
___ ~_CQ)_~~~c=o
m.CROSYS I ems

Software
Reference Library

he MacAdvantage™:
UCSD Pascal®

Thank you for your purchase <of The MaeAdvantage: UCSD
Pascal. You have selected a precision engineered product that
will allow you to write sophisticated applications on your
Macintosh. But before you start, please read the following:

• REGISTRATION CARD. Please complete and return the
enclosed registration card immediately. Not only will it serve
as your "key" to our Customer Support Department, but it
will also allow us to keep you informed of new releases and
other information that may mterest you ..

• UPGRADES. We are contill'.llal1y making our software
better by adding new features and by correcting problems.
Customers who return their registration card will be eligible
to upgrade their software for a nominal charge to cover our
costs. You will be notified by mail when new releases are
available.

• INSIDE MACINTOSH. Although we have documented our
software in detail, we highly recommend that you obtain a
copy of Inside Macintosh for more information on developing
Macintosh applications. Inside Macintosh is available
through:

Apple Computer, Inc.
467 Saratoga Avenue; Suite 621
San Jose, CA 95129

.. APPLICATIONS. If you plan to distribute applications
that you write using this produd, you will be pleased to know
that we offer several economical licensing plans. Please
contact our Customer Sales Department at {619} 451-1230
for more information. Additionally, we may be interested in
publishing your application through our distribution channels.
If you are interested in having SofTech Microsystems market
your application,please contact oq:r ApplicatioBsProduct
Marketing Manager.

-8afTech Microsystems, Inc.

The MacAdvantage:
UCSD Pascal

SoITech Microsystems, Inc.
San Diego, California

1-182-MA

Copyright © 1984 by SoITech Microsystems, Inc.

All rights reserved. No part of this work may be reproduced in
any form or by any means or used to make a derivative work
(such as a translation, transformation, or adaptation) without the
written permission of SoITech Microsystems, Inc.

Finder, System, Ituagewriter, RMaker and Editor are copyrighted
programs of Apple. Computer, Inc. that are licensed to SoITech
Microsystems, Inc. to distribute for use only in combination with
The MacAdvantage: UCSD Pascal. Apple software shall not be
copied onto another diskette (except for archive purposes) or into
memory unless as part of the execution of The MacAdvantage:
UCSD Pascal. When The MacAdvantage: UCSD Pascal has
completed execution, Apple software shall not be used by any
other program.

Portions of this manual relating to Editor and RMaker have been
reproduced with permission of Apple Computer, Inc.

Apple is a registered trademark of Apple Computer, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc. Lisa
is a registered trademark of Apple Computer, Inc.

UCSD and UCSD Pascal are registered trademarks of The
Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific
license only, and any unauthorized use is contrary to the laws of
the State of California.

The MacAdvantage is a trademark of SoITech Microsystems, Inc.

Printed in the United States of America.

Disclaimer

This document and the software it describes are subject to change
without notice. No warranty expressed or implied covers their
use. Neither the manufacturer nor the seller is responsible or
liable for any consequences of their use.

APPLE COMPUTER, INC. MAKES NO WARRANTIES,
EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS
MERCHANTABILITY OR ITS FITNESS FOR ANY
P ARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS
WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU
MAY HAVE WHICH VARY FROM STATE TO STATE.

PREFACE

Congratulations on your purchase of UCSD Pascal for your
Apple Macintosh computer!

The discussions in this manual assume that you are already
familiar with your Macintosh. If you are not, we suggest that
you first read the introductory chapters of Macintosh, your
owner's guide.

The product you have purchased contains a UCSD Pascal
compiler and a group of program development tools. The tools
include a program and text file editor, a resource compiler, a
symbolic debugger, a librarian utility, a runtime option
configuration utility, and a set of interface units to the Macintosh
ROM.

With these tools, you can build sophisticated application
programs directly on a Macintosh with 128K or 512K of memory.
The Macintosh interface units give you access to virtually all of
the Macintosh ROM routines. Thus, you can write programs
that make use of overlapping windows, a menu bar and desk
accessories. We have included an example program that shows
you how to access some of these features.

The Pascal language supported by the compiler is an extended
version of UCSD Pascal designed for access to the Macintosh
ROM. The new language features include:

• Support for 32-bit integers (type integer2).

• A new setlength intrinsic that makes it easier to set the length
of a string.

1200301:00B v

PREFACE

• New bit manipulation intrinsics: band, bor, bxor, shiftleft,
and shiftrighL .

• An enhanced sizeof intrinsic that allows you to specify the
units that sizeof counts in.

• . Pointer intrinsics that help you to make use of 32-bit
absolute addresses used by the Macintosh ROM: adr, pointer,
offset, ptrinc, absadr, reladr, absmove, derefhnd, and locate.

• A new type of external procedure that generates an in-line
call to a Macintosh ROM routine.

UCSD Pascal programs are supported by a sophisticated runtime
package that eliminates many of the worries associated with
writing large programs. Theruntime package

• provides simplified I/O through the Pascal I/O intrinsics.

• supports dynamic memory management through the Pascal
intrinsics ~ and dispose.

• handles dynamic segment overlays automatically.

vi 1200301:00B

TABLE OF CONTENTS

GETTING STARTED o ••••••••••••• 1-1
HARDWARE REQUIREMENTS 1-1
DISK CONTENTS .0 •••••• 0 •••• o. 0 •••••••• : •••• 0 ••• 1-2
BACKING UP DISKS 0 ••••• 0 •••••• 0 ••••• 0 •••••••••• 1-4
RUNNING A PROGRAM 0 1-4
ORGANIZATION OF THE MANUAL 0 ••••• 0 1-7

GENERAL OPERATIONS ... 0 •••• 0 2-1
CREATING PROGRAMS 2-2
RUNNING PROGRAMS 2-9
USING EXECUTIVE 2-25
ACCESSING FILES 0 0 •• 0 • 0 •••••••••••••• 2-28
BUILDING AN APPLICATION .. 0 •• 0 2-38

EDITOR. 0 ••• 3-1
USING THE EDITOR. 0 • 0 ••••••••••••••••••••••••• 3-2
SELECTING TEXT 3-6
SCROLLING AND MOVING THE DISPLAY 3-8
THE FILE MENU .. 0 •• 0 3-10
THE EDIT MENU 0 3-11
THE SEARCH MENU 0 3-14
THE FORMAT MENU 0.' .3:....16
THE FONT MENU 0 o ••••• o ••••• 0 •••••• o •••••• 3-17
THE SIZE MENU 0 •••••••• 3-18

PASCAL LANGUAGE4-1
OVERVIEW•............................... 4-1
USING THE HANDBOOK4-4
INTEGER2 DATA TypE 0 "'4-8
PASCAL INTRINSICS 0 • 0 .4-14
IN-LINE PROCEDURES AND FUNCTIONS 4-25
SELECTIVE USES DECLARATIONS 0 ••• 4-26

TABLE OF CONTENTS

CONFORMANT ARRAyS 4-30
COMPILER OPTIONS 4-36
CONDITIONAL COMPILATION ... : 4-43

MACINTOSH INTERFACE 5-1
HOW TO USE THE INTERFACE UNITS 5-3
DATA CONVENTIONS 5-7
DIFFERENCES FROM INSIDE MACINTOSH 5-20
SPECIFIC TECHNIQUES 5-25
EXAMPLE APPL1CATION " 5-31

RMAKER .. 6-1
ABOUT RMAKER 6-2
RMAKER INPUT FILES 6-2
DEFINED RESOURCE TypES 6-5
CREATING YOUR OWN TYPES 6-10
USING RMAKER 6-12

LIBRARIAN .. 7-1
USING THE LIDRARIAN 7-2
LIDRARIAN COMMANDS 7-4

DEBUGGER .. 8-1
GENERAL INFORMATION 8-2
DEBUGGER COMMANDS 8-7
EXAMPLES OF DEBUGGER USAGE 8-24
PERFORMANCE MONITOR 8-26

MEMORY MANAGE"MENT 9-1
OVERVIEW 9-1
MEMORY ORGANIZATION 9-2
FAULT HANDLING 9-9
RUNTIME SUPPORT LIBRARy 9-13

P-MACHINE ARCHITECTURE 10-1
OVERVIEW , 10-1
ST ACK ENVIRONMENT 10-2
CODE FILE FORMAT 10-4
CODE SEGMENT ENVIRONMENT 10-18
TASK ENVIRONMENT 10-20

T ABLE OF CONTENTS

FAULTS AND EXECUTION ERRORS 10-24
P-MACHINE REGISTERS 10-31
P-CODE DESCRIPTIONS 10-33

Constant Loads 10-38
Local Loads and Stores 10-39
Global Loads and Stores 10-41
Intermediate Loads and Stores 10-42
Extended Loads and Stores 10-44
Indirect Loads and Stores 10-45
Multiple Word Loads and Stores 10-46
Parameter Copying 10-48
Byte Load and Store 10-49
Packed Field Loads and Stores 10-49
Structure Indexing and Assignment 10-50
Logical Operators 10-53
Shift Operators 10-55
Integer Arithmetic 10-57
Unsigned Arithmetic•........ 10-63
Real Arithmetic. • 10-64
Set Operations 10-66
Byte Array Comparisons 10-69
Jumps 10-70
Routine Calls and Returns 10-72
Concurrency Support 10-76
String Operations•....... 10-77
Operand Type Conversion Operators 10-79
Miscellaneous Instructions 10-83

STANDARD PROCEDURES 10-87
LONG INTEGERS•....... 10-95

The DECOPS Routine•.. 10-99

APPENDICES A-I
A: MACINTOSH INTERFACE A-I

A.I Table of Compile Time Dependencies A-I
A.2 Identifier Cross-Reference List A-3
A.3. Control Manager (ControIMgr)•....... A-17
AA. Desktop Manager (DeskMgr)•........ A-20
A.5. Dialog Manager (DialogMgr)• A-21
A.6. Event Manager (EventMgr)•....... A-24
A.7. File Manager (FileMgr) A-26
A.8. Font Manager (FontMgr) A-29
A.9. Global Types (MacCore) A-31
A.10. Global Data (MacData) A-32

TABLE OF CONTENTS

A.n. Error Codes (MacErrors)•...... A-33
A.12. Memory Manager (MemoryMgr) A-36
A.13. Menu Manager (MenuMgr)•...•.. A-38
A.14. Operating System Types (OsTypes) ...•..••.• A-41
A.15. Operating System Utilities (OsUtilities) A-44
A.16. Package Manager (Packages)•..... A-47
A.17. Parameter Block I/O Manager (PBIOMgr) A-51
A.18. Print Manager (PrintMgr) A-54
A.19. Printer Driver (printDriver) A-57
A.20. Quickdraw Types (QdTypes)•......... A-58
A.21. Quickdraw (QuickDraw)•........... A-60
A.22. Resource Manager (ResMgr)•....... A-67
A.23. Scrap Manager (ScrapMgr) ..•.............. A-70
A.24. Serial Driver (Serial) A-71
A.25. Sound Driver (Sound) A-73
A.26. ToolBox Utilities (TBoxUtils) .•........•.... A-75
A.27. ToolBox Types (TBTypes) .•............... A-77
A.28. Text Edit (TextEdit) A-79
A.29. Window Manager (WindowMgr) •...•.•.....• A-81

B: ERROR MESSAGES ..•...............•.•....... B-l
B.l. Program Startup Errors•.......•.•....•. B-1
B.2. Execution Errors•....•...•...•• B-2
B.3. I/O Errors ..•....•..•........•.•..•.. ~ ..•• B-3
B.4. Syntax Errors•.•.•...•....••......•.••. B-5·

C:P-CODE TABLES••.....••.•........... C-l
C.l. Numerical Listing ...••.....•••.....•••...... C-l
C.2. Alphabetical Listing ...••..•...•.•.••........ C-6
C.3. p-Code Index ..•.......•.•.•.•...••...••. C-ll

INDEX•.............•.........•...•......•.... 1-1

1
GETTING STARTED

This chapter gets you started writing UCSD Pascal programs for
your Macintosh. The chapter is organized into the following
sections:

HARDWARE REQUIREMENTS discusses the hardware
components that are required or recommended for effective use of
this product.

DISK CONTENTS details the composition of the disks you
received with this product.

BACKING UP DISKS tells you how to make back up copies of
your master disks.

RUNNING A PROGRAM guides you through the steps of
creating and running a simple UCSD Pascal program.

ORGANIZATION OF THE MANUAL introduces you to the
organization of the remainder of this user manual.

HARDWARE REQUIREMENTS

The product you have purchased is designed to work on the
Macintosh with 128K or 512K bytes of memory and on Lisa
under MacWorks. Programs may operate slightly differently in
different hardware environments, based on memory size. In
particular, when running on a machine with more memory,
programs will tend to run faster and be able to handle more data.

1200301:01B 1-1

GETTING STARTED Chapter 1

Although this product will run on a one drive Macintosh, if you
plan on developing programs that use the Macintosh interface we
strongly suggest that you use two disk drives.

One option of the Debugger allows you to interact with it using
an external terminal attached to the Printer port on the back of
your Macintosh. An external terminal is not necessary for using
the Debugger, but if you have one, it can make debugging easier,
particularly when writing programs which put up windows on the
screen.

DISK CONTENTS

You received two disks when you purchased this product. One of
the disks, labeled UCSD Pascal 1, is a bootable Macintosh disk.
The other disk, labeled UCSD Pascal 2, is not bootable.

The following files are located on UCSD Pascal 1:

" Set Options. Set Options is a utility program that allows
you to set the runtime options of a code file.

-Mae Library. Mac Library is a collection of interface units
that are used by programs that access the Macintosh ROM
routines.

" Compiler, Compiler is the UCSD Pascal compiler.

" Editor. Editor is a program and text file editor.

" Executive. Executive provides menu style access to your
program development tools.

" Pascal Runtime. Pascal Runtime is the runtime support
package for Pascal programs.

fI p-Maehine. p-Machine is the virtual machine emulator
that supports running the p-code generated by the UCSD
Pascal compiler.

1-2 1200301:01B

DISK CONTENTS

• Empty Program, Empty Program contains the standard
program resources.

Three of the files, Pascal Runtime, p-Machine and Empty
Program, are located within a folder called Pascal Folder.

The following files are located on UCSD Pascal 2:

• RMaker. RMaker is a resource compiler program that allows
you to add your own resource definitions to a program.

• Librarian. Librarian is a utility program that allows you to
combine UCSD Pascal units into a single library file.

• Debug Runtime. Debug Runtime is a version of Pascal
Runtime that contains the Debugger and performance
monitor.

• Errorhandl.CODE. Errorhandl.CODE is a utility unit that
provides various program control functions to the user.

• Mac Interface. Mac Interface is a library of code files that
contain the interface to the Macintosh ROM routines.

• Grow. Grow is the source to an example UCSD Pascal
program that accesses the Macintosh ROM to handle a menu
bar, windows and desk accessories.

• Grow.R. Grow.R is the resource definition file for the Grow
program.

Two of the files, Grow and Grow.R, are located within a folder
called Example Folder.

1200301:01B 1-3

GETTING STARTED Chapter 1

BACKING UP DISKS

You should immediately make a backup copy of the disks that
you received with this product. This will insure that you don't
accidentally loose any information contained on the disks.

Macintosh, your user's guide, describes in detail how you make
backup copies of disks on the Macintosh. Here is a summary of
the steps:

1. Insert the disk you want to copy.

2. Insert t?-e disk you want to copy to.

3. Drag the icon of the disk you want to copy to the icon of the
other disk.

If you have a one drive Macintosh it is faster for you to use the
Disk Copy program to make backup copies of your disks.

Once you have made the backup copies, put the copies in a safe
place.

WARNING: You cannot arbitrarily move UCSD Pascal
programs to different volumes and expect them to run. The
names of the two runtime support files are embedded in each
code file. If you move a code file to a different volume, you may
need to update the runtime support file names with the Set
Options utility. See the GENERAL OPERATIONS chapter for
details.

RUNNING A PROGRAM

This section guides you through the steps of compiling and
running a simple Pascal program. Even if you don't know the
Pascal la.nguage, you should be able to follow the steps outlined
here.

1-4 1200301:01B

RUNNING A PROGRAM

Boot up your Macintosh with the UCSD PascalI disk. All of
the operations described below will be done on this disk.

Editing the Program

First you must create a text file to compile. You create a text file
by using the Editor. Start the Editor by double-clicking its
icon.

You can probably figure out by yourself how to run the Editor,
based on your knowlege of MacWrite. If you are not familiar
with MacWrite, or if you have trouble using the Editor, refer to
the EDITOR chapter.

Enter the program listed below, or a program of your own
design:

p"09 ... m fi ... t.;
b.g,n

w .. it.eln{'hi t.h ');
.... dln;

.nd.

Now exit the editor, saving what you have typed in a file called
FIRST.

Compiling the Program

The compiler translates the program you have edited into an
executable code file. You start the compiler by double-clicking
its icon. The compiler will ask you four questions:

1. Compile what text? Type FIRST, then press <Return>.

2. To what code file?' Press <Return>. The output will be
put in FIRST. CODE, by default.

1200301:0lB 1-5

GETTING STARTED Chapter 1

3. Use" what resource file? Press <Return>. The compiler
will use the standard resources from the Empty Program file.

4. File for listing? Press <Return>. This disables listing
generation.

If all goes well, the compiler will write something like the
following to your screen:

< 0) ..
TEST
< 2) ••

TEST

SliM •• compi led in 0:00:20, 16 -liMe. per minu~

If the compiler finds a problem in your program, it will generate
a syntax error message. At this point, you should press
<Enter> to exit the compiler, then fix the problem using the
Editor. Check that you typed in the example program exactly
like it appears above, then recompile the program.

Running the Program

If the compiler has run to completion, you will find a file called
FIRST. CODE on your disk. This file contains the Pascal code
generated from your text file by the compiler. Running the
program is ea.sy-just double-dick its icon. If you used the
example program listed above, you should see the words

I'll t.here

printed to the screen when you run the program.
< Return> to terminate the program.

Press

This section showed you how to run a very simple Pascal
program. For more information about compiling and running
programs, refer to the GENERAL OPERATIONS chapter.

1-6 1200301:0lB

RUNNING A PROGRAM

ORGANIZATION OF THE MANUAL

This section describes the content of each chapter in the manual
and gives some hints on how to use the manual.

Chapter 2, GENERAL OPERATIONS, discusses how to compile
and run a program and how to develop an application.

Chapter 3, EDITOR, covers how to run the program and text file
editor.

Chapter 4, PASCAL LANGUAGE, is a supplement to The UCSD
Pascal Handbook. It describes the new language features found in
this version of UCSD Pascal.

Chapter 5, MACINTOSH INTERFACE, discusses how to use the
Macintosh interface units to call the Macintosh ROM.

Chapter 6, RMAKER, describes the resource compiler program,
which allows you to add resources to a code file.

Chapter 7, LIBRARIAN, describes the Librarian utility, which
allows you to combine Pascal units into a single library file.

Chapter 8, DEBUGGER, describes the operation of the Pascal
debugger, which allows you to set break points, single step
p-code, and examine and patch memory.

Chapter 9, MEMORY MANAGEMENT, describes the memory
management of this implementation of UCSD Pascal. This
chapter will be useful if you need to understand Pascal's memory
management in order to write an application program.

Chapter 10, P-MACHINE ARCHITECTURE, describes the
p-code instruction set that is supported by the underlying
p-Machine. You will need to refer to this chapter if you use the
Debugger.

1200301:01B 1-7

GETTING STARTED Chapter 1

Appendix A, :MACINTOSH INTERFACE, contains listings of the
Macintosh interface units, and index of interface identifiers and a
table of unit dependencies.

Appendix B, ERROR MESSAGES, lists the error messages that
may be generated by programs and the runtime support package.

Appendix C, P-CODE TABLES, contains numerical and
alphabetical p-code tables. An index is also provided which you
can use to locate the description for a p-code within the
P-MACIDNE ARCIDTECTURE chapter.

If you are not a Pascal programmer, we suggest that you read the
tutorial section (Part II) of The UCSD Pascal Handbook first.
This will give you a quick introduction the the Pascal language.
You can use some of the example programs to practice editing
and compiling programs on the Macintosh. WARNING: a few
of the programs are not appropriate for this version of UCSD
PascaL

If you are already a Pascal programmer, start by reading the first
two sections of the GENERAL OPERATIONS chapter. This will
give you the details of compiling and running Pascal programs.
Next, you should read the EDITOR and PASCAL LANGUAGE
chapters. The UCSD Pascal Handbook will be useful if you are
not familiar with the UCSD dialect of Pascal, You may want to
read the DEBUGGER chapter to learn how to use the Debugger.
Some further sedons of the GENERAL OPERATIONS chapter
may be useful.

If you want to write programs that call the Macintosh ROM
routines to do graphics or to display windows and menu bars,
you.must first acquire a copy of the Inside Macintosh manual. As
of this printing, Inside Macintosh is only available in draft form
from Apple. Inside Macintosh gives you the definitions of the
Macintosh ROM routines. You must use Inside Macintosh in
conjunction with the MACINTOSH INTERFACE chapter of this
manual. Also, you will need to be very familiar with the UCSD
Pascal extensions described in the PASCAL LANGUAGE
chapter.

1-8 1200301:01B

ORGANIZATION OF THE MANUAL

Finally, if you want to build sophisticated applications on the
Macintosh you will need to read the RMAKER chapter and the
later sections of the GENERAL OPERATIONS chapter.

1200301:0lB 1-9

GETTING STARTED Chapter 1

1-10 1200301:01B

2
GENERAL OPERATIONS

This chapter contains information and instructions on using The
MacAdvantage: UCSD Pascal. It explains how to use this
product to create UCSD Pascal programs for your Macintosh.
Your programs can take full advantage of the power of UCSD
Pascal and the Macintosh ROM to provide meaningful solutions
to the kind of applications the Macintosh was designed to solve.

This chapter consists of five sections as follows:

CREATING PROGRAMS instructs you on use of the compiler.

RUNNING PROGRAMS contains the information you need to
take full advantage of the UCSD Pascal runtime environment.

USING EXECUTIVE explains the operation of the Executive
utility which you can use to make your program development
process easier and faster.

ACCESSING FILES describes how your programs can interact
with Macintosh files and serial devices.

BUILDING AN APPLICATION outlines the steps you need to go
through in order to construct a sophisticated Macintosh
application.

1200301:02B 2-1

GENERAL OPERATIONS Chapter 2

CREATING PROGRAMS

This section discusses how to run the UCSD Pascal compiler to
create programs for your Macintosh. For information on the
UCSD Pascal language, refer to The UCSD Pascal Handbook and
the PASCAL LANGUAGE chapter.

Using the Compiler

The Compiler takes a text file as input and generates a code file
as output. The code file generated consists of two parts: the data
fork and the resource fork. The data fork contains p-code,
which is executed by a p-Machine emulator. The resource fork
contains information about the runtime environment required by
your program. More information on the resource fork of an
application can be found later in this chapter and in the chapter
RMAKER.

The Compiler will accept for input any standard Macintosh text
file. This file will usually be generated by the Editor supplied
with this compiler, but it could be generated by MacWrite or by
another Pascal program. If you use MacWrite files as input to
the compiler, you must specify that the output file from
MacWrite be stored in "text only" mode.

You start the Compiler by opening its icon:

Figure 2-1. Compiler Icon.

Responding To Startup Questions

The Compiler begins by asking four questions to obtain file
names. Either the Macintosh or Pascal I/O conventions for file
names may be used. These conventions are defined in File

2-2 1200301:02B

CREATING PROGRAMS

Naming Conventions later in this chapter.' The Compiler accepts
only 40 characters of input to each question, so be sure to enter
no more than 40 characters. Entering more than 40 characters
will cause a string overflow runtime error to occur.

The first question asked is:

Compi Ie wh.~ ~eK~?

The possible responses to this question are:

• Entering the name of the text file you wish to compile. The
Compiler uses the name exactly as you specify it, including
leading, embedded, and trailing blanks. It does not append
any kind of suffix to the name you specify in order to locate
the file.

• Pressing <Return> or <Enter> <Return> to terminate
the compilation without generating an output code file.

The second question asked is:

To wh.~ code fi I.?

You should respond to this question in one of the following ways:

• Entering the name of the code file you wish the compiler to .
create. The Compiler will add a .CODE suffix to the name
you specify. (The suffix is added by the Compiler only as a
safeguard to prevent the accidental destruction of text files.
It is not necessary to maintain the suffix for execution of the
resulting code file.)

• Pressing < Return> . This causes the Compiler to generate
its output to a code file with the same name as the input file
with a .CODE suffix added. If you choose to use this default,
be sure that you did not specify an input text file name longer
than 35 characters.

1200301:02B 2-3

GENERAL OPERATIONS Chapter 2

• Pressing <Enter> <Return> to immediately terminate the
compilation.

The third question asked is:

U.e what re.ource fj Ie?

This question is asking you to specify a source for the resources
that the Compiler should copy to "the output code file. You
should respond to this question in one of the following ways:

• Entering the name of a file that contains the resources you
want copied.

• Pressing < Return>. This directs the Compiler to attempt to
copy the resources from the file Empty Program. (The file
Empty Program must be on the same disk as the Compiler.)
As supplied to you, Empty Program contains the standard set
of resources required by a UCSD Pascal program.

• Pressing < Enter> < Return> to terminate the compilation.

The resource file name you specify should either be Empty
Program or another file known to have valid UCSD Pascal
resources. Such files can be created either with the Compiler or
RMaker. The Compiler will use the resources of the file you
specify, regardless of whether they are valid UCSD Pascal
resources. Should the file you specify not have valid UCSD
Pascal resources, the resultant object code file will be unuseable.
For more information on creating resource files, see the
RMAKER chapter.

If the text file you are compiling is not a program (i.e. you are
compiling one or more units), the standard set of resources in
Empty Program will always be sufficient.

You cannot specify the same name for your resource file source as
you specified for the code file. This means that if you want to
preserve a unique set of resources for your program to be used
each time it is compiled, these resources will have to be stored in

2-4 1200301:02B

CREATING PROGRAMS

a file which has a different name than that which you are giving
to your program.

The fourth question aske.d by the Compiler is:

Fl Ie for liating?

You should respond to this question in one of the following ways:

.• Pressing <Return> if you do not want the Compiler to
generate a listing.

• Entering the name of the file or Macintosh serial device to
which you want the compiled listing written. Unless the first
character of the file name is a period, the sufrlx .LIST will be
added.

• Pressing <Enter> <Return> to terminate the compilation.

After the Compiler is finished, you may examine or print the
listing file using the Editor. Note, however, that listing files
consume large amounts of disk space. Should the disk containing
the listing file become full during compilation, the Compiler will
abort and both the code and listing files will be lost. A common
listing output file is .BOUT, which directs the listing to the
printer. Other permissable listing output files include the other
serial devices: .AOUT, .CONSOLE, and .DBGTERM; the
characteristics of these files are discussed in Serial Devices later in
this chapter.

NOTE: When using the Apple Imagewriter in normal text mode,
some print lines generated by the Compiler will be longer than
8.5". The extra characters past the end of the page margin will
be over-printed on top of the beginning of the line. To avoid
this, you can change the character pitch selected when the printer
is powered on to ultracondensed. Page 40 of the Imagewriter
User's Manual describes how to do this.

1200301:02B 2-5

GENERAL OPERATIONS Chapter 2

The $L compiler option can also be used to specify a name for the
listing file.

Evaluating Compiler Progress

While the Compiler is running, it displays a report of its progress
on the screen:

<- .0.) •••••••••••••••••••
INITIALI
< 19)•.....................•.
< 60) ..•........
ARQUTINE
< 61) ..•...•...•..•••••.••......•.•..• ", ••..•
< 100)•......••••••.•
MVPROQ
< 119)••.•••••.••••••..••...•.•.
< 160)•.•..•••.

INITIALI .
lAVPROQ

166 line. compi led in 0:00:26, 396 line. peF minu~e

During the first pass, the Compiler displays the name of each
routine (INITIALI, AROUTINE and MYPROG in this example).
The numbers enclosed by angle brackets, < >, are current line
numbers. Each dot represents one source line compiled.

During the second pass, the names of the segments are displayed
(INITIALI and MYPROG in the example). Here, each dot
represents the compilation of one procedure or function.

You can suppress this output by using the $Q compiler option in
your input textfile.

Syntax Errors

If the Compiler detects an error while compiling a program, it
generates a syntax error. When this happens, the text where the
error occurred is displayed along with an error number and
message. Here is an example:

<- 0) .••••.

2-6 1200301:0zB

CREATING PROGRAMS

C1,f'",.: at-ring;
w,x,y: reel (---

Syn~ax Error l04:Undeelared iden~ifier
Line 7
Type (apace) ~o eon~inue, (En~er) ~o ~.rmina~e

For each syntax error, a message like the one above is displayed.
The Compiler gives you the option of pressing either < Space>
to continue the compilation or <Enter> to terminate the
compilation. Error numbers greater than 400 are always
considered fatal and the Compiler will abort regardless of your·
input.

The Compiler issues three additional fatal error messages. Their
occurrance is rare, as they usually mean that some kind of
internal error condition has been detected. All three messages
wait for you to respond to them by pressing any key on the
keyboard. The actual response is immaterial; it is just an
acknowledgement that you have seen the message. This is done
because the screen contents will be erased by the Finder after the
Compiler terminates.

Compl la~ion abor~ed due ~o I/O error XXX
Pre.a any key ~o .xi~.

The Compiler was unable to perform an I/O operation on one of
the files it has open. :xxx is the ioresult code passed back from
the Macintosh Operating System. A list of these result codes
appears in Appendix B. You should check that your Macintosh
and its peripherals are all working correctly and then retry the
compilation.

Error wri~ing fi Ie, no~ enough room.
Preaa any key ~o exi~.

The Compiler was unable to write a block of information to disk
because the disk it was trying to write to was full. This error
usually occurs when you are trying to write a listing file to disk.
It can also happen when trying to write out the .CODE file you
are creating. Make sure that the disk you are trying to write to
is not full. Alternatively, if you are making a listing file, try

1200301:02B 2-1

GENERAL OPERATIONS Chapter 2

sending it to the file .BOUT. Then retry the compilation.

Compi I.tion .bo~ted due to back-end e~~o~ XXX
P~e ••• ny key to exit.

The Compiler has detected an abnormal condition within the files
it creates while compiling your program. XXX is an internal
code signifying the error. Retry the compilation. Please contact
your technical support representative if the error appears again.

Compiled Listings

The Compiler optionally produces a compiled listing of the
program. This listing contains source text, along with
information about the compilation. Compiled listings are useful
when you're using the Debugger.

You can produce a compiled listing in two ways. You can give a
file name to the compiler's listing file question, or you can use the
$L compiler option.

Here is the entire compiled listing for a small program:

UCSO P •• c.1 Comp i Ie,. (lRQ.O] 10/ 8/84

1 :2 l:d 1 p~ogl".m F.ct;
2 2 l:d 1
3 2 l:d 1 j, i nt.g",~;
4 2 l:d :2 prod, 1;
5 :2 1 :0 0 b.g;n
e 2 1:1 0 w .. lteln('n i'.cto~ i.1 01 n') ;
7 :2 1,1 18 pl"od:. 1.0;
8 :2 1:1 23 fOF j:e 1 to 20 do
9 2 1:2 41 b.gin

10 2 1:3 41 prod:. p~od .. i j

11 2 1,3 60 writeln(i, • • ,p~od);
12 2 1:2 89 end;
13 2 :0 0 end.

End of Comp i I.t ion.

The numbers that precede each source line are:

2-8 1200301:02B

CREATING PROGRA.\,fS

• The first column is the line number. Line numbers start with
1 and are incremented for each line encountered by the
Compiler during compilation. Lines found in files which are
included by the $1 compiler directive and the uses statement
are also counted.

• The second column is the Pascal segment number. This entire
example is segment 2.

• In the third column is the procedure number followed by a
colon and the statement nesting level. All of the example is
procedure 1. Procedure numbers are important in
determining program locations either in the Debugger or when
a runtime error occurs. The statement nesting level is an
indication of how deeply the text is nested within Pascal
structured statements. The statement nesting level field of
data lines contains the letter "d".

• The fourth column contains the word offset of data or the
byte offset of code. Data word offsets are relative to either
the start of a segment for global data, or to the beginning of a
procedure's activation record for a procedure's local data.
Data offsets are useful for finding data using the Debugger.
Code offsets are useful for setting break points with the
Debugger.

RUNNING PROGRAMS

To run a program, either one that you have compiled or one
someone else compiled, you just double-click its icon. Executing
a program in this manner causes the disk it is on to become the
default disk.

Once you have become familiar with creating and running
programs as described here, you should also explore the faster
method offered by the Executive utility which is discussed in
USING EXECUTIVE.

1200301:02B 2-9

GENERAL OPERATIONS Chapter 2

Pressing the interrupt button on the programmer's switch will
cause the currently executing UCSD Pascal program to be
interrupted. The button to the rear of the programmer's switch
is the interrupt button. The button to the front of the
programmer's switch is the reset button. Pressing the reset
button will cause the Macintosh to be restarted. Obviously, if
you are in the middle of a hard to reproduce situation, you don't
want to accidently press the wrong button.

When a program is interrupted, a standard Runtime Error dialog
box will appear on the screen as described later on in the
Runtime Errors section. Refer to that section for instructions on
the . options available when a Program interrupted by user
runtime error occurs.

NOTE: The Runtime Support Library disables the interrupt
button while it is starting up a program. Also, if you have one of
Apple Computer's MacsBug debuggers installed, pressing the
interrupt button while running a UCSD Pascal program will
cause you to enter MacsBug. If you are running UCSD Pascal
programs under the Mac Works software on a Lisa, there is no
way to interrupt a program and receive the standard Runtime
Error dialog box.

You may need to do some more steps before a program you just
compiled is ready to run. You may need to run the Set Options
utility to change the default runtime environment for your
program; you may also need to run RMaker to install some
additional resources.

The p-code produced by the UCSD Pascal compiler resides
within the data fork of the output file. The resource fork of the
file usually contains a standard set of resources that are used to
start up (bootstrap) the p-code file. The standard resources are
explained in detail in the section Standard Resources.

The important thing you need to know about the standard
resources is that some of them define the runtime environment a
program starts up in. The effects of the settings of these
standard resources are explained in the next three sections.

2-10 1200301:02B

RUNNING PROGRAMS

Required Files

In order to run a program that was compiled with the UCSD
Pascal compiler, two Pascal Runtime Files must be available to
the program .. One of the files is named Pascal Runtime and the
other is named p-Machine. The p-Machine file is the
p-Machine emulator program, which allows p-code to run on
the Macintosh. The Pascal Runtime file is a group of Pascal and
assembly language routines that support running UCSD Pascal
on the Macintosh. The Pascal Runtime file is also called the
Runtime Support Library. Usually, these files are found in the
folder called Pascal Folder. As it is supplied to you, the Pascal
Folder is located on the UCSD Pascali disk.

a ... 5
[... 1

Pascal Runtime-
a a 5
cal

p-t'1ac:hioe-

Figure 2-2. Pascal Runtime and p-Machine Icons.

The resource fork of every UCSD Pascal program contains
references which define the location and names of these files.
These references consist of file names which adhere to the
Macintosh file naming conventions. These conventions are
described in File Naming Conventions later in this chapter.
Should the Pascal Runtime Files be on the default disk, you can
omit the volume name. Note that the two files do not need to be
on the same disk. The p-Machine file is read only when your
program is started and not used thereafter. This means that you
can keep it on a separate disk which can be removed from the
Macintosh after the program starts.

Two versions of the Runtime Support Library were shipped to
you. The first, named Pascal Runtime, is on the UCSD Pascal
1 disk. It contains the necessary runtime support for executing
UCSD Pascal applications. The other, named Debug Runtime, is
on the UCSD Pascal 2 disk. It provides the same runtime
services as Pascal Runtime and in addition, provides the
Debugger and the Performance Monitor tools. The usage of these
additional tools is described in the DEBUGGER chapter.

1200301:02B 2-11

GENERAL OPERATIONS Chapter 2

Empty Program, in its original form, as supplied to you on the
UCSD PascalI disk, specifies no volume name in the references
to the Pascal Runtime Files. Hence, the resources in Empty
Program assume that the required files are located on the default
disk. Furthermore, the names of these files are assumed to be
Pascal Runtime and p-Machine.

Any program you compile that uses Empty Program as its source
for resources will inherit these references to the required Pascal
Runtime Files. Should this configuration (Le. the names of the
files or their locations) not suit your requirements, you can use
Set Options to change the file· names and locations in each
program you compile. Alternatively, Set Options can be used to
change the names and locations specified in Empty Program.

If one or the other of these Pascal Runtime Files is not available
to your program, an error message describing the problem will be
displayed when you attempt to start the program.

Startup Options

The settings of five Startup options are contained within a
program's standard resources that specify the the runtime
environment in which your program executes. These option
settings are obtained by the Compiler from the resource file you
specify when a program is compiled. Each option is described
below, along with the default setting specified in Empty
Program.

• Create Default Window. The default value of this option is
enabled. If this option is enabled, a standard program
window is opened by the bootstrap. The title of the window
is the value of the version number string, if it is nonempty.
Otherwise, the title is the file name of the program. (The
version number string is another type of resource. See
Standard Resources for instructions on defining a non-empty
version number string.) If this option is disabled, no default
window is opened. To see how this affects which ROM
initialization routines are done by the bootstrap, see
Initialization in the MACINTOSH INTERFACE chapter.

2-12 1200301:02B

RUNNING PROGRAMS

• Create .DBGTERM Device. The default value of this
option is disabled. If this option is enabled, the .DBGTERM
device is available to the program. See Special Devices for
details about the .DBGTERM device.

• Startup in Debugger. The default value of this option is
disabled. If this option is enabled, the bootstrap calls the
Debugger before the program starts.. See the DEBUGGER
chapter for instructions on using the Debugger. The
Debugger interacts either by using the Macintosh screen and
keyboard through the .DBGTERM device, or by using an
external terminal, based on the setting of the Debug to
Modem Port option. The Startup in Debugger option must be
enabled if you intend to use the Debugger at all.

• Enable Performance Monitor. The default value of this
option is disabled. If this option is enabled, the Performance
Monitor is enabled for the duration of your program. See the
DEBUGGER chapter for information on using the
Performance Monitor. The Performance Monitor writes
information about the faults that occur during the execution
of a UCSD Pascal program. This information is written
either to the .DBGTERM device or to an external terminal
based on the setting of the Debug to Modem Port option. See
the MEMORY MANAGEMENT chapter for an explanation of
the various kinds of faults.

• Debug to Modem Port. The default value of this option is
disabled. This option has no meaning unless either the
Startup in Debugger option or the Enable Performance
Monitor option is enabled. If this option is enabled, the
Debugger interacts using an external terminal connected to
the modem port of the Macintosh. The modem port is the
one with the telephone icon, and corresponds to the channel
used for the serial devices .AIN and .AOUT.

In addition to using Set Options to change the option values
assigned to your program by the Compiler, you may also override
them by specifying the type which define them when using
RMaker. The implementation of the Runtime Options as
resources is discussed in Standard Resources.

1200301:02B 2-13

GENERAL OPERATIONS Chapter 2

As with the required files, the default settings are obtained by the
Compiler from Empty Program. Should modifying your
program with Set Options after compilation become cumbersome,
you can use Set Options on Empty Program to change the
default settings. This way, every time you compile, the compiler
will automatically give you the file locations and option settings
that you prefer.

Library Files

All of the units that a program references with the uses
statement must be available to the program when it is executed.
This can be accomplished three ways:

• Each unit can be moved into the same code file as the
program. The Librarian utility, described in the LIBRARIAN
chapter, does this.

• The units may be combined into a single library code file
using the Librarian. If this is done, you can then use Set
Options to add the name of your library code file to your
program's Library Files list. The file Mac Library on UCSD
Pascal 1 is an example of such a library of units that can be
referenced by your program.

• Yau can use Set Options to add the names of all your code
files containing individual units to your program's Library
Files list. This works provided that you don't have more
than five code files that you want your program to reference
in this manner.

As outlined above, a program's Library Files list is usually
speCified using Set Options. Set Options allows you to specify up
to ·,five code files. It is also possible to augment a program's
Library Files list by adding the appropriate resources using
RMaker, but using Set Options is easier and less error prone.

The Library Files list is used by the Runtime Support Library
when it needs to locate a referenced unit that it cannot find
inside your program's code file. When it searches for a unit, the
Runtime Support Library examines the code files in the order in

2-14 1200301:02B

· RUNNING PROGRAMS

which you have listed them. If a library code file listed in your
program's Library Files list cannot be found, the Runtime
Support Library simply ignores that entry in the list and
continues its search.

The limit of five code files in the Library Files list imposed by Set
Options is a practical limit rather than an absolute limit. The
Macintosh Operating System limits the number of files that a
program can have open simultaneously, and every code file that
must be opened and examined by the Runtime Support Library
increases the time required to start a program.

U sing Set Options

Set Options is the utility program that you use to modify a
UCSD Pascal program's Runtime Options. A program's Runtime
Options specify the location of the Pascal Runtime Files, the
Library Files list, and the settings of the Startup options.

Set Options is executed just like any other application: just
double-click its icon.

Set Options initially presents you with a standard Macintosh file
selection box. See Figure 2-3. Select the file you wish to modify
by clicking its name in the selection box and then select the Open
button. You can cause the files residing on the disk in the other
drive to be shown by selecting the Drive button. Selecting the
Eject button causes the disk in the indicated drive to be ejected;
this allows you to insert another disk if you wish. To terminate
Set Options, select the Cancel button.

1200301:02B 2-15

GENERAL OPERATIONS Chapter 2

Compiler ~
Editor (Open) UCSD Pascal 1
l!IiTIlI.!"I.iu' I LI.' ...
EJ.cecutiue (Eject)
Mac library

) () Set Options (Camel Dril'e

~

Figure 2-3. Set Options File Selection.

Once you have selected a file, a Macintosh dialog box is displayed
that presents you with the settings of the current Runtime
Options. See Figure 2-4.

Runtiml' Options tor file Empty Program

o Set Bunelle for FINDER

PosclIl Runtime files Saul'

p-Mllthine !c..iP_-M_a_t_h_in_e ________ -'
Cantel

Runtime ! PiI$cill Runtime

library Files Startup

[3) Create Default l1IindouI

o (reale .OB6TERM DellitP

o Startup in Debugger

o Enable Perf. Monitor

o Debug .10 Modem Pori

Figure 2-4. Runtime Options.

Four option groups are available:

e Pascal Runtime Files. These entries are the program's
specification of the names and locations of the required files.
Use the Mouse to move the cursor into the box for the name
you wish to change. Normal Macintosh editing rules and file

2-16 1200301:02B

RUNNING PROGRAMS

naming conventions apply.

• Startup. These check boxes are used to specify the settings of
the Startup options. An empty box indicates that the option
is disabled; an X through the box indicates that it is enabled.
To change the setting, move the cursor into the box and click
the mouse button.

• Library Files. These entries make up the program's Library
Files list. As explained previously, the Library Files list can
identify the name and location of up to five library files.
Enter or change these boxes using the methods described for
changing the Pascal Runtime Files entries.

• Set Bundle for Finder. This check box is used to specify
the setting of the program's Finder "bundle bit." The usage
of the bundle bit is explained in the Application Interface to
the Finder section later in this chapter. You should not
change this option unless you understand why you are doing
so. Indiscriminate setting of the bundle bit can cause the
Desktop to become "polluted" with conflicting icon and other
resource definitions. This is a condition which is often
evidenced by the Finder using the wrong icons to decorate
files.

To save the changes you have made, click the Save button, and
Set Options will update the program with the Runtime Options
shown on the screen and return you to the file selection box it
presented to you earlier. Clicking the the Cancel button causes
Set Options to return to the file selection box without updating
the program, effectively discarding any changes you have made.

Once you have been returned to the file selection box, you can
select another program and change its options, or click the
Cancel button to exit Set Options.

NOTE: Set Options will not allow you to change the Runtime
Options in the Set Options code file being used. To change the
settings of the Runtime Options within Set Options, first use the
Finder's Duplicate command to create a copy of Set Options.
Then run the copy, and modify the original copy of Set Options.

1200301 :02B 2-17

GENERAL OPERATIONS Chapter 2

Finally, exit back to the Finder and drag the copy of Set Options
to the trash.

Program Startup Errors

If the Runtime Support Library has trouble starting your
program, you will get a. program startup error displayed within a
dialog box on your screen. Actually, there are two catagories of
program startup' errors. The first catagory contains those
startup errors which are detected and reported by the initial
"bootstrap" program which is located in your program's standard
resources. The second catagory contains the startup errors that
can be generated by the Runtime Support Library during its
construction of your program's execution environment.

The startup errors generated by the bootstrap are:

• Could not open p-Machine file. This error occurs if the
file p-Machine could not be opened. The runtime
environment description for the program's p-Machine file is
wrong. Execute Set Options to correct the reference and then
try the program again.

• ;Could not allocate memory for p-Machine. This error
occurs if the bootstrap cannot allocate memory to read in the
p-Machine file. This error should not occur; if it does,
contact your technical support representative.

• Error reading p-Machine fileo This error occurs if the
bootstrap has trouble reading the p-Machine file. It is likely
that your p-Machine file is damaged. Replace it, and try
again.

• <Could not locate MSTR resource. This error occurs if
'your program is missing the standard MSTR resource. You
must use RMaker in such a way that all the standard
program resources are in the resource fork of an application in
addition to any new resources you define.

2-18 1200301:02B

RUNNING PROGRA.,\1S

• Could not open program data fork. This error occurs if
the bootstrap has trouble opening the p-code portion of your
application program. Make sure you have not done any
operation in building the application that might delete the
p-code generated by the Compiler.

• Could not open Runtime Support Library file. This
error occurs if the bootstrap could not open the Pascal
Runtime file. Make sure that a Runtime Support Library file
is installed where the program's runtime environment
description says it should be. The two runtime libraries are
Pascal Runtime and Debug Runtime.

• Could not allocate stack/heap. This error occurs if the
bootstrap could not allocate a 64K byte area of memory for
the Pascal Data Area. This error also should not occur and
indicates a serious hardware or software failure.

The program startup errors generated by the Runtime Support
Library are:

• Error reading segment dictionary. This error indicates
that an I/0 error occurred reading the segment dictionary
within the program code file or a code file listed in the
Library File list.

• Error reading library. This error indicates that an I/O
error occurred reading a library code file.

• Required unit not found (). The unit whose name
appears in the error message enclosed in parentheses is
referenced by your program, but it cannot be found in the
program code file or in any of the library code files listed in
the Library File list.

• Duplicate unit (). This error indicates that there is more
than one instance of the indicated unit in the program, or the
unit's name is the same as one of the Runtime Support
Library's units.

1200301:02B 2-19

GENERAL OPERATIONS Chapter 2

• Too many library code files referenced. This error
indicates that the units used by your program are distributed
into too many separate library code files. Use the Librarian
utility to combine library code files.

• Too many system units referenced. This error should not
occur. If it does, contact your technical support
representative.

.. No program in code file to execute. This error indicates
that you have attempted to run a library code file that
doesn't contain a progt;am.

• Program or unit must be linked first. This error
indicates that your program or one of the units that you are
using needs to have one or more assembly language routines
linked into it before it can be used. If this error occurs, it
may be due to an improperly constructed Macintosh Interface
unit, so you should contact your technical support
representative.

• Obsolete code segment (). The indicated code segment
was either not created properly or it was created by an
incompatible version of the UCSD Pascal compiler.

• Insufficient memory to construct environment. There
isn't enough memory for the Runtime Support Library to
construct your program's environment. The best work
around for this error is to combine separate library code files
together into a fewer library code files. Another possible
remedy is to eliminate any unneccesary entries in your
program's Library File list.

• Program environment too complicated: run
QUICKSTART first. This error indicates that the number
of units used by your program and the complexity of their
relationships is greater than can be handled directly by the
Runtime Support Library. The QUICKS TART remedy
suggested by the error message refers to a preprocessor
program that you can use to prepare your program for
execution. A version of this preprocessor utility is not
currently available for the Macintosh environment. If you get
this startup error, try using the Librarian utility to package

2-20 1200301:02B

RUNNING PROGRAMS

all of the units required by your program together with the
program's code segments. If this doesn't eliminate the error,
you may have to resort to merging the services provided by
several small units into a single unit.

• Error reading program code file. This error indicates an
I/O error reading your program code file.

• Error reading library code file. This error indicates an
I/O error reading one of your library files.

• Insufficient memory to allocate data segment. Your
program or one of the units it references has a large amount
of global variables, and the Runtime Support Library is
unable to allocate the storage for them in the Pascal Data
Area. The most likely cause of the trouble is a declaration of
one or more large array variables.

• Insufficient memory to load fixed position segment. A
code segment containing one or more nonrelocatable assembly
language routines cannot be loaded into the Pascal heap due
to a lack of space in the Pascal Data Area.

• Unknown environment construction error. This error
indicates an internal error in the Runtime Support Library's
environment construction process. If you get this error,
contact your technical support representative.

Runtime Errors

When the p-Machine emulator and Runtime Support Library
detect certain errors, the Runtime Support Library will generate
an execution error. If the Debugger is enabled and currently in
its active state, then the Debugger is entered, and an error
message is printed. Otherwise, the system displays the execution
error message within a dialog box on the screen, and the user is
given a choice of how to procede. Here is a sample execution
error dialog box:

1200301:02B 2-21

GENERAL OPERATIONS Chapter 2

l1IJ lIalue range error

~eg LONGT£ST P#3 0#44

(I: OK :1) (Continue) Debug

Figure 2-5. Execution Error.

The first line is the error message. The second line gives the
p-code coordinates of where the error happened. In this
example, LONGTEST is the segment. The procedure number is
3 and the offset within the procedure is 444. The coordinates can
be checked against a compiled listing of the program to
determine where in the program the error occurred.

Depending on the error, there is either one or three continuation
buttons. If it is a fatal error, only the OK button is shown.

• OK button. Clicking this button will cause the program to
terminate.

• Continue button. Clicking this button will cause the
"program to continue execution. Only some execution errors
may be continued from, so you cannot depend on continuing
from arbitrary errors.

• Debug button. Clicking this button will cause the Debugger
to be invoked if it is enabled in the Runtime Options. The
Debugger is enabled when the Start in Debugger runtime
option is true. If the Debugger is not enabled, this button
does nothing.

Here is a short explanation of each of the execution error
messages:

" Fata.l runtime support error. This error indicates a
corrupted Runtime Support Library file.

2-22 1200301:02B

RUNNING PROGRAMS

• Value range error. This error occurs if (1) an array
subscript is out of range, or (2) an assignment to a subrange
variable is out of range. You can disable detection of this
error by using the $R compiler option.

• No proc in segment table. This error should not occur on
the Macintosh .

• ' Exit from uncalled proc. This error occurs when exit(A) is
executed and A is not in the dynamic call chain.

• Stack overflow. This error occurs "when there is no room in
memory to expand the runtime stack by the desired amount.

• Integer overflow. This error occurs if (1) an integer2
operation overflows, or (2) a conversion to integer or integer2
is too large to fit in the destination type.

• Division by zero. This error occurs whenever a divide or
mod operation is performed with a zero denominator.

• Invalid memory reference. This error indicates an attempt
to access memory through a bad pointer or handle value.

• Program interrupted by user. This error occurs if the user
presses the interrupt button on the programmer's switch and
the Debugger is not enabled.

• Runtime support I/O error. This message indicates an
I/O error was detected either during startup of the Runtime
Support Library, or later attempting to read in a program
segment. This is a fatal error.

• I/O Error. This error occurs if an I/O operation detects an
error. You can disable I/O checking by using the $1 compiler
option.

• Unimplemented instruction. This error occurs if the
p-Machine attempts to execute an invalid p-code. If you get
this execution error, then something has gone drastically
wrong in your program.

1200301:02B 2-23

GENERAL OPERATIONS Chapter 2

• Floating point error. This error occurs when a floating
PQint operation overflows the size of floating point numbers.

• String overflQw. This error occurs if (1) the source string is
too large in string assignment, or (2) conversion of a number
to a string overflows the size of the string.

• Programmed halt. This error occurs upon execution of the
halt intrinsic.

• Illegal heap Qperation. This error indicates improperly
paired mark and release operations, or an illegal dispose
operation.

• Break point. This error occurs if a BPT p-code is executed
and the debugger is not enabled. The BPT p-code is used by
the debugger to implement break PQints.

• IncQmpatible real number size. This error cannot occur on
the Macintosh unless you use the $R2 compiler directive,
which is something you should not dO'.

• Set toe large. This error occurs if an attempt is made to'
create a set larger than the maximum allowed size of a set. A
$et is allowed to have 4080 members.

• Segment too large. This error occurs if an attempt is made
to' load a segment that is over 32K bytes in size.

• Heap expansion error. This error Dccurs if there is nO' room
fDr the heap to expand. This is most likely to occur due to
the presence Df a nonrelocatable Macintosh heap block
immediately above the Pascal heap in memory. The
CQmpiler will likely terminate with this message if you try to
cQmpile a prQgram having toO' many symbols.

• Insufficient memory to load code segment. This error
Dccurs if there is nO' more rDom in memDry to load a required
code segment. Again, the presence of locked or nonrelocatable
Macintosh heap blocks can interfere with the acquisition of
memory for code segments.

2-24 1200301:02B

RUNNING PROGRAMS

Refer to the P-MACHINE ARCHITECTURE chapter for
additional information on execution errors.

USING EXECUTIVE

The Executive utility provides you with menu access to all of the
programs that comprise The MacAdvantage: UCSD Pascal.
That is, you can run the Editor, Compiler, RMaker, Set Options,
and Librarian programs by selecting the appropriate entry in a
pull-down menu. Other options on the Executive menu allows
you to run any other program, or return to the Macintosh Finder
program.

The advantage of using the Executive to start programs instead
of the Finder is that a transition from one program to another is
considerably faster. Moving between programs using the
Executive is faster, because the time consuming activities related
to the saving and recreation of the desktop display (done by the
Finder) are avoided.

F.or example, the time it takes to go from the Compiler to the
Editor should be reduced by approximately 50% if you use the
Executive instead of the Finder to accomplish the transiti.on. Of
course, you may n.otice more or less time reduction depending on
the number .of disks you have inserted, the number .of files on
those disks, and the c.omplexity of your current desktop
arrangement.

When a program started by the Executive terminates, the
Executive is restarted. This means that .once you have started
the Executive, y.ou effectively remain inside it until you use its
Quit option to reactivate the Finder.

The Executive isn't intended t.o be a complete substitute for the
Finder. You will still need to use the Finder f.or a variety of
tasks. Most notably, these tasks include: transferring files
between disks, copying disks, maintaining the organization of the
folders .on your desktop, and runni,!lg the Desk Accessories.

1200301:02B 2-25

GENERAL OPERATIONS Chapter 2

Note that it is possible to have your Macintosh start up in the
Executive utility instead of the Finder if you wish. (See how to
use the Finder "Set Startup" command in Macintosh, your user
guide.)

The operation of the Executive utility is described in the
following sections.

Starting The Exeeutive

As it is supplied to you, the Executive is located on the UCSD
Pascal 1 disk. To start the Executive, double click its icon.
Since the Executive is not a UCSD Pascal program, it can be run
off of any disk without configuring it with Set Options.

The Exeeutive Menu Bar

The Executive utility's menu bar consists of the following menus:

Set. The Set menu allows you to set the locations of the
programs that comprise The MacAdvantage: UCSD Pascal.

Edit. The Edit menu will start the Editor program.

Compile. The Compile menu will start either the Compiler or
RMaker (the resource compiler).

Utilities. The Utilities menu will start either Librarian or Set
Options.

Run. The run menu puts up a standard file selection box. To
run a program, select the program file name and select the Open
button. (Or simply double-click the file name.)

Quit.The Quit menu allows you to exit back to the Macintosh
FINDER.

2-26 1200301:02B

USING EXECUTIVE

The Editor, Compiler, RMaker, Librarian, and Set Options can
also be started by entering a command key sequence from the
keyboard. This is done by holding down the command key and
typing the appropriate letter. The command key sequences
supported by the Executive are shown in its pull down menus.

Setting Program Locations

The Executive is preconfigured to know about the locations of the
Compiler, RMaker, Set Options, Editor and Librarian programs
as they are shipped on the UCSD PascalI and UCSD Pascal
2 disks. If you wish to execute these programs from other
volumes (such as a hard disk) you must use the Set menu to
change the location of these programs.

In the Set menu, there is one menu item for each program. Select
the item that corresponds to the program whose location you
wish to change. After you select the item, a dialog box will
appear that contains the current location setting for the program.
Type in the new location of the program, or click the Cancel
button to retain the previous location setting. When specifying
the location of a program, you must specify both a volume name
and a file name using the standard Macintosh file name
conventions. After typing in the new location, select the Save
button to make the change permanent.

NOTE: If you are moving the Compiler, Librarian or Set
Options programs to another volume don't forget to move the
files in the Pascal Folder. You will also need to run the Set
Options utility on these programs to change the location of the
p-Machine and Pascal Runtime files.

If you receive the error message

Program xxx i. no~ on-line

when attempting to start a program using Executive, check that
the location for the program is set correctly.

1200301:02B 2-27

GENERAL OPERATIONS Chapter 2

ACCESSING FILES

Your UCSD Pascal program can access Macintosh files two ways.
First, it can use the UCSD Pascal intrinsics described in The
UCSD Pascal Handbook. Second, Inside Macintosh describes the
interfaces to the Macintosh Operating System File Manager. By
using the UCSD Pascal interfaces to these ROM routines, your
program can have full access to all the file handling capability of
your Macintosh.

Programs which use UCSD Pascal intrinsics to access files
generally need to be aware of disk volume names or disk drive
assignments. Their user interface has to be tailored accordingly.
Two examples of programs like this are the Compiler and
Librarian. Programs which use the Macintosh Standard File
Package and File Management units generally don't need to
worry about these details. Examples of this type of program are
Editor, Set Options, and RMaker.

Regardless of which method you choose to use, this section
provides you with information to help interface your program to
Macintosh files.

File Naming Conventions

File names can be specified using the conventions of the
Macintosh Operating System. These file naming conventions are
as follows. A file name consists of up to 255 characters. Any
character except a colon (:) may be used in a file name. In
particular, spaces are allowed in a file name. File names are not
case-sensitive for the purpose of comparison. However, the
original type case of the name is retained in the directory when a
file·is created. Here are some example file names:

MYFILE
A re~her long fi Ie neme.
M)' Fi Ie

2-28 1200301:02B

ACCESSING FILES

The first and the third file names in the example are distinct
names, because of the presence of a space in one of them.
Remember that all spaces are considered part of the file
name-even trailing spaces.

NOTE: According to Inside Macintosh there is a practical limit
of about 40 characters for a file name.

A file name may be preceeded by an optional volume name,
separated from the file nam" by a colon. A volume name may be
up to 27 characters long, and may consist of any characters
except a colon (:). Volume names follow the same case
convention as file names. Here are some examples of file names
preceeded by volume names:

My Oi.k:My Fi I. ".c Boot.:PBOOT

Any file name that is opened using the Pascal reset or rewrite
calls may use some additional conventions supported only by the
Pascal Runtime Package. These conventions are called Pascal
I/0 file naming conventions.

A volume may be refered to by the drive number of the disk
drive it is mounted in. A drive number is represented by a
number sign (#) followed by a positiVe integer representing the
drive number. #1 refers to the internal drive. #2 refers to the
external drive. Higher numbers refer to other drives that your
Macintosh knows about. Which numbers correspond to which
drives is system-specific.

WARNING: Drive numbers are used to open the named file on
any disk in the specified drive. Should you be using multiple
disks in the specified drive, the use of drive numbers is
dangerous. A file will not be found or will be created on the
wrong disk if the disk in the disk drive changes before the file is
opened. .

1200301:02B 2-29

GENERAL OPERATIONS

Here are some file names preceeded by drive numbers:

#1 :hly Fi I.
#2:Rhlek.,.

Chapter 2

You may also specify a device by name. The syntax of a device
name is the same as for a volume name, except that a device
name may not be followed by a colon or a file name. All device
names begin with a period (.) ch'aracter, by convention. Here is
a list of the standard Macintosh device names:

• .AIN is used to receive input from the modem port.

• .AOUT is used to send output to the modem port.

• .BIN is used to receive input from the printer port.

• .BOUT is used to send output to the printer port.

The Runtime Support Library also supports some nonstandard
serial devices:

• .CONSOLE refers to a terminal-like device that uses the
keyboard and the current QuickDraw grafport on the
Macintosh screen.

• . . SYSTERM refers to a device that is identical to characters
are not echoed to the screen on input.

• .DBGTERM refers to a terminal-like device that uses the
keyboard and the bottom eight lines of the Macintosh screen.

For more information on these devices, see Serial Devices.

2-30 1200301:02B·

ACCESSING FILES

File Types

Disk files that are created by the Runtime Support Library are
one of three types. Each type has its own icon that distinguishes
the file type. It is possible to associate your own -icons to these
file types. See BUILDING AN APPLICATION.

Using the facilities in the Error Handling unit, your program
can exercise additional control ;-ver the file types and creator
identifiers for the files it creates. See Execution Environment
Control later in this chapter for more information.

The file types and standard icons are as follows:

~
~ 0

[:odt.~ T €'rnpor .~n~ T€'xt.

Figure 2-6. File Icons.

• text file. A text file results when a program creates a file of
type text or file of char.

• data file. A data file results when any other type of file is
created.

• temporary file. A temporary file results when a file has not
been properly closed. A temporary file may not be opened
using the Runtime Support Library. Currently, there is no
utility program that will change a temporary file into a
permanent file.

1200301:02B 2-31

GENERAL OPERATIONS Chapter 2

Pascal I/O Opera"tion

This section is a collection of notes on how the Pascal I/O
operations work under the Macintosh. Most operations will
produce the result you would expect, but there are some
restrictions imposed by the Macintosh Operating System and by
this implementation of Pascal that you should be aware of.

• When you read certain types of text data from one of the
special serial devices (.CONSOLE, .SYSTERM or
.DBGTERM) you may use the <Backspace> key to correct
typing errors. The data types that allow this are strings and
the numeric data types. This handling of the <Backspace>
key is independent of the general-purpose backspace
character handling that is done by the special serial device
driver, and works even if you are not using a fIxed-pitch
font.

• The standard me input defaults to the .CONSOLE device, as
does the standard me output. This means that read, readln,
write, and write In intrinsics that do not specify a me name
will cause output to go to the current window and input to
come from the keyboard. If the program doesn't have a
current window, output is written to the QuickDraw grafport
which defInes the screen. A program which has the Create
Default Window runtime option enabled gets a current
window which satisfIes the requirements for these intrinsics.

• Tabs are expanded, as you would expect, on the special serial
devices. That is, writing a tab character to one of the special
serial devices causes the QuickDraw character drawing pen to
be positioned at the start of next column to the right of its
current position. Each column has a width of eight space
characters. (This means that font and character size used
determines the actual width of the columns on the screen.)
Note that this same style of tab expansion may not occur
when you write text on an Imagewriter printer unless you
have set the tab stops on the printer.

2-32 1200301:02B

ACCESSING FILES

• A disk file that is opened with reset or rewrite is opened with
both read and write permission. Therefore, disk files may not
be opened more than once simultaneously within an
application. An important consequence of this is that none of
the files that the system opens automatically may be opened
by a program.

• Devices, on the other hand, are opened with whatever
permissions are available. Thus, one device (like .BOUT) may
be opened more th an once simultaneously within an
application. There are however some anomalies regarding the
standard Macintosh devices .AIN and .BIN which you need to
be aware of. You must open the corresponding output device
first, before you open one of these input devices, otherwise the
system will crash. For example, if you want to open a file to
.AIN, first open it to .AOUT, close it, then re-open it to
.AIN.

• Disk files are stored as normal Macintosh files, and share all
the properties of Macintosh files. For instance, disk files may
be located in multiple extents on a disk. Thus, a file may
expand until the disk is <:ompletely full without the user
worrying about the placement of files on the disk.

• The Runtime Support Library returns an I/O result code for
each I/O operation. The codes that are returned correspond
to the I/O result codes used by the Macintosh Operating
System. Where possible, I/O result codes manufactured by
the Runtime Support Library will be one of the codes known
to the Macintosh Operating System. However, a few new
codes have been defined that are unique to the Runtime
Support Library.

• When the Runtime Support Library is reading a character
from one of the special serial devices, this condition is made
known to the user through the display of a block cursor at the
current pen position on the screen.

1200301:02B 2-33

GENERAL OPERATIONS Chapter 2

Limits On Open Files

A UCSD Pascal program can have a maximum of eight files open
at one time on the Macintosh. The Macintosh Operating System
imposes a limit of 12 open files, but the Pascal Runtime Library
keeps four files open while a normal program is running. These
are the files that the system keeps open:

1. Pascal Runtime (data fork)

2. Pascal Runtime (resource fork)

3. Application (data fork)

4. Application (resource fork)

In addition, each library code file that your program uses will be
open at runtime. Therefore, if you plan to have many files open
at once in your application, you will need to restrict your use of
library code files.

Special Keyboard Sequences

The Macintosh Operating System takes special actions on certain
keyboard inputs. These actions take the form of special key
sequences that the Macintosh Operating System recognizes. Your
application can disable these actions by using GetOSEvent to
retrieve keyboard input rather than GetNextEvent or Pascal I/O.
These key sequences are as follows:

• <command-shift-I> ejects the disk in the internal
drive.

• ·<command-shift-2> ejects the disk in the external
drive.

• <command-shift-3> writes a copy of the current
window to a disk file that is suitable for input to MacPaint.
If < Caps Lock> is also down, then it writes the whole screen
contents. The file is written to the default disk.

2-34 1200301:02B

ACCESSING FILES

• < command-shift-4> writes a copy of the current
window to the printer. If <Caps Lock> is down, then it
writes the contents of the entire screen image (print screen).

Serial Devices

This section describes the special serial devices that are supported
by the Runtime Support Library. The Macintosh Operating
System does not treat the screen and keyboard as files at all, so
these are really just virtual devices to give the screen and
keyboard a file interface.

The Runtime Support Library uses QuickDraw to draw
characters on these virtual devices. Therefore, QuickDraw
terminology (eg. font, pen location) is used to describe the
output characteristics of these devices.

• .CONSOLE refers to a terminal-like device that uses the
Macintosh screen and keyboard. A write to .CONSOLE
writes characters to the current window in the currently
selected font. If the Create Default Window runtime option is
enabled, this default window is the current window when a
program starts. The default font is Geneva-12. A read from
.CONSOLE reads characters from the keyboard. These
characters are echoed on the screen in the current window.

• .SYSTERM refers to a device that is identical to
.CONSOLE, except that characters read from the keyboard
are not echoed on the screen.

• .DBGTERM refers to a terminal-like device that uses the
keyboard and the bottom eight lines of the Macintosh screen.
Characters written to .DBGTERM will appear in Monaco-9
font. The .DBGTERM device does not write to the screen
within a window. Instead, it destructively modifies the bits at
that position of the screen. Because the characters may be
superimposed over other information on the screen,
.DBGTERM draws its characters with some surrounding
white space. This device is used by the Debugger when the
External Terminal Debugging runtime option is disabled. It
is also useful for programs that want to display their own

1200301:02B 2-35

GENERAL OPERATIONS Chapter 2

debugging information without interfering with the current
window. Like .SYSTERM, .DBGTERM does not echo
characters on input. When the .DBGTERM device is
available, the size of the default window created for the
.CONSOLE and .SYSTERM devices is made smaller so that
.DBGTERM output is not intermingled with .CONSOLE
output. Of course, if you are not using the default window
option, it depends on the current grafport as to whether or
not .CONSOLE output will ever conflict with .DBGTERM
output.

The three serial devices mentioned have: a number of
characteristics in common. All of them display a block cursor
when the program reads from the device. This block cursor is an
indication to the user that keyboard input is expected.

The following special characters are handled by the special serial
devices:

• carriage return. Writing a carriage return character (OD
hex) causes the current pen position to be moved to the
beginning of the next line. The vertical distance the pen is
moved is based on the height of the current font. The pen is
moved horizontally to coordinate O. If the new pen location is
below the bottom of the grafport, the grafport is scrolled by
one line to accomodate the new line of characters.

• line feed. Writing a line feed character (OA hex) performs no
action. Line feed is ignored on output.

• tab. Writing a tab character (09 hex) aligns the pen location
at the next tab stop. The tab stops have a width of eight
spaces in the current font, and are spaced evenly across the
grafport starting at horizontal coordinate O. If the pen is
currently at a tab stop, writing a tab advances the pen to the
next tab stop.

• backspace. Writing a backspace character (08 hex) erases a
character the width of a space (in the current font)
immediately before the current pen location, and moves the
pen location to the left by the width of a space. Backspace is
most useful if you are using a fixed-pitch font like

2-36 1200301:02B

ACCESSING FILES

Monaco-9.

• bell. Writing a bell character (07 hex) causes an audible beep
to be generated. The volume of the beep can be controlled via
the Control Panel desktop accessory.

Disk Swapping

All of the disks having icons on the desktop prior to the start of a
program are accessible to the program. This means that files
may be opened or created on these disks, even if the disk is no
longer in the disk drive. Additionally, any disks inserted in a
disk drive while a program is executing are also accessible to the
program, provided that the disk is inserted prior to its being
accessed to open or create a file. Once a file has been opened, the
Macintosh Operating System will request that the disk it is on be
inserted into a disk drive whenever the file is referenced. This
capability increases the amount of disk storage available to
Macintosh programs, but at a severe cost in access speed.

If your application is going to depend on using multiple disks per
drive, you should be aware of several fadors:

• Swapping disks places additional burdens on the amount of
stack slop required by your program. This is explained
further in How to Set Stack Slop in the MACINTOSH
INTERF ACE chapter.

• Programs which use UCSD Pascal intrinsics to access files can
use either Macintosh or Pascal I/O file naming conventions in
the reset or rewrite statements. However, use of explicit drive
numbers in file names can be dangerous because there is no
assurance that the correct disk will be in the disk drive when
the file is actually opened.

• Programs which use the high-level Macintosh File Manager
unit can use Macintosh file naming conventions to open their
files.

1200301:02B 2-37

GENERAL OPERATIONS Chapter 2

When they are requesting the names of the files that they are to
operate on, the Compiler and the Librarian accept file names
which contain explicit drive numbers. However, care should be
taken when using the explicit drive number notation with these
programs when using multiple disks in a drive.

BUILDING AN APPLICATION

This section discusses more advanced topics regarding putting
together an application using UCSD Pascal on the Macintosh.

Putting it All Together

This section describes the use of segments, units, and libriaries.
It presents some useful strategies for designing a large program.

Units and segments are used to divide large programs into
independent modules. On the Macintosh, the main bottlenecks in
developing large programs are:

• A large number of declarations that consume space while a
program is compiling.

• Large pieces of code that use up memory space while the
program is executing.

The use of units solves the first problem by: (1) allowing
separate compilation; and (2) minimizing the number of
identifiers needed to communicate between separate tasks. The
use of segments alleviates the second problem by allowing the
code for a large program to be partitioned into manageable
chunks in such a way that only portions of the program need to
be in main memory at any given time, and any unused portions
reside on disk.

You can write a program with runtime memory management and
separate compilations already planned, or you can write as a
whole and then break it into segments and units. The latter
approach is feasible when you're unsure about having to use

2-38 1200301:02B

BUILDING AN APPLICATION

segments or quite sure that they will be used only rarely. The
former approach is preferred and is easier to accomplish.

The following steps outline a typical procedure for constructing a
relatively large application program:

1. Design the program (user and machine interfaces) . .
2. Determine needed additions to the library of units, both

general and applied tools.

3. Write and debug units and add them to libraries.

4. Code and debug the program.

5. Tune the program for better performance.

During the design of a program, try to use existing procedures to
decrease coding time and increase reliability. You can accomplish
this strategy by using units.

To determine segmentation, consider the expected execution
sequence and try to group routines inside segments so that the
segment routines are called as infrequently as possible.

While designing the program, consider the logical (Cunctional)
grouping oC procedures into units. Besides making the
compilation oC a large program possible, this can help the
program's conceptual design and make testing easier.

Units may contain segment routines within them. You should be
aware that a unit occupies a segment oC its own; except, possibly,
Cor any segment routines it may contain. The unit's segment,
like other code segments, remains disk resident except when its
routines are being called.

You can put into the interface section the headings for procedures
and Cunctions that are needed by other units. Then you can hide
the implementation section Crom the users of the unit.

1200301:02B 2-39

GENERAL OPERATIONS Chapter 2

Steps 2 and 3 of the typical construction procedure are aimed at
capturing some of the new routines in a form that allows them to
be used in future programs. At this point, you should review,
and perhaps modify, the design to identify those routines that
may be useful in the future. In addition, useful routines might be
made more general and put into libraries.

Write and test the Library routines before moving on to writing
the rest of the program. This adds more generally useful'
procedures to the library.

The interface part of a unit should be completed before the
implementation part, especially if several programmers are
working on the same project.

Tuning a program usually involves performance tuning. Since
segments offer greater memory space at reduced speed,
performance is improved by turning routines into segment
routines or turning segment routines back into normal routines.
Either route is feasible. Pay attention to the rules for declaring
segments.

Segmenting a Program

An entire program need not to be in main memory at runtime.
Most programs can be described in terms of a working set of code
that is required over a given time period. For most (if not aU) of
a program's execution time, the working set is a subset of the
entire program, sometimes a very small subset. Portions of a
program that are not part of the working set can reside on disk,
thus freeing main memory for other uses.

When your program executes, it is read into main memory.
When the code has finished running, or the space it occupies is
needed for some action having higher priority, the space it
occupies may be overwritten with new code. Code is swapped
into main memory a segment at a time.

2-40 1200301:02B

BUILDING AN APPLICATION

In its simplest form, a code segment includes a main program and
all of its routines. A routine may occupy a segment of its. own;
this is accomplished by declaring it to be a segment routine.
Segment routines may be swapped independently of the main
program; declaring a routine to be a segment is useful in
managing main memory.

Routines that are not part of a program's main working set are
prime candidates for occupying their own segment. Such routines
include initialization and wrap-up procedures and routines that
are used only once or only rarely while a program is executing.
Reading a procedure in from disk before it is executed takes time.
Therefore, the way that you divide up a program is important.

The UCSD Pascal Handbook describes the syntax for creating
separate segments in a program.

Separate Compilation

Separate compilation is a technique in which individual parts of a
program are compiled separately and subsequently executed as a
coordinated whole.

Many programs are too large to compile within the memory
confines of the Macintosh. Such programs might comfortably
run though, especially if they are segmented properly. Compiling
small pieces of a program separately can overcome this memory
problem.

Separate compilation also allows small portions of a program to
be changed without necessarily affecting the rest of the code.
This saves time and is less error prone. Libraries of routines may
be built up and used in developing other programs. This
capability is important if a large program is being developed and
is invaluable if the project involves several programmers.

In UCSD Pascal, separate compilation is achieved by the unit
construct-a unit being a group of routines and data structures.
The contents of a unit usually relate to some' common

1200301:02B 2-41

GENERAL OPERATIONS Chapter 2

application, such as screen control or data file handling. A
program or another unit may use the routines and data
structures of a unit by simply naming it in a uses declaration. In
addition to being a separately compiled module, a unit is also a
code segment; it can be swapped, as a whole, into and out of
memory.

A unit consists of two main parts: the interface section, where
constant, type, variable, procedure, process, and function
declarations, which are "public" (available to any client module)
are found; and the implementation section, where private
declarations are found.

The UCSD Pascal Handbook describes the syntax for creating and
using units.

Libraries

This section describes where you may place the code files that
contain units so those units are available at compile time or
runtime. At compile time, only the interface section of a called
unit is needed. At runtime, only the implementation section is
needed. (It is allowed, however, to have both the implementation
and interface sections available at both runtime and compile
time.) If you wish, a. unit can be compiled with the complete
interface section, but with empty routines defined in the
implementation section. This allows clients which require the
interface section to be compiled before the unit has been fully
implemented. Also, for runtime purposes, the interface section
can be stripped out of a unit's code file using the Librarian. This
leaves only the implementation section and saves disk space at
runtime.

A program or a 'unit which uses another unit is called a client of
that unit. An anology can be made with someone who offers a
service (the unit) and someone else who is a client of that service
(the using program or unit). At runtime, the Runtime Support
Library searches for a unit in the following places:

2-42 1200301:02B

BUILDING AN APPLICATION

• The Runtime Support Library

• The client code file

• The files listed in the client's Library Files list.

The Runtime Support Library units reside in either Pascal
Runtime or Debug Runtime. DO NOT place units that you write
there.

To place a unit directly into a program's code file, use the
Librarian. After the unit's code and the program's code are
unified, the unit will be available when the program is executed.
Refer to the LIBRARIAN chapter for more information on
placing units into a client's code file.

A library can be a code file which is a collection of compiled units
(usually stitched together with the Librarian) or it can contain
just a simple unit within a code file created by the Compiler
when you compile that unit. The Library Files section in this
chapter describes how to modify the client's runtime environment·
description to reference libraries.

At compile time, as opposed to runtime, the code for a unit
resides in a code file specified in the text you are compiling. The
UCSD Pascal Handbook describes how clients can use the interface
section of units at compile time.

Standard Resources

This section describes the RMaker input used to create the
generic resources for Empty Program. This is the file used by the
Compiler on the Macintosh to install resources into the program
code files that it creates. Various parts of the Runtime Support
Library expect to access these resources using the resource type
identifiers and numbers defined here. You should be careful
when defining resources for your program that you do not
accidently redefine the resources described here.

