
TDL zao LINKER

User's Manual

(Manual Revision 0)
March 24, 1978

Written by David S. Hirschman

Copyright 1978 by Technical Design Labs Inc.

TDL Z80 LINKER User's Manual
Table of Contents

Table of Contents

1 Introduction .•••••.••••.•••••••••••..•••.•..•••.•. 2

2 Overview of LINKER Operation •..••..••••..•..••••.• 3

3 LINKER Input Format •..••.••......•..•....••••••••. 4

3.1 Command Syntax .•••..•..•...•••.•.••.•••••• 6

3. 2 Output File ••.•.•..•.....•..•...•••••••••• 7

3.3 Input Files .•...•••.••..•...•••...•.•.••.. 7

3.4 /MAIN Option •••••••••••••••••••••••••••••• 8

3. 5 /MAP Option ••••••••.•••.•••.•••••••••.•••• 8

3.6 /SEARCH Option•..••.....••.. ~ •••.••••. 9

3.7 /DEFINE Option •.........•...•.•••••.•.••.• 9

3.8 /LOCATE Option •...•.••....•..•..•...•.•... 10

3.9 /ACTUAL Option ••...•.•....•.••.....••.•••• 10

Appendix A - LINKER Error Messages••.••..• 12

Appendix B Pre-Defined Symbols••..•.......•... 16

Appendix C - Syntax Surnrnary•............••.••• 17

Appendix D Program Forrnat ..•..•.•.•••••.••.••••••• 19

Appendix E - LINKER Examples ...•....•••••..•..•.•••. 21

Appendix F Using LINKER with Z80 Assembler ..••••.. 22

TDL Z80 LINKER User's Manual
Introduction

1 Introduction

Page 2

LINKER is a TDL utility program that can bind together
individually compiled modules of a program into a single
file that may be loaded and executed by the CP/M * operating
system.

There are many advantages to the practice of linking
together separately compiled modules instead of working with
a single, large program. A large program may be decomposed
into small modules which may be edited and compiled more
quickly. For example, to correct a bug, the programmer need
only re-compile the affected modules and re-link the
program, instead of re-compiling the entire program.
Generally, the linking process is faster than compilation.

It often happens that a routine is used in several
programs, a special I/O routine or COSINE function, for
example. Instead of copying the source code for this
routine into each program, it may be compiled once and then
linked in wherever it may be required. Furthermore, using
LINKER, routines written in different languages may be
combined into a single program.

The Z80 Macro Assembler and FORTRAN IV can produce
"libraries", or files containing more than one separately
compiled module. LINKER offers methods for including all or
only some of the modules in a library into the program.

The remainder of this guide describes how to use LINKER.
An overview of LINKER concepts and operation is offered in
section 2. The input format to LINKER is defined in section
3.

* CP/M as it appears.in this manual is a Registered
Trademark of Digital Research.

TDL Z80 LINKER User's Manual
Overview

2 Overview of LINKER Operation

Page 3

LINKER takes as input, FILEs which contain one or more
separately compiled MODULES. Files containing many modules
concatenated together are referred to as LIBRARYs.

Each module has a name. In ZSO Assembler, the .!DENT
pseudo operation is used to declare the module name. Its
use is highly recommended, as the default module name is
".MAIN. 11

, and duplicate module names in a program are not
allowed. The other translators assign a module name
automatically.

Each module is made up of SEGMENTS {also called
"relocation bases"). Segments are the basic units of code
and/or data involved in the linking process. After LINKER
is aware of what modules are to be included in the program,
it assigns an absolute memory address to each segment in
each module. Any code in each segment is relocated so that
it will execute at the address to which it is assigned.

Several kinds of segments may be contained in a module.
The main code segment, usually containing all of the
executable code in the module, has the same name as the
module itself. The main data segment of each module also
has the same name as the module, preceded by a quote (').
For examole, a module named ARCTAN would contain a code
segment named "ARCTAN" and a data segment named "'ARCTAN".

