TI-MIX 1983
International Symposium

April 5-8, 1983
New Orleans Hilton Hotel

Session
Proceedings

Software & Systems Engineering

SOFTWARE AND SYSTEMS ENGINEERING

TABLE OF CONTENTS

FISHER, JIM, I.C, System, Inc., St. Paul, MN
An Analysis of Errors

HOETTE, FRED, Productive Computer Systems, Inc., Middle Haddam, CT
Productivity Oriented Software

KORIENEK, EUGENE, Johnson Controls, Inc., Milwaukee, WI
A Methodology for Testing the Completeness & Functional
Correctness of a Unit of Software

REINERT, RONALD, Johnson Controls, Inc., Milwaukee, WI
The Unstructured Approach to Software Testing

PAPERS NOT AVAILABLE BY PUBLICATION DEADLINE:

CRADDOCK, DOC, Texas Imnstruments, Austin, TX
The TI Software Quality Metrics Program

TI-MIX (Texas Instruments Mini/Microcomputer Information Exchange) is an
organization for users of TI computers and related equipment. The purpose of

TI-MIX is to promote the exchange of information between users aand TI.
Membership in TI-MIX is open to any person with an interest in TI computers or
peripheral equipment. The international symposium provides a vehicle for direct
interaction and information exchange with other users and with TI personnel.
Acceptance of TI-MIX member papers for presentation at TI-MIX 1983 does not

constitute an endorsement by TI-MIX or Texas Instruments Incorporated.

TI-MIX
M/S 2200
P.0. Box 2909
Austin, Texas 78769
(512) 250-7151

AN ANALYSTS OF ERRORS

BY
JIM FISHER
I.C. SYSTEM, INC.
ST. PAUL, MN

PREPARED FOR THE 1983 TI-MIX SYMPOSIUM
SYSTEMS AND SOFTWARE ENGINEERING SESSION

Today's data processing professional is very well aware that
hardware 1is getting cheaper while software is getting relatively
more expensive. Although it is often overlooked, the major
component of this software cost is incurred not during the
development phase, as one might expect, but during the maintenance
phase of a project. The cost of correcting mistakes and making
changes to a system is too often from 2 to 4 times the initial
development cost. Unfortunately, the average EDP organization
spends 50 percent of its DP budget on ongoing debugging and
modification of existing systems [1]. Software engineering
techniques are aimed at reducing this cost and at increasing the
quality of the final product.

This paper will take a look at software errors, where they are
typically found, their causes, and the cost of correction at
various stages in the development life cycle. If we take a good
hard look at software errors and gain an understanding of their
living habits, it becomes easier to develop standards and
techniques aimed at reducing the overall life cycle costs of a
project.

RESULTS OF VARIOUS STUDIES

A number of empirical studies have been made over the past 20
years investigating various aspects of software economics.
Starting from a very broad view, we Americans spent about 40
billion dollars on software development and maintenance in 1980.
That's about 2% of the Gross National Product [2]. And much of it
appears to be spent on non-productive activities.

For example, one study indicates that of that money we spend on
software, only about one-fourth of it is spent developing
something new [3]. And when we do embark on a new development
project, we risk a 1 in 7 chance of failure. That is, for every 7
projects started, one of them will never deliver anything.

Maintenance, as defined by most of these studies, involves both
debugging and making modifications. Debugging, as we all know,
means attempting to correct the cause of software failures. We
are all aware of the cost of fixing mistakes. But we should also
keep in mind that the need to add a feature or make a modification
to a system is also a form of mistake. It is a mistake in the
analysis of what the user needed. In order to understand the cause
of these errors, we must begin by realizing that it can easily be
10 to 100 times more expensive to add a feature to a system than
it would have been to incorporate that feature into the original
design.

An Analysis of Errors - 2 -

THE SOFTWARE DEVELOPMENT EFFORT

For most typical large scale projects, about 45% of the effort is
spent on analysis and design, about 20% on coding and unit
testing, and the remaining 35% is spent on integration and
installation [3,4]. Ask a typical programming manager how these
costs break down and you may get a surprisingly different answer.
The typical manager sees the cost of ownership to be fairly low
during the analysis and design phases. After all, only a few
people are involved during this stage. He would expect the cost
to peak during the coding phase where there are obviously more
resources being used. He also will consider the project done when
the system is installed and operational.

What the typical manager doesn't realize is that these costs are,
in reality, only the tip of an iceberg. When he thinks the
project is done, only one-third to one-fifth of the money has been
spent [4]. To handle the maintenance costs of a typical system
throughout its 5 to 10-year life-cycle, he should automatically
budget 3 or 4 dollars for every dollar actually spent during its
development. And in some companies, this is actually done as a
matter of course. If you spend $20,000 developing a system, plan
on spending at least another $5,000 a year for the rest of the
system's lifetime.

A more realistic cost of ownership curve not only peaks higher
than expected, but also later in the life cycle. More money is
spent in the coding and debugging phase than anyone would expect.
And the operational costs can be anywhere from 4 to 10 times more
than what would be expected.

PROPOSED COST OF OWNERSHIP

The reason the actual curve has this shape is that we all have a
tendency to rush into things. During the analysis and design
phases, perhaps only 3 to 5 people are involved; whereas during
the coding and debugging phases, 15 to 30 people may be involved.

Imagine the president of a company walking through one department
and seeing 3 analysts quietly drawing models of a system. He
looks at them and thinks, "Hmmmmmm". Then he walks into another
department and sees 27 programmers pounding feverishly on their
keyboards, and says "Ah, Haaaaaa". In his mind, there is
obviously more work being accomplished in the second department
and they are obviously much farther along, right? This should not
be all that obvious. The analysts in the first department may
indeed not only be accomplishing more but alsoc be farther along
than the programmers in the second department. We have tc keep in
mind that the analysts are working at a much higher level and that
the quality of their work will have a much greater impact on the
total cost of the system. One bad analysis of a user's needs will
cost you much much more than one bad programming Jjob.

Our proposed cost curve emphasizes an increase in expenditure
during the initial phases of a project. Spend more time

An Analysis of Errors -3 -

determining what the user really wants, and how his needs are to
be solved. The primary reason for this emphasis is to catch and
eliminate errors as early as possible.

WHAT IS AN ERROR?

