8-bit Microcontrollers

Databook - 1997

8-bit Microcontroller

Databook - 1997

About TEMIC

TEMIC is the microelectronics enterprise of Daimler-Benz. Organized into four divisions – Semiconductors, Microsystems, Automotive Electronics, and Airbag Inflators – TEMIC offers products for the computer, communications, auto-motive, consumer, industrial as well as aerospace and defense markets. Sales are handled by the worldwide TEMIC network and by regional sales representatives and distributors.

With a technology portfolio which includes RF, bipolar, BiCMOS, GaAs, CMOS, BiC/DMOS, and DMOS

processes, TEMIC Semiconductors provides a unique set of components and solutions. The company's facilities include wafer fabrication operations in Heilbronn and Itzehoe, Germany; Nantes, France; and Santa Clara, California in the United States. Assembly and test facilities are located in Vöcklabruck, Austria; Manila, Philippines; Kaohsiung, Taiwan; and Shanghai, China. The member companies of TEMIC Semiconductors are Telefunken Semiconductors, Siliconix, Matra MHS, and Dialog Semiconductor.

TEMIC Semiconductors Integrated Circuits Division

The IC Division of TEMIC Semiconductors, with its headquarters in Heilbronn, Germany, is organized into business centers that synergize the company's technical and marketing skills to provide the highest level of service to customers.

Automotive ICs

Based in Heilbronn, Germany, this business center is the European market leader for stand-alone control ICs dedicated to the harsh automotive environment. Offerings include embedded control ICs for airbag and anti-lock braking system (ABS) electronics, as well as RF and IR solutions for safety and convenience, such as keyless entry and immobilizer chip sets.

Communication ICs

Consisting of strong expert teams in the German cities of Heilbronn and Ulm, this business center is focused on high-frequency front-end solutions for handy phones and cordless phones, as well as analog and digital TV and radio receivers for worldwide markets. Current products are based on bipolar silicon high-speed technologies. Future products will also be based on a silicon germanium technology offering higher RF performance and lower power consumption, but at a cost very comparable to silicon.

Microcontrollers and Digital ICs

Located in Nantes, France, this business center's products are based on the powerful 80C51 and 80C251 cores licensed from Intel and comple-mented by a rich cell library, from E/E2PROM through a wide range of digital and mixed-signal functions and interfaces. Together, these provide a toolbox for the design of advanced embedded solutions for minimal system cost and maximum functionality. A line of high-performance SRAMs, digital ASICs and the Universal Logic Circuit (ULC) family of FPGA replacements completes this product offering. Hardened processes and fully certified quality flows enable to serve aerospace and defense applications.

Power ICs

Located in Santa Clara, California, in the heart of Silicon Valley, products from this business center combine low on-resistance power MOS transistors on a single chip with high-speed CMOS functions. The result is a range of product families such as high-frequency dc-to-dc converter ICs or highly integrated motor controller solutions which bothshare a unique combination of high power efficiency, low system cost, and small size.

Mixed-Signal ASICs

Successfully combining analog and digital functions on the same ASIC (Application-Specific-Integrated Circuit) is the key to true system integration. TEMIC Semiconductors' years of experience in mixed-signal ASIC technology gives our customers the ability to achieve the integrated solutions their systems need. Based in Swindon, United Kingdom, this business center supports all types of mixed-signal solutions in CMOS for a range of markets and applications, from the initial idea through to volume production.

TEMIC Semiconductors Discrete Components Division

The TEMIC Semiconductors Discrete Components Division combines TEMIC's expertise in power, IR data transmission, optoelectronic, analog signal processing, and bipolar technologies in a way that creates a clear focus on product lines and an efficient interface with target markets. With headquarters in Santa Clara, California, the Discrete Components Division includes product units focused on power MOSFETs, IrDA modules, optoelectronics, RF/bipolar transistors and diodes, and signal processing products.

Power MOS Devices

TEMIC Semiconductors is the silicon technology and packaging leader for 60-V- and -below power MOSFETs. Now in their third generation, TEMIC's TrenchFETTM power MOSFETs continue to break industry records, with the latest devices offering maximum on-resistance as low as 6 milliohms. TrenchFETsTM and advanced planar devices are available from TEMIC in through-hole and surface-mount packages, including the popular LITTLE FOOT[®] SO8, TSSOP8, and TSOP6.

IrDA Modules

For many years the industry leader in IR photo-module technology, TEMIC Semiconductors has quickly emerged as a top supplier of integrated transceivers and discrete components for data transmission solutions meeting the standards of the Infrared Data Association TEMIC (IrDA). provides a full range of IrDA-compatible components, from transceiver modules with 115.2 kbit/s and 4 Mbit/s transmission rates to a family of discrete IREDs and photomodules that were used in the original implementations that formed the basis for the IrDA standard.

Optoelectronic Components

TEMIC Semiconductors has been a major supplier of optoelectronic devices for more than 20 years. In 1996, the company will supply upwards of 80 million IR photomodules for remote control applications. The photo pin diodes and GaA1As infrared emitting diodes at the heart of these devices are available as discrete components to provide maximum flexibility for customer designs. Visible LEDs and displays, along with a distinguished line of opto sensors, opto couplers, and opto switches, complete TEMIC's optoelectronic product offering. TEMIC Semiconductors' Optoelectronics Product Unit is located in Heilbronn, Germany.

Signal Processing

Offerings from the Signal Processing Product Unit include analog switches and multiplexers, JFETs, and DMOS FETs. A high-voltage silicon-gate process (versus the standard high-voltage metal-gate process) allows TEMIC to manufacture analog switches and multiplexers with lower analog channel leakages, higher accuracy, and faster operation than any other industry-standard products. TEMIC Semiconductors' Signal Processing Product Unit is located in Singapore.

Bipolar Transistors and Diodes

Products in this category, such as our no-roll-away MicroMELF diodes, provide the quality that customers expect plus the extra measure of ingenuity that sets TEMIC apart from its competitors. Our exclusive MOS Monolithic Circuits eliminate the need, e.g., in radio and TV tuners, for several external resistors and capacitors. Families of MOS and bipolar RF transistors, bipolar high-voltage switches, small-signal and zener diodes, as well as standard and ultra-fast rectifiers, complete the offerings of TEMIC Semiconductors' Bipolar Transistors and Diodes Business Unit located in Vöcklabruck, Austria. Quality

TEMIC Quality Policy

Our goal is to achieve total customer satisfaction through everything we do. Therefore, the quality of our products and services is our number one priority.

Quality comes first!

All of us at TEMIC are part of the process of continuous improvement.

Total Customer Satisfaction

00

Total customer satisfaction as stated in the 'TEMIC Quality Policy' means that **the customer comes first**. This applies throughout the organization, as we all strive to understand and meet the changing needs of our customers.

199

In this report, our methodology to achieve total customer satisfaction is shown. Furthermore, quality figures and future targets are given.

- ♦ World-class excellence
- Benchmarking
- EFQM approach
- ♦ Measurement of customer satisfaction QFD
- ♦ Corporate customer service policy
- ♦ Cost of quality
- ♦ TEMIC worldwide ISO 9000 certification
- ♦ FMEA-DOE

000

- Supplier partnership
- Empowered improvement teams
- Statistical process control
- ◆ External / internal customer partnership
- TQM training and education

Quality Program

At the heart of the quality process is TEMIC's worldwide quality program, **TEMIC Quality Movement (TQM)**. This program, which has been in place since the early 90's, is specifically designed to meet rapidly increasing customer quality demands now and in the future. The quality program is controlled by the TEMIC Quality Committee (TQC). The committee implements the Quality Policy and translates its requirements for use throughout the worldwide organization.

The TQC has defined a roadmap with specific targets along the way. The major target is to achieve world-class excellence throughout TEMIC Semiconductors worldwide by 1999.

TEMIC Quality Committee

The TEMIC Quality Committee (TQC) defines and implements the TEMIC quality policy at a corporate level. It acts to harmonize the quality systems of the constituent divisions and to implement Total Quality Management throughout the company worldwide.

Quality Goals and Methods

The goals are straightforward: Customer satisfaction through continuous improvement towards zero defects in every area of our operation. We are committed to meeting our customers' requirements in terms of quality and service. In order to achieve this, we build excellence into our product from concept to delivery and beyond.

Design-in Quality

Quality must be designed into products. TEMIC uses optimized design rules based on statistical information. This is refined using electrical, thermal and mechanical simulation together with techniques such as FMEA and DOE.

• Built-in Quality

Quality is built into all TEMIC products by using qualified materials, suppliers and processes. Fundamental to this is the use of SPC techniques by both TEMIC and its suppliers. The use of these techniques, as well as tracking critical processes, reduces variability, optimizing the process with respect to the specification. The target is defect prevention and continuous improvement.

Qualification

All new products are qualified before release by submitting them to a series of mechanical, electrical and environmental tests. The same procedure is used for new or changed processes or packages.

• Monitoring

A selection of the same or similar tests used for qualification is also used to monitor the short- and long-term reliability of the product.

• SPC (Statistical Process Control)

SPC is an essential part of all TEMIC process control. It has been established for many years and is used as a tool for the continuous improvement of processes by measuring, controlling and reducing variability.

• TEMIC's Quality System

All TEMIC's facilities worldwide are approved to ISO9000. In addition, some TEMIC companies hold approval to recognized international and industry standards such as MIL-STD-883, MIL-I-38535, SCC9000, AQAP1, Ford Q101, QS 9000.

The procedures used are based upon these standards and laid down in an approved and controlled Quality Manual.

Total Quality Management

Total Quality Management is a management system combining the resources of all employees, customers and suppliers in order to achieve total customer satisfaction. The fundamental elements of this system are:

- Management commitment
- EFQM assessment methodology
- Empowered Improvement Teams (EITs)
- Supplier development and partnership
- Quality tools
- Training
- Quality System

All TEMIC employees from the senior management downwards are trained in the understanding of TQM. Every employee plays its own part in the continuous improvement process which is fundamental to TQM and our corporate commitment to exceed customers' expectations in all areas including design, technology, manufacturing, human resources, marketing, and finance. Everyone is involved in fulfilling this goal. The management believes that this can only be achieved by employee empowerment.

The TEMIC corporate core values; leadership by example, employee empowerment, continuous improvement, total customer satisfaction and business excellence are the very essence of the TEMIC Quality Movement process.

• Training

TEMIC maintains that it can only realize its aims if the employees are well-trained. It therefore invests heavily in courses to provide all employees with the knowledge they need to facilitate continuous improvement. A training profile has been established for all employees with emphasis being placed on Total Quality Leadership. Our long-term aim is to continuously improve our training so as to keep ahead of projected changes in business and technology.

• EFQM Assessment Methodology

From 1995, TEMIC has started to introduce the EFQM (European Foundation for Quality Management) methodology for structuring its Total Quality Management approach. This methodology, similar to the Malcolm Baldrige process, consists in self-assessing the various TEMIC divisions and facilities according to nine business criteria:

- Leadership
- People management
- Policy and strategy
- Resources
- Processes
- People satisfaction
- Customer satisfaction
- Impact on society
- Business results

The assessments are conducted on a yearly basis by 40 trained and empowered, internal TEMIC assessors. This permits the identification of key-priority improvement projects and the measurement of the progress accomplished.

The EFQM methodology helps TEMIC to achieve world-class business excellence and will very soon bring either a Malcolm Baldrige- or an EFQM Award recognition.

• Empowered Improvement Teams (EITs)

At TEMIC we believe that every person in the company has a contribution to make in meeting our target of customer satisfaction. Management therefore empowers employees to higher and higher levels of motivation, thus achieving higher levels of productivity. effectiveness and Empowered improvement teams, which are both functional and cross-functional, combine the varied talents from across the breadth of the company. By taking part in training, these teams are continually searching for ways to improve their jobs, achieving satisfaction for themselves, the company and - most important of all - the customer.

TQM Tools

As part of its search for excellence, TEMIC employs many different techniques and tools. Some of them are listed here:

Cost of Quality

Cost of Quality is used as a performance indicator. It is defined as the sum of the costs of:

- Internal failure
- External failure
- Exceeding requirements
- Lost opportunities
- Prevention
- Appraisal

The goals are set as part of the company goals, initially at director level. All employees and EIT are expected to be aware of, determine, and track their associated costs.

• Auditing

As well as third-party auditing employed for approval by ISO 9000 and customers, TEMIC carries out its own internal and external auditing. There is a common auditing procedure for suppliers and sub-contractors between the TEMIC entities. This procedure is also used for inter-company auditing between the facilities within TEMIC. It is based on the "Continuous Improvement" concept with heavy emphasis on the use of SPC and other statistical tools for the control and reduction of variability.Internal audits are carried out on a routine basis. They include audits of satellite facilities (i.e., sales offices, warehousing etc.). Audits are also used widely to determine attitudes and expectations both within and outside the company.

• Failure Mode and Effect Analysis (FMEA)

FMEA is a technique for analyzing the possible methods of failure and their effect upon the performance/reliability of the product/process. Process FMEAs are performed for all processes. In addition, product FMEAs are performed on all critical or custom products.

• Design of Experiments (DOE)

There is a series of tools which may be used for the statistical design of experiments. It consists of a formalized procedure for optimizing and analyzing experiments in a controlled manner. Taguchi and factorial experiment design are included in this. They provide a major advantage in determining the most important input parameters, making the experiment more efficient and promoting common understanding amongst team members of the methods and reasoning used.

• Gauge Repeatability and Reproducibility (GR&R)

This technique is used to determine an equipment's suitability for purpose. It is used to make certain that all equipment is capable of functioning to the required accuracy and repeatability. All new equipment is approved before use by this technique.

• Quality Function Deployment (QFD)

QFD is a method for translating customer requirements into recognizable requirements for TEMIC's marketing, design, research, manufacturing and sales (including aftersales). QFD is a process which brings together the life cycle of a product from its conception, through design, manufacture, distribution and use until it has served its expected life.

Quality Service

TEMIC believes that quality of service is equally as important as the technical ability of its products to meet their required performance and reliability. Our objectives therefore include:

- On-time delivery
- Short reaction time to customers' requests for information
- Rapid and informed technical support
- Fast handling of complaints
- A partnership with our customers

We have therefore implemented a customer service plan and charter which details our service targets. This is detailed in our brochure **The Business of Customer Service**. "The customer comes first" is a fundamental part of this charter.

• Customer Complaints

Complaints fall mainly into two categories:

- Logistical
- Technical

TEMIC has a procedure detailing the handling of complaints. Initially complaints are forwarded to the appropriate sales office where in-depth information describing the problem is of considerable help in giving a fast and accurate response. If it is necessary to send back the product for logistical reasons, the Sales Office issues an RMA (**R**eturned Material Authorization) number. On receipt of the goods in good condition, credit is automatically issued.

If there is a technical reason for complaint, a sample is sent to the Sales Office for forwarding to the Failure Analysis department of the supplying facility. The device's receipt will be acknowledged and a report issued on completion of the analysis. The cycle time for this analysis has set targets and is constantly monitored in order to improve the turnaround time. Failure analysis normally consists of electrical testing, functional testing, mechanical analysis and electrical probing. Other specialized techniques (i.e. LCD, thermal imaging, SEM, acoustic microscopy) may be used if necessary.

If the analysis uncovers a quality problem, a CAR (Corrective Action Report - in -8D format if required) will be issued. Any subsequent returns are handled with the RMA procedure.

Change Notification

All product and process changes are controlled and released via ECN (Engineering Change Notification). This requires the approval of the relevant departments. In the case of a major change, the change is forwarded to customers via Sales/ Marketing before implementation. Where specific agreements are in place, the change will not be implemented unless approved by the customer.

• Ship-to-Stock/Ship-to-Line (STS/STL)

There are very low levels of rejects being delivered to customers. Many customers now require devices to be shipped direct to stock or to the production line by omitting any goods inwards inspection. TEMIC welcomes such agreements as part of its customer partnership program which promises an open approach in every aspect of its business.

A product will only be supplied as STS or STL if there is a valid agreement in place between the two companies. Such an agreement details the quality level targets agreed upon between the companies and the methods to be used in case of problems. TEMIC reserves the right to make changes in the products or specifications contained in this document in order to improve design or performance and to supply the best possible products. TEMIC also assumes no responsibility for the use of any circuits described herein, conveys no license under any patents or other rights, and makes no representations that the circuits are free from patent infringement. Applications for any integrated circuits contained in this publication are for illustration purposes only and TEMIC makes no representation or warranty that such applications will be suitable for the use specified without further testing or modification. Reproduction of any portion hereof without the prior written consent of TEMIC is prohibited.

Definition of Terms

The product datasheets contained in this document are referring to the following possible status:

Datasheet Identification	Definition
Preview	This datasheet contains the targeted specifications, all electrical parameters correspond to either targeted or simulated values. Specifications may change in any manner without notice.
Preliminary	This datasheet contains final functional specification. The electrical parameters given are based either on simulated values or on preliminary product characterization results. Specifications may change in any manner without notice.
No indication (blank)	This datasheet contains final specifications. TEMIC reserves the right to make changes at any time, according to TEMIC Quality Assurance procedures, in order to improve design and supply the best possible product.

On line information

World Wide Web:	http://www.temic.de
E-mail C51 products:	c51@temic.fr
E-mail C251 products:	c251@temic.fr

Publisher

MATRA MHS S.A. La Chantrerie Route de Gachet, BP 70602 44306 NANTES Cedex 03 France Fax: +33 2 40 18 19 60

Copyright TEMIC Semiconductors 1997.

TEMIC 8-bit Microcontrollers: A Long Term Commitment

In the world of 8-bit microcontrollers, the 80C51 architecture has become an industry standard in embedded applications. Introduced in the early's 1980's by TEMIC/Matra MHS under Intel License, the 80C51 is still a market leader.

For over 15 years, TEMIC has been a leading provider of 80C51 microcontrollers to major embedded markets. Today, TEMIC is ranked number 3 in worldwide sales of 80C51 devices, representing over 20% market share. This unsurpassed experience is at the service of TEMIC customers in every application.

TEMIC now enlarges its product range by adding one time programmable (OTP) versions of standard products and the highly increased number of product derivatives for applications mainly targeted in the Communication, Computer and Automotive area.

Also the market is in need for a more powerful solution to meet the requirements of increasingly sophisticated embedded applications. High growth markets, including applications in communication, automotive and personal computing are driving these requirements. Therefore TEMIC has introduced in 1996 the first two products of the Intel–licensed TSC80251 8–bit extended architecture.

Our long-term commitment means you'll enjoy through C51 and C251 support for years to come.

This 8-bit Microcontroller Databook 1997 intends to provide you the latest information on the growing TEMIC offer. All available technical information of the C51 family is included while the literature for the TSC80251 family is available separately:

- TSC80251 Programmer's Guide

- TSC80251A1 Datasheet

- TSC80251G1 Design Guide

8-bit Microcontroller

1

2

3

4

5

6

Section I: C51 Architecture Information

Section II: Product Information

Section III: C51 Application Notes

Section IV: Introduction to C251 Architecture

Section V: Packaging

Section VI: Quality Flows

Section VII: TEMIC Sales Locations

TEMIC Semiconductors

8-bit Microcontroller

Table of Contents

Section I: C51 Architecture Information

C51 Family : Architectural Overview of the C51 Family	I.1.1
C51 Family : Hardware Description of the C51 Family Products	I.2.1
C51 Family : C51 Family Programmer's Guide and Instruction Set	I.3.1

Section II: Product Information

Product Selection II.1.0
Product by Application Domain II.1.1
Products/Peripheral Selection Tables II.1.2
Military and Space Products
C51 General Purpose Products II.2.0
TSC80C31/80C51 : CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller II.2.1
TSC80CL31/TSC80CL51 : CMOS 1.8 Volt Single-Chip 8 Bit Microcontroller II.3.1
80C32/80C52 : CMOS 0 to 44 MHz Single Chip 8-bit Microntroller II.4.1
80C154/83C154 : CMOS 0 to 36 MHz Single Chip 8-bit Microcontroller II.5.1
83C154D : CMOS 0 to 30 MHz Single Chip 8-bit Microcontroller II.6.1
C51 Computer/Communication Products II.7.0
TSC8051C1 : 8-Bit Microcontroller for Digital Computer Monitors II.7.1
TSC8051C2 : 8-Bit Microcontroller for Digital Computer Monitors II.8.1
C51 Automotive Products II.9.0
TSC8051A1 : CMOS Single Chip 8-bit Microcontroller with Analog Interface II.9.1
TSC8051A2 : CMOS Single Chip 8-bit Microcontroller with Analog Interfaces II.10.1
TSC8051A11 : CMOS Single chip 8-bit Microcontroller with CAN Controller II.11.1
TSC8051A30 : CMOS Single chip 8-bit Microcontroller with VAN Controller II.12.1

8-bit Microcontroller

Section III: C51 Application Notes

Section IV: Introduction to C251 Architecture

C251 Overview/Benefits vs C51	IV.1.0
C251 Architecture Overview :	IV.1.1
TSC80251 : AC/DC Characteristics	IV.2.1
Extended 8-bit TSC80251 Products Overview	IV.3.0
TSC 80251A1 : Extended 8-bit Microcontroller with Analog Interfaces	IV.3.1
TSC 80251G1 : Extended 8-bit Microcontroller with Serial Communication Interfaces	T 7 4 1

Section V: Packaging

Section VI: Quality Flows

Section VII: TEMIC Sales Locations

Sales Offices Addresses	3 to 4 ⁻
Representatives Addresses	5 to 7
Distributors Addresses 8	8 to 22

Í

Section I

C51 Architecture Information

C51 Family : Architectural Overview of the C51 Family	I.1.1
C51 Family : Hardware Description of the C51 Family Products	I.2.1
C51 Family : C51 Family Programmer's Guide and Instruction Set	I.3.1

Architectural Overview of the C51 Family

Summary

1. Introduction	I.1.2
1.1. TSC80C51/80C51/80C31	I.1.3
1.2. 80C52/80C32	I.1.3
1.3. 83C154/80C154	I.1.3
1.4. 83C154D	I.1.3
2. Memory Organization in C51 Devices	I.1.3
2.1. Logical Separation Of Program And Data Memory	I.1.3
2.2. Program Memory	I.1.4
2.3. Data Memory	I.1.5
3. The C51 Instruction Set	I.1.7
3.1. Program Status Word	I.1.7
3.2. Addressing Modes	I.1.9
3.3. Arithmetic Instructions	I.1.10
3.4. Logical Instructions	I.1.11
3.5. Data Transfers	I.1.12
3.6. External RAM	I.1.13
3.7. Lookup Tables	I.1.14
3.8. Boolean Instructions	I.1.14
3.9. Jump Instructions	I.1.15
4. CPU Timing	I.1.17
4.1. Machine Cycles	I.1.18
4.2. Interrupt Structure	I.1.21

C51 Family

TEMIC Semiconductors

1. Introduction

The TEMIC C51 microcontroller family is based on the 80C51 core which features are :

- 8-bit CPU optimized for control applications
- Extensive boolean processing (single-bit logic) capabilities
- 64 K Program Memory address space
- 64 K Data Memory address space
- 4 K bytes of on chip Program Memory
- 128 bytes of on chip data RAM

- 32 bidirectionnal and individually addressable I/O lines
- two 16-bit timers/counters
- Full duplex UART
- 6 sources / 5-vector interrupt structure with 2 priority levels
- on chip clock oscillators

The basic architectural structure of the C51 microcontroller family is shown in figure 1.

Figure 1. Block Diagram

Each device of the C51 family is listed in Table 1.

Table 1 : C51 Family of Microcontrollers.

DEVICE NAME	ROMLESS VERSION	ROM BYTES	RAM BYTES	16-BIT TIMERS	SPEED UP TO	PROCESS
80C51, TSC80C51	80C31	4 K	128	2	44 MHz	CMOS
80C52	80C32	8 K	256	3	44 MHz	CMOS
83C154	80C154	16 K	256	3	36 MHz	CMOS
83C154D	_	32 K	256	3	36 MHz	CMOS
80C51PX		_	128/256	2/3	12 MHz	CMOS

1.1. TSC80C51/80C51/80C31

The 80C51 is the CMOS version of the 8051. Functionally, it is fully compatible with the 8051, but being CMOS it draws less current than its HMOS counterpart. To further exploit the power savings available in CMOS circuitry, two reduced power modes are added;

- <u>Software-invoked Idle Mode</u>, during which the CPU is turned off while the RAM and other onchip peripherals continue operating. In this mode, current draw is reduced to about 15 % of the current drawn when the device is fully active.
- <u>Software-invoked Power Down Mode</u>, during which all on-chip activities are suspensed. The on-chip RAM continues to hold its data. In this mode the device typically draws less than 10 µA.

Although the 80C51 is functionally compatible with its HMOS counterpart, specific differences between the two types of devices must be considered in the design of an application circuit if one wishes to ensure complete interchangeability between the HMOS and CMOS devices.

The ROMless version of the 80C51 is the 80C31.

TSC80C51 is a core optimized version fully compatible with 80C51 (See product datasheets for electrical parameters).

1.2.80C52/80C32

The 80C52 is an enhanced 80C51. It is produced with CMOS technology, and is compatible with the 80C51. Its enhancements over the 80C51 are as follows :

- 256 bytes of on-chip RAM
- Three timer/counters
- 6-source interrupt structure
- 8 K bytes of on-chip Program ROM

The ROMless version of the 80C52 is the 80C32.

2. Memory Organization in C51 Devices

2.1. Logical Separation Of Program And Data Memory

All C51 devices have separated address spaces for program and Data Memory, as shown in figure 2. The logical separation of Program and Data Memory allows the Data Memory to be accessed by 8-bit addresses, which can be more quickly stored and manipulated by an 8-bit CPU. Nevertheless, 16-bit Data Memory addresses can also be generated through the DPTR register.

1.3. 83C154/80C154

The 83C154 is an enhanced 80C52. It is produced with CMOS technology, and is compatible with the 80C51 and 80C52. Its enhancements over the 80C51 are as follows:

- 256 bytes of on-chip data RAM
- Three timer/counters (included watchdog and 32 bits timer/counters)
- 6 source interrupt structure
- Serial reception error detection
- New modes of power reduction consumption
- Programmable impedance port
- 16 K bytes of on-chip ROM
- Asynchronous Counter/Serial port mode during power-down

The ROMless version of the 83C154 is the 80C154.

1.4. 83C154D

The 83C154D is an enhanced 80C154. It is produced with CMOS technology, and is compatible with the 83C154. Its enhancements over the 80C51 are as follows :

- 256 bytes of on-chip data RAM
- Three timer/counters (included watchdog and 32 bits timer/counters)
- 6 source interrupt structure
- Serial reception error detection
- New modes of power reduction consumption
- Programmable impedance port
- 32 K bytes of on-chip ROM
- Asynchronous Counter/Serial port mode during power-down.

Program Memory can only be read, not written to. There can be up to 64 K bytes of program Memory. In the ROM versions of these devices the lowest 4 K, 8 K, 16 K or 32 K bytes of Program Memory are provided on-chip. Refer to Table 1 for the amount of on-chip ROM, on each device. In the ROMless versions all Program Memory is external. The read strobe for external Program Memory is the signal <u>PSEN</u> (Program Store Enable).

C51 Family

Figure 2. TEMIC C51 Memory Structure.

Data Memory occupies a separate address space from Program Memory. Up to 64 K bytes of external RAM can be addressed in the external Data Memory space. The CPU generates read and write signals, \overline{RD} and \overline{WR} , as needed during external Data Memory accesses. External Program Memory and external Data Memory may be combined if desired by applying the \overline{RD} and \overline{PSEN} signals to the inputs of an AND gate and using the output of the gate as the read strobe to the external Program/Data memory.

2.2. Program Memory

Figure 3 shows a map of the lower part of the Program Memory. After reset, the CPU begins execution from location 0000H.

As shown in Figure 3, each interrupt is assigned a fixed location in Program Memory. The interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External Interrupt 0, for example, is assigned to location 0003H. If External Interrupt 0 is going to be used, its service routine must begin at location 0003H. If the interrupt is not going to be used, its service location is available as general purpose Program Memory.

Figure 3. C51 Program Memory.

The interrupt service locations are spaced at 8-byte intervals : 0003H for External Interrupt 0, 000BH for Timer 0, 0013H for External Interrupt 1, 001BH for Timer 1, etc. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within that 8-byte interval. Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

The lowest 4 K (or 8 K in the 80C52 or 16 K in the 83C154 or 32 K in the 83C154D) bytes of Program Memory can be either in the on-chip ROM or in an external ROM. This selection is made by strapping the $\overline{\text{EA}}$ (External Access) pin to either Vcc or Vss. In the 80C51 and its derivatives, if the $\overline{\text{EA}}$ pin is strapped to Vcc, then program fetches to addresses 0000H through 0FFFH are directed to the internal ROM. Program fetches to addresses 1000H through FFFFH are directed to external ROM.

In the 80C52, $\overline{EA} = Vcc$ selects addresses 0000H through 1FFFH to be internal, and addresses 2000H through FFFFH to be external.

In the 83C154, \overline{EA} = Vcc selects addresses 0000H through 3FFFH to be internal, and addresses 4000H to FFFFH to be external.

In the 83C154D, \overline{EA} = Vcc selects addresses 0000H through 7FFFH to be internal and addresses 8000H to FFFFH to be external.

If the \overline{EA} pin is strapped to Vss, then all program fetches are directed to external ROM. The ROMless parts must have this pin externally strapped to Vss to enable them to execute from external Program Memory.

The read strobe to external ROM, \overline{PSEN} , is used for all external program fetches. \overline{PSEN} is not activated for internal program fetches.

Figure 4. Executing from External Program Memory.

The hardware configuration for external program execution is shown in figure 4. Note that 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external Program Memory fetches. Port 0 (P0 in Figure 4) serves as a multiplixed address/data bus. It emits the low byte of the Program Counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the Program Memory. During the time that the low byte of the Program Counter is valid on PO, the signal ALE (Address Latch Enable) clocks this byte into an address latch. Meanwhile, Port 2 (P2 in Figure 4) emits the high byte of Program Counter (PCH). Then PSEN strobes the EPROM and the code byte is read into the microcontroller.

Program Memory addresses are always 16 bits wide, even though the actual amount of Program Memory used may be less than 64 K bytes. External program execution sacrifices two of the 8-bit ports, P0 and P2, to the function of addressing the Program Memory.

2.3. Data Memory

The right half of Figure 2 shows the internal and external Data Memory spaces available to the C51 user. Figure 5 shows a hardware configuration for accessing up to 2 K bytes of external RAM. The CPU in this case is executing from internal ROM. Port 0 serves as multiplexed address/data bus to the RAM, and 3 lines of Port 2 are being used to page the RAM. The CPU generates $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals as needed during external RAM accesses.

There can be up to 64 K bytes of external Data Memory. External Data Memory addresses can be either 1 or 2 bytes wide. One-byte address is often used in conjunction with one or more other I/O lines to page the RAM, as shown in Figure 5. Two-byte addresses can also be used, in which case the address byte is emitted at Port 2. Figure 5. Accessing External Data Memory. If the Program Memory is external, the other bits of P2 are available as I/O.

Internal Data Memory is mapped in figure 6. The memory space is shown divided into three blocks, which are generally referred to as the lower 128, the Upper 128, and SFR space.

Internal Data Memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, the addressing modes for internal RAM can in fact accomodate 384 bytes, using a simple trick. Direct addresses higher than 7FH access one memory space, and indirect addresses higher than 7FH access a different memory space. Thus figure 6 shows the Upper 128 and SFR space occupying the same block of addresses, 80H through FFH, although they are physically separate entities.

Figure 6. Internal Data Memory.

The Lower 128 bytes of RAM are present in all C51 devices as mapped in Figure 7. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

Figure 7. The Lower 128 Bytes of Internal RAM.

The next 16 bytes above the register banks form a block of bit-addressable memory space. The C51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing. The Upper 128 (Figure 8) can only be accessed by indirect addressing. The Upper 128 bytes of RAM are not implemented in the 80C51 but are in the 80C52, 83C154 and 83C154D.

Figure 8. The Upper 128 Bytes of Internal RAM.

Sixteen addresses in SFR space are both byte-and

bit-addressable. The bit-addressable SFRs are those

whose address ends in 0, 8 or 9. The bit addresses in this

area are 80H through FFH.

Figure 9. SFR Space.

Figure 9 gives a brief look at the Special Function Register (SFR) space. SFRs include the Port latches, timers, peripheral controls, etc. These registers can only be accessed by direct addressing. In general, all C51 microcontrollers have the same SFRs as the 80C51, and at the same addresses in SFR space. However, enhancements to the 80C51 have additional SFRs that are not present in the 80C51, nor perhaps in other proliferation of the family.

3. The C51 Instruction Set

All members of the C51 family execute the same instruction set. (except code A5H, skip opcode in C51/C52). The C51 instruction set is optimized for 8-bit control applications. It provides a variety of fast addressing modes for accessing the internal RAM to facilitate byte operations on small data structures. The instruction set provides extensive support for one-bit variables as a separate data type, allowing direct bit manipulation in control and logic systems that require Boolean processing.

An overview of the C51 instruction set is presented below, with a brief description of how certain instructions might be used.

3.1. Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current state of the CPU. The PSW, shown in Figure 10, resides in SFR space. It contains the Carry bit, the Auxiliary Carry (for BCD operations), the two register bank select bits, the Overflow flag, a parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a Carry bit in arithmetic operations, also serves as the "Accumulator" for a number of Boolean operations. The bits RS0 and RS1 are used to select one of the four register banks shown in Figure 7. A number of instructions refer to these RAM locations as R0 through R7. The selection of which of the four banks is being referred to is made on the basis of the bits RS0 and RS1 at execution time.

The parity bit reflects the number of 1 s in the Accumulator : P = 1 if the Accumulator contains an odd number of 1 s, and P = 0 if the Accumulator contains an even number of 1 s. Thus the number of 1 s in the Accumulator plus P is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

Figure 10. PSW (Program Status Word) Register in C51 Devices.

3.2. Addressing Modes

The addressing modes in the C51 instruction set are as follows :

3.2.1. Direct addressing

In direct addressing the operand is specified by an 8-bit address field in the instruction. Only 128 Lowest bytes of internal Data RAM and SFRs can be directly addressed.

3.2.2. Indirect addressing

In indirect addressing the instruction specifies a register which contains the address of the operand. Both internal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be R0 or R1 of the selected register bank, or the Stack Pointer. The address register for 16-bit addresses can only be the 16-bit "data pointer" register, DPTR.

3.2.3. Register instructions

The register banks, containing registers R0 through R7, can be accessed by certain instructions which carry a 3-bit register specification within the opcode of the instruction. Instructions that access the registers this way are code efficient, since this mode eliminates an address byte. When the instruction is executed, one of the eight registers in the selected bank is accessed. One of four banks is selected at execution time by the two bank select bits in the PSW.

3.2.4. Register-specific instructions

Some instructions are specific to a certain register. For example, some instructions always operate on the Accumulator, or Data Pointer, etc., so no address byte is needed to point to it. The opcode itself does that. Instructions that refer to the Accumulator as A assemble as accumulator-specific opcodes.

3.2.5. Immediate constants

The value of a constant can follow the opcode in Program Memory. For example,

MOV A, #100

loads the Accumulator with the decimal number 100. The same number could be specified in hex digits as 64H.

3.2.6. Indexed addressing

Only Program Memory can be accessed with indexed addressing, and it can only be read. This addressing mode is intended for reading look-up tables in Program Memory. A 16-bit base register (either DPTR or the Program Counter) points to the base of the table, and the Accumulator is set up with the table entry number. The address of the table entry in Program Memory is formed by adding the Accumulator data to the base pointer.

Another type of indexed addressing is used in the "case jump" instruction. In this case the destination address of a jump instruction is computed as the sum of the base pointer and the Accumulator data.

3.3. Arithmetic Instructions

The menu of arithmetic instructions is listed in Table 2. The table indicates the addressing modes that can be used with each instruction to access the
byte> operand. For example, the ADD A, <byte> instruction can be written as :

ADD	А,	7FH	(direct addressing)
ADD	Α,	@ R0	(indirect addressing)
ADD	А,	R7	(register addressing)
ADD	А,	# 127	(immediate constant)

MNEMONIC	EMONIC OPERATION ADDRESSING MODES				DES	EXECUTION TIME (µs)
		Dir	Ind	Reg	Imm	
ADD A, <byt>e</byt>	A = A + <byte></byte>	X	X	X	X	
ADDC A, <byte></byte>	$A = A + \langle byte \rangle + C$	X	X	X	X	1
SUBB A, <byte></byte>	$A = A - \langle byte \rangle - C$	X	X	X	X	1
INC A	A = A + 1		Accumulator only			1
INC <byte></byte>	<byte> = <byte> + 1</byte></byte>	X	X X X		1	
INC DPTR	DPTR = DPTR + 1	Data Pointer only			2	
DEC A	A = A - 1	Accumulator only				1
DEC <byte></byte>	<byte> = <byte> - 1</byte></byte>	X	X X X		1	
MUL AB	$B:A = B \times A$	ACC and B only			4	
DIV AB	A = Int [A/B] $B = Mod [A/B]$	ACC and B only				4
DA A	Decimal Adjust	Accumulator only				1

 Table 2 : A list of the TEMIC C51 Arithmetic Instructions.

The execution times listed in Table 2 assume a 12 MHz clock frequency. All of the arithmetic instructions execute in 1 μ s except the INC DPTR instruction, which takes 2 μ s, and the Multiply and Divide instructions, which take 4 μ s.

Note that any byte in the internal Data Memory space can be incremented or decremented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The Data Pointer is used to generate 16-bit addresses for external memory, so being able to increment it in one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator by the data in the B register and puts the 16-bit product into the concatenated B and Accumulator registers. The DIV AB instruction divides the Accumulator by the data in the B register and leaves the 8-bit quotient in the Accumulator, and the 8-bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic "divide" routines than in radix conversions and programmable shift operations. An example of the use of DIV AB in a radix conversion will be given later. In shift operations, dividing a number by 2^n shifts its n bits to the right. Using DIV AB to perform the division completes the shift in 4 µs leaves the B register holding the bits that were shifted out. The DA A instruction is for BCD arithmetic operations. In BCD arithmetic ADD and ADDC instructions should always be followed by a DA A operation, to ensure that the result is also in BDC. Note that DAA will not convert a binary number to BCD. The DA A operation produces a meaningful result only as the second step in the addition of two BCD bytes.

3.4. Logical Instructions

Table 3 shows the list of TEMIC C51 logical instructions. The instructions that perform Boolean operations (AND, OR, Exclusive OR, NOT) on bytes perform the operation on a bit-by-bit basis. That is, if the Accumulator contains 00110101B and <byte> contains 01010011B, then

ANL A, <byte>

 Table 3 : A list of the TEMIC C51 Logical Instructions.

will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the

operand are listed in Table 3. Thus, the ANL A,

 instruction may take any of the forms.

ANL	A, 7FH	(direct addressing)
ANL	A, @ R1	(indirect addressing)
ANL	A, R6	(register addressing)
ANL	A, # 53H	(immediate constant)

All of the logical instructions that are Accumulator specific in 1 μ s (using a 12 MHz clock). The others take 2 μ s.

If the operation is in response to an interrupt, not using the Accumulator saves the time and effort to stack it in the

MNEMONIC	OPERATION	AD	DRESSI	NG MOI	DES	EXECUTION TIME (µs)
		Dir	Ind	Reg	Imm	
ANL A, <byte></byte>	A = A AND <byte></byte>	x	x	x	x	1
ANL <byte>, A</byte>	<byte> = <byte> AND A</byte></byte>	x				1
ANL <byte>, # data</byte>	<byte> = <byte> AND # data</byte></byte>	x				2
ORL A, <byte></byte>	A = A OR <byte></byte>	x	x	x	x	1
ORL <byte>, A</byte>	<byte> = <byte> OR A</byte></byte>	X				1
ORL <byte>, # data</byte>	<byte> = <byte> OR # data</byte></byte>	X				2
XRL A, <byte></byte>	A = A XOR <byte></byte>	X	x	x	x	. 1
XRL <byte>, A</byte>	<byte> = <byte> XOR A</byte></byte>	X				1
XRL <byte>, # data</byte>	<byte> = <byte> XOR # data</byte></byte>	X				2
CLR A	A = 00H		Accumu	lator only		1
CLP A	A = NOT A		Accumu	lator only		1
RL A	Rotate ACC Left 1 bit		Accumu	lator only		1
RLC A	Rotate Left through Carry		Accumulator only		1	
RR A	Rotate ACC Right 1 bit		Accumulator only			1
RRC A	Rotate Right through Carry		Accumulator only			1
SWAP A	Swap Nibbles in A		Accumu	lator only		1

service routine.

Note that Boolean operations can be performed on any byte in the internal Data Memory space without going through the Accumulator. The XRL <byte>, # data instruction, for example, offers a quick and easy way to invert port bits, as in

XRL P1, #OFFH

The Rotate instructions (RLA, RLCA, etc.) shift the Accumulator 1 bit to the left or right. For a left rotation, the MSB rolls into the LSB position. For a right rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and low nibbles within the Accumulator. this is a useful operation in BCD manipulations. For example, if the Accumulator contains a binary number which is known to be less than 100, it can be quickly converted to BCD by the following code :

B, #10
AB
А
A,B

Dividing the number by 10 leaves the tens digit in the low nibble of the Accumulator, and the ones digit in the B register. The SWAP and ADD instructions move the tens digit to the high nibble of the Accumulator, and the ones digit to the low nibble.

3.5. Data Transfers

3.5.1. Internal RAM

Table 4 shows the menu of instructions that are available for moving data around within the internal memory spaces, and the addressing modes that can be used with each one. With a 12 MHz clock, all of these instructions execute in either 1 or $2 \ \mu s$.

The MOV <dest>, <src> instruction allows data to be transfered between any two internal RAM or SFR locations without going through the Accumulator. Remember the Upper 128 bytes of data RAM can be accessed only by indirect, and SFR space only by direct addressing.

Note that in all C51 devices, the stack resides in on-chip RAM, and grows upwards. The PUSH instruction first increments the Stack Pointer (SP), then copies the byte into the stack. PUSH and POP use only direct addressing to identify the byte being saved or restored, but the stack itself is accessed by indirect addressing using the SP register. This means the stack can go into the Upper 128, if they are implemented, but not into SFR space.

MUTHONIC	ONTO LEVON	AI	DRESSI	EXECUTION TIME		
MNEMONIC	OPERATION	Dir	Ind	Reg	Imm	(μs)
MOV A, <src></src>	A = <src></src>	X	x	x	x	1
MOV <dest>, A</dest>	<dest> = A</dest>	x	X	x		1
MOV <dest>, <src></src></dest>	<dest> = <src></src></dest>	x	X	x	X	2
MOV DPTR, # data 16	DPTR = 16-bit immediate constant				X	2
PUSH <src></src>	INC SP : MOV "@SP", <scr></scr>	X				2
POP <dest></dest>	MOV <dest>, "@SP" : DEC SP</dest>	x				2
XCH A, <byte></byte>	ACC and <byte> Exchange Data</byte>	x	X	x		1
XCHD A, @Ri	ACC and @ Ri exchange low nibbles		x			1

Table 4: A list of the TEMIC C51 Data Transfer Instructions that Access Internal Data Memory Space.

The Upper 128 are not implemented in the 80C51, nor in their ROMless. With these devices, if the SP points to the Upper 128 PUSHed bytes are lost, and POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be used to initialize the Data Pointer (DPTR) for look-up tables in Program Memory, or for 16-bit external Data Memory accesses. The XCH A, <byte> instruction causes the Accumulator and addressed byte to exchange data.

The XCHD A, @ Ri instruction is similar, but only the low nibbles are involved in the exchange.

The see how XCH and XCHD can be used to facilitate data manipulations, consider first the problem of shifting an 8-digit BCD number two digits to the right. Figure 11 shows how this can be done using direct MOVs, and for comparison how it can be done using XCH instructions. To aid in understanding how the code works, the contents of the registers that are holding the BCD number and the content of the Accumulator are shown alongside each instruction to indicate their status after the instruction has been executed.

After the routine has been executed, the Accumulator contains the two digits that were shifted out on the right. Doing the routine with direct MOVs uses 14 code bytes and 9 μ s of execution time (assuming a 12 MHz clock). The same operation with XCHs uses less code and executes almost twice as fast.

Figure 11.	Shifting a B	CD Number	Two Digits	to the
	Right.			

	2A	2B	2C	2D	2E	ACC
MOV A,2EH	00	12	34	56	78	78
MOV 2EH, 2DH	00	12	34	56	56	78
MOV 2DH, 2CH	00	12	34	34	56	78
MOV 2CH, 2BH	00	12	12	34	56	78
MOV 2BH, # 0	00	00	12	34	56	78
(a) Using direct MOV	s : 14 by 2A	rtes, 9 μ 2B	2C	2E	2E	ACC
CLR A	00	12	34	56	78	00
XCH A,2BH	00	00	34	56	78	12
XCH A,2CH	00	00	12	56	78	34
XCH A,2DH	00	00	12	34	78	56
XCH A,2EH	00	00	12	34	56	78
(b) Using XCHs : 9 bytes, 5 µs						

Figure 12. Shifting a BCD Number One Digit to the Right.

	2A	2B	2C	2D	2E	ACC
MOV R1,# 2EH	00	12	34	56	78	xx
MOV R0, # 2DH	00	12	34	56	78	xx
loop for $R1 = 2EH$:						
LOOP : MOV A, @R1	00	12	34	56	78	78
XCHD A, @R0	00	12	34	58	78	76
SWAP A	00	12	34	58	78	67
MOV @R1, A	00	12	34	58	67	67
DEC R1	00	12	34	58	67	67
DEC R0	00	12	34	58	67	67
CJNE R1, #2AH, LOOP						
loop for $R1 = 2DH$:	00	12	38	45	67	45
loop for $R1 = 2CH$:	00	18	23	45	67	23
loop for $R1 = 2BH$:	08	01	23	45	67	01
CLR A	08	01	23	45	67	00
ХСН А,2АН	00	01	23	45	67	08

To right-shift by an odd number of digits, a one-digit shift must be executed. Figure 12 shows a sample of code that will right-shift a BCD number one digit, using the XCHD instruction. Again, the contents of the registers holding the number and of the Accumulator are shown alongside each instruction.

First, pointers R1 and R0 are set up to point to the two bytes containing the last four BCD digits. Then a loop is executed which leaves the last byte, location 2EH, holding the last two digits of the shifted number. The pointers are decremented, and the loop is repeated for location 2DH. The CJNE instruction (Compare and Jump if Not Equal) is a loop control that will be described later. The loop is executed from LOOP to CJNE for R1 = 2EH, 2DH, 2CH and 2BH. At that point the digit that was originally shifted out on the right has propagated to location 2AH. Since that location should be left with 0s, the lost digit is moved to the Accumulator.

3.6. External RAM

Table 5 shows a list of the Data Transfer instructions that access external Data Memory. Only indirect addressing can be used. The choice is whether to use a one-byte address, @Ri, where Ri can be either R0 or R1 of the selected register bank, or a two-byte address, @DPTR. The disadvantage to using 16-bit addresses if only a few K bytes of external RAM are involved is that 16-bit addresses use all 8 bits of Port 2 as address bus. On the other hand, 8-bit addresses allow one to address a few K bytes of RAM, as shown in Figure 5, without having to sacrifice all of Port 2.

C51 Family

All of these instructions execute in 2 μ s, with a 12 MHz clock.

Note that in all external Data RAM accesses, the Accumulator is always either the destination or source of the data.

The read and write strobes to external RAM are activated only during the execution of a MOVX instruction. Normally these signals are inactive, and in fact if they're not going to be used at all, their pins are available as extra I/O lines. More about that later.

T-LL- # .	A line of the	TEMIC OF	D-4- T		Transforment and a second the		Estownell	Data Mamaan	Cmass.
Table 5 :	A list of the	TEMIC US	Data 1	ransier	Instructions in	at Access	External	рага метогу	soace.

ADDRESS WIDTH	MNEMONIC	OPERATION	EXECUTION TIME (µs)
8 bits	MOVX A, @Ri	Read external RAM @ Ri	2
8 bits	MOVX @ Ri, A	Write external RAM @ Ri	2
16 bits	MOVX A, @ DPTR	Read external RAM @ DPTR	2
16 bits	MOVX @ DPTR, A	Write external RAM @ DPTR	2

3.7. Lookup Tables

Table 6 shows the two instructions that are available for reading lookup tables in Program Memory. Since these instructions access only Program Memory, the lookup tables can be read, not updated. The mnemonic is MOVC for "move constant".

If the table access is to external Program Memory, then the read strobe is $\overline{\text{PSEN}}$.

The first MOVC instruction in Table 6 can accomodate a table of up to 256 entries, numbered 0 through 255. The number of the desired entry is loaded into the Accumulator, and the Data Pointer is set up to point to beginning of the table. Then

MOVC A, @A + DPTR

copies the desired table entry into the Accumulator.

Table 6: The C51 Lookup Table Read Instructions.

The other MOVC instruction works the same way, except the Program Counter (PC) is used as the table base, and the table is accesses through a subroutine. First the number of the desired entry is loaded into the Accumulator, and the subroutine is called :

MOV	A, ENTRY_NUMBER
CALL	TABLE
	· · · · · · · · · · · · · · · · · · ·

The subroutine "TABLE" would look like this :

TABLE : MOVC A, @A + PC RET

The table itself immediately follows the RET (return) instruction in Program Memory. This type of table can have up to 255 entries, numbered 1 through 255. Number 0 can not be used, because at the time the MOVC instruction is executed, the PC contains the address of the RET instruction. An entry numbered 0 would be the RET opcode itself.

MNEMONIC	OPERATION	EXECUTION TIME (µs)
MOVC A, @A + DPTR	Read Pgm Memory at (A + DPTR)	2
MOVC A, @A + PC	Read Pgm Memory at (A + PC)	2

3.8. Boolean Instructions

C51 devices contain a complete Boolean (single-bit) processor. The internal RAM contains 128 addressable bits, and the SFR space can support up to 128 other addressable bits. All of the port lines are bit-addressable, and each one can be treated as a separate single-bit port. The instructions that access these bits are not just conditional branches, but a complete menu of move, set, clear, complement, OR and AND instructions. These kinds of bit operations are not easily obtained in other architectures with any amount of byte-oriented software.

The instruction set for the Boolean processor is shown in Table 7. All bit accesses are by direct addressing. Bit addresses 00H through 7FH are in the Lower 128, and bit addresses 80H through FFH are in SFR space.

MNEMONIC	OPERATION	EXECUTION TIME (µs)
ANL C,bit	C = C AND bit	2
ANL C,/bit	C = C AND (NOT bit)	2
ORL C,bit	C = C OR bit	2
ORL C,/bit	C = C OR (NOT bit)	2
MOV C,bit	C = bit	1
MOV bit,C	bit = C	2
CLR C	$\mathbf{C} = 0$	1
CLR bit	bit = 0	1
SETB C	C = 1	1
SETB bit	bit = 1	1
CPL C	C = NOT C	1
CPL bit	bit = NOT bit	1
JC rel	Jump if $C = 1$	2
JNC rel	Jump if $C = 0$	2
JB bit,rel	Jump if bit = 1	2
JNB bit,rel	Jump if bit = 0	2
JBC bit,rel	Jump if bit = 1 ; CLR bit	2

Table 7: A list of the C51 Boolean Instructions.

Note how easily an internal flag can be moved to a port pin :

MOV	C, FLAG
MOV	P1.0, C

In this example, FLAG is the name of any addressable bit in the lower 128 or SFR space. An I/O line (the LSB of Port 1, in the case) is set or cleared depending on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accumulator of the Boolean processor. Bit instructions that refer to the Carry bit as C assemble as Carry-specific instructions (CLR C, etc). The Carry bit also has a direct address, since it resides in the PSW register, which is bit-addressable.

Note that the Boolean instruction set includes ANL and ORL operations, but not the XRL (Exclusive OR) operation. An XRL operation is simple to implement in software. Suppose, for example, it is required to form the Exclusive OR of two bits :

C = bit1 XRL bit2

The software to do that could be as follows :

MOV	C, bit1
JNB	bit2, OVER
CPL	С

OVER : (continue)

First, bit 1 is moved to the Carry. If bit 2 = 0, then C now contains the correct result. That is, bit 1 XRL bit 2 = bit 1 if bit 2 = 0. On the other hand, if bit 2 = 1 C now contains the complement of the correct result. It need only be inverted (CPL C) to complete the operation.

This code uses the JNB instruction, one of a series of bit-test instructions which execute a jump if the addressed bit is set (JC, JB, JBC) or if the addressed bit is not set (JNC, JNB). In the above case, bit2 is being tested, and if bit2 = 0 the CPL C instruction is jumped over.

JBC executes the jump if the addresed bit is set, and also clears the bit. Thus a flag can be tested and cleared in one operation.

All the PSW bits are directly addressable, so the Parity bit, or the general purpose flags, for example, are also available to the bit-test instructions.

3.8.1. Relative offset

The destination address for these jumps is specified to the assembler by a label or by an actual address in Program Memory. However, the destination address assembles to a relative offset byte. This is a signed (two's complement) offset byte which is added to the PC in two's complement arithmetic if the jump is executed.

The range of the jump is therefore -128 to +127 Program Memory bytes relative to the first byte following the instruction.

3.9. Jump Instructions

Table 8 shows the list of unconditional jumps.

Table 8 : Unconditional Jumps in TEMIC C51.

MNEMONIC	OPERATION	EXECUTION TIME (µs)
JMP addr	Jump to addr	2
JMP @A + DPTR	Jump to A + DPTR	2
CALL addr	Call subroutine at addr	2
RET	Return from subroutine	2
RETI	Return from interrupt	2
NOP	No operation	· 1

MOV

MOV

RL

JMP

The table lists a single "JMP addr" instruction, but in fact there are three -SJMP, LJMP, AJMP -which differ in the format of the destination address. JMP is a generic mnemonic which can be used if the programmer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address as relative offset, as described above. The instruction is 2 bytes long, consisting of the opcode and the relative offset byte. The jump distance is limited to range of -128 to + 127 bytes relative to the instruction following the SJMP.

The LJMP instruction encodes the destination address as a 16-bit constant. The instruction is 3 bytes long, consisting of the opcode and two address bytes. The destination address can be anywhere in the 64K Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit constant. The instruction is 2 bytes long, consisting of the opcode, which itself contains 3 of the 11 address bits, followed by another byte containing the low 8 bits of the destination address. When the instruction is executed, these 11 bits are simply substituted for the low 11 bits in the PC. The high 5 bits stay the same. Hence the destination has to be within the same 2K block as the instruction following the AJMP.

In all cases the programmer specifies the destination address to the assembler in the same way : as a label or as a 16-bit constant. The assembler will put the destination address into the correct format for the given instruction. If the format required by the instruction will not support the distance to the specified destination address, a "Destination out of range" message is written, into the list file.

The JMP @ A + DPTR instruction supports case jumps. The destination address is computed at execution time as the sum of the 16-bit DPTR register and the Accumulator. Typically, DPTR is set up with the address of a jump table, and the Accumulator is given an index to the table. In a 5-way branch, for example, an integer 0 through 4 is loaded into the Accumulator.

The code to be executed might be as follows :

DPTR, # JUMP_TABLE A, INDEX_NUMBER A

@ A + DPTR

The RLA instruction converts the index number (0 through 4) to an even number on the range 0 through 8, because each entry in the jump table is 2 bytes long :

JUMP_TABLE :

Table 8 shows a single "CALLaddr" instruction, but there are two of them -LCALL and ACALL -which differ in the format in which the subroutine address is given to the CPU. CALL is a generic mnemonic which can be used if the programmer does not care which way the address is encoded.

The LCALL instruction uses the 16-bit address format, and the subroutine can be anywhere in the 64K Program Memory space. The ACALL instruction uses the 11-bit format, and the subroutine must be in the same 2K block as the instructon following the ACALL.

In any case the programmer specifies the subroutine address to the assembler in the same way : as a label or as a 16-bit constant. The assembler will put the address into the correct format for the given instructions.

Subroutines should end a RET instruction, which returns execution following the CALL.

RETI is used to return from an interrupt service routine. The only difference between RET and RETI is that RETI tells the interrupt control system that the interrupt in progress is done. If there is no interrupt in progress at the time RETI is executed, then the RETI is functionnally identical to RET.

Table 9 shows the list of conditional jumps available to the TEMIC C51 user. All of these jumps specify the destination address by the relative offset method, and so are limited to a jump distance of -128 to + 127 bytes from the instruction following the conditional jump instruction. Important to note, however, the user specifies to the assembler the actual destination address the same way as the other jumps : as a label or a 16-bit constant.

Table 9 : Conditional Jumps in TEMIC C51 Devices.

MNEMONIC		ADD	ADDRESSING MODES			
	OPERATION	DIR	IND	REG	IMM	EXECUTION TIME (µs)
JZ rel	Jump if A = 0	Accumulator only		ly	2	
JNZ rel	Jump if A ≠ 0		Accumu	lator on	ly	2
DJNZ <byte>,rel</byte>	Decrement and jump if not zero	X		X		2
CJNZ A, <byte>,rel</byte>	Jump if A = <byte></byte>	X			X	2
CJNE <byte>,#data,rel</byte>	Jump if <byte> = #data</byte>		X	X		2

There is no Zero bit in the PSW. The JZ and JNZ instructions test the Accumulator data for that condition.

	MOV	the beginning of t
LOOP :	(begin loop)	COUNTER, # 10
	*	
	*	
	(end loon)	

COUNTER, LOOP

The DJNZ instruction (Decrement and Jump if Not Zero) is for loop control. To execute a loop N times, load a counter byte with N and terminate the loop with DJNZ to the beginning of the loop, as shown below for N = 10:

Another application of this instruction is in "greater than, less than" comparisons. The two bytes in the operand field are taken as unsigned integers. If the first is less than the second, then the Carry bit is set (1). If the first is greater than or equal to the second, then the Carry bit is cleared.

The CJNE instruction (Compare and Jump if Not Equal) can also be used for loop control as in Figure 12. Two bytes are specified in the operand field of the instruction. The jump is executed only if the two bytes are not equal. In the example of Figure 12, the two bytes were the data in R1 and the constant 2AH. The initial data in R1 was 2EH. Every time the loop was executed, R1 was decremented, and the looping was to continue until the R1 data reached 2AH.

DJNZ

(continue)

4. CPU Timing

All C51 microcontrollers have an on-chip oscillator which can be used if desired as the clock source for the CPU. To use the on-chip oscillator, connect a crystal or ceramic resonator between the XTAL1 and XTAL2 pins of the microcontroller, and capacitors to ground as shown in Figure 13. Figure 13. Using the On-Chip Oscillator.

Examples of how to drive the clock with an external oscillator are shown in Figure 14. In the TEMIC C51 devices the signal at the XTAL1 pin drives the internal clock generator. If only one pin is going to be driven with the external oscillator signal, make sure it is the right pin.

The internal clock generator defines the sequence of states that make up the TEMIC C51 machine cycle.

Figure 14. Using an External Clock.

4.1. Machine Cycles

A machine cycle consists of a sequence of 6 states, numbered S1 through S6. Each state time lasts for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or 1 μ s if the oscillator frequency is 12 MHz.

Each state is divided into a Phase 1 half and a Phase 2 half. Figure 15 shows the fetch/execute sequences in states and phases for various kinds of instructions. Normally two program fetches are generated during each machine cycle, even if the instruction being executed doesn't require it. If the instruction being executed doesn't need more code bytes, the CPU simply ignores the extra fetch, and the Program Counter is not incremented. **LEIVIIC** Semiconductors

Figure 15. State Sequences in TEMIC C51.

Execution of a one-cycle instruction (Figure 15A and B) begins during State 1 of the machine cycle, when the opcode is latched into the Instruction Register. A second fetch occurs during S4 of the same machine cycle. Execution is completed at the end of State 6 of this machine cycle.

The MOVX instructions take two machine cycles to execute. No program fetch is generated during the second cycle of a MOVX instruction. This is the only time program fetches are skipped. The fetch/execute sequence for MOVX instructions is shown in Figure 15 (D).

The fetch/execute sequences are the same whether the Program Memory is internal or external to the chip. Execution times do not depend on whether the Program Memory is internal or external.

Figure 16 shows the signals and timing involved in program fetches when the Program Memory is external. If Program Memory is external, then, the Program Memory read strobe $\overrightarrow{\text{PSEN}}$ is normally activated twice per machine cycle, as shown in Figure 16 (A).

If an access to external Data Memory occurs, as shown in Figure 16 (B), two $\overrightarrow{\text{PSENs}}$ are skipped, because the address and data bus are being used for the Data Memory access.

Figure 16. Bus Cycles in TEMIC C51 Devices Executing from External Program Memory.

Note that a Data Memory bus cycle takes twice as much time as a Program Memory bus cycle. Figure 16 shows the relative timing of the addresses being emitted at ports 0 and 2, and of ALE and PSEN. ALE is used to latch the low address byte from P0 into the address latch.

TEMIC Semiconductors

When the CPU is executing from internal Program Memory, PSEN is not activated, and program addresses are not emitted. However, ALE continues to be activated twice per machine cycle and so is available as a clock output signal. Note, however, that one ALE is skipped during the execution of the MOVX instruction. What follows is an overview of the interrupt structure for these devices. More detailed information for specific members of the TEMIC C51 family is provided in the chapters of this handbook that describe the specific devices.

4.2. Interrupt Structure

The 80C51 and his ROMless version provide 5 interrupt sources : 2 external interrupts, 2 timer interrupts, and the serial port interrupt. the 80C52, 83C154 and 83C154D and their ROMless version provide these 5 plus a sixth interrupt that is associated with the third timer/counter which is present in those devices.

Each of the interrupt source can be individually enabled or disabled by setting or clearing a bit in the SFR named IE (Interrupt Enable). This register also contains a global disable bit, which can be cleared to disable all interrupts at once. Figure 17 shows the IE register for the 80C51, 80C52 and 83C154 or the 83C154D.

4.2.1. Interrupt Enables

Figure	17	IE	(Interrur	t Enable)	Register in	the 80C 51	80C52	83C154 ar	nd 83C154D
riguic	1/.	112	(Interrup	n Enable	Register in	une oucui	, 000.54	, 03C134 ai	iu 050154D.

AICI	n \
IND	D)

EA	Х	ET2	ES	ET1	EX1	ET0	EX0	
Symbol		Position			Function			
EA		IE.7	disables all interrupts. If $EA = 0$, no interrupt will be acknowledged. If $EA = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.					
		IE.6	reserved					
ET2		IE.5	enables or disables the Timer 2 overflow or capture interrupt. If $ES = 0$, the Timer 2 interrupt is disabled.					
ES		IE.4	enables or disables the Serial Port interrupt. If $ES = 0$, the Serial Port interrupt is disabled.					
ET1		IE.3	enables or disables the Timer 1 Overflow interrupt. If ET1 = 0, the Timer 1 interrupt is disabled.					
EX1		IE.2	enables or disables External Interrupt 1. If EX1 = 0, External Interrupt 1 is disabled.					
ET0		IE.1	enables or disables the Timer 0 Overflow interrupt. If ET0 = 0, the Timer 0 interrupt is disabled.					
EX0		IE.0	enables or disables External Interrupt 0. If EX0 = 0, External Interrupt 0 is disabled.					

4.2.2. Interrupt priorities

Each interrupt source can also be individually programmed to one of two priority level by setting or clearing a bit in the SFR named IP (Interrupt Priority). Figure 18 shows the IP register in the 80C51, 80C52, *83C154 and 83C154D.

A low-priority interrupt can be interrupted by a high-priority interrupt, but not by another low-priority interrupt.

A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

(LSB)

Figure 18. IP (Interrupt Priority) Register in the 80C51, 80C52, 83C154 and 83C154D.

(MSB)							(LSB)
РСТ	x	PT2	PS	PT1	PX1	PT0	PX0
Symbol	L ·	Position			Function		
PCT		IP.7	83C154/C154D Priority interrup The priority regi when this bit is ' interrupts can on	only. t circuit control bit ster contents are v '0". When the bit i ly be controlled b	alid and priority as s "1", the priority i y the interrupt enal	signed interrupts on nterrupt circuit is only register (IE).	can be processed stopped, and
-		IP.6	reserved				
PT2		IP.5	defines the Timer 2 interrupt priority level. PT2 = 1 programs it to the higher priority level.				
PS		IP.4	defines the Serial Port interrupt priority level. PS = 1 programs it to the higher priority level.				
PT1		IP.3	defines the Time level.	er 1 interrupt priori	ty level. PT1 = 1 p	rograms it to the h	nigher priority
PX1		IP.2	defines the Exter level.	rnal Interrupt 1 pri	ority level. PX1 =	1 programs it to th	e higher priority
PT 0		IP.1	defines the Time level.	er 0 interrupt priori	ty level. PT0 = 1 p	rograms it to the h	nigher priority
PX0		IP.0	defines the Exter level.	rnal Interrupt 0 pri	ority level. PX0 =	1 programs it to th	e higher priority

Figure 19 shows, for the 80C51, 80C52, 83C154 and 83C154D, how the IE and IP registers and the polling sequence work to determine which interrupt will be serviced.

In operation, all the interrupt flags are latched into the interrupts control system during State 5 of every machine cycle. The samples are polled during the following machine cycle. If the flag for an enabled interrupt is found to be set (1), the interrupt system generates an LCALL to the appropriate location in Program Memory, unless some other condition blocks the interrupt. Several conditions can block an interrupt, among them that an interrupt of equal or higher priority level is already in progress.

The hardware-generated LCALL causes the contents of the Program Counter to be pushed onto the stack, and reloads the PC with the beginning address of the service routine. As previously noted (Figure 3), the service routine for each interrupt begins at a fixed location. Only the Program Counter is automatically pushed onto that stack, not the PSW or any other register. Having only the PC be automatically saved allows the programmer to decide how much time to spend saving which other registers. This enhances the interrupt response time, albeit at the expense of increasing the programmer's burden of responsability. As a result, many interrupt functions that are typical in control applications-toggling a port pin, for example, or reloading a timer, or unloading a serial buffer can often be completed in less time than it takes other architectures to commence them.

Figure 19. 80C51, 80C52, 83C154 and 83C154D Interrupt Control System.

4.2.3. Simulating a third priority level in software

Some applications require more than the two priority levels that are provided by on-chip hardware in C51 devices. In these cases, relatively simple software can be written to produce the same effect as a third priority level. First, interrupts that are to have higher priority than 1 are assigned to priority 1 in the IP (Interrupt Priority) register. The service routines for priority 1 interrupts that are supposed to be interruptible by "priority 2" interrupts are written to include the following code :

PUSH MOV CALL ****	IE IE, # MASK LABEL
(execute se ***	rvice routine) ****
POP RET RETI	IE

As soon as any priority 1 interrupt is acknowledged, the IE (Interrupt Enable) register is redefined so as to disable all but "priority 2" interrupts. Then, a CALL to LABEL executes the RETI instruction, which clears the priority 1 interrupt-in-progress flip-flop. At this point any priority 1 interrupt that is enabled can be serviced, but only "priority 2" interrupts are enabled.

POPping IE restores the original enable byte. Then a normal RET (rather than another RETI) is used to terminate the service routine. The additional software adds $10 \ \mu s$ (at 12 MHz) to priority 1 interrupts.

LABEL :

Hardware Description of the C51 Family Products

Summary

1. Common Features Description	I.2.2
1.1. Introduction	I.2.2
1.2. Oscillator and Clock Circuit	I.2.4
1.3. CPU Timing	I.2.5
1.4. Port Structures and Operation	I.2.6
1.5. Accessing External Memory	I.2.10
1.6. Timer/Counters	I.2.13
1.7. Serial Interface (80C51 and 80C52 only)	I.2.18
1.8. Interrupts	I.2.29
1.9. Single Step Operation	I.2.33
1.10. Reset	I.2.33
1.11. Power-Saving Modes of Operation	I.2.34
1.12. More about the On-chip Oscillator	I.2.36
1.13. Internal Timing	I.2.37
1.14. C51 Pin Description	I.2.38
2. More Features for C154 Parts	I.2.41
2.1. I/O Port Impedance	I.2.41
2.2 Watchdog and 32-bit Timer/Counter Mode	I.2.42

 2.3 Power-Reducing Mode
 I.2.45

 2.4 Frame and Overrun Error Serial Link Detection
 I.2.46

MATRA MHS

Rev. E (14 Jan. 97)

1. Common Features Description

1.1. Introduction

This chapter presents a comprehensive description of the on-chip hardware features of the TEMIC C51 microcontrollers. Included in this description are :

- The port drivers and how they function both as ports and, for Ports 0 and 2, in bus operations
- The Timer/Counters
- The serial Interface
- The Interrupt System
- Reset
- The reduced Power Modes

Figure 1. C51 Architecture Block Diagram.

DEVICE NAME	ROMLESS VERSION	ROM BYTES	RAM BYTES	16-BIT TIMERS	PROCESS TYPE
80C51, TSC80C51	80C31	4K	128	2	CMOS
80C52	80C32	8К	256	3	CMOS
83C154	80C154	16K	256	3*	CMOS
83C154D		32K	256	3*	CMOS

Table 1. The TEMIC C51 Family of Microcontrollers.

* included watchdog and Timer 32 bits.

The devices under consideration are listed in Table 1. As it becomes unwieldy to be constantly referring to each of these devices by their individual names, we will adopt a convention of refering to them generically as 80C51s, 80C52s and 83C154s, unless a specific member of the group is being refered to, in which case it will be specifically named. The 80C51s include the TSC80C51, 80C51 and 80C31. The 80C52s are the 80C52 and 80C32. The 83C154s are the 83C154, the 80C154 and the 83C154D.

Figure 1. shows a functionnal block diagram of the 80C51s, 80C52s and 83C154s.

Special Function Registers

A map of the on-chip memory area called SFR (Special Function Register) space is shown in Figure 2. SFRs marked by parentheses are resident in the 80C52s and 83C154s but not in the 80C51s. IOCON marked by a star is only resident in the 83C154s.

Note that not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect.

Figure 2. S	SFR Map. () Indicates	Resident in	80C52s and	83C154s,	not in 80C51s.
					,	

8 Bytes *IOCON FF F8 F0 в F7 EF E8 ACC E7 E0 DF D8D0 PSW D7 **C**8 (T2CON) (RCAP2L) (RCAP2H) (TL2) (TH2) CF C0C7 IP **B**8 BF **B**0 **P**3 **B**7 A8 IE. AF P2 A0 A7 98 SCON SBUF 9F 90 **P**1 97 88 TCON TMOD TL0 TL1 TH0 THI 8F **P**0 SP DPL DPH PCON 80 87

* 83C154s only.

User software should not write 1s to theses unimplemented locations, since they may be used in future TEMIC C51 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0, and their active values will be 1.

The functions of the SFRs are described as below.

1.1.1. Accumulator

ACC is the Accumulator register. The mnemonics for accumulator-specific instructions, however, refer to the accumulator simply as A.

1.1.2. B Register

The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

1.1.3. Program status word

The PSW register contains program status information as detailed in Figure 3.

1.1.4. Stack pointer

The Stack Pointer register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. While the stack may reside anywhere in on-chip RAM, the Stack Pointer is initialized to 07H after a reset. This causes the stack to begin at location 08H.

1.1.5. Data pointer

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

1.1.6. Ports 0 to 3

P0, P1, P2 and P3 are the SFR latches of Ports 0, 1, 2 and 3, respectively.

1.1.7. Serial data buffer

The Serial Data Buffer is actually two separate registers, a transmit buffer and a receive buffer register. When data is moved to SBUF, it goes to the transmit buffer where it is held for serial transmission. (Moving a byte to SBUF is what initiates the transmission.) When data is moved from SBUF, it comes from the receive buffer.

1.1.8. Timer registers

Register pairs (TH0, TL0), (TH1, TL1), and (TH2, TL2) are the 16-bit counting registers for Timer/Counters 0, 1, and 2, respectively.

1.1.9. Capture registers

The register pair (RCAP2H, RCAP2L) are the capture register for the Timer 2 "capture mode." In this mode, in response to a transition at the 80C52's T2EX pin, TH2 and TL2 are copied into RCAP2H and RCAP2L. Timer 2 also has a 16-bit auto-reload mode, and RCAP2H and RCAP2L hold the reload value for this mode. More about Timer 2's features in Section 1.6.

1.1.10. Control registers

Special Function Registers IP, IE, TMOD, TCON, T2CON, SCON, and PCON contain control and status bits for the interrupt system, the timer/counters, and the serial port. They are described in later sections.

1.2. Oscillator and Clock Circuit

XTAL1 and XTAL2 are the input and output of a single-stage on-chip inverter, which can be configured with off-chip components as a Pierce oscillator, as shown in Figure 4. The on-chip circuitry, and selection of off-chip components to configure the oscillator are discussed in Section 1.12.

Figure 3. Crystal/Ceramic Resonator Oscillator.

40 pf +/- 10 pf FOR CERAMIC RESONATORS

Figure 4. PSW : Program Status Work Register.

Symbol	Position	Name and Significance
СҮ	PSW.7	Carry flag
AC	PSW.6	Auxiliary Carry flag.
		(For BCD operations.)
F0	PSW.5	Flag 0
		(Available to the user for general purposes.)
RS1	PSW.4	Register bank Select control bits 1 & 0. Set/cleared by software to
RS0	PSW.3	determine working register bank (see Note).

Symbol	Posi	tion	Name and Significance
OV	PSV	N.2	Overflow flag.
	PSV	W.1	(reserved)
Р	PSV	W.0	Parity flag.
			Set/cleared by hardware each instruction cycle to indicate and odd/even number of "one" bits in the accumulator, i.e., even parity.
Note :	the contents of (R	S1, RS0) enab	le the working register banks as follows
	(0.0)–Bank 0	00H-07H)	
	(0.1)-Bank 1	08H-0FH)	
	(1.0)-Bank 2	10H-17H)	
	(1.1)-Bank 3	18H-1FH)	

The oscillator, in any case, drives the internal clock generator. The clock generator provides the internal clocking signals to the chip. The internal clocking signals are at half the oscillator frequency, and define the internal phases, states, and machine cycles, which are described in the next section.

1.3. CPU Timing

A machine cycle consists of 6 states (12 oscillator periods). Each state is divided into a Phase 1 half, during which the Phase 1 clock is active, and a Phase 2 half, during which the Phase 2 clock is active. Thus, a machine cycle consists of 12 oscillator periods, numbered S1P1 (State 1, Phase 1), through S6P2 (State 6, Phase 2). Each phase lasts for one oscillator period. Each state lasts for two oscillator periods. Typically, arithmetic and logical operations take place during Phase 1 and internal register-to-register transfers take place during Phase 2.

The diagrams in Figure 5 show the fetch/execute timing referenced to the internal states and phases. Since these internal clock signals are not user accessible, the XTAL2 oscillator signal and the ALE (Address Latch Enable) signal are shown for external reference. ALE is normally activated twice during each machine cycle : once during S1P2 and S2P1, and again during S4P2 and S5P1.

Execution of one-cycle instruction begins at S1P2, when the opcode is latched into the Instruction Register. If it is a two-byte instruction, the second byte is read during S4 of the same machine cycle. If it is one-byte instruction, there is still a fetch at S4, but the byte read (which would be the next opcode), is ignored, and the Program Counter is not incremented. In any case, execution is complete at the end of S6P2. Figures 1-5A and 1-5B show the timing for a 1-byte, 1-cycle instruction and for a 2-byte, 1-cycle instruction.

Most 80C51 instructions execute in one cycle. MUL (multiply) and DIV (divide) are the only instructions that take more than two cycles to complete. They take four cycles.

Normally, two codes bytes are fetched from Program Memory during every machine cycle. The only exception to this is when a MOVX instruction is executed. MOVX is a 1-byte 2-cycle instruction that accesses external Data Memory. During a MOVX, two fetches are skipped while the external Data Memory is being addressed and strobed. Figure 1-5C and 1-5D show the timing for a normal 1-byte, 2-cycle instruction and for a MOVX instruction.

1.4. Port Structures and Operation

All four ports in the 80C51 are bidirectional. Each consists of a latch (Special Function Register P0 through P3), an output driver, and an input buffer.

The output drivers of Ports 0 and 2, and input buffers of Port 0, are used in accesses to external memory. In this application, Port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise the Port 2 pins continue to emit the P2 SFR content. TEMIC Semiconductors

Figure 5. 80C51 fetch/Execute Sequences.

All the Port 3 pins, and (in the 80C52) two Port 1 pins are multifunctional. They are not only port pins, but also serve the functions of various special features as listed below :

Port Pin	Alternate Function
rortrin	Ацегнате г инстоп

*P1.0	T2 (Timer/Counter 2 external input)
*P1.1	T2EX (Timer/Counter 2 capture/reload
	trigger)
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt)
P3.3	INT1 (external interrupt)
P3.4	T0 (Timer/Counter 0 external input)
P3.5	T1 (Timer/Counter 1 external input)
P3.6	WR (external Data memory write strobe)
P3.7	RD (external Data memory read strobe)

* P1.0 and P1.1 serve these alternate functions only on the 80C52, 83C154 and 83C154D.

The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1. Otherwise the port pin is stuck at 0.

1.4.1. I/O Configurations

Figure 6. shows a functional diagram of a typical bit latch and I/O buffer in each of the four ports. The bit latch (one bit in the port's SFR) is represented as a Type D flip-flop, which will clock in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port activate the "read latch" signal, and others activate the "read latch" signal, and others activate the "read pin" signal.

Figure 6. 80C51 Port Bit Latches and I/O Buffers.

(A) PORT 0 BIT

(C) PORT 2 BIT

Semiconductors

(B) PORT 1 BIT

* See Figure 7. for details of the internal pullup.

As shown in Figure 6., the output drivers of Ports 0 and 2 are switchable to an internal ADDR and ADDR/DATA bus by an internal CONTROL signal for use in external memory accesses. During external memory accesses, the P2 SFR remains unchanged, but the P0 SFR gets 1s written to it.

Also shown in Figure 6., is that if a P3 bit latch contains a 1, then the output level is controlled by the signal labeled "alternate output function." The actual P3.X pin level is always available to the pin's alternate input function, if any.

Ports 1, 2, and 3 have internal pull-ups. Ports 0 has open-drain outputs. Each I/O line can be independently used as an input or an output. (Ports 0 and 2 may not be used as general purpose I/O when being used as the ADDR/DATA BUS). To be used as an input, the port bit latch must contain a 1, which turns off the output driver FET. Then, for Ports 1, 2, and 3, the pin is pulled high by the internal pull-up, but can be pulled low by an external source. Port 0 differs in not having internal pullups. The pullup FET in the P0 output driver (see Figure 1-6A) is used only when the Port is emitting 1s during external memory accesses. Otherwise the pullup FET is off. Consequently P0 lines that are being used as output port lines are open drain. Writing a 1 to the bit latch leaves both output FETs off, so the pin floats. In that conditions it can be used as a high-impedance input.

Because Ports 1, 2, and 3 have fixed internal pullups they are sometimes called "quasi-bidirectional" ports. When configured as inputs they pull high and will source current (IIL, in the data sheets) when externally pulled low. Port 0, on the other hand, is considered "true" bidirectional, because when configured as an input it floats.

All the port latches in the 80C51 have 1s written to them by the reset function. If a 0 is subsequently written to a port latch, it can be reconfigured as an input by writing a 1 to it.

1.4.2. Writing to a Port

In the execution of an instruction that changes the value in a port latch, the new value arrives at the latch during S6P2 of the final cycle of the instruction. However, port latches are in fact sampled by their output buffers only during Phase 1 of any clock period. (During Phase 2 the output buffer holds the value it saw during the previous Phase 1). Consequently, the new value in the port latch won't actually appear at the output pin until the next Phase 1, which be at S1P1 of the next machine cycle.

If the change requires a 0-to-1 transition in Port 1, 2, or 3, an additional pull-up is turned on during S1P1 and S1P2 of the cycle in which the transition occurs. This is done to increase the transition speed. The extra pull-up can source about 100 times the current that the normal pull-up can. It should be noted that the internal pull-ups are field-effect transistors, not linear resistors. The pull-up arrangements are shown in Figure 7.

In the CMOS versions, the pull-up consists of three pFETs. It should be noted that an n-channel FET (nFET) is turned on when a logical 1 is applied to its gate, and is turned off when a logical 0 is applied to its gate. A p-channel FET (pFET) is the opposite : it is on when its gate sees a 0, and off when its gate sees a 1.

pFET 1 in Figure 7. is the transistor that is turned on 2 oscillator periods after a 0-to-1 transition in the port latch. While it's on, it turns on pFET 3 (a weak pull-up), through the inverter. This inverter and pFET form a latch which hold the 1.

Note that if the pin is emitting a 1, a negative glitch on the pin from some external source can turn off pFET 3, causing the pin to go into a float state, pFET 2 is a very weak pull-up which is on whenever the nFET is off, in traditional CMOS style. It's only about 1/10 the strenght of pFET3. Its function is to restore a 1 to the pin in the event the pin *had* a 1 and lost it to a glitch.

Figure 7. Ports 1 and 3 CMOS Internal Pull-up Configurations.

Port 2 is similar except that it holds the strong pullup on while emitting 1s that are address bits. (See test, "Accessing External Memory".)

CMOS Configuration. pFET 1 is turned on for 2 osc. periods after Q makes a 1-to-0 transition. During this time, pFET 1 also turns on pFET 3 through the inverter to form a latch which holds the 1. pFET 2 is also on.

1.4.3. Port loading and interfacing

The output buffer of Ports 1, 2 and 3 can each drive 3LS TTL inputs. The pins can be driven by open-collector and open-drain outputs, but note that 0-to-1 transition will not be fast. In the CMOS device, an input 0 turns off pullup P3, leaving only the weak pullup P2 to drive the transistor. The Figure 8. shows an example where the port is driven by an open drain transistor t_N . The parasitic capacitance is equal to 100pF.

Figure 8. Port Interfacing.

The Figure 9. shows the behaviour of the port during 0-to-1 transition.

In the area A only pullup P2 sinks the capacitor and takes $5 \,\mu$ s to switch from 0 volt to 2 volts. In the area B, pullup P2 and P3 feed the capacitor and the time to charge the capacitor is divide roughly by ten. So this figure shows it takes some machine cycles before having a true high level during a 0-to-1 transition.

Figure 9. Port Behaviour During 0-to-1 Transition.

1.4.4. Read-Modify-Write Feature

Some instructions that read a port read the latch and others read the pin. Which ones do which ? The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. The instructions listed below are read-modify-write instructions. When the destination operand is a port, or a port bit, these instructions read the latch rather than the pin :

ANL	(logical AND, e.G., ANL P1,A)
ORL	(logical OR, e.g., ORL P2,A)
XRL	(logical EX-OR, e.g., XRL P3,A)
JBC	(jump if bit = 1 and clear bit, e.g., JBC
	P1.1, LABEL)
CPL	(complement bit, e.g., CPL P3.0)
INC	(increment, e.g., INC P2)
DEC	(decrement, e.g., DEC P2)
DJNZ	(decrement and jump if not zero, e.g.,
	DJNZ P3, LABEL)
MOV PX.Y,C	(move carry bit to bit Y of Port X)
CLR PX.Y	(clear bit Y of Port X)
SETB PX.Y	(set bit Y of Port X)

It is not obvious that the last three instructions in this list are read-modify-write instructions, but they are. They read the port byte, all 8 bits, modify the addressed bit, then write the new byte back to the latch. The reason that read-modify-write instructions are directed to the latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin. For example, a port bit might be used to drive the base of a transistor. When a 1 is written to the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather than the latch, it will read the base voltage of the transistor and interpret it as a 0. Reading the latch rather than the pin will return the correct value of 1.

Further details are given in the next chapter concerning the powerful functions of the 83C154 I/O PORTS.

1.5. Accessing External Memory

Accesses to external memory are of two types : accesses to external Program Memory and accesses to external Data Memory. Accesses to external Program Memory use signal \overrightarrow{PSEN} (program store enable) as the read strobe. Accesses to external Data Memory use \overrightarrow{RD} or \overrightarrow{WR} (alternate function of P3.7 and P3.6) to strobe the memory.

Fetches from external Program memory always use a 16-bit address. Accesses to external Data Memory can use either a 16-bit address (MOVX @DPTR) or an 8-bit address (MOVX @Ri).

Whenever a 16-bit address is used, the high byte of the address comes out on Port 2, where it is held for the duration of the read or write cycle. Note that the Port 2 drivers use the strong pullups during the entire time that they are emitting address bits that are 1s. This is during the execution of a MOVX @DPTR instruction. During this time the Port 2 latch (the Special Function register) does not have to contain 1s, and the contents of the Port 2 SFR are not modified. If the external memory cycle is not immediately followed by another external memory cycle, the undisturbed contents of the Port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @Ri), the contents of the Port 2 SFR remain at the Port 2 pins throughout the external memory cycle. This will facilitate paging.