All of the other segments in each module are common
areas, usually containing only data, which may be shared by
other modules. One of t~ese segments is named 11 .BLNK.", and
is referred to as the "unlabeled common". This is the
common block that will be created by FORTRAN when the
programmer doesn't supply a specific name for a common
block. All of the other common blocks have names specified
by the programmer.

One of the major features of the LINKING process is that
each separately compiled module may access code and data
defined in other modules. An INTERNAL symbol is one whose
address is available to modules other than the one in which
it is defined. Symbols which are not INTERNAL are invisible
to other modules. An EXTERNAL symbol is one which is used
in a module, but is actually an INTERNAL symbol in another
module. All EXTERNAL references must be satisfied by
INTERNAL declarations in another module, with two
exceptions: symbols may -be explicitly defined using the
/DEFINE option (section 3.7), and some symbols are
pre-defined by LINKER (see Appendix B)

An ENTRY point is an INTERNAL symbol which comes into
play in library search mode. In this mode of operation only
those library modules having ENTRY points which are
referenced as EXTERNAL symbols by one or more already linked
modules are included in the program (see section 3.6).

TDL Z80 LINKER User's Manual
LINKER Input Format

3 LINKER Input Format

MODULE, SEGMENT, and SYMBOL identifiers

Page 4

An identifier is a string of characters from the
following set:

A-Z, 0-9, #$%*&'?+-\~-{I}!.:<>[]

Normally, an identifier consists of no more than six
characters. However, an identifier for a .DATA. segment of
a module (as discussed in the previous section) is preceded
by a quote (').

Identifiers may not contain blanks. Lower case letters,
when used, are automatically translated into upper case.
The first character of an identifier may not be a number 0 -
9. The following are examples of valid identifiers:

PROGSA
SORT-3

'SORT-3
FOO$$$

(a .DATA. segment name)

The following are not valid identifiers:

34ABC - an identifier may not begin with a number
CHECKERS - too many characters
NIM A - contains a space

FIL2 NAME

A file name has the following format (with brackets []
indicating optional portions):

[device:]name[.extension]

The 11 device: 11 indicates on what disk drive the file
resides. If present, it must be one of 11 A" through 11 P". If
omitted, the logged-in disk is assumed. If LINKER can't
locate an input file on the specified disk, it will try
drive A.

The file "name" is required, and must consist of no more
than eight characters from the character set given above for
identifiers, except that ·the characters<>.:[] may not be
used.

The ".extension" indicates what the type of the file is.
It may consist of no more than 3 characters, from the same
set of characters allowable in the file "name". The
defaults for ".extension" are defined on page 7.

TDL LibU L..1..1..~1\.c:d\ Ut>~i.' 's JYic.d.ual
LINKER Input Format

16 BIT VALUE

A 16 bit value may be
number. A literal is one
quotes, for example: "Vl 11

•

expressed as a literal or as a
or two characters enclosed in

A number may be expressed in several different bases, as
shown in the table below. A radix character immediately
following the number indicates which number system is being
used:

Base Radix Valid Digits Valid Range
----- ------------ -----------

hex H 0-9 ' A-F 0 - OFF FF
decimal 0-9 0 - 65535
octal 0 0-7 0 - 177777

binary B 0 and 1 16 digits

If the trailing radix character is omitted, "H" (hex) is
assumed. All numbers must begin with a numeric digit (0-9).
A preceding minus sign indicates a negative number. In this
case, a two's complement representation is used.

The following
14170
OClBS
-55.
"A"

are examples of 16 bit values:
an octal number
a hex number
a negative decimal number
a one character literal

The following are not valid 16 bit values:

100000.
960
"AB
ClC2

INITIATING LINKER

- decimal number too large
- invalid octal digit
- missing closing quote
- does not begin with a digit

LINKER may be used interactively, or input may be given
as it is executed:

LINKER <commands> <er>

This means that LINKER may used in a SUBMIT file.

To use LINKER in the interactive mode, simply enter

LINKER <er>

on the console. LINKER will read commands from the console,
prompting with an asterisk 11 * 11 All input is stored
uninspected until a carriage return is typed. The standard
line editing features of CP/M * (rubout, CTL-U, CTL-C,
CTL-E, etc.) are available. If a CTL-T is found on any
line, the entire command being entered is aborted.