The Ballistic Missile Early Warning System was designed to detect
and monitor any object moving toward the United States, and if the
object was unidentified, to initiate a sequence of defensive
procedures starting with attempts to establish communication,
establish the identity of the object, and so forth. An early
version of this system mistook the rising moon as a missile
heading over the northern hemisphere [3]. Is this an error?. In
the eye of the analyst, it may not have been, because it followed
the letter of the design. The moon is an object. It does, on
occasion, move toward to the United States. The system did not
however, follow the user's conception of what was intended, and
this is important.

DEFINITION OF ERROR VS. FAILURE

A software error is present when the software will not do what the
user reasonably expects it to do. Using this definition, then, a
software failure is simply the manifestation of a software error.
Software errors are always there, but you don't see them until the
software fails to perform.

Note that the definition does not say "what the system was
designed to do", rather it emphasizes what the user expects the
system to do. With that in mind, let's take a look at what today's
users are expecting of a well-designed system.

REASONABLE EXPECTATIONS

The first thing that a user may reasonably expect is that the
system work. That it not lose track of data, that it perform
calculations properly, and so forth. These expectations are so
obvious that I have chosen to eliminate them from this discussion.
Today's more sophisticated user has many additional expectations
which may not be terribly obvious.

Today's user may reasonably expect a system to provide needed
information in a most usable format at the proper time. A profit
and loss statement that comes out 6 months late is not very
usable. And if it's buried in the middle of a 100-page financial
report, it's not very usable either. Also, if management
information is only available on the terminal and no hard-copy can
be printed, the information is useless to someone who might want
to take it home and study it.

~He will also expect a system to strain out data that is not usable
to him. Any good analyst will make a distinction between what the
user thinks we wants and what he really needs. There is a
fundamental difference between raw data and information.
Information is data which has been given a meaning, a usefulness

An Analysis of Errors -4 -

to a particular user. A good system will provide that information
while "hiding" the unnecessary detail data.

A system, nowadays, may also be expected to react to what the user
wants to do when he wants to do it. The system should be
responsive to user demands rather than forcing the user to fit the
mold of a system. With command or menu-oriented systems, we are
heading in that direction, and we must continue.

A system should also produce at least a "pound" of results for
each "ounce" of effort. If we have an automated filing cabinet
system where it take the user 10 seconds to describe that he wants
a phone number, all we have done is totally waste the resources of
the computer. The user would be better off with a Rolodex. If a
user has to enter the name and address every time an invoice is
generated, again, we are wasting our time.

It is very important that a system guard itself against, or at
least be tolerant of mistakes made by the user. It should guard
against accidental deletion of required information. It should
always provide the user with a simple means of getting out of
something he didn't mean to get into. The CMD key is a perfect
example of this. We must also provide the user with natural and
effortless ways of correcting his own mistakes. There is no
excuse for not providing for an "up arrow" function. But we can
go beyond that by providing "oops" keys to undo something, "go
back" keys to backup to a previous step, and even "what if" keys
to allow the user to try something without having his actions
affect any "live" data.

We should also be able to predict what the user may want to do
next. This may be as simple as the intelligent use of default
responses to questions. It can, however, go way beyond that into
the areas of artificial intelligence.

Lastly, the system must be modifiable at a reasonable cost. We
should not only provide the user with the capability of changing
his mind during execution, but also to provide him with the
freedom to change his conception of what his needs are. His
conceptions will grow and mature along with his use of the system
and we should be ready to grow along with him.

DISTRIBUTION OF ERRORS

In a study reported by SofTech in 1976, they discovered that about
two-thirds of all software errors are to be found in the analysis
and design phases of a project [41. Only about one-third are the
result of coding errors. This may surprise many of you. But, if
we stop and examine the root cause of these errors, this
distribution takes on a great degree of credibility.

ROOT CAUSE OF ERRORS

Most errors are the result of errors in translation [3]. A
translation occurs when one person attempts to communicate his

An Analysis of Errors -5 -

conception of what the user wants to a second person. In any such
translation, errors are likely to occur. Realizing that
translation errors are the reasons for software errors is
extremely important because it describes the underlying causes of
unreliability. We should identify when a translation occurs and
provide some sort of testing mechanism to ensure that the process
was performed completely and accurately.

This translation model describes how the vast majority of software
errors originate [3]. This model is often viewed with surprise by
the uninitiated, for their view is often that software errors are
errors made by a programmer while writing the source code.
Although these errors do exist, they represent a small percentage
of the errors in a system and are usually easily corrected.

COMPLEXITY

Complexity, being a principal underlying cause of translation
errors, is one of the major causes of unreliable software [3].
The complexity of something is simply some measure of the mental
effort required to understand it. Complexity varies somewhat from
one individual to the next. What a system programmer might
consider to be simple, may be incredibly complex to the average
user. Since complexity is the root cause of translation errors
which, in turn, is the root cause of software errors, we need to
minimize complexity as much as possible. But how do we do this?

There several simple guidelines which may be followed. One is to
maximize independence. One practical application of this concept
involves illustrating just the inputs and outputs to a given
function without concern for where the inputs come from or where
the results are used. The technique is often called the "black
box" approach to system design. A good example of a "black box"
is a square root routine. 1If given a positive number, the routine
will always produce a square root. It doesn't care where the
orginal number came from or where the result will be used. It has
a well-delineated job to perform which is simple to understand
because of its high degree of independence. This concept can be
applied to any function in a system.

Hierarchies in a system design are integral parts of most modern
techniques. This, too, tends to eliminate complexity by leading
the user from overall summary levels through successively finer
levels of detail. Here, again, we want to show only how the
current level is structured at the next level down. Illustrating
three or four levels at a time is too complex.

Another technique is commonly found in database applications. If
a record in a database contains 30 or 40 items, but only 2 are
required to understand the current function, mention only those
two. Give the function a "logical view" of the record such that
it appears to contain only those items which it nmeeds to function
properly. The unnecessary levels of detail should remain "hidden"
to avoid complexity.

An Analysis of Errors -6 -

We have seen that the translation of an object from one person to
the next is a major source of errors. This is also true at the
interface between two functions. When one routine passes data to
another, a translation process occurs and this is, again, a major
source of errors. The coupling between two modules should be
described in detail and it should be kept as simple as possible.
Consistency, here, is the key. The mechanism of the interface
should always be the same. And if the format of the data is
consistent, the less likely that errors will be introduced.