In any case, the low byte of the address is time-multiplexed with the data byte on Port 0. The ADDR/DATA signal drives both FETs in the Port 0 output buffers. Thus, in this application the Port 0 pins are not open-drain outputs, and do not require external pull-ups. Signal ALE (address latch enable) should be used to capture the address byte into an external latch. The address byte is valid at the negative transitions of ALE. Then, in a write cycle, the data byte to be written appears on Port 0 just before \overline{WR} is activated, and remains there until after \overline{WR} is accepted at Port 0 just before the read strobe is desactivated.

During any access to external memory, the CPU writes OFFH to the Port 0 latch (the Special Function Register), thus obliterating whatever information the Port 0 SFR may have been holding.

External program Memory is accessed under two conditions :

- 1) Whenever signal \overline{EA} is active ; or
- 2) Whenever the program counter (PC) contains a number that is larger than 0FFFH (1FFFH for the 80C52, 3FFFH for the 83C154 and 7FFFH for the 83C154D.

This requires that the ROMless versions have $\overline{\text{EA}}$ wired low to enable the lower 4K (8K for the 80C32, 16K for the 80C154 and 32K for the 80C154D) program bytes to be fetched from external memory. When the CPU is executing out of external Program Memory, all 8 bits of Port 2 are dedicated to an output function and may not be used for general purpose I/O. During external program fetches they output the high byte of the PC. During this time the Port 2 drivers use the strong pullups to emit PC bits that are 1s.

PSEN

The read strobe for external fetches is \overrightarrow{PSEN} . \overrightarrow{PSEN} is not activated for internal fetches. When the CPU is accessing external Program Memory, \overrightarrow{PSEN} is activated twice every cycle (except during a MOVX instruction) whether or not the byte fetched is actually needed for the current instruction. When \overrightarrow{PSEN} is activated its timing is not the same as \overrightarrow{RD} . A complete \overrightarrow{RD} cycle, including activation and deactivation of ALE and \overrightarrow{RD} , takes 12 oscillator periods. A complete \overrightarrow{PSEN} cycle, including activation and deactivation of ALE and \overrightarrow{PSEN} , takes 6 oscillator periods. The execution sequence for these two types of read cycles are shown in Figure 10 for comparison.

Figure 10. External Program Memory Execution.

ALE

The main function of ALE is to provide a properly timed signal to latch the low byte of an address from P0 to an external latch during fetches from external Program Memory. For that purpose ALE is activated twice every machine cycle. This activation takes place even when the cycle involves no external fetch. The only time an ALE pulse doesn't come out is during an access to external Data Memory. The first ALE of the second cycle of a MOVX instructions is missing (see Figure 10.). Consequently, in any system that does not use external Data Memory, ALE is activated at a constant rate of 1/6 the oscillator frequency, and can be used for external clocking or timing purposes.

Overlapping External Program and Data Memory Spaces

In some applications it is desirable to execute a program from the same physical memory that is being used to store data. In the 80C51, the external Program and Data Memory spaces can be combined by ANDing \overline{PSEN} and \overline{RD} . A positive-logic AND of these two signals produces an active-low read strobe that can be used for the combined physical memory. Since the $\overline{\overline{PSEN}}$ cycle is faster than the \overline{RD} cycle, the external memory needs to be fast enough to accomodate the $\overline{\overline{PSEN}}$ cycle.

1.6. Timer/Counters

The 80C51 has two 16-bit timer/counter registers : Timer 0 and Timer 1. The 80C52, 83C154 and 83C154D have these two plus one more : Timer 2. All three can be configured to operate either as timers or event counters.

In the "timer" function, the register is incremented every machine cycle. Thus, one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

In the "counter" function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0, T1 or (in the 80C52, 83C154 and 83C154D) T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

Figure 11. TMOD : Timer/Counter Mode Control Register.

(MSB)							(LSB)
GATE	C/T	M1	MO	GATE	C/T	M1	M0
TIMER 1				TIM	ER 0		

GATE Gating control When set. Timer/counter "x" is enabled only while "INTx" pin is high and "TRx" control pin is set. When cleared Timer "x" is enabled whenever "TRx" control bit is set.

Timer or Counter Selector Cleared for Timer operation (input from internal system clock.) Set for Counter operation (input from "Tx" input pin).

MI M0 Operationg Mode	
0 0 MCS-48 Timer "TLx" serves as five-bit prescaler.	
0 1 16 bit Timer/Counter "THx" and "TLx" are cascaded ; there is no prescaler	
1 0 8 bit auto-reload timer-counter "THx" holds a value which is to be reloaded in	to "TLx"
each timer it overflows.	
1 (Timer 0) TL0 is an eight bit timer counter-controlled by the standard Timer	r 0 control
bits TH0 is an eight-bit timer only controlled by Timer 1 control b	oits.
1 (Timer 1) Timer-counter 1 stopped.	

In addition to the "timer" or "counter" selection, Timer 0 and Timer 1 have four operating modes from which to select. Timer 2, in the 80C52, 83C154 and 83C154D has three modes of operation : "capture," "auto-reload" and "baud rate generator."

C/T

Timer 0 and Timer 1

These timer/counter are present in both the 80C51, the 80C52, the 83C154 and the 83C154D. The "timer" or "counter" function is selected by control bits C/\overline{T} in the Special Function Register TMOD (Figure 11.). These two timer/counters have four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both timer/counters. Modes 3 is different. The four operating modes are described below.

Mode 0

Putting either Timer into mode 0 makes it look like an 8048 Timer, which is an 8-bit counter with a divide-by-32 prescaler. Figure 12. shows the mode 0 operation as it applies to Timer 1.

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer interrupt flag TF1. The counted input is enabled to the Timer when TR1 = 1 and either GATE = 0 or $\overline{INT1} = 1$. (Setting GATE =1 allows the Timer to be controlled by external input $\overline{INT1}$, to facilitate pulse width measurements). TR1 is a control bit in the Special Function register TCON (Figure 1-10). GATE is in TMOD.

The 13-bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ingored. Setting the run flag (TR1) does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer 1. Substitute TR0, TF0 and $\overline{INT0}$ for the corresponding Timer 1 signals in Figure 12. There are two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

Mode 1

Mode 1 is the same as Mode 0, except that the Timer register is being run with all 16 bits.

Mode 2

Mode 2 configures the timer register as an 8-bit counter (TL1) with automatic reload, as shown in Figure 14. Overflow from TL1 not only sets TF1, which is preset by sofware. The reload leaves TH1 unchanged.

Mode 2 operation is the same for Timer/Counter 0.

Mode 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0.

_____ Матра МН9

Figure 13. TCON : Timer/Counter Control Register.

`EMIC

Semiconductors

(MSB)							(LSB)
TFI	TRI	TF0	TR0	IEI	ITI	IEO	IT0

Symbol	Position	Name and Significance
TF1	TCON.7	Timer 1 overflow Flag. Set by hardware on timer/counter overflow. Cleared by hardware when processor vectors to interrupt routine.
TR1	TCON.6	Timer 1 Run control bit. Set/cleared by software to turn timer/counter on/off.
TF0	TCON.5	Timer 0 overflow Flag. Set by hardware on timer/counter overflow. Cleared by hardware when processor vectors to interrupt routine.
TR0	TCON.4	Timer 0 Run control bit. Set/cleared by software to turn timer/counter on/off.

Symbol	Position	Name and Significance
IE1	TCON.3	Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected. Cleared when interrupt processed.
IT 1	TCON.2	Interrupt 1 Type control bit. Set/cleared by software to specify falling edge/low level triggered external interrupts.
IEO	TCON.1	Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected. Cleared when interrupt processed.
ITO	TCON.0	Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level triggered external interrupts.

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in Figure 15. TL0 uses the Timer 0 control bits : C/\overline{T} , GATE, TR0, $\overline{INT0}$, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus TH0 now controls the "Timer 1" interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. With Timer 0 in Mode 3, an 80C51 can look like it has three timer/counters, and an 80C52, an 83C154 and 83C154D, like it has four. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in fact, in any application not requiring an interrupt.

Timer 2

Timer 2 is a 16-bit timer/counter which is present only in the 80C52, 83C154 and 83C154D. Like Timers 0 and 1, it can operate either as a timer or as an event counter.

Figure 14. Timer/Counter 1 Mode 2 : 8-bit Auto-reload.

Figure 15. Timer/Counter 0 Mode 3 : Two 8-bit Counters.

Figure 16. T2CON : Timer/Counter 2 Control Register.

Τεміс

Semiconductors

	(MSB)					(LSB)					
	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2			
Symbol	Posit	ion			I	Name and	Significa	nce			
TF2	T2CC	DN.7	Timer 2 ov be set whe	erflow flag n either RC	set by a Tin LK = 1 or T	set by a Timer 2 overflow and must be cleared by software. TF2 will no K = 1 or TCLK = 1					
EXF2	T2CC)N.6	Timer 2 external flag set when either a capture or reload is caused by a negative T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.						a negative transition on will cause the CPU to ware.		
RCLK	T2CC	DN.5	Receive cl receive clo clock.	ock flag. W ock in mode	hen set, causs 1 and 3. R	n set, causes the serial port to use Timer 2 overflow pulses for its and 3. $RCLK = 0$ causes Timer 1 overflow to be used for the received					
TCLK	T2CC	DN.4	Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pul- transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used transmit clock.					verflow pulses for its s to be used for the			
EXEN2	T2CC	N.3	Timer 2 external enable flag. When set, allows a capture or reload to occur as a rest negative transition on T2EX if Timer 2 is not being used to clock the serial port. EX causes Timer 2 to ignore events at T2EX.					occur as a result of a serial port. EXEN2 = 0			
TR2	T2CC	N.2	Start/stop	control for '	Fimer 2. A le	ogic 1 starts	the timer.				
C/T2	T2CC	N.1	Timer or c (falling ed	Timer or counter select. (Tim (falling edge triggered).			ther 2) $0 =$ Internal timer (OSC/12) $1 =$ External event counter				
CP/RL2	T2CC	N.0	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEI = 1. When cleared, auto reloads will occur either with Timer 2 overflows or negative transitions at T2EX when $EXEN2 = 1$. When either $RCLK = 1$ or $TCLK = 1$, this bit is igner and the timer is forced to auto-reload on Timer 2 overflow.						tions at T2EX if EXEN2 ows or negative LK = 1, this bit is ignored		

This is selected by bit $C/\overline{12}$ in the Special Function Register T2CON (Figure 16). It has three operating modes : "capture," "autoload" and "baud rate generator," which are selected by bits in T2CON as shown in Table 2.

Table 2. 7	Fimer 2	2 O	perating	Modes.
------------	---------	-----	----------	--------

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit auto-reload
0	1	1	16-bit capture
1	х	1	baud rate generator
х	х	0	(off)

In the capture mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or counter which upon overflowing sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. (RCAP2L and RCAP2H are new Special Function Registers in the 80C52, 83C154 and 83C154D. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt.

The capture mode is illustrated in Figure 17.

Figure 17. Timer 2 in Capture Mode.

In the auto-reload mode there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX will also trigger the 16-bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 18.

The baud rate generator mode is selected by RCLK = 1 and/or TCLK = 1. It will be described in conjunction with the serial port.

1.7. Serial Interface (80C51 and 80C52 only)

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previoulsy received byte has been read from the receive register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost). The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

Figure 18. Timer 2 in Auto-Reload Mode.

EMIC

miconductors

The serial port can operate in 4 modes :

Mode 0 : Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received : 8 data bits (LSB first). The baud rate is fixed at 1/12 the oscillator frequency.

Mode 1 : 10 bits are transmitted (through TXD) or received (through RXD) : a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.

Mode 2 : 11 bits are transmitted (through TXD) or received (through RXD) : a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Function register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency.

Mode 3 : 11 bits are transmitted (through TXD) or received (through RXD) : a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in Mde 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1.

MATRA MHS

Rev. E (14 Jan. 97)

1.7.1. Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor, communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupt by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to the data bytes that will be coming. The slaves that weren't being addressed their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

Serial port Control Register

The serial port control and status register is the Special Function Register SCON, shown in Figure 19. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupts bits (TI and RI).

Figure 19. SCON : Serial Port Control Register.

		(MSB	5)					
		SM	10	SM1	SM2	REN	TB8	RB8
whe	re SM0, SM	11 specify (the seri	al port mo	de, as follov	vs :	• TB8	is the 9
SM0	SM1	Mode	Desc	ription	Baud Ra	te		
0	0	0	shift	register	f _{OSC} ./12		• RB8	in mode mode 1
0	1	1	8 bit	UART	variable			In mode
1	0	2	9 bit	UART	f _{OSC} ./64 f _{OSC} ./32	or	• TI	is trans 8th bit t the othe
1	1	3	9 bit	UART	variable			cleared
• SM2	anablas th	a multineaa			tion faatura	in	• RI	is receiv

 SM2 enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3, if SM2 is set to 1 then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if SM2 = 1 then RI will not be activated if a valid stop bit is not received. In mode 0, SM2 should be 0.

• REN enables serial reception. Set by software to enable reception. Clear by software to disable reception.

1.7.2. Baud Rates

The baud rate in Mode 0 is fixed :

Mode 0 Baud Rate =
$$\frac{\text{Oscillator Frequency}}{12}$$

The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD = 0 (which is its value on reset), the baud rate is 1/64 the oscillator frequency. If SMOD = 1, the baud rate is 1/32 the oscillator frequency.

Mode 2 Baud Rate = $\frac{2^{\text{SMOD}}}{64}$ × (Oscillator Frequency)

In the 80C51, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate. In the 80C52, 83C154 and 83C154D, these baud rates can be determined by Timer 1, or by Timer 2, or by both (one for transmit and the other for receive).

1.7.3. Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows :

 $\frac{\text{Modes 1, 3}}{\text{Baud rate}} = \frac{2^{\text{SMOD}}}{32} \times \text{(Timer 1 Overflow rate)}$

TB8 is the 9th data bit that will be transmitted in modes 2 and 3. Set or clear by software as desired.

TΙ

(LSB)

RI

- RB8 in modes 2 and 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0, RB8 is not used.
- TI is transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.
- RI is receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.

The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload mode (high nibble of TMOD = 0010B). In that case, the baud rate is given by the formula

$$\frac{\text{Modes 1, 3}}{\text{Baud rate}} = \frac{2^{\text{SMOD}}}{32} \times \frac{\text{Oscillator Frequency}}{12 \times [256 - (\text{TH1})]}$$

One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload.

Figure 20. lists various commonly used baud rates and how they can be obtained from Timer 1.

Figure 20. Timer 1 Generated Commonly Used Baud Rates.

			TIMER 1			
Baud Rate	fosc	SMOD	C/T	Mode	Reload Value	
MODE 0 MAX : 1MHZ	12 MHZ	x	x	x	x	
MODE 2 MAX : 375K	12 MHZ	1	x	x	x	
MODES 1,3 : 62.5K	12 MHZ	1	0	2	FFH	
19.2K	11.059 MHZ	1	0	2	FDH	
9.6K	11.059 MHZ	0	0	2	FDH	
4.8K	11.059 MHZ	0	0	2	FAH	
2.4K	11.059 MHZ	0	0	2	F4H	
1.2K	11.059 MHZ	0	0	2	E8H	
137.5	11.986 MHZ	0	0	2	IDH	
110	6 MHZ	0	0	2	72H	
110	12 MHZ	0	0	1	FEEBH	

Figure 21. Timer 2 in Baud Rate Generator Mode.

1.7.4. Using Timer 2 to Generate Baud Rates

In the 80C52, 83C154 and 83C154D, Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Figure 16.). Note then the baud rates for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 21.

- NOTE AVAILABILITY OF ADDITIONNAL EXTERNAL INTERRUPT

The baud rate generator mode is similar to the auto-reload mode, in that a rollower in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registes RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows :

Modes 1, 3 Baud Rate =
$$\frac{\text{Timer 2 Overflow rate}}{16}$$

The Timer can be configured for either "timer" or "counter" operation. In the most typical applications, it is configured for "timer" operation (C/T2 = 0). "Timer" operation is a little different for Timer 2 when it's being used as a baud rate generator. Normally as a timer it would increment every machine cycle (thus at 1/12 the oscillator frequency). As a baud rate generator, however, it increment every state time (thus at 1/2 the oscillator frequency). In that case the baud rate is given by the formula

$\frac{\text{Modes 1, 3}}{\text{Baud rate}} = \frac{\text{Oscillator Frequency}}{32 \times [65536 - (\text{RCAP2H, RCAP2L})]}$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 21. This Figure is valid only if RCLK + TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 = 1) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the Timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP registers may be read, but shouldn't be written to, because a write might overlap a reload and cause write and/or reload errors. Turn the Timer off (clear TR2) before accessing the Timer 2 or RCAP registers, in this case.

More About Mode 0

Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received : 8 data bits (LSB first). The baud rate is fixed at 1/12 the oscillator frequency.

Figure 22. shows a simplified functional diagram of the serial port in mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th bit position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF", and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0, and also enables SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1 and S2. At S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift register are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and RI = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 11111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output function line of P3.1. Shift CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every cycle in which RECEIVE is active, the contents of the receive shift register are shifted to the left one position. The value that comes in from the right is the value that was sampled at the P3.0 pin at S5P2 of the same machine cycle.

As data bits come in from the right, 1s shift out to the left. When the 0 that was initially loaded into the rightmost position arrives at the leftmost position in the shift and load SBUF. At S1P1 of the 10th machine cycle after the write to SCON that cleared RI, RECEIVE is cleared and RI is set.

More About Mode 1

Ten bits are transmitted (through TXD), or received (through RXD) : a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in SCON. In the 80C51 the baud rate is determined by the Timer 1 overflow rate. In the 80C52, 83C154 and 83C154D it is determined either by the Timer 1 overflow rate, or the Timer 2 overflow rate, or both (one for transmit and the other for receive).

Figure 23. shows a simplified functional diagram of the serial port in Mode 1, and associated timings for transmit and receive.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a 1 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rollower in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal).

The transmission begins with activation of SEND, which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The fisrt shift pulse occurs one bit time after that.

As data bits shift out to the right, zeros are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position is just to the left of the MSB, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 10th divide-by-16 rollower after "write to SBUF". Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written into the input shift register. Resetting the divide-by-16 counter aligns its rollovers with the boundaries of the incoming bit times.

Figure 22. Serial Port Mode 0.

Figure 23. Serial Port Mode 1. TCLK, RCLK, and Timer 2 are present in the 80C32/80C52, 80C154/83C154 and 83C154D.

The 16 states of the counter divide each bit time into 16ths. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register, (which in mode 1 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUFF and RB8, and set RI. Will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated.

1) RI = 0, and

2) Either SM2 = 0, or the received stop bit = 1

If either of these two confitions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition in RXD.

More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received (through RXD) : a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmit, the 9th data bit goes into RB8 is SCON. The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency in mode 2. Mode 3 may have a variable baud rate generated from either Timer 1 or 2 depending on the state of TCLK and RCLK.

Figures 1-24 A and B show a functional diagram of the serial port in modes 2 and 3. The receive portion is exactly the same as in mode 1. The transmit portion differs from mode 1 only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.) The transmission begins with activation of SEND, which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9th bit position of the shift register. Thereafter, only zeroes are clocked in. Thus, as data bits shift out to the right, zeroes are clocked in from the left. When TB8 is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 11th divide-by-16 rollover after "write to SBUF".

Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever is detected, the divide-by-16 counter is immediately reset, and 1FFH is written to the input shift register.

At the 7th, 8th and 9th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in modes 2 and 3 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated :

1) RI = 0, and

2) Either SM2 = 0 or the received 9th data bit = 1

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th data bit goes into RB8, and the first 8 data bits go into SBUF. One bit time later, whether the above conditions were met or not, the unit goes back to looking for a 1-to-0 transition at the RXD input.

Note that the value of the received stop bit is irrelevant to SBUF, RB8, or RI.

1

Figure 24. Serial Port Mode 2.

Figure 25. Serial Port Mode 3. TCLK, RCLK and Timer 2 are present in the 80C32/80C52, 80C154/83C154 and in the 83C154D.

TEMIC Semiconductors

1

1.8. Interrupts

The 80C51 provides 5 interrupt sources. The 80C52 83C154 and 83C154D provide 6. Theses are shown in Figure 25.

Figure 26. TEMIC C51 Interrupt Sources.

The external interrupts INTO and INTI can each be either level-activated or transition-activated, depending on bits ITO and IT1 in Register TCON. The flags that actually generate these interrupts are bits IEO and IE1 in TCON. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware. The Timer 0 and Timer 1 Interrupts are generated by TF0 and TF1, which are set by a rollover in their respective timer/counter registers (except see Section 1.6 for Timer 0 in mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software.

In the 80C52, 83C154 and 83C154D, the Timer 2 Interrupt is generated by the logical OR of TF2 and EXF2. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared by sofware, with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be canceled in sofware.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE (Figure 26.). Note that IE contains also a global disable bit, EA, which disables all interrupts at once.
(LSB)

(LSB)

Figure 27. IE : Interrupt Enable Register.

(MSB)

EA	X	ET2	ES	ET1	EX1	ЕТО	EX0		
Symbol	Positio	n	Function						
EA	IE.7	disables source i	disables all interrupts. If $EA = 0$, no interrupt will be acknowledged. If $EA = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enables bit.						
-	IE.6	reserved	i.						
ET2	IE.5	enables disablec	enables or disables the Timer 2 overflow or capture interrupt. If ET2 = 0, the Timer 2 interrupt is disabled.						
ES	IE.4	enables	enables or disables the Serial Port interrupt is disabled.						
ET1	IE.3	enables	enables or disables the Timer 1 Overflow interrupt. If ET1 = 0, the Timer 1 interrupt is disabled.						
EX1	IE.2	enables	enables or disables External Interrupt 1. If EX1 = 0, External interrupt 1 is disabled.						
ET0	IE.1	enables	enables or disables the Timer 0 Overflow interrupt. If ET0 = 0, the Timer 0 interrupt is disabled.						
EX0	IE.0	enables	enables or disables External Interrupt 0. If EX0 = 0, External Interrupt 0 is disabled.						

Priority Level Structure

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in Special Function Register IP (Figure 27.). A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

Figure 28. IP : Interrupt Priority Register.

(MSB)

x	х	PT2	PS	PT1	PX1	PT0	PX0		
Symbol	Position		Function						
-	IP.7	reserved	1						
-	IP.6	reserved	reserved						
PT2	IP.5	defines	defines the Timer 2 interrupt priority level. PT2 = 1 programs it do the higher priority level.						
PS	IP.4	defines	defines the Serial Port Interrupt priority level. PS = 1 programs it to the higher priority level.						
PT1	IP.3	defines	defines the Timer 1 interrupt priority level. PT1 = 1 programs it to the higher priority level.						
PX1	IP.2	defines	defines the external interrupt 1 priority level. PX1 = 1 programs it to the higher priority level.						
PT 0	IP.1	defines	defines the Timer 0 interrupt priority level. PT0 = 1 programs it to the higher priority level.						
PX0	IP.0	defines	defines the External Interrupt 0 priority level. PX0 = 1 programs it to the higher priority level.						

If two requests of different priority levels are received simultaneoulsy, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determine which request is serviced. Thus within each priority level is a second priority structure determined by the polling sequence, as follows :

	SOURCE	PRIORITY WITHIN LEVEL
1.	IEO	(highest)
2.	TF0	
3.	IE1	
4.	TFI	
5.	RI + TI	
6.	TF2 + EXF2	(lowest)

Note that the "priority within level" structure is only used to resolve *simultaneous requests of the same priority level*.

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not clocked by any of the following conditions :

1. An interrupt of equal or higher priority level is already in progress.

2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.

3. The instruction in progress is RETI or any access to the IE or IP registers.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note then that if an interrupt flag is active but not being responded to for one of the above conditions, if the flag is not *still* active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the facts that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure 28.

Note that if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 28., then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Figure 29. Interrupt response Timing Diagram.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the Serial Port or Timers 2 flags. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown below.

SOURCE	VECTOR ADDRESS
IEO	0003H
TFO	000BH
IE1	0013H
TF1	001BH
RI + TI	0023H
TF2 + EXF2	002BH

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress.

External Interrupts

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the INTx pin. If ITx = 1, external interrupt x is edge-triggered. In this mode if successive samples of the INTx pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt. Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

Response Time

The INTO and INTI levels are inverted and latched into IEO and IE1 and S5P2 of every machine cycle. The values are not actually polled by the circuitry until the next machine cycle. If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the service routine. Figure 28 shows interrupt response timings.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 8 cycles.

TEMIC

1.9. Single Step Operation

The 80C51 interrupt structure allows single-step execution with very little software overhead. As previously noted, an interrupt request will not be responded to while an interrupt of equal priority level is still in progress, nor will it be responded to after RETI until at least one other instruction has been executed. Thus, once an interrupt routine has been entered, it cannot be re-entered until at least once instruction of the interrupted program is executed. One way to use this feature for single-step operation is to program one of the service routine for the interrupt will terminate with the following code :

JNB	P3.2,\$	WAIT HERE TILL INTO
		GOES HIGH
JB	P3.2,\$	NOW WAIT HERE TILL
		IT GOES LOW
RETI		GO BACK AND EXECUTE
		ONE INSTRUCTION

Now, if the \overline{INTO} pin, which is also the P3.2 pin, is hold normally low, the CPU will go right into the External interrupt 0 routine and stay there until \overline{INTO} is pulsed (from low to high to low). Then it will execute RETI, go back to the task program, execute one instruction, and immediately re-enter the External Interrupt 0 routine to await the next pulsing of P3.2. One step of the task program is executed each time P3.2 is pulsed.

1.10. Reset

The reset input is the RST pin, which is the input to a Schmitt Trigger.

Figure 30. Power on Reset Circuit.

A reset accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), *while the oscillator is running*. The CPU responds by executing an internal reset. It also configures the ALE and PSEN pins as inputs. (They are quasi-bidirectional). The internal reset is executed during the second cycle in which RST is high and is repeated every cycle until RST goes low. It leaves the internal registers as follows :

REGISTER	CONTENT
PC	0000H
ACC	00H
В	00H
PSW	00H
SP	07H
DPTR	0000H
P0-P3	0FFH
IP (80C51)	XXX00000B
IP (80C52, 83C154 and 83C154D)	XX000000B
IE (80C51)	0XX00000B
IE (80C52, 83C154 and 83C154D)	0X000000B
TMOD	00H
TCON	00H
T2CON (80C52, 83C154 and 83C154D)	00H
TH0	00H
TL0	00H
TH1	00H
TL1	00H
TH2	00H
TL2	00H
RCAP2H (80C52 83C154 and 83C154D)	00H
RCAP2L (80C52, 83C154 and 83C154D)	00H
SCON	00H
SBUF	Indeterminate
IOCON	00H
PCON (80C51 and 80C52)	0XXX0000B
PCON (83C154 and 83C154D)	000X0000B

The internal RAM is not affected by reset. When VCC is turned on, the RAM content is indeterminate unless the part is returning from a reduced power mode of operation.

Power-on reset

An automatic reset can be obtained when VCC is turned on by connecting the RST pin to VCC through a 1 µf capacitor providing the VCC risetime does not exceed a millisecond and the oscillator start-up time does not exceed 10 milli-seconds. This power-on reset circuit is shown in Figure 1-29. When power comes on, the current drawn by RST commences to charge the capacitor. The voltage at RST is the difference between VCC and the capacitor voltage, and decreases from VCC as the cap charges. The larger the capacitor, the more slowly VRST decreases. VRST must remain above the lower threshold of the Schmitt Trigger long enough to effect a complete reset. The time required is the oscillator start-up time, plus 2 machine cycles.

1.11. Power-Saving Modes of Operation

For applications where power consumption is a critical factor, the TEMIC C51 parts provide two power mode : power-down and idle mode. The first one reduces the consumption up to few microamperes and the second one divides the consumption roughly by 25 %. Both of the modes are controlled by software via the PCON register. In Power-Down mode (PD = 1, PCON = 87H => XXXX XX1X) the oscillator is frozen. In idle mode (IDL = 1, $PCON = 87H \Rightarrow$ XXXX XX01). The oscillator continues to run and the interrupt, serial port, and timer blocks continue to be clocked but the clock signal is gated off the CPU. The activities of the CPU no longer exists unless waiting for an interrupt request. Both Power-Down and Idle mode are explained below. Further function concerning the TEMIC C154 parts will be explain in the next chapter.

Figure 31. PCON : Power Control Register.

(MSB)							(LSB)		
SMOD	-		_	GF1	GF0	PD	IDL		
Symbol	Position		Name and Function						
SMOD	PCON.7	Double either m	Baud rate bit. Whe odes 1, 2 or 3.	en set to a 1, the ba	aud rate is doubled	when the serial p	ort is being used in		
· _	PCON.6	(Reserve	ed)						
-	PCON.5	(Reserve	ed)						
-	PCON.4	(Reserve	ed)						
GF1	PCON.3	General-purpose flag bit.							
GF0	PCON.2	General-purpose flag bit.							
PD	PCON.1	Power Down bit. Setting this bit activates power down operation.							
IDL	PCON.0	Idle mode bit. Setting this bit activates idle mode operation.							

If 1s are written to PD and IDL at the same time, PD takes precedence. The reset value of PCON is (0XXX0000).

Idle Mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give and indication if an interrupt occured during normal operation or during and Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The over way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

Power Down Mode

An instruction that sets PCON.1 causes that to be the last instruction executed before going into the Power Down mode. In the Power Down mode, the on-chip oscillator is stopped. With the clock frozen, all functions are stopped, but the on-chip RAM and Special Function Registers are held. The port pins output the values held by their respective SFRs. ALE and PSEN output lows.

Figure 32. Idle and Power Down Hardware.

The only exit from Power Down is a hardware reset. Reset redefines all the SFRs, but does not change the on-chip RAM.

In the Power down mode of operation, VCC can be reduced to minimize power consumption. Care must be taken, however, to ensure that VCC is not reduced before the Power Down mode is invoken, and that VCC is restored to its normal operating level, before the Power Down mode is terminated. The reset that terminates Power Down also frees the oscillator. The reset should not be activated before VCC is restored to its normal operating level, and must be held active long enough to allow the oscillator to restart and stabilize (normally less than 10 msec).

MODE	PROGRAM MEMORY	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

This table shows the state of ports during idle and power-down modes.

1.12. More about the On-chip Oscillator

The on-chip oscillator circuitry for 80C51's family, shown in Figure 32., consists of a single stage linear inventer for use as a crystal-controlled, positive reactance oscillator.

The on-chip oscillator is able to run with a crystal or with ceramic resonnator. The Figure 33. shows the schematic to work which a crystal and a ceramic resonnator working on a fundamental mode.

Figure 33. On-chip oscillator Circuit.

Figure 34. Fundamental Resonance.

The Figure 34. shows the use of a crystal working on an overtone 3 resonance.

An overtone 3 crystal doesn't work on its fundamental resonance but on its third overtone. So it's necessary to catch in its fundamental frequency. The trap consists of the inductor L and the capacitance C. The trap frequency is the running frequency of the crystal divides by 3. An external resistor of 1 M Ω is connected on the both side of the crystal to decrease the gain on the amplifier. Cause the equivalent inductor for a overtone 3 crystal is more larger than a fundamental crystal, the oscillator needs less energy. Without external resistor the level on pin XTAL1 isn't enough to control the internal clock circuitry.

Figure 35. Overtone 3 Resonance.

The TEMIC-51 parts can by controlled by an external clock. In this case the external clock signal is connected directly on XTAL1 input and XTAL2 in left floating (Figure 35.).

1.13. Internal Timing

Figure 36. through Figure 39. show when the various strobe and port signals are clocked internally. The figures do not show rise and fall times of the signals, nor do they show propagation delays between the XTAL2 signal and events at other pins.

Figure 36. Driving the C51 parts with an external clock source.

Rise and gall times are dependent on the external loading that each pin must drive. They are often taken to be something in the neighborhood of 10 nsec, measured between 0.8 V and 2.0 V.

Propagation delays are different for different pins. For a given pin they vary with pin loading, temperature, VCC, and manufacturing lot. If the XTAL2 waveform is taken as the timing reference, prop delays may vary from 25 to 125 nsec.

The AC Timings section of the data sheets do not reference any timing to the XTAL2 waveform. Rather, they relate the critical edges of control and input signals to each other. The timing published in the data sheets include the effects of propagation delays under the specified test conditions.

1.14. C51 Pin Description

VCC: Supply voltage.

VSS: Circuit ground potential.

Port 0 : Port 0 is an 8-bit open drain bidirectional I/O Port. As an open drain output port it can sink 8 LS TTL loads. Port 0 pins that have 1s written to them float, and in that state will functions as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external memory. In this application it uses strong internal pullups when emitting 1s. Port 0 also emits code bytes during program verification. In that application, external pullups are required.

Port 1 : Port 1 is an 8-bit bidirectional I/O port with internal pullups. The port 1 output buffers can sink/source 4 LS TTL loads. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

In the 80C52, 83C154 and 83C154D pins P1.0 and P1.1 also serve the alternate functions of T2 and T2EX. T2 is the Timer 2 external input. T2EX is the input through which a Timer 2 "capture" is triggered.

Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pullups. The port 2 output buffers can sink/source 4 LS TTL loads. Port 2 emits the high-order addres byte during accesses to external memory that use 16-bit addresses. In this application it uses the strong internal pullups when emitting 1s.

Port 3 : Port 3 is an 8-bit bidirectional I/O port with internal pullups. It also serves the functions of various special features of the TEMIC-C51 Family, as listed below :

PORT PIN ALTERNATE FUNCTION P3.0 RXD (serial input port) P3.1 TXD (serial output port) P3.2 **INTO** (external interrupt 0) P3.3 **INT1** (external interrupt 1) P3.4 T0 (Timer 0 external input) P3.5 T1 (Timer 1 external input) P3.6 WR (external data memory write strobe)

P3.7 \overline{RD} (external data memory read strobe)

The Port 3 output buffers can source/sink 4 LS TTL loads. **RST :** reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

Semiconductors

ALE : Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. ALE is emitted at a constant rate of 1/6 of the oscillator frequency, for external timing or clicking purposes, even when there are no accesses to external memory. (However, one ALE pulse is skipped during each access to external Data Memory).

PSEN : Program Store Enable is the read strobe to external Program Memory. When the device is executing out of external Program Memory, <u>PSEN</u> is activated twice each machine cycle (except that two <u>PSEN</u> activations are skipped during accesses to external Data Memory). <u>PSEN</u> is not activated when the deviced is executing out of internal Program Memory.

 $\overline{\mathbf{EA}}$: When $\overline{\mathbf{EA}}$ is held high, the CPU executes out of internal Program Memory (unless the Program Counter exceeds 0FFFH in the 80C51, or 1FFFH in the 80C52, or 3 FFFH in the 83C154 or 7FFFH in the 83C154D). Holding $\overline{\mathbf{EA}}$ low forces the CPU to execute out of external memory regardless of the Program Counter value. In the 80C31, 80C32 and 80C154. $\overline{\mathbf{EA}}$ must be externally wired low.

XTAL1 : Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

Figure 37. External Program Memory Fetches.

Figure 38. External Data Memory Read Cycle.

Figure 39. External Data Memory Write Cycle.

Figure 40. Port Operation.

2. More Features for C154 Parts

This chapter explains, in details, the new features of the 83C154 and 83C154D. The only one difference between 83C154 and 83C154D is the internal ROM size (respectively 16 K bytes and 32 K bytes long).

The major new features of TEMICC154 is listed below :

- I/O part impedance selection
- Watchdog and 32-Bit TIMER/Counter Mode
- Power-down mode
 - Software control
 - Hardware control
- Frame and Overrun error serial link detection.

All these new features are controlled via the IOCON register (new one) and the PCON register.

Figure 41. I/O Port Block Diagram.

2.1. I/O Port Impedance

The structure and behaviour of the 83C154s' ports P1, P2 and P3 are indentical to those of the 80C52. Only the control block for the different pullups and pulldowns has been changed. The pullup resistance value can be programmed by means of the IOCON register.

There are three possible values :

- three states (P1, P2, P3 and N are OFF),
- high impedance (100 k Ω , P2 = ON),
- low impedance (10 k Ω , P3 = ON).

Figure 41. is a functional diagram of the PORT.

Figure 42. shows the configuration of the IOCON register which is used to set the right value of the impedance port.

Figure 42. IOCON Register Configuration.

	(MSB)							(LSB)	
	WDT	T32	SERR	IZC	P3HZ	P2HZ	P1HZ	ALF	
Symbol	Posit	tion	Function						
ALF	IOCC	0N.0	- Set to 1 :	and in Powe	er mode POI	RTS 1, 2 and	d 3 are floati	ing.	
P1HZ	IOCC	DN.1	– If P1HZ – If P1HZ – If P1HZ	= 0 and IZ0 = 0 and IZ0 = 1, PORT	C = 0, PORT C = 0, PORT P1 is floatin	' P1 is at lov ' P1 is at hig g.	w impedance gh impedanc	e. .e.	
P2HZ	IOCC	DN.2	 If P2HZ = 0 and IZC = 0, PORT P2 is at low impedance. If P2HZ = 0 and IZC = 0, PORT P2 is at high impedance. If p2HZ = 1, PORT P2 is floating. 					e. :e.	
P3HZ	IOCC	DN.3	– If P3HZ – If P3HZ – If P3HZ	= 0 and IZ0 = 0 and IZ0 = 1, PORT	C = 0, PORT C = 0, PORT P3 is floatin	' P3 is at lov ' P3 is at hig g.	w impedance 3h impedanc	e. :e.	
IZC	IOCC	N.4	– In conju	nction with	PnHZ select	ts the outpu	t pullup valu	ıe.	

Low impedance

This mode is the default mode upon a reset and it is compatible with C51 parts. The configuration of IOCON is explained by the Figure 42. Whenever PnHZ and IZC are equal to zero, P1, P2 and P3 are in this mode. In this case 3 LS TTL loads can be interfaced.

High impedance

This mode is invoked by setting PnHZ = 0 and IZC = 1. Only the transistor PZ of the Figure 41. is on and one LS TTL load can be interfaced.

Three states mode

Two different modes can be used. The first one allows to set each of the 3 ports in three states during a normal operation. The second one allows to set all the 3 parts in three states by entering in the Power-Down mode. Whenever PnHZ is set to 1, the part is in three states mode. If ALF is set to 1, at each time the Power-Down mode is called all the three parts are in the three states. When the C154 part exist from the Power-Down mode, the part impedance is the impedance just before entering in this mode (the part switches as soon as the interrupt request is generated, not after the oscillator start-up). The three states mode switch-off all the transistor.

2.2 Watchdog and 32-bit Timer/Counter Mode

TIMER/COUNTER of C51 family can be configured in four modes. With C154 parts, two new modes can be used. Both of them use TIMER0 and/or TIMER 1. The first one is used like a 32-Bit Timer/Counter and the second one is used like a 8/13/16/32-Bit Watch-Dog. Both of this two modes is programmed by software by using the IOCON register. The 32-Bit mode is on by setting the Bit T32. The Watchdog mode is on by setting the bit WDT. The Figure 43. shows the configuration of the register IOCON.

Figure 43. 32 Bit/Watchdog Mode.

(MSB)							(LSB)
WDT	T32	SERR	IZC	P3HZ	P2HZ	PIHZ	ALF

Symbol	Position	Function
T32	IOCON.6	 If T32 = 1 and if C/T0 = 0, T1 and T0 are programmed as a 32 bit TIMER. If T32 = 1 and if C/T0 = 1, T1 and T0 are programmed as a 32 bit COUNTER.
WDT	IOCON.7	 If WDT = 1 and according to the mode selected by TMOD, and 8 bit or 32 bit WATCHDOG is configured from TIMERS 0 and 1

Figure 44. 32 Bit Mode.

32 Bit Timer

32 Bit Mode

T32 = 1 enables access to this mode. As shown in Figure 44. this 32 bit mode consists in cascading TIMER 0 for the LSBs and TIMER 1 for the MSBs.

T32 = 1 starts the timer/counter and T32 = 0 stops it.

It should be noted that as soon as T32 = 0, TIMERS 0 and 1 assume the configuration specified by register TMOD. Moreover, if TR0 = 1 or if TR1 = 1, the content of the TIMERs evolves. Consequently, in 32 bit mode, if the TIMER/COUNTER must be stopped (T32 = 0). TR0 and TR1 must be set to 0.

Figure 45.

In this mode, T32 = 1 and $C/\overline{T0} = 0$, the 32 bit timer is incremented on each S3P1 state of each machine cycle. An overflow of TIMER 0 (TF0 has not been set to 1) increments TIMER 1 and the overflow of the 32 bit TIMER is signalled by setting TF1 (S5P1) to 1. The following formula should be used to calculate the required frequency :

Figure 45 illustrates the 32 Bit TIMER mode.

$$f = \frac{OSC}{12 \times (65536 - (T0, T1))}$$

MATRA MHS Rev. E (14 Jan. 97)

32 Bit Counter

Figure 46. illustrates the 32 BIT COUNTER mode.

Figure 46. 32 Bit Counter Configuration.

In this mode, T32 = 0 and $C/\overline{10} = 1$. Before it can make an increment, the 83C154 must detect two transitions on its T0 input. As shown in Figure 47. input T0 is sampled on each S5P2 state of every machine cycle or, in other words, every OSC + 12.

Figure 47. Counter Incrementation Condition.

The counter will only evolve if a level 1 is detected during state S5P2 of cycle Ci and if a level 0 is detected during state S5P2 of cycle Ci + n.

Consequently, the minimal period of signal fEXT admissible by the counter must be greater than or equal to two machine cycles. The following formula should be used to calculate the operating frequency.

 $f = \frac{fEXT}{(65536-(T0, T1))}$ $fEXT \le \frac{OSC}{24}$

watchdog Mode

WDT = 1 enables access to this mode. As shown in Figure 48. all the modes of TIMERs 0 and 1, of which the overflows act on TF1 (TF1 = 1), activate the watchdog Mode.

If $C\overline{T} = 0$, the watchdog is a TIMER that is incremented every machine cycle. If $C/\overline{T} = 1$, the watchdog is a counter that is incremented by an external signal of which the frequency cannot exceed OSC + 24. The overflow of the TIMER/COUNTER is signalled by raising flag TF1 to 1. The reset of the 83C154/83C154D is executed during the next machine cycle and lasts for the next 5 machine cycles. The results of this reset are identical to those of a hardware reset. The internal RAM is not affected and the special register assume the values shown in Table 2.

Table 3. Content of the SFRs after a reset triggered by the WATCHDOG.

REGISTER	CONTENT
PC	0000H
ACC	00H
В	00H
PSW	00H
SP	00H
DPTR	0000H
P0P3	0FFH
IP	00H
IE	0X000000B
TMOD	00H
TCON	00H
T2CON	00H
THO	00H
TL0	00H
TH1	00H
TL1	00H
TH2	00H
TL2	00H
RCAP2H	00H
RCAP2L	00H
SCON	00H
SBUF	Indeterminate
IOCON	00H

As there are no precautions for protecting bit WDT from spurious writing in the IOCON register, special care must be taken when writing the program. In particular, the user should use the IOCON register bit handing instructions :

- SETB and CLR x

in preference to the byte handling instructions :

- MOV IOCON, # XXH, ORL IOCON, # XXH,

- ANL IOCON, # XXH,

External Counting in Power-down Mode (PD = PCON.1 = 1)

In the power-down mode, the oscillator is turned off and the 83C154s'activity is frozen. However, if an external clock is connected to one of the two inputs, T1/T0, TIMER/COUNTERS 0 and 1 can continue to operate. In this case, counting becomes asynchronous and the maximum, admissible frequency of the signal is OSC : 24.

The overflow of either counter TF0 or TF1 causes an interrupt to be serviced or forces a reset if the counter is in the watchdog MODE (T32 = ICON.7 = 1).

2.3 Power-Reducing Mode

Basically the Power-Reducing Mode of the TEMIC C154 parts are 100 % compatible with the 80C51 and 80C52 parts. However both Idle and Power-Down mode are improved with some new powerful features.

Idle mode is improved by giving the software possibility to execute or not the software interrupt routine when an interrupt request occurs (Recover Power Mode).

Power-Down mode is now more powerful because an interrupt request can avake the TEMIC C154 parts. In addition an external hardware signal can control entirely the mode (Hardware Power Mode).

Details on these new features are given below.

Idle Mode

This mode is basically compatible with the TEMIC C51 parts (refer to the chapter 1.11). The new feature concerns the way to exit from this mode. Now with the Recover Power Mode, the software interrupt routine is or not executed when the interrupt routine occurs. This mode is activated by setting the bit RPD in PCON register. In this case the next instruction executed is the next following the IDLE instruction (MOV PLON, # 01).

Power-Down Mode

Software control

This mode is basically compatible with the C51 parts (refer to the chapter 1.11). The new features concern the way to exit from this mode.

With the C51 parts the only way to complete this mode is to apply an hardware reset. The newest thing is the possibility to exist from this mode by an interrupt request coming from the both external interrupts and the both counter 0 and 1 if an external clock is connected on pin T1 or T0.

Likewise IDLE mode, it is possible to execute or not the software interrupt routine. By setting the RPD bit the next instruction executed, after the interrupt request has been processed, will be the instruction following the POWER-DOWN intruction. If the RPD bit is not set, the program will continue by executing the software interrupt routine. The Figure 48. shows the behaviour of the Recover Power Mode.

Figure 48. Example in Recover Power Mode.

Hardware control

This mode is new and controls the Power-Down by an external hardware signal connected on pin T1 (P3.5). This mode is called by setting HPD bit in the PCON register. The 83C154 will be in Power-Down as soon as

T1 input will be drive by a falling edge and will remain in this state until T1 input will be drive by a rising edge. The Figure 49. shows the behaviour of the Hardware Power Mode.

Figure 49. Behaviour of the Hardware Power Mode (HPD = 1).

The time takes by the oscillator to restart depends of the crystal and the capacitors connected on both side of the crystal (typically 10 ms).

Software and hardware control

This two modes can be mixed to control the Power-Down Mode. Entry to the mode can be made either by setting PD bit to 1 or by setting HPD bit to 1 and presenting a falling edge on T1 input. Exit from this mode can be made if the software and hardware conditions are met : a rising edge on T1 input <u>and</u> an interrupt request. If these two conditions are not satisfied, only an hardware reset can complete the mode.

2.4 Frame and Overrun Error Serial Link Detection

This feature is new and allows to the user to detect a serial link error. Two kinds of error can be detected during a reception : OVERRUN ERROR and FRAME ERROR. Both of them set the SERR bit in the IOCON register at the half of the stop bit. This must be cleared by software.

Frame error

This error occurs when the format of the received Data is wrong. The Figure 50, shows an example of a Frame error.

Figure 50. FRAME ERROR example, STOP BIT is missing.

In this example the receiver waits for a STOP BIT to complete the frame reception. Unfortunately the stop bit isn't there and the receiver indicates the frame error by setting to 1 the SERR bit in the IOCON register.

Figure 51. OVERRUN ERROR example.

Overrun Error

This error occurs, when a character received and not read by the C.P.U, is overwritten by a new one. The Figure 51. shows an example of OVERRUN ERROR.

In this example the character 1 is received and the RI bit is set to 1. A second character is sent before the CPU reads the first one. The character 1 is overwritten and SERR bit is set to 1 to indicate the loss of the first character.

Note

With the C154 parts the RI bit isn't set on the same time than the C51 parts. With the C51 parts the RI bit is set on the last data bit. With the C154 the RI bit is set on the stop bit.

C51 Family Programmer's Guide and Instruction Set

Summary

1. Memory Organization I.3	3.2
1.1. Program Memory	3.2
1.2. Data Memory	3.3
1.3. Indirect Address Area I.3	3.3
1.4. Direct And Indirect Address Area I.3	3.3
1.5. Special Function Registers I.3	3.4
2. SFR Memory Map I.3	3.6
2.1. What do the SFRs Contain just after Power-on or a Reset ? I.3	3.6
2.2. Interrupts I.3	3.8
2.3. Assigning Higher Priority to one More Interrupts I.3	3.9
2.4. Priority Within Level I.3	3.9
2.5. Timer Set-up I.3.	.11
2.6. Timer/Counter 0 I.3.	.11
2.7. Timer/Counter 1 I.3.	.12
2.8. Timer/Counter 2 Set-up I.3.	.12
2.9. Serial Port Set-Up I.3.	.14
2.10. Generating Baud Rates I.3.	.14
2.11. Using Timer/Counter 1 to Generate Baud Rates I.3.	.14
2.12. Using Timer/Counter 2 to Generate Baud Rates I.3.	.14
2.13. Serial Port in Mode 2 I.3.	.14
2.14. Serial Port in Mode 3	.14
3. Instruction Definitions I.3.	19

1. Memory Organization

1.1. Program Memory

The TEMIC C51 Microcontroller Family has separate address spaces for program Memory and Data Memory. The program memory can be up to 64 K bytes long. The lower 4 K for the 80C51 (8 K for the 80C52, 16 K for the 83 C154 and 32 K for the 83C154D) may reside on chip. Figure 1 to 4 show a map of 80C51, 80C52, 83C154 and 83C154D program memory.

Figure 1. The 80C51 Program Memory.

Figure 2. The 80C52 Program Memory.

Figure 3. The 83C154 Program Memory.

1.2. Data Memory

The C51 Microcontroller Family can address up to 64 K bytes of Data Memory to the chip. The "MOVX" instruction is used to access the external data memory (refer to the C51 instruction set, in this chapter, for detailed description of instructions).

The 80C51 has 128 bytes of on-chip-RAM (256 bytes in the 80C52, 83C154 and 83C154D) plus a number of Special Function Registers (SFR). The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr). or by indirect addressing (MOV @Ri). Figure 5 and 6 show the 80C51, 80C52, 83C154 and 83C154D Data Memory organization.

Figure 5. The 80C51 Data Memory Organisation.

Figure 6. The 80C52, 83C154 and 83C154D Data Memory Organisation.

C51 Family

1.3. Indirect Address Area

Note that in Figure 6 - the SFRs and the indirect address RAM have the same addresses (80H-OFFH). Nevertheless, they are two separate areas and are accessed in two different ways. For example the instruction

MOV 80H, #0AAH

writes 0AAH to Port 0 which is one of the SFRs and the instruction

MOV R0, # 80H MOV @ R0, # 0BBH

writes 0BBH in location 80H of the data RAM. Thus, after execution of both of the above instructions Port 0 will contain 0AAH and location 80 of the RAM will contain 0BBH.

Note that the stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space in those devices which implement 256 bytes of internal RAM.

1.4. Direct And Indirect Address Area

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into 3 segments as listed below and shown in figure 7.

1. Register Banks 0.3 : Locations 0 through 1FH (32 bytes). ASM-51 and the device after reset default to register bank 0. To use the other register banks the user must select them in the software. Each register bank contains 8 one-byte registers, 0 through 7.

Reset initializes the Stack Pointer to location 07H and it is incremented once to start from location 08H which is the first register (R0) of the second register bank. Thus, in order to use more than one register bank, the SP should be initialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM).

2. Bit Addressable Area : 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this segment can be directly addressed (0-7FH).

The bits can be referred to in two ways both of which are

acceptable by the ASM-51. One way is to refer to their addresses, ie, 0 to 7FH. The other way is with reference to bytes 20H to 2FH. Thus, bits 0-7 can also be referred to as bits 20.0-20.7, and bits 8-FH are the same as 21.0-21.7 and so on.

Each of the 16 bytes in this segment can also be addresses as a byte.

1.5. Special Function Registers

Table 1 contains a list of all the SFRs and their addresses. Comparing table 1 and figure 8 shows that all of the SFRs that are byte and bit addressable are located on the first column of the diagram in figure 8.

TEMIC Semiconductors

Table 1.

SYMBOL	NAME	ADDRESS
*ACC	Accumulator	OEOH
*B	B Register	OFOH
*PSW	Program Status Word	0D0H
SP	Stack Pointer	81 H
DPTR	Data Pointer 2 Bytes	
DPL	Low Byte	82H
DPH	High Byte	83H
*P0	Port 0	80H
*P1	Port 1	90H
*P2	Port 2	0A0H
*P3	Port 3	0B0H
*IP	Interrupt Priority Control	0B8H
*IE	Interrupt Enable Control	0A8H
TMOD	Timer/Counter Mode Control	89H
*TCON	Timer/Counter Control	88H
*+T2CON	Timer/Counter 2 Control	0C8H
ТНО	Timer/Counter 0 High Byte	8CH
TL0	Timer/Counter 0 Low Byte	8AH
TH1	Timer/Counter 1 High Byte	8DH
TL1	Timer/Counter 1 Low Byte	8BH
+TH2	Timer/Counter 1 High Byte	0CDH
+TL2	Timer/Counter 2 Low Byte	0CCH
+RCAP2H	T/C 2 Capture Reg. High Byte	0CBH
+RCAP2L	T/C 2 Capture Reg. Low Byte	0CAH
*SCON	Serial Control	98H
SBUF	Serial Data Buffer	99H
PCON	Power Control	87H
*IOCON (1)	IO Control	F8H

+ 80C52, 83C154 and 83C154D only

* bit addressable

(1) 83C154 and 83C154D only

2. SFR Memory Map

Figure 8.

				8 B	ytes				
F8	IOCON								FF
F0	В								F7
E8							······································		EF
E0	ACC								E7
D8									DF
D0	PSW								D7
C8	T2CON		RCAP2L	RCAP2H	TL2	TH2			CF
C0									C7
B 8	IP								BF
B0	P3								B7
A8	IE						11 - 11 - 11 - 12 - 12 - 12 - 12 - 12 -		AF
A0	P2								A7
98	SCON	SBUF					······································		9F
90	P1								97
88	TCON	TMOD	TLO	TL1	TH0	TH1			8F
80	P0	SP	DPL	DPH				PCON	87
	k	· · · · · · · · · · · · · · · · · · ·							

▶ _____ bit addressable

2.1. What do the SFRs Contain just after Power-on or a Reset ?

Table 2 lists the contents of each SFR after a power-on reset or a hardware reset.

Table 2. Contents of the SRFs after reset.

REGISTER	VALUE IN BINARY
*ACC	0000 0000
*B	0000 0000
*PSW	0000 0000
SP	0000 0111
DPTR	0000 0000
*P0	1111 1111
*P1	1111 1111
*P2	1111 1111
*P3	1111 1111
*IP	XXX0 0000 80C51
	XXX0 0000 80C52
	0X00 0000 83C154/C154D
*IE	0XX0 0000 80C51
	0X000 0000 83C154/C154D
	and 80C52
TMOD	0000 0000

* : bit addressable.

+ : 80C52, 83C154 and 83C154D only.

-: 83C154 and 83C154D only.

X : Undefined.

REGISTER	VALUE IN BINARY
*TCON	0000 0000
+*T2CON	0000 0000
TH0	0000 0000
TL0	0000 0000
THI	0000 0000
TL1	0000 0000
+ TH2	0000 0000
+ TL2	0000 0000
+ RCAP2L	0000 0000
+ RCAP2H	0000 0000
*SCON	0000 0000
SBUF	Indeterminate
PCON	0XXX 0000 80C51 and 80C52
	000X 0000 83C154 and 83C154D
-*IOCON	0000 0000

These SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit is provided for quick reference. For more detailed information refer to the Architecture chapter of this book.

PSW :	Program	Status	Word	(Bit	Ad	dressable	e)
-------	---------	--------	------	------	----	-----------	----

CY	AC	F0	RSI	RS0	OV	Fl	Р

CY	PSW.7	Carry Flag.
AC	PSW.6	Auxiliary Carry Flag.
F0	PSW.5	Flag 0 available to the user for general purpose.
RS1	PSW.4	Register Bank selector bit 1 (SEE NOTE).
RS0	PSW.3	Register Bank selector bit 0 (SEE NOTE).
OV	PSW.2	Overflow Flag.
F1	PSW.1	Flag F1 available to the user for general purpose.
Р	PSW.0	Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of "1" bits in the accumulator.

Note :

The value presented by RS0 and RS1 selects the corresponding register bank.

RS1	RS0	REGISTER BANK	ADDRESS
0	0	0	00H-07H
0	1	1	08H–0FH
1	0	2	10H-17H
1	1	3	18H-1FH

* User software should not write 1s to reserved bits. These bits may be used in future TEMIC C51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

PCON : Power Control Register (Not Bit Addressable)

SMO) HPD	RPD	-	GFI	GF0	PD	IDL

- SMOD PCON.7 Double baud rate bit. If SMOD = 1, the baud rate is doubled when the serial part is used in mode 1, 2 and 3.
- HPD
 PCON.6
 Hard Power Down. (83C154 and 83C154D only). The falling/rising edge of a signal connected on pin P3.5 Starts/Stops the Power-Down mode. A reset can also stop this mode.
- RPD PCON.5 Recover Power Down bit. (83C154 and 83C154D only). It's used to cancel a Power-Down/IDLE mode. If it's set, an interrupt (enable or disable) can cancel this mode. A reset can also stop this mode (see Note 1).
- PCON.4 Not implemented, reserved for futur used*
- GF1 PCON.3 General purpose bit.
- GF0 PCON.2 General purpose bit.
- PD PCON.1 Power Down bit. If set, the oscillator is stopped. A reset or an interrupt (83C154 and 83C154D only) can cancel this mode (Note 1).
- IDL PCON.0 IDLE bit. If set the activity CPU is stopped. A reset or an interrupt can cancel this mode (See Note 1).

* User software should not write 1s to reserved bits. These bits may be used in future TEMIC C51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

Note 1 (83C154 and 83C154D only) :

- if RPD = 0 and if an interrupt cancels the mode Power-Down/IDLE, the next instruction to execute is a LCALL at the interrupt routine.

- RPD = 1 — if interrupt request is enable the next instruction to execute is a LCALL at the interrupt routine.
 - if interrupt request is disable, the program

continue with the instruction immediately after the Power-Down/Idle instruction.

INTERRUPT SOURCE	VECTOR ADDRESS
IEO	0003H
TF0	000BH
IE1	0013H
TF1	001BH
RI & TI	0023H
TF2 & EXF2	002BH

In addition, for external interrupts, pins $\overline{INT0}$ and $\overline{INT1}$ (P3.2 and P3.3) must be set to 1, and depending on whether the interrupt is to be level or transition activated, bits IT0 or IT1 in the TCON register may need to be set to 1.

ITX = 0 level activated

ITX = 1 transition activated

2.2. Interrupts

In order to use any of the interrupts in the C51, the following three steps must be taken.

1. Set the EA (enable all) bit in the IE register to 1.

2. Set the corresponding individual interrupt enable bit in the IE register to 1.

3. Begin the Interrupt service routine at the corresponding Vector Address of that interrupt. See Table below.

IEMIC

IE : Interrupt Enable Register (Bit Addressable)

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

	EA	-	ET2	ES	ET1	EX1	ET0	EX0	
IE.7	Disa is in	ables all intended of the second s	errupts. If I enable or di	EA = 0, no isabled by s	interrupt wi setting or cl	ll be ackno earing its er	wledged. In nable bit.	f EA = 1, in	terrupt source
IE.6	Not	implement	ed, reserved	l for future	use*.				
IE.5	Ena	ble or disab	le the Time	r 2 overflov	w or capture	e interrupt (80C52, 830	C154 and 83	3C154D only).
IE.4	Ena	ble or disab	le the Seria	al port inter	rupt.				
IE.3	Ena	ble or disab	le the Time	er 1 overflo	w interrupt.				
IE.2	Ena	ble or disab	le External	interrupt 1					
IE.1	Ena	ble or disab	le the Time	er 0 overflo	w interrupt.				
IE.0	Ena	ble or disab	le External	Interrupt 0).				
	IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0	EA IE.7 Disa is in IE.6 Not IE.5 Ena IE.4 Ena IE.3 Ena IE.2 Ena IE.2 Ena IE.1 Ena IE.0 Ena	EA-IE.7Disables all into is individually of is individually of E.6IE.6Not implemente IE.5IE.5Enable or disab IE.4IE.4Enable or disab IE.3IE.3Enable or disab IE.2IE.2Enable or disab IE.1IE.0Enable or disab	EA-ET2IE.7Disables all interrupts. If H is individually enable or di is individually enable or di implemented, reserved IE.5IE.6Not implemented, reserved IE.5IE.5Enable or disable the Time IE.4IE.4Enable or disable the Seria IE.3IE.3Enable or disable the Time IE.2IE.1Enable or disable the Time IE.1IE.0Enable or disable the Time IE.0	EA-ET2ESIE.7Disables all interrupts. If EA = 0, no is individually enable or disabled by sIE.6Not implemented, reserved for futureIE.5Enable or disable the Timer 2 overflowIE.4Enable or disable the Serial port interIE.3Enable or disable the Timer 1 overflowIE.2Enable or disable the Timer 0 overflowIE.1Enable or disable the Timer 0 overflowIE.0Enable or disable the Timer 0 overflow	EA-ET2ESET1IE.7Disables all interrupts. If EA = 0, no interrupt wi is individually enable or disabled by setting or clu- is individually enable or disabled by setting or clu- IE.6Not implemented, reserved for future use*.IE.6Not implemented, reserved for future use*.IE.5Enable or disable the Timer 2 overflow or captureIE.4Enable or disable the Serial port interrupt.IE.3Enable or disable the Timer 1 overflow interrupt.IE.2Enable or disable External interrupt 1.IE.1Enable or disable the Timer 0 overflow interrupt.IE.0Enable or disable External Interrupt 0.	EA-ET2ESET1EX1IE.7Disables all interrupts. If EA = 0, no interrupt will be acknoo is individually enable or disabled by setting or clearing its enIE.6Not implemented, reserved for future use*.IE.5Enable or disable the Timer 2 overflow or capture interrupt (IE.4Enable or disable the Serial port interrupt.IE.3Enable or disable the Timer 1 overflow interrupt.IE.2Enable or disable External interrupt 1.IE.1Enable or disable the Timer 0 overflow interrupt.IE.0Enable or disable External Interrupt 0.	EA-ET2ESET1EX1ET0IE.7Disables all interrupts. If EA = 0, no interrupt will be acknowledged. If is individually enable or disabled by setting or clearing its enable bit.IE.6Not implemented, reserved for future use*.IE.5Enable or disable the Timer 2 overflow or capture interrupt (80C52, 83C)IE.4Enable or disable the Serial port interrupt.IE.3Enable or disable the Timer 1 overflow interrupt.IE.2Enable or disable External interrupt 1.IE.1Enable or disable the Timer 0 overflow interrupt.IE.0Enable or disable External Interrupt 0.	EA - ET2 ES ET1 EX1 ET0 EX0 IE.7 Disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, in is individually enable or disabled by setting or clearing its enable bit. If EA = 1, in is individually enable or disabled by setting or clearing its enable bit. IE.6 Not implemented, reserved for future use*. IE.5 Enable or disable the Timer 2 overflow or capture interrupt (80C52, 83C154 and 83) IE.4 Enable or disable the Serial port interrupt. IE.3 Enable or disable the Timer 1 overflow interrupt. IE.2 Enable or disable External interrupt 1. IE.1 Enable or disable the Timer 0 overflow interrupt. IE.1 Enable or disable the Timer 0. Enable or disable the Timer 0.

IE0

TF0

IE1

TF1

RI or TI

TF2 or EXF2

2.4. Priority Within Level

interrupt sources are listed below :

Priority within level is only to resolve simultaneous

requests of the same priority level. From high to low,

* User software should not write 1s to reserved bits. These bits may be used in future TEMIC C51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

2.3. Assigning Higher Priority to one More Interrupts

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1. Remember that while an interrupt service is in progress, it cannot be interrupted by a lower or same level interrupt.

IP : Interrupt Priority Register (Bit Addressable)

If the bit is 0, the corresponding interrupt has a lower priority and if the bit is the corresponding interrupt has a higher priority.

	PCT	-	PT2	PS	PT1	PX1	PT0	PX0	ĺ
IP.7	Defi	ines the san	ne priority	level for all	the source	interrupt (8	3C154 and	83C154D	only).

- IP.6 Not implemented, reserved for future use*.

PT2 IP.5 Defines the Timer 2 interrupt priority level (80C52, 83C154 and 83C154D only).

PS IP.4 Defines the Serial Port interrupt priority level.

- PT1 IP.3 Defines the Timer 1 Interrupt priority level.
- PX1 IP.2 Defines External Interrupt priority level.
- PT0 IP.1 Defines the Timer 0 interrupt priority level.
- PX0 IP.0 Defines the External Interrupt 0 priority level.

* User software should not write 1s to reserved bits. These bits may be used in future TEMIC C51 products to invoke new features. In that case, the reset or inactive value of the

now bit will be 0, and its active value will be 1.

PCT

IOCON : Input/Output Control Register (83C154 and 83C154D only)

		WDT	T32	SERR	IZC	P3HZ	P2HZ	PIHZ	ALF	
--	--	-----	-----	------	-----	------	------	------	-----	--

- WDT IOCON.7 Watch Dog Timer bit. Set when Timer 1 is overflow (TF = 1). The CPU is reset and the program is executed from address 0.
- T32 IOCON.6 Timer 32 bits. The Timer 1 and Timer 0 are connected together to form a 32 bits Timer/Counter. If C/TO = 0, it's a Timer. If C/TO = 1, it's a counter.
- SERR IOCON.5 Serial Port Reception Error flag. Set when an overrun on frame error is received.
- IZC IOCON.4 Set/Cleared by software to select 100/10 K pull up resistance for Port 1, 2 and 3.
- P3HZ IOCON.3 When Set, Port 3 becomes a tri-state input. When cleared, the pull-up resistance value is selected by IZC.
- P2HZ IOCON.2 When Set, Port 2 becomes a tri-state input. When cleared, the pull-up resistance value is selected by IZC.
- P1HZ IOCON.1 When Set, Port 1 becomes a tri-state input. When cleared, the pull-up resistance value is selected by IZC.
- ALF IOCON.0 All Port tri-state. When Set and CPU in Power-Down mode, port 1, 2 and 3 are tri-state.

TCON : Timer/Counter Control Register (Bit Addressable)

TFI TRI TFO TRO IEI ITI	IE0	IT0
-------------------------	-----	-----

- TF1 TCON.7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hardware as processor vectors to the interrupt service routine.
- TR1 TCON.6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter ON/OFF.
- TF0 TCON.5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hardware as processor vectors to the service routine.
- TR0 TCON.4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.
- IE1 TCON.3 External Interrupt 1 edge flag. Set by hardware when External interrupt edge is detected. Cleared by hardware when interrupt is processed.
- IT1 TCON.2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/flow level triggered External Interrupt.
- IE0 TCON.1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared by hardware when interrupt is processed.
- IT0 TCON.0 Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt.

TMOD : Timer/Counter Mode Control Register (Not Bit Addressable)

GATE	C/T	M1	M0	GATE	C/T	M1	M 0	
	TIM	ER 1			TIM	ER 0		

- GATE When TRx (in TCON) is set and GATE = 1, TIMER/COUNTERx will run only while INTx pin is high (hardware control). When GATE = 0, TIMER/COUNTERx will run only while TRx = 1 (software control).
- C/T Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Counter operation (input from Tx input pin).
- M1 Mode selector bit (NOTE 1).
- M0 Mode selector bit (NOTE 1).

M1	M0	OPER	ATING MODE
0	0	0	13-bit Timer
0	1	1	16-bit Timer/Counter
1	0	2	8-bit Auto-Reload Timer/Counter
1	1	3	(Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits. TH0 is an 8-bit Timer and is controlled by Timer 1 control bits.
1	1	3	(Timer 1) Timer/Counter 1 stopped.

2.5. Timer Set-up

Tables 3 through 6 give some values for TMOD which can be used to set up Timer 0 in different modes.

It is assumed that only one timer is being used at a time. It is desired to run Timers 0 and 1 simultaneously, in any mode, the value that in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 5 and 6).

For example, if it is desired to run Timer 0 in mode 1 GATE (external control) and Timer 1 in mode 2 COUNTER, then the value must be loaded into TMOD is 69H (09H from Table 3 ORed with 60H from Table 6).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that a different point in the program by setting bit TRx (in TCON) to 1.

Table 4. As a Counter

		TMOD			
MODE	TIMER 0 FUNCTION	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
0	13-bit Timer	04H	0CH		
1	16–bit Timer	05H	0DH		
2	8-bit Auto-Reload	06H	0EH		
3	one 8-bit Timers	07H	0FH		

2.6. Timer/Counter 0

		TMOD			
MODE	TIMER 0 FUNCTION	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
0	13–bit Timer	00H	08H		
1	16-bit Timer	01H	09H		
2	8-bit Auto-Reload	02H	0AH		
3	Two 8-bit Timers	03H	0BH		

Table 3. As a Timer

Notes: 1. The Timer is turned ON/OFF by setting/clearing bit TR0 in the software.

2. The Timer is turned ON/OFF by the 1 to 0 transition on $\overline{INT0}$ (P3.2) when TR0 = 1 (hardware control).

2.7. Timer/Counter 1

Table 5. As a Timer

		TMOD			
MODE	TIMER 0 FUNCTION	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
0	13-bit Timer	00H	80H		
1	16bit Timer	10 H	90H		
2	8-bit Auto-Reload	20H	A0H		
3	does not run	30H	вон		

Га	bl	e	6.	As	a	Counter	

		TMOD			
MODE	TIMER 0 FUNCTION	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
0	13-bit Timer	40H	С0Н		
1	16-bit Timer	50H	D0H		
2	8-bit Auto-Reload	60H	E0H		
3	not available	-	-		

Notes: 1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.

2. The Timer is turned ON/OFF by the 1 to 0 transition on $\overline{INT1}$ (P3.2) when TR1 = 1 (hardware control).

T2CON : Timer/Counter 2 Control register (Bit Addressable) (80C52, 83C154 and 83C154D only)

TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
-----	------	------	------	-------	-----	------	--------

TF2 T2CON.7 Timer 2 overflow flag set by hardware and cleared by software. TF2 cannot be set when either RCLK = 1 or CLK = 1

- EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX, and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.
- RCLK T2CON.5 Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its receive clock in modes 1 & 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
- TCLK T2CON.4 Transmit clock flag. When set, causes the Serial Port use Timer 2 overflow pulses for its transmit clock in modes 1 & 3, TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
- EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of negative transition on T2EX if Timer 2 is not being used to clock the Serial Port. EXEN2 = 0 causes Timer 2 to ignore events as T2EX.
- TR2 T2CON.2 Software START/STOP control for Timer 2. A logic 1 starts the Timer.
- $C/\overline{T2}$ T2CON.1 Timer or Counter select.
- CP/RL2 T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When cleared, Auto-Reloads will occur either with Timer2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the Timer is forced to Auto-Reload on Timer 2 overflow.

2.8. Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the Timer on.

Table 7. As a Timer

	T2CON			
MODE	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
16-bit Auto-Reload	00H	08H		
16-bit Capture	01H	09H		
BAUD rate generator				
receive & transmit same				
baud rate	34H	36H		
receive only	24H	26H		
transmit only	14H	16H		
		1		

Table 8. As a Counter

	T2CON			
MODE	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
16bit AutoReload 16bit Capture	02H 03H	0AH 0BH		

Notes: 1. Capture/Reload occurs only Timer/Counter overflow.

 Capture/Reload occurs on Timer/Counter overflow and a 1 to 0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generating mode.

SCON : Serial Port Control Register (Bit Addressable)

	- n	SM0	SM1	SM2	REN	TN8	RB8	TI	RI	
SM0	SCO	N.7 Seri	ial Port mod	le specifier	(NOTE 1)					
SM1	SCO	N.6 Seri	ial Port mod	le specifier	(NOTE 1)					
SM2	SCO	N.5 Ena to 1 ther tabl	bles the mu then RI wi n RI will no e 9).	Iltiprocesso ill not be ac t be activate	r communi tivated if t d if a valic	ication featu the received l stop bit wa	ure in mode I 9th data b is not receiv	e 2 & 3. In r bit (RB8) is ved. In mode	node 2 or 3 0. In mode e 0, SM2 sh	, if SM2 is so 1, if SM2 = ould be 0 (Se
REN	SCO	N.4 Set/	Cleared by	software to	Enable/Di	isable recep	tion.			
TB8	SCO	N.3 The	9th bit that	t will be trai	nsmitted in	modes 2 &	3. Set/Cle	ared by soft	ware.	

- RB8 SCON.2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0, RB8 is not used.
- TI SCON.1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in the other modes. Must be cleared by software.
- RI SCON.0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or half way through the stop bit time in the other modes (except see SM2). Must be cleared by software.

Note 1 :

SM0	SM1	MODE	DESCRIPTION	BAUD RATE
0	0	0	SHIFT REGISTER	Fosc./12
0	1	1	8 bit UART	Variable
1	0	2	8 bit UART	Fosc./64 OR Fosc./32
1	1	3	8 bit UART	Variable

2.9. Serial Port Set-Up

Table 9.

MODE	SCON	SM2 VARIATION
0	10H	
1	50H	Single Processor
2	90H	Environment
3	D0H	(SM2 = 0)
0	NA	
1	70H	Multiprocessor
2	вон	Environment
3	FOH	(SM2 = 1)

2.10. Generating Baud Rates

Serial Port in Mode 0 :

Mode 0 has a fixed baud rate which is 1/12 of oscillator frequency. To run serial port in this mode none of the Timer/Counters need to be set up. Only the SCON register needs to be defined.

Baud Rate = $\frac{\text{Osc Freq}}{12}$

Serial Port in Mode 1 :

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (80C52, 83C154 and 83C154D only).

2.11. Using Timer/Counter 1 to Generate Baud Rates

For this purpose, Timer 1 is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter.

Baud Rate =
$$\frac{K \times \text{Oscillator freq.}}{32 \times 12 \times [256-(TH1)]}$$

if SMOD = 0, then K = 1.

If SMOD = 1, then K = 2. (SMOD is the PCON register). Most of the time the user knows the baud rate and needs to know the reload value for TH1. Therefore, the equation to calculate TH1 can be viritten as :

$$TH1 = 256 - \frac{K \times Oscillator freq.}{384 \times baud rate}$$

TH1 must be integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In this case, the user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register (ie, ORL PCON, #80H). The address of PCON is 87H.

2.12. Using Timer/Counter 2 to Generate Baud Rates

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this chapter. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is :

Baud Rate =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

And if it being clocked internally the baud rate is :

Baud Rate =
$$\frac{\text{Osc. Freq}}{32 \times [65536 - (\text{RCAP2H, RCAP2L})]}$$

To obtain the reload value for RCAP2H and RCAP2L the above equation can be written as :

RCAP2H, RCAP2L =
$$65536 - \frac{\text{Osc. Freq}}{32 \times \text{Baud rate}}$$

2.13. Serial Port in Mode 2

The baud rate is fixed in this mode and 1/32 or 1/64 of the oscillator frequency depending on the value of the SMOD bit in the PCON register.

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock.

SMOD = 1, Baud Rate = 1/32 Osc Freq.

SMOD = 0, Baud Rate = 1/64 Osc Freq.

To set the SMOD bit : ORL PCON, #80H. The address of PCON is 87H.

2.14. Serial Port in Mode 3

The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

Table 10. TEMIC C51 Instruction Set

Interrupt Response tim Chapter.	e : Refer to Hard	ware Descriptio	on				
Instructions that Affe	ect Flag Settings	(1)					
INSTRUC.		FLAG		INSTRUC.		FLAG	
	С	ov	AC		С	ov	AC
ADD	х	х	х	CLRC	0		
ADDC	X	х	Х	CPL C	х		
SUBB	Х	Х	Х	ANL C, bit	х		
MUL	0	Х		ANL C,/ bit	Х		
DIV	0	х		ORL C, bit		х	
DA	Х			ORL C, bit		х	
RRC	Х			MOV C, bit		х	
RLC	х			CJNE	х		
SETB C	1						
Rn direct	 Register 8-bit interport con 	R7–R0 of the c rnal data location	urrently selected on's address. This	Register Bank s could be an Internal Data 128–255))	RAM location	n (0–127) or a S	FR (i.e., I/O
@Ri	– 8-bit inte	rnal data RAM	location (0-255)	addresses indirectly throug	h register R1	or R0.	
# data	- 8-bit con	stant included i	n instruction.				
# data 16	– 16-bit co	nstant included	in instruction.				
addr 16	 16-bit de memory 	stination addres address space	ss. Used by LCAI	LL & LJMP. Abranch can b	be anywhere w	vithin the 64K-b	yte Program
addr 11	 – 11-bit de program 	stination addres memory as the	s. Used by ACAI first byte of the f	LL & AJMP. The branch w ollowing instruction	ill be within t	he same 2K–byt	e page of
rel	 Signed (1) 127 byte 	wo's compleme s relative to firs	ent) 8-bit offset b t byte of the follo	oyte. Used by SJMP and all wing instruction.	conditionnal	jumps. Range is	-128 to +
bit	 Direct A 	ddressed bit in i	internal Data RA	M or special Function Regi	ster.		

TEMI	C
Semiconduct	ors

MNEMONIC	DESCRIPTION	BYTE	OSCIL. PERIOD
ARITHMETIC OF	PERATIONS		
ADD A, Rn	Add register to Accumulator	1	12
ADD A, direct	Add direct byte to Accumulator	2	12
ADD A, @Ri	Add indirect RAM to Accumulator	1	12
ADD A, #data	Add immediate data to Accumulator	2	12
ADDCA, Rn	Add register to Accumulator with Carry	1	12
ADDCA, direct	Add direct byte to Accumulator with Carry	2	12
ADDCA, @Ri	Add indirect RAM to Accumulator with Carry	1	12
ADDCA, #data	Add immediate data to Acc with Carry	2	12
SUBB A, Rn	Subtract Register from Acc with borrow	1	12
SUBB A, direct	Subtract direct byte from Acc with borrow	2	12
SUBB A, @Ri	Subtract indirect RAM from ACC with borrow	1	12
SUBB A, #data	Subtract immediate data from Acc with borrow	2	12
INC A	Increment Accumulator	1	12
INC Rn	Increment register	1	12
INC direct	Increment direct byte	2	12
INC @Ri	Increment direct RAM	1	12
DEC A	Decrement Accumulator	1	12
DEC Rn	Decrement Register	1	12
DEC direct	Decrement direct byte	2	12
DEC @Ri	Decrement indirect RAM	1	12
INC DPTR	Increment Data Pointer	1	24
MUL AB	Multiply A & B	1	48
DIV AB	Divide A by B	1	48
DA A	Decimal Adjust Accumulator	1	12

MNEMONIC	DESCRIPTION	BYTE	OSCIL. PERIOD
LOGICAL OPERA	TIONS		
ANL A, Rn	AND Register to Accumulator	1	12
ANL A, direct	AND direct byte to Accumulator	2	12
ANL A, @Ri	AND indirect RAM to Accumulator	1	12
ANL A, #data	AND immediate data to Accumulator	2	12
ANL direct, A	AND Accumulator to direct byte	2	12
ANL direct, #data	AND immediate data to direct byte	3	24
ORL A, Rn	OR register to Accumulator	1	12
ORL A, direct	OR direct byte to Accumulator	2	12
ORL A, @Ri	OR indirect RAM to Accumulator	1	12
ORL A, #data	OR immediate data to Accumulator	2	12
ORL direct, A	OR Accumulator to direct byte	2	12
ORL direct, #data	OR immediate data to direct byte	3	24
XRL A, Rn	Exclusive-OR register to Accumulator	1	12
XRL A, direct	Exclusive-OR direct byte to accumulator	2	12
XRL A, @Ri	Exclusive-OR indirect RAM to Accumulator	1	12
XRL A, #data	Exclusive–OR immediate data to Accumulator	2	12
XRL direct, A	Exclusive–OR Accumulator to direct byte	2	12
XRL direct, #data	Exclusive–OR immediate data to direct byte	3	24
CLR A	Clear Accumulator	1	12
CPL A	Complement Accumulator	1	12
RL A	Rotate Accumulator Left	1	12
RLC A	Rotate Accumulator Left through the Carry	1	12
RR A	Rotate Accumulator Right	1	12
RRC A	Rotate Accumulator Right through the Carry	1	12
SWAP A	Swap nibbles within the Accumulator	1	12

5

TEMIC Semiconductors

C51 Family

E

MNEMONIC	DESCRIPTION	BYTE	OSCIL. PERIOI
DATA TRANSFER	T		
MOV A, Rn	Move Register to Accumulator	1	12
MOV A, direct	Move direct byte to Accumulator	2	12
MOV A, @Ri	Move indirect RAM to Accumulator	1	12
MOV A, #data	Move immediate data to Accumulator	2	12
MOV Rn, A	Move Accumulator to register	1	12
MOV Rn, direct	Move direct byte to register	2	24
MOV Rn, #data	Move immediate data to register	2	12
MOV direct, A	Move Accumulator to direct byte	2	12
MOV direct, Rn	Move register to direct byte	2	24
MOV direct, direct	Move direct byte to direct	3	24
MOV direct, @Ri	Move indirect RAM to direct byte	2	24
MOV direct, #data	Move immediate data to direct byte	3	24
MOV @Ri, A	Move Accumulator to indirect RAM	1	12
MOV @Ri, direct	Move direct by to indirect RAM	2	24
MOV @Ri, #data	Move immediate data to indirect RAM	2	12
MOV DPTR, #data16	Load Data Pointer with a 16-bit constant	3	24
MOVCA @A+DPTR	Move Code byte relative to DPTR to Acc	1	24
MOVCA @A+PC	Move Code byte relative to PC to Acc	1	24
MOVXA, @Ri	Move External RAM (8-bit addr) to Acc	1	24
MOVXA, @DPTR	Move External RAM (16-bit addr) to Acc	1	24
MOVX@Ri, A	Move Acc to External RAM (8-bit addr)	1	24
MOVX@DPTR, A	Move Acc to External RAM (16-bit addr)	1	24
PUSH direct	Push direct byte only stack	2	24
POP direct	Pop direct byte from stack	2	24

MNEMONIC	DESCRIPTION	BYTE	OSCIL. PERIOD
DATA TRANSFER	KT (continued)		
XCH A, Rn	Exchange register with Accumulator	1	12
XCH A, direct	Exchange direct byte with Accumulator	2	12
XCH A, @Ri	Exchange indirect RAM with Accumulator	1	12
XCHD A, @Ri	Exchange loworder Digit indirect RAM with Acc	1	12
BOOLEAN VARIA	ABLE MANIPULATION		
CLR C	Clear Carry	1	12
CLR bit	Clear direct bit	2	12
SETB C	Set Carry	1	12
SETB bit	Set direct bit	2	12
CPL C	Complement Carry	1	12
CPL bit	Complement direct bit	2	12
ANL C, bit	AND direct bit to Carry	2	24
ANL C, /bit	AND complement of direct bit to Carry	2	24
ORL C, bit	OR direct bit to Carry	2	24
ORL C, /bit	OR complement of direct bit to Carry	2	24
MOV C, bit	Move direct bit to Carry	2	12
MOV bit, C	Move Carry to direct bit	2	24
JC rel	Jump if Carry is set	2	24
JNC rel	Jump if Carry not set	2	24
JB bit, rel	Jump if direct Bit is set	3	24
JNB bit, rel	Jump if direct Bit is Not set	3	24
JBC bit, rel	Jump if direct Bit is set & clear bit	3	24
	T] Sem	E N	AIC
---------------------	---	-----	------------
	· · ·		
CNJE A, direct, rel	Compare direct byte to Acc and Jump if Not Equal	3	24
CJNE A, #data, rel	Compare immediate to Acc and Jump if Not Equal	3	24
CJNE Rn, #data, rel	Compare immediate to register and Jump if Not Equal	3	24

Compare immediate to

Equal

indirect and Jump if Not

Decrement register and

Jump if Not Zero Decrement direct byte and Jump if Not Zero

No Operation

3

2

3

1

24

24

24

12

MNEMONIC	DESCRIPTION	BYTE	PERIOD
PROGRAM BRAN	CHING		
ACALLK addr11	Absolute Subroutine Call	2 .	24
LCALL addr16	Long Subroutine Call	3	24
RET	Return from Subroutine	1	24
RETI	Return from interrupt	1	24
AJMPaddr11	Absolute Jump	2	24
LJMPaddr16	Long Jump	3	24
SJMP rel	Short Jump (relative addr)	2	24
JMP @A+DPTR	Jump direct relative to the DPTR	1	24
JZ rel	Jump if Accumulator is zero	2	24
JNZ rel	Jump if Accumulator is not Zero	2	24

acom

CJNE @Ri, #data,

DJNZ Rn, rel

DJNZ direct, rel

rel

NOP

1

3. Instruction Definitions

ACALL addr 11

Function :	Absolute Call			
Description :	ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice. The destination address is obtained by successively concatenating the five high-order bits of the incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called must therefore start within the same 2 K block of the program memory as the first byte of the instruction following ACALL. No flags are affected.			
Example :	Initially SP equals 07H. The labs "SUBRTN " is at program memory location 0345 H. After executing the instruction,			
	ACALL SUBRTN			
	at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively, and the PC will contain 0345H.			
Bytes :	2			
Cycles :	2			
Encoding :	a 10 a 9 a 8 1 0 0 0 1 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0			
Operation :	ACALL $(PC) \leftarrow (PC) + 2$ $(SP) \leftarrow (SP) + 1$ $[(SP)] \leftarrow (PC_{7-0})$ $(SP) \leftarrow (SP) + 1$ $[(SP)] \leftarrow (PC_{15-8})$ $(PC_{10-0}) \leftarrow page address$			

ADD a, <src-byte>

,

Function :	Add
Description :	ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.
	OV is set there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands, or a positive sum from two negative operands.
	Four source operand addressing modes are allowed : register, direct, register-indirect, or immediate.
Example :	The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B). The instruction,
	ADD A, RO
	will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1.
ADD A, Rn	1
Dyte:	
Cycle.	
Encoding :	0 0 1 0 1 r r r
Operation :	$\begin{array}{l} \text{ADD} \\ \text{(A)} \leftarrow \text{(A)} + (\text{Rn}) \end{array}$
ADD A, direct	
Bytes :	2
Cycle :	1
Encoding :	0 0 1 0 0 1 0 1 direct address
Operation :	$\begin{array}{l} \text{ADD} \\ \text{(A)} \leftarrow \text{(A)} + (\text{direct}) \end{array}$
ADD A, @RI	
Byte :	1
Cycle :	1
Encoding :	0 0 1 0 1 1 1 i
Operation :	$\begin{array}{l} \text{ADD} \\ \text{(A)} \leftarrow \text{(A)} + \text{((RI))} \end{array}$
ADD A, # data	
Bytes :	2
Cycle :	1
Encoding :	0 0 1 0 0 1 0 0 I Immediate data
Operation :	ADD $(A) \leftarrow (A) + \# data$

ADDC A, <src-byte>

Function :	Add with Carry		
Description :	ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving the result in the Accumulator. The carry and auxiliary-carry or bit flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.		
Example :	OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed intergers, OV indicates a negative number produced as the sum of two positive operands or a positive sum from two negative operands. Four source operand addressing mode are allowed; register, direct, register-indirect, or immediate. The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry		
	ADDC A, RO		
	will leave 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and OV set to 1.		
ADDC A, RN			
Byte :	1		
Cycle :	1		
Encoding :	0 0 1 1 1 r r r		
Operation :	$\overline{\text{ADDC}} $ $(A) \leftarrow (A) + (C) + (R_n)$		
ADDC A, direct			
Bytes :	2		
Cycle :	1		
Encoding :	0 0 1 1 0 1 0 1 direct address		
Operation :	ADDC (A) \leftarrow (A) + (C) + (direct)		
ADDC A, @ RI			
Byte :	1		
Cycle :	1		
Encoding :	0 0 1 1 0 1 1 i		
Operation :	ADDC (A) \leftarrow (A) + (C) + ((R _i))		
ADDC A, #data			
Bytes :	2		
Cycle :	1		
Encoding :	0 0 1 1 0 1 0 0 immediate data		
Operation :	ADDC (A) \leftarrow (A) + (C) + # data		

AJMP addr11

Function :	Absolute Jump			
Description :	AJMP transfers program execution to the indicated address, which is formed at run-time by concatenating the high-order five bits of the PC (<i>after</i> incrementing the PC twice), opcode bits 7-5, and the second byte of the instruction. The destination must therefore be within the same 2 K block of program memory as the first byte of the instruction following AJMP.			
Example :	The label " JMPADR " is at program memory location 0123H. The instruction, AJMP JMPADR is a location 0345H and will load the PC with 0123H.			
ADD A, direct				
Bytes : Cycles :	2 2			
Encoding :	a 10 a 9 a 8 0 0 0 0 1 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0			
Operation :	AJMP (PC) \leftarrow (PC) + 2 (PC ₁₀₋₀) \leftarrow page address			

ANL <dest-byte>, <src-byte>

Function : Logical-AND for byte variables

Description : ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the destination variable. No flags are affected. The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing ; when the destination is a direct address, the source can be the Accumulator or immediate data. *Note* : When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, *not* the input pins.