TDL ZSO LINKER User's Manual
LINKER Input Format

Page 6

A disk file containing all or only part of a command may
be inserted into the input at any point by preceding the
disk file name with an "@". The default file extension is
".LNK". These disk files may not contain further "@"
specifications. The most common use of this feature is to
prepare a file containing a complete command; then,

LINKER @<file name> <er>

links the program. Usually, these 11 .LNK" files
prepared once for a given program and used over
again, greatly simplifying the whole process.

may be
and over

All LINKER commands have the
whether the interactive mode
separated by a semi-colon 11

;
11

•

rec e iv es the " Q 11 co mm and (q u it) .

same format, regardless of
is used. Commands are

LINKER terminates when it
For example,

<command> ; <command> ; <command> ; Q

LINKER also terminates
execution is exhausted.

when input provided with its

If an error is found, the current input line is echoed
with two question marks inserted after the point at which
the error was detected. This is followed by an error
message (see Appendix A).· The command must then be
re-entered.

All input is free format. Blank lines are ignored, and
a command may extend to any number of lines. All lower case
letters are automatically translated to upper case.
Comments may be included with input from any source by using
an asterisk "* 11 When an asterisk is encountered, all
remaining characters on the same line are ignored.

If a CTL-C is typed while LINKER is running, it will
quit and return to the monitor. If CTL-E is typed, the
current command is aborted, and LINKER will prompt for more
input if it is being used interactively.

3.1 Command Syntax

Each command to LINKER links one program, and is of the
format:

[<output file> =] .
<input file l>, <input file 2>, ••. , <input file m>
/<option l> /<option 2> ... /<option n>

LINKER links together appropriate modules from the input
files to create the output file, under control of any
options present. If the program is linked successfully, its
name is printed on the console, along with the address of
the highest byte used in the program and the program size
rounded up to the nearest K (lK = 1024 bytes).

. j •

LINKER Input Format

3.2 Output File

The output file is the file
linked program. The file extension
file is to be produced. If given,
following:

which will contain the
indicates what kind of
it must be one of the

COM - Absolute binary core-image file, ready to be
loaded and executed by the operating system.

HEX - INTEL "hex" format file (see Appendix I of the
Z80 Relocating Macro Assembler User's Manual).

If the . <extension> is not given, ".COM" is assumed. The
output file replaces any existing file of the same name.

Examples:

B:PROGl

PROG2.HEX

- A .COM file for PROGl is placed
on disk B.

- An INTEL "hex" file for PROG2
is placed on the
currently logged-in disk.

The output file and equal sign following it may be
omitted; then, the name of the first input file is used, and
an extension of .COM is assumed.

3.3 Input Files

Each <input file> may contain either a single compiled
module, or may be a library containing many compiled
modules. Normally, all modules contained in each <input
file> will be included in the output file, but this default
action may be overridden as explained below. The <input
f ile>s must contain all modules that are to be included in
the output file, unless the /SEARCH option is used (see
section 3.6).

If the file extension is not·given, ".REL" is assumed.
Of course, all files must contain only compiled, relocatable
object modules, in either ascii or binary format.

A module selection clause may optionally be added
immediately after each input file name, to indicate that
only some of the modules within the file are to be linked.
It has two possible formats:

(INCLUDE <module l>, <module 2>, .•• <module n>)

which causes only the named <module>s to be included in the
output file, and

(EXCLUDE <module l>, <module 2>, ..• <module n>)

which causes all modules in the library EXCEPT the listed
ones to be included in the output file.

TDL Z80 LINKER User's Manual
LINKER Input Format

3.4 /MAIN Option

Page 8

This option specifies the main module of the program.
Its format is:

/MAIN <module name>

The main rnodul~ must have a defined starting address. This
is done in Z80 Assembler by supplying a label with the
".END" pseudo op. The other translators automatically
supply a starting address. Execution of the program will
begin at this address~

If the /MAIN option is omitted, LINKER looks for a
global symbol named .MAIN. and uses this for the starting
address if found. If not, the first module encountered in
the input files which has a defined starting address is
assumed to be the main module of the program.