Keep in mind that any interface is much more difficult to grasp
than the actual internal functioning of a module. Beginning
programmers, regardless of the language, always have trouble
understanding the CALL statement. They can generally grasp
arithmetic statements and even compound conditional statements
with ease relative to understanding how data is transfered from
one module to another.

OTHER ASPECTS OF ERRORS

Historically, we find that analysis and design phase errors take
longer to correct that coding errors. They are not only the most
common errors, but also tend to be the most severe. If left
undetected during the initial phases, they are also, by far, the
most expensive.

They also tend to be missed by the developer. Our testing efforts
are often concentrated on finding coding errors within a module
rather than uncovering the design errors in the interfaces. That
level of testing is too often left up to the user. An error left
undetected until the validation phase can cost 5 times what it
would have cost to fix it during the design phase [4]. If an
error is discovered following installation, the difference is
often an order of magnitude greater.

It's imperative that we facilitate the testing of the design as
well as the coding and integration of a system. Designs should be
kept on easily correctable media such as pencil designs on paper.
If a system design chart is cast in concrete, or put on a
blueprint, it becomes difficult and expensive to accomodate
changes and corrections.

Here are some more interesting things to consider. A programmer's
chance of fixing a bug has been found to be 50-50 if 5 to 10
statements are modified in a program. If 40 or 50 statements need
modification, the odds drop to an incredibly low 1 in 5 [1]. 1In
practical terms, this means if major alterations are required to

module, your chances of success will be much greater if the entire
module is thrown out and rewritten. Instead of playing nursemaid
to an ailing program, take out your scalpel and surgically remove

and replace any major problems.
Also, if more than one module is affected, there is a translation

process occurring and the odds of fixing the problem drop
dramatically. This is a simple rule of probability. If any 4

An Analysis of Errors -7 -

interconnected events each have a 90% chance of working perfectly,
the system as a whole only has a 65% chance of working perfectly.
In addition, if ten such events are involved, the odds drop
dramatically to a slim 35% chance. These results are obtained
simply by multiplying the probabilities together. Here again, we
can minimize this effect by maximizing the independence of one
module upon another. And this can be done simply by having each
module double check its inputs and prevent any errors from
propogating throughout the system.

Regardless of how carefully we design systems, errors are still
likely to occur. Given that fact, let's look at some approaches
to handling these errors.

FOUR APPROACHES TO RELIABILITY

There are four basic approaches to software reliability: fault
avoidance, fault detection, fault correction, and fault tolerance.

The obvious best choice is fault avoidance. If we have procedures
and methodologies that tend to prevent errors before they occur,
we are obviously much better off. Again, we want to manage and
minimize the complexity of a system to avoid the root cause of
translation errors.

We also should emphasize the completeness and accuracy of any
translation process. This can effectively be accomplished through
various testing procedures. Through the use of design reviews and
walkthroughs involving people from both ends of the translation
process, we improve communication which leads directly to the
reduction of errors. Analysts should be actively involved in the
design and designers should be actively involved in the
programming activities of a system. Testing personel should be
involved at each step. To reduce the overall cost of development,
we should be testing the analysis, testing the design, testing the
code and even testing the documentation. Any methodology which
facilitates this will result in an overall lower cost of
ownership.

The second best method is fault detection. In the movie 2001,
there is a scene where HAL, the computer, detected an error in an
AE-35 communication unit. His error message not only included the
source of the error but also predicted its moment of
manifestation.

In more down-to-earth applications, like ours, we can minimize the
effect of an error by detecting it as early as possible, reporting
it in a standard fashion and isolating it from the rest of the
system.

Fault detection methods should be standardized. All incoming data
to a module should be passed through a validation "sieve", to
guard that module against errors created in other parts of the
system. The actual format of the error message should be
considered. It should indicate the module involved, the data

An Analysis of Errors -8 -

received, the file involved and a process history if possible.
Quite often, the quality of an error message will have a great
impact on the time required to identify the cause of an error.
And keep in mind that these considerations should be an integral
part of the design! Don't leave it up to the programmer.

Fault correction is the next approach to reliability. This
involves repairing any damage that may have been caused by a
failure. Generally, this method is only cost-effective if it can
be generalized to handle a wide variety of errors.

Examples of this method include use of checkpoint/recovery and
prelogging techniques that are common to most operating systems.
Application systems can also make use of this method through the
use of detail redundancy. This simply involves a mechanism
whereby summary figures are recalculated from the detail
information.

Of course, its often better to design the system in such a way
that the need for fault correction is minimized.

Our last approach is fault tolerance. Here there are three basic
methods: Dynamic redundancy, fallback, and error isolation.

Dynamic redundancy is basicaly a "voting" technique which 1is
sometimes used in complex hardware-oriented systems such as the
space shuttle. It is generally not practical to implement in
application software.

Fallback involves the return to a previous release which was known
to work. This is often done at a customer site manually, and is,
again not practical to automate.

Error isolation, however, is very practical. It is easy and cheap
to isolate errors to a minimal part of a system once they are
detected. Modules should be designed to either work or fail in
some graceful fashion no matter what the input. The concept of
garbage-in-garbage-out, is not a very cost-effective way of

handling errors. Rather, if you detect some garbage, take it to
the dump. And try to stress that the redundant validation of
module inputs is cheap. Do not rely on some other module to

provide the validation for your own input. If your module will
only work with positive numbers, then fail gracefully if it just
happens to be negative. If you find yourself thinking, "Well that
just can't happen", then insert the code necessary to ensure that
it won't.

CONCLUSION

Many books have been written discussing various software
engineering techniques and how effective they are at reducing
overall life cycle costs. What I'd like to leave you with is an
understanding of the cause of software errors and some background
that will enable you to choose a methodology that attacks these
causes. Whatever technique you choose, keep in mind these four

An Analysis of Errors -9 -

things: It should be aimed at reducing maintenance costs, since
this is-the major expenditure in the life eycle of any piece of
software; it should emphasize ease of modification, with a minimum
of complexity; it should facilitate better designs as it relates
to the user's expectations of the system; and it should provide
for testing at each step along the way.