Example : If the Accumulator holds 0C3H (11000011B) and register 0 holds 55H (01010101B) then the instruction,

ANL A, RO

will leave 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of bits in any RAM location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a constant contained in the instruction or a value computed in the Accumulator at run-time. The instruction,

ANL P1, #01110011B

will clear bits 7, 3, and 2 of output port 1.

ANL A, Rn

Bytes : Cycles :	1 1
Encoding :	0 1 0 1 1 r r r
Operation :	ANL (A) \leftarrow (A) \land (Rn)
ANL A, direct	
Bytes :	2
Cycles :	1
Encoding :	0 1 0 1 0 1 0 1 direct address
Operation :	ANL (A) \leftarrow (A) \land (direct)

ΤΕΜΙΟ

Semiconductors

1

ANL A, @ RI	1		
Byte :	l		
Cycle :	1		
Encoding :	0 1 0 1 0 1 1 i		
Opération :	$\begin{array}{l} ANL \\ (A) \leftarrow (A) \land ((R_i)) \end{array}$		
ANL A, #DATA			
Bytes :	2		
Cycle :	1		
Encoding :	0 1 0 1 0 1 0 0	immediate data	
Operation :	ANL (A) \leftarrow (A) \land # data		
ANL direct, A			
Bytes :	2		
Cycle :	1		
Encoding :	0 1 0 1 0 0 1 0	direct address	
Operation :	$\begin{array}{l} \text{ANL} \\ (\text{direct}) \leftarrow (\text{direct}) \land (\text{A}) \end{array}$		
ANL direct, # d	ata		
Bytes :	3		
Cycles :	2		
Encoding :	0 1 0 1 0 0 1 1	direct address	immediate data
Operation :	ANL $(direct) \leftarrow (direct) \land \# data$		

ANL C, <src-bit>

Function :	Logical-AND for bit variables		
Description :	If the Boolean value of the source bit is logical 0 then clear the carry flag; otherwise leave the carry flag in its current state. A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as the source value, <i>but the source bit itself is not affected</i> . No other flags are affected.		
	Only direct addressing is allowed for the source operand.		
Example :	Set the carry flag if, $PI.0 = 1$, $ACC./ = 1$, and $OV = 0$:		
	MOV C, PI.0 ; LOAD CARRY WITH INPUT PIN STATE		
	ANL C, ACC.7 ; AND CARRY WITH ACCUM. BIT 7		
	ANL C,/OV ; AND WITH INVERSE OF OVERFLOW FLAG		
ANL C, bit			
Bytes :	2		
Cvcles :	2		
Encoding .	1 0 0 0 0 1 0 bit address		
Encouning .			
Operation :	ANL (C) \leftarrow (C) \land (bit)		
ANL C, /bit			
Bytes :	2		
Cycles :	2		
Encoding :	1 0 1 1 0 0 0 bit address		
Operation :	ANL		
,	$(C) \leftarrow (C) \land \overline{(bit)}$		

CJNE<dest-byte>, <src-byte>, rel

Function : Compare and Jump if Not Equal

Description : CJNE compares the magnitudes of the first two operands, and branches if their values are not equal. The branch destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-byte> ; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations : the Accumulator may be compared with any directly addressed byte or immediate data, and any indirect RAM location or working register can be compared with an immediate constant.

Example: The Accumulator contains 34H, register 7 contains 56H. The first instruction in the sequence,

	CJNE	R7, #60H, NOT_EQ	
;			; $R7 = 60H$
NOT_EQ :	JC	REQ_LOW	; IF R7 < 60H
;			; $R7 > 60H$

sets the carry flag and branches to the instruction at label NOT-EQ. By testing the carry flag, this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,

WAIT : CJNE A, P1, WAIT

clears the carry flag and continues with the next instruction in sequence, since the Accumulator does equal the data read from P1. (If some other value was being input on P1, the program will loop at this point until the P1 data changes to 34H).

C51 Family

1

CJNE A, direct	, rel		
Bytes : Cycles :	3 2		
Encoding :	1 0 1 1 0 1 0 1	direct address	rel. address
Operation :	$(PC) \leftarrow (PC) + 3$ IF (A) <> (direct) THEN (PC) \leftarrow (PC) + relative off IF (A) < (direct) THEN (C) \leftarrow 1	fset	
	ELSE $(C) \leftarrow 0$		
CJNE A, # data	a, rel		
Bytes : Cycles :	3 2		
Encoding :	1 0 1 1 0 1 0 0	immediate data	rel. address
Operation :	(PC) ← (PC) + 3 IF (A) <> (<i>data</i>) THEN		
	$(PC) \leftarrow (PC) + relative of f$ IF (A) < data THEN (C) $\leftarrow 1$ ELSE	fset	
CJNE Rn, # da	$(C) \leftarrow 0$		
Bytes : Cycles :	3 2		
Encoding :	1 0 1 1 1 r r r	immediate data	rel. address
Operation :	$\begin{array}{l} (\text{PC}) \leftarrow (\text{PC}) + 3 \\ \text{IF} (\text{Rn}) <> data \\ \text{THEN} \\ (\text{PC}) \leftarrow (\text{PC}) + relative offset \\ \text{IF} (\text{Rn}) < data \\ \text{THEN} \\ (\text{C}) \leftarrow 1 \\ \text{ELSE} \\ (\text{C}) \leftarrow 0 \end{array}$		
CJNE @Ri, # d	ata, rel		
Bytes : Cycles :	3 2		
Encoding :	1 0 1 1 0 1 1 i	immediate data	rel. address
Operation :	$\begin{array}{l} (PC) \leftarrow (PC) + 3 \\ \text{IF (Ri)} \Leftrightarrow data \\ \text{THEN} \\ (PC) \leftarrow (PC) + relative of j \\ \text{IF ((Ri))} < data \\ \text{THEN} \\ (C) \leftarrow 1 \\ \text{ELSE} \end{array}$	fset	
	$(C) \leftarrow 0$		

MATRA MHS Rev. E (14 Jan. 97)

CLR A

Function :	Clear Accumulator			
Description :	The Accumulator is cleared (all bits set on zero). No flags are affected.			
Example :	The Accumulator contains 5CH (01011100B). The instruction,			
	VIII leave the Accumulator set to 00H (0000000B).			
Bytes :				
Cycles :	1			
Encoding :				
Onoration :				
Operation .	$(A) \leftarrow 0$			
CLR bit				
Function :	Clear bit			
Description :	The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on			
	the carry flag or any directly addressable bit.			
Example :	Port 1 has previously been written with SDH (01011101B). The instruction,			
	VLK F1.2 will leave the port set to 59H (01011001B)			
Bytes :	1			
Cycles :	1			
Encoding .				
Encouning :				
Operation :	$\begin{array}{c} \text{CLR} \\ \text{(C)} \leftarrow 0 \end{array}$			
CLR bit				
Bytes :	2			
Cycles :	1			
Encoding :	1 1 0 0 0 0 1 0 bit address			
Operation :	CLR			
	$(bit) \leftarrow 0$			
CPLA				
Function :	Complement Accumulator			
Descritpion :	Each bit of the Accumulator is logically complemented (one's complement). Bits which			
	previously contained a one are changed to a zero and vice-versa. No flags are affected.			
Example :	The accumulator contains 5CH (01011100B). The instruction,			
	UPLA			
Rutos .	will leave the Accumulator set to UA3H (10100011B).			
Dytes : Cycles :	1			
Cycles :				
Encoding :				
Operation :	CPL (A) (\overline{A})			
	$(A) \leftarrow (A)$			

TEMIC

Semiconductors

CPL bit

Function :	Complement bit	
Description :	The bit variable specified is complemented. A bit which had been a one is changed to zero and vice-versa. No other flags are affected. CLR can operate on the carry or any directly addressable bit. <i>Note</i> : When this instruction is used to modify an output pin, the value used as the original data will be read from the output data latch, not the input pin.	
Example :	Port 1 has previously been written with 5BH (01011101B). The instruction sequence.	
	CPL P1.1	
	CPL P1.2	
	will leave the port set to 5BH (01011011B).	
CPL C		
Bytes :	1	
Cycles :	1	
Encoding :		
Operation :	CPL	
	$(C) \leftarrow \overline{(C)}$	
CPL bit		
Bytes :	2	
Cycles :	1	
Encoding :	1 0 1 1 0 0 1 0 bit address	
Operation :	$\begin{array}{c} \text{CPL} \\ \text{(bit)} \leftarrow \overline{\text{(bit)}} \end{array}$	

DA A

Function : Decimal-adjust Accumulator for Addition **Description :** DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in packed-BCD format), producing two four-bit digits, Any ADD or ADDC instruction may have been used to perform the addition. If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This internal addition would set the carry flag if a carry-out of the low-order four-bit field propagated through all high-order bits, but it would not clear the carry flag otherwise. If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx -111xxxx), these high-order bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but wouldn't clear the carry. The carry flag thus indicates if the sum of the original two BCD variables is greater than 100, allowing multiple precision decimal. OV is not affected. All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the Accumulator, depending on initial Accumulator and PSW conditions. Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DA A apply to decimal substraction. Example : The Accumulator holds the value 56H (01010110B) representing the packed BCD digits of the decimal number 56. Register 3 contains the value 67H (01100111B) representing the packed BCD digits of the decimal number 67. The carry flag is set. The instruction sequence. ADDCA, R3 DA will first perform a standard twos-complement binary addition, resulting in the value OBEH (10111110), in the Accumulator. The carry and auxillary carry flags will be cleared. The decimal Adjust instruction will then after the Accumulator to the value 24H (00100100B) indicating the packed BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56,67, and the carry-in. The carry flag will set by the Decimal Adjust instruction, indicating that a decimal overflow occured. The true sum 56,67, and 1 is 124. BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator initially holds 30H (representing the digits of 30 decimal), then the instruction sequence, ADD A, #99H DA А will leave the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order byte of the sum can be interpreted to mean 30 - 1 = 29. Bytes : 1 Cycles : 1 1 1 0 0 Encoding : 1 1 0 0 **Operation**: DA - contents of Accumulator are BCD IF $[[(A_{3-0}) > 9] V [(AC) = 1]]$

 $\begin{array}{c} \text{THEN } (A_{3-0}) \leftarrow (A_{3-0}) + 6\\ \text{AND}\\ \text{IF } [[(A_{7-4}) > 9] \ V \ [(C) = 1]]\\ \text{THEN } (A_{7-4}) \leftarrow (A_{7-4}) + 6 \end{array}$

C51 Family

DEC byte

Function : Description : Example :	Decrement The variable indicated is decremented by 1. An original value of 00H will underflow to 0FFH. No flags are affected. Four operand addressing modes are allowed : accumulator, register, direct, or register-indirect. <i>Note</i> : When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, <i>not</i> the input pins. Register 0 contains 7FH (01111111B). Internal RAM locations 7 EH and 7FH contain 00H and 40H, respectively. The instruction sequence. DEC @ R0 DEC @ R0 will leave register 0 set to 7EH internal RAM locations 7EH and 7FH to 0FFH and 3FH.
DEC A	
Bytes :	1
Cycles :	1
Encoding :	
Operation :	DEC $(A) \leftarrow (A) - 1$
DEC Rn	
Bytes :	1
Cycles :	1
Encoding :	0 0 0 1 1 r r r
Operation :	DEC $(Rn) \leftarrow (Rn) - 1$
DEC direct	
Bytes :	2
Cycles :	1
Encoding :	0 0 0 1 0 1 0 1 direct address
Operation :	$\begin{array}{l} \text{DEC} \\ (\text{direct}) \leftarrow (\text{direct}) - 1 \end{array}$
DEC @ RI	
Bytes :	1
Cycles :	1
Encoding :	
Operation :	DEC $((Ri)) \leftarrow ((Ri)) - 1$

DIV AB

Function :	Divide	
Description :	DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B. The Accumulator receives the integer part of the quotient ; register B receives the integer remainder. The carry and OV flags will be cleared. <i>Exception</i> : If B had originally contained 00H ; the values returned in the Accumulator and B-register will be undefined and the overflow flag will be set. The carry flag is cleared in any case.	
Example :	The Accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 00010010B). The instruction,	
	DIV AB	
	will leave 13 in the Accumulator (0DH or 00001101B) and the value 17 (11H or 00010001B) in B, since $251 = (13 \times 18) + 17$. Carry and OV will both be cleared.	
Bytes :	1	
Cycles :	4	
Encoding :		
Operation :	DIV	
-		

DJNZ <byte>, <rel-addr>

Function :	Decrement and Jump if Not Zero
Description :	DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if the resulting value is not zero. An original value of 00H will underflow to 0FFH. No flags are affected. The branch destination would be computed by adding the signed relative-displacement value in the last instruction byte to the PC, after incrementing the PC to the first byte of the following instruction.
	The location decremented may be a register or directly addressed byte.
	<i>Note</i> : When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, <i>not</i> the input pins.
Example :	Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. the instruction sequence,
	DJNZ 40H, LABEL_1
	DJNZ 50H, LABEL_2
	DJNZ 60H, LABEL_3
	will cause a jump to the instruction at label LABEL2 with the values 00H, 6FH, and 15H in the three RAM locations. The first jump was <i>not</i> taken because the result was zero.
	This instruction provides a simple way of executing a program loop a given number of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction. The instruction sequence,
	TOGGLE : MOV R2, #8 CPL P1.7 DJNZ R2, TOGGLE
	will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse will last three machine cycles ; two for DJNZ and one to after the pin.

DJNZ Rn, rel

- /	
Bytes :	2
Cycles :	2
Encoding :	1 1 0 1 r r r rel. address
Operation :	DJNZ
•	$(PC) \leftarrow (PC) + 2$
	$(Rn) \leftarrow (Rn) - 1$
	$ \mathbf{F}(\mathbf{RN}) \ge 0$ or $(\mathbf{Rn}) < 0$
	THEN
	$(PC) \leftarrow (PC) + re]$
· · · · · · · · · · · · · · · · · · ·	
DJNZ direct, r	el
Bytes :	3
Cycles :	2
Encoding :	1 1 0 1 0 1 direct address rel. address
Operation :	DINZ
Princip	$(PC) \leftarrow (PC) + 2$
	$(direct) \leftarrow (direct) - 1$
	(direct) > 0 or (direct) < 0
	THEN
	$(PC) \leftarrow (PC) + rel$

INC <byte>

Function :	Increment		
Description :	: INC increments the indicated variable by 1. An original value of 0FFH will overflow to 00H. No flag are affected. There addressing modes are allowed : register, direct, or register-indirect. <i>Note</i> : When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, <i>not</i> the input pins.		
Example :	Register 0 contains 7EH (011111110B). Internal locations 7EH and 7FH contain 0FFH and 40H, respectively. The instruction sequence,		
	INC @R0		
	INC R0		
	INC @R0		
	will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding (respectively) 00H and 41H.		
INC A			
Bytes :	1		
Cycles :	1		
Encoding :	0 0 0 0 1 0 0		
Operation :	INC		
	$(A) \leftarrow (A) + 1$		
INC Rn			
Bytes :	1		
Cycles :	1		
Encoding :	0 0 0 0 1 r r r		
Operation :	INC $(Rn) \leftarrow (Rn) + 1$		

INC direct		
Bytes :	2	
Cycles :	1	
Encoding :	0 0 0 0 0 1 0 1 direct address	
Operation :	$INC (direct) \leftarrow (direct) + 1$	
INC @ RI		
Bytes :	1	
Cycles :	1	
Encoding :	0 0 0 0 0 1 1 i	
Operation :	$\frac{\text{INC}}{((\text{Ri}))} \leftarrow ((\text{Ri})) + 1$	

INC DPTR

Function :	Increment Data Pointer
Description :	Increment the 16-bit data pointer by 1.A 16-bit increment (modulo 2 ¹⁶) is performed ; an overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H will increment the high-order byte (DPH). No flags are affected.
	This is the only 16-bit register which can be incremented.
Example :	Registers DPH and DPL contain 12H and 0FEH, respectively. The instruction sequence,
	INC DPTR
	INC DPTR
	INC DPTR
	will change DPH and DPL to 13H and 01H.
Bytes :	1
Cycles :	2
Encoding :	
Operation :	INC $(DPTR) \leftarrow (DPTR) + 1$

JB bit, rel

Function :	Jump if Bit set
Descritpion :	If the indicated bit is a one, jump to the address indicated ; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. <i>The bit tested is not modified</i> . No flags are affected.
	<i>Note</i> : When this instruction is used to test an output pin, the value used as the original data will be read from the output data latch, <i>not</i> the input pin.
Example :	The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The instruction sequence. JB P1.2, LABEL 1 JB ACC.2, LABEL 2 will cause program execution to branch to the instruction at label LABEL 2.
	will cause program execution to branch to the instruction at laber EXBER 2.

TEM Semicondud	IC		C51 Family
Bytes :	3		
Cycles :	2		
Encoding :	0 0 1 0 0 0 0 0	bit address	rel. address
Operation :	JB $(PC) \leftarrow (PC) + 3$ IF (bit) = 1 THEN $(PC) \leftarrow (PC) + rel$		
IBC hit_rel			
Function :	Jump if Bit is set and Clear bit		
Description :	If the indicated bit is a one, bran- instruction. <i>The bit will not be clear</i> adding the signed relative-displacen PC to the first byte of the next instru- Nate: When this instruction is used	ch to the address indicated red if it is already a zero. The nent in the third instruction b uction. No flags are affected.	; otherwise proceed with the next e branch destination is computed by yte to the PC, after incrementing the
	read from the output data latch, <i>not</i>	the input pin.	nue used as the original data will be
Example :	The Accumulator holds 56H (01010	0110B). The instruction sequ	ence,
	JBC ACC.3, LABEL 1 JBC ACC.2, LABEL 2		
	will cause program execution to cor Accumulator modified to 52H (010	ntinue at the instruction ident (10010B).	ified by the label LABEL2, with the
Bytes : Cycles :	3 2		
Encoding :	0 0 0 1 0 0 0 0	bit address	rel. address
Operation :	JBC (PC) \leftarrow (PC) + 3 IF (bit) = 1 THEN		
	$\begin{array}{l} (\text{bit}) \leftarrow 0 \\ (\text{PC}) \leftarrow (\text{PC}) + \text{rel} \end{array}$		
JC rel			
Function :	Jump if Carry is set		
Description :	If the carry flag is set, branch to the The branch destination is comput instruction byte to the PC, after incr	e address indicated ; otherwis ted by adding the signed re rementing the PC twice. No f	se proceed with the next instruction. elative-displacement in the second lags are affected.
Example :	The carry flag is cleared. The instru	iction sequence,	
	JC LABEL 1 CPL C JC LABEL 2		
	will set the carry and cause program LABEL2.	m execution to continue at th	e instruction identified by the label
Bytes : Cycles :	2 2		
Encoding :	0 1 0 0 0 0 0 0	rel. address	
Operation :	JC $(PC) \leftarrow (PC) + 2$ IF $(C) = 1$		
	THEN $(PC) \leftarrow (PC) + rel$		

1

JMP @A + DPTR

Function : Description :	Jump indirect Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and load the resulting sum to the program counter. This will be the address for subsequent instruction fetches. Sixteen-bit addition is performed (modulo 2^{16}): a carry-out from the low-order eight bits propagates through the higher-order bits. Neither the Accumulator nor the Data Pointer is altered. No flags are		
Example :	Affected. An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will branch to one of four AJMP instructions in a jump table starting at JMP-TBL :		
	MOV DPTR, #JMP_TBL JMP @ A + DPTR JMP_TBL: AJMP LABEL0 AJMP LABEL1 AJMP LABEL2 AJMP LABEL3		
	If the Accumulator equals 04H when starting this sequence, execution will jump to label LABEL2. Remembers that AJMP is a two-byte instruction, so the jump instructions start at every other address.		
Bytes :	1		
Cycles :	2		
Encoding :	0 1 1 1 0 0 1 1		
Operation :	$\begin{array}{l} \text{JMP} \\ (\text{PC}) \leftarrow (\text{A}) + (\text{DPTR}) \end{array}$		
JNB bit, rel			

Function :	Jump if Bit not set	
Description :	If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. <i>The bit tested is not modified</i> . No flags are affected.	
Example :	The data present at input port 1 is 11001010B. The Accum instruction sequence,	ulator holds 56H (01010110B). The
	JNB P1.3, LABEL1 JNB ACC3, LABEL2	
	will cause program execution to continue at the instruction at l	abel LABEL2.
Bytes :	3	
Cycles :	2	
Encoding :	0 0 1 1 0 0 0 0 bit address	rel. address
Operation :	JNB (PC) \leftarrow (PC) + 3 IF (bit) = 0 THEN (PC) \leftarrow (PC) + rel	

JNC rel

Function :	Jump if Carry not set	
Description :	If the carry flag is a zero, branch to the address indicated ; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.	
Example :	The carry flag is set. The instruction sequence,	
	JNC LABEL1 CPLC	
	JNC LABEL2	
	LABEL2.	
Bytes :	2	
Cycles :	2	
Encoding :	0 1 0 1 0 0 0 0 rel. address	
Operation :	JNC (PC) \leftarrow (PC) + 2 IF (C) = 0 THEN (PC) \leftarrow (PC) + rel	

JNZ rel

Function :	Jump if Accumulator Not Zero	
Description :	If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are affected.	
Example :	The Accumulator originally holds 00H. The instruction sequence,	
	JNZ LABEL1 INC A JNZ LABEL2 will set the Accumulator to 01H and continue at label LABEL2	
Bytes :	2	
Cycles :	2	
Encoding :	0 1 1 1 0 0 0 0 rel. address	
Operation :	JNZ (PC) \leftarrow (PC) + 2 IF (A) $\neq 0$ THEN (PC) \leftarrow (PC) + rel	

JZ rel

Function :	Jump if Accumulator Zero	
Description :	If all bits of the Accumulator are zero, branch to the address indicated ; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are affected.	
Example :	The Accumulator originally contains 01H. The instruction sequence.	
	JZ LABEL1 DEC A JZ LABEL2 will change the Accumulator to 00H and cause program execution at the instruction identified by the	
Durtos .	adel LADEL2.	
bytes :	2	
Cycles :	2	
Encoding :	0 1 1 0 0 0 0 0 rel. address	
Operation :	JZ	
•	$(PC) \leftarrow (PC) + 2$ IF (A) = 0 THEN (PC) $\leftarrow (PC) + rel$	

LCALL addr16

Function :	Long call	
Description :	LCALL calls a subroutine located at the indicated address. The instruction adds three to the program counter to generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the instruction at this address. The subroutine may therefore begin anywhere in the full 64K-byte program memory address space. No flags are affected.	
Example :	Initially the Stack Pointer equals 07H. The label "SUBRTN" is assigned to program memory location 1234H. After executing the instruction,	
	LCALL SUBRTN	
	at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H will contain 26H and 01H, and the PC will contain 1235H.	
Bytes :	3	
Cycles :	2	
Encoding :	0 0 0 1 0 0 1 0 addr15-addr8 addr7-addr0	
Operation :	$\begin{array}{l} \text{LCALL} \\ (\text{PC}) \leftarrow (\text{PC}) + 3 \\ (\text{SP}) \leftarrow (\text{SP}) + 1 \\ ((\text{SP})) \leftarrow (\text{PC}_{7-0}) \\ (\text{SP}) \leftarrow (\text{SP}) + 1 \\ ((\text{SP})) \leftarrow (\text{SP}_{15-8}) \\ (\text{PC}) \leftarrow \text{addr}_{15-0} \end{array}$	

LJMP addr16

Function :	Long Jump	
Description :	LJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order bytes of the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in the full 64K program memory address space. No flags are affected.	
Example :	The label "JMPADR" is assigned to the instruction at program memory location 1234H. The instruction, LJMP JMPADR at location 0123H will load the program counter with 1234H.	
Bytes :	3	
Cycles :	2	
Encoding :	0 0 0 0 0 0 1 0 addr15-addr8 addr7-addr0	
Operation :	$LJMP (PC) \leftarrow addr_{15-0}$	

MOV <dest-byte>, <src-byte>

Function :	Move byte variable	
Description :	The byte variable indicated the second operand is copied into the location specified by the first operand. The source byte is not affected. No other register or flag is affected.	
	This is by far the most flexible operation. Fifteen combinaisons of source and destination addressing modes are allowed.	
Example :	Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input port 1 is 11001010B (0CAH).	
	MOV R0, #30H ; R0 <= 30h	
	$\begin{array}{ccc} MOV & A, @ R0 & ; A \le 40H \\ MOV & B1 & A & B1 < 40H \end{array}$	
	$MOV R_1, A \qquad ; R_1 <= 401$ $MOV R_2 @ R_1 \qquad : B <= 10h$	
	MOV $@$ R1, P1 ; RAM (40H) <= OCAH	
	MOV P2, P1 ; P2 # 0CAH	
	leaves the value 30H in register 0,40H in both the Accumulator and register 1,10H in register B, and 0CAH (11001010B) both in RAM location 40H and output on port 2.	
MOV A, Rn		
Bytes :	1	
Cycles :	1	
Encoding :	1 1 1 0 1 r r r	
Operation :	$\begin{array}{l} \text{MOV} \\ \text{(A)} \leftarrow (\text{Rn}) \end{array}$	
*MOV A, direct		
Bytes :	2	
Cycles :	1	
Encoding :	1 1 0 0 1 0 1 direct address	
Operation :	$\begin{array}{l} \text{MOV} \\ \text{(A)} \leftarrow \text{(direct)} \end{array}$	
*MOV A, ACC	is not valid instruction.	

ТЕМ	IC
Semicondu	ctors

MOV A,@ RI	
Bytes :	1
Cycles :	1
Encoding :	1 1 1 0 0 1 1 i
Operation :	$\begin{array}{l} \text{MOV} \\ \text{(A)} \leftarrow \text{(Ri)} \end{array}$
MOV A, # data	
Bytes :	2
Cycles :	1
Encoding :	0 1 1 1 0 1 0 0 immediate data
Operation :	$\begin{array}{c} \text{MOV} \\ \text{(A)} \leftarrow \text{\# data} \end{array}$
MOV Rn, A	
Bytes :	1
Cycles :	1
Encoding :	1 1 1 1 1 r r r
Operation :	$\begin{array}{l} \text{MOV} \\ (\text{Rn}) \leftarrow (\text{A}) \end{array}$
MOV Rn, direct	t
Bytes :	2
Cycles :	2
Encoding :	1 0 1 0 1 r r r direct addr.
Operation :	ΜΟΥ
	$(Rn) \leftarrow (direct)$
MOV Rn, # data	$(Rn) \leftarrow (direct)$ a
MOV Rn, # dat Bytes :	$(Rn) \leftarrow (direct)$ a 2
MOV Rn, # data Bytes : Cycles :	$(Rn) \leftarrow (direct)$ a 2 1
MOV Rn, # data Bytes : Cycles : Encoding :	$(Rn) \leftarrow (direct)$ a 2 1 $0 1 1 1 r r r$ immediate data
MOV Rn, # data Bytes : Cycles : Encoding : Operation :	$(Rn) \leftarrow (direct)$ a 2 1 0 1 1 1 1 r r r immediate data MOV $(Rn) \leftarrow \# data$
MOV Rn, # data Bytes : Cycles : Encoding : Operation : MOV direct, A	$(Rn) \leftarrow (direct)$ a 2 1 $0 1 1 1 r r r$ MOV $(Rn) \leftarrow \# data$
MOV Rn, # data Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes :	$(Rn) \leftarrow (direct)$ a 2 1 $0 1 1 1 r r r$ immediate data MOV $(Rn) \leftarrow \# data$ 2
MOV Rn, # dat Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes : Cycles :	$(Rn) \leftarrow (direct)$ a 2 1 $\boxed{0 \ 1 \ 1 \ 1} \ 1 \ r \ r \ r}$ MOV $(Rn) \leftarrow \# data$ 2 1
MOV Rn, # data Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes : Cycles : Encoding :	$(Rn) \leftarrow (direct)$ a 2 1 $0 1 1 1 r r r$ immediate data MOV $(Rn) \leftarrow \# data$ 2 1 $1 1 1 0 1 0 1$ direct address
MOV Rn, # dat Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes : Cycles : Encoding : Operation :	$(Rn) \leftarrow (direct)$ a 2 1 0 1 1 1 r r r MOV $(Rn) \leftarrow \# data$ 2 1 1 1 1 0 1 0 1 direct address MOV $(direct) \leftarrow (A)$
MOV Rn, # data Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes : Cycles : Encoding : Operation : MOV direct, Rr	$\begin{array}{c} \text{(Rn)} \leftarrow (\text{direct}) \\ \textbf{a} \\ 2 \\ 1 \\ \hline 0 & 1 & 1 & 1 & r & r & r \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline \text{MOV} \\ \text{(Rn)} \leftarrow \# \text{ data} \\ 2 \\ 1 \\ \hline 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline \text{MOV} \\ \text{(direct)} \leftarrow (A) \\ \textbf{h} \end{array}$
MOV Rn, # dat Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes : Cycles : Encoding : Operation : MOV direct, Rr Bytes :	$\begin{array}{c} \text{(Rn)} \leftarrow (\text{direct}) \\ \textbf{a} \\ 2 \\ 1 \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline MOV \\ (\text{(Rn)} \leftarrow \# \text{ data} \\ 2 \\ 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline MOV \\ (\text{direct}) \leftarrow (\text{A}) \\ \textbf{a} \\ 2 \end{array}$
MOV Rn, # dat Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes : Cycles : Encoding : Operation : MOV direct, Rn Bytes : Cycles :	$(Rn) \leftarrow (direct)$ a 2 1 $0 1 1 1 r r r immediate data$ MOV $(Rn) \leftarrow \# data$ 2 1 $1 1 1 0 1 0 1$ $direct address$ MOV $(direct) \leftarrow (A)$ b 2 2 2
MOV Rn, # data Bytes : Cycles : Encoding : Operation : MOV direct, A Bytes : Cycles : Encoding : Operation : MOV direct, Rr Bytes : Cycles : Encoding :	$\begin{array}{c} \text{(Rn)} \leftarrow (\text{direct}) \\ \textbf{a} \\ 2 \\ 1 \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline 0 & 1 & 1 & 1 & 1 & r & r & r \\ \hline MOV \\ (\text{(Rn)} \leftarrow \# \text{ data} \\ 2 \\ 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline MOV \\ (\text{direct}) \leftarrow (\text{A}) \\ \textbf{h} \\ 2 \\ 2 \\ \hline 1 & 0 & 0 & 0 & 1 & r & r & r \\ \hline 1 & 0 & 0 & 0 & 1 & r & r & r \\ \hline \end{array}$

MOV direct, d	irect		
Bytes :	3		
Cycles :	2		
Encoding :	1 0 0 0 0 1 0 1	dir. addr. (src)	dir. addr. (dest)
Operation :	MOV (direct) ← (direct)		
MOV direct, @	Ri		
Bytes :	2		
Cycles :	2		
Encoding :	1 0 0 0 0 1 1 i	direct addr.	
Operation :	$\begin{array}{l} \text{MOV} \\ (\text{direct}) \leftarrow (\text{Ri}) \end{array}$		
MOV direct, #	data		
Bytes :	3		
Cycles :	2		
Encoding :	0 1 1 1 0 1 0 1	direct address	immediate data
Operation :	MOV (direct) ← # data		
MOV @ Ri, A			
Bytes :	1		
Cycles :	1		
Encoding :	1 1 1 1 0 1 1 i		
Operation :	$\begin{array}{l} \text{MOV} \\ ((\text{Ri})) \leftarrow (\text{A}) \end{array}$		
MOV @ Ri, di	rect		
Bytes :	2		
Cycles :	2		
Encoding :	1 0 1 0 0 1 1 i	direct addr.	
Operation :	MOV ((Ri)) ← (direct)		
MOV @ Ri*, d	lata		
Bytes :	2		
Cycles :	1		
Encoding :	0 1 1 1 0 1 1 i	immediate data	
Operation :	MOV ((Ri)) ← # data		

MOV <dest-bit>, <src-bit>

Function :	More bit data	
Description :	The Boolean variable indicated by the second operand is copic first operand. One of the operands must be the carry flag; the o bit. No other register or flag is affected.	ed into the location specified by the ther may be any directly addressable
Example :	uple : The carry flag is originally set. The data present at input Port 3 is 11000101B. The dat written to output Port 1 is 35H (00110101B).	
	MOV P1.3, C MOV C, P3.3 MOV P1.2, C	
	will leave the carry cleared and change Port 1 to 39H (0011100	1B).
MOV C, bit		
Bytes :	2	
Cycles :	1	
Encoding :	1 0 1 0 0 0 1 0 bit address	
Operation :	$\begin{array}{l} \text{MOV} \\ \text{(C)} \leftarrow \text{(bit)} \end{array}$	
MOV bit, C		
Bytes :	2	
Cycles :	2	
Encoding :	1 0 0 1 0 0 1 0 bit address	
Operation :	$\begin{array}{l} \text{MOV} \\ (\text{bit}) \leftarrow (\text{C}) \end{array}$	

MOV DPTR, # data 16

Function :	Load Data Pointer with a 16-bit constant	
Description :	The Data Pointer is loaded with the 16-bit constant indicated. the 16-bit constant is loaded into the second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte (DPL) holds the low-order byte. No flags are affected.	
	This is the only instruction which moves 16-bits of data at once.	
Example :	The instruction,	
	MOV DPTR, 1234H	
	will load the value 1234H into the Data Pointer : DPH will hold 12H and DPL will hold 34H.	
Bytes :	3	
Cycles :	2	
Encoding :	1 0 0 0 0 immed. data 15-8 immed. data 7-0	
Operation :	MOV $(DPTR) \leftarrow \# data_{15-0}$ DPH DPL $\leftarrow \# data_{15-8} \# data_{7-0}$	

MOVC A, @ A + <base-reg>

Function	:	Move	Code	byte
runcuon	•	1410.40	Couc	Uyic

Description : The MOVC instructions load the Accumulator with a code byte, or constant from program memory. The address of the byte fetched is the sum of the original unsigned eight-bit. Accumulator contents and the contents of a sixteen-bit base register, which may be either the Data Pointer or the PC. In the latter case, PC is incremented to the address of the following instruction before being added with the Accumulator ; otherwise the base register is not altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate through higher-order bits. No flags are affected.

Example :

e: A value between 0 and 3 is in the Accumulator. The following instructions will translate the value in the Accumulator to one of four values defined by the DB (define byte) directive.

REL PC :	INC	Α
	MOVC	A, @ A + PC
	RET	
	DB	66H
	CB	77H
	CB	88H
	DB	99H

If the subroutine is called with the Accumulator equal to 01H, it will return with 77H in the Accumulator. The INC A before the MOVC instruction is needed to "get around" the RET instruction above the table. If several bytes of code separated the MOVC from the table, the corresponding number would be added to the Accumulator instead.

MOVC A, @ A + DPTR

Bytes :	1							
Cycles :	2							
Encoding :	1	0	0	1	0	0	1	1
Operation :	$\begin{array}{l} \text{MOVC} \\ \text{(A)} \leftarrow \text{((A)} + \text{(DPTR))} \end{array}$							
MOVC A, @ A + PC								
Bytes :	1							
Cycles :	2							
Encoding :	1	0	0	0	0	0	1	1
Operation :	MC (PC (A)) (C C) ←	- (P(((A)	C)+	- 1 PC))		

MOVX <dest-byte>, <src-byte>

Function :	Move External
Description :	The MOVX instructions transfer data between the Accumulator and a byte of external data memory, hence the "X" appended to MOV. There are two types of instructions, differing in whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM. In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit address multiplexed with data on P0. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins would be controlled by an output instruction preceding the MOVX.
	In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address. P2 outputs the high-order eight address bits (the contents of DPH) while P0 multiplexes the low-order eight bits (DPL) with data. The P2 Special Function Register retains its previous contents while the P2 output buffers are emitting the contents of DPH. This form is faster and more efficient when accessing very large data arrays (up to 64K bytes), since no additional instructions are needed to set up the output ports. It is possible in some situation to mix the two MOVX types. A large RAM array with its high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to P2 followed by a MOVX instruction using R0 or R1.
Example :	An external 256 byte RAM using multiplexed address/data lines is connected to the 80C51 Port 0. Port 3 provides control lines for the external RAM. Ports 0 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H. Location 34H of the external RAM holds the value 56H. The instruction sequence MOVX A, @ R1 MOVX @ R0, A copies the value 56H into both the Accumulator and external RAM location 12H
MOVX A, @ Ri	
Bytes :	1
Cycles :	2
Encoding :	
Operation :	MOVX
	$(A) \leftarrow ((Ri))$
MOVX @ Ri, A	
Bytes : Cycles :	1
Encoding :	
Operation :	$\begin{array}{c} MOVX \\ ((\mathbf{R}\mathbf{i})) \leftarrow (\mathbf{A}) \end{array}$
MOVX A. @ DI	
Bytes :	1
Cycles :	2
Encoding :	
Operation :	MOVX
	$(A) \leftarrow ((DPTR))$
MOVX @ DPT	R, A
Bytes :	1
Cycles :	2
Encoding :	
Operation :	\overline{MOVX} (DPTR) \leftarrow (A)

1

MUL AB

Function :	Multiply			
Description :	MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte in B. If the product is greater than 255 (OFFH) the overflow flag is set; otherwise it is cleared. The carry flag is always cleared.			
Example :	Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (OAOH). The instruction,			
	MUL AB			
	will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumulator is cleared. The overflow flag is set, carry is cleared.			
Bytes :	1			
Cycles :	4			
Encoding :	1 0 1 0 0 1 0 0			
Operation :	$\begin{array}{l} \text{MUL} \\ \text{(A)}_{7-0} \leftarrow \text{(A)} \times \text{(B)} \\ \text{(B)}_{15-8} \end{array}$			

NOP

Function :	No Operation		
Description :	Execution continue at the following instruction. Other than the PC, no registers or flags are effected.		
Example :	It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are enable) with the instruction sequence.		
	CLR P2.7 NOP NOP NOP SETP P2.7		
Bytes :	1		
Cycles :	1		
Encoding :	0 0 0 0 0 0 0 0		
Operation :	$\begin{array}{l} \text{NOP} \\ (\text{PC}) \leftarrow (\text{PC}) + 1 \end{array}$		

ORL <dest-byte> <src-byte>

Function :	Logical-OR for byte variables				
Description :	ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the destination byte, No flags are affected. The two operands allow six addressing mode combinaisons. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing ; when the destination is a direct address, the source can be the Accumulator or immediate data. <i>Note</i> : When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.				
Example :	If the Accumulator holds 0C3H (11000011B) and R0 holds 55H (01010101B) then the instruction, ORL A, R0 will leave the Accumulator holding the value 0D7H (11010111B). When the destination is a directly addressed byte, the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set is determined by a mask byte, which may be either a constant data value in the instruction or a variable computed in the Accumulator at run-time. The instruction., ORL P1, # 00110010b will set bits 5.4 and 1 of output Port 1				
ORL A, Rn					
Bytes : Cycles :	1				
Encoding :	0 1 0 0 1 r r r				
Operation	ORL				
-	$(A) \leftarrow (A) V (Rn)$				
ORL A, direct					
Bytes : Cycles :	2 1				
Encoding :	0 1 0 0 0 1 0 1 direct address				
Operation :	$\begin{array}{c} ORL \\ (A) \leftarrow (A) V (direct) \end{array}$				
ORL A, @ Ri					
Bytes : Cycles :	1 1				
Encoding :	0 1 0 0 0 1 1 i				
Operation :	ORL				
-	$(A) \leftarrow (A) V ((Ri))$				
ORL A, # data					
Bytes :	2				
Cycles :	1				
Encoding :	0 1 0 0 0 1 0 0 immediate data				
Operation :	ORL				
	$(A) \leftarrow (A) V \# data$				
ORL direct, A					
Bytes :	2				
Cycles :	1				
Encoding :	0 1 0 0 0 0 1 0 direct address				
Operation :	ORL				
-	$(direct) \leftarrow (direct) V (A)$				

TEMIC
Semiconductors

C51	F	'am	il	y
------------	---	-----	----	---

1

ORL direct, #	data
Bytes :	3
Cycles :	2
Encoding :	0 1 0 0 0 0 1 1 direct address immediate data
Operation :	ORL (direct) ← (direct) V # data
ORL C, <sr< th=""><th>c-bit></th></sr<>	c-bit>
Function :	Logical-OR for bit variable
Description :	Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise. A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as the source value, but the source bit it self is not affected. No other flags are affected.
Example :	Set the carry flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0 :MOVC, P1.0; LOAD CARRY WITH INPUT PIN P10ORLC, ACC.7; OR CARRY WITH THE ACC. BIT7ORLC,/OV; OR CARRY WITH THE INVERSE OF OV
ORL C, bit	
Bytes :	2
Cycles :	2
Encoding :	0 1 1 1 0 0 1 0 bit address
Operation :	ORL
ORL C, /bit	$(c) \leftarrow (c) \lor (bit)$
Bytes :	2
Cycles :	2
Encoding :	1 0 1 0 0 0 0 0 bit address
Operation :	$\begin{array}{l} \text{ORL} \\ \text{(C)} \leftarrow \text{(C)} \ \text{V} \ \overline{\text{(bit)}} \end{array}$
POP direct	
Function :	Pop from stack.
Description :	The contents of internal RAM location addressed by the Stack Pointer is read, and the Stack Pointer is decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are affected.
Example :	The Stack Pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence, POP DPH POP DPH
	will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this point the instruction, POP SP will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was
	decremented to 2FH before being loaded with the value popped (20H)
Bytes :	2
Cycles :	2
Encoding :	1 1 0 0 0 0 direct address
Operation :	POP (direct) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1

PUSH direct

Function :	push onto stack.		
Description :	The Stack Pointer is incremented by one. The contents fo the indicated variable is then copied into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are affected.		
Example :	On entering interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the value 0123H. The instruction sequence,		
	PUSH DPL PUSH DPH		
	will leave the Stack Pointer set to 0BH and store 23H and 01H in internal RAM location 0AH and 0BH, respectively.		
Bytes :	2		
Cycles :	2		
Encoding :	1 1 0 0 0 0 0 direct address		
Operation :	PUSH $(SP) \leftarrow (SP) + 1$ $((SP)) \leftarrow (direct)$		
RET			
Function :	Return from subroutine		
Description :	RET pops the high-and low-order bytes of the PC successively from the stack, decrementing the Stack Pointer by two. Program execution continues at the resulting address, generally the instruction immediately following en ACALL or LCALL. No flags are affected.		
Example :	The Stack Pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH contain the values 23H, and 01H, respectively. The instruction, RET will leave the Stack Pointer equal to the value 09H. Program execution will continue at location		
Dertos 4	0123H.		
Dytes :			
Cycles.			
Encoding :	0 0 1 0 0 0 1 0		
Operation :	RET		
	$(PC_{15-8}) \leftarrow ((SP))$		
	$(SP) \leftarrow (SP) - 1$ $(PC7-0) \leftarrow ((SP))$		
	$(SP) \leftarrow (SP) - 1$		
RETI			
Function :	Return from interrupt		
Description :	RE11 pops the high-and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accent additional interrupts at the same priority level as the one just processed. The		
	Stack Pointer is left decremented by two. No other registers are affected; the PSW is not		
	automatically restored to its pre-interrupt status. Program execution continues at the resulting		
	address, which is generally the instruction immediately after the point at which the interrupt request		
	executed, that one instruction will be executed before the pending interrupt is processed.		
Example :	The Stack Pointer originally contains the value 0BH. An interrupt was detected during the instruction		
	ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H,		

respectively. The instruction, RETI

will leave the Stack Pointer equal to 09H and return program execution to location 0123H.

Bytes	:	1
Cycles	:	2

Encoding : **Operation :**

			_	_	1		_	_	 ~	_	_	
٥)	۱.	<i>(</i>	_ ,	((S	P)))				
رد (Ś	P	٥.	_	1	•	<i>,</i> ,					
, (3 4	r)	- (s	I TS							

RL A

Function :	Rotate Accumulator Left
Description :	The eight bits in the Accumulator are rotated one bit to the left. Bit 7 rotated into the bit 0 position. No flags are affected.
Example :	The Accumulator holds the value 0C5H (11000101B). The instruction, RL A leaves the Accumulator holding the value 8BH (100001011B) with the carry unaffected.
Bytes :	1
Cycles :	1
Encoding :	0 0 1 0 0 0 1 1
Operation :	$\begin{array}{l} \text{RL} \\ (\text{An}+1) \leftarrow (\text{An}) \text{ n} = 0 - 6 \\ (\text{A0}) \leftarrow (\text{A7}) \end{array}$

RLC A

Function :	Rotate Accumulator Left through the Carry flag
Description :	The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the carry flag ; the original state of the carry flag moves into the bit 0 position. No other flags are affected.
Example :	The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction, RCL A leaves the Accumulator holding the value 8BH (10001010B) with the carry set.
Bytes :	1
Cycles :	1
Encoding :	0 0 1 1 0 0 1 1
Operation :	RLC
-	$(An + 1) \leftarrow (An) n = 0 - 6$
	$(A0) \leftarrow (C)$
	$(C) \leftarrow (A7)$

RR A

Function .	Potate Accumulator Dight
Description :	The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position.
	No flags are affected.
Example :	The Accumulator holds the value 0C5H (11000101B). The instruction,
	RR A
	leaves the Accumulator holding the value 0E2H (11100010B) with the carry unaffected.
Bytes :	1
Cycles :	1
Encoding :	0 0 0 0 1 1
Operation :	RR
	$(An) \leftarrow (An+1) n = 0 - 6$ $(A7) \leftarrow (A0)$

RRC A

Function :	Rotate Accumulator Right through Carry flag	
Description :	The eight bits in the Accumulator and the carry flag are together rotated one bit to the right moves into the carry flag; the original value of the carry flag moves into the bit 7 position. No flags are affected.	Bit 0 o other
Example :	The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction,	
	RRC A	
	leaves the Accumulator holding the value 62 (01100010B) with the carry set.	
Bytes :	1	
Cycles :	1	
Encoding :		
Operation :	RRC	
	$(An) \leftarrow (A_n + 1)n = 0 - 6$	
	$(A7) \leftarrow (C)$	
	$(C) \leftarrow (A0)$	

SETB <bit>

Function :	Set bit
Description :	SETB sets the indicated bit to one. SETB can operate on the carry flag or any direct addressable bit. No other flags are affected.
Example :	The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The instructions,
	SETB C SETB P1.0
	will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B).

SETB C

Bytes :	1
Cycles :	1
Encoding :	
Operation :	$\begin{array}{l} \text{SETB} \\ \text{(C)} \leftarrow 1 \end{array}$
SETB bit	
Bytes :	2
Cycles :	1
Encoding :	1 1 0 0 1 0 bit address
Operation :	$\begin{array}{l} \text{SETB} \\ (\text{bit}) \leftarrow 1 \end{array}$

SJMP rel

Function :	Short Jump
Description :	Program control branches unconditionally to the address indicated. The branch destination is computed by adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes preceding this instruction to 127 bytes following it.
Example :	The label "RELADR" is assigned to an instruction at program memory location 0123H. The instruction,
	SJMP RELADR
	will assemble into location 0100H. After the instruction is executed, the PC will contain the value 0123H.
	(<i>Note</i> : Under the above conditions the instruction following SJMP will be at 102H. therefore, the displacement byte of the instruction will be the relative offset ($0123H - 0102H$) = 21H. Put another way, an SJMP with a displacement of 0FEH would be an one-instruction infinite loop).
Bytes :	2
Cycles :	2
Encoding :	1 0 0 0 0 0 0 0 rel. address
Operation :	SJMP $(PC) \leftarrow (PC) + 2$ $(PC) \leftarrow (PC) + rel$

SETB <bit>

Function :	Subtract with borrow
Description :	SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a multiple precision substraction so the carry is subtracted from the Accumulator along with the source operand). AC is set if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but not into bit 7, or into bit 7, but not bit 6. When
	subtracting signed integers OV indicates a negative number produced when a negative value is subtracted from a positive value, or a positive result when a positive number is subtracted from a negative number. The source operand allows four addressing modes : register, direct, register-indirect, or immediate.
Example :	The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set, the instruction,
	SUBB A, R2
	will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV
	Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the carry (borrow) flag being set before the operation. If the state of the carry is not known before starting a single or multiple-precision substraction, it should not be explicitly cleared by a CLRC instruction.
SUBB A, Rn	
Bytes :	1
Cycles :	1
Encoding :	1 0 0 1 1 r r r
Operation :	SUBB (A) \leftarrow (A) – (C) – (Rn)
SUBB A, direct	
Bytes :	2
Cycles :	1
Encoding :	1 0 0 1 0 1 0 1 direct address
Operation :	$\begin{array}{l} \text{SUBB} \\ \text{(A)} \leftarrow \text{(A)} - \text{(C)} - \text{(direct)} \end{array}$
SUBB A, @ Ri	
Bytes :	1
Cycles :	1
Encoding :	1. 0 0 1 0 1 1 i
Operation :	SUBB (A) \leftarrow (A) – (C) – (Ri)
SUBB A, # data	
Bytes :	2
Cycles :	1
Encoding :	1 0 0 1 0 1 0 0 immediate data
Operation :	SUBB (A) \leftarrow (A) – (C) – # data

1

SWAP A

Function :	Swap nibbles within the Accumulator
Description :	SWAP A interchanges the low-and high-order nibbles (four-bit fields) of the Accumulator (bits 3 - 0 and bits 7 - 4). The operation can also be thought of a four-bit rotate instruction. No flag are affected.
Example :	The Accumulator holds the value 0C5H (11000101B). The instruction,
	SWAP A
	leave the Accumulator holding the value 5CH (01011100B).
Bytes :	1
Cycles :	1
Encoding :	1 1 0 0 0 1 0 0
Operation :	SWAP
	$(A_{3-0}) \rightleftharpoons (A_{7-4})$

XCH A, <byte>

Function :	Exchange Accumulator with byte variable
Description :	XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or register-indirect addressing.
Example :	R0 contains the addres 20H. The Accumulator holds the value 3FH (00111111B). Internal RAM location 20H holds the value 75H (01110101B). The instruction, XCH A, @R0 will leave RAM location 20H holding the values 3FH (0011111B) and 75H (01110101B) in the Accumulator.
XCH A, Rn	
Bytes :	1
Cycles :	1
Encoding :	1 1 0 0 1 r r r
Operation :	ХСН
-	$(A) \rightleftharpoons (Rn)$
XCH A, direct	
Bytes :	2
Cycles :	1
Encoding :	1 1 0 0 1 0 1 direct address 1
Operation :	ХСН
-	$(A) \rightleftharpoons (direct)$
XCH A, @Ri Bytes :	1
Cycles :	1
-	

Section II

Product Information

Product Selection	II.1.0
C51 General Purpose Products	II.2.0
C51 Computer/Communication Products	II.7.0
C51 Automotive Products	II.9.0

Product Selection

Product by Application Domain	II.1.1
Products/Peripheral Selection Tables	II.1.2
Military and Space Products	II.1.5

TEMIC Semiconductors

Products by Application Domain

Communication	Automotive
General Purpose C51 Microcontrollers: • TSC80C31 / TSC80C51 • TSC80CL31 / TSC80CL51 • 80C32 / 80C52 • 80C154 / 83C154 • 83C154D Extended 8-bit TSC80251 Microcontrollers: • TSC80251G1 • TSC80251G2 ⁽²⁾	General Purpose C51 Microcontrollers: • TSC80C31 / TSC80C51 • TSC80CL31 / TSC80CL51 • 80C32 / 80C52 • 80C154 / 83C154 • 83C154D Dedicated C51 Microcontrollers: • TSC8051A11 / TSC8751A11 ⁽¹⁾ • TSC8051A30 / TSC8751A30 ⁽¹⁾ • TSC8051A1 / TSC8751A1 ⁽¹⁾ • TSC8051A2 / TSC8751A2 ⁽¹⁾ Extended 8-bit TSC80251 Microcontrollers: • TSC80251A1 • TSC80251A1 ⁽²⁾ • TSC80251A1 ⁽²⁾
Computer	Aerospace & Defense
General Purpose C51 Microcontrollers: • TSC80C31 / TSC80C51 • TSC80CL31 / TSC80CL51 • 80C32 / 80C52 • 80C154 / 83C154 • 83C154D Dedicated Microcontrollers: • TSC8051C1 • TSC8051C2 ⁽¹⁾ Extended 8-bit TSC80251 Microcontrollers: • TSC80251G1 • TSC80251G2 ⁽²⁾	General Purpose C51 Microcontrollers: • TSC80C31 / TSC80C51 • TSC80CL31 / TSC80CL51 • 80C32 / 80C52 • 80C154 / 83C154 • 83C154D
Industrial	Broadcast Media
General Purpose C51 Microcontrollers: • TSC80C31 / TSC80C51 • TSC80CL31 / TSC80CL51 • 80C32 / 80C52 • 80C154 / 83C154 • 83C154D	General Purpose C51Microcontrollers: • TSC80C31 / TSC80C51 • TSC80CL31 / TSC80CL51 • 80C32 / 80C52 • 80C154 / 83C154 • 83C154D
Dedicated C51 Microcontrollers: • TSC8051A11 / TSC8751A11 ⁽¹⁾ • TSC8051A1 / TSC8751A1 ⁽¹⁾	
Extended 8-bit TSC80251 Microcontrollers: • TSC80251G1 • TSC80251G2 ⁽²⁾	

⁽¹⁾ Available during 1997. Please check with your TEMIC sales office.

(2) Planned.

Products/Peripheral Selection Tables

C51 8-bit Microcontrollers Selection Table

Device	Status	ROM (byte)	RAM (byte)	Max Speed (MHz)	1/0	Serial Interfaces	16bit Timers	WD	8bit ADC	Other Features
General Purpo	se Microco	ntrollers	– 5 Volt	L	1	I		1	L	
TSC80C31	now	-	128	44	32	UART	2			SR, ST
TSC80C51	now	4 K	128	44	32	UART	2			SR, ST
TSC87C51	Q3-96	4 K OTP	128	44	32	UART	2			SR, ST
80C32	now	-	256	44	32	UART	3			SR, ST
80C52	now	8 K	256	36	32	UART	3			SR, ST
87C52	Q3–96	8 K OTP	256	36	32	UART	3			SR, ST
80C154	now	-	256	36	32	UART	3	•		SR, ST
83C154	now	16 K	256	36	32	UART	3	•		SR, ST
83C154D	now	32 K	256	36	32	UART	3	•		SR, ST
General Purpo	se – Low V	oltage: 3	Volt, up (to 20 MHz	!					
TSC80C31-L	now	-	128	20	32	UART	2			SR, ST
TSC80C51L	now	4 K	128	20	32	UART	2			SR, ST
80C32–L	now	-	256	16	32	UART	3			SR, ST
80C52L	now	8 K	256	16	32	UART	3			SR, ST
80C154–L	now	-	256	16	32	UART	3 (WD)	•		SR, ST
83C154L	now	16 K	256	16	32	UART	3 (WD)	•		SR, ST
83C154DL	now	32 K	256	16	32	UART	3 (WD)	•		SR, ST
General Purpo	se – Very I	.ow Volta	ge: 1.8 V	olt –NE	W-					
TSC80CL31	now	-	128	4	32	UART	2			SR, ST
TSC80CL51	now	4 K	128	4	32	UART	2			SR, ST
Application Sp	ecific Micr	ocontroll	ers							·
TSC8051C1	now	8 K	256	16	32	UART, I ² C	2	•		12x 8-bit PWM
TSC8751C1	Q2–97	8 K OTP	256	16	32	UART, I ² C	2	•		12x 8bit PWM
TSC8051C2	Q1-97	4 K	256	16	32	UART	2	•		12x 8-bit PWM
TSC8751C2	Q2–97	4 K OTP	256	16	32	UART	2	•		12x 8-bit PWM
TSC8051A11	98	24 K	512	20	48	UART, SPI, µWire	2+CCU	•	•	CAN 2.0B controller

Device	Status	ROM (byte)	RAM (byte)	Max Speed (MHz)	1/0	Serial Interfaces	16bit Timers	WD	8bit ADC	Other Features
Application Sp	ecific Micr	ocontroll	ers (conti	nued)		•••••••••••••••••••••••••••••••••••••••	•			
TSC8751A11	Q3–97	24 K OTP	512	20	48	UART, SPI, µWire	2+CCU	•	•	CAN 2.0B controller
TSC8051A30	98	16 K	256	20	32	UART, SPI, µWire	2+CCU	•	•	VAN controller
TSC8751A30	Q4-97	16 K OTP	256	20	32	UART, SPI, µWire	2+CCU	•	•	VAN controller
TSC8051A1	98	24 K	512	20	48	UART, SPI, µWire	2+CCU	•	•	
TSC8751A1	Q3–97	24 K OTP	512	20	48	UART, SPI, µWire	2+CCU	•	•	
TSC8051A2	98	16 K	256	20	32	UART, SPI, μWire	2+CCU	•	•	
TSC8751A2	Q497	16 K OTP	256	20	32	UART, SPI, μWire	2+CCU	•	•	

Abbreviations

SPI: Serial Peripheral Interface PWM: Pulse Width Modulation I²C: Inter-Integrated Circuit Communication Bus WD: Watchdog Timer ADC: Analog-to-Digital Converter PMU: Pulse Measurement Unit CCU: 8 channels input Capture, output Compare timing Unit VAN: Vehicle Area Network CAN: Controller Area Network SR: Secret ROM

encrypted ROM option to secure the ROM against piracy. ST: Secret Tag

a 64–Bit identifier can be customized in order to serialize each microcontroller with a unique number.

TSC80251 Extended 8-bit Microcontrollers Selection Table

Device	Status	ROM (byte)	RAM (byte)	Max Speed (MHz)	1/0	Serial Interfaces	16-bit Timers	WD	8-bit ADC	Other Features
TSC80251G1	now	-	1 K	16	32	UART, I ² C, SPI, µWire	3	1		EWC
TSC83251G1	now	16 K	1 K	16	32	UART, I ² C, SPI, µWire	3	1		EWC
TSC87251G1	now	16 K OTP	1 K	16	32	UART, I ² C, SPI, µWire	3	1		EWC
TSC80251G2	Planned	-	1 K	16	32	UART, I ² C, SPI, µWire	3	1		EWC
TSC83251G2	Planned	32 K	1 K	16	32	UART, I ² C, SPI, µWire	3	1		EWC
TSC87251G2	Planned	32 K OTP	1 K	16	32	UART, I ² C, SPI, µWire	3	1		EWC
TSC80251A1	now	-	1 K	16	32	UART	2	1	1	PMU, EWC
TSC83251A1	now	24 K	1 K	16	32	UART	2	1	1	PMU, EWC
TSC87251A1	now	24 K OTP	1 K	16	32	UART	2	1	1	PMU, EWC
TSC80251A2	Planned	-	1 K	16	48	UART, I ² C, SPI, µWire	2	1	1	PWM, EWC
TSC83251A2	Planned	32 K	1 K	16	48	UART, I ² C, SPI, µWire	2	1	1	PWM, EWC
TSC87251A2	Planned	32 K OTP	1 K	16	48	UART, I ² CI, SPI, µWire	2	1	1	PWM, EWC
TSC80251A11	Planned	-	4 K	16	48	UART	3+CCU	1	1	PWM, CAN 2.0B controller
TSC83251A11	Planned	64 K	4 K	16	48	UART	3+CCU	1	1	PWM, CAN 2.0B controller
TSC87251A11	Planned	64 K OTP	4 K	16	48	UART	3+CCU	1	1	PWM, CAN 2.0B controller

Abbreviations

SPI: Serial Peripheral Interface

PWM: Pulse Width Modulation

I²C: Inter–Integrated Circuit Communication Bus

WD: Watchdog Timer

ADC: Analog-to-Digital Converter

PMU: Pulse Measurement Unit

CCU: 8 channels input Capture, output Compare timing Unit

EWC: Event and Waveform Controller

VAN: Vehicle Area Network

CAN: Car Area Network

Military and Space Products

The main characteristics of the TEMIC 8-bit microcontrollers available in military and space grades can be found on the product datasheets.

More details on military and space compliant flows are described inn the Quality Flow Section.

Standard Military Drawings (SMD)

The following products are registred by the DESC under SMD numbers.

They are manufactured by TEMIC in military temperature range according to Mil 883 compliant quality flows.

TEMIC Part-Number	SMD Number	Device	Speed	Package
MD80C31-12/883	5962-8506401MQA	80C31	12 MHz	CDIL40 (.6)
MR80C31-12/883	5962-8506401MXC	80C31	12 MHz	LCC44
MD80C51xxx-12/883	5962-8506402MQA	80C51	12 MHz	CDIL40 (.6)
MR80C51xxx-12/883	5962-8506402MXC	80C51	12 MHz	LCC44
MD80C31-16/883	5962-8506403MQA	80C31	16 MHz	CDIL40 (.6)
MD80C31-16/883	5962-8506403MXC	80C31	16 MHz	LCC44
MD80C51xxx-16/883	5962-8506404MQA	80C51	16 MHz	CDIL40 (.6)
MR80C51xxx-16/883	5962-8506404MXC	80C51	16 MHz	LCC44

Space Qualified Parts

The following product are available in space grade, processed on Radiation Tolerant technology. The SCC

numbers indicates the qualification by ESA's Componants groups of the device/package.

TEMIC Part-Number	SCC Number	Device	Speed	Package
MJ-80C32E-20		80C32	20 MHz	JLCC44
MJ-80C32E-25		80C32	25 MHz	JLCC44
MJ-80C32E-30	SCC952100202	80C32	30 MHz	JLCC44
MR-80C32E-20		80C32	20 MHz	LCC44
MR-80C32E-25		80C32	25 MHz	LCC44
MR-80C32E-30	SCC952100203	80C32	30 MHz	LCC44
MC-80C32E-20		80C32	20 MHz	SB40 (.6)
MC-80C32E-25		80C32	25 MHz	SB40 (.6)
MC-80C32E-30	SCC952100201	80C32	30 MHz	SB40 (.6)

C51 General Purpose Products

TSC80C31/80C51 : CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller	II.2.1
TSC80CL31/TSC80CL51 : CMOS 1.8 Volt Single-Chip 8 Bit Microcontroller	II.3.1
80C32/80C52 : CMOS 0 to 44 MHz Single Chip 8–bit Microntroller	II.4.1
80C154/83C154 : CMOS 0 to 36 MHz Single Chip 8-bit Microcontroller	II.5.1
83C154D : CMOS 0 to 30 MHz Single Chip 8-bit Microcontroller	II.6.1

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Description

The TSC80C31/80C51 is high performance SCMOS versions of the 8051 NMOS single chip 8 bit μ C.

The fully static design of the TSC80C31/80C51 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The TSC80C31/80C51 retains all the features of the 8051: 4 K bytes of ROM; 128 bytes of RAM; 32 I/O lines; two 16 bit timers; a 5-source, 2-level interrupt structure; a full duplex serial port; and on-chip oscillator and clock circuits.

- TSC80C31/80C51-L16 : Low power version Vcc : 2.7–5.5 V Freq : 0–16 MHz
- TSC80C31/80C51-L20 : Low power version Vcc : 2.7–5.5 V Freq : 0–20 MHz
- TSC80C31/80C51-12 : 0 to 12 MHz
- TSC80C31/80C51-20 : 0 to 20 MHz
- TSC80C31/80C51-25 : 0 to 25 MHz

In addition, the TSC80C31/80C51 has two software-selectable modes of reduced activity for further reduction in power consumption. In the Idle Mode the CPU is frozen while the RAM, the timers, the serial port, and the interrupt system continue to function. In the Power Down Mode the RAM is saved and all other functions are inoperative.

The TSC80C31/80C51 is manufactured using SCMOS process which allows them to run from 0 up to 44 MHz with VCC = 5 V. The TSC80C31/80C51 is also available at 20 MHz with 2.7 V < Vcc < 5.5 V.

- TSC80C31/80C51-30 : 0 to 30 MHz
- TSC80C31/80C51-36 : 0 to 36 MHz
- TSC80C31/80C51-40 : 0 to 40 MHz
- TSC80C31/80C51-44 : 0 to 44 MHz*

* Commercial and Industrial temperature range only. For other speed and range please consult your sale office.

Features

- Power control modes
- 128 bytes of RAM
- 4 K bytes of ROM (TSC80C31/80C51)
- 32 programmable I/O lines
- Two 16 bit timer/counter
- 64 K program memory space
- 64 K data memory space

Optional

- Secret ROM : Encryption
- Secret TAG : Identification number

- Fully static design
- 0.8 μm CMOS process
- Boolean processor
- 5 interrupt sources
- Programmable serial port
- Temperature range : commercial, industrial, automotive and military

TSC80C31/80C51

Interface

Figure 1. Block Diagram

TEMIC Semiconductors

TSC80C31/80C51

Figure 2. Pin Configuration

Diagrams are for reference only. Packages sizes are not to scale.

TSC80C31/80C51

Pin Description

VSS

Circuit ground potential.

VCC

Supply voltage during normal, Idle, and Power Down operation.

Port 0

Port 0 is an 8 bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's. Port 0 also outputs the code bytes during program verification in the TSC80C31/80C51. External pullups are required during program verification. Port 0 can sink eight LS TTL inputs.

Port 1

Port 1 is an 8 bit bi-directional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address byte during program verification. In the TSC80C31/80C51, Port 1 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

Port 2

Port 2 is an 8 bit bi-directional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 bit addresses (MOVX @DPTR). In this application, it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8 bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

It also receives the high-order address bits and control signals during program verification in the TSC80C31/80C51. Port 2 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

Port 3

Port 3 is an 8 bit bi-directional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the pullups. It also serves the functions of various special features of the TEMIC C51 Family, as listed below.

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	TD (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external Data Memory write strobe)
P3.7	RD (external Data Memory read strobe)

Port 3 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

RST

A high level on this for two machine cycles while the oscillator is running resets the device. An internal pull-down resistor permits Power-On reset using only a capacitor connected to V_{CC} . As soon as the Reset is applied (Vin), PORT 1, 2 and 3 are tied to one. This operation is achieved asynchronously even if the oscillator does not start-up.

ALE

Address Latch Enable output for latching the low byte of the address during accesses to external memory. ALE is activated as though for this purpose at a constant rate of 1/6 the oscillator frequency except during an external data memory access at which time one ALE pulse is skipped. ALE can sink/source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

If desired, ALE operation can be disabled by setting bit 0 of SFR location AFh (MSCON). With the bit set, ALE is active only during MOVX instruction and external fetches. Otherwise the pin is pulled low. MSCON SFR is set to XXXXXXX0 by reset.

PSEN

Program Store Enable output is the read strobe to external Program Memory. PSEN is activated twice each machine cycle during fetches from external Program Memory. (However, when executing out of external Program Memory, two activations of PSEN are skipped during each access to external Data Memory). PSEN is not activated during fetches from internal Program Memory. PSEN can sink or source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

EA

When EA is held high, the CPU executes out of internal Program Memory (unless the Program Counter exceeds 3 FFFH). When EA is held low, the CPU executes only out of external Program Memory. EA must not be floated.

Idle And Power Down Operation

Figure 3. shows the internal Idle and Power Down clock configuration. As illustrated, Power Down operation stops the oscillator. Idle mode operation allows the interrupt, serial port, and timer blocks to continue to function, while the clock to the CPU is gated off.

These special modes are activated by software via the Special Function Register, PCON. Its hardware address is 87H. PCON is not bit addressable.

Figure 3. Idle and Power Down Hardware.

Idle Mode

The instruction that sets PCON.0 is the last instruction executed before the Idle mode is activated. Once in the Idle mode the CPU status is preserved in its entirety : the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM and all other registers maintain their data during idle. Table 1 describes the status of the external pins during Idle mode.

XTAL1

Input to the inverting amplifier that forms the oscillator. Receives the external oscillator signal when an external oscillator is used.

XTAL2

Output of the inverting amplifier that forms the oscillator. This pin should be floated when an external oscillator is used.

PCON : Power Control Register

(MSB)							(LSB)
SMOD	-	-	-	GF1	GF0	PD	IDL

Symbol	Position	Name and Function
SMOD	PCON.7	Double Baud rate bit. When set to a 1, the baud rate is doubled when the serial port is being used in either modes 1, 2 or 3.
-	PCON.6	(Reserved)
-	PCON.5	(Reserved)
-	PCON.4	(Reserved)
GF1	PCON.3	General-purpose flag bit.
GF0	PCON.2	General-purpose flag bit.
PD	PCON.1	Power Down bit. Setting this bit activates power down operation.
IDL	PCON.0	Idle mode bit. Setting this bit activates idle mode operation.

If 1's are written to PD and IDL at the same time. PD takes, precedence. The reset value of PCON is (000X0000).

There are three ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating Idle mode. The interrupt is serviced, and following RETI, the next instruction to be executed will be the one following the instruction that wrote 1 to PCON.0.

TSC80C31/80C51

The flag bits GF0 and GF1 may be used to determine whether the interrupt was received during normal execution or during the Idle mode. For example, the instruction that writes to PCON.0 can also set or clear one or both flag bits. When Idle mode is terminated by an enabled interrupt, the service routine can examine the status of the flag bits.

Power Down Mode

The instruction that sets PCON.1 is the last executed prior to entering power down. Once in power down, the oscillator is stopped. The contents of the onchip RAM and the Special Function Register is saved during power down mode. The hardware reset initiates the Special Fucntion Register. In the Power Down mode, VCC may be lowered to mi-nimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered, and that the voltage is restored before the hardware reset is applied which freezes the oscillator. Reset should not be released until the oscillator has restarted and stabilized. A hardware reset is the only way of exiting the power down mode. The second way of terminating the Idle mode is with a hardware reset. Since the oscillator is still running, the hardware reset needs to be active for only 2 machine cycles (24 oscillator periods) to complete the reset operation.

Table 1 describes the status of the external pins while in the power down mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2. If the data is a 1, the port pin is held high during the power down mode by the strong pullup, T1, shown in Figure 4.

Table 1. Status of the external pins during idle and power down modes.

MODE	PROGRAM MEMORY	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Stop Clock Mode

Due to static design, the TSC80C31/80C51 clock speed can be reduced until 0 MHz without any data loss in memory or registers. This mode allows step by step utilization, and permits to reduce system power consumption by bringing the clock frequency down to any value. At 0 MHz, the power consumption is the same as in the Power Down Mode.

I/O Ports

The I/O buffers for Ports 1, 2 and 3 are implemented as shown in Figure 4.

When the port latch contains a 0, all pFETS in Figure 4. are off while the nFET is turned on. When the port latch makes a 0-to-1 transition, the nFET turns off. The strong pFET, T1, turns on for two oscillator periods, pulling the output high very rapidly. As the output line is drawn high, pFET T3 turns on through the inverter to supply the IOH source current. This inverter and T form a latch which holds the 1 and is supported by T2.

When Port 2 is used as an address port, for access to external program of data memory, any address bit that contains a 1 will have his strong pullup turned on for the entire duration of the external memory access.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output respectively, of an inverting amplifier which is configured for use as an on-chip oscillator, as shown in Figure 5. Either a quartz crystal or ceramic resonator may be used.

Figure 5. Crystal Oscillator.

When an I/O pin son Ports 1, 2, or 3 is used as an input, the user should be aware that the external circuit must sink current during the logical 1-to-0 transition. The maximum sink current is specified as ITL under the D.C. Specifications. When the input goes below approximately 2 V, T3 turns off to save ICC current. Note, when returning to a logical 1, T2 is the only internal pullup that is on. This will result in a slow rise time if the user's circuit does not force the input line high.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected as shown in Figure 6. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 6. External Drive Configuration.

TSC80C51 with Secret ROM

TEMIC offers TSC80C31/80C51 with the encrypted secret ROM option to secure the ROM code contained in the TSC80C31/80C51 microcontrollers.

The clear reading of the program contained in the ROM is made impossible due to an encryption through several random keys implemented during the manufacturing process.

The keys used to do such encryption are selected randomwise and are definitely different from one microcontroller to another.

This encryption is activated during the following phases :

- Everytime a byte is addressed during a verify of the ROM content, a byte of the encryption array is selected.
- MOVC instructions executed from external program memory are disabled when fetching code bytes from internal memory.
- EA is sampled and latched on reset, thus all state modification are disabled.

For further information please refer to the application note (ANM053) available upon request.

TSC80C31/80C51 with Secret TAG

TEMIC offers special 64-bit identifier called "SECRET TAG" on the microcontroller chip.

The Secret Tag option is available on both ROMless and masked microcontrollers.

The Secret Tag feature allows serialization of each microcontroller for identification of a specific equipment. A unique number per device is implemented in the chip during manufacturing process. The serial number is a 64-bit binary value which is contained and addressable in the Special Function Registers (SFR) area.

This Secret Tag option can be read-out by a software routine and thus enables the user to do an individual identity check per device. This routine is implemented inside the microcontroller ROM memory in case of masked version which can be kept secret (and then the value of the Secret Tag also) by using a ROM Encryption.

For further information, please refer to the application note (ANM031) available upon request.

Electrical Characteristics

Absolute Maximum Ratings*

Ambiant Temperature Under Bias :

$C = commercial \dots 0^{\circ}C \text{ to } 70^{\circ}C$
$I = industrial \dots -40^{\circ}C \text{ to } 85^{\circ}C$
Storage Temperature
Voltage on VCC to VSS
Voltage on Any Pin to VSS $\dots -0.5$ V to V _{CC} + 0.5 V
Power Dissipation 1 W**
** This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

TA = 0°C to 70°C; VSS = 0 V; VCC = 5 V \pm 10 %; F = 0 to 44 MHz TA = -40°C + 85°C; VSS = 0 V; VCC = 5 V \pm 10 %; F = 0 to 44 MHz

Symbol	Parameter	Min	Тур (3)	Max	Unit	Test Conditions
VIL	Input Low Voltage	- 0.5		0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 0.9		Vcc + 0.5	V	
VIH1	Input High Voltage (for XTAL and RST)	0.7 Vcc		Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3) (4)			0.3 0.45 1.0	V V V	$IOL = 100 \ \mu A$ $IOL = 1.6 \ mA (2)$ $IOL = 3.5 \ mA$
VOL1	Output Low Voltage (Port 0, ALE, PSEN) (4)			0.3 0.45 1.0	V V V	IOL = 200 μA IOL = 3.2 mA (2) IOL = 7.0 mA
VOH	Output High Voltage Port 1, 2, 3	Vcc - 0.3			v	$IOH = -10 \ \mu A$
		Vcc - 0.7			v	$IOH = -30 \ \mu A$
		Vcc - 1.5			v	$IOH = -60 \ \mu A$ $VCC = 5 \ V \pm 10 \ \%$
VOH1	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3			v	IOH = - 200 μA
		Vcc - 0.7			v	IOH = -3.2 mA
		Vcc - 1.5			V	IOH = -7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)			- 50	μΑ	Vin = 0.45 V
ILI	Input leakage Current			± 10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)			- 650	μΑ	Vin = 2.0 V
IPD	Power Down Current		5	30	μΑ	Vcc = 2.0 V to 5.5 V (1)
RRST	RST Pulldown Resistor	50	90	200	KΩ	
CIO	Capacitance of I/O Buffer			10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq \geq 12 MHz Icc op max = 0.9 Freq (MHz) + 5 Icc idle max = 0.3 Freq (MHz) + 1.7 Freq \geq 20 MHz Icc op typ = 0.7 Freq (MHz) + 4 Freq \geq 20 MHz Icc idle typ = 0.16 Freq (MHz) + 0.4 Freq \leq 20 MHz Icc idle typ = 0.16 Freq (MHz) + 0.4		0.7 0.5 4.2 1.4	1.8 1 9 3.5	mA mA mA mA mA mA mA	Vcc = 5.5 V

Absolute Maximum Ratings*

Ambient Temperature	Under	Bias	:	
---------------------	-------	------	---	--

A = Automotive	$\ldots -40^\circ C \text{ to } +125^\circ C$
Storage Temperature	65°C to + 150°C
Voltage on VCC to VSS	0.5 V to + 7 V
Voltage on Any Pin to VSS	-0.5 V to VCC + 0.5 V
Power Dissipation	1 W**

DC Parameters

** This value is based on the maximum allowable die temperature and the thermal resistance of the package

* Notice

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TA = -40° C + 125°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 40 MHz

Symbol	Parameter	Min	Typ (3)	Max	Unit	Test Conditions
VIL	Input Low Voltage	- 0.5		0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 0.9		Vcc + 0.5	v	
VIH1	Input High Voltage (for XTAL and RST)	0.7 Vcc		Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3) (4)			0.3 0.45 1.0	v v v	$IOL = 100 \ \mu A$ $IOL = 1.6 \ mA (2)$ $IOL = 3.5 \ mA$
VOLI	Output Low Voltage (Port 0, ALE, PSEN) (4)			0.3 0.45 1.0	v v v	IOL = 200 μA IOL = 3.2 mA (2) IOL = 7.0 mA
VOH	Output High Voltage Port 1, 2 and 3	Vcc - 0.3			v	IOH = - 10 μA
		Vcc - 0.7			v	IOH = - 30 μA
		Vcc - 1.5			v	$IOH = -60 \ \mu A$ VCC = 5 V ± 10 %
VOH1	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3			v	IOH = - 200 μA
-		Vcc - 0.7			v	IOH = -3.2 mA
		Vcc - 1.5			v	IOH = - 7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)			- 75	μA	Vin = 0.45 V
ILI	Input leakage Current			±10	μA	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)			- 750	μA	Vin = 2.0 V
IPD	Power Down Current		5	75	μA	Vcc = 2.0 V to 5.5 V (1)
RRST	RST Pulldown Resistor	50	90	200	KΩ	
CIO	Capacitance of I/O Buffer			10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq \geq 12 MHz Icc op max = 0.9 Freq (MHz) + 5 Icc idle max = 0.3 Freq (MHz) + 1.7 Freq \leq 20 MHz Icc op typ = 0.7 Freq (MHz) + 4 Freq \leq 20 MHz Icc ot let typ = 0.16 Freq (MHz) + 0.4 Freq \geq 20 MHz Icc idle typ = 0.12 Freq (MHz) + 1.2		0.7 0.5 4.2 1.4	1.8 1 9 3.5	mA mA mA mA mA mA mA mA mA	Vcc = 5.5 V

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

M = Military	55°C to +125°C
Storage Temperature	$\dots -65^{\circ}C$ to + 150°C
Voltage on VCC to VSS	–0.5 V to + 7 V
Voltage on Any Pin to VSS	0.5 V to VCC + 0.5 V
Power Dissipation	1 W**

DC Parameters

** This value is based on the maximum allowable die temperature and the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

TA = -55° C + 125° C ; Vss = 0 V ; Vcc = 5 V ± 10 % ; F = 0 to 40 MHz

Symbol	Parameter	Min	Typ (3)	Max	Unit	Test Conditions
VIL	Input Low Voltage	- 0.5		0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 0.9		Vcc + 0.5	v	
VIH1	Input High Voltage (for XTAL and RST)	0.7 Vcc		Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3) (4)			0.45	v	IOL = 1.6 mA (2)
VOL1	Output Low Voltage (Port 0, ALE, PSEN) (4)			0.45	v	IOL = 3.2 mA (2)
VOH	Output High Voltage (Port 1, 2 and 3)	2.4			v	$IOH = -60 \ \mu A$ $Vcc = 5 \ V \pm 10 \ \%$
		0.75 Vcc			v	IOH = – 25 μA
		0.9 Vcc			v	IOH = - 10 μA
VOH1	Output High Voltage (Port 0 in External Bus Mode, ALE, PEN)	2.4			v	$IOH = -400 \ \mu A$ $Vcc = 5 \ V \pm 10 \ \%$
		0.75 Vcc			v	IOH = -150 μA
		0.9 Vcc			v	$IOH = -40 \mu A$
IIL	Logical 0 Input Current (Ports 1, 2 and 3)			- 75	μΑ	Vin = 0.45 V
ILI	Input leakage Current			+/- 10	μA	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)			- 750	μΑ	Vin = 2.0 V
IPD	Power Down Current		5	75	μΑ	Vcc = 2.0 V to 5.5 V (1)
RRST	RST Pulldown Resistor	50	90	200	ΚΩ	
CIO	Capacitance of I/O Buffer			10	pF	$fc = 1$ MHz, $Ta = 25^{\circ}C$
ICC	$\begin{array}{l} \mbox{Power Supply Current} \\ \mbox{Freq} = 1 \ \mbox{MHz} \ \ \mbox{Icc op} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		0.7 0.5 4.2 1.4	1.8 1 9 3.5	mA mA mA mA mA mA mA	Vcc = 5.5 V

TSC80C31/80C51

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

$C = Commercial \dots 0^{\circ}C$ to $70^{\circ}C$
I = Industrial
Storage Temperature $\hdots -65^\circ C$ to + $150^\circ C$
Voltage on VCC to VSS $\ldots \ldots \ldots \ldots \ldots \ldots \ldots -0.5$ V to + 7 V
Voltage on Any Pin to VSS $\ldots \ldots \ldots -0.5$ V to VCC + 0.5 V
Power Dissipation 1 W**
** This value is based on the maximum allowable die temperature and the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Characteristics : Low Power Version

TA = 0°C to 70°C ; Vcc = 2.7 V to 5.5 V ; Vss = 0 V ; F = 0 to 20 MHz TA = -40°C to 85°C ; Vcc = 2.7 V to 5.5 V ; F = 0 to 20 MHz

Symbol	Parameter	Min	Typ (3)	Max	Unit	Test Conditions
VIL	Input Low Voltage	- 0.5		0.2 V _{CC} - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 V _{CC} + 0.9		V _{CC} + 0.5	v	
VIH2	Input High Voltage to RST for Reset	0.7 V _{CC}		V _{CC} + 0.5	v	
VIHI	Input High Voltage to XTAL1	0.7 V _{CC}		$V_{\rm CC} + 0.5$	v	
VPD	Power Down Voltage to Vcc in PD Mode	2.0		5.5	v	
VOL	Output Low Voltage (Ports 1, 2, 3) (4)			0.45	v	IOL = 0.8 mA (2)
VOLI	Output Low Voltage Port 0, ALE, PSEN (4)			0.45	v	IOL = 1.6 mA (2)
VOH	Output High Voltage (Port 1, 2 and 3)	0.9 Vcc			v	IOH = - 10 μA
VOH1	Output High Voltage (Port 0 in External Bus Mode), ALE, PSEN	0.9 Vcc			v	$IOH = -40 \mu A$
IIL	Logical 0 Input Current Ports 1, 2, 3			- 50	μΑ	Vin = 0.45 V
ILI	Input Leakage Current			± 10	μA	0.45 < Vin < V _{CC}
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)			- 650	μA	Vin = 2.0 V
IPD	Power Down Current		5	30	μA	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}$ (1)
RRST	RST Pulldown Resistor	50	90	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	$fc = 1 MHz, T_A = 25^{\circ}C$

Icc (mA)

			Opera	ting (1)					Idle	e (1)		
Frequency/Vcc	2.7	v	3	v	3.:	3 V	2.7	7 V	3	v	3.3	v
	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур
1 MHz	0.8	0.37	1	0.42	1.1	0.46	0.4	0.22	0.5	0.24	0.6	0.27
6 MHz	4	2.2	5	2.5	6	2.7	1.5	1.2	1.7	1.4	2	1.6
12 MHz	8	4	10	4.7	12	5.3	2.5	1.7	3	2.2	3.5	2.6
16 MHz	10	5	12	5.8	14	6.6	3	1.9	3.8	2.5	4.5	3
Freq > 12MHz (Vcc = 5.5 V) Icc op max (mA) = 0.9 × Freq (MHz) + 5 Icc Idle max (mA) = 0.3 × Freq (MHz) + 1.7												

TEMIC Semiconductors

Idle ICC is measured with all output pins disconnected ; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC - 0.5 V ; XTAL2 N.C ; Port 0 = VCC ; EA = RST = VSS.