1200301:02B 2-43

GENERAL OPERATIONS Chapter 2

The first input specifies the RMaker output file name. Following
that is the file type and signature:

UCSO Pa.cal l:Empty Program
APPLPROG

The next resource entry is the applications's signature and
version number string. The generic application signature is
PROG; Generic version data is the empty string. (Used as the
title for the default screen I/O window.) If you want the title of
the default screen I/O window to be other than the name of the
program's code file, change the third line of the following
example from the empty string to whatever string of characters
you want to use. See the RMAKER chapter for instructions on
how to append new resources onto an existing resource fork.

TYPE PROG '" STR
,0 (32)

The required Pascal Runtime Files location names are next. First
is the file name of file containing the Runtime Support Library.
Next is the file name of file containing the p-Machine.

TYPE SYSF = STR
,0 (32)

Paaeel Runtime
,1 (32)

p-Mechine

Next is the number of Macintosh Memory Manager master
pointer blocks to preallocate before the Pascal Heap Block is
allocated as a nonrelocatable heap block. (Master pointer blocks
arenonrelocatable, and must never be allowed to reside above the
runtime support's heap block. If any nonrelocatable blocks are
allocated above the Pascal Heap Block, it may not be possible for
the Runtime Support Library to extend the Pascal Heap Block,
even when sufficient free memory space is available. See the
MEMORY MANAGEMENT chapter for more details on the
Pascal Heap Block.)

2-44 1200301:02B

BUILDING AN APPLICATION

Each allocated master pointer block has room for 64 master
pointers. The Macintosh Finder starts any application with a
single master pointer block (i.e. 64 master pointers).

TYPE MSTR = GNRL
,0 (32)

.H
0001

The Startup option settings are defined next. Options are
specified by individual characters in the string resource. A plus
(+) enables an option, a minus (-) disables it. The position of
the character in the string determines which option is set. The
following table lists the Startup options and their default settings
in Empty Program:

Opt.ion

Creat.e Default. Window
Creat.e .DBGTERM Device
St.art.up in Debugger
Enable Performance Monit.or
Debug t.o Modem Port.

Posit.ion

1
2
3
4
5

The following resource specifies the default settings:

TYPE OPTN = STR
,0 (32)

+----

Default.

+

The following strings define the text used in the bootstrap's error
messages:

TYPE PRME = STR
,0 (32)

Could not. open p-maehine fi Ie
11 (32)

Could not. .1 loeat.e memory for p-maehine
,2 (32)

Error reading p-machin. fi Ie
,3 (32)

Could not. locat.. MSTR resource
,4 (32)

Could not. open program dat.a fork
,5 (32)

Could not. open Runt.ime Support. Library fi Ie
,6 (32)

Could not. al locat.e st.ack/h •• p

1200301:02B 2-45

GENERAL OPERATIONS Chapter 2

The following resource definitions are used for the bootstrap's
ALERT Dialog boxes:

TYPE D!TL
,266 (32)

2

et.nlt. .. m Enabled
90 267 110 337
OK

St.at.Text. Di •• bled
10 60 70 360
~O

TYPE ALRT
,266 (32)

60 81 180 431
266
6666

One additional resource type is needed to complete the definition
of Empty Program. It causes the assembly language bootstrap
program to be included in the resource fork. This is the native
Macintosh application which begins executing when you open the
icon of a UCSD Pascal program. This bootstrap reads in the
p-Machine. The p-Machine builds a runtime environment and
reads in the Runtime Support Library. The Runtime Support
Library stitches the pieces of your program together and begins
executing it. The actual resource definition is not included here
because it does not follow the conventions and syntax of the
Macintosh RMaker.

Execution Environment Control

The Error Handling unit may be used by a UCSD Pascal
program to -;;ontrol its execution environment, or perform certain
special functions. This unit may be found in the file
Errorhandl.CODE on the UCSD Pascal 2 disk. The entry
points to the Error _ Handling unit allow a program to:

1. Override the standard handling of runtime errors performed
by the Runtime Support Library by installing a custom error
handling routine. Such an error handler routine can attempt
some corrective action for certain errors, or simply report
runtime errors in a different manner.

2-46 1200301:02B

BUILDING AN APPLICATION

2. Force entry into the Debugger.

3. Cancel a process.

4. Establish a procedure as the "interaction procedure" which IS

activated by the Debugger's "I" command.

5. Turn the Performance Monitor output ON and OFF.

6. Adjust the "stack slop" for the main task.

7. Establish a specific Macintosh file type identifier and
signature for an open file variable.

The following is the interrace to the Error _ Handling unit:

unit error_hondl ing;
interfoce

type eh_results - (cont_hondle. re_initiol ize. continue);
eh_info - record

lused internolly by operotlng system!
0: tin t ege r; b: tin t ege r; c: I n t ege r ;
d:tlnteger; e:tinteger; f:tinteger;

end;

eh_fl le_ptr - tlnteger; IActuol Iy 0 pointer to 0
f I Ie vo r lob Ie. I

eh_res_type - pocked orroy[t .. 4] of chor;
IA Mocintosh Resource Type
Identifier.!

IUser error hondllng focll Itles.!
procedure set_err_hondler(

vor Info:eh_lnfo;

procedure
procedure
procedure
procedure

function err_hondler(err. lor: Integer):
clr_err_hondler(vor info: eh_info);
err_to_messoge(err: integer; vor messoge: string);
ior_to_messoge(lor: integer; vor messoge: string);
debugger;

IProcess control.1
procedure concel(toskld: processld);

IPerformonce monitor control.1
procedure set_pm_interoctlon(procedure pm_Interoctlve);
procedure pm_stort_stop(stort: booleon);

IStock spoce checking control.1
procedure set_stock_slop(Slop: Integer);
function get_stock_slop: Integer;

IFI Ie type ond slgnoture control.1
procedure set_f i le_type(f: eh_f I le_ptr; ftype: eh_res_type);
procedure set_fl le_slgnoture(f: eh_flle_ptr;

slgnoture: eh_res_type);

1200301:02B 2-47

GENERAL OPERATIONS Chapter 2

The following paragraphs discuss each of the entry points to the
Error _ Handling unit:

1. The routine SetErrHandler establishes its parameter
ERR HANDLER as an error-handling function. After such
an er;or-handling function is established, the UCSD Pascal
Runtime Support Library will call it whenever a non-fatal
runtime error occurs. The runtime error numl:.ier and the
current ioresult values are passed to an error-handling
function in its ERR and lOR parameters.

An error-handling function returns one of these possible
results:

Relnitialize. Causes immediate termination of the program.

Continue. Asks the UCSD Pascal Runtime Support Library
to attempt to continue execution.

CantHandle. Indicates that the particular runtime error
cannot be handl!>d by this .. rror-handling function, and that
it should be reported to any previously established
error-handling function (if any). If none of the established
error-handling functions can handle the error, the standard
UCSD Pascal Runtime Support Library error-handling
mechanism is used to report the error.

The INFO parameter passed to SetErrHandler is an
information record which is used internally by the UCSD
Pascal Runtime Support Library. Each distinct
error-handling function you establish must have a separate
information record. To cancel the establishment of an
error-handling function, you should call ClrErrHandler
passing the appropriate information record.

The following is a simple example of how you might create
your own error-handling function and use it in a program:

PROGRAM no_in~.rrup~ionaj

USES {SU UCSO P.acel 2:Errornandl.CODE}
error_Hand Ii n9;

VAR In~o: .h_ln~oJ

2-48 1200301:02B

BUILDING AN APPLICATION

FUNCTION my error routine(
errnum; ioralt: integer): eh_reaulta;

BECIN •
IF errnum = 8 {Uaer Break} THEN
m~ error routine := continue

ELSE- -
my error routine := cant handle;

END; {my_error_routine} -

BECIN
{Aaaume program ia entering aome critical
operation that ahouldn't be lnterrupted.}

SetErrHandler(info, my_error_routine);

{Do the critical operation}

{Reatore Uaer Break faci lity.}
ClrErrHandler(info);

{Re.ume normal proce.aing.}
END. {no_interruptiona}

In the example, an error-handling function is used to prevent
the user from interrupting the program during a certain
critical section of the program. All runtime errors except
User Break will be handled in the usual fashion by the UCSD
Pascal Runtime Support Library.

You can establish an error-handling function anywhere in
your program. However, be sure that you call ClrErrHandler
prior to leaving the context in which your function is
declared.

Error-handling functions may be nested, and the most
recently established function is called first. A unique
information record variable must be used each time
SetErrHandler is called.

WARNING: The exit intrinsic cannot be used to exit a
function that is established as an Error-handling function.

2. ErrToMessage and IorToMessage are routines that you can
call to obtain a textual message describing a particular
runtime error or ioresult value. Both routines return the text
of the message in the string variable you pass as the
MESSAGE parameter. The possible messages returned by
these routines are listed in Appendix B.

1200301:02B 2-49

GENERAL OPERATIONS Chapter 2

3. To enter the UCSD Pascal Debugger from an error-handling
function (or from anywhere else in a UCSD Pascal program),
you can call the routine Debugger. This facility is intended
for use only during the development and checkout of a
program. If you call the Debugger without having the
appropriate runtime options set (those which are required in
order to use the Debugger), your program will fail
unpredictably.

4. The Cancel entry point cancels a process that was previously
started via the start intrinsic. You pass the processid value
returned by start to designate the process to be cancelled.
Cancel c anc-;r;-the process immediately, in terru pting
whatever was happenjng, and releases the space used for its
stack. The canceled process is effectively forced to do an
"exit(process)" statement, since the routine activations on
the process's stack are "unwound II and any exit code for those
routines is executed.

5. SetPmlnteraction is used to establish a procedure within your
program as the Debugger's "interaction procedure". The
interaction procedure is called when the Debugger "I"
command is typed from the Macintosh keyboard. (In order to
use the interaction procedure mechanism, the Performance
Monitor must be activated by setting the appropriate options
with Set Options.) One typical kind of interaction procedure
is one which produces a formatted display of the contents of
some variables or a complicated data structure. Using the
interaction procedure facility, you can make the debugging of
a large and complex program much easier, since you are
effectively customizing the Debugger to suit the needs of your
program.

6. PmStartStop is used to control the built-in Performance
Monitor. The Boolean value you pass as the parameter
START indicates whether the Performance Monitor output
should be enabled or disabled. If the Performance Monitor is
not active when your program starts its execution,
PmStartStop does nothing.

2-50 1200301:02B

BUILDING AN APPLICATION

7. The routines SetStackSlop and GetStackSlop are used to
control the stack slop for the currently executing task.
SetStackSlop sets the stack slop to the number of words that
you specify. GetStackSlop returns the current stack slop
setting. SetStackSlop will not allow the slop setting to be less
than the minimum setting of 1024 (2Kb). For further details
concerning the usage of these routines, see the MACINTOSH
INTERF ACE chapter.

8. SetFileType and SetFileSignature are used to specify the
permanent file type or signature for a Macintosh file being
created by your program using the standard Pascal file I/0.
The first parameter to these routines is a Pascal pointer value
that points to a file variable that you have opened using the
standard Pascal procedure rewrite. (Use the adr intrinsic to
obtain this pointer value.) The sec~nd parameter is the four
character file type or signature. When you close the tile
variable with the LOCK option, the created file's type and
signature are set as specified. If your program creates a
Macintosh file without calling SetFileType, the file type is set
according to the type of the file. If you don't call
SetFileSignature, the signature of your program is used when
you close the file.

Application Interface to the F.inder

The default interface between applications and the Macintosh
Finder program simply allows programs to be started by the
Finder. If you want your application to be started when an
associated document is clicked or you wish to have special
program and document icons displayed on the desktop then you
must go through a little extra work.

Associating Programs With Documents

In order for the Finder to associate a document with an
application two conditions must be met:

1200301:02B 2-51

GENERAL OPERATIONS Chapter 2

1. The application program must be "bundled If into the
Desktop.

2. The document must have the same "creator" as the
application.

For more details on these topics see the section entitled "FILE
INFORMATION USED BY THE FINDERIY in the FILE
MANAGER chapter of Inside Macintosh.

To bundle a UCSD Pascal program into ~he desktop you run the
Set Options program and set the "Set Bundle for FINDER"
checkbox. The Set Options utility was described earlier in this
chapter.

Since UCSD Pascal programs normally have a creator of PROG
any document with the same creator that is double clicked from
the Finder will start your program (assuming no other programs
with the same creator have been bundled into the desktop). Note
that files created by the UCSD Pascal Runtime package do not
have a creator of PROG. You will have to use the File Manager
interface unit to create documents with the correct creator or use
the appropriate Error _Handler entry point.

In order to override the default application creator you use the
RMaker program to set a new creator. For example:

Exampl ... R.,.c
APPLEXI.I!"

Ii Ou~pu~ Fi Ie Name
I; Type i. APPL , C,.ea~o,. i. EXI.IP

INCLUDE UCSO Pa.cal l:Emp~y PFog,.am
;; Re.ource. ,.equ i ,.ed by at I
;; UCSD Pa.cal p,.og,.ama

Running RMaker using the above example will produce a
resource file of type APPL with a creator of type 'EXMP'. Using
this as the resource input file to the UCSD Pascal compiler will
produce a UCSD Pascal program with the same creator and type.
In order to make this creator type known to the Finder you need
to run Set Options on the program and set the bundle biL

2-52 1200301:02B

BUILDING AN APPLICATION

NOTE; Apple Computer would like to maintain a unique set of
creator identifiers. If you wish to bundle your application into
the desktop then you should call Apple Technical Support to get
a unique creator identifier ..

Associating Ieons With Files

In addition to being able to let the Finder know an application's
creator, you can also bundle in other information into the
desktop. This is achieved by defining a resource of type 'BNDL'.

For example suppose you wanted to define two new file icons, one
for your application and another for the data files that your
application will create and use. You could create a resource file
for your program as follows:

Example.R.rc
APPLEXIolP

ii Re.ource Output Fi Ie

INCLUDE UCSD Pa.cal l:Empty Program

TYPE EXIolP • STR i i Vera i on Str i ng
,0 (32)

Ver.ion 1 of Example Program

TYPE ICN# = GNRL
,2000 (32)
.H

0000 0000 0000 0000
9 0 ~ ..

0000 0000 0000 0000

TYPE ICN# = GNRL
,2001 (32)
.H

0000 0000 0000 0000

0060'0000'0000'0000
TYPE FREF

APpEogO

2001
DAtA 1

TYPE BNDL
,2000

EXMP 0
ICN#
o 2000 1
FREF
o 2000 1

2001

2001

1200301:02B

;i The program Icon
Ii Defined later

ii The Data Fi Ie Icon
;i Defined lat.er

ii Fi Ie Reference.
i) for application
;i Type fol lowed by
i; Icon 10
i; for data fi Ie

ii Bundle Resource

fi Ie
Local

Signature and Ver.ion 10
ICONs
Local 10. to Resource IDs
F i I e References
Local IDs to Resource 10.

2-53

GENERAL OPERATIONS Chapter 2

In the above example we have defined a Version String, two icon
lists, and two file references. A file is associated with a particular
icon list using the FREF resource. This resource defines a file
type and a local icon identifier. The mapping from resource
identifiers to local identifiers is accomplished in the BNDL
resource.

After you have created your program using the UCSD Pascal
compiler you still need to run the Set Options program and set
the bundle bit. After Set Options is run you will normally see
your program icon switch from the standard application icon to
the icon you defined as the program icon.

Defining Icons Using RMaker

An icon is defined as two 32 by 32 bit images. The first image is
the icon in its dormant (unclicked) state. The second image is an
icon mask which is used by the Finder to produce the image
representing the icon in its active (clicked) state. The mask
should be a filled in outline of the first icon.

The UCSD Pascal compiler icon is defined using the following
icon 'list:

TYPE ICN# = GNRL
,2000 (32) j j R.ao\.lrc. ID

.H
0001 0000 0002 8000 j ; ---------------0004 4000 0008 2000
0010 1000 0020 4800
0040 0400 0081 0200
0100 0100 0204 0080 ; ; Th. f;Fa~ •• ~ of
04EO 0040 0820 1020 j ; of 16 rowa d.fine
1220 0010 2100 4008 ; ; the ICON.
488E 3F04 8802 4082
4E32 8041 2029 3022
1089 C814 08SE 7FOF
04E2 3007 0201 0007
0100 8007 0080 6007
0040 lFE7 0020 021F
0010 0407 0008 OSOO
0004 1000 0002 2000
0001 4000 0000 8000 ; ; -------------0001 0000 0003 8000
0007 COOO OOOF EOOO
OOlF FOOO 003F F800
007F FFCO OOFF FEOO j i Th. n.K~ 16 row a
OlFF FFOO 03FF FF80 i ; d.fine ~h. ICON
07FF FFCO OFFF FFEO j ; maak.
1FFF FFFO 3FFF FFF8
7FFF FFFC FFFF FFFE

2-54 1200301:02B

BUILDING AN APPLICATION

7FFF FFFF 3FFF FFFE
1FFF FFFC OFFF FFFF
07FF FFFF 03FF FFFF
01FF FFFF OOFF FFFF
007F FFFF 003F FE1F
00lF FC07 OOOF F800
0007 FOOO 0003 EOOO
0001 COOO 0000 8000 i ; -----------

1200301:02B 2-55

GENERAL OPERATIONS Chapter 2

2-56 1200301:02B

3
EDITOR

The Editor is used to create and modify text files. These files can
be used for many purposes including input to the Pascal
Compiler and creating textual data for Pascal program
consumption.

If the file you are editing is too big to fit on the screen, a portion
of the file is displayed. This "window" into the file can be moved
to display any part of the file you want. An example of the
Editor display is shown in Figure 3-1.

r • File Edit Search Format Font Size

X. integer;

prOCedure FACT (N' int.egeri;
begin

if N: 0
then FACT.: I
else FACT.: N • FACT(N-l),

end; {FACT}

begin
write("enter X'),
relldln(X);
l'iriteln('X!: ',FACT(X;o},

Figure 3-1. The Editor Display.

The basic editing operations are inserting characters, cutting a
portion of the text, and pasting text into a new location. Text
that is cut goes into a special window called the Clipboard. Text
in the Clipboard can be pasted into any place in the file or into

1200301:03B 3-1

EDITOR Chapter 3

another file. The Clipboard also allows you to transfer data
between applications.

All editing action tak~s place at the insertion point. The
insertion point is marked by a blinking vertical line where the
next character will be placed. Any characters typed or pasted
from the Clipboard are inserted at this point. This is true even if
the insertion point is not currently displayed in the window. The
window is automatically scrolled to show the insertion point.

The mouse is used to scroll the text in the window, move the
insertion point, select text to be cut or copied, point to menus,
and select items on menus.

The Editor is disk based. This means that the size of a file you
can edit is limited only by the available space on the disk.
However, as a file grows larger it takes longer to do simple
editing operations on it. When a file becomes very large, you
should split it into multiple pieces.

USING THE EDITOR

Start the Editor by double-clicking the Editor icon. For more
information on starting applications refer to 1vfaciniosh, your
owner's guide.

You direct the Editor to work on a file by using the New or
Open ... command in the File menu. Selecting a command from
a menu is discussed below in The Menus.

The file that you are working on is called the" active document."
Although you can have several documents open and accessible at
anyone time, you can edit only the active document. The active
document appears in the Ii active window," which is indicated by
a darkened title bar and scroll bars, and is always on top of all
the other windows.

3-2 1200301:03B

USING THE EDITOR

To leave the Editor, select Quit from the File menu, and you will
return to the Finder .

. Entering and Deleting Text

Text is entered into the active window at the insertion point by
typing characters. Text is deleted at the insertion point by
typing the < Backspace> key. Large deletions are done by
selecting the text with the mouse and then typing <Backspace>.
You change text by selecting the text to change and then typing
the replacement text.

Editing Operations

The basic editing operations are cut, copy, and paste. To cut or
copy text, you must first select the text to be cut or copied, then
select either Cut or Copy from the Edit menu. Select text by
moving the mouse while holding down the button. See
SELECTING TEXT for complete information on selecting text.
Text that is selected and then cut is removed from the active
document and placed in a special window called the Clipboard.
Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the
active document by placing the insertion point where you want
the text inserted and choosing Paste from the Edit menu.

The Menus

Operations are provided in six menus:

• The File menu is used to access files, print text, and exit the
Editor.

• The Edit menu is used to edit text.

1200301:03B 3-3

EDITOR Chapter 3

• The Search menu provides commands to find and change
strings in the active document.

• The Format menu handles setting the tab stops and enabling
auto indent mode.

• The Font menu allows you to select the font of the current
document for display and printing.

• The Size menu allows you to set the size of the current font.

Each of these menus is described in more detail in the sections
that follow.

Creating, Opening and Closing Files

Files are created, opened and put away using the functions of the
File menu. The New command creates a new file. The Open ...
command opens an existing file. The Close command puts away
the active document.

The Open... function uses the Open Box to help you select the
file to open. This dialog box is shown in Figure 3-2.

fRCT
fiRST

Cancel

Figure 3-2. The Open Box.

Figures

Eject

Drive

To open a file, first scroll the file list by clicking the mouse in the
scroll arrows until the file you want to open is in the list. Next,
select the file by using the mouse to click its file name. Finally,

3-4 1200301:03B

USING THE EDITOR

click the Open button to open the file. An alternative method of
opening a file is to double-click its file name.

The file list displays only the files in the current drive that have
a file type of TEXT. The na~e of the disk in the current drive is
displayed above the Eject button. The other buttons are as
follows: Cancel aborts the operation, Drive switches to the other
drive, and Eject ejects the disk from the current drive.

Various File menu functions cause the active document to be
saved. If the Editor needs you to supply a file name it uses the
Save Box, shown in Figure 3-3.

I Figures:FIRST
Eject

Salle document as Figures

Salle (ancel Drille

Figure 3-3. The Save Box.

To save a file, first type its file name. Next, use the Eject and
Drive buttons to make the disk it is to be saved on the current
drive. (The current drive name is shown above the Eject button.)
Finally, click the Save button. The Cancel button is to abort the
save operation and return to the Editor.

The field where you type the file name is a standard Macintosh
editable text field. This means that you can use the mouse to
edit the file name until it is correct. See Macintosh for more
information on editing text fields.

1200301:03B 3-5

EDITOR Chapter 3

Editing Multiple Files

Up to four documents can be open at one time, but only one
document is the active document. To read in a document when
you already have an active document, choose Open... from the
File menu. It asks you for the document name. The new
document is read into a window on the screen and becomes the
active document. To make another document that is already
open the active document, use the mouse to move the pointer into
a portion of that document and click the mouse button. If you
have several documents open, you might have to move some out
of the way.

This capability of working with more than one document at a
time can be used to copy text from one document to another.
This process is described in detail in EDIT FUNCTIONS.

SELECTING TEXT

The basic editing functions are cut, copy and paste. Before you
can cut or copy text, you must select the text to be cut or copied.
Before you can paste, you place the insertion point by using the
mouse to move the pointer on the screen.

Within an active document, the pointer will have one of three
shapes:

• Text pointer in a document.

• Arrow pointer for menus and scroll bars.

• 'Wrist watch when an operation will take some time.

Use the mouse to move the pointer on the screen. The shape of
the pointer changes when you move into and out of the document
window.

3-6 1200301:03B

SELECTING TEXT

Within the window, the text pointer is used to move the insertion
point and to select text.

In selecting text, you can select characters or words. You can
also select any number of characters or words. Selected text is
displayed in reverse video.

Moving the Insertion Point

The insertion point is indicated by a blinking vertical line where
the next character will be inserted. All insertion, whether from
typing or pasting, takes place at this point in the file, even if it is
not visible in the window.

To move the insertion point, move the mouse, directing the
pointer to where you want it to be and click. Note that the
insertion point moves when you select text. The insertion point
is never placed beyond the end of a document.

Selecting Characters

To select characters, move the text pointer to the beginning of
the characters you want to select, press and hold the mouse
button while moving to the last character you want to select.
You may select in either a forward or backward direction
through the file.

An alternate method of selecting characters that is especially
useful when selecting a large block of text is also available. Using
this method, you move the pointer to the beginning of the text
you want to select and click the mouse button. Then you move
the pointer to the end of the text you want selected and
shift-click. Shift-click means to hold down the shift key on the
keyboard and click the mouse button. You can use the scrolling
controls to display the end of the text you want selected if it is
too big to fit in the window.

1200301:03B 3-7

EDITOR Chapter 3

Selecting Words

To select a word, move the pointer into the word and click the
mouse button twice. To select multiple words, click the mouse
button twice and hold. Move the pointer to the last word you
want selected and release. If you double-click, and hold down
the mouse button while you move the insertion point to the left
or right, the selection expands or contracts by words.

Adjusting the Amount of Text Selected

To change the amount of text selected, move the pointer to the
position that you want the selection to extend to and shift-click.
Thi~ can be used to either expand or contract the selection.

SCROLLING AND MOVING THE DISPLAY

When a document is longer than will fit into the display window,
only part of the document is displayed at one time. You can
change what part is displayed by "scrolling" through the display
either horizontally or vertically. The vertical bars on the right
and bottom sides of the active window are the scroll bars. An
example of a text window showing the scroll bars is in Figure
3-1.

The display window can be changed in size and moved on the
screen. This enables you to have multiple documents displayed
on the screen. These operations are done using the title bar. and
size control box (See Moving the Window, below.)

Scrolling the Display

There are three ways of moving the display window through the
document. In the first method you use the elevators. The
elevators are the white rectangles in each scroll bar. Its position
in the grey portion of the scroll bar (the "elevator shaft I!)
indicates the relative position of the currently displayed text
window in the document. If it is near the middle, the text

3-8 1200301:03B

SCROLLING AND MOVING THE DISPLAY

displayed in the window is near the middle of the document, and
so on. To change the position of the text window, you can move
the pointer into the elevator, click and hold the mouse button
down while you move the elevator to another position in the
elevator shaft. When you release the button, the window will
display the new position in the file.

The second way of moving the window uses the scroll arrows,
which are just to either side of the elevator shafts. If you move
the arrow pointer to the bottom scroll arrow and click, the
display window will move one line toward the end of the
document. If you hold the button down, the window will
continue to move a line at a time until you release it. The other
three arrows work in a similar way.

The third way of moving the window uses the gray regions to
either side of the elevators. Clicking the mouse in one of the gray
regions causes the Editor to scroll one window-full of
information. You can use this feature to page through a file.

Moving the Window

You can move the window on the screen and change its size. This
lets you display multiple documents on the screen. You can make
any visible window the active window by moving the pointer into
it and clicking.

To move the position of a window on the screen, move the
pointer to the title bar (but not in the close box!), press the
mouse button and hold it while you move the window. When
you release the button, the window is redisplayed at the new
location.

To change the size or shape of the active window, move the
pointer to the size control box, press the button, and move the
pointer until the window is the right size and shape. Release the
button and the resized window is displayed. The size control box
is the box in the lower right hand corner of the window. Only
the active window can be resized.

1200301:03B 3-9

EDITOR Chapter 3

THE FILE MENU

The File menu provides functions for reading in and writing out
documents, updating documents, printing documents, and exiting
the Editor. The File menu is -shown in Figure 3-4. Each
function is explained below.

Close

Salle as ...

Print
Quit

Search Format Font Size

Figure 3-4. The File Menu.

• New, The New command creates a new document with the
name Untitled and makes it the active document. You can
also execute the New command by typing N while holding
down the Command key.

• Open ... This tells the Editor to get a new 'document. It
prompts you for the document name using the Open Box,
then reads it in and makes it the active document. You can
also execute the Open... command by typing 0 while holding

-down the Command key. Another method of opening a new
document is to type K while holding down the Command key,
and then type in the name of the document you want to open
followed by < Return> . This option does not appear in the
menu.

• Open. This opens a file whose name corresponds to the
contents of the currently selected text in the active window.
This'is used priniarily to open an include file based on its
name in the current document. You can also execute the
apen command by typing D while holding down the

3-10 1200301:03B

THE FILE "MENU

Command key.

• Close. This puts away the active document discarding any
changes that have been made. You are asked to confirm
whether the changes are to be discarded. If the document
does not have a name, you are asked to supply one using the
Save Box.

• Save. This writes out the active document, but does not close
it.

• Save as .•. This writes out a copy of the active document to
another document name. You are prompted for the name of
the document to write to with the Save Box.

• Revert to Original. This returns the document to the way it
was before you started editing it, or when you last saved it.
This is done by reading the document from the disk.

• Print. The Print command prints the active document using
the current font and font size. Executing the Print command
causes the standard Print dialog box to be displayed in which
you select various print options. If the Print dialog box fails
to appear, you probably do not have an Imagewriter file on
the same disk as the Editor. Refer to Mac Write .for more
information on the standard Print dialog box.

• Quit. This first asks you if you want to put away any
modified documents. If you answer yes, they are written out
to disk. Then it exits the Editor.

THE EDIT MENU

The Edit menu provides editing functions and tab setting. It is
shown in Figure 3-5.

The three basic edit functions are cut, paste and copy. These
make use of the special window called the Clipboard. The
Clipboard can hold only one piece of text. Text is put into the
Clipboard by selecting it in the active document, and either
cutting it or copying it. Text is copied from the Clipboard and

1200301:03B 3-11

EDITOR Chapter 3

inserted at the insertion point with the paste operation.

r ,. File UJlIlSean:h Format Font Size
UnOD

C
· t ···~.···.·',··H··· i
,U ~)

~:~ie :~I Iii
[lear

fllign :#':fI
MOlle left :#':l
MOlle Right :#':R

Hide Clipboard

Figure 3-5. The Edit Menu.

For example, to move text from one place in a document to
another:

1. ~Select the text to be moved.

2. Choose cut from the Edit menu. The text is removed from
the active document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

4. Choose Paste from the Edit menu. The text on the Clipboard
'is inserted at the insertion point.

,

The Edit menu also enables you to adjust selected text left or
right by inserting or deleting spaces. Here are the Edit functions:

• Undo. This command puts the document back the way it was
before the previous operation, if possible. If there is no
change to undo, the function is called Can't Undo.

3-12 1200301:03B

THE EDIT MENU

• Out. Cut places a copy of the currently selected text onto the
Clipboard and removes the text from the active document.
You can also Cut by pressing the X key while holding down
the Command key.

• OoPY. Copy places a copy of the currently selected text onto
the Clipboard, but does not remove it from the active
document. You can also copy by presing the C key while
holding down the Command key.

• Paste. Paste inserts a copy of the text on the Clipboard at
the insertion point in the active document. If a section of text
is selected, Paste replaces it. You can also Paste by pressing
the V key while holding down the Command key.

• Olear. Clear removes the currently selected text from the
active document. The text is not placed in the Clipboard.

• Align. The Align command lines up the left edges of the
selected lines. The align command is most often used to undo
indentation in Pascal programs. You can also Align by
pressing the A key while holding down the Command key.

• Move Left. Move Left moves selected text left by deleting a
single space from the left of each line. It does not delete any
characters other than spaces. It is most often used to adjust
the left margin of a block of text. You can shift left by
pressing the L key while holding down the Command key.

• Move Right. Move Right is similar to Move Left, except that
it moves the selected text to the right by inserting spaces at
the beginning of each line. This can also be done by pressing
the R key while holding down the Command key.

• Show Olipboard. This enables the display of the Clipboard
window and selects it. IC the Clipboard is already displayed,
this command is called Hide Clipboard.

1200301 :03B

EDITOR Chapter 3

THE SEARCH MENU

The Search menu gives you the ability to search for a text string
in the active document. The basic operation is Find, which
locates the next occurrence of the string and selects it. Change
allows you to find a string and replace occurrences of it with a
different string. Both of these operations search from the current
insertion point to the end of the document. If you want to search
from the beginning of a document, you must move the insertion
point to the beginning of the document. The Search menu is
shown in Figure 3-6.

r " File Ed!..!JI:.t;u.lfll~ Format
Find ~f

Change ~S

Font Size

Figure 3-6. The Search Menu.

All searches start at the insertion point, and go to the end of the
document. The search functions are as follows:

• Find. Find enables the Find Window, and displays it on the
screen. The Find command can also be executed by pressing
the It key while holding down the Command key.

• Change. Change enables the Change Window and displays it
on the screen. The Change command can also be executed by
pressing the S key while holding down the Command key,

• Hide Find. If the Find Window is enabled, the Hide Find
command will close the Find Window. If the Change Window
is enabled, this command is called Hide Change.

3-14 1200301:03B

THE SEARCH MENU

The Find Function

The Find function is performed using the Find Window, shown in
Figure 3-7. To find an occurrence of a string, first, you edit the
string to be found by using the standard Macintosh editing
functions. Next, select Whole Word search or Partial Word
search by clicking the appropriate box with the mouse. In Whole
Word search, the string will only match complete words
separated by spaces or other punctuation. In Partial Word
search, the string may match any part of a word. Finally, you
click the Find Next button.

rind What:. I prot

I find NeHt J .

Find

I 0 Whole Word

Iill Partlitl Word

Figure 3-7. The Find Window.

If there is an occurrence of the string, it is selected. If no
occurrence can be found, the Editor gives a warning message.
Succeeding occurrences of the string can be found by just clicking
the Find Next button.

To put away the Find Window, click in the close box within the
title bar of the Find Window.

The Change Function

The Change function is performed using the Change Window,
shown in Figure 3-8. To change all occurrences of a string for
another, first edit the Find What and Change To strings in the
Change Window. This is done using the standard Macintosh
editing functions. Next, select Whole Word search or Partial
Word search. Whole Word search only allows the string to
match words separated by spaces. Partial Word search allows
the string to match any string of characters. Finally, you click
the Change All button.

1200301:03B 3-15

EDITOR

liD

find What:

Change To:

(nnd NPHt:1

(hange

o Whole !llord o Partial !llord

Figure 3-8. The Change Window

Chapter 3

The other Change options are as follows: Find Next finds and
selects the next occurrence of the Find What string; Change,
Then Find changes the current selection, then finds the next one;
and Change changes the current selection ..

To put away the Change Window, click in the close box within
the title bar of the Change Window.

THE FORMAT MENU

The functions in the Format menu allow you to set the spacing of
the tab stops, configure auto indenting mode, display nonprinting
characters, and set the printing page format. The Format menu
is shown in Figure 3-9.

r " File Edit seart~'IIIII'iU.Font Size
Set Tabs ~ •••• rw
Ruto Indent Off
Shou' InLlisibles

Printing Format

Figure 3-9. The Format Menu.

• Set Tabs. Set Tabs enables you to set the spacing of the tab
stops. You may only select a spacing between 1 and 20. Note
that the compiler listing pass assumes 8 spaces per tab stop.
If you create Pascal source text with different tab settings,

3-16 1200301:03B

THE FORMAT MENU

your listing won't precisely match you source text.

• Auto Indent Off. This toggles the auto indent mode on and
off. In auto indent mode, carriage returns puts the insertion
point in line with the indenting of the previous line. This
option is especially useful for indenting Pascal programs. If
auto indenting is already off, this function is called Auto
Indent On.

• Show Invisibles. Show Invisibles will display the non
printing characters (i.e. blanks, carriage returns, and tabs) in
the currently active window. If the non-printing characters
are currently being displayed, this command is called Hide
Invisibles.

• Printing Format. The Printing Format command brings up
the standard Page Setup dialog box. Refer to MacWrite for
more information.

THE FONT MENU

The Font menu enables you to change the display font. The
Font menu is shown in Figure 3-10. A check appears in front of
the font in which the active document is currently displayed.
You can change the font by selecting another font from the
menu.

r " file Edit Search Format .:r illtSize
ChicagtliolmF-m_
Geneva

"'Monaco

Figure 3-10. The Font Menu.

The font selected affects how many characters can be displayed
on a line, and whether or not the display is proportionally
spaced. Different fonts can be active in different windows at the
same time. Which fonts can be selected depends on the fonts
available on the system disk that you booted with.

120030l:03B 3-17

EDITOR Chapter 3

NOTE: The UCSD Pascal 1 disk has a System file that
contains only the Chicago-12, Geneva-12, and Monaco-9 fonts
installed on it. If you wish to use other fonts from the Editor,
you must replace the System file, or use the Font Mover program
to augment the font set of the System file,.

THE SIZE MENU

The Size menu enables you to choose the size of the current font.
The Size menu is shown in Figure 3-11. A check appears in
front of the font in which the active document is currently
displayed. You can change the font size by selecting another size
from the menu.

,.. • File Edit Search Format Font~l
'll [PmdirnmQn~mm;
10 Point

./U ~ [PmOmQ
14 Point
18 Point
24 Point

Figure 3-1L The Size Menu.

For each font, only certain sizes are available. These sizes are
shown within the size menu in hollow letters. The font will look
best if one of these sizes is selected. Otherwise, the Macintosh
must do "scaling" which can detract from the appearance of the
characters and slow down the speed of drawing characters.

3-18 1200301:03B

4
PASCAL LANGUAGE

OVERVIEW

This chapter is a supplement to The UCSD Pascal Handbook
which describes the version of the UCSD Pascal language
supported by The MacAdvantage: UCSD Pascal.

The UCSD Pascal Handbook contains a thorough description of
the basic UCSD Pascal language as it is implemented under
Version IV of the p-System. The MacAdvantage: UCSD
Pascal is an extended version of this UCSD Pascal language. In
the creation The MacAdvantage: UCSD Pascal, some major
new language features were introduced, and a few p-System
specific features were removed.

In addition to the language features added for interfacing to the
Macintosh, this supplement describes all of the enhancements to
UCSD Pascal that have been introduced since the publication of
The UCSD Pascal Handbook. There is also a section that identifies
material in The UCSD Pascal Handbook that is not applicable to
The MacAdvantage: UCSD Pascal environment. The last
two sections contain revised descriptions of the compiler options
and the conditional compilation facility.

Throughout the remainder of this chapter, the name UCSD
Pascal refers"to The MacAdvantage: UCSD Pascal version of
the language.

1200301:04B 4-1

PASCAL LANGUAGE Chapter 4

Language Enhancements

The language features not described in The UCSD Pascal
Handbook include:

1. The rules regarding the ordering of label, const, type, var,
procedure, and function declarations within a declaration
section have been relaxed. Identifiers must still be
appropriately declared before they are used, but the usage of
include files no longer influences the ordering that the
compiler will accept. This gives you considerable freedom in
the logical arrangement of large declaration sections.
However, the compiler does require that it be able to resolve
any accumulated forward references within pointer type
declarations upon encountering a procedure or function
declaration.

2. A new form of uses declaration called the "selective" uses
declaration has been added to the language. This form of
uses declaration is useful for economizing on symbol table
space and resolving name conflicts between units.

3. Procedural and functional parameters are supported. This is
a Standard Pascal construct for passing procedures and
functions as parameters which was not implemented in earlier
versions of UCSD Pascal.

4. . Conformant arrays are supported. Conformant arrays are
array parameters in which the array bounds are not fIxed .
.The implementation follows the defInition in the ISO Pascal
standard.

5. A variant of the conformant array parameter construct called
an "interface conform ant array" is also supported. This
construct is primarily useful in system programming for
writing procedures which operate on parameters of arbitrary
types.

6. The sizeof and pmachine intrinsics have been enhanced to
make the writing of portable and effIcient programs easier.
These enhancements make it possible to (1) obtain the size of
a variable or type in whatever units you wish, (2) store

4-2 1200301:04B

OVERVIEW

pointer values in a size independent manner, and (3) easily
generate the set of ~wo byte p-code opcodes used by The
MacAdvantage: UCSD Pascal.

7. Long integer arguments may be passed to the standard
functions pred, ~, ord, and abs.

8. Due to a need for a clean interface to the Macintosh
Operating System, a 32-bit integer data type, integer2, is
supported. Unlike the long integers in UCSD Pascal, this
data type may be used in all of the contexts where the integer
data type may be used. (Long integers are still available, and
have the same characteristics as before.)

9. Pointer manipulation intrinsics have been added to support
manipulation of 32-bit absolute addresses. These intrinsics
are: absadr, reladr, derefhnd, absmove, locate. Additional
pointer manipulation intrinsics were added which can be used
to manufacture or manipulate pointers in a size and
implementation independent manner. These intrinsics are:
adr, pointer, offset.

10. Bit manipulation intrinsics have also been added. These
include band, bor, bxor, bnot, shiftleft, shiftright. These new
intrinsics make efficient data manipulation operations easier
to write:

11. An intrinsic called setlength has been added for setting the
length of a string variable in an implementation independent
fashion.

12. A new type of external procedure, called an "in-line
procedure," is supported. A call to an in-line procedure
becomes a direct call to a Macintosh Operating System
routine.

1200301:04B 4-3

PASCAL LANGUAGE Chapter 4

Language Changes

The following are the language changes from the UCSD Pascal
language under the p-System:

1. Two unadvertised constructs involving pointers are no longer
allowed: (1) The standard function ord does not accept
pointer arguments, and (2) pointers may only be compared
for equality (=) or inequality « >).

2. The unit I/O intrinsics are not supported. These are:
unitread, unitwrite, unitstatus,unitbusy, unitwait, unitclear.

3. The gotoxy intrinsic is not supported due to the ambiguity of
such an operation when a proportionally spaced character
font is used for the .CONSOLE device.

USING THE HANDBOOK

This section is intended to bring to your attention certain
material in The UCSD Pascal Handbook which either does not
apply to you, or needs to be interpreted differently because you
will not be writing UCSD Pascal programs under the
p-System.

Using the Macintosh version of UCSD Pascal isn't radically
different from what is described in the handbook. Most of the
differences involve small details which will become clearer after
you have absorbed the material in this chapter and the
GENERAL OPERATIONS chapter.

In the handbook, there are a number of places where you are
referred to manuals that are not included with the version of
ucsi> Pascal that you have purchased. The following table may
give you some clues as to which chapter of this user manual to
read in order to look up some of the topics referred to in The
UCSD Pascal Handbook. The short explanations given here are
intended to help you quickly sort out the differences between the
descriptions in the handbook and the way things work with your
Macintosh version.

4-4 1200301:04B

p. 16: Library
handling

p. 17: Runtime
Errors

p. 19: Textfile
maintenance

p. 27: Predeclared
identifiers

p. 27: pmachine
intrinsic

p. 59: trunc(L)

p. 86: Character
devices

p. 87: Keyboard
End Of File

p. 95: Space
Allocation

p. 97: Real numbers

p. 101: sizeof
intrinsic

p. 103: declaration
ordering

1200301:04B

USING THE HANDBOOK

See the LIBRARIAN chapter ..

See the GENERAL OPERATIONS
chapter.

See the EDITOR chapter.

List is not complete and includes
identifiers that are no longer
predeclared.

The pmachine in trinsic IS described III

this chapter.

Produces overflow error if long integer L
is outside of the range -maxint2-1 00

maxint2.

The names of the character-devices are
slightly different. Redirection of I/O on
these devices is not supported. See the
GENERAL OPERATIONS chapter.

This feature is not available.

See the P-M A CHI N E
ARCHITECTURE chapter.

Only 64-bit real numbers are supported.

The warning about the sizeof intrinsic is
no longer accurate. See the revised
description of the sizeof intrinsic in this
chapter. --

Include files no longer influence the
ordering of declarations that the
compiler will accept. See the discussion
of this topic in the OVERVIEW section

4-5

PASCAL LANGUAGE

p. 115: Library files

p. 133: Debugger

p. 135: input
and output

p. 140: File naming
conventions

p. 146: keyboard

p. 146: Device I/O

p. 151: ioresult values

p. 152: Screen I/O

p. 153: Memory
Management

p. 163: Interrupts

4-6

Chapter 4

of this chapter.

There 1S no file called
*SYSTEM.LIBRARY. See the
GENERAL OPERATIONS and
LIBRARIAN chapters.

See the DEBUGGER chapter.

The standard files input and output are
permanently opened to the .CONSOLE
device. See the GENERAL
OPERATIONS chapter.

The Macintosh file naming conventions
are similiar, but slightly different. See
the GENERAL OPERATIONS chapter.

The file keyboard is opened to the
.SYSTERM device. See the GENERAL
OPERATIONS chapter.

Material in this section is not applicable
to the Macintosh environment. Low
level device I/O can be done using the
Macintosh interface unit PBIOMGR
instead. See the MACINTOSH
INTERF ACE chapter.

The ioresult intrinsic returns values
different from those listed. In fact,
ioresult can return negative values. See
the ERROR MESSAGES Appendix.

There is no screen control unit. The
gotoxy intrinsic is not supported.

See the MEMORY MANAGEMENT
chapter.

No p-Machine events are supported.
Thus the attach intrinsic cannot be used.

1200301:04B

p. 167: Quiet
compile option

p. 167: Realsize
compile option

p. 170: Copyrigh t
notices

p. 171: U(ser
restart command

p. 172: External
routines

USING THE HANDBOOK

Default setting is always "_". There is
no file SYSTEM.MISCINFO.

Only 64 bit real numbers are supported.

Up to 77 characters of copyright notice
can be placed into the segment
dictionary. The structure of the segment
dictionary is described In the
P-MACHINE ARCHITECTURE
chapter.

This feature is not available.

The compiler will allow the form of
external routine declaration shown
here; but you need the appropriate
assembler and linker to write external
routines in assembly language. See
IN-LINE PROCEDURES AND
FUNCTIONS.

p. 280: BOOT _ COPY This example program uses the
program unsupported unit I/O intrinsics,

therefore it will not compile.

p. 307: ord(odd)

1200301:04B

Technique discussed here still works with
type integer; but will not work with type
integer2. Use the bit manipulation
intrinsics instead. See Bit Manipulation
Intrinsics and Integer2 Routines.

4-7

PASCAL LANGUAGE Chapter 4

INTEGER2 DATA TYPE

UCSD Pascal supports a 32-bit integer data type called integer2,
which represents integral values in the range -2l47483648 to
2147483647. The integer2 data type can be used in all contexts
where it is legal to uSe integer. The integer2 data type is an
extension to Standard Pascal.

Except for their differing sizes, the only difference in operation
between integer2 and integer is the way that overflow is handled.
O,perations on the integer data type do not report integer
overflow-the result of an overflow "wraps" back into the
integer range, producing strange a.rithmetic results. Operations
oil integer2 report an execution error if the result of an expression
is out of range.

Since the type integer2 can be used anywhere it is legal to use
type integer, it is possible to:

• Index arrays with integer2 values.

• Use integer2 variables as for statement control variables.

• Use integer2 constants as ease label constants in record type
declarations and ease statements.

• Use integer2 typed expressions as selectors in case sta.tements.

• Define functions that return integer2 results.

Generally, you should use the integer2 type only when a
particular Macintosh interface requires that you use it, or when
the program you are writing requires the extended range of
values offered by the integer2 type. This is because integer2
variables occupy twice the amount of memory as integer
variables, and integer2 operations are somewhat slower than
integer operations.

4-8 12oo301:04B

INTEGER2 DATA TYPE

Integer2 Format

An integer2 constant value is represented by a sequence of digits,
preceded by an optional '+' or" If no sign is present, the
constant is positive.

Each of the following is an integer2 constant:

o
7777777
-4682364
-1

Integer2 constant values can be specifed in the range -maxint2 ..
maxint2. The ~dentifier maxint2 is a UCSD Pascal predeclared
constant identifier that has the value 2147483647. The constant
identifier maxint2 is an extension to Standard Pascal. As with
the integer data type, there is a negative integer2 value
(-2147483648) that does not have a corresponding positive value.

An integer constant takes its type from the context in which it
appears. Thus, 0 may represent an integer constant in one
context and an integer2 constant in another, depending on what
the compiler judges to be the required type.

Integer constants outside the range of values -maxint2 ..
maxint2 are considered to be long integer constants.

Type Compatibility

As with the standard type integer, additional 32-bit integer data
types may be declared via subrange type declarations. Any
integer subrange type which includes integer values outside the
range -maxint .. maxint is considered a subrange of the integer2
type. If either bound of such a subrange type lies outside of the
range -maxint2 .. maxint2, the compiler reports a syntax error,
since long integer subrange type declarations are not allowed.

1200301:04B 4-9

PASCAL LANGUAGE Chapter 4

The following example contains subranges of the integer and
integer2 types:

O .• me .. i nt
-66666 •• 4
6 •. me .. int2

~en integer .ubrenge}
en integer2 .ubrenge} •
en integer2 .ubrange}

The integer2 data types are assignment compatible with the
integer data types, and vice versa. However, there can be a
difference in meaning between a use of integer2 and integer,
because the overflow conditions of the two types differ.

The type compatibility rules lietween the integer2 da.ta. types and
the long integer data types are identical to the compatiblity rules
between type integer and long integers. Briefly, these rules are as
follows:

a In an expression, any integer or integer2 operand is
compatible with a long integer operand. The conversion from
integer or integer2 to long integer is done automatically.

• Long integers may be assigned the values of expressions of
either integer or integer2 types. The conversion to long
integer is done automatically.

• A variable of type integer or integer2 cannot be assigned the
value of an expression of a long integer type. First, the long
integer must be converted to an integer2 using the standard
function trunc.

Integer2 Comparisons

All· the comparisons legal for integer are also legal for the
integer2 data type:

4-10

== me.n.
<>
> >=
< <-

eque' to
not equel to
greeter then
greeter than or equel to
Ie •• than
Ie •• than or equal to

1200301:04B

INTEGER2 DATA TYPE

Integer2 Operations

All the operations legal for integers are also legal for the integer2
data type.

These are the legal operations on a single integer:

+ ••• meens .. , unery plus
un.,-y minu.

A unary operator may not be strung together with a binary
operator. The following example shows this:

5_-4
S. (-4)

{i I lege I }
{Iegel}

These are the legal operations on two integer2 operands:

+

•
div
mod

plus
minus
t.imes
int.e~er divide
remelnder of int.eger divide

If the second operand of div is zero, a runtime error occurs. If
the seond operand of mod is less than or equal to zero, a runtime
error occurs. The integer2 div and mod operations are defined
to perform the same functions as the integer div and mod
operations.

The multiplicative operators *, diy, and mod take precedence
over the additive operators + and -. To override operator
precedence, subexpressions may be grouped together with
parentheses.

1200301:04B 4-11

PASCAL LANGUAGE Chapter 4

Integer2 Routines

The following routines take an integer2 parameter and return an
in teger2 result".

abs{I2) returns the absolute value of 12, which is an integer2.

~(I2) returns the square of 12, which is an integer2.

~(I2) returns the 12+1, where 12 is an integer2.

pred(I2) returns the 12-1, where 12 is an integer2.

The standard functions (odd, chr, and ord) accept integer2
arguments. The functions ord, ~, and abs will return type
integer2 values when passed integer2 arguments.

NOTE: The standard function odd, when supplied with an
integer2 argument produces exactly the Boolean values true and
false. That is, ord(odd(E)), where E is an expression of type
integer2, will always return zero (0) or one (1). This is not the
case when the argument tp odd is an expression of type integer,
since odd only serves to change the type of the expression to
Boolean and does not change the value in any way. What this
implies is that you should NOT use odd as a type conversion
function. Use the bit manipulation intrinsics instead of tricks
which rely on the implementation of odd. For example, the
obscure statement

y := ord(odd(X) and odd(Z»

should be written as:

Y := band(X, Z)

4-12 1200301:04B

INTEGER2 DATA TYPE

The standard procedures read, and read In can be used to read
values into integer2 variables. Similiarly, write and writeln can
be used to write integer2 values to text files.

The standard functions trunc and round return type integer2.

Integer2 Conversions

In arithmetic expressions involving a mixture of data types,
operands are automatically converted so the two operands of any
one operation are of the same type.

The result type of an operation is established from the type of the
operands. If both operands are of the same type, the type of the
expression is the same as the type of the operands. If on the
other hand the operands are of different types, the type of an
expression is the type of whichever operand has the highest type
precedence.

The term "type-precedence" refers to a conceptual ordering of
the various arithmetic data types. The type-precedence of a
given type may be thought of as a measurement of the number of
different types whose values can be converted to that type. Type
real has the highest type-precedence, followed by integer2, and
integer, in that order.

NOTE: Long integers are not compatible with type real. In an
expression with a mixture of long integer operands and integer or
integer2 operands, the type-precedence ordering is as follows:
long integer, integer2, integer.

Two type conversion intrinsics called extend and reduce are
defined which provide the programmer with facilities for
controlling the type of an integer expression:

extend(X) causes the integer expression X to be converted to
integer2 type. If the expression X is of the integer2 type,
extend(X) is a null operation. It is natural to use extend in
situations where both operands are of type integer, but the result

1200301:04B 4-13

PASCAL LANGUAGE Chapter 4

of an operation is expected to be outside the range of type
integer. For example, the assignment statement

could be written as

in order to force the calculation to be performed using 32-bit
integer arithmetic. In the situation depicted in the above
example, GRAND _ TOTAL would be a variable of type integer2,
and the sum of the two integer values LAST_YEAR and
THIS _ YEAR is potentially larger than maxint.

reduce(X) causes the integer expression X. to be reduced to type
integer. If the value of X is outside the range of values
-maxint-l .• maxint an Integer Overflow execution error is
reported. If X is already an expression of integer type, reduce(X)
is a null operation.

PASCAL INTRINSICS

Setlength Intrinsic

A new string intrinsic called set length is available in UCSD
Pascal. Its definition is as follows:

setlength(DESTINATION, SIZE) is a procedure. It sets the
current length of the string variable DESTINATION to the value
of the integer expression SIZE.

For example,

4-14

•• ~I.ng~h(Sil.n~th(S)+l);
S[length(S) :_ .';

1200301:04B

PASCAL INTRINSICS

appends an asterisk to S.

An advantage of using setlength as opposed to making an
assignment to the "length character" is that range checking does
not have to be disabled around the statement that sets the length
of the string.

Bit Manipulation Intrinsics

UCSD Pascal contains a set of bit manipulation intrinsics to aid
in disecting integer and integer2 values into fields. These are:
band, bor, bxor, bnot, shiftleft, shiftright. Each of these intrinsics
is a function. The four logical operations (band, bor, bxor, and
bnot) provide a clean alternative to the old style "ord(odd(X)
and odd(Y))" constructions.

band{P,Q) where P and Q are integer or integer2 expressions
returns the bit-wise and of P and Q as an integer or integer2. If
both P and Q are integer the result is an integer. Otherwise, the
result is an integer2.

X:= bend(X,266)
x:: bend(X,-2)

{mesks x ~o i~s lower by~e}
{forces X ~o be even}

bor{P ,Q) where P and Q are integer or integer2 expressions
returns the bit-wise or of P and Q as an integer or integer2. If
both P and Q are integers the result is an integer. Otherwise, the
result is an integer2.

X:= bor (X, 266)
X:= bor(X,l)

{~urns on bi~ 8 of X}
{forces X ~o be odd}

bxor(P,Q) where P and Q are integer or integer2 expressions
returns the bit-wise exclusive-or of P and Q as an integer or
integer2. If both P and Q are integers the result is an integer.
Otherwise, the result is an integer2.

Xl= b)(or(X,-l)
X:= b)(or(X,l)

1200301:04B

{inyer~s ~he bi~s of X}
{chenges ~he peri~y of X}

4-15

PASCAL LANGUAGE Chapter 4

bnot(P) where P is an integer or integer2 expression returns the
bit-wise ones-complement of P as an integer or integer2. The
type of the result is the same as the type of P.

X ... bnot.(X) {inv.~t.. t.he bit.. of X}

shiftleft(P ,N) where P and N are integer or in teger2 expressions
returns the value of P shifted left by N bits. The bits that are
shifted out of P are lost. The bits that are shifted into P are zero
bits. If P is an integer, the result is an integer. Otherwise, the
result is an integer2.

X: •• hift.l.ft.(X,l) {double. t.h. vafue of X}
X:- .hift.l.ft.(b.nd(X,255) ,8)

{.hift. t.he low byt.. of X}

shiftright(P ,N) where P and N are integer or integer2 expressions
returns the value of P shifted right by N bits. The bits that are
shifted out of P are lost. The bits that are shifted into P are zero
bits. If P is an integer, the result is an integer. Otherwise, the
result is an integer2.

X: •• hift.~i9ht(X,1) {halve. the value of X}
X,. band(.hlft.~i9ht(X,8),255)

{~.t.urn. the •• cond byt.. of X}

Here is an example routine that uses the bit manipulation
intrinsics to multiply (the hard way) two positive integers.

funct.ion TIWES(X,Y: int.ege~): jnt.ege~;
ve~

RESULT,I: lnt.ege~;
begin

RESULT:- 0;
~o~ I:. 0 t.o 15 do

be9in
.f bend(X 1) • 1

t.hen RESULT •• RESULT+Y;
X, •• hift.~ight(X,l);
Y,- .hiftleft(Y,l);

end;
TIMES •• RESULT;

end; {TIMES}

4-16 1200301:04B

PASCAL INTRINSICS

Pointer Intrinsics

UCSD Pascal contains a set of pointer manipulation intrinsics.
These intrinsics were added to the language for the following
reasons.

• They eliminate much of the need. for the pmachine intrinsic
and the ord(POINTER) construct to do pointer manipulation.
This makes system-level pointer manipulation much cleaner
and in some instances more efficient.

• They make pointer manipulation code independent of the
representation or size of pointers. This paves the way for a
larger pointer size in UCSD Pascal.

• They make it possible to manipulate data outside the Pascal
Data Area. This is necessary in order to communicate with
the Macintosh Operating System.

WARNING: The use of these intrinsics should be restricted to
use in systems and application programs that must do unusual
pointer manipulation or must call the Macintosh Operating
System. Many of these routines do little or no type checking, so
their use could be error-prone.

Besides the 16-bit representation of pointers used by UCSD
Pascal for pointer variables, there are two other representations
of pointers in UCSD Pascal. First, there is the "offset"
representation of a pointer. An offset is a 16-bit signed integer
that maps to a unique UCSD Pascal memory location. The
representation of pointers as offsets is undefined. However,
offsets have the following properties:

• Higher pointer addresses are represented by higher offset
values. Thus offsets may be compared to determine the
ordering of their respective pointers.

• A one word difference in pointer values is represented by an
offset value change of 1. Thus offsets may be subtracted to
determine the distance between two pointers in words.

1200301:04B 4-17

PASCAL LANGUAGE Chapter 4

The routines pointer and offset map between pointers and offsets.

The second alternative pointer representation is the "absolute
pointer". An absolute pointer is represented by a positive
integer2 value which is a 68000 32-bit address. The absolute
pointer is provided in order to pass data to and from the
Macintosh Operating System. The routines absadr and reladr
map between pointers and absolute pointers.

Here are the pointer intrinsics:

offset(P) is a function which returns the word memory offset of
the pointer P. The parameter P can be any expression of a
pointer type. The result of offset(nil) is undefined.

pointer(O) isa pointer valued function which returns the
pointer indicated by the offset O. The type of the result is the
same type as the universal pointer constant nil.

adr(V) is a pointer valued function which returns a pointer to
the variable reference V. (V may not be a component of a
packed array or a field of a packed record. The variable
reference V may be a reference to a subcomponent of a variable,
as long as that subcomponent is word aligned and occupies at
least one word of storage.) The type of the result is the same
type as the universal pointer constant nil.

ptrinc(P,N) is a pointer valued function which returns the word
pointer value obtained by adding the positive word offset N to
the word pointer value P. The parameter P is an expression of
any pointer type. The value of the parameter P may not be the
same as the value of the pointer constant nil. The parameter N is
an -',expression whose type is compatibl;-with type integer or
integer2. If the value of the parameter N is negative, the result of
this function is undefined. The type of the result is the same
type as the universal pointer constant nil.

4-18 1200301:04B

PASCAL INTRINSICS

NOTE: ptrinc is designed to be an efficient mechanism for
stepping a pointer in short incremen ts thru an allocated variable.
If it is necessary to "back up" a pointer (i.e. add a negative
offset) this can be done using offset and pointer.

absadr(P) is a function which returns the absolute address of the
word pointed to by pointer expression P. The result is undefined
if P is the pointer constant nil.

reladr{A) is a pointer valued function which returns a pointer to
the word at the absolute address A. The result is undefined if the
absolute address A is odd, or is not in the range of addresses that
can be represented by a pointer. The type of the result is the
same type as the universal pointer constant nil.

derefhnd{A} is an integer2 valued function which returns the
absolute address of the word pointed to by the Macintosh handle
A. (A handle is an abolute pointer to another absolute pointer
called a "master pointer." The function derefhnd returns the
low order three bytes of the master pointer.)

locate(V) is an integer2 valued function which returns the
absolute address of the variable reference V. (V may not be a
component of a packed array or a field of a packed record.
The variable reference V may be a reference to a subcomponent
of a variable, as long as that subcomponent is word aligned and
occupies at least one word of storage.) The construction
locate(V) is eq~ivalent to absadr(adr(V)).

An alternative form of locate, locate(PROC, N), returns the
absolute address of a PME entry-point which will cause
activation of the routine specified by the procedure or function
identifier PROC. The parameter N is an integer expression
which specifies the number of the PME entry-point to be
associated with the routine PROC. N must be in the range 1 to
9. (PME entry-point 0 is reserved for use by the Runtime
Support Library.) The association of the entry-point with
PROC remains in effect until a subsequent locate operation uses
the same entry-point. The entry-point may only be called
during the execution of an assembly language routine or during

1200301:04B 4-19

PASCAL LANGUAGE Chapter 4

an in-line procedure call.

absmove(SRC,DEST,NBYTES) is a procedure that moves
NBYTES of data from SRC to DEST. SRC and DEST are
absolute addresses; NBYTES is an integer2 expression. The
action performed by absmove is equivalent the action of moveleft
intrinsic, except that it can move data that is outside the Pascal
Data Area. absmove is often used to move data into the Pascal
Data Area so that it can be manipulated in a Pascal variable.

(32 -bit absolute address)

"'-1 r <',.' _,l~_,:_.lt_t' __ _

(16-bit pOinter)f-:::-a-dr-
variable
reference

.ff ••• 1 I po;.... ------'
(16-bit Offset)

Figure 4-1. Pointer Intrinsics.

For more information on use of these pointer intrinsics, see the
examples in the MACINTOSH INTERFACE chapter.

Pm.achine Intrinsic

This section describes the pmachine intrinsic. The pmachine
intrinsic allows you to generate in-line p-code. Its primary use
is for performing tasks which the compiler does not ordinarily
allow. In-line p-code can be useful in very low-level system
programming. To use pmachine, you must understand the
p-code operators described In the P-MACHINE
ARCHITECTURE chapter.

4-20 1200301:04B

PASCAL INTRINSICS

The use of pmachine is discouraged for the following reasons:

1. In some cases, the p-codes you specify are altered by the
compiler at compile time, producing unpredicatable results.

2. Software written with pmachine is often less maintainable
than other software.

3. Software written using pmachine may be incompatible with
future UCSD Pascal environments.

WARNING: Absolutely no protection is provided by this
intrinsic or the system; use it with EXTREME CAUTION.

The following example shows the form of a call to pmachine:

"pm.chine" "(" pm.chine-i~em { " " I pm.chine-i~em } H)"

The parameters to pmachine are a list of one or more
p-Machine-items. A p-Machine-item describes a portion of
p-code, and causes one or more bytes to be generated.

The following list describes the four varieties of
p-Machine-item:

1. p-code syllable: The simplest item is a scalar constant. This
item produces a single p-code. If the constant is less than
255, the constant is the p-code. If the constant is greater
than or equal to 255, a two byte p-code is generated
consisting of a byte containing the value 255 followed by a
byte containing the value (constant-255).

2. Expression value: If the item is an expression enclosed in
parentheses, then a p-code sequence is generated which will
compute the value of the expression and leave it on the stack.

1200301:04B 4-21

PASCAL LANGUAGE Chapter 4

3. Address reference: If the first token of the item is a caret (A),
then the item is the specification of a variable, and p-code is
generated which leaves the address of that variable on the
stack. (The generated address is a pointer value, not an
absolute address.)

4. Indirect store of pointer value: If the item consists of the
Pascal assignment symbol, :=, the compiler is directed to
generate code which accomplishes the storing of a p-Machine
pointer value on the top of the stack into the pointer variable
pointed t;;' by a second pointer value on the stack (see the
explanation below).

Given the following declarations:

con.t.
STO '" 196;

t.ype
REC = ,.eco,.d

FIRST,SECONO: int.ege,.;

RECP .e~~~c;
v.,.

VECTOR, .,.,..y[0 .. 9] of RECP;
I: i nt-ege,. ;

would cause the square of I to be stored in the first field of the
sixth element of the array VECTOR.

The fourth type of p-Machine-item is a syntactic mechanism for
directing the compiler to generate the correct p-code sequence
for an indirect store of a p-Machine pointer value regardless of
pointer size.

The following pmachine construct illustrates the old way of
storing a pointer value:

4-22 1200301:04B

PASCAL INTRINSICS

The pmachine construct in the example pushes the address of
VECTOR[Oj onto the stack; pushes the address of the variable
MYREC onto the stack; and finally uses the p-Machine STO
instruction to store the pointer into VECTOR[Oj.

The following example shows how this same operation could be
coded in a manner independent of the size of p-Machine pointer
values:

pmaen i ne (~VECTOR [0] I • MYREC I : =) ;

The appearance of the Pascal assignment symbol, :=, as a
p-Machine-item causes the Pascal compiler to generate the
p-Machine STO instruction.

NOTE: Always use the assignment symbol syntax to store
pointer values into variables. This keeps your software
independent of the size of p-Machine pointers. Also, DO NOT
use the assignment symbol syntax to store anything other than
pointer values; otherwise, your software may be invalidated by
future UCSD Pascal implementations in which pointers are larger
in size than a single p-Machine word.

Sizeof Intrinsic

The sizeof intrinsic has been enhanced in two ways. First, you
may supply an optional units field, which allows you to select the
units in which sizeof is to return the size. Second, you may
supply optional tag fields, which allow sizeof to calculate the size
of a particular variant of a record. --

The syntax for sizeof is as follows:

".iz09of" "(" (~~p09-id09n~ifi09rl variable)
[I" uni~. { "," e •• e-eon.~.n~}] ")"

1200301:04B 4-23

PASCAL LANGUAGE Chapter 4

The optional UNITS parameter is an integer constant that
specifies the units in which the size of the type or variable is to be
returned. If UNITS is omitted, a default value of 8 (the number
of bits in a byte) is assumed. The units specification is a number
of bits. If the size of the specified type or variable is N bits, the
value returned is obtained by the following formula:

(N + UNITS - 1) div UNITS

The UNITS parameter may be followed by a list of tag field
values that select a specific variant of a record type. The syntax
and rules used for the specification of a variant are the same as
for the standard procedure new.

The sizeof intrinsic may be used to determine the size of the
actual parameter which corresponds to a formal conformant
arra.y parameter. When sizeof is used for this purpose, the
compiler generates code to calculate the size of the actual
parameter at runtime. In all other situations, the result IS a
constant value calculated by the compiler at compile time.

The following examples illustrate the various forms of the syntax
forsizeof:

.i: .. of V. 1

SiZ .. O.,!V) .;: .. of T)

• ;: .. 01 V, e
• iz .. of V'16~
.si : .. 01 R, e,

R .. t-urn. siz .. of
R .. t.ur-n. siz .. of
R .. tour-n. siz .. of
Ret.urn •• ize of
R .. t.ur-n. s,z .. of

v.r-i.bl. V in byt. •••
t.yp. T in byt. •••
V in bit. ••
V in byt.
V in word ••

T11 T2, ..•)
Ret.urn. siz .. of t.h ... p .. cifi .. d
variant. of t.h .. r.cord t.yp .. or
var-iabl .. R in byt. ••.

~iz .. of(P-.A[X]. 16)
Ret.urn. siz .. of t.h .. v.r-iabl ..
P-.A[X] in word ••

The following example also illustrates the use of tag fields in
sizeof:

t.yp ..
R = r- .. eor-d

Fl: i nt..g .. r I
e HAS WORE THINGS: bool ... n of

f.I··:-O; -

4-24 1200301:04B

PASCAL INTRINSICS

va,.

t.,.ue: (F2, F3: i nt.ege,.) ;
end;

I: int.ege,.;
V: R;
P: ·R;

begin
new(P, fal.e);
V.F1 := o·
V.HAS ~ORE THINGS := fal.e;
moveleft.(V; p., .izeof(R, 8, f.l.e»;

end.

The moveleft call moves only the F1 field of R, because the tag
field of sizeof selected the false variant of R, which contains no
additional fields.

IN-LINE PROCEDURES AND FUNCTIONS

UCSD Pascal has an alternative form of an external procedure
or function declaration that allows you to gain immediate access
to the Macintosh Toolbox routines. This form of external
routine declaration is called an "in-line" routine. The syntax for
declaring an in-line routine requires that you follow the reserved
word external in your declaration by an integer constant
enclosed in parentheses. The integer constant specifies the
Macintosh "trap" instruction for the routine you wish to call.
This syntax is illustrated by the following example:

procedure Get.~ou.e(mou.eLoe: Point.Pt.r);
ext.e,.nal (-22168); {A972}

The example shows the declaration of the interface to the
Macintosh Event Manager GETMOUSE routine, which is
accessed by executing the trap instruction A912 (hexadecimal).
The integer constant -22158 is the decimal value equivalent to
A912. (UCSD Pascal does not allow you to specify constants in
hexadecimal.)

When an in-line routine is called, the compiler generates code to
pass the indicated parameters .on the stack and then generates a
special p-code which causes your program to execute the
Macintosh machine instruction you have specified.

1200301:04B 4-25

PASCAL LANGUAGE Chapter 4

When you declare in-line routines, you do have to make sure
that the number and types of the parameters are correct for the
Macintosh routine you intend to call. It is also crucial that the
function result type (if any) and the trap instruction number be
correct. See the MACINTOSH INTERFACE chapter for detailed
information about interfacing to the Macintosh Toolbox routines.

Unlike ordinary external routines, in-line routines may be
declared within the interface section of a unit. Thus units can
be used to organize collections of Macintosh Toolbox interfaces
into manageable packages. This is precisely what was done to
create the Macintosh Interface listed in Appendix A.

SELECTIVE USES DECLARATIONS

A selective uses declaration is a special form of the UCSD Pascal
uses declaration that allows a client of a unit to select only
those declarations that it needs from the interface section of the
unit. (A client is a program or unit that uses another unit.)
Selective uses declarations have two primary purposes. First,
the client can better document which parts of a unit it is using
by only selecting the pertinent declarations. Second, by only
selecting declarations that are needed, symbol table -space is
conserved, so larger programs may be compiled.

Declarations from the unit are selected by listing the appropriate
identifiers in parentheses after the unit name. The following
defines the complete syntax of a uses declaration.

u.es-decl.~._ion = "u •• s" uni~-id.n~ifi.~
["(" id.n_ifi.~-li.~ ")" J

uni~-id.n~jfie~ = iden~ifi.~ .

iden_ifi.~-li.~ = { id.n~ifl.~ } .

"." ,

A selective uses declaration consists of a simple uses declaration
followed by a list of one or more identifiers enclosed in
parentheses. Each of the identifiers in the list must be defined in
the interface section of the unit being used. If a selected
declaration is not present in the interface section, a syntax error

4-26 1200301:04B

SELECTIVE USES DECLARATIONS

results.

Here is an example of a selective uses declaration:

us.s ~YUNIT (A_CONST, VAR1, VAR2, ~Y_ROUTINE)i

A selective uses declaration specifies that only those declarations
whose identifiers are listed are imported from the unit. The
compiler first compiles the interface text for the unit, then
discards the portions of the symbol table that describe
declarations which were not selected. Thus, only the symbol
table entries for the selected declarations are retained in the
symbol table. The net result is a considerable savings in symbol
table space when a client only requires a few declarations from a
unit whose interface section is large. This makes it possible to
compile larger programs than would otherwise be possible
without selective uses.

While the primary advantage of the selective uses declaration IS

that the compiler's symbol table need not contain unnecessary
declarations, there are other advantages as well.

First, a selective uses declaration can be a valuable
documentation aid. The selective uses makes it easy to identify
the specific declarations that a client needs from the unit.

Second, a selective uses declaration can remedy situations where
there is a name conflict between units. This is done by not
selecting one of the colliding declarations.

For example, suppose your program has a procedure called
NEXT LINE, and you decide to use a unit that also declares
NEXT-LINE in its interface section. If you try to compile
without a selective uses, you will get the syntax error
"101:Identifier declared twice". You can avoid this situation by
using a selective uses declaration to select only the identifiers
you need, thereby avoiding the conflict with NEW _ LINE.

1200301:04B 4-27

PASCAL LANGUAGE Chapter 4

WARNING: Despite the advantages of selective uses
declarations, there are two anomalies which you should be aware
of:

1. You must still have enough memory to compile the interface
sections of the units that you use. Only after the interface for
the unit is fully compiled does the compiler eliminate the
declarations which are not selected.

2. Because selective uses declarations can be used to correct
conflicts due to multiple declarations of the same identifier, a
client which contains selective uses declarations may not
compile successfully if the selective uses declarations are
changed to simple uses declarations.

Here are the rules for inclusion of identifiers in a selective uses
clause:

• If a selected declaration is not present in the interface section
of the unit, a syntax error is issued by the compiler.

• Many identifiers do not need to be named explicitly in the
selective uses list if they are referred to directly or indirectly
within a selected identifier. For instance, field identifiers of a
record are auto"matically included. An exception is that the
names of type identifiers are never included.

The following is an example of selective uses.

unit TOOLS;

interface

type
ALPHA = packed array[O .. 7] of char;
SYW_TYPE = (BAD_SYMBOL, IOENTIFIER, OPERATOR),

SYM REC P = ~SYM RECI
SYM-REC-= recorda

- NAME, ALPHA;
LLINK,RLINK: SYM_REC_Pj

END;

function CLASSIFY (NAME: ALPHA): SYW TYPE;
{ Cla •• ifie. a symbol as BAD SYMBOL,-IOENTIFIER

or OPERATOR. } -

procedure ENTER (NAME: ALPHA; var P: SYM REC P);
{ Create. a symbol table record with sym601 RAME

4-28 1200301:04B

SELECTIVE USES DECLARATIONS

end in.~el I. i~ in ~h. symbol ~.bl •. }

impl.m.n~e~ion

.nd.

TOOLS is a unit with two procedures that manipulate a symbol
table. So~e clients of the unit call the procedure CLASSIFY
while others call ENTER. If a client does not call ENTER, then
the identifiers SYM REC P, SYM REC, NAME, LLINK and
RLINK are not ne-;ded. -Likewise~ if a client does not call
CLASSIFY then the identifiers SYM TYPE, BAD SYMBOL,
IDENTIFIER and OPERATOR are not needed. -

The use of selective uses is demonstrated by two programs that
are clients of unit TOOLS. Here is the first client of TOOLS:

progrem EXAMPLE_A;

u ••• {SU TOOLS.CODE} TOOLS (CLASSIFY,ALPHA);

ver
S: ALPHA;

b.gin
SI= 'NewSym •• ';
if CLASSIFY(S) = BAD SYMBOL
~hen w r i t..1 n ('t.h. iymbo Ii. bed') j

end.

EXAMPLE A selects declarations for CLASSIFY and ALPHA
from TOOLS. The following identifiers are imported from
TOOLS: CLASSIFY, ALPHA, BAD SYMBOL, IDENTIFIER,
OPERATOR. The first two were 7pecified explicitly in the
selective uses declaration. The last three were included
automatically because they are the constants of the scalar type
SYM TYPE, which is the function result type of CLASSIFY.
Note that SYM TYPE was not included, because indirectly
referenced type -names are never included. That is why
EXAMPLE A needed to specify type ALPHA explicitly in the
selective us;; declaration.

As expected, identifiers ENTER, SYM REC P, SYM REC,
NAME, LLINK and RLINK were not included, since ~ne of
them were even indirectly referenced.

1200301:04B 4-29

PASCAL LA.1\IGUAGE

EXAMPLE B is a second client of TOOLS:

program EXAMPLE_B;

u.e. {au TOOLS.CODE} TOOLS (ENTER,SYM_REC_P);

ver
REC_P: SYM_REC_P;

begin
ENTER('NewSym*.',REC P);
if REC P~.NAME <> 'NewSym.*'
~h.n-wri~eln('.ymbol no~ en~.r.d');

end.

Chapter 4

EXAMPLE B specifies identifiers ENTER and SYM REC P
in the selective uses declaration. The following id.eIi'tifiers are
imported from TOOLS: ENTER, SYM REC P, NAME,
LLINK, RLINK. As in EXAMPLE A, the-first t;Vo identifiers
were named explicitly in the selective uses declaration. The last
three identifiers were included automatically because they are
fields of SYM REC, which is indirectly referenced by both
ENTER and 8YM REC P. No other identifiers are imported
from TOOLS.

CONFORMANT ARRAYS

This section describes conformant array parameters.
Conformant arrays are array parameters in which the array
bounds are not known until the procedure is called. Different size
arrays of the same index type and base type may be passed on
each call. The size of the array is determined by the upper and
lower bound parameters, which are automatically passed to the
routine.

Since the rules for using conformant arrays are a bit complicated,
we: will start with a small example. Here is an example
conform ant array parameter:

procedure A(ver X: errey(LO .. HI: in~eger] of in~e9.r);

4-30 1200301:04B

CONFORMANT ARRAYS

The occurrence of l1array [...) of 11 signifies that x is a
conformant array parameter. This syntax should be familiar
from array declarations. However, instead of constant array
bounds this array definition contains bounds parameter
declarations (HI and LO in the example).

