see Section 5. 

Section 5 ; common code; 

Check if the calling program is a Recall subroutine and, if so, 

else, 

set the descriptor table start pointer (R14) to the value of 
BDESCTBL, which in fact points to the 'main' descriptor table; 

set the object header pointer (R15) to the same location, SInce 
descriptor 0 of the 'main' table contains a fake object header; 

set COMDSP to x'8000'; 

The reason for all this (refer to the 'Recall calling Basic' document) 
is because: 

the new descriptor space needs to be at the end of the TOTAL 
descriptor space (main + all the subroutines), not just at the 
end of the current subroutine's descriptor table; 

the fake object header is the only place where the TOTAL 
descriptor size is stored; 

the offset to the COMMON block needs to be calculated from 
the top of the 'main' descriptor space. 

set R14 at the start of the caller's descriptor table (ISBEG); 

set R15 at the start of the caller's object code (OSBEG); 

The address of the descriptor table (R 14) is incremented by the descriptor 
table size from the header (R15) added with 90 bytes (for use by the 
debugger). The resulting address becomes the start of the subroutine's 
descriptor space (ISBEG). 

COMDSP is decremented by the same offset. 

Page. 178 • 
The Ultimate Corp. 

Proprietary and Confidential 

o 

o 



c 

Appendix N: Call interface December 4, 1991 4:43 

The table size from the new object header (R6) is used to initialize all the 
subroutine's descriptors to zero ('non assigned variable'). 

The start of the object stream (R6) is saved in OSBEG. 

R6 is incremented by the header size plus two, to point one byte before the 
first opcode to execute. The two bytes skipped are for the first instruction 
which is an ABORT. This prevents subroutines to be executed directly, 
without being called. 

The object register (R6) is detached and reattached to ensure element 
attachment on the 7000 firmware systems. 

XMODE is setup with the BSP ACE routine, so that 'temp space' can grow 
as needed. 

The number of arguments passed in the CALL is compared with the 
number of SUBROUTINE arguments, in the following way: 

the subroutine's object code is scanned until a x'7D' opcode is found, 
looking for 

x'OD' : store, 
x'lB' : mat. 

Each occurrence accounts for one argument. 

The Basic stack is scanned until a stack marker is found (type x'7C'). 
Each entry accounts for 1 argument. 

If the numbers do not match the program aborts in the Basic 
debugger. 

Finally, the first opcode gets executed via a DCD instruction. 

Section 6 ; elements pushed on the Basic stack: 

Three entries are pushed on the stack, past the arguments if any, containing 
information pertinent to the calling routine: 

the descriptor table address (ISBEG); 
the offset to common variables (COMDSP); 

Page. 179 • 
The Ultimate Corp. 

Proprietary and ConfideTllial 



Appendix N: Call interface December 4, 1991 4:43 

the address of the object code header (OSBEG); 
the external select list flag (DAFI0); 
the current object code address (R6). 

The latter entry is pushed with a stack descriptor type x'18', as a flag to the 
RETURN code (see below). 

The top of the stack is saved in SR 19, after which it is reset prior to these 
entries: the subroutine's object code expects the top of the stack to be just 
above the fIrst argument to copy. 

Section 7 : findine the object code from the subroutine name: 

The PCB's BASE and MODSEP are set to the user's MD, to first look for a 
catalogued program. The name in the BMS buffer is used to retrieve the 
item (via RETIX). 

If found and the first attribute matches the string 'PC', 

else, 

the name is saved in the CS buffer, 

the 'catalogue' pointer is scanned until attribute 5 where the program 
file name is stored; 

if the program name starts with a blank, 

else, 

the file defaults to SYSLIB. The SYSLIB BASE is copied 
from the save area prior to HSBEG (refer to the Basic 
initialization document) to the PCB's BASE, and the item is 
looked up in that file. 

the DICT of the file name found is opened, the program name 
is restored from the CS into the BMS buffer and the item is 
looked up in that file. 

the program is presumed to reside in the same program file as the 
current one. The BASE for this file is copied from the save area 

Page· 180 • 
The Ultimate Corp. 

Proprietary and Confidential 

Ie".· , ",,';/ 

c 



(:,' 

o 

Appendix N: Call inlerjace December 4, 1991 4:43 

prior to HSBEG (refer to the Basic initialization document) to the 
PCB's BASE and the name is looked up in that file. 

The item, if found, must be a pointer item with the first attribute matching 
the string 'CC'. The starting fid of the object code is converted from 
attribute 2 of the pointer. 