REFERENCES

1. Edward Yourdon/Larry L. Constantine, Structured Design,
Prentice-Hall, 1979.

2. Barry W. Boehm, Software Engineering Economics, Prentice-Hall,
1981.

3. Glenford J. Meyers, Software Reliability, John Wiley & Sons,
1976.

4. SADT Structured Analysis and Design Technique, SofTech, 1976.

An Analysis of Errors - 10 -

PRODUCTIVITY ORIENTED SOFTWARE

Software and Systems Engineering

Fred Hoette
Productive Computer Systems, Inc.
Middle Haddam, Conn.

PRODUCTIVITY ORIENTED SOFTWARE

Assume that I am a user reguiring an application to be
developed on a computer. I go to my local software house where
I am told that the hardware will cost me $20,000 and can be
operational in two months. The software will take three times
as long to develop and cost twice as much. The hardware will
come with a one year warrantee and the manufacturer quarantees a
four hour response time on service. Given the mean time between
failure of computer hardware, I am not likely to require service
very often. On the other hand, the contract for the software
hardly reflects the software house’s confidence in the product,
boasting such inspiring phrases as Ve w no warrantee..",
"..accepts no liability..", "..as is..", etc. As a customer I
am clearly impressed.

What impresses me is what a remarkable job computer
manufacturers have done in lowering the cost of their product
while’ increasing reliability and what a remarkably ineffective
job we in the software development sector have done in either
improving cost, quality or productivity of software systems.

The raison d’etre of software development staff, be it at a
software house or at a user site, is to support somebocy s
business process. Our focus, terefore, should be on developing
solution oriented system products. The only way that we can
produce better software is to use z better methodology and to
use better tools to implement that methodology.

It currently costs an amazing $ 8 per line of code put into
production. Our response to this has been to develop "better®
languages, the current vogue being PASCAL. Ten years ago the

answer was PL/1L. I do not believe that language syntax or
implementation addresses the problem, which 1is improper
methodology.

One of the first books on systems development methodolog,
was written by Charles Dodgson, a vicar in Oxford, England (‘e
may not have fully aware of his books global arnplication at that
timed. In 18465, under the penname Le :s Carroll, he published
the book "Alice In Wonder’and". Bear with Alice as she
discusses systeo . development with the Chesire Cat. "Would vou
tell me. plFase, which way I ought to go from here ?". "That
depends a good deal on where you want to get to" the Cheshire
Cat replied, "I don’t much care..” said the Ali.=. "Then it
doesn’t matter which way vyou go" said ths philosopher Cat,
"..s50 long as 1 get somewhere..". "Oh, vyou’re sure to do that
if you only walk long enough” replied the Cat.

Traditional system development relies on the long walk. It
makes the assumption that the user knows where he’s going, that
he will recognize his destination when he gets there and that,
at least in part, he will even know how to get there. In
practice none of these is usually completely true.

The result is a so called phased systems development
approach whereby one or several users are enpected to sign off
on systems specifications which often compete with New York City
Yellow pages for sheer bulk. To encourage speedy sign—-off, no
further devel opment allegedly takes place until the
specifications have been approved. If the specs are based on
some fundamental error in communication, which the user signing
off may not notice, since he’s really too busy too read all the
specifications, then the resulting system will be fundamentally
incorrect. The maintenance impact of a basic error in design is
usuallyv dramatic.

The basic problems with a one pass implementation are:

1. A user cannot place a complex system in context or consider
its full ramifications. This problem compounds itsel+
exponentially as the number of different users increases.

2. Typically none or few deliverables reach the user until the
time when when the cost and impact of change is at its
maximum. systems testing at the earliest.

To this entire process we apply terms like "computer
science". "software engineering”, "information systems”,
"software technology". There is, in fact, no theory of
computing algorithms or of programming: systems development is a
craft. Witness an error rate of between 1 and Z errors per 100
lines of code put into production. With a development cost of &
8 per line of code, the cost per error line is many, many times
higher. 05 360, IBMs first +flagship operating system, which
for that reason is perhaps a uniquely unfair example to use, had
over 100,000 different errors in its first seven vears of
operation. While hardly in the same class, contemporary
operating system patch file listings freqgquently run thousands of
lines some of which, incidentally, often make fascinating
reading.

So let’s leave Wonderland and examine current productivity
oriented offerings:

— Special purpose languages. GPSS is an example of a simulation
language.

—- Problem specification languages. Languages which set up or
interpret decision tables, for example.

- Customerizers. This is a general term to describe application
packages which have all options predefined. The user
generates his own version by describing his environment.

r

— Program generators. There are quite a few of these products
on the market. They generally offer a shorthand way of
generating a high-level program. The program is then used in
the same manner as any other program. Unfortunately, the
output from a program generator looks precisely like what
would be expected from a machine. Furthermore, program
generators usually compound the maintenance problem which
comprises a major cost over the life of the system.

All the previously mentioned productivity aids emphasize
only the "how to get there faster" aspect of systems
development. But if vyou don’t know where you're going, it
doesn’t matter how fast vou travel.

The final entry in the list is a facility which I will call
a systems modelling or prototyping application devel opment
facility. I believe that this type of product represents the
way of the future in systems development.

A modelling system is a facility +to quickly, easily and
relatively painlessly develop a basic system which may then be
iteratively built upon to produce the +inal system. This
approach answers not only the question "how will I get there 7",
but alsoc "where am I going ?". The technique assumes that the
most effective way of designing and building a system is to
involve the user in the complete specification process by
letting him or helping him to build the prototype and constantly
refining that prototype until the final product has been
generated by iteratively asking the question "is this what you
mean 2?".

Such a deveopment system should have the following
characteristics:

— It should be easy to use. The user of such a facility should
be able to address any entity in the system using meaningful
terms. All functions should be menu or help driven, but an
experienced user should be able to bypass any menu of help
text to get directly to the desired function.

The user should not need to define anything to the system more
than once and therefore should not need to tell the system
anything which it should be able to derive.

— It should include a screen generator whose output, the screen
definition, should be should be completely independent of the
procedural code.

— It should include a report generation facility.

- Data integrity and validation definition should be an aoff-line
nan—procedural process, data dictionary driven.

—~ The procedural language should be very high level and should
include extensive, inherent consistency checks.

- Each system component should generate its own documentation,
so0 that the prototype and eventually the full system is as
self-documented as possible.