In the example, X is a conform ant arl'ay parameter that may
take any array of integers indexed by integers as a parameter.
When procedure A is called, the bounds parameters LO and HI
are set to the constant bounds of the actual parameter. Here is
an example of two calls to A:

v ...
B: y[0 .. 9] of intege"j
C: y[-4 .. ~O] of intege"j

begin

~ t~~ i
endj

{ LO i. 0, HI i. 9 }
{ LO i. -4, HI i. 20 }

Conformant arrays make it possible to write procedures that
perform the same function on an assortment of array sizes.
Consider the following example:

p .. og ... m CONFORMANT ARRAYS; v... -
X: y[l .. lO] of intege"j
Y: y[-lOO •• lOO] of ,ntege .. ;
Xl, Yl: i ntege .. ;

function SUM(A: y[LO •. HI: intege ..] of intege ..): integer;
v ...

I/RESULT: intege"j
beg,n

RESULT , .. OJ
fo .. I :. LO to HI do

RESULT := RESULT + A[I)j
SUM := RESULTj

end; {SUM}

begin
{ A •• ume the y. cont.in .ome v.lue •. }
Xl := SUM (X) ;
Yl :- SUM(Y);

end. {CONFORMANT_ARRAYS}

SUM is a general purpose function to calculate the sum of an
integer array. Because the parameter is a conformant array
parameter, SUM is able to calculate the SUM of any integer

1200301:04B 4-31

PASCAL LANGUAGE Chapter 4

array it is passed. The first time SUM is called, LO will be 1
and HI will be 10. On the second call LO will be -100 and HI
will be 100. The bounds parameters may be used in the
procedure just as if they were normal integer parameters, except
that you cannot assign anything to them or pass them as var
parameters. The actual array parameter may be either a value
or var parameter as desired.

The syntax of a conformant array parameter definition is as
follows:

eonforman~-Drray-.ehemD =
paeked-eonforman~-arrDy-.ehemD I
unpaek.d-eonformDn~-arrDy-.ehemD

paeked-eonforman~-Drray-.ehema •
"paeked" "Drray" "f" index-~ype-.p.eifieD~ion "]ft

"of" ~ype-iden~i/ier .

une·ek.d-eonforman~-array-.ehem. =
array" "C" index-~ype-.peeific:a~ion

{ "I" index-~ype-.pecifiea~ion } ")"
"of" (~yp.-Iden~ifier I

conforman~-array-.ehema) .

index-~~pe-.peeifiea~ion =
iden~,fier " .. " iden~ifier "I"
ordinal-~ype-iden~ifier .

A conformant array may be multidimensional. A
multidimensional conformant array is specified by separating
multiple index type specifications by semicolons, or by declaring
an array of an array. The symbol ";" is a short-hand notation
for "l array of [II. Here is an example of a multidimensional
conform ant array parameter:

procedure A(var X: array[L01 .. HI1: in~eger;
L02 .• HI2: ehar] of in~e9.r);

Note that only the last index component of a conformant array
may be specified as pa.cked. Thus, a two dimensional
conform ant array with a packed second component must be
specified:

proeedure A(var x:
array(L01 .. HI1: in~eg.r] of

packed array[L02 •. HI2: ehar] of in~eger);

4-32 1200301:04B

CONFORMANT ARRAYS

The short cut versIOn using the semicolon notation may not be
used in this case.

Any array that "conforms" to the conformant array parameter
definition may be passed to the conformant array parameter.
An array conforms if:

1. It has the same base type as the conformant array.

2. It has the same number of dimensions as the conformant
array.

3. The type of each index is compatible with the index
components in the conformant array.

4. The range of values of each index is within the range of the
corresponding index type in the conform ant array.

5. The array's packing matches the packing of the conform ant
array.

A conformant array may be passed to another conformant
array parameter as long as the parameter is declared as a var
parameter. This restriction is due to the fact that the size of the
value conform ant array parameter must be known at compile
time in order to allocate temporary storage for a copy of the
aetual parameter.

If more than one formal array parameter is named in an
identifier list sharing the same conformant array definition, the
actual parameters passed to those formal parameters must have
the same bounds. Standard Pascal requires that the actual
parameters be declared with the same type identifier. UCSD
Pascal is not so strict. Consider the following example. Some of
the calls are illegal:

program MORECONFORMANTARRAYSj
va ..

A,B. ar .. ay[l .• lO] of in~eger;
C: array[O .. 99l of in~egerJ
0: array[l .• lOl of in~egerj

procedure SWAP(var XtY:
array LO .. HI: in~eger] of in~eger)J

1200301 :04B 4-33

PASCAL LANGUAGE

ve"
I/TEMP: in~ege,.;

beg.n
for I := LO ~o HI do

begin
TEMP :=
X [I] :=
Y [I] : =

end;
end; {SWAP}

X!Ili Y I j

T M i

begin
{Assume ~he a,.,.eys have some values.}

Chapter 4

SWAP~A' B~; ~Legal.} SWAP A, C; II legal--a and c have diffe,.en~ bounds.}
SWAP A, 0 j OK in UCSO Paseel,

i Ilegal in S~anda,.d Paseal.}
end. {MORECONFORMANTARRAYS}

Interface-Conformant Arrays

UCSD Pascal supports a variant of the conformant array
parameter called an interface conform ant array that is even
more flexible than the conformant array in the type of
parameters it will accept. The interface conform ant array is
used primarily in system programming, where the need to write
procedures that operate on arbitrary types is common.

WARNING: Because interface conformant arrays skirt all the
type checking inherent in Pascal, they should be used only when
necessary and with care.

An int-erface conformant array is declared just like a
conformant array. except that the reserved word interface
appears in front of the declaration. The following are some
restrictions on interface conformant arrays.

• An interface conformant array must be a var parameter.

4-34 1200301:04B

CONFORMANT . ARRAYS

• An interface conformant array must be one dimensional.

Here is an example of an interface conformant array parameter
declaration:

p~ocedure A(va~ x:
i nt.e~-I' ace a ~~ay [LO .. HI : i nt.eg.~] 0-1' i nt.ege~) j

Here are some calls to the procedure:

va~

p, aet. 0-1' cha~j
Q: packed a~ray[O .. 100] 0-1' (~ed,g~e.n,blu.);

begin
A (P) ;
A (Q) ;

end;

As this example shows, an interface conformant array will
accept absolutely any type of variable as an actual parameter.
Within procedure A, both P and Q are looked at as if they were
each an array of integers.

The bounds parameters in an interface conformant array
behave somewhat differently than in a conformant array. First,
the low bound parameter is always set to zero. Second, the high
bound parameter is set to the lowest value such that the
interface conformant array will access all of the actual
parameter. How large the high bound is set depends on the
storage size of the actual parameter and the base type of the
interface conformant array.

The following example shows how interface conformant arrays
might be used in order to calculate a check sum of various pieces
of data:

prog~am SHOWINTERFACECONFORMANTARRAYS;
t.ype

BYTE = O •• 266;
Ya~

S: .-t.r-ing;
BLOCK: packed ar-~ay~0 •. 611] 0-1' 0 •. 250;
A: a~~ay[l .. 10] 0-1' In-t.ege~;

1200301:04B 4-35

PASCAL LANGUAGE Chapter 4

II intege,.;

function CHECKSUM
(va,. Xl interface packed a,.,.sy[L .. H: integer) of
BYTE): i ntege,. j

va,.
I/SUM: integer;

begIn
SUM := 0;
for I := L to H do

SUM := SUM + X[I];
CHECKSUM := SUM;

end; {CHECKSUM}

begin
{Assume the va,.iables have some useful values.}
writeln!CHECKSUM~S»; 1 L = 0, H = 80 } writeln CHECKSUM BLOCK»; L = 0, H = 611 }
writeln CHECKSUM A»; L = 0, H = 19 }
writeln CHECKSUM I»; L = 0 H = 1 }

end. {SHOWINTERFACECONFORMAN ARRAYS}

COMPILER OPTIONS

You may direct some of the compiler's actions by the use of
compiler options embedded in the source code. Compiler options
are a set of commands that may appear within "pseudo
com men ts, Ii and like any other Pascal comment, they are
surrounded by either of the following pairs of delimiters:

pa,.entheses/a.te,.isks
brace.

.. ~
The only difference is that a dollar sign ($) immediately follows
the left-hand delimiter, for example:

There are two kinds of compiler options: "switch II options and
"string" options. A switch option is a letter followed by a
plus (+), min us (-), or a caret r). A string option is a letter
followed by a. string. (In the examples shown above, the second
one is a string option; the others are switch options.) A pseudo
comment may contain any number of switch options (separated
by commas), and zero or one string options.

4-36 1200301:04B

COMPILER OPTIONS

NOTE: If a string option is present in a pseudo comment, it
must be the last option. The string is delimited by the option
letter and the end of the comment. Also, if the pseudo comment
uses the parenthesis/asterisk delimiters, (* and *), the string in
the string option must not contain an asterisk.

Some options may appear anywhere within the source text.
Others must appear at the beginning of the file (before the
reserved word program or unit).

Switch options are either "toggles" or "stack" options. If a
switch option is a toggle, a plus (+) turns it ON, and a minus (-)
turns it OFF. The options 'I,' 'L,' and 'R' are stack options, as
are the conditional compilation flags (see below).

With each stack option, the current state, either plus (+) or
minus (-), is saved on the top of the stack, which can be up to 15
states deep). The stack may be "popped" by a caret r) thus
enabling the previous state of that option again. If the stack is
"pushed" deeper than 15 states, the bottom state of the stack is
lost. If the stack is popped when it is empty, the value is always
minus (-).

{SI-} curren~ value ia '-' no I/O checking

{SI+} cur,.en~ value i. '+'

{Sr} cur"en~ value i • '-' again

<sr~ cur-rent. value i. ' + ' , ~~hi. wa. ~he defaul~) sr current. value i. ' -) , ~he .~ack i. now emp~'y)

The individual compiler options are described below in
alphabetical order. If you do not use any compiler options, their
default values will be in effect. Here are the default values for
the compiler options:

{SQ-,R+,I+,L-,U+,P+,D-,N-}

These remain in effect unless you override them. The settings of
the U and N options should not be changed.

1200301:04B 4-37

PASCAL LANGUAGE Chapter 4

Conditional compilation is also controlled by compile time
options as described below.

$B - Begin Conditional Compilation

$B is a string option. It starts compilations of a section of
conditionally compiled source code. See the section on
conditional compilation, below.

$C - Copyright Field

$C is a string option. It places the string directly into the
copyright field of the code file's segment dictionary. The purpose
of this is to have a copyright notice embedded in the code file.

$D - Conditional Compilation Flag

There are two $D compiler options. This one is a string option.
It is used to declare or alter the value of a conditional
compilation flag. See the section on conditional compilation,
helow.

$D - Symbolic Debugging

The second $D compiler option is a switch option. $D+ turns on
symbolic debugging information. $D- turns off symbolic
debugging information. The default is $D-.

$E - End Conditional Compilation

$E'is a string option. It ends a section of conditionally compiled

4-38 1200301:04B

COMPILER OPTIONS

source code.

$1 - I/0 Cheek Option

There are two options named by $1. The first is a stack switch
option (IOCHECK).

$1+, which is the default, instructs the compiler to generate code
after each I/O statement in a program. This code verifies, at
runtime, that the I/O operation was successful. If the operation
was not successful, the program terminates with a runtime error.

$1- instructs the compiler not to generate any I/O checking code.
In the case of an unsuccessful I/O operation, the program
continues.

When you use the $1- option, your programs should specifically
test ioresult when there is the chance of an I/O failure. If $1- is
used and you don't test ioresuit, the effects of an I/O error are
unpredictable.

$1 - INCLUDE File

This is a string option. The string (delimited by the letter 'J' and
the end of the comment) is interpreted as the name of a file. If
that file can be found, it is included in the source file and
compiled.

{II PROG2}

The example shown above "includes" the file PROG2 into the
compilation unit's source code.

If the attempt to open the include file fails, or if an I/O error
occurs while reading the include file, the compiler reports a fatal
syntax error.

1200301:04B 4-39

PASCAL LANGUAGE Chapter 4

Include files may be nested up to a maximum of three files deep.

NOTE: Any leading spaces in a file name are discarded by the
compiler. On the Macintosh, trailing spaces are significant in file
names. Thus it is important that the end of comment delimiter
be immediately adjacent to the last character in the file name.
Furthermore, if a file name begins with a plus (+) or minus (-),
a space must be inserted between the letter 'I' and the string.
For example:

SL - Compiled Listing

$L is a stack option. You may use $L option either as a toggle
switch option or as a string option. When used as a toggle, it
turns the listing ON or OFF at that point in the source text.
When used as a string option, it indicates the name of the listing
file.

When used as a toggle, $L+ turns the listing ON and $L- turns
it OFF. Using these options, you can list only parts of a
compilation if you wish. The default for the toggle is $L- if you
have not named a listing file using the compiler prompt or by
using $L with a string option. The default value is $L+ if you
have named a listing file in either of these ways. No matter
which way you name the listing file, you can switch the listing
ONor OFF by using $L+ or $L-.

If you do not specifically name a listing file and $L+ is in effect,
the compiler writes to the file *SYSTEM.LST.TEXT.

4-40 1200301:04B

COMPILER OPTIONS

$N - Native Code Generation

This is a switch option. $N+ outputs compiler information
wh~ch allows native code generation to take place. $N- doesn't
output this information. The default is $N-. Until such time as
a Native Code Generator is available for this version of UCSD
Pascal, you should not use $N+.

$P - Page and Pagination

The compiler can place page breaks in the compiled listing. It
does this so that listings sent to the printer break across page
boundaries. A form feed character (ASCII FF) is output every 66
lines if $P+ is in effect (this is the default). If you don't want
this, use $P-.

You can cause a page break at any point in a compiled listing by
using the $P option without a plus or minus sign.

$Q - Quiet

This is used to suppress the compiler's standard output to the
console. $Q+ causes the compiler to suppress this output and
$Q- causes it to resume outputting status information. If you
have specified $Q+ and are obtaining a listing, the compiler does
not pause when syntax errors are reported.

$R - Range Checking

$R is a stack switch option. The default value, $R+, causes the
compiler to output code after every indexed access (for example,
to Pascal arrays) to check that it is within the correct range.
This is called range checking. The value $R- turns range
checking off.

Programs compiled with the $R- are slightly smaller and faster
since they require less code. However, if an invalid index occurs
or a invalid assignment is made, the program isn't terminated

1200301:04B 4-41

PASCAL LANGUAGE Chapter 4

with a runtime error. Until a program has been completely
tested, it is suggested that you compile with the R+ option left
on.

SR2 and SR4 - Real Size

$R2 causes the code file's floating point arithmetic operations to
be performed with two word (32-bit) precision. $R4 causes four
word (64-bit) precision. The default and 9nly supported real
size for the Macintosh version of UCSD Pascal is four word reals.
Therefore, you cannot use the $R2 directive, and never need to
use the $R4 directive.', If you do use the $R4 directive, it must
occur before the first non-comment symbol in the compilation
unit.

ST - Title

$T is a string option. The string becomes the new title of pages
in the listing file.

$U - Use Library

Two options are indicated by $U. One is a string option (Use
Library). The other, described below, is a toggle switch option
(User Program).

With the Use Library option, the string is interpreted as a file
name. This file should contain the unit(s) that your program is
about to use. If the file is found, the compiler attempts to locate
the'unit(s) that it needs for the subsequent uses declarations. If
a particular unit isn't found there the compiler issues a syntax
error.

If a client (program or unit) contains uses declarations but no
$U option, the compiler looks for the used units in the units (if
any) that were compiled previously in the same compilation
source file as the client.

4-42 1200301:04B

COlvlPILER OPTIONS

The following is an example of a valid USES clause using the $U
option:

Found in eurr.n~ library} USES UNIT1,UNIT2, {
{SU A.CODE}

UNIT3, { Found in A.CODE }
{SU B.LIBRARY}

UNIT4,UNIT6; { Found in B.LIBRARY }

NOTE: Any leading spaces in a file name are discarded by the
com piler. On the Macintosh, trailing spaces are significan t in file
names. Thus it is important that the end of comment delimiter
be immediately adjacent to the last character in the file name.

$V - User Program

The $U- directive is used to specify that you are compiling a
Runtime Support Library unit. This is how the Runtime Support
Library units are compiled using the set of reserved unit names.
$U- also sets $R- and $1-. You should not use $U-, and you
never need to specify $U+. If you do specify $U+, it must
appear before the heading (that is, before the reserved word
program or unit).

CONDITIONAL COMPILATION

You may conditionally compile portions of the source text. At
the beginning of a program's text you can set a compile time
flag which determines whether or not the conditionally compiled
text will be compiled.

In order to designate a section of text as conditionally compilable,
you must delimit it by the options $B (for begin) and $E (for
end). Both of these options must name the flag which determines
whether the code between them is compiled. The flag itself is
declared by a $D option at the beginning of the source. $D
options may be used at other locations in the source to change
the value of an existing flag.

1200301:04B 4-43

P AS CAL LAJ~GUAGE

Here is an example:

{SO DEBUG} {declare. DEBUG and ae~. i~ TRUE}
pro9ram SIMPLEj
begIn

{SS DEBUG} {if DEBUG i. TRUE,
~hia aec~ion ia compi led}

wribeln('There ia a bug.');
{SE DEBUG} {bhia enda ~he aec~ion}

{SB DEBUG-} {if DEBUG is FALSE,
~hja .ec~ion ia compi led}

wri~eln('No~hing ha. fai led.');
{SE DEBUG}

end {SIMPLE}.

Chapter 4

Each flag in a program must appear in a $D option before the
source heading. The name of the flag follows the rules for Pascal
identifiers. If the flag's name is followed by a minus (-), that
flag is set false. The flag may be followed by a plus (+), which
sets it true. If no sign is present, the flag is true. The flag's
name may also be followed by a caret (A) as shown below.

The state of a flag may be changed by a $D option which appears
after the source heading, but the flag must have first been
declared before the heading.

The $B and $E options deiimit a section of code to be
conditionally compiled. The $B option may follow the flag's
name with a min us (-), which causes the delimited code to be
compiled if the flag is false. In the absence of a minus (-), the
code is compiled if the flag is true. The flag's name may also be
followed by a plus (+) or a caret (A); these are ignored. In a $E
option, the flag's name may be followed by a plus (+), min us (-),
or a caret e)i these symbols are ignored.

The state of each flag is saved in a stack, just as the state of a
stack switch option is saved. Thus, using a $D option with a
caret C) yields the previous value of the flag. Each flag's stack
may be as many as 15 values deep. If a 16th value is pushed, the
bottom of the stack is lost. If an empty stack is popped with a
caret r). the value returned is always false.

4-44 1200301:04B

CONDITIONAL COMPILATION

If a section of code isn't compiled, any pseudo comments it may
contain are ignored as well.

{SO DEBUG-} {declares DEBUG and se~s i~ FALSE}
pro!jlram SIMPLE;
beg,n

{SO DEBUG+} {change. DEBUG ~o TRUE}

{SB DEBUG} {if DEBUG i. TRUE, ~hi •• ec~ion i.
compi led}

wri~eln('There i. a bug.');
{SE DEBUG} {~hi. end. ~he .ec~ion}

{SO DEBUG A
} {re.~ore. previoua value of DEBUG}

{ in ~hi. ca.e, FALSE}
{SB DEBUG-} {if'DEBUG i. FALSE,

~hi •• ec~ion i. compi led}
wri~eln('No~hing ha. fai led. ')';
{SE DEBUG}

end {SIMPLE}.

1200301 :04B 4-45

PASCAL LANGUAGE Chapter 4

4-46 1200301:04B

5
MACINTOSH INTERFACE

This chapter describes the UCSD Pascal interface to the
Macintosh Operating System and Toolbox. Because it is so large
and complex, the Toolbox is not described in full here. You are
encouraged to reference the Macin tosh technical guide,
Inside Macintosh, for a complete description of the Toolbox. The
intent of this chapter is to describe the differences between the
UCSD Pascal interface to the Toolbox and the Lisa Pascal
interface described in Inside Macintosh.

Throughout this chapter "Toolbox" will refer to both the
Macintosh Operating System and the Macintosh Toolbox. As far
as the interface units are concerned, there is little difference
between Toolbox routines and Operating System routines.

The Toolbox is a very complex piece of software. No one can be
expected to learn how to use it in one reading, or even a few
readings. The best thing to do is to learn the Toolbox in pieces,
writing small programs as you go.

The most important part of this chapter (as well as the most
complicated) is the section on DATA CONVENTIONS. You
should probably skim this section on your first reading, then refer
to it as necessary while writing programs that use the Toolbox
interface.

Overall, the UCSD Pascal Toolbox interface is quite consistent
with Inside Macintosh. However, for various reasons there are
some restrictions and omissions in the UCSD Pascal interface.
These are described in DIFFERENCES FROM INSIDE
MACINTOSH.

1200301:05B 5-1

MACINTOSH INTERFACE Chapter 5

The UCSD Pascal Toolbox interface is also quite consistent with
the organization of Inside Macintosh. In general, each manager
described in Inside Macintosh corresponds to a unit bearing the
same name. There are some differences in the organization,
however.

• There is a set of four "core" units that provide type
declarations that are shared by the other units. In
Inside Macintosh these declarations are included in the
interface units themselves. Separating out some declarations
saves having to use a whole unit where only some of its
declarations are needed.

• The file manager and device manager routines have been
redistributed as follows. High level file and device I/O have
been combined in a unit called FileMgr. Low level file and
device I/O have been combined in a unit called PBlOMgr
(Parameter Block I/O Manager).

• The routines CountAppFiles, GetAppFiles, and ClrAppFiles
have been moved from the Segment Loader to the OsUtility
unit. There is no Segment Loader unit.

The rest of this chapter is arranged as follows:

HOW TO USE THE INTERFACE UNITS discusses making the
interface units available to a program.

DIFFERENCES FROM INSIDE MACINTOSH discusses how use
of the Toolbox routines from UCSD Pascal differs from
Inside Macintosh.

DAT A CONVENTIONS discusses issues regarding how Toolbox
data. is represented in UCSD Pascal. In particular, this affects
how parameters are passed to the Toolbox routines.

SPECIFIC TECHNIQUES contains a set of example
programming techniques that are helpful when using the Toolbox
interface.

5-2 1200301:05B

EXAMPLE APPLICATION contains a complete small
application that uses the interface units.

HOW TO USE THE INTERFACE UNITS

This section discusses how to use the Toobox interface units from
a UCSD Pascal program. There are two issues to consider.

1. How to make the interface sections of the units available at
compile time.

2. How to make the code of the units available at runtime.

The use of units in general is discussed in The UCSD Pascal
Handbook. This section focuses on the special considerations for
use of the Toolbox interface units.

Appendix A contains listings of the interface sections of the
interface units.

Compile Time Considerations

The interface units are contained in the file Mac Interface on the
disk UCSD Pascal 2. The Librarian utility can be used to
examine this file.

You make an interface unit available to your application through
use of the uses statement. Often it is convenient to use the
selective uses feature. Suppose you need to use the EraseRect
and DrawChar routines from QuickDraw. Here is how you make
them available.

progrem APPLICATION;

u.es
{SU UCSD Peseel 2:~ee In~erfeee}

~aeCore,
GtOTypes,
GtuiekDrew(EreseRee~,OrewCher);

1200301:05B 5-3

MACINTOSH INTERFACE Chapter 5

In the above example, the $U compiler option is used to open the
library file Mac Interface on the volume UCSD Pascal 2. The
volume prefix would not be needed if the library file were on the
same volume as the UCSD Pascal compiler (the default volume).
If you will not be swapping disks when compiling, you may also
use #1: (which specifies the internal drive) or #2: (which
specifies the external drive) to specify volume locations.

Nearly all of the interface units make use of other interface units.
If one unit uses another unit within its interface section, you
must include references to both units in your uses statement.
The order of the units in the uses statement is important. In the
example above, QuickDraw needs definitions from MacCore and
QDTypes. Thus, they are both included in the uses statement
before QuickDraw. QDTypes needs definitions from the MacCore
unit, so MacCore is included before QDTypes. The selective uses
declaration is discussed further in the PASCAL LANGUAGE
chapter.

Appendix A contains a table of dependencies among the interrace
units. This table should help you to figure out which units are
needed by other units. The column called 'Compile Time
Dependencies' contains codes that indicate the units that are
required by each unit.

The interface sections of the Toolbox interface units are very
large. One of the problems with developing programs on a
Macintosh with 128K bytes of memory is the lack of symbol table
space while compiling. This can critically limit the size of a
program that can be compiled unless steps are taken to conserve
symbol table space.

Here are the things you can do to conserve symbol table space.

5-4 1200301:05B

HOW TO USE THE INTERFACE UNITS

• Use selective uses to prevent unused definitions from being
kept in the symbol table.

• Use the largest units with selective uses first, so that there is
more symbol table space available while they are being
compiled.

• Divide your program into units to minimize the number of
interface units needed by each unit.

Here is an example of the first two points. Suppose you are using
the Control Manager and QuickDraw. These require the use of
MacCore, QDTypes and TBTypes. However, QuickDraw does
not need any definitions from TBTypes. Therefore, you should
arrange the units this way.

us ••
{SU #2:~.e Int.~f.ee}

~.c:Co~.,
QOTyp.s,
Qu i c:kO ~.w (...) ,
T6Typ.s,
Cnt~lt.lg~(...);

QuickDraw is much larger than the Control Manager, so it goes
• first. MacCore and QDTypes are used by QuickDraw so they

must preceed QuickDraw. The Control Manager needs TBTypes
in addition to MacCore and QDTypes.

It is possible to do even better than this. By looking at the uses
declarations of QuickDraw and the Control Manager (in
Appendix A), it is possible to make selective uses with the
auxiliary units. QuickDraw needs all of MacCore and QDTypes,
so nothing can be gained there. The Control Manager needs
(GrafPort, GrafPtr, Point, VHSelect, FPoint, Rect, RectPtr)
from QDTypes, and (EvtRecPtr, EventRecord, windowptr,
windowhandle) from TBTypes. Therefore, the uses declaration
could be made as follows.

uses
{SU #2:~.c: Int.~f.c:e}

~.c:Co~.,
QOTyp.s,
Quic:kO~.w(...) ,
T6Types (EvtR.c:Pt~,Ev.ntR.c:o~d,windowpt~1

1200301:05B 5-5

MACINTOSH INTERFACE

windowhandle),
Cnt.rIMsr(••.) ;

Chapter 5

You would add to the above uses statement any additional
symbols your program requires from the QuickDraw and
CntrlMgr units. This declaration makes optimum .use of symbol
table s·pace.

If you have used these methods, and you still have trouble with
running out of room while compiling, there is one other space
saving method that will help.

• Use in-line Toolbox routines right in your application
without including a unit. This method is explained in detail
in the section SPECIFIC TECHNIQUES.

Runtime Considerations

At runtime you must make the interrace units available to your
program. This is done by using the Library Files list facility in
the Set Options utility or by using the Librarian utility to
combine the units with your program. The Set Options utility is
described in the chapter GENERAL OPERATIONS. The
Librarian utility is described in the chapter LIBRARIAN.

Some of the interface units do not contain any code, and thus do
not need to be included at runtime. The table in Appendix A
indicates which units have code by a 'C' in the column called
Code. The interrace units that contain code are bound together
in a library called Mac Library on the disk UCSD PascalI.

While you are developing and testing your program, we suggest
that you use the Set Options utility to make Mac Library
available to your program. This has the advantage that you can
run the program immediately after compiling. When you
complete the final version of the program, you should probably
use the Librarian utility to include the interface units from Mac
Library directly in your program. This makes the program self
contained, and reduces startup time.

5-6 1200301:05B

HOW TO USE THE INTERFACE UNITS

DATA CONVENTIONS

UCSD Pascal is a different dialect and implementation of Pascal
than Lisa Pascal, so there are differences in the interface units,
accordingly. Most of these differences stem from the differences
in the implementation of the Pascal language. Some of these
implementation differences are related to different
representations for data types, while others are a consequence of
the different storage allocation algorithms used in the two
implementations. Also, parameter passing methods differ
between the two implementations.

An attempt has been made to provide Toolbox interface units
whose interface is as close as possible to what is described in
Inside Macintosh. In particular, it is nearly always the case that
an interface routine takes the same number of parameters in the
same order as in Inside Macintosh.

This section describes the data representation scheme used in the
interface units. For information on the actual parameters of a
particular routine in an interface unit, you must look at the
description of the routine in Inside Macintosh and the declaration
of the routine in Appendix A.

Passing Parameters to the ToolBox

Most of the ToolBox procedures in the Macintosh ROM were
designed to work with the Lisa Pascal data and parameter
passing conventions. In order to accommodate that interface,
UCSD Pascal was extended to produce The MaeAdvantage:
UCSD Paseal. The extensions that are important to the
Macintosh interface units are:

1200301:05B 5-7

MACINTOSH INTERFACE Chapter 5

• A new type, integer2, was added to support 32-bit integers
and addresses.

• The intrinsics locate and absadr were added to allow
conversion from 16-bit UCSD Pascal addresses to 32-bit
Lisa Pascal addresses.

• The intrinsic derefhnd was added to enable programs to
dereference Macintosh Memory Manager handles.

• The intrinsic absmove was added to allow programs to move
data to and from the Pascal Data Area.

• The new external procedure syntax external(...) was added
to allow the UCSD Pascal compiler to generate in-line
ToolBox calls in much the same way as the Lisa Pascal
compiler.

In order to call the ToolBox procedures it is important that you
understand all of these features. They are all documented in the
PASCAL LANGUAGE chapter. Most of these features are used
in the example program, GROW, located at the end of this
chapter. They are also discussed with respect to their use in
calling the ToolBox procedures later in this chapter.

The primary difference between UCSD Pascai and Lisa Pascal is
that UCSD Pascal uses 16-bit addresses while Lisa Pascal uses
32-bit addresses. This affects the way in which you pass
parameters to most of the ToolBox procedures. For example, a
var parameter must be passed as a 32-bit pointer value
parameter. Any Lisa Pascal value parameter that is larger than
32 bits must also be passed as a 32-bit pointer to the parameter.

Where necessary, the interface units make use of what are called
"substitution types" instead of types whose declaration exactly
matches those of Imide Macintosh. For example, the following
types are declared in the MacCore unit (which contains most of
the basic substitution type declarations):

t.;y p ..
MeePt.r = int. .. g .. r2 ;
St.ringPt.r = MeePt.r J

5-8 1200301:0sB

DATA CONVENTIONS

MacPtr represents a 32-bit pointer, while StringPtr represents a
32-bit pointer to a string variable. The StringPtr type is
substituted in many of the interface unit procedures for the
Str255 type that appears in Inside Macintosh. When you see
StringPtr in a procedure declaration it means that you should be
passing a 32-bit pointer to a string variable. Note that MacPtr
and StringPtr types are the same type as integer2. Since the
UCSD Pascal compiler will allow any integer2 value to be passed
you must be careful to pass the correct value.

The following sections discuss all of the data representation and
parameter passing differences between Lisa Pascal and' The
MacAdvantage: UCSD Pascal. After you read these sections,
study the GROW program source. By looking at GROW you
should begin to see how the ToolBox routines are called from a
UCSD Pascal program.

UCSD Pascal Pointers vs Lisa Pascal Pointers

Lisa Pascal pointers are 32-bit absolute addresses, while UCSD
Pascal pointers on the Macintosh are I6-bit offsets from the
68000 A6 register. This difference in pointer format between
UCSD Pascal pointers and Toolbox pointers must be thoroughly
understood in order to make use of the Toolbox interface.

An absolute address is represented in the Toolbox interfaces by
the substitution type integer2. Two intrinsics are provided in
UCSD Pascal to convert between pointers and absolute addresses:
absadr converts a pointer into an absolute address; reladr
converts an absolute address into a pointer. --

NOTE: The pointer constant nil does not convert to the
Macintosh value of nil. The constant AbsNil, declared in the
MacCore unit, corresponds to a Lisa Pascal nil pointer. Also,
there is no pointer value that corresponds to a odd absolute
address.

The intrinsic adr takes a variable reference as a parameter and
returns a pointer to that variable. The intrinsic locate takes a
variable reference as a parameter and returns ~absolute

120030 I :05B 5-9

MACINTOSH INTERFACE Chapter 5

address of that variable. The variable reference may be a
reference to a sub-component of a variable, as long as that· sub
component is word-aligned and occupies at least one word of
storage. Locate(x) is equivalent to absadr(adr(x)).

Here are some examples of using absadr, reladr, locate,and adr.

"ar
x: i nt.eger ;
P: ·int.eger;
A,B: MacPt.r;

beg.n
P:.adr(X);
A:= :ab.adr~p);
B:= .• b.adr adr(X»;
B:a- loeat.e X);
P:- reladr A);

end;

{aet.ually an lnt.eger2}

aet.a a t.o t.he absolut.e addres. of x}
.et.. b t.o t.he .ame t.hing} IPOint.. P at. t.he "ariable x}

a .hort.er veraion of t.he last. line}
point.. P .t. t.he "ariable x}

Two more intrinsics round out the set of intrinsics that deal with
pointer manipulation. The intrinsic derefhnd (dereference
handle) returns the absolute address of the location the handle
references. A handle is a Macintosh pointer-to-a-pointer used
to reference relocatable blocks on the Macintosh heap.

NOTE: Derefhnd returns only the lower three bytes of the
address. The upper byte, which contains Memory Manager
attribute bits, is set to zero. For more information on Memory
Manager attribute bits, see the Memory Manager chapter of
Inside Macintosh.

Finally, the routine absmove is a block mOVe intrinsic that acts
like moveleft with absolute source and destination pointers. This
intrinsic is useful for moving Macintosh-created data into a
UCSD Pascal variable.

An example of the use of derefhnd and absmove is given below.
This example allocates a 256 byte relocatable block by using the
Memory Manager procedure NewHandle. It dereferences the
handle returned in order to get the 32-bit absolute address of the
block. Absmove is then used to move the string S into the block.

"sr
.Handle

5-10

Handle

1200301:05B

DATA CONVENTIONS

a : Sering ;
p : MacPer ;

begin
a := 'Move eni. sering eo a relocaeable block'
sHandle := NewHandle (266)
p := OeRefHnd (sHand Ie) ;
Aba Move (Locaee (a), p, Sizeof (s» ;

end ;-

Longlnt

The Lisa Pascal type LongInt is used throughout the Toolbox as
a parameter type and function result type. The UCSD Pascal
equivalent to LongInt is integer2. In the MacCore unit there is a
type declaration for Longlnt:

eype
Longlne = ineeger2;

Pointer Types

All pointers within the Toolbox are represented in the interface
units by the substitution type integer2 (interpreted as an absolute
address). Because all Toolbox pointer types are integer2, there is
effectively no type checking done when pointers are passed as
parameters to a Toolbox routine. You should be very careful
when passing pointer values to the Toolbox.

OpenPort in QuickDraw takes a pointer as a parameter. The
following code fragment shows how a locally declared GrafPort
could be passed to OpenPort:

var
GP: GrafPore;

begin
OpenPore(locaee(GP»;

end;

1200301:05B 5-11

MACINTOSH INTERFACE Chapter 5

Call-by-reference ParaIIleters

Call-by-reference parameters are parameters that are passed
indirectly by passing a pointer to the item. One example of call
by-reference in Pascal is var parameters. Another example (one
which depends on the implementation) is passing value
(non-var) structures (e.g. arrays and records). In Lisa Pascal,
value structures that are over 32 bits in size are always passed by
reference.

Since call-by-reference parameters in UCSD Pascal are passed
as 16-bit pointers on the stack, they cannot be used in calls to
the Toolbox. Therefore, all call-by-reference parameters to the
Toobox are passed as value absolute addresses.

For example, the Lisa Pascal definition

procedure GetFontInfo(var info: FontInfo);

is transformed into the UCSD Pascal definition

t.'ype
FontlnPtr = integer2;

procedure GetFontlnfo(info: Font.InPt.r);

This calling mechanism is used for all var parameters and all
value structure parameters over 32 bits in size. Here is an
example call to GetFontInfo (declared in QuickDraw):

v
FI: FontInfo;

begin
Get.Fontlnfo(Jo~.t.e(FI»;

end;

Var pointer parameters are an especially confusing case. Here is
an example:

v ...

5-12 1200301:05B

DATA CONVENTIONS

P: G fPtrj
GP: Gr.fPo ... tj

begin
GetPort(loc.te(P»j
.bsmove(P,loc.te(GP),sizeof(GP»j

end;

This example loads the contents of the current GrafPort record
into the local copy GP. If you understand this example, you
should have no problems with call-by-reference parameters in
the Toolbox interface.

Boolean

The Lisa Pascal representation of type Boolean differs somewhat
from the UCSD Pascal representation, as follows:

• The UCSD Pascal Boolean is represented in a full 16-bit
word. Only bit 0 of the word is significant. Zero (0)
represents false. One (1) represents true.

• A Lisa Pascal Boolean value is represented in an 8-bit byte.
As a parameter it is passed in the upper byte (bits 8 to 15) of
a 16-bit word. All of these 8 bits are significant. Zero (0)
represents false. Any nonzero value represents true. As a field
in a recor0Boolean value is automatically packed into a
byte.

Because of these differences, type Boolean is represented by the
substitution types MacBool and SmallBooI. MacBool is for
Boolean parameters and SmallBool is for Boolean fields in a
record. Unfortunately, MacBool and SmallBool are not
compatible types. It is necessary to use the conversion routines
when converting between them and UCSD Pascal Booleans.

Four conversion functions are available in the MacCore unit to
map between MacBool or SmallBool and UCSD Pascal Boolean
values:

To cBoo I (UB)
Fr cBoo I (LB)
ToSm.1 I (UB)

~convert. UCSD format --) cBool ~
converts cBool --) UCSD form.t
converts UCSD fo ... m.t --) Sm. I IBool

1200301:05B 5-13

MACINTOSH INTERFACE Chapter 5

F .. Sm .. I I (SS) --) UCSD fOFffi.~}

GetPixel in Quickdraw returns a Boolean value. Here is a call to
GetPixel:

iT F,.MacBool (Ge~Pixel (100,100))
~hen •.•

WARNING: When converting from SmaliBool to MacBool it is
necessary to go through the intermediate type Boolean; there are
no provisions for converting directly between MacBool and
SmallBool.

For example, suppose you want to pass the contrlVis field of a
ControlRecord (a SmaliBool) into the Visible parameter (a
MacBool) of the Control Manager procedure NewControl. It is
done as follows:

Packed Data

Lisa Pascal packs data differently from UCSD Pascal. The
following differences have an effect on the Toolbox interface:

• Type Boolean within a record is automatically packed into a
byte in Lisa Pascal. UCSD Pascal does not automatically
pack any type.

• Lisa Pascal packs the fields of a record in a different order
from UCSD Pascal.

Because of these differences, packed data is represented
somewhat differently in the UCSD Pascal interfaces to the
Toolbox.

5-14 1200301:05B

DATA CONVENTIONS

First, records containing Booleans that will be automatically
packed by Lisa Pascal are declared packed. Second, the order of
declaration of fields in a packed record may be changed.

For example, the data type WindowRecord in the unit TBTypes
contains four SmallBool fields. They are represented thus:

t.ype
WindowReco .. d pecked .. eco .. d

po .. t.: C .. efPo .. t.;
windowKind: int.ege .. ;
hi lit.ed: SmellBool;
vi. i b Ie: Sme I I Boo I ;
ape .. eFleg: Smel IBool;
goAweyFleg: SmellBool;

end;

The record has been packed and the four SmallBool fields are
declared in a different order from the Lisa Pascal interface.

Procedure Pointers

Procedure pointers are used to implement a procedure data type
(including procedural parameters) in the Toolbox. Procedure
pointers are usually used to pass some sort of "action procedure II
to a Toolbox routine. For example, TrackControl in the Control
Manager takes a parameter called actionProc. Periodically
during a call to TrackControl, the Toolbox may call the user
procedure actionProc. This procedure is passed to TrackControl
as a procedure pointer, which is represented by the absolute
address of its entry point.

The procedure pointer concept is supported in UCSD Pascal by
an alternative form of the intrinsic locate. In this form, locate
takes two parameters: a procedure or function identifier and an
entry point number. It returns the absolute address of the entry
point.

There are nine entry point numbers available for use by
application programs. They are n urn bered one (1) through nine
(9).

1200301:05B 5-15

MACINTOSH INTERFACE

Here is an example of how to use locate.

pro~edure MYPROCj
begin

end;

be~in
1:= TrackControl (CH,P, I ocate (MYPROC, 1)) ;

end;

Chapter 5

CH and P are other parameters to TrackControl (which is
declared in the Control Manager unit) that can be ignored for the
purpose of this discussion. Locate installs MYPROC in entry
point 1, and passes the address of entry point 1 to TrackControl.
When TrackControl wants to call the actionProc, it calls entry
point 1, which causes MYPROC to be invoked.

Some action procedures are called immediately by the routine
they are passed to. Others are called at a later time, or are not
passed directly as parameters, but instead are installed in a data
structure. There is a convention for selection of entry point
numbers that will help eliminate some errors when using
procedure pointers.

The convention is as follows.

• Entry point 0 is reserved for UCSD Pascal's grow zone
procedure. You may not use en try po in t 0 in your
application.

• Entry point 1 should be used for action procedures that have
very limited scope. The parameter to TrackControl is an
example. There, actionProc will only be called while
TrackControl is executing. When TrackControl returns
control to the user program, actionProc will no longer be
called.

5-16 1200301:05B

DATA CONVENTIONS

• The entry points greater than 1 should be used by action
procedures of larger scope-those that will be called long
after they are installed. The user is responsible for making
sure that there is no conflict of entry point numbers within an
application. Otherwise, serious errors will result.

Here is an example of using entry points greater than one. The
grafProcs field of a GrafPort contains an array of low-level
procedures that replace the default procedures in QuickDraw.
You can customize QuickDraw by installing your own version of
these procedures.

ve ...
GP: Gret'Port.j
QOP: QOProC:Sj

begin
Set.St.dProc:s(loc:et.e(QOP»;
QOP.rec:t.Proc::= loc:et.e(MYRECT,2);
QOP.rRec:t.Proc::= I oc:et.e (MYRRECT,3) ;
GP.gret'Proc:s:= loc:et.e(QOP)j

end;

In the example, entry points 2 and 3 must not be reused until the
original rectangle and rounded rectangle primitives have been
restored.

Enumerated Types

Enumerated types are affected by the order in which Lisa Pascal
packs byte sized quantities. Lisa Pascal expects the small
enumerated types to be passed in the upper half of a word.
UCSD Pascal expects it in the lower half. Therefore, enumerated
type parameters are represented by the substitution type integer,
and the values of the enumerated type are represented by integer
constants. DateForm in the Package Manager and GrafVerb in
QuickDraw are two examples of enumerated types that have been
replaced with constants.

1200301:05B 5-17

MACINTOSH INTERFACE Chapter 5

Packed Array of Bit

Packed arrays of bits also suffer from byte-order problems. Lisa
Pascal arranges the array in,dices in a word as follows:

7 6 6 4 3 2 1 0 16 14 13 12 11 10 9 8

UCSD Pascal arranges the indices in a word as follows:

16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0

The best way to handle this rearrangement is to write an index
mapping function from the Lisa Pascal index to the UCSD Pascal
index. Here is an example mapping function for type Key Map
(declared in the Event Manager unit). which is a packed
array[1..128] of Boolean.

function MKI(i: integer): integer; {Map Key Index}
be!jlin

If (i-1) mod 16 < 8
then MapKeylndex:= i+8
el.e MapKeylndeK:= i-8;

end;

This function works by "switching" the upper and lower halves of
each index range within a word. Suppose you want to set bits 32
and 55 in a KeyMap:

var
KM: KeyMapi

begin
KhI(MKI(32)] :=
KM{MKI(SS)] :=

end!

Other bit arrays will require different mapping functions.

5-18 1200301:05B

DATA CONVENTIONS

OSType and Point

OSType and Point are two Toolbox data structures that require
special care when passed as value parameters. These two records
fall into the category of structures that are 32 bits in size. When
they are passed as value parameters, they are passed directly on
the stack, instead of by reference. OSType is declared in the
MacCore unit and Point is declared in the QDTypes unit.

Both these data types are represented by the su bstitution type
integer2. The UCSD Pascal declarations of OSType and Point are
case variant records that have a parameter field that is an
integer2. This field must be passed as the parameter.

EqualPt in QuickDraw takes two value point parameters.

ver (
P,Q.: Point;

beljlin
If EqueIPt(P.Perem,Q..Perem)

then
end;

CountResources in the Resource Manager takes a value
parameter of type OSType.

ver
theType: OSType;
)(: integer;

begin
theType.c:= 'STR ';
)(:= CountReaources(theType.p);

end;

NOTE: If a Point or an OSType is passed as a var parameter,
you must not pass it by the method shown above. Instead, it
should be passed in the same way that other var parameters are
passed.

1200301:05B 5-19

MACINTOSH INTERFACE Chapter 5

DIFFERENCES FROM LVSIDE MACINTOSH

The last section explained the differences between the UCSD
Pascal Toolbox interface and the Lisa Pascal interface with
regard to data representation. This section deals with the
differences from Inside Macintosh with regard to which Toolbox
routines may be called.

The differences explained here stem from three causes. First,
UCSD Pascal uses memory in a slightly different way than Lisa
Pascal does. Second, the UCSD Pascal implementation performs
many of the necessary initialization steps described in
Inside Macintosh. Finally, the implementation of procedure
pointers (ProcPtrs) imposes some restrictions.

Memory Restrictions

This section explains briefly how UCSD Pascal uses Macintosh
memory, and how this affects application programs. For a more
detailed description of memory usage see the chapter MEMORY
MANAGEMENT.

The important points about UCSD Pascal memory usage are as
follows:

• UCSD Pascal uses the Macintosh stack for its stack.

• The UCSD Pascal heap is implemented as a nonrelocatable
Macintosh block within the Application Heap Zone. This
block expands and contracts according to heap usage. All
data allocated with new or varnew is allocated here.

5-20 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

• The boundary between the end of the Application Heap and
the stack (AppILimit) moves to accomodate the growth of the
stack.

The rule to remember when making Memory Manager calls from
UCSD Pascal is:

• DON'T allocate a nonrelocatable block immediately above the
UCSD Pacal heap if you plan to make use of the Pascal heap.
The nonrelocatable block you allocate will most likely be
positioned immediately above the heap by the Macintosh
Memory Manager. This will prevent expansion of the Pascal
heap. When you need to create a nonrelocatable memory
area, you should use the UCSD Pascal intrinsics ~ or
varnew. You can then convert the 16-bit pointer returned by
these intrinsics into a 32-bit address by using the function
absadr.

For reference, here is a list of the ways that a nonrelocatable
block can be created.

• A call to NewPtr creates a nonrelocatable block.

• A call to HLock makes a relocatable block nonrelocatable.

• A call to New Handle can cause a new block of master pointers
to be allocated. These are put in a nonrelocatable block. The
UCSD Pascal runtime software pre allocates a block of 64
master pointers. In order to increase this number you need to
define a new resource file for your program. The example
RMaker input below will allocate 2 master pointer blocks for
a total of 128 master pointers. The GNRL type MSTR
defines the number of master pointer blocks that should be
prellocated.

WY.RSRC
APPLPROG

;; Output fi Ie name
;; Type = APPL, Creator PROG

INCLUDE UCSD Pa.cal l:Empty Program
;; Required re.ource.

TYPE MSTR = GNRL
,0 (32)

.H
0002

1200301 :05B

;; Allocate. 2 ma.ter pointer blocks

5-21

MACINTOSH INTERFACE Chapter 5

Here is a list of which routines from the memory manager must
be used differently from what is described in Inside Macintosh.

SetGrowZone. You must not install your own grow zone
function for the Application Heap Zone. The Pascal runtime
system already has one. You may, however, use your own grow
zone function in a heap zone of your own creation.

InitApplZone. This routine is not supported, because calling it
will corrupt the UCSD Pascal code and data structures that are
kept in the Application Heap Zone.

SetApplBase. This routine is not supported, because it will
interfere with Pascal's use of the Application Heap Zone.

SetApplLimit. This routine is not supported, because the UCSD
Pascal runtime support software automatically adjusts the
Macintosh's ApplLimit variable for you. Calling this routine will
interfere with Pascal's use of the Application Heap Zone.

There are two general strategies of memory use that an
application can employ. An application could make use of the
Pascal heap. If so, the program must be especially careful about
use of the Macintosh memory management routines.
Alternatively, an application could avoid use of the Pascal heap
altogether. In this case, the program may use the Macintosh
memory management routines with a little less care than if the
Pascal heap were being used.

There are some special considerations regarding dereferencing a
handle under UCSD Pascal. In particular, there are more ways
that the Memory Manager can be called Ifbehind your back"
when UCSD Pascal code is running. Here is a list of ways that
the memory manager may be called.

5-22 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

• Calling a procedure (especially one with local data) can cause
a stack fault, which will result in some memory management
functions being performed. A stack fault can also occur when
using long in tegers an d sets in U CSD Pascal.

• Calling an external procedure or a system intrinsic can cause
a segment fault, which causes a code segment to be read into
memory. This action will result in some memory
management functions being performed.

• Allocating data on the Pascal heap with ~ or mark can
cause a heap fault, which can result in memory management
functions being performed.

NOTE: Calling a Macintosh ROM routine that is declared as an
in-line procedure or is an external procedure implemented in
assembly language will never cause a stack fault. Thus, it is safe
to pass a dereferenced handle to most ROM routines.

Initialization

This section describes some initialization routines described in
Inside Macintosh that do not need to be called from a UCSD
Pascal program. Some of these routines are not available at all.

InitGraf. InitGraf is not available in the UCSD Pascal interface
to QuickDraw. The operations performed by InitGraf are done
automatically.

FlushEvents. FlushEvents(everyEvent,O) is done by the UCSD
Pascal runtime support initialization code. There is no need to
call FlushEvents in the initialization of your program.

InitDialogs. InitDialogs is done by the UCSD Pascal runtime
support initialization code. You may call InitDialogs yourself if
you want to install a restart procedure in the system.

1200301:05B 5-23

MACINTOSH I:"JTERF ACE Chapter 5

InitFonts. InitFonts is done by the UCSD Pascal runtime
su pport initialization code. There is no need for your application
to call1nitFonts.

Init Windows. Init Windows is done by the UCSD Pascal
runtime support initialization code. You should not call
lnit Windows yourself, since it allocates a nonrelocatable block on
the Application Heap Zone.

TEInit. TElnit is done by the UCSD Pascal runtime support
initialization code. You must not call TEInit yourself.

The following calls are made for your program when the "Create
Default Window" option described by Runtime Parameters in
GENERAL OPERATIONS is enabled. In that case, you do not
need to call them.

SetPort. If the "Create Default Window" option (which can be
enabled or disabled by using the utility Set Options) is disabled,
you must call SetPort yourself before using any QuickDraw
routines.

NewWindow. If the "Create Default Window" option is
disabled, you must open a window yourself before you do any
writing to the screen.

InitCursor. If the "Create Default Window" option is turned off
you will need to call InitCursor from your application in order to
reset the cursor to be an arrow.

HideCursor. In order to make the cursor visible, call
ShowCursor.

5-24 1200301 :05B

DIFFERENCES FROM INSIDE MACINTOSH

Procedure Parameter Restrictions

Due to the implementation of procedure parameters to the
Macintosh Toolbox, there are some restrictions on their use
beyond what is described in Inside Macintosh. These restrictions
are as follows.

• You may not supply an I/O completion routine to an
asynchronous I/O call. Instead, you must poll the parameter
block to determine I/O completion.

• You may not implement a vertical retrace procedure.

These restrictions are due to the fact that the implementation of
ProcPtrs will not handle asynchronous calls to an action
procedure.

SPECIFIC TECHNIQUES

This section presents some techniques that will be of use in
writing applications that use the interface units. Some
complicated topics from earlier sections of this chapter were
postponed until this section, because a more thorough discussion
could be accomplished here.

Data Outside the Pointer Range

As discussed above, UCSD Pascal pointers have limited scope. In
particular, they are only able to address memory within the 64K
region that encompasses the Pascal Data Area. When it is
necessary to access some data outside the Pascal Data Area, there
are two ways it may be done.

1200301:05B 5-25

MACINTOSH INTERFACE Chapter 5

1. Copy the data into a Pascal variable. After it is copied into
the Pascal Data Area, it may be examined directly. If it is to
be modified, then the modified copy must be installed by
copying the data back into the original.

2. Access the data in place. Here, modification may be done
directly, although without the help of record field names.
With this method, you must know much more about how
data is represented in the interface units.

The routine absmove is used to move data from one location to
another within Macintosh memory.

Suppose you want to update the grafProcs field of the current
GrafPort. Using method 1, it would be done as follows:

va,.
OPP: OrafPtrj ~ pointer ~o a graf port}
OP: OrafPort; wi I I con~ain copy of grafport
QDP: QDProcs; tne graf procedures record}

begin
OetPort(locate(OPP)};
absmove(OPP, loca~e(OP),sizeof(OP»j
OP.grafProcs:= locate(QDP);
ebsmove(locate(OP),OPP,sizeof(OP»j

end;

Using method 2, it would be done as follows:

va,.
O?P: O,.afPt,,;
QDPP: MacPt .. ;
QDP, QDP "ocs j

begin
Oe~Port(loeate(OPP»j

record }

QDPP,: loce~e(QDP)j
absmove(loea~e(QDPP}/OPP+sizeof(O"afPo,.t)-4,sizeof(QDPP)j

end;

5-26 1200301:05B

SPECIFIC TECHNIQUES

Accessing a Macintosh Operating System Global

Globals may be accessed by manufacturing a pointer to them.
For instance, the global Scr VRes is at location 102H. This word
may be accessed as follows:

va ..
CopyO~Se .. VRes: integer;

begin
absmove(268 {102H}, loeete(CopyOfSerVRes) ,.izeo~(intege ..));

end;

How to Dereference a Handle Safely

In UCSD Pascal, a handle is dereferenced into a pointer by using
the intrinsic derefhnd. However, you must be somewhat careful
when dereferencing a handle in UCSD Pascal, because there are
some additional places where memory management routines will
be called that may invalidate the dereferenced handle. Memory
management routines are called "behind your back II when Pascal
handles one of its internal faults (stack fault, heap fault or
segment fault).

The following actions may cause a fault to occur:

• Calling a procedure may cause a stack or segment fault.

• Calling a Toolbox interface procedure that is not declared
using the external(...) syntax may cause a stack or segment
fault. Procedures declared with the external(...) syntax will
never cause segment or stack faults. They may, however,
cause relocatable blocks to move.

• Allocating data on the Pascal heap with ~ or varnew may
cause a heap fault.

If you must dereference a handle across one of the dangerous calls
mentioned above (or across one of the dangerous calls mentioned
in Inside Macintosh), you must work on a copy of the data or use
the Memory Manager procedure HLock to position lock the data.

1200301:05B 5-27

Mt\CINTOSH INTERFACE Chapter 5

How to Set Stack Slop

UCSD Pascal operates its stack in an unusual way, by Macintosh
standards. In particular, UCSD Pascal moves the boundary
between the stack and the application heap. Most Macintosh
applications leave this boundary fixed.

In order to detect when the boundary needs to be moved, the
runtime system knows about a "stack slop" value that represents
the minimum distance between the top-of-stack and the top of
the application heap. This stack slop has a minimum size of 2K
(2048) bytes.

Most of the time, 2Kb of slop is plenty of extra stack space for
calling Macintosh ROM routines. (ROM routines steal stack
space without telling UCSD Pascal or your program.) However,
there are some ROM routines that place an extra burden on stack
space.

If you are going to be calling one of these routines, you should
increase the stack slop by calling the routine SetStackSlop in the
Error Handling unit. This unit is not in the Pascal Runtime
librarY, so you will have to make sure its code is available at
runtime by using the user library feature in Set Options, or by
using the Librarian utility to include its code in your application.

Suppose you need 6Kb of stack slop for a portion of your
program. This can be set as follows:

var
deTaul~ slop : in~eger ;

begin -

deTaul~_.lop := Ge~S~ackSlop

Se~S~.ckSlop(e.612 {words}};

{ pu~ code ~h.~ needs large slop Tac~or here}

Se~S~.ckSlop(deT.ul~ slop); { res~ore deTaul~ slop}
end; -

5-28 1200301:05B

SPECIFIC TECHNIQUES

Each separate UCSD Pascal process has its own stack slop. Many
programs do not use processes, so they only need to worry about
one stack slop. If your application uses processes, and you are
doing ToolBox calls from them, be sure that you keep in mind
that different processes have different slop factors. In particular,
the default slop factor for a su bsidiary process is forty (40) words.
You set the slop factor for a process by calling SetStackSlop from
within that process.

When your program is started by the UCSD Pascal runtime
support software, it is running as the "main task", and the stack
slop is set to a default value of 5Kb. This amount of slop allows
the Macintosh Operating System to save the screen image bits for
the portion of the screen image that is obscured by "disk swap
boxes." A disk swap box appears when your program or the
runtime support software attempts to access a file on a volume
that is mounted, but not physically present in the appropriate
disk drive. Mter you supply the requested disk, the Macintosh
Operating System will restore the affected portion of the screen
image, provided there was enough space to save it.

If your program uses the Error Handling unit to set the stack
slop below the default value of 5Kh, the disk swap boxes will still
appear, but will remain visible on the screen until the next time
your program or the runtime support software calls the Event
Manager routine GetNextEvent. GetNextEvent will fill the
affected area of the screen with the appropriate background
pattern. Usually, you would set the stack slop to less than 5Kb
only if there is a critical need to maximize your program's
utilization of memory. For example, the UCSD Pascal compiler
sets the stack slop to its minimum value of 2Kb so as to
maximize the capacity of its symbol table.

The SetStackSlop routine will not let you set the stack slop below
the minimum of 2K bytes. (Otherwise your program would
probably crash, as discussed below.) A convenient way to set the
stack slop to its minimum setting, without placing the "magic"
2K byte number in your program is to pass zero (0) for the
argument to SetStackSlop.

1200301:05B 5-29

MACINTOSH INTERFACE Chapter 5

NOTE: Once you set the stack slop below the default setting of
5Kb, the saving of the screen contents underneath disk swap
boxes becomes permanently disabled (i.e. even if you later set the
slop back to 5Kb, disk swap boxes wll continue to remain on the
screen until GetNextEvent is called).

While your application is running as the main task, the
Macin tosh '5 I! stack sniffer It is enabled. The stack sniffer detects
when the stack expands into the Macintosh heap. If your
application gets a stack sniffer error (a Itbombl! with ID=28) you
have probably failed to provide enough stack slop to your
application. The stack sniffer is not enabled while you are within
a subsidiary task-you are on your own if you make use of
processes.

Declaring ToolBox Interface Procedures

There may be some instances when you need to use only one or
two procedures from an interface unit. If the declarations of
these procedures in the interface unit ends with an external
then you can declare them yourself. For example, the following
program calls the QuickDraw procedure InitCursor without using
the QuickDraw interface unit.

program doil"lt, J

procedure InitCursor

begin
InitCur.or

end.

external (-22448)

The above program will compile much faster than the program
below which uses the QuickDraw unit.

program doint ;

Use. {SU Mae Int.erfaee}
MaeCo .. e,
Q.DType.,
Q.uiekOraw (InitCursor)

begin
InitCursor

end.

5-30 1200301:05B

SPECIFIC TECHNIQUES

This technique would be particularly useful if the only procedure
you needed from QuickDraw was the InitCursor procedure, which
uses none of the type declarations found in MacCore or QDTypes.

EXAMPLE APPLICATION

This section presents an entire (although small) Macintosh
application complete with scroll bars, grow box, menu bar and
desk accessories. The source code for this example is located in
the files GROW and GROW.R on the UCSD Pascal 2 disk. In
order to see the application in action you must use RMaker, the
Compiler and the Set Options program as outlined in the
following steps.

1. Use the RMaker utility on GROW.R. This will create the file
GROW.RSRC.

2. Compile GROW. Use GROW.RSRC as the resource input
file.

3. Use the utility Set Options to set the locations of the Pascal
Runtime, p-Machine and Mac Library files. You must
disable the "Create Default Window" option (GROW creates
its own window).

The GROW.Code program puts up a single window in which you
can insert and edit text. The window can be sized and moved.
The text in the window can be scrolled horizontally and
vertically.

You should use the GROW program source as an example of:

1200301:05B 5-31

MJ\CINTOSH INTERFACE Chapter 5

e the handling of Macintosh events. Notice that window update
events are generated by the Macintosh ROM. The GROW
window is updated as a response to these events.

e the calling conventions for many of the ToolBox procedures.

e the relationship between resources defined in a resource file
and the program code that uses those resources.

In addition the GROW program demonstrates the use of the
ToolBox from UCSD Pascal. For example, in procedure Initialize
the line:

SetRect (locete(DrsgRect), 4, 24, 608, 338)

initializes the rectangle DragRect. The call to locate returns the
32-bit address of DragRect. This addres;-r;passed as a
parameter to the SetRect procedure.

In procedure CursorAdjust the line:

if FrMscBool (PtinRect(mou.ePt.param, locate(TRect» then

tests to see whether the point specified by mousePt is in the
rectangle specified by TRect. Notice the use of the param field of
the mousePt variable. This field is used to pass the value of
mousePt to the procedure PtlnRect. FrMacBool is used to
convert the Lisa Pascal Boolean, returned by PtlnRect, to the
UCSD Pascal representation of Boolean.

Modifying data outside of the UCSD Pascal Data Area is
demonstrated by the following lines of code from the procedure
GrowWnd.

ab. move (derefhnd (hTE) , locate (dummy), .1:eof (dummy))
dummy.viewrect .= TRect ;
aba_move (locate (dummy), derefhnd (hTE), .;:eof (dummy»

5-32 1200301:05B

EXAtVIPLE APPLICATION

The above code copies the first part of the text edit record,
pointed to by the handle hTE, to a local variable (dummy).
Dummy is updated and put back into the text edit record.

The use of ToolBox procedure pointers is demonstrated by the
following line of code in procedure DoMouseAction.

tc := TreckControl (whichControl, Mou.eEvent.where.perem,
locate (Scrollup,l»

The procedure Scrollup (declared earlier in the program) is being
passed to the ToolBox procedure TrackCon.trol. Scrollup is
called by TrackControl to scroll the bits of the text edit window.

progrom Grow;

I This exomple program is based on 0 program of the same name
written by Cary Clark ot Macintosh Technical Support. I

!$L-I
Uses I$U UCSo

MacCore.
OoTypes.
TBTypes

(I typesl

OsTypes
(l typesl

Ma~oota
(lvors !

Ouickoraw
(lprocs!

EventMgr
(I cons tI
!procs!

WindawMgr
(lcanst!

!pracs!

MenuMgr
(I types!
lprocs

ControlMgr
(Iconstl types

procs

TBoxUt i Is
(lprocs!

oeskMgr
(!procs!

TextEdit
(lprocs!

Pascal 2:Moc Interface!

EvtRecPtr. EventRecord. WindowRecard. WindawPtr.
WindowHandle. TEHondle. TEPtr. TERec).

OElemPtr. OHdrPtr).

Arrow. thePart).

SetCursar. SetRect. PtlnRect. SetPort. GetPart.
EraseRect. GlobalToLocal. CI ipRect).

everyevent. mousedown. keydown. outokey. activateEvt.
updoteEvt.
GetMouse. GetNextEvent. Sti I loown).

inoesk. inMenuBar. inContent. inorag. inGraw. inGoaway.
inSysWindow.
GetNewWindow. FrantWindow. orawGrawlcon. BeginUpdate.
EndUpdote. FindWindow. oragWindaw. TrockGoAwoy. SelectWindow.
InvalRect. SizeWindow. GrowWindaw).

M<enuHondle.
InitMenus. GetMenu. AddResMenu. InsertMenu. orowMenuBor.
MenuKey. MenuSelect. Hi I iteMenu. Getl tern. Enablel tern.
oisoblel tem) .

i nUpBu t ton. i noownBu t ton. i nPageUp. i nPageoawn. i nT humb.
ControlHondle. ControlPtr. CantrolRecord.
GetNewControl. ShowControl. HideControl. orowControls.
FindControl. TrockControl. GetCtlValue. SetCtlValue.
TestControl. MoveControl. SizeControl).

GetCursor. HiWord. LoWord) •

SystemTosk. SystemCI ick. SystemEdit. OpenDeskAcc).

TENew. rEldle. TEKey. TEActivate. TEoeoctivote.
TEUpdote. TECI ick. TECut. TECopy. TEPoste. TEScrol I)

1200301:05B 5-33

MACINTOSH INTERFACE

OsUtilities
(!procs! Delay);

!$lt!

:ons t
opplemenu
fi lemenu
ed j tmenu
lostmenu
wndwid
ibeamlD
VScroiliD
HScroiliD
UnDol tem

1 ;
= 1131313;

1001 ;
J;

= leN);
= 1;
= 113130;
- 1001;
- 1;

Chapter 5

Menu 10 for desk accessory menu!
Menu ID for my File Menu!
Menu 10 for my Ed, t Menu
there are 3 menu 'terns !
Window 10 for theW i ndow !
IBeam Cursor ID !
Control ID for Vertical Scrolling!
Control 10 for Horizontal Scroll ing
I tern fI for UNDO Menu Item!

'a r
doneFlag:
MyMenus:

boolean;
ARRAY [1. . lastMenuj OF MenuHandle;

Handles to Menu resources!
GrowRect: Rec t ; Limi Is the size of window during grow

Limi Is the dragging of the window I
The window we operate an !

Reet;
WindowRecord;
WindowPtr; A pointer to the window!

DragRect:
wRecord:
theWindow:
tRect:
hTE:

Ree t ;
TEHandle;
Handle;
ControlHandle;
ControlHondle;
Po i n t;

Rectangle containing Text I
hond I e to our ed it record

i beomCursor:
VScroll:

Handle to IBeam Cursor System Resource
Vertical scrolling control!
Horizontal scrolling contrOl! HScroll:

TheOrigin: Current Origin in the Window

~rocedure ResizeTRect; forward;

,egment procedure Initiolize;
'or

d r v rt ype: , :
leg i n

OsType;
integer;

Used to pass porm to AddResMenu !
a counter !

doneFlag:- false;

i init.ialize menu manager
InitMenus;

1 pick up handles to menu resources
mymenus flj'. GetMenuloPPleMenu);
mymenus Z :- GetMenu fi lemenu);
mymenus 3:- GetMenu edi tmenu);

1 pick up driver names Q1 desk accessories
drvrtype.c:· 'DRVR';
AddResMenu(mymenuS(l],drvrtype.p);

1 ; nsert menus into menu list
tor i:- 1 to !ostmenu do

InsertMenu(mymenus[i).0);

OrawMenu8or ~
SetCursar(Arrow);
SetRect(locote(drogRect).4.Z4.508.338);
SetRect(10cate(growRect) .100.aa.512.302);
theWindow:- GetNewWindOw(wndwID. locote(wRecord). -1);
SetPor I(theWi ndow);

I set text edit window size
ReS i zeTRec t ;

I set window text font!
.,Record.port. t,Font:· 2;

! Allocate the Ed! t Record I
hTE:= TENew(locote(tRect).locote(tRect));

I get I-beom cursor resource !

5-34 1200301:05B

EXAMPLE APPLICATION

IbeamCursor:. GetCursor(ibeamID);

j establish scrolling controls!
vScroll:- GetNewControl(vScrolllD, theWindow);
hScroll:. GetNewControl(hScrolllD, theWindow);
theOrigin.h:·I3;
theOrigin.v:·0:

end jlnitialize!:

procedure ReSizeTRect:
1 Resets the bounds at the non-control portion at the window.
begin jReSizeTRect!

TReet:- wRecord.Port.PortRect;
withTRectdo

end;

begin
lett:- lett + 4: right:. right - 15;
bottom:. bottom - 15;

end;

procedure CursorAdjust;
1 Makes the cursor on I-beam it the mouse is inside the application's

content portion and on arrow otherwise. I
var

mouseP t: Po in t; j Cur ren t Mouse Loco t i an
begin

GetMause(I ocate(mousePt));
if theWindow - FrontWindaw

then

end;

it FrMacBool(PtlnRect(mausePt.param, loeate(TRect)))
then SetCursor(DeRetHnd(i8eamCursor))
else SetCursor(Arrow);

procedure GrowWnd(where: Point);
var

hw: Longlnt;
height, wi dth: integer;

Rectangle used tor movement calcs ! cRec t: Rec t ; I
dummy: Record Dummy Record for updating Textedit record

destRect :Rect;
viewRect:Reet;

end;
begin

j Grow the entire window!
hw:- GrowWindow(theWindow, where.param, loeate(growRect));
height:· HiWord(hw); width:. LoWord(hw);

j remove scral I bars from update region!
cRect:. wRecard.Port.PortRect;
cRect.left:. cRect.right - 16;
I nva I Ree t (loco te(cRec t));
cReet:- wRecord.Port.PortRect;
cRect. top:· cRect.bottom - 16;
InvaIRect(locate(cRect));

j now draw the window!
SizeWindaw(theWindow,width,height,MacTrue);

1 move the scroll bars!
Wi th wRecord.port.PortRect dO

begin
HideControl
MaveControl
SizeControl
ShowControl
HideControl
MoveControl
SizeControl
Sho"Control

end;

1200301 :05B

vScroll);
vSc r a I I • r i gh t -15, t op-1) ;
v Sc r 0 I I , 16, bo t t om- t 0 p-1::l) ;
vScroll);
hScroll);
hScroll,lett-1,bot tom-15);
hSc r 0 I I , r i gh t -I e t t -1.3 , 16) ;
hScroll);

5-35

MACINTOSH INTERFACE

! adjust text edit rectangle!
Resi zeTReet;
obs_move(dere t hnd(hTE) , loco tee dummy) ,s i zeo f (dummy» ;
dummy.viewrect:- TRect;
ob._move(locate(dummy) ,derefhnd(hTE) ,sizeof(dummy»;

! odd serol I bars to update region
cRect:= wRecard.Port.PortRect;
cRect.lefl = cRect.right - 16;
InvalReel(locate(eReet»;
cReel = wRecord.Port .PortRect:
cRecl.lop:= eReet.coltom - 16:
InvoIRecl(locate(cReet»;

end: !GrowWndl

procedure DrawWindow;
t Erose the current contents of theWindow and redraw it.
cegin

C Ii pRec I(I oeole(wRecord. por I. por tree t»;
EroseReel(loeate(wRecord.port.portreet»:
DrowGrowleon(theWindow):
DrawControls(theWindow);
TEUpdate(I ocate(TRec I), hTE);

end;

procedure ScrollSi ts;
<or

OldOrigin: Point;
dh, dv' inleger;

:>eg i n
with wReeord do

cegin
oldOrigin:. TheOrigln,
TheOrigin.h - 4.GetCIIValue(hScrol I),
TheOrigin.v -= 4-CetCtIVotue(vScroll).
dh:. oldOrigin.h - theOrigin.h:
dv:- oldOrigin.v - theOrigin.v;
TESero11 (dh,dv,hTE);

end;
.nd !SerollBi Isl;

Chapter 5

)focedure SeroIIUp(lheControl: ControlHondle; theCode: integer);
H!gi n

if t heCode - i nUpBu t ton
then

begin
SetCtlVolue(theControl, GetCtIVolue(theConlrol)-l);
ScroIlBit.;

end;
~nd ;

>rocedyre ScrollDown(IheControl: ControlHandle; theCode: integer);
)eg i n

i f t heCode - i nDownBu t ton
then

begin
SetCtlVolue(theControl, GetCtIVolue(theControl)+1);
ScrollBi IS;

end;
,nd;

.rocedure PogeSeroll(code: Integer, theControl: ControlHondle;
omount: Integer);

'0 r
pi:

teg i n
,epeo t

Po i n t;

GetMouse(locole(pt»;
I f res tCon t ro I (theCan! ro I, pt. porom) - code

then
begin

S .. t C t I Vo I ue (t heCon t r 0 I ,Ge t C t I Vo I ue (t heCon I r 0 I) +omoun t) ;
SerollBi Is;

5-36 1200301 :05B

EXAMPLE APPLICATION

end;
until not FrMacBool(StiIIDown);

end;

procedure DoCommond(menu_commond:
! Execute a command from the menu
vor

Longlnt);
bar. !

theMenu;
the Item:
name:
refNum:

integer;
integer;
String(255);
integer;
Longl nt;

I the menu selected I
the item i nth eme n u !
Nome of the desk occessory selected I
Reference number of the desk accessory

tic ks:
begin

theMenu:- HiWord(menu_commond);
thel tem:- LoWord(menu_commond);
case theMenu of

opplemenu:
be9in

) open Desk Accessory wi th item's name t
Ge t / t em(myMenus [1) , t he I t em, I oc ate (nome)) ;
refNum:- OpenDeskAcc(locote(name»;

end;

f i I emenu: doneF I ag: - true;

ed i lmenu:
! process edi t command if not System's!
if not FrMocBool(SystemEdit(theltem-1» then

be9in
! De I ay is used to keep menu lit !
De/ay(3e, ticks);
Case the/ tem of

3: TECut(hTE);
4: TECopy(hTE);
5: TEPaste(hTE);

end;
end;

end; lcase!

I unn iii t e t he me nu se I ec ted !
Hi I i teMenu(0);

end; ! DoCommand!

procedure DoMauseAction(MouseEvent: EventRecord);
var

where mouse was pressed 1
Window where mouse was pressed I

code:
whichWindow:
mycontrol:
whichContro/ :
tc:

integer;
WindowPtr;
integer;
Contro/Hondle;
integer;

Part of control where mouse was ~ressed
Control where mouse was pressed t

begin
Code returned by TrockControl I

code:- FindWindow(MouseEvent.where.param, locate(whichwindow»;
case code of

inMenuBar:
DoCommond(MenuSelect(MouseEvent.where.porom»;

inSysWindow:
SystemCI ick(locote(MouseEvent),whichWindow);

inDrog:
DragWindow(theWindow, MouseEvent.where.poram, locate(dragRect»;

inGoAway:
daneF/ag;=

FrMacBoOI(TrackGoAwOy(whichWindow,MouseEvent.where.poram»;

inGrow:
if lheWindow - FronlWindow

then GrowWnd(MouseEvent,where)
else SelectWindow(theWindow);

1200301:05B 5-37

"\£A.CINTOSH INTERFACE Chapter 5

inContent:
if theWindow <> FrontWindow

then SeleetWindow(theWindow)
else

begin
G I abo ITo Lac 0 I (I oe 0 t e (MouseEven t . whe r e)) ;

end;

IfF rMoc800 I (P I I nRee t (Mouse Even t . who> r e . po r am. I oea t e (T Ree I)))
Ihen

if 8And(MouseEvenl modi f iers,512) <> e
then TECI iek(MouseEvenl.where.param,MoeTrue,hTE)
else TECI ick(MouseEvent.where.parom,MacFalse,hTE)

else
begin

mycontrol :-
FindConlrol(MouseEvent.where param,lheWindow,

locole(whichcontrol» ;

Case myeontrol of
i nUp8utton:

Ie :-
TraekControl (whichControl, MouseEvent.where.param,

10eate(SeroIIUp,1»;
inDown8uttan:

tc:"
TrackControl (whichContral, MouseEvent .where.param.

10cate(ScroIIDown,1» ;

inPogeUp:
PageScrol1 (mycontrol, whicheontrol. -10);

inPageDown:
PageScrol1 (mycontrol, whichcontrol, 113);

inThumb:
begin

tc:*
TrockControl(whichContral, MouseEvent.where.param,

Abs_Ni I);
Scrollbits;

end;
end; lcasel

end;

end; lease!
,nd; !DaMouseAcl ionl

.rocedure CheckEvents;
Hand! e one event f rom the event queue. !

or
myo>venl: EventRecord;
theChar Char;
savepart: GrafPtr;

f~H1 in
if FrMac8oal(GetNextEvent(everyevent, laeate(myevent») then
case myevent,whot of

mausedown: DaMouseAction(myEvent);

keydown, aulakey:
if theWindow - FrontWindow then

begin
theChor:- Chr(myEvenl.messoge mad 256);
it 8And(myEvent.moditiers,256) <> 13

then DoCommand(MenuKey(theChor)
else TEKey(theChor.hTE);

end;

octivateEvl:
begin

DrawGrowlcon(theWindow);
if Band(myevent.madi fierS.1) - 1

5-38 1200301:05B

EXA.i\1PLE APPLICATION

then
begin

Se tPor t (theWi ndow);
TEAct ivote(hTE);
ShowControl (vScroll);
ShowControl (hScroll);

end
else

begin
TEDeoctivate(hTE);
HideControl (vScroll);
HideControl (hScroll);

end;
end;

updateEvt:
begin

GetPort(locate(savepart»;
Se tPor t (theWi ndow);
BeginUpdate(theWindow);
DrawWindow;
EndUpdate(theWindow);
SetPort(saveport);

end;

end;
end ICheckEventsl;

begin !Growl
Initialize;
repeat

CursorAdjust;
SystemTask;
TEldle(hTE) ;
CheckEven\s;

unt i I DoneFlag;
end.

adjust cursor shape to location
allow desk accessories to run I
blink insertion point I
check for events ~

RMAKER Input for the GROW Program

The followillg text defines the resources used by the GROW
program. The first two lines define the output resource file and
the file type/Creator. The INCLUDE statement pulls in the
resources that are required for all UCSD Pascal programs. The
rest of the text defines resources that are specific to the GROW
program.