The precision set in byte 5 of the object header must match the value of 
SCALE# in the PCB. 

The revision level set in byte 4 of the header must match the value store in 
frame 230 (BRPOO). 

The first opcode in the object must be x'9E' (ABORT). 

If the program can not be found, or if any of the above conditions fails, the 
program aborts in the Basic debugger. 

Section 8 : executine the SUBROUTINE opcode: 

It's only function is to reset the stack pointer (R3) past the argument list 
and past the saved elements, using SRI9. 

Section 9 : passine areuments from the caller to the subroutine: 

With the exception of common variables, a source descriptor, once it has 
been copied to the subroutine's descriptor, is changed to a type x'04' and its 
contents are modified to become a pointer to the target descriptor. This is 
done because strings are not normally duplicated in the new environment: 
the descriptor is set to point to the caller's data. In the case of a type '82', 
the backward link of the buffer in freespace is set to the new descriptor. 
The problem arises when an argument is passed multiple times: in that case 
the string does need to get copied into a new buffer. The x'04' type, which 
is only used for this purpose, allows the STORE routine (see code in 
BRPOI) to detect this condition and force the data copy. 

If the value fits inside the descriptor, multiple copies of the same variable 
cause no problem: the value is copied into each of the target descriptors. 
When returning (see Section 10) the caller's descriptor will have the last 

Page. 181 • 
The Ultimate Corp. 

Proprietary and Confidential 

,---- ----,-"'-~------



C: 



(' 

Appendix N: Call interface December 4, 1991 4:43 

subroutine. 

The subroutine's descriptor type is set to 0, to prevent 
multiple string assignments from the same source, and 
also as a flag to the ABANDON routine so as to not 
release the data buffer. 

x'lB' : return an array. For each element in the array: 

The caller's descriptor is overlaid with the one from the 
subroutine. 

If the descriptor to copy is a type x'82', the backward 
pointer of the freespace buffer is changed to point to the 
caller's descriptor. 

The subroutine descriptor is changed to a type x'04' to prevent 
multiple updates from the same source, and also as a flag to 
the ABANDON routine. 

If the array is of the 'variably dimensioned' type, clear the 
'array inherited' flag. This indicator is used by the DIM 
instruction to prevent subroutines from re-dimensioning the 
array while the caller's stack contains an absolute pointer to it. 

A stack marker must now be on top of the stack. The subcode following the 
type can be: 

x'OO' regular CALL instruction; 
x'Ol' RECALL calling Basic. Execution continues at a specific 

location (refer to the 'Recall calling Basic' 
specification); 

x'82' 
x'84' 
x'88' from TRAP subroutine. Refer to the 'Trap handler' 

specification. 

All 'freespace' buffers used by the subroutine are abandoned. 

Page - 183 -
The Ultimate Corp. 

Proprietary and Confidential 



(
~~'\ 

ji 

"-"'.;~ 



Appendix N: Call interface December 4, 1991 4:43 

that in the new environment we ensure object sizes can be 
large enough so that this restriction does not become an issue. 
Source code can easily be kept in small portions via the 
$INCLUDE directive. 

Optimized Basic can not CALL old object code, and vice versa, 
because of the complexity involved in building a bridge interface. 

PrOJ)osed object code for a direct caU: 

DIR_CALL:CONSTANT(X):DESCRIPTOR(Y):ARGUMENTS .. EN 
D_MARKER 

If DESCRIPTOR(Y) is not currently assigned: 

else 

call a Virtual routine similar to the one described in Section 7, 
passing it a pointer to the program name in CONST ANT(X). 

store the OBJECT _PTR setup by Virtual (R6 typically) inside 
the descriptor and set the type code appropriately. 

pickup the OBJECT_PTR from DESCRIPTOR(Y). 

Proposed object code for an indirect caU: 

-------~-.. 

IND_CALL:DESCRIPTOR(Y):ARGUMENTS ... END_MARKER 

If DESCRIPTOR(Y) has a 'opened subroutine' type code, 

fetch the OBJECT_PTR from the descriptor, 

else 

scan the 'cached calls buffer' for this program name. I suggest 
a small buffer, with a most 5 entries. 
If found, 

fetch the OBJECT_PTR from the cache area. 

Page - 185 -
The Ultimate Corp. 

Proprietary and Confidential 



c 



C" 
" " 

c 

Appendix N: Call interface December 4, 1991 4:43 

The constants table is loaded from the OBJECT_PTR. 