- Lastly., and perhaps most importantly, the I/0 and data
attributes should be dynamically alterable without the need to
make changes to or recompile the procedural code. Screens,
report formats and. to a large degree. data attributes should
be dynamically modifyable by simply making the appropriate
change in the off-line maintenance utility or data dictionary
entrvy.

Therefore the products of a modelling system, in other words
the application system, will have the following qualities:

- Correctness. There should simply be fewer opportunities to
make mistakes.

- Responsiveness. Call it user friendliness. The system should
communicate with English instructions, error messages, etc.

- Adaptability. The system should be easily extendable in
function. Since the iterative development process is really a
form of maintenance, the resulting system will be easily
changed.

— Sel+ documented.
The advantages of using this approach are :

-~ Communication pitfals are avoided. The user gets what he
wants the first time.

— User resistance to the system will be minimal since he
effectively designed it.

— It will not be necessary to publish version 2 specifications
before version 1 goes live. This is a fairly common
characteristic of contemporary systems.

- Overall development cost is lower. More resources are
consumed in the design pahse and far fewer in programming and
testing.

— The maintenance costs are much lower since the system will
require less maintenance and that which is needed will be much
easier to apply.

These remarks apply not only to custom systems development,
but to tailoring of canned packages as well. Most customers
resist adapting their environment to suit the limitations,
however minor, of a software package. This is especially true
where the business function to which the software applies has
been well developed. Most software developers, on the other
hand, resist modifying their packages to suit a particular
customer.

A package which has been built using a prototyping
devel opment facility affords both standardization and
flexibility. If vyou develop software, consider the impact on
your sales or on your effectiveness if you were able to offer
each customer or user a tailored off-the-shelf package without
having to make any programming changes or recompilatons.

Such packages are available now on a number of computer
systems including Texas Instruments. I believe that these
products, after some initial resistance from the traditionalists
in d.p., will become the common development approach. I look
forward to the day when the last print program is relegated to a
well deserved retirement and to the time when we will never
again have to worry about whether a praogrammer decided to
practice his art form to its fullest level of creativity and
used some obscure date encoding scheme to save a byte of disk
space.

A Methodology for testing the completeness and functional
correctness of a unit of software.

Software and Systems Engineering Session

Gene Korienek

Johnson Controls
Milwaukee Wisconsin

ABSTRACT :

At some time in the development cycle of a unit of software it
becomes necessary to determine that the software is complete in its
prescribed functions and that these functions execute correctly as
specified. This paper describes a structured testing methodology that
is designed to evaluate software completeness and functional
correctness.

There are four basic processes in this methodology: 1) the
identification of the functions of the software, 2) principles for the
selection of test cases, 3) a format for the structured execution of
the test cases, and 4) a validation process by which the effectness of
the testing methodology may be evaluated.

Each process within the methodology is structured and explicitly
described in both text and example. Data collected from a case study
application of the methodology is also discussed.

With software gaining an ever more responsible role in our
society the issue of software quality has generated considerable
interest. In the past five years software testing has become a viable
and very important discipline within the computing sciences. An area
that has been given particular attention is the area of structured
testing. Much of the published work in this area has been theoretical
or academic in nature and has tended not to present many éase studies
in which implementation level details can be discussed. The current
ﬁaper is an account of a project undertaken to develop a structured
software testing methodology designed to govern the following aspects

of the software testing process:

1) The selection of test cases
2) The writing of the test plans
3) The execution of the test plans

4) The evaluation of the results

A black box approach to the testing was used and test cases were
derived directly from the documentation. The general goal of this
particular testing methodology was to verify that the software
functioned as specified. The remainder of this paper will proceed to

discuss the implementation of this methodology.

SELECTION OF TEST CASES

The testing principles discussed in this paper currently guide
the construction of a set of test plans. These test plans are
designed to evaluate the functional characteristics of the system.

The actual test case structure of these test plans is determined

by the following principles of test case selection:

1) Equivalence Class Partitioning
2) Boundary Value Analysis

3) Error Guessing

Equivalence Class Partitioning

Equivalence class partitioning is a technique that systematically
reduces a very large number of possible inputs into a manageable, but
representative set of inputs. By using this technique an input domain
can be partitioned into a finite number of equivalence classes such
that a test of any given value of a class is equivalent to a test of
any other value of that class.

From a testing point of view this means that if one test case in
an equivalence class detects an error then all other cases in the same
class would have detected the same error. In an extension of this
logic, if one test in an equivalence class detects no error then all
other cases in the same class would detect no error.

Guidelines for test case selection by equivalence class
partitioning have been discussed in Meyers (1976,1979). The guidelines
that were used in this project are:

A. Equivalence classes can be identified by taking each input
condition and defining its set of valid input values. Select one of

these values to be the representative value for that set of inputs.

Repeat this process for any invalid values that may be associated with
the input being analyzed. The purpose of this procedure is to develop
a minimal set of meaningful test cases. For example, if an input
condition has a valid range of 1 < input < 999, the set of equivalent

classes for this input would consist of:

Valid Data 1 < test data < 999
Invalid Data 1 Z_test data
Invalid data 999 < test data

B, If an input condition specifies a numerical range of values (e.g.,
1 through 28 are valid day values for the month of February) identify
one valid equivalence class input (14) and two invalid equivalence
class inputs (0,29). In this case the input, 29, happens to be a

member of an invalid class and a valid class (leap year).

C. If an input condition specifies a set of values and there is reason
to believe that each is handled differently by the software (e.g.,
peripherals) identify one valid equivalence class for each and one

invalid equivalence class (e.g., peripheral: xyz).

D. If an input condition specifies a "must be" situation (e.g., valid

entry must be any non-blank character) identify one equivalence class

I=te

(

.e. any non-blank character) and one invalid equvalence class (i.e.

a blank).

B+ If there is any reason to believe that elements in an equivalent
class are not handled in an identical manner by the program, split the
equivalence class into smaller equivalence classes.

There may exist situations in which equivalent classes
identified in the documentation resources (e.g. Feature Des-
criptions, Functional Specificatons) are not implemented as eq-
valent classes in the software. Situations such as these re—
quire that the documentation level equivalent class be subdi-
vided into the appropriate implementaiton level equivalent

classes.