GROW. RSRC
APPLPROG

INCLUDE UCSD Pascal l:Empty Program

TYPE MENU

,1
\14

,1000
Fi Ie
Quit

1200301:05B 5-39

MACINTOSH INTERFACE

1 1001
Ed,t.
Undo/Z
(-
Cut./X
Copy/C
Past.e/V

TYPE WINO
,1000

UCSO Pescal Sample
60 40 300 460
Visible GoAw .. y
o
o
TYPE CNTL

,1000
vert.icel scrol I bar
-1 396 236 411
Visible
16
o
o 60 0

TYPE CNTL
,1001

horizont.al scrol I oar
236 -1 261 396
Visible
16
o
o 60 0

Chapter 5

5-40 1200301:05B

6
RMAKER

This chapter describes RMaker, the utility program that is used
to produce resource files for UCSD Pascal programs. The use of
resources is described in Inside Macintosh. The sections of this
chapter are organized as follows:

ABOUT RMAKER describes the function of the RMaker utility.

RMAKER INPUT FILES describes the structure of RMaker
input files, including suggested file naming conventions.

DEFINED RESOURCE TYPES describes the syntax for
predefined resource types. This section will tell you the syntax
for defining menus, dialog boxes, alert boxes and other ToolBox
resources.

CREATING YOUR OWN TYPES describes how you use the
predefined type GNRL to create your own resource types.

USING RMAKER describes how to run the RMaker utility and
how to create resource files for input to the UCSD Pascal
compiler.

1200301:06B 6-1

R~ER Chapter 6

ABOUT RMAKER

RMaker IS the resource compiler supplied with The
MacAdvantage: UCSD Pascal. It is very similar to the
RMaker program in the Lisa Workshop, but some changes have
been made to the syntax. Be careful if you are converting
resource files from one system .to the other.

RMaker takes a text file as input, and produces a resource file.
The text file contains an entry for each resource to be defined, as
described in the section DEFINED RESOURCE TYPES. The
input text file also specifies the location and type of the output
resource file.

The output from RMaker can be used as an input to the UCSD
Pascal compiler. The compiler will copy the resources from the
resource file specified to the UCSD Pascal program's resource
fork. You can also use RMaker to append new resources to the
resource fork of an existing UCSD Pascal program.

RMAKER INPUT FILES

An RMaker input file is a text file, as created using the Editor.
By convention, RMaker input files have the extension .R. If you
follow this convention you will easily be able to tell which text
files on your disk are resource text files.

RMaker ignores all comment lines and blank lines between
resource definitions. It also ignores leading and em bedded spaces
(except in lines defined to be strings). Comment lines begin with
an asterisk. To put comments at the end of other RMaker lines,
precede the comment with two consecutive semicolons (;;).

6-2 1200301:06B

RMAKER INPUT FILES

Creating New Resource Files

The first non-blank and non-comment line of the input file
specifies the name of the resource file to be created. The file
should have the extension .RSRC. The line following the file
name should either specify the file type and creator bytes for the
Finder, or be blank. For example, the first two lines below
designate the file NewResFile.Rsrc as the output file. The file is
an application (type APPL) with a creator of PROG. The
standard file type and creator for all UCSD Pascal programs is
, APPLPROG'. If you do not specify the type and creato.r, they
default to 0 (a null string).

NewResFi le.Rsrc
APPLPROG

• The fol lowing include statement wi I I read in the
• resources that are required by al I UCSO Pascal programs.

INCLUDE UCSO Pascal l:Empty Program

• Program specific resources go here

The- RMaker output file NewResFile.Rsrc, created by the above
input file, can be used as input to the UCSD Pascal compiler.

Appending to an Existing Resource File

The other type of resource input file starts with an exclamation
point, followed by the name of the existing resource file that you
wish to change. For example

!MyProgram.Code II must be fol lowed by • blank line.

• New resource definitions go here

tells RMaker to add new resources to the UCSD Pascal program
called MyProgram.Code.

WARNING: You may not follow a file name with a comment
(the above example is illegal.)

1200301 :06B 6-3

RMAKER Chapter 6

Include Statements

The rest of the resource input text file consists of INCLUDE
statements and TYPE statements.

INCLUDE statements are used to read in existing resource files.
An INCLUDE statement looks like this:

Ne..,ResF i Ie. Rsrc
APPLPROG

.. The fol lowing include s~a~emen~ wi I I read in
• ~he resources that are required by al I UCSD Pascal
.. programs.

INCLUDE UCSD Pascal l:Emp~y Program

.. Program specific: resources go here

Typically you will use an INCLUDE statement to include the
standard UCSD Pascal resources into a resource file that contains
resources specific to your application program. Standard UCSD
Pascal resources are in the file Empty Program on the disk
UCSD Pascal 1.

Type Statements

TYPE statements consist of the word "TYPE!! followed by the
resource type and, below that, one or more resource definitions.
The resource type must be capitalized to match a predefined
resource type.

The following statement creates three resources of type 'STR '.

TYPE STR
,1

This is a s~ring
,2

Ano~hel" St.l"ing
,3

Ano~her s~l"ing resoul"ee

6-4 1200301:06B

R~1AKER INPUT FILES

It is not necessary for all resources of a given type to be declared
together. However, all resources of a type must have unique
resource ID's. If you specify a resource ID that is already in use,
the new resource replaces the old one.

A resource definition looks like this:

[I"esouI"ce neme) ,I"eSOUl"ce IO [CI"esouI"ce et.t.I"ibut.e byt.e)]
t.ype-specific dat.a

The square brackets indicate that the resource name and resource
attribute bytes are optional. Don't place these brackets in your
input file. The comma before the resource ID is mandatory.
Attribute byte numbers are given in decimal. Attribute byte
values are defined in the Resource Manager chapter of
Inside Macintosh. The default attribute byte value is O. Here are
some sample resource definitions:

TYPE STR

NewSt.I" ,4 (32) ;; 32 means I"esoul"ce is pUI"geable
This I"eSOuI"ce has a name and.an at.t.I"ibut.e byt.e!!

,6 (32)
This one hes only an at.t.I"ibut.e byt.e.

MyNewSt.I",6
This one haa only a name (t.he at.t.I"ibut.e byt.e is 0).

The type-specific data is different for each resource type. As
you have probably guessed, the type specific data for a 'STR '
resource is simply a string. The next section describes the type
specific data for the resource types defined by RMaker.

DEFINED RESOURCE TYPES

RMaker has 11 defined resource types: ALRT, BNDL, CNTL,
DITL, DLOG, FREF, GNRL, MENU, STR , STR# and WIND.
The format of the type-specific data for each type is shown by
example, below. The type GNRL is used to define your own
resource types. It is explained later.

1200301:06B 6-5

R~1AKER Chapter 6

Syntax of RMaker Lines

There are just a few general rules that apply to lines read by
RMaker.

• Leading and embedded blanks are ignored, except when
necessary to separate multiple numbers on a line, or when
they are part of a string.

• Blank lines should not be placed inside a resource definition,
unless required (the exceptions are poin ted out below).

• Numbers are decimal, unless specified otherwise.

• RMaker is sensitive to line breaks. Thus if a type description
shows four values on a single line, you must put four values
on a single line.

Two special symbols can be used in resource definitions: the
continuation symbol (++) and the enter ASCII symbol (\).

++

\

goes at tne end of a line tnat i. eontinued
on tne next line.

p~eeede. two nexadeeimal digit.. Tnat ASCII
ena~aeter j. ente~ed into the ~e.ouree
definition.

Look at the description of the 'STR ' type for examples of these
special sym bois.

The use of most of the TYPEs listed below are described in the
appropriate chapter in Inside Macintosh. For example, the use of
the type DLOG is described in the Dialog Manager chapter of
Inside Macintosh.

6-6 1200301:06B

DEFINED RESOURCE TYPES

ALRT--Alert Resource

TYPE ALRT
,128

60 60 260 260
1
7FFF

i i " •• ou"c. IO
ii ~op I.f~ bo~~om .. i9h~
ii ou .. c. IO of i~.m li.~
ii .~.ges wo .. d in h.xadecimal

BNDL--Application Bundle Resource

The BNDL resource is used to implement the Macintosh Finder
interface to an application program. It allows the application to
define its own desktop icons and associate documents with
specific programs. The BNDL resource is discussed more fully in
the section APPLICATION INTERFACE TO THE FINDER in
the chapter GENERAL OPERATIONS.

TYPE BNOL
,128 ; ; ou .. c. IO

MPNT 0 ; i bundl. owne,..
ICN~ ; ; I"' •• ou"'ce ~)'p.
018 1 129 ; ; IO o maps ~o r •• ourc. IO 128, 1 ~o 129
FREF ; ; ,.. •• ouree ~yp.
0 128 1 129 ; ; IO 0 map. ~o ".sou .. c. IO 128,.1 ~o.129

j ; Mu.~ b. fol low.d by a b lank I In •.

NOTE: The number of mappings,from local ID to resource ID is
variable. Simply include multiple mappings on a single line.

NOTE: If the BNDL resource is present in an RMaker input file,
the resulting output file will have its bundle bit set.

CNTL--Control Resource

TYPE CNTL
,130

S~op
244 40 260 80
Invi.ibl.
o
o
010

1200301:06B

.... ou .. c. IO
~i~l.
~op I.f~ bo~~om .. i9h~ s.. no~.
P .. ocIO (con~ .. ol d.fini~ion IO)
R.fCon (... f nee value)
minimum maximum value

6-7

R\1AKER Chapter 6

NOTE: Controls can be defined to be Visible or Invisible. Only
the first character (V or I) is significant.

DITL--Dialog or Alert Item List Resource

TYPE DITL
,129

6

StaticText
20 20 32 100
Whoopie

EditText
20 120 32 200
Default message

radioButton
40 40 60 160
Hello

CheckBox Disabled
76 40 95 160
GoodBye

Button
75 160 95 200
Hi!

;; resou rce 10
Ii 6 jtems in list

I; static text item (see note)
;j top left bottom right
i; message
Ii blank I ines are optional here.
il editable text item (see note)
Ii top left bottom right
" messege

Ii radio button item (see note)
;i top left bottom right
;j me •• age

; j d i sab led item (see not ...)
Ii top 'eft bottom right
; i messag_

ii button item (see not ..)
Ii top 'eft bottom right
j; messege

NOTE: Five types of dialog items are defined: Static text,
Editable text, Radio Buttons, CheckBoxes, and Buttons. These
items are assumed to be enabled. Otherwise you may specify
Disabled. Only the first character of these item definition words
are significant (S,E,R,C,B,D).

DLOG--Dialog Resource

TYPE DLOG
,3

This is
100 100
Visible
o
o
200

Ii reSourCe IO
a dialog box. II message
190 250 Ii top left bottom right
GoAway Ii box ststus (see note)

Ii procIO (dialog definition
ii ref Con (reference value)
Ii reSourCe IO of item list

IO)

NOTE: A dialog box can be Visible or Invisible. GoAway and
NoGoAway determine whether or not the box can be closed.
Only the first characters (V,I,G,N) are significant.

6-8 1200301:06B

DEFINED RESOURCE TYPES

FREF--File Reference Resource

The FREF resource is used to associate file types with icons.
Used in conjunction with the BNDL resource, the FREF resource
allows applications to define their own desktop icons. For more
information see the section APPLICATION INTERFACE TO
THE FINDER in the chapter GENERAL OPERATIONS.

TYPE FREF
,128 j i ource IO

APPL 0 i i Fi Ie t.ype, local IO of icon
j; Blank lines ok bet.ween ,.. •• ource
; i definit.ions.

129 i; "e.our-e. IO
TESt 127 myFi Ie i; Fi Ie t.ype, local IO of icon, fi Ie

If there is no file name, it can be omitted.

MENU--Menu Resource

TYPE MENU
,3 ; ; "eaou,.ce IO

T,.ansfe,. i; menu t.it.le
Edit. j ; it.em 1
Asm ; ; it.em 2
Li nk ; ; i t.em 3

tec
; i it.em 4 (d,.aw a line)
; ; it.em 5

neme

; ; MUST be followed by an empt.y line! !

WARNING: An empty line must follow a MENU resource
definition. The line must not have comments (the example above
is illegal) or spaces.

STR --String (space required)

TYPE STR
,1

This is a st.,.ing

i i ·S.TR ' (spac. ,..qu i ,..d)
;i ,. •• ouree 10
ii and a st.,.ing

,23 i i ,..sou ,.c. IO
This is a st.,.ing ++ ii and a long st.,.ing
t.hat. shows t.he ++
line cont.inuat.ion cha,.act..,.s.

,25 (32)
I'v. got. at.t.,.ibut.es!

ii ".SOU,.c. IO, at.t.,.ibut.e byt..
ii and a st.,.ing

,27 i i ,..sou ,.c. IO

1200301:06B 6-9

RMAKER Chapter 6

T ... t-ing, \31, \32, \33 ;; 'T .. st-ing, 1,2,3' t-h .. hard way

STR#--String List Resource

This resource type allows you define a number of strings using
one resource identifier. The procedure GetlndString in the
Oslltilities unit (listed in Appendix A) can be used to index into a
string list.

TYPE STR#
,1

4
This is .t-~ing on ..
And st-rin$! t-wo
Th i rd st-,. I ng
Bench warmer

;; resource IO
;; numb .. ~ of st-rings
ii and t-h .. st-rings .•.

WIND-- Window Resource

TYPE WIND
,129

Wonder Window
40 90 120 300
Invisible GoAway
o
o

;i t-it-I ..
;; t-op I .. ft, bot-t-om Fight,
;; window st-at-u. (..... not-..)
j; ProcIO (window definit.ion
;; R .. fCon (r .. f .. rence value)

IO)

NOTE: A Window can be Visible or Invisible; GoAway and
NoGoAway determine whether or not the window has a close
box. Only the first character of each option (V,I,G,N) is
significant.

CREATING YOUR OWN TYPES

There are two ways to create your own resource types. The first
is to equate a new type to an existing type. For example, you can
create a resource of type ERRM like this:

6-10 1200301:06B

TYPE ERRI.A = STR
,17 (32)

Sad input fi Ie name

CREATING YOUR OWN TYPES

;l type ERRI.A i. j~.t I ike STR
jj ~esou~ce 10, att~ibute byte
ii ~ne error message

In the example, we have defined type ERRM to be an STR type.
This allows us to avoid resource identifier conflicts at runtime
with other resources of type STR .

The other way to create your own type is to equate the new type
to GNRL, and then to specify the precise format of the resource.
A set of element type designators lets you define the type of each
element that is to be placed in the resource.

Here are the element type designators:

.P pascal st~ing

.S .t~ing without length byte

.1 decimal intege~

.L decimal long intege~

.H heKadecimal

.R Read re.Ou~ce f~om fi Ie. Fol lowed by three
paramete~.: fi Ie name type 10

For example, to define a resource of type CHRG consisting of the
integer 57 followed by the Pascal string 'Finance charges', you
could use the following type statement:

TYPE CHRG = GNRL
,200

.1
67

.P
Finance cha~ges

j; define type CHRG
jj resource 10
jj a decimal integer

j; a pascal string

jj MUST be fol lowed by a blank line.

A more practical example: An application that has its own icon
must define an icon list, and reference it using FREF (described
above). Such an icon list can be defined as follows:

1200301:06B 6-11

RMAKER

TYPE ICN# ~ GNRL
,12S

.H
0001 0002 0003 0004

0070 007E 007F OOSO

'Chapter 6

ieon list Tor en epplieetion
resource IO
enter 2 icons in nexedeeime'
eecn is 32 bits by 32 bits

;; for 12S words tote I
;; ~UST be fel lowed by • blenk line.

The .R type designator is used to include an existing resource as
part of a new resource type. For example, to read an existing
FONT resource into a new resource of type FONT, use the
following resource definition:

TYPE FONT = GNRL
,28S

.R System FONT 28S

USING RMAKER

;; define e new type
j; r.souI"'ce ID
;; re.d from tne System fi Ie
;; tne FONT resource with IO=28S

Once you have created the input file to RMaker, the hard work is
done. Simply select and open the utility RMaker. The standard
file selection window is automatically opened. Select the file you
want to compile, and off it goes.

By default, the standard file selection window displays all the
text files on the disk. If you want to display only the .R files,
Cancel the selection window, select .R Filter from the File menu,
then select Compile from the File menu to redisplay the file
selection window.

When RMaker is compiling a file, the name of the source file is
displayed in the upper left of the window, and the name of the
output file is displayed in the upper right. As the file is
compiled, the current size of the resource data, the size of the
resource map, and the total size are tracked on the right half of
the screen. In addition, as each line is compiled, it is displayed
on the screen. When RMaker is finished, the Quit button in the
lower left hand corner of the window will blink.

6-12 1200301 :06B

USING RMAKER

If there are no errors in the RMaker input file, a resource file
with the specified name is created.

WARNING: The TRANSFER menu is not supported. Trying
to transfer out of RMaker could cause unpredictable results.

UCSD Pascal Compiler Input

Most of the time you will want to generate resource files that can
be used as input to the UCSD Pascal compiler. UCSD Pascal
programs require a minimum set of resources. These resources
are in the file Empty Program on the UCSD PascalI disk. A
typical application resource text file would be:

progrem.rsre:
APPLPROG

i; Out.put. f i Ie neme
i; Type I C .. eet.or

INCLUDE UCSD Pese:el l:Empt.y Progrem

• Your progrem's resource TYPEs go here.

Note the use of the volume prefix on the file Empty Program.
The volume prefix is not needed if Empty Program is on the
same disk as RMaker (the default volume). Volume prefixes must
follow Macintosh file naming conventions, as defined in the
chapter GENERAL OPERATIONS.

Errors in the Input File

If an error occurs, the line containing the error is the last line on
the screen. RMaker then displays a box with an error message in
it. These are the possible error messages. A brief description
accompanies the error messages that are not self-explanatory.

1200301:06B 6-13

RMAKER Chapter 6

• An Input/Output error has occured.

• Can't open the output file.

• Can't create the output file.

• Syntax error in source file.

• Bad type or item declaration.

• Bad ID Number.

• Bad Attributes Parameter.

• Can't load INCLUDE file.

• Bad format resource designator in G NRL type. This IS

any error in a user-defined resource type.

• Out of memory.

• Can't add to the file -- disk protected or full.

• Bad bundle definition.

• Unknown type. Specified resource type is undefined.

• Bad Object definition. This can happen if the specified file
is of the wrong type.

• Bad item type.

• Bad format number.

6-14 1200301:06B

7
LIBRARIAN

The Librarian is a utility program that allows you to manipulate
code segments within library files. Libraries are a useful means
of grouping the separate code pieces needed by a program or
group of programs. Libraries generally contain routines relating
to a certain area of application; they can be used for functional
groupings much as units can. Thus, you might want to maintain
a math library, a data file-management library, and so
forth-each of these libraries containing routines general enough
to be used by many programs over a long period of time.

Maintaining units in well organized libraries is more convenient
than maintaining a larger number of separate files. It allows you

• to manipulate an en tire collection of units easily.

• to reduce the number of library files you must specify in the
Library Files list for a program (see the Set Options utility).

• to reduce the number of files that are open when the program
is executing (each library file will be an open file).

• to think of your application in a more organized way.

Individual programs may also take advantage of the library
construct. If a program uses several units suitable for compiling
separately, but the units logically belong within the program, you
may want to construct a single library containing the program
and all of those units.

Library files created by the Librarian have the same structure as
code files created by the compiler. Thus, a library file which
contains a single unit is equivalent to the code file produced by

1200301:07B 7-1

LIBRARIA..N Chapter 7

the compiler for that unit.

NOTE: The Librarian is useful for determining what units and
segments are in the Pascal Runtime and Debug Runtime library
files. However, it cannot be used to change these files. Changing
them will make them unusable.

This chapter uses the term compilation unit to refer to a program
or unit and all the segments declared inside it. The segment for
the program or unit is called the host segment of the compilation
unit. Segment routines declared inside the host are called
subsidiary segments. Information in the host segment called
segment references referes to units used by the compilation unit.
The segment references contain the names of all segments
referenced by a compilation unit. When a program is executed,
the runtime system searches all the library files specified in the
program's Library Files list to find the referenced segments.

Some routines called from hosts exist in units in the Runtime
Support Library and therefore appear in segment references, even
though there is no explicit uses declaration for them. For
example, writeln resides in the Runtime Support Library unit
P ASCALIO, so the name PASCALIO appears in the segment
references of any host that calls writeln.

USING THE LIBRARIAN

When the Librarian is executed, it first asks you for the name of
an output file. This can be any legal Macintosh file name
including a volume prefix. The UCSD Pascal Compiler appends
.CODE to the end of every code file name to avoid confusing code
files with source files. We recommend that you use the same
convention when creating library files. The Librarian removes an
old file with the same name as the output file.

The Librarian then asks you for the name of an input file. If the
name you enter cannot be found, the Librarian appends .CODE
to the end of the name and looks again. If you do not want to
specify an input file at this time, press <Return> in place of a

7-2 1200301:07B

USING THE LIBRARIAN

file name.

Here is a screen display from the middle of a run of Librarian.
Pascal Runtime has been specified as the input file, and three
segments have been copied to the output file:

Librarian: N(ew, 0-9(slot-to-slot, E(very, S(elect, ?

Input fi Ie? PASCAL RUNTIME
o u KERNEL 2015 10 u REALOPS 2092
1 s USERPROG 1460 11 u LONGOPS 1364
2 u CONCURRE 431 12 u ASSOCIAT 207
3 u FILEOPS 854 13 s CREATEEN 877
4 u EXTRAIO 221 14 s PEOBUILO 1455
5 u PASCALIO 994
6 u HEAPOPS 234
7 u EXTRAHEA 786
8 u STRINGOP 234
9 u OSUTIL 340

Output fi Ie? NEW. CODE
Output fi Ie is 20 blocks long.

o u KERNEL 2015
1 s USERPROG 1460
2 u CONCURRE 431

The screen display consists of the prompt line, the question line,
the input display, the output file line, the output file size line,
and the output display. The input and output displays each
show a list of code segments entries. Each entry consists of the
slot number, the segment code, the segment name, and the
segment length (in words). The segment codes are as follows:
"p" refers to a main program unit, "u" refers to a unit, and "s"
refers to a subsidiary segment. Some Librarian commands have
you specify a segment by its slot number.

To build a library, you copy segments from various input files to
the output file. Normally, the Librarian will not allow you to
transfer more than one segment with the same name to the
output file. However, the 0-9{slot-to-slot command allows you
to override this restriction.

1200301 :07B 7-3

LIBRARIAN Chapter i

LIBRARIAN COMMANDS

This section describes the Librarian commands.

• The N(ew command displays a prompt asking for a new
input file. This file becomeE the file from which segments
may be copied. The segments contained in the input file are
displayed in the input display.

• The A(bort command stops the Librarian without saving the
output file.

• The Q(uit command stops the Librarian and saves the output
file. Just prior to terminating, the Librarian asks you to
enter a copyright notice. The Q(uit command also copies
resources to the resource fork of the output file.

When the Librarian displays the prompt "Notice?" at the top
of the screen, you should enter a copyright notice and press
<Return>. The copyright notice is placed in the segment
dictionary of the output file. Pressing < Return> without
entering a copyright notice exits the Librarian without writing
a copyrigh t notice.

After the copyright notice is processed, the Librarian copies
resources to the resource fork of the output file. The source
for the resources is determined as follows:

If you have transferred one or more segments of type program
to the output file, the Librarian attempts to copy the
resources for the file in which the last such segment was
located.

If, instead, you have transferred only segments of type unit
(or subsidiary segments), the Librarian attempts to copy the
resources from the last input file that was specified.

If you enter Q(uit prior to wpying any segments to the
output file, the Librarian attempts to copy the resources from
the file "Empty Program II to the output file.

7-4 1200301 :07B

LIBRARIAN COMMAl~DS

If the Librarian can't find a source from which to copy the
resources or the copy was unsuccessful, an error message will
be displayed. If you are trying to create a program that you
intend to execute and this error occurrs, you will have to
rebuild the program, making sure a source for the resources is
available. If you are just building a library file, the
occurrance of this error is not critical, since the library file
should still be useable.

• The T(og command toggles a switch that determines whether
or not interface sections of units are copied to the output
file. The interface sections are required if you reference the
library file in a uses statement while compiling a program.
Since the interface sections make your library file bigger,
you should exclude them from the library file when
development of you application is complete (i.e., no more
compilations will be done using it) to save disk space.

• The R(efs command lists the names of each entry in the
segment reference lists of all segments currently in the output
file. The list of names also includes the names of all
compilation units currently in the output file, even though
their names may not occur in any of the segment references.
To refresh the output display, press < Space>.

• The I(nput command "scrolls" the display of segments in the
input display if there are more segments than will fit on the
screen. Type J(nput multiple times to cycle through the input
display.

• The O(utput "scrolls" the display of segments in the output
display if there are more segments that will fit on the screen.
Type O(utput multiple times to cycle through the output
display.

The remaining five commands transfer code segments from the
input file to the output file.

1200301 :07B 7-5

LIBRARIA.:~ Chapter 7

• The 0-9(slot-to-slot command transfers a segment the
segment from a specified slot in the intput file to a specified
slot in the output file. When you enter the first digit,
Librarian displays the prompt: "From slot # ?". Terminate
the entry with < Space>. Librarian displays the prompt "To
slot #?". Enter the number of the slot that the segment is to
be copied to in the output file. To abort the command, press
<Return> with an empty output slot. number.

NOTE: You may not use the <Backspace> key to correct
typing errors. To abort the command after specifying a input
slot, press < Return> in response to the second question.
You cannot abort the command after the specifying the
output slot.

This command will allow you to copy a segment with a
duplicate name into the output file.

• The E(very command copies all of the code segments in the
input file to the output file. Each segment is copied to the
first available output file slot, provided that its name does not
conflict with the name of a segment already in the output file.

• The S(eleet command causes the Librarian to loop through
each segment in the input file, asking you whether you would
like to have it transferred to the output file. For each code
segment not already in the output file, the Librarian asks:
"Copy from slot #?". Press X to copy the segment. Press ~
to skip the segment. Press E to copy the rest of the code
segments in the input file (as r;; the E{very command). Press
<Space> or <Return> to abort the S{elect command.
Each segment is copied to the first available slot.

• The C(omp-unit command causes the Librarian to ask:
"Copy what compilation unit?". You should enter the name
of a compilation unit. The compilation unit named is
transferred to the output file, along with any segment
procedures that it contains.

7-6 1200301:07B

LIBRARIA."J CO\1MA.:'\JDS

• The F(ill command does the equivalent of a C(omp-unit
command for all the compilation units referenced by the
segment references in the output file.

1200301:07B 7-7

LIBRARIAN Chapter 7

7-8 1200301 :07B

8
DEBUGGER

This chapter describes the Symbolic Debugger and the
Performance Monitor. The Debugger is a tool for detecting and
correcting errors in programs that you develop. The
Performance Monitor is a mechanism for gathering performance
information and for extending the capabilities of the Debugger.

The Debugger gives you the following program diagnostic
capabilities:

• setting and removing breakpoints.

• single stepping p-code.

• displaying and altering memory and p-Machine registers.

• disassembling p-code.

To use the Debugger effectively, you must be familiar with the
p-Machine architecture and understand the p-code operators,
stack usage, and variable and parameter allocation. These topics
are discussed in the P-MACHINE ARCHITECTURE chapter.
Other useful information will be found in The UCSD Pascal
Handbook and the MACINTOSH INTERFACE chapter.

A compiled listing of your program is helpful when using the
Debugger. The listing helps you to determine p-code offsets and
variable offsets.

1200301:08B 8-1

DEBUGGER Chapter 8

WARNING: The Debugger is a low-level tool, and as such, you
must use it with caution. If you use the Debugger incorrectly,
your program can fail.

GENERAL INFORMATION

This section discusses general information about using the
Debugger. The individual Debugger commands are covered in
the next section, DEBUGGER COMMANDS.

Installation

To use the Debugger, you must be using the Debug Runtime file
as your Runtime Support Library, and you must have the
Startup in Debugger option enabled in your program's startup
options. Both of these may be configured by using the Set
Options utility, as described in the GENERAL OPERATIONS
chapter.

Set Options also allows you to select whether the Debugger will
communicate via an external terminal, connected to the modem
port, or the .DBGTERM device (the lower eight lines of the
Macintosh Screen). If the Create .DBGTERM Device and Create
Default \Vindow options are simultaneously enabled, the screen
I/O window will appear smaller on the screen in order not to.
overlap the .DBGTERM screen region.

If you have properly installed the Debugger, when you start your
program it will immediately enter the Debugger, displaying the
following prompt:

UCSD Pascel Debugger [lRO.O)
(

8-2 1200301:08B

GENERAL INFORMATION

Command Format

The Debugger prompts you for input by printing a left
parenthesis character '('. There are no menus explaining the
Debugger commands because they would detract from the
information displayed on the screen by the Debugger. However,
when you enter a command, the Debugger may display several
short prompts that ask you for information.

Many of the Debugger commands require you to enter two
characters (such as 'LP' for List P-code, or 'LR' for List
Register). To abort a command after entering the first character,
press < Space> .

Here is a sample of a debugging session:

UCSD Pascal Debugger [lRe.e)
ISS) Set breaki? e Segname? EXAMPLE Procname or H? 1 OffsetH? e

(~~~ S=EXAMPLE Pil ONe
(R)
Hi t breakH0 at S=EXAMPLE Pill ON0
!VC) Varname or offsetH? 1
(g) S-EXAMPLE PHl OHl 0ee012E6 61 04 el 56 el AS €Ie €Ie ---V----

Most lines of Debugger interaction are prefaced with a command
code or response code surrounded by parentheses. If the code is
in upper-case letters, it is a command that you entered. If the
code is in lower-case letters, it is a Debugger response line.
There is a table of the possible Debugger response codes and their
meanings in the Summary of Response Codes section.

When the Debugger prompts you with questions, you type the
response and terminate it by pressing < Space> or < Return> .
When you are asked for the name of a segment or an identifier,
you may type only eight characters of the name. Most numeric
input is in decimal radix (base 10). However, when you are
requested for an address the Debugger expects hexadecimal
notation to be used.

1200301:08B 8-3

DEBUGGER Chapter 8

If you make a mistake when typing a response to a question, you
may use the <Backspace> key to fix the entry. However, you
cannot edit a response after you have gone on to the next
question. Terminate the command and reenter it.

Some commands display more information than will fit on the
display device. If so, the Debugger will print out a "screen full"
of output, then ask you to type <Space> to continue. If you
would like to terminate the output, press any other character.

Entering and Exiting

There are several ways to enter the Debugger . (You can tell that
you are in the Debugger by the presence of the left parentheses
prompt.) When the Debugger is enabled, the Runtime Support
Library will enter the Debugger in the following situations:

• upon starting your program.

• upon execution of the Debugger procedure In the
Error _Handling unit.

• upon encountering a break point.

• upon completing a single step operation.

• upon detecting an execution error.

• upon execution of the halt intrinsic.

• upon recognition that the break button has been pressed.

• upon recognition that the Debug "button If in an execution
error dialog box has been pressed.

You exit the Debugger by executing one of the following
commands:

8-4 1200301:08B

GE~ERAL IKFORMATION

• The Quit command puts the debugger in a dormant state.

• The Resume command continues program execution from
where it left off.

• The Step and Trace commands execute a single p-code, then
automatically reenter the Debugger.

If any display options are enabled, then the Debugger will print
the enabled options just after reentering the Debugger. See
Configuring the Display for details.

Debugger State

When the Debugger is reentered after a Resume, Step or Trace
command, it remembers its previous state, including the
condition of the break points, its memory locked state, and its
display modes. 'However, jf the Debugger is entered after it has
been made dormant by the Quit command, it starts up in a
"fresh" state, with no break points set.

Two other features of the debugger state are its current activation
record and its current address.

The current activation record determines the environment for
displaying variables. On reentry to the Debugger, it corresponds
to the most recent activation record. However, it can be changed
for a series of commands by using the Chain Down and Chain Up
commands.

The current address corresponds to the last address that was
displayed by a memory examine command. The slash (j) and
back slash (\) commands alter memory at the current address,
and the plus (+) and minus (-) commands display memory in the
vicinity of the current address.

1200301:08B 8-5

DEBUGGER Chapter 8

Symbolic Debugging

The Debugger becomes a Symbolic Debugger with a little
cooperation from the UCSD Pascal compiler. If you compile your
program with the symbolic debugging compiler options around
portions of your program (see the PASCAL LANGUAGE
chapter), you can then access variables by name rather than by
data offset, and you can access code by line number rather than
by p-code offset. Also, break points may be specified by
procedure name and line number, and disassembled code will
display procedure names rather than numbers.

Having a current compiled listing of your program is still
essential for serious debugging efforts.

To use symbolic debugging, it is necessary that the code being
debugged is compiled with $D+ compiler options. The $D+
option instructs the compiler to output symbolic Debugger
information for those portions of a program that are compiled
with $D+ turned on.

Once you have debugged your program, you should recompile it
without the symbolic debugging flags, because the symbolic
debugging information increases the size of your code file.

When you use symbolic debugging, you may specify locations in
your code by line number. The line number corresponds to the
line number in a compiled listing of your program. Of course,
you can also specify locations in your code by offset. When you
specify variable or procedure names symbolically, you may only
type the first eight characters of the symbol's name.

The example debugging sessions in the rest of this chapter are a
mixture of symbolic and non-symbolic debugging examples.
When you are running the Debugger, the Debugger will make it
clear to you what the permissible command options are by the
content of its questions. Each question is explicit about what
type of response it expects.

8-6 1200301:08B

GENERAL INFORMATION

DEBUGGER COMMANDS

The following sections describe each of the Debugger commands.

Resuming Execution

You resume program execution by using one of the following
commands:

Q The Quit command puts the Debugger in a dormant
state, disabling all break points, and continues program
execution.

R The Resume command continues program execution from
where it left off.

Using Break Points

The Debugger allows you to maintain up to five break points
within a program at one time. A break point is a location within
p-code that will cause the Debugger to be entered when the
p-code is about to be executed.

You specify a break point by its break point number. Break
points are numbered 0 through 4. The location of the break
point is specified by the segment name, procedure number and
code offset. If symbolic debugging is enabled, you may specify
the procedure by name and the location within the procedure by
line number. A compiled listing of your program is indispensible
for specifying breakpoints in code, because both code offsets and
line numbers are printed in the listing. Line numbers can be
determined "on the fly" by using the File command to examine a
compiled listing that is stored in a file on disk.

The following commands manipulate break points:

BS The Breakpoint Set command enables one break point.
You are asked to specify (1) the n urn ber of the
breakpoint to set, (2) the segment name, (3) the

1200301:08B 8-7

DEBUGGER Chapter 8

procedure name or number, and (4) the code offset or line
number.

BR The Breakpoint Remove command disables one break
point. You are asked to specify the number of the break
point to remove.

BL The Breakpoint List command lists the break points that
are curren tly in effect.

Here is an example of using the break point commands:

(85 Set break
(Bl

f/? 13 Segname? EXAMPLE Procname or R? , Of f se til? e

(b13 ,,-EXAMPLE PII' olle
iSS Set break R? 1 Segnome? EXAMPLE Procnome or I/? 2 Offset{/? 25

BR Remove breakl/? e
fBll

bl l S=EXAMPLE PI/2 01/25

When you have resumed execution with the Resume command
and a break point is encountered, the Debugger is reentered and
the following message will appear on the screen:

Hi~ break#O a~ S=EXAMPLE P#2
(

0#26

This message means that breakpoint 0 was encountered In

segment EXA.c\1PLE, procedure number 0, code offset 25.

Single Stepping

The Debugger allows you to execute the p-code in your program
a single instruction at a time by using the single step commands.
Single stepping is most effective when used in conjunction with
the enable command, which allows you to set the display options.
(See Configuring the Display.)

Using one of the single step commands causes one or more
p-codes to be executed. Nothing is left on the screen to indicate
that a single step operation has been performed. However, you

8-8 1200301 :08B

DEBUGGER COMMAt'\"DS

may notice that the left parenthesis prompt disappears for a
moment, the reappears. Most often you will want to run single
stepping with the P-code option enabled so you can tell where
you are in the program you are debugging. This option will
cause each p-code to be printed on the screen before it is
executed.

Here are the single step commands:

S This command causes a single p-code to execute.
Execution of a procedure call instruction will cause the
Debugger to "step into" the procedure.

T This command causes a single p-code to execute unless
the p-code is a call instruction, whereupon the Debugger
will execu te the en tire call and stop on the p-code
following the call. This command "steps over" procedure
calls, i.e., it allows you to single step through a procedure
without worrying about what goes on within the
procedures that it calls.

Here is an example of single stepping with the P-code display
option enabled. Note that the Trace command has been used to
"step over" procedure calls. The format of the p-code
disassembly is discussed, below, in Disassembling P-code.

S=EXAt.lPLE
S=EXAt.lPLE
S=EXAt.lPLE
S=EXAt.lPLE
S=EXAt.lPLE

P#l
P#l
P#l
P#l
P#l

Disassembling P-code

0#1
0#3 0#4 o 6
0#8

SRO
SLoe
SRO epa
RPU

3
6
2
2
o

The P-code command allows you to look at disassembled
p-code for portions of your program.

P This command disassembles a section of p-code. You
are asked to specify (1) a segment name, (2) the
procedure name or offset, (3) the start offset or line
number, and (4) the end offset or line number.

1200301:08B 8-9

DEBUGGER Chapter 8

Here is an example disassembly:

(P) Segneme? EXAMPLE Procneme or #? SETCIFD
Fir.~# 10 Les~# 12 St.er~ Line#? 10 End Line#? 12

td
S=EXAMPLE P#2 0#0 SLDO :3

cd S=EXAMPLE P#2 0#1 SLDO 2
cd S=EXAMPLE P#2 0#2 LEQ.I
cd S=EXAMPLE P#2 0#3 BNOT
~cd S=EXAMPLE P#2 0#4 SSTL 1
cd S=EXAMPLE P#2 0#6 SLDL 1

r'
S=EXAMPLE P#2 0#6 FJP 6

cd S=EXAMPLE P#2 0#8 SLDO :3
cd S=EXAMPLE P#2 0#9 SLDO 2
cd S=EXAMPLE P#2 0#10 MPI
cd S=EXAMPLE P#2 0#11 SRO 1
cd S=EXAMPLE P#2 0#13 RPU 1

Each p-code instruction is presented, along with the
"coordinates" of the instruction (i.e., the segment, procedure and
offset). The p-code names correspond to the instructions
described in the P-MACHINE ARCHITECTURE chapter.
P-code operands are in decimal radix (base 10).

Disassembling p-code is useful in analyzing the exact cause of
certain runtime errors, and discovering the exact p-code
coordinates for a break point. If you press < Return> to the line
number prompts, the Debugger assumes the first and last line
numbers for the procedure you have indicated. (Similarly, when
not using symbolic debugging, pressing < Return> in response to
the start and stop offset prompts causes the Debugger to assume
a starting offset of zero and an ending offset equal to the offset of
the last p-code instruction in the procedure.)

Examining and Modifying Memory

The commands described in this section allow you to examine
and modify memory. The Address Data and Address Code
commands ask you to specify a memory address in hexadecimal
(base 16) notation.

For the Address Data command you must specify a 16-bit
address in the range OOOO-FFFF. This address is interpreted as
an address within the Pascal Data Area. If you enter the value of
any Pascal pointer variable, the Debugger will display the
memory that it points to.

8-10 1200301:08B

DEBUGGER COMMt\.:"-;:PS

For the' Address Code command you must specify a 32-bit
absolute address in the range of legal memory address for your
Macintosh. This address is interpreted as a 68000 absolute
address. Note that the 16-bit addresses mentioned above do not
correspond to the same absolute address. If you enter the value
of a Macintosh absolute pointer, the Debugger will display the
memory that it points to.

For more information on the relationship between Pascal point.ers
and absolute addresses, refer to the MACINTOSH INTERFACE
and PASCAL LAt~GUAGE chapters.

A memory examine command displays memory to the screen in
the following format:

(A.O) o.~ •• ddress? 600
() 00000600:20 F8 20 FO 2E 03 2E FS ----.-.-

The address is followed by two representations of the eight bytes
stored at that address. First they are displayed in hexidecimal,
then in ASCII. If the byte does not have a printable ASCII
representation, it is represented as a dash (-).

After you have entered a memory examine command, you can
examine words in the immediate vicinity by using the plus (+)
and minus (-) commands. The slash (f) and back slash (\)
commands allow you to alter the memory displayed by the
previous memory examine command.

Here are the memory examine and modify commands:

AD The Address Data command displays eight bytes starting
at the specified address, and sets the current address to
this address. The address is a 16-bit pointer within the
Pascal Data Area.

AC The Address Code command displays eight bytes starting
at the specified address, and sets the current address to
this address. The address is a 32-bit absolute address.

1200301:08B 8-11

DEBUGGER Chapter 8

+ The plus command increments the current address by
eight bytes, and displays the eight bytes at the current
address.

The minus command decrements the current address by
eight bytes, and displays the eight bytes at the current
addre~s.

/ The slash command allows you to alter in hexadecimal
the memory at the current address. You alter the bytes
by typing two hexadecimal characters for each byte and
using < Space> or < Return> to skip to the next byte.

\ The back slash command allows you to alter in ASCII
the memory at the current address. You alter the bytes
by typing a character for each byte. If you wish to skip
a byte, press < Return>.

Here is an example of displaying and modifying memory
contents:

AOD) Dolo oddress? 11el
) aala1lal:52 42 67 a2 76 a9 E3 48 R8g-v--K

1\0 l aaal1 le8: 70 63 ~~ ~~ 6F a8 96 41 pc-Oo--O

) obdefghi

Examining and Altering Variables

The following commands allow you to examine the areas of
memory where variables are stored. The display is not formatted
based on the type of the variables. Instead, you must interpret
the variables in hexadecimal or ASCII form.

These commands may be used in conjunction with the slash (/)
and back slash (\) commands to alter the value of variables.
They may also be used in conjunction with the plus (+) and
minus (-) commands to display memory in the vicinity of the
initial memory examine command.

8-12 1200301:08B

DEBUGGER COMMAl'iDS

To use the variable examine commands you must be somewhat
familiar with the storage of variables in the p-Machine. See
P-MACHINE ARCHITECTURE for details.

• Local variables refer to the variables declared in the procedure
that corresponds to the current activation record.

I

• Global variables refer to the variables declared at the
outermost level of the program or unit that contains the
procedure that corresponds to the current activation record.

• Intermediate variables refer to variables declared in
procedures that are nested lexically between the global level
and the procedure that corresponds to the current activation
record.

• External variables refer to variables stored at the global level
of a unit accessible to the procedure that corresponds to the
current activation record.

The current activation record is normally the activation record
that the p-code instruction that is about to be executed is
located within. You may change the current activation record by
changing the frame of reference with the Chain Up or Chain
Down commands. See Changing the Frame of Reference.

Each of these commands asks for a variable by name or by offset.
The offset is a word offset of the variable within an activation
record. You can determine the offset of a variable by using a
compiled listing. Variable offsets are numbered starting with 1.
If you specify an offset that is out of range, the Debugger gives
you an error message and aborts the command.

Here are the variable examine commands:

VL The Var Local command displays eight bytes of the local
variables of the current activation record. You are asked
to specify either a variable name or a variable offset.
This command sets the current address.

VG The Var Global command displays eight bytes of the

1200301:08B 8-13

DEBUGGER Chapter 8

global variables in the context of the current activation
record. You are asked to specify either a variable name
or a variable offset. This command sets the current
address.

\11 The Var Intermediate command displays eight bytes of
the variables for an activation record at an intermediate
lexical level with respect to the current activation record.
You are a~ked to specify (1) a lexical offset and (2) a
variable name or variable offset. A lexical offset of one
refers to the lexical parent of the current activation
record. This command sets the current address.

VE The Var Extended command displays eight bytes of the
global variables for a unit that is accessible to your
curren t procedure . You are asked to specify (1) a
segment number, and (2) a variable name or offset. This
command sets the current address.

VS The Var Segment command displays eight bytes of the
variables for a segment that is part of the Runtime
Support Library or part of your program. The segment
in question does not have to be accessible to your current
procedure. You are asked to specify (1) a segmen t name,
(2) a procedure name or number, and (3) a variable name
or offset. This command sets the current address.

VP The Var Procedure command displays eight bytes of the
variables for a specified procedure. You are asked to
specify (1) a segment name, (2) a procedure name or
number, and (3) a variable name or offset. The
procedure must currently by in the call chain. This
command sets the current address.

Here is an example of examining and modifying variables:

ii l)
Vornome or offsetH? 1

S=EXAMPlE P~3 O~3 aaQaE776:130 013 130 1313 4E lA 130 00 ----N---
I S=EXAMPlE P 3 0 7 130130E77E:65 94 00 4E FE 12 0A CD e--N----
VG Vorname or oftsetH? A
9 S=EXAMPlE Pill V=A 00001AOO:00 01 3F 3F 3F 3F 3F 3F --??????
VI De I to lex level? 1 Off se tl/? 3
i S=EXAMPLE PI/2 01/3 0000E8FE:00 65 130 EIEI 3F 3F 3F 3F -e--????

~El
Segf/? 1 OffsetH? 5

S=KERNEl PI/l 01/5 El0E1130AE4:11 65 00 00 131 04 136 3F -e-----?
66

8-14 1200301:08B

DEBUGGER COMMA.l"iDS

!VeS) Segnome? F I LEOPS Of fse tH? 5
) S-FILEOPS PHl 015 13131313135313- out of ronge

VpP) Segnome? KERNEL Procnome or I? 31 OffsetH? 1
) S-KERNEL P#31011 13I3I3I3FFE2:3F 3F 3F 3F 3F 3F 3F 3F ????????

Changing the Frame of Reference

It is possible to change the current activation record, thereby
changing the frame of reference from which the global, local,
intermediate, and external variables are viewed. This is
accomplished by "chaining up" and "chaining down" the call
chain. The following commands examine the call chain and cause
the Debugger to move up and down the call chain:

CL The Chain List command prints out the activation
records on the entire call chain.

CD The Chain Down command sets the current activation
record to be the caller of the current procedure. If there
are no more procedures in the call chain, this command
does nothing.

CU The Chain Up command sets the current activation
record to be the procedure that was called from the
current procedure in the actual call chain. If the current
procedure is the last procedure that was called, this
command does nothing.

Here is an example of using these commands:

~~~l S=EXAMPLE P#2 0#3 stot=I3131306530 dyn a1300136530 
env -€HlO130996 ipc -131324 

(ms) S-EXAMPLE P#1 0#6 stot-01313€i6542 dyn -1301313FFCE 
env -013131313996 i pc -101336 

(ms) S=KERNEL PH31 0f/25 stot-I313131313134E dyn -130e0FFD8 
env -131301313286 ipc -0BA5 

(ms) S-EXAMPLE Pll Of/S stot-130013004E dyn -0131313FFE4 
env -1313131313286 ipc -13C113 

!l~I 
Offself/? 1 

S=EXAMPLE PHl OHl 013131365213: eo 1313 eo O€l 0e eEl ee 013 --------

S-EXAMPLE P{fl 0#6 stot-13e0136542 dyn -13I31313FFCE 
env -1313013132B6 ipc -13Cl13 

~iLl Offsetl/? 1 
S-KERNEL P#31 0f/6 0131313FFE2:55 94 99 4E FE 12 9A CO e--N----

1200301:08B 8-15 



DEBUGGER Chapter 8 

The call chain display shows a list of the procedure activations 
currently on the stack. Each activation is listed with the p-code 
coordinates of where the activated procedure will return, and four 
values from the MSCW record, which are used to restore the 
state of the caller upon leaving the procedure activation. For 
more information on the MSCW, see the P-MACHINE 
ARCHITECTURE chapter. 

Displaying Registers 

The following commands display the p-Machine registers and 
related information. These commands are closely related to the 
display options described in the next section. 

LR The List Registers command displays the contents of the 
following p-Machine registers: MP, SP, EREC, SEG, 
lPC, CURT ASK, READYQ. These registers may not be 
modified. CURTASK is called TIB in the display. 

LP The List P-code command displays the p-code that IS 

about to be executed. 

LM The List MSCW command displays the Mark Stack 
Control Word of the current procedure. 

LS The List Stack command displays the top portion of the 
stack, where expression evaluation is taking place. If 
more than eight words of partial results are currently on 
top of the stack, the command displays eight words and 
indicates the number of words not displayed in square 
brackets. 

LA The List Address command displays the eight bytes at 
the current address. 

LE The List Every command IS a combination of all the 
other List options. 

Here is an example of each list option, with a description of what 
is displayed: 

8-16 1200301:08B 



DEBUGGER COMMA.l~DS 

(LR) 
( rg) mp -0000FF08 sp -0000FF04 erec=00000296 seg -0000839C 

lib -00000030 rdyq-00000030 ipc -09A9 iar -0000 

The Register display shows eight p-Machine registers. MP, SP, 
EREC, TIB and RDYQ are Pascal pointers within the Pascal 
Data Area. SEG is an a.bsolute handle to the segment base. IPC 
is a byte offset from the beginning of the segment. lOR is a 
signed integer value. SEG does not correspond directly to a 
p-Machine register; it is actually a field of the SIB. TIB is the 
CURTASK register. 

~~~~ S=KERNEL P#31 0#31 NFJ 11 

The P-code display shows the current p-code m disassembled
form and the coordinates of the p-code.

~;~~ S""KERNEL P#31 0#31 .~a~=00006BBA dyn =0000FFD8
env =000002B6 ipe =OBAB

The MSCW display shows the coordinates of the current p-code
and a representation of the current mark stack record. STAT,
DYN and ENV are pointers in the Pascal Data Area. IPC is a
byte offset from the beginning of the segment.

~~!~ [0] FEDO 0001 0002 0001

The Stack display shows the contents of the partial expression
results stored on the runtime stack. The rightmost word is the
top of the stack. Only the region of the stack between the SP
and MP registers is shown. If more than eight words are on the
stack, the number in brackets indicates how many words are not
shown.

(0) S-HEAPOPS PI3 0123 2C1A: 09 05 53 43 41 4C 43 61 --SCALCo

1200301:08B 8-17

DEBUGGER Chapter 8

The Address display shows the eight bytes of memory at the
current address.

(ms) s=rERNEL Pl31 0131 slot-00005B6A dyn -0000FFD8
env -00000266 ipe -OSAS

(rg) mp =0000FFD8 sp =0000FFD4 eree=00000286 seg -0000839C
lib =00000030 rdyq=0000e030 ipe =OBAS ior =0000

(0) 00000000:00 00 00 01 00 04 00 01 --------
(s t) [I) J 0000 0000
(cd) S=ICERNEL PH31 0#31 NFJ 11

The Every display prints all the options of the List command.

Configuring the Display Options

Normally, when the Debugger is entered it does so quietly,
printing only the right parenthesis prompt. You may configure
the display to show register and other information on entry to
the Debugger. Each option of the List command described in the
last section may be enabled or disabled within the display.

The following commands affect the display:

E The Enable command is a two character command that
enables a given option in the display. The options are:
Register, P-code, MSCW, Stack, Address, and Every.

D The Disable command is a two character command that
disables the indicated option in the display. The options
are: Register, P-code, MSCW, Stack, Address, and
Every.

Miscellaneous Commands

ML The Mem Lock command causes the Debugger segment
to be locked in memory. This will remain in effect until
the next Mem Swap command or Quit command.

MS The Mem Swap command causes the Debugger segment
to be swappable.

Z The Zseg command prints a formatted listing of the

8-18 1200301 :08B

current environment.
described below.

DEBUGGER CO~fMA .. .l'\'DS

The format of its display IS

The Interaction command calls a Debugger Interaction
Procedure, if you have supplied one to the Pas~al

Runtime Library by using the Error Handling unit.
This command allows you to expand the capabilities of
the Debugger by writing your own command routine.
See GENERAL OPERATIONS for more information on
using the Error Handling unit.

F The File command allows you to examine a portion of a
text file between two line numbers that you select.

This is a sample of the output generated by the Zseg command:

LONGOPS evec 000002AA sib 0000047E
1 KERNEL erec 00000286 sib 00000346 seg 0000839C res=l
2 LONGOPS erec 0000031E sib 0000047E seg 00000000 res=O
3 PASCALIO erec 0000020E sib 0000038E seg 00008340 res=O
4 OSUTIL erec 000002E6 sib 00000306 seg 0000837C res=O
CONCURRE eVeC 000002AO sib 00000466
1 KERNEL el"ec 00000286 sib 00000346 seg 00000000 res=O
2 CONCURRE el"eC 00000316 sib 00000466 seg 000046EC I"es=O
3 EXTRAHEA erec 000002C6 sib 00000376 seg 00008378 res=O
FILEOPS evec 00000292 sib 0000044E
1 KERNEL erec 00000286 sib 00000346 seg 0000839C res=l
2 FILEOPS erec 0000030E sib 0000044E seg 00008380 res=O
3 PASCALIO erec 0000020E sib 0000038E aeg 00008340 res=O
4 OSUTIL erec 000002E6 sib 00000306 seg 0000837C r..,5=0
5 STRINGOP erec 0000028E sib 0000036E seg 00000000 res=O
pr ... ss (apace) t.o eon'tinue, (eac) t.o abort.

The Zseg command prints the segment reference list for each unit
in your program's execution environment. Each unit in your
program's environment is indicated by a line without a line
number, along with the location of the segment's EVEC and SIB.
Following the header line for a segment, each segment referenced
in its EVEC is indicated. The number at the left of each line is
the local segment number of the referenced segment. For each
referenced segment, a pointer to its EREC and SIB, and a handle
to the segment itself is printed. The RES field at the end of the
line corresponds to the seg res field of its SIB, and indicates
whether or not the segment i; swapp able.

1200301:08B 8-19

DEBliGGER Chapter 8

The Interaction command allows you to expand the capabilities
of the Debugger by calling a Debugger Interaction Procedure that
your program provides to the Debugger via the Error Handling
unit. Here is an example of a program that installs ;;:-Debugger
Interaction Proced ure.

program dbgt.est.;

uses {$U UCSD Pascel 2:Errorhandl .CODE} error_hand I ing;

const.
max friend

t.ype
friend rec

var

100;

reco,..d
name: st,ringj
age: i nt.eger;

endj

num friends: inte~.r;
my ~riends: arreyll •. mex friend] of friend_rec;
df, int.eract.ive; -

procedure my debug commend;
ver --

n: i nt-ege,..;
begin

writ.e(df,'ent.ry #7');
.... ad I n (df, n) ;
writ.eln(df,n)i
if (n > 0) and en <= num_friends)

t.hen
begin

writ.el.n(df, '
w r i t.e 1 n (d f , ,

end;

name=',my friend.[n] .name);
age=',my:friends[n] .age);

end;

begin
,.eset.(df,' .DBGTERM');
num friends:= 0i
set.:pm_int.eract.,ve(my_debug_command);

end.

In order to make use of the Interaction command, you must have
the Performance Monitor option enabled in your program. See
GENERAL OPERATIONS for information on using the Set
Options utility. After the call to SET PM INTERACTIVE,
the Debugger is augmented with a new-command. Here is a
sample Debugger session using the above program:

Program Begin
Seg Fault. on DBGTEST at. Seg KERNEL P#31
Seg Fault. on ERRORHAN .t. Seg DBGTEST P#l
Seg Fault. on DEBUGGER at. Seg ERRORHAN P#S

8-20

0#23
0#28
0#26

1200301:08B

DEBUGGER COMM.Ac'\'DS

Seg Fault on SEGDEBUG at Seg DEBUGGER P#2 0#1
Hit break#O at S=DBGTEST P#l 0#100
(I) entry #?1

name=bi I I
age=100

The output before the break point is Performance Monitor
output. See PERFORtvtANCE MONITOR, below, for more
information on the Performance Monitor.

The File command allows you to examine a portion of a text file.
This command is especially useful if you are using symbolic
debugging and have a compiled listing stored in a file on disk.
The File command allows you to examine the compiled listing in
a range of line numbers that you specify. Here is an example:

(F) Fi lename? PMTEST First Line#? 10 Last Line#? 12
name: st.ring;
age: integer j

end;

Summary of Commands

AC Displays bytes at an absolute address.

AD Displays bytes in Pascal Data Area.

BL Lists current break points.

BR Removes a break point.

BS Sets a break point.

CD Chains down one activation reeord.

CL Lists the call chain.

CU Chains up one activation record.

D Disables a display option: A,E,M,P,R,S.

E Enables a display option: A,E,M,P ,R,S.

1200301:08B 8-21

DEBUGGER Chapter 8

F Displays a portion of a text file.

I Calls the Debugger Interaction Procedure.

LA Lists memory at the current address.

LE Lists every option.

LM Lists current activation record.

LP Lists current p-code instruction.

LR Lists p-Machine registers.

LS Lists the top of the evaluation stack.

ML Memlocks the Debugger.

MS Memswaps the Debugger.

P Disassembles p-code.

Q Quits the Debugger.

R Resumes program execution.

S Steps a single p-code.

T Steps a single p-code without entering procedures.

VE Displays external variables.

VG Displays global variables.

VI Displays intermediate variables.

VL Displays local variables.

VP Displays variables of indicated procedure.

VS Displays global variables of indicated segment.

8-22 1200301:08B

DEBUGGER CO~1A... '\'DS

Z Displays program environment.

+ Displays next eight bytes.

Displays previous eight bytes.

/ Modifies memory in hexadecimal.

\ Modifies memory in ASCII.

Summary of Response Codes

(a) Memory address.

(bO) Break point O.

(bl) Break point 1.

(b2) Break point 2.

(b3) Break point 3.

(b4) Break point 4.

(c) Absolute memory address.

(cd) Code.

(e) External variable.

(g) Global variable.

(i) Intermediate variable.

(I) Local variable.

(ms) MSCW record.

(p) Procedure variable.

(rg) Registers.

1200301:08B 8-23

DEBUGGER Chapter 8

(st) Stack.

EXAMPLES OF DEBUGGER USAGE

Suppose the following program is to be debugged:

1 2 1: d 1 program not._debugged;
2 2 l,d 1 var
a 2 l:d 1 i , j ,k : i nt.eger j
4 2 l:d 4 b1,b2: boolean;
5 2 1:0 0 be~in
6 2 1: 1 0 1':= 1 ;
7 2 1:1 a ~ := 1 ;
8 2 1: 1 6 It' k <> 1
9 2 1: 1 7 t.hen writ.eln('What."s wrong?');

10 2 :0 0 end.

First we enter the Debugger and set a break point at the
beginning of the if statement:

UCSD Poscol Debugger [1 R0.I1I)
(B5) Set breoK I/? 0 Segnome? NOTDEBUG

(EP)
(R)

Procnome or {/? 1 Offset H? 6

After setting the break point we enable p-code (EP) and resume
(R). When the program reaches offset 6, the Debugger break
point is encountered. We single-step twice:

Hit. break *0 at. S=NOTOESUG P*l 0#6

~ Cd~ S=NOTOESUG P#l 0#6
cd S=NOTOEBUG P#l 0#7
cd S=NOTOEBUG P#l 0#8

SLOO
SLOe
NFJ

1
1
18

We see that our first single-step did a short load global!.

NOTE: The allocation of memory offsets to variables is a bit
confusing. Normally, the offset line in the listing indicates the
word offset of a variable. However, if more than one variable is
allocated at once in a list, the variables are allocated in reverse
order. Thus, K has offset 1, J as offset 2, and I has offset 3.