Global variables are initialized. 

Callinr from a Recall subroutine: 

Besides the fact that their descriptor space is static and 
pre-initialized, Recall subroutines are not different from other Basic 
programs. There should be no special code required to execute the 
CALL instruction. 

Passine COMMON variables between proerams: 

COMMON variables are stored in the top portion of the descriptor 
table. The number of common variables needs to be retrieved from 
the object header, and may not necessarily be the same as the count 
from the calling program: their size equivalence is not enforced 
although it probably should. 
There are several ways the data can be shared: 

copy the individual descriptors in each direction. Clearly not 
very efficient; 

copy the table itself, in each direction, for the portion of the 
COMMON descriptors that is used in both programs. 

use the common area from the caller, overlaying the 
descriptors that are not shared with the ones from the 
subroutine. Obviously the overlaid portion needs to be saved 
first, and restored when the subroutine terminates. 

use a separate descriptor table for the common descriptors. If 
this can be achieved in a way transparent to the runtime code 
(for example by passing a pointer to the descriptor argument 
instead of an index into a unique table) then this is clearly a 
better solution, since it avoids data copy and/or extra memory 
allocation. 

Some of the proposed solutions assume that the 'string space' can be 
freely shared between programs; 

Page - 187 -
The Ultimate Corp. 

Proprietary and Confidential 



c' 

o 

"~---------- ---"-"---"--"" 



Appendix N: Call interface December 4, 1991 4:43 

only those descriptors that were modified need to be copied. This is 
not as desirable because of the overall performance impact on 
descriptor updates. 

Detectinr the return condition: 

When a RETURN instruction is encountered and the local stack of 
GOSUB return addresses is empty, then the subroutine must return 
to the calling program. 

Returning values back to the calling program: 

The argument list at ARG_PTR is scanned agaIn for 
arguments that require to be passed back: 

if the 'has been copied' flag is set in the caller's descriptor 
entry: 

else 

reset the flag; 
blindly copy the descriptor, since any space reallocation 
has been taken care of inside the subroutine. 

'free' the current descriptor if needed, then overlay it 
with the one from the subroutine. 

Reset whatever necessary in the subroutine's descriptor so that 
the string space passed back to the caller does not get released. 

Open issues: 

Do we need special code to handle the TRAP subroutine? 

How do we pass certain global variables that are currently kept in the 
area prior to HSBEG ? The ones that are only used by code that is 
going to remain in Virtual can certainly stay there. Others, like the 
COLIO and COL20 values, are specific to each runtime 
environment and do not need to be copied. But what about the break 
on/off counter? 

Page - 189 -
The Ultimate Corp. 

Proprietary and Confidential 



c 

"".~ r" , 
1 

o 



c 

Appendix 0: The execute instruction December 4, 1991 4:43 

Appendix 0: The execute instruction 

Scope of this appendix; 

This appendix lists the major steps taken by the virtual code upon execution 
of a Basic EXECUTE statement. The code examined is as of release 210F. 

Basic stack layout when the opcode (x'ED') is invoked; 

Top-> Ox .... SR ....... . storage pointer to the command string to be 
executed. 

Followed by any of: 

Ox .. 21..SR ..... . 
Ox .. 22 .. offset.. 

Ox .. 23 .. SR ..... . 

Ox .. 24 .. offset.. 

Ox .. 25 .. offset.. 

Bottom-> Ox7e ........... . 

storage pointer to STACKed data. 
descriptor offset to return CAPTURed data 
into. 
storage pointer to the P ASSLIST data to be 
passed. 
descriptor index to return RETURNING 
data. 
descriptor offset to return the R TNLIST 
data into. 

stack marker. 

Steps taken durin2 runtime execution: 

the command to execute is copied into the as buffer (PCB+5). 

the CHAINFLG bit in the PCB is set true. 

the Basic break off counter is copied into the PCB INHffiITI-I byte. 

execution is started in the new workspace: 

the Basic stack from the caller's workspace is scanned, until a stack 
marker is found, for any of the following sub-types: 

Page - 191 -
The Ultimate Corp. 