By following these guidelines, the set of all possible inputs to
a program may be reduced to a set of all possible equivalence classes
of inputs. This results in a considerable reduction of tests
cases.During the reality of testing, input values are selected from
these equivalence classes (one from each). A further technique,
boundary value analysis, facilitates the efficient selection of input

values from the identified equivalence classes.

Boundary Value Analysis

The literature indicates that software boundaries are
particularly fruitful areas when seeking errors (Meyers, 1979; Howden,
1981). By including a sub-set of test cases containing boundary tests
in the set of test cases derived from each equivalence class, the test
plan can take advantage of, and test for, high error probability
boundary conditions. The following list of test cases extends the

previous example to include boundary condition test cases.

Valid Data 1 < Test Data < 999

Valid Data 2 = Test Data

Valid Data Test Data = 998
Invalid Data 1 = Test Data
Invalid Data Test Data = 999

Error Guessing

The previously mentioned techniques form the structured portion
of the test plan. The strengths of methodologies like equivalence
class partitioning, and boundary value analysis lie in thier ability
to structure a reasonably comprehensive test of input conditioms.
There are, however, test cases that are not amenable to selection by
these methodologies. In the current project, these types of test cases
have been identified through a technique we call "error guéssing".
Error guessing is an unstructured testing technique testing technique
used by intelligent, creative, and experienced testing personnel when
flying by the seat of thier pants. Fortunately it works and will be

used to provide additional test cases.

DEVELOPMENT OF THE TEST PLAN

With the test case selection methodologies chosen it became

necessary to decribe a process by which the documentation could be

translated intc test cases and an eventual test plan. Listed below are
the steps that were defined in the test case selection process. It is
very much a generic process and should apply to most all software

documentation.

1. Read the documentation that describes the functional
characteristics of the software being tested. A productive way of
using the documentation is to highlight all assertions, inputs,

actions, limits, and output statements.

2. List all highlighted statements in input and expected outcome form.

If the statement is an input, list it along with the expected outcome
of its execution. If it is an action, then list the input and output
associated with the action. If the statement is an output, list it
along with the input that caused it to happen. At this point a basic

test plan outline has been constructed.

3. Combine any inputs that are members of the same equivalence class.

This step should reduce the size of the outline and subsequently

reduce the number of test cases.

4. Translate each line of the outline into one or more test cases.
The inputs should be in the command syntax of the system
wheneverpossible, and the expected outcomes in English words. Add all
test cases necessary to conduct a complete boundary value analysis on
each of the inputs listed in the outline. Then add any additional
test cases that are felt necessary to test the sortware but do not

fall within the auspices of the structured test case selection

methodologies.

Prior to the to the completion of the project, a syntax standard
was developed that facilitated the readibility, executability, and

overall documentation capabilities of the test plans. The standard

also described the test case selection methodologies and a procedure
for the execution of the test plan.

Execution of the test plans constructed and written to this
standard is a relatively quick and routine operation that can easily
be accomplished by almost anyone with a minimal understanding of the
system. In addition, it became apparent that when a completed test
plan was at hand during testing there tended to be more testiﬁg done.

This was most probably due to the guidance provided by the test plan.

EVALUATION OF THE METHODOLOGY

The primary motivation behind the development of any software
testing methodology is to enhance the quality of the software. The
manner in which “software quality” is measured varies from project to
project. Within the scope of this testing project it was decided the
evaluation of the error detecting effectiveness of the test plans
would provide an indirect measure of the quality of the software. The
evaluation of the test plans consisted of the following tests:
Reliability
Reliability in the context of a test plan refers to its ability to
reproduce the same results over many executions. It is important that
potential confounding variables(e.g. non-significant hardware, tester
personality / ability, etc.) have no effect on the results of the
test. The test plans must be structured such that their results
reflect the status of the software and nothing else. In the current
project reliability was evaluated by using three people to
simultaneously execute several of the test plans. A comparison of the

results of these executions was then conducted. As it turned out, the

level of detail and procedural rigor inherent in the test plans
assured a high level of reliability. Of the 150 test cases executed in
the test plans involved in the reliability test, 147 test cases
revealed identical results across executions. The response generated
by the software in the remaining 3 test cases was ambiguously defined
in the specification and, consequently, differently interpreted by the
various testing bersonnel.

Similiar tests were also conducted with a variety of hardware
configurations. Results indicated that the test plans reliably
revealed the same errors independent of hardware configuration. The
hardware configurations tests were specified to be functionally
equivalent.

Validity

Evaluating the validity of this methodology has been difficult.
Because of the number of variables encountered during the software
development cycle the impact on software quality that can be
attributed to the test plans cannot be isolated. Long range trends in
error number and type represent the only data available for analysis
at the time. The results to date do not reveal any differences in
error rates that could be attributed only to the introduction of this
testing methodology.

Error seeding experiments are being planned in an effort to
explicity evaluate the validity of the testing in an isolated
environment.

Completeness

Completeness refers to the ability of the test plan to test all

functions of the software as documentated in the software

specificaiton. In this testing project the writing of the test plans

was almost entirely driven from statements in the documentation. As a
result there is a very tight relationship between what functions the
software was specified to do and what functions were tested. This type
of relationship implies a high level of completeness in the testing.

A somewhat more explicit check for completeness was conducted by
determining how many command words were specified for use in a
particular unit of software and how many of these command words were
actually tested in the test plan. The results indicate that all
command words specified were tested with an average of 25 test cases
written to test each command word.

In addition to the test plan effectiveness and completeness
evaluations, it was also of interest to determine the amount of time
taken to write and execute the test plans. Initial data indicate that

time utilization was as follows:

Process % of total time spent on testplan
Outlining documentation 25
Writing testplan 69
Executing the testplan 5
Reporting the errors <1

In summary, this methodology has been implemented on a large
software system. Preliminary reliability and completeness evaluations
have been made and indicate that the methodology is reliably testing
the software in all of its prescribed functions. The effectiveness of
the methodology in revealing errors has not yet been explicity

evaluated.

10

Casual observations of -the process reveal that the writing of the
test plans is a very time consuming process but that it contributes to
the functional definition and correctness of the software.
Enhancements to the testing methodology are in the design phase and
involve techniques for increasing the effectiveness of the test plan,
automating various aspects of the test plan process, and further
attempts at evaluating the completeness and validity of the test

plans.