3.5 /MAP Option

The /MAP Option may be used to obtain a printout of the
memory map on the list device. Reports can be selected that
show the memory addresses assigned by LINKER to the segments
and symbols in the linked program, or that describe the
modules that were linked.

The format of the /MAP option is:

/MAP <flag l> <flag 2> <flag n>

The <flag>s control what items will be included in the
memory map report, as follows:

G - Global symbols (i.e. all internal symbols of all
loaded modules). The symbols are listed in
alphabetical order, with their assigned addresses.
The address shown is the address that will be used
for all references to this symbol. This may not
be the same as the address where the symbol is
loaded, if the /ACTUAL option is used.

S - Segments. All of the program segments are listed
in alphabetical order, and the assigned address
and size is given for each. If the segment is to
be relocated so that it will execute at an address
different from its assigned one, via the /ACTUAL
option, this address is given also.

A - All. This option combines the information given
by the S and G flags. All segments are listed, in
order of ascending memory address. Each segment
is followed by all of the global symbols contained
within that segment, again listed by ascending
memory address. Absolute symbols are listed under
a dummy segment named .GLOB.

1'DL il()U L..L.J..'4!\Ct..1.\. U,;.je.1.. ~ L"ioHuci.J.

LINKER Input Format

M - Modules. Each module is listed, along with its ID
number, version and revision number, and date and
time assembled (older versions of the Z80
Assembler do not output the information needed to
generate this report. The .PROGID pseudo op is
used to create this information for each module) .

If no <flag>s are given, /MAP A is assumed.

3.6 /SEARCH Option

This option causes library files to be searched in order
to satisfy external references which remain unresolved after
all modules contained in the input files have been linked.
The format of the option is:

/SEARCH <library l>, <library 2>, ... <library n>

Each <library> has the same syntax as the input files of
section 3.3. INCLUDE and EXCLUDE clauses may be used.

A module in a library is loaded when one or more of its
ENTRY points (see section 2) are referred to by other
modules, but have not yet been defined anywhere. As long as
undefined symbols exist, all specified libraries are
searched iteratively in the order given, until a complete
pass over the libraries yields no new modules to be loaded.
That is, if loading a library module creates new unresolved
symbols, all of the libraries may be searched again in an
attempt to find it.

When FORTRAN IV modules are included in a program, the
FORTRAN library "LIBRARYS.REL" is automatically added to the
end of the list of libraries to be searched. It must be
present on the logged-in disk or on drive A. This library
is designed to be searched in a single pass, and error #31
(see Appendix A) may result if an additional pass must be
made over it. Therefore, it may necessary to design any
other libraries that are to be searched so that only a
single pass is required to pick up all needed modules.

3.7 /DEFINE Option

This option may be used to give values to symbols which
are not defined by any module in the program. These defined
symbols are then used to resolve EXTERNAL references made by
the program modules.

The syntax of this option is:

/DEFINE <symbol l> = <value l>,
<symbol 2> = <value 2>,

<symbol n> = <value n>

Each symbol is given a 16 bit value. This value could
represent a constant, or an absolute address.

TDL Z80 LINKER User's Manual
LINKER Input Format

The following is an example of /DEFINE usage:

Page 10

/DEFINE CONST1=1238., FLAGS= 10110011B, COUNT= OC1D4,
VRSION = "Al"

There are some symbols which are pre-defined by LINKER.
A list of them is given in Appendix B.

3.8 /LOCATE Option

Normally, LINKER assigns memory addresses sequentially
to segments as they are encountered in the input files.
This option may be used to specify the absolute memory
address where a segment is to be located instead of allowing
LINKER to choose it. It is useful for accomplishing actions
such as locating a common block segment in a video refresh
memory area.

The format is:

/LOCATE <segment-1> = <address-1>,
<segment-2> = <address-2>,

<segment-n> = <address-n>

LINKER will assign each segment at the given 16 bit
address, and will avoid assigning other segments to the same
memory area. However, no check is made to see if two
segments are LOCATEd so that they overlap. Also, if a
segmented is LOCATEd too low in memory, an error #46 may
occur during pass 2 (see Appendix A). If a segment is
located too high in memory, error #79 may occur.