8-24 1200301:08B

EXAWLES OF DEBUGGER USAGE

The second single-step did a short load constant 1 onto the
stack. Now we are about to do an integer comparison and jump.
But this is where our error shows up, so we decide to look at
what is on the stack before doing this comparison:

~~~~ [0] C614 0001 

We list the stack and then see two words on the stack. \'Ii' e 
discover a 1 on top of the stack followed by a word of what 
appears to be garbage. This leads us to suspect that K was not 
initialized. Looking over the listing, we realize that this is the 
case. 

Symbolic Debugging Example 

To use symbolic debugging, some part of a Pascal compilation 
unit must be compiled with the {$D+} compiler-time option. 
After this code has been generated, it is possible to reference 
variables and procedures by name rather than offset. The 
following example is a small Pascal program that has been 
compiled with the $D+ option. 

1 0 O:d 1 {SD+} 
2 2 I,d 1 program example; 
3 2 l:d 1 var • , b J c: : i n t.ege,.. j 
4 2 l:d 4 
6 2 l:d 4 procedure set c if d; 
6 2 2:d 1 var d:boolean; - -
7 2 2:0 0 begin 
8 2 2:1 0 d:=a>b; 
9 2 2:1 6 if d then 

10 2 2:2 8 c::= •• bj 
11 2 1:0 0 end; 
12 2 1:0 0 
13 2 1:0 0 begin 
14 2 1:1 0 a:=O; 
16 2 1:1 3 b:=6; 
16 2 1: 1 6 set c if d· 
17 2 :0 0 end. - - - , 

The following listing is an example of a debug session. 

UCSD Pascal Debugger [lRO.O] 
(6S) Segname=EXAMPLE Proename or # = SETCIFD 

symbolic .eg not in mem Line#? 8 
(R ) 

1200301 :08B 8-25 



DEBlJGGER 

Hit bFeek#O at S=EXAMPLE P=SETCIFD 
(85) Segname=EXAMPLE Proename or # 

First#8 Last#10 Line#? 9 
(R ) 
Hit break#l at S=EXAMPLE P=SETCIFD 
(VL) Varname or offset#? D 
(I ) S=EXAMPLE P=SETCIFD V=D 

OOOOE782:00 00 
(Q ) 

Chapter 8 

L#S 
= SETCIFD 

L#9 

94 48 BE E7 00 00 190C-H-

The first time the Debugger it' entered, the program example isn't 
in memory and hence the symbolic segment isn't in memory. 
However, a break point can still be set symbolically providing 
you know on which line number to stop. For the second break 
point, the symbolic segment is in memory; because of this, its 
first and last line numbers are given. 

Notice the variable'D was accessed symbolically, and its contents 
are displayed. 

If you try to access symbolically when the actual code segment is 
in memory and its symbolic segment counterpart isn't present, 
the system displays the error message 'symbolic seg not in mem'. 
Use the Zseg command in the symbolic Debugger to find out if 
symbolic information is available for a particular segment. 

PERFORMANCE MONITOR 

If you are using the Debug Runtime verSIOn of the Pascal 
Runtime Library, you have available to you a performance 
monitor that can help you detect performance bottlenecks in your 
program that are related to segment swapping. 

You enable the performance monitor by using the Set Options 
utility. (See GENERAL OPERATIONS.) The output generated 
py the performance monitor is displayed on the same device that 
you have enabled for the debugger. 

Here is a sample of the performance monitor output: 

Program 6e9,n 
Seg Fault on DBQTEST at Seg KERNEL P#31 0#23 

8-26 1200301:08B 



PERFORM~'\ICE MONITOR 

Seg Feul~ on ERRORHAN e~ Seg KERNEL 
Seg Feul~ on DEBUGGER e~ Seg KERNEL 
Seg Feul~ on SEGDEBUG e~ Seg KERNEL 

P#l 
P#6 
P#2 

0#28 
0#26 
0#1 

Information is displayed about each fault (segment fault, stack 
fault or heap fault) that occurs while the performance monitor is 
running. This information can help you to arrange the segments 
of your program to avoid faulting. The performance monitor 
also displays a message indicating when the program has begun 
and when the program has ended. 

The performance monitor can be controlled from the 
Error Handling unit. See GENERAL OPERATIONS for 
details-:-

1200301:08B 8-27 



DEBUGGER Chapter 8 

8-28 1200301:08B 



9 
MEMORY MANAGEMENT 

OVERVIEW 

This chapter describes the memory management activities 
performed by the Runtime Support Library. The discussions in 
this chapter are intended to give you enough of a basic 
understanding of these memory management activities, so that 
you should have little difficulty writing sophisticated programs 
that utilize the Macintosh's memory well. Also, the reasons for 
some of the "DON'Ts" in regard to using the Macintosh Interface 
should become clearer. 

The chapter begins with a section containing a general discussion 
of the machine's memory configuration while a UCSD Pascal 
program is running, and the overall memory management 
strategies used by the Runtime Support Library. 

Next, there is a section which describes the memory management 
activities that take place when special events called "faults" 
occur. Understanding the various kinds of faults and how the 
Runtime Support Library responds to them is important due to 
their adverse effect on a program's performance. 

The final section of this chapter is your guide to the composition 
of the Runtime Support Library. It details the duties performed 
by the major routines within the Runtime Support Library units. 
This information should help you in understanding which 
Runtime Support Library units will be brought into memory 
when you use certain UCSD Pascal constructs. 

1200301:09B 9-1 



MEMORY MA"iAGK\1ENT Chapter 9 

MEMORY ORGANIZATION 

All of the memory management activities done by the Runtime 
Support Library affect the Application Heap Zone and the stack. 
Figure 9-1 shows the organization of the region of the 
Macintosh's memory which is dedicated to the Application Heap 
Zone and the stack, 

F"l"cal 
O;lt.'l 

( 64K) 

... - ... ' ............ ////.' ,'," ,,' ...... // ....... // .. ' 

P;jSC;j1 Heflp 61 Clek 

t<EF'NEl cOlje 

p-r'lflct'llne cOlje 

+-- App1lirnit 

-+-- HeijpEr/lj 
+--, 

Intern;;] C(lIje 

Pool ~~e91orl 

(Cof,talTis God€' 

Zt?9m€'flt:::" ft~~€' 

b kli::ks., and otht?r 
.~ n:u::.:ttl?d b k,,::ks.) 

-+-- HeflpTop 

-+-- HeepBe:3e (A6) 

E::de r na 1 Co.je 
Pool Re9ion 
(Or. ,;, 51 21< ~~1.:t(:int(izh" 
this t"€"gk'n 1$ rnu(:h 

l.~rg.:-r and is ·· ..... h.:-t·1? 
rflQst. C(ujB $€'grrt~nt$ 

t-I?i;dl?) 

Figure 9-1. Application Heap Zone Organization; 

9-2 1200301:09B 



JvfEMORY ORGAJ'JIZATION 

Organization At Program Startup 

When a UCSD Pascal program executes, it runs under the control 
of the p-Machine component of the Runtime Support Package. 
A small bootstrap routine contained in one of the UCSD Pascal 
program's resources performs the initial setup of the Application 
Heap Zone, then it reads in the p-Machine emulator (PME) from 
the p-Machine file, and transfers control to it. 

The primary memory configuration task done by this bootstrap 
routine is the establishment of the Pascal Data Area. As 
illustrated in Figure 9-1, this· is a 64K region of memory 
extending from the top of the stack (where the 68000 register A7 
points) to the base of a nonrelocatable block in the Application 
Heap Zone called the Pascal Heap Block. The establishment of 
the Pascal Data Area involves the proper positioning of the 
Pascal Heap Block. To create this nonrelocatable heap block, the 
bootstrap program extends the Application Heap Zone. 

The Pascal Data Area is the region of the Macintosh's memory 
that can be addressed using a UCSD Pascal pointer variable. 
The PME keeps the 68000 register A6 pointed at the base of the 
Pascal Heap Block. (As shown in Figure 9-1, this address is 
given the name HeapBase.) Thus, UCSD Pascal pointer values 
are actually I6-bit byte offsets off of A6. Because of the limited 
range of these pointer values, the bootstrap program is careful 
that the Pascal Data Area is not larger than 64K bytes. 

On a Macintosh with 128K bytes of memory, the size of the 
Pascal Data Area may be smaller than 64K bytes. This is 
because the bootstrap program must also reserve enough space 
below the Pascal Heap Block for the p-Machine code and the 
KERNEL unit from the Runtime Support Library. 
Furthermore, if you have one of the Macintosh debuggers 
supplied by Apple Computer (e.g. MacsBug) installed, there is a 
substantial drain on the size of the Pascal Data Area. If you are 
using a Macintosh with 512K bytes of memory, or the MacWorks 
software on a Lisa, you will always end up with a 64K Pascal 
Data Area. 

120030I:09B 9-3 



?\lEMORY MAl~AGEMENT Chapter 9 

The Pascal Heap Block is where the UCSD Pascal intrinsics new 
and varnew allocate variables. It is expanded as necessary to 
accomodate the allocation requests of your program. It is also 
possible for the Runtime Support Library to shrink the size of 
Pascal Heap Block whenever there is surplus space in it created 
by a call to the release, dispose, or vardispose intrinsics. 
Throughout thio: chapter, the term "Pascal heap" refers to the 
heap contaiMd in the Pascal Heap Block. 

The PME code and the KERNEL unit must always be present 
and cannot move around in memory. Since it must be possible to 
expand the size of the Pascal Heap Block when warranted by the 
UCSD Pascal program's demands for additional variables in the 
Pascal heap, these position locked pieces of code are positioned 
below the heap block. This way, they are out of the way of the 
Pascal heap. They are not allocated inside the Pascal heap, since 
that would "waste" approximately 16K of the 64K p-Machine 
data space. (The p-Machine occupies approximately 12K; 
KERNEL occupies almost 4K.) 

Code Segments And Their Location 

Any code file created by the UCSD Pascal compiler contains one 
or more code segments. A code segment is a section of executable 
code which is brought into memory as a whole unit. Every 
"compilation unit" (a separately compiled UCSD Pascal 
program or unit) results in a "principal segment!! of code. In 
addition, there may be "subsidiary segments," if the program or 
unit contains segment routines. 

A code segment may contain either p-code or native code (or 
both). Each segment consists of a collection of routines 
(procedures, functions, and so forth), together with descriptive 
information, and (usually) a pool of constants. The information 
embedded within a principal code segment includes references to 
other compilation units (if any) that it utilizes. The code and 
information in a segment are contiguous since the code segment is 
the "unit of movement" for code. There may be up to 255 
routines within a segment, numbered 1 through 255. 

9-4 1200301:09B 



~1K\10RY ORGAl"l"IZATlON 

At compile time, segments are assigned a name and a number. 
The name is eight characters long. It is used by the Runtime 
Support Library to resolve intersegment references during the 
construction of a program's execution environment, and during 
the maintainance of code files using the Librarian utility. A 
segment's number is used to reference the segment at runtime. 

The segments of a running program compete for space in memory 
with each other. The segments also compete with the stack and 
the Pascal heap for space in the Pascal Data Area. The principal 
constraint (as far as code segments are concerned) is that both 
the calling and called segment must be present in memory for an 
intersegment call to succeed. . 

When a code segment which is not in memory is referenced, it is 
read from the disk on which it resides into a purgeable and 
relocatable heap block within the Application Heap Zone. The 
Runtime Support Library keeps a handle to the code segment 
within its execution environment data structures. In terms of the 
memory organization shown in Figure 9-1, code segments are 
located in one of two regions of the Application Heap Zone: the 
Internal Code Pool Region, or the External Code Pool Region. A 
segment remains in memory until it is purged by the Macintosh 
Memory Manager in order to satisfy an allocation request, or 
until a fault occurs which causes the Runtime Support Library to 
purge the block containing the segment. 

On a Macintosh with 128K bytes of memory, the External Code 
Pool Region is very small, and usually becomes clogged with 
small nonpurgeable blocks. This means that most code segments 
are located within the Internal Code Pool Region. On a 
Macintosh with 512K bytes of memory, the situation IS 

dramatically different, since the External Code Pool Region IS 

quite large and most code segments will be located there. 

1200301:09B 9-5 



MEMORY MA ... .."'iAGEMENT Chapter 9 

Tasks And Their Stacks 

A task is a routine that is executed concurrently with other 
routines. In UCSD Pascal, a task is known as a process. The 
"main task" is the thread of execution that is the UCSD Pascal 
program as it is started by the Runtime Support Package. The 
program may have subsidiary tasks which it starts itself. 

The stack used by the main task (your program) is the standard 
Macintosh application program stack. As shown in Figure 9-1, 
this stack grows downward in memory and can extend down to 
where the Macintosh global variable ApplLimit points. As 
described in Inside Macintosh, ApplLimit is the lower limit on the 
stack, and HeapEnd marks the end of the Application Heap Zone. 
The Runtime Support Library manages the settings of ApplLimit 
and HeapEnd for you. In order to maximize your program's 
utilization of the Macintosh's memory, ApplLimit and HeapEnd 
are usually quite close to each other. This means that the shaded 
unused memory region between ApplLimit and HeapEnd shown 
in Figure 9-1 is usually nonexistent. Instead, most of this 
unused memory will show up as unallocated blocks of memory 
inside the Application Heap Zone. 

During execution, each subsidiary task uses its own stack instead 
of the main task stack. The stacks for all subsidiary tasks are 
allocated within the Pascal heap. The size of a subsidiary task's 
stack is specified when it is started as a parameter to the start 
intrinsic. As described in the P-MACHINE ARCHITECTURE 
chapter, the p-Machine has a Task Information Block (TIB) for 
each task that has been started. One field in a TIB is called 
SPLOW, and is the lower limit on the stack pointer when that 
task is being executed. For the main task, SPLOW always points 
to the same memory location as the Macintosh ApplLimit 
variable. The Macintosh's "stack sniffer" (a vertical retrace 
process that checks that the stack has not encroached on the 
Application Heap Zone) is enabled while the main task is 
executing, and is disabled whenever a subsidiary task is 
executip.g. 

9-6 1200301:09B 



MEMORY ORGA.;'\JIZATION 

Another field of importance in a TIB is the TASKSLOP field. 
This field specifies the amount of unused stack space that must 
be available for use after a call to a procedure has occurred, and 
any local variables have been allocated on the stack. For the 
main task, this unused stack space is the "stack slop" area shown 
in Figure 9-1. 

TASKSLOP can be adjusted by a task via an entry point in the 
Error Handling unit. (See the GENERAL OPERATIONS 
chapte""i=".) For the main task, the default setting for TASKSLOP 
is 2560 (5K bytes), and the minimum setting is 1024 (2K bytes). 
For subsidiary tasks, the default and minimum settings are both 
40 words. (Adjusting the main task's stack slop setting can affect 
the behavior of your program. This is described in the 
MACINTOSH INTERFACE chapter.) 

Because of the sizeable amount of stack space that they can 
require, it often isn't practical to call Macintosh Toolbox routines 
or do I/O operations on disk files from within a subsidiary task. 

Controlling SegIIlent Residence 

As mentioned previously, a code segment is loaded into a 
purgeable and relocatable heap block within the Application 
Heap Zone. Using the memlock and memswap intrinsics, your 
program can control the residency of a code segment. (See The 
UCSD Pascal Handbook for a discussion on how to use memlock 
and memswap. The discussion here is aimed at explaining how 
memlock and memswap are implemented on the Macintosh.) 

The memlock instrinsic increments a residency counter for a 
segment, and memswap decrements this same counter. The 
transition of the counter's value from zero to one causes the 
Runtime Support Library to do a Macintosh Memory Manager 
HNoPurge operation on the heap zone block containing the code 
segment. .As described in Inside Macintosh, this has the effect of 
making the heap block nonpurgeable, but still moveable. 
Conversely, a transition of the counter's value from one to zero 
results in an HPurge operation being done, which makes the heap 
block purgeable again. 

1200301:09B 9-7 



MEMORY MA~AGE~1ENT Chapter 9 

In addition to the controlling of code segment residency through 
memlock and memswap, some additional residency controls are 
applied by the PME when a Macintosh Interface routine written 
in assembly language or an in-line procedure is called. 

When handling a call to an assembly language routine, the PME 
does a memlock opE'ration on thE' calling segment, and if 
neCE'ssary. an BLock opE'ration on the heap block containing the 
code segment in which thE' assem bly languagE' routine resides. 
This insures that thE' calling codE' segment cannot be purged, and 
that the code for the as:oembly language routine cannot be moved 
during the execution of that routine. After the assembly 
language routine returns to the PME, a memswap operation is 
done on the calling segment, and an HUnLock operation is done 
on the called segment. 

Similiarly, when an in-line procedure is called (i.e. an RCALL 
p-code is executed), the PME does a HLock operation on the 
current 'code segment before executing the Macintosh trap 
instruction in order to prevent it from being moved or purged. 

Actually, the mechanism used by the PME for doing HLock and 
HUnLock operations on code segments is more complicated than 
described in the preceeding paragraphs. Because it is possible for 
a call to a Macintosh Toolbox routine to result in the activation 
of an lI action procedure,1I situations can arise where HLock 
operations on a given segment must be nested, and then undone 
so that the segment remains locked until the initial Toolbox call 
is completed. To implement this sort of thing, a counter used for 
HLock/HUnLock operations is also kept for every segment. This 
counter is used in much the same way as the other residency 
counter used by memlock and memswap to control when HPurge 
and HNoPurge operations should be done. 

9-8 1200301:09B 



MEMORY ORGA-,"JIZATION 

FAULT HANDLING 

\Vhen memory space is required by the stack or the Pascal heap, 
or entry into a nonresident code segment is attempted, a fault is 
issued. When this happens, a process called the Faulthandler 
within the Runtime Support Library KERNEL unit is activated. 
This Faulthandler process is started at bootstrap time. Most of 
the time it is idle, since it does a wait operation on a Pascal 
semaphore variable. When the semaphore is signaled (either by 
the PME or another unit within the Runtime Support Library), 
the Faulthandler immediately begins executing, since it is the 
highest priority task. 

In a special tricky maneuver, the Faulthandler switches from its 
tiny subsidiary task stack to the main task stack. This allows 
the Faulthandler to take advantage of the stack slop space (which 
is guaranteed to be at least 2K bytes in size) for its operations. 
This is one reason why the Error Handling unit will not let you 
set the stack slop below 2K bytes: there must be enough slop for 
the Faulthandler to do its job. This arrangement of having the 
Faulthandler use the main task's stack slop area works especially 
well, since it allows the F aulthandler to economize on space in its 
own stack, without having to forgo the ability to have the screen 
image preserved when it is marred by "disk swap boxes". (The 
Faulthandler causes a disk swap box to appear on the screen 
whenever it attempts to read in a code segment which resides on 
a mounted disk that is not physically present in a disk drive.) It 
is also convenient that the manner of disappearance for all disk 
swap boxes (whether they appear due to segment faults or normal 
disk file I/O operations) can be controlled through the 
adjustment of the size of the main task stack slop area. (See the 
discussion in the MACINTOSH INTERFACE chapter on how 
setting the stack slop influences the disappearance of "disk swap 
boxes.") 

The PME detects two kinds of faults: segment faults and stack 
faults. A segment fault occurs when a reference to a nonresident 
segment happens. Stack faults occur when there isn't enough 
unused stack space between the stack pointer and the stack limit. 
The Runtime Support Library causes a third type of fault, called 
a heap fault, when there isn't sufficient space in the Pascal Heap 

1200301:09B 9-9 



. 
MEMORY MA1'\;AGE.MENT Chapter 9 

Biock to satisfy an allocation request in the Pascal heap. 

The Memory Collector 

An important part of the memory management software within 
the Runtime Support Library is the Application Heap Zone "grow 
zone" function called the Memory Collector. (See Inside 
A1acinto.sh for a complete introduction to grow zone functions.) 
Like any grow zone function, the Memory Collector can be 
activated any time the Macintosh Memory Manager is called 
upon to allocate some memory in the Application Heap Zone. 
The Faulthandler also calls the Memory Collector directly prior 
to making a call to the Macintosh Memory Manager. This is 
done primarily to insure that the Application Heap Zone is 
always extended as far as possible toward the stack, and that 
heap blocks containing code segments are purged only when there 
is no other possible means of obtaining the required memory. 
(The normal inclination of the Macintosh Memory Manager is to 
purge things from the heap zone first, then expand the zone 
toward the stack if necessary.) 

Through a set of variables in the KERNEL's data, the Memory 
Collector can tell what kind of fault the Faulthandler is 
attempting to handle, and it tailors its actions to suit that 
particular situation. First the Memory Collector calculates the 
amount of unused space in the main task stack and in the Pascal 
heap. If the handling of a heap fault is currently in progress, the 
Memory Collector tries to gain the needed space by expanding 
the Application Heap Zone. (In terms of Figure 9-1, this is done 
by repositioning ApplLimit and HeapEnd higher in memory.) 
\Vhen a stack fault is in progress, the Memory Collector takes 
away any excess space in the Pascal heap by shrinking the Pascal 
Heap Block. When neither a stack or heap fault is being handled 
(i.e. when a segment fault occurs), the needed bytes of space are 
collected from both the stack and the Pascal heap in proportion 
to the amount of unused space in each. 

9-10 1200301:09B 



FAULT HANDLING 

Effect On Other Heap Zones 

As described in the Memory Manager documentation in Inside 
Macintosh, you can set aside a heap block within the Application 
Heap Zone and initialize it as a heap zone in its own right. You 
can then establish such a heap zone as the "current" zone, and 
allocate heap bloch within that zone. 

Creating additional heap zones in this fashion can be done 
without interfering with the activities of the Faulthandler. In 
fact, establishing such a zone is one way of preventing the 
Faulthandler from utilizing a region of memory for code 
segments, or anything else. This is because the Faulthandler 
makes the current zone the Application Heap Zone prior to 
making any Macintosh Memory Manager requests. After it has 
handled the fault, the Faulthandler restores the setting of the 
current zone to what it was when it started its activities. 

Segment Faults 

Segment faults are handled by first calling the Memory Collector, 
then doing a NewHandle or ReAllocHandle Memory Manager 
request. (ReAllocHandle is used to bring in a code segment that 
was previously faulted in and subsequently purged.) Since the 
Memory Collector only collects space by giving up space in the 
Pascal heap or the stack and doesn't actually purge any heap 
blocks from the Application Heap Zone, the Faulthandler relies 
on the Macintosh Memory Manager to purge whatever purgeable 
heap blocks it has to in order to find enough space for the 
segment being faulted in. The Faulthandler does a memlock 
operation on the currently executing segment to prevent it from 
being purged by the Macin tosh Memory Manager. This is 
necessary because the p-code instruction on which the fault 
occurred must be re-executed by the PME. A fatal runtime 
error is reported if it isn't possible to free up enough contiguous 
memory for the code segment, or if an I/0 error is detected when 
the attempt is made to read the segment into memory. 

1200301:09B 9-11 



MEMORY MANAGEMENT Chapter 9 

Heap Faults 

The handling of a heap fault begins with an attempt to expand 
the Pascal Heap Block. This is done by calling the Macintosh 
Memory Manager Resrv Mem and SetPtrSize routines. If this 
initial attempt fails, the Memory Collector is given a chance to 
take space away from the stack (through an expansion of the 
Application Heap Zone), and the enlargement of the Pascal Heap 
Block is reattempted. If this second attempt fails, the fatal 
runtime error "Heap Expansion Error" is reported. 

It is possible to get a heap expansion error even in situations 
where there is plenty of space available to the Application Heap 
Zone. This happens when there is a locked or nonrelocatable 
heap block in the way of the expansion of the Pascal Heap Block. 
This is why it is a bad idea to allocate nonrelocatable heap blocks 
or lock relocatable blocks in a program which intends to allocate 
variables in the Pascal heap. 

Stack Faults 

A stack fault within a subsidiary task results in a fatal runtime 
error, since the stack for a subsidiary task cannot be expanded. 
A stack fault within the main task occurs when the value (SP -
TASK _ SLOP) is less than SPLOW (ApplLimit). Stack faults 
are handled as follows. First the desired new setting for 
ApplLimit is calculated and compared to HeapEnd. If this new 
ApplLimit setting (termed "NewAppILimit" in the remainder of 
this discussion) is greater than HeapEnd, then all the 
Faulthandler has to do is set ApplLimit to the value 
NewApplLimit. Otherwise, the Faulthandler must attempt to 
shrink the Application Heap Zone before setting ApplLimit to its 
new value. 

The shrinking of the Application Heap Zone is the most elaborate 
task done by the Faulthandler. First the Faulthandler scans the 
blocks in the zone above the Pascal Heap Block. During this 
scan, it calculates the maximum amount of space that it can turn 
into stack space, and records the location of the highest 
immovable block in the zone. If the highest immovable block is 

9-12 1200301:09B 



FAULT HA.l\JDLING 

the Pascal Heap Block, the Faulthandler calls the Memory 
Collector in the hope that the amount of space it can reclaim 
from the Pascal Heap Block will result in enough stack space once 
all the heap blocks are compacted up against the Pascal Heap 
Block. (Basically, this strategy results in code segments being 
purged only when absolutely necessary, but at the possible 
expense of additional heap faults.) 

Next, the Faulthandler begins compacting the Application Heap 
Zone. If the Memory Collector wasn't called, or if it was unable 
to free up enough space, the Faulthandler purges any blocks that 
it can during the compaction process, until it judges that enough 
space has been freed. Throughout the compaction process, any 
nonpurgeable blocks are moved downward in memory against the 
highest immovable block in the zone, and adjacent free blocks are 
combined. 

After the compaction and purging process is complete, a new 
value for HeapEnd is established. If this lowest possible HeapEnd 
is still above NewApplLimit, a stack overflow runtime error is 
reported. Otherwise, ApplLimit is set so as to give the stack the 
space that it needs, plus half of any surplus space reclaimed from 
the Application Heap Zone. 

The compaction and purging process described here does not 
affect the contents of the External Code Pool Region. The 
Macintosh Memory Manager does all of the management of that 
region of the Application Heap Zone. 

RUNTIME SUPPORT LIBRARY 

The following tables identify the Runtime Support Library 
routines that the Pascal compiler generates calls to. The first 
table summarizes the routines in each unit. The second table is 
indexed by the names of the UCSD Pascal intrinsics that result in 
calls to Runtime Support Library routines. 

1200301:09B 9-13 



\1EMORY IvlAT\AGEMENT Chapter 9 

Unit Proc # Proc Name Pascal Construct 

CONCURRE 3 SStartP start 
4 SStopP <exit code> 
6 SExitProcess exit 

EXTRAJ:lEA 2 SDispose dispose 
3 SVarNew varnew 
4 SMemLock memlock 
5 SMemAvail memavail 
6 SVarAvail varavail 
7 SMemSwap memswap 

EXTRAlO 2 FBlockIO block read , block write 

FILEOPS 2 FOpen reset,rewrite 
3 FClose close, < exit code> 
4 Flnit <entry code> 
5 FSeek seek 
6 FReset reset 

HEAPOPS 2 SMark mark 
3 SRelease release 
4 SNew new 

KERNEL 15 Moveleft moveleft 
16 MoveRight moveright 
17 SExit exit 
20 Time time 
21 Fillchar fillchar 
22 Scan scan 
23 IOCheck <after I/O operation> 
29 SAttach attach 
30 10Result ioresult 
32 PwrOfTen pwroften 
35 Halt halt 
37 Idsearch idsearch 
38 Treesearch treesearch 

LONGOPS 2 Decops <long integer 
arithmetic> , 
trunc,str 

9-14 1200301:09B 



.. • Rt'NTHvIE SCPPORT LIBRARY 

3 FReadDec read ,readln 
4 FWriteDec write, writeln 

OSUTIL 3 IntToStr str,PASCALIO 
4 Int2ToStr str,PASCALIO 
5 GotlntStr PASCALIO 
6 Upcase PASCALIO,EXTRAHEA 

PASCALlO 3 FGet ~ 
4 FPut £.!!.!: 
5 FEor eor 
6 FEoln eo In 
7 FReadlnt read ,readln 
8 FWritelnt write,writeln 
9 FReadChar read,readln 
10 FRead String read,readln 
11 FW riteString write,writeln 
12 FWriteBytes write,writeln 
13 FReadln read In 
14 FWriteln writeln 
15 FWriteChar write,writeln 
16 FPage ~ 
17 Rdlnt2 read ,read In 
18 Wrlnt2 write, writeln 
19 ReadBytes EXTRAIO 
20 WriteBytes EXTRAIO 
21 ReadTextChar REALOPS 

REALOPS 2 Sin sm 
3 Cos cos 
4 Log !Qg 
5 Ln In 
6 ATan atan 
7 Exp ~ 
8 Sqrt sqrt 
9 FReadReal read,readln 
10 FWriteReal write, writeln 

STRINGOPS 2 SConcat concat 
3 Slnsert insert 
4 SCopy ~ 
5 SDelete delete 
6 SPos ~ 

1200301:09B 9-15 



;\1EMORY M~~AGEMENT Chapter 9 

Intrinsic Param Type Routine Called 

arctan REALOPS,6 
atan REALOPS,6 
attach KERNEL,29 
block read EXTRAIO,2 
blockwrite EXTRAIO,2 
close FILEOPS,3 
concat STRINGOPS,2 
copy STRINGOPS,4 
cos REALOPS,3 
delete STRINGOPS,5 
diSJ~ose EXTRAHEA,2 
eor PASCALlO,5 
eoln PASCALlO,6 
exit <proc/func> KERNEL,17 
exit program KERNEL,17 
exit process CONCURRE,6 
~ REALOPS,7 
fille har KERNEL,21 
&:!: PASCALIO,3 
halt KERNEL,35 
idsearch KERNEL,37 
insert STRINGOPS,3 
ioresult KERNEL,30 
In REALOPS,5 
~ REALOPS,4 
mark HEAPOPS,2 
memavail EXTRAHEA,5 
memlock EXTRAHEA,4 
memswap EXTRAHEA,7 
moveleft KERNEL,15 
moveright KERNEL,16 
new HEAPOPS,4 
~ P ASCALIO,16 
~ STRINGOPS,6 
~ PASCALIO,4 
pwroften KERNEL,32 
read char PASCALIO,9 
read integer PASCALIO,7 
read integer2 PASCALIO,17 
read Long Integer LONGOPS,3 

9-16 1200301:09B 



RC\TI\fE Sl:PPORT LIBRARY 

read PA of char P ASCALlO,10 
read real REALOPS,9 
read string PASCALIO,10 
readIn PASCALIO,13 
readIn char PASCALlO,9 
read In in teger PASCALlO,7 
read In integer::! PASCALIO,17 
read In LUll" Inte"er 

" C) 

LO:\GOrS,3 
readln PA of char PASCALIO,10 
readln real REALOPS,9 
readln string PASCALIO,10 
release HEAPOPS,3 
reset (namt'd) FILEOPS,2 
reset (narnele~s ) FILEOPS,6 
rewrite FILEOPS,2 
scan KERNEL,22 
seek FILEOPS,5 
sm REALOPS,2 
sqrt REALOPS,8 
start COl'iCURRE,3 
str integer OSUTIL,3 
str ' integer::! OSUTIL,4 
str Long In teger LONGOPS,2 
time KERNEL,20 
treesearch KERNEL,38 
trunc Long In teger LONGOPS,2 
varavail EXTRAHEA,6 
varnew EXTRAHEA,3 
write char P ASCALIO,15 
write in teger PASCALIO,8 
write integer2 PASCALIO,18 
write PA of char PASCALIO,12 
write real REALOPS,lO 
write string PASCALIO,ll 
writeln P ASCALIO,14 
writeln char P ASCALIO,15 
writeln integer PASCALIO,8 
writeln integer2 P ASCALIO,18 
writeln PA of char PASCALIO,12 
writeln real REALOPS,lO 
writeln string P ASCALIO,ll 
<after I/0> KERNEL,23 
<entry code> FILEOPS,4 

1200301 :09B 9-17 



.\1K\10RY M-\;\'AGEMENT 

<exit code> 
<exit code> 
< Long in teger ari th > 

9-]8 

CONCURRE,4 
FILEOPS,3 
LONGOPS,2 

Chapter 9 

1200301:09B 



10 
P-MACHINE ARCHITECTURE 

OVERVIEW 

Object code produced by the UCSD Pascal compiler is p-code 
rather than 68000 machine ("native") code. This p-code is 
object code for the p-Machine, which is an idealized machine. 
This chapter describes the p-Machine in general and the p-codes 
that are produced by the compiler. The information contained in 
this chapter is most useful when you are debugging a UCSD 
Pascal program. 

p-Code is designed to be compact, so that programs in p-code 
are much shorter than equivalent programs in native code. 
p-Code is also designed to be easily generated by a compiler. 

Emulative Exec.ution 

The "p" in p-code and p-Machine stands for pseudo. The 
p-Machine emulator program is written in 68000 native code for 
the Macintosh. It is responsible for executing p-code instructions 
and interfacing with the Macintosh operating system to obtain 
system services. The p-Machine emulator is also referred to as 
the PME. 

At runtime, the user's program (or a portion of it) is in main 
memory. The PME fetches each p-code instruction in sequence, 
and performs the appropriate action. 

1200301:10B 10-1 



P-MACHINE ARCHITECTURE Chapter 10 

STACK ENVIRONMENT 

UCSD Pascal programs manipulate data in the stack and the 
heap. The stack is used for static variables, bookkeeping 
information about procedure and function calls, and evaluation of 
expressions. The heap is used for dynamic variables, including 
the structures that describe a program's environment. It is also 
used to store private stacks for subsidiary processes and to store 
code segments that are position-locked. 

The stack is an integral part of the p-Machine architecture. 
Most p-code instructions affect the stack in one way or another. 
Each time a procedure is called, an activation record is created on 
the stack which contains some housekeeping information about 
the calling environment. Space for the procedure's variables is 
allocated along with some extra space for expression evaluation. 

The heap is also an integral part of the system, but is primarily 
supported by the Runtime Support Library, rather than the 
p-Machine. The heap contains global data for programs and 
units (data not declared inside of a named procedure). The 
global data is allocated when a program is started and remains in 
memory until the program is terminated. The heap also contains 
SIBs, ERECs, and EVECs. 

10-2 1200301:10B 



ST ACK ENVIRONMENT 

Activation Records 

An activation record is created for each invocation of an active 
routine (procedure or function). Figure 10-1 shows the structure 
of an activation record. 

teompor.:. .... y I?>::pr~s!-kln 

r<:slJltz 

.-- SF' 

.r--------------------------i.-- MP 

I,· M%T AT 

t--1SC''Io'' <[ .. 1-_____ 7_.~ .... ::~_:~_,..~ .... j ______ -1 
~1SENV 

t--1SPROC: 

1200301:lOB 

10e,,1 vat-i .. bl<:z and t<:mpor.~ri<:z 

(DAT ASIZE \,"ords) 

iuntior. r€osult 

MSC''II of c.a l1"r 

high .addr<:ss 

Figure 10-1. Activation Record. 

10-3 



P-MACHINE ARCHITECTURE Chapter 10 

The parts of an activation record are: 

1. Mark Stack Control Word (MSCW). This area contains five 
words of housekeeping information: 

a. MSSTAT - pointer to the activation record of the lexical 
parent. 

b. MSDYN - pointer to the activation record of the caller. 

c. MSIPC - segment relative byte pointer to point of call in 
the caller. 

d. MSENV - EREC pointer of the caller. 

e. MSPROC - procedure number of caller. 

2. Local and temporary variables. This area is DATA_SIZE 
words long. The DATA SIZE value is taken from the code 
segment that contains the procedure being called. See the 
CODE FILE FORMAT section for more information. 

3. Parameters. This area (which may be empty) contains: 

ya. Addresses - for V AR parameters, and record and array 
value parameters. 

b. Values - for other value parameters. 

4. Function value. This area is present only for functions, and 
is the size of the function result (one, two, or four words). 

CODE FILE FORMAT 

A code file is composed of a segment dictionary and at least one 
code segment. 

The first block of the code file contains the first record of that 
file's segment dictionary. A segment dictionary consists of a 
linked list of dictionary records; if the dictionary is longer than 
one record, subsequent records are embedded in the code file. 

10-4 1200301:10B 



CODE FILE FORMAT 

These are each one block long, and are located between code 
segments. 

A single dictionary record can describe up to 16 distinct 
segments. The information describing a segment is contained in 
six arrays; the information describing a segment is found by using 
a single index value to select a component from each of these 
arrays. Entries in the segment dictionary describe only segments 
whose code bodies are included in the code file. 

The SegIIlent Dictionary 

The following Pascal declarations describe a segment dictionary 
record: 

CONST Max_Dic_Seg - 15; !maximum seg dict record entry! 

TYPE Seg_Dic_Range - e .. Max_Dic_Seg; !range for seg dict entries! 

Segment_Nome - PACKED ARRAY [e .. 7) OF CHAR; !segment nome! 

!segment types! 
Seg_Type - (No_Seg. lempt y dictionary entry! 

Prag_Seg. program outer segmentl 
Unit_5eg. uni t outer segment! 
Prac_Seg, program or uni t! 
5eprt_5eg); !native code segment! 

!machine types! 
M_Type - (M_Psueda, M_6ee9. M_PDP_l1, M_eeSe, M_Z_S0. 

M_GA_44e, M_6502, M_6S00, M_9gee. 
M_eee6, M_Zeeee, M_6eeee, M_HPS7); 

!p-machine versions! 
Version - (Unknown. II. 11_1. III. IV, V. VI. VII); 

!segment dictionary recardl 
Seg_Dict - RECORD 

Disk_Info: 
ARRAY [Seg_Dic_Range) OF !disk info entries! 

RECORD 
COde_Addr: integer; lsegment starting blackl 
Code_Leng: integer; words in segment! 

END !of RECORDl; 
Seg_Name: 

ARRAY [Seg_Dic_Range) OF Segment_Nome; 
Seg_Misc: 

ARRAY [Seg_Dic_Range] OF !mise entries! 
PACKED RECORD 

Fi Iler: e .. 31; reserved for future usel 
Seg_Type: Seg_Types; Isegment type! 

Hos_Link_lnfo: boolean; need to be I inked?! 
Relacatable: boolean; segment relocatable?l 

END laf PACKED RECORDl; 
Seg_Text: 

ARRAY [Se9_Dic_Range) OF integer; !interface text! 
5e9_lnfo: 

ARRAY [Se9_Dic_Range) OF !segment information entries! 
PACKED RECORD 

Se9_Num: e .. 255; Ilocal segment number! 

1200301:10B 10-5 



P-MACHINEARCHITECTURE Chapter 10 

END 

M_Type: M_Types; 
F i I I er: 0 .. 1; 
MOj'Or_VerSion: Versions; 

Imachine type! 
reserved for future use! 
p-Machine version! 

END of PACKED RECORD!; 
Seg_Famlr: 

ARRAY [Seg_Oic_Range] OF !segment fami Iy entries! 
RECORD 

CASE Seg_Types OF 
Unit_Seg. Prag_Seg: 

(Data_Size: integer; Idota size! 
Seg_Refs: integer; segments in camp unit! 
Mox_Seg_Num: integer; num segments in file! 
Text_Size: integer); II of blks interface text! 

Saprt_Seg. Proc_Seg: 
(Prog_Nome: Segment_Nome); lhost uni t nome! 

END lof Seg_Famly!; 
Next_Dict: integer; lblock num of next dictionary record! 
F i I Ie r: ARRAY [1 .. 2] OF in t ege r ; 
Checksum: integer; Isee OuickStart in Chapter 61 
Ped_Block: integer; see OuickStort in Chapter 6 
Ped_Blk_Count: integer; see OuickStart in Chapter 6 
Part_Number: PACKED ARRAY [0 .. 7] of 0 .. 15; 
Copy_Nate: string[77]; lcopyright noticel 
Dict_Byte_Sex: integer; lmachine sex (Sex - 1)1 

lot SEG_DICT!; 

DISK INFO contains information about the segment's location 
within the file. Segment code always starts on a block boundary. 
CODE ADDR is the number of the block where the segment 
code starts (relative to the start of the code file). CODE _ LENG 
is the number of 16-bit words in the segment. This size includes 
the relocation list but doesn't include the segment reference list. 
All unused entries in this array are zero. 

SEG NAME contains the first eight characters of the program, 
unit, segment, or assembly procedure name. Unused entries are 
filled with blanks. 

SEG MISC contains miscellaneous information about the 
segment. SEG TYPE indicates the type of segment. 
PROG SEG and UNIT SEG are outer segments of programs 
and units, respectively. PROC SEG is a segment routine within 
either a unit or a program. -

SEG TEXT contains the starting block of the segment's 
INTERF ACE text section, relative to the start of the code file. 
The INTERFACE text section can appear anywhere within the 
code file that contains the code segment it describes. The 
SEG TEXT array entry, in conjunction with the TEXT SIZE 
field in the SEG F AML Y record, indicates the addre;S and 

10-6 1200301:10B 



CODE FILE FORMAT 

length of the INTERFACE section in blocks. The INTERFACE 
text section always starts on a block boundary. Only segments 
with a SEG TYPE of UNIT SEG may have INTERFACE 
sections. All-;-ther segments and-unused entries are zero-filled. 

SEG INFO contains further information about the segment. 
SEG-NUM is the segment number. M TYPE tells what kind 
of object code is in the segment. If there is any native code in the 
segment, then M TYPE will have one of the processor-specific 
M TYPE's. If the segment consists exclusively of p"':code, then 
its-M TYPE is M PSUEDO. MAJOR VERSION gives the 
versio~ of the p-M-;chine on which the cOde file is intended to 
run. 

SEG _ F AML Y contains information about the code segment's 
compilation unit. The information contained in this array 
depends on whether SEG TYPES indicates a principal or a 
subsidiary segment. 

If the segment is a subsidiary segment, then SEG F AML Y 
contains the first eight significant characters of the parent 
compilation unit's name, stored in PROG NAME. 

If the segment is a principal segment, then the information In 

SEG F AML Y consists of four fields: 

• DATA_SIZE is the number of words in this segment's base 
data segment. The variables of principal segments are 
referenced from any location, including their own out~r 
routine bodies, via global loads and stores (rather than local 
operations). Therefore, the DATA_SIZE field associated 
with the body of a code segment is 0, so that no superfluous 
memory will be allocated in an unused local data area. 

1200301:10B 10-7 



P-MACHINE ARCHITECTURE Chapter 10 

• SEG REFS is the size in words of the segment reference list 
for thls segment. 

• MAX SEG NUM is the total number of segment numbers 
assign~d to -this compilation unit. MAX _ SEG _ NUM 
includes all segments with assigned numbers, regardless of 
whether the segment body is contained in this file or not. 

• TEXT SIZE is the number of blocks of INTERFACE text 
within -the compilation unit. TEXT SIZE is used in 
conjunction with the SEG TEXT arr-;y to specify the 
INTERFACE text for a - compilation unit of type 
UNIT _ SEG; it is zero-filled for all other compilation unit 
types. 

If the segment is unused (SEG _ TYPES - NO _ SEG), then 
SEG F AML Y is zero-filled. 

NEXT DICT contains the block number of the next segment 
diction;;;'y record, relative to the start of the code file. In the last 
record of the segment dictionary, NEXT _ DICT is zero. 

PART NUM contains the SofTech Microsystems internal part 
numberfor the file. 

FILLER is reserved. for future use and should always be 
zero-filled. 

COPY NOTE is reserved for a copyright message, which can be 
created- with either the Librarian utility or via a compiler 
directive. 

DICiT BYTE SEX indicates the byte sex of the segment 
dictionary. It 15 a full word that contains the value 1, with the 
same byte sex as the rest of the dictionary record. On the 
Macintosh, the segment dictionary and all code segments are 
most-significan t-byte-first sex. 

10-8 1200301:10B 



CODE FILE FORMAT 

Code Segm.ent Structure 

The beginning (low address) of a code segment contains the 
following information about the segment: 

• segment-relative pointer to the procedure dictionary 

• segment-relative pointer to the relocation list 

• the 8-character name of the segment (four words) 

• byte sex indicator 

• segment-relative pointer to the constant pool 

• real size indicator 

• part number (two words) 

Figure 10-2 illustrates a code segment as it would be loaded into 
memory_ 

1200301:10B 10-9 



P-MACHINE ARCHITECTURE 

s~grfll?-nt .( 
hE--2de-f" . 

~oo 11.:. 
did .. 

object cod.;. 
for procl?dlJ""~ :2 

constant poCo 1 

r<?10'~<ltion list 

Chapter 10 

Figure 10-2. Executable Code Segment Format. 

10-10 1200301:10B 



CODE FILE FORMAT 

The Routine Dictionary 

The first word in a code segment points to word 0 of the 
segment's routine dictionary (also called the procedure 
dictionary). The routine dictionary is a list of pointers to the 
code for each routine in the segment. Each routine dictionary 
pointer is a segment-relative word pointer. 

Routines within a segment are numbered 1 through 255. A 
routine's number is a negative index into the routine dictionary; 
the n'th word in the dictionary contains a pointer to the code for 
routine n. 

The first word (word 0) of the dictionary contains the number of 
routines in the segment. 

Routine Code 

The code of a routine consists of two words: DATA SIZE and 
EXIT IC, followed by the executable object code. The object 
code xii""ay be entirely p-code, entirely native code, or a mixture 
of the two. 

DATA SIZE is the number of words of local data space that 
must b-; allocated when the procedure is called. DATA SIZE 
doesn't include parameters; the routine's parameters are a~umed 
to already be on the stack. The first executable instruction starts 
at the word immediately following the DATA SIZE word. If 
the first executable instruction is native code,DATA SIZE is 
negative. No local data space is allocated for assembly language 
procedures. 

If this first instruction is a p-code instruction, then EXIT IC is 
a segment-relative byte pointer to the code that m~t be 
executed when the procedure is exited. Otherwise, EXIT IC is 
undefined at runtime. 

1200301:10B 10-11 



p-MACHINE ARCHITECTURE Chapter 10 

The Constant Pool/Real Constants 

Multi-word constants are stored together in a single constant 
pool for the entire segment. The constant pool begins 
immediately after the last body of procedure code in the segment. 

The location of the constant pool is contained in the constant 
pool pointer, a segment-relative word pointer that immediately 
follows the byte sex indicator word at the beginning of the 
segment; it points to the low address of the constant pool. If the 
constant pool pointer is equal to 0, the segment doesn't contain a 
constant pool. 

Constants are referenced by word offsets relative to the beginning 
(low address) of the constant pool. 

The constant pool is divided into two subpools: the real pool and 
the main pooL 

The first word· of the constant pool po in ts to the beginning of the 
real pool. This is a word pointer relative to the start of the 
constant pool; if there are no real constants in the code segment, 
this word will be o. The first word of the real pool contains the 
number of real constants in the real pool. 

Figure 10-3 shows the format of a constant pool with an 
embedded real subpool. 

Real constants are compiled to a processor-independent 
("canonical") format and are converted, at segment load time, 
into a processor-specific internal format. 

The real size at compilation time is embedded in every code 
segment (even though it may not reference any reals). The 
REAL SIZE word at the base of the segment contains this 
value. 

10-12 1200301:10B 



CODE FILE FORMAT 

Figure 10-3. Constant Pool 

A real constant is represented by a four to six word record. The 
first word contains a signed integer representing the exponent 
value. The following words contain the mantissa digits. A 
mantissa word representing significant mantissa digits contains 
an integer whose absolute value is between 0 and 9999; its value 
corresponds to four mantissa digits. The first mantissa word is 
signed and, thus, contains the mantissa sign. The second and 
succeeding mantissa word may contain a negative value; in this 
case, it doesn't contain any significant digits and is disregarded 
when constructing the internal representation of the real 
constant. It serves as a terminator word for the constant 
conversion routines. The decimal point is defined to lie to the 
right of the four digits in the last valid (used) mantissa word. 
The digits in the last mantissa word are left-justified. For 
example, if the real value is 1.1, the first mantissa word contains 
1100 decimal (or 044C hexadecimal). 

Real constants are converted to native machine format when a 
code segment is loaded into memory. 

1200301:10B 10-13 



P-MACHINE ARCHITECTURE Chapter 10 

The Relocation List 

The last (high address) body of information in a code segment is 
the relocation list. The second pointer at the beginning of the 
code segment points to the last (highest address) word in the 
relocation list. This pointer is a segment relative word pointer; if 
there is no relocation list, it is equal to O. 

The relocation list contains all the information necessary to fix 
any absolute addresses used by code within the segment, 
whenever the segment is loaded or moved in memory. Such 
absolute addresses are needed only by native code. Segments 
containing exclusively p-code are completely position
independent; no relocation list is needed. 

A relocation list consists of 0 or more relocation sublists. Each 
sub list contains code offsets for objects that must be relocated, 
and specifies the type of relocation that must be done. Sublists 
can occur in any order, and more than one sublist can have the 
same type of relocation. 

The following code fragment shows the format of the heading of 
a sublist: 

Loc_Types-(Reloc_End, jsignols end of entire relocation I istl 
Seg_Rel, ,relative to address of bose of this segment! 
Bose_Rei, relative to data segment given in DATASEGNUMI 
Interp_Rel, relative to PME's interp-relotive tablel 
Prac_Rel); relative to address of 1st instruction in procl 

list_Heoder-PACKED RECORD 
List_Size: integer; !number of pointers in subl isl! 
Ooto_Sell_Num: e, .255; ! local segment number tor Bose_Rei! 
Reloc_Type: Lac_Types; relocation type of subl ist entries! 

END; 

Each sub list contains a LIST HEADER and 0 or more segment 
relative byte pointers to the-objects which must be relocated. 
The RELOC TYPE field in the LIST HEADER defines what 
kind of relocation will be applied to all ;;hjects designated by the 
su blist. 

10-14 1200301:10B 



CODE FILE FORMAT 

The DATA SEG NUM field in the LIST HEADER is used 
only in sublfsts with a RELOC TYPE of BASE REL, and in 
all other cases should be zeroed. It specifies thelocal segment 
number of the data segment to which all the sublist's pointers are 
relative. 

The LIST SIZE field in the LIST HEADER contains the 
n urn ber of poin ters in the su blist. 

Figure 10-4 illustrates a relocation list with multiple sublists. 

The relocation list is intended to be used from high address down 
to low address. Each sublist in turn is processed from high to 
low until a sublistwith a relocation type of Reloc End is 
encountered. The DATA SEG NUM should be O-for the 
terminating entry; LIST SIZE is left out for the terminating 
entry. 

re leoc .• tieort <[I' .. ·· 
SIJb list 

1200301:10B 

re 1c11;.:.tion poirlters 

1------,....------4~ 
list point>?,.-

high address 

Figure 10-4. Relocation List. 

10-15 



P-MACHINE ARCHITECTURE Chapter 10 

SegIIlent Reference List 

In the p-Machine, each code segment is associated at runtime 
with an "environment vector" that defines the mapping of each 
segment number to the segment or unit that it designates. Each 
compilation unit has its own independent (that is, local) series of 
segment numbers, and its own environment vector. In this way, 
a particular unit may be referenced by more than one unit, and 
each unit that references it may use a different segment number. 

When a compilation unit references one or more other 
compilation units, the principal segment of the compilation 
contains a segment reference list. This list defines the connection 
between the segment numbers that appear in the object code 
(they are created by the compiler), and the names of the units to 
which they refer. Only principal segments contain segment 
reference lists. 

The segment reference list, when present, is located above the 
relocation list (it grows toward higher memory addresses). The 
list is used by the operating system at associate time. It doesn't 
occupy any space in memory during the program's execution 
(since the segment length field doesn't include it). 

The segment reference list associates the name of each 
compilation unit (which doesn't change) with the number by 
which that compilation unit is referenced. 

The following Pascal declaration describes a record in the 
segment reference list: 

Se9~Rec- PACKED RECORD 
Se9_Name: PACKED ARRAY [e .. 7J OF CHAR; lreferenced segment name! 
Se9_Num: PACKED ARRAY [e .. 1] af e .. 255 e is SEG_NUM; 1 is unused! 

END; 

The SEG _ REFS en try in the segment dictionary (described 
below) contains the number of words in the segment reference 
list. The CODE LENG field in the segment dictionary can be 
used as a segment relative word pointer to the start of the 
segment reference list. The segment reference list consists of one 

10-16 1200301:10B 



CODE FILE FORMAT 

or more SEG RECs, starting directly above the relocation lists 
(or procedure dictionary) and continuing towards higher memory 
addresses. A SEG REC consists of SEG NAME, which 
contains the name of the segment; SEG _ NUM[O], which contains 
the number by which the segment is referenced within this 
current code segment; and SET _NUM[l], a filler byte. 

The segment reference list is terminated by a SEG REC with a 
blank-filled SEG NAME and SEG NUM of o. -

SEG RECs with a SEG NAME of *** are generated so that 
the Runtime Support Lib~ry can execute the initialization and 
termination code sections of a unit. 

When the initialization/termination section of a unit (which is 
procedure 1) is compiled, the following instruction is emitted 
between the initialization and termination parts: 

where CXG is the p-code representation of a global procedure 
call. A local segment number is reserved for the "***,, segment 
reference, and the Runtime Support Library creates a linear list 
that links together the units of a program that require 
initialization. At the end of this list is the outer body of the 
main program. The Runtime Support Library invokes the 
program by calling the first initialization code on this list, which 
calls the next, and so forth up to the body of the main program. 
When the main program terminates, the calling chain is 
"popped," and termination sections are executed in the reverse 
order. 

1200301:10B 10-17 



P-MACHINE ARCHITECTURE Chapter 10 

CODESEGMENTEN~RONMENT 

At program startup time, the Runtime Support Library creates a 
runtime "environment" that describes each code segment and its 
references to other code segments. A segment's runtime 
environment is defined by three data structures: the environment 
record (EREC), the environment vector (EVEC), and the segment 
information block (SIB). 

The Segment Information Block (SIB) 

A segment information block (SIB) is a record that contains 
information about a code segment of a running program. The 
SIB contains information about the current state of a segment 
and about the segment's location in memory and on disk. SIBs 
are created at program startup time for each code segment that 
the program references and each segment in the Runtime Support 
Library. SIBs are permanently allocated on the heap for the 
duration of program execution. 

The following Pascal record definition describes a SIB: 

SIS = record 
s"'g bose, mem handle; 
seg-residency: in~eger; 
aeg-Iocka, in~egerj 
seg-nome, pecked errey [0 .. 7] of chari 
seg-f i Ie, i n~eger; 
seg-eddr: in~egeri 
seg-Ieng: in~egeri 
seg-d.~. size: in~eger; 

end; - -

seg_ base This field is a handle (absolute pointer to an 
absolute pointer) that points to the base of the 
segment in memory. If seg base is 0 or 
derefhnd(seg_ base } returns 0, then the segment 
is not currently in memory. 

seg _ residency This field contains the memory residency status 
of the segment. When equaJ to -1 the segment 
is position locked. A zero value indicates that 
the segment is swappable. A value greater than 
zero is a count of the number of outstanding 

10-18 1200301:10B 



seg_Iocks 

seg_ file 

seg_ addr 

CODESEGMENTEN~RONMENT 

memlock operations that have been applied to 
the segmen t. 

This field contains the count of the number of 
conceptual HLock operations that have been 
done on the segment. (HLock causes a Macintosh 
heap block to become position-locked in 
memory.) A value of -1 indicates that the 
segment is position-locked and HLock 
operations are inappropriate for the segment. 

This field contains the first eight characters of 
the segment's name, space filled. 

This field contains the Macintosh file reference 
number of the open file that the segment is 
stored in. 

This field contains the block number of the 
segment within the file whose reference number 
is seg _ file. 

seg _leng This field contains the number of words that the 
segment occupies, including the relocation list 
but excluding the segment reference list. 

seg_ data size This field contains the number of words in the 
segment's global data. This field only applies to 
unit and progra:rn segments. 

The Environ:rnent Record (EREC) 

A code segment enviroment is a mapping from local segment 
numbers to the ERECs of the segments they represent. Within 
the p-code instruction set, segments are referred to by local 
segment number (an integer in the range 1..255). 

The segment environment is represented by two data structures: 
the environment record (EREC) and the environment vector 
(EVEC). The EVEC describes the mapping from local segment 
numbers to the ERECs of those segments. It is implemented as a 

1200301:10B 10-19 



P-MACHINE ARCIDTECTURE Chapter 10 

word array of pointers to ERECs, indexed by the local segment 
number. Entry zero of the EVEC is a count of the number of 
segments in the environment. 

The following Pascal record describes ERECs and EVECs: 

evecp = .... evec; 
erecp = ereCj 

evec = record 
vee leng~h: in~egerj 
map: array[l .. 1] OT ereepj 

end; 

eree record 
env da~a: memp~rj 
env-vect: evecPi 
env-sib: sibpi 
env-next: erecpj 

end; -

env data 

env vect 

env sib 

env next 

This field points to the segment's global data. 
The global data is allocated on the heap at 
program startup time. 

This field points to the environment's EVEC, 
which provides the mapping from local segment 
numbers to ERECs. 

This field points to the segment's SIB. 

This field is used by the Runtime Support 
Library to keep track of ERECs. 

TASK ENVIRONMENT 

The p-Machine supports the implementation of the concurrent 
tasks of UCSD Pascal. Each task has its own set of the 
p""':Machine registers and its own private stack space in which to 
save local data. The main task, which is the thread of execution 
for the user program, uses the Macintosh system stack for its 
stack. Other tasks use stacks of fixed size allocated within the 
heap. All tasks share a common heap for dynamic variable 
allocation. 

10-20 1200301:10B 



TASK ENVIRON"MENT 

The main data structure for the implementation of concurrency is 
the Task Information Block, or TIB, which saves a task's private 

. set of p-Machine registers when it is dormant. A system qf task 
queues is used to handle synchronization of waiting tasks and 
tasks that are ready to run. 

The Semaphore 

The Pascal semaphore data type is implemented as a two word 
construct described by the following Pascal record structure: 

sem = record 
sem count: integer; 
.em-wai~ q: tib_pj 

endj - -

The sem count field contains the current value of the semaphore 
count. The sem wait q field points to the queue of tasks that 
are currently waiting on-the semaphore. 

The Task Information Block (TIB) 

The Task Information Block (TIB) data structure contains all the 
information necessary to awaken a task that has been dormant. 
TIBs are linked into queues of waiting and ready-to-run tasks. 

The following Pascal record describes a TIB: 

~ib = packed record 
regs: packed record 

wait q: tib Pi 
prior: by~e; 
flags: bytej 
.p low: mem ptrj 
sp-upr: mem-p~ri 
ap: mem ptr; 
mp: msc; Pi 
task lin~: ~ib Pi 
ipc:-integeri -
env: e rec Pi 
procnum: by~ei 
m depend: by~ej 
han~ p: sem Pi 
tib,oresult, 'n~egeri 

. end; 
ma'n task, booleanj 
.ystem_~ask: boolean; 

1200301:10B 10-21 



P-MACHINE ARCHITECTURE Chapter ]0 

reserved: O .. 16383; 
s~.r~ msew: msew Pi 
~.sk slop: in~egeri 

end; -

wait_ q 

prior 

flags 

sp _low 

sp _ upr 

sp 

mp 

task link 

ipc 

env 

procnum 

m depend 

]0-22 

This field points to the next task on a queue. 

This field contains the task priority, a number 
between 0 and 255. Higher numbers represent 
higher priority. 

This field is reserved for future use. 

This field points to the lower address bound for 
the stack pointer of the task. In the main task, 
sp low is compared with the SP register to 
det;;rmine whether a stack fault should be 
generated. 

This field points to the upper address bound for 
the stack pointer of the task. 

This field is used to save the tasks stack pointer 
register (SP) when the task is dormant. 

This field is used to store the task's mark stack 
pointer register (MP) when the task is dormant. 

This field is used by the Runtime Support 
Library to link together all TIBs. 

This field is used to store the task's instruction 
pointer register (IPC) when the task is dormant. 
The value is a byte offset ·within the current 
segment. 

This field is used to store the task's enviromnent 
record register (ERE C) when the task is 
dormant. 

This field is used to store the task's procedure 
number register when the task is dormant. 

This field is reserved for future use. 

120030~:10B 



tibioresult 

mam task 

TASK ENVIRONMENT 

This field points to the semaphore that the task 
is waiting on, or has the value nil if the task is 
not waiting on a semaphore. 

This field is used to store the task's ioresult 
register when the task is dormant. 

This field is true if this is the main task and false 
otherwise. 

system task This field is true if this task is part of the 
Runtime Support Library and false if this task 
was started by a user program. 

start mscw This field points to the first MSCW record in the 
task's stack. 

task_slop 

Task Queues 

This field is used to store the stack slop value for 
this task when the task is dormant. 

Two p-Machine registers figure in the maintenance of the task 
enviromnent. 

CURTASK 

READYQ 

This register points to the TIB of the currently 
executing task, which is also linked into the 
ready queue. 

This register poin ts to the queue of tasks that are 
ready to run. 

Tasks that are waiting to run are linked onto a queue in priority 
order (tasks with high priority toward the front of the queue). A 
task queue is a list of TIBs linked through their WAIT Q fields. 
The queue is terminated by· a pointer to nil. If the task is ready 
to run, it is linked on the queue pointed to by the READYQ 
register. If the task is waiting on a semaphore it is linked onto 
that semaphore's wait queue (the SEM_ WAIT _ Q field). 

1200301:10B 10-23 



P-MACHINE ARCHITECTURE Chapter 10 

Task Switching 

Tasks are synchronized through the use of the Pascal intrinsics 
signal and wait. These, in turn, are implemented by the p-Code 
instructions SIGNAL and WAIT. See P-CODE 
DESCRIPTIONS for their operational details. 

~oth signal and wait can cause a "task switch" to occur. Task 
switch is the term used to describe the shutting down of one task 
and the revival of another task. The signal intrinsic causes a task 
switch when it causes a task of higher priority than the current 
task to be put into the ready queue. The wait intrinsic causes a 
task switch to occur when it hangs th~rrent task on a 
semaphore. 

During the operation of a task switch, the p-Machine saves the 
current state of the p-Machine registers in the TIB of the task 
that it is shutting down, and restores the registers from the TIB 
of the task that it is awakening. 

FAULTS AND EXECUTION ERRORS 

This section describes faults and execution errors, which are 
exception conditions that may occur during a program's 
execution. 

Faults 

A fault is a special condition recognized by the PME during 
execution of a p-code that requires runtime support assistance to 
fix. After handling the problem, control returns to p-code 
execution at the point at which the fault was detected. The 
p-code where the fault was detected is reexecuted. 

Two types of faults may be issued by the PME: segment faults 
and stack faults. A segment fault is issued when a segment that 
must be accessed is not in memory. A stack fault is issued if not 
enough room is available on the stack for a p-code to perform its 

10-24 1200301:10B 



FAULTS AND EXECUTION ERRORS 

operation. Stack height checking is done only on p-codes that 
will place multiple words on the stack, except in the case of real 
number operations, which do no stack checking. . 

When the fault is detected, the p-Machine is to be returned to 
the state it was in prior to execution of the p-code. This is so 
that the p-code may be reexecuted on return from the fault. 

The following p-codes may issue a segment fault: 

CAP, CSP, CXL, SCXGn, CXG, CXI, CFP,RPU, SIGNAL (if 
a task switch occurs ), WAIT (if a task switch occurs) 

The following p-codes may issue a stack fault: 

LDC, LDM, ADJ, SRS, CLP, CGP, SCIPn, CIP, CXL, 
SCXGn, CXG, CXI, CFP 

Execution Errors 

An execution error is a special error condition that the PME may 
recognize during execution of a p-code. When an execution error 
is detected, the system reports the error to the user. Mter an 
execution error has been detected, the user may choose either to 
continue execution or reinitialize the system. 

Each p-code that can cause an execution error will leave the 
p-Machine in a consistent state on detection of the error. The 
IPC will point to the next p-code, putting "dummy" results on 
the stack; that way the p-code won't be reexecuted on return. 

Below is a list of the execution errors, along with the execution 
error number, the p-codes that may issue the error and a 
description of what the error means. 

1200301:10B 10-25 



p-MACHINE ARCHITECTURE Chapter 10 

Fatal Runtime Support Error Execution Errror 0 

p-Codes <none> 

This error should not occur. It indicates a corrupt Runtime 
Support Library. 

Value Range Error Execution Errror 1 

p-Codes CHK,CSTR,REDU,RED2,SRS 

A value range error is issued if an array index or scalar is out of 
bounds. This is detected only with one of the special check 
instructions. Generation of these range checks is suppressed by 
the $R- compiler directive. 

Exit from Uncalled Procedure Execution Errror 3 

p-Codes <EXIT> 

This error occurs when an attempt is made to exit a procedure 
that is not currently active. 

Stack Overflow Execution Errror 4 

p-Codes LDC, LDM, ADJ, SRS, CLP, CGP, SCIPn, ClP, 
CXL,SCXGn,CXG,CXI,CFP 

A stack overflow error occurs when there is no room left In 
memory to expand the stack by the desired amount. 

10-26 1200301:10B 



· FAULTS AND EXECUTION ERRORS 

Integer Overflow Execution Errror 5 

p-Codes ADI2, SBI2, INC2, DEC2, MPI2, ADIU, SBIU, 
INCU, DECU, MPIU, <long integer routines>, 
ABS2, NEG2 

An integer overflow error is issued when an integer2 operation 
result value is too large to represent in an integer2 variable. It 
can also occur when converting from real, long integer or integer2 
to integer, where the resulting integer is too large to fit into 16 
bits. 

Divide by Zero Execution Errror 6 

p-Codes DVI, MODI, DVR, DVI2, MDI2, DVIU, MDIU, 
< long integer routines> 

This error occurs whenever division or the remainder function is 
attempted with a 0 denominator. 

Invalid MelIlory Reference Execution Errror 7 

p-Codes <none> 

This error occurs when a memory reference is made through a 
pointer variable that currently contains nil. This condition is not 
always detected. 

ProgralIl Interrupted by User Execu tion Errror 8 

p-Codes <none> 

This error occurs if the user presses the break button and the 
debugger is not enabled. 

1200301:10B 10-27 



P-MACHINE ARCHITECTURE Chapter 10 

Runtime Support I/O Error Execution Errror 9 

p-Codes <none> 

This error occurs if an I/O error occurs during program startup. 

I/0 Error Execution Errror 10 

p-Codes <IOCHECK> 

This error occurs when the IOCHECK standard procedure detects 
the IORESUL T is nonzero. Calls to IOCHECK that follow I/O 
operations can be suppressed with the $1- compiler directive. 

Unimplemented Instruction Execution Errror 11 

p-Codes < any unimplemented p-code> 

This error occurs when an attempt is made to execute an illegal 
or reserved p-code. This error may not always be detected. 

Floating Point Error Execution Errror 12 

p-Codes LDCRL, LDRL, STRL, FLT, TNC, RND, ABR, 
NGR, ADR, SBR, MPR, DVR, EQREAL, 
LEREAL, GEREAL, RFLT, FLT2, RFLT2, 
FLTU, RFLTU, TRUNC, ROUND, TRNC2, 
ROND2, <POWEROFTEN> 

This error occurs when the result of a floating point calculation is 
not a legal floating point number. This may happen on floating 
poin t overflow. 

10-28 1200301 :10B 



· F AUL TS AND EXECUTION ERRORS 

String Overflow Execution Errror 13 

p-Codes esp, ASTR, <long integer routines> 

This error occurs when a string assignment is made to a string 
that is too small to hold the source string. 

Progranuned Halt Execution Errror 14 

p-Codes <HALT> 

This error occurs upon execution of the halt intrinsic m a user 
program. 

Illegal Heap Operation Execution Errror 15 

p-Codes < VARNEW > 

This error occurs when a varnew of 0 or fewer words is 
attempted. It can also occur when calls to mark and release are 
not properly paired. 

Breakpoint Execution Errror 16 

p-Codes BPT 

This error occurs when a breakpoint p-code is executed. This 
~rror will result in entering the debugger if the debugger is 
currently in an active state. 

1200301 :10B 10-29 



P-MACHINE ARCHITECTURE Chapter 10 

Incompatible Real Number Size Execu tion Errror 17 

p-Codes <none> 

This error occurs if you attempt to run a program compiled with 
the $R2 compiler option. 

Set Too Large Execution Errror 18 

p-Codes SRS 

This error occurs when an attempt is made to create a set that is 
larger than the largest allowed set size (4080 members). 

Segment Too Large Execution Errror 19 

p-Codes CAP, CXL, SCXGn, CXG, CXI, CFP, RPU, 
SIGNAL, WAIT 

This error occurs if an attempt is made to load a segment that is 