11

THE UNSTRUCTURED APPROACH TO SOFTWARE TESTING

Software and Systems Engineering Session

Ronald W. Reinert

Johnson Controls, Inc.

Milwaukee, Wlsconsin

Abstract

Unstructured software testing (testing without a written
plan prepared in advance) is discussed and contrasted with
Structured software testing, which utilizes a formal test
plan. Definitions and a few words on the content of the
paper are followed by a very brief history of software
testing approaches and a description of the software framework
assumed in the discussion. We then consider some advantages
and disadvantages of Unstructured testing and whether the
Structured and Unstructured approaches tend to find different
types of software errors. A discussion of the extent to
which Unstructured techniques may yield to analytical defi-
nition follows. Some ideas are then presented which may
help us to avoid duplication of effort when both the Structured
and Unstructured methodologies are applied to the same piece
of software. The paper ends with a brief summary.

Definitions

This paper discusses an approach to software testing
which may be called Unstructured (or Seat-of-the-Pants)
testing. Unstructured testing is defined here simply as a
method of software appraisal which does not use a formal
test plan. The software 1s tested against a specification
of its intended functions without deciding in advance which
test cases are to be performed. The test cases are created
by the test technician as the test progresses, by studying
the specification and by using his or her experience and
instincts to suggest specific test cases and test data.

Unstructured testing can be contrasted to Structured
testing methodologies, in which test cases are defined and
committed to paper in a formal test plan prior to test exe-
cution. A Structured test then consists of performing only
the tests described in the test plan and recording the
results. A person performing the Structured test may "think
of something he'd 1like to try" as the test is being carried
out. If he does, he is venturing into the area of Unstructured
testing.

Content

The purpose of this paper is to provide a starting
point for determining the proper place of Unstructured
testing in the total software testing process. We should
not expect to find that either the Structured or the Unstruc-
tured approach is at this time sufficient to stand on its

-1-

own as a truly thorough means of assuring a quality end-product.
Rather, we will compare the relative merits of the two
methodologies, and speculate on how they can best work to-
gether to achieve the desired results. We will ask ourselves
questions and provide answers - sofe firm, some speculative.

The intent is not to give the last word on the subject, but

to provide a mental springboard which will encourage further
investigation.

History of Testing Approaches

In the early days of software testing, programs were
written and tested by the programmer or engineer who developed
them. No test plan was perpared, and the programs were
tested against a specification (if one existed) or a§ainst
the prsgrammer‘s knowledge of what the software was "supposed
to do.

Later on, there came a trend toward putting the software
appraisal function into the hands of a separate group, which
could more objectively evaluate the program quality. For
the most part, testing was still done without a written test
plan. To this point, the Unstructured technique still
dominated. '

More recently, the trend has been to develop Structured
testing methodologies which allow test cases and test datsa
to be derived in advance, and committed to paper to create
a formal test plan which rigidly defines the steps to be
followed in executing the test. The advantages of the struc-
tured approach have been widely discussed.

What remalins to be seen is whether Structured techniques
can ever complete displace Unstructured ones in a thorough
software quslity approach.

Pramework of the Discussion

A brief description of the software structure to be
discussed i1s necessary. We will be talking about a software
"gystem" which is composed of "features". A "feature" is a
set of program modules which work together to accomplish a
single function. In a bullding automation system, for example,
one feature may control the time programmed operation of
heating and cooling units, lights, door locks, etc. Another
feature may calculate the optimum amount of outside air
necessary to cool an area in the most energy-efficient manner,
while yet another 1s responsible for the output of hard and
soft-copy logs and summaries. A host operating system to
schedule and run the features, along with the collection of

features themselves, are put together to form the software
"system" under discussion.

Some features may operate independently of others,
while some may interact with each other in ways which are not
always apparent in asdvance. As an example, two features
which each have the ablility to control the same heating unit,
but for different purposes, may require a prioritizetion
scheme to avoild the problem of fighting for control of the
unit. All of the features, whether independent or not, may
have an effect on total system performance and throughput.

In sddition, we are talking about a fairly large system -
one composed of meny features working wogether in such a way
that all of their possible interactions are nearly impossible
to predict. The testing of the total system is made manageable
by testing the operation of the features individually, followed
by a system integration test to evaluate feature interactions.
For the individual tests, a test plan may be prepared for each
feature - if the Structured approach is being used.

It 1s further assumed that the features have already
been debugged and subjected to an ititial Unstructured test
by the people who wrote them. In other words, the developers
have declared the features to be "working", and are submitting
them to a separate test group for final qualificsation.

Advantages of Unstructured Testing

The motivation for employing Unstructured testing lies
in the fact that it does have some advantages over Structured
testing, as seen from experience. There are also disadvantsages,
to be discussed further on. What are some of the advantages?

The main point in favor of the Unstructured approach is
that it does find problems in software, even after Structured
tests have already been applied. This does not imply any
difference in the expertise of the person who writes and
executes the Structured test plan and the person who executes
the Unstructured test. It results simply from the fact that
the two methodologies do not use the same set of test cases.

Another advantage is that Unstructured testing does not
require time to be spent preparing a test plan. This can
result in significant savings in time and money. ‘

Unstructured technigques usually extend beyond the con-
fines of the software speclification. The tester is allowed
the flexibility of using his creativity and imagination in
constructing test cases as the test progresses. This free-
wheeling approach results in the investigation of operational
aspects that might otherwise be overlooked. As a result,
the tester is more likely to uncover feature interaction
problems, specification deficiencies, throughput problems,
and cases in which the software is responsible for various

-3~

other unexpected effects.

Finally, Unstructured testing appears to be the method
which makes the greatest use of the tester's experience,
intuition and creativity - all valuable resources which
should be fully exploited.

Disadvantages of Unstructured Testing

The move toward Structured testing methodologies has
come about because of the fact that Unstructured techniques
also have their disadvantages. We can consider some of
these here. '

The most apparent deficlency of Unstructured testing
is its lack of repeatability. This 1s not to say that a
particular test case can not usually be repeated from memory
in the short term for the purpose of reproducing a problem
symptom, but rather that the entire set of test cases can not
be reproduced later on. Since there is no written plan, the
same person testing the same software six months later will
have to reinvent all of the test cases. With the Structured
approach, the creative process of preparing the test plan is
required only once. A different person can easily perform the
identical test at any time in the future simply by following
the steps of the plan. ’

It follows from the above that repetitions of Structured
tests on the same software (or even initial tests from new
test plans) can be executed by less experienced personnel,
whereas an Unstructured test, to be productive, must be per-
formed by someone with ample experience and insight into the
software testing process. This is another disadvantage of
Unstructured methods.