Power Down ICC is measured with all output pins disconnected ; EA = PORT 0 = VCC ; XTAL2 N.C. ; RST = VSS.

Note 2 : Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLS of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In the worst cases (capacitive loading 100 pF), the noise pulse on the ALE line may exceed 0.45 V with maxi VOL peak 0.6 V. A Schmitt Trigger use is not necessary.

Note 3 : Typicals are based on a limited number of samples and are not guaranteed. the values listed are at room temperature and 5V.

Note 4 : Under steady state (non-transient)) conditions, IOL must be externally limited as follows :

Maximum IOL per po	10 mA	
Maximum IOL per 8-	-bit port :	
	Port 0 :	26 mA
	Ports 1, 2 and 3 :	15 mA
Maximum total IOL f	for all output pins :	71 mA

If IOL exceed the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 7. ICC Test Condition, Idle Mode.

All other pins are disconnected.

Figure 8. ICC Test Condition, Active Mode.

Figure 9. ICC Test Condition, Power Down Mode.

Figure 10. Clock Signal Waveform for ICC Tests in Active and Idle Modes.

TCLCH = TCHCL = 5 ns.

Explanation of the AC Symbol

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Example :

TAVLL = Time for Address Valid to ALE low.

FMIC

Semiconductors

TLLPL = Time for ALE low to \overline{PSEN} low.

A : Address.	Q : Output data.
C: Clock.	R : READ signal.
D : Input data.	T : Time.
H : Logic level HIGH	V : Valid.
I : Instruction (program memory contents).	W : WRITE signal.
L : Logic level LOW, or ALE.	X : No longer a valid logic level.
P : PSEN.	Z : Float.

AC Parameters

 $\begin{array}{l} TA=0 \ to \ + \ 70^\circ C \ ; \ Vss=0 \ V \ ; \ Vcc=5 \ V \ \pm \ 10 \ \% \ ; \ F=0 \ to \ 44 \ MHz \\ TA=0 \ to \ + \ 70^\circ C \ ; \ Vss=0 \ V \ ; \ 2.7 \ V \ Vcc \ < 5.5 \ V \ ; \ F=0 \ to \ 16 \ MHz \\ TA=-40^\circ \ to \ + \ 85^\circ C \ ; \ Vss=0 \ V \ ; \ 2.7 \ V \ Vcc \ < 5.5 \ V \ ; \ F=0 \ to \ 16 \ MHz \\ TA=-55^\circ \ + \ 125^\circ C \ ; \ Vss=0 \ V \ ; \ Vcc=5 \ V \ \pm \ 10 \ \% \ ; \ F=0 \ to \ 40 \ MHz \\ (Load \ Capacitance \ for \ PORT \ 0, \ ALE \ and \ PSEN \ = \ 100 \ pF \ ; \ Load \ Capacitance \ for \ all \ other \ other \ vcc=80 \ pF) \\ \end{array}$

External Program Memory Characteristics (values in ns)

		16 M	16 MHz		20 MHz		25 MHz		30 MHz		36 MHz		40 MHz		4Hz
SYMBOL	PARAMETER	min	max	min	max	min	max	min	max	min	max	min	max	min	max
TLHLL	ALE Pulse Width	110		90	Ι	70		60		50		40		30	
TAVLL	Address valid to ALE	40		30		20		15		10		9		7	
TLLAX	Address Hold After ALE	35		35		35		35		35		30		20	
TLLIV	ALE to valid instr in		185		170		130		100		80		70		65
TLLPL	ALE to PSEN	45		40		30		25		20		15		12	
TPLPH	PSEN pulse Width	165		130		100		80		75		65		54	
TPLIV	PSEN to valid instr in		125		110		85		65		50		45		35
TPXIX	Input instr Hold After PSEN	0		0		0		0		0		0		0	
TPXIZ	Input instr Float After PSEN		50		45		35		30		25		20		10
TPXAV	PSEN to Address Valid	55		50		40		35		30		25		15	
TAVIV	Address to Valid instr in		230		210		170		130		90		80		70
TPLAZ	PSEN low to Address Float		10		10		8		6		5		5		5

External Program Memory Read Cycle

External Data Memory Characteristics (values in ns)

EMIC

Semiconductors

		16 MHz		20 1	20 MHz 25 MHz		30 MHz		36 MHz		40 MHz		44 MHz		
SYMBOL	PARAMETER	min	max	min	max	min	max	min	max	min	max	min	max	min	max
TRLRH	RD pulse Width	340		270		210		180		120		100		80	
TWLWH	WR pulse Width	340		270		210		180		120		100		80	
TLLAX	Address Hold After ALE	85		85		70		55		35		30		25	
TRLDV	RD to Valid data in		240		210		175		135		110		90		70
TRHDX	Data hold after RD	0		0		0		0		0		0		0	
TRHDZ	Data float after RD	Ι	90		90		80		70		50		45		35
TLLDV	ALE to Valid Data In		435		370		350		235		170		150		130
TAVDV	Address to Valid Data IN	T	480		400		300		260		190		180		170
TLLWL	ALE to WR or RD	150	250	135	170	120	130	90	115	70	100	60	95	50	85
TAVWL	Address to WR or RD	180		180		140		115		75		65		55	
TQVWX	Data valid to WR transition	35		35		30		20		15		10		6	
TQVWH	Data Setup to WR transition	380		325		250		215		170		160		140	
TWHQX	Data Hold after WR	40		35		30		20		15		10		6	
TRLAZ	RD low to Address Float		0		0		0		0		0		0		0
TWHLH	RD or WR high to ALE high	35	90	35	60	25	45	20	40	20	40	15	35	13	33

External Data Memory Write Cycle

External Data Memory Read Cycle

Serial Port Timing – Shift Register Mode (values in ns)

		16 N	AHz	20 N	AHz	25 N	4Hz	30 N	AHz	36 N	/Hz	40 N	4Hz	44 N	4Hz
SYMBOL	PARAMETER	min	max												
TXLXL	Serial Port Clock Cycle Time	750		600		480		400		330		250		227	
түүхн	Output Data Setup to Clock Rising Edge	563		480		380		300		220		170		140	
тхнох	Output Data Hold after Clock Rising Edge	90		90		65		50		45	-	35		25	
TXHDX	Input Data Hold after Clock Rising Edge	0		0		0		0		0		0		0	
TXHDV	Clock Rising Edge to Input Data Valid		563		450		350		300		250		200		160

Shift Register Timing Waveforms

External Clock Drive Characteristics (XTAL1)

SYMBOL	PARAMETER	MIN	MAX	UNIT
FCLCL	Oscillator Frequency		44	MHz
TCLCL	Oscillator period	22.7		ns
TCHCX	High Time	5		ns
TCLCX	Low Time	5		ns
TCLCH	Rise Time		5	ns
TCHCL	Fall Time		5	ns

External Clock Drive Waveforms

AC Testing Input/Output Waveforms

AC inputs during testing are driven at Vcc - 0.5 for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at VIH min for a logic "1" and VIL max for a logic "0".

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. Iol/IoH $\geq \pm 20$ mA.

TSC80C31/80C51

Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

TEMIC Semiconductors

TSC80C31/80C51

Ordering Information

TS	SC 80C51 XX	XX –20	С	В	R	
	Part Number 80C31: External ROM 80C51: 4Kx8 Mask ROM 80C51C: Secret ROM version 80C51T: Secret Tag version	-12: 12 MHz version -16: 16 MHz version -20: 20 MHz version -25: 25 MHz version -30: 30 MHz version -40: 40 MHz version -41: 44 MHz version -41: Low Power (VCC: 2.7–5.5V, Freq.: 0–16 MHz) -L20: Low Power (VCC: 2.7–5.5V, Freq.: 0–20 MHz)	P: A B C D E F F G H I: D W X Y	ackaging : PDIL 40 : PLCC 44 : PQFP 44 (fp 13.9m) : PQFP 44 (fp 12.3m) : VQFP 44 (14mm) : TQFP 44 (14mm) : CDIL 40 (.6) : LCC 44 CQPJ 44 the form: /: Wafer : Dice Form : Wafer on Ring	m) m)	Blank: Standard /883: MIL 883 Compliant P883: MIL 883 Compliant with PIND test.
	Customer ROM (Not used for e	A Code external ROM Device)		C R E	Conditio R : Tape D : Dry	oning e & Reel Pack
TEN Mic	AIC Semiconductor rocontroller Product Line	Tem C : C I : Ir A : <i>i</i> M :	perature Ran Commercial (dustrial –40 Automotive - Military –55	e nge 0° to 70°C ° to 85°C -40° to 125°C ° to 125°C	Dry	e a keel and Pack

Examples :

Mask ROM version XXX, PDIL 40, 20 MHz version, Commercial Temperature Range . TSC80C31/80C51XXX-20CA

(1) Ceramic of multi-layer packages: contact TEMIC Sales office

Product Marking :

For PDIL 40, PLCC 44 & QFP 44 Packages

TEMIC Customer P/N Temic P/N © Intel 80, 82 YYWW Lot Number

CMOS 1.8 Volt Single-Chip 8 Bit Microcontroller

Description

TEMIC's 80C31 and 80C51 are high performance SCMOS versions of the 8051 NMOS single chip 8 bit μ C.

The fully static design of the TEMIC TSC80CL31/TSC80CL51 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The TSC80CL51 retains all the features of the 8051 : 4 K bytes of ROM ; 128 bytes of RAM ; 32 I/O lines ; two 16 bit timers ; a 5-source, 2-level interrupt structure ; a full duplex serial port ; and on-chip oscillator and clock circuits.

The TSC80CL51 is a general purpose microcontroller especially suited for battery–powered applications. This very low voltage version fits in all applications using two battery cells.

In addition, the TSC80CL51 has two software-selectable modes of reduced activity for further reduction in power consumption. In the Idle Mode the CPU is frozen while the RAM, the timers, the serial port, and the interrupt system continue to function. In the Power Down Mode the RAM is saved and all other functions are inoperative.

The TSC80CL31 is identical to the TSC80CL51 except that it has no on-chip ROM.

TEMIC's TSC80CL31/TSC80CL51 are manufactured using SCMOS process which allows them to run from 0 up to 4 MHz with VCC = 1.8 V.

Available Products

• Very Low Voltage version Vcc : 1.8-5.5 V Freq : 0-4 MHz

- TSC80CL31–V4: ROMless version
- TSC80CL51–V4: 4K x 8 Mask ROM version

Features

- Power control modes
- 128 bytes of RAM
- 4 K bytes of ROM (TSC80CL51)
- 32 programmable I/O lines
- Two 16 bit timer/counter
- 64 K program memory space
- 64 K data memory space

Optional

- Secret ROM : Encryption
- Secret TAG : Identification number

- Fully static design
- 0.8 µm CMOS process
- Boolean processor
- 5 interrupt sources
- Programmable serial port
- Temperature range : commercial

Interface

Figure 1. Block Diagram

TSC80CL31/TSC80CL51

Figure 2. Pin Configuration

Diagrams are for reference only. Packages sizes are not to scale.

Pin Description

VSS

Circuit ground potential.

VCC

Supply voltage during normal, Idle, and Power Down operation.

Port 0

Port 0 is an 8 bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's. Port 0 also outputs the code bytes during program verification in the TSC80CL51. External pullups are required during program verification. Port 0 can sink eight LS TTL inputs.

Port 1

Port 1 is an 8 bit bi-directional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address byte during program verification. In the TSC80CL51, Port 1 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

Port 2

Port 2 is an 8 bit bi-directional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 bit addresses (MOVX @DPTR). In this application, it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8 bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

It also receives the high-order address bits and control signals during program verification in the TSC80CL51. Port 2 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

Port 3

Port 3 is an 8 bit bi-directional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the pullups. It also serves the functions of various special features of the TEMIC 51 Family, as listed below.

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	TD (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external Data Memory write strobe)
P3.7	RD (external Data Memory read strobe)

Port 3 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

RST

A high level on this for two machine cycles while the oscillator is running resets the device. An internal pull-down resistor permits Power-On reset using only a capacitor connected to V_{CC} . As soon as the Reset is applied (Vin), PORT 1, 2 and 3 are tied to one. This operation is achieved asynchronously even if the oscillator does not start-up.

ALE

Address Latch Enable output for latching the low byte of the address during accesses to external memory. ALE is activated as though for this purpose at a constant rate of 1/6 the oscillator frequency except during an external data memory access at which time one ALE pulse is skipped. ALE can sink/source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

If desired, ALE operation can be disabled by setting bit 0 of SFR location AFh (MSCON). With the bit set, ALE is active only during MOVX instruction and external fetches. Otherwise the pin is pulled low. MSCON SFR is set to XXXXXXX0 by reset.

TSC80CL31/TSC80CL51

PSEN

Program Store Enable output is the read strobe to external Program Memory. PSEN is activated twice each machine cycle during fetches from external Program Memory. (However, when executing out of external Program Memory, two activations of PSEN are skipped during each access to external Data Memory). PSEN is not activated during fetches from internal Program Memory. PSEN can sink or source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

EA

When EA is held high, the CPU executes out of internal Program Memory (unless the Program Counter exceeds 3 FFFH). When EA is held low, the CPU executes only out of external Program Memory. EA must not be floated.

Idle And Power Down Operation

Figure 3. shows the internal Idle and Power Down clock configuration. As illustrated, Power Down operation stops the oscillator. Idle mode operation allows the interrupt, serial port, and timer blocks to continue to function, while the clock to the CPU is gated off.

These special modes are activated by software via the Special Function Register, PCON. Its hardware address is 87H. PCON is not bit addressable.

Figure 3. Idle and Power Down Hardware.

Idle Mode

The instruction that sets PCON.0 is the last instruction executed before the Idle mode is activated. Once in the Idle mode the CPU status is preserved in its entirety : the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM and all other registers maintain their data during idle. Table 1 describes the status of the external pins during Idle mode. Input to the inverting amplifier that forms the oscillator. Receives the external oscillator signal when an external oscillator is used.

XTAL2

Output of the inverting amplifier that forms the oscillator. This pin should be floated when an external oscillator is used.

PCON : Power Control Register

(MSB)						(LSB)
SMOD	 -	-	GF1	GF0	PD	IDL

Symbol	Position	Name and Function
SMOD	PCON.7	Double Baud rate bit. When set to a 1, the baud rate is doubled when the serial port is being used in either modes 1, 2 or 3.
_	PCON.6	(Reserved)
-	PCON.5	(Reserved)
-	PCON.4	(Reserved)
GF1	PCON.3	General-purpose flag bit.
GF0	PCON.2	General-purpose flag bit.
PD	PCON.1	Power Down bit. Setting this bit activates power down operation.
IDL	PCON.0	Idle mode bit. Setting this bit activates idle mode operation.

If 1's are written to PD and IDL at the same time. PD takes, precedence. The reset value of PCON is (000X0000).

There are three ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating Idle mode. The interrupt is serviced, and following RETI, the next instruction to be executed will be the one following the instruction that wrote 1 to PCON.0.
TSC80CL31/TSC80CL51

The flag bits GF0 and GF1 may be used to determine whether the interrupt was received during normal execution or during the Idle mode. For example, the instruction that writes to PCON.0 can also set or clear one or both flag bits. When Idle mode is terminated by an enabled interrupt, the service routine can examine the status of the flag bits.

Power Down Mode

The instruction that sets PCON.1 is the last executed prior to entering power down. Once in power down, the oscillator is stopped. The contents of the onchip RAM and the Special Function Register is saved during power down mode. The hardware reset initiates the Special Fucntion Register. In the Power Down mode, VCC may be lowered to mi-nimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered, and that the voltage is restored before the hardware reset is applied which freezes the oscillator. Reset should not be released until the oscillator has restarted and stabilized. A hardware reset is the only way of exiting the power down mode. The second way of terminating the Idle mode is with a hardware reset. Since the oscillator is still running, the hardware reset needs to be active for only 2 machine cycles (24 oscillator periods) to complete the reset operation.

Table 1 describes the status of the external pins while in the power down mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2. If the data is a 1, the port pin is held high during the power down mode by the strong pullup, T1, shown in Figure 4.

MODE	PROGRAM MEMORY	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 10 : Status of the external pins during idle and power down modes.

Stop Clock Mode

Due to static design, the TEMIC TSC80CL31/C51 clock speed can be reduced until 0 MHz without any data loss in memory or registers. This mode allows step by step utilization, and permits to reduce system power consumption by bringing the clock frequency down to any value. At 0 MHz, the power consumption is the same as in the Power Down Mode.

I/O Ports

The I/O buffers for Ports 1, 2 and 3 are implemented as shown in Figure 4.

Figure 4. I/O Buffers in the TSC80CL51 (Ports 1, 2,

When the port latch contains a 0, all pFETS in Figure 4. are off while the nFET is turned on. When the port latch makes a 0-to-1 transition, the nFET turns off. The strong pFET, T1, turns on for two oscillator periods, pulling the output high very rapidly. As the output line is drawn high, pFET T3 turns on through the inverter to supply the IOH source current. This inverter and T form a latch which holds the 1 and is supported by T2.

When Port 2 is used as an address port, for access to external program of data memory, any address bit that contains a 1 will have his strong pullup turned on for the entire duration of the external memory access.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output respectively, of an inverting amplifier which is configured for use as an on-chip oscillator, as shown in Figure 5. Either a quartz crystal or ceramic resonator may be used.

Figure 5. Crystal Oscillator.

When an I/O pin son Ports 1, 2, or 3 is used as an input, the user should be aware that the external circuit must sink current during the logical 1-to-0 transition. The maximum sink current is specified as ITL under the D.C. Specifications. When the input goes below approximately 2 V, T3 turns off to save ICC current. Note, when returning to a logical 1, T2 is the only internal pullup that is on. This will result in a slow rise time if the user's circuit does not force the input line high.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected as shown in Figure 6. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 6. External Drive Configuration.

TSC80CL51 with Secret ROM

TEMIC offers TSC80CL51 with the encrypted secret ROM option to secure the ROM code contained in the TSC80CL51 microcontrollers.

The clear reading of the program contained in the ROM is made impossible due to an encryption through several random keys implemented during the manufacturing process.

The keys used to do such encryption are selected randomwise and are definitely different from one microcontroller to another.

This encryption is activated during the following phases :

TSC80CL51 with Secret TAG

TEMIC offers special 64-bit identifier called "SECRET TAG" on the microcontroller chip.

The Secret Tag option is available on both ROMless and masked microcontrollers.

The Secret Tag feature allows serialization of each microcontroller for identification of a specific equipment. A unique number per device is implemented in the chip during manufacturing process. The serial number is a 64-bit binary value which is contained and addressable in the Special Function Registers (SFR) area.

- Everytime a byte is addressed during a verify of the ROM content, a byte of the encryption array is selected.
- MOVC instructions executed from external program memory are disabled when fetching code bytes from internal memory.
- EA is sampled and latched on reset, thus all state modification are disabled.

For further information please refer to the application note (ANM053) available upon request.

This Secret Tag option can be read-out by a software routine and thus enables the user to do an individual identity check per device. This routine is implemented inside the microcontroller ROM memory in case of masked version which can be kept secret (and then the value of the Secret Tag also) by using a ROM Encryption.

For further information, please refer to the application note (ANM031) available upon request.

Electrical Characteristics

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

$C = Commercial \dots 0^{\circ}C$ to 70°C
Storage Temperature
Voltage on VCC to VSS0.5 V to + 7 V
Voltage on Any Pin to VSS
Power Dissipation 1 W**
** This value is based on the maximum allowable die temperature and
the thermal resistance of the package

DC Characteristics : Very Low Voltage Version

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

2

$TA = 0^{\circ}C$ to $70^{\circ}C$; Vcc =	1.8 V to 5.5 V;	Vss = 0 V; $F = 0$ to 4 MHz
--	-----------------	-----------------------------

Symbol	Parameter	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage	- 0.5	0.2 V _{CC} – 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 V _{CC} + 1.4	V _{CC} + 0.5	v	
VIH2	Input High Voltage to RST for Reset	0.7 V _{CC}	$V_{CC} + 0.5$	v	
VIH1	Input High Voltage to XTAL1	0.7 V _{CC}	V _{CC} + 0.5	v	
VPD	Power Down Voltage to Vcc in PD Mode	1.8	5.5	v	
VOL	Output Low Voltage (Ports 1, 2, 3)		0.45	v	IOL = 0.8 mA(2)
VOL1	Output Low Voltage Port 0, ALE, PSEN		0.45	V	IOL = 1.6 mA (2)
VOH	Output High Voltage (Port 1, 2 and 3)	0.9 Vcc		v	IOH = - 10 μA
VOH1	Output High Voltage (Port 0 in External Bus Mode), ALE, <u>PSEN</u>	0.9 Vcc		v	$IOH = -40 \mu A$
IIL	Logical 0 Input Current Ports 1, 2, 3		- 50	μΑ	Vin = 0.45 V
ILI	Input Leakage Current		± 10	μΑ	0.45 < Vin < V _{CC}
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)		- 650	μΑ	Vin = 2.0 V
IPD	Power Down Current		10 50	μA μA	$V_{CC} = 1.8 \text{ V to } 2.2 \text{ V (1)}$ $V_{CC} = 2.2 \text{ V to } 5.5 \text{ V (1)}$
RRST	RST Pulldown Resistor	50	200	kΩ	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz, T_A = 25^{\circ}C$

Maximum Icc (mA)

		Opera	ting (1)			Idle	e (1)	
Frequency/Vcc	1.8 V	2.2 V	3.3 V	5.5 V	1.8 V	2.2 V	3.3 V	5.5 V
32 KHz	60 µA	80 µA	200 µA	400 µA	25 μΑ	30 µA		
455 KHz	200 µA	250 μΑ	350 µA	1 mA	50 µA	75 µA	150 μΑ	400 µA
3.58 MHz	1.5 mA	2 mA	3 mA	6 mA	300 µA	500 µA	1 mA	2.5 mA
4 MHz	2 mA	2.5 mA	3.5 mA	7 mA	400 µA	600 µA	1.2 mA	3 mA

TSC80CL31/TSC80CL51

Idle ICC is measured with all output pins disconnected ; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC - 0.5 V ; XTAL2 N.C ; Port 0 = VCC ; EA = RST = VSS.

Power Down ICC is measured with all output pins disconnected ; EA = PORT 0 = VCC ; XTAL2 N.C. ; RST = VSS.

Note 2 : Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLS of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In the worst cases (capacitive loading 100 pF), the noise pulse on the ALE line may exceed 0.45 V with maxi VOL peak 0.6 V. A Schmitt Trigger use is not necessary.

Figure 7. ICC Test Condition, Idle Mode. All other pins are disconnected.

Semiconductor

Figure 9. ICC Test Condition, Power Down Mode. All other pins are disconnected.

Figure 10. Clock Signal Waveform for ICC Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

Explanation of the AC Symbol

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Example :

TAVLL = Time for Address Valid to ALE low. TLLPL = Time for ALE low to $\overline{\text{PSEN}}$ low.

TSC80CL31/TSC80CL51

A : Address.	Q : Output data.
C : Clock.	R : READ signal.
D : Input data.	T : Time.
H : Logic level HIGH	V : Valid.
I : Instruction (program memory contents).	W : WRITE signal.
L : Logic level LOW, or ALE.	X : No longer a valid logic level.
P : PSEN.	Z : Float.

AC Parameters

 $TA = 0 \text{ to } +70^{\circ}\text{C} \text{ ; } Vss = 0 \text{ V} \text{ ; } 1.8 \text{ V} < \text{Vcc} < 5.5 \text{ V} \text{ ; } F = 0 \text{ to } 4 \text{ MHz}$ (Load Capacitance for PORT 0, ALE and PSEN = 100 pF ; Load Capacitance for all other outputs = 80 pF)

External Program Memory Characteristics (values in ns)

		4 N	1Hz
SYMBOL	PARAMETER	min	max
TLHLL	ALE Pulse Width	460	
TAVLL	Address valid to ALE	210	
TLLAX	Address Hold After ALE	220	
TLLIV	ALE to valid instr in		900
TLLPL	ALE to PSEN	220	
TPLPH	PSEN pulse Width	705	
TPLIV	PSEN to valid instr in		650
TPXIX	Input instr Hold After PSEN	0	
TPXIZ	Input instr Float After PSEN		225
TPXAV	PSEN to Address Valid	250	
TAVIV	Address to Valid instr in		1100
TPLAZ	PSEN low to Address Float		10

External Program Memory Read Cycle

		4 M	Hz
SYMBOL	PARAMETER	min	max
TRLRH	RD pulse Width	1400	
TWLWH	WR pulse Width	1400	
TLLAX	Address Hold After ALE	220	
TRLDV	RD to Valid data in		1100
TRHDX	Data hold after RD	0	
TRHDZ	Data float after RD		460
TLLDV	ALE to Valid Data In		1850
TAVDV	Address to Valid Data IN		2100
TLLWL	ALE to WR or RD	700	800
TAVWL	Address to WR or RD	870	
TQVWX	Data valid to WR transition	200	
TQVWH	Data Setup to WR transition	1600	
TWHQX	Data Hold after WR	200	
TRLAZ	RD low to Address Float		0
TWHLH	RD or WR high to ALE high	210	290

External Data Memory Characteristics (values in ns)

External Data Memory Write Cycle

External Data Memory Read Cycle

TSC80CL31/TSC80CL51

Serial Port Timing – Shift Register Mode (values in ns)

SYMBOL	PARAMETER	min	max
TXLXL	Serial Port Clock Cycle Time	12 Clk	
толхн	Output Data Setup to Clock Rising Edge	2370	
TXHQX	Output Data Hold after Clock Rising Edge	390	
TXHDX	Input Data Hold after Clock Rising Edge	0	
TXHDV	Clock Rising Edge to Input Data Valid		2370

Shift Register Timing Waveforms

TSC80CL31/TSC80CL51

External Clock Drive Characteristics (XTAL1)

SYMBOL	PARAMETER	MIN	MAX	UNIT
FCLCL	Oscillator Frequency		42	MHz
TCLCL	Oscillator period	23.8		ns
TCHCX	High Time	5		ns
TCLCX	Low Time	5		ns
TCLCH	Rise Time		5	ns
TCHCL	Fall Time	Inter Contractor Contractor Contractor	5	ns

External Clock Drive Waveforms

AC Testing Input/Output Waveforms

AC inputs during testing are driven at Vcc - 0.5 for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at VIH min for a logic "1" and VIL max for a logic "0".

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. Iol/IoH $\geq \pm 20$ mA.

TEMIC Semiconductors

Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Ordering Information

Commercial Temperature Range

Dent Namel an	Trans	Entropy		Package	
Part Number	туре	rrequency	Туре	Footprint	Thickness
TSC80CL31-V4CA	ROMless version	4 MHz	PDIL 40	15.50 mm	5 mm
TSC80CL31-V4CB	ROMless version	4 MHz	PLCC 44	17.50 mm	4.40 mm
TSC80CL31-V4CC	ROMless version	4 MHz	PQFP 44	13.90 mm	2 mm
TSC80CL31-V4CD	ROMless version	4 MHz	PQFP 44	12.30 mm	2 mm
TSC80CL31-V4CE	ROMless version	4 MHz	VQFP 44	12 mm	1.40 mm
TSC80CL31-V4CF	ROMless version	4 MHz	TQFP 44	12 mm	1 mm
TSC80CL51xxx-V4CA	MASKROM version	4 MHz	PDIL 40	15.50 mm	5 mm
TSC80CL51xxx-V4CB	MASKROM version	4 MHz	PLCC 44	17.50 mm	4.40 mm
TSC80CL51xxx-V4CC	MASKROM version	4 MHz	PQFP 44	13.90 mm	2 mm
TSC80CL51xxx-V4CD	MASKROM version	4 MHz	PQFP 44	12.30 mm	2 mm
TSC80CL51xxx-V4CE	MASKROM version	4 MHz	VQFP 44	12 mm	1.40 mm
TSC80CL51xxx-V4CF	MASKROM version	4 MHz	TQFP 44	12 mm	1 mm

Options: Tape and Reel & Dry Pack, Secret ROM, Secret Tag and Die offering. Please consult your sales office.

Product Marking :

For PDIL 40, PLCC 44 & QFP 44 Packages

TEMIC Customer P/N Temic P/N © Intel 80, 82 YYWW Lot Number

CMOS 0 to 44 MHz Single Chip 8–bit Microntroller

Description

TEMIC's 80C52 and 80C32 are high performance CMOS versions of the 8052/8032 NMOS single chip 8 bit μ C.

The fully static design of the TEMIC 80C52/80C32 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The 80C52 retains all the features of the 8052 : 8 K bytes of ROM ; 256 bytes of RAM ; 32 I/O lines ; three 16 bit timers ; a 6-source, 2-level interrupt structure ; a full duplex serial port ; and on-chip oscillator and clock circuits. In addition, the 80C52 has 2 software-selectable

- 80C32 : Romless version of the 80C52
- 80C32/80C52-L16 : Low power version
 Vcc : 2.7 5.5 V Freq : 0-16 MHz
- 80C32/80C52-12 : 0 to 12 MHz
- 80C32/80C32-12 : 0 to 12 MHz
 80C32/80C52-16 : 0 to 16 MHz
- 80C32/80C52-10 : 0 to 10 MHz
 80C32/80C52-20 : 0 to 20 MHz
- 80C32/80C52-25 : 0 to 25 MHz
 80C32/80C52-25 : 0 to 25 MHz
- 80C32/80C32-23 : 0 to 23 MHz
 80C32/80C52-30 : 0 to 30 MHz

modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the RAM, the timers, the serial port and the interrupt system continue to function. In the power down mode the RAM is saved and all other functions are inoperative.

The 80C32 is identical to the 80C52 except that it has no on-chip ROM. TEMIC's 80C52/80C32 are manufactured using SCMOS process which allows them to run from 0 up to 44 MHz with Vcc = 5 V.

TEMIC's 80C52 and 80C32 are also available at 16 MHz with 2.7 V < V_{CC} < 5.5 V.

- 80C32/80C52-36 : 0 to 36 MHz
- 80C32-40 : 0 to 40 MHz*
- 80C32-42 : 0 to 42 MHz*
- 80C32-44 : 0 to 44 MHz*

* 0 to 70°C temperature range. For other speed and temperature range availability please consult your sales office.

Features

- Power control modes
- 256 bytes of RAM
- 8 Kbytes of ROM (80C52)
- 32 programmable I/O lines
- Three 16 bit timer/counters
- 64 K program memory space
- 64 K data memory space

Optional

- Secret ROM : Encryption
- Secret TAG : Identification number

- · Fully static design
- 0.8µ CMOS process
- Boolean processor
- 6 interrupt sources
- · Programmable serial port
- Temperature range : commercial, industrial, automotive, military

80C32/80C52

Interface

Figure 1. Block Diagram

TEMIC

80C32/80C52

Figure 2. Pin Configuration

DIL

LCC

Flat Pack

Diagrams are for reference only. Package sizes are not to scale.

Pin Description

VSS

Circuit ground potential.

VCC

Supply voltage during normal, Idle, and Power Down operation.

Port 0

Port 0 is an 8 bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's. Port 0 also outputs the code bytes during program verification in the 80C52. External pullups are required during program verification. Port 0 can sink eight LS TTL inputs.

Port 1

Port 1 is an 8 bit bi-directional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address byte during program verification. In the 80C52, Port 1 can sink/ source three LS TTL inputs. It can drive CMOS inputs without external pullups.

2 inputs of PORT 1 are also used for timer/counter 2 :

P1.0 [T2] : External clock input for timer/counter 2. P1.1 [T2EX] : A trigger input for timer/counter 2, to be reloaded or captured causing the timer/counter 2 interrupt.

Port 2

Port 2 is an 8 bit bi-directional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 bit addresses (MOVX @DPTR). In this application, it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8 bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

It also receives the high-order address bits and control signals during program verification in the 80C52. Port 2 can sink/source three LS TTL inputs. It can drive CMOS inputs without external pullups.

Port 3

Port 3 is an 8 bit bi-directional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the pullups. It also serves the functions of various special features of the TEMIC 51 Family, as listed below.

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	TD (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external Data Memory write strobe)
P3 7	RD (external Data Memory read strobe)

Port 3 can sink/source three LS TTL inputs. It can drive CMOS inputs without external pullups.

RST

A high level on this for two machine cycles while the oscillator is running resets the device. An internal pull-down resistor permits Power-On reset using only a capacitor connected to V_{CC} . As soon as the Reset is applied (Vin), PORT 1, 2 and 3 are tied to one. This operation is achieved asynchronously even if the oscillator does not start-up.

ALE

Address Latch Enable output for latching the low byte of the address during accesses to external memory. ALE is activated as though for this purpose at a constant rate of 1/6 the oscillator frequency except during an external data memory access at which time one ALE pulse is skipped. ALE can sink/source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

PSEN

Program Store Enable output is the read strobe to external Program Memory. PSEN is activated twice each machine cycle during fetches from external Program Memory. (However, when executing out of external Program Memory, two activations of PSEN are skipped during each access to external Data Memory). PSEN is not activated during fetches from internal Program Memory. PSEN can sink/source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

ĒĀ

When EA is held high, the CPU executes out of internal Program Memory (unless the Program Counter exceeds

Idle And Power Down Operation

Figure 3 shows the internal Idle and Power Down clock configuration. As illustrated, Power Down operation stops the oscillator. Idle mode operation allows the interrupt, serial port, and timer blocks to continue to function, while the clock to the CPU is gated off.

These special modes are activated by software via the Special Function Register, PCON. Its hardware address is 87H. PCON is not bit addressable.

Figure 3.Idle and Power Down Hardware.

PCON : Power Control Register

(MSB)							(LSB)
SMOD	-	-	-	GF1	GF0	PD	IDL

1 FFFH). When EA is held low, the CPU executes only out of external Program Memory. EA must not be floated.

XTAL1

Input to the inverting amplifier that forms the oscillator. Receives the external oscillator signal when an external oscillator is used.

XTAL2

Output of the inverting amplifier that forms the oscillator. This pin should be floated when an external oscillator is used.

Symbol	Position	Name and Function
SMOD	PCON.7	Double Baud rate bit. When set to a 1, the baud rate is doubled when the serial port is being used in either modes 1, 2 or 3.
-	PCON.6	(Reserved)
	PCON.5	(Reserved)
-	PCON.4	(Reserved)
GF1	PCON.3	General-purpose flag bit.
GF0	PCON.2	General-purpose flag bit.
PD	PCON.1	Power Down bit. Setting this bit activates power down operation.
IDL	PCON.0	Idle mode bit. Setting this bit activates idle mode operation.

If 1's are written to PD and IDL at the same time. PD takes, precedence. The reset value of PCON is (000X0000).

Idle Mode

The instruction that sets PCON.0 is the last instruction executed before the Idle mode is activated. Once in the Idle mode the CPU status is preserved in its entirety : the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM and all other registers maintain their data during idle. *Table 1* describes the status of the external pins during Idle mode.

There are three ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating Idle mode. The interrupt is serviced, and following RETI, the next instruction to be executed will be the one following the instruction that wrote 1 to PCON.0.

The flag bits GF0 and GF1 may be used to determine whether the interrupt was received during normal execution or during the Idle mode. For example, the instruction that writes to PCON.0 can also set or clear one or both flag bits. When Idle mode is terminated by an enabled interrupt, the service routine can examine the status of the flag bits.

The second way of terminating the Idle mode is with a hardware reset. Since the oscillator is still running, the hardware reset needs to be active for only 2 machine cycles (24 oscillator periods) to complete the reset operation.

Power Down Mode

The instruction that sets PCON.1 is the last executed prior to entering power down. Once in power down, the oscillator is stopped. The contents of the onchip RAM and the Special Function Register is saved during power down mode. The hardware reset initiates the Special Fucntion Register. In the Power Down mode, VCC may be lowered to minimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered, and that the voltage is restored before the hardware reset is applied which freezes the oscillator. Reset should not be released until the oscillator has restarted and stabilized.

Table 1 describes the status of the external pins while in the power down mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2. If the data is a 1, the port pin is held high during the power down mode by the strong pullup, T1, shown in *Figure 4*.

Table 1. Status	of the external	l pins during	idle and p	oower dowr	i modes.

MODE	PROGRAM MEMORY	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data
Idle	External	1	I	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Stop Clock Mode

Due to static design, the TEMIC 80C32/C52 clock speed can be reduced until 0 MHz without any data loss in memory or registers. This mode allows step by step utilization, and permits to reduce system power consumption by bringing the clock frequency down to any value. At 0 MHz, the power consumption is the same as in the Power Down Mode.

I/O Ports

The I/O buffers for Ports 1, 2 and 3 are implemented as shown in *figure 4*.

Figure 4.I/O Buffers in the 80C52 (Ports 1, 2, 3).

When the port latch contains a 0, all pFETS in figure 4 are off while the nFET is turned on. When the port latch makes a 0-to-1 transition, the nFET turns off. The strong pFET, T1, turns on for two oscillator periods, pulling the output high very rapidly. As the output line is drawn high, pFET T3 turns on through the inverter to supply the IOH source current. This inverter and T form a latch which holds the 1 and is supported by T2.

When Port 2 is used as an address port, for access to external program of data memory, any address bit that contains a 1 will have his strong pullup turned on for the entire duration of the external memory access.

When an I/O pin on Ports 1, 2, or 3 is used as an input, the user should be aware that the external circuit must sink current during the logical 1-to-0 transition. The maximum sink current is specified as ITL under the D.C. Specifications. When the input goes below approximately 2 V, T3 turns off to save ICC current. Note, when returning to a logical 1, T2 is the only internal pullup that is on. This will result in a slow rise time if the user's circuit does not force the input line high.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output respectively, of an inverting amplifier which is configured for use as an on-chip oscillator, as shown in figure 5. Either a quartz crystal or ceramic resonator may be used.

Hardware Description

Same as for the 80C51, plus a third timer/counter :

Timer/Event Counter 2

Timer 2 is a 16 bit timer/counter like Timers 0 and 1, it can operate either as a timer or as an event counter. This is selected by bit $C/\overline{T2}$ in the Special Function Register T2CON (Figure 1). It has three operating modes : "capture", "autoload" and "baud rate generator", which are selected by bits in T2CON as shown in *Table 2*.

In the capture mode there are two options which are selected by bit EXEN2 in T2CON; If EXEN2 = 0, then Timer 2 is a 16 bit timer or counter which upon overflowing sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature

Figure 5. Crystal Oscillator.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected as shown in *figure 6*. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 6. External Drive Configuration.

that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively, (RCAP2L and RCAP2H are new Special Function Register in the 80C52). In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt.

Table 2. Timer 2 Operating Modes.

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16 bit auto-reload
0	1	1	16 bit capture
1	х	1	baud rate generator
Х	Х	0	(off)

The capture mode is illustrated in Figure 7.

Figure 7. Timer 2 in Capture Mode.

In the auto-reload mode there are again two options, which are selected by bit EXEN2 in T2CON.If EXEN2 = 0, then when Timer 2 rolls over it does not only set TF2 but also causes the Timer 2 register to be reloaded

with the 16 bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX will also trigger the 16 bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 8.

Figure 8. Timer in Auto-Reload Mode.

(MSB)							(LSB)
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	$C/\overline{T2}$	CP/RL2

The baud rate generator mode is selected by : RCLK = 1 and/or TCLK = 1.

Symbol	Position	Name and Significance
TF2	T2CON.7	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either $RCLK = 1$ OR $TCLK = 1$.
EXF2	T2CON.6	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.
RCLK	T2CON.5	Receive clock flag. When set, causes the serial port to use Timer2 overflow pulses for its receive clock in modes 1 and 3. $RCLK = 0$ causes Timer 1 overflow to be used for the receive clock.
TCLK	T2CON.4	Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2	T2CON.3	Timer 2 external enable flag. When set, allows capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. $EXEN2 = 0$ causes Timer 2 to ignore events at T2EX.
TR2	T2CON.2	Start/stop control for Timer 2. A logic 1 starts the timer.
C/T2	T2CON.1	Timer or counter select. (Timer 2) 0 = Internal timer (OSC/12) 1 = External event counter (falling edge triggered).
CP/RL2	T2CON.0	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN 2 = 1. When cleared, auto reloads will occur either with Timer 2 overflows or negative transition at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

80C52 with Secret ROM

TEMIC offers 80C52 with the encrypted secret ROM option to secure the ROM code contained in the 80C52 microcontrollers.

The clear reading of the program contained in the ROM is made impossible due to an encryption through several random keys implemented during the manufacturing process.

The keys used to do such encryption are selected randomwise and are definitely different from one microcontroller to another.

This encryption is activated during the following phases :

- Everytime a byte is addressed during a verify of the ROM content, a byte of the encryption array is selected.
- MOVC instructions executed from external program memory are disabled when fetching code bytes from internal memory.
- EA is sampled and latched on reset, thus all state modification are disabled.

For further information please refer to the application note (ANM053) available upon request.

80C52 with Secret TAG

TEMIC offers special 64-bit identifier called "SECRET TAG" on the microcontroller chip.

The Secret Tag option is available on both ROMless and masked microcontrollers.

The Secret Tag feature allows serialization of each microcontroller for identification of a specific equipment. A unique number per device is implemented in the chip during manufacturing process. The serial number is a 64-bit binary value which is contained and addressable in the Special Function Registers (SFR) area.

This Secret Tag option can be read-out by a software routine and thus enables the user to do an individual identity check per device. This routine is implemented inside the microcontroller ROM memory in case of masked version which can be kept secret (and then the value of the Secret Tag also) by using a ROM Encryption.

For further information, please refer to the application note (ANM031) available upon request.

Electrical Characteristics

Absolute Maximum Ratings*

Ambiant Temperature Under Bias :

$C = commercial \dots 0^{\circ}C to 70^{\circ}C$
$I = industrial \dots -40^{\circ}C \text{ to } 85^{\circ}C$
Storage Temperature
Voltage on VCC to VSS0.5 V to + 7 V
Voltage on Any Pin to VSS –0.5 V to V _{CC} + 0.5 V
Power Dissipation 1 W
* This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

TA = 0°C to 70°C; VSS = 0 V; VCC = 5 V \pm 10 %; F = 0 to 44 MHz TA = -40°C + 85°C; VSS = 0 V; VCC = 5 V \pm 10 %; F = 0 to 36 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	v	
VIHI	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.3 0.45 1.0	V V V	$IOL = 100 \ \mu A$ $IOL = 1.6 \ mA \ (note 2)$ $IOL = 3.5 \ mA$
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.3 0.45 1.0	V V V	$IOL = 200 \ \mu A$ $IOL = 3.2 \ mA \ (note 2)$ $IOL = 7.0 \ mA$
VOH	Output High Voltage Port 1, 2, 3	Vcc - 0.3		v	IOH = - 10 μA
		Vcc - 0.7		v	IOH = - 30 μA
		Vcc - 1.5		v	$IOH = -60 \ \mu A$ VCC = 5 V ± 10 %
VOH1	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3		v	IOH = - 200 μA
		Vcc – 0.7		v	IOH = - 3.2 mA
		Vcc - 1.5		v	IOH = -7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 50	μA	Vin = 0.45 V
ILI	Input leakage Current		± 10	μA	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 650	μΑ	Vin = 2.0 V
IPD	Power Down Current		50	μΑ	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	KOhm	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq ≥ 12 MHz Icc op = 1.25 Freq (MHz) + 5 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA mA	Vcc = 5.5 V

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

A = Automotive -40° C to $+125^{\circ}$ C
Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$
Voltage on VCC to VSS
Voltage on Any Pin to VSS
Power Dissipation 1 W
* This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Parameters

TA = -40° C + 125°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 36 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	v	
VIHI	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.3 0.45 1.0	v v v	$IOL = 100 \ \mu A$ $IOL = 1.6 \ mA \ (note 2)$ $IOL = 3.5 \ mA$
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.3 0.45 1.0	V V V	$IOL = 200 \ \mu A$ $IOL = 3.2 \ mA \ (note 2)$ $IOL = 7.0 \ mA$
VOH	Output High Voltage Port 1, 2 and 3	Vcc - 0.3		v	IOH = - 10 μA
		Vcc - 0.7		v	IOH = - 30 μA
		Vcc - 1.5		v	$IOH = -60 \ \mu A$ VCC = 5 V ± 10 %
VOH1	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3		v	IOH = - 200 μA
		Vcc - 0.7	-	v	IOH = -3.2 mA
		Vcc - 1.5		v	IOH = - 7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 75	μΑ	Vin = 0.45 V
ILI	Input leakage Current		±10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 750	μΑ	Vin = 2.0 V
IPD	Power Down Current		75	μΑ	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	KOhm	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq ≥ 12 MHz Icc op = 1.25 Freq (MHz) + 5 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA	Vcc = 5.5 V

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

$M = Military \dots -55^{\circ}C \text{ to } +125^{\circ}C$
Storage Temperature $\dots \dots \dots$
Voltage on VCC to VSS
Voltage on Any Pin to VSS
Power Dissipation 1 W
* This value is based on the maximum allowable die temperature and the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

 $TA = -55^{\circ}C + 125^{\circ}C$; Vss = 0 V; $Vcc = 5 V \pm 10 \%$; F = 0 to 36 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	v	
VIHI	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.45	v	IOL = 1.6 mA (note 2)
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.45	v	IOL = 3.2 mA (note 2)
VOH	Output High Voltage (Port 1, 2 and 3)	2.4		v	$IOH = -60 \ \mu A$ Vcc = 5 V ± 10 %
		0.75 Vcc		v	IOH = – 25 μA
		0.9 Vcc		v	IOH = - 10 μA
VOHI	Output High Voltage (Port 0 in External Bus Mode, ALE, PEN)	2.4		v	$IOH = -400 \ \mu A$ Vcc = 5 V ± 10 %
		0.75 Vcc		v	IOH = - 150 μA
		0.9 Vcc		v	IOH = - 40 μA
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 75	μΑ	Vin = 0.45 V
ILI	Input leakage Current		+/- 10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 750	μΑ	Vin = 2.0 V
IPD	Power Down Current		75	μΑ	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	ΚΩ	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1$ MHz, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq \ge 12 MHz Icc op = 1.25 Freq (MHz) + 5 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA mA	Vcc = 5.5 V

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

$C = Commercial \dots 0^{\circ}C$ to 70°C
$I = Industrial 40 \text{ to } 85^\circ C$
Storage Temperature
Voltage on VCC to VSS
Voltage on Any Pin to VSS
Power Dissipation 1 W**
** This value is based on the maximum allowable die temperature and the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Characteristics

TA = 0°C to 70°C ; Vcc = 2.7 V to 5.5 V ; Vss = 0 V ; F = 0 to 16 MHz TA = -40°C to 85°C ; Vcc = 2.7 V to 5.5 V

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 V _{CC} - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 V _{CC} + 1.4	$V_{CC} + 0.5$	v	
VIH2	Input High Voltage to RST for Reset	0.7 V _{CC}	$V_{CC} + 0.5$	v	
VIH1	Input High Voltage to XTAL1	0.7 V _{CC}	$V_{CC} + 0.5$	v	
VPD	Power Down Voltage to Vcc in PD Mode	2.0	5.5	v	
VOL	Output Low Voltage (Ports 1, 2, 3)		0.45	v	IOL = 0.8 mA (note 2)
VOL1	Output Low Voltage Port 0, ALE, PSEN		0.45	v	IOL = 1.6 mA (note 2)
VOH	Output High Voltage Ports 1, 2, 3	0.9 Vcc		v	$IOH = -10 \mu A$
VOHI	Output High Voltage (Port 0 in External Bus Mode), ALE, PSEN	0.9 Vcc		v	$IOH = -40 \mu A$
IIL	Logical 0 Input Current Ports 1, 2, 3		- 50	μΑ	Vin = 0.45 V
ILI	Input Leakage Current		± 10	μA	0.45 < Vin < V _{CC}
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)		- 650	μA	Vin = 2.0 V
IPD	Power Down Current		50	μA	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V (note 1)}$
RRST	RST Pulldown Resistor	50	200	kΩ	
CIO	Capacitance of I/O Buffer		10	pF	fc = 1 MHz, $T_A = 25^{\circ}C$

Maximum Icc (mA)

		OPERATIN	G (NOTE 1)			IDLE (1	NOTE 1)	
FREQUENCY/Vcc	2.7 V	3 V	3.3 V	5.5 V	2.7 V	3 V	3.3 V	5.5 V
1 MHz	0.8 mA	l mA	1.1 mA	1.8 mA	400 µA	500 µA	600 µA	1 mA
6 MHz	4 mA	5 mA	6 mA	10 mA	1.5 mA	1.7 mA	2 mA	4 mA
12 MHz	8 mA	10 mA	12 mA		2.5 mA	3 mA	3.5 mA	
16 MHz	10 mA	12 mA	14 mA		3 mA	3.8 mA	4.5 mA	
Freq > 12 MHz (Vcc = 5.5	V) Icc (m/ Icc Idle	$A) = 1.25 \times Free (mA) = 0.36$	eq (MHz) + 5 × Freq (MHz) -	+ 2.7				·

80C32/80C52

Note 1 : ICC is measured with all output pins disconnected ; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + .5 V, VIH = VCC -.5 V ; XTAL2 N.C. ; EA = RST = Port 0 = VCC. ICC would be slighty higher if a crystal oscillator used.

Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 5 V, VIH = VCC -.5 V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS.

Power Down ICC is measured with all output pins disconnected ; EA = PORT 0 = VCC ; XTAL2 N.C. ; RST = VSS.

Note 2 : Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLS of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In the worst cases (capacitive loading 100 pF), the noise pulse on the ALE line may exceed 0.45 V may exceed 0.45 V with maxi VOL peak 0.6 V. A Schmitt Trigger use is not necessary.

Figure 9. ICC Test Condition, Idle Mode. All other pins are disconnected.

Figure 10. ICC Test Condition, Active Mode. All other pins are disconnected.

Figure 11. ICC Test Condition, Power Down Mode. All other pins are disconnected.

Figure 12. Clock Signal Waveform for ICC Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

Explanation of the AC Symbol

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example :

TAVLL = Time for Address Valid to ALE low. TLLPL = Time for ALE low to $\overline{\text{PSEN}}$ low.

A : Address.	Q : Output data.
C : Clock.	R : READ signal.
D : Input data.	T : Time.
H : Logic level HIGH	V : Valid.
I : Instruction (program memory contents).	W : WRITE signal.
L : Logic level LOW, or ALE.	X : No longer a valid logic level.
P:PSEN.	Z : Float.

AC Parameters

TA = 0 to + 70°C; Vss = 0 V; Vcc = 5 V \pm 10 %; F = 0 to 44 MHz TA = 0 to +70°C; Vss = 0 V; 2.7 V < Vcc < 5.5 V; F = 0 to 16 MHz TA = -40° to + 85°C; Vss = 0 V; 2.7 V < Vcc < 5.5 V; F = 0 to 16 MHz TA = -55° + 125°C; Vss = 0 V; Vcc = 5 V \pm 10 %; F = 0 to 36 MHz (Load Capacitance for PORT 0, ALE and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF)

External Program Memory Characteristics (values in ns)

		16 N	MHz	20 M	MHz	25 N	MHz	30 N	AHz	36 N	AHz	40 N	MHz	42 N	AHz	44 N	AHz
SYM- BOL	PARAMETER	min	max														
TLHLL	ALE Pulse Width	110		90		70		60		50		40		35		30	
TAVLL	Address valid to ALE	40		30		20		15		10		9		8		7	
TLLAX	Address Hold After ALE	35		35		35		35		35		30		25		17	
TLLIV	ALE to valid instr in		185		170		130		100		80		70		65		65
TLLPL	ALE to PSEN	45		40		30		25		20		15		13		12	
TPLPH	PSEN pulse Width	165		130		100		80		75		65	1.	60		54	
TPLIV	PSEN to valid instr in		125		110		85		65		50		45		40		35
TPXIX	Input instr Hold After PSEN	0		0		0		0		0		0		0		0	
TPXIZ	Input instr Float After PSEN		50		45		35		30		25		20		15		10
TPXAV	PSEN to Address Valid	55		50		40		35		30		25		20		15	
TAVIV	Address to Valid instr in		230		210		170		130		90		80		75		70
TPLAZ	PSEN low to Address Float		10		10		8		6		5		5		5		5

External Program Memory Read Cycle

		16 MHz		20 MHz		25 MHz		30 MHz		36 MHz		40 MHz		42 MHz		44 MHz	
SYM- BOL	PARAMETER	min	max														
TRLRH	RD pulse Width	340		270		210		180		120		100		90		80	
TWLWH	WR pulse Width	340		270		210		180		120		100		90		80	
TLLAX	Address Hold After ALE	85		85		70		55		35		30		25		25	
TRLDV	RD to Valid Data in		240		210		175		135		110		90		80		70
TRHDX	Data hold after RD	0		0		0		0		0		0		0		0	
TRHDZ	Data float after RD		90		90		80		70		50		45		40		35
TLLDV	ALE to Valid Data In		435		370		290		235		170		150		140		130
TAVDV	Address to Valid Data IN		480		400		320		260		190		180		175		170
TLLWL	ALE to WR or RD	150	250	135	170	120	130	90	115	70	100	60	95	55	90	50	85
TAVWL	Address to WR or RD	180		180		140		115		75		65		60		55	
TQVWX	Data valid to WR transition	35		35		30		20		15		10		8		6	
TQVWH	Data Setup to WR transition	380		325	-	250		215		170		160		150		140	
TWHQX	Data Hold after WR	40		35		30		20		15		10		8		6	
TRLAZ	RD low to Address Float		0		0		0		0		0		0		0		0
TWHLH	RD or WR high to ALE high	35	90	35	60	25	45	20	40	20	40	15	35	13	33	13	33

External Data Memory Characteristics (values in ns)

External Data Memory Write Cycle

External Data Memory Read Cycle

Serial Port Timing – Shift Register Mode (values in ns)

		16 MHz		20 MHz		25 MHz		30 MHz		36 MHz		40 MHz		42 MHz		44 MHz	
SYM- BOL	PARAMETER	min	max														
TXLXL	Serial Port Clock Cycle Time	750		600		480		400		330		250		230		227	
түүхн	Output Data Setup to Clock Rising Edge	563		480		380		300		220		170		150		140	
TXHQX	Output Data Hold after Clock Rising Edge	63		90		65		50		45		35		30		25	
TXHDX	Input Data Hold after Clock Rising Edge	0		0		0		0		0		0		0		0	
TXHDV	Clock Rising Edge to Input Data Valid		563		450		350		300		250		200		180		160

Shift Register Timing Waveforms

External Clock Drive Characteristics (XTAL1)

SYMBOL	PARAMETER	MIN	MAX	UNIT
FCLCL	Oscillator Frequency		44	MHz
TCLCL	Oscillator period	22.7		ns
TCHCX	High Time	5		ns
TCLCX	Low Time	5		ns
TCLCH	Rise Time		5	ns
TCHCL	Fall Time		5	ns

External Clock Drive Waveforms

AC Testing Input/Output Waveforms

AC inputs during testing are driven at Vcc - 0.5 for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at VIH min for a logic "1" and VIL max for a logic "0".

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. Iol/IoH $\ge \pm 20$ mA.

TEMIC Semiconductors

80C32/80C52

Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

80C32/80C52

Ordering Information

(1) Only for 80C31 at commercial range.

CMOS 0 to 36 MHz Single Chip 8–bit Microcontroller

Description

TEMIC's 80C154 and 83C154 are high performance CMOS single chip μ C. The 83C154 retains all the features of the 80C52 with extended ROM capacity (16 K bytes), 256 bytes of RAM, 32 I/O lines, a 6-source 2-level interrupts, a full duplex serial port, an on-chip oscillator and clock circuits, three 16 bit timers with extra features : 32 bit timer and watchdog functions. Timer 0 and 1 can be configured by program to implement a 32 bit timer. The watchdog function can be activated either with timer 0 or timer 1 or both together (32 bit timer).

In addition, the 83C154 has 2 software-selectable modes of reduced activity for further reduction in power

- 80C154 : ROMless version of the 83C154µ
- 80C154/83C154-12 : 0 to 12 MHz
- 80C154/83C154-16 : 0 to 16 MHz
- 80C154/83C154-20 : 0 to 20 MHz
- 80C154/83C154-25 : 0 to 25 MHz
- 80C154/83C154-30 : 0 to 30 MHz

Features

- Power control modes
- 256 bytes of RAM
- 16 Kbytes of ROM (83C154)
- 32 Programmable I/O lines (programmable impedance)
- Three 16 bit timer/counters (including watchdog and 32 bit timer)
- 64 K program memory space
- 64 K data memory space

Optional

- Secret ROM : Encryption
- Secret TAG : Identification number

consumption. In the idle mode the CPU is frozen while the RAM is saved, and the timers, the serial port and the interrupt system continue to function. In the power down mode the RAM is saved and the timers, serial port and interrupt continue to function when driven by external clocks. In addition as for the TEMIC 80C51/80C52, the stop clock mode is also available.

The 80C154 is identical to the 83C154 except that it has no on-chip ROM. TEMIC's 80C154 and 83C154 are manufactured using SCMOS process which allows them to run from 0 up to 36 MHz with Vcc = 5 V.

- 80C154/83C154-36 : 0 to 36 MHz
- 80C154/83C154-L16 : Low power version VCC : 2.7-5.5 V Freq : 0-16 MHz

For other speed and temperature range availability please consult your sales office.

- Fully static design
- 0.8µ CMOS process
- Boolean processor
- 6 interrupt sources
- Programmable serial port
- Temperature range : commercial, industrial, automotive, military

80C154/83C154

Interface

Figure 1. Block Diagram

Figure 2. Pin Configuration

DIL

Flat Pack

Diagrams are for reference only. Package sizes are not to scale

Pin Description

Vss

Circuit Ground Potential.

VCC

Supply voltage during normal, Idle, and Power Down operation.

Port 0

Port 0 is an 8 bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's. Port 0 also outputs the code bytes during program verification in the 83C154. External pullups are required during program verification. Port 0 can sink eight LS TTL inputs.

Port 1

Port 1 is an 8 bit bi-directional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address byte during program verification. In the 83C154, Port 1 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

2 inputs of PORT 1 are also used for timer/counter 2 :

P1.0 [T2] : External clock input for timer/counter 2. P1.1 [T2EX] : A trigger input for timer/counter 2, to be reloaded or captured causing the timer/counter 2 interrupt.

Port 2

Port 2 is an 8 bit bi-directional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 bit addresses (MOVX @DPTR). In this application, it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8 bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

It also receives the high-order address bits and control signals during program verification in the 83C154. Port 2 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

Port 3

Port 3 is an 8 bit bi-directional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the pullups. It also serves the functions of various special features of the TEMIC 51 Family, as listed below.

Port Pin Alternate Function D2 () RXD (serial input port) P3.1 TXD (serial output port) P3.2 INTO (external interrupt 0) P3.3 **INT1** (external interrupt 1) P3.4 TD (Timer 0 external input) P3.5 T1 (Timer 1 external input) P3.6 WR (external Data Memory write strobe) P3.7 RD (external Data Memory read strobe)

Port 3 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

RST

A high level on this for two machine cycles while the oscillator is running resets the device. An internal pull-down resistor permits Power-On reset using only a capacitor connected to VCC. As soon as the result is applied (Vin), PORT 1, 2 and 3 are tied to 1. This operation is achieved asynchronously even if the oscillator is not start up.

ALE

Address Latch Enable output for latching the low byte of the address during accesses to external memory. ALE is activated as though for this purpose at a constant rate of 1/6 the oscillator frequency except during an external data memory access at which time one ALE pulse is skipped. ALE can sink or source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

PSEN

Program Store Enable output is the read strobe to external Program Memory. PSEN is activated twice each machine cycle during fetches from external Program Memory. (However, when executing out of external Program Memory, two activations of PSEN are skipped during each access to external Data Memory). PSEN is not activated during fetches from internal Program Memory. PSEN can sink/source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

EA

When EA is held high, the CPU executed out of internal Program Memory (unless the Program Counter exceeds 3FFFH). When EA is held low, the CPU executes only out of external Program Memory. EA must not be floated.

Idle and Power Down Operation

Figure 3 shows the internal Idle and Power Down clock configuration. As illustrated, Power Down operation stops the oscillator. The interrupt, serial port, and timer blocks continue to function only with external clock (INT0, INT1, T0, T1).

Figure 3. Idle and Power Down Hardware.

XTAL1

Input to the inverting amplifier that forms the oscillator. Receives the external oscillator signal when an external oscillator is used.

XTAL2

Output of the inverting amplifier that forms the oscillator, and input to the internal clock generator. This pin should be floated when an external oscillator is used.

Idle Mode operation allows the interrupt, serial port, and timer blocks to continue to function with internal or external clocks, while the clock to CPU is gated off. The special modes are activated by software via the Special Function Register, PCON. Its hardware address is 87H. PCON is not bit addressable.
80C154/83C154

PCON : Power Control Register

(MSB)						(LSB)
SMOD	HPD	RPD	 GFI	GF0	PD	IDL

Symbol	Position	Name and Function
SMOD	PCON.7	Double Baud rate bit. When set to a 1, the baud rate is doubled when the seriel part is being used in
		either modes 1, 2 or 3.
HPD	PCON.6	Hard power Down bit. Setting this
		bit allows CPU to enter in Power
		Down state on an external event
		(1 to 0 transition) on bit T1
		(p. 3.5) the CPU quit the Hard
		Power Down mode when bit T1
		p. 5.5) goes high of when reset is
RPD	PCON.5	Recover from Idle or Power Down
		bit. When 0 RPD has no effetc.
		When 1, RPD permits to exit from
		idle or Power Down with any non
		enabled interrupt source (except
		time 2). In this case the program
		interrupt is enabled the
		appropriate interrupt routine is
		serviced.
GFI	PCON.3	General-purpose flag bit.
GF0	PCON.2	General-purpose flag bit.
PD	PCON.1	Power Down bit. Setting this bit
		activates power down operation.
IDL	PCON.0	Idle mode bit. Setting this bit
		activates idle mode operation.

If 1's are written to PD and IDL at the same time. PD takes, precedence. The reset value of PCON is (000X0000).

Idle Mode

The instruction that sets PCON.0 is the last instruction executed before the Idle mode is activated. Once in the Idle mode the CPU status is preserved in its entirety : the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM and all other registers maintain their data during idle. In the idle mode, the internal clock signal is gated off to the CPU, but interrupt, timer and serial port functions are maintained. Table 1 describes the status of the external pins during Idle mode. There are three ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating Idle mode. The interrupt is serviced, and following RETI, the next instruction to be executed will be the one following the instruction that wrote 1 to PCON.0. The flag bits GF0 and GF1 may be used to determine whether the interrupt was received during normal execution or during the Idle mode. For example, the instruction that writes to PCON.0 can also set or clear one or both flag bits. When Idle mode is terminated by an enabled interrupt, the service routine can examine the status of the flag bits.

The second way of terminating the Idle mode is with a hardware reset. Since the oscillator is still running, the hardware reset needs to be active for only 2 machine cycles (24 oscillator periods) to complete the reset operation.

The third way to terminate the Idle mode is the activation of any disabled interrupt when recover is programmed (RPD = 1). This will cause PCON.0 to be cleared. No interrupt is serviced. The next instruction is executed. If interrupt are disabled and RPD = 0, only a reset can cancel the Idle mode.

Power Down Mode

The instruction that sets PCON.1 is the last executed prior to entering power down. Once in power down, the oscillator is stopped. The contents of the onchip RAM and the Special Function Register is saved during power down mode. The three ways to terminate the Power Down mode are the same than the Idle mode. But since the onchip oscillator is stopped, the external interrupts, timers and serial port must be sourced by external clocks only, via INTO, INT1, TO, T1.

In the Power Down mode, VCC may be lowered to minimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered, and that the voltage is restored before the hardware reset is applied which frees the oscillator. Reset should not be released until the oscillator has restarted and stabilized.

When using voltage reduction : interrupt, timers and serial port functions are guaranteed in the VCC specification limits.

Table 1 describes the status of the external pins while in the power down mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2. If the port switches from 0 to 1, the port pin is held high during the power down mode by the strong pullup, T1, shown in figure 4.

MODE	PROGRAM MEMORY	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 1. Status of the external pins during idle and power down modes.

Figure 4. I/O Buffers in the 83C154 (Ports 1, 2, 3).

Stop Clock Mode

Due to static design, the TEMIC 83C154 clock speed can be reduced until 0 MHz without any data loss in memory or registers. This mode allows step by step utilization, and permits to reduce system power consumption by bringing the clock frequency down to any value. At 0 MHz, the power consumption is the same as in the Power Down Mode.

I/O Ports

The I/O drives for P1, P2, P3 of the 83C154 are impedance programmable. The I/O buffers for Ports 1, 2 and 3 are implemented as shown in *figure 4*.

When the port latch contains 0, all pFETS in figure 4 are off while the nFET is turned on. When the port latch makes a 0-to-1 transition, the nFET turns off. The strong pullup pFET, T1, turns on for two oscillator periods, pulling the output high very rapidly. As the output line is drawn high, pFET T3 turns on through the inverter to supply the IOH source current. This inverter and T3 form a latch which holds the 1 and is supported by T2. When Port 2 is used as an address port, for access to external program of data memory, any address bit that contains a 1 will have his strong pullup turned on for the entire duration of the external memory access.

When an I/O pin on Ports 1, 2, or 3 is used as an input, the user should be aware that the external circuit must sink current during the logical 1-to-0 transition. The

maximum sink current is specified as ITL under the D.C. Specifications. When the input goes below approximately 2 V, T3 turns off to save ICC current. Note, when returning to a logical 1, T2 is the only internal pullup that is on. This will result in a slow rise time if the user's circuit does not force the input line high.

The input impedance of Port 1, 2, 2 are programmable through the register IOCON. The ALF bit (IOCON0) set all of the Port 1, 2, 3 floating when a Power Down mode occurs. The P1HZ, P2HZ, P3HZ bits (IOCON1, IOCON2, IOCON3) set respectively the Ports P1, P2, P3 in floating state. The IZC (IOCON4) allows to choose input impedance of all ports (P1, P2, P3). When IZC = 0, T2 and T3 pullup of I/O ports are active ; the internal input impedance is approximately 10 K. When IZC = 1 only T2 pull-up is active. The T3 pull-up is turned off by IZC. The internal impedance is approximately 100 K.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output respectively, of an inverting amplifier which is configured for use as an on-chip oscillator, as shown in figure 5. Either a quartz crystal or ceramic resonator may be used.

Figure 5. Crystal Oscillator.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected as shown in *figure 6*. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 6. External Drive Configuration.

Hardware Description

Same as for the 80C51, plus a third timer/counter :

Timer/Event Counter 2

Timer 2 is a 16 bit timer/counter like Timers 0 and 1, it can operate either as a timer or as an event counter. This is selected by bit $C/\overline{T2}$ in the Special Function Register T2CON (Figure 1). It has three operating modes : "capture", "autoload" and "baud rate generator", which are selected by bits in T2CON as shown in *Table 2*.

Table 2. Timer 2 Operating Modes.

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16 bit auto-reload
0	1	1	16 bit capture
1	X	1	baud rate generator
Х	Х	0	(off)

In the capture mode there are two options which are selected by bit EXEN2 in T2CON; If EXEN2 = 0, then Timer 2 is a 16 bit timer or counter which upon overflowing sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt.

The capture mode is illustrated in Figure 7.

In the auto-reload mode there are again two options, which are selected by bit EXEN2 in T2CON.If

EXEN2 = 0, then when Timer 2 rolls over it does not only set TF2 but also causes the Timer 2 register to be reloaded with the 16 bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX will also trigger the 16 bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 8.

Figure 7. Timer 2 in Capture Mode.

80C154/83C154

TF2	EXF2	RCLK	TCLK	EXEN2	TR2	$C/\overline{T2}$	CP/RL2

The baud rate generator mode is selected by : RCLK = 1 and/or TCLK = 1.

Symbol	Position	Name and Significance
TF2	T2CON.7	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 OR TCLK = 1.
EXF2	T2CON.6	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.
RCLK	T2CON.5	Receive clock flag. When set, causes the serial port to use Timer2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK	T2CON.4	Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2	T2CON.3	Timer 2 external enable flag. When set, allows capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2	T2CON.2	Start/stop control for Timer 2. A logic 1 starts the timer.
$C/\overline{T2}$	T2CON.1	Timer or counter select. (Timer 2) $0 =$ Internal timer (OSC/12) $1 =$ External event counter (falling edge triggered).
CP/RL2	T2CON.0	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN $2 = 1$. When cleared, auto reloads will occur either with Timer 2 overflows or negative transition at T2EX when EXEN $2 = 1$. When either RCLK = 1 or TCLK = 1, this bit is imported and the timer is forced to auto-reload on Timer 2 overflow.

Timer Functions

EMIC

Semiconductors

(MSB)

In fact, timer 0 & 1 can be connected by a software instruction to implement a 32 bit timer function. Timer 0 (mode 3) or timer 1 (mode 0, 1, 2) or a 32 bit timer consisting of timer 0 + timer 1 can be employed in the watchdog mode, in which case a CPU reset is generated upon a TF1 flag.

The internal pull-up resistances at ports $1 \sim 3$ can be set to a ten times increased value simply by software.

32 Bit Mode and Watching Mode

The 83C154 has two supplementary modes. They are accessed by bits WDT and T32 of register IOCON. Figure 10 showns how IOCON must be programmed in order to have access to these functions

Figure 9.

32 bit timer [IOCON bit 6 (T32) = 1]

(LSB)

80C154/83C154

(MSB)							(LSB)
WDT	T32	SERR	IZC	P3HZ	P2HZ	P1HZ	ALF
Symbol		Position		Na	me and Signific	ance	
T32		IOCON.6	 If T32 = 1 a If T32 = 1 a 	and if $C/\overline{T0} = 0$, T1 and if $C/\overline{T0} = 1$, T1	and T0 are progra and T0 are progra	mmed as a 32 bit T mmed as a 32 bit C	TIMER. COUNTER.
WDT		IOCON.7	– If WDT =	1 and according	to the mode selec	ted by TMOD, a	n 8 bit or 32 bit

WATCHDOG is configured from TIMERS 0 and 1.

32 Bit Mode

• T32 = 1 enables access to this mode. As shown in figure 11, this 32 bit mode consists in cascading TIMER 0 for the LSBs and TIMER 1 for the MSBs

Figure 10.32 Bit Timer/counter.

T32 = 1 starts the timer/counter and T32 = 0 stops it.

It should be noted that as soon as T32 = 0. TIMERs 0 and 1 assume the configuration specified by register TMOD. Moreover, if TR0 = 1 or if TR1 = 1, the content of the

32 Bit Timer

• Figure 12 illustrates the 32 bit TIMER mode.

Figure 11. 32 Bit Timer Configuration.

 In this mode, T32 = 1 and C/T0 = 0, the 32 bit timer is incremented on each S3P1 state of each machine cycle. An overflow of TIMER 0 (TF0 has not been set to 1) increments TIMER 1 and the overflow of the 32 bit TIMER is signalled by setting TF1 (S5P1) to 1. The following formula should be used to calculate the required frequency :

TIMERs evolves. Consequently, in 32 bit mode, if the TIMER/COUNTER muste be stopped (T32 = 0), TR0

and TR1 must be set to 0.

$$f = \frac{OSC}{12 \times (65536 - (T0, T1))}$$

Semiconductors

input T0 is sampled on each S5P2 state of every

machine cycle or, in other words, every $OSC \div 12$.

32 Bit Counter

Figure 13 illustrates the 32 bit COUNTER mode.

Figure 12. 32 Bit Counter Configuration.

• In this mode, T32 = 0 and $C/\overline{T0} = 1$. Before it can make an increment, the 83C154 μ must detect two transitions on its T0 input. As shown in figure 14,

Figure 13. Counter Incrementation Condition.

- The counter will only evolve if a level 1 is detected during state S5P2 of cycle Ci and if a level 0 is detected during state S5P2 of cycle Ci + n.
- Consequently, the minimal period of signal fEXT admissible by the counter must be greater than or equal to two machine cycles. The following formula should be used to calculate the operating frequency.

$$f = \frac{fEXT}{65536 - (T0, T1)}$$
$$fEXT < \frac{OSC}{24}$$

Watchdog Mode

• WDT = 1 enables access to this mode. As shown in figure 15, all the modes of TIMERS 0 and 1, of which the overflows act on TF1 (TF1 = 1), activate the WATCHDOG Mode.

Figure 14. The Different Watchdog Configurations.

- If $C/\overline{T} = 0$, the WATCHDOG is a TIMER that is incremented every machine cycle. If $C\overline{T} = 1$, the WATCHDOG is a counter that is incremented by an external signal of which the frequency cannot exceed OSC ÷ 24.
- The overflow of the TIMER/COUNTER is signalled by raising flag TF1 to 1. The reset of the 83C154 is executed during the next machine cycle and lasts for the next 5 machine cycles. The results of this reset are identical to those of a hardware reset. The internal RAM is not affected and the special register assume the values shown in Table 3.

 Table 3. Content of the SFRS after a reset triggered by the watchdog.

REGISTER	CONTENT
PC	000H
ACC	00H
В	00H
PSW	00H
SP	07H
DPTR	0000H
P0-P3	0FFH
IP	0X000000B
IE	0X00000B
TMOD	00H
TCON	00H
T2CON	00H
THO	00H
TL0	00H
THI	00H
TLI	00H
TH2	00H
TL2	00H
RCAP2H	00H
RCAP2L	00H
SCON	00H
SBUF	Indeterminate
IOCON	00H
PCON	000X0000B

- As there are no precautions for protecting bit WDT from spurious writing in the IOCON register, special care must be taken when writing the program. In particular, the user should use the IOCON register bit handling instructions :
 - SETB and CLR x
 - in preference to the byte handling instructions :
 - MOV IOCON, # XXH, ORL IOCON, #XXH,
 - ANL IOCON, #XXH

External Counting in Power-down Mode (PD = PCON.1 = 1)

• In the power-down mode, the oscillator is turned off and the 83C154's activity is frozen. However, if an external clock is connected to one of the two inputs, T1/T0, TIMER/COUNTERS 0 and 1 can continue to operate.

In this case, counting becomes asychronous and the maximum, admissible frequency of the signal is OSC: 24.

• The overflow of either counter TF0 or TF1 causes an interrupt to be serviced or forces a reset if the counter is in the WATCHDOG MODE (T32 = ICON.7 = 1).

TEMIC Semiconductors

83C154 with Secret ROM

TEMIC offers 83C154 with the encrypted secret ROM option to secure the ROM code contained in the 83C154 microcontrollers.

The clear reading of the program contained in the ROM is made impossible due to an encryption through several random keys implemented during the manufacturing process.

The keys used to do such encryption are selected randomwise and are definitely different from one microcontroller to another.

This encryption is activated during the following phases :

- Everytime a byte is addressed during a verify of the ROM content, a byte of the encryption array is selected.
- MOVC instructions executed from external program memory are disabled when fetching code bytes from internal memory.
- EA is sampled and latched on reset, thus all state modification are disabled.

For further information please refer to the application note (ANM053) available upon request.

83C154 with Secret TAG

TEMIC offers special 64-bit identifier called "SECRET TAG" on the microcontroller chip.

The Secret Tag option is available on both ROMless and masked microcontrollers.

The Secret Tag feature allows serialization of each microcontroller for identification of a specific equipment. A unique number per device is implemented in the chip during manufacturing process. The serial number is a 64-bit binary value which is contained and addressable in the Special Function Registers (SFR) area.

This Secret Tag option can be read-out by a software routine and thus enables the user to do an individual identity check per device. This routine is implemented inside the microcontroller ROM memory in case of masked version which can be kept secret (and then the value of the Secret Tag also) by using a ROM Encryption.

For further information, please refer to the application note (ANM031) available upon request.

Electrical Characteristics

Absolute Maximum Ratings*

Ambiant Temperature Under Bias :

$C = commercial \dots 0^{\circ}C to +70^{\circ}C$
$I = industrial \dots -40^{\circ}C \text{ to } +85^{\circ}C$
Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$
Voltage on VCC to VSS
Voltage on Any Pin to VSS0.5 V to VCC + 0.5 V
Power Dissipation 1 W**
** This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

TA = 0°C to 70°C; Vcc = 0 V; Vcc = 5 V \pm 10 %; F = 0 to 36 MHz TA = -40°C + 85°C; Vcc = 0 V; Vcc = 5 V \pm 10 %; F = 0 to 36 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	V	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	v	· ·
VIH1	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	V	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.3 0.45 1.0	V V V	$IOL = 100 \ \mu A$ $IOL = 1.6 \ mA \ (note 2)$ $IOL = 3.5 \ mA$
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.3 0.45 1.0	V V V	$IOL = 200 \ \mu A$ $IOL = 3.2 \ mA$ (note 2) $IOL = 7.0 \ mA$
VOH	Output High Voltage Port 1, 2 and 3	Vcc - 0.3		v	IOH = - 10 μA
		Vcc – 0.7		V	IOH = - 30 μA
		Vcc - 1.5		v	$IOH = -60 \ \mu A$ VCC = 5 V ± 10 %
VOHI	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3		V	IOH = - 200 μA
		Vcc - 0.7		V	IOH = - 3.2 mA
		Vcc - 1.5		v	IOH = -7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 50	μΑ	Vin = 0.45 V
ILI	Input leakage Current		+/- 10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 650	μΑ	Vin = 2.0 V
IPD	Power Down Current		50	μA	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	KOhm	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz lcc op Icc idle Freq = 6 MHz lcc op Icc idle Freq ≥ 12 MHz lcc op = 1.3 Freq (MHz) + 4.5 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA mA	$Vcc = \overline{5.5 V}$

TEMIC Semiconductors

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

A = Automotive -40° C to $+125^{\circ}$ C
Storage Temperature $\dots -65^{\circ}C$ to $+ 150^{\circ}C$
Voltage on VCC to VSS0.5 V to + 7 V
Voltage on Any Pin to VSS
Power Dissipation 1 W
** This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

 $TA = -40^{\circ}C + 125^{\circ}C$; Vss = 0 V; $Vcc = 5 V \pm 10 \%$; F = 0 to 36 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	v	
VIHI	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.3 0.45 1.0	v	$IOL = 100 \ \mu A$ $IOL = 1.6 \ mA \ (note 2)$ $IOL = 3.5 \ mA$
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.3 0.45 1.0	v	$IOL = 200 \ \mu A$ $IOL = 3.2 \ mA \ (note 2)$ $IOL = 7.0 \ mA$
VOH	Output High Voltage Port 1, 2 and 3	Vcc - 0.3		v	IOH = - 10 μA
		Vcc - 0.7		v	IOH = - 30 μA
		Vcc - 1.5		v	$IOH = -60 \ \mu A$ VCC = 5 V ± 10 %
VOH1	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3		v	IOH = - 200 μA
		Vcc - 0.7		v	IOH = - 3.2 mA
		Vcc - 1.5		v	IOH = - 7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 50	μΑ	Vin = 0.45 V
ILI	Input leakage Current		±10	μA	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 750	μΑ	Vin = 2.0 V
IPD	Power Down Current		75	μΑ	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	KOhm	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz lcc op lcc idle Freq = 6 MHz lcc op lcc idle Freq \ge 12 MHz lcc op = 1.3 Freq (MHz) + 4.5 mA lcc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA mA	Vcc = 5.5 V

80C154/83C154

$M = Military \dots -55^{\circ}C \text{ to } +125^{\circ}C$
Storage Temperature
Voltage on VCC to VSS
Voltage on Any Pin to VSS $\dots -0.5$ V to VCC + 0.5 V
Power Dissipation
** This value is based on the maximum allowable die temperature and he thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

 $TA = -55^{\circ}C + 125^{\circ}C$; Vss = 0 V; $Vcc = 5 V \pm 10 \%$; F = 0 to 36 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	v	
VIHI	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.45	v	IOL = 1.6 mA (note 2)
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.45	v	IOL = 3.2 mA (note 2)
VOH	Output High Voltage (Port 1, 2, 3)	2.4		v	$IOH = -60 \ \mu A$ Vcc = 5 V ± 10 %
		0.75 Vcc		v	IOH = - 25 μA
		0.9 Vcc		v	IOH = - 10 μA
VOHI	Output High Voltage (Port 0 in External Bus Mode, ALE, PEN)	2.4		v	$IOH = -400 \ \mu A$ Vcc = 5 V ± 10 %
		0.75 Vcc		v	IOH = - 150 μA
		0.9 Vcc		v	IOH = - 40 μA
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 75	μΑ	Vin = 0.45 V
ILI	Input leakage Current		±10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 750	μΑ	Vin = 2.0 V
IPD	Power Down Current		75	μΑ	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	KOh m	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1$ MHz, Ta = $25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq ≥ 12 MHz Icc op = 1.3 Freq (MHz) + 4.5 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA mA	Vcc = 5.5 V

TEMIC Semiconductors

Ambient Temperature Under Bias :

$C = Commercial \dots 0^{\circ}C$ to $+70^{\circ}C$
$I = Industrial \dots -40^{\circ}C \text{ to } 85^{\circ}C$
Storage Temperature
Voltage on VCC to VSS
Voltage on Any Pin to VSS
Power Dissipation I W
** This value is based on the maximum allowable die temperature and the thermal resistance of the package

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

TA = 0°C to 70°C ; Vcc = 2.7 V to 5.5 V ; Vss = 0 V ; F = 0 to 16 MHz TA = -40°C to 85°C ; Vcc = 2.7 V to 5.5 V

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 VCC - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 VCC + 1.4 V	VCC + 0.5	v	
VIH1	Input High Voltage to XTAL1	0.7 VCC	VCC + 0.5	V	
VIH2	Input High Voltage to RST for Reset	0.7 VCC	VCC + 0.5	v	
VPD	Power Down Voltage to Vcc in PD Mode	2.0	6.0	V	
VOL	Output Low Voltage (Ports 1, 2, 3)		0.45	v	IOL = 0.8 mA (note 2)
VOL1	Output Low Voltage Port 0, ALE, PSEN		0.45	v	IOL = 1.6 mA (note 2)
VOH	Output High Voltage Ports 1, 2, 3	0.9 Vcc		v	IOH = - 10 μA
VOH1	Output High Voltage (Port 0 in External Bus Mode), ALE, PSEN	0.9 Vcc		v	$IOH = -40 \ \mu A$
IIL	Logical 0 Input Current Ports 1, 2, 3		- 50	μΑ	Vin = 0.45 V
ILI	Input Leakage Current		± 10	μΑ	0.45 < Vin < VCC
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)		- 650	μΑ	Vin = 2.0 V
IPD	Power Down Current		50	μΑ	VCC = 2 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	kΩ	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz, T_A = 25^{\circ}C$

* Notice

Maximum Icc (mA)

3 V 1 mA 5 mA	3.3 V 1.1 mA	5.5 V 1.8 mA	2.7 V 400 μA	3 V 500 μΑ	3.3 V 600 μA	5.5 V 1 mA
1 mA 5 mA	1.1 mA	1.8 mA	400 µA	500 µA	600 µA	1 mA
5 mA	6 m 1	10.1				
	UIIIA	10 mA	1.5 mA	1.7 mA	2 mA	4 mA
0 mA	12 mA		2.5 mA	3 mA	3.5 mA	
2 mA	14 mA		3 mA	3.8 mA	4.5 mA	
1	0 mA 2 mA .3 × Freq (0 mA 12 mA 2 mA 14 mA .3 × Freq (MHz) + 4.5	0 mA 12 mA 2 mA 14 mA .3 × Freq (MHz) + 4.5	0 mA 12 mA 2.5 mA 2 mA 14 mA 3 mA .3 × Freq (MHz) + 4.5 2.5	0 mA 12 mA 2.5 mA 3 mA 2 mA 14 mA 3 mA 3.8 mA .3 × Freq (MHz) + 4.5	0 mA 12 mA 2.5 mA 3 mA 3.5 mA 2 mA 14 mA 3 mA 3.8 mA 4.5 mA .3 × Freq (MHz) + 4.5

80C154/83C154

TEMIC Semiconductors

Note 1 : ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + .5 V, VIH = VCC -.5 V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used.