A "/LOCATE .DATA. = <address>" will concatenate all of
the data segments from each module and treat them as a
single segment to be assigned to the given address.

A "/LOCATE .PROG. = <address>" will concatenate all of
the main code segments of each module, and assign them to
the given address if possible. If a locate of .DATA. is
done as well, the program is divided into code and data
areas (as long as the programmer creates pure .PROG.
segments). If not, all of the program segments, code and
data, are loaded beginning at the given address.

3.9 /ACTUAL option

As discussed in section 2, each program segment is
normally designed to execute at the memory address at which
it is to be loaded. Using this option, however, a segment
may be relocated so that it will execute at a different
address (presumably, the segment will be moved at run time
to the correct location) .

TDL Z80 LINKER User's Manual
LINKER Input Format

The format is:

/ACTUAL <segment-1> = <address-1>,
<segment-2> = <address-2>,

<segment-n> = <address-n>

Page 11

Each segment, which will be loaded wherever it would
normally be loaded, will be relocated to execute at the
given address. All references from other segments into them
will also be relocated.

TDL Z80 LINKER User's Manual
Error messages

Page 12

APPENDIX A - LINKER Error Messages

A few LINKER error conditions are indicated by a short
message which should be self-explanatory. For the rest, an
error number is given which may be looked up in the table
below. In the case of a syntax error, the input line
containing the error is echoed, with two question marks "??"
following the point where the error was detected. Other
errors may be flagged as occurring in PASS 1 or PASS 2.

Many of the error messages involve a problem with a disk
file. In this case, the name of the disk file is given, as
well as a byte offset (in hex) indicating the position in
the file where the error was detected.

Any error codes not appearing in this table are
diagnostic errors indicating a bug in LINKER. Try running
LINKER again. If the error persists, please collect the
relevant information (error message, LINKER version date,
input files, etc.) and notify the Technical Assistance
Manager at Technical Design Labs.

Error Codes

1 Expecting equal sign.

2 - Expecting "/" or ";". The command
the end of the input files, and is
options.

parser has reached
trying to read the

3 - Bad option name. See sections 3.4 and following.

4 - Option not implemented. The version of LINKER you are
using does not contain this option yet.

5 - Expecting identifier. See Section 3 for an explanation
of correct identifier format.

7 - Wrong digits in number. Which
depends, of course, on the radix
Section 3.

digits
you are

are valid
using. See

8 - Number or literal too large. All numbers and literals
must be able to fit into 16 bits. See section 3.

9 - Token too large. The string of characters you entered
at this point is too long to possibly be any kind of
valid input.

10 - Expecting "device:" or "file" name.
should appear in the input at this
3, file name format).

A proper file name
point (see section

TDL Z80 LINKE~ User's Manual
Error messages

Page 13

11 - Invalid "device:" specifier. Valid device specifiers
are "A:" through 11 P: 11

•

12 - Invalid file name. A file name must consist of no more
than eight characters from the proper character set
(see section 3, file name format).

13 - Invalid file extension. A file extension must consist
of no more than three characters. An output file may
only have extensions 11 .HEX 11 or ".COM".

14 - Expecting 16-bit value. A number or literal must
appear in the input at this point.

15 - Incorrect INCLUDE or EXCLUDE format. Either you did
not give one of the key words INCLUDE or EXCLUDE, or
there is an incorrect module ID, or the closing right
parenthesis")" is missing.

17 - "@" inside @ file.
used via an "@"
specifications.

Disk files containing commands and
may not contain further "@"

20 - Insufficient memory. There was not enough free memory
available for LINKER to use for its symbol and segment
tables. Therefore, the program could not be linked.

31 - Duplicate segment. The indicated segment appears m~re
than once in the input modules. Did you remember to
use the .!DENT pseudo op in Z80 Assembler programs?
Another way this error can occur is if FORTRAN IV is
being used and multiple /SEARCH passes are made over
LIBRARYS.REL. See section 3.6.

34 - Undefined segment. A segment which you referred to in
the /LOCATE or /ACTUAL options was never encountered in
the input files.