Proprietary and Confidential 



if .. · .. ·.', 
, ,,< 



(~, 

Appendix 0: The execute instruction December 4, 1991 4:43 

the current pointer is copied to SCB element 
NXTITM, the current pointer in the descriptor is 
set to null (at the SM) and PCB bit DAFlO is set 
true. 

else, if an external select list is active in the caller's 
workspace (bit DAFlO is true): 

the caller's SCB pointer NXTITM is copied to the 
current SCB's NXTITM pointer, the caller's 
NXTITM frame id is zeroed and the PCB bit 
DAFlO is set true. 

the statement to execute is copied from the caller's OS workspace to 
the current OS and PCB bit CHAINFLG is set true. 

other non Basic related elements are passed from the old to the new 
environment (see code in mode PSPACESO). 

the statement is executed, via the MD 1 routine. 

through the code in WRAPUP-I execution resumes in the previous 
TCL level. 

non Basic related elements are copied from the execute workspace to the 
current one. 

any message string from the PROC secondary input buffer in the execute 
workspace is copied to the current IS buffer (for the GET(MSG.) 
instruction) and, if the RETURNING clause is in effect, is also copied into 
the descriptor pointed to by SCB storage register SR3. In that case the 
target descriptor is forced to be of type x'60'. 

if a list generation statement was executed (PCB bit SELECTFLG is true) 
and items are selected (PCB bit DAFIO is true): 

if the R TNLIST clause is in effect: 

the descriptor pointed to by SCB element SR2 if forced to be 
of type x'60', and the returned list, as pointed to by the 

Page - 193 -
TheUltimate Corp. 

Proprietary and Confidential 



o 



c 

----------- ------~- ------------------ .. -

Appendix 0: The execute instruction December 4, 1991 4:43 

Issues in reeard to Basic optimization; 

The interface between optimized Basic and virtual needs to provide all the 
necessary data elements and descriptor pointers so that information can be 
easily accessed and/or updated. 

The part of the code executed by the execute TeL level to parse the Basic 
stack can either: 

be accommodated by simulating a stack interface, in which case the 
old and new runtime environments could share this code, 

or can be replaced in the optimized runtime environment by new 
code that accesses the data elements via a to be designed interface. 

Page. 195 • 
The Ultimate Corp. 

Proprietary and Confidenlia/ 



o 



( 
". ~' 

C 

Appendix P: Enhancements survey results December 4, 1991 4:43 

Appendix P: Enhancements survey 
results 

On July 9th 1991, an R&D meeting was held in the large conference room to 
discuss the Basic performance rewrite. Fifteen persons were present, mostly 
programmers. A list of suggested enhancements was compiled throughout the 
meeting. Those are enhancements that would possibly speed up Basic. The list was 
put on a memo and sent back to all fifteen people asking each one to distribute 20 
votes across the items. One could give every item from 0 to 20 votes with a total 
for all of his votes of twenty. Eight persons responded. Here follows the 
compiled results of those votes. 

The table has three columns: 

2 

2 
5 

0 
2 
2 

5 

4 
1 
5 
2 

- the first column indicates how many persons voted for that item 

- The second column indicates how many votes were totaled for that item. 

- the third is a description of the enhancement. 

votes 

4 

2 
9 

0 
5 
7 

11 

8 
1 
16 
2 

SU22ested enhancement 

Compiler could type some variables by looking at all uses of each 
variable. This could avoid some of the type code tests at runtime. 
Rewrite mask/format routines to be more efficient 
Speed up CALLs: Do not return variables that don't change -
Compiler could type some of them. 
Rewrite POPNIPOPNS from virtual to C. 
Speed up passing MATs in CALLs. 
Eliminate double data manipulation on MA TWRITE by modifying 
UPDITM to understand arrays. 
Implement Webb's File I/O speed enhancements (eliminate locking 
on READs). 
All dynamic arrays change to runtime dimensioned arrays. 
Compiler could change EXECUTE 'WHO' to using @WHO, etc .. 
Implement file I/O locking mechanisms directly in C. 
Execute needs to be speeded up (do not reinitialize the workspace 

Page - 197 -
The Ultimate Corp. 

Proprietary and Confidential 



o 

c 



Appendix P: Enhancements survey results December 4, 1991 4:43 

( " Appendix Q: Compatibility between old 
.,- Basic and new Basic 

C·~· . . 

At this point in time, it is intended to make both basics completely compatible. As 
the project will proceed though, we may identify areas of the system that may not 
be compatible anymore. Some utilities for example may not be applicable 
anymore or there may be new tools with the rewrite etc ... A functional spec for 
the compatibility issue will need to be developed later on when we closer to 
completing the development. That spec will become this appendix. 

Page - 199 -
The Ultimate Corp. 

Proprietary and Confidential 



c 

C: 