Idle ICC is measured with all otput pins disconnected ; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 5 V, VIH = VCC - .5 V ; XTAL2 N.C ; Port 0 = VCC ; EA = RST = VSS.

Power Down ICC is measured with all output pins disconnected ; EA = PORT 0 = VCC ; XTAL2 N.C. ; RST = VSS.

Note 2 : Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLS of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In the worst cases (capacitive loading 100 pF), the noise pulse on the ALE line may exceed 0.45 V may exceed 0.45 V with maxi VOL peak 0.6 V A Schmitt Trigger use is not necessary.

Figure 15. ICC Test Condition, Idle Mode. All other pins are disconnected.

Figure 16. ICC Test Condition, Active Mode. All other pins are disconnected.

Figure 17. ICC Test Condition, Power Down Mode. All other pins are disconnected.

Figure 18. Clock Signal Waveform for ICC Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

Explanation of the AC Symbol

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example :

TAVLL = Time for Address Valid to ALE low.

TLLPL = Time for ALE low to $\overline{\text{PSEN}}$ low.

Q : Output data.
R : READ signal.
T : Time.
V : Valid.
W : WRITE signal.
X : No longer a valid logic level.
Z : Float.
•

AC Parameters

 $\begin{array}{l} TA = 0 \text{ to } + 70^{\circ}\text{C} \text{ ; } Vss = 0 \text{ V} \text{ ; } Vcc = 5 \text{ V} \pm 10 \text{ \%} \text{ ; } F = 0 \text{ to } 36 \text{ MHz} \\ TA = -55^{\circ} + 125^{\circ}\text{C} \text{ ; } Vss = 0 \text{ V} \text{ ; } 2.7 \text{ V} < Vcc < 5.5 \text{ V} \text{ ; } F = 0 \text{ to } 16 \text{ MHz} \\ TA = -55^{\circ} + 125^{\circ}\text{C} \text{ ; } Vss = 0 \text{ V} \text{ ; } Vcc = 5 \text{ V} \pm 10 \text{ \%} \text{ ; } F = 0 \text{ to } 36 \text{ MHz} \\ \text{(Load Capacitance for PORT 0, ALE and PSEN = 100 pF ; Load Capacitance for all other outputs = 80 pF)} \end{array}$

External Program Memory Characteristics

		16 MHz		20 MHz		25 MHz		30 MHz		36 MHz	
SYMBOL	PARAMETER	MIN	MAX								
TLHLL	ALE Pulse Width	110		90		70		60		50	
TAVLL	Address valid to ALE	40		30		20		15		10	
TLLAX	Address Hold After ALE	35		35		35		35		35	
TLLIV	ALE to valid instr in		185		170		130		100		80
TLLPL	ALE to PSEN	45		40		30		25		20	
TPLPH	PSEN pulse Width	165		130		100		80		75	
TPLIV	PSEN to valid instr in		125		110		85		65		50
TPXIX	Input instr Hold After PSEN	0		0		0		0		0	
TPXIZ	Input instr Float After PSEN		50		45		35		30		25
TPXAV	PSEN to Address Valid	55		50		40		35		30	
TAVIV	Address to Valid instr in		230		210		170		130		90
TPLAZ	PSEN low to Address Float		10		10		8		6		5

External Program Memory Read Cycle

External Data Memory Characteristics

		16 1	16 MHz		20 MHz		25 MHz		30 MHz		MHz
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
TRLRH	RD pulse Width	340		270		210		180		120	
TWLWH	WR pulse Width	340		270		210		180		120	
TLLAX	Address Hold After ALE	85		85		70		55		35	
TRLDV	RD to Valid in		240		210		175		135		110
TRHDX	Data hold after RD	0		0		0		0		0	
TRHDZ	Data float after RD		90		90		80		70		50
TLLDV	ALE to Valid Data In		435		370		350		235		170
TAVDV	Address to Valid Data IN		480		400		300		260		190
TLLWL	ALE to WR or RD	150	250	135	170	120	130	90	115	70	100
TAVWL	Address to WR or RD	180		180		140		115		75	
TQVWX	Data valid to WR transition	35		35		30		20		15	
TQVWH	Data Setup to WR transition	380		325		250		215		170	
TWHQX	Data Hold after WR	40		35		30		20		15	
TRLAZ	RD low to Address Float		0		0		0		0		0
TWHLH	RD or WR high to ALE high	35	90	35	60	25	45	20	40	20	40

External Data Memory Write Cycle

External Data Memory Read Cycle

Serial Port Timing – Shift Register Mode

		16 MHz		20 MHz		25 MHz		30 MHz		36 MHz	
SYMBOL	PARAMETER	MIN	MAX								
TXLXL	Serial Port Clock Cycle Time	750		600		480		400		330	
TQVXH	Output Data Setup to Clock Rising Edge	563		480		380		300		220	
TXHQX	Output Data Hold after Clock Rising Edge	63		90		65		50		45	
TXHDX	Input Data Hold after Clock Rising Edge	0		0		0		0		0	
TXHDV	Clock Rising Edge to Input Data Valid		563		450		350		300		250

Shift Register Timing Waveforms

80C154/83C154

External Clock Drive Characteristics (XTAL1)

SYMBOL	PARAMETER	MIN	MAX	UNIT
FCLCL	Oscillator Frequency		36	MHz
TCLCL	Oscillator period	27.8		ns
ТСНСХ	High Time	5		ns
TCLCX	Low Time	5		ns
TCLCH	Rise Time		5	ns
TCHCL	Fall Time		5	ns

External Clock Drive Waveforms

AC Testing Input/Output Waveforms

AC inputs during testing are driven at Vcc - 0.5 for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at VIH min for a logic "1" and VIL max for a logic "0".

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. Iol/IoH $\ge \pm 20$ mA.

Semiconductors Clock Waveforms

EMIC

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

80C154/83C154

Ordering Information

CMOS 0 to 30 MHz Single Chip 8–bit Microcontroller

Description

The TEMIC 83C154D retains all the features of the TEMIC 80C52 with extended ROM capacity (32 K bytes), 256 bytes of RAM, 32 I/O lines, a 6-source 2-level interrupts, a full duplex serial port, an on-chip oscillator and clock circuits, three 16 bit timers with extra features : 32 bit timer and watch dog functions. Timer 0 and 1 can be configured by program to implement a 32 bit timer. The watchdog function can be activated either with timer 0, or timer 1 or both together (32 bit timer).

- 83C154D-12 : 0 to 12 MHz
- 83C154D-16 : 0 to 16 MHz
- 83C154D-20 : 0 to 20 MHz
- 83C154D-25 : 0 to 25 MHz

Features

- Power Control Mode
- 256 bytes RAM
- 32 K bytes of ROM
- 32 programmable I/O lines (programmable impedance)
- Three 16 bit timer/counters (including watch dog and 32 bit timer)
- 64 K program memory space
- Fully static design

Optional

- Secret ROM : Encryption
- Secret TAG : Identification number

In addition, the 83C154D has two software selectable modes of reduced activity for further reduction of power consumption. In the Idle Mode, the CPU is frozen while the RAM is saved, ant the timers, the serial port, and the interrupt system continue to function. In the Power Down Mode, the RAM is saved and the timers, serial port and interrupts continue to function when driven by external clocks. In addition as for the TEMIC 80C51/C52, the stop clock mode is also available.

- 83C154D-30: 0 to 30 MHz (commercial and industrial only)
- 83C154D-L16 : 0 to 16 MHz with 2,7 V < V_{CC} < 5,5 V (commercial only)
- 0.8 µ CMOS process
- Boolean processor
- 6 interrupt sources
- Programmable serial port
- 64 K data memory space
- Temperature range : commercial, industrial, automotive, military

Interface

Figure 1. Block Diagram

Figure 2. Pin Configuration

T2/P1.0 C T2EX/1.1 C P1.2 C P1.3 C P1.4 C P1.5 C P1.6 C P1.7 C RST C P3.0/RXD C P3.1/TXD C P3.2/INTO C P3.3/INT1 C P3.4/T0 C	1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	40 39 38 37 36 55 34 32 28 29 28 27 28 27	 VCC P0.0/A0 P0.1/A 1 P0.2/A2 P0.3/A3 P0.4/A4 P0.5/A5 P0.6/A6 P0.7/A 7 EA ALE PSEN P2.7/A15 P2.6/A14 	INDEX CORNER P1.5 P1.6 P1.7 RST RxD/P3.0 NC TxD/P3.1 INT0/P3.2 INT1/P3.3		001 2 11 3 10 1 3 1 1 3 10 1 3 1 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1	83C154		·····································		P0.4/A4 P0.5/A5 P0.6/A6 P0.7/A7 EA NC ALE PSEN P2.7/A14
P3.1/TXD E P3.2/INT0 E P3.3/INT1 E	11 12 13	30 8 29 28	□ ALE □ PSEN □ P2.7/A15	TxD/P3.1 INT0/P3.2	<u>513</u> <u>514</u>					i33 i32	ALE PSEN
P3.4/T0 E P3.5/T1 E P3.6/WR E	14 15 16	27 26 25	□ P2.6/A14 □ P2.5/A13 □ P2.4/A12	INT1/P3.3 T0/P3.4 T1/P3.5	<u>) 15</u> <u>) 16</u> <u>) 17</u>					31C	P2.7/A14 P2.6/A13 P2 5/A12
P3.7/RD E XTAL2 E XTAL1 E VSS E	17 18 19 20	24 23 22 21	□ P2.3/A11 □ P2.2/A10 □ P2.1/A9 □ P2.0/A8		MR/P3.6	RD/P3.7 2월 XTAL2 2월 XTAL1 2월	VSS 202 NC 202 P2.0/A7 702	P2.1/A8 201	P2.4/A11		

DIL

Flat Pack

Diagrams are for reference only. Package sizes are not to scale

Pin Description

Vss

Circuit Ground Potential.

VCC

Supply voltage during normal, Idle, and Power Down operation.

Port 0

Port 0 is an 8 bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's. Port 0 also outputs the code bytes during program verification in the 83C154D. External pullups are required during program verification. Port 0 can sink eight LS TTL inputs.

Port 1

Port 1 is an 8 bit bi-directional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address byte during program verification. In the 83C154D, Port 1 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

2 inputs of PORT 1 are also used for timer/counter 2 :

P1.0 [T2] : External clock input for timer/counter 2. P1.1 [T2EX] : A trigger input for timer/counter 2, to be reloaded or captured causing the timer/counter 2 interrupt.

Port 2

Port 2 is an 8 bit bi-directional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 bit addresses (MOVX @DPTR). In this application, it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8 bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

EMIC

Semiconductors

It also receives the high-order address bits and control signals during program verification in the 83C154. Port 2 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

Port 3

Port 3 is an 8 bit bi-directional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the pullups. It also serves the functions of various special features of the TEMIC 51 Family, as listed below.

Port Pin Alternate Function P3 0 RXD (serial input port) P3.1 TXD (serial output port) P3.2 **INTO** (external interrupt 0) P3.3 INT1 (external interrupt 1) P3 4 TD (Timer 0 external input) P3.5 T1 (Timer 1 external input) WR (external Data Memory write strobe) P3.6 P3.7 RD (external Data Memory read strobe)

Port 3 can sink or source three LS TTL inputs. It can drive CMOS inputs without external pullups.

RST

A high level on this for two machine cycles while the oscillator is running resets the device. An internal pull-down resistor permits Power-On reset using only a capacitor connected to VCC. As soon as the reset is applied (Vin), PORT 1, 2 and 3 are tied to 1. This operation is achieved asynchronously even if the oscillator is not start up.

EA

When EA is held high, the CPU executes out of internal Program Memory (unless the Program Counter exceeds 7 FFFH). When EA is held low, the CPU executes only out of external Program Memory. EA must not be floated.

XTAL1

Input to the inverting amplifier that forms the oscillator. Receives the external oscillator signal when an external oscillator is used.

XTAL2

Output of the inverting amplifier that forms the oscillator. This pin should be floated when an external oscillator is used.

Idle Mode operation allows the interrupt, serial port, and timer blocks to continue to function with internal or external clocks, while the clock to CPU is gated off. The special modes are activated by software via the Special Function Register, PCON. Its hardware address is 87H. PCON is not bit addressable.

the address during accesses to external memory. ALE is activated as though for this purpose at a constant rate of 1/6 the oscillator frequency except during an external data memory access at which time on ALE pulse is skipped. ALE can sink or source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

Address Latch Enable output for latching the low byte of

PSEN

Program Store Enable output is the read strobe to external Program Memory. PSEN is activated twice each machine cycle during fetches from external Program Memory. (However, when executing out of external Program Memory, two activations of PSEN are skipped during each access to external Data Memory). PSEN is not activated during fetches from internal Program Memory. PSEN can sink/source 8 LS TTL inputs. It can drive CMOS inputs without an external pullup.

Idle And Power Down Operation

Figure 3 shows the internal Idle and Power Down clock configuration.

As illustrated, Power Down operation stops the oscillator. The interrupt, serial port, and timer blocks continue to function only with external clock (INTO, INT1, TO, T1).

Figure 3. Idle and Power Down Hardware.

83C154D

PCON : Power Control Register

FCON	. rowe	er Com	oi Ke	gisier			
(MSB)							(LSB)
SMOD	HPD	RPD	-	GFI	GF0	PD	IDL
Syn	nbol	Posi	tion	Na	ime and	Functi	on
SМ HI	OD PD	PCC	DN.7 DN.6	Double I a 1, the I the seria either me Hard por	Baud rate baud rate l port is b odes 1, 2 wer Dow	bit. Who is double being use or 3. n bit. Set	en set to ed when d in ting this
				bit allow Down st (1 to 0 tr (p. 3.5) t Power D (p. 3.5) g activated	's CPU to ate on an 'ansition) he CPU (own moo goes high l.	enter in external on bit T quit the H le when or when	Power event I Iard bit T1 reset is
RI	RPD)N.5	Recover bit. Whe When 1, idle or P enabled timer 2). start at tl interrupt appropri serviced	e or Pow has no e mits to e wn with source (e ase the p ddress. W ed, the upt routi	er Down ffect. xit from any non except rogram /hen me is	
-	-	PCC	0N.4	(Reserve	:d)		
G	FI	PCC	DN.3	General-	purpose	flag bit.	
G	FU	PCC	N.2	General-	purpose	flag bit.	
Р	D	PCC	DN.1	Power D activates	own bit. power d	Setting t own ope	his bit ration.
IE	DL	PCC	DN.0	Idle mod activates	le bit. Sei power d	ting this	bit ration.

If 1's are written to PD and IDL at the same time. PD takes, precedence. The reset value of PCON is (000X0000).

Idle Mode

The instruction that sets PCON.0 is the last instruction executed before the Idle mode is activated. Once in the Idle mode the CPU status is preserved in its entirety : the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM and all other registers maintain their data during idle. In the idle mode, the internal clock signal is gated off to the CPU, but interrupt, timer and serial port functions are maintained. Table 1 describes the status of the external pins during Idle mode.

There are three ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating Idle mode. The interrupt is serviced, and following RETI, the next instruction to be executed will be the one following the instruction that wrote 1 to PCON.0. The flag bits GF0 and GF1 may be used to determine whether the interrupt was received during normal execution or during the Idle mode. For example, the instruction that writes to PCON.0 can also set or clear one or both flag bits. When Idle mode is terminated by an enabled interrupt, the service routine can examine the status of the flag bits.

The second way of terminating the Idle mode is with a hardware reset. Since the oscillator is still running, the hardware reset needs to be active for only 2 machine cycles (24 oscillator periods) to complete the reset operation.

The third way to terminate the Idle mode is the activation of any disabled interrupt when recover is programmed (RPD = 1). This will cause PCON.0 to be cleared. No interrupt is serviced. The next instruction is executed. If interrupt are disabled and RPD = 0, only a reset can cancel the Idle mode.

Power Down Mode

The instruction that sets PCON.1 is the last executed prior to entering power down. Once in power down, the oscillator is stopped. The contents of the onchip RAM and the Special Function Register is saved during power down mode. The three ways to terminate the Power Down mode are the same than the Idle Mode. But since the onchip oscillator is stopped, the external interrupts, timers and serial port must be sourced by external clocks only, via INTO, INT1, TO, T1.

In the Power Down mode, V_{CC} may be lowered to minimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered, and that the voltage is restored before the hardware reset is applied which frees the oscillator. Reset should not be released until the oscillator has restarted and stabilized.

When using voltage reduction : interrupt, timers and serial port functions are guaranteed in the V_{CC} specification limits.

Table 1 describes the status of the external pins while in the power down mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2. If the port switches from 0 to 1, the port pin is held high during the power down mode by the strong pullup, T1, shown in figure 4.

MODE	PROGRAM MEMORY	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 1.Status of the external pins during idle and power down modes.

Figure 4.I/O Buffers in the 83C154D (Ports 1, 2, 3).

Stop Clock Mode

Due to static design, the TEMIC 83C154D clock speed can be reduced until 0 MHz without any data loss in memory or registers. This mode allows step by step utilization, and permits to reduce system power consumption by bringing the clock frequency down to any value. At 0 MHz, the power consumption is the same as in the Power Down Mode.

I/O Ports

The I/O drives for P1, P2, P3 of the 83C154D are impedance programmable. The I/O buffers for Ports 1, 2 and 3 are implemented as shown in *figure 4*.

When the port latch contains 0, all pFETS in figure 4 are off while the nFET is turned on. When the port latch makes a 0-to-1 transition, the nFET turns off. The strong pullup pFET, T1, turns on for two oscillator periods, pulling the output high very rapidly. As the output line is drawn high, pFET T3 turns on through the inverter to supply the I_{OH} source current. This inverter and T3 form a latch which holds the 1 and is supported by T2. When Port 2 is used as an address port, for access to external program of data memory, any address bit that contains a 1 will have his strong pullup turned on for the entire duration of the external memory access.

When an I/O pin on Ports 1, 2, or 3 is used as an input, the user should be aware that the external circuit must sink current during the logical 1-to-0 transition. The

maximum sink current is specified as ITL under the D.C. Specifications. When the input goes below approximately 2 V, T3 turns off to save ICC current. Note, when returning to a logical 1, T2 is the only internal pullup that is on. This will result in a slow rise time if the user's circuit does not force the input line high.

The input impedance of Port 1, 2, 3 are programmable through the register IOCON. The ALF bit (IOCON0) set all of the Port 1, 2, 3 floating when a Power Down mode occurs. The P1HZ, P2HZ, P3HZ bits (IOCON1, IOCON2, IOCON3) set respectively the Ports P1, P2, P3 in floating state. The IZC (IOCON4) allows to choose input impedance of all ports (P1, P2, P3). When IZC = 0, T2 and T3 pullup of I/O ports are active ; the internal input impedance is approximately 10 K. When IZC = 1 only T2 pull-up is active. The T3 pull-up is turned off by IZC. The internal impedance is approximately 100 K.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output respectively, of an inverting amplifier which is configured for use as an on-chip oscillator, as shown in *figure 5*. Either a quartz crystal or ceramic resonator may be used.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected as shown in *figure 6*. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 5. Crystal Oscillator.

Figure 6. External Drive Configuration.

Hardware Description

Same as for the 80C51 except for the following :

Timer/Event Counter 2

Timer 2 is a 16 bit timer/counter like Timers 0 and 1, it can operate either as a timer or as an event counter. This is selected by bit $C/\overline{12}$ in the Special Function Register T2CON (Figure 1). It has three operating modes : "capture", "autoload", and "baud rate generator", which are selected by bits in T2CON as shown in *Table 2*.

Table 2. Timer 2 Operating Modes.

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16 bit auto-reload
0	1	1	16 bit capture
1	x	1	baud capture generator
Х	х	0	(off)

In the capture mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16 bit timer or counter which upon overflowing sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 ans TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt.

The capture mode is illustrated in Figure 7.

In the auto-reload mode there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16 bit-value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX will also trigger the 16 bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 8.

Figure 7. Timer 2 in Capture Mode.

TEMIC Semiconductors

83C154D

(MSB)							(LSB)
TF2	EXF2	RCLK	ТСЬК	EXEN2	TR2	$C/\overline{T2}$	CP/RL2

The baud rate generator mode is selected by : RCLK = 1 and/or TCLK = 1.

Symbol	Position	Name and Significance
TF2	T2CON.7	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 OR TCLK = 1.
EXF2	T2CON.6	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled. EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.
RCLK	T2CON.5	Receive clock flag. When set, causes the serial port to use Timer2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK	T2CON.4	Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2	T2CON.3	Timer 2 external enable flag. When set, allows capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2	T2CON.2	Start/stop control for Timer 2. A logic 1 starts the timer.
C/T2	T2CON.1	Timer or counter select. (Timer 2) 0 = Internal timer (OSC/12) 1 = External event counter (falling edge triggered).
CP/RL2	T2CON.0	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN 2 = 1. When cleared, auto reloads will occur either with Timer 2 overflows or negative transition at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

Timers Functions

In fact, timer 0 α 1 can be connected by a software instruction to implement a 32 bit timer function. Timer 0 (mode 3) or timer 1 (mode 0, 1, 2) or a 32 bit timer consisting of timer 0 + timer 1 can be employed in the watchdog mode, in which case a CPU reset is generated upon a TF1 flag.

The internal pull-up resistances at ports 1_{-3} can be set to a ten times increased value simply by software.

32 Bit Mode and Watching Mode

• The 83C154D has two supplementary modes. They are accessed by bits WDT and T32 of register IOCON. Figure 9 showns how IOCON must be programmed in order to have access to these functions.

BIT7, WDT

83C154D

TEMI	C
Semiconduct	ors

(MSB)							(LSB)	
WDT	T32	SERR	IZC	P3HZ	P2HZ	P1HZ	ALF	
Symbol		Position			Function			
T32		IOCON.6	 If T32 = 1 and if C/T0 = 0, T1 and T0 are programmed as a 32 bit TIMER. If T32 = 1 and if C/T0 = 1, T1 and T0 are programmed as a 32 bit COUNTER. 					
WDT		IOCON.7	 If WDT = WATCHD0 	 If WDT = 1 and according to the mode selected by TMOD, an 8 bit or 32 bit WATCHDOG is configured from TIMERS 0 and 1. 				

32 Bit Mode

• T32 = 1 enables access to this mode. As shown in figure 10, this 32 bit mode consists in cascading TIMER 0 for the LSBs and TIMER 1 for the MSBs

Figure 9. 32 Bit Timer/Counter.

T32 = 1 starts the timer/counter and T32 = 0 stops it.

It should be noted that as soon as T32 = 0. TIMERs 0 and 1 assume the configuration specified by register TMOD. Moreover, if TR0 = 1 or if TR1 = 1, the content of the

32 Bit Timer

• Figure 11 illustrates the 32 bit TIMER mode.

Figure 10. 32 Bit Timer Configuration.

TR1 must be set to 0.

- In this mode, T32 = 1 and C/T0 = 0, the 32 bit timer is incremented on each S3P1 state of each machine cycle. An overflow of TIMER 0 (TF0 has not been set to 1) increments TIMER 1 and the overflow of the 32-bit TIMER is signalled by setting TF1 (S5P1) to 1.
- The following formula should be used to calculate the required frequency :

TIMERs evolves. Consequently, in 32 bit mode, if the TIMER/COUNTER must be stopped (T32 = 0), TR0 and

$$f = \frac{OSC}{12 \times (65536 - (T0, T1))}$$

32 Bit Counter

Figure 13 illustrates the 32 bit COUNTER mode.

Figure 11. 32 Bit Counter Configuration.

• In this mode, T32 = 0 and C/T0 = 1. Before it can make an increment, the 83C154D must detect two transitions on its T0 input. As shown in figure 13, input T0 is sampled on each S5P2 state of every machine cycle or, in other words, every OSC ÷ 12.

Figure 12. Counter Incrementation Condition.

COUNTER INCREMENTATION

- The counter will only evolve if a level 1 is detected during state S5P2 of cycle Ci and if a level 0 is detected during state S5P2 of cycle Ci + n.
- Consequently, the minimal period of signal fEXT admissible by the counter must be greater than or equal to two machine cycles. The following formula should be used to calculate the operating frequency.

$$f = \frac{fEXT}{65536 - (T0, T1)}$$
$$fEXT < \frac{OSC}{24}$$

Watchdog Mode

• WDT = 1 enables access to this mode. As shown in figure 14, all the modes of TIMERs 0 and 1, of which the overflows act on TF1 (TF1 = 1), activate the WATCHDOG Mode.

Figure 13. The Different Watchdog Configurations.

- If $C/\overline{T} = 0$, the WATCHDOG is a TIMER that is incremented every machine cycle. If $C/\overline{T} = 1$, the WATCHDOG is a counter that is incremented by an external signal of which the frequency cannot exceed OSC ÷ 24.
- The overflow of the TIMER/COUNTER is signalled by raising flag TF1 to 1. The reset of the 83C154D is executed during the next machine cycle and lasts for the next 5 machine cycles. The results of this reset are identical to those of a hardware reset. The internal RAM is not affected and the special register assume the values shown in Table 3.

 Table 3. Content of the SFRS after a reset triggered by the watchdog.

REGISTER	CONTENT
PC	0000H
ACC	00H
В	00H
PSW	00H
SP	00H
DPTR	0000H
P0-P3	OFFH
IP	00H
IE	0X000000B
TMOD	00H
TCON	00H
T2CON	00H
TH0	00H
TLO	00H
THI	00H
TLI	00H
TH2	00H
TL2	00H
RCAP2H	00H
RCAP2L	00H
SCON	00H
SBUF	Indeterminate
IOCON	00H

- As there are no precautions for protecting bit WDT from spurious writing in the IOCON register, special care must be taken when writing the program. In particular, the user should use the IOCON register bit handling instructions :
 - SETB and CLR x
 - in preference to the byte handling instructions :
 - MOV IOCON, # XXH, ORL IOCON, #XXH,
 - ANL IOCON, #XXH, ...

External Counting in Power-down Mode (PD = PCON.1 = 1)

• In the power-down mode, the oscillator is turned off and the 83C154D activity is frozen. However, if an external clock is connected to one of the two inputs, T1/T0, TIMER/COUNTERS 0 and 1 can continue to operate.

In this case, counting becomes asynchronous and the maximum, admissible frequency of the signal is OSC : 24.

• The overflow of either counter TF0 or TF1 causes an interrupt to be serviced or forces a reset if the counter is in the WATCHDOG MODE (T32 = ICON.7 = 1).

TEMIC Semiconductors

83C154D with Secret ROM

TEMIC offers 83C154D with the encrypted secret ROM option to secure the ROM code contained in the 83C154D microcontrollers.

The clear reading of the program contained in the ROM is made impossible due to an encryption through several random keys implemented during the manufacturing process.

The keys used to do such encryption are selected randomwise and are definitely different from one microcontroller to another.

This encryption is activated during the following phases :

- Everytime a byte is addressed during a verify of the ROM content, a byte of the encryption array is selected.
- MOVC instructions executed from external program memory are disabled when fetching code bytes from internal memory.
- EA is sampled and latched on reset, thus all state modification are disabled.

For further information please refer to the application note (ANM053) available upon request.

83C154D with Secret TAG

TEMIC offers special 64-bit identifier called "SECRET TAG" on the microcontroller chip.

The Secret Tag option is available on both ROMless and masked microcontrollers.

The Secret Tag feature allows serialization of each microcontroller for identification of a specific equipment. A unique number per device is implemented in the chip during manufacturing process. The serial number is a 64-bit binary value which is contained and addressable in the Special Function Registers (SFR) area.

This Secret Tag option can be read-out by a software routine and thus enables the user to do an individual identity check per device. This routine is implemented inside the microcontroller ROM memory in case of masked version which can be kept secret (and then the value of the Secret Tag also) by using a ROM Encryption.

For further information, please refer to the application note (ANM031) available upon request.

Electrical Characteristics

Absolute Maximum Ratings*

Ambiant Temperature Under Bias :

•
$C = commercial \dots 0^{\circ}C$ to 70°C
$I = industrial \dots -40^{\circ}C$ to $+85^{\circ}C$
Storage Temperature
Voltage on V _{CC} to V _{SS} 0.5 V to + 7 V
Voltage on Any Pin to V _{SS} 0.5 V to V _{CC} + 0.5 V
Power Dissipation 1 W**
** This value is based on the maximum allowable die temperature and
the thermal resistance of the package.

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Characteristics

Ta = 0°C to 70°C ; V_{CC} = 5V ± 10 % ; V_{SS} = 0V ; F = 0 to 30 MHz Ta = -40°C to 85°C ; V_{CC} = 5V ± 10 % ; V_{SS} = 0V ; F = 0 to 30 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 VCC - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 VCC + 0.9	VCC + 0.5	v	
VIHI	Input High Voltage (RST and XTAL1)	0.7 VCC	VCC + 0.5	v	
VOL	Output Low Voltage (Ports 1, 2, 3)		0.3 0.45 1.0	V V V	$IOL = 100 \mu A$ IOL = 1.6 mA (note 2) IOL = 3.5 mA
VOLI	Output Low Voltage 0.3 (Port 0, ALE, PSEN) 0.45 1.0		0.3 0.45 1.0	v v v	IOL = 200 μA IOL = 3.2 mA (note 2) IOL = 7.0 mA
VOH	Output High Voltage Ports 1, 2, 3	VCC - 0.3		v	$IOH = -10 \ \mu A$
		VCC - 0.7		v	$IOH = -30 \mu A$
1. A.		VCC - 1.5		v	$IOH = -60 \ \mu A$
VOH1	Output High Voltage (Port 0, ALE, PSEN)	VCC - 0.3		v	IOH = - 200 μA
		VCC - 0.7		v	IOH = - 3.2 mA
		VCC - 1.5		v	IOH = - 7.0 mA
IIL	Logical 0 Input Current Ports 1, 2, 3		C –50	μΑ	Vin = 0.45 V
			I -60		
ILI	Input Leakage Current (Port 0, EA)		± 10	μA	0.45 < Vin < VCC
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)		- 650	μΑ	Vin = 2.0 V
IPD	Power Down Current		50	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V (note 1)}$
RRST	RST Pulldown Resistor	50	150	kΩ	
CIO	Capacitance of I/O Buffer		10	pF	$f_c = 1 \text{ MHz}, T_A = 25^{\circ}\text{C}$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq ≥ 12 MHz Icc op = 1.14 × Freq (MHz) + 12.2 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA	Vcc = 5.5 V

Ambient Temperature Under Bias :

A = Automotive -40° C to $+125^{\circ}$ C
Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$
Voltage on VCC to VSS
Voltage on Any Pin to VSS
Power Dissipation 1 W
** This value is based on the maximum allowable die temperature and the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

 $TA = -40^{\circ}C + 125^{\circ}C$; Vss = 0 V; Vcc = 5 V ± 10 %; F = 0 to 25 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	v	
VIH1	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.3 0.45 1.0	v	$IOL = 100 \ \mu A$ $IOL = 1.6 \ mA \ (note 2)$ $IOL = 3.5 \ mA$
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.3 0.45 1.0	v	$IOL = 200 \ \mu A$ $IOL = 3.2 \ mA \ (note 2)$ $IOL = 7.0 \ mA$
VOH	Output High Voltage Port 1, 2 and 3	Vcc - 0.3		v	IOH = - 10 μA
		Vcc - 0.7		v	IOH = - 30 μA
		Vcc - 1.5		v	$IOH = -60 \ \mu A$ VCC = 5 V ± 10 %
VOH1	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3		v	IOH = – 200 μA
		Vcc - 0.7		v	IOH = - 3.2 mA
		Vcc – 1.5		v	IOH = -7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 50	μΑ	Vin = 0.45 V
ILI	Input leakage Current		±10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 750	μA	Vin = 2.0 V
IPD	Power Down Current		75	μΑ	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	KOhm	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq ≥ 12 MHz Icc op = 1.14 Freq (MHz) + 12.2 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA mA	Vcc = 5.5 V

Ambient Temperature Under Bias :

$M = Military \dots -55^{\circ}C \text{ to } +125^{\circ}C$
Storage Temperature
Voltage on VCC to VSS0.5 V to + 7 V
Voltage on Any Pin to VSS
Power Dissipation 1 W
** This value is based on the maximum allowable die temperature and the thermal resistance of the package

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

 $TA = -55^{\circ}C + 125^{\circ}C$; Vss = 0 V; $Vcc = 5 V \pm 10 \%$; F = 0 to 25 MHz

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	v	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	V	
VIHI	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	v	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.45	v	IOL = 1.6 mA (note 2)
VOLI	Output Low Voltage (Port 0, ALE, PSEN)		0.45	v	IOL = 3.2 mA (note 2)
VOH	Output High Voltage (Port 1, 2, 3)	2.4		v	$IOH = -60 \ \mu A$ $Vcc = 5 \ V \pm 10 \ \%$
		0.75 Vcc		v	IOH = - 25 μA
		0.9 Vcc		v	$IOH = -10 \mu A$
VOH1	Output High Voltage (Port 0 in External Bus Mode, ALE, PEN)	2.4		v	$IOH = -400 \ \mu A$ Vcc = 5 V ± 10 %
		0.75 Vcc		v	IOH = - 150 μA
		0.9 Vcc		v	$IOH = -40 \mu A$
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 75	μΑ	Vin = 0.45 V
ILI	Input leakage Current		±10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 750	μΑ	Vin = 2.0 V
IPD	Power Down Current		75	μA	Vcc = 2.0 V to 5.5 V (note 1)
RRST	RST Pulldown Resistor	50	200	KOh m	
CIO	Capacitance of I/O Buffer		10	pF	$fc = 1 MHz$, $Ta = 25^{\circ}C$
ICC	Power Supply Current Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq ≥ 12 MHz Icc op = 1.14 Freq (MHz) + 12.2 mA Icc idle = 0.36 Freq (MHz) + 2.7 mA		1.8 1 10 4	mA mA mA mA	Vcc = 5.5 V

Ambiant Temperature Under Bias :

\dot{C} = commercial
$I = industrial \dots -40^{\circ}C \text{ to } +85^{\circ}C$
Storage Temperature
Voltage on V_{CC} to V_{SS}
Voltage on Any Pin to V _{SS} 0.5 V to V _{CC} + 0.5 V
Power Dissipation 1 W**
** This value is based on the maximum allowable die temperature and
the thermal resistance of the package.

* Notice

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Characteristics

 $\begin{array}{l} T_{A}=0^{\circ}C \text{ to } 70^{\circ}C \text{ ; } V_{CC}=2.7 \text{ V to } 5.5 \text{ V } \text{ ; } V_{SS}=0 \text{V } \text{ ; } F=0 \text{ to } 16 \text{ MHz} \\ T_{A}=-40^{\circ}C \text{ to } 85^{\circ}C \text{ ; } V_{CC}=2.7 \text{ V to } 5.5 \text{ V } \text{ ; } V_{SS}=0 \text{V } \text{ ; } F=0 \text{ to } 16 \text{ MHz} \end{array}$

SYMBOL	PARAMETER	MIN	MAX		UNIT	TEST CONDITIONS		
VIL	Input Low Voltage	- 0.5	0.2 V _{CC} - 0.1		v			
VIH	Input High Voltage (Except XTAL and RST)	0.2 V _{CC} + 0.9	V _{CC} + 0.5		v			
VIHI	Input High Voltage to RST for Reset	0.7 V _{CC}	V _{CC}	+ 0.5	v			
VIH2	Input High Voltage to XTAL1	0.7 V _{CC}	V _{CC}	+ 0.5	V			
VPD	Power Down Voltage to Vcc in PD Mode	2.0	6	6.0				
VOL	Output Low Voltage (Ports 1, 2, 3)		0.	0.45		IOL = 0.8 mA (note 2)		
VOLI	Output Low Voltage Port 0, ALE, PSEN		0.	0.45		IOL = 1.6 mA (note 2)		
VOH	Output High Voltage Ports 1, 2, 3	0.9 V _{CC}			v	$IOH = -10 \mu A$		
VOH1	Output High Voltage (Port 0 in External Bus Mode), ALE, PSEN	0.9 V _{CC}				$IOH = -40 \mu A$		
IIL	Logical 0 Input Current Ports 1, 2, 3		С	- 50	μA	Vin = 0.45 V		
			I	- 60	-			
ILI	Input Leakage Current		± 10		μΑ	0.45 < Vin < V _{CC}		
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)		- 650		- 650		μΑ	Vin = 2.0 V
IPD	Power Down Current		50		μA	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V (note 1)}$		
RRST	RST Pulldown Resistor	50	150		kΩ			
CIO	Capacitance of I/O Buffer		10		pF	$f_c = 1 \text{ MHz}, T_A = 25^{\circ}\text{C}$		

Maximum I_{CC} (mA)

	OPERATING (NOTE 1)				IDLE (NOTE 1)			
FREQUENCY/Vcc	2.7 V	3 V	3.3 V	5.5 V	2.7 V	3 V	3.3 V	5.5 V
1 MHz	0.8 mA	1 mA	1.1 mA	1.8 mA	400 µA	500 µA	600 µA	l mA
6 MHz	4 mA	5 mA	6 mA	10 mA	1.5 mA	1.7 mA	2 mA	4 mA
12 MHz	8 mA	10 mA	12 mA		2.5 mA	3 mA	3.5 mA	
16 MHz	10 mA	12 mA	14 mA		3 mA	3.8 mA	4.5 mA	
Freq > 12 MHz (Vcc = 5.5 V) $Icc (mA) = 1.14 \times Freq (MHz) + 12.2$ $Icc Idle (mA) = 0.36 \times Freq (MHz) + 2.7$								
Note 1 :

ICC is measured with all output pins disconnected ; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + .5 V, VIH = VCC -.5 V ; XTAL2 N.C. ; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used. Idle ICC is measured with all output pins disconnected ; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + .5 V, VIH = VCC -.5 V ; XTAL2 N.C ; Port 0 = VCC ; EA = RST = VSS.

Power Down ICC is measured with all output pins disconnected; EA = PORT 0 = VCC; XTAL2 N.C.; RST = VSS.

Figure 14. ICC Test Condition, Idle Mode. All Other Pins Are Disconnected.

Figure 15. ICC Test Condition, Active Mode. All Other Pins Are Disconnected.

Figure 17. Clock Signal Waveform for ICC Tests in Active And Idle Modes. TCLCH = TCHCL = 5 ns.

Note 2 :

Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OLS} of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In the worst (capacitive loading 100 pF), the noise pulse on the ALE line may exceed 0.45 V with maxi VOL peak 0.6 V. A. Schmitt Trigger use is not necessary.

Figure 16. ICC Test Condition, Power Down Mode. All Other Pins Are Disconnected.

Explanation of the AC Symbol

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example :

TAVLL = Time for Address Valid to ALE low. TLLPL = Time for ALE low to $\overline{\text{PSEN}}$ low.

A : Address.	Q : Output data.
C : Clock.	R : READ signal.
D : Input data.	T : Time.
H : Logic level HIGH	V : Valid.
I : Instruction (program memory contents).	W : WRITE signal.
L : Logic level LOW, or ALE.	X : No longer a valid logic level.
P:PSEN.	Z : Float.

AC Parameters

 $\begin{array}{l} TA = 0 \ to \ + \ 70^{\circ}C \ ; \ Vss = 0 \ V \ ; \ Vcc = 5 \ V \pm 10 \ \% \ ; \ F = 0 \ to \ 30 \ MHz \\ TA = 0^{\circ} \ + \ 70^{\circ}C \ ; \ Vss = 0 \ V \ ; \ 2.7 \ V < Vcc < 5.5 \ V \ ; \ F = 0 \ to \ 16 \ MHz \\ TA = -55^{\circ} \ + \ 125^{\circ}C \ ; \ Vss = 0 \ V \ ; \ Vcc = 5 \ V \pm 10 \ \% \ ; \ F = 0 \ to \ 25 \ MHz \\ \mbox{(Load Capacitance for PORT 0, ALE and PSEN = 100 \ pF \ ; \ Load Capacitance for all other outputs = 80 \ pF) \\ \end{array}$

External Program Memory Characteristics

		16 1	16 MHz		20 MHz		25 MHz		30 MHz	
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
TLHLL	ALE Pulse Width	110		90		70		60		
TAVLL	Address valid to ALE	40		30		20		15		
TLLAX	Address Hold After ALE	35		35		35		35		
TLLIV	ALE to valid instr in		185		170		130		100	
TLLPL	ALE to PSEN	45		40		30		25		
TPLPH	PSEN pulse Width	165		130		100		80		
TPLIV	PSEN to valid instr in		125		110		85		65	
TPXIX	Input instr Hold After PSEN	0		0		0		0		
TPXIZ	Input instr Float After PSEN		50		45		35		30	
TPXAV	PSEN to Address Valid	55		50		40		35		
TAVIV	Address to Valid instr in		230		210		170		130	
TPLAZ	PSEN low to Address Float		10		10		8		6	

External Program Memory Read Cycle

		16 !	16 MHz		20 MHz		25 MHz		MHz
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
TRLRH	RD pulse Width	340		270		210		180	
TWLWH	WR pulse Width	340		270		210		180	
TLLAX	Address Hold After ALE	85		85		70		55	
TRLDV	RD to Valid in		240		210		175		135
TRHDX	Data hold after RD	0		0		0		0	
TRHDZ	Data float after RD		90		90		80		70
TLLDV	ALE to Valid Data In		435		370		350		235
TAVDV	Address to Valid Data IN		480		400		300		260
TLLWL	ALE to WR or RD	150	250	135	170	120	130	90	115
TAVWL	Address to WR or RD	180		180		140		115	
TQVWX	Data valid to WR transition	35		35		30		20	
TQVWH	Data Setup to WR transition	380		325		250		215	
TWHQX	Data Hold after WR	40		35		30		20	
TRLAZ	RD low to Address Float		0		0		0		0
TWHLH	RD or WR high to ALE high	35	90	35	60	25	45	20	40

External Data Memory Characteristics

External Data Memory Write Cycle

External Data Memory Read Cycle

Serial Port Timing – Shift Register Mode

				20 MHz		25 MHz		30 MHz	
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
TXLXL	Serial Port Clock Cycle Time	750		600		480		400	
TQVXH	Output Data Setup to Clock Rising Edge	563		480		380		300	
TXHQX	Output Data Hold after Clock Rising Edge	63		90		65		50	
TXHDX	Input Data Hold after Clock Rising Edge	0		0		0		0	
TXHDV	Clock Rising Edge to Input Data Valid		563		450		350		300

Shift Register Timing Waveforms

External Clock Drive Characteristics (XTAL1)

SYMBOL	PARAMETER	MIN	MAX	UNIT
FCLCL	Oscillator Frequency		30	MHz
TCLCL	Oscillator period	33.3		ns
ТСНСХ	High Time	5		ns
TCLCX	Low Time	5		ns
TCLCH	Rise Time		5	ns
TCHCL	Fall Time		5	ns

External Clock Drive Waveforms

AC Testing Input/Output, Float Waveforms

AC inputs during testing are driven at $V_{CC} - 0.5$ for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at VIH min for a logic "1" and VIL max for a logic "0".

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. Iol/IoH $> \pm$ 20 mA.

TEMIC Semiconductors

Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

83C154D

Ordering Information

C51 Computer/Communication Products

TSC8051C1 : 8-Bit Microcontroller for Digital Computer Monitors	II.7.1
TSC8051C2 : 8-Bit Microcontroller for Digital Computer Monitors	II.8.1

8-Bit Microcontroller for Digital Computer Monitors

1. Introduction

The TSC8051C1 is a stand-alone high performance. In addition, the TSC8051C1 has 2 software selectable CMOS 8-bit embedded microcontroller and is designed for use in CRT monitors. It is also suitable for automotive and industrial applications.

The TSC8051C1 includes the fully static 8-bit "80C51" CPU core with 256 bytes of RAM; 8 Kbytes of ROM; two 16-bit timers; 12 PWM Channels; a 6 sources and 2-level interrupt controller; a full duplex serial port; a full I²C[™]* interface; a watchdog timer and on-chip oscillator.

modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the RAM, the timers, the serial ports, and the interrupt system continue to function. In the power down mode the RAM is saved and all other functions are inoperative.

The TSC8051C1 enables the users reducing a lot of external discrete components while bringing the maximum of flexibility.

2. Features

- Boolean processor
- Fully static design
- 8K bytes of ROM .
- 256 bytes of RAM
- 2 x 16-bit timer/counter
- Programmable serial port
- Programmable Multimaster I²C controller ٠
- ۲ 6 interrupt sources:
 - External interrupts (2)
 - Timers interrupt (2)
 - Serial port interrupt
 - I²C interrupt

- Watchdog reset
- On chip oscillator for crystal or ceramic resonator
- 2 power saving control modes:
 - Idle mode
 - Power–down mode
- Controlled HSYNC & VSYNC outputs
- Up to 12 programmable PWM channels with 8-bit resolution
- Up to 32 programmable I/O lines depending on the package
- 40 pins DIP, 44 pins PQFP, 44 and 52 pins PLCC packages
- Commercial and industrial temperature ranges
- Operating Frequency: 12 MHz to 16 MHz

^{*} I2C is a trademark of PHILIPS Corporation

3. Block Diagram

4. Pin Configurations

*PWMx or P2.x depending on option (see ordering information)

Figure 2. TSC8051C1 pin configurations.

5. Pin Description

VSS

Circuit ground.

VCC

Power supply voltage.

RST

A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits power–on reset using only a capacitor connected to VCC.

PORT 0 (P0.0-P0.7)

Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during access to external Program and Data memory. In this application it uses strong internal pull-up when emitting 1's.

Port 0 can sink and source 8 LS TTL loads.

PORT 1 (P1.0-P1.7)

Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL on the data-sheet) because of the internal pullups.

Port 1 also serves 4 programmable PWM open drain outputs, as listed below:

Port Pin	Alternate Function
P1.0	PWM8: Pulse Width Modulation output 8.
P1.1	PWM9: Pulse Width Modulation output 9.
P1.2	PWM10: Pulse Width Modulation output 10.
P1.3	PWM11: Pulse Width Modulation output 11.

Port 1 can sink and source 3 LS TTL loads.

PORT 2 (P2.0–P2.7)

Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL on the data-sheet) because of the internal pullups.

Port 2 emits the high–order 8–bit address during fetches from external Program Memory and during accesses to external Data Memory that use 16–bit addresses. In this application it uses strong internal pull–up when emitting 1's.

EMIC

Semiconductors

Port 2 can sink and source 3 LS TTL loads.

PORT 3 (P3.0-P3.7)

Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL on the data-sheet) because of the internal pullups.

Each line on this port has 2 or 3 functions either a general I/O or special control signal, as listed below:

Port Pin	Alternate Function
P3.0	RXD: serial input port.
P3.1	TXD: serial output port.
P3.2	INTO: external interrupt 0. VSYNC: vertical synchro input.
P3.3	INT1: external interrupt 1. VOUT: buffered V-SYNC output.
P3.4	T0: Timer 0 external input. HSYNC: horizontal synchro input.
P3.5	T1: Timer 1 external input. HOUT: buffered H–SYNC output.
P3.6	\overline{WR} : external data memory write strobe. SCL: serial port clock line I ² C bus.
P3.7	\overline{RD} : external data memory read strobe. SDA: serial port data line 1^2C bus.

Port 3 can sink and source 3 LS TTL loads.

PWM0-7

These eight Pulse Width Modulation outputs are true open drain outputs and are floating after reset.

ALE

The Address Latch Enable output signal occurs twice each machine cycle except during external data memory access. The negative edge of ALE strobes the address into external data memory or program memory. ALE can sink and source 8 LS TTL loads.

If desired, ALE operation can be disabled by setting bit 0 of SFR location AFh (MSCON). With the bit set, ALE is active only during MOVX instruction and external fetches. Otherwise the pin is pulled low.

EA

When the External Access input is held high, the CPU executes out of internal program memory (unless the Program Counter exceeds 1FFFh). When EA is held low the CPU executes only out of external program memory. must not be left floating.

PSEN

The Program Store Enable output signal remains high during internal program memory. An active low output occurs during an external program memory fetch. **PSEN** can sink and source 8 LS TTL loads.

XTAL1

Input to the inverting oscillator amplifier and input to the external clock generator circuits.

XTAL2

Output from the inverting oscillator amplifier. This pin should be non-connected when external clock is used.

6. Basic Functional Description

6.1. Idle And Power Down Operation

Figure 3 shows the internal Idle and Power Down clock configuration. As illustrated, Power Down operation stops the oscillator. Idle mode operation allows the interrupt, serial port, and timer blocks to continue to operate while the clock to the CPU is gated off.

These special modes are activated by software via the Special Function Register, its hardware address is 87h. PCON is not bit addressable.

Figure 3. Idle and Power Down Hardware.

PCON: Power Control Register

MSB	SFR 87h						LSB
SMOD	_	-		GF1	GF0	PD	IDL

Symbol	Position	Name and Function
IDL	PCON.0	Idle mode bit. Setting this bit activates idle mode operation.
PD	PCON.1	Power Down bit. Setting this bit activates power down operation.
GF0	PCON.2	General–purpose flag bit.
GF1	PCON.3	General-purpose flag bit.
-	PCON.4	(Reserved).
-	PCON.5	(Reserved).
-	PCON.6	(Reserved).
SMOD	PCON.7	Double Baud rate bit. Setting this bit causes the baud rate to double when the serial port is being used in either modes 1, 2 or 3.

If 1's are written to PD and IDL at the same time, PD takes precedence. The reset value of PCON is 0XXX0000b.

6.1.1. Idle Mode

The instruction that sets PCON.0 is the last instruction executed before the Idle mode is activated. Once in the Idle mode the CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM, and all other register maintain their data during Idle Table 1 describes the status of the external pins during Idle mode.

There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware terminating Idle mode. The interrupt is serviced, and following RETI, the next instruction to be executed will be the one following the instruction that wrote 1 to PCON.0. The flag bits GF0 and GF1 may be used to determine whether the interrupt was received during normal execution or during the Idle mode. For example, the instruction that writes to PCON.0 can also set or clear one or both flag bits. When Idle mode is terminated by an enabled interrupt, the service routine can examine the status of the flag bits.

The second way of terminating the Idle is with a hardware reset. Since the oscillator is still running, the hardware reset needs to be active for only 2 machine cycles (24 oscillator periods) to complete the reset operation.

6.1.2. Power Down Mode

The instruction that sets PCON.1 is the last executed prior to entering power down. Once in power down, the oscillator is stopped. The contents of the onchip RAM and the Special Function Register are saved during power down mode. A hardware reset is the only way of exiting the power down mode. The hardware reset initiates the Special Function Register. In the Power Down mode, VCC may be lowered to minimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered, and that the voltage is restored before the hardware reset is applied which frees the oscillator. Reset should not be released until the oscillator has restarted and stabilized. Table 1 describes the status of the external pins while in the power down mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2. If the data is a 1, the port pin is held high during the power down mode by the strong pullup transistor.

Table 1. Status of the external pins during Idle and Power Down modes.

Mode	Program Memory	ALE	PSEN	Port 0	Port 1	Port 2	Port 3	PWMx
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data	Floating
Idle	External	1	1	Floating	Port Data	Address	Port Data	Floating
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data	Floating
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data	Floating

6.2. Stop Clock Mode

Due to static design, the TSC8051C1 clock speed can be reduced down to 0 MHz without any data loss in memory . or register. This mode allows step by step code execution, and permits to reduce system power consumption by bringing the clock frequency down to any value. When the clock is stopped, the power consumption is the same as in the Power Down Mode.

6.3. I/O Ports Structure

The TSC8051C1 has four 8-bit ports. Each port consist of a latch (special function register P0 to P3), an input buffer and an output driver. These ports are the same as in 80C51, with the exception of the additional functions of port 1 and port 3 (see Pin Description section).

6.4. I/O Configurations

Figure 4. shows a functional diagram of the generic bit latch and I/O buffer in each of the four ports. The bit latch, (one bit in the port SFR) is represented as a D type flip–flop. A 'write to latch' signal from the CPU latches a bit from the internal bus and a 'read latch' signal from the CPU places the Q output of the flip–flop on the internal bus. A 'read pin' signal from the CPU places the actual pin logical level on the internal bus.

Some instructions that read a port read the actual pin, and other instructions read the latch (SFR).

TEMIC Semiconductors

ADDR

CONTROL

MUX

PORT 2 BIT

VCC

INTERNAL

P2.X PIN

PULL-UP

* Internal pull-up not present on P1.0 to P1.3 when PWM8 to PWM11 are enabled

* Internal pull-up not present on P3.6 and P3.7 when SIO1 is enabled.

Figure 4. Port Bit Latches and I/O buffers

0

P2.X

LATCH

LE O

6.5. Reset Circuitry

READ

LATCH

INT.

BUS

WRITE

TO -

READ

PIN

The reset circuitry for the TSC8051C1 is connected to the reset pin RST. A Schmitt trigger is used at the input for noise rejection (see Figure 5.).

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by executing an internal reset. It also configures the ALE and PSEN pins as inputs (they are quasi-bidirectional). A Watchdog timer underflow if enabled, will force a reset condition to the TSC8051C1 by an internal connection.

The internal reset is executed during the second cycle in which reset is high and is repeated every cycle until RST goes low. It leaves the internal registers as follows:

Register	Content			
ACC	00h			
В	00h			
DPTR	0000h			
EICON	00h			
HWDR	00h			
IE	0X000000b			
IP	ХХ000000Ь			
MSCON	XXXXXXX0b			
MXCR0-1	00h			
P0-P3	FFh			

Register	Content
PC	0000h
PCON	0ХХХ0000b
PSW	OOh
PWM0-11	OOh
PWMCON	XXXXXXX0b
SICON	OOh
SIDAT	OOh
SISTA	F8h
SBUF	00h
SCON	OOh
SOCR	OOh
SP	07h
TCON	00h
TH0, TH1	00h
TL0, TL1	OOh
TMOD	00h

The internal RAM is not affected by reset. At power-on reset, the RAM content is indeterminate.

Figure 5. On-Chip Reset Configuration.

An automatic reset can be obtained when VCC is turned on by connecting the RST pin to VCC through a 1μ F capacitor providing the VCC setting time does not exceed 1ms and the oscillator start–up time does not exceed 10ms. This power–on reset circuit is shown in Figure 6. When power comes on, the current drawn by RST starts to charge the capacitor. The voltage at RST is the difference between VCC and the capacitor voltage, and decreases from VCC as the capacitor charges. VRST must remain above the lower threshold of the Schmitt trigger long enough to effect a complete reset. The time required is the oscillator start–up time, plus 2 machine cycles.

Figure 6. Power-on Reset Circuit

6.6. Oscillator Characteristics

XTAL1 and XTAL2 are respectively the input and output of an inverting amplifier which is configured for use as an on-chip oscillator. As shown in Figure 7., either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected as shown in Figure 8.

There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide–by–two flip–flop. The minimum high and low times specified on the data sheet must be observed however.

6.7. Memory organization

The memory organisation of the TSC8051C1 is the same as in the 80C51, with the exception that the TSC8051C1 has 8k bytes ROM, 256 bytes RAM, and additional SFRs. Details of the differences are given in the following paragraphs.

In the TSC8051C1, the lowest 8k of the 64k program memory address space is filled by internal ROM. Depending on the package used, external access is available or not. By tying the \overline{EA} pin high, the processor fetches instructions from internal program ROM. Bus expansion for accessing program memory from 8k upward is automatic since external instruction fetches occur automatically when the program counter exceeds 1FFFh. If the \overline{EA} pin is tied low, all program memory fetches are from external memory. The execution speed is the same regardless of whether fetches are from external or internal program memory. If all storage is on-chip, then byte location 1FFFh should be left vacant to prevent an undesired pre–fetch from external program memory address 2000h.

Certain locations in program memory are reserved for specific purposes. Locations 0000h to 0002h are reserved for the initialisation program. Following reset, the CPU always begins execution at location 0000h. Locations 0003h to 0032h are reserved for the six interrupt request service routines. The internal data memory space is divided into a 256–bytes internal RAM address space and a 128 bytes special function register address space.

The internal data RAM address space is 0 to FFh. Four 8-bit register banks occupy locations 0 to 1Fh. 128 bit locations of the internal data RAM are accessible through direct addressing. These bits reside in 16 bytes of internal RAM at location 20h to 2Fh. The stack can be located anywhere in the internal data RAM address space by loading the 8-bit stack pointer (SP SFR).

The SFR address space is 100h to 1FFh. All registers except the program counter and the four 8-bit register banks reside in this address space. Memory mapping of the SFRs allows them to be accessed as easily as internal RAM, and as such, they can be operated on by most instructions. The mapping in the SFR address space of the 43 SFRs is shown in Table 2. The SFR names in italic are TSC8051C1 new SFRs and are described in Peripherals Functional Description section. The SFR names in bold are bit addressable.

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8		-			PWM8	PWM9	PWM10	PWM11
FO	В				PWM4	PWM5	PWM6	PWM7
E8					PWM0	PWMI	PWM2	PWM3
E0	ACC				EICON	SOCR	HWDR	MXCR0
D8	SICON	SISTA	SIDAT					PWMCON
D0	PSW							MXCRI
C8								
C0								
B8	IP							
BO	P3							
A8	IE							MSCON
A0	P2							
98	SCON	SBUF						
90	P1							
88	TCON	TMOD	TLO	TLI	TH0	THI		
80	PO	SP	DPL	DPH				PCON

Table 2. Mapping of Special Function Register

6.8. Interrupts

The TSC8051C1 has six interrupt sources, each of which can be assigned one of two priority levels. The five interrupt sources common to the 80C51 are the external interrupts (INT0 and INT1), the timer 0 and timer 1 interrupts (IT0 and IT1), and the serial I/O interrupt (RI or TI). In the TSC8051C1, the standard serial I/O is called SIO0.

The SIO1 ($I^{2}C$) interrupt is generated by the SI flag in the control register (S1CON SFR). This flag is set when the status register (S1STA SFR) is loaded with a valid status code.

6.8.1. Interrupt Enable Register:

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in the interrupt enable register (IE SFR). All interrupts sources can also be globally enabled or disabled by setting or clearing the EA bit in IE register.

IE: Interrupt Enable Register

MSB	.*		SFR	SFR A8h			LSB	
EA	-	ES1	ES0	ET1	EX1	ET0	EX0	

Symbol	Position	Name and Function
EX0	IE.0	Enable external interrupt 0.
ETO	IE.1	Enable timer 0 interrupt.
EX1	IE.2	Enable external interrupt 1.
ET1	IE.3	Enable timer 1 interrupt.
ES0	IE.4	Enable SIO0 (UART) interrupt.
ESI	IE.5	Enable SIOI (I ² C) interrupt.
-	IE.6	(Reserved).
EA	IE.7	Enable all interrupts.
	1	

6.8.2. Interrupt Priority Structure:

Each interrupt source can be assigned one of two priority levels. Interrupt priority levels are defined by the interrupt priority register (IP SFR). Setting a bit in the interrupt priority register selects a high priority interrupt, clearing it selects a low priority interrupt.

IP: Interrupt Priority Register

MSB SFR B8h							LSB
-	-	PS1	PS0	PT1	PX1	PT0	PX0

Symbol	Position	Name and Function
PX0	IP.0	External interrupt 0 priority level.
PTO	IP.1	Timer 0 interrupt priority level.
PX1	IP.2	External interrupt 1 priority level.
PT1	IP.3	Timer 1 interrupt priority level.
PS0	IP.4	SIO0 (UART) interrupt priority level.
PS1	IP.5	SIO1 (I ² C) interrupt priority level.
-	IP.6	(Reserved).
	IP.7	(Unused).

A low priority interrupt service routine may be interrupted by a high priority interrupt. A high priority interrupt service routine cannot be interrupted by any other interrupt source. If two requests of different priority levels occur simultaneously, the high priority level request is serviced. If requests of same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus, within each priority level, there is a second priority structure determined by the polling sequence, as follows:

Order	Source	Priority Within Level
1	INT0	(highest)
2	Timer 0	↑ (
3	INTI	
4	Timer 1	
5	SIO0	\downarrow
6	SIO1	(lowest)

6.8.3. Interrupt Handling:

FMIC

miconductors

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the previous machine cycle, the polling cycle will find it and the interrupt system will generate a LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

1. An interrupt of higher or equal priority is already in progress.

2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.

3. The instruction in progress is RETI or any access to the IE or IP SFR.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Note that if an interrupt is active but not being responded to for one of the above conditions, if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the facts that the interrupt flag was once active but not serviced is not memorized. Every polling cycle is new. The processor acknowledges an interrupt request by executing a hardware–generated LCALL to the appropriate service routine. In some cases it also clears the flag that generated the interrupt, and in other case it does not. It clears the timer 0, timer 1, and external interrupt flags. An external interrupt flag (IE0 or IE1) is cleared only if it was transition–activated. All other interrupt flags are not cleared by hardware and must be cleared by the software. The LCALL pushes the contents of the program counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as listed below:

Source	Vector Address
IEO	0003h
TF0	000Bh
IEI	0013h
TFI	001Bh
RI + TI	0023h
SI	002Bh

Execution proceeds from the vector address until the RETI instruction is encountered. The RETI instruction clears the 'priority level active' flip–flop that was set when this interrupt was acknowledged. It then pops two bytes from the top of the stack and reloads the program counter with them. Execution of the interrupted, program continues from where it was interrupted.

7. Peripherals Functional Description

For detailed functionnal description of standard 80C51 peripherals, please refer to C51 Family, Hardware Description and Programmer's Guides.

7.1. Watchdog Timer

The watchdog timer consists of a 4-bit timer with a 17-bit prescaler as shown in Figure 9. The prescaler is fed with a signal whose frequency is 1/12 the oscillator frequency (1MHz with a 12MHz oscillator).

HWDR: Hardware WatchDog Register

The 4-bit timer is decremented every 't' seconds, where: t = $12 \times 131072 \times 1/$ fosc. (131.072ms at fosc = 12MHz). Thus, the interval may vary from 131.072ms to 2097.152ms in 16 possible steps (see Table 3.).

The watchdog timer has to be reloaded (write to HWDR SFR) within periods that are shorter than the programmed watchdog interval, otherwise the watchdog timer will underflow and a system reset will be generated which will reset the TSC8051C1.

MSB	SFR E6h							
WTE	NAME.		naar	WT3	WT2	WT1	WT0	

Symbol	Position	Name and Function
WT0	HWDR.0	Watchdog Timer Interval bit 0.
WT1	HWDR.I	Watchdog Timer Interval bit 1.
WT2	HWDR.2	Watchdog Timer Interval bit 2.
WT3	HWDR.3	Watchdog Timer Interval bit 3.
-	HWDR.4	Reserved for test purpose, must remain to 0 for normal operation.
_	HWDR.5	(Reserved).
	HWDR.6	(Reserved).
WTE	HWDR.7	Watchdog Timer Enable bit. Setting this bit activates watchdog operation.

WT3	WT2	WT1	WT0	Interval
0	0	0	0	t x 16
0	0	0	1	t x 1
0	0	1	0	t x 2
:	:	:	:	
:	:	:	:	
1	1	1	1	t x 15

Once the watchdog timer enabled setting WTE bit, it cannot be disabled anymore, except by a system reset.

The watchdog timer is frozen during idle or power down mode.

HWDR is a write only register. Its value after reset is 00h which disables the watchdog operation.

HWDR is using TSC8051C1 Special Function Register address, E6h.

Figure 9. Watchdog timer block diagram

7.2. Pulse Width Modulated Outputs

The TSC8051C1 contains twelve pulse width modulated output channels (see Figure 10.). These channels generate pulses of programmable duty cycle with an 8-bit resolution.

The 8-bit counter counts modulo 256 by default i.e., from 0 to 255 inclusive but can count modulo 254 i.e., from 0 to 253 inclusive by programming the bit 0 of the PWMCON register. The counter clock is supplied by the oscillator frequency. Thus, the repetition frequency fpwm is constant and equals to the oscillator frequency divided by 256 or 254 (fpwm=46.875KHz or 47.244KHz with a 12MHz oscillator). The 8-bit counter is common to all PWM channels, its value is compared to the contents of the twelve registers: PWM0 to PWM11. Provided the content of each of these registers is greater than the counter value, the corresponding output is set low. If the contents of these registers are equal to, or less than the counter value the output will be high. The pulse–width ratio is therefore defined by the contents of these registers, and is in the range of 0 (all '0' written to PWM register) to 255/256 or 1 (all '1' written to PWM register) and may be programmed in increments of 1/256 or 1/254. When the 8–bit counter counts modulo 254, it can never reach the value of the PWM registers when they are loaded with FEh or FFh.

PWMx: Pulse Width Modulator x Register

MSB					LS	SB	
D7	D6	D5	D4	D3	D2	D1	D0

When a compare register (PWM0 to PWM11) is loaded with a new value, the associated output is updated immediately. It does not have to wait until the end of the current counter period. All the PWM outputs are open-drain outputs with standard current drive and standard maximum voltage capability. When they are disabled, eight of them (PWM0 to PWM7) are in high impedance while the other four (PWM8 to PWM11) are standard Port outputs with internal pullups.

PWM0 to PWM11 are write only registers. Their value after reset is 00h.

PWM0 to PWM11 are using TSC8051C1 Special Function Registers addresses as detailed in Table 4.

Table 4. PWM SFR register addresses

Channel	SFR address
PWM0	ECh
PWM1	EDh
PWM2	EEh
PWM3	EFh
PWM4	F4h
PWM5	F5h
PWM6	F6h
PWM7	F7h
PWM8	FCh
PWM9	FDh
PWM10	FEh
PWM11	FFh

Two 8-bit control registers: MXCR0 and MXCR1 are used to enable or disable PWM outputs.

MXCR0 is used for PWM0 to PWM7. MXCR1 is used for PWM8 to PWM11, these PWMs are multiplexed with PORT 1 (see Table 5.)

MXCR0: PWM Multiplexed Control Register 0

MSB	ISB SFR E7h						LSB
PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0

Symbol	Position	Name and Function
PEx	MXCR0.x	PWM_X Enable bit. Setting this bit enables PWM_X output. Clearing this bit disables PWM_X output.

MXCR1: PWM Multiplexed Control Register 1

MSB	SFR D7h						LSB
-	-	-	-	PE11	PE10	PE9	PE8

Symbol	Position	Name and Function
PEx	MXCR1.x	PWM_{X+8} Enable bit. Setting this bit enables $PWMx$ output. Clearing this bit disables $PWMx$ output and activates the I/O pin (see Table 5).

MXCR0 and MXCR1 are read/write registers. Their value after reset is 00h which corresponds to all PWM disabled.

PWM will not operate in idle and power down modes (frozen counter). When idle or power down mode is entered, the PWM0 to PWM7 output pins are floating and PWM8 to PWM11 pins are set to general purpose P1 port with the value of P1 SFR.

MXCR0 and MXCR1 are using TSC8051C1 Special Function Register addresses, E7h and D7h respectively.

Table 5. PWM alternate pin.

Channel	Pin assignment
PWM8	P1.0
PWM9	P1.1
PWM10	P1.2
PWM11	P1.3

PWMCON is used to control the PWM counter.

PWMCON: PWM Control Register

MSB	SFR DFh					LSB
	-	-	-	-	-	CMOD

Symbol	Position	Name and Function
CMOD	PWMCON.0	Counter modulo. Setting this bit sets the modulo to 254. Clearing this bit sets the modulo to 256.

PWMCON is a write only register. Its value after reset is 00h which sets the PWM counter modulo to 256.

PWMCON is using TSC8051C1 Special Function Register address, DFh.

and VSYNC

Note: when packaging P2.X is selected, PWM0 to

PWM7 are not available. Please refer to ordering

SOCR is used to configure P3.3 and P3.5 pins as buffered HSYNC and VSYNC outputs or as general purpose I/Os. When either HSYNC or VSYNC is

selected, the output level can be respectively programmed as P3.4 or P3.2 input level (inverted or not), or as a low level if not enabled. Figure 12. shows

the programmable HSYNC and VSYNC output block

7.3. Controlled HSYNC

information.

Outputs

diagram.

Figure 10. Pulse width modulated outputs block diagram

Figure 11. shows a PWM programming example with PWM register content 55h and counter modulo 256.

Figure 11. PWM programming example.

SOCR: Synchronisation Output Control Register.

MSB		SFR E5h				
	 VOS	HOS	VOP	VOE	HOP	HOE

Symbol	Position	Name and Function
HOE	SOCR.0	HSYNC Output Enable bit. Setting this bit enables the HSYNC signal.
НОР	SOCR.1	HSYNC Output Polarity bit. Setting this bit inverts the HSYNC output.
VOE	SOCR.2	VSYNC Output Enable bit. Setting this bit enables the VSYNC signal.
VOP	SOCR.3	VSYNC Output Polarity bit. Setting this bit inverts the VSYNC output.
HOS	SOCR.4	HSYNC Output Selection bit. Setting this bit selects the VSYNC output, clearing it selects P3.5 SFR bit.
VOS	SOCR.5	VSYNC Output Selection bit. Setting this bit selects the VSYNC output, clearing it selects P3.3 SFR bit.

SOCR is a write only register. Its value after reset is 00h which enables P3.3 and P3.5 general purpose I/O pins.

SOCR is using TSC8051C1 Special Function Register address, E5h.

Figure 12. Buffered HSYNC and VSYNC block diagram

EICON: External Input Control Register

7.4. HSYNC and VSYNC Inputs

EICON is used to control INTOVSYNC input. Thus, an interrupt on either falling or rising edge and on either high or low level can be requested. Figure 13. shows the programmable INTO/VSYNC input block diagram.

EICON is also used to control T0/HSYNC input as short pulses input capture to be able to count them with timer 0. Pulse duration shorter than 1 clock period is rejected; depending on the position of the sampling point in the pulse, pulse duration longer than 1 clock period and shorter than 1.5 clock period may be rejected or accepted; and pulse duration longer than 1.5 clock period is accepted. Moreover selection of negative or positive pulses can be programmed.

Accepted pulse is lengthened up to 1 cycle period to be sampled by the 8051 core (one time per machine cycle: 12 clock periods), this implies that the maximum pulse frequency is unchanged and equal to $f_{OSC}/24$. Figure 14. shows the programmable T0/HSYNC input block diagram. The Digital Timer Delay samples T0/HSYNC pulses and rejects or lengthens them.

MISD	SFR E4h					LSB
		-	-	TOL	T0S	IOL

Symbol	Position	Name and Function
IOL	EICON.0	$\overline{INT0}/VSYNC$ input Level bit. Setting this bit inverts $\overline{INT0}/VSYNC$ input signal. Clearing it allows standard use of $\overline{INT0}/VSYNC$ input.
TOS	EICON.1	T0/HSYNC input Selection bit. Setting this bit allows short pulse capture. Clearing it allows standard use of T0/HSYNC input.
TOL	EICON.2	T0/HSYNC input Level bit. Setting this bit allows positive pulse capture. Clearing it allows negative pulse capture.

EICON is a write only register. Its value after reset is 00h which allows standard INTO and TO inputs feature.

EICON is using TSC8051C1 Special Function Register address, E4h.

Figure 14. T0/HSYNC input block diagram

7.5. SIO1, I²C Serial I/O

SIO1 provides a serial interface that meets the I^2C bus specification and supports the master transfer modes with multimaster capability from and to the I^2C bus. The SIO1 logic handles bytes transfer autonomously. It also keeps track of serial transfers and a status register reflects the status of SIO1 and the I^2C bus. Figure 15. shows a typical use of I^2C bus with SIO1, and Figure 16. shows a complete data transfer with SIO1.

Figure 15. Typical I²C bus configuration

Figure 16. Complete data transfer on I²C bus

Three 8-bit special function registers are used to control SIO1: the control register (S1CON SFR), the status register (S1STA SFR) and the data register (S1DAT SFR).

S1CON is used to enable SIO1, to program the bit rate (see Table 6.), to acknowledge or not a received data, to send a start or a stop condition on the I^2C bus, and to acknowledge a serial interrupt.

S1CON: Synchronous Serial Control Register

MSB		SFR D8h					LSB
CR2	ENS1	STA	STO	SI	AA	CR1	CR0

Symbol	Position	Name and Function
CR0	S1CON.0	Control Rate bit 0. See Table 6.
CR1	S1CON.1	Control Rate bit 1. See Table 6.
AA	SICON.2	Assert Acknowledge flag. In receiver mode, setting this bit forces an acknowledge (low level on SDA). In receiver mode, clearing this bit forces a not acknowledge (high level on SDA). When in transmitter mode, this bit has no effect.
SI	\$1CON.3	Synchronous Serial Interrupt flag. This bit is set by hardware when a serial interrupt is requested. This bit must be reset by software to acknowledge interrupt.
STO	S1CON.4	Stop flag. Setting this bit causes a stop condition to be sent on bus.
STA	S1CON.5	Start flag. Setting this bit causes a start condition to be sent on bus.
ENS1	S1CON.6	Synchronous Serial Enable bit. Setting this bit enables the SIO1 controller.
CR2	SICON.7	Control Rate bit 2. See Table 6.

S1CON is a read/write. Its value after reset is 00h which disables the I^2C controller.

S1CON is using TSC8051C1 Special Function Register address, D8h.

Table 6. Serial Clock Rates

			Bit freque	ency (kHz)	
CR2	CR1	CR0	6MHz	12MHz	fosc divided by
0	0	0	23.5	47	256
0	0	1	27	53.5	224
0	1	0	31.25	62.5	192
0	1	1	37.5	75	160
1	0	0	6.25	12.5	960
1	0	1	50	100	120
1	1	0	100	-	60
1	1	1	0.25<62.5	0.5<62.5	Timer 1 overflow 96 x (256 – reload value) value: 0–254 in mode 2

S1STA contains a status code which reflects the status of SIO1 and the I²C bus. The three least significant bits are always zero. The five most significant bits contains the status code. There are 12 possible status code. When S1STA contains F8h, no relevant state information is available and no serial interrupt is requested. A valid status code is available in S1STA one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. Table 7. to Table 9. give the status for the operating modes and miscellaneous states.

S1STA: Synchronous Serial Status Register

MSB	SFR D9h						
SC4	SC3	SC2	SC1	SC0	0	0	0

Symbol	Position	Name and Function
SC0	S1STA.3	Status Code bit 0.
SC1	S1STA.4	Status Code bit 1.
SC2	S1STA.5	Status Code bit 2.
SC3	S1STA.6	Status Code bit 3.
SC4	S1STA.7	Status Code bit 4.

S1STA is a read only register. Its value after reset is F8h.

S1STA is using TSC8051C1 Special Function Register address, D9h.

Table 7. Status for master transmitter mode.

Status code	Status of I ² C bus and SIO1 hardware
08h	A START condition has been transmitted.
10h	A repeated START condition has been transmitted
18h	SLA+W has been transmitted; ACK has been received.
20h	SLA+W has been transmitted; NOT ACK has been received.
28h	Data byte has been transmitted; ACK has been received.
30h	Data byte has been transmitted; NOT ACK has been received.
38h	Arbitration lost in SLA+R/W or data bytes.

Table 8. Status for master receiver mode

Status code	Status of I ² C bus and SIO1 hardware
08h	A START condition has been transmitted.
10h	A repeated START condition has been transmitted.
38h	Arbitration lost in NOT ACK bit
40h	SLA+R has been transmitted; ACK has been received.
48h	SLA+R has been transmitted; NOT ACK has been received.
50h	Data byte has been received; ACK has been received.
58h	Data byte has been received; NOT ACK has been received.

S1DAT: Synchronous Serial Data Register

MSB	SFR DAh						
SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0

Symbol	Position	Name and Function
SD0	S1DAT.0	Address bit 0 (R/\overline{W}) or Data bit 0.
SDX	S1DAT.X	Address bit X or Data bit X.

S1DAT is a read/write register. Its value after reset is 00h.

S1DAT is using TSC8051C1 Special Function Register address, DAh.

When SIO1 is enabled, P3.6 and P3.7 must be set to 1 to avoid low level asserting on SCL or SDA lines.

When SIO1 is used, external data memory access is not available.

2

MATRA MHS Rev. D (14 Jan. 97)

Table 9. Status for miscellaneous states

Status code	Status of I ² C bus and SIO1 hardware
00h	Bus error.
F8h	No relevant state information available.

S1DAT contains a byte of serial data to be transmitted or a byte which has just been received. It is addressable while it is not in process of shifting a byte. This occurs when SIO1 is in a defined state and the serial interrupt flag is set. Data in S1DAT remains stable as long as SI is set. While data is being shifted out, data on the bus is simultaneously shifted in; S1DAT always contains the last byte present on the bus.

8. Electrical Characteristics

Absolute Maximum Ratings⁽¹⁾

Operating Temperature:

Commercial		 	\ldots . 0°C to 70°C
Industrial	• • • • • • •	 	. –40°C to +85°C
Storage Temp	perature	 	-65°C to +150°C

Notice:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

8.1. DC Characteristics

Voltage on VCC to VSS	-0.5V to +7V
Voltage on Any Pin to VSS \ldots -0.5V to	VCC + 0.5V
Power Dissipation	$\dots 1W^{(2)}$

2. This value is based on the maximum allowable die temperate and the thermal resistance of the package.

TA = 0° C to +70°C; VSS = 0V; VCC = 5V ± 10%; F = 0 to 16MHz.
TA = -40° C to $+85^{\circ}$ C; VSS = 0V; VCC = 5V ± 10%; F = 0 to 16MHz.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Inputs				-		-
VIL	Input Low Voltage, except SCL, SDA	-0.5		0.2 Vcc - 0.1	v	
VIL1	Input Low Voltage, SCL, SDA ⁽⁵⁾	-0.5		0.3 Vcc	v	
VIH	Input High Voltage except XTAL1, RST, SCL, SDA	0.2 Vcc + 0.9		Vcc + 0.5	v	
VIH1	Input High Voltage, XTAL1, RST	0.7 Vcc		Vcc + 0.5	V.	
VIH2	Input High Voltage, SCL, SDA ⁽⁵⁾	0.7 Vcc		Vcc + 0.5	v	
IIL	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45V
ILI	Input Leakage Current			±10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0V
Outputs						
VOL	Output Low Voltage, ports 1, 2, 3, SCL, SDA, PWM0-7 ⁽⁷⁾			0.3 0.45 1.0	V V V	$ \begin{array}{l} \text{IOL} = 100 \mu \text{A}^{(4)} \\ \text{IOL} = 1.6 \text{m} \text{A}^{(4)} \\ \text{IOL} = 3.5 \text{m} \text{A}^{(4)} \end{array} $
VOL1	Output Low Voltage, port 0, ALE, PSEN (7)			0.3 0.45 1.0	V V V	$IOL = 200\mu A^{(4)}$ $IOL = 3.2mA^{(4)}$ $IOL = 7.0mA^{(4)}$
VOH	Output High Voltage, ports 1, 2, 3, SCL, SDA	Vcc - 0.3 Vcc - 0.7 Vcc - 1.5			V V V	$IOH = -10\mu A$ $IOH = -30\mu A$ $IOH = -60\mu A$ $Vcc = 5V \pm 10\%$
VOH1	Output High Voltage, port 0, ALE, PSEN	Vcc - 0.3 Vcc - 0.7 Vcc - 1.5			V V V	$IOH = -200\mu A$ IOH = -3.2mA IOH = -7.0mA $Vcc = 5V \pm 10\%$
RRST	RST Pulldown Resistor	50	90 (6)	200	kΩ	

Semiconductors

TSC8051C1

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
CIO	Capacitance of I/O Buffer			10	pF	$fc = 1 MHz, TA = 25^{\circ}C$
ICC	Power Supply Current ⁽⁸⁾ Active Mode 12MHz Idle Mode 12MHz		8.5 ⁽⁶⁾ 2.6 ⁽⁶⁾	17 8	mA mA	$Vcc = 5.5V^{(1)}$ $Vcc = 5.5V^{(2)}$
IPD	Power Down Current		5 (6)	30	μΑ	$Vcc = 2.0V$ to $5.5V^{(3)}$

Notes for DC Electrical Characteristics

- ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 20.), VIL = VSS + 0.5V, VIH = VCC - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used (see Figure 17.).
- Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5ns, VIL = VSS + 0.5V, VIH = VCC-0.5V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS (see Figure 19.).
- 3. Power Down ICC is measured with all output pins disconnected; EA = PORT 0 = VCC; XTAL2 NC.; RST = VSS (see Figure 19.).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi VOL peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. The input threshold voltage of SCL and SDA (SIO1) meets the I²C specification, so an input voltage below 0.3-VCC will be recognised as a logic 0 while an input voltage above 0.7-VCC will be recognised as a logic 1.
- Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.
- 7. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

chany minieu as fonows.	
Maximum IOL per port pin:	10 mA
Maximum IOL per 8-bit port:	
Port 0:	26 mA
Ports 1, 2 and 3:	15 mA
Maximum total IOL for all output pins:	71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

8. For other values, please contact your sales office.

Figure 17. ICC Test Condition, Active Mode.

Figure 18. ICC Test Condition, Idle Mode.

Figure 19. ICC Test Condition, Power Down Mode.

TCLCH = TCHCL = 5ns.

Figure 20. Clock Signal Waveform for ICC Tests in Active and Idle Modes.

8.2. Explanation Of The AC Symbol

Example:

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

TAVLL =	Time for A	Address '	Valid to .	ALE low
TLLPL =	Time for A	LE low	to PSEN	I low.

A: Address.	Q: Output data.
C: Clock.	R: READ signal.
D: Input data.	T: Time.
H: Logic level HIGH.	V: Valid.
I: Instruction (Program memory contents).	W: WRITE signal.
L: Logic level LOW, or ALE.	X: No longer a valid logic level.
P: PSEN.	Z: Float.
8.3. AC Parameters	$T_A = -40^{\circ}C$ to $+85^{\circ}C$; VSS = 0V; VCC = 5V ± 10%; F

TA = 0 to $+70^{\circ}$ C; VSS = 0V VCC = 5V $\pm 10\%$; 0 to 12MHz

8.4. External Program Memory Characteristics

TA = -40° C to $+85^{\circ}$ C; VSS = 0V; VCC = 5V ± 10%; F = 0 to 12MHz.

(Load Capacitance for PORT 0, ALE and PSEN = 100pf; Load Capacitance for all other outputs = 80 pF.)