An additional objection to an Unstructured test is that
it is the product of a single mind (assuming that one person
is performing the test). When the first draft of a Structured
test plan has been written, it can be walked through by a
group of people familiar with the software. This additional
input adds to the effectiveness of the Structured plan.
Unstructured testing generally employs only those test cases
created by the person who is actually executing the test.

Types of Software Problems Discovered

Since the Structured and Unstructured approaches employ
different techniques and use different sets of test cases
(with some overlap), we may wonder whether they tend to
uncover different types of software problems. Having
frequently seen both methods used to test the same software,

-l-

I can say that this does appear to be true.

One simple (though subjective) way of categorizing
software errors is to place them along a continuous scale
which ranges from "conspicuous™ to "subtle". Errors which
would lle toward the "conspicuous" end of the scale would be,
for example, a clearly specified function which simply does
not work. Toward the "subtle" end, we may have such errors
as feature interaction problems, specification oversights,
intermittent timing problems, etc.

It is certainly true that either testing approach is
capable of finding problems anywhere along the scale. The
Structured method, however, does seem to find a high percen-
tage of "conspicuous" problems. This is not surprising,
since a large amount of effort and the ideas of more than one
person go into preparing the test plan from a thorough study
of the specification. Errors in clearly specified aspects
of operation are very likely to be caught. On the other hand,
an Unstructured test usually seems to reveal a higher percen-
tage of "subtle" errors. Again, this may be expected due to
the free-handed nature of Unstructured testing.

A study is now under way at Johnson Controls which may
shed light on whether the above suppositions are true or not.
A number of software features are being tested first by
3tructured methods and then again by Unstructured ones.

Error categories more suitable than "conspicuous" and "subtle"
wlll be defined, and the problems found by the different
methodologies will be categorized.

Analysis of Unstructured Technlques

Since Structured and Unstructured techniques each have
distinct advantages, it 1s tempting to ask whether we could
combine these advantages into a single testing methodology.
The first approach that comes to mind is to try to analyticsally
define Unstructured methods. If they can be defined and
written down, they can become repeatable and reusasble. In
other words, the Unstructured becomes the Structured. Unfor-
tunately, however, the analysis of techniques which rely
heavlily on insight and creativity is no easy task, as can
be seen by considering some of the things we do know about
Unstructured testing.

Many Unstructured test cases are suggested by occurrences
which happen during the test. The person performing the test
sees something happen which makes him wonder how another
feature will react under similar circumstances, or it may
make him wonder how the observed operation will interact
with another feature. Since the test case suggested by the
observed occurrence requires the observation in the first
place, it is difficult to see how the necessity for the

-5-

second test could have been predicted before the test was
begun.

Some of the problems found during Unstructured testing
are specification problems. For example, the tester may feel
that an observed aspect of operation which is not well defined
in the specification may be confusing to the end user.

Since a Structured test plan tends to follow the specification
closely, this type of question seems to arise more frequently
in Unstructured testing. Again, the feeling that a problem
may exist is tri§gered by an observation during the test -

and the "feeling" that something may be wrong seems to be

more of an intuitive process than a logical one.

In some cases, we may even have to question the value
of adding structure to an Unstructured test. It often happens
that problems found during Unstructured testing rely on highly
specific test conditions. Once the specific problem 1s
corrected, the likelihood of that particular test case ever
finding another problem becomes very low. Adding the test,
and many others like it, to a formal test plan may well be
counter-productive.

One approach to integrating Structured and Unstructured
techniques is to make "error guessing" a part of the Structured
test plan preparation process. The person writing the plan
first prepares the list of basic tests suggested by the
specification, and then spends some time "guessing” at other
test cases which may be useful but are not obvious. If one
seems promising, it is added to the plan. The process of
guessing 1s an Unstructured activity, but making the test
case a part of the test plan makes it repeatable.

For now, though, it does not appear that we are prepared
to make very much progress in adding structure to Unstructured
testing techniques. This is not to say that further work
may not enable us to do so, but the use of words such as
"wondering", "feeling" and "guessing" in the above discussion
indicates that we are dealing with the mental processes of
intuition and creativity, which are not nearly as well
understood as logical thought processes, and therefore
defy analysis.

Duplication of Effort

If we are to take advantage of the strong points of
both the Structured and Unstructured techniques, we may have
to test each feature twice. If the quality of the final
software product is the only consideration, there is no
objection to this dual activity. It does, however, lead
to duplication of effort which may be costly. This 1s
because the "obvious" tests are likely to be a part of the
written test plan and are just as likely to be repeated by

-6-

the person performing the Unstructured test. A cost/benefit
analysis could be attempted, but the cost of releasing soft-
ware with undetected problems is very difficult to evaluate.
What can be done to minimize duplication of effort?

One approach is to perform the Structured test first,
and to then forward the test plan with its results to another
person who will perform the Unstructured test. He can then
review the test plan to determine those aspects of the feature
which have already been found to work properly, and concen-
trate his attention on other tests as suggested by his
experience and intuition - tests which are not a part of the
test plan.

Another idea is to combine the Structured and Unstruc-
tured techniques into a single test. A technician with
sufficient experience to perform fruitful Unstructured
testing can be provided with the unexecuted Structured test
plan. He can then perform the Structured test followed by
a period of Unstructured testing, or intersperse Unstructured
test cases with the Structured test as it is being executed.

Summarz

Both Structured and Unstructured methodologies
offer advantages which must be exploited if the total testing
process is to result in a software product of the highest
possible quality. Since they appear to find different types
of problems due to the use of different sets of test cases,
neither approach can by itself be expected to find as many
software errors as will be found by employing both methods.
To minimize the cost of duplicated effort, we need to find
ways of integrating the two techniques into s testing approach
which uses each test case only once, and which is repeatable,
One way of doing this is by attempting to add structure to
Unstructured techniques. The heavy reliance of Unstructured
testing on experience, creativity, intuition and insight
makes this a difficult task, but it appears to be a task
which is worthy of further investigation.

	001
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	xBack