40 - Can't close output file. Is the disk write protected?

41 - Error in extending file.

42 - No space for output file. There is not enough space on
the disk to hold the output file.

43 - No directory space. The disk
file is to be placed doesn't
disk directory.

upon which
have enough

the output
room in the

45 - Can't open output file. This error may be caused by a
full directory, or by a protection failure.

TDL Z80 LINKER User's Manual
Error messages

Page 14

46 - Loading below lOOH in .COM file. A .COM file is
organized so that the beginning of the file corresponds
to memory address lOOH, since the operating system
always loads a .COM file at this address (see Appendix
D). Thus, nothing may be loaded below this address.
This error may be caused by a /LOCATS to 2n address
below lOOH.

50 - Expecting module record. The input file was supposed
to contain a module record at this point, but did not.
This error often occurs when there is trash at the end
of the previous module in a library file.

51 - Invalid record type. The input file contained an
incorrect .REL record type at the indicated offset.

53 - Undefined symbols exist. All of the listed symbols
will have to either be made INTERNAL symbols of some
module or defined via the /DEFINE option.

54 - Missing starting address. You did not use the /~AIN
option, symbol .MAIN. did not exist, and none of the
program modules had a defined starting address.

55 - The main module (as given by the /MAIN option) has no
defined starting address. Be sure to give a starting
address with the .END pseudo op in Z80 Assembler
programs.

56 - The main module (as given by the /MAIN option) was
never encountered in the input files; therefore, no
starting address could be determined.

57 - Can't recognize module. There is garbage in the input
file at this point. Are you sure this file is a valid
.REL file? If all else fails, try re-compiling.

58 - Can't process FORTRAN. The version of LINKER you are
using can't link FORTRAN modules.

60 - Duplicate input file. Each input or library file can
appear only once in a command.

64 - FORTRAN symbol number out of range. This and the
following two errors usually indicate a smashed FORTRAN
.REL file. Try re-compiling.

65 - Bad FORTRAN relocation base type.

66 - Bad FORTRAN op code.

70 - Duplicate symbol. The indicated
defined in more than one module.

global symbol is

TDL Z80 LINKER User's Manual
Error messages

Page 15

79 - Program won't fit into memory. This program won't fit
into the address space of a 16-bit micro-computer.
Either it is simply too large, or you created large
wasted areas of memory by using the /LOCATE option.

80 - Expecting carriage return. The
was supposed to have a carriage
location, but did not. Are you
.REL file? Try re-compiling the
fails.

indicated
return at

sure this
program

input file
the given

is a valid
if all else

81 - Expecting line-feed in input file.

82 - Expecting ASCII
contain a valid
to.

character. The input
ASCII character where

file did not
it was supposed

83 - Bad Checksum. ZSO Assembler ".REL" files contain
checksum bytes after each record which are used to
validate the data that is read from them. A checksum
error usually indicates a file that is corrupted with
errors: try re-compiling.

85 - End of input file. The end of the indicated file was
reached unexpectedly.

87 - Empty input file. The indicated input file was totally
empty, except perhaps for some filler characters.

TDL Z80 LINKER User's Manual
Pre-Defined Symbols

Appendix B - Pre-Defined Symbols

Page 16

There are a few global symbols which are
pre-defined by LINKER before the linking process
begins. They are listed below. The user should not
attempt to define these symbols himself, as a duplicate
symbol error (code #70) will result. Future versions
of LINKER may have more of these symbols. They will be
of the form .XXXX., so the use of symbols of this form
should be avoided.

Pre-Defined Symbols

.FREE. - This symbol points to a word which contains
the address of the first free byte in memory
above the program. It is useful when the
programmer wishes to make use of free memory
at execution time. When a 11 /LOCA'rE . DATA. =
<addr> 11 is done (i.e. data segments are
assigned to a separate memory location) ,
.FREE. points to the first free byte above
the data area.

If FORTRAN IV modules are included in the program, many
other symbols will be defined via modules brought in from·
LIBRARYS.REL. The reader is referred to the TDL FORTRAN IV
User's Manual for details.