more than 32K bytes in size. 

Heap Expansion Error Execution Errror 20 

p-Codes <heap operations> 

This error occurs if there is no room for the heap to expand. 
This is most likely to occur due to the presence of a 
nonrelocatable Macintosh heap block immediately above the 
Pascal heap in memory. 

10-30 1200301:10B 



FAULTS AND EXECUTION ERRORS 

Insufficient Memory to Load Segment Execution Errror 21 

p-Codes CAP, CXL, SCXGn, CSG, CXI, CFP, RPU, 
SIGNAL, WAIT 

This error occurs if there is not enough room in memory to load a 
required code segmen t. 

P-MACHINE REGISTERS 

Like other processors, the p-Machine has registers which are a 
fundamental part of its architecture. Since the p-Machine is 
emulated by a program on the host 68000 processor, only some of 
these registers correspond to actual 68000 processor registers. 

Unlike most processors, the p-Machine doesn't allow its registers 
to be used in a general fashion. AIl registers have specific uses. 
The p-Machine stack takes the place of general purpose 
registers-all temporary data is stored there. 

Here is a list of the p-Machine registers, along with a description 
of how they are used. 

CURPROC 

CURT ASK 

EREC 

1200301:10B 

The CURPROC register contains the procedure 
number of the currently executing procedure. It 
changes whenever a procedure call is made. 
There is a maximum of 255 procedures per 
segment, so CURPROC will have a value in the 
range 1 through 255. 

The CURTASK register is a pointer to the TIB 
of the currently executing task. It changes 
whenever a task switch occurs. 

The EREC register is a pointer to the EVEC of 
the current environment. It changes whenever a 
call or return is made to a procedure in a 
different segment. The EREC contains pointers 

10-31 



P-MACHINE ARCHITECTURE Chapter 10 

EVEC 

IORESULT 

IPC 

MP 

READYQ 

10-32 

to the global data, EVEC, and SIB. The pointer 
to the global data (called BASE) is kept in the 
68000 Al register. A pointer to the base of the 
curren t segment is kep t in the 68000 A2 register. 

The E"VEC register is a pointer to the EVEC 
(environment vector) of the current environment. 
It changes whenever a call or return is made to a 
procedure in a different segment. The EVEC is 
a redundant register, because it is a field of the 
EREC. The EVEC register is used to find the 
EREC of a different segment in order to access 
its data or to call a procedure in that segment. 

IORESULT contains the error code resulting 
from the last I/O operation. This is the only 
register that may be accessed directly from a 
program (via the ioresult in trinsic). 

The IPC register (interpreter program counter) is 
a pointer to the next p-code that will be 
executed. This register is located in the 68000 
A4 register. IPC changes during each p-code 
execution. Whenever the IPC register is saved 
temporarily (for instance, in an MSCW) it is 
stored as a byte offset from the base of the 
current segment. 

The MP register points to the current activation 
record (MSCW). This register is located in the 
68000 AO register. It changes whenever "a 
procedure call or return is made. All variables 
(except those that have been dynamically 
allocated on the heap) are accessed from an 
MSCW. Local variables are accessed from MP, 
global variables from BASE (see EREC, above), 
and intermediate variables from an intermediate 
MSCW. 

The READYQ register points to the TIE at the 
head of the queue of tasks ready to be run. It 
may change on a SIGNAL or WAIT p-code. 

1200301:10B 



SP 

P-MACHINE REGISTERS 

The SP register points to the word that is on the 
top of the p-Machine stack. The SP register 
corresponds to the 68000 stack pointer register in 
A7. SP changes on nearly every p-code, 
whenever an item is pushed on or popped off the 
stack. 

P-CODE DESCRIPTIONS 

Introduction 

The p-codes generated by the compiler are described in this 
section. Instructions for the p-machine consist of an opcode, 
which is one or two bytes long, followed by zero to three 
parameters. 

The following example illustrates the format that is used in this 
chapter to describe the p-codes. (The format of the description 
is the same for all p-codes.) 

LDCB 
[:word] 

UB Load Constant Byte 
80 

The constant VB with high byte 0 is pushed onto the stack. 
LDCB is used to load a constant in the range 0 through 255. 

The top line of each p-code description contains the p-code 
mnemonic, any in-line parameters, and the title of the p:....code. 
(An in-line parameter follows the p-code byte in the p-code 
stream.) There will be zero to three in-line parameters for each 
p-code. The symbol for each in-line parameter defines its type. 
Here the format is VB, meaning unsigned byte. VB and the other 
parameter formats are discussed below. 

1200301:10B 10-33 



P~MACHINE. ARCHITECTURE Chapter 10 

The second line of each p~code description contains the stack 
values on the left in brackets and the p~code hexadecimal 
instruction value on the right. The stack values consist of two 
lists of operand types separated by a colon. The list to the left of 
the colon contains the type of each operand that will be on the 
stack before the instruction is executed. Following the colon, the 
type of each operand that the instruction places on the stack as a 
result is listed. When multiple operands are listed, the operand 
on the right of each list is at the top of the stack. For this 
example, the LDCB instruction uses no operands from the stack, 
but leaves a word result on the stack. The operand types are 
discussed below. 

NOTE: Most p-Machine instructions don't have specific in-line 
parameters but instead deal with operands that are on the stack. 

Finally, there is a brief description of the p-code function. The 
terms TOS, TOS-l, etc. are used in this description to refer to 
operands on the stack. TOS is the operand at the top of the 
stack. TOS-l is the stack operand just below the operand at 
TOS. 

NOTE: The TOS, TOS-l, etc. terminology only represents the 
position of an operand relative to other operands; it does not 
necessarily indicate the displacement on the stack. For example, 
an operand at TOS-1 would be four words below a floating point 
operand at TOS, two words below an integer2 operand at TOS, 
or one word below an integer operand at TOS. 

Instruction Parameters 

The parameters to a p-code instruction contain information 
about the size and number of the instruction's operands. (In 
some cases, the parameter may be an operand itself, as in the 
case of LDCB, shown above.) 

10-34 1200301:10B 



P-CODE DESCRIPTIONS 

The parameter formats are: 

B Big. This is a parameter with variable length. If bit 7 
(MSB) of the first byte is 0, the remaining 7 bits 
represent a positive integer in the range 0 through 127. 
If bit 7 of the first byte is 1, then bit 7 is cleared; the 
first byte is the high-order byte of a 16-bit word, and 
the following byte is the low-order byte of that word. 
The big format may represent positive integers in the 
range 0 through 32767. 

DB Don't Care Byte. Represents a positive integer in the 
range 0 through 127. Bit 7 is always O. When 
converted to a 16-bit value, the most significant byte 
is zeroed. 

DW Doubleword. This is a 4-byte parameter. It is a 
32-bit two's complement value that represents an 
integer2 in the range -2147483648 .. 2147483647. The 
doubleword is always represented most significant word 
first, and each of these words is least significant byte 
first. 

PD Packed Descriptor. This is a one byte packed field 
descriptor. The size of the packed field minus 1 (in 
bits) is stored in the high order nibble of the byte. The 
bit number of the rightmost bit of the packed field IS 

stored in the low order nibble. 

SB Signed byte. Represents a two's complement 8-bit 
integer in the range -128 through 127. When 
converted to a 16-bit two's complement value, the 
most significant byte is a sign extension (all bits equal 
bit 7 of the low byte (SB)). 

UB Unsigned byte. Represents a positive integer in the 
range 0 through 255. When converted to a 16-bit 
value, the most significant byte is zeroed. When more 
than one UB parameter is needed in an instruction, 
they will be referred to by the description as UBI, UB2, 
etc. 

1200301:10B 10-35 



P-MACHINE ARCHITECTURE Chapter 10 

w Word. This is a 2-byte parameter. It is a 16-bit 
two's complement value that represents an integer in 
the range-32768 through 32767. The word is always 
represented as least significant byte first in the code 
stream. 

Dynamic Operands 

This section describes the stack-oriented dynamic operands of 
p-Machine instructions. 

activation 

addr 

abs-ptr 

block 

bo01 

byte-ptr 

dword 

func 

int 

10-36 

Activation record for a procedure. See the 
STACK ENVIRONMENT section for more 
details. 

Addr represents a 16-bit p-Machine pointer 
within the Pascal Data Area. 

An 32-bit absolute memory address. It is stored 
in memory as most significant word first; both 
word are stored as most significant byte first. 

Block represents a group of 0 or more words. 
(Used in instructions with variable length 
operands.) 

Bool represents a I6-bit quantity treated as a 
logical value. If bit 0 is 0, the value is FALSE. 
If bit 0 is 1, the value is TRUE. 

A 16-bit byte offset from the base of the Pascal 
data area. 

A 32-bit p-Machine doubleword. 

Function result. The actual type depends on the 
function type. The func operand is null for 
procedures. 

lnt represents a I6-·bit two's complement 
integer. 

1200301:10B 



int2 

nil 

offset 

pack-ptr 

param 

proc-ptr 

real 

set 

uint 

word 

word-ptr 

1200301 :10B 

P-CODE DESCRIPTIONS 

Same as a doubleword, but interpreted as a 
signed two's complement integer value. 

Nil represents a constant that references an 
invalid address. 

Offset represents a byte offset into a code 
segment. 

Pack-ptr represents three words that designate 
a bit field within a 16-bit word. TOS is the 
number of the rightmost bit of the field, TOS-1 
is the number of bits in the field, and TOS-2 is 
the address of the word. 

Parameters for a procedure. The number of 
parameters and their types depend on the code 
that put them onto the stack. 

Pointer to a procedure. 

Real represents a 64-bit floating point quantity. 

A set represents 0 through 255 words of bit flags, 
preceded by a word that contains the number of 
words in the set. 

A 16-bit unsigned integer value In the range 
0 .. 65535. 

Word represents a 16-bit quantity that may be 
treated in any way-as an integer, boolean, 
address, and so forth. 

A 16-bit byte offset from the base of the Pascal 
data area. It must point to a word memory 
boundary (even address). 

10-37 



P-'MACHINE ARCHITECTURE Chapter 10 

Constant Loads 

Constant p-codes are used to place constant values from the 
intruction stream onto the stack. 

LCO 
[:offset] 

B Load Constant Offset 
82 

B is a word offset into the constant pool of the current segment. 
The address of the indicated constant is converted into a segment 
relative byte offset. The computed offset is pushed onto the 
stack. 

LDCB 
[:word] 

UB Load Constant Byte 
80 

The constant UB with high byte 0 is pushed onto the stack. 
LDCB is used to load a constant in the range 0 through 255. 

LDCD 
[:dword] 

DW Load Constant Doubleword 
FF 00 

The doubleword constant DW is pushed onto the stack. 

LDCI 
[:wordJ 

W Load Constant Integer 
81 

The constant word W is pushed onto the stack. 

LDCN 
[ :nil] 

Load Constant NIL 
98 

A NIL value is pushed onto the stack. The value zero is used to 
represent NIL. 

10-38 1200301:lOB 



SLDCn 
[:word] 

P-CODE DESCRIPTIONS 

Short Load Constant 
OO .. IF 

The constant word whose value is encoded in the opcode is 
pushed onto the stack. The value n is the value of the opcode 
itself. SLDCn is used to load a constant between 0 and 31. 

SLDCDO 
[:dword] 

Short Load Doubleword Constant Zero 
41 

A doubleword containing the value zero is pushed onto the stack. 

Local Loads and Stores 

The local load and store p-codes are used to transfer data 
between the stack and the local activation record. 

LDL 
[:word] 

The word 

B 

with word offset 
pushed onto the stack. 

LDLD B 
[:dword] 

The doubleword at offset 
pushed onto the stack. 

LLA 
[:addr] 

B 

B III 

B III 

Load Local 
87 

the local activation record is 

Load Local Doubleword 
58 

the local activation record is 

Load Local Address 
84 

The address of the variable with offset B in the local activation 
record is pushed onto the stack. 

1200301:10B 10-39 



P-MACHINE ARCHITECTURE Chapter 10 

SLDLn 
[:word] 

Short Load Local 
20 .. 2F 

The word with word offset n in the local activation record is 
pushed onto the stack. SLDLn is used to load one of the first 16 
local words. The value of n is 1..32. 

SLDLDn 
[:dword] 

Short Load Local Doubleword 
42 . .47 

The doubleword at offset n in the local activation record is 
pushed onto the stack. SLDLDn is used to load any of the 
doubleword data containers whose first word is one of the first 6 
local words. The value of n is 1..6. 

SLLAn 
[:addr] 

Short Load Local Address 
60 .. 67 

The address of the variable with offset n in the local activation 
record is pushed onto the stack. SLLAn is used to load the 
address of local variables with offsets between 1 and 8. 

SSTLn 
[word:] 

Short Store Local 
68 .. 6F 

TOS is stored in the word with offset n in the local activation 
record. SSTLn is used to store in one of the first eight local 
words. The value of n is 1..8 

STL 
[word:] 

B Store Local 
A4 

TOS is stored In the word with offset B in the local activation 
record. 

10-40 1200301:10B 



STLD 
[dword:] 

B 

P-CODE DESCRIPTIONS 

Store Loca.l Doubleword 
5D 

The doubleword operand at TOS is stored into the doubleword 
located at word offset B in the local activation record. 

Global Loads and Stores 

The global load and store p-codes are used to transfer data 
between the stack and the global data storage of the current code 
segment. 

LAO 
[:addr] 

B Load Global Address 
86 

The address of the variable with offset B in the global activation 
record is pushed onto the stack. 

LDO 
[:word] 

B Load Global 
85 

The word with offset B in the global activation record is pushed 
on to the stack. 

LDOD 
[:dword] 

B Load Global Doubleword 
5A 

The doubleword at word offset B in the global activation record 
is pushed onto the stack. 

SLDOn 
[:word] 

Short Load Global 
30 .. 3F 

The word with offset n in the global activation record is pushed 
onto the stack. SLDOn is used to load global words with offsets 
between 1 and 16. The value of n is 1..16. 

1200301:10B 10-41 



P-MACHINE ARCHITECTURE Chapter 10 

SLDODn 
[:dword) 

Short Load Global Doubleword 
48 . .4F 

The doubleword at word offset n in the global activation record 
is pushed onto the stack. SLDODn is used to load any of the 
doubleword data containers whose first word is one of the first 8 
global words. 

SRO 
[word:) 

B Store Global 
AS 

The word at TOS is stored in the word with offset B in the global 
activation record. 

SROD 
[dword:) 

B Store Global Doubleword 
SF 

The doubleword at TOS is stored into the doubleword at word 
offset B in the global activation record. 

Intermediate Loads and Stores 

The intermediate load and store p-codes are used to transfer 
data between the stack and a specific activation record in the 
stack. 

LDA 
[:addr] 

DB,B Load Intermediate Address 
88 

DB indicates the number of static links to traverse to find the 
activation record to use. (DB=O indicates the local activation 
record; DB=l indicates the parent activation record; and so 
forth.) The address of the variable with offset B in the indicated 
activation record is pushed onto the stack. 

10-42 1200301:10B 



LOD 
[:word] 

DB,B 

P-CODE DESCRIPTIONS 

Load Intermediate 
89 

DB indicates the number of static links to traverse to find the 
activation record to use. (DB=O indicates the local activation 
record; DB=l indicates the parent activation record; and so 
forth.) The word with offset B in the indicated activation record 
is pushed onto the stack. 

LODD 
[:dword] 

DB,B Load Intermediate Doubleword 
59 

DB indicates the number of static links to traverse to find the 
activation record to use. (DB=O indicates the local activation 
record; DB=l indicates the parent activation record; and so 
forth.) The doubleword with offset B in the indicated activation 
record is pushed on to the stack. 

SLODn B 
[:word] 

Short Load Intermediate 
AD .. AE 

The word with offset B in the activation record of the parent 
(SLODl) or grandparent (SLOD2) of the local activation record is 
pushed onto the stack. 

STR 
[word:] 

DB,B Store Intermediate 
A6 

DB indicates the number of static links to traverse to find the 
activation record to use. (DB=O indicates the local activation 
record; DB=l indicates the parent activation record; and so 
forth.) The word at TOS is stored into the word with offset B in 
the indicated activation record. 

1200301:10B 10-43 



P-i\1.i\CHINE ARCHITECTURE Chapter 10 

STRD 
[word:] 

DB,B Store Intermediate Doubleword 
5E 

DB indicates the number of static links to traverse to find the 
activation record to use. (DB=O indicates the local activation 
record; DB=l indicates the parent activation record; and so 
forth.) The doubleword at TOS is stored into the doubleword 
with offset B in the indicated activation record. 

Extended Loads and Stores 

The extended load and store p-codes are used to transfer data 
between the stack and the global data storage of a code segment 
that is not the current segment. 

LAE 
[:addr] 

UB,B Load Extended Address 
9B 

The address of the variable with offset B in the global activation 
record of local segment UB is pushed onto the stack. 

LDE 
[:word] 

UB,B Load Extended Word 
9A 

The word at offset B in the global data segment of local code 
segment VB is pushed onto the stack. 

LDED 
[:dword] 

VB,B Load Extended Douhleword 
5B 

The doubleword at offset B in the global data segment of local 
code segment VB is pushed onto the stack. 

10-44 1200301 :10B 



STE 
[word:] 

VB,B 

P-CODE DESCRIPTIONS 

Store Extended Word 
D9 

The word at TOS is stored into the word with offset B In the 
global activation record of local segment VB. 

STED 
[dword:] 

VB,B Store Extended Doubleword 
F6 

The doubleword at TOS is stored into the doubleword with word 
offset B in the global data segment for the local code segment 
VB. 

Indirect Loads and Stores 

The indirect load and store p-codes are used to transfer data 
between the stack and an address specified by an operand on the 
stack. 

IND B 
[addr:word] 

Index and Load Word 
E6 

The word offset specified by B is added to the word pointer at 
TOS. The word pointed to by the resulting word pointer is 
pushed onto the stack. 

INDD B 
[ addr:dword] 

Load Indirect Doubleword 
5C 

The word offset specified by B is added to the word pointer at 
TOS. The doubleword pointed to by the resulting word pointer 
is pushed onto the stack. 

1200301:10B 10-45 



P-MACHINE ARCHITECTURE Ohapter 10 

SINDn 
[addr:word] 

Short Index and Load Word 
78 .. 7F 

The word offset n is added to the word pointer at TOS, and the 
word pointed to by the resulting word pointer is pushed onto the 
stack. The value of n is 0 .. 7. 

SINDDn 
[addr:dword] 

Short Index and Load Doubleword 
50 .. 57 

The word offset n is added to the word pointer at TOS, and the 
doubleword pointed to by the resulting word pointer is pushed 
onto the stack. The value of n is 0 .. 7. 

STO 
[addr,word:] 

Store Word Indirect 
C4 

The word at TOS is stored into the word pointed to by the word 
pointer at TOS-I. 

STOD 
[addr,dword:] 

Store Doubleword Indirect 
F5 

The dou bleword at TOS is stored into the doubleword pointed to 
by the word pointer at TOS-I. 

Multiple Word Loads and Stores 

The multiple word load and store p-codes are used to transfer 
multiple word data between the stack and memory. 

LDC 
[:block] 

UBl,B,UB2 Load Constant 
83 

If less than UB2+STACK SLOP words are available on the 
stack, a stack fault is issued-:-

JO-46 1200301:10B 



P-CODE DESCRIPTIONS 

B is a word offset into the constant pool of the currently 
executing segment. UB2 words starting at that offset are pushed 
onto the stack, preserving the order of the words. If UBI, the 
mode, is 2, and the current segment is of opposite byte sex from 
the host processor, the bytes of each word are swapped as they 
are loaded. 

LDCRL B 
[:real] 

Load Constant Real 
F2 

The real constant at offset B in the constant pool of the currently 
executing segment is loaded onto the stack. 

LDM UB 
[addr ,block] 

Load Multiple 
DO 

If less than UB+ST ACK SLOP words are available on the 
stack, a stack fault is issued-:-

TOS is a pointer to a block of UB words. The block is pushed 
onto the stack, preserving the order of the words. 

LDRL 
[addr:real] 

Load Real 
F3 

TOS is the address of a real variable. TOS is replaced with the 
indicated real. 

STM UB 
[addr,block:] 

Store Multiple 
8E 

TOS is a block of UB words. The block is stored at address 
TOS-l, preserving the order of the words. 

l20030l:l0B 10-47 



P-MACHINE ARCHITECTURE 

STRL 
[addr,real:] 

Chapter 10 

Store Real 
F4 

TOS is a real value. TOS"":'l is an address. TOS is stored at the 
address TOS-l. 

ParaITIeter Copying 

These instructions are generated by the compiler to copy multiple 
word parameters which are passed to a procedure by value. 

CAP B 
[addr,addr:] 

Copy Array ParaITIeter 
AB 

TOS is the address of a parameter descriptor for a packed array 
of characters. The parameter description is a two-word record. 
The first (low) word is either NIL or a pointer to an EREC. If 
the first word is NIL, the second word is the address of the 
parameter. If the first word points to an EREC, the second word 
is an offset relative to the segment indicated by the EREC. This 
offset was created with an LCO instruction. 

A segment fault is issued if the parameter descriptor indicates a 
nonresident segment. Otherwise, the array (which is B words 
long), is copied to the destination at address TOS-l. 

CSP UB 
[addr,addr:] 

Copy String ParaITIeter 
AC 

TOS is the address of a parameter descriptor for a packed array 
of _characters. The parameter description is a two-word record. 
The first (low) word is either NIL, or a pointer to an EREC. If 
the first word is NIL, the second word is the address of the 
parameter. If the first word points to an EREC, the second word 
is an offset relative to the segment indicated by the EREC. This 
offset was created with an LCO instruction. 

10-48 1200301:10B 



P-CODE DESCRIPTIONS 

A segment fault is issued if the parameter descriptor indicates a 
nonresident segment. Otherwise, the dynamic length of the 
designated string is compared to UB (the declared size of the 
destination formal parameter). If the string is larger than the 
destination size, a string overflow execution error is issued. 
Otherwise, the string is copied to the address TOS-I. 

Byte Load and Store 

These instructions transfer a byte of data between the stack and 
a storage area designated by an address on the stack. 

LDB Load Byte 
[byte-ptr:word] A7 

TOS is a byte pointer. TOS IS replaced by the indicated byte 
with the high byte o. 

STB Store Byte 
[byte-ptr,word:] C8 

The low byte of TOS is stored in the location pointed to by byte 
pointer TOS-I. 

Packed Field Loads and Stores 

The packed field p-codes are used to transfer packed data 
between the stack and an address specified by an operand on the 
stack. 

LDP 
[pack-ptr:wordJ 

Load Packed 
C9 

The packed field pointer TOS is replaced with the field it 
designates. Before being pushed on to the stack, the field IS 

right- justified and zero-filled. 

1200301:10B 10-49 



P-M~CHINE ARCHITECTURE Chapter 10 

SSTP PD 
[addr,word:] 

Short Stored Packed 
40 

The word operand at TOS contains a right justified value which 
is stored into a field within the word pointed to by the word 
pointer at TOS-l. The packed field descriptor PD specifies the 
size and location of the field within the word. 

STP 
[pack-ptr,word:] 

Stored Packed 
CA 

TOS contains right-justified data. TOS-l is a packed field 
pointer. TOS is masked to the field width indicated in TOS-l, 
then stored into the field described by TOS-l. 

UPACK PD 
[word:word] 

Unpack Field from Top of Stack 
AF 

The field of the word operand at TOS described by the packed 
field descriptor parameter PD replaces the word operand at TOS. 
The value of the packed field is right justified in the result word. 

Structure Indexing and Assignment 

These instructions are used to index into and copy array and 
record structures. 

AMOVE 
[abs-ptr ,abs-ptr ,int2:] 

Absolute Move Left 
FF 35 

This instruction moves a number of bytes of memory starting at 
where the absolute address value at TOS-2 points into the 
successive memory locations starting at where the absolute 
address value at TOS-l points. The number of bytes to move is 
contained in the integer2 operand at TOS. 

10-50 l20030l:10B 



INC B 
[addr:addr] 

P-CODE DESCRIPTIONS 

Increment 
E7 

The word pointer TOS is indexed by B words, and the resulting 
pointer is pushed. 

INCBI Increment Pointer with Integer Byte Offset 
[addr,word:addr] FE 

The integer operand at TOS (containing a byte offset) is added to 
the pointer operand at TOS-l, and the resulting pointer value 
replaces the operands on the stack. 

INCB2 Increment Pointer with Integer2 Byte Offset 
[addr,dword:addr] FF OD 

The integer2 operand at TOS (containing a byte offset) is added 
to the pointer operand at TOS-l, and the resulting pointer value 
replaces the operands on the stack. 

IXA B 
[addr,word:addr] 

Index Array 
D7 

The operand at TOS-l is a word pointer which locates the base 
of an array. The word operand at TOS is an index into the 
array, where the value 0 selects the first element in the array. 
The value B specifies the size (in words) of the array elements. 
The operands are replaced on the stack by a word pointer which 
points to the selected array element. 

IXA2 B 
[addr,dword:addr] 

Index Array Integer2 
FF OB 

The operand at TOS-l is a word pointer which locates the base 
of an array. The doubleword operand at TOS is an index into 
the array, where the value 0 selects the first element in the array. 
The value B specifies the size (in words) of the array elements. 
The operands are replaced on the stack by a word pointer which 

1200301:10B 10-51 



P-·M.A.CHINE ARCHITECTURE Chapter 10 

points to the selected array element. 

IXP UBl,UB2 
[addr ,word :pack -ptr] 

Index Packed Array 
D8 

This operation performs an indexing operation for an array in 
which multiple elements are packed into a word, and pushes a 
packed field pointer onto the stack which points to the selected 
array element. The parameter UBI specifies the number of array 
elements that are packed into a word. The parameter UB2 
specifies the size of an array element in bits. The word pointer 
operand at TOS-l locates the base of the packed array. The 
integer2 operand at TOS is the index into the array, where the 
value zero selects the first array elemen t. 

IXP2 UBl,UB2 
[addr ,dword:pack-ptr] 

Index Packed Array Integer2 
FF OC 

This operation performs an indexing operation for an array in 
which multiple elements are packed into a word, and pushes a 
packed field pointer onto the stack which points to the selected 
array element. The parameter UBI specifies the number of array 
elements that are packed into a word. The parameter UB2 
specifies the size of an array element in bits. The word pointer 
operand at TOS-l locates the base of the packed array. The 
integer2 operand at TOS is the index into the array, where the 
value zero selects the first array element. 

MOV UB,B 
[addr,word:] 

Move 
C5 

TOS is either the address of a word block (if UB=O) or the offset 
of a constant word block in the current segment (if UB< >0). B 
words are moved from the source designated by TOS to the 
destination address TOS-l. IF UB=2, and the current segment 
has opposite byte sex from the host processor, the bytes of each 
word are swapped as the words are moved. 

10-52 120030l:l0B 



P-CODE DESCRIPTIONS 

Logical Operators 

These instructions perform logical operations on stack data. 

BNOT 
[word:bool] 

Boolean Not 
9F 

The one's complement of the word at TOS is masked to one bit, 
and the result is pushed on the stack. BNOT produces a I 
(TRUE) or a O(F ALSE) on the stack, regardless of how many 
bits were set in TOS. 

GEUSW 
[word,word:bool] 

Greater Than or Equal Unsigned 
B5 

The boolean result of the unsigned comparison TOS-I >= TOS 
is pushed onto the stack. 

LAND 
[word,word:word] 

Logical AND Word 
Al 

The word operands at TOS and TOS-l are removed from the 
stack, ANDed together, and the resultant word is pushed onto the 
stack. 

LANDD 
[dword,dword:dword] 

Logical AND Doubleword 
FF 27 

The doubleword operands at TOS and TOS-I are removed from 
the stack, ANDed together, and the resultant doubleword is 
pushed onto the stack. 

1200301:10B 10-53 



P-~{A.CHINE ARCHITECTURE Chapter 10 

LEUSW 
[word,word:bool]-

Less than or Equal Unsigned 
B4 

The boolean result of the unsigned comparison TOS-l <= TOS 
is pushed onto the stack. 

LNOT 
[word:word] 

Logical NOT Word 
E5 

The word operand at TOS is'removed from the stack, one's 
complemented, and pushed onto the stack. 

LNOTD 
[dword:dword] 

Logical NOT Doubleword 
FF 29 

The doubleword operand at TOS is removed from the stack, 
one's complemented, and pushed onto the stack. 

LOR 
[word,word:word] 

Logical OR Word 
AO 

The word operands at TOS and TOS-l are removed from the 
stack, ORed together, and the resultant word is pushed onto the 
stack. 

LORD 
[dword,dword:dword] 

Logical OR Doubleword 
FF 28 

The doubleword operands at TOS and TOS-l are removed from 
the stack, ORed together, and the resultant doubleword is pushed 
onto the stack. 

10-54 120030l:l0B 



LXORD 
[dword,dword:dword] 

P-CODE DESCRIPTIONS 

Logical Exclusive OR Doubleword 
FF 2B 

The doubleword operands at TOS and TOS-1 are removed from 
the stack, XORed together, and the resultant doubleword is 
pushed onto the stack. 

LXORW 
[word,word:word] 

Logical Exclusive OR Word 
FF 2A 

The word operands at TOS and TOS-1 are removed from the 
stack, XORed together, and the resultant word is pushed onto the 
stack. 

Shift Operators 

These instructions perform shifting operations on stack data. 

ASRD 
[dword,int:dword] 

ArithInetic Shift Right Doubleword 
FF 26 

The doubleword operand at TOS-l is shifted to the right by the 
number of bits in the value of the word at TOS. The sign of the 
doubleword operand is propagated into the vacated bit positions. 
If the count is negative, zero, or greater than 32, the result of the 
operation is undefined. 

ASRW 
[word,int:word] 

ArithIIletic Shift Right Word 
FF 23 

The word operand at TOS-1 is shifted to the right by the 
number of bits in the value of the word at TOS. The sign of the 
word operand is propagated into the vacated bit positions. It the 
count is negative, zero, or greater than 16, the result of the 
operation is undefined. 

1200301:10B 10-55 



'P--'~1ACHINE ARCHITECTURE Chapter 10 

LSLD 
[dword,int:dword] 

Logical Shift Left Doubleword 
FF 24 

The doubleword operand at TOS-1 is shifted to the left by the 
number of bits in the value of the word at TOS. If the count is 
negative, zero, or greater than 32, the result of the operation is 
undefined. 

LSLW 
[word,int:word] 

Logical Shift Left Word 
FF 21 

The word operand at TOS-1 is shifted to the left by the number 
of bits in the value of the word at TOS. If the count is negative, 
zero, or greater than 16, the result of the operation is undefined. 

LSRD 
[dword,int:dword] 

Logical Shift Right Doublewor.d 
FF 25 

The doubleword operand at TOS-1 is shifted to the right by the 
number of bits in the value of the word at TOS. If the count is 
negative, zero, or greater than 32, the result of the operation is 
undefined. 

LSRW 
[word,int:word] 

Logical Shift Right Word 
FF 22 

The word operand at TOS-l is shifted to the right by the 
number of bits in the value of the word at TOS. If the count is 
negative, zero, or greater than 16, the result of the operation is 
undefined. 

10-56 1200301:10B 



P-CODE DESCRIPTIONS 

Integer ArithIIletic 

These instructions peform arithmetic operations on data in the 
stack. 

ABI 
[int:int] 

Absolute Value Integer 
EO 

TOS is replaced by the absolute value of TOS. If TOS is 
-32768, the result will be -32768. 

ABS2 
[in t2 :in t2) 

Absolute Value Integer2 
FF 06 

The integer2 value at TOS is replaced with its absolute value. 
An Integer Overflow execution error occurs if the initial value is 
-2147483648. 

ADI 
[int,int:int] 

Add Integers 
A2 

TOS is replaced by TOS-1 + TOS. The result should be 
computed as if it were an unsigned operation on 32-bit operands, 
and only the lowest 16 bits were retained for the result. Thus, 
overflow or underflow will "wrap around" to the opposite sign. 

ADI2 
[int2,int2:int2] 

Add Integer2 
F7 

The integer2 operands at TOS and TOS-1 are replaced on the 
stack by the sum of the two operands. An Integer Overflow 
execution error is reported if the sign bits of the operands are 
equal and the sign bit of the result has the opposite sign. 

1200301:10B 10-57 



P-M.t\CHINE ARCHITECTURE 

CHK 
[in t,in t,in t:in t] 

Chapter 10 

Check Subrange Bounds 
CB 

TOS is an upper-bound. TOS-l is a lower-bound. If it isn't 
the case that TOS-l < = TOS-2 < = TOS, a value range 
execution error is issued. TOS-2 remains on the stack. 

CHK2 
[in t2 ,in t2 ,in t2 :in t2] 

Integer2 Range Check 
FF OF 

This operator performs a check on the range of the integer2 
operand at TOS-2. If it isn't true that TOS-l <= TOS-2 
< = TOS, a Value Range Error execution error is reported. The 
integer2 operands at TOS and TOS-l are removed from the 
stack. The value at TOS-2 remains as the new TOS. 

DECI 
[int:in tJ 

Decrement Integer 
EE 

TOS is decremented by 1. If TOS is -32768, the result will be 
32767. 

DEC2 
[int2:int2] 

Decrement Integer2 
FF 04 

The integer2 value at TOS is decremented and the result is 
pushed onto the stack. An Integer Overflow execution error IS 

reported if the initial value is -2147483648. 

DVI 
[int,int:intJ 

Divide Integer 
8D 

If TOS is 0, a divide-by-zero execution error occurs. 

Otherwise, TOS is replaced by TOS-l DIV TOS. The division 
operation is an i.nteger division truncated toward O. 

10-58 1200301:10B 



DVI2 
[in t2 ,in t2 :in t2] 

P-CODE DESCRIPTIONS 

Divide Integer2 
FA 

The integer2 operands at TOS and TOS-l are replaced on the 
stack by the integer2 result obtained by dividing the operand at 
TOS-l by the operand at TOS. If the divisor equals zero, a 
Divide by Zero execu tion error is reported. The division 
operation is an integer division truncated toward zero. 

EQUI 
[int,int:bool] 

Equal Integer 
BO 

The Boolean result of the comparison TOS-l = TOS is pushed 
onto the stack. 

EQI2 
[int2,int2:bool] 

Equal Integer2 Comparison 
FF 07 

The integer2 operands at TOS and TOS-l are replaced on the 
stack by the Boolean result determined by comparing the 
operands. 

GEI2 Greater Than or Equal Integer2 Comparison 
[int2,int2:bool] FF OA 

The integer2 operands at TOS and TOS-l are replaced on the 
stack by the Boolean result obtained by the comparison TOS-l 
>= TOS. 

GEQI 
[in t,in t: bool] 

Greater Than or Equal Integer 
B3 

The Boolean result of the signed comparison TOS-l >= TOS is 
pushed onto the stack. 

1200301:10B 10-59 



P-MACHINE ARCHITECTURE Chapter 10 

INCI 
[int;in t) 

Increment Integer 
ED 

The word at TOS is incremented by 1. 
32767, the result will be -32768. 

If TOS was initially 

INC2 
[int2:int2) 

Increment Integer2 
FB 

The integer2 operand at TOS is incremented. If an overflow 
occurs, an Integer Overflow execution error is reported. 

LEI2 
[in t2,in t2: bool] 

Less Than or Equal Integer2 Comparison 
FF 09 

The integer2 operands at TOS and TOS-l are replaced on the 
stack by the Boolean result obtained by comparing TOS-l < = 
TOS. 

LEQI 
[int,int:int) 

Less Than or Equal Integer 
B2 

The Boolean result of the signed comparison TOS-l < = TOS is 
pushed onto the stack. 

MDI2 
[int2,int2:int2j 

Modulo Integer2 
FF 03 

If the integer2 value at TOS is zero, a Divide by Zero execution 
error is reported. 

Otherwise, the integer2 operands at TOS and TOS-l are 
replaced on the stack by the value obtained by performing 
TOS-l modulo TOS. The operation is undefined if the value at 
TOS is negative, but no execution error occurs. The result is 
always an integer2 value in the range 0 < = result < TOS. This 
result is calculated as if the value at TOS was added or 

10-60 1200301:10B 



P-CODE DESCRIPTIONS 

subtracted from the value at TOS-l until the result IS m the 
proper range. 

MODI 
[int,int:int] 

Modulo Integers 
8F 

If the integer value at TOS IS zero, a Divide by Zero execution 
error is reported. 

Otherwise, the integer operands at TOS and TOS-l are replaced 
on the stack by the value obtained by performing TOS-l modulo 
TOS. The operation is undefined if the value at TOS is negative, 
but no execution error occurs. The result is always an integer 
value in the range 0 < = result < TOS. This result is calculated 
as if the value at TOS was added or subtracted from the value at 
TOS-l until the result is in the proper range. 

MPI 
[int,int:int] 

Multiply Integer 
8C 

TOS is replaced by TOS-l * TOS. The result should be 
computed as if it were an utlsigned operation on 32-bit operands 
and only the lowest 16 bits were retained for the result. 

MPI2 
[int2,int2:int2] 

Multiply Integer2 
F9 

The integer2 operands at TOS and TOS-l are replaced on the 
stack by the product of the two operands. An Integer Overflow 
execution error is reported if the value of the result is outside the 
range of values which can be represented in the integer2 format. 

NEG2 
[in t2 :in t2] 

Negate Integer2 
FF 05 

The integer2 value at TOS is replaced with its negated value 
found by taking the two's complement. An Integer Overflow 
execution error is reported if the initial value is -2147483648. 

1200301:10B 10-61 



P-MACHINE ARCHITECTURE Chapter 10 

NEI2 
[int2 ,in t2: bool] 

Not Equal Integer2 Coxnparison 
FF 08 

The integer2 operands at TOS and TOS-l are replaced on the 
stack by the Boolean result obtained by comparing the operands. 

NEQI 
[in t,in t: bool] 

Not Equal Integer 
Bl 

The Boolean result of the comparison TOS-l < > TOS is 
pushed onto the stack. 

NGI 
[int:intJ 

Negate Integer 
El 

TOS is replaced by the negative (two's complement) of TOS. If 
TOS was initially -32768, the result should be -32768. 

SBI 
[int,int:intJ 

Subtract Integer 
A3 

TOS is replaced by TOS-l - TOS. The result should be 
computed as if it were an unsigned operation on 32-bit operands, 
and only the lowest 16 bits were retained for the result. Thus, 
overflow or underflow will "wrap around" to the opposite sign. 

SBI2 
[int2,int2:int2] 

Subtract Integer2 
F8 

The, integer2 operands at TOS and TOS-l are replaced on the 
stack by the difference obtained by subtracting TOS-l from 
TOS. An Integer Overflow execution error is reported if the sign 
bits of the operands are not equal and the sign bit of the result 
has the same sign as the TOS-l operand. 

10-62 l200301:l0B 



P-CODE DESCRIPTIONS 

Unsigned Arithxnetic 

The instuctions perform operations on unsigned integer data on 
the stack. 

ADIU 
[uint,uint:uintJ 

Add Integer Unsigned 
FF 14 

The unsigned operands at TOS and TOS-1 are replaced on the 
stack by the value of TOS-1 + TOS. An Integer Overflow 
execution error is reported if TOS-1 + TOS is greater than 
65535. 

CHKU 
ruin t, uint, uint:uin tJ 

Unsigned Integer Rangecheck 
FF 1B 

The unsigned integer operands at TOS and TOS-1 are removed 
from the stack and a range check on the value of the unsigned 
integer operand at TOS-2 is performed. A Value Out of Range 
execution error is reported if the following is not true: TOS-1 
<= TOS-2 <= TOS. 

DECU 
[uint:uintJ 

Decrexnent Integer Unsigned 
FF 1A 

The unsigned integer operand at TOS is decremented and the 
result replaces the operand on the stack. An Integer Overflow 
execution error is reported if TOS - 1 is less than zero. 

DVIU 
[uint,uint:uint] 

Divide Integer Unsigned 
FF 17 

The unsigned operands at TOS and TOS-1 are replaced on the 
stack by the value of TOS-l div TOS. A Divide by Zero 
execution error is reported if TOS is zero. 

1200301:10B 10-63 



P-MACHINE ARCHITECTURE Chapter 10 

INCU Increment Integer Unsigned 
[uint:uint] FF.19 

The unsigned integer operand at TOS is incremented and the 
result replaces the operand on the stack. An Integer Overflow 
execution error is reported if TOS + 1 is greater than 65535. 

MDIU 
[uint,uint:uintj 

Modulo Integer Unsigned 
FF 18 

The unsigned operands at TOS-1is divided by the unsigned 
integer at TOS and the remainder replaces both operands on the 
stack: A Divide by Zero execution error is reported if the original 
operand at TOS is zero. 

MPIU 
[uin t, uin t:uin t 1 

Multiply Integer Unsigned 
FF 16 

The unsigned operands at TOS and TOS-l are replaced on the 
stack by the value of TOS-l * TOS. An Integer Overflow 
execution error is reported if TOS-1 * TOS is greater than 
65535. 

SBIU 
[uint,uint:uint] 

Subtract Integer Unsigned 
FF 15 

The unsigned operands at TOS and TOS-l are replaced on the 
stack by the value of TOS-1 - TOS. An Integer Overflow 
execution error is reported if TOS-1 - TOS is less than zero. 

Real Arithmetic 

These instruction perform operations on floating point data on 
the stack. 

10-64 1200301:10B 



ABR 
[real:real] 

P-CODE DESCRIPTIONS 

Absolute Value of Real 
E3 

TOS is replaced by the absolute value of S. 

ADR 
[real,real:real] 

Add Reals 
CO 

TOS is replaced by the value TOS-1 + TOS. The result should 
be 0 on underflow. A floating point execution error is issued on 
overflow. 

DVR 
[real,real:real] 

Divide Reals 
C3 

If TOS is 0, a divide-by-zero execution error is issued. 

Otherwise, TOS is replaced by the value TOS-1 / TOS. The 
result will be 0 on underflow. A floating point execution error is 
issued on overflow. 

EQREAL 
[real,real: bool] 

Equal Real 
CD 

The Boolean result of the comparison TOS-1 = TOS is pushed 
onto the stack. 

GEREAL 
[real,real: bool] 

Greater than or Equal Real 
CF 

The Boolean result of the comparison TOS-1 >= TOS is 
pushed onto the stack. 

1200301:10B 10-65 



P~MACHINEARCHITECTURE 

LEREAL 
[real,real:booIJ 

Chapter 10 

Less than or Equal Real 
CE 

The Boolean result of the comparison TOS-l < = TOS is 
pushed onto the stack. 

MPR 
[real,real:reaIJ 

Multiply Reals 
C2 

TOS is replaced by the value TOS-l * TOS. The result will be 0 
on underflow. A floating point execution error is issued on 
overflow. 

NGR 
[real:real] 

TOS is replaced by the inverse of TOS. 

SBR 
[real,real:reaIJ 

Negate Real 
E4 

Subtract Reals 
01 

TOSis replaced by the value TOS-l - TOS. The result will be 
o on underflow. A floating point execution error is issued on 
overflow. 

Set Operations 

These instructions perform operations on set data on the stack. 

ADJ UB 
[set:blockJ 

Adjust Set 
C7 

If less than STACK SLOP words on the stack will be available 
after the completion of the adjust, a stack fault is issued. 

10-66 1200301:10B 



P-CODE DESCRIPTIONS 

The set operand at TOS is stripped of its length word and then 
expanded or compressed so that it is UB words in size. 
Expansion is done by adding words of zeros "between" TOS and 
TOS-I. Compression is done by removing high words of the set. 
It is legal for adjust to remove "significant" words of the set 
during compression. 

DIF 
[set,set:set] 

Set Difference 
DD 

The difference between sets TOS-l and TOS is pushed onto the 
stack. The difference is computed as bit-wise (TOS-l AND 
NOT TOS). 

EQPWR 
[set,set: bool] 

Equal Set 
B6 

The Boolean result of the comparison TOS-l = TOS is pushed 
onto the stack. The sets need not. be the same size-only the 
elements must match. 

GEPWR 
[set,set:bool] 

Greater than or Equal Set 
B8 

TRUE is pushed if TOS-l is a superset· of TOS. Otherwise, 
FALSE is pushed. 

INN 
[in t,set: bool] 

Set Membership 
DA 

The Boolean result of the check whether TOS is contained in the 
set TOS-l is pushed onto the stack. 

l20030l:l0B 10-67 



· P~MACHINE ARCHITECTURE 

INT 
[set,set:setj 

Chapter 10 

Set Intersec.tion 
DC 

The intersection (bit-wise AND) of sets TOS and TOS-l is 
pushed onto the stack .. 

LEPWR 
[set,set:bool) 

Less than or Equal Set 
B7 

TRUE is pushed if TOS-l IS a subset of TOS. Otherwise, 
FALSE is pushed. 

SRS Build a Subrange Set 
[int,int:set] BC 

If less than STACK SLOP words will be available on the stack 
after this operation, a stack fault is issued. 

The integers TOS and TOS-l must be in the range 0 through 
4079. (Refer to The UCSD Pascal Handbook for an explanation of 
set limitations in UCSD Pascal.) If not, a value range execution 
error is issued. 

If TOS-l > TOS, the empty set is pushed. Otherwise, a set is 
created containing the elements between TOS-l and TOS, 
inclusive, as members. This set is pushed on the stack. 

UNI 
[set,set:set] 

Set Union 
DB 

The ,.union (bit-wise OR) of the sets TOS and TOS-l is pushed 
onto the stack. 

10-68 1200301:10B 



P-CODE DESCRIPTIONS 

Byte Array Comparisons 

These instructions perform comparison operations on data 
structures (arrays and records). 

EQBYT UBI,UB2,B 
[word,word:bool] 

Equal Byte Array 
B9 

UBI and UB2 are mode flags. If UBI (or UB2) is 0, then TOS (or 
TOS-I) is a pointer to a byte array. If UBI (or UB2) is 1, then 
TOS (or TOS-I) is an offset within the current segment of a 
constant byte array. B is the size (in bytes) of the array. 

The Boolean result of the comparison TOS-l = TOS is pushed 
onto the stack. The bytes are compared one by one in the 
natural byte order of the processor until a mismatch is found or 
the end of the arrays is reached. If there is a mismatch in any 
character position, FALSE is pushed onto the stack. Otherwise, 
TRUE is pushed. 

GEBYT UBI,UB2,B 
[word ,word: bool] 

Greater than or Equal Byte Array 
BB 

UBI and UB2 are mode flags that refer to TOS and TOS-I, 
respectively. If UBI (or UB2) is 0, then TOS (or TOS-I) is a 
pointer to a byte array. If UBI (or UB2) is 1, then TOS (or 
TOS-I) is an offset within the current segment of a constant 
byte array. B is the size (in bytes) of the array. 

The Boolean result of the comparison TOS-I >= TOS is 
pushed on the stack. The bytes are compared one by one in the 
natural byte order of the processor until a mismatch is found or 
the end of the arrays is reached. If there is a mismatch and the 
character in TOS-I < the character in TOS, FALSE is pushed 
onto the stack. Otherwise, TRUE is pushed. 

120030I:IOB 10-69 



P-MACHINE ARCHITECTURE Chapter 10 

LEBYT UBI,UB2,B 
[word,word:bool] 

Less than or Equal Byte Array 
BA 

UBI and UB2 are mode flags that refer to TOS and TOS-I, 
respectively. If UBI (or UB2) is 0, then TOS (or TOS-I) is a 
pointer to a byte array. If UBI (or UB2) is 1, then TOS (or 
TOS-l) is an offset within the current segment of a constant 
byte array. B is the size (in bytes) of the array. 

The Boolean result of the comparison TOS-I < = TOS is 
pushed onto the stack. The bytes are compared one by one in the 
natural byte order of the processor until a mismatch is found or 
the end of the arrays is reached. If there is a mismatch and the 
character in TOS-I > the character in TOS, FALSE is pushed 
onto the stack. Otherwise, TRUE is pushed. 

JUIIlpS 

These instructions perform conditional and unconditional jumps 
within the p-code instruction stream. 

EFJ 
[int,int:] 

SB Equal False JUIIlp 
D2 

If TOS < > TOS-I, a jump is made, relative to the next 
instruction, by the byte offset SB. 

FJP 
[boo1:] 

SB False JUIIlp 
D4 

If TOS is FALSE, a jump is made, relative to the next 
instruction, by the byte offset SB. 

10-70 I20030I:10B 



FJPL 
[bool:] 

w 

P-CODE DESCRIPTIONS 

False Long Jump 
D5 

If TOS is FALSE, a jump is made, relative to the next 
instruction, by the byte offset W. 

NFJ 
[int,int:] 

SB Not Equal False Jump 
D3 

If TOS = TOS-l, a jump is made, relative to the next 
instruction, by the byte offset SB. 

TJP 
[bool:] 

SB True Jump 
Fl 

If TOS is TRUE, a jump is made, relative to the next instruction, 
by the byte offset SB. 

UJP 
[:] 

SB Unconditional Jump 
8A 

A jump is made, relative to the next instruction, by the byte 
offset SB. 

UJPL 
[ :] 

W Unconditional Long Jump 
. 8B 

A jump is made, relative to the next instruction, by the byte 
offset W. 

XJP 
lint:] 

B Case Jump 
D6 

B is the offset of the case jump table within the constant pool of 
the current code segment. The integer value at TOS is an index 
into this jump table. 

1200301:10B 10-71 



P-MACHINE ARCHITECTURE 

The case jump table is structured as follows: 

+-------------+ 
t.lIN 

t.lAX 

- table 

I 

minimum index 

meximum index 

= (t.lAX - MIN) + 1 
I word table containing 

relative jump offsets 
+-------------+ 

Chapter 10 

If TOS is in the range MIN through MAX, inclusive, a jump is 
made, relative to the next instruction, by the word quantity in 
table entry (TOS - MIN). (The jump table is word-indexed 
starting at zero, and follows the MAX value in memory). If the 
TOS operand has a value outside of the range MIN .. MAX, no 
jump occurs and the next p-code instruction in sequence is 
executed. 

XJP2 
[int2:] 

B Indexed Jump Integer2 
FF OE 

This instruction performs the same operation as XJP, except that 
the index value on the stack and the MIN and MAX values in the 
table are integer2 values rather than integer values. The table 
entries are still word values. 

Routine Calls and Returns 

These'instructions perform procedure calls and returns. 

For each procedure call, the following actions occur. 

If the Data _ Size word for the procedure being called (procedure 
number at TOS) is negative, nothing is allocated on the stack and 
a native code call is made. Execution resumes with the following 
p-code. 

10-72 1200301:10B 



P-CODE DESCRIPTIONS 

Otherwise, DATA SIZE words and an Mark Stack are allocated 
on the stack. If STACK SLOP words are not left on the stack 
after the MSCW and dat-;- are allocated, a stack fault is issued. 
For intersegment calls, EREC and EVEC are set to reflect the 
new environment. 

BPT 
[:activation] 

Breakpoint 
9E 

A breakpoint execution error is issued unconditionally. 

CPF 
[addr,addr,int:activation] 

Call ForInal Procedure 
97 

TOS contains a procedure number. TOS-1 contains an EREC 
pointer; TOS-2 contains a static link. The procedure TOS in 
the segment indicated by TOS-1 is called. If the segment 
indicated by TOS-1 is not in memory, a segment fault is issued. 

CPG UB 
[param :activ ation] 

Call Global Procedure 
91 

Global procedure UB in the currently executing segment is called. 
The static link field of the MSCW is set to the value of BASE 
(the global data MSCW). 

CPI DB,UB 
[param:activation] 

Call InterInediate Procedure 
92 

Intermediate procedure UB in the currently executing segment is 
called. The static link field of the MSCW is set to the 
intermediate MSCW that is DB lexical levels above the current 
MSCW . 

. 1200301:10A 10-73 



P-MACHINE ARCHITECTURE Chapter 10 

CPL UB 
[param:activation] 

Call Local Procedure 
90 

Local procedure UB in the currently executing segment is called. 
The static link field of the MSCW is set to the old value of MP. 

CXG UBl,UB2 
[param:activation] 

Call External Global Procedure 
94 

The global procedure UB2 in segment UBI is called. If segment 
UBI isn't in memory, a segment fault is issued. The static link 
field of the MSCW is set to the new value of BASE (the global 
data MSCW). 

If UBI is 1 and the procedure number matches one of the 
standard procedure numbers, the p-code performs the standard 
procedure instead' of the call. See the STANDARD 
PROCEDURES section of this chapter. 

CXI UBI,DB,UB2 
[param:activation] 

Call InterIIlediate External Proc 
95 

The intermediate procedure UB2 in segment UBI is called. If 
segment UBI isn't in memory, a segment fault is issued. The 
static link field of the MSCW is set to the intermediate MSCW 
that is DB lexical levels above the current MSCW. 

CXL UBI,UB2 
[param:activation] 

Call Local External Procedure 
93 

The local procedure UB2 in segment UBI is called. If segment 
UBI isn't in memory, a segment fault is issued. The static link 
field of the MSCW is set to the old value of MP. 

10-74 I200301:IOB 



LSL 
[:addr] 

DB 

· P-CODE DESCRIPTIONS 

Load Static Link onto Stack 
99 

DB indicates the number of static links to traverse. A pointer to 
the MSCW that is DB links above the current MSCW is pushed 
onto the stack. 

RPU B 
[activation:func] 

Return from Procedure 
96 

Execution returns to the calling procedure. 

The EREC pointer in the MSCW indicates the segment to return 
to. If the segment is not in memory, a segment fault is issued. 

Otherwise, MP is set to the Dynamic Link field of the MSCW. 
If the MSPROC field of the MSCW ~ positive, IPC is restored 
from the MSCW. Otherwise, IPC is set to the Exit IC value 
found just before the procedure code in the segment. CURPROC 
is restored from the MSCW (negating the value, if necessary). If 
the EREC pointer of the MSCW differs from EREC, EREC and 
EVEC are set to reflect the new segment. 

If the MSPROC field of the MSCW indicates that the return is to 
a Macintosh ROM routine, the RPV restores the processor 
registers and returns to the ROM. (See the description of the 
SETAR p-code for more details.) 

SCIPn VB 
[param:activation] 

Short Call Intermediate Procedure 
EF .. FO 

Intermediate procedure VB in the currently executing segment is 
called. The Static Link field of the MSCW is set to the lexical 
parent (SCPIl) or grandparent (SCPI2) of the current MSCW. 

1200301:10B 10-75 



P-1\1ACHINE ARCHITECTURE Chapter 10 

SCXGn UB 
[param:activation] 

Short Call External Global Procedure 
70 .. 77 

The global procedure UB in segment n is called. If segment n 
isn't in memory, a segment fault is issued. 

If the instruction is SCXG 1 and the procedure num ber matches 
one of the standard procedure num bers, the p-code performs one 
of these standard procedures, instead of the call. See the 
STA.NDARD PROCEDURES section of this chapter. 

Concurrency Support 

SIGNAL 
[addr:] 

Signal 
DE 

The operand at TOS is the address of a semaphore. If the 
semaphore's wait queue is empty or the count is negative, the 
count is incremented by one. Otherwise, the TIB at the head of 
the semaphore's wait queue is put on the ready queue, and its 
hang p is set to NIL. If the new task has a higher priority than 
the cii"i'-rent task, a task switch occurs. 

WAIT 
[addr:] 

Wait 
DF 

The operand at TOS is the address of a semaphore. If the 
semaphore's count is greater than zero, the count is decremented 
by one. Otherwise, the current TIB is put on the semaphore's 
wait queue, its hang _ p is set to TOS, and a task switch occurs. 

10-76 1200301:10B 



P-CODE DESCRIPTIONS 

String Operations 

The following instructions perform string assignment and 
comparison operations. 

ASTR UB1,UB2 
[addr,word:] 

Assign String 
EB 

TOS-I is the address of the destination string variable. UB2 is 
the declared size of that string (the number of characters it may 
hold). TOS is either the address of a string variable (if UBI is 0), 
or the offset of a string constant in the constant pool of the 
current segment. 

A string overflow execution error is issued if the dynamic size of 
the source string is greater than the declared size of the 
destination string. 

Otherwise, the source string is copied to the destination string. 

CSTR 
[ :] 

Check String Index 
EC 

TOS-I is the address of a string variable. TOS is an index into 
that variable. 

If the index is less than I or greater than the dynamic length of 
the string variable, a value range execution error is issued. 

EQSTR UBI,UB2 
[word,word:bool] 

Equal String 
E8 

UBI and UB2 are mode flags that refer to TOS and TOS-I, 
respectively. If UBI (or UB2) is 0, then TOS (or TOS-I) is a 
pointer to a string. If UBI (or UB2) is 1, then TOS (or TOS-I) 
is an offset of a string within the current segment. 

I20030I:IOB 10-77 



P-MACHINE ARCHITECTURE Chapter 10 

The Boolean result of the comparison TOS-I = TOS is pushed 
onto the stack. The bytes are compared one by one in the 
natural byte order of the processor until a mismatch is found or 
the end of the shorter string is reached. The comparison begins 
at the second element of the strings. If there is a mismatch in 
any character position, FALSE is pushed on the stack. 
Otherwise, the lengths of the strings are compared, and the 
Boolean result of the comparison length(TOS-I) = length{TOS) 
is pushed. 

GESTR UBI,UB2 
[word,word:bool] 

Greater or Equal String 
EA 

UBI and UB2 are mode flags that refer to TOS and TOS-I, 
respectively. If UBI (or UB2) is 0, then TOS (or TOS-I) is a 
pointer to a string. If UBI (or UB2) is 1, then TOS (or TOS-I) 
is an offset of a string within the current segment. 

The Boolean result of the comparison TOS-I > = TOS is 
pushed onto the stack. The bytes are compared one by one in the 
natural byte order of the processor until a mismatch is found or 
the end of the shorter string is reached. The comparison begins 
at. the second element of the. strings. If there is a mismatch in 
any character position and the character in TOS-l < the 
character in TOS, FALSE is pushed on the stack. Otherwise, the 
lengths of the strings are compared, and the Boolean result of the 
comparison length(TOS-I) > = length{TOS) is pushed. 

LESTR UBI,UB2 
[word,word:bool] 

Less or Equal String 
E9 

UBI and UB2 are mode flags that refer to TOS and TOS-I, 
respectively. If UBI (or UB2) is 0, then TOS (or TOS-I) is a 
pointer to a string. If UBI (or UB2) is 1, then TOS (or TOS-I) 
is an offset of a string within the current segment. 

The Boolean result of the comparison TOS-l <= TOS is 
pushed onto the stack. The bytes are compared one by one in the 
natural byte order of the processor \' 'ltil a mismatch is found or 
the end of the shorter string is reached. The comparison begins 

10-78 1200301:10B 



P-CODE DESCRIPTIONS 

at the second element of the strings. If there is a mismatch in 
any character position and the character in TOS-1 > the 
character in TOS, FALSE is pushed on to the stack. Otherwise, 
the lengths of the strings are compared, and the Boolean result of 
the comparison length(TOS-1) <= length(TOS) is pushed. 

Operand Type Conversion Operators 

The following instructions convert data on the stack from one 
data type to another. 

ATP 
[abs-ptr:word-ptrJ 

Absolute Address to Pointer 
FF 34 

The machine absolute address value at TOS is replaced on the 
stack by the p-machine word pointer value that points to the 
same memory word. 

DEREF 
[abs-ptr:abs _ ptrJ 

Dereference Absolut.e Handle 
FF 36 

The operand at TOS is a machine absolute address that points to 
a doubleword containing another absolute address. This 
instruction replaces the pointer at TOS by a value which is equal 
to the low order three bytes of the doubleword that it points to. 

EXTI 
[int:int2] 

Extend Integer to Integer2 
FD 

The integer operand at TOS is replaced on the stack by the 
integer2 operand which contains the same value. 

EXTU 
[uint:int2] 

Extend Unsigned Integer to Integer2 
FF 1D 

The unsigned integer operand at TOS is converted to an integer2 
operand. 

1200301:10B 10-79 



P'-MACHINE ARCHITECTURE Chapter 10 

FLT 
[int:real] 

Float Top-of-Stack 
CC 

Integer TOS is converted to a floating point number, and the 
result is pushed onto the stack. 

FLT2 
[in t2 :real] 

Float Integer2 
FF 12 

The integer2 operand at TOS is converted to a floating point 
number and the result replaces the integer2 operand on the stack. 

FLTU 
[uin t:real] 

Float Unsigned Integer 
FF IF 

The unsigned integer operand at TOS is converted to a floating 
point number on top of the stack. 

PTA 
[word -ptr :abs-ptr 1 

Pointer to Absolute Address 
FF 33 

The p-machine word pointer value at TOS is replaced on the 
stack by the 32-bit machine absolute address which points to the 
same memory location. 

OTP 
[int:word-ptr] 

Word Offset to Pointer 
FF 2D 

The integer operand at TOS contains a word memory offset, 
which is replaced on the stack by a word pointer which points to 
the memory word indicated by the memory offset. This 
operation is performed by shifting the word offset to the left by 
one bit to form a word pointer. 

10-80 1200301:10B 



PTO 
[word-ptr:int] 

P-CODEDESCRIPTIONS 

Pointer to Word Offset 
FF 2C 

The word pointer operand at TOS is converted to a word 
memory offset. The memory offset replaces the operand at TOS. 
This operation is performed by shifting the poin ter (a byte offset) 
to the right by one bit to form a word offset. 

RED2 
[int2:int] 

Reduce Integer2 to Integer 
FC 

The integer2 operand at TOS is reduced to an integer. An 
In teger Overflow execution error is reported if the result is 
outside the range -32768 .. 32767. 

REDU 
[int2:uint] 

Reduce Integer2 to Unsigned Integer 
FF lC 

The integer2 operand at TOS is removed from the stack, 
converted to an unsigned integer, and the result pushed onto the 
stack. An Integer Overflow execution error is reported if the 
value is negative or greater than 65535. 

REXTI 
[in t,in t2 :int2 ,in t2] 

Reversed Extend Integer 
FF 10 

The integer operand at TOS-l is converted to an integer2 
operand and inserted into the stack below the integer2 operand at 
TOS. Following the operation, there are two integer2 operands 
on the stack. 

REXTU Reversed Extend Unsigned Integer to Integer2 
[uint,int2:int2,int2] FF IE 

The unsigned operand at TOS-l is replaced on the stack by an 
integer2 of the same value. The integer2 operand at TOS 
remains on top of the stack. 

1200301:10B 10-81 



P-MACHINE ARCHITECTURE Chapter 10 

RFLT 
[in t,real:real,realj 

Reversed Float Integer 
FF 11 

The integer operand at TOS-l is converted to a floating point 
number and the result replaces TOS-l on the stack. Following 
the operation, the real operand at TOS remains the top operand 
on the stack. 

RFLT2 
[int2,real:real,realj 

Reversed Float Integer2 
FF 13 

The integer2 operand at TOS-l is converted to a floating point 
number and the result replaces the integer2 operand at TOS-I. 
Following the operation, the real operand at TOS remains the 
top pperand on the stack. 

RFLTU 
[uint,real:real,realj 

Reversed Float Unsigned Integer 
FF 20 

The unsigned integer operand at TOS-l is converted to a 
floating point number. The real operand at TOS remains on top 
of -the stack. 

ROUND 
[real:int] 

Round Real 
BF 

Real TOS is converted to an integer by rounding, and the result 
is pushed onto the stack. If the result is outside the range 
-32768 to 32767, a floating point execution error is issued. 

ROND2 
[real:int2] 

Round Real to Integer2 
FF 2F 

This performs the same operation as RND, but the integer result 
is of type integer2. A Floating Point execution error is reported 
if the result is outside the range of integer2 values. 

10-82 1200301:10B 



TRNC2 
[real:int2] 

P-CODE DESCRIPTIONS 

Truncate Real to Integer2 
FF 2E 

This performs the same operation as TRUNC, but the integer 
result is of type integer2. A Floating Point execution error IS 

reported if the result if outside the range of integer2 values. 

TRUNC 
[real:int] 

Truncate Real 
BE 

The floating point operand at TOS is converted to an integer by 
truncating, and the result is pushed onto the stack. If the result 
isn't in the range -32768 to 32767, a Floating Point execution 
error is issued. 

Miscellaneous Instructions 

These instructions perform miscellaneous operations that do not 
fit into one of the previous categories. 

DUPD 
[dword:dword,dword] 

Duplicate Doubleword 
FF 01 

The doubleword operand at TOS is replicated on the stack. 

DUPR 
[real:re;,:,!eaI1 

Duplicate Real 
C6 

The real operand at TOS is duplicated on top of the stack. 

DUPW 
[word:word,word] 

Duplicate One Word 
E2 

The word operand at TOS is replicated on the stack. 

1200301:10B 10-83 



P-MACHINE ARCHITECTURE Chapter 10 

LEREC 
[:word-ptr] 

Load Current EREC Pointer 
AA 

A word pointer addressing the EREC corresponding to the 
currently executing code segment is pushed onto the stack. 

NOTE: EREC produces the same result as "SLDC 8; LPR" but 
an update of the TIB for the currently executing task does not 
occur. 

LPR 
[int:word] 

Load Processor Register 
9D 

TOS is a register number. The value of the register indicated in 
TOS is pushed onto the stack. If TOS is negative, the following 
table indicates which register is pushed: 

-1 CURTASK 
-2 EVEC 
-3 READYQ 

If TOS is positive, the current p-Machine registers are saved in 
the TIB, and TOS is the word index of the register in the TID to 
be pushed. If TOS is less than -3 or greater than the size of a 
TIB, the result of LPR is undefined. 

NATIVE 
[ :] 

Enter Natiye Code 
AS 

This instruction cannot be generated on the Macintosh by the 
UCSD Pascal compiler. 

NATINFO B 
[:1 

Natiye Code Infor:mation 
A9 

The instruction pointer is incremented to B bytes beyond the 
byte starting after B in the p-code stream. The bytes after B 
contain information that is not used by UCSD Pascal on the 

10-84 1200301:10B 



P-CODE DESCRIPTIONS 

Macintosh. This instruction acts like a long form of NOP or a 
forward jump. 

NOP 
[: ] 

No Operation 
9C 

No operation is performed. Execution continues. 

RCALL W 
[params:result] 

Macintosh ROM Call 
FF 32 

The Macintosh ROM trap instruction contained in W is executed. 
The parameters that must be on the stack before this instruction 
and the results left on the stack by executing this instruction are 
dependent on the ROM call being executed. 

SETAR 
[word-ptr ,word-ptr ,int,int:abs-ptr] 

Set Action Routine 
FF 37 

To explain this p-code, mnemonic names for the stack operands 
will be used. STATLNK is the word pointer operand at TOS-3. 
ERECPTR is the word pointer operand at TOS-2. PROCNUM 
is the integer operand at TOS-l. SLOTNUM is the integer 
operand at TOS. Each of these stack operands will be removed 
by this instruction and an absolute pointer operand ADDR will 
be pushed onto the stack as the result. 

This instruction establishes a p-code routine as an "action 
routine". STATLNK is the static link pointer required in the 
MSSTAT field of the MSCW built for a call to the action 
routine. ERECPTR is a p-Machine pointer to the EREC for the 
segment containing the action routine. PROCNUM is the 
procedure number for the routine. SLOTNUM is a number in the 
range 0 thru 9 which selects which p-Machine caller routine is to 
be used. 

1200301:10B 10-85 



.P-MACHINE ARCHITECTURE 

The p-Machine remembers which p-code routines have been 
associated with its caller routines in a table. 

Conceptually, the mechanism involves associating each p-code 
action routine with a unique native code "caller" routine in the 
p-Machine. The 32-bit absolute address of the caller routine is 
returned as the result ADDR. The address ADDR can then be 
passed to the Macintosh operating system and ROM routines. 
When the Macintosh ROM decides to call an action routine, it in 
fact calls the native code caller routine in the p-Machine. The 
native code caller routine in turn forces the p-Machine to do a 
call to the :p-code action routine to which it has been" attached ". 
When the." p-code action routine returns, the native code caller 
routine returns to its caller. 

There are ten native code "caller" routines (numbered 0 thru '9) 
available for use. 

NOTE: p-code action routines must reside in code segments that 
are loaded in memory when they are called by the p-Machine's 
caller routines. (The caller routines cannot handle a segment 
fault because there is no p-code call instruction to re-execute 
after the segment has been brought into memory.) 

When one of the caller routines calls a p-code action routine, bit 
8 of the MSPROC word of the MSCW is set to 1. This is a 
special flag used to indicate to the RPU instruction that control 
should be transferred back to the Macintosh ROM or operating 
system. This technique takes advantage of the fact that 
MSPROC is normally in one of the following ranges of 
hexadecimal values when an RPU is executed: 

0001 •• OOFF (Norma' ret-urn) 

If the RPU handler detects bit 8 of MSPROC turned on, and bit 
15 isn't turned on, it causes a return to the appropriate 
Macintosh ROM routine. 

10-86 1200301:10B 



SPR 
[int,word:] 

P-CODE DESCRIPTIONS 

Store Processor Register 
D1 

TOS-1 is a register number. If TOS-1 IS negative, TOS is 
stored in one of the following registers: 

-1 CURTASK 
-2 EVEC 
-3 READYQ 

Otherwise, the current p-Machine registers are stored in the 
TIB. TOS is stored in the TIB at offset TOS-I. Finally, the 
p-Machine registers are restored from the TIB. 

SWAP 
[word,word:word,word] 

Swap 
BD 

Word TOS is swapped with word TOS-1 on the stack. 

SWAPD 
[dword,dword:dword,dword] 

Swap Doublewords 
FF 02 

The two doubleword operands at TOS and TOS-1 are exchanged 
on the stack. 

STANDARD PROCEDURES 

The standard procedures are procedures that are implemented in 
the PME directly, either for speed or because the nature of the 
procedure requires that it be written in native code. A standard 
procedure is called via a CXG or SCXG1 instruction. The 
procedure executed is determined by the procedure number. 

Most of the standard procedures require parameters on the stack, 
and some expect a function return value to be passed back. In 
some sense they act more like individual p-codes than 
procedures, because no RPU instruction is executed to return 

1200301:10B 10-87 



p-MACHINE ARCHITECTURE Chapter 10 

control to the caller. For this reason, the procedure descriptions 
that follow are presented in a format similar to that of the 
p-code descriptions-showing the stack before and after 
execution. The first line of each description gives the name of the 
procedure and its parameters; the second line gives the stack 
values and procedure number. 

Standard procedures fall into several categories: I/O support, 
string procedures, compiler procedures, code pool procedures, 
concurrent procedures, and miscellaneous procedures. The 
procedures in each category are discussed in the paragraphs that 
follow. 

I/0 Support 

IORESULT 
[zero:int] IE 

TOS is a return word. IORESULT returns the value of the 
p-Machine register IORESULT. 

IOCHECK 
[:] 17 

IOCHECK tests the p-Machine register IORESULT for O. If the 
register is nonzero, an I/O execution error is issued. 