Symbol	Banamatan	0 to 1	The first	
Symbol	rarameter	Min	Max	Units
TLHLL	ALE pulse width	2TCLCL - 40		ns
TAVLL	Address Valid to ALE	TCLCL - 40		ns
TLLAX	Address Hold After ALE	TCLCL - 30		ns
TLLIV	ALE to Valid Instruction In		4TCLCL - 100	ns
TLLPL	ALE to PSEN	TCLCL - 30		ns
TPLPH	PSEN Pulse Width	3TCLCL - 45		ns
TPLIV	PSEN to Valid Instruction In		3TCLCL - 105	ns
TPXIX	Input Instruction Hold After PSEN	0		ns

		0 to 1		
Symbol	Parameter	Min	Min Max	Units
TPXIZ	Input Instruction Float After PSEN		TCLCL - 25	ns
TPXAV	PSEN to Address Valid	TCLCL – 8		ns
TAVIV	Address to Valid Instruction In		5TCLCL - 105	ns
TPLAZ	PSEN Low to Address Float		10	ns

8.5. External Program Memory Read Cycle

8.6. External Data Memory Characteristics

		0 to 1		
Symbol	Parameter	Min	Max	Units
TRLRH	RD Pulse Width	6TCLCL-100		ns
TWLWH	WR Pulse Width	6TCLCL-100		ns
TRLDV	RD to Valid Data In		5TCLCL-165	ns
TRHDX	Data Hold After RD	0		ns
TRHDZ	Data Float After RD		2TCLCL-60	ns
TLLDV	ALE to Valid Data In		8TCLCL150	ns
TAVDV	Address to Valid Data In		9TCLCL-165	ns
TLLWL	ALE to WR or RD	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to WR or RD	4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	TCLCL-50		ns
тоумн	Data set-up to WR High	7TCLCL-150		ns
TWHQX	Data Hold After WR	TCLCL-50		ns
TRLAZ	RD Low to Address Float		0	ns
TWHLH	RD or WR High to ALE high	TCLCL-40	TCLCL+40	ns

8.7. External Data Memory Write Cycle

8.8. External Data Memory Read Cycle

8.9. Serial Port Timing–Shift Register Mode

0 1 1		0 to 12		
Symbol	rarameter	Min	Max	Units
TXLXL	Serial port clock cycle time	12TCLCL		ns
TQVHX	Output data set-up to clock rising edge	10TCLCL-133	and and a second s	ns
TXHQX	Output data hold after clock rising edge	2TCLCL-117		ns
TXHDX	Input data hold after clock rising edge	0		ns
TXHDV	Clock rising edge to input data valid		10TCLCL-133	ns

8.10. Shift Register Timing Waveforms

8.11. SIO1 (I²C) Interface Timing

Symbol	Parameter	Input	Output
Thd; STA	Start condition hold time	≥ 14 Tclcl	> 4.0µs ⁽¹⁾
TLOW	SCL low time	≥ 16 TCLCL	> 4.7µs ⁽¹⁾
Thigh	SCL high time	≥ 14 TCLCL	> 4.0µs ⁽¹⁾
TRC	SCL rise time	≤ 1µs	_ (2)
Tfc	SCL fall time	≤ 0.3µs	< 0.3µs ⁽³⁾
Tsu; DAT1	Data set-up time	≥ 250ns	> 20 TCLCL - TRD
Tsu; DAT2	SDA set-up time (before repeated START condition)	≥ 250ns	> 1µs ⁽¹⁾
Tsu; DAT3	SDA set-up time (before STOP condition)	≥ 250ns	> 8 TCLCL
Thd; DAT	Data hold time	≥ 0ns	> 8 TCLCL - TFC
Tsu; STA	Repeated START set-up time	≥ 14 TCLCL	> 4.7µs ⁽¹⁾
Tsu; STO	STOP condition set-up time	≥ 14 TCLCL	> 4.0µs ⁽¹⁾
TBUF	Bus free time	≥ 14 TCLCL	> 4.7µs ⁽¹⁾
Trd	SDA rise time	≤ 1µs	(2)
Tfd	SDA fall time	≤ 0.3µs	< 0.3µs ⁽³⁾

Notes:

- 1. At 100 kbit/s. At other bit–rates this value is inversely proportional to the bit–rate of 100 kbit/s.
- 2. Determined by the external bus–line capacitance and the external bus–line pull–up resistor, this must be < 1μ s.

Spikes on the SDA and SCL lines with a duration of less than 3 TCLCL will be filtered out. Maximum capacitance on bus-lines SDA and SCL = 400pF.
8.12. SIO1 (I²C) Timing Waveforms

8.13. External Clock Drive Characteristics (XTAL1)

Symbol	Parameter	Min	Max	Units
TCLCL	Oscillator Period	83.3		ns
TCHCX	High Time	5		ns
TCLCX	Low Time	5		ns
TCLCH	Rise Time		5	ns
TCHCL	Fall Time		5	ns

8.14. External Clock Drive Waveforms

8.15. AC Testing Input/Output Waveforms

AC inputs during testing are driven at Vcc - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at VIH min for a logic "1" and VIL max for a logic "0".

TEMIC Semiconductors

8.16. Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH $\geq \pm$ 20mA.

8.17. Clock Waveform

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though $(TA=25^{\circ}C \text{ fully loaded}) \overline{RD}$ and \overline{WR} propagation delays are approximately 50ns. The other signals are typically 85ns. Propagation delays are incorporated in the AC specifications.

TEMIC Semiconductors

TSC8051C1

9. Ordering Information

Examples

Part Number	Description
TSC51C1XXX–12CA	Mask ROM XXX, 12 MHz, PDIL 40, 0 to 70°C
TSC8051C1-16CER	ROMless, 16 MHz, PLCC 52, 0 to 70°C, Tape and Reel

Development Tools

Reference	Description
ANM059	Application Note: "How to recognize video mode and generate free running synchronization signals using TSC8051C1/C2 Microcontroller"
IM-80C51-RB-400-40	Emulator Base
PC-TSC8051C1-RB-16	Probe card for TSC8051C1. These products are released by Metalink. Please consult the local tools distributor or your sales office.

Product Marking :

TEMIC Customer P/N Temic P/N © Intel 80, 82 YYWW Lot Number

8-Bit Microcontroller for Digital Computer Monitors

1. Introduction

The TSC8051C2 is a stand–alone high performance CMOS 8–bit embedded microcontroller and is designed for use in CRT monitors. It is also suitable for automotive and industrial applications.

The TSC8051C2 includes the fully static 8–bit "80C51" CPU core with 256 bytes of RAM; 4 Kbytes of ROM; two 16–bit timers; 12 PWM Channels; a 5 sources and 2–level interrupt controller; a full duplex serial port; a watchdog timer; power voltage monitor and on–chip oscillator.

In addition, the TSC8051C2 has 2 software selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the RAM, the timers, the serial ports, and the interrupt system continue to function. In the power down mode the RAM is saved and all other functions are inoperative.

The TSC8051C2 enables the users reducing a lot of external discrete components while bringing the maximum of flexibility.

2. Features

- Boolean processor
- Fully static design
- 4K bytes of ROM
- 256 bytes of RAM
- 2 x 16–bit timer/counter
- Programmable serial port
- 5 interrupt sources:
 - External interrupts (2)
 - Timers interrupt (2)
 - Serial port interrupt
- Watchdog reset
- Power Fail reset
- On chip oscillator for crystal or ceramic resonator

- 2 power saving control modes:
- Idle mode
 - Power-down mode
- SYNC Processor
 - Controlled HSYNC & VSYNC outputs
 - Controlled HSYNC & VSYNC inputs
 - Clamp pulse output
- Up to 12 programmable PWM channels with 8-bit resolution
- Up to 32 programmable I/O lines depending on the package
- 40 pins DIP, 44 pins PQFP, 44 and 52 pins PLCC packages
- Commercial and industrial temperature ranges
- Operating Frequency: 12 MHz to 16 MHz

3. Block Diagram

Preview

TSC8051C2

4. Pin Configurations

*PWMx or P2.x depending on option (see ordering information)

Figure 2. TSC8051C2 pin configurations.

5. Pin Description

VSS

Circuit ground.

VCC

Power supply voltage.

RST

A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits power–on reset using only a capacitor connected to VCC.

PORT 0 (P0.0-P0.7)

Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during access to external Program and Data memory. In this application it uses strong internal pull-up when emitting 1's.

Port 0 can sink and source 8 LS TTL loads.

PORT 1 (P1.0-P1.7)

Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL on the data-sheet) because of the internal pullups.

Port 1 also serves 4 programmable PWM open drain outputs and programmable open drain CPO, as listed below:

Port Pin	Alternate Function
P1.0	PWM8: Pulse Width Modulation output 8.
P1.1	PWM9: Pulse Width Modulation output 9.
P1.2	PWM10: Pulse Width Modulation output 10.
P1.3	PWM11: Pulse Width Modulation output 11.
P1.4	CPO: Clamp Pulse Output.

Port 1 can sink and source 3 LS TTL loads.

PORT 2 (P2.0-P2.7)

Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL on the data-sheet) because of the internal pullups.

Port 2 emits the high–order 8–bit address during fetches from external Program Memory and during accesses to external Data Memory that use 16–bit addresses. In this application it uses strong internal pull–up when emitting 1's.

Port 2 can sink and source 3 LS TTL loads.

PORT 3 (P3.0-P3.7)

Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL on the data-sheet) because of the internal pullups.

Each line on this port has 2 or 3 functions either a general I/O or special control signal, as listed below:

Port Pin	Alternate Function
P3.0	RXD: serial input port.
P3.1	TXD: serial output port.
P3.2	INTO: external interrupt 0. VSYNC: vertical synchro input.
P3.3	INTI: external interrupt 1. VOUT: buffered V-SYNC output.
P3.4	T0: Timer 0 external input. HSYNC: horizontal synchro input.
P3.5	T1: Timer 1 external input. HOUT: buffered H–SYNC output.
P3.6	WR: external data memory write strobe.
P3.7	RD: external data memory read strobe.

Port 3 can sink and source 3 LS TTL loads.

PWM0-7

These eight Pulse Width Modulation outputs are true open drain outputs and are floating after reset.

Preview

ALE

The Address Latch Enable output signal occurs twice each machine cycle except during external data memory access. The negative edge of ALE strobes the address into external data memory or program memory. ALE can sink and source 8 LS TTL loads.

If desired, ALE operation can be disabled by setting bit 0 of SFR location AFh (MSCON). With the bit set, ALE is active only during MOVX instruction and external fetches. Otherwise the pin is pulled low.

EA

When the External Access input is held high, the CPU executes out of internal program memory (unless the Program Counter exceeds 1FFFh). When EA is held low the CPU executes only out of external program memory. must not be left floating.

PSEN

The Program Store Enable output signal remains high during internal program memory. An active low output occurs during an external program memory fetch. PSEN can sink and source 8 LS TTL loads.

XTAL1

Input to the inverting oscillator amplifier and input to the external clock generator circuits.

XTAL2

Output from the inverting oscillator amplifier. This pin should be non-connected when external clock is used.

PCON: Power Control Register

6. Basic Functional Description

6.1. Idle And Power Down Operation

Figure 3 shows the internal Idle and Power Down clock configuration. As illustrated, Power Down operation stops the oscillator. Idle mode operation allows the interrupt, serial port, and timer blocks to continue to operate while the clock to the CPU is gated off.

These special modes are activated by software via the Special Function Register, its hardware address is 87h. PCON is not bit addressable.

Figure 3. Idle and Power Down Hardware.

MSB	SFR 87h						LSB
SMOD	-	-	PFRE	GF1	GF0	PD	IDL

Symbol	Position	Name and Function
IDL	PCON.0	Idle mode bit. Setting this bit activates idle mode operation.
PD	PCON.1	Power Down bit. Setting this bit activates power down operation.
GF0	PCON.2	General-purpose flag bit.
GF1	PCON.3	General-purpose flag bit.
PFRE	PCON.4	Power Fail Reset Enable bit. Setting this bit enables the power voltage monitor. The only way to clear this bit is to apply an external reset.
-	PCON.5	(Reserved).
	PCON.6	(Reserved).
SMOD	PCON.7	Double Baud rate bit. Setting this bit causes the baud rate to double when the serial port is being used in either modes 1, 2 or 3.

If 1's are written to PD and IDL at the same time, PD takes precedence. The reset value of PCON is 0XX0 0000b.

6.1.1. Idle Mode

The instruction that sets PCON.0 is the last instruction executed before the Idle mode is activated. Once in the Idle mode the CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM, and all other register maintain their data during Idle Table 1 describes the status of the external pins during Idle mode.

There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware terminating Idle mode. The interrupt is serviced, and following RETI, the next instruction to be executed will be the one following the instruction that wrote 1 to PCON.0. The flag bits GF0 and GF1 may be used to determine whether the interrupt was received during normal execution or during the Idle mode. For example, the instruction that writes to PCON.0 can also set or clear one or both flag bits. When Idle mode is terminated by an enabled interrupt, the service routine can examine the status of the flag bits.

The second way of terminating the Idle is with a hardware reset. Since the oscillator is still running, the hardware reset needs to be active for only 2 machine cycles (24 oscillator periods) to complete the reset operation.

hits GEO and GE1 may be

Preview

6.1.2. Power Down Mode

The instruction that sets PCON.1 is the last executed prior to entering power down. Once in power down, the oscillator is stopped. The contents of the onchip RAM and the Special Function Register are saved during power down mode. A hardware reset is the only way of exiting the power down mode. The hardware reset initiates the Special Function Register. In the Power Down mode, VCC may be lowered to minimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered, and that the voltage is restored before the hardware reset is applied which frees the oscillator. Reset should not be released until the oscillator has restarted and stabilized. Table 1 describes the status of the external pins while in the power down mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2. If the data is a 1, the port pin is held high during the power down mode by the strong pullup transistor.

Table 1. Status of the external pins during Idle and Power Down modes.

Mode	Program Memory	ALE	PSEN	Port 0	Port 1	Port 2	Port 3	PWMx
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data	Floating
Idle	External	1	1	Floating	Port Data	Address	Port Data	Floating
Power Down	Internal	0	0	Port Data	Port Data	Port Data	Port Data	Floating
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data	Floating

6.2. Stop Clock Mode

Due to static design, the TSC8051C2 clock speed can be reduced down to 0 MHz without any data loss in memory or register. This mode allows step by step code execution, and permits to reduce system power consumption by bringing the clock frequency down to any value. When the clock is stopped, the power consumption is the same as in the Power Down Mode.

6.3. I/O Ports Structure

The TSC8051C2 has four 8-bit ports. Each port consist of a latch (special function register P0 to P3), an input buffer and an output driver. These ports are the same as in 80C51, with the exception of the additional functions of port 1 and port 3 (see Pin Description section).

6.4. I/O Configurations

Figure 4. shows a functional diagram of the generic bit latch and I/O buffer in each of the four ports. The bit latch, (one bit in the port SFR) is represented as a D type flip–flop. A 'write to latch' signal from the CPU latches a bit from the internal bus and a 'read latch' signal from the CPU places the Q output of the flip–flop on the internal bus. A 'read pin' signal from the CPU places the actual pin logical level on the internal bus.

Some instructions that read a port read the actual pin, and other instructions read the latch (SFR).

TEMIC Semiconductors

* Internal pull-up not present on P1.0 to P1.4 when PWM8 to PWM11 and CPO are enabled

ADDR

CONTROL

VCC

INTERNAL

PULL-UP

Figure 4. Port Bit Latches and I/O buffers

6.5. Reset Circuitry

READ

I ATCH

The reset circuitry for the TSC8051C2 is connected to the reset pin RST. A Schmitt trigger is used at the input for noise rejection (see Figure 5.).

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by executing an internal reset. It also configures the ALE and PSEN pins as inputs (they are quasi-bidirectional). A Watchdog timer underflow or a power Fail condition if enabled, will force a reset condition to the TSC8051C2 by an internal connection.

The internal reset is executed during the second cycle in which reset is high and is repeated every cycle until RST goes low. It leaves the internal registers as follows:

Register	Content
ACC	00h
В	00h
DPTR	0000h
EICON	00h
HWDR	00h
IE	0XX0 0000b
IP	XXX0 0000b
MSCON	XXXX XXX0b
MXCR0-1	00h
P0-P3	FFh
PC	0000h
PCON	0XX0 0000b
PSW	00h
PWM0-11	00h
PWMCON	XXXX XXX0b
SBUF	00h

Semicondu	Register Content SCON 00h SOCR 00h SP 07h TCON 00h		
Regi	ister	Conten	
SCO	ON	00h	
so	CR	OOh	
s	P	07h	
TC	ON	00h	
TH0.	тні	00h	

· · · · · ·

TL0, TL1

TMOD

The internal RAM is not affected by reset. At power-on reset, the RAM content is indeterminate.

00h

00h

Figure 5. On-Chip Reset Configuration.

An automatic reset can be obtained when VCC is turned on by connecting the RST pin to VCC through a 1μ F capacitor providing the VCC setting time does not exceed 1ms and the oscillator start–up time does not exceed 10ms. This power–on reset circuit is shown in Figure 6. When power comes on, the current drawn by RST starts to charge the capacitor. The voltage at RST is the difference between VCC and the capacitor voltage, and decreases from VCC as the capacitor charges. VRST must remain above the lower threshold of the Schmitt trigger long enough to effect a complete reset. The time required is the oscillator start–up time, plus 2 machine cycles.

Figure 6. Power-on Reset Circuit

6.6. Oscillator Characteristics

XTAL1 and XTAL2 are respectively the input and output of an inverting amplifier which is configured for use as an on-chip oscillator. As shown in Figure 7., either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected as shown in Figure 8.

There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide–by–two flip–flop. The minimum high and low times specified on the data sheet must be observed however.

Figure 7. Crystal Oscillator

Figure 8. External Drive Configuration

6.7. Memory organization

The memory organisation of the TSC8051C2 is the same as in the 80C51, with the exception that the TSC8051C2 has 4k bytes ROM, 256 bytes RAM, and additional SFRs. Details of the differences are given in the following paragraphs.

In the TSC8051C2, the lowest 4k of the 64k program memory address space is filled by internal ROM. Depending on the package used, external access is available or not. By tying the EA pin high, the processor fetches instructions from internal program ROM. Bus expansion for accessing program memory from 4k upward is automatic since external instruction fetches occur automatically when the program counter exceeds 1FFFh. If the EA pin is tied low, all program memory fetches are from external memory. The execution speed is the same regardless of whether fetches are from external or internal program memory. If all storage is on-chip, then byte location 0FFFh should be left vacant to prevent an undesired pre–fetch from external program memory address 1000h.

Certain locations in program memory are reserved for specific purposes. Locations 0000h to 0002h are reserved for the initialisation program. Following reset, the CPU always begins execution at location 0000h. Locations 0003h to 002Ah are reserved for the five interrupt request service routines.

The internal data memory space is divided into a 256-bytes internal RAM address space and a 128 bytes special function register address space.

The internal data RAM address space is 0 to FFh. Four 8-bit register banks occupy locations 0 to 1Fh. 128 bit locations of the internal data RAM are accessible through direct addressing. These bits reside in 16 bytes of internal RAM at location 20h to 2Fh. The stack can be located anywhere in the internal data RAM address space by loading the 8-bit stack pointer (SP SFR).

Table 2. Mapping of Special Function Register

The SFR address space is 100h to 1FFh. All registers except the program counter and the four 8-bit register banks reside in this address space. Memory mapping of the SFRs allows them to be accessed as easily as internal RAM, and as such, they can be operated on by most instructions. The mapping in the SFR address space of the 40 SFRs is shown in Table 2. The SFR names in italic are TSC8051C2 new SFRs and are described in Peripherals Functional Description section. The SFR names in bold are bit addressable.

0/8	1/9	2/A	3/B	

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8					PWM8	PWM9	PWM10	PWM11
F0	В				PWM4	PWM5	PWM6	PWM7
E8					PWM0	PWM1	PWM2	PWM3
E0	ACC				EICON	SOCR	HWDR	MXCR0
D8								PWMCON
D0	PSW							MXCR1
C8								
C0								
B8	IP							
B0	P3							
A8	IE							MSCON
A0	P2							
98	SCON	SBUF						
90	P1							
88	TCON	TMOD	TL0	TLI	TH0	THI		
80	P0	SP	DPL	DPH				PCON

6.8. Interrupts

The TSC8051C2 has five interrupt sources, each of which can be assigned one of two priority levels. These five interrupt sources are common to the 80C51 and are the external interrupts (INT0 and INT1), the timer 0 and timer 1 interrupts (ITO and IT1), and the serial I/O interrupt (RI or TI).

6.8.1. Interrupt Enable Register:

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in the interrupt enable register (IE SFR). All interrupts sources can also be globally enabled or disabled by setting or clearing the EA bit in IE register.

IE: Interrupt Enable Register

MSB			SFR	A8h			LSB
EA	-	_	ES	ETI	EXI	ET0	EX0

Symbol	Position	Name and Function
EX0	IE.0	Enable external interrupt 0.
ETO	IE.1	Enable timer 0 interrupt.
EX1	IE.2	Enable external interrupt 1.
ET1	IE.3	Enable timer 1 interrupt.
ES	IE.4	Enable UART interrupt.
-	IE.5	(Reserved).
	IE.6	(Reserved).
EA	IE.7	Enable all interrupts.

6.8.2. Interrupt Priority Structure:

Each interrupt source can be assigned one of two priority levels. Interrupt priority levels are defined by the interrupt priority register (IP SFR). Setting a bit in the interrupt priority register selects a high priority interrupt, clearing it selects a low priority interrupt.

IP: Interrupt Priority Register

MSB			SFR	B8h	,		LSB
-	-	-	PS	PTI	PX1	PT0	PX0

Symbol	Position	Name and Function
PX0	IP.0	External interrupt 0 priority level.
PT 0	IP.1	Timer 0 interrupt priority level.
PX1	IP.2	External interrupt 1 priority level.
PTI	IP.3	Timer 1 interrupt priority level.
PS	IP.4	UART interrupt priority level.
-	IP.5	(Reserved).
-	IP.6	(Reserved).
-	IP.7	(Unused).

A low priority interrupt service routine may be interrupted by a high priority interrupt. A high priority interrupt service routine cannot be interrupted by any other interrupt source. If two requests of different priority levels occur simultaneously, the high priority level request is serviced. If requests of same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus, within each priority level, there is a second priority structure determined by the polling sequence, as follows:

Order	Source	Priority Within Level
1	INT0	(highest)
2	Timer 0	î
3	INT1	
4	Timer 1	Ļ
5	UART	(lowest)

6.8.3. Interrupt Handling:

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the previous machine cycle, the polling cycle will find it and the interrupt system will generate a LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

- 1. An interrupt of higher or equal priority is already in progress.
- 2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
- 3. The instruction in progress is RETI or any access to the IE or IP SFR.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Note that if an interrupt is active but not being responded to for one of the above conditions, if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the facts that the interrupt flag was once active but not serviced is not memorized. Every polling cycle is new.

The processor acknowledges an interrupt request by executing a hardware–generated LCALL to the appropriate service routine. In some cases it also clears the flag that generated the interrupt, and in other case it does not. It clears the timer 0, timer 1, and external interrupt flags. An external interrupt flag (IE0 or IE1) is cleared only if it was transition–activated. All other interrupt flags are not cleared by hardware and must be cleared by the software. The LCALL pushes the contents of the program counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as listed below:

Source	Vector Address
IE0	0003h
TF0	000Bh
IE1	0013h
TF1	001Bh
RI + TI	0023h

Execution proceeds from the vector address until the RETI instruction is encountered. The RETI instruction clears the 'priority level active' flip–flop that was set when this interrupt was acknowledged. It then pops two bytes from the the top of the stack and reloads the program counter with them. Execution of the interrupted, program continues from where it was interrupted.

7. Peripherals Functional Description

For detailed functionnal description of standard 80C51 peripherals, please refer to C51 Family, Hardware Description and Programmer's Guides.

7.1. Watchdog Timer

The watchdog timer consists of a 4-bit timer with a 17-bit prescaler as shown in Figure 9. The prescaler is fed with a signal whose frequency is 1/12 the oscillator frequency (1MHz with a 12MHz oscillator).

The 4-bit timer is decremented every 't' seconds, where: t = $12 \times 131072 \times 1/$ fosc. (131.072ms at fosc = 12MHz). Thus, the interval may vary from 131.072ms to 2097.152ms in 16 possible steps (see Table 3.).

The watchdog timer has to be reloaded (write to HWDR SFR) within periods that are shorter than the programmed watchdog interval, otherwise the watchdog timer will underflow and a system reset will be generated which will reset the TSC8051C2.

HWDR:	Hardware	WatchDog	Register
-------	----------	----------	----------

MSB			SFR	E6h			LSB
WTE	-	-	-	WT3	WT2	WT1	WT0

Symbol	Position	Name and Function
WT0	HWDR.0	Watchdog Timer Interval bit 0.
WT1	HWDR.1	Watchdog Timer Interval bit 1.
WT2	HWDR.2	Watchdog Timer Interval bit 2.
WT3	HWDR.3	Watchdog Timer Interval bit 3.
-	HWDR.4	Reserved for test purpose, must remain to 0 for normal operation.
-	HWDR.5	(Reserved).
-	HWDR.6	(Reserved).
WTE	HWDR.7	Watchdog Timer Enable bit. Setting this bit activates watchdog operation.

Table 3. Watchdog timer interval value format.

WT3	WT2	WT1	WT0	Interval
0	0	0	0	t x 16
0	0	0	1	t x 1
0	0	1	0	t x 2
:	:	:	:	:
:	:	:	:	:
1	1	1	1	t x 15

Once the watchdog timer enabled setting WTE bit, it cannot be disabled anymore, except by a system reset.

The watchdog timer is frozen during idle or power down mode.

HWDR is a write only register. Its value after reset is 00h which disables the watchdog operation.

HWDR is using TSC8051C2 Special Function Register address, E6h.

Figure 9. Watchdog timer block diagram

7.2. Power Fail Reset

The TSC8051C2 implements a programmable power fail reset mechanism that avoids the microcontroller running while V_{CC} is under working voltage (see Figure 10.). This system generates an internal reset when V_{CC} fails: during V_{CC} failure or power supply switch off.

When V_{CC} falls below V_{LOW} (see DC Electricals Characteristics), reset is asserted and maintained until power supply is completely off. If V_{CC} rises above V_{LOW} , reset is maintained during at least 2 machine cycles to be well detected by the CPU core. To avoid spurious reset, power glitches of pulses width less than 2 to 3 f_{OSC} periods are filtered out (see Figure 11.). The PFR must be enabled by setting PFRE bit in PCON register bit location 4 (see Idle and Power Donwn Operation section).

The PFR is disable during Idle and power down modes. Since it is enabled, PFR can no longer be disabled by software. Writing 0 to PFRE bit has no effect, the only way to clear the PFRE bit is to apply an external reset. To avoid period during which PFR is disabled, internal reset sources do not disable PFR.

Figure 10. Power-Fail Reset block diagram

Figure 11. Power Fail Reset timing diagram

7.3. Pulse Width Modulated Outputs

The TSC8051C2 contains twelve pulse width modulated output channels (see Figure 10.). These channels generate pulses of programmable duty cycle with an 8-bit resolution.

The 8-bit counter counts modulo 256 by default i.e., from 0 to 255 inclusive but can count modulo 254 i.e., from 0 to 253 inclusive by programming the bit 0 of the PWMCON register. The counter clock is supplied by the oscillator frequency. Thus, the repetition frequency fipwm is constant and equals to the oscillator frequency divided by 256 or 254 (fpwm=46.875KHz or 47.244KHz with a 12MHz oscillator). The 8-bit counter is common to all PWM channels, its value is compared to the contents of the twelve registers: PWM0 to PWM11. Provided the content of each of these registers is greater than the counter value, the corresponding output is set low. If the contents of these registers are equal to, or less than the counter value the output will be high. The pulse–width ratio is therefore defined by the contents of these registers, and is in the range of 0 (all '0' written to PWM register) to 255/256 or 1 (all '1' written to PWM register) and may be programmed in increments of 1/256 or 1/254. When the 8-bit counter counts modulo 254, it can never reach the value of the PWM registers when they are loaded with FEh or FFh.

PWMx: Pulse Width Modulator x Register

M	SB					LS	SB
D7	D6	D5	D4	D3	D2	D1	D0

When a compare register (PWM0 to PWM11) is loaded with a new value, the associated output is updated immediately. It does not have to wait until the end of the current counter period. All the PWM outputs are open-drain outputs with standard current drive and standard maximum voltage capability. When they are disabled, eight of them (PWM0 to PWM7) are in high impedance while the other four (PWM8 to PWM11) are standard Port outputs with internal pullups.

PWM0 to PWM11 are write only registers. Their value after reset is 00h.

PWM0 to PWM11 are using TSC8051C2 Special Function Registers addresses as detailed in Table 4.

Channel	SFR address
PWM0	ECh
PWM1	EDh
PWM2	EEh
PWM3	EFh
PWM4	F4h
PWM5	F5h
PWM6	F6h
PWM7	F7h
PWM8	FCh
PWM9	FDh
PWM10	FEh
PWM11	FFh

Table 4. PWM SFR register addresses

Two 8-bit control registers: MXCR0 and MXCR1 are used to enable or disable PWM outputs.

MXCR0 is used for PWM0 to PWM7. MXCR1 is used for PWM8 to PWM11, these PWMs are multiplexed with PORT 1 (see Table 5.)

MXCR0: PWM Multiplexed Control Register 0

MSB		SFR E7h					
PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0

Symbol	Position	Name and Function
PEx	MXCR0.x	PWM_X Enable bit. Setting this bit enables PWM_X output. Clearing this bit disables PWM_X output.

MXCR1: PWM Multiplexed Control Register 1

MSB	SFR D7h						LSB
-	-	-	-	PE11	PE10	PE9	PE8

Symbol	Position	Name and Function
PEx	MXCR1.x	PWM_{X+8} Enable bit. Setting this bit enables $PWMx$ output. Clearing this bit disables $PWMx$ output and activates the I/O pin (see Table 5).

MXCR0 and MXCR1 are read/write registers. Their value after reset is 00h which corresponds to all PWM disabled.

PWM will not operate in idle and power down modes (frozen counter). When idle or power down mode is entered, the PWM0 to PWM7 output pins are floating and PWM8 to PWM11 pins are set to general purpose P1 port with the value of P1 SFR.

MXCR0 and MXCR1 are using TSC8051C2 Special Function Register addresses, E7h and D7h respectively.

Table 5. PWM alternate pin.

Channel	Pin assignment
PWM8	P1.0
PWM9	P1.1
PWM10	P1.2
PWM11	P1.3

PWMCON is used to control the PWM counter.

PWMCON: PWM Control Register

MSB SFR DFh			DFh			LSB	
-	-	-	-	-	-	-	CMOD

Symbol	Position	Name and Function
CMOD	PWMCON.0	Counter modulo. Setting this bit sets the modulo to 254. Clearing this bit sets the modulo to 256.

PWMCON is a write only register. Its value after reset is 00h which sets the PWM counter modulo to 256.

PWMCON is using TSC8051C2 Special Function Register address, DFh.

Figure 13. shows a PWM programming example with

PWM register content 55h and counter modulo 256.

ABh

Note: when packaging P2.X is selected, PWM0 to PWM7 are not available. Please refer to ordering

100h

Figure 13. PWM programming example.

information.

Figure 12. Pulse width modulated outputs block diagram

7.4. SYNC Processor

7.4.1. HSYNC and VSYNC Outputs

SOCR is used to configure P3.3 and P3.5 pins as buffered HSYNC and VSYNC outputs or as general purpose I/Os. When either HSYNC or VSYNC is selected, the output level can be respectively programmed as P3.4 or P3.2 input level (inverted or not), or as a low level if not enabled. Figure 14. shows the programmable HSYNC and VSYNC output block diagram.

SOCR: Synchronisation Output Control Register.

MSB	SFR E5h					
_	 VOS	HOS	VOP	VOE	HOP	HOE

Symbol	Position	Name and Function
HOE	SOCR.0	HSYNC Output Enable bit. Setting this bit enables the HSYNC signal.
HOP	SOCR.1	HSYNC Output Polarity bit. Setting this bit inverts the HSYNC output.
VOE	SOCR.2	VSYNC Output Enable bit. Setting this bit enables the VSYNC signal.
VOP	SOCR.3	VSYNC Output Polarity bit. Setting this bit inverts the VSYNC output.
HOS	SOCR.4	HSYNC Output Selection bit. Setting this bit selects the VSYNC output, clearing it selects P3.5 SFR bit.
VOS	SOCR.5	VSYNC Output Selection bit. Setting this bit selects the VSYNC output, clearing it selects P3.3 SFR bit.
CPE	SOCR.6	Clamp Pulse Enable bit. Setting this bit enables the CPO output.
CPP	SOCR.7	Clamp Pulse Polarity bit. Setting this bit selects positive clamp pulses, clearing it selects negative clamp pulses.

SOCR is a write only register. Its value after reset is 00h which enables P3.3 and P3.5 general purpose I/O pins.

SOCR is using TSC8051C2 Special Function Register address, E5h.

Figure 14. Buffered HSYNC and VSYNC block diagram

EICON: External Input Control Register

7.4.2. HSYNC and VSYNC Inputs

EICON is used to control INTOVSYNC input. Thus, an interrupt on either falling or rising edge and on either high or low level can be requested. Figure 15. shows the programmable INTO/VSYNC input block diagram.

EICON is also used to control T0/HSYNC input as short pulses input capture to be able to count them with timer 0. Pulse duration shorter than 1 clock period is rejected; depending on the position of the sampling point in the pulse, pulse duration longer than 1 clock period and shorter than 1.5 clock period may be rejected or accepted; and pulse duration longer than 1.5 clock period is accepted. Moreover selection of negative or positive pulses can be programmed.

Accepted pulse is lengthened up to 1 cycle period to be sampled by the 8051 core (one time per machine cycle: 12 clock periods), this implies that the maximum pulse frequency is unchanged and equal to $f_{OSC}/24$. Figure 16. shows the programmable T0/HSYNC input block diagram. The Digital Timer Delay samples T0/HSYNC pulses and rejects or lengthens them.

MSB	SFR E4h						LSB
-	-	-	-	_	TOL	TOS	IOL

Symbol	Position	Name and Function
IOL	EICON.0	INTO /VSYNC input Level bit. Setting this bit inverts INTO /VSYNC input signal. Clearing it allows standard use of INTO /VSYNC input.
TOS	EICON.1	T0/HSYNC input Selection bit. Setting this bit allows short pulse capture. Clearing it allows standard use of T0/HSYNC input.
TOL	EICON.2	T0/HSYNC input Level bit. Setting this bit allows positive pulse capture. Clearing it allows negative pulse capture.

EICON is a write only register. Its value after reset is 00h which allows standard $\overline{INT0}$ and T0 inputs feature.

EICON is using TSC8051C2 Special Function Register address, E4h.

Figure 15. INTO/VSYNC input block diagram

MUX

m

Semiconductors

EMIC

The TSC8051C2 provides fully programmable clamp pulse output to pre–amplifier IC. User can program a pulse with positive or negative polarity at either the falling or rising edge of the HSYNC signal depending on its polarity.

Figure 17. shows the CPO block diagram. CPE bit in SOCR is used to configure P1.4 pin as general purpose I/O or as open drain clamp pulse output, so enables the CPO. CPP bit in SOCR is used to select the clamp pulse signal polarity. Depending on the HSYNC polarity selected by the TOL bit, Clamp pulse is generated on the falling edge (negative polarity) or on the rising edge (positive polarity) as shown in Figure 18. **TSC8051C2**

The clamp pulse duration depends on the oscillator frequency by the following formula:

$$T_{CPO} = (1/f_{OSC}) \times 7.5 \pm (1/f_{OSC})/2$$

(542ns ± 42ns at $f_{OSC} = 12$ MHz)

2

Figure 17. Clamp Pulse Output block diagram

Figure 18. Clamp Pulse Output waveform

Preview

8. Electrical Characteristics

Absolute Maximum Ratings⁽¹⁾

Operating Temperature:

Commercial	2
Industrial	2
Storage Temperature	2

Notice:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

8.1. DC Characteristics

Voltage on VCC to VSS	–0.5V to +7V
Voltage on Any Pin to VSS0.5V t	to VCC + 0.5V
Power Dissipation	1W ⁽²⁾

2. This value is based on the maximum allowable die temperate and the thermal resistance of the package.

TA = 0° C to +70°C; VSS = 0V; VCC = 5V ± 10%; F = 0 to 16MHz.
TA = -40° C to $+85^{\circ}$ C; VSS = 0V; VCC = 5V ± 10%; F = 0 to 16MHz.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Inputs						
VIL	Input Low Voltage	-0.5		0.2 Vcc - 0.1	v	
VIH	Input High Voltage except XTAL1, RST	0.2 Vcc + 0.9		Vcc + 0.5	V	
VIH1	Input High Voltage, XTAL1, RST	0.7 Vcc		Vcc + 0.5	v	
IIL	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45V
ILI	Input Leakage Current			±10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0V
VLOW	Power Fail Reset Low Voltage	TBD	3.5 ⁽⁵⁾	TBD	V	
Outputs						
VOL	Output Low Voltage, ports 1, 2, 3, PWM0–7 ⁽⁶⁾			0.3 0.45 1.0	V V V	$IOL = 100\mu A^{(4)}$ $IOL = 1.6mA^{(4)}$ $IOL = 3.5mA^{(4)}$
VOLI	Output Low Voltage, port 0, ALE, PSEN (6)			0.3 0.45 1.0	V V V	
VOH	Output High Voltage, ports 1, 2, 3	Vcc - 0.3 Vcc - 0.7 Vcc - 1.5			V V V	$IOH = -10\mu A$ $IOH = -30\mu A$ $IOH = -60\mu A$ $Vcc = 5V \pm 10\%$
VOH1	Output High Voltage, port 0, ALE, PSEN	Vcc - 0.3 Vcc - 0.7 Vcc - 1.5			v v v	$IOH = -200\mu A$ IOH = -3.2mA IOH = -7.0mA $Vcc = 5V \pm 10\%$
RRST	RST Pulldown Resistor	50	90 (5)	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	$fc = 1MHz, TA = 25^{\circ}C$

Semiconductors

EMIC

TSC8051C2

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
ICC	Power Supply Current ⁽⁷⁾ Active Mode 12MHz Idle Mode 12MHz		TBD TBD	TBD TBD	mA mA	$Vcc = 5.5V^{(1)}$ $Vcc = 5.5V^{(2)}$
IPD	Power Down Current		5 (5)	30	μΑ	$Vcc = 2.0V$ to $5.5V^{(3)}$

Notes for DC Electrical Characteristics

- ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 20.), VIL = VSS + 0.5V, VIH = VCC - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used (see Figure 19.).
- Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5ns, VIL = VSS + 0.5V, VIH = VCC-0.5V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS (see Figure 20.).
- Power Down ICC is measured with all output pins disconnected; EA = PORT 0 = VCC; XTAL2 NC.; RST = VSS (see Figure 21.).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi VOL peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.
- 6. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

many mined as follows.	
Maximum IOL per port pin:	10 mA
Maximum IOL per 8-bit port:	
Port 0:	26 mA
Ports 1, 2 and 3:	15 mA
Maximum total IOL for all output pins:	71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

7. For other values, please contact your sales office.

Figure 21. ICC Test Condition, Power Down Mode.

TCLCH = TCHCL = 5ns.

Figure 22. Clock Signal Waveform for ICC Tests in Active and Idle Modes.

8.2. Explanation Of The AC Symbol

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example:

TAVLL = Time for Address Valid to ALE low. TLLPL = Time for ALE low to PSEN low.

A: Address.	Q: Output data.
C: Clock.	R: READ signal.
D: Input data.	T: Time.
H: Logic level HIGH.	V: Valid.
I: Instruction (Program memory contents).	W: WRITE signal.
L: Logic level LOW, or ALE.	X: No longer a valid logic level.
P: PSEN.	Z: Float.

8.3. AC Parameters

TA = 0 to +70°C; VSS = 0V VCC = 5V \pm 10%; 0 to 12MHz

 $TA = -40^{\circ}C \text{ to } +85^{\circ}C; \text{ VSS} = 0V; \text{ VCC} = 5V \pm 10\%; \text{ F} = 0 \text{ to } 12\text{MHz}.$

8.4. External Program Memory Characteristics

(Load Capacitance for PORT 0, ALE and PSEN = 100pf; Load Capacitance for all other outputs = 80 pF.)

Symbol Parameter 0 to 12MHz Min

Symbol	Symbol Parameter				
Symbol			Max	Units	
TLHLL	ALE pulse width	2TCLCL - 40		ns	
TAVLL	Address Valid to ALE	TCLCL - 40		ns	
TLLAX	Address Hold After ALE	TCLCL - 30		ns	
TLLIV	ALE to Valid Instruction In		4TCLCL - 100	ns	
TLLPL	ALE to PSEN	TCLCL - 30		ns	
TPLPH	PSEN Pulse Width	3TCLCL - 45		ns	
TPLIV	PSEN to Valid Instruction In		3TCLCL - 105	ns	

Preview

	Symbol Parameter	0 to		
Symbol		Min	Max	Units
TPXIX	Input Instruction Hold After PSEN	0		ns
TPXIZ	Input Instruction Float After PSEN		TCLCL - 25	ns
TPXAV	PSEN to Address Valid	TCLCL – 8		ns
TAVIV	Address to Valid Instruction In		5TCLCL - 105	ns
TPLAZ	PSEN Low to Address Float		10	ns

8.5. External Program Memory Read Cycle

8.6. External Data Memory Characteristics

		0 to 1		
Symbol	Parameter	Min	Max	Units
TRLRH	RD Pulse Width	6TCLCL-100		ns
TWLWH	WR Pulse Width	6TCLCL-100		ns
TRLDV	RD to Valid Data In		5TCLCL-165	ns
TRHDX	Data Hold After RD	0		ns
TRHDZ	Data Float After RD		2TCLCL-60	ns
TLLDV	ALE to Valid Data In		8TCLCL-150	ns
TAVDV	Address to Valid Data In		9TCLCL-165	ns
TLLWL	ALE to WR or RD	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to WR or RD	4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	TCLCL-50		ns
толмн	Data set-up to WR High	7TCLCL-150		ns
TWHQX	Data Hold After WR	TCLCL-50		ns
TRLAZ	RD Low to Address Float		0	ns
TWHLH	RD or WR High to ALE high	TCLCL-40	TCLCL+40	ns

8.7. External Data Memory Write Cycle

8.8. External Data Memory Read Cycle

8.9. Serial Port Timing–Shift Register Mode

Symbol	Description	0 to 1	FT 1	
	rarameter	Min	Max	Units
TXLXL	Serial port clock cycle time	12TCLCL		ns
TQVHX	Output data set-up to clock rising edge	10TCLCL-133		ns
TXHQX	Output data hold after clock rising edge	2TCLCL-117		ns
TXHDX	Input data hold after clock rising edge	0		ns
TXHDV	Clock rising edge to input data valid		10TCLCL-133	ns

8.10. Shift Register Timing Waveforms

`EMIC

Semiconductors

8.11. External Clock Drive Characteristics (XTAL1)

Symbol	Parameter	Min	Max	Units
TCLCL	Oscillator Period	83.3		ns
TCHCX	High Time	5		ns
TCLCX	Low Time	5		ns
TCLCH	Rise Time		5	ns
TCHCL	Fall Time		5	ns

8.12. External Clock Drive Waveforms

8.13. AC Testing Input/Output Waveforms

AC inputs during testing are driven at Vcc -0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at VIH min for a logic "1" and VIL max for a logic "0".

Preview

8.14. Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH $\geq \pm 20$ mA.

8.15. Clock Waveform

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though (TA=25°C fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85ns. Propagation delays are incorporated in the AC specifications.

9. Ordering Information

Examples

Part Number	Description
TSC51C2XXX-12CA	Mask ROM XXX, 12 MHz, PDIL 40, 0 to 70°C
TSC8051C2-16CER	ROMless, 16 MHz, PLCC 52, 0 to 70°C, Tape and Reel

Development Tools

Reference	Description
ANM059	Application Note: "How to recognize video mode and generate free running synchronization signals using TSC8051C1/C2 Microcontroller"
IM-80C51-RB-400-40	Emulator Base
PC-TSC8051C1-RB-16	Probe card for TSC8051C1. These products are released by Metalink. Please consult the local tools distributor or your sales office.

Product Marking :

TEMIC Customer P/N Temic P/N © Intel 80, 82 YYWW Lot Number

П.8.28

C51 Automotive Products

TSC8051A1 : CMOS Single Chip 8-bit Microcontroller with Analog Interface	II.9.1
TSC8051A2 : CMOS Single Chip 8–bit Microcontroller with Analog Interfaces	II.10.1
TSC8051A11 : CMOS Single chip 8-bit Microcontroller with CAN Controller	II.11.1
TSC8051A30 : CMOS Single chip 8-bit Microcontroller with VAN Controller	II.12.1

CMOS Single chip 8-bit Microcontroller with Analog Interface

Description

The TSC8051A1 is a stand-alone, high performance CMOS microcontroller designed for use in automotive and industrial applications.

The TSC80A11 retains all features of the TSC80C51 with extended EPROM capacity (24K bytes), 256 bytes of internal RAM, a 14-source 2-level interrupt, a full duplex serial port, an on-chip oscillator, and two 16 bits timers.

In addition, the TSC8051A1 has an 8-bit 8-channel A/D converter, a serial synchronous port compatible with SPI and mWire protocols, an advanced 8 channels CCU (Capture & Compare Unit), an additional on-chip XRAM of 256 bytes and a high security Watchdog timer

Features

- 80C51 core architecture:
 - 256 bytes of RAM
 - 256 bytes of XRAM
 - 24 Kilobytes of EPROM, OTP or ROM
 - 14-source 2-level interrupt
 - Two 16-bit timer/counter
 - Full duplex UART compatible with standard 80C51 with its own baud rate generator
- 6 8-bit 80C51 I/O Ports bit to bit configurable
- 2 ports with programmable interrupt for keyboard function
- A 8 channels 16-bit CCU with:
 - Rising and/or falling edge capture (pulse measurement capability)
 - Software timer, high speed output and multiple PWM shapes

with an embedded oscillator.

The fully static design of the TSC8051A1 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The design is done with a specific care to reduce EMC emission and susceptibility.

This circuit is manufactured using SCMOS process and is available in commercial, industrial, military and automotive ranges: it runs from 0 up to 20 MHz in the automotive temperature range -40° C to $+125^{\circ}$ C.

- A 8-bit resolution analog to digital converter with 8 multiple inputs
- An high security watch-dog timer with an embedded oscillator
- A master/slave synchronous serial peripheral interface (SPI or mWire)
- Several power reduction modes with enhanced wake-up capabilities
- PQFP64 or PLCC68 packages
Block Diagram

(1): Alternate function of Port 1 (2): Alternate function of Port 2 (3): Alternate function of Port 3

(4): Alternate function of Port 4

Figure 1. TSC8051A1 block diagram

TEMIC Semiconductors

TSC8051A1

Pin-Out

Pin Functions

Figure 2. TSC8051A1 pin functions

TEMIC Semiconductors

Pin Configuration

Figure 3. TSC8051A1 Pin Configuration

TEMIC

Semiconductors

2

Pin Assignment

Table 1. Pin Assignment

Pin number		Pin name	ame Alternate		umber	Pin Name	Alternate	
PQFP 64	PLCC 68	Tuncuon		PQFP 64	PLCC 68		function	
1	10	P0.0	AD.0 / P0KB.0	33	44	P3.3	ĪNTĪ	
2	11	P0.1	AD.1 / P0KB.1	34	45	P3.4	T 0	
3	12	P0.2	AD.2 / P0KB.2	35	46	P3.5	T1	
4	13	P0.3	AD.3 / P0KB.3	36	47	P3.6	WR	
5	14	P0.4	AD.4 / P0KB.4	37	48	P3.7	RD	
6	15	P0.5	AD.5 / P0KB.5		49	(n.c)	-	
7	16	P0.6	AD.6 / P0KB.6	38	50	Vss	-	
8	17	Vcc	-	39	51	Vcc	-	
9	18	Vss	-	40	52	XTAL1	-	
10	19	P0.7	AD.7 / P0KB.7	41	53	XTAL2	-	
11	20	P1.7	SS	42	54	P5.0	P5KB.0	
12	21	P1.6	SCK	43	55	P5.1	P5KB.1	
13	22	P1.5	MOSI	44	56	P5.2	P5KB.2	
	23	(n.c)		45	57	P5.3	P5KB.3	
14	24	P1.4	MISO	46	58	P5.4	P5KB.4	
15	25	P1.3	-	47	59	P5.5	P5KB.5	
16	26	P1.2	-	48	60	P5.6	P5KB.6	
17	27	P1.1	-	49	61	P5.7	P5KB.7	
18	28	P1.0	= .	50	62	(n.c)		
19	29	P4.7	ANA.7	51	63	RESET	-	
20	30	P4.6	ANA.6	52	64	PSEN	-	
21	31	P4.5	ANA.5	53	65	ALE/PROG	-	
22	32	P4.4	ANA.4	54	66	EA / Vpp	-	
23	33	ANAVss	-	55	67	Vss	-	
24	34	ANAVcc	-		68	(n.c)		
25	35	ANAref+	-	56	1	Vcc	-	
	36	Vss	-	57	2	P2.0	A.8 / CCU.0	
26	37	P4.3	ANA.3	58	3	P2.1	A.9 / CCU.1	
27	38	P4.2	ANA.2	59	4	P2.2	A.10 / CCU.2	
28	39	P4.1	ANA.1	60	5	P2.3	A.11 / CCU.3	
29	40	P4.0	ANA.0	61	6	P2.4	A.12 / CCU.4	
30	41	P3.0	RXD	62	7	P2.5	A.13 / CCU.5	
31	42	P3.1	TXD	63	8	P2.6	A.14 / CCU.6	
32	43	P3.2	INT0	64	9	P2.7	A.15 / CCU.7 / ECI	

General Signal Description

Vss

Digital ground

Vcc

Digital supply voltage

ANAVss

Analog ground

ANAVcc

Analog supply voltage

EA / Vpp

External Access enable must be strapped to Vss in order to enable any device plugged on port 0 / port 2 to fetch code from 0 up to 24K. EA must be strapped to Vcc for internal program execution.

This pin also receives the 12V programming supply (Vpp input) to program the internal EPROM.

XTAL2

It is the output from the inverting oscillator amplifier.

RESET

An active level (low) on this pin, while the oscillator is running, resets the device. An internal pull-up resistor permits power-on reset only using only an capacitor connected to Vss.

The active level of the $\overline{\text{RESET}}$ pin is the opposite to the one of C51 standard.

ALE / PROG

The Address Latch Enable output signal is used to latch the low order byte of the address during accesses to external memory. ALE can sink and source 8 LS TTL loads.

If desired, ALE buffer can be disable. Then, ALE is pulled low.

This pin is also used (program pulse input) to program the internal EPROM.

PSEN

Program Store Enable is the read strobe to external program memory, else it remains high. <u>PSEN</u> can sink and source 8 LS TTL loads.

PORT 0

Port 0 can act the part of address/data bus or standard I/O port.

Its dedicated alternate function is a 8-bit keyboard interface.

In the default configuration, port 0 operates the same as it does in the 80C51, with open-drain outputs.

PORT 1

Port 1 can act the part of standard I/O port.

This port dedicated alternate functions are P.1[4:7] for synchronous serial link (SPI or mWIRE) interface.

In the default configuration, port 1 operates the same as it does in the 80C51, with internal pullups. Port 1 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups.

PORT 2

Port 2 can act the part of address bus or standard I/O port. Its dedicated alternate function is the CCU (Capture & Compare Unit) interface.

In the default configuration, port 2 operates the same as it does in the 80C51, with internal pull-ups.

PORT 3

Port 3 can act the part of standard I/O port.

Its dedicated alternate functions are those of the C51 standard (RxD, TxD, INT0, INT1, T0, T1, $\overline{WR} \& \overline{RD}$). In the default configuration, port 3 operates the same as it does in the C51, with internal pull-ups. Port 3 type C51 is sometimes called "quasi-bidirectional" due to the internal pull-ups.

PORT 4

Port 4 can act the part of standard I/O port.

Its dedicated alternate functions are $\hat{8}$ inputs for ADC module.

In the default configuration, port 4 operates as a "quasi-bidirectional" port type C51 with internal pullups.

ANAref+

Positive voltage for the ADC module.

TEMIC

PORT 5

Port 5 can act the part of standard I/O port.

Its dedicated alternate function is a 8-bit keyboard interface.

In the default configuration, port 5 operates as a "quasi-bidirectional" port type C51 with internal pull-ups.

Electro-Magnetic Compatibility (EMC)

Primary attention is paid to the reduction of electro-magnetic emission of the TSC8051A1. The following features reduce the electro-magnetic emission and additionally improve the electro-magnetic susceptibility:

• The TSC8051A1 provides one analog supply voltage pin and one analog ground pin. Placed on the middle of one side of the package, this pair (ANAVcc/ ANAVss) has short bounding wires, thus reducing the generated noise.

In order to reduce the radiation loop area, the two pins are adjacent.

- The TSC8051A1 provides three groups of digital supply voltage and digital ground, in pairs of pins (Vss/Vcc). Placed on the middle of the three other sides of the package, these groups have short bounding wires, thus reduces the generated noise. In order to reduce the radiation loop area, pins are adjacent inside group.
- External capacitors should be connected across associated pins (ANAVcc/ANAVss or Vcc/Vss). Lead length should be as short as possible. Ceramic CMS capacitors are recommended, 10nF + 100nF.

2

Several internal decoupling capacitors improve the

In order to reduce the spectrum of the TSC8051A1,

many signals has been treated, principally the

periodic signals. The current provided for external

signals, the period of clocks and the raising/falling

For application that never (or temporarily)

requires external memory resources, the ALE

Once the oscillator is started, the gain is reduce

Peripherals receiving XTAL clock have, each

one, their own prescaler to produce the operating

The output buffers are especially designed to

edges are the major points which has been nursed.

buffer can be disable.

by 2 (6 dB).

clock they need.

control rising and falling edges.

EMC radiation behavior and the EMC immunity.

•

.

.

Τεміс Semiconductors

CMOS Single Chip 8-bit Microcontroller with Analog Interfaces

Description

The TSC8051A2 is a stand alone, high performance CMOS microcontroller designed for use in automotive and industrial applications.

The TSC8051A2 retains all features of the 80C51 with extended ROM capacity (16K bytes), 256 bytes of RAM, a 10-source 2-level interrupt, a full duplex serial port, an on-chip oscillator and clock and two 16 bits timers.

In addition, the TSC8051A2 has an 8-bit 8-channel A/D converter, a serial peripheral interface compatible with SPI, a high security watchdog and an advanced 8 channel Capture and Compare timer Unit.

Features

- 256 bytes of RAM
- 16 K bytes of ROM or OTP
- Four 8-bit I/O ports ; each bit can be:
 - TTL I/O
 - Push-pull output .
 - CMOS input trigger with or without pull-down
- Two 16 bit timer/counter
- А programmable window watch-dog with integrated low power RC oscillator; basic period 20 ms typical, maximum period 128 times 20 ms
- A eight channels 16 bits Capture and Compare Unit with:
 - input capture
 - output compare and PWM

The fully static design of the TSC8051A2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The design is done with a specific care to reduce EMC emission and suceptibility.

This circuit is manufactured using SCMOS process and is available in commercial, industrial, military and automotive ranges ; it runs from 0 up to 20 MHz in the automotive temperature range -40° C to $+125^{\circ}$ C.

- A 8-bit resolution analog to digital converter with eight multiplex inputs ; conversion time 48 machine cycles.
- One port with programmable interrupt for keyboard function
- Several power reduction modes with enhanced wake up capabilities
- Power fail detection, Power on reset bit
- Full duplex UART compatible with standard 80C51
- A serial peripheral interface (SPI+MW)
- POFP. PLCC or SSOP 44 package ; POFP 64 for • emulation

Block Diagram

Preview

Figure 1. TSC8051A2 Block Diagram

II.10.2

TEMIC Semiconductors

TSC8051A2

Pin Configuration

TEMIC Semiconductors

Pin PQFP 44	Pin PLCC 44	Name	Function	Pin PQFP 44	Pin PLCC 44	Name	Function
39	1	ANAVSS	VSS Analog	17	23	VCC	VCC
40	2	P1.0		18	24	P2.0/A08/CCU0	Address bus high order or CCU module 1 external I/O
41	3	P1.1		19	25	P2.1/A09/CCU1	Address bus high order or CCU module 1 external I/O
42	4	P1.2		20	26	P2.2/A10/CCU2	Address bus high order or CCU module 2 external I/O
43	5	P1.3		21	27	P2.3/A11/CCU3	Address bus high order or CCU module 3 external I/O
44	6	P1.4/MISO	SPI master in ,slave out	22	28	P2.4/A12/CCU4	Address bus high order or CCU module 4 external I/O
1	7	P1.5/MOSI	SPI master out, slave in	23	29	P2.5/A13/CCU5	Address bus high order or CCU module 5 external I/O
2	8	P1.6/SCK	SPI serial clock I/O	24	30	P2.6/A14/CCU6	Address bus high order or CCU module 6 external I/O
. 3	9	P1.7/SS	SPI slave select	25	31	P2.7/A15/CCU7/ ECI	Address bus high order or CCU module 7 external I/O or CCU count input
4	10	RST	Reset	26	32	PSEN	Program store enable
5	11	P3.0/RXD/ANA0	Serial receive port or Keyboard	27	33	ALE/PROG	Address latch enable/Program pulse
6	12	AVREF+	Analog positive reference	28	34	VSS	
7	13	P3.1/TXD/ANA1	Serial transmit port or Analog Input 1	29	35	EA/VPP	External access enable/Programming supply voltage
8	14	P3.2/INT0/ANA2	External interrupt 0 or Analog Input 2	30	36	P0.7/AD7/KB7	Mux. low order address & data bus or Keyboard
9	15	P3.3/INT1/ANA3	External interrupt 1 or Analog Input 3	31	37	P0.6/AD6/KB6	Mux. low order address & data bus or Keyboard
10	16	P3.4/T0/ANA4	Timer/counter 0 input or Analog Input 4	32	38	P0.5/AD5/KB5	Mux. low order address & data bus or Keyboard
11	17	P3.5/T1/ANA5	Timer/counter 1 input or Analog Input 5	33	39	P0.4/AD4/KB4	Mux. low order address & data bus or Keyboard
12	18	P3.6/WR/ANA6	External data memory write strobe or Analog Input 6	34	40	P0.3/AD3/KB3	Mux. low order address & data bus or Keyboard
13	19	P3.7/RD/ANA7	External data memory read strobe or Analog Input 7	35	41	P0.2/AD2/KB2	Mux. low order address & data bus or Keyboard
14	20	XTAL2	Crystal output	36	42	P0.1/AD1/KB1	Mux. low order address & data bus or Keyboard
15	21	XTAL1	Crystal input	37	43	P0.0/AD0/KB0	Mux. low order address & data bus or Keyboard
16	22	VSS	VSS	38	44	ANAVCC	VCC Analog

Pin Functions

Figure 2. TSC8051A2 Pin Functions

General Signal Description

Vss

Digital ground

Vcc

Digital supply voltage

ANAVss

Analog groundl

ANAVcc

Analog supply voltage

$\overline{\mathbf{EA}}$ / Vpp

External Access enable must be strapped to Vss in order to enable any device plugged on port 0 / port 2 to fetch code from 0 up to 16K. EA must be strapped to Vcc for internal program execution.

This pin also receives the 12V programming supply (Vpp input) to program the internal EPROM.

XTAL1

It is the input to the inverting oscillator amplifier and the input for external clock generator.

XTAL2

It is the output from the inverting oscillator amplifier.

RESET

The active level of the RESET pin is low. An active level on this pin, while the oscillator is running, resets the device. An internal resistor permits power-on reset only using an external capacitor. The reset pin is bidirectional; it acts as an output when a reset is issued by the watch-dog function.

ALE / PROG

The Address Latch Enable output signal is used to latch the low order byte of the address during accesses to external memory. ALE can sink and source 8 LS TTL loads.If desired, ALE buffer can be disable. Then, ALE is pulled low. This pin is also used (program pulse input) to program the internal EPROM.

PSEN

Program Store Enable is the read strobe to external program memory, else it remains high. $\overline{\text{PSEN}}$ can sink and source 8 LS TTL loads.

PORT 0

Port 0 can act the part of address/data bus or standard I/O port. Its dedicated alternate function are the inputs of the keyboard interrupt. In the default configuration, port 0 operates the same as it does in the 80C51, with open-drain outputs.

PORT 1

Port 1 can act the part of standard I/O port. This port dedicated alternate functions are P.1[4:7] for the synchronous serial link (SPI or mWIRE) interface.

In the default configuration, port 1 operates the same as it does in the 80C51, with internal pullups. Port 1 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups.

PORT 2

Port 2 can act the part of address bus or standard I/O port.Its dedicated alternate function is the CCU (Capture & Compare Unit) interface.In the default configuration, port 2 operates the same as it does in the 80C51, with internal pullups.

PORT 3

Port 3 can act the part of standard I/O port. This port has two types of alternate functions:

- The first ones are the same than in C51 (Rxd, TxD, ..., WR, RD),
- The second type of alternate functions are 8 inputs for the 8-bit A/D converter.

In the default configuration, port 3 operates the same as it does in the C51, with internal pullups. Port 3 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups.

AVREF+

• Positive reference voltage for the ADC module.

Electro-Magnetic Compatibility (EMC)

Primary attention is paid to the reduction of electro-magnetic emission of the TSC8051A2. The following features reduce the electro-magnetic emission and additionally improve the electro-magnetic susceptibility:

• The TSC8051A2 provides one analog supply voltage pin and one analog ground pin. Placed on the middle of one side of the package, this pair (ANAVcc/ ANAVss) has short bounding wires, thus reducing the generated noise.

In order to reduce the radiation loop area, the two pins are adjacent.

• The TSC8051A2 provides one group of digital supply voltage and digital ground, in pairs of pins (Vss/Vcc). Placed on the middle of the sides of the package, this group have short bounding wires, thus reduces the generated noise. In order to reduce the radiation loop area, pins are adjacent inside group.

- External capacitors should be connected across associated pins (ANAVcc/ANAVss or Vcc/Vss). Lead length should be as short as possible. Ceramic CMS capacitors are recommended, 10nF + 100nF.
- Several internal decoupling capacitors improve the EMC radiation behaviour and the EMC immunity.
- In order to reduce the spectrum of the TSC8051A2, many signals has been treated, principally the periodic signals. The current provided for external signals, the period of clocks and the raising/falling edges are the major points which has been nursed.
 - For application that never (or temporarily) requires external memory resources, the ALE buffer can be disable.
 - Once the oscillator is stable, the gain is reduce by 2 (6 dB).
 - Peripherals receiving XTAL clock have, each one, their own prescaler toproduce the operating clock they need.
 - The output buffers are especially designed to control rising and falling edges.

Preview

MATRA MHS

Rev. A (14 Jan. 97)

CMOS Single chip 8–bit Microcontroller with CAN Controller

Description

The TSC8051A11 is a stand-alone, high performance CMOS microcontroller designed for use in automotive and industrial applications.

The TSC80A11 retains all features of the TSC80C51 with extended EPROM capacity (24K bytes), 256 bytes of internal RAM, a 14-source 2-level interrupt, a full duplex serial port, an on-chip oscillator, and two 16 bits timers.

In addition, the TSC8051A11 has an 8-bit 8-channel A/D converter, a serial synchronous port compatible with SPI and mWire protocols, an advanced 8 channels CCU (Capture & Compare Unit), an additional on-chip XRAM of 256 bytes, a high security Watchdog timer with an embedded oscillator and a CAN network line controller.

The CAN controller is fully compliant with the BOSCH CAN standard rev 2.0 part B. It implements all features

Features

- 80C51 core architecture:
 - 256 bytes of RAM
 - 256 bytes of XRAM
 - 24 Kilobytes of EPROM, OTP or ROM
 - 14-source 2-level interrupt
 - Two 16-bit timer/counter
 - Full duplex UART compatible with standard 80C51 with its own baud rate generator
- 6 8-bit 80C51 I/O Ports bit to bit configurable
- 2 ports with programmable interrupt for keyboard function
- A 8 channels 16-bit CCU with:
 - Rising and/or falling edge capture (pulse measurement capability)
 - Software timer, high speed output and multiple PWM shapes
- A 8-bit resolution analog to digital converter with 8 multiple inputs

of a full CAN controller able to handle all frames of the protocol with 14 predefined messages (channels). It includes 14 sets of channel registers. Each channel has its own identifier tag, its own identifier mask and up to 8 bytes (mailbox) to store the received and transmitted message.

The fully static design of the TSC8051A11 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The design is done with a specific care to reduce EMC emission and susceptibility.

This circuit is manufactured using SCMOS process and is available in commercial, industrial, military and automotive ranges: it runs from 0 up to 20 MHz in the automotive temperature range -40° C to $+125^{\circ}$ C.

- An high security watch-dog timer with an embedded oscillator
- A master/slave synchronous serial peripheral interface (SPI or mWire)
- Full CAN controller:
 - Fully compliant with CAN standard rev 2.0 A and 2.0 B
 - Optimized structure for communication management
 - 14 channels with individual tag and mask filters on 29 identifier-bit
 - Line wake-up capability
 - Automatic reply mode
 - 1 Mbit/s maximum transfer rate
 - Integrated line interface circuitry (output drivers, input comparators, Vcc/2 generator)
- Several power reduction modes with enhanced wake-up capabilities
- PQFP64 or PLCC68 packages

Block Diagram

(1): Alternate function of Port 1 (2): Alternate function of Port 2 (3): Alternate function of Port 3 (4): Alternate function of Port 4

Figure 1. TSC8051A11 block diagram

TEMIC Semiconductors

TSC8051A11

2

Pin-Out

Pin Functions

Figure 2. TSC8051A11 pin functions

Pin Configuration

Figure 3. TSC8051A11 pin configuration

Pin Assignment

Table 2. Pin assignment

Pin number		Pin name	name Alternate		umber	Pin Name	Alternate	
PQFP 64	PLCC 68		function	PQFP 64	PLCC 68		function	
1	10	P0.0	AD.0 / P0KB.0	33	44	P3.3	INT1	
2	11	P0.1	AD.1 / P0KB.1	34	45	P3.4	TO	
3	12	P0.2	AD.2 / P0KB.2	35	46	P3.5		
4	13	P0.3	AD.3 / P0KB.3	36	47	P3.6	WR	
5	14	P0.4	AD.4 / P0KB.4	37	48	P3.7	RD	
6	15	P0.5	AD.5 / P0KB.5		49	(n.c)	-	
7	16	P0.6	AD.6 / P0KB.6	38	50	Vss	-	
8	17	Vcc	-	39	51	Vcc	-	
9	18	Vss	-	40	52	XTAL1	-	
10	19	P0.7	AD.7 / P0KB.7	41	53	XTAL2	-	
11	20	P1.7	SS	42	54	P5.0	P5KB.0	
12	21	P1.6	SCK	43	55	P5.1	P5KB.1	
13	22	P1.5	MOSI	44	56	P5.2	P5KB.2	
	23	(n.c)		45	57	P5.3	P5KB.3	
14	24	- P1.2	MISO	46	58	P5.4	P5KB.4	
15	25	P1.3	CTX1	47	59	P5.5	P5KB.5	
16	26	P1.2	CTX0	48	60	P5.6	P5KB.6	
17	27	P1.1	CRX1	49	61	P5.7	P5KB.7	
18	28	P1.0	CRX0	50	62	(n.c)		
19	29	P4.7	ANA.7 / Cref	51	63	RESET	-	
20	30	P4.6	ANA.6	52	64	PSEN		
21	31	P4.5	ANA.5	53	65	ALE/PROG	-	
22	32	P4.4	ANA.4	54	66	EA / Vpp	-	
23	33	ANAVss	•	55	67	Vss		
24	34	ANAVcc	-		68	(n.c)		
25	35	ANAref+	-	56	1	Vcc	-	
	36	Vss	-	57	2	P2.0	A.8 / CCU.0	
26	37	P4.3	ANA.3	58	3	P2.1	A.9 / CCU.1	
27	38	P4.2	ANA.2	59	4	P2.2	A.10 / CCU.2	
28	39	P4.1	ANA.1	60	5	P2.3	A.11 / CCU.3	
29	40	P4.0	ANA.0	61	6	P2.4	A.12 / CCU.4	
30	41	P3.0	RXD	62	7	P2.5	A.13 / CCU.5	
31	42	P3.1	TXD	63	8	P2.6	A.14 / CCU.6	
32	43	P3.2	INT0	64	9	P2.7	A.15 / CCU.7 / ECI	

General Signal Description

Vss

Digital ground

Vcc

Digital supply voltage

ANAVss

Analog ground

ANAVcc

Analog supply voltage

EA / Vpp

External Access enable must be strapped to Vss in order to enable any device plugged on port 0 / port 2 to fetch code from 0 up to 24K. EA must be strapped to Vcc for internal program execution.

This pin also receives the 12V programming supply (Vpp input) to program the internal EPROM.

XTAL2

It is the output from the inverting oscillator amplifier.

RESET

An active level (low) on this pin, while the oscillator is running, resets the device. An internal pull-up resistor permits power-on reset only using only an capacitor connected to Vss.

The active level of the $\overline{\text{RESET}}$ pin is the opposite to the one of C51 standard.

ALE / PROG

The Address Latch Enable output signal is used to latch the low order byte of the address during accesses to external memory. ALE can sink and source 8 LS TTL loads.

If desired, ALE buffer can be disable. Then, ALE is pulled low.

This pin is also used (program pulse input) to program the internal EPROM.

PSEN

Program Store Enable is the read strobe to external program memory, else it remains high. $\overline{\text{PSEN}}$ can sink and source 8 LS TTL loads.

PORT 0

Port 0 can act the part of address/data bus or standard I/O port.

Its dedicated alternate function is a 8-bit keyboard interface.

In the default configuration, port 0 operates the same as it does in the 80C51, with open-drain outputs.

PORT 1

Port 1 can act the part of standard I/O port.

This port has two dedicated alternate functions:

- P.1[0:3] for CAN (Controller Area Network) interface.
- P.1[4:7] are for synchronous serial link (SPI or mWIRE) interface, In the default configuration, port 1 operates the same as it does in the 80C51, with internal pullups. Port 1 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups.

PORT 2

Port 2 can act the part of address bus or standard I/O port. Its dedicated alternate function is the CCU (Capture & Compare Unit) interface.

In the default configuration, port 2 operates the same as it does in the 80C51, with internal pull-ups.

PORT 3

Port 3 can act the part of standard I/O port.

Its dedicated alternate functions are those of the C51 standard (RxD, TxD, INT0, INT1, T0, T1, $\overline{WR} \& \overline{RD}$). In the default configuration, port 3 operates the same as it does in the C51, with internal pull-ups. Port 3 type C51 is sometimes called "quasi-bidirectional" due to the internal pull-ups.

PORT 4

Port 4 can act the part of standard I/O port.

This port has two types of alternate functions:

- The first ones are 8 inputs for ADC module,
- The second type of alternate functions is the reference voltage, Cref for CAN module. In the default configuration, port 4 operates as a "quasi-bidirectional" port type C51 with internal pullups.

ANAref+

Positive voltage for the ADC module.

PORT 5

Port 5 can act the part of standard I/O port.

Its dedicated alternate function is a 8-bit keyboard interface.

Electro-Magnetic Compatibility (EMC)

Primary attention is paid to the reduction of electro-magnetic emission of the TSC8051A11. The following features reduce the electro-magnetic emission and additionally improve the electro-magnetic susceptibility:

• The TSC8051A11 provides one analog supply voltage pin and one analog ground pin. Placed on the middle of one side of the package, this pair (ANAVcc/ ANAVss) has short bounding wires, thus reducing the generated noise.

In order to reduce the radiation loop area, the two pins are adjacent.

- The TSC8051A11 provides three groups of digital supply voltage and digital ground, in pairs of pins (Vss/Vcc). Placed on the middle of the three other sides of the package, these groups have short bounding wires, thus reduces the generated noise. In order to reduce the radiation loop area, pins are adjacent inside group.
- External capacitors should be connected across associated pins (ANAVcc/ANAVss or Vcc/Vss).

Preview

In the default configuration, port 5 operates as a "quasi-bidirectional" port type C51 with internal pull-ups.

Lead length should be as short as possible. Ceramic CMS capacitors are recommended, 10nF + 100nF.

- Several internal decoupling capacitors improve the EMC radiation behavior and the EMC immunity.
- In order to reduce the spectrum of the TSC8051A11, many signals has been treated, principally the periodic signals. The current provided for external signals, the period of clocks and the raising/falling edges are the major points which has been nursed.
 - For application that never (or temporarily) requires external memory resources, the ALE buffer can be disable.
 - Once the oscillator is started, the gain is reduce by 2 (6 dB).
 - Peripherals receiving XTAL clock have, each one, their own prescaler to produce the operating clock they need.
 - The output buffers are especially designed to control rising and falling edges.

CMOS Single Chip 8–bit Microcontroller with VAN Controller

Description

The TSC8051A30 is a stand alone, high performance CMOS microcontroller designed for use in automotive and industrial applications.

The TSC8051A30 retains all features of the MHS 80C51 with extended ROM capacity (16K bytes), 256 bytes of RAM, a 10-source 2-level interrupt, a full duplex serial port, an on-chip oscillator and clock and two 16 bits timers.

In addition, the TSC8051A30 has an 8-bit 8-channel A/D converter, a serial peripheral interface compatible with SPI, a high security watchdog, an advanced 8 channel Capture and Compare timer Unit, a VAN network line controller with a 128 bytes extra RAM used to store the VAN messages.

The VAN controller is fully compliant with the ISO

Features

- 256 bytes of RAM
- 16 K bytes of ROM or OTP
- Four 8-bit I/O ports ; each bit can be:
 - TTL I/O
 - Push–pull output
 - CMOS input trigger with or without pull-down
- Two 16 bit timer/counter
- A programmable window watch-dog with integrated low power RC oscillator; basic period 20 ms typical, maximum period 128 times 20 ms
- A eight channels 16 bits Capture and Compare Unit with:
 - input capture
 - output compare and PWM
- A 8-bit resolution analog to digital converter with eight multiplex inputs ; conversion time 48 machine cycles.
- One port with programmable interrupt for keyboard function

standard ISO/11519–3. It implements all features of the TSS461C VAN data link controller, including a 128 bytes data dual port RAM to store the received and transmitted messages.

The fully static design of the TSC8051A30 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The design is done with a specific care to reduce EMC emission and suceptibility.

This circuit is manufactured using SCMOS process and is available in commercial, industrial, military and automotive ranges ; it runs from 0 up to 20 MHz in the automotive temperature range -40° C to $+125^{\circ}$ C.

- Several power reduction modes with enhanced wake up capabilities
- Power fail detection, Power on reset bit
- Full duplex UART compatible with standard 80C51
- A serial peripheral interface (SPI+MW)
- VAN controller with 128 bytes data RAM
 - Fully Compliant with VAN standard ISO/11519–3.
 - 14 Identifier Registers with all bits individually maskable
 - 1 Mbits/s Maximum Transfer Rate
 - 3 Separate line inputs with automatic diagnosis and selection
 - Idle and sleep modes
 - Manchester Enhanced or Impulsed Coding
- PQFP, PLCC or SSOP 44 package ; PQFP 64 for emulation

Block Diagram

Figure 1. TSC8051A30 Block Diagram

TEMIC Semiconductors

TSC8051A30

Pin Configuration

TEMIC Semiconductors

Pin PQFP	Pin PLCC	Name	Function	Pin PQFP	Pin PLCC	Name	Function
44	44			44	44		
39	1	ANAVSS	VSS Analog	17	23	VCC	VCC
40	2	P1.0/VAN_RX0	VAN RX0	18	24	P2.0/A08/CCU0	Address bus high order or CCU module 1 external I/O
41	3	P1.1/VAN_RX1	VAN RX1	19	25	P2.1/A09/CCU1	Address bus high order or CCU module 1 external I/O
42	4	P1.2/VAN_RX2	VAN RX2	20	26	P2.2/A10/CCU2	Address bus high order or CCU module 2 external I/O
43	5	P1.3/VAN_TX0	VAN TX1	21	27	P2.3/A11/CCU3	Address bus high order or CCU module 3 external I/O
44	6	P1.4/MISO	SPI master in ,slave out	22	28	P2.4/A12/CCU4	Address bus high order or CCU module 4 external I/O
1	7	P1.5/MOSI	SPI master out, slave in	23	29	P2.5/A13/CCU5	Address bus high order or CCU module 5 external I/O
2	8	P1.6/SCK	SPI serial clock I/O	24	30	P2.6/A14/CCU6	Address bus high order or CCU module 6 external I/O
3	9	P1.7/SS	SPI slave select	25	31	P2.7/A15/CCU7/ ECI	Address bus high order or CCU module 7 external I/O or CCU count input
4	10	RST	Reset	26	32	PSEN	Program store enable
5	11	P3.0/RXD/ANA0	Serial receive port or Keyboard	27	33	ALE/PROG	Address latch enable/Program pulse
6	12	AVREF+	Analog positive reference	28	34	VSS	
7	13	P3.1/TXD/ANA1	Serial transmit port or Analog Input 1	29	35	EA/VPP	External access enable/Programming supply voltage
8	14	P3.2/INT0/ANA2	External interrupt 0 or Analog Input 2	30	36	P0.7/AD7/KB7	Mux. low order address & data bus or Keyboard
9	15	P3.3/INT1/ANA3	External interrupt 1 or Analog Input 3	31	37	P0.6/AD6/KB6	Mux. low order address & data bus or Keyboard
10	16	P3.4/T0/ANA4	Timer/counter 0 input or Analog Input 4	32	38	P0.5/AD5/KB5	Mux. low order address & data bus or Keyboard
11	17	P3.5/T1/ANA5	Timer/counter 1 input or Analog Input 5	33	39	P0.4/AD4/KB4	Mux. low order address & data bus or Keyboard
12	18	P3.6/WR/ANA6	External data memory write strobe or Analog Input 6	34	40	P0.3/AD3/KB3	Mux. low order address & data bus or Keyboard
13	19	P3.7/RD/ANA7	External data memory read strobe or Analog Input 7	35	41	P0.2/AD2/KB2	Mux. low order address & data bus or Keyboard
14	20	XTAL2	Crystal output	36	42	P0.1/AD1/KB1	Mux. low order address & data bus or Keyboard
15	21	XTAL1	Crystal input	37	43	P0.0/AD0/KB0	Mux. low order address & data bus or Keyboard
16	22	VSS	VSS	38	44	ANAVCC	VCC Analog

Pin Functions

Figure 2. TSC8051A30 pin functions

General Signal Description

Vss

Digital ground

Vcc

Digital supply voltage

ANAVss

Analog groundl

ANAVcc

Analog supply voltage

EA / Vpp

External Access enable must be strapped to Vss in order to enable any device plugged on port 0 / port 2 to fetch code from 0 up to 16K. EA must be strapped to Vcc for internal program execution.

This pin also receives the 12V programming supply (Vpp input) to program the internal EPROM.

XTAL1

It is the input to the inverting oscillator amplifier and the input for external clock generator.

XTAL2

It is the output from the inverting oscillator amplifier.

RESET

The active level of the RESET pin is low. An active level on this pin, while the oscillator is running, resets the device. An internal resistor permits power-on reset only using an external capacitor. The reset pin is bidirectional; it acts as an output when a reset is issued by the watch-dog function.

ALE / PROG

The Address Latch Enable output signal is used to latch the low order byte of the address during accesses to external memory. ALE can sink and source 8 LS TTL loads.If desired, ALE buffer can be disable. Then, ALE is pulled low. This pin is also used (program pulse input) to program the internal EPROM.

PSEN

Program Store Enable is the read strobe to external program memory, else it remains high. $\overline{\text{PSEN}}$ can sink and source 8 LS TTL loads.

FMIC

Semiconductors

PORT 0

Port 0 can act the part of address/data bus or standard I/O port. Its dedicated alternate function are the inputs of the keyboard interrupt. In the default configuration, port 0 operates the same as it does in the 80C51, with open-drain outputs.

PORT 1

Port 1 can act the part of standard I/O port. This port has two dedicated alternate functions:

•P.1[0:3] for VAN (Vehicle Area Network) interface.

•P.1[4:7] are for synchronous serial link (SPI or mWIRE) interface.

In the default configuration, port 1 operates the same as it does in the 80C51, with internal pullups. Port 1 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups.

PORT 2

Port 2 can act the part of address bus or standard I/O port.Its dedicated alternate function is the CCU (Capture & Compare Unit) interface.In the default configuration, port 2 operates the same as it does in the 80C51, with internal pullups.

PORT 3

Port 3 can act the part of standard I/O port. This port has two types of alternate functions:

- The first ones are the same than in C51 (Rxd, TxD, $\dots, \overline{WR}, \overline{RD}$),
- The second type of alternate functions are 8 inputs for the 8-bit A/D converter.

In the default configuration, port 3 operates the same as it does in the C51, with internal pullups. Port 3 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups.

AVREF+

• Positive reference voltage for the ADC module.

Electro-Magnetic Compatibility (EMC)

Primary attention is paid to the reduction of electro-magnetic emission of the TSC8051A30. The following features reduce the electro-magnetic emission and additionally improve the electro-magnetic susceptibility:

• The TSC8051A30 provides one analog supply voltage pin and one analog ground pin. Placed on the middle of one side of the package, this pair (ANAVcc/ ANAVss) has short bounding wires, thus reducing the generated noise.

In order to reduce the radiation loop area, the two pins are adjacent.

- The TSC8051A30 provides one group of digital supply voltage and digital ground, in pairs of pins (Vss/Vcc). Placed on the middle of the sides of the package, this group have short bounding wires, thus reduces the generated noise. In order to reduce the radiation loop area, pins are adjacent inside group.
- External capacitors should be connected across associated pins (ANAVcc/ANAVss or Vcc/Vss). Lead length should be as short as possible. Ceramic CMS capacitors are recommended, 10nF + 100nF.

- Several internal decoupling capacitors improve the EMC radiation behaviour and the EMC immunity.
- In order to reduce the spectrum of the TSC8051A30, many signals has been treated, principally the periodic signals. The current provided for external signals, the period of clocks and the raising/falling edges are the major points which has been nursed.
 - For application that never (or temporarily) requires external memory resources, the ALE buffer can be disable.
 - Once the oscillator is stable, the gain is reduce by 2 (6 dB).
 - Peripherals receiving XTAL clock have, each one, their own prescaler toproduce the operating clock they need.
 - The output buffers are especially designed to control rising and falling edges.

Section III

C51 Application Notes

ANM031 : Secret Tag on 80C51 Family Microcontrollers	III.1.1
ANM032 : How to use a Third Overtone Crystal with a 80C51 Family Microcontroller	III.2. 1
ANM033 : How to Read Out the Internal Memory Code of a 80C51 Microcontroller Family	III.3.1
ANM034 : Compatibility between 80Cx2 and 8xC154 Microcontrollers	III.4.1
ANM053 : Encryption on 80C51 Family Microcontrollers	III.5.1
ANM055 : How to Get a Second Asynchronous Serial Interface on a 80C51 Microcontroller Family	III.6.1
ANM059 : How to Recognize Video Mode and Generate Free Running Synchronization Signals Using TSC8051C1/C2 Microcontroller	III.7.1

Secret Tag on 80C51 Family Microcontrollers

Overview

The Secret Tag is a feature which allows serialization of each microcontroller for identification of a specific equipment.

For instance, on a network, each terminal equipment can be identified by comparing the identifier sent via network with the identification number stored in the microcontroller.

One unique number per device is implemented. This serial number is a 64-bit binary value, which is contained and addressable in SFR (Special Function Registers) area.

This value can be used as an identification number, and

Description

The secret tag register is composed of two groups of four consecutive bytes in the Special Function Register (SFR) area. One is placed at the FCh to FFh addresses and the other at the ECh to EFh addresses.

These registers are used as follows :

- Lot number (L0–L15) : number from 0 to 65535 referring to TEMIC fab lot number.
- Lot Number Extension (E0–E3) : <space> = 0 A = 1

$$= 1$$

= 15

0

permits personalization of any electronic equipment using a 80C51 architecture.

The coding of the different registers allows TEMIC to guarantee that each value of the Secret Tag is UNIQUE.

For confidentiality on secret tag value, no special marking is written neither on the die nor on the final package. This value can be read out by classical instruction set routine. This routine is implemented inside the microcontroller ROM memory which can be kept secret (and then the value of the secret tag also) by using a ROM ENCRYPTION.

- Customized number (C0–C11) : fixed number from 0 to 4095 given by the customer.
- Year (Y0–Y3) : 1994 is 0, 1995 is 1, and so on.
- Month (M0–M3) : number from 1 to 12.
- Wafer Number (W0–W7) : number of Wafer.
- Serial Number (S0–S15) : number from 0 to 65535 incremented step by step.