TDL Z80 LINKER User's Manual
Syntax Summary

Page 17

Appendix C - Syntax Summary

Below is a brief summary of LINKER input syntax, in a
modified BNF format. The symbol "::=" should be read as
"is defined to be". Angle brackets "<>" delimit
meta-linguistic objects, which are themselves defined in a
following line. Square brackets " [] •• indicate optional
input. Curly braces 11

{}
11 indicate input which may be

omitted or repeated as many times as desired. A vertical
bar "I" indicates a choice - the form preceding or following
may be used.

<LINKER input>

<command>

<output file>

<input file>

<file name>

<device>

::=<command> {;<command>} ;Q

::= [<output file>=] <input file>
{,<input file>}
{/<option>}

::=<file name>
(the extension, if included,
must be .COM or .HEX)

::=<file name> [<module selection>]

::=[<device>:] <name> [.<extension>]

: : = "A 11 through 11 P 11

<name> ::=a string of no more than 8 characters
from <fset>, beginning with one of
"A" though "Z".

<extension> ::=a string of no more than 3 characters
from <fset>, beginning with one of
"A" though "Z".

<module selection> ::= (INCLUDE <module> {,<module>})
'I (EXCLUDE <module> {,<module>})

<option> ::=<main> I <map> I <search> I <define>
<locate> I <actual>

<main> ::=MAIN <module>

<map>

<search>

<define>

<locate>

<actual>

: := MAP [A] [S] [G] [M]

::=SEARCH <input file>
{,<input file>}

::=DEFINE <symbol>= <value>
{,<symbol>= <value>}

::=LOCATE <segment>= <value>
{,<segment> = <value>}

::=ACTUAL <segment>= <value>
f ,<sPnment> = <value>~

TDL Z80 LINKER User's Manual
Syntax Summary

F2g e 18

<module>

<symbol>

<segment>

<id>

<fset>

<nset>

<value>

<literal>

<number>

::=<id>

::=<id>

··= [']<id>

··=a string of no more than 6 characters
from <nset>, which does not begin
with a number.

::= A-Z, 0-9, #$%*&'?+-\~-{I}!

: : = < f set> and < > • : []

::=<number> I <literal>

::="<any one or two characters>"

· ·= [-] 0 - OFFFF[H]
I o - 65535.
I o - 1777770
I 0 - llllllllllllllllB

TDL Z80 LINKER User's Manual
Program Format

Appendix D - Program Format

Page 19

The .HEX or .COM file created by LINKER is constructed
so that it will appear in memory as shown in figure 1 when
loaded by the operating system. The operating system
assumes that all programs will begin execution at address
lOOH. LINKER therefore places a a 16 byte initialization
routine at this address which sets up a stack and jumps to
the starting address of the program. This area also
contains .FREE., and other fields which are used by FORTRAN,
or which may be defined in later versions of LINKER. A 3
byte patch area is included for debugging purposes.

lOOH ---> I LSPD 6
I .DBUG.: NOP
I NOP
I NOP
I JMP .MAIN.
I .WORD 0
I .FREE.: .WORD >-------------
!-----------------------!

llOH ---> I I
I segment 1 I
I I
1-----------------------1
I I
I segment 2 I
I I
1-----------------------1
I .MAIN.: I

I
-----------------------!

I
segment N I

I
-----------------------!

I
.BLNK. I

I
-----------------------!

!<-------

Figure 1

If the initialization routine is not wanted, the /LOCATE
option may be used to locate a segment at lOOH, overwriting
it. Hopefully, this segment would contain the first
executable instructions of the program at the very front.

Of course, the program segments
i'I m1-r;('IY"•T -,li.')HP 1()1\•• 1-, •. 1t"\("I j..t,,..,

may be located anywhere
IT(J('7\•T1r. nriti1>•

TDL Z80 LINKER User's Manual
Program Format

Page 20

end of the program (or at the end of the data area if a
/LOCATE .DATA. is done). Symbol .FREE. points to the first
byte following this. Whenever FORTRAN IV is used, module
.EMUL. (the emulator) is loaded, and it will be loaded on a
page (256 byte) boundry due to an efficiency trick wnich
makes use of this fact.