String 

The standard string procedures are MOVELEFT, MOVERIGHT, 
FILL CHAR , and SCAN. 

10-88 1200301:10B 



STANDARD PROCEDURES 

MOVELEFT 
[byte-ptr ,byte-ptr ,int:] OF 

The integer operand at TOS is the number of bytes to move. 
The operand at TOS-l is a byte pointer to the destination. The 
operand at TOS-2 is a byte pointer to the source. If TOS is 0 or 
negative, no bytes are moved. Otherwise, the bytes are moved 
one at a time ~tarting from the left (low order byte). 

MOVERIGHT 
[byte-ptr ,byte-ptr ,int:] 10 

The integer operand at TOS is the number of bytes to move. 
The operand at TOS-l is a byte pointer to the destination. The 
operand at TOS-2 is a byte pointer to the source. If TOS is 0 or 
negative, no bytes are moved. Otherwise, the bytes are moved 
one at a time starting from the righ t (high order byte). 

FILLCHAR 
[byte-ptr ,in t,word:] 15 

The operand at TOS is the character. The integer operand at 
TOS-l is the length to fill. The operand at TOS-2 is the 
starting address for the fill. If TOS-l is 0 or negative, no filling 
is done. Otherwise, memory is filled with the byte TOS for 
TOS-l bytes starting at address TOS-2. 

SCAN 
[zero,int, bool, byte, byte-ptr, word:in t] 16 

The word operand at TOS is a mask field (unused). The operand 
at TOS-l is a byte pointer to the array to scan. The operand at 
TOS-2 is the byte to look for. The boolean operand at TOS-3 
is the scan kind (0 means until equal, 1 means until not equal). 
The integer operand at TOS-4 is the length to scan. If the 
length is negative, the scan proceeds to the left. The zero 
operand at TOS-5 is the function result word. 

1200301:10B 10-89 



P-MI\CHINE ARCHITECTURE Chapter 10 

The array at TOS-l is scanned in the direction indicated in 
TOS-4 until the character TOS-2 is found (TOS-3 = 0) or a 
non matching character is found (TOS-3 = 1) or until the length 
in TOS-4 is exhausted. The distance between the character 
where SCAN stopped and the start character is passed back as 
the function result. 

CoxnpiIer 

The standard compiler procedures are TREESEARCH and 
IDSEARCH. 

TREESEARCH 
[zero,addr ,addr ,addr:int] 26 

The operand at TOS is a pointer to the target string, which is a 
packed array of eight characters. The operand at TOS-1 is a 
pointer to where the result of the search will be saved. The 
operand at TOS-2 is a pointer to the root of the identifier tree 
to be searched. The zero operand at TOS-3 is the return word. 

TREESEARCH searches the symbol table tree TOS-2 for the 
target string TOS, returning a pointer to where the target was 
found in the variable pointed to by TOS-I. If the target wasn't 
found, the variable pointed to by TOS-1 will point to the leaf 
node of the tree that was searched last. The function result 
returns status information: 

o 
1 

-1 

10-90 

~erge~ was found 
~arge~ is ~o ~he ri9h~ 
~arge~ is ~o ~he lef~ 

1200301:10B 



ST Ai\JDARDPROCEDURES 

Each node of the tree contains the following fields at the 
indicated byte offsets: 

o 
8 

10 

name (8 characters) 
right link (pointer) 
left link (pointer) 

IDSEARCH 
[addr,addr:] 25 

The operand at TOS is the address of a buffer. The operand at 
TOS-l is the address of a record that has the following fields at 
the indicated byte offsets: 

o SYMCURSOR 
2 SY 
4 OP 
6 ID 

IDSEARCH scans the buffer at byte offset SYMCURSOR for an 
iden tifier (string beginning with a letter, containing letters, 
digits, and underscores), ignoring underscores and masking 
lowercase to uppercase. The identifier is blank-filled to eight 
characters, then placed in ID for a maximum of eight characters. 
SYMCURSOR is updated to point to the last character past the 
iden tifier. 

Finally, the identifier is looked up in a table of reserved words, 
and its two characteristics are filled into SY and OP. If the 
identifier is not found in the table, SY is set to 0 and OP is set to 
15. 

Here is the table of reserved words, along with the SY and OP 
values for each one: 

ID 

AND 
ARRAY 
BEGIN 

1200301:lOB 

SY 

39 
44 
19 

OP 

2 
15 
15 

10-91 



P-MACHINE ARCHITECTURE Chapter 10 

CASE 21 15 
CONST 28 15 
DIV 39 3 
DO 6 15 
DOWNTO 8 15 
ELSE 13 15 
END 9 15 
EXTERNAL 53 15 
FOR 24 15 
FILE 46 15 
FORWARD 34 15 
FUNCTION 32 15 
GOTO 26 15 
IF 20 15 
IMPLEMEN 52 15 
IN 41 14 
INTERFAC 51 15 
LABEL 27 15 
MOD 39 4 
NOT 38 15 
OF 11 15 
OR 40 7 
PACKED 43 15 
PROCEDUR 31 15 
,PROCESS 56 15 
-PROGRA1\1 33 15 
REPEAT 22 15 
RECORD 45 15 
SET 42 15 
SEGMENT 33 15 
SEPARATE 54 15 
THEN 12 15 
TO 7 15 
TYPE 29 15 

;UNIT 50 15 
-UNTIL 10 15 
USES 49 15 
VAR 30 15 
WHILE 23 15 
WITH 25 15 

10-92 1200301:10B 



STAt'\iDARD PROCEDURES 

Code·Pool 

The standard code pool procedure is RELOCSEG. 

RELOCSEG 
[addr:] 04 

The operand at TOS is the address of an EREC. RELOCSEG 
relocates the segment pointed to by the EREC. Since 
RELOCSEG is called after a segment is first read in to memory, 
all necessary relocation is performed. 

Concurrency 

The standard concurrency procedures are: QUIET, ENABLE, 
and ATTACH. 

QUIET 
[: ) lB 

QUIET must disable all p-Machine events such that no attached 
semaphore is signaled until the corresponding call to ENABLE is 
made. 

ENABLE 
[:] Ie 

ENABLE reenables p-Machine events that have been disabled by 
QUIET. 

ATTACH 
[addr,int:) 1D 

The integer operand at TOS is the number of a p-Machine event 
vector. It must be in the range 0 through 63. The operand at 
TOS-l is the address of a semaphore. 

1200301:10B 10-93 



P~MI\CHINE ARCHITECTURE Chapter 10 

ATTACH associates the semaphore pointed to by TOS~1 with 
the vector TOS such that whenever the event TOS is recognized, 
the semaphore is signaled. If the semaphore pointer is NIL, 
vector TOS must be unattached from any sempahore it was 
formerly attached to. If TOS is not in the range 0 through 63, no 
operation is performed. 

Miscellaneous 

Standard procedures classified as miscellaneous are TIME and 
POWEROFTEN. 

TIME 
[addr,addr:] 14 

The operand at TOS is a pointer to where the high word of the 
time will be saved. The operand at TOS~ 1 is a pointer to where 
the low word of the time will be saved. 

TIME saves the high and low words of the system clock (a 32~bit 
60 Hz clock) in the indicated words. The clock value returned is 
the.Macintosh time (number of ticks since January 1, 1904). 

POWEROFTEN 
[ zero,zero,zero,zero,int:real] 20 

The integer operand at TOS is a positive integer power. 
POWER OFTEN returns the real value ten to the power of TOS. 
If TOS is negative or TOS is greater than the largest expressible 
power, a floating point execution error is issued. The four words 
of zero are the return value. 

10~94 1200301:10B 



ST Al'l"DARD PROCEDURES 

LONG INTEGERS 

The long integer data type is a nonscalar data type unique to 
UCSD Pascal. Long in tegers may be up to 36 decimal" digits long. 
Although they lack some of the flexibility of scalar types, long 
integers allow operations on integers outside the range of UCSD 
Pascal integer2 type (-2147483648 .. 2147483647). In 
computations, long integers act like real num bers; however, they 
act more like sets in the way they are implemented and in the 
way they are passed as parameters. ' 

NUInber ForInat 

On the stack (when used in calculations), long integers are of 
variable length, and consist of a length word followed by a 
number component. 

A long integer five words long that IS on the top of stack looks 
like this: 

length (1 word) 

number (6 words) 

rest of steck 

+---------------+ 
6 

number 
component. 

111111111111//1 

<--sp 

When a long integer is assigned to a variable, or stored in a file 
on disk, only the number component is present. The length word 
is present only when the number is on the stack. Each long 
integer variable is allocated a fixed number of words. When a 
long integer is assigned to a variable, the number must be coerced 
to the storage size of the variable. If this can't be done, an 
Integer Overflow execution error occurs. 

The storage size for long integers is from two to ten words, based 
on the number of digits specified in the declaration statement. 

1200301:10B 10-95 



P-MACHINE ARCHITECTURE Chapter 10 

The following table shows the allocation SlZe for each declared 
SlZe. 

1..4 
5 .. 8 
9 .. 12 
13 .. 16 
17..20 
21..24 
25 .. 28 
29 .. 32 
33 .. 36 

size (words) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

The declaration size reflects the approximate number of digits 
that may be stored in the number. More digits than the declared 
number of digits may sometimes be stored in a long integer 
variable. As a result, the overflow value for a long integer may 
vary depending on the size of the long integer. The fact that 
more digits than the declared size may be stored in a long integer 
variable shouldn't be relied upon. The number of digits specified 
in the declaration of a long integer should be treated as the 
maximum number of digits that the number will ever hold. 

The following paragraphs show the format of the long integer 
number component. 

UCSD Pascal on the Macintosh stores long integers by using a 
sign-magnitude binary-coded decimal (BCD) format with the 
first word a sign word. The magnitude part of the long integer is 
stored in natural byte order (the most significant digits in the 
byte with the lowest address); the number is right-justified 
within the field. In the sign word, 0 means positive, and FFFF 
means negative. 

Exemples: 

00 00 
FF FF 
00 00 
FF FF 

10-96 

00 02 76 99 
00 10 
00 00 
00 00 

s 27699 
s -10 
is 0 
s elsa 0 

1200301:10B 



LONGINTEGERS 

Long Integer Constants 

Long integer constants are constructed at run time by code 
generated by the compiler. This code builds each constant by 
doing a series of calculations on integers and integer2s. 

Example 1. To build the long integer constant 12, the compiler 
generates code to do the following: 

ILI (12) 

where 12 is an integer constant, and ILl is the routine to convert 
an integer to a long integer. 

Example 2. To build -8733442, the compiler generates code to 
do the following: 

-(I2LI(8733442» 

Example 3. To build the long integer constant 123456789012345, 
the compiler generates code to do the following: 

I2LI(1234567890)_I2LI(100000) + I2LI(12345) 

1200301:10B 10-97 



P-'-MACHINE ARCHITECTURE Chapter 10 

Here is a listing of the actual p-code generated for the last 
example. The long integer routines called to do each operation 
are described in detail later. 

LAO 1 8610 
LOCO 1234667890 FF0049960202 
SLOC 22 16 
SCXG LONGOPS 2 7202 I2LI 
LOCO 100000 FFOOOOO186AO 
SLOC 22 16 
SCXG LONGOPS 2 7202 I2LI 
SLOC 8 08 
SCXG LONGOPS 2 7202 MPLI 
LOCI 12346 813930 
EXTI FD 
SLOC 22 16 
SCXG LONGOPS 2 7202 I2LI 
SLOC 2 02 
SCXG LONGOPS 2 7202 AOLI 
SLOC 6 06 
SLOC 0 00 
SCXG LONGOPS 2 7202 AOJL 
STM 6 8E06 

The LONGOPS Unit 

LONGOPS is the UCSD Pascal unit that implements the long 
integer functions. LONGOPS contains three procedures: 
FREADDEC reads a long integer, FWRITEDEC writes a long 
integer, and DECOPS performs the long integer arithmetic 
functions. 

Although LONGOPS isn't part of the p-Machine, it isn't a 
normal UCSD Pascal unit either. Normally, a UCSD Pascal 
procedure or function must have fixed-size parameters, where 
the parameter's size is known at compile time. There is one 
procedure in LONGOPS (DECOPS) that takes variable size 
parameters. One way to view this is that each call to DECOPS is 
like the execution of a single p-code in the PME. Different 
functions of DECOPS take different parameters and return 
different results, just as different p-codes do. In fact, DECOPS 

10-98 1200301:10B 



LONG INTEGERS 

performs functions very similar to the set p-codes in the P:ME. 

The DECOPS Routine 

DECOPS is an external (assembly language) procedure III unit 
LONGOPS that performs the long integer functions. 

Parameters are passed to DECOPS on the stack. On every call, 
the stack looks like this: 

+---------------+ (--Sp 
1-2 words ,..eturn eddress 

1 word func~ion code 

n words perame'bers 

res~ of s~ack IIIIIIIIIIIIIII 

The return address is the standard return information for an 
assembly language routine. 

The function code is a word that describes the function to be 
performed. The actions performed by each function are discussed 
below, along with the numeric value of the associated function 
code. Function codes are even integers between 0 and 34. Even 
integers are used to facilitate jumping indirectly through a word 
array of addresses. 

The parameters vary for each long integer function. The 
param eter requiremen ts for each routine are included in the 
description of the routine. 

Below are the descriptions of each routine in DECOPS. The first 
line of each description contains the function name and 
mnemonic. The second line contains a list of the stack operands 
before and after the function, and the function code (in hex). 
The stack lists are in brackets, separated by a colon. The list to 
the left of the colon is the stack before the function; the list to 
the right of the colon is the stack contents after the function. 

1200301:10B 10-99 



P-MI\CHINE ARCHITECTURE Chapter 10 

The rightmost operand in each list is the top of stack operand. 
Finally, there is a detailed description of the function, including 
any error conditions that should be recognized. 

Here are the abbreviations used in the descriptions: 

longin t 

alongint 

int 

Long In teger. A variable-length long integer, 
containing a length word. 

Adjusted Long In teger. A fixed length long integer 
that does not contain a length word. 

A 15-bit signed integer quantity. 

bool Boolean. A boolean quantity (l=TRUE, 
O=FALSE). 

uint Unsigned Integer. A 15-bit unsigned integer m the 
range 0 .. 65535 

int2 Integer2. A 32-bit signed integer. 

addr Address. A 16-bit offset within the Pascal data 
area. 

ADJL 
[longin t,int: alongin tJ 

Adjust Long Integer 
00 

Adjusts the longint operand at TOS-l into an adjusted long 
integer suitable for assignment to a variable. It does this by 
stripping off the size word from the longint, then expanding or 
contracting it until it is the number of words in length as specfied 
by the integer operand at TOS. If a contraction can't be done 
because of overflow, an Integer Overflow execution error is 
reported. 

10-100 1200301:10B 



ADLI 
[longin t,longin t:longin t] 

LONG INTEGERS 

Add Long Integer 
02 

Adds the two long integer operands at TOS-1 and TOS, placing 
the result on the stack. If the result has more than 36 digits, an 
Integer Overflow execution error may be reported. 

SBLI 
[longin t,longin t:longin t] 

Subtract Long Integer 
04 

Subtracts the long integer operand at TOS from the long integer 
operand at TOS-l, placing the result on the stack. If the result 
has more than 36 digits, an Integer Overflow execution error may 
be reported. 

NGLI 
[longin t:longin t] 

Negate Long Integer 
06 

The long integer operand at TOS is negated. 

MPLI 
[longint,longin t:longin t] 

Multiply Long Integer 
08 

The long integer operands at TOS-l and TOS are multiplied, 
and the result is pushed onto the stack. If the result has more 
than 36 digits, an Integer Overflow execution error may be 
reported. 

DVLI 
[longint,longin t:longin t] 

Divide Long Integer 
OA 

The long integer operand at TOS-1 is divided by the long 
integer operand at TOS, and the result is pushed onto the stack. 
If the result has more than 36 digits, an Integer Overflow 
execution error may be reported. If the divisor is zero, a Divide 
by Zero execution error is reported. 

1200301:10B 10-101 



P-:M.ACHINE ARCHITECTURE 

LISTR 
[Iongint,addr ,int:] 

Chapter 10 

Long Integer to String 
OC 

The long integer operand at TOS-2 is converted into a string, 
placing the result at the location pointed to by the operand at 
TOS-l. The integer operand at TOS is the maximum length of 
the string. If the long integer requires more than characters than 
specified by the maximum length, a String Overflow execution 
error is reported. 

RILl Reversed Integer to Long Integer 
[in t ,longin t:longin t,longin t] OE 

The integer operand at TOS-l is converted into a long integer. 
The long integer at TOS is left unchanged at the top of the stack. 

CMPLI 
[longin t,longint,in t: bool] 

Compare Long Integers 
10 

The long integer operand at TOS-2 is compared with the long 
integer operand at TOS-l and the boolean result of the 
comparison is pushed onto the stack. The type of comparison to 
be :performed is indicated by the integer operand at TOS as 
follows: 

o less than 

ILl 

1 
2 
3 
4 
5 

[in t:longin t] 

less than or equal 
greater than or equal 
greater than 
not equal 
equal 

Integer to Long Integer 
12 

The integer operand at TOS is converted into a long integer and 
pushed onto the stack. 

10-102 1200301:10B 



LIT 
[longint:int] 

LONG INTEGERS 

Long Integer to Integer 
14 

The long integer operand at TOS is converted into an integer and 
pushed onto the stack. If the conversion can't be made (long 
integer isn't in the range -32768 .. 32767), an Integer Overflow 
execution error is reported. 

12LI 
[int2:longint] 

Integer2 to Long Integer 
16 

The integer2 operand at TOS is removed from the stack, 
converted into a long integer, and the result is pushed onto the 
stack. 

RI2LI Reversed Integer2 to Long Integer 
[in t2 ,longin t:longin t ,iongin t] 18 

The integer2 operand at TOS-l is removed from the stack, 
converted into a long integer, and the result is pushed onto the 
stack. Following the operation, the long integer operand at TOS 
remains at the top of the stack. 

LIT2 
[longint:int2] 

Long Integer to Integer2 
lA 

The long integer operand at TOS is removed from the stack, 
converted to an integer2 operand, and the result is pushed onto 
the stack. If the value of the long integer is outside the range of 
values that can be represented by an integer2 operand, an Integer 
Overflow execution error is reported. 

ULI 
[uint:longint] 

Unsigned Integer to Long Integer 
Ie 

The unsigned integer operand at TOS is removed from the stack, 
converted to a long integer, and the J:esult is pushed onto the 
stack. 

1200301:10B 10-103 



P-.M.ACHINE ARCHITECTURE Chapter 10 

RULI Reversed Unsigned to Long Integer 
[u in t,longin t:longin t,longin t] IE 

The unsigned integer operand at TOS-I is converted to a long 
integer on the stack. Following the operation, the long integer 
operand at TOS remains at the top of the stack. 

LIU 
[longint:uint] 

Long Integer to Unsigned Integer 
20 

The long integer operand at TOS is removed from the stack, 
converted to an unsigned integer, and the result is pushed onto 
the stack. If the long integer operand is negative, or greater than 
65535, an Integer Overflow execution error is reported. 

ABLI 
[longin t:longin tJ 

Absolute Value Long Integer 
22 

The long integer operand at TOS is replaced by the long integer 
result containing its absolute value. 

10-104 1200301:10B 



APPENDIX A 
MACINTOSH INTERFACE 

A.!. Table of Compile Time Dependencies 

The following table indicates the compile time dependencies 
between the Macintosh interface units. For example, if your 
program uses the unit ControlMgr then it must first use the units 
MacCore, QdTypes, and TbTypes. All of the units with a 'c' in 
the code column contain code and are therefore included in the 
Mac Library file. Some of the units that contain code reference 
other units that contain code. Runtime dependencies are listed 
after the 'c' in the code column. For example, the FileMgr 
references the PBIOMgr. If your program uses the FileMgr then 
you must make the FileMgr, PBIOMgr and MacCore units 
available to your program at runtime. 

I20030I:OAB A-I 



I\1AGINTOSH INTERF AGE Appendix A 

Unit. N"me Code Compi Ie Time Dependencies 
--------- -------------------------

M .. cCore (1.4) C 
M"cO"t. .. (0) C / M 1.4 Q 

M .. cErrors (E) 
OSTypes (0) 1.4 Q T 
QOTypes (Q) 1.4 

TBTypes (T) 1.4 Q 

Cont.rolMgr 1.4 Q T 
OeskMgr 1.4 Q T 
Oi .. logMgr C / 1.4 1.4 Q T 
Event-Mgr C / 1.4 1.4 Q T 
Fi leMgr C / 1.4 P 1.4 

Font-Mgr 1.4 Q 
MemoryMgr (104M) C / 1.4 1.4 

MenuMgr 1.4 Q 
OSUt. iii t. i es C / 1.4 104M 1.4 Q T 0 
Peckeges 1.4 

PBIOMgr (P) C / 1.4 1.4 Q T 0 
Print.Orvr C / 1.4 104M P 1.4 

Print.Mgr C / 1.4 1.4 Q 
QuickOr .. w 1.4 Q 
ReaMgr 1.4 

Scr .. pMgr 1.4 

Serial C / 1.4 1.4 

Sound C I M 1.4 
. TBoxUt. i Is 1.4 Q 
Text.Edit. 1.4 Q T 
Wi ndowMgr 1.4 Q T 

A-2 1200301:0AB 



Table ofCompi!e Time Dependencies 

A.2 Identifier Cross-Reference List 

The following list defines the two-letter codes used for the 
ToolBox Managers. 

CM ControlMgr 
DS DeskMgr 
DL DialogMgr 
EM EventMgr 
FL FileMgr 
FM FontMgr 
MC MacCore 
MD MacData 
ME MacErrors 
MM MemoryMgr 
MN MenuMgr 
OT OSTypes 
OU OSUtilities 
PK Packages 
PB PBIOMgr 
PR PrintMgr 
PD PrintDrvr 
QT QDTypes 
QD QuickDraw 
RM ResMgr 
SM ScrapMgr 
SD Serial 
SN Sound 
TU TBoxUtils 
TT TBTypes 
TE TextEdit 
WM WindowMgr 

The following cross reference list contains the identifiers from the 
Macintosh interface units. The two-letter code to the right of 
each identifier indicates which unit it is in. 

A5 
AbbrevDate 
abbrLen 

1200301 :OAB 

MD AbortErr 
PK abortEvt 
PK abortMask 

ME abs nil 
EM acti:;ateEvt 
EM activ Mask 

MC 
EM 
EM 

A-3 



I\1.ACINTOSH INTERFACE Appendix A 

AddPt QD BadBtSlpErr ME bothAxes WM 
AddReference RM BadCkSmErr ME botRight QT 
AddRefFailed ME BadDBtSlp ME bottom QT 
AddResFailed :ME BadDCkSum ME bounds QT 
AddResMenu MN BadMDBerr ME boundsRect DL 
AddResource RM BadUnitErr ME boundsRect DL 
aDefItem DL baseAddr QT BoutRefNum SD 
AinRefNum SD baud1200 SD bPatScale PR 
alarm OU baud1800 SD bPort PR 
Alert DL baud19200 SD BreakRecd ME 
AlertTemplate DL baud2400 SD BringToFront WM 
AlertTHndl DL baud300 SD bSpoolLoop PR 
AlertTPtr DL baud3600 SD btnCtrl DL 
Allocate FL baud4800 SD bUIOffset PR 
AllocPtr MM baud57600 SD bUlShadow PR 
altDBoxProc WM baud600 SD BUlThick PR 
amplitude SN baud7200 SD bUserlLoop PR 
AngleFromSlop TU baud9600 SD bUser2Loop PR 
AoutRefNum SD BdNamErr ME Button EM 
ApFile OU bDraftLoop PR bXInfoX PR 
applEvt EM BeginUpdate WM Byte MC 
applMask EM bFileVers PR 
app2Evt EM BinRefNum SD calcCRgns CM 
app2Mask EM BitClr TU CalcMenuSize MN 
app3Evt EM BitMap QT CalcVis WM 
app3Mask EM BitMapPtr QT Calc VisBehind WM 
app4Evt EM Bits16 QT Cancel DL 
app4Mask EM BitSet TU CantStepErr ME 
AppendMenu MN bitsProc QT CaretTime EM 
appleSym bol MN BitTst TU CautionAlert DL 
applFont FM bJDocLoop PR century PK 
ApplicZone MM bJobx PR ChangedResour RM 
arcProc QT bkColor QT Chars TE 
arrow MD BkLim MM CharsHandle TE 
ascent QT bkPat QT CharsPtr TE 
ascent FM black MD CharWidth QD 
athens FM blackBit QD checkBoxProc CM 
autoKey EM blackColor QD CheckItem MN 
autoKeyMask EM BlockMove MM checkMark MN 
autoTrack CM blueBit QD Check Update WM 

blueColor QD chkCtrl DL 
BackColor QD bold QT ClearMenuBar MN 
BackPat QD bold FM ClipAbove WM 

A-4 1200301:0AB 



Iden tifier Cross-Reference List 

ClipRect QD Con trolRecord CM dataHandle TT 
clipRgn QT copy PK Data VerErr ME 
ClkRdErr ME CopyBits QD Date2Secs OU 
ClkWrErr ME copyCmd DS dateFmt PK 
CloseDeskAcc DS CopyRgn QD dateOrder PK 
CloseDialog DL CorErr ME dateSep PK 
CloseDriver FL CouldAlert DL DateTimeRec OU 
ClosePicture QD CouldDialog DL day OU 
ClosePoly QD count SN day LeadingO PK 
ClosePort QD count SN dayLeadingZ PK 
CloseResFile RM CountAppFiles OU dayOfWeek OU 
CloseRgn QD CountMItems MN days PK 
ClosErr ME Coun tResources RM DBoxProc WM 
Close Window WM CountTypes RM decimalPt PK 
ClrAppFiles OU Create FL Delay OU 
CntEmpty MM CreateResFile RM DeleteMenu MN 
CntHandles MM crOnIy TT DeltaPoint TU 
CntNRel MM CSCode OT denom FM 
CntRel MM CSParam OT Dequeue OU 
CntrlParam OT ctnIcon DL descent QT 
ColorBit QD ctrlItem DL descent FM 
colrBit QT CTSHold SD destRect TT 
commentProc QT cumErrs SD DetachResourc RM 
CompactMem MM CurResFile RM device QT 
condense QT currFmt PK device FM 
contRgn TT currLeadingZ PK dialogKind WM 
con trlAction CM currNegSym PK DialogPeek DL 
contrlData CM currSyml PK DialogPtr DL 
con tr IDefProc CM currSym2 PK DialogRecord DL 
con tr lHiIite eM currSym3 PK DialogSelect DL 
contrlMax CM currSymTrail PK DiaIogTem p la t DL 
contrlMin CM currTrailingZ PK DialogTHndl DL 
contrlOwner CM Cursor QT DialogTPtr DL 
contrlRect CM CursorPtr QT DIBadMount PK 
contrlRfCon CM cutCmd DS DiffRgn QD 
contrlTitle CM cyanBit QD DIFormat PK 
contrlValue CM cyanColor QD DILoad PK 
contrlVis CM DlnstErr ME 
Control FL data QT DirFulErr ME 
ControlErr ME data5 SD DisableItem MN 
ControlHandle CM dataB SD diskEvt EM 
controlList TT data7 SD diskMask EM 
ControlPtr CM data8 SD dispCntl CM 

1200301:0AB A-5 



MACINTOSH INTERFACE Appendix A 

DisposDialog DL DSBadLaunch ME EqualString OU 
DisposeCon trol CM DSBusError ME Erase QD 
DisPoseMenu MN DSChkErr ME EraseArc QD 
DisposeRgn QD DSCoreErr ME EraseOval QD 
DisposeWindow WM DSFPErr ME ErasePoly QD 
DisposHandle },tIM DSFSErr ME EraseRect QD 
DisposPtr MM DSIlllnstErr :ME EraseRgn QD 
DIUnload PK DS]OCoreErr ME EraseRoundRec QD 
DIVerify PK DSlrqErr ME errNum FM 
DIZero PK DskFulErr ME ErrorSound DL 
dkGray MD DSLineAErr ME errs SD 
DIgCopy DL DSLineFErr ME evenParity SD 
DlgCut DL DSLoadErr ME Event OT 
DIgDelete DL DSMemFullErr ME EventAvail EM 
DIgPaste DL DSMiscErr ME EventRecord TT 
DMY PK DSNotThel ME everyevent EM 
DocumentProc WM DSOvFlowErr ME eveStr PK 
DoubleTime EM DSPrivErr ME EvQEl OT 
dQDrive OT DSReInsert ME evQElem OT 
dQDrvSize OT DSStknHeap ME evQType OT 
DQFSID OT DSSysErr ME EvtRecPtr TT 
dQRefNum OT DSTracErr ME evts SD 
dragCntl CM DSZeroDivErr ME extend QT 
DragCon trol CM dummyType OT ExtFSErr ME 
DragGrayRgn WM DupFNErr ME extra FM 
DragWindow -WM duration SN 
DrawChar QD duration SN face FM 
drawCntl CM family FM 
DrawControls CM editField DL FBsyErr ME 
DrawDialog DL editOpen DL fCTS SD 
DrawGrowIcon WM editText DL fdCreator OT 
DrawMenuBar MN Eject FL fdFlags OT 
DrawNew WM EmptyHandle MM fdFldr OT 
DrawPicture QD EmptyRect QD fdLocation OT 
DrawString QD EmptyRgn QD fdType OT 
Dra,vText QD enableFlags MN FeedCut PR 
DRemovErr ME EnableItem MN FeedFanFold PR 
driverEvt EM EndUpdate WM FeedMechCut PR 
driverMask EM Enqueue OU FeedOther PR 
DrvQEI OT EOFErr lYlE FFmode SN 
drvQElem OT EqualPt QD fFromUsr PR 
drvQType OT EqualRect QD FFSynthRec SN 
DSAddressErr ME EqualRgn QD fgColor QT 

A-6 1200301:0AB 



Identifier Cross-Reference List 

fiCreator FL FontInPtr QT GetCTitle CM 
fiflags FL ForeColor QD GetCtlAction CM 
fifldr FL 'FOsType MC GetCtlMax CM 
fih FL fPgDirty PR GetCtlMin CM 
FileParam OT FPoint QT GetCtlValue CM 
Fill QD Frame QD GetCursor TU 
FillArc QD FrameArc QD GetDItem DL 
FillOval QD FrameOval QD getDlgld PK 
fillP at QT FramePoly QD getDrive PK 
FillPoly QD FrameRect QD GetDrvQHdr PB 
FillRect QD FrameRgn QD getEject PK 
FillRgn QD FrameRoundRe QD GetEOF FL 
FillRoundRect QD framingErr SD GetFlnfo FL 
fiLocation FL FreeAlert DL GetFNum FM 
fImaging PR FreeDialog DL GetFontInfo QD 
FindControl CM FreeMem MM GetFontName FM 
finderInfo FL freeWave SN GetFPos FL 
FindWindow WM FrMacBool MC GetFSQHdr PB 
Finfo OT FrontWindow WM GetHandleSize MM 
fInX SD FrSmall MC GetIcon TU 
firstBL TT FSClose FL GetIndResourc RM 
fiType FL FSDelete FL GetIndString OU 
fiv FL FSDSErr ME GetIndTypes RM 
Fixed TU FSOpen FL GetItem MN 
FixMul TU fsQType OT GetItemIcon MN 
FixRatio TU FSRead FL GetItemMark MN 
FixRound TU FSWrite FL GetItemSty le MN 
Flags MM FTmode SN GetIText DL 
FlashMenuBar MN FTSoundRec SN GetKeys EM 
FLckdErr ME FTSynthRec SN GetMenu MN 
FlushEvents EM ftype PK GetMenuBar MN 
FlushVol FL ftype OU GetMHandle MN 
FMInPtr FM fversion OU GetMouse EM 
FMInput FM fvrefnum OU GetN amedResouRM 
FMOutPtr FM fXon SD GetNewControl CM 
FMOutput FM GetNewDialog DL 
fname PK geneva FM GetNewMBar MN 
fname OU GetAlrtStage DL GetNewWindo WM 
FNFErr ME GetAppFiles OU GetNextEvent EM 
FNOpnErr ME GetAppParms TU getNmLst PK 
font OU getCancel PK getOpen PK 
fontHandle FM GetClip QD GetOsEvent EM 
FontInfo QT GetCRefCon CM GetPattern TU 

1200301:0AB A-7 



MACINTOSH INTERFACE Appendix A 

GetPen QD GZSaveHnd MM iDevBytes PR 
GetPenState QD iFile Vol PR 
getPicProc QT h QT iFMgrCtl PD 
GetPicture TU HandAndHand OU iFstPage PR 
GetPixel QD Handle MC iHRes PR 
GetPort QD HandleZone MM iLstPage PR 
GetPtrSize ~1M HandToHand OU inButton CM 
GetResAttrs RM hAxsOnly WM inCheckBox CM 
GetResFileAtt RM hAxisOnly CM inContent WM 
GetReslnfo RM HeapData MM inDesk WM 
GetResource RM HFstFree MM inDownButton CM 
GetScrap SM HideControl CM inDrag WM 
getScroll PK HideCursor QD InfoScrap SM 
GetSoundVol SN HidePen QD inGoAway WM 
GetString TU HideWindow WM inGrow WM 
GetSysPPtr OU HiliteCon trol CM initCntl CM 
GetTime OU hili ted TT InitCursor QD 
GetTrapAddres OU HiliteMenu MN InitIWMerr ME 
GetVCBQHdr PB Hilite Window WM InitMenus MN 
Get Vlnfo FL hiLong TU InitPort QD 
GetVol FL HiWord TU InitQueue PB 
Get.WindowPic WM HLock 1\,n,f 

", • .l...I."..L 
T~;. TT.;l 
.1.U . .1t.1V 1,i11 au 

GetWMgrPort WM HNoPurge MM InitZone MM 
GetWRefCon WM HomeResFile RM inMenuBar WM 
GetWTitle WM hotSpot QT inPageDown CM 
GetZone Mlvl hour OU inPageUp CM 
GFPErr ME hPic PR inPort TT 
GlobalToLocal QD hPrint PR InsertMenu MN 
goAwayFlag TT HPurge MM InsertResMen u MN 
goAwayFlag DL hrLeadingZ PK InsetRect QD 
good PK hText TT InsetRgn QD 
gport PR HUnlock MM inSysWindow WM 
gProcs PR hwOverrunErr SD Int64Bit TU 
GrafDevice QD IntegerPtr MC 
GrafPort QT iBandH PR inThumb CM 
grafProcs QT iBands PR intlOHndl PK 
GrafPtr QT iBandV PR intlOPtr PK 
gray MD iconItem DL intlORec PK 
greenBit QD iCopies PR intlOVers PK 
green Color QD iCurBand PR intllHndl PK 
GrowWindow WM iCurCopy PR intllPtr PK 
GZCritical MM iCurPage PR intllRec PK 
GZProc MM iDev PR intllVers PK 

A-8 1200301:0AB 



Identifier Cross-Reference List 

inUpButton CM io V AlBlkSiz OT just TT 
InvalRect WM ioVAtrb OT 
InvalRgn WM ioVbILn OT kbdPrint OU 
inverseBit QD io VClpSiz OT keyDown EM 
Invert QD io VCrDate OT keyDownMask EM 
InvertArc QD ioVDirSt OT KeyMap EM 
InvertOval QD ioVersNum OT KeyMapPtr EM 
InvertPoly QD ioVFrBlk OT keyUp EM 
InvertRect QD ioVLsBkUp OT keyUpMask EM 
InvertRgn QD io VNmAlBlks OT Kill Con troIs CM 
InvertRoundRe QD ioVNmFls OT KillIO FL 
ioActCount OT ioVNxtFNum OT KillPicture QD 
ioAlBlSt OT ioVolIndex OT KillPoly QD 
ioBuffer OT ioVRefNum OT 
ioCmdAddr OT iPageR PR leading QT 
ioCompletion OT iPageV PR leading FM 
IOErr ME iPrBitsCtl PD left QT 
ioFDirIndex OT iPrDevCtl PD length TT 
ioFIAttrib OT iPrEvtCtl PD Line QD 
ioFICrDat OT iPrIOCtl PD lineReight TT 
ioFIFndrInfo OT iPrVersion PR lineProc QT 
ioFILgLen OT iRowBytes PR lineS tarts TT 
ioFIMdDat OT IsDialogEvent DL LineTo QD 
ioFINum OT italic QT listSep PK 
ioFlPyLen OT italic FM LoadResource RM 
ioFlRLgLen OT itemDisable DL LoadScrap SM 
ioFlRPyLen OT items DL localrtn PK 
ioFlRStBlk OT itemsID DL LocalToGlobal QD 
ioFIStBlk OT itemsID DL loLong TU 
ioFIVersN urn OT iTotBands PR london FM 
ioFRefNum OT iTotCopies PR LongDate PK 
ioFVersNum OT iTotPages PR Longlnt MC 
ioMisc OT IUDatePString PK LonglntPtr MC 
ioNamePtr OT IUDateString PK LongMul TU 
ioPermssn OT IUGetlntl PK LoWord TU 
ioPosMode OT IUMagIDString PK IPaintBits PD 
ioPosOffset OT IUMagString PK IPrEvtAlI PD 
ioQElem OT IUMetric PK IPrEvtTop PD 
ioQType OT IUSetlntl PK IPrLineFeed PD 
ioRefNum OT IUTimePString PK IPrPageEnd PD 
ioReqCount OT IUTimeString PK IPrReset PD 
ioResult OT iVRes PR lScreenBi ts PD 
ioTrap OT ltGray MD 

1200301:0AB A-9 



M;\CIl\'TOSH INTERFACE Appendix A 

minLeadingZ PK noConstraint CM 
MacBool MC minute OU NoDriveErr ME 
MacBoolPtr MC mIse OU NoDtaMkErr ME 
MacPtr MC mntLeadingZ PK NoErr ME 
mac false MC ModalDialog DL noGrowDocPro WM 
mac true MC mode SN NoMacDskErr ME 
mag;;taBit QD mode SN noMark MN 
magentaColor QD mode SN NoNybErr ME 
MapPoly QD modifiers TT noParity SD 
MapPt QD monaco FM normalBit QD 
MapRect QD month OU noScrapErr ME 
MapRgn QD months PK NoteAlert DL 
mask QT MoreMast MM noteIcon DL 
MaxMem MM MoreMasters MM NotOpenErr ME 
MaxNRel MM mornStr PK notPatBic QD 
MaxRel MM mouseDown EM notPatCopy QD 
mChooseMsg MN mouseUp EM notPatOr QD 
mDownMask EM Move QD notPatXor QD 
mDrawMsg MN MoveControl CM notSrcBic QD 
MDY PK MovePortTo QD notSrcCopy QD 
memAdrErr ME MoveTo QD notSrcOr QD 
memAZErr :ME MoveWindow WM notSrcXor QD 
memBCErr ME mSizeMsg MN noTypeErr ME 
MemError M1\1 Munger TU NSDrvErr ME 
MemFullErr ME mUpMask EM NsVErr ME 
memPCErr ME null SD 
memPurErr ME need bits FM nullEvent EM 
memSCErr ME networkEvt EM nullMask EM 
memWZErr ME networkMask EM numer FM 
menuData MN NewControl CM 
MenuHimdle MN NewDialog DL o bscureCursor QD 
menuHeight MN NewHandle MM oddParity SD 
menuID MN NewMenu MN OffLinErr ME 
Menulnfo MN NewPtr MM OffsetPoly QD 
MenuKey MN NewRgn QD OffsetRect QD 
menuProc MN NewString TU OffsetRgn QD 
MenuPtr MN NewWindow WM OK DL 
MenuSelect MN new York FM OpenDeskAcc DS 
menuWidth MN nextControl CM OpenDriver FL 
message TT nextWindow TT OpenErr ME 
metricSys PK NilHandleErr ME OpenPicture QD 
MFulErr Iv1E nLines TT OpenPoly QD 
MinCBFree MM NoAdrMkErr ME OpenPort QD 

A-IO I200301:0AB 



-Identifier Cross-Reference List 

OpenResFile RM PBGetFlnfo PB pnLoc QT 
OpenRgn QD PBGetFPos PB pnMode QT 
OpWrErr ME PBGetVInfo .PB pnMode QT 
OsErr MC PBGetVol PB pnPat QT 
OsEven tAv ail EM PBKillIO PB pnPat QT 
OsType MC PBMountVol PB pnSize QT 
OsTypePtr MC PBOffLine PB pnSize QT 
outline QT PBOpen PB pnVis QT 
ovalProc QT PBOpenRF PB Point QT 

PBRead PB PointPtr QT 
Paint QD PBRename PB polyBBox QT 
PaintArc QD PBRstFLock PB Polygon QT 
PaintBehind WM PBSetEof PB polyPoints QT 
PaintOne WM PBSetFlnfo PB polyProc QT 
PaintOval QD PBSetFLock PB polySave QT 
PaintPoly QD PBSetFPos PB polySize QT 
PaintRect QD PBSetFVers PB port TT 
PaintRgn QD PBSetVol PB portA OU 
PaintRoundRec QD PBStatus PB portB OU 
Param OT PBUnmountVol PB portBits QT 
ParamBlkType OT PBWrite PB portRect QT 
ParamBlockRec OT PenMode QD PortSize QD 
ParamErr ME PenNormal QD posCntl CM 
ParamText DL PenPat QD PosErr ME 
parityErr SD PenSize QD PostEvent EM 
ParmBlkPtr OT PenState QT pPrPort PR 
pasteCmd DS PenStPtr QT pPrPort PR 
patBic QD PermErr ME PrClose PR 
patCopy QD pFileName PR PrCloseDoc PR 
patOr QD pGPort PR PrClosePage PR 
patStretch QT PicComment QD PrCtlCall PD 
Pattern QT picFrame QT PrDrvrClose PD 
PatternPtr QT picItem DL PrDrvrDce PD 
patXor QD picLParen QD PrDrvrOpen PD 
PBAllocate PB picRParen QD PrDrvrVers PD 
PBClose PB picSave QT PrError PR 
PBControl PB picSize QT prlnfo PR 
PBCreate PB Picture QT prInfoPt PR 
PBDelete PB pldleProc PR PRInitErr ME 
PBEject PB PinRect WM PrintDefault PR 
PBFIshFile PB plainDBox WM printx PR 
PBFIshVol PB PlotIcon TV prJob PR 
PBGetEof PB pnLoc QT PrJobDialog PR 

1200301:0AB A-ll 



MACINTOSH INTERFACE Appendix A 

PrJobMerge ,PR ReleaseResour RM 
PrNoPurge PD QDProcs QT Rename FL 
procID DL QDProcsPtr QT resChanged RM 
ProcPtr MC QElem OT resCtrl DL 
PrOpen PR QElemPtr OT ResError RM 
PrOpenDoc PR QErr ME ResetAlrtStag DL 
PrOpenPage PR QFlags OT ResFNotFound ME 
PrPicFile PR QHdr OT resLocked RM 
PrPurge PD QHdrPtr OT ResNotFound ME 
PrSetError PR ,QHead OT resPreload RM 
prStl PR . qLink OT resProtected RM 
PrStlDialog PR QTail OT resPurgeable RM 
PrValidate PR qType OT ResrvMem MM 
PRWrErr ME QTypes OT resSysHeap RM 
prXlnfo PR resSysRef RM 
PScrapStuff SM radCtrl DL resUser RM 
Pt2Rect QD r adioBu tProc CM RFNumErr ME 
PtInRect QD Random QD rgnBBox QT 
PtlnRgn QD randSeed MD rgnProc QT 
PtrAndHand OU RcvrErr ME rgnSave QT 
PtrFFSynthRec SN RDIBadMount PK rgnSize QT 
PtrFTSndRec SN RDIFormat PK right QT 
PtrFTSynth SN RDILoad PK RIUDatePStrin PK 
PtrJnt64Bit TU RDIUnload PK RIUDateString PK 
PtrSFReply PK RDIVerify PK RIUGetlntl PK 
PtrSFTypeList PK RDIZero PK RIUMagIDStrin PK 
PtrSWSynth SN RDocProc WM RIUMagString PK 
PtrToHand OU rdPend SD RIUMetric PK 
PtrToXHand OU ReadDateTime OU RIUSetlntl PK 
PtrZone MM ReadErr .ME RIUTimePStrin PK 
PtToAngle QD RealFonf 'FM RIUTimeString PK 
PurgeMem MM ReallocHandle MM RmveReference RM 
PurgeProc MM RecoverHandle MM RmveResource RM 
PurgePtr MM Rect QT RmvRefFailed ME 
pushButProc CM RectlnRgn QD RmvResFailed ME 
putCanceI PK rectProc QT rowBytes QT 
putDlgID PK RectPtr QT rPage PR 
putDrive PK RectRgn QD rPaper PR 
putEject PK redBit QD rRectProc QT 
putName PK red Color QD RSFGetFile PK 
putPicProc QT ref Con TT RSFPGetFile PK 
putSave PK ref Con DL RSFPPutFile PK 
PutScrap SM Region QT RSFPutFile PK 

A-12 1200301:0AB 



Identifier Cro3S---c-Reference List 

RstFLock FL SetCtlMax CM SetWRefCon WM 
SetCtlMin CM SetWTitle WM 

sanFran FM SetCtlValue CM Set Zone MM 
SaveOld WM SetCursor QD SFGetFile PK 
ScalePt QD SetDAFont DL SFPGetFile PK 
ScanBT PR SetDateTime OU SFPPutFile PK 
ScanLR PR SetDltem DL SFPutFile PK 
ScanRL PR SetEmptyRgn QD SFReply PK 
ScanTB PR SetEOF FL SFTypeList PK 
scrap Count SM SetEventMask EM shadow QT 
scrapHandle SM SetFlnfo FL shadow FM 
scrapName SM SetFLock FL Shield Cursor TU 
scrapSize SM SetFontLock FM ShortDate PK 
scrapState SM SetFPos FL ShowCon trol CM 
ScrapS tuff SM SetGrowZone MM ShowCursor QD 
screen bits MD SetHandleSize MM ShowHide WM 
scrollBar Proc CM SetItem MN ShowPen QD 
ScrollRect QD SetItemlcon MN ShowWindow WM 
secLeadingZ PK SetItemMark MN shrtDateFmt PK 
second OU SetltemStyle MN Size MM 
Secs2Date OU SetIText DL SIze FM 
SectNFErr ME SetMenuBar MN Size Control CM 
SectRect QD SetMenuFlash MN SizeResource RM 
SectRgn QD SetOrigin QD SizeWindow WM 
SeekErr ME SetPenState QD SlopeFromAngl TU 
SelectWindow WM SetPort QD SmallBool MC 
selEnd TT SetPortBits QD sndRec SN 
SelIText DL SetPt QD soundlPhase SN 
selStart TT SetPtrSize MM soundlRate SN 
SendBehind WM SetRect QD soundlWave SN 
SerClrBrk SD SetRedRgn QD sound2Phase SN 
SerGetBuf SD SetResAttrs RM sound2Rate SN 
SerHShake SD SetResFileAttrs RM sound2Wave SN 
SerReset SD SetReslnfo RM sound3Phase SN 
SerSetBrk SD SetResLoad RM sound3Rate SN 
SerSetBuf SD SetResPurge RM sound3Wave SN 
SerShk SD SetSoundVol SN sound4Phase SN 
SerStaRec SD SetStdProcs QD sound4Rate SN 
SerStatus SD SetString TU sound4Wave SN 
SetClip QD SetTime OU SoundDone SN 
SetCRefCon CM SetTrapAddress OU SpaceExtra QD 
SetCTitle CM SetVol FL spareFlag TT 
SetCtlAction CM SetWindowPic WM SparePtr MM 

1200301:0AB A-13 



MACINTOSH INTERFACE Appendix A 

SpdAdjErr ME Style QT TESetSelect TE 
spExtra QT StyleItem QT TESetText TE 
srcBic QD SubPt QD testCntl CM 
srcCopy QD supressDate PK TestCon trol CM. 
srcOr QD SwapFont FM TEUpdate TE 
srcXor QD SWmode SN TextBox TE 
stO PK swOverrunErr SD TextFaee QD 
st] PK S\VSynthRec SN TextFont QD 
stZ PK SysBeep OU textH DL 
st3 PK SysParmType OU textMenuProc MN 
st4 PK SysPPtr OU TextMode QD 
StageList DL System Click DS textProe QT 
stages DL SystemEdit DS TextSize QD 
StartSound SN SystemEvent DS TextWidth QD 
statText DL systemFont FM TFeed PR 
Status FL SystemMenu DS thePort MD 
StatusErr ME SystemTask DS thousSep PK 
StdArc QD System Zone MlV1 THPrint PR 
StdBits QD thumbCntl CM 
StdComment QD TEActivate TE THz MM 
StdGetPic QD TECalText TE TickCount EM 
StdLine QD TEClick TE timelSuff PK 
StdOval QD TECopy TE timeZSuff PK 
StdPoly QD TECut TE time3Suff PK 
StdPutPic QD TEDeactivate TE time4Suff PK 
StdRect QD TEDelete TE time5Suff PK 
StdRgn QD TEDisPose TE time6Suff PK 
StdRReet QD TEGetText TE time7Suff PK 
StdText QD TEHandle TT timeSSuff PK 
StdTxMeas QD TEldle TE time Cycle PK 
StillDown EM TElnsert TE timeFmt PK 
stoplO SD teJ ustCen tcr TE timeSep PK 
stopl5 SD teJustLeft TE title DL 
stopZO SD teJ ustRigh t TE titleHandle TT 
StopAlert DL TEKey TE titleWidth TT 
stoplcon DL TENew TE TkOBadErr ME 
StopSound SN TEPaste TE TMFOErr ME 
StrZ55 MC TEPtr TT ToMacBool MC 
StringHandle MC TERee TT Tone SN 
StringPtr MC TEScrapHandle OU Tones SN 
StringWidth QD TESerapLen OU top QT 
strucRgn TT TEScroll TE topLeft QT 
StuffHex QD TESetJust TE TopMem MM 

A-14 1200301:0AB 



Iden tifier Cross-Reference List 

toronto FM updateRgn TT vcbVRefNum OT 
ToSmall MC UprString OU venIce FM 
TPPort PR UseResFile RM verBritain PK 
TPPrint PR userItem DL verFrance PK 
TPPrPort PR userKind WM verGermany PK 
TPrInfo PR useWFont CM verItaly PK 
TPrint PR verSIOn PK 
TPrJob PR v QT verUS PK 
TPrPort PR valid OU vh QT 
TPrStatus PR ValidRect WM VHSelect QT 
TPrStl PR ValidRgn WM viewRed TT 
TPrXInfo PR vA.'{sOnly WM visible TT 
TrackControl CM vAxisOnly CM visible DL 
TrackGoAway WM vblAddr OT visRgn QT 
triplets SN vblCount OT VLckdErr 11E 
TScan PR vblPhase OT volClick OU 
TwoSideErr 11E vblQElem OT VolOffLinErr 11E 
txFace TT VBLTask OT VolOnLinErr 11E 
txFace QT VCB OT VolumeParam OT 
txFont TT vc bAlBlkSiz OT vRefNum PK 
txFont QT vcbAlBlSt OT vType OT 
txMeasProc QT vcbAtrb OT VTypErr 11E 
txMode TT vcbBlLn OT 
txMode QT vcbBufAdr OT \" aitMouseUp EM 
txSize TT vcbClpSiz OT Wave SN 
txSize QT vcbCrDate OT waveBytes SN 

vcbDirBlk OT \VavePtr SN 
ulOffset FM vcbDirlndex OT wCalcRgns WM 
ulShadow FM vcbDirSt OT wDev PR 
ulThick FM vcbDRefNum OT wDispose WM 
underline QT vcbDrvNum OT wDraw WM 
undoCmd DS vcbFlags OT wDrawGIcon WM 
UnimpErr 11E vcbFreeBks OT wGrow WM 
UnionRect QD vcbFSID OT what TT 
UnionRgn QD vcbLsBkUp OT when TT 
Uniqueld RM vcbMAdr OT where TT 
UnitEmptyErr 11E vcbMLen OT wHit WM 
UnloadScrap SM vcbNmBlks OT white MD 
UnMountVol FL vcbNmFls OT white Color QD 
unused FM vcbNxtFNum OT widMax QT 
updateEvt EM vcbQElem OT widmax FM 
updateMask EM vcbSigWord OT wIn Content WM 
UpdateResFile RM vcbVN OT window DL 

I20030I:0AB A-15 



i\iA.CINTOSH INTERFACE Appendix A 

windowDefProc TT 
WindowHandle TT 
windowKind TT 
windowPic TT 
\NindowPtr TT 
WindowRecord TT 
wlnDrag WM 
wlnGoAway Wl\'l 
wlnGrow WM 
wNew WM 
wNoHit WM 
\VPrErr ME 
WriteParam OU 
WriteResource RM 
WritErr :ME 
wrPend SD 
WrPermErr ME 
WrUnderRun i\1E 

xoff SD 
XOFFHold SD 
XOFFSent SD 
xOffW asSent SD 
xon SD 
XorRgn QD 

year OU 
yellowBit QD 
yellowColor QD 
YMD PK 

ZCBFree Mrv'1 
ZeroScrap SM 
Zone 1\-'1M 

A-16 1200301:0AB 



Control Manager (ControlMgr) 

A.3. Control Manager (ControIMgr) 

uni t ControlMgr ; 

inter face 

I uses Maccare, OdTypes, TBTypes! 
$L-! . 

uses I$U MACCORE.CODEI MacCore 
$U ODTYPES.CODE ODTypes (GrafPort, GrofPtr, Point, VHSelect, 

FPoint, Rect, RectPtr), 
!$U TBTYPES.CODE! TBTypes (EvtRecPtr, EventRecord, 

w j ndowp t r ,W i ndowhond Ie) 
!$Lt! 

canst 

! Control Definition Ids 
pushButProc 0 
checkBoxProc 1 
rodioBulProc 2 
useWFont = 3 
scrollBarProc 4 

! Part Codes 
inButton 
inCheckBox 
inUpButton 
inOownButton 
inPageUp 
inPogeDown 
inThumb 

10 
= 11 
= 20 

21 
22 
23 , 
129 ; 

~ Axis constraints for 
noConstroint e 
hAx i san I y = 1 ; 
vAxisOnly = 2 ; 

! Messages to control 
drawCntl = 0 
testCntl 1 
calcCRgns 2 
in i tCn t I 3 
dispCntl 4 
posCn t I 5 
t humbCn t I 6 
dragCntl = 7 
ouloTrock = 8 

Type 

ControlHandle Macptr 
ControlPtr = MacPtr 

simple button! 
check box ! 
radio button! 
odd to above window's font! 
scroll bar! 

simple button! 
check box or radio button! 
up arrow of a scroll bar ~ 
down arrow of a serol I bar 

thumb of a scrol I bar I 
DragControl I I no constraint ~ 

horizontal axis onl:t 
verticol axis only ~ 

definition function I 
draw the control (or control part) ! 
test where mouse button was pressed ~ 
calculate control's region (or indicator"s) 
do any additional control initialization ~ 
take any additional disposal actions ~ 
reposition control's indicator & update it 1 
calculate parameters for draggin9 indicator 
drag control (or its indicator) ! 
execute control's action procedure ~ 

ControlRecord 
nextControl: 
contrlOwner: 
contr IReel: 
contrlHilite: 
contrlVis: 
conlrlVolue: 
conlrlMin: 
contrlMax: 
conlrlDefProc: 
contrlData: 
contrlAction: 
contrlRfCon: 
contrlTitle: 

PACKED RECORD 
ControlHandle 
Macpt r ; 

next control! 
Pointer to cantrol"s window 
enclosing rectangle I 
highlite state I 

End ; 

Rect ; 
SmallBool 
SmollBool 
integer; 
i nteger ~ 
integer: 
Handle; 
Handle; 
ProcPtr ; 
Longlnt ; 
str255 ; 

TRUE if visible I 
current setting 
minimum setting 
maximum setting 
control definition function ~ 
data used by contrlDefProc ! 
default action procedure! 
control's reference value l 
control's Title I 

Ini tiol ization And AI location ---------------------------------------! 

1200301:0AB A-17 



MACINTOSH INTERFACE 

fUNCTION NewControl 

fUNCTION GatNewControl 

PROCEDURE D i spaseCont ro I ( 

PROCEDURE K i I I Can t r 0 I s 

theWindow: 
boundsRect: 
tit Ie: 
visible: 
value: 
min. ma x: 
praclD: 
ref Con: 

ControlHandle 

contraltD: 
theWindow: 

ControlHandle ; 

theControl: 

theWindow: 

WindowPtr 
RectPtr ; 
StringPtr 
MacBool 
integer 
integer; 
integer. 
Longlnt ) 

Appendix A 

external (-22188); lA954! 

integer 
WindowPtr) 
ex ternol (-22082); IA9BEl 

ControlHondle) • 
ex terna 1(-22187); !A955! 

Wi ndawPt r ) , 
ex terna 1(-22186); lA956! 

I Control Display -----------------------------------------------------1 

PROCEDURE SetCTitle 

PROCEDURE Ge tCT it Ie 

PROCEDURE HideControl 

"ROCEDURE ShowControl 

"ROCEDURE DrawControls 

'ROCEDURE HiliteControl 

theCantrol: 
tit Ie: 

theControl: 
tit Ie: 

theCon t ro I; 

theCon t ro I: 

theWindow: 

theControl; 
hilileSlate: 

ControlHandle . 
StringPtr ) ; 
external (-22177); lA95Fl 

ControlHandle ; 
StringPtr ) . 
external (-22178); !A95E! 

CantrolHandle ) , 
external (-22184); !A958! 

ControlHondle ) ; 
external (-22185); jA9571 

Wi ndowP t r ) • 
external (-22167); jA969! 

ControlHandle ; 
integer) ; 
external (-22179); !A95D! 

I Mouse Locotion ------------------------------------------------------I 

'UNCT ION TestControl 

'UNCT ION FindControJ 

'UNCT ION TrackContral 

Can t ro I Movement and 

'ROCEDURE MoveConlral 

'ROCEDURE DrogControl 

A-IS 

theControl: ControlHandle ; 
thePoint: FPoint ) 

integer ; external (-22170); !A9661 

thePoint; FPoint 
theWindow: WindowPtr 
whichCont rol: MocPt r ) 

integer ; external(-22164); !A96CI 

theCantrol: ControlHandle ; 
starlPI: FPoin\ ; 
actionProc: ProcPtr ) 

integer ; ex ternal (-22168); !A968! 

Sizing -----------------------------------------! 

theConlrol: 
h • v 

theCon\rol; 
s t" r t P t : 
i imi tRee t: 
slopRect: 
axis: 

CantralHandle ; 
integer) , 
externol (-22183); IA9591 

ContralHondle 
FPo i n t ; 
Rec\Ptr ; 
Rectptr ; 
integer) ; 
external (-22169); IA9671 

I200301:0AB 



PROCEDURE SizeControl 

Control Manager (ControIMgr) 

theCantrol: 
w . h : 

ControlHandle ; 
integer) ; 
ex terna 1(-22180); IA95C! 

I Control Setting and Ronge -------------------------------------------! 

PROCEDURE SetCtlVolue 

FUNCTION GetCtlValue 

PROCEDURE SetCtlMin 

FUNCTION GetCtlMin 

PROCEDURE SetCtlMax 

FUNCTION GetCtlMax 

theCont ro I: 
theValue: 

theCant ro I: 
integer; 

theControl 
minValue: 

theControl: 
integer; 

theControl: 
maxVolue: 

theControl: 
integer 

ControlHandle ; 
integer) ; 
external (-22173); IA963! 

ControlHandle ) 
external (-22176); IA960! 

ControlHondle : 
integer) ; 
externa 1(-22172); IA964! 

CantralHandle ) 
external (-22175); IA961! 

ControlHandle ; 
integer) , 
external(-22171); IA965! 

ControlHondle ) 
ex terna 1(-22174); IA962! 

I Miscellaneous Uti I i ties ---------------------------------------------! 

PROCEDURE SetCRefCon 

FUNCTION GetCRefCon 

PROCEDURE SetCtlAction 

FUNCTION GetCtlAction 

1200301:0AB 

theCont ro I: 
doto: 

theCont ro I: 
longlnt ; 

theControl: 
oc t i onProc: 

theControl: 
ProcPtr ; 

ControlHandle ; 
longlnt ) ; 
external (-22181); IA95B! 

ControlHandle ) 
external (-22182); IA95A! 

ControlHandle ; 
ProcPtr ) , 
ex terna 1(-22165); IA96B! 

ControlHandle ) 
ex terna 1(-22166); IA96A! 

A-19 



MACINTOSH INTERFACE Appendix A 

A.4. Desktop Manager (DeskMgr) 

unit DeskMgr ; 

interface 

! Uses Moccore, 
$L-! 

OdTypes, TbTypes ! 

Uses I$U MACCORECODE! Maceore, 
$U ODTYPES.CODE! ODTypes (Paint,PointPtr, GrofPort, GrofPtr, 

Rec t) , 
Sty Ie, 

I$U TBTYPES CODE! T8Types (EventRecord,EvtRecPtr,WindowPtr); 
I $U! 

const 

cutCmd 
copyCmd 
posteCmd 
undoCmd 

= 13 
= 1 

2 
3 

I Cut command ! 
Copy commond I 
Paste command! 
Undo command ! 

Opening and Closing Desk Accessories --------------------------------! 

FUNCTION OpenDeskAcc 

PROCEDURE CloseDeskAcc 

theAcc; 
integer; 

refNum: 

StringPtr ) 
externol(-221390); lA9B6! 

integer) ; 
external (-221389); lA9Bn 

I Hand'i ing Events in Desk Accessories ---------------------------------! 

PROCEDURE SystemClick 

FUNCTION SystemEdi t 

theEvent: 
theW;ndow: 

ed i t Cmd: 
MacBool ; 

EvtRecPtr ; 
windawPtr ) ; 
external (-221393); lA9B3! 

integer) 
ex ternal (-221378); lA9C2! 

I Performing Periodic Tasks -------------------------------------------! 

'ROCEDURE SystemTask ; external(-22092); lA9B4! 

I Advanced Routines ---------------------------------------------------! 

°UNCTION $ystemEvent theEvent: EvtRecPtr ) 
Mac Boo I ; external (-22094); IA982! 

'ROCEDU.RE Sys temMenu menuResult: La ng I n t ) ; 
externol(-221391); IA9B5! 

A-20 1200301:0AB 



Dialog Manager (DialogMgr) 

A.S. Dialog Manager (DialogMgr) 

un i t D i a I ogMg r 

inter face 

! Uses MacCore, ODTypes, TBTypes l 
$L-l 

uses !$U MACCORE.CODEl MacCare , 
!$U ODTYPES.CODEj ODTypes (GrafPort, GrafPtr, Point, VHSelecl, 

FPoint, Rect, ReclPlr), 
!$U TBTYPES.CODEl TBTypes (EvlRecPtr, EventRecord,windowrecord, 

windowptr,windowhandle, TEHandle, 

! $ L, l 
canst 

I tern Types 

c t r I I tern 
b t nC t r I 
chkClrl 
radCtrl 
resCtrl 
statTed 
edi tTex t 
iconltern 

4 

~ " 
- 1 

2 
- 3 

8 

TEPtr,TERec) 

odd to following four constants 
standard button control l 
standard check box control 
standard 
control defined in control template 
static text l 
editable text (dialog only) l 
icon l 

pic I tern 
userltem 
i temDisoble 

- 16 ; 
32 ; 

- 64 ; 
= e ; 

128 ; 

OuickDraw Picture I 
application defined item (dialo,? only) l 
odd to any of above to disable ~ 

! Item numbers of OK and Cancel buttons l 
OK = 1 
Cancel = 2 

! Resource IDs of Alert Icons I 

stoplcon = e 
note Icon 1 
ctnlcon 2 

type 

DialogPtr 
DialogPeek 
DialogRecord 

= MacPtr ; 
= MocPtr ; 

- RECORD 
WindowRecord 
Handle; 
TEHandle ; 
integer 
integer; 
integer; 

window: 
i terns: 
tex tH: 
editField: 
edi tOpen: 
oDe f Item: 

End ; 

DialagTHndl = MacPtr ; 
DialogTPtr = MacPtr ; 
DialogTemplate = PACKED RECORD 

bound sRec t: Rec t ; 
proclO: integer: 
filler1: SmallBaol 
visible: 5mailBooi 
f i I Ie r 2: Sma" Boo I 
goAwayFlog: SmallBool 
ref Con: Longlnt; 
itemslD: integer; 
ti tie: 5tr255 ; 

End ; 

dialog window ~ 
i tern lis t l 
cur r e n ted itT ext j t em l 
edi tText item number minus 
internal use only ~ 
default button number l 

becomes window's portRect 
window definition ID l 
NOT USED l 
TRUE if visible l 
NOT USED l 
TRUE if has go away reg i on 
window's reference value I 
res 0 u r c e I 0 0 fit em lis t 
window's ti tie I 

StageList PACKED ARRAY[1 .. 4] of Byte; 

1200301:0AB 

1 l 

A-21 



MACINTOSH INTERFACE Appendix A 

AlertTHndl 
AlertTPtr 
AlertTemplate 

boundsRect: 
j tems 10: 
stages: 

End ; 

= MacPtr 
= MacP I r 
= RECORD 
Rect 
integ~r ; 
Stagelist 

! becomes window's portRect I 
resource ID of i tern list! 
alert stage information ~ 

Ini ticl izotion ------------------------------------------------------~ 

PROCEDURE ErrorSound soundProc: PracPtr ) ; 
external (-22132); IA98C! 

PROCEDURE SetDAFont fontNum integer) ; 

I Creating and Disposing of Dialogs -----------------------------------! 

FUNCTION NewDialog 

FUNCTION GetNewDialog 

PROCEDURE CloseDiolog 

'ROCEDURE DisposDialog 

'ROCEDURE CouldDialag 

'ROCEDURE FreeDialog 

dStoroge: 
boundsRect: 
tit Ie: 
vis i b Ie: 
praclD: 
behind: 
gaAwayFlag: 
ref Can: 
items: 

DiologPtr ; 

dialagld: 
wSto(oge: 
behind: 

DialogPtr 

theDialog: 

theOialag: 

diolaglO: 

diolaglD: 

MacPtr ; 
ReclPtr , 
StringPtr 
Maceaol 
integer 
windowPtr 
Maceool 
long I n t ; 
Handle) 
external (-22147); IA97D! 

integer ; 
MacPlr 
Wi ndowP t r ) 
external(-22148); IA97C! 

DialagPtr ) , 
external (-22142); lA982! 

DialogPtr ) ; 
external (-22141); IA983! 

integer) ; 
ederna 1(-22151); IA9791 

integer) ; 
external (-22150); IA97A! 

I Hand ling 0 i a I ag Even Is -----------------------------------------------1 

'ROCEDURE ModolDialog 

'UNCT ION I sD i 0 I agEven I 

'UNCTION OialogSelect 

'ROCEOURE 0 I gCu t 

'ROCEDURE DlgCopy 

'ROCEDURE DlgPosle 

ROCEDURE DlgOelete 

ROCEDURE DrawDiolog 

f i! terProc: 
I temH it: 

theEvent: 
Maceool 

theEvent: 
theDialog: 
i temH it: 

MacBool 

theDialog: 

theDialog: 

theDialog: 

theDialog: 

theDiclag: 

ProcPtr , 
integerptr ) ; 
external (-22127); IA991! 

EvtRecPt r ) 
external (-22145); lA97Fl 

EvtRecPtr ; 
DialagPtr , 
integerptr ) 
external (-22144); IA9801 

DialagPtr 

DialagPtr 

DialogPtr 

DialagPtr ) 

DialogPtr ) • 
ex ternal (-22143); IA9S1! 

Invoking Alerts -----------------------------------------------------1 

A-22 1200301 :OAB 



Dialog Manager (DialogMgr) 

FUNCTION Alert 

FUNCTION StopAlert 

FUNCTION NoteAlert 

FUNCTION CoutianAlert 

PROCEDURE CouldAlert 

PROCEDURE FreeAlert 

! Manipulating Items in 

PROCEDURE ParamText 

PROCEDURE GetDI tem 

PROCEDURE SetDI tem 

PROCEDURE GetlText 

PROCEDURE SetlText 

PROCEDURE Sel IText 

a I e r tiD: 
Ii I terProc: 

integer ; 

ole r tiD: 
I i I te rP roc: 

integer : 

ole r tiD: 
I i I te rP roc: 

integer ; 

01 er tiD: 
I i I terP roc: 

integer ; 

Dialogs 

a I e r tiD; 

alertlD: 

and Alerts 

parame: 
paraml : 
param2: 
param3: 

theDialag: 
itemNo: 
kind: 
i tern: 
box: 

theDialog: 
i temNa: 
kind: 
item: 
box: 

i tern: 
text: 

item: 
tex t: 

theDialog: 
i temNO: 
star tSe I: 
endSe I : 

FUNCTION GetAlrtStage : integer 

PROCEDURE ResetAlrtStage ; 

1200301:0AB 

integer ; 
ProcPtr ) 
external(-22139); !A98Sl 

integer; 
ProcPtr ) 
external (-22138); !A986! 

integer: 
ProcPtr ) 
external (-22137); !A987l 

integer; 
ProcPtr ) 
ex terna 1(-22136); !A98S1 

integer) ; 
ex terna 1(-22135); !A989j 

integer) ; 
externol (-22134); IA98Aj 

----------------------------1 

Str ingPtr 
StringPtr 
StringPtr ; 
StringPtr ) ; 
external(-22133); IA98Bl 

DialogPtr ; 
integer; 
integerPtr ; 
Handle; 
RectPtr ) ; 
externol (-22131); IA9BDj 

Dialogptr 
integer; 
integer; 
Handle; 
RectPtr ) ; 
externol(-22130); lA98El 

Handle; 
StringPtr ) ; 
external(-22128); !A990! 

Handle; 
StringPtr ) ; 
external(-22129); !A98F! 

DialogPtr 
integer; 
integer; 
integer) ; 
external(-22146); !A97£! 

A-23 



~1l\CINTOSH INTERF ACE 

A.6. Event Manager (EventMgr) 

un; t EventMgr 

lnterfoce 

juses MACCORE, OOTypes, TSTypes! 
$L-! 

Appendix A 

Uses !$U MACCORE CODEl Maccare, 
$U OOTYPES.COOE OOTypes (Point,PaintPtr, GrafPart,GrafPtr, Rect) 
$U TSTYPES COOE TSTypes (EventRecord,EvtRecPtr); 

I $L1! 

const 
1 event codes 
nullEvent 
mouseOown 
mouseUp 
keyDown 
keyUp 
outoKey 
updateEvt 
diskEvt 
activoteEvl 
abartEvt 
nelworkEvt 
driverEvl 
applEvt 
app2Evt 
opp3Evt 
app4Evt 

1 event Masks 
everyevent 
nullMask 
mDownMosk 
mUpMask 
keyOawnMosk 
keyUpMask 
autoKeyMosk 
updateMask 
diskMosk 
ac t i vMa s k 
abor tMask 
networkMask 
driverMask 
applMask 
app2Mask 
app3Mosk 
opp4Mask 

ype 

o 
1 
2 

~ J 
4 

= 5 
~ 6 
= 7 
~ 8 
~ 9 
- 10 

11 
12 

= 13 
14 

= 15 

= -1 
1 , 
2 ; 

= 4 ; 
= S ; 

16 ; 
= 32 ; 
= 64 . 
= 128' 

256 
512 

= 1024 
2048 
4096 
8192 
16384 ; 

= -32768 ; 

KeyMapPtr = MacPtr ; 

nu I I ! 
mouse down 
mouse up ! 
key down 
key up ! 
auto-key 
update ! 
disk inserted 
activate! 
abort! 
network I 
I/O driver I 
oppl icotion-def 
oppl icot ion-del 
oppl icotion-def 
appl icat ion-def 

all events! 

ned 
ned 
ned 
ned 

KeyMap = PACKED ARRAY (1 .. 128] of 800leon ; 

Accessing Events -----------------------------------------------------1 
UNCTION GetNextEvent 

UNCT ION Even tAva i I 

eventMosk: 
theEvent: 

Moc8001 

eventMosk: 
theEvent: 

Moc8aol 

integer; 
EvtRecPtr ) 
external (-22160); lA970! 

integer ~ 
EvtRecP\r ) 
external (-·22159); IA971! 

Pos t j ng cnd Remov i ng Even t s ------------------~-----------------------~ 

UNCTION PostEvent eventCode: integer; 

A-24 1200301:0AB 



Event Manager (EventMgr) 

eventMessoge: Longlnt) 
integer ; 

PROCEDURE FlushEvenls eventMosk: integer 
stopMask: integer 

PROCEDURE SetEventMosk theMask: integer 

FUNCTION Os Even lAva i I theMask: integer 
t heEven t : EvtRecPtr 

MacBool 

FUNCTION GelOsEvent theMosk: integer 
theEvent: EvtRecPtr 

MocBool 

1 Reoding the Mouse --------------------------------------------------l 
PROCEDURE GetMouse 

FUNCTION Button 

FUNCT ION S til I Down 

FUNCTION Wai tMouseUp 

mouseLoc: 

MocBool 

MocBool 

Mac8oo1 

Pointptr ) , 
external (-22158); lA972l 

externol(-22156); jA974l 

ex ternol (-22157); lA973l 

external(-22153); jA97?! 

1 Miscellaneous Uti I i ties --------------------------------------------l 

PROCEDURE GetKeys k KeyMopPtr ) 
external (-22;54); lA976l 

FUNCTION TickCount Longlnt external (-22155); jA975l 

FUNCTION OoubleTime Longlnt 

FUNCTION CoretTime Longlnt 

1200301:0AB A-25 



1v1ACINTOSH INTERFACE Appendix A 

A.7. File Manager (FileMgr) 

uni t Fi leMgr; 

interface 

!USES MacCord 
l $L-l 
uses !$U MACCORE.CODEl MacCore ; 
j $ L! l 

type 

finderlnfo 
f i Ty pe 
iiCreator 
f i I lags 
fiLocation 

f j v : 
Ii h : 

end ; 
f i I I d r 

End ; 

RECORD 
OsType 
OsT y pe 
integer 
Record 

integer 
integer 

integer 

The type 01 the lile I 
The creator of the file I 
Hosbundle. Invisible, etc. 
Point Location l 

folder containing the fi Ie l 

1------------------- High Level Fi Ie Manager Routines ----------------l 

1 Accessing Volumes --------------------------------------------------1 
FUNCTION GetVlnlo OrvNum: integer: 

vol Name: StringPtr 
VAR vRefNum: integer; 
VAR f r ee8ytes: Longlnt) 

: OsErr 

FUNCTION GetVol ( vol Nome: StringPtr 
VAR vRefNum: integer ) 

OsErr 

FUNCTION SetVal vol Nome: StringPtr 
vRefNum: integer) 

OsErr 

=UNCTION FlushVol vol Nome: Str i ngPt r 
vRefNum: integer) 

OsErr 

=UNCTION UnMountVal vol Nome: Str ingPtr; 
vRefNum: integer) 

OsErr 

'UNCTION Eject volName: StringPtr; 
vRefNum: integer) 

OsErr 

i Changing Fi Ie Contents ---------------------------------------------1 
'UNCTION Create 

·UNCT ION FSOpen 

·UNCT I ON FSRead 

A-26 

OsErr 

fi lename: 
vRefNum: 
creotor: 
f i I e type: 

f i I enorne: 
vRelNum: 

VAR re INurn: 
OsErr 

( re fNurn: 
VAR Caunt: 

Str255; 
integer; 
OsType; 
OsType) 

Str255; 
integer; 
integer) 

integer~ 
Longlnt; 

1200301:0AB 



FUNCTION FSWri te 

FUNCTION GetFPos 

FUNCTION SetFPos 

FUNCTION GetEOF 

FUNCTION SetEOF 

FUNCTION AI locate 

FUNCTION FSClose 

bu f fP t r: 
: OsErr 

( 
VAR 

refNurn: 
Coun t: 
bu f fP t r: 

: OsErr 

( refNurn: 
VAR filePos: 
OsErr 

OsErr 

refNum: 
posMode: 
posO f f: 

( refNurn: 
VAR 10gEOF: 
OsErr 

OsErr 

refNurn: 
10gEOF: 

( refNurn: 
VAR €oun t : 
OsErr 

refNurn: 
OsErr 

File Manager (FileMgr) 

MocPtr) 

integer; 
Longlnt; 
MocPtr) 

integer; 
Longlnt) 

integer; 
integer; 
Longlnt) 

integer; 
Longlnt) 

integer; 
Longlnt) 

integer; 
Longlnt) 

integer) 

! Chonging Informotion About Fi les -----------------------------------1 
FUNCTION GetFlnfo 

FUNCTION SetFlnfo 

FUNCTION SetFLock 

FUNCTION RstFLock 

FUNCTION Renorne 

FUNCTION FSDelete 

filename: 
vRefNurn: 

VAR fndrlnfo: 
OsErr 

OsErr 

OsErr 

OsErr 

OsErr 

OsErr 

fi lenome: 
vRefNurn: 
f nd r In f 0: 

fi lenome: 
vRefNurn: 

f i I enome: 
vRefNurn: 

oldnome: 
vRefNurn: 
newnome: 

f i I enome: 
vRefNurn: 

St r255; 
integer; 
Finderinfo) 

Str255; 
integer; 
Finderlnfo) 

Str255; 
integer) 

Str255; 
integer) 

Str255; 
integer; 
Str255) 

Str255; 
integer) 

!--------------- High Level Device Manager Routines -----------------j 
FUNCTION OpenDriver 

FUNCTION CloseDriver 

FUNCTION Con t ro I 

1200301:0AB 

( narne: 
VAR refNurn: 
OsErr 

OsErr 

VAR 

refNurn: 

refNurn: 
csCode: 
csPorom: 

Str255 
integer 

integer 

integer 
integer. 

INTERFACE PACKED 

A-27 



MA.CINTOSH INTERFACE 

FUNCTION Status 

FUNCTION KilllO 

A-28 

OsErr 

VAR 

OsErr 

OsErr 

refNum: 
csCode: 
csPoram: 

refNurn: 

Appendix A 

ARRAY[min .. max: integer) 
OF CHAR ) 

integer 
integer, 

INTERFACE PACKED 
ARRAY[mi n .. mox: integer) 
OF CHAR ) 

integer 

1200301:0AB 



Font Manager (FontMgr) 

A.S. Font Manager (FontMgr) 

uni t FontMgr 

interface 

juses MACCORE. ODTypes! 
$L-! 

Uses I$U MACCORE.CODE! Maccore. 
$U ODTYPES.CODE! ODTypes (Style. Point) 

1 $ L t ! 
canst 

1 Font Numbers! 
systemFont 0 
opplFont 1 
new York 2 
geneva = 3 
monaco ~ 4 
venice = 5 
london ~ 6 
athens 7 
sonFran = 8 
toronto = 9 

type 
FMlnPtr 
FMOutPtr 

Macptr 
MocPtr 

FMlnput - PACKED RECORD 
family: integer; 
size: integer; 
needbits: smollbool 
face: style; 
device: integer 
numer: Point. 
denom: Point; 

End ; 

FMOutput PACKED RECORD 
er rNum: 
fonlHondle: 
i to lie: 
bold: 
ulShodow: 
u 10 f f se t : 
shadow: 
ulThick: 
ascent: 
extra: 
wi dmox: 
descent: 
unused: 
leading: 
nume r : 
denom: 

End ; 

integer; 
Handle 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
Po i n t ; 
Point; 

System Font ! 
application Font 

font number ! 
font size! 
TRUE if drawing 
Character style 
device number ~ 
numerators of seal jng foctors ~ 
denominators of sea! ing foctors 

not Used ! 
handle to fonl record 
i tal ic factor! 
bold factor! 
under line shadow 
underline offset 
shadow foe tor! 
underline thickness 
ascent! 
width of Style! 
maximum character width 
descent ! 

leading! 
numerators of seal ing factors ~ 
denominators of seal ing factors 

Getting font Information --------------------------------------------l 

PROCEDURE GetFontName 

PROCEDURE GetFNum 

FUNCTION RealFont 

1200301:0AB 

fontNum: 
theNome: 

fontName: 
theNum: 

fontNum: 
size: 

integer; 
StringPtr ) ; 
external (-22273); lA8FF! 

StringPtr ; 
integerPtr ) ; 
external(-22272); lA900! 

integer; 
integer) 

A-29 



:MACINTOSH INTERFACE Appendix A 

MocBool ; external (-22270); !A902! 

I Keeping Fonts in Memory --------------------------------------------l 
PROCEDURE SetFantLack lockflag: MocBaa I ) ; 

external (-22269); !A903! 

I Advanced Routine ---------------------------------------------------l 
FUNCTION SwopFont inRec: FM I nP t r ) 

FMOutPtr ; externa 1(-22271); !A901! 

A-30 1200301:0AB 



Global Types (MacCore) 

A.9. Global Types (MacCore) 

unit MocCore; 

interface 

const 
abs_n i I = 0 ; 
mac_true = 256 
mac_false = (I ; 

l ni I value associated wi th MocPtr l 

type ! General purpose declarations 
procedures. 

MacPtr = 
Handle = 
ProcPtr = 

MocBaal = 
SmollBool = 
MocBoolPtr 

Long I n t = 
Longl ntPtr 

integer2: 
integer2,; 
integer2; 

j n teger ; 
() .. 255; 
MocPtr ; 

integer2: 
MacPtr ; 

Str255 = string[255J; 
StringPtr integer2; 
StringHandle =Handle 

IntegerPtr 

Byte = 
OsErr = 

Macptr 

() .. 255; 
integer; 

for use with Macintosh O.S. interface i 

I OsType is the basic 4 character identi fier used by many Macintosh 
Facilities. OsTypePtr is for passing VAR parameter addresses. 
FOsType is lor passing VALUE parameters. 

OsTypePtr = MacPtr; 
FOsType= i nteger2 ; 
OsType = RECORD 

case boolean of 
Irue : (c PACKED ARRAY [1 .. 4] OF CHAR) 
false: (p FOsType); 

End ; 

Functions for conversion between ToolBox doto representation and 
UCSD Pascal doto representation. 

Funct on TaMac800i 
Funcl on FrMacBool 
funct on ToSmal1 
Funct on FrSmol1 

1200301:0AB 

! ub 
mb 
ub 
mb 

Boolean l 
MocBool 
Boolean 
SmallBool 

MacBool 
Boolean, 
Sma IIBoo I 

Boolean 

A-31 



MACINTOSH INTERFACE 

A.IO. Global Data {MacData} 

uni t MocDota 

interface 

luses MacCore, OdTypes! 
$L-l 

Uses I$U Moccore.code! MocCore 
$U OdTypes.Code OdTypes 

Appendix A 

(GrafP!r, PotternPtr, CursorPtr, BitMapPtr) 

Var 
thePort GrafPtr po in te r to quickdraw defaul t rart t 
wh j te PotternPtr pointer to whi te pen pat tern 
b lac k PotternPtr pointer ta black pen pattern 
gray PatternPtr pointer to gray pen pattern t 
I tGray PatternPtr po j n te r to light gray pen pattern! 
dkGray PotternPtr pointer to dark groy pen pattern t 
arrow CursorPtr ; pointer to arrow cursor ~ 
screenbi ts BitMapPtr pointer to screen bi tmap t 
rondSeed LonglntPtr pointer to random function seed l 
A5 MacP t r Register A5 value I 

A-32 1200301:0AB 



Error Codes (MacErrors) 

A.1I. Error Codes (MacErrors) 

uni t mocerrors ; 

inter face 
! Macintosh Error Codes! 

canst 

! Generol System Errors 

NoErr 13 ; 
OErr -1 
VTypErr -2 
CorErr - -3 
UnimpErr -4 

! I/O System Errors 

ControlErr -17 
StotusErr -18 
ReodErr - -19 
Wr i tErr -213 
BodUni tErr -21 
Uni tEmptyErr -22 
OpenEr r ~ -23 
ClosErr -24 
DRemovE rr -25 
DlnstErr -26 
AbortErr -27 
NotOpenErr -28 

! F i Ie System Errors ! 

Di rFul Err -33 ; 
DskFu I Err -34; 
NsVErr -35 
10Err -36 
BdNomErr -37 
FNOpnErr -38 
EOFErr -39 
PosErr - -413 
MFulErr -41 
TMFOE rr -42 
FNFErr -43 
WPrErr -44 
FLckdErr -45 
VLckdErr -46 
FBsyErr -47 
DupFNErr -48 
OpWrErr -49 
PoromErr -513 
RFNumE r r -51 
GFPE rr -52 
VolOffLinErr -53 
PermE r r -54 
Vo I OnL i nErr -55 
NSDrvErr -56 
NoMacOskErr -57 
ExtFSErr -58 
FSDSErr -59 

BodMDBerr -613 
WrPermErr -61 

no error occurred J 
queue element not found during deletion 
invalid queue element! 
core routine number out of range ~ 
unimplemented core routine J 

Tried to remove an open driver I 
Drvrlnstoll couldn"t find driver in resources J 
I/O c a I lobo r ted by K i I I i 0 ! 
driver not opened I 

di rectory full 
disk full I 
no such volume 
I/O Error I 
bad nome ! 
Fi Ie not open 
End of File! 
tried to position before start of file I 
memory too full to load file I 
too many f i I es open I 
Fi Ie not found I 
diskette is write protected 
fi Ie is locked! 
volume is locked! 
f i lei s busy I 
dupl icote file name J 
file already open with write E'ermission 
error in user parameter list J 
refnum error! 
ge t f i I e po sit ion err a r 
volume not on I ine (was Ejected) ! 
permissions error (during file open) ! 
drive volume already on-I ine at MountVol 
no such drive! 
not a macintosh diskette! 
volume belongs to on external file system I 
during rename old entry was deleted but ! 
not be restored ! 
bod master directory block 
write permissions errorl 

! Disk, Serial Ports, and Clock speci fic errors! 

NoDriveErr 
OffLinErr 
NoNybE rr 

1200301 :OAB 

-64 
-65 
-66 

I drive not installed I 
r/w request for on offline drive I 
couldn't find 5 nybbles in 2130 tries 

A-33 



:MACINTOSH INTERFACE Appendix A 

NoAdrMkErr 
DataVerErr 
BodCkSmErr 
BodBtSlpErr 
NoDtoMkErr 
BodDCkSum 
BodDBtSlp 
WrUnderRun 
CantStepErr 
Tk8BodErr 
I nit I WMe r r 
TwoSideErr 
SpdAdjErr 
SeekErr 
SectNFErr 

CI kRdErr 
ClkWrErr 
PRWrErr 
PRlnitErr 

RcvrErr 
8reakRecd 

-67 
-68 
-69 

= -78 
-71 

= -72 
-73 

= -74 
= -75 

-76 
-77 

= -78 
-79 

= -80 
-81 

-85 
= -86 
= -87 

-88 

-89 
= -90 

1 Memory Manager Errors 

Memfu I IE r r 
Ni IHondleErr 
memWZEr r 
memPurErr 
memAdrErr 
memAZErr 
memPCE r r 
memBCErr 
memSCErr 

= -188 
= -109 

-111 
-112 

= -1 HI 
-113 
-114 
-115 

= -116 

1 Resource Manager Errors 

ResNotFound 
ResFNotfound 
AddResFoi led 
AddRefFai led 
RmvResFo i led 
RmvRefFailed 

-192 
-193 
-194 
-195 
-196 
-197 

~ Scrap Manager Errors 

noScropErr 
noTypeErr 

-108 ; 
-102 ; 

CO u I d n • t fin d val ida d d res s rna r k ~ 
r eod ve r i f Y compo ref 0 i led I 
address mark checksum didn't check 
bod addr mork bi t sl ip nibbles I 
couldn't find a data mark header 
bod doto mork checksum I 
bad dato mork bi t sl ip nibbles I 
wri te underrun occured ~ 
step handshake foiled ~ 
track e doesn't detect change 
unoble to initiolize IWM I 
tried to read 2nd side on 1 side drive ~ 
unable to correctly adjust disk speed! 
track number wrong on address mark t 
sector number never found on 0 track t 

unable to read some clock value twice t 
time written did not verity 1 
parameter ram didn't reod-veri fy l 
I n j t Uti I f a u n d the par am r om un i t j 0 liz e d 

sec Receiver error 
Break received! 

no t enough room in heap zone ~ 
Hand I e was Nil in Hand I e Zone f 
WhichZone fai led (appl ied to free block) 
block was locked or non-purgoble I 
address was odd or out of range I 
Address in zone check foi led ~ 
Pointer check failed I 
Block Check Fai led I 
size check foi led! 

Resource not found I 
Resource f i I e not found 
Addresource fai led I 
Addreference foi led ~ 
RmveResource fai led ~ 
RmveReterence toiled I 

I No scrap exists ~ 
No Object of thot type in scrap! 

APPLICATION CODE ERRORS FROM -1024 TO -4095 I 
Dead System Alert Identifiers I 

DSSysErr 
DSBusError 
OSAddressErr 
DSllllnstErr 
DSZeroDivErr 
DSChkErr 
DSOvFlowErr 
DSPrivErr 
DSTracErr 
DSLineAErr 
DSlineFErr 
DSMiscErr 
DSCoreErr 
DSlrqErr 
DS IOeoreErr 
DSLoodErr 
DSFPErr 

DSMemFu II Er r 

A-34 

= 32767 
1 

= 2 
3 
4 

= 5 
6 
7 
8 
9 

= 10 
11 
12 
13 
14 
15 

= 16 

25 

general system error ~ 
bus error I 
Address error ~ 
illegal instruction error 
divide by zero error f 
check trop error! 
overtlow trap error I 
priviloge violation error 
trace mode error I 
line 1010 trap error! 
line 1111 trap error 
miscellaneous hardware exception error 
unimplemented core routine error! 
uninstalled interrupt error ~ 
I/O Core Error l 
Segment Loader error 
Float iog Point error 

out 0 f memo r y I 

1200301:0AB 



DS8adLaunch 

DSStknHeap 
DSFSErr 
DSRelnsert 
DSNotThe1 

26 

28 
27 
30 

- 31 

1200301:0AB 

Error Codes (MacErrors) 

can't launch file I 

stack has moved into application heap i 
fi Ie system map has been trashed I 
request user to reinsert off-line volume 
not the disk I wanted I 

A-35 



:MACINTOSH INTERFACE 

A.12. Memory Manager (MemoryMgr) 

unit MemoryMgr; 

interface 

juses MacCore! 
$L-! 

uses I$U MACCORE.CODE\ MacCore; 
I $U! 

type 
Size Longlnt; 

THZ = MocPtr 
Zone = RECORD 

BkLim: 
PurgePtr: 
HFstFree: 
lCBFree: 
GZProc: 
MareMast: 
Flogs: 
Cn tRe I: 
MoxRe! : 
CntNRel 
MaxNRel 
CntEmpty: 
CntHandles: 
MinCBFree: 
PurgeProc: 
SparePtr: 
AllacPtr: 
HeopDota; 

End; 

MacPtr; 
MacPtr; 
Macptr; 
Longlnt; 
ProcPtr; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
Longlnt; 
ProcPtr; 
MacPtr; 
MacPtr; 
integer~ 

I Paints to a lone Record! 

Appendix A 

In it j a Ii za t i on and A It oeo t ion ------<-------------------------------------! 

'ROCEDURE MoreMasters 

'ROCEDURE I ni tZone growProc Procptr; 
masterCount : integer 
I imi tPtr, StartPtr Mocptr) 

\ Heap Zone Access --------------------------------------------------------~ 

'ROCEDURE 
'UNCTION 
'UNCTION 
'UNCT I ON 

SetZone 
Getlone 
Sys temZone 
Appl icZone 

hz 
THz; 
THz; 
THz; 

: THz ) ; 

AI locating and Releasing Relocotable Blocks -----------------------------! 

'UNCT ION NewHandle by teCount: Size) 
Handle; 

'ROCEDURE DisposHandle g: Hand Ie) ; 

UNCTION GetHandleSize h: Handle) 
Size; 

ROCEDURE SetHandleSize h: Handle; 
newSize: S i z e) ; 

UNCTION HOrldleZone h: Handle) 
Macptr; 

UNCTION RecoverHondle p: MacPtr) 
Handle; 

A-36 1200301:0AB 



Memory Manager (Memory Mgr) 

PROCEDURE Rea I I ocHand I e ( h: Handle; 
byteCount: Size); 

I AI locoting ond Releasing Nonrelocotoble Blocks---------------------------l 

FUNCTION Newptr byteCount: Size) 
MacPtr; 

PROCEDURE DisposPtr p: MacP t r ) ; 