	ADDRESS	b 7	b6	b5	b4	b3	b2	b1	b0
TAG1	ECh	L7	L6	L5	L4	L3	L2	L1 .	L0
			_						
TAG2	EDh	L15	L14	L13	L12	L11	L10	L9	L8
TAG3	EEh	C3	C2	C1	C0	E3	E2	E1	EO
					_		-		
TAG4	EFh	C11	C10	C9	C8	C7	C6	C5	C4
								-	
TAG5	FCh	¥3	Y2	¥1	YO	M3	M2	M1	M0
TAG6	FDh	W7	W6	W5	W4	W3	W2	W1	W0
					-		- 	· · · · ·	
TAG7	FEh	S 7	S6	S 5	S4	S 3	S2	S1	S0
		r						T	,
TAG8	FFh	S15	S14	S13	S12	S11	S10	S9	S8

ANM031

Secret Tag Example :

	TAG1	TAG2	TAG3	TAG4	TAG5	TAG6	TAG7	TAG8
	01	04	02	00	18	0A	23	01
•	Lot Number Lot Number	Extension	= 1025 = 2		ProductionProduction	n Year n Month	= 1995 (1) = August (8)
٠	Customized Number $= 0$				Serial Nur	nber	= 291	

80C51 Routine to Read Out the Secret Tag

The eight secret tag registers are mapped into 80C51 SFR area (Special Function Registers). The routine listed hereafter reads the Secret Tag Registers and sends it on the serial data link. Main_Program:

```
Mov
         SCON,#53H; 8-bit UART Variable/REN = 1
                  ; TI / RI =1.
         TMOD, #20H; 8-bit auto-reload mode for
  Mov
                  ; baud rate generator.
         TH1,#0E8H; 1200bds at 11.059MHZ.
  Mov
  Setb
         TR1
    .
; Somewhere in the program the routine is
 called to transfer the Secret tag registers.
;
; Call
         Secret_Tag_Transfer
    .
; ======= Character Sending Routine ========
Send_Char:
  Jnb
                  ; test if the transmitter is free to
         ТΙ,$
                  ; send a new character.
  Clr
         ΤI
  Mov
         SBUF, A
                  ; send the new character.
  Ret
; ======= Secret Tag Transfer Routine ========
Secret_Tag_Transfer:
  Mov
         A, TAG1
  Call
         Send_Char
  Mov
         A, TAG2
  Call
         Send Char
  Mov
         A, TAG3
  Call
         Send_Char
```


Mov	A,TAG4
Call	Send_Char
Mov	A, TAG5
Call	Send_Char
Mov	A, TAG6
Call	Send_Char
Mov	A, TAG7
Call	Send_Char
Mov	A, TAG8
Call	Send_Char

Ret

Additional Information

For additional information on Microcontrollers, and Ordering Information, please refer to the product datasheets available upon request.

MATRA MHS Rev. D (14 Jan. 97) 3

How to use a Third Overtone Crystal with a 80C51 Family Microcontroller

Description

For cost reason using an overtone crystal is 5 to 6 times cheaper than a fundamental one. Using this type of crystal is slightly different comparing to a fundamental one. The frequency of an overtone crystal is adjusted on the fundamental one and this one must be trapped by a LC pass–band filter. The typical schematic is shown below.

CP1 and CP2 are the parasitic capacitors due to the packaging and the PCB lay-out. L1 and C1 is the

$$f_T = \frac{F_Q}{3} = \frac{36.864}{3} = 12.288 \text{ MHz}$$
$$L_1 = \frac{1}{(2 \times \pi \times f_T)^2 \times C3}$$
$$L_1 = \frac{1}{(2 \times \pi \times 12.288 \times 10^6) \times (39 \times 10^{-12})} = 4.3\mu H$$

The standard one $\,$ is $4.7\mu H$ and not critical because the bandwidth is large enough . C2 is chosen to be equal to

passe-band filter used to trap the fundamental frequency. C2 is a small capacitor to increase a little bit the open-loop gain given by:

ANM032

$$A \times B = A \times \frac{CP2 + C2}{CP1}$$

where A is the gain a the operating frequency and B is the gain of the feed–back. The frequency of the filter is given below:

Where
$$C3 = 33 \text{ pF}$$

10pf (a larger value break-down the amplifier and the open loop gain).

Figure 1. Typical application with a third overtone crystal

How to Read Out the Internal Memory Code of a 80C51 Microcontroller Family

Overview

A single chip microcontroller is a controller with a ROM memory storing the program code of the specific application. The program is masked during the processing of the integrated circuit. The great advantage is that no I/O ressource is consumed to interface the external code memory. I/O line possibilities consequently are increased.

In order to test or to check this internal ROM, some solutions can be implemented.

TEST MODE VER to dump the ROM

The TEST MODE VER can be used by setting some 80Cxxx inputs shown in figure 1. The PORTs P1 and P2 receive respectively the low address lines and the high

This application note describes a solution to dump the internal ROM and is based on a specific TEST MODE (TEST MODE VER) used to test the microcontroller in production .

In this note a member of TEMIC's 80C51 family will be named 80Cxxx.

address lines . The code program in that condition is read from P0. The lines of PORT0 is open drain and must be tied with 10kohm pull-up resistors .

Figure 1. Configuration for the TEST MODE VER

To activate and to dump the ROM a specific timing must be applied, it is shown in figure 2.

Before generating the first Read cycle a delay at least equal to 24 clock periods has to be waited. This time is needed to reset correctly the 80Cxxx. At this time the first address is read by the 80Cxxx from the PORT 1 and 2. To read the first data it is necessary to wait again 12 clock periods. This is due to the internal synchronisation and the internal ROM access time. So the data only appears 36 clock periods after the reset is applied.

TEMIC Semiconductors

Figure 2. Timings to dump the ROM

Example Dump ROM Application

Figure 3 shows the schematic of this typical application using a 87C51 (OTP version). The main idea is to control the 80Cxxx by another one in order to generate all the signals we need and to output the dumped data on a serial line or to trace the dumped data on PORT0 with a logical analyser.

Flow chart of the program

Figure 4 shows the flow chart of the program .The program starts with the serial line configuration (2400bds, 8–bit of data) and the set–up of target 80Cxxx for the DUMP operation. Then read operation of the ROM

is performed and the read data is transmitted on the serial line. In the same time, the TRIG signal is active low to synchronize an external logical analyser.

Figure 4. Flow chart for the dump ROM program

Subroutine of the Initialization Sequence

;=== initialization ====================================	========	
; Speed = 2400bds , Format = 8 bits		
; =====================================		
;Set-up the Baud Rate Generator		
SetB ROM_RST	; Target under Reset	
MOV TMOD,#Baud_Rate_Timer	; TIMER1 = 20H	
MOV TH1,#Speed	; Speed = OF3H	
Setb TR1		
;Set-up the UART		
MOV SCON, #FORMAT	; FORMAT =42H	
;===ROM Dump operation Set-Up=========	===	
; Size_Rom = 4095 bytes ,		
;		
MOV DPL,#00	; starts with first a	ddress

Subroutine of the dump ROM operation

```
Dump operation:
 MOV P0, DPL
 MOV P2, DPH
 CLR Trig
 MOV A, P1
 Call Serial trans
 SETB Trig
 INC DPTR
 MOV A, #Size ROM Low
 CJNE A, DPL, Dum_operation
 MOV A, #Size ROM High
 CJNE A, DPH, Dump_operation
 JMP $
 Serial_trans :
   JNB TI, Serial trans
   CLR TI
   MOV SBUF, A
   RET
```

- ; Analyser TRiggering
- ; Serial transmission
- ; Next address

Timings analysis

Two parameters are critical in the dump ROM application (figure 2) : **treset** and **tread**.

Treset parameter is the minimum time required from the active Reset to the output of the first data. The minimum value of this parameter is <u>24 clock periods</u>.

In this application, the first data appears **168 clock** periods after the first address.

Conclusion

This application based on a TEMIC piggy-back is easy to implement and requires only few components.

Additional Information

For additional information on Microcontrollers, and Ordering Information, please refer to the product datasheets available on request. To determine when data coming from the ROM can be read, **tread** parameter must be taken into account.

The minimum value of this parameter is $\underline{12 \text{ clock periods}}$ measured when the address is stable and the data can be read.

In this application, **tread** will be read **72 clock periods** after the address is driven. So, both of the parameters are not critical.

Furthermore this basic application can be improved by adding a software interface developed on a Personal Computer to compare the dumped ROM and the original one.

Compatibility between 80Cx2 and 8xC154 Microcontrollers

Description

An application based on 80C52/80C32 can be replaced by 83C154/80C154 if some precautions have been taken in order to not activate special features of the 8XC154 contained in one common register. This note gives details about the differences.

Features

The 8XC154 is an enhanced version of the 80C52/80C32. The main differences are mainly due to Internal Program memory, the Power–Down mode, the serial link and the Programmable port impedance. These differences are summarized in Table 1.

Table 1. Main Differences Between Microcontrollers

Features	80C32/80C52	80C154/83C154
ROM (80C52 & 83C154)	8 Kbytes	16 Kbytes
Frame Error Detection	No	Yes
Overrun Error Detection	No	Yes
Recover Mode	No	Yes
Hardware Power–Down Mode	No	Yes
Programmable I/O Port Impedance	No	Yes

Programmable Port Impedance

The impedance of the port 1,2 and 3 can be programmed in one of the three impedance modes through the IOCON register (0F8H) shown in table 2. The impedance can be normal, high or floating. This mode is not supported by the 80C32/80C52 and a program written on 80C32/80C52 never accesses to this register.

Table 2. IOCON register description

I/OCON (0F8h) I/O Control register	WDT	T32	SERR	IZC	P3HZ	P2HZ	P1HZ	ALF	
	IZC = 1		Set by software to select High impedance for Port 1, 2 and 3. When cleared, Port 1, 2 and 3 have a normal impedance.						
	PxHZ = 1		When set by software, the Port (1, 2 and 3) become a floating input. When cleared, the impedance is selected by IZC bit.						
	ALF = 1		When set by software, all the Ports (1, 2 and 3) become floating when the power-down mode is activated				the		

Power Reduction modes There are basically four power reduction modes in the 8xC154:

- Idle
- Recover
- Software
- Hardware

Table 3. PCON register description

All these modes are activated with the four bits PD,HPR,RPD and IDL in the PCON register shown in table 3.

The 80C52/32 has only two power reduction modes : Idle and software power–down modes . All these modes are controlled by the two bits PD and IDL in the PCON register shown in Table 3.

PCON (87h) register	SMOD	HPD	RPD	-	GF1	GF0	PD	ID1
	IZC = 1		Set by softwa When cleared	are to select Hi d, Port 1, 2 and	igh impedance 13 have a nori	for Port 1, 2 a mal impedance	and 3. e.	

Power–Down Mode

This software mode is used to reduce to the minimum the power consumption (50 μ A) . This mode is activated by software by setting to one the bit PD in the PCON register and the way to cancel it depends on the controller used :

- 80C32/80C52 : Only a hardware reset can cancel this mode.
- 8XC154 : A hardware reset or an external interrupt (INT0 or INT1) can cancel this mode.

Idle Mode

This mode is used to reduces the power consumption down to 25% of the nominal consumption and to maintain a minimum of CPU activities (TIMER/COUNTER, UART). This mode is activated by setting to one the bit IDL in the PCON register. The way to cancel it can be done either by an hardware reset or by all the interrupt request sources.

Recover Mode

This mode is used only on the 8XC154 and is enabled by setting to one the bit RPD in the PCON register. This mode controls the way to cancel the power reduction mode (Power–Down and IDLE) and can be either an hardware reset or external interrupt requests (INT0 and INT1). The RECOVER mode allows two ways of cancelling mode :RPD = 0, the power reduction mode is cancelled by the external interruptions only if they are enabled (EX0=1, EX1=1 in IE register), RPD = 1, the power reduction mode is cancelled even if the external interrupts are disabled and if there is an interrupt request.

This mode is not supported by the 80C52/80C32 part and is an enhancement of the 8XC154.

Hardware Power Down Mode

This mode allows to control the Power–Down mode by an external signal through the T1 pin (P3.5). When a falling is applied on this pin and if the HPD bit of the PCON register is set to one, the controller stops the clock and goes in power–down mode. A rising edge on T1 pin awakes the controller, restarts the oscillator and the execution of the program. This mode works independantly of the software mode. This mode is not supported by the 80C52/80C32 part and is an enhancement of the 8XC154.

Overrun and Frame Errors

These errors are detected when a problem has been detected on the serial link. If it is the case, the SERR bit in the IOCON register is set to one. The overrun error occured when a new character is received and overwrites the last one which has not been read. The frame error occurs when the length of the data received is not correct (a stop bit is missing). This mode is supported by the 80C32/80C52.

Conclusions

Replacing a 80C32/80C52 by a 8XC154 can be done easily but the programmer must **take care of the RECOVER mode and the HARDWARE power-down mode, which are not to be set in the program**. If no precautions are taken, the application can be disturbed as detailed below:

- Hardware mode : If a rising edge is applied on pin T1, the controller will enter in power-down.
- Recover mode : If the RPD bit is set to one and if the

Additional Information

For additional information on Microcontrollers, and Ordering Information, please refer to the following datasheets available on request. PD bit is set to one as well, the controller will enter in power-down mode and will be cancelled as soon as an interrupt request will be set. If an interrupt is pending, the power-down will be cancelled immediately. In that case it looks like the power-down mode has never been executed.

All other differences will be transparent for the software.

.

Encryption on 80C51 Family Microcontrollers

Introduction

TEMIC provides a hardware encryption mechanism in order to protect the program memory against piracy.

For this purpose, an encryption array is scrambled within the ROM matrix.

This array is programmed by the factory at the same time as the program memory, its content being different for each application, and is totally secure from outside.

The size of the encryption array depends on the size of the ROM matrix :

• 128 bytes for 80C51

Design Considerations

This will be reproduced for each address.

When the internal code is read out at a given address, this

address selects one byte of the ROM memory map and

These two bytes are combined to create an encrypted byte

one byte of the encrypted array following an algorithm.

When the program verification is performed, or when MOVC instructions are executed from external memory for accessing internal memory, each byte of internal ROM is exclusive-nor'ed with an encryption byte, in order to provide on Port 0 an encrypted byte.

The algorithm for selecting one encryption byte uses a

- combinaison of the internal memory address lines :
- 7 address lines for 80C51

256 bytes for 80C52

512 bytes for 83C154

at the output port.

1024 bytes for 83C154D

•

- 8 address lines for 80C52
- 9 address lines for 83C154
- 10 address lines for 83C154D

Adding Features

The External Access pin (EA) is sampled and latched on RESET, and any further switching of this pin is not recognized.

It is always possible to use external memory, but the state of EA during RESET will ascertain what is enabled.

- EA = 0
 - Code memory is exclusively external
 - MOVC instructions access external ROM and return non encrypted data.
- EA = 1
 - Code memory is internal for the lower 4K, and external for the upper bytes for 80C51 (limit is 8K for 80C52, 16K for 83C154 and 32K for 83C154D).
 - MOVC instructions in external ROM code that access internal ROM return encrypted data.

This ensures full protection of ROM content, as detailed in the table below:

EA	Program counter *	Data pointer *	Program memory	Data	Comments
1	< 4K	< 4K	Internal	Internal	Internal fetches during internal MOVC instruction: data not encrypted
1	< 4K	> 4K	Internal	External	External fetches during internal MOVC instruction: data not encrypted
1	> 4K	< 4K	External	Internal	Internal fetches during external MOVC instruction: data encrypted
1	> 4K	> 4K	External	External	External fetches during external MOVC instruction: data not encrypted
0	Х	X	External	External	External fetches during external MOVC instructions: data not encrypted

Table 1. Use of MOVC intruction to access data in ROM code.

 \ast : 4K value is for 80C51. Replace by 8K for 80C52, by 16K for 83C154D and by 32K for 83C154D

Additional Information

For additional information on Microcontrollers, and Ordering Information, please refer to the product datasheets available upon request. TEMIC Semiconductors

How to Get a Second Asynchronous Serial Interface on a 80C51 Microcontroller Family

Description

The 80C51 family has only one asynchronous serial interface.

However some users would like to have a low cost solution to get two in their applications.

This solution exists and is described in this application note.

The goal of this note is to present a very low cost software solution to realise this second asynchronous serial interface.

Features

No external hardware added ;

Full duplex ;

Dissymetrical baud rate in reception and in transmission available;

1200 bauds limitation of the internal serial interface (hardware).

Resources used

A time reference with interrupt capability is needed and it can be TIMER 1 even if it is already used as baud rate generator for the internal serial interface. In this case a 32 time speed transmission is obtained on TIMER 1 overflow (TIMER 1 is in mode 2 : 8-bit auto-reload, and serial interface is in mode 1 : 8-bit variable baud rate).

Only two I/O pins are needed : one for RxD and one for TxD (for instance P1.0 and P1.1). Few bytes of memory are used and finally a portion of the CPU time is used to serve TIMER 1 interrupt. Three functions : initialisation, transmission and reception, are allowed to use this serial interface.

Method

Transmission of the character 01000001b 'A'

Receiver part :

On each TIMER 1 overflow interrupt, RxD input is sampled. Start of transmission is recognised by a transition of 1 to 0 on this pin. So a second sample is made half a bit later to be sure that it is a start bit. Then sampling is made in the middle of the received bits, nine times to get the 8 data bits. The stop bit must have level 1.

Transmitter part :

The operation of the transmitter is nearly the same as for the receiver : start bit is written on TxD output followed by the 8 data bits and the stop bit and so on. Time of bit writing is calculated by counting timer interrupts.

Efficiency

Number of machine cycles spent in interrupt sub-routine :

- Minimum : 10 cycles ;
- Maximum : 49 cycles (transmission and reception) ;

The measures hereafter have been done with a 11.059MHz crystal, and same baud rate in emission and in reception, and a hardware serial baud rate of 1200 bauds.

Percentage of CPU usage :

- 41.7% if there is no traffic ;
- 50% with continuous transmission or reception, and 1200 baud rate ;
- 57.4% with continuous transmission and reception, and 1200 baud rate ;
- 68.5% with continuous transmission and reception, and 9600 baud rate.

The hardware serial baud rate is limited to 1200 bauds, increasing it induces an increase of TIMER 1 interrupts frequency, and so an increase of percentage of CPU usage.

Demonstration Program

The demonstration program (listed in the following pages) allows transmission on P1.1 of all characters received on P1.0 without checking receive error.

The function TXD_S starts transmission of the character placed in accumulator when the transmitter is ready.

The function RXD_S waits for reception of a character and return it in accumulator.

Additional Information

For additional information on Microcontrollers, and Ordering Information, please refer to the product datasheets. **TEMIC**

Program Listing

\$TITLE (Software serial interface) ; Software serial interface ; with programmable speed \$NOMOD51 \$INCLUDE (reg51.inc) RSEG PROG NAME UARTSOFT : Constant definition RxD1 EOU P1.0 TxD1 EOU P1.1 ; Segment definition PROG SEGMENTCODE SEGMENTDATA VAR1 BITVAR SEGMENTBIT STACK SEGMENTIDATA RSEG STACK DS 10H ; 16 Bytes Stack ; vectors definition ; Reset vector CSEG AT 0000H jmp MAIN CSEG AT 001BH ; Timer 1 vector imp ITIM1 ; bits definition RSEG BITVAR TXRDY: DBIT 1 ; 1 if transmitter ready RXRDY: DBIT 1 : 1 if receiver readv RXERR DBIT 1 ; 1 if receiver error INCOM: DBIT 1 ; 1 if character received ; vars definition RSEG VAR1 ; Receiver RXSPD: DS 1 ; speed in reception RXCH: DS 1 ; character in reception RXCNT: DS 1 : internal counter RXSTAT:DS 1 : receiver status ; last character received RXCH2: DS 1 ; Transmitter TXSPD: DS 1 ; speed in transmission TXCH: DS 1 ; character in transmission TXCNT: DS 1 ; internal counter TXSTAT:DS 1 ; transmitter status ; software serial interface demonstration program ; characters received on P1.0 are transmitted on P1.1 RSEG PROG ; Main routine MAIN: mov SP,#STACK-1 lcall SEINIT ; interfaces init. LOOP: lcall RXD S lcall TXD_S sjmp LOOP

3

TEMIC Semiconductors

; Init:	ialize s	serial interfaces		
; desi:	red spee	ed is 32 for 1200 bauds, 4	fc	or 9600 bauds
; Osci	llator f	frequency = 11.059 MHz		
SEINIT	:mov	TCON,#40H	;	Timer 1 enabled
	mov	TMOD,#20H	;	C/T = 0 , mode = 2
	mov	TH1,#0E8H	;	1200 bauds
	mov	SCON,#52H	;	serial port mode 1
	mov	A,#32	;	1200 bauds
	mov	RXSPD, A		
	mov	TXSPD,A		
	setb	PT1	;	high priority It.
	setb	TXRDY	; 1	ransmitter ready
	setb	RXRDY	;	receiver ready
	clr	RXERR	;	no error
	mov	IE,#10001000B	;	It. timer 1 enabled
	ret			
; Trans	smissior	n of a character on TxD1		
TXD_S:	jnb	TXRDY, TXD_S		
	mov	С,Р		
	mov	ACC.7,C	;	set parity
	mov	TXCH,A	;	character to send
	mov	A, TXSPD	;	1 bit duration
	rr	A	;	1/2 bit duration
	mov	TXCNT , A	;	set counter
	mov	TXSTAT,#0	;	init. status
	clr	TXRDY	;	start transmission
	ret			
; Read	ing of t	the received character on	RxI	01
RXD_S:	jnb	INCOM, RXD_S		
	mov	A, RXCH2	;	char. received
	clr	INCOM	;	char. readed
	ret			

TEMIC Semiconductors

3

; Inter	crupt ro	outine				
ITIM1:	jnb	RXRDY,RX1				
	; rece	iver not busy				
	jb	RxD1, TRANS	;	start bit ?		
	clr	RXRDY				
	push	ACC				
	mov	A,RXSPD	;	1 bit duration		
	rr	A	;	1/2 bit duration		
	mov	RXCNT, A	;	load counter		
	mov	RXSTAT,#0	;	init. status		
	рор	ACC				
	sjmp	TRANS				
RX1:	djnz	RXCNT, TRANS	;	sample point ?		
	push	ACC				
	push	PSW				
	mov	A,RXSTAT				
	jnz	RX3				
	jb	RxD1,ERRFRM	;	start bit OK (0) ?		
RX2:	inc	RXSTAT				
	mov	RXCNT, RXSPD				
	sjmp	RX5				
ERRFRM	setb	RXRDY				
	setb	RXERR	;	receiver error		
	simp	RX5				
RX3:	cine	A,#9,\$+3	;	8 bits + stop bit jn	C	RX4
	mov	C,RxD1		bit sampling		
	mov	A, RXCH	,	1 5		
	rrc	A				
	mov	RXCH, A				
	simp	RX2				
RX4:	inb	RxD1, ERRFRM	:	stop bit OK (1) ?		
	mov	BXCH2, BXCH	,			
	setb	RXRDY				
	setb	TNCOM		1 char. received		
RX5:	ກດກ	PSW	,			
	ק-ק מסמ	ACC				
	E - E					
TRANS:	: trans	smission part				
	, ib	TXRDY, TX5				
	dinz	TXCNT, TX5		sample point ?		
	push	ACC		The second se		
	push	PSW				
	mov	A, TXSTAT				
	inz	, TX1		start ?		
	clr	TxD1		set start bit		
	mov	TXCNT, TXSPD	,			
	inc	TXSTAT				
	simp	 TX4				
	·····					

TEMIC Semiconductors

TX1:	cjne jnc mov	A, #9, \$+3 TX2 A, TXCH	;	8 bits + stop bit
	rrc	Α	;	bit to send in carry
	mov	TXCH,A		
	mov	TxD1,C	;	transmission of bit
	mov	TXCNT, TXSPD	;	init. counter
	inc	TXSTAT		
	sjmp	TX4		
TX2:	cjne	A,#10,TX3	;	end of character ?
	setb	TXRDY		
	sjmp	TX4		
TX3:	setb	TxD1	;	set stop bit
	mov	TXCNT, TXSPD		
	inc	TXSTAT		
TX4:	pop	PSW		
	pop	ACC		
TX5:	reti			

END

How to Recognize Video Mode and Generate Free Running Synchronization Signals Using TSC8051C1/C2 Microcontrollers

Description

The TSC8051C1 is an application specific microcontroller for autosync monitor and digital control application. It includes the TEMIC static 8-bit 80C51 CPU core with 8 Kbytes of ROM and 256 bytes of RAM, 12x8-bit PWM channels, buffered HSYNC and VSYNC outputs, a watchdog timer and a multimaster I^2C controller.

Typical Autosync Monitor Application

The introduction of the TSC8051C1 in CRT monitors allows manufacturer and final user to get maximum flexibility.

- Automatic parameters adjustment during factory set-up.
- Auto-alignment capabilities.
- Saving of factory default parameters.
- Versatile frequency range up to 100KHz.
- More adjustment parameters are available to the user.

This application note describes how to automatically recognize video mode by measuring the period and polarity of horizontal and vertical synchronization signals; it also explains how to generate free running synchronization signal for burn–in purpose.

In the rest of the application note, the use of words Hsync and Vsync means horizontal synchronization signal and vertical synchronization signal respectively.

- Automatic video mode recognition that allows automatic monitor adjustment to the values previously saved by user.
- On chip I²C bus controller allows Access bus implementation and so monitor adjustment by the PC's Keyboard.

Figure 1 shows a block diagram of a typical autosync monitor designed with the TSC8051C1.

Figure 1. Autosync monitor block diagram with the TSC8051C1

Hardware Description

TSC8051C1 implements some special features to allow video mode recognition without adding any external components.

- Special Hsync and Vsync inputs.
 - Vsvnc can generate an interrupt on either falling or rising edge. As 8051 core samples inputs one time per machine cycle, pulse duration less than Tosc x 12 (1µs using 12 MHz crystal) are not 100% detected. To allow Hsync pulses counting (duration>150ns), pulses are lengthened up to 1 cycle period to be sampled by the 8051 core. Figure 2 and Figure 3 show the VSYNC and HSYNC input block diagrams.
 - These features are programmable through EICON SFR (address E4h).

MSB		EICON SFR E4h LSB							
-		-	. –	-	TOL	TOS	IOL		
Symbol	l Po	sition		Name	and Fu	inction			
IOL	EIC	CON.0	INT0/VSYNC input Level bit. Setting this bit inverts INT0/VSYNC input signal. Clearing it allows standard use of INT0/VSYNC input.						
TOS	EIC	CON.1	T0/HSYNC input Selection bit. Setting this bit allows short pulse capture. Clearing it allows standard use of T0/HSYNC input.						
TOL	EIC	CON.2	T0/HSYNC input Level bit. Setting this bit allows positive pulse capture. Clearing it allows negative pulse capture.						

- Special Hsync and Vsync outputs.
- TSC8051C1 implements programmable Hsync and Vsvnc outputs. User can disable and can invert these outputs to provide good polarity to deflection stages.
- These features are programmable through SOCR SFR (address E5h). COOD CED ES T CD

MDD			JOCK	LSD				
VOS		VOS HOS VOP VOE				HOP	HOE	
Symbol	Po	sition	Name and Function					
HOE	so	OCR.0	HSYNC Output Enable bit. Setting this enables the HSYNC signal.				g this bit	
HOP	so	SOCR.1 HSYNC Output Polarity bit. Settin bit inverts the HSYNC output.				ng this		
VOE	s	OCR.2	VSYNC Output Enable bit. Setting this bit enables the VSYNC signal.					
VOP	so	OCR.3	VSYNC Output Polarity bit. Setting this bit inverts the VSYNC output.				ng this	
HOS	HOS SOCR.4 H		HOS SOCR.4 HSYNC Output Selection bit. Setting t bit selects the VSYNC output, clearing selects P3.5 SFR bit.				ting this aring it	
vos	S	OCR.5	VSYN bit sele selects	C Output cts the V P3.3 SFF	Selectio SYNC o 8 bit.	n bit. Set utput, cle	ting this aring it	

Figure 2. INTO/VSYNC input block diagram

Figure 3. T0/HSYNC input block diagram

Figure 4. HSYNC and VSYNC outputs block diagram

мер

Video Mode Recognition Description

Vsync input is programmed to generate an interrupt each time a falling edge appears on Vsync.

Vsync period measurement, Vsync polarity detection and Hsync pulse counting are performed using Timer 0. Figure 5 shows the Timer 0 block diagram in mode 1.

Figure 5. Timer/Counter 0 in mode 1: 16-bit Counter

The measurement cycle is divided in 3 operations (3 Hsync frames):

Timer 0 is reset and Vsync interrupt is enabled.

- Vsync frequency measurement:
- In first interrupt of the cycle, timer 0 is programmed to be used as free running timer with fosc/12 clock. TR0 bit is set to start counting (GATE bit is reset). In the second interrupt, TR0 bit is reset to stop counting. At this time, TH0 and TL0 registers contain a representative value of the Vsync period (in µs if 12MHz crystal is used) (see Figure 6).

• In the second interrupt of the cycle, timer 0 is programmed to be used as gated timer with fosc/12 clock. GATE bit is set and timer counts only during Vsync high level. In the third interrupt, TR0 bit is reset to stop counting. At this time, TH0 and TL0 registers contain a representative value of the Vsync high level duration (in μ s if 12MHz crystal is used). If this duration is higher than the Vsync period divided by 2 then, Vsync has a negative polarity else it has a positive polarity (see Figure 7).

it has a positive polarity (see Figure 8). Hsync input filter is then set to accept negative pulses or positive pulses respectively.

Figure 8. Hsync polarity detection

- Hsync frequency measurement:
- In the third interrupt of the cycle, timer 0 is programmed to be used as external event counter with Hsync clock. TR0 bit is set to start counting. In the fourth interrupt (last of the measurement cycle), TR0 bit is reset to stop counting. At this time, TH0 and TL0 registers contain a representative value of the Hsync period that is the number of Hsync pulses during a Vsync period (see Figure 9). A flag is set to inform main program of the end of cycle.

Free Running Generation Description

During manufacturing burn-in, monitors are powered, but no video source is connected to the monitor. To force deflection stages' activity, free running Hsync and Vsync are output.

The software solution for free running generation, offers to the user a maximum of flexibility to program the best frequencies according to the deflection stages.

Software Description

The software proposed hereafter is divided in two main routines:

- The Vsync Interrupt service routine.
- The Hsync/Vsync free running generation routine.

Figure 9. Hsync frequency measurement

When one cycle is completed, the main program checks the values and determines whether if the video mode has changed or not. If yes, the actions to take are listed hereafter:

- Depending on the Hsync frequency, S correction capacitors have to be updated.
- Some PWM values are updated.
- Video mute is activated.
- A research is made in EEPROM to find if the same video mode is already stored.
- If yes recall user set-up (update PWM values) from EEPROM, else default set-up is applied and the video mute is released.

Two examples are proposed. In the first one, Vsync is a 60.1Hz negative polarity signal with 66μ s pulses and Hsync is a 41.7KHz negative polarity signal with 2μ s pulses, in the second one Vsync is a 72Hz positive polarity signal with 58μ s pulses and Hsync is a 62.5KHz positive polarity signal with 1μ s pulses.

All the routines are based on a 12MHz oscillator operation; so 1 machine cycle has exactly 1μ s duration. In the example, deflection stages are considered having a negative polarity synchronization input. User can program positive Hsync/Vsync outputs, by modifying the software as follows:

```
A, #HOUT_VOUT_ENA
mov
mov
               C,Vpol_m
cpl
               С
                    ; set VOP bit for positive
              ACC.3,C
mov
                                       ; polarity on Vout
mov
               C,Hpol_m
                    ; set HOP bit for positive
               С
cpl
               ACC.1.C
                                      ; polarity on Hout
mosz
               SOCR, A
                                       ; update Vout/Hout polarity
mov
```

Vsync interrupt service routine has the highest priority. Due to the sampling clock, the Vsync period has a basic precision of 1 μ s. Depending on the instruction executed during the interrupt activation the measured period may be increased up to 4 μ s. The validation of a new detected video mode is effective only when the difference between the new measured and the previously saved period/counting is significant. This is achieved by the Check_diff subroutine.

The reception of a character on serial port activates one of the two Hsync/Vsync free running generation routine: '1' for the first example, '2' for the second one.

As the generation of the synchronization signals uses 100% of the CPU time, the only ways to disable generation are to clear the activation flag during an interrupt service routine (in the example, the flag is cleared in Vsync interrupt when a video source is input) or to apply a reset.

The listing includes the file reg51c1.inc that is the TSC8051C1 register declarations.

After a new video mode recognition, parameters are stored in the following variables:

	-	
Vpol_s	Vsync	polarity
Hpol_s	Hsync	polarity
Vperl_s	Vsync	period high order byte
Vperh_s	Vsync	period low order byte
Hcntl_s	Hsync	count high order byte
Hcnth_s	Hsync	count low order byte

The table hereafter presents different video modes and their associated parameters.

MODE	H. Frequency (KHz)	V. Frequency (Hz)	H. Polarity (Hpol_s)	V. Polarity (Vpol_s)	H. Count (Hent_s)	V.period (Vper_s)
EGA 640x350	31.5	70	+(1)	- (0)	1C2h	37CEh
CGA 640x400	31.5	70	- (0)	+ (1)	1C2h	37CEh
VGA 640x480	31.5	60	- (0)	- (0)	20Dh	411Bh
VGA plus 800x600	35.5	56	+(1)	- (0)	276h	45C1h
SVGA 800x600	37.8	60	+ (1)	+ (1)	276h	411Bh
VESA 800x600	48	72	+ (1)	+ (1)	29Ch	3641h
8514/a 1024x768	35.5	87	+(1)	- (0)	198h	2CE6h
1280x1024	63.5	60	+(1)	+ (1)	422h	411Bh

TEMIC Semiconductors

1		; TEMIC 1996.			
2		; Demonstration	program	for vide	eo mode recognition
Δ .		; and free funni	ing gener	Lation Wi	
5		\$RB (0,1)			; bank 0 and 1 reserved
	6	\$INCLUDE (reg51	c1.inc)	; regis	ster declarations
	7	; TEMIC 1996.			
	8	; Register decla	rations	for TSC	8051C1 microcontroller
	9	; Rev. A			
	10				
	11	; BYTE Registers			
0080	12	P0	DATA	080H	
0090	14	Pl	DATA	090H	
00AU 00B0	14	P2	DATA	ODOU	
0000	16	P3 4	DATA	UDUR	
0000	17	PSW	מידעת	0000	
00E0	18	ACC	DATA	0E0H	
00F0	19	В	DATTA	0F0H	
0081	20	SP	DATA	081H	
0082	21	DPL	DATA	082H	
0083	22	DPH	DATA	083H	
0087	23	PCON	DATTA	087H	
0088	24	TCON	рата	0880	
0089	25	TMOD	DATA	089H	
008A	26	TLO	DATA	08AH	
008B	27	TL1	DATA	08BH	
008C	28	TH0	DATA	08CH	
008D	29	TH1	DATA	08DH	
00A8	30	IE	DATA	0A8H	
00B8	31	IP	DATA	0в8н	
0098	32	SOCON	DATA	098H	
0099	33	SOBUF	DATA	099н	
	34				
00D8	35	SICON	DATA	0D8H	
00D9	36	SISTA	DATA	0D9H	
00DA	37	SIDAT	DATA	0 dah	
00DB	38	SIADR	DATA	0 DBH	
	39				
00AF	40	MSCON	DATA	0AFh	
00E4	41	EICON	DATA	0E4h	
00E5	42	SOCR	DATA	0E5h	
00E6	43	HWDR	DATA	0E6h	
00DF	44	PWMCON	DATA	0DFh	
00E7	45	MXCRo	DATA	0E7h	
00D7	46	MXCR1	DATA	0D7h	
00EC	47	PWM0	DATA	0ECh	
00ED	48	PWM1	DATA	0EDh	
OOEE	49	PWM2	DATA	0EEh	
OOEF	50	PWM3	DATA	0EFh	
00F4	51	PWM4	DATA	0F4h	
00F5	52	PWM5	DATA	0F5h	
00F6	53	PWM6	DATA	0F6h	
00F7	54	PWM7	DATA	0F7h	
00FC	55	PWM8	DATA	0FCh	
OOFD	56	PWM9	DATA	0FDh	
UUFE	57	PWMIU	DATA	0FEh	
OOF.F.	58	PWMII	DATA	UFFh	
	59				
	6U 61	. DIM Dominiatore			
	62 01	, bit kegisters			
0007	63	, row CV	втт	0D74	
5007	0.0			חיסט	

ΤΕΜΙΟ

Semiconductors

ANM059

00D6	64	AC	BIT	0D6H
00D5	65	FO	BIT	0D5H
00D4	66	RS1	BIT	0D4H
00D3	67	RS0	BIT	0D3H
00D2	68	OV	BIT	0D2H
00D0	69	Р	BIT	0D0H
	70			
	71	; TCON		
008F	72	TF1	BIT	08FH
008E	73	TR1	BIT	08EH
008D	74	TFO	BIT	08DH
008C	75	TR0	BIT	08CH
008B	76	IE1	BIT	08BH
008A	77	IT1	BIT	08AH
0089	78	IEO	BIT	089H
0088	79	TTO	BIT	088H
	80			
	81	; IE		
00AF	82	EA	BIT	OAFH
00AD	83	ES1	BTT	0 A D H
00AC	84	ES0	BTT	OACH
00AB	85	ET1	BTT	OABH
0044	86	EX1	BIT	Оддн
00A9	87	ETO	BIT	0A9H
00A8	88	EXO	BTT	0A8H
	89		0-1	011011
	90	: TP0		
00BD	91	PS1	BTT	0BDH
00BC	92	PSO	BIT	OBCH
00BB	93	PT1	BIT	OBBH
00BA	94	PX1	BTT	OBAH
00B9	95	PT0	BTT	0B9H
00B8	96	PX0	BIT	0B8H
00B8	96 97	PX0	BIT	0B8H
00B8	96 97 98	PX0	BIT	0B8H
00B8 00B7	96 97 98 99	PX0 ; P3 RD	BIT	0B8H 0B7H
00B8 00B7 00B7	96 97 98 99 100	PX0 ; P3 RD SDA	BIT BIT BIT	0B8H 0B7H 0B7H
00B8 00B7 00B7 00B6	96 97 98 99 100 101	PX0 ; P3 RD SDA WR	BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H
00B8 00B7 00B7 00B6 00B6	96 97 98 99 100 101 102	PX0 ; P3 RD SDA WR SCL	BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B6H
0088 0087 0087 0086 0086 0085	96 97 98 99 100 101 102 103	PX0 ; P3 RD SDA WR SCL T1	BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B6H 0B5H
00B8 00B7 00B7 00B6 00B6 00B5 00B5	96 97 98 99 100 101 102 103 104	PX0 ; P3 RD SDA WR SCL T1 HOUT	BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B6H 0B5H 0B5H
00B8 00B7 00B7 00B6 00B6 00B5 00B5 00B5	96 97 98 99 100 101 102 103 104 105	PX0 ; P3 RD SDA WR SCL T1 HOUT T0	BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B6H 0B5H 0B5H 0B4H
00B8 00B7 00B7 00B6 00B6 00B5 00B5 00B4 00B4	96 97 98 99 100 101 102 103 104 105 106	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC	BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B6H 0B5H 0B5H 0B4H
00B8 00B7 00B7 00B6 00B6 00B5 00B5 00B4 00B4 00B3	96 97 98 99 100 101 102 103 104 105 106 107	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1	BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B5H 0B5H 0B4H 0B4H 0B3H
00B8 00B7 00B7 00B6 00B5 00B5 00B5 00B4 00B4 00B3	96 97 98 99 100 101 102 103 104 105 106 107 108	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT	BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B6H 0B5H 0B5H 0B4H 0B3H 0B3H
00B8 00B7 00B7 00B6 00B5 00B5 00B5 00B4 00B4 00B3 00B3 00B2	96 97 98 99 100 101 102 103 104 105 106 107 108 109	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT1 VOUT	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B5H 0B5H 0B4H 0B3H 0B3H 0B3H 0B2H
00B8 00B7 00B7 00B6 00B6 00B5 00B5 00B5 00B4 00B4 00B3 00B3 00B3 00B2 00B2	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT1 VOUT INT0 VSYNC	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B4H 0B3H 0B3H 0B2H 0B2H
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B3 00B3 00B3 00B2 00B2 00B1	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B4H 0B3H 0B3H 0B2H 0B2H 0B1H
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B4 00B3 00B3 00B2 00B2 00B2 00B1 00B0	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD BXD	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B4H 0B4H 0B4H 0B3H 0B2H 0B2H 0B2H 0B0H
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B4 00B3 00B3 00B2 00B2 00B2 00B1 00B0	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B4H 0B3H 0B3H 0B3H 0B2H 0B2H 0B2H 0B1H 0B0H
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B4 00B3 00B3 00B2 00B2 00B1 00B0	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B3H 0B3H 0B3H 0B2H 0B2H 0B2H 0B2H 0B2H
00B8 00B7 00B7 00B6 00B5 00B5 00B5 00B4 00B4 00B3 00B3 00B3 00B2 00B2 00B2 00B1 00B0	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; S0CON SM0	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B4H 0B3H 0B2H 0B2H 0B2H 0B2H 0B2H
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B3 00B3 00B3 00B2 00B2 00B2 00B1 00B1 00B0	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT1 VOUT INT0 VSYNC TXD RXD ; S0CON SM0	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B4H 0B3H 0B3H 0B3H 0B2H 0B1H 0B1H 0B0H
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B3 00B3 00B3 00B2 00B2 00B2 00B2 00B1 00B0	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; S0CON SM0 SM1 SM2	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B4H 0B3H 0B4H 0B3H 0B2H 0B2H 0B2H 0B2H 09FH
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B3 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009E 009C	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; SOCON SM0 SM1 SM2 REN	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B3H 0B2H 0B2H 0B2H 0B2H 0B2H 09FH 09FH 09CH
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B4 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009E 009D 009C 009B	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; SOCON SM0 SM1 SM2 REN TE8	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B2H 0B2H 0B2H 0B2H 0B2H 0B2H 09FH 09FH 09PH
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009P 009P 009D 009C 009A	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; SOCON SM0 SM1 SM2 REN TB8 BE8	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B4H 0B3H 0B2H 0B2H 0B2H 0B2H 09FH 09FH 09CH 092H 092H
00B8 00B7 00B7 00B6 00B5 00B5 00B5 00B4 00B4 00B3 00B3 00B2 00B2 00B2 00B1 00B0 00B1 00B0 009F 009F 009F 009P 009D 009C 009B 009A 0099	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT1 VOUT INT1 VOUT INT0 VSYNC TXD RXD ; SOCON SM0 SM1 SM2 REN TB8 RB8 RB8 RB8	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B5H 0B4H 0B3H 0B2H 0B2H 0B2H 0B2H 0B2H 09FH 09FH 09CH 09BH 0924
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B3 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009F 009F 009F 009F 009E 009B	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT1 VOUT INT0 VSYNC TXD RXD ; SOCON SM0 SM1 SM2 REN TB8 RE8 TI BI	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B6H 0B5H 0B4H 0B3H 0B2H 0B2H 0B1H 0B0H 09FH 09PH
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B3 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009P 009P 009P 009P 009P 009	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; S0CON SM0 SM1 SM2 REN TB8 RE8 TI RE8 TI RI	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B4H 0B3H 0B2H 0B2H 0B2H 0B2H 09FH 09FH 09CH 00CH
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B4 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009P 009P 009P 009P 009P 009	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; SOCON SM0 SM1 SM2 REN TB8 RE8 TI RI 	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B2H 0B2H 0B2H 0B2H 0B2H 0B2H 09FH 09FH 09CH 09CH 09BH 09AH 098H
00B8 00B7 00B7 00B6 00B5 00B5 00B4 00B4 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009F 009P 009P 009P 009P 009	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	<pre>PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; S0CON SM0 SM1 SM2 REN TB88 R88 R88 TI RI ; S1CON CE00</pre>	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B6H 0B6H 0B5H 0B5H 0B4H 0B3H 0B2H 0B2H 0B2H 09FH 09FH 09CH 09CH 099H 099H 098H
00B8 00B7 00B7 00B6 00B5 00B5 00B5 00B4 00B4 00B3 00B2 00B2 00B2 00B1 00B0 009F 009F 009F 009F 009C 009B 009A 0099 0098 0098 00D85 00D85 00D9	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	PX0 ; P3 RD SDA WR SCL T1 HOUT T0 HSYNC INT1 VOUT INT0 VSYNC TXD RXD ; SOCON SM1 SM2 REN TB8 RB8 TI SM2 REN TB8 RB8 TI ; S1CON CR0 CR1	BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	0B8H 0B7H 0B7H 0B6H 0B5H 0B5H 0B2H 0B2H 0B2H 0B2H 0B2H 0B2H 09FH 09FH 09CH 09CH 09CH 09BH 099H 099H 099H 099H 099H 099H

00DA 00DB		127 128	AA SI	BIT BIT	0DAH 0DBH		
00DC		129	STO	BIT	0 DCH		
00DD		130	STA	BIT	0 ddh		
00DE		131	ENS1	BIT	0 deh		
		132					
		133					
		134					
		135					
		136	· CONSTANT DEET	NTTTON			
		137	; constrait bert				
0080		138	WIDT DEE	FOU	80b		2s watchdog period
0000		120	WD1_I BR	ПÕO	0011	'	25 watenaog perioa
		140		FOU	00101000b		Hout /Vout=1
0007		1/1	HOUT VOUT CLR	FOU	11010111b		Hout /Vout=0
0025		140	HOUT VOUT ENA	EQU	001101016	<i>.</i>	Hout /Vout onabled
00000		142	HOUT VOUT DIG	EQU	11001111b		Hout /Vout diaphled
UUCF		143	HOUI_VOUI_DIS	EQU	TIOUTITID	,	hout/vout disabled
0000		144	ETCON IL NEC	FOI	00000105		nogative Harma coloction
0002		145	EICON_H_NEG	EQU	000000100	,	negative Hayne selection
0006		140	EICON_H_POS	EQU	dution	;	positive async selection
0000		14/	VOUDIO DIED	DOIL	0		Tur Verma diff authoniand
0008		148	VSYNC_DIFF	EQU	8	;	/us=vsync diff authorised
0002		149	HSYNC_DIFF	EQU	2	;	1 pulse=Hsync diff authorised
		150					
		151	; BIT VARIABLE	DEFINITIO	N		
		152	;		-		
		153		BSEG AT	20h		
0020		154	Vpo⊥_m:	DBIT	1	;	measured Vsync polarity
0021		155	Hpol_m:	DBIT	1	;	measured Hsync polarity
0022		156	Vpol_s:	DBIT	1	;	saved Vsync polarity
0023		157	Hpol_s:	DBIT	1	;	saved Hsync polarity
0024		158	End_cycle:	DBIT	1	;	measuring end cycle flag (1)
0025		159	Free_run:	DBIT	1	;	Free running generation flag (1)
		160					
		161	; DATA VARIABLE	DEFINITI	ON		
		162	;				
		163		DSEG AT	30h		
0030		164	Isr_state:	DS	1	;	Interrupt state flag
0031		165	Vperl_m:	DS	1	;	measured period high order byte
0032		166	Vperh_m:	DS	1	;	measured period low order byte
0033		167	Hcntl_m:	DS	1	;	measured count high order byte
0034		168	Hcnth_m:	DS	1	;	measured count low order byte
0035		169	Vperl_s:	DS	1	;	saved period high order byte
0036		170	Vperh_s:	DS	1	;	saved period low order byte
0037		171	Hcntl_s:	DS	1	;	saved count high order byte
0038		172	Hcnth_s:	DS	1	;	saved count low order byte
		173					
0039		174	Stack:	DS	10h	;	16 bytes stack
		175					
		176					
		177					
		178	;================			===	
		179	;		BEGIN CODE		
		180	;================	=========		===	
		181					
	*	182		USING	0	;	RB0 used by default
		183		CSEG			
0000		184		ORG	0000h	;	reset address
0000	0106	185		ajmp	Reset		
		186					
0003		187		ORG	0003h	;	VSYNC (INTO) interrupt
0003	0200FC	188		ljmp	Vsync_isr		
		100					

		190				
		191	;======================================	==========		
		192	;		INITIALISATION	
		193 194	;============			
0006	758138	195 196	Reset:	mov	SP,#Stack-1 ;	stack pointer initialisation
0009	78FF	197		mov	R0,#0FFh ;	Internal RAM initialisation
000B	7600	198	Ram_init:	mov	@R0,#00H	
000D	D8FC	199 200		djnz	R0,Ram_init	
000F	758DE6	201		mov	TH1,#0E6h ;	T1 used as baud rate generator
0012	758B00	202		mov	TL1,#00h ;	at 1200 bauds with 12MHz crystal
0015	758921	203		mov	TMOD,#21h ;	T0 16b counter, T1 8b autoreload
0018	758841	204 205		mov	TCON,#41h ;	T1 run, INT0 falling edge
001B	758700	206		mov	PCON,#00h ;	SMOD=0
001E	759852	207		mov	S0CON, #52h ;	8-bit UART, Rx enabled
		208			, , , , , , , , , , , , , , , , , , , ,	,
0021	75A881	209		mov	IE,#81h ;	IE0 enabled
0024	75B801	210		mov	IP,#01h ;	IE0 high priority
		211				
0027	75E680	212		mov	HWDR,#WDT_PER ;	watchdog activation
		213				
		215	;======================================			
		216	;		MAIN PROGRAM	
		217	;================			
		218				
002A	202410	219	Wait_sync:	jb	End_cycle,Check	_mode
002D	75E680	220		mov	HWDR, #WDT_PER ;	watchdog refresh
		222		• here	must be inserted	the
		222		; man-m	achine interface	control
		224		,		001101
0030	3098F7	225		jnb	RI,Wait_sync ;	example for free running
0033	C298	226		clr	RI	
0035	E599	227		mov	A,S0BUF	
		228				
0037	B43104	229		cjne	A,#'1',test_car	
003A	11B3	230		acall	H_V_sync_gen_1;	Free running generation
003C	012A	231		ajmp	Wait_sync	
0025	D420E0	232	toot oow.			-
0036	3107	233	test_car:	agall	A, # 2 , wait_syn	ic .
0041	9101	254		acarr	n_v_sync_gen_z	Free running generation
0043	012A	235		ajmp	Wait_sync	
		236				
0045	E4	237	Check_mode:	clr	A	
0046	A220	238		mov	C,Vpol_m	
0048	92E0	239		mov	ACC.0,C	
004A	A222	240		mov	C,Vpol_s	
004C	9400	241		subb	A,#00	
004E	702A	242		jnz	Mode_changed ;	Vsync polarity changed
0050		243			0.000	
0050	A221 0250	244 24⊑		mov	C, HPOI_m	
0054	ラムビU カククマ	245 246		mov	ACC.U,C	
0054	9400	240 247		subb	2, npor_s 2 #00	
0058	7020	248		inz	Mode changed ·	Hsync polarity changed
2000		249		تعدد ن	oue_onungeu ,	borarrel cuandea
005A	A831	250		mov	R0,Vperl_m	
005C	A932	251		mov	R1,Vperh_m	

TEMI	C
Semiconduct	ors

005E	AA35	252		mov	R2. Vperl s	
0060	7836	253		mou	P3 Wperh c	
0000	7000	200		mov	NJ, VPEIN_S	_
0062	7008	254		mov	R4, #VSYNC_DIF	
0064	11A0	255		acall	Check_diff	; compare new & old period
0066	7012	256 257		jnz	Mode_changed	; Vsync period changed
0068	A833	258		mov	R0 Hcntl m	
0067	7031	250		motz	Pl Hanth m	
0004	AJJ#	200		mov	RI, HCHCH_M	
0060	AAS /	260		mov	RZ,HChtl_s	
006E	AB38	261		mov	R3,Hcnth_s	
0070	7C02	262		mov	R4,#HSYNC_DIF	F
0072	11A0	263		acall	Check_diff	; compare new & old counting
0074	7004	264		jnz	Mode_changed	; Vsync period changed
		265				
0076	C224	266		clr	End cycle	· a new cycle can start
0070	0127	267		oimn	Wait owng	, a new cycle can beare
0070	UIZA	207		ajmp	wait_sync	
0.073		200				
007A		269	Mode_changed:			
		270				
		271	; user define	setb	Video_mute	; video mute during mode change
		272	; user define	acall	Cs_select	; S correction capacitors update
		273				; depending on Vsync period
		274				
007A	7435	275		mosz	A #HOUT VOUT	ENA
0070	7220	276		mot	C Whol m	. sot VOR hit for pogative
0070	A220	270		1100	c,vpor_m	, set vor bit for negative
007E	92E3	211		mov	ACC.3,C	; polarity on vout
0080	A221	278		mov	C,Hpo⊥_m	; set HOP bit for negative
0082	92E1	279		mov	ACC.1,C	; polarity on Hout
0084 F	75E5	280		mov	SOCR, A	; update Vout/Hout polarity
		281				
0086	A220	282		mov	C,Vpol_m	
0088	9222	283		mov	Vpol s.C	; save new Vsvnc polarity
008A	853135	284		mov	Vnerl s Vnerl	m
0080	853236	201		motr	Vporh g Wporh	
0000	055250	205		mov	vpern_s, vpern	. save new Vsyng period
		206				, save new vsyne period
0000	1001	200			a m 1	
0090	AZZI	287		mov	C,Hpol_m	
0092	9223	288		mov	Hpol_s,C	; save new Hsync polarity
0094	853337	289		mov	Hcntl_s,Hcntl	_m
0097	853438	290		mov	Hcnth_s,Hcnth	_m
						; save new Hsync period
		291				
		292	; Here must	be insert	ed the researc	n of this video mode in EEPROM
		293	; if it is a	lready st	cored, then rec	all user's screen parameters
		294	; if not, re	call fact	cory default sc	reen parameters.
		295	; This new m	ode will	be stored in E	EPROM after user adjustments
		296		_		~
A009	31 17 9	297		acall	Out regults	· send results to serial nort
00511		202		ucurr	Out_reputes	, bena rebuieb co bertar pore
		200		- 1	772 Jan	and of mides muchs
0000	~~~ A	299	; user derine	CII	video_mute	; end of video mute
0090	C224	300		cir	End_cycle	; a new cycle can start
009E	012A	301		ajmp	Wait_sync	
		302				
		303				
		304	;======================================			
		305	;		SUBROUTINES	
		306	;======================================			
		307	,			
		300	•			
		200	,			
		212	; 			
		310	; 'I'nıs sub	routine o	cnecks if the a	psolute difference of two words
		311	; is less	than a g	iven byte value	
		312	:			

314 ; R1: word 2 high order byte 315 ; R3: word 2 high order byte 316 ; R3: word 2 high order byte 318 ; Outputs: A: if A = 0 the difference is less than the limit 319 ; Outputs: A: if A = 0 the difference is greater than or equal to the limit 321 ;		313	; Inputs:	R0:	word 1 low or	der byte
315 ; R2: word 2 low order byte 316 ; R4: limit of difference 317 ; R4: limit of difference is less than the limit 319 ; Outputs: A: if A = 0 the difference is greater than or equal to 311 ;		314	;	R1:	word 1 high o	rder byte
316 ; R3: word 2 high order byte 317 ; R4: limit of difference: 318 ; . if A = 0 the difference is less than the limit 320 ; Outputs: A: if A = 0 the difference is greater than or equal to the limit 321 ;		315	;	R2:	word 2 low or	der byte
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		316	;	R3:	word 2 high or	rder byte
318 ; Outputs: A: if A = 0 the difference is less than the limit clase the difference is greater than or equal to the limit 321 ;		317	;	R4:	limit of diffe	erence
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		318				
320 ; clse the difference is greater than or equal to the limit 321 ; clse the difference is greater than or equal to the limit 322 ;		319	· Outputs·	Δ.	if $A = 0$ the (difference is less than the limit
321 ;		320	, outputt.	21.	alco the diff	orongo is greater than or equal to
321 ;		520	'		the limit	erence is greater than or equal to
0040 C3 322 0040 C3 322 0041 E9 324 mov A,R1 0043 7000 326 327 0043 7000 326 327 0045 E8 328 0045 69, 329 0045 69, 329 0045 90, 330 0047 503 331 0047 503 332 0047 503 332 0047 503 333 004 C50400 336 0142 Check_pos: 015 0048 50400 336 0142 Check_pos: 015 0144 C1 015 015 015 015 015 015 015 01		321	·			
00A0 C3 323 Check_diff: clr C 00A1 B9 324 mov A.R1 00A2 98 325 subb A.R3 ; A=MSB difference 00A3 70D0 326 jnz End_check ; MSB not equal 00A5 8A 329 subb A.R0 00A7 7000 330 jnc Check_pos 00A7 7007 331 mov A.R2 00A7 7503 330 mov A.R2 00A8 333 mov A.R2 00A8 501 337 jnc End_check 343 that subb A.R2 00B2 339 End_check: ret 344 ;		322	/			
0000 03 23 23 Check_diff: cr C 0021 89 334 mov A,R1 0023 7000 326 jnz End_check : MSB not equal 0037 7003 330 jnc Check_pos 0037 503 330 gnc Check_pos 0045 58 328 mov A,R2 ; A=LSB difference 0054 7503 330 gnc Check_pos 0047 503 330 gnc Check_pos 0047 503 330 gnc Check_pos 0047 503 330 gnc Check_pos 0048 58 334 gnc A,R2 ; A=LSB difference 0054 7503 330 gnc Check_pos 0054 7503 331 gnc Check_pos 0055 235 gnc Check_pos 0068 98 334 gnc A,R2 ; A=LSB difference 0054 7503 335 gnc Check_pos 0068 98 334 gnc A,R2 ; A=LSB difference 0054 7503 337 gnc End_check 0052 335 gnc Check_pos 0068 94 338 gnc A,R2 ; A=LSB difference 0054 7503 337 gnc End_check 0052 44 ; 344 ; 345 ; This subroutine generates free Running synchronization Signals 346 ; Vout = 40.1KHz with 2us negative pulses 348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 0057 7555 354 mov SOCR,A ; select P3.3/P3.5 as Vout/Hout 0058 255 352 H_V_sync_gen_1: mov A,SOCR 0058 555 354 gnc A, 400T ; 2us neg pulse on Hout 0057 7555 354 gnc MoVT ; 2us neg pulse on Hout 0057 7555 364 gnc A, 1, \$ 20us tempo 0057 025 355 get HOUT ; 2us neg pulse on Hout 0051 7255 363 gnc A, 1, \$ 20us tempo 0057 025 355 gnc A, 1, \$ 20us tempo 0057 025 365 gnc A, 1, \$ 20us tempo 0057 025 365 gnc A, 1, \$ 20us tempo 0057 025 365 gnc A, 1, \$ 20us tempo 0050 025 355 360 gnc A, 1, \$ 20us tempo 0050 025 355 361 gnc A, 1, \$ 20us tempo 0050 025 351 gnc A, 1, \$ 20us tempo 0050 025 371 gnc A, 1, \$ 20us tempo 0050 025 371 gnc A, 1, \$ 20us tempo 0050 025 371 gnc A, 1, \$ 14us tempo 0050 025 374 gnc A, 1, \$ 14us tempo 0050 025 374 gnc A, 1, \$ 14us tempo 0050 7050 374 gnc A, 1, \$ 14us tempo 0050 7	0000 02	222	Oberale diffe.	- 1	0	
00A1 99 324 mov A.R1 00A2 98 325 subb A.R3 : A=MSB difference 00A3 70DD 326 jnz End_check : MSB not equal 327 mov A.R0 00A5 9A 329 subb A.R2 : A=LSB difference 00A7 5003 330 jnc Check_pos	00A0 C3	343	Check_diff:	CII.	C	
U0A2 9B 325 subb A,R3 ; A=MSB difference 00A3 7000 326 jnz End_check MSB not equal 00A5 80 subb A,R0 MSB not equal 00A5 83 320 subb A,R2 ; A=LSB difference 00A7 5003 330 jnc Check_pos Check_pos 00A8 7003 332 clr C ; negative difference 00A7 5003 332 clr C ; negative difference 00A8 FA 333 mov A,R4,\$+3 Subb A,R4,\$+3 00AF 5001 356 Check_pos: cjne End_check Subb A,R4,\$+3 00B2 339 End_check: ret 344 ; 344 ;	OUAL E9	324		mov	A,R1	
00A3 700D 326 jnz End_check ; MSB not equal 327 00A5 58 328 mov A,R0 00A7 5003 330 jnc Check_pos 331 00A9 C3 332 clr C ; negative difference 00A7 E5400 336 Check_pos: cjne A,AR4,\$+3 00A E5500 336 Check_pos: cjne A,AR4,\$+3 00AF 5501 337 jnc End_check 00B1 E4 338 clr A 00B2 339 End_check: ret 340 341 342 343 ;	00A2 9B	325		subb	A,R3	; A=MSB difference
327 00A5 E8 328 mov A,R0 00A6 9A 329 subb A,R2 ; A=LSB difference 00A7 5003 330 jnc Check_pos 00A9 C3 332 clr C ; negative difference 00A8 P8 334 subb A,R2 aLSB difference 00A8 P8 334 subb A,R0 ; aLSB difference 00A7 5001 336 Check_pos: cjne A,A44,\$+3 00AF 5001 336 Check_ros: cir A 00B1 E4 38 clr A A 00E2 339 End_check: ret	00A3 700D	326		jnz	End_check	; MSB not equal
00A5 E8 328 mov A,R0 00A6 9A 329 subb A,R2 ; A=LSB difference 00A7 5003 330 jnc Check_pos 331 00A9 C3 332 clr C ; negative difference 00A F5 001 333 mov A,R2 00AF 55001 337 jnc End_check 00B1 E4 338 check_pos: cjne A,AR4,S+3 00B2 339 End_check: clr A 00B2 339 End_check: clr A 00B2 344 ; 344 ; 344 ; 345 ; This subroutine generates free Running synchronization Signals 346 ; 347 ; Hout = 41.7KHz with 2us negative pulses 348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 00B3 E5ES 352 H_V_sync_gen_1: mov A,SOCR 00B5 54CF 353 mov SOCR,A ; select P3.3/P3.5 as Vout/Hout 00B7 535 v_pulse_1: anl P3,#HOUT_VOUT_DIS 00B7 535 v_pulse_1: anl P3,#HOUT_VOUT_CLR 00B8 54CF 359 setb HOUT ; 2us neg pulse on Hout 00B7 D255 355 setb HOUT ; 2us neg pulse on Hout 00B7 D255 364 mov R1,#10 00B7 D255 365 setb HOUT ; 2us neg pulse on Hout 00B7 D255 365 setb HOUT ; 2us neg pulse on Hout 00B7 D255 365 setb HOUT ; 2us neg pulse on Hout 00C3 D5F2 365 setb HOUT ; 2us neg pulse on Hout 00C3 D5F3 364 mov R1,#10 00C6 D5F3 365 setb HOUT ; 2us neg pulse on Hout 00C6 D5F3 365 setb HOUT ; 2us neg pulse on Hout 00C7 00 364 mov R1,#10 00C6 D5F3 355 setb HOUT ; 2us neg pulse on Hout 00C7 00 364 mov R1,#10 00C6 D5F3 371 mov R1,#17 00C6 D5F3 371 mov R1,#17 00C7 D253 371 mov R1,#17 00C7 D253 371 mov R1,#7 00D1 D255 371 mov R1,#7 00D1 D255 371 mov R1,#7 00D5 D5F3 374 mov R1,#7 00D5 D5F4 374 mov R1,#7 00D5 D5F4 374 mov R1,#7		327				
00A69A329subbA, R2; A=LSB difference00A7503330jncCheck_pos00A9C3332clrC; negative difference00A8A33movA, R200A89834subbA, R0; A=LSB difference335336Check_pos:cjneA, R4, S+300A75001337incEnd_check00B1E438clrA00B2339End_check:ret344344344344344344344345.This subroutine generates free Running synchronization Signals346347348349344345346347348349349344.350350351352353354355356 <td< td=""><td>00A5 E8</td><td>328</td><td></td><td>mov</td><td>A,R0</td><td></td></td<>	00A5 E8	328		mov	A,R0	
00A7 5003 310 jnc Check_pos 331 clr C ; negative difference 00A8 2A 333 mov A, R2 335 cleck_pos: cjne A, AR4, \$+3 00AF 55001 337 jnc End_check 00B1 E4 338 cleck: ret 340 00B2 339 End_check: ret 344 ; 343 ;	00A6 9A	329		subb	A,R2	; A=LSB difference
331 clr C ; negative difference 00AP CA 332 mov A, R2 00AB P8 334 subb A, R0 ; A=LSB difference 335 mov A, R4, \$+3 OAP 5001 336 00AF 5001 337 inc End_check End_check 00B1 E4 38 clr A 00B2 339 End_check: ret 344 ;	00A7 5003	330		jnc	Check_pos	
00A9 C3 332 clr C ; negative difference 00A8 EA 333 mov A, R2 00A5 960 336 subb A, R0 ; A=LSB difference 00A7 5001 337 jnc End_check 00B1 E4 338 clr A 00B2 339 End_check: ret 340		331		-	_	
00AA EA 333 mov A, R2 subb A, R0 ; A=LSB difference 335 00AC 5001 336 Check_pos: cjne A, AR4, \$+3 00AF 5001 337 jnc End_check 00B1 E4 338 clr A 00B2 339 End_check: ret 340 341 342 343 ;	00A9 C3	332		clr	С	; negative difference
Contact and the set of the set o	OOAA EA	333		mov	A R2	,
00AL 50 334 Sub A,NO , ALSS GIFTERENCE 00AC 5001 336 Check_pos: cjne A,AR4,\$+3 00AF 5001 337 jnc End_check 00B1 E4 338 clr A 00B2 339 End_check: ret 340 341 342	00AB 98	33/		cubb	71,112 7 PO	· A-ISB difference
00AC B50400 336 Check_pos: cjne A,AR4,\$+3 00AF B5001 337 jnc End_check 00B1 E4 338 clr A 00B2 339 End_check: ret 340 341 342 343 ;	UUAD JU	335		Subb	A, KU	, A-HSB difference
<pre>OVAF 5000 330 Check_pos. Check A, Aka, 343 OVAF 5001 337 clr A, Check OVAF 5001 337 clr A OVAF 5001 337 clr A OVAF 5001 344 340 341 342 343 344 342 343 345 ; This subroutine generates free Running synchronization Signals 346 ; 347 ; Hout = 41.7KHz with 2us negative pulses 348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 350 ;</pre>	007C BE0400	336	Chock poor	aine	7 7D1 612	
004F 5001 337	00AC BJ0400	222	check_pos:	Clue	A, AK4, 5+5	
00B1 E4 338 clr A 00B2 339 End_check: ret 340 341 342 343	00AF 5001	33/		JUC	End_cneck	
00B2 339 End_check: ret 340 341 342 343 344 ; 345 ; This subroutine generates free Running synchronization Signals 346 ; 347 ; Hout = 41.7KHz with 2us negative pulses 348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 350 ;	OOBI E4	338		cir	A	
340 341 342 343 344 345 345 346 347 348 349 349 350 348 349 350 351 00B3 E5E5 352 H_V_sync_gen_1: mov 350 j	00B2	339	End_check:	ret		
341 342 343 344 345 346 347 348 347 348 347 348 349 350 350 351 00B3 554CF 353 anl A, #HOUT_VOUT_DIS 00B7 F555 354 mov SOCR,A ; select P3.3/P3.5 as Vout/Hout 00B8 5350 351 mov SOCR,A 00B7 F555 354 mov SOCR,A ; select P3.3/P3.5 as Vout/Hout 00B8 5350 setb 00B5 55 setb 00B6 0358 nop 00B7 790A 360 00C1 790A 360 00C2 220 setb 00C3 D9F 361 00C4 nop junc 00C5 C2B5 365		340				
342 343 344 345 346 347 347 347 347 347 347 347 347 348 y 349 349 349 350 y 350 y 351 0083 8555 352 H_V_sync_gen_1: mov A, SOCR 0085 54CF 353 anl anl A, #HOUT_VOUT_DIS 0087 554 mov SOCR,A ; select P3.3/P3.5 as Vout/Hout 0088 53B0D7 357 V_pulse_1: anl P3.#HOUT_VOUT_CLR 0088 53B0D7 357 V_pulse_1: anl P3.#HOUT_VOUT_CLR 0081 545 setb HOUT 0023 D9F 361 djnz< R1,\$ \$ 20us neg pulse on Hout		341				
343 ; 344 ; 345 ; 345 ; 346 ; 347 ; 348 ; 349 ; 350 ; 351 ; 00B3 E5E5 352 H_V_sync_gen_1: mov A, \$CCR 00B5 54CF 353 anl 00B7 F5E5 354 mov mov SOCR,A ; select P3,3/P3.5 as Vout/Hout 00B9 D225 355 setb Free_run ; set flag (cleared in Vsync isr) 366		342				
344 ; 345 ; 346 ; 347 ; Hout = 41.7KHz with 2us negative pulses 348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 350 350 ;						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		343	;			
346 ; 347 ; Hout = 41.7KHz with 2us negative pulses 348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 350 350 ;		343 344	;;			
347 ; Hout = 41.7KHz with 2us negative pulses 348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 350 ;		343 344 345	;; ; ; This subro	outine ge	nerates free Ru	unning synchronization Signals
348 ; Vout = 60.1Hz with 66us negative pulses 349 ; 350 ; 351 350 00B3 ESE5 352 00B5 54CF 353 an1 A, #HOUT_VOUT_DIS 00B7 FSE5 354 mov SOCR, A ; select P3.3/P3.5 as Vout/Hout 00B9 D225 355 setb Free_run ; set flag (cleared in Vsync isr) 356		343 344 345 346	;; ; ; This subro ;	outine ge	nerates free Ru	unning synchronization Signals
349 ; 350 ;		343 344 345 346 347	;; ; This subro; ; Hout = 41.	outine ge 7KHz wit	nerates free Ru h 2us negative	unning synchronization Signals pulses
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		343 344 345 346 347 348	; This subro ; This subro ; ; Hout = 41. ; Vout = 60.	outine ge 7KHz wit 1Hz with	nerates free Ru h 2us negative 66us negative	unning synchronization Signals pulses pulses
35100B3E5E5352H_V_sync_gen_1:movA,SOCR00B554CF353anlA,#HOUT_VOUT_UST_00B7F5E354movSOCR,A; select P3.3/P3.5 as Vout/Hout00B7525355setbFree_run; set flag (cleared in Vsync isr)356		343 344 345 346 347 348 349	; This subrc; ; This subrc; ; Hout = 41. ; Vout = 60.	outine ge 7KHz wit 1Hz with	nerates free Ru h 2us negative 66us negative	unning synchronization Signals pulses pulses
00B3E5E5352H_V_sync_gen_1:movA, SOCR00B554CF353anlA, #HOUT_VOUT_DIS00B7F5E5354movSOCR, A; select P3.3/P3.5 as Vout/Hout00B9D225355setbFree_run; set flag (cleared in Vsync isr)363		343 344 345 346 347 348 349 350	; ; This subrc; ; Hout = 41. ; Vout = 60. ;	outine ge 7KHz wit 1Hz with	nerates free Ru h 2us negative 66us negative	unning synchronization Signals pulses pulses
00B5 54CF 353 anl A, #HOUT_VOUT_DIS 00B7 F5E5 354 mov SOCR,A ; select P3.3/P3.5 as Vout/Hout 00B9 D225 355 setb Free_run ; set flag (cleared in Vsync isr) 356 00B8 53B0D7 357 V_pulse_1: anl P3, #HOUT_VOUT_CLR 00BE 00 358 nop		343 344 345 346 347 348 349 350 351	; ; This subro; ; Hout = 41. ; Vout = 60. ;	outine ge 7KHz wit 1Hz with	nerates free Ru h 2us negative 66us negative	unning synchronization Signals pulses pulses
00B7 F5E5 354 mov SOCR,A ; select P3.3/P3.5 as Vout/Hout 00B9 D225 355 setb Free_run ; select P3.3/P3.5 as Vout/Hout 00B9 D225 355 setb Free_run ; select P3.3/P3.5 as Vout/Hout 00B9 D225 357 V_pulse_1: anl P3,#HOUT_VOUT_CLR 00B5 D2B5 359 setb HOUT ; 2us neg pulse on Hout 00C1 790A 60 mov R1,#10 00C3 D9FE 361 djnz R1,\$; 2us neg pulse on Hout 00C3 D9FE 363 clr HOUT ; 2us neg pulse on Hout 00C3 D9FE 365 setb HOUT ; 2us neg pulse on Hout 00C4 00 366 mov R1,#10 00C4 D9FE 367 djnz R1,\$; 2us neg pulse on Hout 00C4 D9FE 366 mov R1,\$; 2us neg pulse on Hout 00C4 D9FE 369 clr HOUT ; 2us neg pulse on Hout 00D0 <td>0083 E5E5</td> <td>343 344 345 346 347 348 349 350 351 352</td> <td>; This subro ; This subro ; Hout = 41. ; Vout = 60. ; ;</td> <td>outine ge 7KHz wit 1Hz with mov</td> <td>nerates free Ru h 2us negative 66us negative </td> <td>unning synchronization Signals pulses pulses</td>	0083 E5E5	343 344 345 346 347 348 349 350 351 352	; This subro ; This subro ; Hout = 41. ; Vout = 60. ; ;	outine ge 7KHz wit 1Hz with mov	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses pulses
00B9 D25 355 setb Free_run ; set flag (cleared in Vsync isr) 00B9 D25 357 V_pulse_1: anl P3, #HOUT_VOUT_CLR 00B5 D0B7 D25 359 setb HOUT ; 2us neg pulse on Hout 00C1 790A 360 mov R1, #10 0000 0000 00C5 C2B5 363 clr HOUT ; 2us neg pulse on Hout 00C7 00 364 nop	00B3 E5E5 00B5 54CF	343 344 345 346 347 348 349 350 351 352 353	; This subro ; This subro ; Hout = 41. ; Vout = 60. ; H_V_sync_gen_1:	outine ge 7KHz wit 1Hz with 	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses pulses
00BB 5225 355 setb Free_run , set frag (created in vsyme fst), set fst), set fst, set	00B3 E5E5 00B5 54CF 00B7 E5E5	343 344 345 346 347 348 349 350 351 352 353 354	; This subrc; ; This subrc; ; Hout = 41. ; Vout = 60. ; ;	mutine ge 7KHz wit 1Hz with mov anl mov	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCP A	unning synchronization Signals pulses pulses DIS
00BB 53B0D7 357 V_pulse_1: anl P3,#HOUT_VOUT_CLR 00BE 00 358 nop 00BF D2B5 359 setb HOUT ; 2us neg pulse on Hout 00C1 790A 360 mov R1,#10 00C3 D9FE 361 djnz R1,\$; 20us tempo 362	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225	343 344 345 346 347 348 349 350 351 352 353 354 355	;; ; This subrc; ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1:	mov anl mov cetb	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Eree rup	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout
00BE 00 358 nop 00BE 02B5 359 setb HOUT ; 2us neg pulse on Hout 00C1 790A 360 mov R1, #10 00C3 D9FE 361 djnz R1,\$; 20us tempo 362	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225	343 344 345 346 347 348 349 350 351 352 353 354 355 356	; ; ; This subro ; ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1:	Mutine ge 7KHz with 1Hz with mov anl mov setb	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr)
00BF D2B5 359 setb HOUT ; 2us neg pulse on Hout 00C1 790A 360 mov R1, #10 00C3 D9FE 361 djnz R1,\$; 20us tempo 362 363 clr HOUT ; 2us neg pulse on Hout 00C5 C2B5 363 clr HOUT ; 2us neg pulse on Hout 00C7 00 364 nop - 00C8 D2B5 365 setb HOUT ; 2us neg pulse on Hout 00C7 700 366 mov R1,#10 00C7 09FE 367 djnz R1,\$; 2us neg pulse on Hout 00C7 09FE 366 mov R1,#10 00C7 09FE 367 djnz R1,\$; 2us neg pulse on Hout 00C7 09FE 367 nop - - 00C8 D2B5 369 clr HOUT ; 2us neg pulse on Hout 00C0 00 370 nop - - 00D1 D2B5 371 setb HOUT ; 2us neg pulse on Hout 00D5 D9FE 373 djnz R1,\$; 14us tempo <t< td=""><td>00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225</td><td>343 344 345 346 347 348 349 350 351 352 353 354 355 356 357</td><td>; ; This subro ; Hout = 41. ; Vout = 60. ; ;</td><td>mutine ge 7KHz with 1Hz with mov anl mov setb anl</td><td>nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3 #HOUT_VOUT</td><td>unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr)</td></t<>	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225	343 344 345 346 347 348 349 350 351 352 353 354 355 356 357	; ; This subro ; Hout = 41. ; Vout = 60. ; ;	mutine ge 7KHz with 1Hz with mov anl mov setb anl	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3 #HOUT_VOUT	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr)
000BF D2B5 359 setb HOUT ; 2us neg pulse on Hout 00C1 790A 360 mov R1,#10 00C3 D9FE 361 djnz R1,\$; 20us tempo 362 363 clr HOUT ; 2us neg pulse on Hout 00C5 C2B5 363 clr HOUT ; 2us neg pulse on Hout 00C7 00 364 nop 00C8 D2B5 365 setb HOUT ; 2us neg pulse on Hout . 00C4 790A 366 mov R1,#10 . . . 00C5 D9FE 367 djnz R1,\$; 20us tempo <td>00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7</td> <td>343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 250</td> <td><pre>;; ; This subro ; Hout = 41. ; Vout = 60. ; ;</pre></td> <td>mov anl mov setb</td> <td>nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_</td> <td>unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR</td>	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7	343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 250	<pre>;; ; This subro ; Hout = 41. ; Vout = 60. ; ;</pre>	mov anl mov setb	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR
00C1 790A 360 mov R1,#10 00C3 D9FE 361 djnz R1,\$; 20us tempo 362	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00	343 344 345 346 347 348 350 351 352 353 354 355 356 357 358	<pre>;; ; This subro; ; Hout = 41. ; Vout = 60. ; ;</pre>	mov anl mov setb anl nop	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_	unning synchronization Signals pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR
00C3 D9FE 361 djnz R1,\$; ; 20us tempo 362 363 clr HOUT 00C5 C2B5 363 clr HOUT 00C7 00 364 nop 00C8 D2B5 365 setb HOUT; 00CA 790A 366 mov R1,\$; 2us neg pulse on Hout 00CA 790A 366 mov R1,\$; 2ous tempo 00CC D9FE 367 djnz R1,\$; 2ous tempo 00CC C2B5 369 clr HOUT 00CE C2B5 369 clr HOUT 00D0 00 370 nop 00D1 D2B5 371 setb HOUT ; 2us neg pulse on Hout 00D3 7907 372 mov R1,#7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Yout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5	343 344 345 346 347 349 350 351 352 353 354 355 356 357 358 359	;; ; This subro ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1: V_pulse_1:	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout
362 00C5 C2B5 363 clr HOUT 00C7 00 364 nop 00C8 D2B5 365 setb HOUT ; 2us neg pulse on Hout 00C4 790A 366 mov R1,#10 00C5 D9FE 367 djnz R1,\$; 20us tempo 368	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A	343 344 345 347 348 349 350 351 352 353 354 355 356 357 358 359 360	; ; ; This subro ; ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1: V_pulse_1:	MUTINE Ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout
00C5 C2B5 363 clr HOUT 00C7 00 364 nop 00C8 D2B5 365 setb HOUT ; 2us neg pulse on Hout 00C4 790A 366 mov R1,#10 00C5 C2B5 367 djnz R1,\$; 20us tempo 00C6 D9FE 367 clr HOUT ; 00C6 C2B5 369 clr HOUT ; 2us neg pulse on Hout 00D0 00 370 nop	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BF 00 00BF D2B5 00C1 790A 00F2	343 344 345 347 348 349 350 351 352 353 354 355 355 355 355 355 355 355 355	; ; ; This subro ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1: V_pulse_1:	mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$	unning synchronization Signals pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo
00C7 00 364 nop 00C8 D2B5 365 setb HOUT ; 2us neg pulse on Hout 00CA 790A 366 mov R1, #10 00CC D9FE 367 djnz R1,\$; 20us tempo 368 . . . 00CC C2B5 369 clr HOUT 00C0 00 370 nop 00D1 D2B5 371 setb HOUT 00D3 7907 372 mov R1, #7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Yout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C3 D9FE	343 344 345 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362	<pre>;; ; This subro; ; Hout = 41. ; Vout = 60. ; ;</pre>	mov anl mov setb anl nop setb mov djnz	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$	unning synchronization Signals pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo
00C8 D2B5 365 setb HOUT ; 2us neg pulse on Hout 00CA 790A 366 mov R1,#10 00CC D9FE 367 djnz R1,\$; 20us tempo 368 clr HOUT 00CE C2B5 369 clr HOUT 00D0 00 370 nop 00D1 D2B5 371 setb HOUT ; 2us neg pulse on Hout 00D3 7907 372 mov R1,#7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Yout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C5 C2B5	343 344 345 347 348 350 351 352 353 355 355 355 355 355 355 357 358 359 360 361 362 363	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo
00CA 790A 366 mov R1,#10 00CC D9FE 367 djnz R1,\$; 20us tempo 368 clr HOUT 00CE C2B5 369 clr HOUT 00D0 00 370 nop 00D1 D2B5 371 setb HOUT 00D5 D9FE 373 mov R1,#7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Yout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C5 C2B5 00C7 00	343 344 345 347 348 347 350 351 353 355 355 355 355 355 355 355 355	;; ; This subro ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1: V_pulse_1: clr	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo
00CC D9FE 367 djnz R1,\$; 20us tempo 368	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C3 D9FE 00C5 C2B5 00C7 00 00C8 D2B5	343 344 345 347 348 347 350 351 352 353 355 355 355 355 355 357 358 360 361 362 364 365	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout
368 00CE C2B5 369 clr HOUT 00D0 00 370 nop 00D1 D2B5 371 setb HOUT ; 2us neg pulse on Hout 00D3 7907 372 mov R1, #7 00D5 D9FE 373 djnz R1, \$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BF 02B5 00C1 790A 00C3 D9FE 00C5 C2B5 00C7 00 00C8 D2B5 00C4 790A	343 344 345 347 348 351 352 355 355 355 355 355 355 355 355 355 356 361 362 3645 366 366	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	mov anl mov setb anl nop setb djnz HOUT nop setb mov	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout
00CE C2B5 369 clr HOUT 00D0 00 370 nop 00D1 D2B5 371 setb HOUT ; 2us neg pulse on Hout 00D3 7907 372 mov R1,#7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C5 C2B5 00C7 00 00C5 D9FE	343 344 345 346 347 348 351 352 355 360 362 365	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb mov djnz	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout : 20us tempo
00D0 00D 370 nop 00D1 D2B5 371 setb HOUT ; 2us neg pulse on Hout 00D3 7907 372 mov R1, #7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 00 00BF D2B5 00C1 790A 00C5 C2B5 00C7 00 00C8 D2B5 00C7 790A 00C8 D2B5 00C4 790A 00C6 D9FE	343 344 345 347 348 350 351 355 356 366 365 366 365 366	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb mov djnz	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout ; 20us tempo
ODD D2B5 371 setb HOUT ; 2us neg pulse on Hout 00D1 D2B5 372 mov R1,#7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00B8 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C3 D9FE 00C5 C2B5 00C7 00 00C8 D2B5 00CA 790A 00CC D9FE	343 344 345 346 347 348 350 351 355 355 355 355 355 356 361 362 364 365 366	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb mov djnz	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$ HOUT R1,#10 R1,\$ HOUT	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout ; 20us tempo
OODI D2BS 371 SetD HOUT ; Zus neg pulse on Hout 00D3 7907 372 mov R1, #7 00D5 D9FE 373 djnz R1, \$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BF D2B5 00C1 790A 00C3 D9FE 00C5 C2B5 00C7 00 00C8 D2B5 00CA 790A 00CC D9FE	343 344 345 346 347 348 350 351 355 355 355 355 355 356 361 362 366 365 366 367 368 377 368 377	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb mov djnz clr	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$ HOUT R1,#10 R1,\$ HOUT	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout ; 20us tempo
00D5 /907 5/2 mov R1,#7 00D5 D9FE 373 djnz R1,\$; 14us tempo 00D7 D2B3 374 setb VOUT ; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C5 C2B5 00C7 00 00C8 D2B5 00CA 790A 00CC D9FE 00CC C2B5 00D0 00	343 344 345 347 348 351 352 355 355 355 355 355 355 355 355 361 362 363 365 375 375 375 365 365 365 375	;; ; This subro ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1: V_pulse_1: clr	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb mov djnz clr nop setb	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout ; 20us tempo
00D7D2B3374ajnzK1,\$; 14us tempo00D7D2B3374setbVOUT; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C5 C2B5 00C7 00 00C8 D2B5 00C7 00 00C8 D2B5 00CA 790A 00CC D9FE 00CE C2B5 00D0 00 00D1 D2B5	343 344 345 347 348 351 352 355 355 355 355 355 355 355 361 363 365 365 365 365 365 366 365 365 366 365 365 366 365 367 366 365 367 366 365 367 366 365 367 366 365 367 366 365 367 366 365 367 366 365 367 366 365 367 366 365 367 366 365 367 366 367 366 367 377	;; ; This subro ; Hout = 41. ; Vout = 60. ; ;	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb mov djnz clr nop setb mov	nerates free Ru h 2us negative 66us negative 	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout ; 20us tempo ; 2us neg pulse on Hout
UUD/ D2B3 3/4 setb VOUT ; 66us neg pulse on Vout	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00BB 00 00BF D2B5 00C1 790A 00C3 D9FE 00C5 C2B5 00C7 00 00C8 D2B5 00C7 00 00C8 D2B5 00C4 790A 00CC D9FE 00C2 C2B5 00D0 00 00D1 D2B5 00D3 7907	343 344 345 346 347 348 350 351 355 355 355 355 355 361 362 364 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 366 367 377	; ; This subro ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1: V_pulse_1: clr	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz HOUT nop setb mov djnz clr nop setb mov	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$ HOUT R1,#10 R1,\$ HOUT R1,#7 P3,4	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 2us tempo ; 2us neg pulse on Hout ; 2us tempo ; 2us neg pulse on Hout
	00B3 E5E5 00B5 54CF 00B7 F5E5 00B9 D225 00B8 53B0D7 00BE 00 00BF D2B5 00C1 790A 00C3 D9FE 00C5 C2B5 00C7 00 00C8 D2B5 00C7 00 00C8 D2B5 00CA 790A 00CC D9FE 00CE C2B5 00D0 00 00D1 D2B5 00D3 7907 00D5 D9FE	343 344 345 346 347 348 350 351 355 355 355 355 355 361 362 366 367 360 372	; ; ; This subro ; ; Hout = 41. ; Vout = 60. ; ; H_V_sync_gen_1: V_pulse_1: clr	Mutine ge 7KHz with 1Hz with mov anl mov setb anl nop setb mov djnz Clr nop setb mov djnz clr nop setb mov djnz	nerates free Ru h 2us negative 66us negative A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#10 R1,\$ HOUT R1,#10 R1,\$ HOUT R1,#7 R1,\$ VOUT R1,#7 R1,\$	unning synchronization Signals pulses pulses DIS ; select P3.3/P3.5 as Vout/Hout ; set flag (cleared in Vsync isr) _CLR ; 2us neg pulse on Hout ; 2us tempo ; 2us neg pulse on Hout ; 2us tempo ; 2us neg pulse on Hout ; 14us tempo