TDL Z80 LINKER User's Manual
Examples

Appendix E - LINKER Examples

Example 1

Page 21

Suppose you have a program consisting of just one
module, contained in file TEST.REL. To produce a file
TEST.COM to execute, just type:

LINKER TEST <er>

Recall that the name of the output file defaults to the name
of the first input file (the only input file in this case).
This is a simple link, with no memory map or other options.
The module must have a defined starting address, and no
external symbols.

Example 2

The following command is used to link LINKER itself, and
is kept in file LINKER.LNK. Thus, when LINKER must be
linked,

LINKER @LINKER

does the job. The command is:

linker.com =
bases, command, console,
convertr, decimal, diskfile,
files, fortran, freespac, getfile,
hash, linker, mainfind,
map, memory,
printer, progbild, relread,
segments, string, symbols
/main main /map m a

scanner,

/define cpmbas = lOOH
Ide f in e mo n th = '' 3 11

,

day = "62 11
,

year = "87"
/locate .prog. = 150

*These have to be backwards
*since they are stored
*as words
*Save patch area

There are twenty-three input files, containing one module
each - this makes the individual files easy to edit. They
all have extension ".REL". The main module of the program
is contained in file LINKER.REL, and has module name MAIN.
Two memory map reports are to be produced. A symbol CPMBAS
is defined, and three symbols MONTH, DAY, and YEAR, which
are used to print out the date when LINKER is executed.
Thus, the date may be changed without any re-compilation .
. PROG. is located at address lSOH, which leaves a 64 byte
''hole" between there and llOH where the initialization
routine ends (see Appendix D). This space is reserved in
the event that bugs have to be fixed.

TDL Z80 LINKFR User's Manual
Z80 Assembler Hints

Appendix F - Using LINKER with Z80 Assembler

Page 22

This appendix is a list of hints which may be of help in
setting up Z80 Assembler modules for use with LINKER.

SYMBOLS

Internal and External symbols are created by using the
.INTERN and .EXTERN pseudo operations. .ENTRY is used to
create entry-point symbols.

SWITCHES

When assembling a module for use with LINKER, do not use
the .PASS or .XLINK switches. Do use the .PREL and .LINK
switches (these are defaults). You may use the .PHEX switch
to get an ASCII .REL file, but using .PBIN (the default)
will result in a savings of disk space.

MODULE NAME

Always use the .IDENT operation to give each module a
unique name. If you don't, the module will have name .MAIN.
Each module in a program must have a unique name.

STARTING ADDRESS

A label should be supplied with the .END pseudo op to
define the starting address of the main module of the
program. Then use the /MAIN option of LINKER to indicate
the main module. Alternatively, make the starting address
.MAIN., and declare .MAIN. as .INTERN (FORTRAN does this
automatically).

LIBRARIES

Libraries may be created by using the .PRGEND switch.
This results in the creation of a new module starting at
that point. PIP may be used to create libraries as well,
but use the 0 (object} switch for binary .REL files, and do
not use this switch for ascii .REL files. FORTRAN and Z80
Assembler modules, and binary and ascii modules may be mixed
together in a library.

MEMORY MAP

If the M report of the memory map is wanted, use the
.PROGID pseudo op to define the program name, version
number, and revision number.

COMMON BLOCKS

To make a common block, declare the common block name to
be an .EXTERN in each module that must reference it. The
common should not be declared .INTERN by any module. Then,
use .LOC to define the common. For example,

	Contents
	1: Introduction
	2: Overview of LINKER Operation
	3: Linker Input Format
	3.1: Command Syntax
	3.2: Output File
	3.3: Input Files
	3.4: /MAIN Option
	3.5: /MAP Option
	3.6: /SEARCH Option
	3.7: /DEFINE Option
	3.8: /LOCATE Option
	3.9: /ACTUAL Option

	Appendix A: LINKER Error Messages
	Appendix B: Pre-Defined Symbols
	Appendix C: Symtax Summary
	Appendix D: Program Format
	Appendix E: LINKER Examples
	Appendix F: Using LINKER with Z80 Assembler