-

		375					
00D9 7	78E6	376		mov	R0,#230	;	230 * 3 Hsync pulses
00DB (00	377	H_pulse_1:	nop			
00DC C	00	378		nop			
00DD 7	75E680	379		mov	HWDR, #WDT_PER	;	watchdog refresh
		380					
00E0 C	C2B5	381		clr	HOUT		
00E2 C	00	382		nop			
00E3 E	D2B5	383		setb	HOUT	;	2us neg pulse on Hout
00E5 7	790A	384		mov	R1,#10		
00E7 E	D9FE	385		djnz	R1,\$;	20us tempo
		386		5			-
00E9 C	C2B5	387		clr	HOUT		
00EB (00	388		nop			
00EC E	D2B5	389		setb	HOUT	;	2us neg pulse on Hout
00EE 7	790A	390		mov	R1,#10	Ċ	
00F0 E	D9FE	391		dinz	R1,\$;	20us tempo
		392			/ 4	'	
00F2 C	C2B5	393		clr	HOUT		
00F4 C	00	394		nop			
00F5 E	D2B5	395		setb	HOUT	;	2us neg pulse on Hout
00F7 7	7906	396		mov	R1,#6	ć	
00F9 E	D9FE	397		dinz	R1.\$:	12us tempo
		398		aj::2		'	11db compo
00FB 3	302505	399		inb	Free run.End o	ren	1
				5		;	Free running enabled ?
		400					
00FE E	D8DB	401		dinz	R0.H pulse 1		
0100 0	00	402		nop			
0101 0)1BB	403		aimp	V pulse 1		
0103 2	22	404	End gen 1:	ret			
		405					
		406					
		406 407;-					
		406 407;- 408	;				
		406 407;- 408 409	; ; This sub	routine (generates free		
		406 407;- 408 409 410	; ; This sub ;	routine g	generates free	Ru	unning synchronization Signals
		406 407;- 408 409 410 411	; ; This sub ; ; Hout = 6	routine g 2.5KHz w	generates free	Ru ze	nning synchronization Signals
		406 407;- 408 409 410 411 412	; ; This sub ; ; Hout = 6 ; Vout = 7	routine (2.5KHz w: 2Hz with	generates free ith lus positiv 58us positive	Ru ve	nning synchronization Signals pulses llses
		406 407;- 408 409 410 411 412 413	; ; This sub ; ; Hout = 6 ; Vout = 7 ;	routine o 2.5KHz w 2Hz with	generates free ith lus positiv 58us positive	Ru ve pu	nning synchronization Signals pulses llses
		406 407;- 408 409 410 411 412 413 414;-	; ; This sub ; ; Hout = 6 ; Vout = 7 ;	routine (2.5KHz w: 2Hz with	generates free ith lus positiv 58us positive	Ru ve pu	nning synchronization Signals pulses llses
		406 407;- 408 409 410 411 412 413 414;- 415	; ; This sub ; ; Hout = 6 ; Vout = 7 ;	routine g 2.5KHz w: 2Hz with	generates free ith lus positiv 58us positive	Ru ve pu	nning synchronization Signals pulses llses
0104 E	25E5	406 407;- 408 409 410 411 412 413 414;- 415 416	; This sub ; Hout = 6 ; Vout = 7 ;	routine of 2.5KHz w: 2Hz with	generates free ith lus positiv 58us positive 	Ru ve pu	nning synchronization Signals pulses llses
0104 E 0106 5	E5E5 54CF	406 407;- 408 409 410 411 412 413 414;- 415 416 417	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2:	routine of 2.5KHz w: 2Hz with mov anl	generates free ith lus positiv 58us positive 	Ru ye pu	nning synchronization Signals pulses llses
0104 F 0106 5 0108 F	E5E5 54CF 75E5	406 407;- 408 409 410 411 412 413 414;- 415 416 417 418	; ; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2:	routine of 2.5KHz w: 2Hz with mov anl mov	generates free ith lus positiv 58us positive A, SOCR A, #HOUT_VOUT_I SOCR.A	Ru ve pu DIS	nning synchronization Signals pulses llses select P3.3/P3.5 as Yout/Hout
0104 E 0106 E 0108 F 0108 F	E5E5 54CF F5E5 5225	406 407;- 408 409 410 411 412 413 414;- 415 416 417 418 419	; ; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2:	routine of 2.5KHz wi 2Hz with mov an1 mov setb	generates free ith lus positiv 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free run	Ru Ru pu DIS ;	nning synchronization Signals pulses llses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr)
0104 E 0106 S 0108 F 010A I	E5E5 54CF F5E5 5225	406 407;- 408 409 410 411 412 413 414;- 415 416 417 418 419 420	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2:	routine of 2.5KHz w 2Hz with mov anl mov setb	generates free ith lus positiv 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run	Ru ye pu DIS ; ;	unning synchronization Signals pulses llses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr)
0104 E 0106 5 0108 E 010A I 010C 5	2525 54CF 7525 5225 5380D7	406 407;- 408 409 410 411 412 413 414;- 415 416 417 418 419 420 421	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V pulse 2:	routine of 2.5KHz with 2Hz with mov an1 mov setb orl	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT	Ru ye pu DIS ;	unning synchronization Signals pulses ilses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr)
0104 F 0106 5 0108 F 010A F 010C 5 010C 5	E5E5 54CF F5E5 5225 53B0D7 22B5	406 407;- 408 409 410 411 412 413 414;- 415 416 417 418 419 420 421 422	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz w: 2Hz with mov anl mov setb orl clr	generates free ith lus positiv 58us positive 	Ru ve pu OIS ; ; SE	unning synchronization Signals pulses ulses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr)
0104 E 0106 5 0108 F 010A I 010C 5 010F I 010T I	E5E5 54CF F5E5 5225 53B0D7 52B5 00	406 407; - 408 409 410 411 412 413 414; - 415 416 417 418 419 420 421 422 423	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz w: 2Hz with 2Hz with mov anl mov setb orl clr nop	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT	Ru ve pu DIS ; ; SE ;	unning synchronization Signals pulses ilses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T 1us pos pulse on Hout
0104 E 0106 5 0108 F 0108 I 0107 I 0107 I 0111 C	E5E5 54CF 55E5 53B0D7 22B5 00 7006	406 407; - 408 409 410 411 412 413 414; - 415 416 417 418 419 420 421 422 423 424	; ; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	mov anl mov setb orl clr mov	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1.#6	Ru ve pu DIS ; ; SE ;	Inning synchronization Signals pulses lises select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout
0104 E 0106 5 0108 F 010A I 010C 5 010F I 0111 C 0112 7 0114 1	E5E5 54CF F5E5 53B0D7 53B0D7 502B5 500 7906 509FE	406 407; - 408 409 410 411 412 413 414; - 415 416 417 418 419 420 421 422 423 424 425	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz with 2Hz with mov anl mov setb orl clr nop mov dinz	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#6 R1 \$	Ru ve pu DIS ; ; SE ;	unning synchronization Signals pulses lises select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout
0104 E 0106 5 0108 F 010A I 010C 5 010F I 0111 C 0112 7 0114 I	E5E5 54CF F5E5 52225 53B0D7 52B5 00 7906 D9FE	406 407; - 408 409 410 411 412 413 414; - 415 416 417 418 419 420 421 422 423 424 425 426	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz with 2Hz with mov anl mov setb orl clr nop mov djnz	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#6 R1,\$	Ru re pu DIS ; ; ; ; ;	unning synchronization Signals pulses llses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout 12us tempo
0104 E 0106 S 0108 F 010A E 010C S 010F I 0111 C 0112 7 0114 E	E5E5 54CF F5E5 5225 53B0D7 22B5 00 7906 59FE -22B5	406 407; - 408 409 410 411 412 413 414; - 415 416 417 418 419 420 421 422 423 424 425 426 427	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz with 2Hz with mov anl mov setb orl clr nop mov djnz setb	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT HOUT R1,#6 R1,\$ HOUT	Ru ye pu DIS ; ; ; ;	unning synchronization Signals pulses llses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout 12us tempo
0104 E 0106 5 0108 F 010A E 0107 E 0107 I 0111 C 0112 7 0114 E 0116 C 0118 F	E5E5 54CF F5E5 5225 53B0D7 52B5 00 7906 59FE C2B5 52B5	$\begin{array}{c} 406\\ 407; -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414; -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ \end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz w: 2Hz with 2Hz with anl mov setb orl clr nop mov djnz setb clr	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT HOUT R1,#6 R1,\$ HOUT HOUT	Ru ve pu DIS ; ; ; ; ; ;	unning synchronization Signals pulses ilses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout 12us tempo
0104 E 0106 5 0108 F 010A I 0107 I 0111 C 0112 7 0114 I 0116 C 0118 F 0118 C	E5E5 54CF F5E5 53B0D7 502B5 00 7906 59FE C2B5 502B5 00	406 407; - 408 409 410 411 412 413 414; - 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429	; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz w: 2Hz with 2Hz with onu mov setb orl clr nop mov djnz setb clr nop	generates free ith lus positive 58us positive A, SOCR A, #HOUT_VOUT_I SOCR,A Free_run P3, #HOUT_VOUT_ HOUT R1, #6 R1,\$ HOUT HOUT	Ru 7e pu 0IS ; ; ; ; ; ; ; ;	Inning synchronization Signals pulses ilses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout 12us tempo lus pos pulse on Hout
0104 E 0106 5 0108 F 010A I 0107 I 0111 C 0112 7 0114 I 0116 C 0118 I 0118 C	E5E5 54CF F5E5 53B0D7 52B5 00 7906 59FE C2B5 52B5 52B5 00 7906	$\begin{array}{c} 406\\ 407; -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414; -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 424\\ 425\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz with 2Hz with mov anl mov setb orl clr nop mov djnz setb clr nop mov	generates free ith 1us positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#6 R1,\$ HOUT HOUT B1 #6	 Ru pu ; ; ; ; ; ;	Inning synchronization Signals pulses lises select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout 12us tempo lus pos pulse on Hout
0104 E 0106 5 0108 F 010A I 010C 5 010F I 0111 C 0112 7 0114 I 0116 C 0118 I 011A C 0118 7	E5E5 54CF F5E5 53B0D7 52B5 00 7906 D9FE C2B5 00 7906 D9FE	$\begin{array}{c} 406\\ 407; -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414; -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ \end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz with 2Hz with mov anl mov setb orl clr nop mov djnz setb clr nop mov djnz	<pre>generates free ith lus positiv 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#6 R1,\$ HOUT HOUT R1,#6 P1 <</pre>	 Ru pu SIS ; ; ; ;	unning synchronization Signals pulses ilses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout 12us tempo lus pos pulse on Hout
0104 E 0106 S 0108 F 010A I 010C S 010F I 0111 C 0112 7 0114 I 0116 C 0118 I 011A C 011B 7 011D I	E5E5 54CF F5E5 53B0D7 22B5 00 7906 59FE C2B5 00 7906 09FE	$\begin{array}{c} 406\\ 407; -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414; -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz wi 2Hz with mov anl mov setb orl clr nop mov djnz setb clr nop mov djnz	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT HOUT R1,#6 R1,#6 R1,\$	Ru re pu CIS ; ; ; ; ; ;	unning synchronization Signals pulses lises select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout l2us tempo lus pos pulse on Hout l2us tempo
0104 F 0106 5 0108 F 010A F 0107 1 0111 0 0112 7 0114 F 0116 0 0118 F 0116 0 0118 7 0110 F	E5E5 54CF F5E5 5225 53B0D7 52B5 00 7906 59FE C2B5 52B5 00 7906 59FE	$\begin{array}{c} 406\\ 407; -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414; -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ \end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz w: 2Hz with 2Hz with mov anl mov setb orl clr nop mov djnz setb clr nop mov djnz	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT HOUT R1,#6 R1,\$ HOUT HOUT R1,#6 R1,\$ HOUT	Ru re pu SE ; ; ;	unning synchronization Signals pulses ilses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout l2us tempo lus pos pulse on Hout l2us tempo
0104 F 0106 5 0108 F 0100 I 0100 I 0107 I 0111 C 0112 7 0114 I 0116 C 0118 I 0118 C 0118 I 0114 C	E5E5 54CF F5E5 52225 53B0D7 52B5 00 7906 59FE C2B5 00 7906 D9FE C2B5	$\begin{array}{c} 406\\ 407; -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414; -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ 434\\ \end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz w: 2Hz with 2Hz with mov setb orl clr nop mov djnz setb clr nop mov djnz setb	generates free ith lus positive 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT HOUT R1,#6 R1,\$ HOUT HOUT R1,#6 R1,\$ HOUT	Ru ve pu DIS ; ; ; ; ; ;	Inning synchronization Signals pulses ilses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout l2us tempo lus pos pulse on Hout
0104 E 0106 S 0108 F 010A I 0107 I 0111 C 0112 7 0114 I 0116 C 0118 I 0116 C 0118 I 0116 C 0118 I 0117 C 0121 I	E5E5 54CF F5E5 52225 53B0D7 52B5 500 7906 59FE C2B5 500 7906 59FE C2B5 502B5 00 7906 59FE	$\begin{array}{c} 406\\ 407, -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414, -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ 434\\ 435\\ \end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz with 2Hz with mov anl mov setb orl clr nop mov djnz setb clr nop mov djnz setb clr nop	<pre>generates free ith lus positiv 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#6 R1,\$ HOUT HOUT R1,#6 R1,\$ HOUT HOUT HOUT HOUT HOUT HOUT HOUT</pre>	Ru pu pu SE; ; ; ; ; ;	Inning synchronization Signals pulses lises select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout l2us tempo lus pos pulse on Hout l2us tempo lus pos pulse on Hout
0104 E 0106 S 0108 F 010A I 010C S 010F I 0111 C 0112 7 0114 I 0116 C 0118 I 0116 C 0118 I 011A C 011D I 0117 C 0121 I 0122 S	E5E5 54CF 55E5 5225 53B0D7 52B5 00 7906 59FE 52B5 500 7906 59FE 52B5 52B5 52B5 52B5 52B5 52B5 52B5 52B	$\begin{array}{c} 406\\ 407, -\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414, -\\ 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 422\\ 423\\ 424\\ 425\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ 434\\ 435\\ 436\end{array}$; This sub ; Hout = 6 ; Vout = 7 ; H_V_sync_gen_2: V_pulse_2:	routine of 2.5KHz w: 2Hz with mov anl mov setb orl clr nop mov djnz setb clr nop mov djnz setb clr nop mov djnz	<pre>generates free ith lus positiv 58us positive A,SOCR A,#HOUT_VOUT_I SOCR,A Free_run P3,#HOUT_VOUT_ HOUT R1,#6 R1,\$ HOUT HOUT R1,#6 R1,\$ HOUT HOUT HOUT R1 #6</pre>	Ru re pu DIS; ; ; ; ; ; ; ;	unning synchronization Signals pulses llses select P3.3/P3.5 as Vout/Hout set flag (cleared in Vsync isr) T lus pos pulse on Hout 12us tempo lus pos pulse on Hout 12us tempo lus pos pulse on Hout

TEMIC

Semiconductors

0126 D9FE	437		djnz	R1,\$; 12us tempo
	438				
0128 C2B5	439		setb	HOUT	
012A D2B5	440		clr	HOUT	; lus pos pulse on Hout
012C 00	441		nop		
012D 7903	442		mov	R1,#3	
012F D9FE	443		djnz	R1,\$; 6us tempo
0131 D2B3	444		clr	VOUT	; 58us pos pulse on Vout
	445				
0133 78D8	446		mov	R0,#216	; 216 * 4 Hsync pulses
0135 00	447	H_pulse_2:	nop		
0136 00	448		nop		
0137 75E680	449		mov	HWDR, #WDT_PER	;watchdog refresh
	450				
013A C2B5	451		setb	HOUT	
013C D2B5	452		clr	HOUT	; lus pos pulse on Hout
013E 00	453		nop		
013F 7906	454		mov	R1,#6	
0141 D9FE	455		djnz	R1,\$; 12us tempo
	456				
0143 C2B5	457		setb	HOUT	
0145 D2B5	458		clr	HOUT	; lus pos pulse on Hout
0147 00	459		nop		
0148 7906	460		mov	R1,#6	
014A D9FE	461		djnz	R1,\$; 12us tempo
	462				
014C C2B5	463		setb	HOUT	
014E D2B5	464		clr	HOUT	; lus pos pulse on Hout
0150 00	465		nop		,
0151 7906	466		mov	R1,#6	
0153 D9FE	467		djnz	R1,\$; 12us tempo
	468				
0155 C2B5	469		setb	HOUT	
0157 D2B5	470		clr	HOUT	; lus pos pulse on Hout
0159 00	471		nop		
015A 7902	472		mov	R1,#2	
015C D9FE	473		djnz	R1,\$; 4us tempo
	474				
015E 302505	475		jnb	Free_run,End_	gen_2
					; Free running enabled ?
	476				
0161 D8D2	477		djnz	R0,H_pulse_2	
0163 00	478		nop		
0164 210C	479		ajmp	V_pulse_2	
0166 22	480	End_gen_2:	ret		
	481				
	482				
	483				
	484				
	485;				
	486	;			
	487	; This rou	itine is	the VSYNC inte	rrupt service routine
	488	;			
	489;•				
	490		USING	1	; RB1 used in interrupt
	491				
0167 C225	492	Vsync_isr:	clr	Free_run	; stop Free running
0169 302401	493		jnb	End_cycle,Vsy	nc_beg_isr
					; Cycle not yet treated
016C 32	494		reti		
0165 60-0	495				
UIGD COEU	496	vsync_beg_isr:	push	ACC	
OTOL CODO	497	pusn	PSW		

3

MATRA MHS Rev.B (10 Jan. 97)

TEMIC Semiconductors

0171 75D008 0174 E530	498 499 500		mov mov	PSW,#08h A,Isr_state	; RB1 selection ; load ISR state
0176 B4000F 0179 758921 017C 758A00 017F 758C00	501 502 503 504	State_0:	cjne mov mov mov	A,#00,state_1 TMOD,#21h TL0,#00h TH0,#00b	; T0 : free running 16-bit timer
0182 D28C 0184 0530	505 506		setb inc	TRO Isr_state	; start measuring Vsync period
0186 21F3	507 508		ajmp	Vsync_end_isr	
0188 B40133	509	State_1:	cjne	A,#01,state_2	
018B 00	510		nop		; nop are inserted for timing
018C 00	511		nop		; compensation between start
018D 00	512		nop		; and stop counting
018E 00	513		nop	mp 0	al an mo
018F C28C	514		cir	TRU Magazi a MTO	; stop TU
0191 858A31	515		mov	Vper1_m,TLU	
0194 858032	510		mov	vpern_m,THU	; store vsync period
0197 758929	517		mov	TMOD, #29n	; TO : gated 16-bit timer
019A 758A00	510		mou	TLO,#00H	
0190 758000	519		mov	THO, #0011	, start magging Marma high lovel
UIAU D28C	520 521		setb	TRO	; start measuring vsync nigh level
01A2 E4	522		clr	A	; Hsync polarity detection
01A3 7810	523		mov	R0,#16	; 16 samples
01A5 A2B4	524	S1_1:	mov	C, HSYNC	; read pin level
01A7 3400	525		addc	A,#00	; store state
01A9 D8FA	526		djnz	R0,S1_1	
01AB B40800	527		cjne	A,#08,S1_2	
01AE 9221	528	S1_2:	mov	Hpol_m,C	; store Hsync polarity (0 = neg)
01B0 4005	529		jc	S1_3	
01B2 75E402	530		mov	EICON, #EICON_)	H_NEG ; negative Hsync pulses selection
01B5 21BA	531		ajmp	S1_4	
01B5 21BA 01B7 75E406	531 532	S1_3:	ajmp mov	S1_4 EICON,#EICON_	H_POS
01B5 21BA 01B7 75E406	531 532 533	S1_3:	ajmp mov	S1_4 EICON,#EICON_1	H_POS ; positive Hsync pulses selection
01B5 21BA 01B7 75E406	531 532 533 534	S1_3: S1_4:	ajmp mov inc	S1_4 EICON,#EICON_3 Isr_state	H_POS ; positive Hsync pulses selection
01B5 21BA 01B7 75E406 01BA 0530 01BC 21F3	531 532 533 534 535 536	S1_3: S1_4:	ajmp mov inc ajmp	S1_4 EICON,#EICON_ Isr_state Vsync_end_isr	H_POS ; positive Hsync pulses selection
01B5 21BA 01B7 75E406 01BA 0530 01BC 21F3 01BE B4021B	531 532 533 534 535 536 536 537	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne	<pre>S1_4 EICON,#EICON_! Isr_state Vsync_end_isr A,#02,state_3</pre>	H_POS ; positive Hsync pulses selection
01B5 21BA 01B7 75E406 01BA 0530 01BE 21F3 01BE 84021B 01C1 758925	531 532 533 534 535 536 537 538	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov	<pre>S1_4 EICON,#EICON_] Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h</pre>	H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 758925 01C4 758400	531 532 533 534 535 536 537 538 539	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov mov	<pre>S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h</pre>	H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 758925 01C4 758400 01C7 888C	531 532 533 534 535 536 537 538 539 540	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov mov	<pre>S1_4 EICON,#EICON_i Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h R0,TH0</pre>	H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 758925 01C4 758A00 01C7 A88C 01C9 758C00	531 532 533 534 535 536 537 538 539 540 541	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov mov mov	<pre>S1_4 EICON,#EICON_! Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h</pre>	H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB
01B5 21BA 01B7 75E406 01BA 0530 01BE 21F3 01BE B4021B 01C1 758925 01C4 758A00 01C7 A88C 01C9 758C00 01CC D28C	531 532 533 534 535 536 537 538 539 540 541 542 543	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov mov mov mov setb	<pre>S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TR0</pre>	H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses
01B5 21BA 01B7 75E406 01BA 0530 01BE 21F3 01BE 84021B 01C1 758925 01C4 75800 01C7 A88C 01C9 758C00 01CC D28C 01CE E532	531 532 533 534 535 536 537 538 539 540 541 542 543 544	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov mov mov setb	<pre>S1_4 EICON,#EICON_I Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h THO,#00h THO,#00h TRO A,Vperh_m C</pre>	H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 64021B 01C1 75825 01C4 758400 01C9 758C00 01CE E532 01DC 3	531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov mov mov setb mov clr	<pre>S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TH0,#00h TR0 A,Vperh_m C 2</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection </pre>
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 75820 01C4 758400 01C7 A88C 01C9 75800 01CE E532 01D0 C3 01D1 13	531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 544	S1_3: S1_4: State_2:	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc	S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; togt only high order byte</pre>
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 75825 01C4 75800 01C7 A88C 01C9 758c00 01CC D28C 01D0 C3 01D1 13 01D2 E50800	531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547	<pre>S1_3: S1_4: State_2:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne	<pre>S1_4 EICON,#EICON_I Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte</pre>
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 758205 01C4 758400 01C7 A88C 01C9 758c00 01CC D28C 01D0 C3 01D1 13 01D2 E50800 01D5 B3	531 532 533 534 535 536 537 538 539 540 541 542 543 544 544 545 546 547 549	<pre>S1_3: S1_4: State_2: S2_1:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov	<pre>S1_4 EICON,#EICON_I Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol m C</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; ctore Verme polarity (0 = period)</pre>
01B5 21BA 01B7 75E406 01BA 0530 01BE 21F3 01BE 84021B 01C1 758925 01C4 75800 01C7 A88C 01C9 758C00 01CC D28C 01D0 C3 01D1 13 01D2 E50800 01D5 B3 01D6 9220 01D8 6530	531 532 533 534 535 536 537 538 536 537 538 540 541 542 543 544 545 546 547 548 546	<pre>S1_3: S1_4: State_2: S2_1:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc	<pre>S1_4 EICON,#EICON_I Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg)</pre>
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 758925 01C4 75800 01C7 A88C 01C9 75800 01CC D28C 01D1 13 01D1 13 01D5 B3 01D6 9220 01D8 0530 01D4 0530	531 532 533 534 535 536 537 538 537 538 539 540 541 542 543 544 545 546 547 548 549 551	<pre>S1_3: S1_4: State_2: S2_1:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc ajmp	<pre>S1_4 EICON,#EICON_I Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync end isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg)</pre>
01B5 21BA 01B7 75E406 01B2 21F3 01BE 84021B 01C1 75820 01C4 75800 01C7 A88C 01C9 758C00 01C0 D28C 01D1 13 01D2 550800 01D5 B3 01D6 9220 01D8 0530 01D4 21F3	531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 544 545 548 549 550 550	<pre>S1_3: S1_4: State_2: S2_1:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc ajmp	<pre>S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync_end_isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg)</pre>
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 64021B 01C1 75825 01C4 75800 01C7 A880 01C9 75800 01C0 D280 01D0 C3 01D1 13 01D2 B50800 01D5 B3 01D6 9220 01D8 0530 01D4 21F3	531 532 533 534 535 536 537 538 539 541 542 543 544 545 545 546 547 548 549 550 551 552 552	<pre>S1_3: S1_4: State_2: S2_1:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc ajmp	<pre>S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h R0,TH0 TH0.#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync_end_isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg) . non are inserted for timing</pre>
01B5 21BA 01B7 75E406 01B2 21F3 01BE B4021B 01C1 75820 01C4 75800 01C7 A88C 01C9 75800 01C2 D28C 01D0 C3 01D1 13 01D2 B50800 01D5 B3 01D6 9220 01D8 0530 01D4 21F3	531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 552 552	<pre>S1_3: S1_4: State_2: S2_1: state_3:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc ajmp	<pre>S1_4 EICON,#EICON_M Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync_end_isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg) ; nop are inserted for timing ; compensation between start</pre>
01B5 21BA 01B7 75E406 01B8 21F3 01BE 24021B 01C1 758925 01C4 758000 01C7 A88C 01C9 758C00 01C0 C3 01D0 C3 01D1 13 01D2 E50800 01D5 B3 01D6 9220 01D8 0530 01D8 21F3	531 532 533 534 535 536 537 538 540 541 542 543 5445 545 546 547 548 546 547 548 545 5551 5552 5553 5551 5552 5553 5555	<pre>S1_3: S1_4: State_2: S2_1: state_3:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc ajmp nop	<pre>S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync_end_isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg) ; nop are inserted for timing ; compensation between start and stop counting</pre>
01B5 21BA 01B7 75E406 01B8 0530 01BE 21F3 01BE 84021B 01C1 758925 01C4 758000 01C7 A88C 01C9 758C00 01C0 C3 01D1 13 01D5 B3 01D6 9220 01D8 05300 01D4 21F3 01DC 00 01DE 00 01DE 00	531 532 533 535 536 537 538 539 540 541 542 543 5445 545 545 546 547 548 545 551 552 553 5554 555 5556	<pre>S1_3: S1_4: State_2: S2_1: state_3:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov setb mov clr rrc cjne cpl mov inc ajmp nop nop	<pre>S1_4 EICON,#EICON_I Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TLO,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync_end_isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg) ; nop are inserted for timing ; compensation between start ; and stop counting</pre>
01B5 21BA 01B7 75E406 01B2 21F3 01BE B4021B 01C1 758925 014 758925 01C4 75800 01C7 A88C 01C9 75800 01C1 238C 01D1 13 01D5 B3 01D6 9220 01D8 0530 01D4 21F3 01D5 00 01D6 00 01D7 00 01D8 00	531 532 533 535 536 537 538 539 540 541 542 543 544 545 545 546 547 548 549 550 551 552 553 555	<pre>S1_3: S1_4: State_2: S2_1: state_3:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc ajmp nop nop	<pre>S1_4 EICON,#EICON_J Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync_end_isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg) ; nop are inserted for timing ; compensation between start ; and stop counting</pre>
01B5 21BA 01B7 75E406 01B2 21F3 01BE B4021B 01C1 75820 01C4 75800 01C7 A88C 01C9 75800 01C0 D28C 01D0 C3 01D1 13 01D2 B50800 01D5 B3 01D6 9220 01D8 0530 01D4 21F3 01D5 00 01D6 00 01D7 00 01D8 00	531 532 533 534 535 536 537 538 542 543 544 542 543 544 545 545 545 545 551 552 553 555	<pre>S1_3: S1_4: State_2: S2_1: state_3:</pre>	ajmp mov inc ajmp cjne mov mov mov setb mov clr rrc cjne cpl mov inc ajmp nop nop nop	<pre>S1_4 EICON,#EICON_I Isr_state Vsync_end_isr A,#02,state_3 TMOD,#25h TL0,#00h R0,TH0 TH0,#00h TR0 A,Vperh_m C A A,AR0,S2_1 C Vpol_m,C Isr_state Vsync_end_isr</pre>	<pre>H_POS ; positive Hsync pulses selection ; T0 : 16-bit counter ; save MSB ; start counting Hsync pulses ; Vsync polarity detection ; A = Vsync period / 20 ; test only high order byte ; store Vsync polarity (0 = neg) ; nop are inserted for timing ; compensation between start ; and stop counting</pre>

TEMIC Semiconductors

3

01E2 00	559		nop		
01E3 00	560		nop		
01E4 00	561		nop		
01E5 00	562		nop		
01E6 C28C	563		clr	TR0	; stop TO
01E8 858A33	564		mov	Hcntl_m,TL0	
01EB 858C34	565		mov	Hcnth_m, THO	; store Hsync pulse count
01EE 753000	566		mov	Isr_state,#00	; reset ISR state to start a new cycle
01F1 D224	567 568		setb	End_cycle	; set flag for the main program
01F3 D0D0	569	Vsvnc end isr:	non	PSW	
01F5 D0E0	570		pop	ACC	
01F7 32	571		reti		
	572				
	573		USING	0	; RB0 used by default
	574				,
	575				
	576	;++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	*****
	577	;			+
	578	;	The sub	oroutines hereaf	ter are only used for
		·	demonst	tration program.	+
	579	;			+
	580	;++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	*++++++++++++++++++++++++++++++++++++++
	581				
	582	;++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	******
	583	; Send measured	paramet	ers on serial po	ort +
	584	; Vsync period,	polarit	У –	+
	585	; Hsync counting	g, polar	ity	+
	586	;++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
01F8 900256	587	Out_results:	mov	DPTR,#Vsync_m	sge
01FB 512F	588		acall	Out_msge	; display Vsync message
01FD E536	589		mov	A,Vperh_s	
01FF 5139	590		acall	Out_byte	
0201 E535	591		mov	A,Vperl_s	
0203 5139	592		acall	Out_byte	; display Vsync period
0205 7420	593		mov	A,#′′	
0207 514E	594		acall	Out_char	
0209 742D	595		mov	A,#'-'	
020B A222	596		mov	c,Vpol_s	
020D 5002	597		jnc	Vpol_neg	
020F 742B	598		mov	A,#'+'	
0211 514E	599	Vpol_neg:	acall	Out_char	; display Vsync polarity
	600				
0213 90025F	601		mov	DPTR,#Hsync_m	sge
0216 512F	602		acall	Out_msge	; display Hsync message
0218 E538	603		mov	A,Hcnth_s	
021A 5139	604		acall	Out_byte	
021C E537	605		mov	A,Hcntl_s	
021E 5139	606		acall	Out_byte	; display Hsync count
0220 7420	607		mov	A,#' '	
0222 514E	608		acall	Out_char	
0224 742D	609		mov	A,#'-'	
0226 A223	610		mov	c,Hpol_s	
0228 5002	611		jnc	Hpol_neg	
022A 742B	612		mov	A,#'+'	
022C 514E	613	Hpol_neg:	acall	Out_char	; display Hsync polarity
022E 22	614		ret		
	615				
	616	;++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	*****
	617	; send a messag	e on ser	lai port	+
	610	; DPTR 1s the m	essage a	aaress	-
	019	; a NUL charact	er is th	e ena or message	e +

J				۱.	Γ	V		J		(,
S	e m	i	с	0	n	d	u	с	t	0	r	s

	620	;++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++	+++++++++++++++++++++++++++++++++++++++
022F E4	621	Out_msge:	clr	A	•		
0230 93	622		movc	A,@A+DPTR			
0231 6005	623		jz	Out_end	; last	character	
0233 A3	624		inc	DPTR			
0234 514E	625		acall	Out_char	•	-	
0236 412F	626		ajmp	Out_msge			
0238 22	627	Out_end:	ret				
	628						
	629	;++++++++++++++++++++++++++++++++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
	630	; Send a hexad	ecimal by	te on serial p	port		+
	631	; A is the byt	e to send				+
	632	;++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
0239 C0E0	633	Out_byte:	PUSH	ACC			
023B C4	634		SWAP	A			
023C 5143	635		ACALL	Out_nib			
023E D0E0	636		POP	ACC			
0240 5143	637		ACALL	Out_nib			
0242 22	638		ret				
	639						
	640	;++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++	*++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
	641	; Send a hexad	ecimal ni	bble on serial	l port		+
	642	; A is the nib	ble to se	nd	-		+
	643	;++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
0243 540F	644	Out nib:	ANL	A,#0FH			
0245 2490	645	_	ADD	А,#90Н			
0247 D4	646		DA	A			
0248 3440	647		ADDC	A,#40H			
024A D4	648		DA	A			
024B 514E	649		acall	Out char			
024D 22	650		ret				
	651						
	652	:++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
	653	, ;Send an ASCII	characte	r on serial po	ort		+
	654	: A is the cha	racter to	send			+
	655	; +++++++++++++++++++++++++++++++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
024E 3099FD	656	Out char:	inb	TT.Out char			
0251 C299	657		clr	TI			
0253 F599	658		mov	SOBUF, A			
0255 22	659		ret				
	660						
	661	;++++++++++++++++++++++++++++++++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	****
	662	: Messages def	inition				+
	663	; +++++++++++++++++++++++++++++++++++++	++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
0256 0A0D5673	664	Vsvnc msge:	DB	0Ah.0Dh.'Vsv	vnc '.0		
025A 796E632 025E 00	20		22	01111, 0211, VO	,,.		
025F 0A0D4873 0263 796E632 0267 00	665 20	Hsync_msge:	DB	0Ah,0Dh,'Hsy	ync ′,0		

Section IV

Introduction to C251 Architecture

C251 Overview/Benefits vs C51	IV.1.0
Extended 8-bit TSC80251Products Overview	IV.3.0

C251 Overview/Benefits vs C51

C251 Architecture Overview : IV.1	.1
Extended 8-bit microcontroller IV.1	.1
TSC80251 Derivatives IV.1	.1
TSC80251 Documentation IV.1	.2
Microcontroller Architecture IV.1	.3
TSC80251 : AC/DC Characteristics IV.2	.1
AC Characteristics IV.2	.1
DC Characteristics	.6

C251 Architecture Overview

Extended 8-bit microcontroller

In the world of 8-bit microcontrollers, the C51 Architecture has become an industry standard for embedded applications. For over 15 years, TEMIC has been a leading provider of this microcontroller family. This unsurpassed experience is the driving force as TEMIC takes this proven family to the next level of performance: the TSC80251 family!

This new C251 Architecture at its lowest performance level (binary mode), is binary code compatible with the 80C51 microcontrollers, hence, attaining an increase in performance has never been easier.

Due to a 3-stage pipeline, the CPU-performance is increased by a factor 5, using existing C51 code without modifications.

Using the new C251 instruction set, the performance will increase up to 15 times at the same clock rate. This performance enhancement is based on the 16–bit instruction bus, allowing for more powerful instructions and additional internal instruction bus, 8–bit and 16–bit data busses.

TSC80251 Derivatives

TEMIC is rapidly developing a full family of application specific TSC80251 derivatives. Please see the detailed Datasheet of each product for further information.

These products are designed to help you getting high-performance products to market faster.

Due to the high instruction throughput, the TSC80251 derivatives are focussing on all high–end 8–bit to 16–bit applications.

TSC80251 derivatives are also used in mid–range and lower–end microcontroller applications, where a very low operation frequency is needed, without decreasing the level of CPU–power.

This feature is ideal for today portable applications and EMC sensitive systems.

Typical applications for this family are:

- Automotive:
 - Airbag
 - ABS
 - Gearbox
 - Climate control
 - Car radio
 - Car navigation

The 24-bit address bus will allow to access up to 16 Mbytes in a single linear memory space. Please see each individual TSC80251 Product Datasheet for the effective addressable memory range.

Programming flexibility and C-code efficiency are both increased through a Register-based Architecture, the 64-Kbyte extended stack space combining with the new instruction set.

C251 C-compilers are some of the most efficient available (nearly no overhead), coupled with the final codesize which could be a factor of 3 down when compared with the C51 C-compilers.

- Communication:
 - Cordless phones
 - Cellular phones
 - High speed modems
 - High–end feature phones
 - ISDN phones
 - Line cards
 - Network termination
- Computer:
 - High–end monitors
 - CD–ROM
 - Card–reader
 - Disk drives
 - Computer telephony
- Broadcast media:
 - Set top boxes
 - Audio/video control
 - Signal processing

C251 Architecture Overview

TEMIC Semiconductors

TEMIC's TSC80251 derivatives are designed around the C251 core, using standard peripherals dedicated to a targetted range of applications.

Here is a selection of peripheral blocks:

- Serial interfaces:
 - UART (Universal Asynchronous Receiver Transmitter)
 - I2C (Inter–Integrated Circuit)
 - SPI (Serial Protocol Interface)
 - µWire (Synchronous Serial Interface)
 - CAN (Control Area Network)
 - J1850
 - USB (Universal Serial Bus)
 - GCI

- Special interfaces:
 - ADC (Analog to Digital Converter)
 - DAC (Digital to Analog Converter)
 - PCA (Programmable Counter Array)
 - PWM (Pulse Width Modulator)
 - Smart Sensor Interfaces
- Control functions:
 - Watchdog Timer
 - Timers/Counters
 - Power monitoring and management
 - Interrupt handler
- Memories:
 - RAM
 - ROM
 - OTPROM
 - EPROM

Most of TEMIC's TSC80251 derivatives are available as ROMless, OTPROM, EPROM and Mask ROM version.

TSC80251 Documentation

The following documentation and Starter tools are available to allow the full evaluation of the TEMIC's TSC80251 derivatives:

- "TSC80251 Design Guides" (for each derivative) Contains all information about the products (Block Diagram, Configuration and Memory Mapping, Ports, Peripheral Description, Electrical and Mechanical Information, Ordering Information) and Application Notes.
- "TSC80251 Programmer's Guide" Contains all information for the programmer (Architecture, Instruction Set, Programming, Development Tools).

• "TSC80251 Product Starter Kit" This kit enables the product to be evaluated by the designer. Its contents is:

- C-Compiler (limited to 2 Kbytes of code)
- Assembler
- Linker
- Product Simulator
- Optionally TSC80251 Product Evaluation Board with ROM–Monitor
- Please visit our WWW for updated versions in ZIP format.
- World Wide Web Please contact our WWW for possible updated information at http://www.temic.de
- TSC80251 e-mail hotline: C251 @ temic.fr

Microcontroller Architecture

The TSC80251 family of 8-bit microcontrollers is a high-performance upgrade of the widely-used 80C51 microcontrollers. It extends features and performance while maintaining binary-code compatibility, so the impact on existing hardware and software is minimal.

All TSC80251 microcontrollers share a set of common features :

- 24-bit linear addressing and up to 16 Mbytes of memory
- a register–based CPU with registers accessible as bytes, words, and double words
- a page mode for accelerating external instruction fetches
- an instruction pipeline
- an enriched instruction set, including 16-bit arithmetic and logic instructions
- a 64–Kbyte extended stack space
- a minimum instruction-execution time of two clocks

(vs. 12 clocks for 80C51 microcontrollers)

• binary-code compatibility with 80C51 microcontrollers

Several benefits are derived from these features :

- preservation of code written for 80C51 microcontrollers
- a significant increase in core execution speed in comparison with 80C51 microcontrollers at the same clock rate
- support for larger programs and more data
- increased efficiency for code written in C

Figure 1. is a functional block diagram of TSC80251 microcontrollers. The core, which is common to all TSC80251 microcontrollers, is described in the next paragraph. Each derivative in the family has its own on-chip peripherals, I/O Ports, external bus, size of on-chip RAM, type and size of on-chip ROM.

Figure 1. TSC80251 Product Block Diagram

4

C251 Architecture Overview

Microcontroller Core

The TSC80251 microcontroller core contains the CPU, the clock and reset unit, the interrupt handler, the bus interface and the peripheral interface (See Figure 1.). The CPU contains the instruction sequencer, ALU, register file and data memory interface (See Figure 2.).

CPU

The TSC80251 fetches instructions from on-chip code memory two bytes at a time or from external memory in single bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can configure the TSC80251 to operate in page mode for accelerated instruction fetches from external memory. In page mode, if an instruction fetch is to the same 256-byte "page" as the previous fetch, the fetch requires one state (two clocks) rather than two states (four clocks). For information regarding the page or non-page mode selection, see Product Datasheet. The TSC80251 register file has forty registers, which can be accessed as bytes, words and double words. As in the C51 Architecture, registers 0-7 consist of four banks of eight registers each, where the active bank is selected by the program status word (PSW) for fast context switches (See "Programming" chapter).

The TSC80251 is a single–pipeline machine. When the pipeline is full and code is executing from on–chip code memory, an instruction is completed every state time. When the pipeline is full and code is executing from external memory (with no wait states and no extension of the ALE signal) an instruction is completed every two state times.

Figure 2. Central Processor Unit Block Diagram

Clock and Reset Unit

The timing source for the TSC80251 microcontroller can be an external oscillator or an internal oscillator with an external crystal/resonator. The basic unit of time in TSC80251 is the state time (or state), which is two oscillator periods. The state time is divided into phase 1 and phase 2 (See Figure 3.).

Figure 3. Clocking Definitions

The TSC80251 peripherals operate on a peripheral cycle, which is six state times. (This peripheral cycle is not a characteristic of the C251 Architecture.) A one–clock interval in a peripheral cycle is denoted by its state and phase.

Interrupt Handler

The interrupt handler can receive interrupt requests from many sources: maskable sources and TRAP instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the normal flow of instructions and branches to a routine that services the source that requested the interrupt. You can enable or disable the interrupts individually (except for TRAP which cannot be disabled) and you can assign one of four priority levels to each interrupt. The reset unit places the TSC80251 into a known state. A chip reset is initiated by asserting the RST pin or allowing the Watchdog Timer to time out when the TSC80251 has one.

TEMIC Semiconductors

AC/DC Characteristics

AC Characteristics

		12 1	MHz	16	MHz	F	DSC	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
T _{OSC}	1/F _{OSC}	83		63				ns
T _{LHLL}	ALE Pulse Width	73		53		T _{OSC} -10		ns (2)
T _{AVLL}	Address Valid to ALE Low	63		43		T _{OSC} - 20		ns (2)
T _{LLAX}	Address hold after ALE Low	63		43		T _{OSC} - 20		ns
T _{RLRH} (1)	RD# or PSEN# Pulse Width	65		45		T _{OSC} - 18		ns (3)
T _{WLWH}	WR# Pulse Width	65		45		T _{OSC} - 18		ns (3)
T _{LLRL} (1)	ALE Low to RD# or PSEN# Low	73		53		T _{OSC} - 10		ns
T _{RHRL}	ALE High to RD# or PSEN# High	73		53		T _{OSC} - 10		ns
T _{LHAX}	ALE high to Address hold	147		105		2T _{OSC} - 20		ns (2)
T _{RLDV} (1)	RD# or PSEN# Low to Valid Data/Instruction.		33		13	T _{OSC} - 50		ns (3)
T _{RHDX} (1)	Data/Instruct. hold After RD# or PSEN# high	0		0		0		ns
$T_{RLAZ}(1)$	RD#/PSEN# Low to Address Float		2		2		2	ns
T _{RHDZ} (1)	Data/Instruct. Float After RD# or PSEN# high		63		43		T _{OSC} - 20	ns
T _{RHLH1} (1)	RD#/PSEN# high to ALE high (Instruction)	68		48		T _{OSC} - 15		ns (1)
T _{RHLH2} (1)	RD#/PSEN# high to ALE high (Data)	235		173		3T _{OSC} - 15		ns (1)
T _{WHLH}	WR# high to ALE high	235		173		3T _{OSC} - 15		ns
T _{AVDV1}	Address (P0) Valid to Valid Data/Instruction In		190		128		3T _{OSC} - 60	ns (2, 3, 4)
T _{AVDV2}	Address (P2) Valid to Valid Data/Instruction In		273		190		4T _{OSC} - 60	ns (2, 3, 4,)
T _{AVDV3}	Address (P0) Valid to Valid Instruction In		128		88		2T _{OSC} - 38	ns
T _{AVRL}	Address Valid to RD#/PSEN# Low	143		101		2T _{OSC} - 24		ns (2)
T _{AVWL1}	Address (P0) Valid to WR# Low	143		101		2T _{OSC} - 24		ns (2)
T _{AVWL2}	Address (P2) Valid to WR# Low	220		158		3T _{OSC} - 30		ns (2)
T _{WHQX}	Data hold after WR# high	63		43		T _{OSC} - 20		ns
T _{QVWH}	Data Valid to WR# high	58		38		T _{OSC} - 25		ns (3)
T _{WHAX}	WR# high to Address hold	147		105		2T _{OSC} - 20		ns
T _{XLXL}	Serial Port Clock Cycle Time	1000		750		12 T _{OSC}		ns

Table 1. AC Characteristics (Capacitive Loading = 50 pF)

TEMIC Semiconductors

		12 MHz		12 MHz		16	16 MHz		#C	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units		
T _{QVSH}	Output Data Setup to Clock Rising Edge	870		620		12 T _{OSC} - 133		ns		
T _{XHQX}	Output Data hold after Clock Rising Edge	720		510		10 T _{OSC} - 117		ns		
T _{XHDX}	Input Data Hold after Clock Rising Edge	0		0		0		ns		
T _{XHDV}	Clock Rising Edge to Input Data Valid		700		500		10 T _{OSC} - 133	ns		

Notes :

- 1. Specifications for PSEN# are identical to those for RD#.
- 2. If a wait state is added by extending ALE, add $2T_{OSC}$.

3. If a wait state is added by extending RD#/PSEN#/WR#, add 2T_{OSC}.

4. If wait states are added as described in both Note 2 and Note 3, add a total of 4T_{OSC}.

 \star The value of this parameter depends on wait states. See the table of AC characteristics.

Figure 1. External Instruction Bus Cycle in Non-Page Mode

 \star The value of this parameter depends on wait states. See the table of AC characteristics.

Figure 2. External Data Read Cycle in Non-Page Mode

 \star The value of this parameter depends on wait states. See the table of AC characteristics.

Figure 3. External Write Data Bus Cycle in Non-Page Mode

★ The value of this parameter depends on wait states. See the table of AC characteristics. ★★ A page hit (i.e., a code fetch to the same 256-byte "page" as the previous code fetch) requires one state $(2T_{OSC})$; a page miss requires two states $(4T_{OSC})$.

 \star The value of this parameter depends on wait states. See the table of AC characteristics.

Figure 5. External Read Data Bus Cycle in Page Mode

TMIC

Semiconductors

Figure 6. External Write Data Bus Cycle in Page Mode

* TI and RI are set during S1P1 of the peripheral cycle following the shift of the eight bit.

Figure 7. Serial Port Waveform – Shift Register Mode

Notation for timing parameters name

A = Address	D = Data	E = Enable	G = PROG#	H = high
Q = Data out	S = Supply (VPP)	V = Valid	X = No Longer Valid	Z = Floating

L = Low

DC Characteristics

Table 2. Absolute Maximum Ratings

Ambient Temperature Under Bias	
Commercial	0 to +70°C
Industrial	-40 to +85°C
Automotive	0 to +125°C
• Storage Temperature	-65 to +150°C
• Voltage on EA#/VPP Pin to VSS	0 to +13.0 V
• Voltage on any other Pin to VSS	-0.5 to +6.5 V
• I _{OL} per I/O Pin	15 mA
• Power Dissipation	1.5 W

Note:

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 3. DC Characteristics

Parameter values applied to all devices unless otherwise indicated.

Commercial	Industrial	Automotive
$TA = 0$ to $70^{\circ}C$	$TA = -40$ to $+85^{\circ}C$	$TA = -40 \text{ to } +125^{\circ}C$
VSS = 0 V	VSS = 0 V	VSS = 0 V
$VDD = 5 V \pm 10 \%$	$VDD = 5 V \pm 10 \%$	$VDD = 5 V \pm 10 \%$

Symbol	Parameter	Min	Typical (4)	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (except EA#)	-0.5		0.2VDD - 0.1	v	
v_{IL1}	Input Low Voltage (EA#)	0		0.2VDD - 0.3	v	
V _{IH}	Input high Voltage (except XTAL1, RST)	0.2VDD + 0.9		VDD + 0.5	v	
V_{IH1}	Input high Voltage (XTAL1)	0.7 VDD		VDD + 0.5	v	
V _{OL}	Output Low Voltage (Ports 1, 2, 3)			0.3 0.45 1.0	v	$I_{OL} = 100 \mu A \\ I_{OL} = 1.6 m A \\ I_{OL} = 3.5 m A \\ (1, 2)$
V _{RST} +	Reset threshold on		3.7		v	
V _{RST} -	Reset threshold off		3.3		v	
V _{RET}	VDD data retention limit		2		v	
V _{OL1}	Output Low Voltage (Ports 0, ALE, PSEN#)			0.3 0.45 1.0	V	$I_{OL} = 200 \ \mu A \\ I_{OL} = 3.2 \ m A \\ I_{OL} = 7.0 \ m A \\ (1, 2)$
V _{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN#)	VDD -0.3 VDD -0.7 VDD -1.5			V	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ (3)

Symbol	Parameter	Min	Typical (4)	Max	Units	Test Conditions
V _{OHI}	Output high Voltage (Port 0 in External Address)	VDD -0.3 VDD -0.7 VDD -1.5			V	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$
V _{OH2}	Output high Voltage (Port 2 in External Address during Page Mode)	VDD -0.3 VDD -0.7 VDD -1.5			v	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$
I _{IL}	Logical 0 Input Current (Ports 1, 2, 3)			- 50 - 75	μΑ	$V_{IN} = 0.45 V$ Automotive range
ILI	Input Leakage Current (Port 0)			± 10	μA	0.45 <v<sub>IN<vdd< td=""></vdd<></v<sub>
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			- 650	μΑ	VIN = 2.0 V
R _{RST}	RST Pull-Down Resistor	40		225	kΩ	
C _{IO}	Pin Capacitance		10		pF	$F_{OSC} = 16 \text{ MHz}$ $T_A = 25^{\circ}\text{C}$
I _{PD}	Powerdown Current		20		μΑ	
_			15		mA	F _{OSC} = 16 MHz
IDL	Idle Mode Current		10		mA	$F_{OSC} = 12 \text{ MHz}$
			50		mA	$F_{OSC} = 16 \text{ MHz}$
IDD	Operating Current		40		mA	$F_{OSC} = 12 \text{ MHz}$

Notes:

1. Under steady-state (non-transient) conditions, IOL must be externally limited as follows:

Maximum I _{OL} per port pin:	10 mA
Maximum IOL per 8-bit port:	Port 0 26 mA
	Ports 1-3 15 mA
Maximum Total IOL for all:	Output Pins 71 mA

If I_{OL} exceeds the test conditions, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.

3. Capacitive loading on Ports 0 and 2 causes the V_{OH} on ALE and PSEN# to drop below the specification when the address lines are stabilizing.

4. Typical values are obtained using VDD = 5 V and $T_A = 25^{\circ}C$ with no guarantee.

They are not tested and there is not guarantee on these values.

Figure 8. IPD Test Condition, Power-Down Mode

RDY#

Figure 11. Wait Timings

Table 4. Electrical Paramete	ers
------------------------------	-----

Parameter	Definition	Min	Max	Units
t _{clcl}	Clock period	62,50		ns
t _{set}	Ready valid after strobe (RD#, WR# or PSEN#) low		$(2N+1).t_{clcl} - 15$	ns
t _{hold}	Ready hold after strobe low	$(2N+1).t_{clcl} + 2$		ns

ΕM

Semiconductors

All other pins are unconnected

Extended 8-bit TSC80251 Products Overview

TSC 80251A1 : Extended 8–bit Microcontroller with Analog Interfaces	V.3.1
General Presentation	V.3. 1
Core FeaturesΓ	V.3.2
Product FeaturesΓ	V.3.2
Block Diagram Г	V.3.3
Pin DescriptionΓ	V.3.4
Ordering Information	V.3.7
TSC 80251G1 : Extended 8–bit Microcontroller with Serial Communication InterfacesГ	V.4.1
General Presentation	
Core Eastures	V.4.1
	V.4.1 V.4.2
Product FeaturesΓ	V.4.1 V.4.2 V.4.2
Product FeaturesΓ Product FeaturesΓ Block DiagramΓ	V.4.1 V.4.2 V.4.2 V.4.3
Product Features Γ Block Diagram Γ Pin Description Γ	 V.4.1 V.4.2 V.4.2 V.4.3 V.4.4

Extended 8-bit Microcontroller with Analog Interfaces

General Presentation

The TSC80251A1 products are derivatives of the TEMIC Application Specific Microcontroller family based on the extended 8–bit C251 Architecture described below.

This family of products are tailored to Microcontroller applications requiring analog interface structures.

Three major peripheral blocks have been implemented to provide this facility to the designer:

Application focus

Typical applications for these products are CD–ROM, Card or Barcode readers, Monitors, Car Navigation Systems, Airbag and Brake Systems, as well as all kinds of Industrial Control and Measurement Equipment. With the high instruction throughput, the TSC80251A1

C251 Architecture

The C251 Architecture at its lowest performance level, is Binary Code compatible with the 80C51 Architecture. Due to a 3-stage Instruction Pipeline, the CPU-Performance is increased by up to 5 times, using existing 80C51 code without any modification.

Using the new C251 Instruction Set, the performance will be increased by up to 15 times, at the same clock rate.

This performance enhancement is based on the 16-bit instruction bus and additional internal 8 and 16-bit data

TSC80251A1 Products

The TSC80251A1 is available as a ROMless version (TSC80251A1) or with on-chip Mask Programmable ROM (TSC83251A1). The TSC87251A1 is an EPROM version or OTPROM (One Time Programmable) compatible with the Mask ROM version.

- Analog to Digital Converter: 4 inputs at 8-bit resolution.
- Pulse Measurement Unit (PMU): 3 modules used to interface to smart analog sensors.
- Event and Waveform Controller (EWC): 5 programmable Counters e.g. for Pulse Width Modulation (PWM) or Compare/Capture functions.

products are focussing on all high-end 8-bit to 16-bit applications. They are also well suited to systems where a lower operating frequency is needed to reduce power consumption or Radio Frequency Interference (RFI), while maintaining a high level of CPU-power.

busses. The 24-bit address bus will allow an extension of the address space up to 16 Mbytes for future derivatives.

Programming flexibility and C-code efficiency are both increased by the Register-based Architecture, the 64-Kbyte extended stack space, combined with the new Instruction Set.

Combining the above features of the C251 core, the final code size could be reduced by a factor of 3, compared to an 80C51 implementation.

The standard production packages are 44 pins PLCC or TQFP.

The products can be delivered as 12 or 16 MHz versions at 5 Volts and in all major temperature ranges.

Core Features

Based on the extended 8-bit C251 Architecture, the TSC80251A1 includes a complete set of new or improved C51 compatible peripherals as well as a 4 channels 8-bit A/D converter for communication with the analog environment.

The key features of the new C251 Architecture are:

- Register-based Architecture:
 - 40-byte Register File
 - Registers accessible as Bytes, Words, and Double Word.
- 3-stage instruction pipeline
- Enriched Instruction Set
 - 16-bit and 32-bit arithmetic and logic instructions
 - Compare and conditional jump instructions
 - Expanded set of Move instructions
- Reduced Instruction Set
 - 189 generic instructions
 - Free space for additional instructions in the future
 - Additionally all 80C51 instructions are usable in binary mode

Product Features

- 1 Kbyte of internal RAM
- TSC83251A1: 24 Kbytes of on-chip masked ROM
- TSC87251A1: 24 Kbytes of internal programmable ROM (OTP or UV erasable in window package)
- TSC80251A1: ROMless version
- External memory space (Code/Data): 256 Kbytes
- Four 8-bit parallel I/O Ports (Ports 0, 1, 2 and 3 of the standard 80C51)
- Two 16-bit Timers/Counters (Timers 0 and 1 of the standard 80C51)
- Serial I/O Port : full duplex UART (80C51 compatible)
- Three PMU: Pulse Measurement Unit for smart analog interface

For each of the three modules:

- 8-bit prescaler
- 8-bit Timer for period and width measurements (duty cycle)
- The measurement can start either on the rising or on the falling edge
- One interrupt
- Only one port line is used

- 16-bit internal code fetch
- 64 Kbytes extended stack space
- Maximum addressable memory 16 Mbytes

The benefits of this new architecture are:

- 5 times 80C51 performances in binary mode (80C51 binary code compatibility)
- 15 times 80C51 performances in source mode (full architecture performance)
- Up to a factor 3 of code size reduction (when a C for 80C51 program is recompiled in C251 language)
- Reduction of RFI and power consumption (reduced operating frequency)
- Complete System Development Support
 - Compatible with existing tools
 - New tools available: Compiler, Assembler, Debugger, ICE
- Efficient C language support
- EWC: Event and Waveform Controller
 - High-speed output
 - Compare/Capture inputs
 - PWM: Pulse Width Modulator
 - Watchdog Timer capabilities
 - Compatible with PCA: Programmable Counter Array (5 x 16–bit modules)
 - 8-bit Analog to Digital Converter
 - 4 channels
 - Conversion time: 600 clock periods (37.5 µs at 16 MHz)
- Power Management
 - Power–On reset (integrated on the chip)
 - Power–Off flag (cold and warm resets)
 - Power-Fail detector
 - Power consumption reduction
 - Software programmable system clock
 - Idle and Power–Down modes
- Power Supply: $5V \pm 10\%$
- Up to 16 MHz operation and three temperature ranges(*):
 - Commercial (0 to 70°C)
 - Industrial (-40 to +85°C)
 - Automotive (-40 to +125°C)
- Packages: PLCC44, CQPJ44 (window) and TQFP44(**)

*Please contact your sales office for availability of speed options

Block Diagram

Figure 1. TSC80251A1 Block Diagram

Pin Description

Figure 1. TSC80251A1 Pin Description

Table 1. TSC80251A1 pin description

Pin	Туре	Description
P0.0:7	νo	Port 0 This is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. It is also Address/Data lines AD0:7, which are multiplexed lower address lines and data lines for external memory. External pull-ups are required during program verification.
P1.0:7	I/O	Port 1 This is an 8-bit bidirectional I/O port. It receives the low-order address byte during EPROM programming and verification. It serves also the functions of various special features: P1.0 AN0 : Analog Input 0, P1.1 AN1 : Analog input 1, P1.2 ECI : EWC External Clock input. AN2 : Analog input 2, P1.3 CEX0 : EWC module 0 Capture input/PWM output. AN3 : Analog input 3, P1.4 CEX1 : EWC module 1 Capture input/PWM output, P1.5 PMI0 : Pulse Measurement input 0, CEX2 : EWC module 2 Capture input/PWM output. P1.6 EAD6 : External Address line 6, PMI1 : Pulse Measurement input 1, CEX3 : EWC module 3 Capture input/PWM output. P1.7 A17 : Address line for the 256–Kbyte memory space depending on the byte CONFIG0 PMI2 : Pulse Measurement input 2, CEX4 : EWC module 4 Capture input/PWM output.
P2.0:7	I/O	Port 2 This is an 8-bit bidirectional I/O port with internal pull-ups. It is also Address lines A8:15, which are upper address lines for external memory.
P3.0:7	ΙΟ	Port 3 This is an 8-bit bidirectional I/O port with internal pull-ups. It receives the high-order address bits during EPROM programming and verification. It serves also the functions of various special features: P3.0 RXD : Serial Port Receive Data input. P3.1 TXD : Serial Port Transmit Data output. P3.2 INT0# : External Interrupt 0. P3.3 INT1# : External Interrupt 1. P3.4 T0 : Timer 0 external clock input. P3.5 T1 : Timer 1 external clock input. P3.6 WR# : Write signal for external access. P3.7 A16 : Address line for 128-Kbyte and 256-Kbyte memory space depending on the byte CONFIG0. RD# : Read signal for external access, depending on the byte CONFIG0.
ALE/PROG#	I/O	Address Latch Enable/Program Pulse It signals the start of an external bus cycle and indicates that valid address information is available on lines A15:8 and AD7:0. An external latch can use ALE to demultiplex the address from address/data bus. It is also used as the Program Pulse input PROG#, during EPROM programming.
PSEN#	0	Program Store Enable/Read signal output This output is asserted for a memory address range that depends on bits RD0 and RD1 in configuration byte CONFIG0.
EA#/VPP	I	External Access Enable/Programming Supply Voltage This input directs program memory accesses to on-chip or off-chip code memory. For EA# = 0, all program memory accesses are off-chip. For EA# = 1, an access is on-chip OTPROM/EPROM/ROM if the address is within the range of the on-chip OTPROM/RDROM/ROM; otherwise the access is off-chip. The value of EA# is latched at reset. For devices without ROM on-chip, EA# must be strapped to ground. It receives also the Programming Supply Voltage VPP during EPROM programming operation.
Vref	I	Voltage reference for the Analog to Digital Converter
VSS0	GND	Digital Ground

Pin	Туре	Description
VDD0	PWR	Digital Supply Voltage
VSS1	GND	Digital Ground
AVSS	GND	Analog Ground
AVDD	PWR	Analog Supply Voltage
RST	I	$\begin{array}{c} \textbf{Reset input to the chip} \\ \text{Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD0. \\ \text{Asserting RST when the chip is in Idle mode or Power–Down mode returns the chip to normal operation.} \end{array}$
XTAL1	I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal timing.
XTAL2	0	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected.

TEMIC

Semiconductors

Ordering Information

Examples

Part Number	Description
TSC80251A1-A16CBR	ROMless, Source Mode, 16 MHz, PLCC 44, 0 to 70°C, Tape and Reel
TSC87251A1-A12CB	OTP, Source Mode, 12 MHz, PLCC 44, 0 to 70°C
TSC87251A1–A12CBR	EPROM, Source Mode, 12 MHz, PLCC 44, 0 to 70°C, Tape and Reel

Development Tools

Part Number	Description
TSC80251A1–SKA	Software Starter Kit Keil
TSC80251A1–SKB	Software Starter Kit Tasking
TSC80251A1–EKA	Evaluation Kit Keil
TSC80251A1-EKB	Evaluation Kit Tasking

Product Marking :

TEMIC
Customer P/N
Temic P/N
[©] Intel'95
YYWW Lot Number

Extended 8–bit Microcontroller with Serial Communication Interfaces

General Presentation

The TSC80251G1 products are derivatives of the TEMIC Application Specific Microcontroller family based on the extended 8-bit C251 architecture described below.

This family of products are tailored to microcontroller applications requiring highly increased instruction throughput and addressable memory space combined with an optimized internal power management.

Three major features have been implemented to provide optimized performance to the designer:

Application Focus

Typical applications for these products are ISDN-terminals, digital and analog subscriber linecards, PABX systems, networking applications, high speed modems, computer peripherals or similar systems in other segments. With the high instruction throughput, the TSC80251G1 products are focusing on all high-end 8-bit

C251 Architecture

The C251 architecture at its lowest performance level, is binary code compatible with the 80C51 architecture. Due to a 3-stage instruction pipeline, the average CPU performance is increased by 5 times, using existing 80C51 code without any modification.

Using the new C251 instruction set, the performance is increased by up to 15 times, at the same clock rate. This performance enhancement is based on a new 16-bit and even partly 32-bit oriented powerful instruction set, and additional internal 8 and 16-bit data busses. A 24-bit

TSC80251G1 Products

The TSC80251G1 is available as a ROMless version (TSC80251G1) or with on-chip Mask Programmable ROM (TSC83251G1). The TSC87251G1 is an EPROM version compatible to the Mask ROM version.

The standard production packages are 44 pins PLCC or

- Serial Communication Interfaces: I2C/µWire/SPI and RS232 protocols
- Power Monitoring and Management Unit:
 - Power–Fail reset
 - Internal clock prescaler
 - Power–Down mode (current < 20µA)
- 256 Kbytes of external addressable memory for code and data

to 16-bit applications. They are also well suited to systems where a lower operating frequency is needed to reduce power consumption or Radio Frequency Interference (RFI), while maintaining a high level of CPU power.

address bus will allow an extension of the address space up to 16 Mbytes for future derivatives.

Programming flexibility and C-code efficiency are both increased by the register-based architecture, the 64-Kbyte extended stack space and the new instruction set.

Combining the above features of the C251 core, the final code size could be reduced by a factor of 3, compared to an 80C51 implementation.

QFP, 40 pins PDIL.

All products can be delivered as 12 or 16 MHz versions at 5 Volts and in all major temperature ranges. ROMless and Mask ROM versions are also available in 3 Volts.

Core Features

Based on the extended 8-bit C251 architecture, the TSC80251G1 includes a complete set of new or improved C51 compatible peripherals as well as multiple protocol serial interfaces.

The key features of the new C251 architecture are:

- Intel's MCS[®]251 compliance
- Register-based architecture:
 - 40–byte register file
 - Registers accessible as bytes, words, and double word
- 3-stage instruction pipeline
- Enriched instruction set
 - 16-bit and 32-bit arithmetic and logic instructions
 - Compare and conditional jump instructions
 - Expanded set of move instructions
- Reduced instruction set
 - 189 generic instructions
 - Free space for additional instructions in the future
 - Additionally all 80C51 instructions are usable in binary mode

Product Features

- C251 core based (MCS[®]251Intel compliance)
- Pin–Out compatibility with 80C51 standard products
- 1 Kbyte of internal RAM
- TSC83251G1: 16 Kbytes of on-chip masked ROM
- TSC87251G1: 16 Kbytes of internal programmable ROM (OTP or UV erasable in window package)
- TSC80251G1: ROMless version
- External memory space (Code/Data) programmable from 64 Kbytes to 256 Kbytes
- Four 8–bit parallel I/O Ports (Ports 0, 1, 2 and 3 of the standard 80C51)
- Three 16-bit Timers/Counters (Timers 0, 1 and 2 of the standard 80C51)
- Serial I/O Port: full duplex UART (80C51 compatible) with independent Baud Rate Generator
- EWC: Event and Waveform Controller
 - Compatible with PCA: Programmable Counter Array (5×16–bit modules)
 - High-speed output
 - Compare/Capture I/O
 - 8-bit Pulse Width Modulator (PWM)
 - Watchdog Timer capabilities

- 16-bit internal code fetch
- 64 Kbytes extended stack space
- Maximum addressable memory of 16 Mbytes

The benefits of this new architecture are:

- 5 times 80C51 performances in binary mode (80C51 binary code compatibility)
- 15 times 80C51 performances in source mode (full architecture performance)
- Efficient C language support: up to a factor 3 of code size reduction (when a C program for 80C51 is recompiled in C251 language)
- Complete system development support
 - Compatible with existing tools
 - New tools available: C–Compiler, Assembler, Debugger, ICE
- Reduction of RFI and power consumption (reduced operating frequency)
- SSLC: Synchronous Serial Link Controller
 - I2C protocol
 - µWire and SPI protocols
- Hardware Watchdog Timer
- Power Monitoring and Management
 - Power–Fail reset
 - Power–On reset (integrated on the chip)
 - Power–Off flag (cold and warm resets)
 - Software programmable system clock
 - Idle and Power–Down modes
- Keyboard interrupt on Port 1
- Non Maskable Interrupt input (NMI)
- Real-time Wait states input (WAIT#)
- Power Supply: 5 V +/- 10% and 3 V +/- 10% (*)
- Up to 16 MHz operation and three temperature ranges:
 - Commercial (0 to +70°C)
 - Industrial (-40 to +85°C)
 - Automotive (-40 to +125°C)
- Packages : PLCC44, CQPJ44 (window), QFP44 and PDIL40 (**)
- * Please contact your sales office for availability of 3 V option
- ** Please contact your sales office for QFP and PDIL availability

Block Diagram

Pin Description

Figure 3. TSC80251G1 Pin Description

Table 1. TSC80251G1 Pin Description

Pin	Туре	Description
P0.0:7	I/O	 Port 0 This is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. It is also Address/Data lines AD0:7, which are multiplexed lower address lines and data lines for external memory. External pull-ups are required during program verification.
P1.0:7	νo	Port 1This is an 8-bit bidirectional I/O port.It receives the low-order address byte during EPROM programming and verification.It is ereceives the low-order address byte during EPROM programming and verification.It serves also the functions of various special features:P1.0T2 : Timer 2 external clock input/outputP1.1T2EX : Timer 2 external clock input/outputP1.2ECI : EWC external clock inputP1.3CEX0 : EWC module 1 Capture input/PWM outputP1.5CEX1 : EWC module 1 Capture input/PWM outputMISO : μ Wire/SPI master input slave outputP1.6CEX3 : EWC module 3 Capture input/PWM outputSCK : μ Wire/SPI master input slave outputP1.7A17 : Address line for the 256-Kbyte memory space depending on the byte CONFIG0CEX4 : EWC module 4 Capture input/PWM outputSDA : 12C synchronous serial link data MOSI : μ Wire/SPI master output slave inputPOrt 1 is also used as a keyboard interface.
P2.0:7	I/O	Port 2 This is an 8-bit bidirectional I/O port with internal pull-ups. It receives data during EPROM programming and verification. It is also Address lines A8:15, which are upper address lines for external memory.
P3.0:7	ΙΟ	Port 3 This is an 8-bit bidirectional I/O port with internal pull-ups. It receives the high-order address bits during EPROM programming and verification. It serves also the functions of various special features: 9.0 RXD : Serial Port Receive Data input P3.1 TXD : Serial Port Transmit Data output P3.2 INT0# : External Interrupt 0 P3.3 INT1# : External Interrupt 1 P3.4 T0 : Timer 0 external clock input P3.5 T1 : Timer 1 external clock input P3.6 WR# : Write signal for external access P3.7 A16 : Address line for 128-Kbyte and 256-Kbyte memory space depending on the byte CONFIG0, RD# : Read signal for external access, depending CONFIG0 byte.
ALE/PROG#	I/O	Address Latch Enable/Program Pulse It signals the start of an external bus cycle and indicates that valid address information is available on lines A15:8 and AD7:0. An external latch can use ALE to demultiplex the address from address/data bus. It is also used as the Program Pulse input PROG#, during EPROM programming.
PSEN#	0	Program Store Enable/Read signal output This output is asserted for a memory address range that depends on bits RD0 and RD1 in CONFIG0 byte.
EA#/VPP	I	External Access Enable/Programming Supply Voltage This input directs program memory accesses to on-chip or off-chip code memory. For EA# = 0, all program memory accesses are off-chip. For EA# = 1, an access is on-chip OTPROM/EPROM/ROM if the address is within the range of the on-chip OTPROM/RPROM/ROM; otherwise the access is off-chip. The value of EA# is latched at reset. For devices without ROM on-chip, EA# must be strapped to ground. It receives also the Programming Supply Voltage VPP during EPROM programming operation.
WAIT#	I	Real-time Wait States Input When this pin is active (low level), the memory cycle is stretched until it becomes high.

TEMIC

Semiconductors

4

Pin	Туре	Description
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt.
VDD	PWR	Digital Supply Voltage
VSS	GND	Digital Ground
VSS1	GND	Digital Ground
VSS2	GND	Digital Ground
RST	I	Reset input to the chipHolding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than $V_{\rm IH1}$ is applied, whether or not the oscillator is running.This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD.Asserting RST when the chip is in Idle mode or Power–Down mode returns the chip to normal operation.
XTAL1	I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal timing.
XTAL2	0	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected.

TEMIC

Semiconductors

TEMIC Semiconductors

TSC 80251G1

Ordering Information

Examples

Part Number	Description
TSC80251G1-A16CBR	ROMless, C251 Default Mode, 16 MHz, PLCC 44, 0 to 70°C, Tape and Reel
TSC80251G1-B16CBR	ROMless, C51 Binary Mode, 16 MHz, PLCC 44, 0 to 70°C, Tape and Reel
TSC87251G1-12CB	OTP, 12 MHz, PLCC 44, 0 to 70°C
TSC87251G1-12CC	EPROM, 12 MHz, CQPJ 44, 0 to 70°C

Development Tools

Part Number	Description
TSC80251G1–SKA	Software Starter Kit Keil
TSC80251G1–SKB	Software Starter Kit Tasking
TSC80251G1-EKA	Evaluation Kit Keil
TSC80251G1-EKB	Evaluation Kit Tasking

Product Marking :

TEMIC Customer P/N Temic P/N ©© Intel'95 YYWW Lot Number

Section V

Packaging

C51 Microcontroller Family Packaging Selection Guide

Plastic Packages

	PDIL40	PLCC44	PLCC52	PQFP44 13.9 mm foot print	PQFP44 12.3 mm foot print	PQFP64	VQFP44 1.4 mm thickness	TQFP44 1.0 mm thickness
TSC80C31/TSC80C51	•	•		•	•		•	•
TSC80CL31/TSC80CL51	•	•		•	•		•	•
80C31/80C51	•	•		•	•		•	•
80C32/80C52	•	•		•	•		•	•
80C154/83C154	•	•		•	•		•	•
83C154D	•	•		•	•		•	•
TSC8051C1	•	•	•	•				
TSC8051C2*	•	•	•	•				
TSC8051A1*						•		
TSC8051A2*		•		•	•			
TSC8051A11*						•		
TSC8051A30*		•		•	•			

* to be introduced during 1997, check with your TEMIC sales contact for availability

Ceramic Packages

	SB40*	CDIL40 (.6)	LCC44*	JLCC44	CQPJ44
TSC80C31/TSC80C51		•	•		•
80C31/80C51		•	•		•
80C32/80C52	•	•	•	•	•
80C154/83C154		•	•		•
83C154D		•	•		•

* only for space grade, drawing not included in this chapter, but available upon request.

Windowed Packages (for EPROM/OTP versions)

Windowed packages	CDIL40**	CQPJ44	CQPJ64**
TSC87C51*	•	•	• .
87C52*	•	•	
TSC8751C1*	•	•	
TSC8751C2*	•	•	
TSC8751A1*			•
TSC8751A2*		•	
TSC8751A11*			•
TSC8751A30*	······································	•	

* to be introduced during 1997, check with your TEMIC sales contact for availability

** package drawings to be defined

Package Drawings

1. PDIL 40

- 2. PLCC 44
- 3. PLCC 52
- 4. PQFP 44 (13.9 mm Foot Print)
- 5. PQFP 44 (12.3 mm Foot Print)
- 6. VQFP 44 (1.4 mm Thickness)

7. TQFP 44 (1.0 mm Thickness) 8. PQFP 64 9. CDIL 40 (.6) 10. LCC44 11. CQPJ 44 12. CQPJ 44 with Window

1. PDIL 40

Figure 1. PDIL Package Size

	ММ		IN	СН
	Min	Max	Min	Max
A	-	5.08	-	.200
A1	0.38	-	.015	
A2	3.18	4.95	.125	.195
В	0.36	0.56	.014	.022
B1	0.76	1.78	.030	.070
С	0.20	0.38	.008	.015
D	50.29	53.21	1.980	2.095
Е	15.24	15.87	.600	.625
E1	12.32	14.73	.485	.580
e	2.54	B.S.C.	.100 B.S.C.	
eA	15.24 B.S.C.		.600 B.S.C.	
eB	-	17.78	-	.700
L	2.93	3.81	.115	.150
D1	0.13	-	.005	-

2. PLCC 44

Figure 2. PLCC Package Size

	ММ		INCH	
	Min	Max	Min	Max
Α	4.20	4.57	.165	.180
A1	2.29	3.04	.090	.120
D	17.40	17.65	.685	.695
Dl	16.44	16.66	.647	.656
D2	14.99	16.00	.590	.630
Е	17.40	17.65	.685	.695
E1	16.44	16.66	.647	.656
E2	14.99	16.00	.590	.630
e	1.27	BSC	.050 BSC	
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	.056
J	0.51	-	.020	-
K	0.33	0.53	.013	.021
Nd	11		11	
Ne	1	1	11	

3. PLCC 52

Figure 3. PLCC Package Size

	ММ		INCH	
	Min	Max	Min	Max
А	4.20	5.08	.165	.200
Al	2.29	3.30	.090	.130
D	19.94	20.19	.785	.795
D1	19.05	19.25	.750	.758
D2	17.53	18.54	.690	.730
Е	19.94	20.19	.785	.795
E1	19.05	19.25	.750	.758
E2	17.53	18.54	.690	.730
e	1.27	BSC	.050 BSC	
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	.056
J	0.51	-	.020	
K	0.33	0.53	.013	.021
Nd	13		13	
Ne	1	3	1	13

4. PQFP 44 (F1 Code)

Figure 4. PQFP Package Size

	MM		IN	СН
	Min	Max	Min	Max
Α	2.00	2.40	.079	.094
С	0.10	0.20	.004	.008
D	13.65	14.15	.537	.557
D1	9.90	10.10	.390	.398
E	13.65	14.15	.537	.557
E1	9.90	10.10	.390	.398
e	0.80	B.S.C.	.0315 B.S.C.	
f	0.20	0.40	.008	.016
J	0.00	0.30	.000	.012
L	0.65	0.95	.025	.037
N1	11		11	
N2		11	11	

5. PQFP 44 (F2 Code)

Figure 5. PQFP Package Size

	MM		IN	СН
	Min	Max	Min	Max
Α	1.90	2.40	.075	.095
С	0.10	0.20	.004	.008
D	12.10	12.50	.476	.492
D1	9.90	10.10	.390	.398
Е	12.10	12.50	.476	.492
E1	9.90	10.10	.390	.398
e	0.80	B.S.C.	.0315 B.S.C.	
f	0.25	0.45	.010	.018
J	0.00	0.20	.000	.008
L	0.35	0.65	.014	.026
N1	11		11	
N2		11	11	

6. VQFP 44

Figure 6. VQFP Package Size

	ММ		IN	СН
	Min	Max	Min	Max
Α	_	1.60	-	.063
A1	0.6	64 REF	.025	REF
A2	0.6	54 REF	.025	FREF
A3	1.35	1.45	.053	.057
D	11.90	12.10	.468	.476
D1	9.90	10.10	.390	.398
Е	11.90	12.10	.468	.476
E1	9.90	10.10	.390	.398
J	0.05	-	.002	6
L	0.45	0.75	.018	.030
e	0.80 BSC		.0315 BSC	
f	0.3	5 BSC	.014 BSC	

.

7. TQFP 44

Figure 7. TQFP Package Size

	ММ		IN	СН		
	Min	Max	Min	Max		
Α	_	1.20	-	.047		
Al	0.95	1.05	.037	.041		
С	0.09	0.20	.004	.008		
D	12.0	12.00 BSC		.472 BSC		
D1	10.0	00 BSC	.394 BSC			
Е	12.0	00 BSC	.472 BSC			
E1	10.0	00 BSC	.394 BSC			
J	0.05	0.15	.002	.006		
L	0.45	0.75	.018	.030		
e	0.80 BSC		.0315 BSC			
f	0.30	0.45	.012	.018		

8. PQFP 64

Figure 8. PQFP Package Size

	MM		INC	CH
	Min	Max	Min	Max
А	2.65	3.00	.104	.118
С	0.13	0.23	.005	.009
D	16.95	17.45	.667	.687
D1	13.95	14.05	.549	.553
Е	16.95	17.45	.667	.687
El	13.95	14.05	.549	.553
e	0.80	BSC	.0315 BSC	
f	0.30	0.45	.012	.018
J	0.10	0.25	.004	.010
L	0.65	0.95	.026	.037
N1	16		16	
N2	1	6	16	

9. CDIL 40 (.6)

Figure 9. CDIL Package Size

	ММ		IN	СН
	Min	Max	Min	Max
Α	_	5.71	_	.200
b	0.36	0.58	.014	-
b2	1.14	1.65	.045	.195
с	0.20	0.38	.008	.022
D	-	53.47	_	.070
Е	13.06	15.37	.514	.015
eA	15.2	4 BSC	.600 BSC	
e	2.5	4 BSC	.100 BSC	
L	3.18	5.08	.125	.200
Q	0.38	1.40	.015	.055
S 1	0.13	-	.005	-
a	0° – 15°		0° – 15°	
N	40			

10. LCC 44

Figure 10. LCC Package Size

	ММ		INCH	
	Min	Max	Min	Max
Α	1.75	3.05	.069	.180
A1	1.37	2.23	.054	.120
B1	0.56	0.71	.022	.028
B3	0.15	0.56	.006	.022
D/E	16.25	16.82	.640	.662
e	1.27 BSC		.050 BSC	
e1	0.38	_	.015	_
h	1.02 REF		.040 REF	
j	0.51 REF		.020 REF	
L/L1	1.14	1.40	.045	.055
L2	1.90	2.41	.075	.095
L3	0.08	0.38	.003	.015
Nd	11		11	
Ne	11		11	

11. CQPJ 44

Figure 11. PDIL Package Size

	MM		INCH	
	Min	Max	Min	Max
A	2.16	4.83	.085	.190
Al	1.91	3.81	.075	.150
A2	0.76	1.27	.030	.050
В	0.46	0.56	.018	.022
С	0.14	0.28	.0054	.011
D/E	17.40	17.65	.685	.695
D1/E1	16.31	16.71	.642	.658
D2/E2	6.35 BSC		.250 BSC	
D3/E3	12.70 BSC		.500 BSC	
D4/E4	16.84	17.30	.663	.681
e	1.27 BSC		.050 BSC	
L1	0.25	-	.010	-
Q	2.41	2.92	.095	.115
Q1	1.52	1.78	.060	.070
Q2	0.08		.003	. –
R	0.38	-	.015	-
R1	0.76	1.02	.030	.040
ND/NE	11		11	

12. CQPJ 44 with Window

Figure 12. CQPJ Package Size

	ММ		INCH	
	Min	Max	Min	Max
Α	_	4.90	_	.193
С	0.15	0.25	.006	.010
D – E	17.40	17.55	.685	.691
D1 – E1	16.36	16.66	.644	.656
e	1.27 TYP		.050 TYP	
f	0.43	0.53	.017	.021
J	0.86	1.12	.034	.044
Q	15.49	16.00	.610	.630
R	0.86 TYP		.034 TYP	
N1	11		11	
N2	11		11	

TEMIC is a member of Daimler-Benz