FUNCTION Ge t P t r S i z e p: MacP t r ) 
S i z e ; 

PROCEDURE SetPtrSize p: MacP t r ; 
newSize: Size) ; 

FUNCTION Pt rZone p: MocP t r) 
MacP t r ; 

I Freeing Space on the Heop -----------------------------------------------l 

FUNCTION FreeMem : Longlnt; 

FUNCTION MaxMem (VAR grow: Size) 
Size; 

FUNCTION CompactMem cbNeeded: Size) 
Size; 

PROCEDURE ResrvMem cbNeeded: S i z e ~ ; 
PROCEDURE PurgeMem cbNeeded: Size; 
PROCEDURE EmptyHandle h: Hondle); 

I Properties of Relocotoble Blocks ----------------------------------------l 

PROCEDURE HLock 
PROCEDURE HUnlock 
PROCEDURE HPurge 
PROCEDURE HNoPurge 

h: 
h: 
h: 
h: 

Handlel; Handle; 
Handle; 
Handle; 

1 Grow Zone Funclions -----------------------------------------------------! 
PROCEDURE SetGrowZone 
FUNCTION GZCri lical 
FUNCTION GZSaveHnd 

( growZone: ProcPlr); 
: Boolean; 
: Handle; 

I Uti lily Routines --------------------------------------------------------l 

PROCEDURE BlockMove 

FUNCTION TopMem 
FUNCTION MemError 

1200301:0AB 

srcPtr. 
deslPlr: MocPlr; 
byteCount: Size); 

MocPlr; 
integer; 

A-37 



Mt\CINTOSH INTERFACE 

A.13. Menu Manager (MenuMgr) 

uni t MenuMgr 

inter foce 

luses MacCore. OOType.! 
$L-! 

Uses I$U MACCORE.CODE! MacCore 
$U ODTYPES.CODEI ODTypo. 

1 $Lt I 
canst 

noMork 
checkMork 
appleSymbol 

() . 
18 , 

- 20 ; 

o 

(FPoint, style) ; 

Appendix A 

mDrowMsg 
mChoaseMsg 
mSizeMsg 

1 
- 2 

draw the menu ~ 
tell which j tem was chosen and hi lite it J 
calculate the menu's dimensions l 

textMenuProc e 

type 

MenuPtr 
MenuHandle 

= MacPtr 
= Handle 

Menulnfo = RECORD 
me-nuID: 
menuWidth: 
menuHe i gh t : 
menuProc: 
enobleFlags: 
menuData: 

End ; 

integer 
integer 
integer 
Handle; 
PACKED ARRAY [0 .. 31) OF Boolean; 
5tr255 ; 

In! ticl izotion and AI locotion ---------------------------------------! 

PROCEDURE In i !Menus 

FUNCTION NewMenu 

FUNCTION GetM~nu 

'ROCEDURE DisPaseMenu 

'ROCEDURE AppendMenu 

'ROCEDURE AddResMenu 

'ROCEDURE InsertResMenu ( 

meould: 
me nuT i tie: 

MenuHondle ; 

menuld: 
MenuHandle 

menu: 

menu: 
data: 

menu; 
theType: 

menu: 
theType: 
oft e r I t em: 

external (-22224); !A930! 

integer. 
5 t r i ngP t r ) 
external (-22223); lA931! 

integer) 
externa 1(-22081); !A9BF! 

MenuHond Ie) . 
external (-22222); !A932! 

MenuHandle ; 
5tringPtr) , 
external (-22221); !A9331 

MenuHandle , 
F05Type ) ; 
external (-22195); !A94D! 

MenuHondle ; 
FOSType . 
integer) . 
external(-22191); !A951! 

~ Formi ng the Menu Bar ----------------------,--------------~-~~----~--~t 

'ROCEDURE InsertMenu 

A-38 

menu: 
beforelD: 

MenuHondle ; 
integer) , 
external (-22219); !A935! 

1200301:0AB 



PROCEDURE DrawMenuBar 

PROCEDURE DeleteMenu menulD: 

PROCEDURE ClearMenuBar 

FUNCTION GetNewMBar menuBorlD: 
Handle 

FUNCTION GetMenuBar Handle; 

PROCEDURE SetMenuBar menuBor: 

Menu Manager (MenuMgr) 

external (-22217); lA937! 

integer) . 
external (-22218); lA9361 

external (-22220); lA9341 

integer) 
external (-221380); lA9C01 

externa 1(-22213), lA93Bl 

Handle) . 
external (-22212); lA93Cl 

1 Choosing from a Menu ------------------------------------------------t 

FUNCTION MenuSelect s to r t P t : FPaint ) 
Langlnt ; external (-22211); lA93Dl 

FUNCTION MenuKey ch: Char ) 
Langlnt ; external (-222113); lA93El 

PROCEDURE Hi I i teMenu menulO: integer) . 
external (-22216); lA9381 

1 Control I ing Items' Appearance ---------------------------------------1 

PROCEDURE Setl tern 

PROCEDURE Ge tit em 

PROCEDURE Disablel tem 

PROCEDURE Enablel tern 

PROCEDURE Checkl tem 

PROCEDURE Setl temlcon 

PROCEDURE Getl temlcan 

PROCEDURE SetltemStyle 

PROCEDURE Getl temStyle 

PROCEDURE Setl temMark 

1200301:0AB 

menu: 
i tern: 
itemS t r i n9 : 

menu: 
i tern: 
itemS t r i n 9 : 

menu: 
i tern: 

menu: 
i tern: 

menu: 
i tern: 
checked: 

menu: 
i tern: 
iconNum: 

menu: 
i tern: 
iconNum: 

menu: 
i tern: 
chStyle: 

menu: 
i tern: 
chStyle: 

menu: 

MenuHandle 
integer. 
StringPtr) . 
external(-222131); lA9471 

MenuHondle 
j n tege r ; 
StringPtr) . 
external (-22202); lA9461 

MenuHandle ; 
integer) . 
external (-22214); lA93Al 

MenuHondle ; 
integer) ; 
ex terna 1(-22215); lA939! 

MenuHond!e ; 
integer. 
MacBao I ) • 
external (-22203); lA945! 

MenuHondle ; 
j nteger . 
integer) ; 
external (-222138); lA940! 

MenuHandle ; 
integer. 
integerPtr ) . 
external (-22209); lA93F! 

MenuHandle ; 
integer 
style) . 
external (-22206); lA942! 

MenuHandle ; 
integer. 
integerPtr ) ; 
external(-22207); lA94q 

MenuHandle ; 

A-39 



~{ACINTOSH INTERFACE 

PROCEDURE Ge t I temMar k 

item: 
markChar: 

menu: 
j tem: 
morkChor: 

Appendix A 

integer ; 
c ha r ) ; 
external(-22204); !A94q 

MenuHandle ; 
integer; 
MocP t r ) ; 
external (-22205); !A9431 

I Miscellaneous Uti I i ties ---------------------------------------------1 
PROCEDURE SetMenuFlash 

PROCEDURE CalcMenuSize 

FUNCT ION Caun tM I t ems 

FUNCTION GetMHandle 

PROCEDURE FlashMenuBar 

A-40 

menu: 
f I ashCoun t : 

menu: 

menu: 
integer; 

menuJD: 
MenuHondle ; 

menulD: 

MenuHondle ; 
in tege r ) ; 
external (-22198); lA94Al 

MenuHand Ie) , 
ex te r no I (-22208); !A948! 

MenuHandle ) 
external (-22192); !A950! 

integer) 
external (-22199); IA949! 

integer) ; 
external (-22196); !A94C! 

1200301 :OAB 



Operating System Types (OsTypes) 

A.14. Operating System Types (OsTypes) 

un it OsTypes; 

interface 

IUses MocCore, ODTypes, TBTypes! 
$L-! 

uses I$U MACCORE.CODE\ MacCore, 
$U ODTYPES.CODE ODTypes (Paint ,VHSelect ,GrofPor t ,GrofPtr ,Rect), 
$U TBTYPES.CODE TBTypes (EventRecord) ; 

1 $Lt! 

type 
OElemPtr = MocPtr ; 
OHdrPtr = MocPtr ; 
PormBlkPtr = MocPtr 

Finfo = RECORD 
fdType : OsType ; 
fdCreotor : OsType 
fdFlogs : integer; 
fdLocation : Point 
fdFldr integer 

end ; 

DrvOEI = RECORD 
qLink OElemPtr 
qType INTEGER; 
dODrive INTEGER; 
dORefNum : INTEGER; 
DOFSID INTEGER; 
dODrvSize INTEGER; 

End ; 

VCB = RECORD 
qLi nk: OElemPtr ; 
qType: integer 
vcbFlogs: integer 
vcbSigWord: integer 
vcbCrDote: Longlnt 
vcbLsBkUp: Longlnt 
vcbAtrb: integer 
vcbNmF Is: integer 
YcbOirSt: integer 
vcbBILn: integer 
vcbNmBlks: integer 
vcbA I B I kS i z: Long I n t 
vcbClpSiz: Longlnt 
vcbAIBISt: integer 
vcbNxtFNum: Longlnt , 
vcbFreeBks: integer; 
vcbVN: String[27) 
vcbOrvNum: integer 
vcbORefNum: integer. 
vcbFSID: integer; 
vcbVRefNum: integer ; 
vcbMAdr: MocPtr; 
vcb8ufAdr: MacPlr; 
vcbMLen: integer 
vcbD i r Index: in leger 
vcbOirBlk: intege'r 

End ; 

VBLTosk = 
qLink: 
qType: 
vblAddr: 
vblCount: 
vblPhose: 

RECORD 
OElemPtr 
integer 
ProcPtr 
integer 
integer 

1200301 :OAB 

The type of the file! 
The creator of the fi Ie ! 
hasbundle. invisible, etc. ~ 
file's location in the folder 
folder containing the file! 

next queue entry ~ 
not used l 
bit 15-1 if dirt¥ ! 
always Hex D2D7 l 
dote volume was ini ticl ized 
dote of lost bocku~ ! 
v 0 I ume ott r j but e s ~ 
n umbe r 0 f f i Ie s j n d i r ec tor y ! 
directory's first black! 
length of file directory! 
number of ollocot ion blocks 
size of allocation blocks! 
number of bytes to allocate 
first block in block mop l 
next unused fi Ie number! 
number of unused blocks 
volume nome I 
dr i ve number I 
device reference number ~ 
fi Ie system Jdenti fier I 
volume reference number t 
location of block mop! 
location of volume buffer ~ 
number of bytes in block map 
used internally I 
used internally 

next queue entry 
queue type! 
task address ! 
task frequency 
task phase ! 

A-41 



MACINTOSH INTERFACE 

End ; 

EvOE I RECORD 
qlink: OElemPtr 
qType: integer, 
Event: EventRecord 

End ; 

next queue entry! 
queue type! 
event record description 

Appendix A 

PoromBlkType = (loPorom, FilePoram. VolumePoram, CntrlPoram) 

ParamBlackRec ~ PACKED RECORD 
I 12 BYTE header used by the fi Ie and I/O system I 
qLink OElemPtr I queue link in header! 
qType integer type byte far safety check 
iaTrap integer FS: the Trap I 
ioCmdAddr MacPtr FS: address to dispatch ta 

i C ammo n he 0 d t 0 a I I va rio n t 5 
ioCompletion ProcPtr 
ioResult OsErr, 
iaNamePtr StringPtr; 
ioVRefNum integer ~ 

! 
completion rou'tine addr 
resu I t code! 
pointer to Vol:filenome 
volume reference number 

s t ring 
I 

~ di fferent components for 
Case ParomBlkType OF 
ioParom 

the di fferent types of parameter blocks 

(ioRefNum integer 
ioPermssn Byte; 
ioVersNum Byte; 
ioMisc MocPtr 

i oBu f fer 
ioReqCount 
ioActCount 
ioPosMode 
ioPasOffset 

) ; 
FjlePorom 

MaoP t r , 
Longlnt 

: Longlnt 
integer ; 
: Langlnt 

( i 0 F Ref N urn i n t e 9 e r ; 
f·; r lerl Byte; 
ioFVersNum Byte; 
ioFDirlndex integer 
ioFIVersNum Byte; 
ioFIAttrib : Byte; 
ioF1Fndrinfo Finfo; 
ioFINum Longlnt: 
iaFIStBlk integer; 
iaFllglen longlnt; 
ioFIPylen Longlnt; 
ioflRStBlk integer. 
ioFIRLgLen Longlnt; 
iaFIRPyLen Langlnt; 
iaFICrDat Longlnt 
iaFIMdDat Longlnt 

) ; 
Vo l_umeParam 

(filler2 Longlnt; 
ioVollndex integer 
ioVCrDote longint; 
ioVlsBkUp longlnt; 
ioVAtrb : integer; 
ioVNmFIs integer; 
ioVOirSt integer; 
ioYblLn integer 
ioVNmAIBlks integer 
iaVAIBlkSiz Langlnt 
iaVClpSiz : Longlnt ; 
iaAIBISt nteger; 
ioVNxtFNum Langlnt 
iaVFrBlk: nteger 

A-42 

refnum for I/O operat ion 
Open: Permissions t 
version number t 
Rename new name ~ 
GetEOF, Se tEOF : I agi col end of I i Ie! 
Open optional ptr to bulfer 
SetFi leType new type! 
data buffer ptr ! 
requested byte count J 
actual byte count completed 
initial file positioning ~ 
f i I e po sit ion off s e \ ! 

reference number for f j Ie operot jon 

version number t 
GetFilelnfo directory index ~ 
File version number ~ 
GetFilelnfa: in-use bit-7, lock bit=7! 
Finder Info! 
GetFi 1.,lnfa : Fi Ie Number! 
start fi Ie block (0 i I nane)1 
lagicol length (Eaf) ! 
physical length! 
Start block of resource fork! 
fj Ie logical length of resource fork 
fi Ie physicol length of rsrc fork I 
f i lee reo t ion time & dot e I 
lost modified time &. date 

volume index number I 
creat i on dote and time t 
last backup dote and time 
volume attribute ~ 
number of files in directory 
stort block of directory! 
GetVollnlo: length of dir in blOCkS! 
GetVallnla : H bl ks (of 01 lac si ze) 
GetVollnfo alloe blk byte SiZe! 
GetVo!lnfo #bytcs in one alloe 
starting disk block in block map 
GetVollnfa : next free file R ! 
GetVollnfa /I free blks for the vol 

1200301:0AB 



) ; 
CntrlPorom: 

(filler3 integer; 
CSCode integer; 
CSParam : integer 

) ; 
End; ! ParamBlackRec 

OHdr = RECORD 
OFlags integer 
OHeod OElemPtr 
OTai I OElemPtr 

End ; ! OHd r ! 

OTypes = 
( dummyType 

vType • 
ioOType • 
drvOType • 
evOType • 
fsOType ) 

OElem - RECORD 
CASE OTypes of 

vType: ~ vblOElem: 
ioOType' ioOElem: 
drvOType: drvOElem: 
evOType (evOElem: 
fsOType (vcbOElem: 

End 

1200301:0AB 

. Operating System Types (OsTypes) 

ward specifying status operation! 
device control or status parameter 

Miscellaneous Flags! 
first element on queue ~ 
Jast element on queue ~ 

vertical retrace queue type 
I/O request queue type! 
drive queue type I 
event queue type 
volume control block queue type! 

VBLTosk ) ; 
PoromSlockRec ) ; 
DrvOE I ) 
EvOE I ) 
ves ) 

A-43 



MACINTOSH INTERFACE Appendix A 

A.15. Operating System Utilities (OsUtiIities) 

uni t OsUt iIi ties; 

interface 

l$L-l 
MocCore. uses 1 $U 

l$U 
l$U 
i$U 

MACCORE CODEI 
ODnPES CODE 
TBTYPES CODE 
OSTYPES.CODE 

ODTypes (Point,VHSelect,GrafPort,GrafPtr,Rect), 
TBTypes (EvenIRecord) , 
OSTypes (OElemPtr,OHdrPtr) ; 

l $ L, ! 

type 

SysParmType 
vo! i d: 
par tA 
portS: 
alarm; 
font: 
kbdPr i nt: 
yolel ick: 
mi sc: 

End ; 

RECORD 
Longlnt 
integer 
integer 
Longlnt 
integer 
integer 
integer 
integer 

SysPPtr MacPtr ; 

DateTimeRec = RECORD 
year: 
month: 
day: 
hour: 
minute: 
second: 
dayOfWeek: 

End ; 

integer 
integer 
integer 
integer 
integer 
integer 
integer 

ApF i Ie = RECORD 
yvre{num: integer 
ftype: OsType ; 
fversion: integer: 
fnome: SIr255 ; 

End ; 

VOl idi ty status 
modem par t ( 
p r i n t e r po r t ( 
alarm setting! 
default application font! 
auto-key thresh/rate; printer's part 
val level; dbl-click/caret blink I 
mouse scaling; boot disk; menu blink 

four-digi t year I 
1 to 12 for January through December! 

1 to 31 I \3 to 23 
@ to 59 
o to 59 
1 to 7 for Sunday through Saturday! 

volume reference number t 
type of Ii Ie ! 
version # in high byte l 
f i I e name ! 

Pointer and Handle Manipulation -------------------------------------~ 

'UNCTION HandToHand VAR theHndl: Handle 
OsErr 

'UNCT ION PtrToHand srcPtr: MacPtr 
VAR dstHndl: Handle 

size: Langlnt ) 
OsErr 

'UNCTION PtrToXHand srcPtr: MacPtr ; 
dstHndl: Handle ; 
size: Langlnt ) 

OsErr 

'UNCT ION HandAndHand aHnd I, bHndl Handle 
OsE" 

UNCTION Pt rAndHand ptr: Macptr 
hnd I: Handle 
size; Longlnt ) 

: OsErr 

String Comparison ---------------------------------------------------! 

A-44 120030l:0AB 



FUNCTION EqualString 

PROCEDURE UprString 

Operating System Utilities (OsUtilities) 

aStr, bStr: StringPtr; 
caseSens. diocSens: Boolean 

MacBool 

theString: 
diacSens: 

StringPtr ; 
Boolean) ; 

1 Dote ond Time Operotions --------------------------------------------l 
FUNCTION ReadDateTime VAR sec s: Longlnt 

OsE r r 

FUNCTION SetDoteTime sees: Longlnt 
OsE r r 

PROCEDURE Date2Secs VAR date: OateTimeRec 
VAR sec s: Longlnt ) 

PROCEDURE Secs2Date sec s: Longlnt 
VAR dote: DateTimeRec 

PROCEDURE GetTime VAR date: DateTimeRec 

PROCEDURE SetTirne VAR date: DateTimeRec 

1 Par arne t e r RAM Ope rot ions -------------------------------------------·-l 
FUNCTION InitUtil 

FUNCTION GetSysPPtr 

FUNCT ION Wr i tePararn 

OsErr : 

SysPPtr 

OsE r r ; 

I Queue Manipulation --------------------------------------------------l 
PROCEDURE Enqueue 

FUNCTION Dequeue 

OsErr 

. qE I ernen t 
theQ : 

qElement 
theQ : 

OE I emP t r ; 
OHdrPtr ) ; 

OE I emP t r ; 
QHdrPtr ) 

1 Dispotch Table Uti I i ties --------------------------------------------! 
PROCEDURE SetTrapAddress( tropAddr: 

tropNum: 
Langlnt 
integer 

FUNCTION GetTrapAddress( tropNum: integer 
Longlnt ; 

1 TextEdi t I Scrap Uti I i ties ------------------------------------------l 
FUNCTION TEScrapHondle 

fUNCTION TEScrapLen 

Hondle ; 

integer; 

1 Finder Interfoce Uti I i ties ------------------------------------------l 
PROCEDURE CountAppFi les 

PROCEDURE ClrAppFi les 

PROCEDURE GetAppFi I es 

~ Miscellaneous Utilities 

PROCEDURE Delay 

PROCEDURE SysBeep 

1200301:0AB 

VAR 
VAR 

Message: 
Count: 

index: 

integer 
integer 

integer 

index: integer 
VAR theFile: ApFile j 

---------------------------------------------l 

VAR 
numTicks: 
finolTicks: 

duration: 

Longlnt 
Longlnt 

integer 

A-45 



MACINTOSH INTERF ACE 

PROCEDURE GetlndString (VAR 

A-45 

theString: 
StrListld: 
index: 

Appendix A 

external (-22072) ; !A9C8! 

Str255 ; 
integer; 
integer) ; 

1200301:0AB 



Package Manager (Packages) 

A.16. Package Manager (Packages) 

Uni t Packages 

inter lace 

l$l-! 
Uses !$U MACCORE.CODE! MacCore 

$U ODTYPES.CODE OdTypes 
( !Types! Point. FPoint 

l$lt! 

Const 

I Standard 
RSFCetFi Ie 
RSFPCetFi Ie 
RSFPPutFi Ie 
RSFPutFile 

Fi Ie Routine Numbers 
~ 2 
- 4 ; 
= 3 ; 
= 1 ; 

I Disk Initilization 
RDIBadMount 
ROIFormot 

Routine Numbers! 

ROllaad 
ROIUniood 
ROIVerily 
ROIZero 

- 0 
6 ; 
2 ; 
4 . 
8 ; 
10 ; 

I International 
RIUOatePString 
RIUOoteString 

Utilities Routine Numbers! 

R I UCe tint I 
RIUMaglOString 
RIUMogString 
RIUMetric 
RIUTimePString 
RIUTimeString 
RIUSetlntl 

- 14 ; 
o ; 
6 ; 
12 ; 
HI; 
4 ; 

- 16 ; 
2 ; 
8 ; 

I Standard Fi Ie Package Constants 

putOlglO 
putSave 
putCancel 
putEject 
putOrive 
putName 

getOlgld 
getOpen 
getCancel 
getEject 
getDrive 
getNmlst 
getScrol1 

- -3999 
- 1 
- 2 
- 5 
- 6 
- 7 

- -40aa 
- 1 
- 3 

5 
- 6 
- 7 
- 8 

SFPutFi Ie dialog template 10 ! 
save bu t ton ! 
Cancel button! 
Eject Button! 
Drive Button 
Ed i tT e xl item lor f i I e nome ! 

SFCetFi Ie dialog template 10 ! 
Open Button I 
Cancel but ton! 
Eject but ton! 
Dr ive but"ton 
userltem for fi Ie nome list 
user I tem for scroll bar I 

I International Utilities Package Constants I 

I DoteForm 
ShortOote 
longOate 
AbbrevOate 

Constants! 
- a ; 
- 256 ; 
= 512 ; 

I Currency format flogs 
currleadingZ = 128 
currTrai I ingZ - 64 
currNegSym 32 
currSymTroi I - 16 

Mask for leading zero! 
Mask for trai I ing zero! 
Mask for for minus sign / brackets! 
Mask for currency symbol I ocat ion! 

1200301:0AB A-47 



MACINTOSH INTERFACE Appendix A 

1 Short 
DMY 
YMD 
MDY 

Date Form Constants 
2 

= 1 

- 0 
1 dote element format masks! 
mntLeadingZ = 64 ; 
dayLeadingZ = 32 ; 
century = 128 ; 

1 I i me e I eme 1'1 I for ma I rna s k s ! 
hrLeadingZ 128 ; 

day. month. year 
yeor. month. day 
month. day. year 

Mask for leading 
Mask for leading 
Mask for century 

Mosk for leading 

zero on month I 
zero on day ! 
/ no century ! 

zero on hour ! 
minLeodingZ = 64 
secLeadingZ = 32 

Mask for leading zero on minutes 
Mask for leading zero on seconds 

~ cantry codes for version numbers ~ 
verUS 0 
verFrance 1 
verBri loin ~ 2 
verGermony = 3 
verllaly = 4 

Type 

1 Slandord Fi Ie Types! 

SFReply = 
copy: 
good: 
f Iype: 
vRefNum: 
version: 
(name: 

End ; 

PACKED RECORD 
Sma I I Boo I 
SmallBool 
OsType ; 
integer; 
integer ~ 
Slring[63) 

no I used ! 
ignore command if fol se 
file type or not used! 
volume reference number 
fi Ie version number J 
f i I e nome ! 

SFTypeli st ARRAY [B .. 3] of OsType ; 

PtrSFReply MacPlr 
PtrSFTypeList = MacPtr 

1 International Resources 
intl6Hndi = Handle 

J nter face 

in t 10P t r = MacP t r 
inl10Rec = PACKED RECORD 

thousSep: chor 
decimalPt: char 
currSym1: char 
listSep char 
currSym3: char 
currSym2: char 
doleOrder: Byte 
currFmt: Byte 
doteSep: char 
shrtDateFmt:Byte 
t imeFmt: Byte 
timeCycle: Byte. 
mornSlr: PACKED 

eveStr: 

I i me 1 Su f t : 
timeSep: 
t ime3Su f f 
t ime2Su f f 
t i me5Su f f 
t ime4Suf f 
t ime7Suf f 
t ime6Su f f 
metricSys 
i ime8Su f t 
intl0Vers 

End ; 

A-48 

PACKED 

char 
cho r 
char 
char 
char 
char 
char 
char 
Byte 
cha r . 
integer 

I ASCII character for 
ASCII character for 
Acurrency symbol (3 
ASCI I character for 

thousand separator 
decimal point I 
bytes) ! 
list seperotor ! 

ARRAY 
! 

ARRAI 

sharI Dote form - DMY. YMD or MDY ! 
currency format flogs I 
ASCII fat dote seperotor ! 
dale elements formot flOgS! 
time elements format flogs 
indicates 12 or 24 hour cycle 
[1 .. 4J of char; 
trailing string from 9:09 to 11:59 I 
[1 .4J of char; 
trailing string from 12:00 to 23:59 ! 
suffix string used in 24 hr mode (B chars) 
time seperotor J 

indicates metric or Engl ish system l 
vrsn: hi byle = country / 10 byle - vers 

1200301:0AB 



= Handle 
- MacPtr 

Package Manager (Packages) 

ntllHndl 
n til P t r 
ntllRec = PACKED RECORD 
days: ARRAY [1 .. 7) af String[15) ; 

! Sunday thraugh Manday I 
months: ARRAY [1 .. 12) af StringL15) ; 

January thraugh December I 
expanded dote farmat 13 ar 2551 daleFmt: Byle, 

supressDale:Byle ; 
abbrLen: Byte; 
dayLeading0:Byte ; 
sll3: PACKED ARRAY 
sll: PACKED ARRAY 
s12: PACKED ARRAY 
s13: PACKED ARRAY 
s14: PACKED ARRAY 
i nt 11Vers: i nleger : 
locolrtn: integer; 

End ; 

13 far day af week, 255 far na day af week 
manth length far shart-expanded dote! 
255 for leading 13, 13 far na leading 13 I 

1 .. 4 of char 
1 .. 4 a f c ha r , 
1 .. 4 afchar; 
1 .. 4 a f c ha r ; 
1 .. 4 a f c ha r ; 

! version word J 
. routine to handle exceptions for mog camp I 

Standard Fi Ie Package -----------------------------------------------! 

PROCEDURE SFPulFi Ie 

PROCEDURE SFPPulFi Ie 

PROCEDURE SFGe I F i Ie 

PROCEDURE SFPGe tF i Ie 

where: 
prampt: 
or igName: 
dlgHaak: 
reply: 
RSFPutFi Ie: 

where: 
p romp t: 
origName: 
d I gHaa k: 
reply: 
dlglD: 
fi I terProc: 
RSFPPulFi Ie: 

where: 
pr omp I: 
f i I eF i I te r : 
numTypes: 
lypeLi sl: 
dlgHoak: 
reply: 
RSFGelFi Ie: 

where: 
prompl: 
fileFiller: 
numTypes: 
lypeL i st: 
dlgHook: 
rep I y: 
dlglD: 
fillerPrac: 
RSFPGelFi Ie: 

FPoint ; 
Stringptr; 
SlringPtr ; 
ProcPtr ; 
PtrSFReply ; 
integer) ; 
external (-221338); !A9EA! 

FPo i n t ; 
Stringptr 
StringPtr 
ProcPtr ; 
PtrSFReply ; 
integer; 
ProcPtr ; 
integer) ; 
external(-221338); lA9EA! 

FPa i n t ; 
S t r i ngP t r ; 
PracPtr ; 
integer; 
PtrSFTypeList 
ProcPtr ; 
PlrSFReply ; 
integer) ; 
external (-221338); !A9EAI 

FPoint ; 
Str ingPtr ; 
ProcPtr ; 
integer; 
PtrSFTypeList 
ProcPtr ; 
PtrSFReply 
integer; 
ProcPtr ; 
integer) , 
external (-221338); !A9EA! 

1 Disk Ini tial ization Package -----------------------------------------1 
PROCEDURE DILoad 

PROCEDURE DIUnlaad 

FUNCTION DIBadMaunt 

1200301:0AB 

RDILoad: 

RDIUnLoad: 

where: 
evtMessoge: 

integer) ; 
external (-221339); !A9E9! 

integer) ; 
external (-221339); IA9E91 

FPoint ; 
langlnt ; 

A-49 



MACINTOSH INTERFACE 

FUNCTION DIFarmat 

FUNCTION DIYeri fy 

FUNCTION DIZero 

RD IBadMaun t: 
integer: 

OsErr 

OsErr 

OsE rr 

drvNum: 
RDI Format: 

drvNum: 
RDIYerify: 

drvNum: 
volName: 
RDIZero: 

Appendix A 

integer) 
external (-221339); !A9E9! 

integer; 
integer) 
external (-221339); !A9E9! 

integer ; 
integer) 
ederno 1(-221339); !A9E9! 

j nteger • 
StringPtr ; 
integer) 
external (-221339); !A9E91 

! International Uti I i ties Package -------------------------------------! 
PROCEDURE I UDa t eS t ring 

PROCEDURE IUDatePString ( 

PROCEDURE I UT i meS t ring 

'ROCEDURE I UT imePS t ring ( 

'UNCTION IUMetric 

'UNCTION IUGetlntl 

'ROCEDURE IUSetlntl 

·UNCT ION IUMagString 

UNCTION IUMaglDString 

A-50 

dateTime: 
DateForm: 
result; 
RIUDateString: 

dateTime: 
DateForm: 
r eSt) It: 
in t I Po r om: 
RIUDatePString: 

dot.eTime: 
won t Seconds: 
r esu It: 
RIUTimeString: 

doteTime: 
wantSeconds: 
r e su It: 
intlParom: 
RIUTimePStr;r.g: 

R I UMe t ric: 
MacBoo I ; 

thelD: 
RIUGet Int I: 

Handle; 

refNum: 
thelD: 
j nt' Po rom: 
RIUSetlntl: 

a: 
b: 
olen: 
blen: 
RIUMagString: 

integer; 

a: 
b: 
oLen: 
blen: 
RIUMagIDStrinQ: 

integer; - -

long I n t ; 
integer; 
StringPtr 
integer) ; 
externa 1(-221335); 

Longlnt ; 
integer; 
StringPtr 
Hondle ; 
integer) • 
ex terna 1(-221335); 

Long! n t ; 
MacBool • 
StringPtr 
integer) ; 
external (-221335); 

Long I n t ; 
MacBao I • 
StringPtr 
Handle. 
;nt~ger ) ; 
external (-22035); 

integer) 

!A9ED! 

!A9ED! 

!A9ED! 

IA9ED! 

external (-22035); !A9ED! 

integer; 
integer) 
external (-22035); !A9ED! 

integer; 
integer; 
Handle; 
integer) ; 
external (-221335); !A9ED! 

StringPtr 
Str i ngPt r 
integer; 
integer; 
integer) 
externol (-22035); 

Stringptr 
StringPtr 
integer; 
integer; 
integer) 
external (-221335); 

!A9ED! 

!A9ED! 

1200301:0AB 



Parameter Block I/O Manager (PBIOMgr) 

A.17. Parameter Block I/O Manager (PBIOMgr) 

uni t PblOMgr 

interface 

!USES Maccare, ODTypes, TBTypes,OsTypes! 
$L-! 

uses I$U MACCORE.CODEI 
$U ODTYPES.CODE 
$U TBTYPES.CODE 
$U OSTYPES.CODE 

1 $ L t ! 

Moccore. 
OdTypes ~paint'VHselect,GrOfPort,GrOfPtr'Rect), 
TBTypes EventRecord), 
OsTypes ParmBlkPtr, PoromBlackRec,OHdrPtr); 

1----------------- Low Level Fi Ie Manager Routines -------------~-----! 

I Ini tiol izing the Fi Ie I/O .Oueue-------------------------------------! 

PROCEDURE In i tOueue; EXTERNAL(-24542); IA022! 

1 Accessing Volumes---------------------------------------------------I 

FUNCTION PBMountVol paromBlock: ParmBlkPtr) 
OsErr 

FUNCTION PBGetVlnfa paramBlock: Par mB I k P t r ; 
async: boolean) 

OsE r r 

FUNCTION PBGetVol poromBlock: PormBlkPtr; 
osync: boolean) 

OsErr 

FUNCT ION' PBSe tVa I paramBlock: ParmBlkPtr; 
osync: boolean) 

OsErr 

FUNCTION PBFlshVol paramBlock: ParmBlkPtr; 
async: boolean) 

OsErr 

FUNCTION PBUnmountVol poramBlock: ParmBI kPtr) 
OsErr 

FUNCTION PBOffLine poramBlock: ParmBlkPtr; 
osync: boolean) 

OsErr 

FUNCTION PBEject poramBlock: ParmB I kPtr; 
async: boolean) 

OsErr 

I Changing Fi Ie Contents----------------------------------------------! 

FUNCTION PBCreate paromBlack: PormBI kPtr; 
osync: boolean) 

OsErr 

FUNCTION PBOpen poromBlock: PormBlkPtr; 
async: boolean) 

OsErr 

FUNCTION PBOpenRF paramBlock: PormBlkPtr; 
async: boolean) 

OsErr 

FUNCTION PBRead poromBlock: PormBlkPtr; 
osync: boolean) 

OsErr 

1200301:0AB A-51 



MACINTOSH INTERFACE Appendix A 

FUNCTION PBWrite poromBlock: PormBlkPtr; 
osync: boolean) 

OsErr 

FUNCTION PBGetFPos poromBlock: PormBlkPtr; 
async: boolean) 

OsErr 

FUNCTION PBSetFPos poramBlock: PormBlkPtr; 
async: boolean) 

OsErr 

FUNCTION PSGetEof pcromBlock PormBlkPtr; 
async: boolean) 

OsErr 

FUNCTION PBSetEof poromBlock: PormBlkPtr; 
osync: boolean) 

OsErr 

FUNCTION PBAllocote poramBlock: PormBlkPtr; 
osync: boolean) 

OsErr 

FUNCTION PSFlshFi Ie poromBlock: PormBlkPtr; 
async: boolean) 

OsErr 

FUNCTION PBClose poramBlock: PormBlkP\r; 
osync: boolean) 

OsErr 

FUNCTION PBGetFlnfo po ramS I 0 c k : Porm8lkPtr; 
osync: boolean) 

OsErr 

°UNCTION PBSetFlnfo poromBlock: PormBlkPtr; 
async: boolean) 

OsErr 

°UNCTION PBSetFLock paromBlock: PormBlkPtr; 
osync: boolean) 

OsErr 

'UNCT ION PBRs tFlock paramBlack: PormBlkPtr; 
osync: boolean) 

OsErr 

'UNCT ION PBSetFV,rs paromBlock: PormBlkPtr; 
osync: boolean) 

OsErr 

'UNCT ION PBRenome poromBlack: PormB I kPtr; 
async: boolean) 

OsErr 

'UNCT I ON PBDelete paramBlock: ParmBlkPtr; 
osync: boolean) 

OsErr 

Accessing Oueues----------------------------------------------------I 

UNCTION GetFSOHdr OHdrPtr 

UNCTION GetVCBOHdr OHdrPtr 

UNCTION GetDrvOHdr OHdrPtr 

---------------Low Level Device Routines----------------------------! 

UNCTION PBControl poromBlock: PormBlkPtr ; 

A-52 1200301 :OAB 



Parameter Block I/O Manager (PBIOMgr) 

osync: Boolean ) 
OsErr 

FUNCTION PBStotus poromBlock: PormBlkPtr 
osync: Boolean ) 

OsErr 

FUNCTION PBK i I I 10 po r omB I 0 c k : PormBlkPtr 
async: Boolean ) 

OsErr 

1200301:0AB A-53 



MACINTOSH INTERFACE Appendix A 

A.IS. Print Manager (PrintMgr) 

Unit PrintMgr 

Interface 

!$L-! 
Uses I$U MACCORE.CODEI MoCCore, 

$U ODTYPES.CODE OdTypes 
( GrolPort, GralPtr, Rect. RectPtr, ODProcs ) ; 

! $Lt! 

:ons t 

I Printing Methods! 

bOroltLaop 
bSpoolLoop 
bUserlLoop 
bUser2Loop 

- e 
- 1 
- 2 

3 

! Printer feed type constants 

FeedCut 
FeedFanFold 
FeedMeehCut 
FeedOther 

1 Scan Types 

SeonTB 
SeonBT 
SconLR 
ScanRL 

'ype 

e 
1 

- 2 
= 3 

e 
1 
2 

= 3 

TPPrPort - MacPtr ; 
TP:Port = Record 

gport GralPort , 
9Procs: ODProcs; 
1 other fields for internal 

End ; 

Droit Printing! 
Spoo ling ! 
P r i n t e r S pe c iii c, me tho d 1 
Printer Speci lic, method 2 

hand-led, indivually cut! 
continuos-Ieed FanFold Paper! 
mechanically led cut sheets I 
other types 01 paper I 

Top to Bottom 
Bot tom to Top 
Lelt to Right 
R i gh t toLe I t 

! GralPort 
Pointers 

use only I 
to be drown in I 
to drawing routines 

TPPort 
Case 

e 
1 

End ; 

= RECORD 
Integer of 

(pGPo r t : 
(pPrPort 

Gralptr) 
TPPrPort) 

TPrlnlo -
iOev : 
iVRes 
iHRes 
rPage 

End ; 

RECORD 
integer 
integer 
integer 
Reet ; 

TPrStl = PACKED RECORD 
wDev 
iPageV 
iPageH 
TFeed 
bPo r t : 

End ; 

integer 
integer 
integer 
Byte ; 
Byte; 

TPrXlnfo = PACKED RECORD 
iRow8ytes integer 
iBondV : integer; 
iBandH integer; 
iDevBytes integer 

A-54 

Driver Information J 
Printer vertical resolution! 
Printer horizontal resolution 
page rectangle I 

Used internally 
Paper height! 
Paper Width! 
Paper leed type! 
Printer or modem port 

Bytes per row! 
Vertical dots 
Hor i zontal dots! 
size of bit image 

1200301:0AB 



iBands : 
BUIThick 
bPatScale 
bUIShadaw 
bUIOffset 
bXlnfoX 
TScan 

End ; 

integer 
Byte 
Byte 
Byte 
Byte 
Byte 
Byte 

TPrJob = PACKED RECORD 
iFstPage integer; 
iLstPoge integer; 
iCopies: integer; 
f F r omU s r : Sma I I Boo I 
bJOocLoop : Byte; 
pldlePrac ProcPtr; 
pF i 1 eNome S t r i ngP t r 
iFileVol integer 
bJobx: By te 
bFi leVers: Byte 

End ; 

THPrint = Handle; 
TPPrint = MacPtr ; 
TPr i nt = RECORD 

iPrVersion : integer 
prlnfo: TPrlnfo 
rPaper: Rect; 
prSt I TPrSt I . 
prlnfoPt TPrlnfo; 
prXlnfo: TPrXlnfo 

Print Manager (PrintMgr) 

bonds per page! 
underline thickness 
used by quickdraw ! 
under line descender 
underl ine offset! 
not used! 
Scan Direction! 

First Page to print! 
Last Page to print! 
Number of copies to print! 
TRUE if called from application! 
document style. Draft. Spool. etc. ! 
The proc to call while waiting on I/O 
Spool file name! 
spa a I f i I e val ume ! 
unused ! 
spool fileversionJ 

Printing Manager Version Number J 
printer information ~ 
paper rectangle! 
sty lei n forma t ion ! 
copy of pr Info! 
band information! 

prJob : TPrJab ; 
printx: Array [1 .. 19J 

job informat ion! 
of integer; 

End ; 

TPrStatus = PACKED RECORD 
iTotPages integer 
iCurPage integer 
iTotCopies : integer 
iCurCopy: integer 
iTotBands integer 
iCurBand integer: 
flmaging SmallBool 
fPgDi rty SmollBool 
hPrint: THPrint; 
pPrPort TPPrPort 
hP i c : Hand Ie; 

End ; 

total number of pages! 
page being printed! 
number of copies! 
current copy being printed 
bonds per page! 
current bond being printed 
TRUE if imaging! 
TRUE if started printing page 
the print record! 
p r i n t po r t ! 
used internally! 

Ini tial ization and Termination --------------------------------------1 
PROCEDURE PrOpen 

PROCEDURE PrClose ; 

1 Print Records and Dialogs -------------------------------------------! 

PROCEDURE PrintDefault hP r i n t THPrint 

FUNCTION PrVal idate hP r in t THPrint 
MacBool 

FUNCTION PrStlDialog hP r in t THPrint 
MacBaol 

FUNCTION PrJobDialog hP r in t THPrint 
MacBool 

PROCEDURE PrJobMerge hP r i n t Sc r • 
hPrintDst : THPrint ) ; 

I Document Printing ---------------------------------------------------! 

1200301:0AB A-55 



~1A.CI}\"TOSHINTERF ACE . Appendix A 

FUNCTION PrOpenDoe hP r i n I THPrinl ; 
pPrPort TPPrPort 
plO8uf : MoePtr ) 

TPPrPorl ; 

PROCEDURE PrCloseDoe pPrPor t TPPrPort 

PROCEDURE PrOp~nPoge pPrPort TPPrPort ; 
pPageFrame Ree tP t r ) ; 

PROCEDURE PrClosePoge pPrPo r t TPPrPort ) ; 

1 Spool Printing ------------------------------------------------------l 
PROCEDUR E P r Pic f i Ie hP r i n t 

pPrPorl 
pl08uf 
pDev8uf 
prStalus 

THPrint; 
TPPrPort 
MaePlr . 
MaePtr; 
MaeP I r ) 

1 Handl ing Errors -----------------------------------------------------l 
fUNCTION PrError integer; 

PROCEDURE PrSetError i Err integer) ; 

A-56 1200301:0AB 



Prin ter Driver (Prin tDriver) 

A.19. Printer Driver (PrintDriver) 

Unit PrinlDriver 

Interface 

!$L-I 
Uses !$U MACCORE.CODEI MacCare : 
! $lt 1 
Canst 

! Printer Driver Control call parameters 1 
iPrBitsCtl 
IScreenBi ts 
IPaintBits 
i Pr I OC t I 
iPrEvtCtl 
IPrEvtAl1 
IPrEvtTop 
iPrDevCtl 
IPrReset 
IPrPageEnd 
IPrLineFeed 
iFMgrCtl 

- 4 
= 0 
= 1 
= 5 
= 6 , 
= 196605 
= 131069 
= 7 : 
= 65536 : 

13H172 , 
196608 : 

= 8 : 

bitMap Printing 1 
! coni igurable 1 

72 by 72 dots 1 
text streaming 1 
screen printing 1 
I print whole screen I 

print top most window 
device control 1 . I reset printer 1 

start new page I 
start new line 

used by font Mgr 

Initiol ization and Termination --------------------------------------1 

FUNCTION PrDrvrOpen OsErr 

FUNCTION PrDrvrClose OsErr 

! Printer Control -----------------------------------------------------1 
fUNCTION PrCtlCol1 iWh i chCt I 

porom1. 
param2, 
poram3 : 

integer 

Langlnt : OsErr ; 

1 Memory AI locotion Control -------------------------------------------1 

PROCEDURE PrPurge ; 

PROCEDURE PrNoPurge 

I Miscel laneous -------------------------------------------------------1 
fUNCTION PrDrvrDce 

fUNCTION PrDrvrVers 

1200301:0AB 

Handle; 

integer; 

A-57 



MACINTOSH INTERF ACE 

A.20. Quickdraw Types (QdTypes) 

un it OOTypes 

interface 

luses MacCore! 
$l-! 

Uses l$U MocCore Code! MocCore ; 
1 $lt! 

type 

Appendix A 

1 The following Point-ers ore used to pass parameters by ADDRESS! 
Pat ternPt r = MocPt'r 
BitMopPtr MocPtr 
ODProcsPt r MacPt r 
CursorPtr MacPtr 
FontlnPtr MacPtr 
PenStPtr MacPtr 
PointPtr - MocPtr 
GrafPtr MacPtr 

Pointer to Pattern Array! 
Pointer to Bi tMap ! 
Pointer to ODPracs Record! 
Pointer to Cursor Record I 
Pointer to Fontinfo Record! 
Pointer to PenState Record 
Pointer to Point Record I 
Pointer to Graph Port Record 

Pot tern 
Bit s 16 = 

poC'ked orro,-[0 .. 7) of 0 .. 255; 
orroy[0 .15J of integer; 

FPoint = 
VHSelect = 
Point = 

Longlnt; 
(v. h) . 

1 fake point 

record 
0: 

case integer of 
(v: integer; 

for on-the-stock parameters I 

h: integer); 
1: (vh: orroy[VHSelect) 
2: (parom: longlnt); 

of integer); 

end; 

RectPtr = MacPlr ; 
Rec t = record cose integer of 

Stylel tem = 
Style = 

Fontinfo = 

BitMap = 

Cursor = 

PenS tate 

A-58 

e· (top: !nteger; 
left: integer; 
bottom: integer; 
right: integer); 

1: (tapLeft: Point; 
botRight: Paint); 

end; 

(bo i d , j t a lie. unde r I ; ne . au t line. shadow. conde nse . ext en d) ; 
set of Stylel tem: 

record 
oscen t : 
descent: 
wi dMo x: 
leading: 

end; 

record 
boseAddr: 
rawBytes: 
bOlJnds: 

end; 

record 
data: 
mask: 
hotSpot: 

end; 

record 

integer; 
integer; 
integer; 
integer; 

MocPtr; 
integer; 
Rec t; 

Bit s 16; 
Bit s 16; 
Po i n t; 

1200301:0AB 



Polygon 

Region 

Picture >= 

ODProcs = 

GrolPort -

pnLoc: 
pnSize: 
pnMode: 
pnPo t : 

end; 

record 

Po in t: 
Po i n t; 
integer; 
Po t ter n; 

polySize: integer; 

Quickdraw Types (QdTypes) 

polySSox: Rect; 
polyPointl:orroy[0 .. 0] 01 Point; 

end: 

record 
rgnSize: integer; rgnSize = 10 lor rectangular I 
rgnSSax: Rect; 
! plul more dato i I not rectangular I 

end; 

record 
picSize: integer; 
picFrome: Reet; 
! plul byte codes lor picture content I 

end; 

record 
textProc: ProcPtr; 
1 ineProc: ProcPtr; 
rectProc: ProcPtr; 
rRectProe: ProcPtr; 
ovolProc: Procptr; 
arcProc: ProcPtr; 
polyPrae: ProcPtr; 
rgnProc: PracPtr; 
bitlPrac: ProcPtr; 
commentProc:ProcPtr; 
txMeosProc:ProcPtr; 
getPicProc:ProcPtr; 
putPicProc:ProcPtr; 

end; 

record 
device: integer; 
par tSi tl: Si tMop; 
portRect: Reet; 
visRgn: Handle; 
clipRgn: Handle; 
bkPot: Pot tern; 
Ii I IPot: Pot tern; 
pnLoc: Paint; 
pnSize: Point; 
pnMade: integer 
pnPat: Pattern 
pnVis: integer 
txFant: integer 
txFace: Style; 
txMode: integer 
txSize: integer 
IpEdra: Longlnt 
IgColar: Longlnt 
bkColor: Longlnt 
colrBit: integer 
patStretch: integer 
picSove: Handle; 
rgnSave: Handle; 
polySove: Hondle; 
grolProcl: MacPtr; 

end; 

1200301:0AB A~59 



M>\CINTOSH INTERFACE 

A.21. Quickdraw (QuickDraw) 

uni t OuickOraw; 

interface 

luses Maccore. OOTypes! 
$L-! 

uses I$U MACCORE CODE! MacCore. 
$U OOTYPES.CODE! ODTypes; 

! $L t! 
:onst 

srcCopy 
sreOr 
srcXor 
srcBic 
notSrcCapy 
notSrcOr 
notSrcXor 
natSrcBic 
patCapy 
patOr 
patXor 
patBic 
notPatCapy 
natPatOr 
notPatXar 
notPatBic 

0; 
- 1; 
- 2; 

3 ; 
- 4; 
- 5; 
= 6; 

7' 
= 8; 
- 9; 

HI; 
= '1; 

12; 
13 ; 
14; 
'5; 

the 16 transfer modes J 

i OuickDraw color separation constants! 

normalSi t 
inverseBit 
r edB i t 
greenBit 
blueBit 
cyanB i t 
magentaSi t 
ye I I owB i t 
blackSit 

blackColor 
whi teColor 
redeolor 
greenColor 
blueCalor 
cyanColor 
mogentoColor 
ye J I OWeD lor 

picLParen 
picRPoren 

13; , ; 
4; 

- 3; 
2; 

= 8; 
7; 
6; 
5; 

= 33; 
- 313; 

205; 
= 341; 

4139; 
273; 
137; 
69; 

= 0; 
1 . 

Appendix A 

GralVerb constants lor the Standard Procedures! 

Frome 
Paint 
Erose 
Invert 
F i I I 

o . 
256 ; 

= 512 ; 
768 ; 
1024 ; 

GralPart Routines ----------------------------------------------------! 

rocedure OpenPort 
rocedure InitPort 
rocedure C!osePort 
rocedure SetPort 

A-50 

! po r t 
port 
po r t 
po r t 

GrafPtrl GrolPtr 
Grafptr 
GralPtr 

external!-Z2417l; IA86FI external -22419; A86D 
external -22403; A87D 
ex terna I -22413; A873 

1200301:0AB 



procedure GetPort 
procedure GrofDevice 
procedure SetPortBi ts 

procedure PortSi ze 

procedure MovePortTo 

procedure SetOrigin 
procedure SetClip 
procedure GetCI ip 
procedure CI i pRec t 
procedure SackPat 

Quickdraw (QuickDraw) 

~ po r t : 
device: 
bm: 

(width, 
height: 

MacP t r) , 
integer); 
BitMapPtr) 

integer); 

(leftGlabal, 
topGlabal: integer); 

h,v: 
rgn: 
rgn: 
r : 
po t: 

integer); 
Handle); 
Handle); 
RectPtr); 
PatternPtr); 

external ~-22412l; IA874 1 external -22414; A872 
external -22411 ; A875 

external (-22410); IA876! 

external (-224139); IA877! 

external -224138 
external -224137 
external -224136 
ex ternal -224135 
external -224134 

A878 
A879 
A87A 
A87B 
A87e 

I Cursor Routines ------------------------------------------------------! 

procedure InitCursor; external -22448 A850 
procedure SetCursor (c r s r : CursorPtr); external -22447 A851 
procedure HideCursor; external -22446 A852 
Procedure ShowCursor; external -22445 A853 
procedure ObscureCursor; external -22442 A856 

I Line Routines --------------------------------------------------------I 
procedure HidePen; externol -22378 A896 
procedure ShowPen; external -22377 A897 
procedure GetPen 1Pt : 

pOintptrj' external -22374 A89A 
procedure GetPenState pnState: PenStPtr : ex ternol -22376 A898 
procedure SetPenState pnState: PenStPtr ; external -22375 A899 

procedure PenSize (width, 
he i gh t: in tege r) ; external (-22373); IA89B! 

procedure PenMode ~mOde: integer); external -22372 A89C 
procedure PenPat po t: PatternPtr); external -22371 A89D 
procedure PenNa rma I ; external -223713 A89E 
procedure MoveTo ! h, v: i ntegerr external -22381 A893 
procedure Move dh,dv: integer; external -223813 A894 
procedure Li neTo h, v: integer ; external -22383 A891 
procedure Line dh,dv: integer ; external -22382 A892 

I Text Routines --------------------------------------------------------I 
procedure TextFont font: integer); external -22393 A8S7 
procedure TextFace face: Style); external -22392 A888 
procedure TextMode mode: integerl; external -22391 A889 
procedure TextSize size: integer; external -22390 A8BA 
procedure SpaceExtro ex t r 0: Longlnt ; external -22386 A88E 
procedure DrowChor ch: char); external -22397 A883 
procedure DrawString s: S t r i ngP t r ) ; external -22396 A884 

procedure DrowText (tex t8u f: Mocptr; 
fir.tByte, 
byteCount: i oteger); ex ternol (-22395); IA88S! 

function ChorWidth (ch: char) 
integer; external(-22387); IA880! 

funct i on StringWidth (s: S t r i ngP t r ) 
integer; external (-22388); 1 A88C1 

function TextWidth ( tex tBu f: MocP t r; 
firstByte, 
byteCount: integer) 

integer; external (-22394); IA886! 

procedure GetFontlnfo (i n fo: FontlnPtr); external (-22389); IA88BI 

I Point Calculations ---------------------------------------------------! 

procedure AddPt (src: FPoint; 

1200301:0AB A-51 



MACINTOSH INTERFACE Appendix A 

dst: PointPtr); externa 1(-22402); !AB7E! 

procedure SubPt (src: FPoint; 
dst: PaintPtr); ext e r no I (-22401 ) ; IA87F! 

procedure SetPt (p t : PoinlPtr; 
h.v: integer); external(-22400); IA880! 

function EquolPt (p t 1. P t2 FPo in t) 
Moc8001 external (-22399): IA881 ! 

procedure Scolept (pt: PointPtr; 
fromRect. 
toRec t: RectPtr); external (-22280); jA8F8! 

procedure MopPt (pi: PoinlPtr; 
fromRecl. 
toRect: Rectptr); external (-22279); IA8F9! 

procedure LocolToGlobol ?pt: Po in I P t r j ; ex lernol i-Z2416j: jA870 l procedure GlobolToLocol p !: PoinlPtr ; external -22415 ; AS71 

I Rectangle Calculations -----------------------------------------------1 

procedure SelRect ( r : Rec t P t r ; 
I e It. 
lop. 
r i gh t. 
bottom: integer) ; ex terno 1(-22361); jA8A71 

function EquolRect (rectl. 
r ec t 2: RectPlr) 

: Moc8001 external (-22362); lA8A61 

f une t ion EmptyRect ( r : ReclPtr) 
: Moc8001 ex lerna 1(-22354); IA8AE! 

:>rocedure OltsetRect ( r : ReetPtr; 
dh.dv: integer) ; external (-22360); lA8A81 

:>racedure MopRect ( r : RectPlr; 
fromRect, 
toRect: RectPtr) ; exlernol(-22278); !A8FAI 

)rocedure InsetRect ( r : RectPtr; 
dh.dv: integer); exlernol (-22359); jA8A91 

function SectRect (srcl.src2: RectPtr; 
dslReet: RectPtr) 

: Moc800 I ; external (-22358); !A8AA! 

)rocedu-re UnionRect (srel.s r e2: RectPtr; 
dstRect: Rec t P t r ) ; externol (-22357); lA8AB! 

function PtlnRect (pi: FPo i n I; 
r: ReclPtr) 

: Mac800 I ; ex terno 1(-22355); jA8ADI 

,rocedure PtZRect (pll . p t2: FPo i n t; 
dstRect: RectPlr); external (-22356); jA8Aci 

Graphical Operations on Rectangles ----------------------------------~J 

)rocedure FromeRect r: RectPlrl; ex lerna I (22367~; r8Ali )(ocedure PointRect r: RectPlr ; exlernol -22366 ; A8A2 
)rocedure EroseReet r: RectPtr ; external -22365 ; A8A3 
)rocedure InvertRect r: RectPtr ; external -22364 ; A8A4 

)fccedure F I I ! Rec t ( r : Rec\Ptr; 
po I: PatternPtr); external (-22363); IABA5! 

RaundRect Roulines ---------------------------------------------------1 

A-62 1200301:0AB 



Quickdraw (QuickDraw) 

procedure FrameRaundReet(r: Reetptr; 
jA880l avWd.avHt: Integer); external (-22352); 

procedure PaintRaundReet(r: ReetPtr; 
avWd.avHt: Integer); external (-22351); jA881l 

procedure EraseRaundReet(r: ReetPtr; 
avWd.avHt: Integer) ; external (-22350); jA8821 

procedure InvertRaundRect(r: ReetPtr; 
avWd.avHt: Integer); external (-22349); jA8831 

procedure F i I I RaundRee t ( r : RectPtr; 
avWd.avHt: Integer; 
pa t: PatternPtr); external (-22348); !A8841 

j Ovol Routines --------------------------------------------------------I 
procedure FrameOval Ir: Reetptrr external 1-223451; r887

1 
procedure PaintOval r: RectPtr ; external -22344 ; A888 
procedure EraseOvol r : ReetPtr ; external -22343 ; A889 
procedure InvertOvol r : ReetPtr ; external -22342 ; A8BA 

procedure F i I lava I ( r : ReetPtr; 
po t: PatternPtr); external (-22341); jA88S1 

j Arc Routines ---------------------------------------------------------I 
procedure FromeArc 

procedure PaintArc 

procedure EroseAre 

procedure I nver tAre 

procedure FillAre 

procedure PtTaAngle 

(r: ReetPtr; 
s tor tAng Ie. 
areAngle: integer); 

(r: Reetptr; 
startAngle. 
areAngle: integer); 

(r: ReetPtr; 
startAngle. 
areAngle: integer); 

(r: ReetPlr; 
slarlAngle. 
areAngle: integer); 

(r: RectPtr; 
startAngle. 
orcAngl e: integer; 

external(-22338); jA88El 

ex lerna 1(-22337); !AS8Fl 

ex terna 1(-22336); jASC01 

external(-22335); jA8Cl1 

pal: PatternPtr);external(-22334); jA8C21 

( r : 
p t: 
angle: 

RectPtr; 
FPo i n t; 
integerPtr);external(-22333); JASC31 

! Polygon Roulines -----------------------------------------------------1 

function OpenPoly Handle; external ~-22325l; 
rSCSI procedure ClosePoly; external -22324 ; ASCC 

procedure K i I I Po I y (poly: Handle); external -22323 ; ASCD 

procedure Of fsetPoly (poly: Handle; 
dh.dv: integer); ex terna 1(-22322); JASCEl 

procedure MapPaly (poly: Handle; 
f romRec t. 
taRee t: ReetPtr); ex terna 1(-22276); 1 ASFC! 

procedure FramePoly VaIY
: 

Handlel; external 1-223301; r8C6

\ 

procedure PaintPoly poly: Handle; external -22329 ; A8C7 
p'rocedure ErasePaly poly: Handle; external -22328 ; A8C8 
procedure InvertPoly poly: Handle; external -22327 ; A8C9 

procedure F i I I Po I y (poly: Handle; 
pot: PatternPtr); external (-22326); lA8CAl 

1200301:0AB A-53 



MACINTOSH INTERFACE Appendix A 

I Region Calculations --------------------------------------------------1 
function NewRgn 
procedure OisposeRgn 

procedure CopyRgn 

procedure SetEmptyRgn 

procedure SetRectRgn 

procedure RectRgn 

procedure OpenRgn; 
procedure CloseRgn 

procedure OllsetRgn 

procedure MopRgn 

procedure InsetRgn 

Jrocedure SectRgn 

)rocedure UnionRgn 

Hocedu re 0 i IIRgn 

)focedure XorRgn 

iunction EquolRgn 

unction EmptyRgn 

unction PtlnRgn 

unc t ion Rec t I nRgn 

, Handle; 
(rgn: 

(srcRgn, 
dstRgn: 

(rgn: 

( r g n : 
I e I \ , 
top, 
r i gh t , 
bot tom: 

(rgn: 
r : 

(destRgn: 

(rgn: 
dh,dv: 

(rgn: 
fromRect, 
tcRect: 

(rgn: 
dh,dv: 

(srcRgnA, 
srcRgnB, 
dstRgn: 

(srcRgnA, 
srcRgnB, 
dstRgn: 

(srcRqnA, 
srcRgnB, 
dstRgn: 

(srcRgnA, 
srcRgnB, 
dstRgn: 

Handle); 

Handle); 

Handle); 

Handle; 

integer); 

Handle: 
RectPtr) ; 

Handle); 

Handle; 
integer) ; 

Handle; 

RectPtr); 

Handle; 
integer); 

Handle); 

Handle); 

Handle); 

Handle); 

(rgnA,rgnB: Handle) 
: MacBoal; 

(rgn: Handle) 
: Moe Boo I ; 

(pt: FPoint; 
rgn: Handle) 

: MacBoo I; 

(r: RectPtr; 
rgn: Handle) 
MacBoe I; 

external(-22312); IASDSI 
external (-22311); ASD9 

external (-223eS); IASDCl 

ex terna 1(-223107); IA8DDI 

external (-223106); IASDEl 

external (-223105); IA8DFI 

externol{-2231e); !ASDA! 
externol(-223e9); A8DB 

external (-223104); lASEi'll 

x terna 1(-22277); IASFB! 

external(-223e3); !ASE1! 

external (-2231313); IASE4! 

ex terna 1(-22299); IASE5! 

ex ternal (-22298); IA8E61 

ex terna 1(-22297); IA8El! 

externol(-22301); IA8E31 

external(-22302); IA8E21 

ex ternal (-22296); IASESl 

externol(-22295); IASE91 

Graphical Operations on Regions --------------------------------------j 

Irocedure FrameRgn 
I'gn: Irocedure PointRgn rgn: 

'focedure EroseRgn rgn: 
'focedur e InvertRgn rgn: 

,rocedure F i I I Rgn (rgn 
po t: 

A-64 

Hand I e l ; Handle; 
Handle; 
Handle; 

Handle~ 

ex terno I 1-2231S1; external -22317 ; 
ex lerna I -22316 ; 
external -22315 ; I

A8D2

1 
A8D3 
ASD4 
A8D5 

PatternPtr); external(-22314); IA8D61 

1200301:0AB 



· Quickdraw (QuickDraw) 

! Graphical Operations on Bi tMops --------------------------------------! 

procedure ScrollRect 

procedure CopyBi ts 

(destRect: RectPtr; 
dh.dv: integer; 
updo t eRgn: Hand Ie) ; 

(srcBits. 
ds tB its: 
srcRect. 
dstRect: 
mode: 
moskRgn: 

BitMopPtr; 

RectPtr; 
integer; 
Handle); 

ex terno 1(-22289); IA8EF! 

ex terno 1(-22292); IA8EC! 

I Pic t u re Rou tines -------------.----------------------------------------! 

function OpenPicture (picFrome: RectPtr) 
: Handle; external (-22285); IA8F3! 

procedure ClosePicture; external (-22284); IA8F41 

procedure OrawPicture (myPicture: Handle; 
dstRect: RectPtr); external (-22282); IA8F6! 

procedure PicCorrvnent (kind. 
dotoSize: integer; 
dataHandle : Hand Ie) ; ex ternol (-22286); IA8F2! 

procedure KillPicture (myPicture: Hand Ie) ; external (-22283); IA8FS! 

I The Bottleneck Interface: --------------------------------------------! 

procedure SetStdProcs 

procedure StdText 

procedure StdLi ne 

procedure StdRect 

procedure StdRRect 

procedure StdOvol 

procedure StdArc 

procedure StdPoly 

procedure StdRgn 

procedure S tdB its 

procedure StdComment 

function StdTxMeos 

1200301:0AB 

(procs: 

(count: 
textAddr: 
nume r . 
denom: 

QOProcsPtr); externol(-22294); IA8EA! 

(newP t: 

(verb: 
r : 

(verb: 
r : 
ovWd,avHt: 

(verb: 
r : 

integer; 
MacPtr; 

FPo in t) ; 

FPoint); 

integer; 
RectPtr); 

integer; 
RectPtr; 
integer) ; 

integer; 
RectPtr); 

(verb: integer; 
r: RectPtr; 
storlAngle. 
orcAngle: integer); 

(verb: 
poly: 

(verb: 
rgn: 

(srcBits: 
srcRect. 
dxtRect: 
mode: 
maskRgn: 

(kind. 

integer; 
Handle); 

integer; 
Handle); 

BitMopPtr; 

RectPtr; 
integer; 
Handle); 

dolaSize: integer; 
dotaHandle:Handle); 

(count: integer; 
textAddr: MacPtr; 

external (-22398); IA882! 

ex terna 1(-22384); IA890! 

external (-22368); !A8A0! 

ex terna 1(-22353); IA8AF! 

external (-22346); IA886! 

ex terna 1(-22339); !A8Bo! 

ex terno 1(-22331); IA8CS! 

ex ternal (-22319); IA80ll 

external (-22293); IA8ES! 

ex terna 1(-22287); IA8Fll 

A-65 



MACINTOSH INTERFACE Appendix A 

nume r . 
denom: PointPtr; 
info: FontlnPtr) 

: integer; externo 1(-22291); IA8ED! 

procedure StdGetPic (dotoPtr: MocPt r; 
byteCount: integer); externol (-222913); !A8EE! 

procedure StdPutPic (dotoPtr: MacPtr; 
byteCount: integer); externol (-22288); IA8F01 

I Misc Uti I i ty Routines ------------------------------------------------1 

tunc t ion GetPixel (h. v: integer) 
MocBool; externol (-22427); IA865l 

function Random integer; externol (-22431); IA861l 

procedure Stuff Hex (thingP\r: MacP\r; 
s: StringPtr); externol (-22426); IA866! 

procedure ForeColor 1color: Longlnt! externoI1-224313j; r862
1 

procedure SackColor color: longlnt external -22429 ; A863 
procedure ColorSit which8it: integer externol -22428 ; A864 

A-56 1200301:0AB 



Resource Manager (ResMgr) 

A.22. Resource Manager (ResMgr) 

un it ResMgr 

interface 

juses MocCorel 
$L-I 

Uses !$U MACCORE.CODEI Moceore , 
I $L f I 
canst 

. I Resource At t r i bute bi ts I 
set if system reference ~ resSysRel - 128 

resSysHeop 64 
resPurgeoble 32 
resLocked 16 
resProtected 8 
resPrelood 4 
resChonged 2 
resUser 1 

set i I read into Moe System heap l 
set i I purgeoble I 
set il locked I 
set i I protected I 
set i I to be pre loaded l 
set if to be written to resource file! 
ovallable for use by your oppl icotion 

Opening and Closing Resource Fi les ----------------------------------l 

PROCEDURE CreoteResFi Ie 

FUNCTION OpenResFi Ie 

PROCEDURE CloseResFi Ie 

f i I enome: 

filename: 
integer 

StringPtr) ; 
external (-221395), IA981l 

StringPtr) 
externol(-22121); IA9971 

refnum: in tege r) ; 
externol(-22118); IA99AI 

I Checking lor errors ------------------------------------------------1 
FUNCTION ResError integer: external (-22097); IA9AFl 

I Setting the Current Resource Fi Ie ----------------------------------1 
FUNCTION CurResFi Ie integer ; external (-22124); IA994! 

FUNCTION HomeResF i Ie theResource: Hand Ie) 
integer ; external (-221138); IA9A4l 

PROCEDURE UseResFi Ie refNum: integer) ; 
external (-22120); IA998l 

I Getting Resource Types ---------------------------------------------l 

FUNCTION CountTypes 

PROCEDURE GetlndTypes 

integer; 

theType: 
index: 

externol(-22114); IA99El 

OsTypePt r ; 
integer) . 
external (-22113); IA99Fl 

I Getting and Disposing 01 Resources --------------------------------l 

PROCEDURE SetResLoad 

FUNCTION CountResources( 

FUNCTION Get I ndResource 

FUNCTION GetResource 

1200301:0AB 

1000: 

theType: 
integer ; 

theType: 
index: 

Handle ; 

theType: 
thelD: 

Moe Boo I) ; 
externol(-22117); IA998j 

FOsType ) 
external (-22116); IA99Cj 

FOsType ; 
integer) 
externol(-22115); lA99Dl 

FOsType 
integer 

A-57 



MACINTOSH INTERFACE 

: Handle; 

FUNCTION GetNamedResource ( theType: 
name: 

Handle; 

PROCEDURE LoadResource theResource: 

PROCEDURE ReleaseResource theResource: 

PROCEDURE DetachResource ( theResource: 

Appendix A 

external(-22112); !A9A0! 

FOsType . 
StringPtr) 
external(-22111); !A9A1! 

Hand Ie) . 
externa 1(-22110); !A9A21 

Hand Ie) , 
ex lerna 1(-221139); !A9A3! 

Handle) . 
external (-22126); !A992! 

! Gett ing Resource Information --------------------------------------1 

FUNCTION Uniqueld 

PROCEDURE GetReslnfo 

FUNCTION GetResAttrs 

theType: 
integer; 

theResource: 
theld: 
IheType: 
nome: 

theResource: 
j nteger ; 

FOsType ) 
external (-221379); IA9C1! 

Handle; 
integerPtr 
OsTypeP t r ; 
S t r i ngP t r ) . 
external (-221134); IA9A8! 

Handle) 
external (-221136); IA9A61 

I Modi fying Resources -----------------------------------------------! 
PROCEDURE SelReslnfo 

PROCEDURE SetResAt Irs 

PROCEDURE ChangedResource 

PROCEDURE AddResource 

PROCEDURE RmveResource 

PROCEDURE RmveReference 

PROCEDURE AddReference 

PROCEDURE UpdateResFi Ie 

'ROCEDURE Wri leResource 

'ROCEDURE SetResPurge 

°UNCTION SizeResource 

theResource: 
thelD: 
nome: 

theResource: 
attrs: 

theResource: 

theDala: 
theType: 
thelD: 
nome: 

theResource: 

theResource: 

theResource: 
thelD: 
nome: 

fe-fNurn: 

theResource: 

ins to I I : 

theResource: 
Longlnt ; 

Handle; 
integer: 
S t r i ngP I r ) ; 
exlernal (-221133); !A9A9! 

Handle; 
integer) ; 
external (-221135); !A9A7! 

Handle) ; 
external(~221a2); ~A9AA~ 

Handle: 
FOsType ; 
integer; 
SlringPtr ) ; 
external (-22101); IA9ABI 

Hand Ie) , 
external (-22099); !A9AD! 

Hand Ie) , 
external (-221398); !A9AE! 

Handle; 
integer. 
StringPtr ) ; 
external (-221130); !A9ACj 

integer) ; 
externa 1(-22119); !A999! 

Hand Ie) ; 
external (-22096); !A9Be! 

MacBoa I ) . 
external (-22125); !A993! 

Handle) 
external (-22107); !A9A51 

! Advanced Routines -------------------------------------------------1 

A-68 1200301:0AB 



FUNCTION GetResFi leAttrs 

PROCEDURE SetResFi leAttrs 

1200301:0AB 

refNum: 
integer; 

refNum: 
at t r s: 

Resource Manager (ResMgr) 

integer) 
external (-22026); jA9Fq 

integer; 
integer) ; 
external (-22025); jA9F7! 

A-59 



MACINTOSH INTERFACE 

A.23. Scrap Manager (ScrapMgr) 

uni t ScrapMgr 

interface 

!$L-I 
Uses !$U MACCORE.CODEI MacCore ; 
! $L, I 

type 

PScrapSturf = MocPtr ; 
ScrapStuff = RECORD 

scropSize: Longlnt; 
scropHondle:~andle ; 
scropCount: integer; 
scropStote: integer; 
scrapNome: S t r i ngPt r 

End ; 

Appendix A 

Getting Scrap Information -------------------------------------------1 
FUNCTION InfoScrop PScrapStuff ; ex ternal (-221323); !A9f91 

! Keeping the Scrap on the Desk ---------------------------------------1 
FUNCTION UnloadScrap 

FUNCTION LoadScrap 

Longlnt 

Langlnt 

external (-221322); !A9FAI 

external (-221321); !A9fBl 

! Reading from the Scrap ----------------------------------------------1 
FUNCTION GetScrap hOes t: 

theType: 
off se t : 

Longlnt ; 

Handle; 
FOsType ; 
LanglntPtr ) 
external (-221319); !A9fOI 

I W r i t i ng tot he Sc r op --·----------------------------------------------1 
fUNCTION Zero$crop Longlnt ; external (-220213); lA9FCI 

FUNCTION PutScrap length: Langlnt ; 
theType: fOsType ; 
source: MacPtr ) 

Longlnt ; external (-221318); lA9FEl 

A-70 1200301:0AB 



Serial Driver (Serial) 

A.24. Serial Driver (Serial) 

unit Seriol 

inter face 

!$L-! 
Uses !$U MACCORE.COOE! MacCore ; 
! $11! 

Canst 

I RefNums for 
AinRefNum 
AoutRefNum 
BinRefNum 
BoutRefNum 

the serial 
-6 
-7 • 

~ -8 ; 
= -9 ; 

ports!!~:; ~: 
se r a I 
se r 01 

po r t 
port 
po r t 
po r t 

A i npu t ! 
A output! 
B input I 
B output I 

! baud rate 
baud300 
baud600 
baud1200 
baud1800 
baud2400 
baud3600 
baud4800 
baud7200 
baud9600 
baud19200 
baud57600 

constants 
- 380 ; 

189 ; 
94 
62 
46 
30 
22 
14 
10 
4 ; 
o ; 

I SCC channel 
stapl0 

configuration word masks ~ 
16384 ; 

stap15 
stap20 

-32768 
-16384 
8192 ; 
4096 ; 
12288 ; 

noPar i ty 
addPar i ty 
evenPority 
data5 
data6 
data7 

= 0 ; 
= 2048 
~ 1024 

data8 

1 serial driver 
swOverrunErr 
par i tyEr r 
hwOverrunErr 
fromingErr 

3072 

error masks 
o . 
16 ; 
32 ; 
64 ; 

1 serial driver message constont ~ 
xOffWasSent = 128 ; 

Type 

PACKED RECORD 
Byte 
Byte 
char 

CTS flow control enable flog 
XON flow control enable flag 
XOFF character I 
XON character! 
event enable mask bi ts ! 
err 0 r s ma s k bit s J 
unused I 

SerShk 
fCTS: 
fXon: 
xoff: 
xon: 
evts: 
errs: 
nu I I : 
f I nX: 

char 
Byte 
Byte 
Byte 
Byte Input flow control enable flag! 

End ; 

SerStaRec 
XOFFSent: 
cumErrs: 
wrPend: 
rdPend: 

PACKED RECORD 
Byte 
Byte 
Byte 
Byte 

1200301:0AB 

XOF F Se n t flag ! 
cumulative errors report 
wri te pending flag I 
read pending flag I 

A-71 



·.t\1ACINTOSHINTERFACE Appendix A 

XOFFHold: 
CTSHold: 

End ; 

By te 
Byte 

XOFF flow control hold flog! 
CTS flow control hold flag! 

Changing Serial Driver Information ----------------------------------~ 

FUNCTION SerReset refNum: integer 
serConfig: integer 

OsErr 

FUNCTION SerSetBuf refNum: integer 
serBPtr: MacP t r 
serBLen: integer 

OsErr 

refNum: integer; 
flogs: SerShk ) 

FUNCTION SerHShake 

OsE r r 

FUNCTION 5erSetBrk refNum: integer 
OsErr 

FUNCT ION SerCI rBrk refNum: integer 
OsErr 

! Getting Serial Driver Information -----------------------------------! 

CUNCTION SerGetBuf refNum: integer 
VAR count: Longlnt 
OsErr 

'UNCTION SerStatus ( refNum: integer 
VAR serSto: SerStaRec 

: OsErr 

A-72 1200301:0AB 



A.2S. Sound Driver (Sound) 

Unit Sound 

interface 
!$L-I 
Uses !$U MACCORE.CODEI MocCore 
!$Ul 
Canst 

SWmode 
FTmode 
FFmode 

Type 

- -1 
1 
e 

Wove = PACKED ARRAY [e .. 255) of Byte 
WovePtr - MacPtr ; 

PtrFTSndRec - MocPtr 
FTSoundRec = RECORD 

duration: 
soundlRate: 
soundlPhase: 
sound2Rate: 
sound2Phose: 
sound.3Rote: 
sound.3Phase: 
sound4Rate: 
sound4Phase: 
soundlWave: 
sound2Wove: 
sound.3Wave: 
sound4Wove: 

End ; 

integer 
Longlnt 
Longlnt 
Longlnt 
Longlnt 
Longlnt 
Longlnt 
Longlnt 
Longlnt 
WavePtr 
WovePtr 
WavePtr 
WovePtr 

PtrFTSynth = MocPtr ; 
FTSynthRec - RECORD 

mode: integer; 
sndRec: PtrFTSndRec 

End ; 

Tone = RECORD 
count: 
omplitude: 
durotion: 

End ; 

integer 
integer 
integer 

Tones - ARRAy[e .. 5e00] of Tone ; 

PtrSWSynth - MocPtr 
SWSynthRec - RECORD 

mode: 
triplets: 

End ; 

integer 
Tones ; 

freeWave = PACKED ARRAy[e .. .30eee) of Byte 

PtrFFSynthRec = MacPtr ; 
FFSynthRec - RECORD 

mode: 

Sound Driver (Sound) 

coun t: 
waveBytes: 

integer 
Longlnt ; 
freeWave ; 

! FIXED Point 1 
End ; 

Sound Driver Procedures ---------------------------------------------1 
PROCEDURE StartSound synthRec: MocPtr ; 

1200301:0AB A-73 



t.1ACINTOSHINTERF ACE Appendix A 

numBytes: Longlnt 
Async: Booleon 

PROCEDURE StopSound 

FUNCTION SoundDone Boolean : 

PROCEDURE Se\SoundVol I eve I: integer 

PROCEDURE GetSoundVol VAR I eve I . integer 

A-74 1200301:0AB 



ToolBox Utilities (TBoxUtils) 

A.26. ToolBox Utilities (TBoxUtils) 

unit TBoxUtils 

inter1ace 

1$L-j 
Uses !$U MACCORE.CODE! MocCore 

$U ODTYPES.CODE ODTypes (RectPtr,Rect,fPoint,Point); 
l$lf j 

type 

fixed - Longlnt ; 
Ptrlnt64Bit - MocPtr 
Int64Bi t - RECORD 

hiLong : Longlnt ; 
10Long : Longlnt ; 

End ; 

Getting Appl icotion input Ii Ie names --------------------------------j 

PROCEDURE GetAppParms opNarne : 
apRelNum : 
opParom : 

StringPtr ; 
integerPtr ; 
MocP t r ) ; 
external (-22027); !A9f5j 

! Fixed Point Ari thmetic ------------------------------------------~---j 

FUNCTION fi xRot io 

fUNCTION FixMul 

FUNCTION FixRound 

I String Manipulotion 

fUNCTION NewString 

PROCEDURE SetString 

FUNCTION GetString 

numerator: 
denominator: 

Fixed 

o 
Fixed 

x 
integer 

b : 

integer; 
integer) 
ex terna 1(-22423); !A869j 

Fixed) 
external (-22424); !A868j 

Fixed) 
external (-22420); !A8SCj 

-------------------------------------------------j 
( s: 

StringHandle 

h: 
s: 

S t ring I D: 
StringHandle ; 

StringPtr ) 
external (-22266); !A906j 

StringHandle ; 
StringPtr ) ; 
external(-22265); !A9071 

integer ) 
external(-22086); !A9BAI 

I Byte Manipulation ---------------------------------------------------1 
FUNCTION Munger h: 

a lISe t: 
pt r 1: 
I enl : 
pt r2: 
len2: 

Langl n t ; 

Handle; 
Longlnt ; 
MocPt r ; 
Longlnt ; 
MacP t r ; 
Langl n t ) 
externol(-22048); !A9Eel 

! Operations on Bi t Strings -------------------------------------------1 
FUNCT ION Bit T s t 

PROCEDURE BitSet 

1200301:0AB 

bytePtr: 
bi tnum: 

MacBoo I ; 

bytePtr: 
bi tNurn: 

MocP t r ; 
Longlnt ) 
external(-22435); !A85DI 

MacP t r ; 
Longl n t ) ; 

A-75 



MACINTOSH INTERFACE 

PROCEDURE Bi tClr bytePtr: 
b i tNurn: 

Appendix A 

external (-22434); !A85E! 

MacPtr ; 
Longlnt ) ; 
external (-22433); !A85F! 

I Other Operations on Long Integers -----------------------------------1 
FUNCTION HiWord 

FUNCTION LoWord 

PROCEDURE LongMul 

x: 
integer 

x: 
integer 

a b 
dest 

Longlnt ) . 
external (-22422); IA86A! 

Longlnt ) 
externol(-22421); IA868l 

Longlnt 
Ptrlnt648it) , 
external (-22425); !A8671 

I Graphics Uti I i ties --------------------------------------------------! 

fUNCTION Getlcon 

PROCEDURE Plotlcon 

FUNCJION GetPattern 

FUNCTION GetCursor 

PROCEDURE ShieldCursar 

iconlD 
Handle; 

theRect 
thelcon 

po tiD : 
Handle; 

cursorlO 
Handle; 

shieldRect 
offsetPt: 

FUNCTION GetPicture picturelD: 
Handle; 

FUNCTION SlopeFromAngle( angle: 
Fixed; 

FUNCTION AngleFromSlope( slope: 
integer; 

FUNCTION DeltoPoint ptA, ptB 
Longlnt ; 

A-76 

integer) 
externol (-22085); !A98B! 

RectPtr ; 
Handle) , 
externol (-22197); IA94B! 

integer) 
external (-22088); !A988! 

integer) 
external (-22087); !A989! 

Rec tP t r ; 
FPoint ) , 
external (-22443); !A855! 

integer) 
external (-221384); !A98Cl 

integer) 
external (-22340); IA88Cl 

F bed ) 
external (-22332); IA8C41 

FPoint ) 
external (-22193); IA94Fl 

1200301:0AB 



ToolBox Types (TBTypes) 

A.27. ToolBox Types (TBTypes) 

uni t TBTypes 

interface 

!uses MacCare. ODTypesl 
$l-l 

Uses !$U MACCORE.CODE! MacCare. 
$U ODTYPES.CODE ODTypes (Point.VHSelect.GraIPort.GroIPtr. 

Rec t) ; 
!$ul 

type 

! The 101 lowing 
EvtRecPtr 
WindowPtr 

Ptrs are 
MacPtr 
MacPtr 
MacPtr 

used 

TEP t r 

! Event Manager Record 
EventRecord = RECORD 

what: integer 
message: longlnt 
when: longlnt 
where: Point; 
modifiers integer 

End ; 

! Window Manager Record 
WindowHandle - MacPtr ; 
WindowRecord - pocked record 

port: GralPort; 
windowKind: integer; 
hi I ited: SmallBool 
visible: Sma I IBool 
spareFlag: Sma I IBool 
goAwayFlag: SmallBool 
strucRgn: Handle; 
conlRgn: Handle; 
updateRgn: Handle; 
windawDelPrac: Handle; 
dalaHandle: Handle; 
ti IleHandle: Handle; 
I i IleWidth: integer; 
cantrallisl: Handle; 
nextWindow: MacPtr; 
windawPic: Handle; 
relCan: Langlnt; 

end; 

! TexlEdi I Record l 
TEHandle Handle 
TERec ~ RECORD 

destRecl: 
viewRect: 
Ii neHe i gh t : 
Ii r s tBl: 
selSlarl: 
selEnd: 
just: 
length: 
hTex I: 
txFont: 
txFace: 
IxMode: 
IxSize: 
inPort: 
crOnly: 
nLines: 

1200301:0AB 

Rect 
Rec t ; 
inleger 
integer 
integer 
integer 
integer 
integer 
Handle ; 
integer; 
integer 
integer 
integer 
GralPlr 
integer 
inleger 

lor 

I 
passing 
Poinler 
Pointer 
Painter 

variables by ADDRESS. 
to EvenlRecord l 
to WindowRecord l 
to TERec l 

destination rectangle l 
view rectangle I 
line height! 
position 01 first baseline I 
starl 01 selection range l 
end 01 selection l 
justification l 
length of text l 
text to be edi ted 
tex t Ion t l 
character slyle 
pen mode I 
type size l 
gralPort l 
new line at Re I urn i f < 0 l 
number of lines I 

A-77 



MACINTOSH INTERFACE Appendix A 

I ineStarts: ARRAY [B .. 32(00) of Integer 
1 positions of line starts l 

1 ather lields for Mac 0 S. Internal use only I 
End ; 

A-78 1200301:0AB 



Text Edit (TextEdit) 

A.28. Text Edit (TextEdit) 

uni t TextEdi t 

interface 
1 $L-! 
uses l$U MACCORE.CODEj MacCore 

j$U ODTYPES.CODE ODTypes (GrafPort, GrafPtr, Point, VHSelect, 
FPoint, Rect, RectPtr), 

l$U TBTYPES.CODE! TBTypes (EvtRecPtr, EventRecord,windowrecord, 
windowptr,windowhondle.TEHondle, 
TEPtr,TERec) 

1 $ L f! 

const 
teJustLeft ~ 0 
teJustCenter 1 
teJustRight 

type 

Handle 
.." MocPtr 

ChorsHandle 
ChorsPtr 
Chars ~ PACKED ARRAY [0 .. 32000] OF char; 

Initialization ------------------------------------------------------! 
FUNCTION TENew destRect 

viewRect : 
TEHandle ; 

Rectptr ; 
RectPtr ) 
ex terna 1(-22062); jA9D2! 

j Manipulating Edi t Records -------------------------------------------! 

PROCEDURE TESetText 

FUNCTION TEGetText 

PROCEDURE TEDisPose 

Text: 
length 
hTE 

hTE : 
ChorsHondJe 

hTE : 

MacP t r ; 
Longlnt ; 
TEHandle ) , 
external (-22065); lA9Cq 

TEHandle ) 
ex terna 1(-22069); lAgesl 

TEHandle ) , 
external (-22067); !A9CD! 

I Editing -------------------------------------------------------------! 

PROCEDURE TEKey 

PROCEDURE TECut 

PROCEDURE TECopy 

PROCEDURE TEPaste 

PROCEDURE TEDelete 

PROCEDURE TElnsert 

Key 
hTE 

hTE 

hTE 

hTE 

hTE : 

text 
length 
hTE 

char , 
TEHandle ) , 
external (-22052); !A9DG! 

TEHandle ) , 
external (-221358); IA9D6! 

TEHandle) , 
ex terna 1(-221359); lA9D5! 

TEHandle ) , 
external (-22053); !A9DS! 

TEHand Ie) , 
ex ternal (-22857); lA9D7! 

MacPtr ; 
Langlnt ; 
TEHandle ) , 
ex ternal (-2213513); jA9DEI 

! Selection Range and Justi ficatian -----------------------------------! 

1200301:0AB A-79 



M<\CINTOSH INTERFACE 

PROCEDURE TESetSeleet 

PROCEDURE TESetJust 

selStort 
selEnd 
hTE 

j : 
hTE 

Longlnt ; 
Longlnt ; 

Appendix A 

T EHa nd Ie) , 
external(-22063); IA9Dl! 

integer: 
TEHandle ) ; 
ex terna 1(-22049); IA9DFl 

I Miee and Carets -----------------------------------------------------1 

PROCEDURE TECI ick 

PROCEDURE TEldle 

PROCEDURE TEActivate 

PROCEDURE TEDeactivote 

P t 
extend 
hTE 

hTE 

hTE 

hTE 

FPo in t ; 
MaeSoo I , 
TEHandle ) ; 
external (-22060); IA9D4j 

TEHandle ) ; 
external (-22054); IA9DAj 

TEHandle ) , 
external (-22056); IA9D81 

TEHandle ) , 
external (-221355); !A9D9! 

I Text Display -------------------------------------------------~------I 

PROCEDURE TEUpdate 

PROCEDURE TextBax 

rUpdate 
hTE 

t ext 
length 
box : 
style 

ReetPtr ; 
TEHandle ) ; 
external(-22661);·IA9D3! 

MaePtr ; 
Langlnt ; 
ReetPtr ; 
in tege r ) ; 
ex lernol (-22066); !A9CE! 

I Advanced Routines ---------------------------------------------------1 
'ROCEDURE TESerol I 

'ROCEDURE TEColText 

A-80 

dh , dv : 
hTE 

hTE 

integer; 
TEHondle ) ; 
ex terna 1(-22051); !A9DD! 

TEHandle ) ; 
ex ternol (--221364); !A9DO! 

1200301:0AB 



Window Manager (WindowMgr) 

A.29. Window Manager (WindowMgr) 

Un i t Wi ndowMg r ; 

Interface 

luses MacCore. OdTypes. TbTypes! 
$L-! 

uses I$U MACCORE.COOE! MocCore 
$U OOTYPES.COOE ODTypes (GrofPart. GrofPtr. Point. VHSelect. 

FPaint. Rect. RectPtr). 
I$U TBTYPES.CODEl TBTypes (EvtRecPtr. EventRecord.windowrecord. 

windowptr.windowhondle) 
!$LT ! 
const 

! types of windows 

dialogKind - 2; 
userKind = 8; 

I window defini t ion procedure IDs l 

DocumentProc - 0; 
DBoxProe - 1; 
plainOBox = 2 ; 
oltDBoxProe - 3 ; 
noGrowDocProc - 4 ; 
RDocProe - 16; 

I FindWindow resul t codes! 

inDesk - 0; 
inMenuBor - 1: 
inSysWindow - 2; 
inContent 3; 
inDrog c 4; 
inGrow - 5; 
inGoAway - 6; 

! ... hi t test codes 

wNoHit 0; 
wlnContent = 1; 
wlnDrag - 2; 
wlnGrow - 3; 
wlnGaAwoy - 4; 

I Window Messages 

wDraw - 0 
wHi t - 1 
wCalcRgns = 2 
wNew -= 3 
wDispose = 4 
wGrow - 5 
wDrowGleon - 6 

! Axis constraints for DrogGroyRgn col I ! 

bothAxes - 0 
hAxsOnly = 1 
vAxsOnly - 2 

Initial izotion and AI locotion ----------------------------------------! 
procedure GetWMgrPort 

function NewWindow 

1200301:0AB 

(wPor t: MocPtr) ; 

(wStoroge: MocPtr; 

external (-22256); !A910! 

A-81 



~MCII\TOSH INTERFACE 

funcl ion GetNewWindow 

boundsRect:RectPtr: 
title: StringPtr: 
visible: MocBool; 
theProc: integer: 
behind: MacPtr: 
goAwoyFlog:MocBool: 
retCon: Longlnt) 
WindowPtr 

(windowID: 
wStoroge: 
behind: 

WindowPlr 

integer; 
MacPlr: 
MacPtr) 

procedure CloseWindow (theWindow: WindowPtrl 
procedure DisposeWindow (lheWindow: WindowPlr 

Appendix A 

external (-22253): lA913! 

external (-22083): lA9SD! 

externol (-22227): !A92DI 
externol(-22252): A914 

I Window Disploy -------------------------------------------------------! 

procedure SetWTitle (thewi ndow: WindowPtr 
) tit Ie: StringPtr :externol (-22246): lA91 A! 

procedure Ge tWT i tie (theWindow: WindowPlr 
tit Ie· StringPtr): externol (-22247): IA919l 

procedure SelectWindow (theWindow: WindowPtr :externoI1-22241j: r91FI procedure HideWindow (theWi ndow: WindowPtr :external -22250 : A916 
procedure ShowWindow (theWindow: WindowPtr :externol -22251 : A915 

procedure 5howHide (theWindow: WindowPlr 
showFlog: MacBaol): external (-22264): IA908l 

procedure Hi lit eW i ndow (theWindow: WindowPtr 
fH iii te: MocBool ): external (-22244): !A91Cl 

:>rocedure BringToFrant (theWindow: WindowPtr : ext e r no I (-22240) ; lA9201 

;)rocedure Send8ehind (theWindow: WindowPtr 
beh i ndW j ndow: WindowPtr):externol(-22239): IA921 ! 

function FrontWindow : WindowPtr external (-22236): lA9241 

)rocedure DrowGrowlcon (theWi ndow: WindowPtr : ext e r no I (-22268) : IA9041 

! Mouse Location -------------------------------------------------------1 
function FindWindow 

function TrockGoAway 

(thePt: FPoint: 
whichWindow: WindowPtr 

integer; 

(theWindow: WindowPtr 
theP\: FPoint) 
MacBoo I ; 

) 
external (-22228); lA92Cl 

externol(-22242): 1A91EI 

t Window. Movemen t and S i z i nq -----------------------------~-----------~--l 

)rocedure MoveWindow 

>rocedure OrogWindow 

runction GrowWindow 

)(Qcedure SizeWindow 

A-82 

(theWindow: 
hGlobal, 
vGlobol: 
front: 

WindowPlr 

integer; 
MocBool): 

(theWindow: WindowPtr 
stortPt: FPoint: 
boundsRec t : Rec tP t r) : 

(theWindow: 
s tar tP t : 
sjzeRect: 
Longlnt: 

WindawP\r 
FPo i n t: 
RectPtr) 

(theWindow: WindowPtr 
w,h: integer; 
tUpdate: MocBaol): 

ex ternol (-22245): IA91Bl 

external (-22235): lA9251 

external(-22229): 1A9281 

ex ternal (-22243); IA91Dl 

1200301:0AB 



Window Manager (WindowMgr) 

! Update Region Maintenance --------------------------------------------! 

procedure InvolRect lbodRect: Rec tP t r) ; external -22232 A928 
procedure InvolRgn bodRgn: Hand Ie) ; external -22233 A927 
procedure Vol idRect goodRec t: Rec tP t r) ; external -22230 A92A 
procedure Vol idRgn (goodRgn: Handle); external -22231 A929 
procedure 8eginUpdote ftheWindow: Windowptrl external -22238 A922 
procedure EndUpdote theWindow: Windowptr external (-22237 A923 

! Miscellaneous Uti I i ties ----------------------------------------------! 

procedure SetWRefCon (theWindow: WindowPtr 
doto: Longlnt); ex terna 1(-22248); !A918! 

function GetWRefCon (theWindow: WindowPtr 
: Longlnt; external (-22249): !A917! 

procedure SetWindowPic (theWindow: WindowPtr 
pic: Handle); ex terna 1(-22226); !A92E! 

f une t i on GetWindowPic (theWindow: WindowPtr 
: Hondle; external (-22225): !A92F! 

tune t jon PinRect (theRec t: Rec tP t r; 
thePt: FPoint) 

: Longl n t; ex ternal (-22194); IA94E! 

funct ion OrogGroyRgn (theRgn: Hondle; 
stortPt: FPoint; 
I imi tRec t. 
s I opRec t: RectPtr; 
axis: integer; 
actionProc:ProcPtr) 

: Long I n t; external (-22267); !AgeSl 

I Low-Level Rout i nes ---------------------------------------------------! 

funct ion CheckUpdate (theEvent: EvtRecPtr) 
: Mac8ool; ex terna 1(-22255); !A91! ! 

procedure C Ii pAbove (window: WindowPtr) ext e r na I (-22261) ; IAgeel 

procedure PaintOne (window: WindowPtr ; 
clobbered: Hand Ie) ; ex terna 1(-22260); !Ageej 

procedure Point8ehind (startWindow:WindowPtr ; 
clobbered: Hondle) ; ext e r na I (-22259) ; !AgeDl 

procedure SoveOld (window: WindowPtr); ex terna 1(-22258); !AgeE! 

procedure OrowNew (window: WindowPtr ; 
updote: Moc8ool); externol(-22257); IAgen 

procedure ColcVis (window: WindowPtr): externol(-22263); IAg09l 

procedure CalcVis8ehind (stortWindow:WindowPtr 
clobbered: Hand Ie) ; external(-22262); IAgeAl 

1200301:0AB A-83 



- MACINTOSH INTERFACE Appendix A 

A-84 1200301:0AB 



APPENDIXB 
ERROR MESSAGES 

B.1. PrograIn Startup Errors 

Could not open p-machine file 
Could not allocate memory for p-machine 
Error reading p-machine file 
Could not locate MSTR resource 
Could not open program data fork 
Could not open Runtime Support Library file 
Could not allocate stack/heap 
I/0 error while booting 
Memory allocation error while booting 
Error reading segment dictionary 
Error reading library 
Required unit not found 
Duplicate unit 
Too many library code files referenced 
Too many system units referenced 
No program in code file to execute 
Program or unit must be linked first 
Obsolete code segment 
Insufficient memory to construct environment 
Program environment too complicated: run QUICKSTART first 
Error reading program code file 
Error reading library code file 
Insufficient memory to allocate data segment 
Insufficient memory to load fixed position segment 
Unknown environment construction error 

1200301:0BB B-1 



ERROR ?vfESSAGES 

B.2. Execution Errors 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

'98 
99 

B-2 

Fatal runtime support. error 
Value range error 
No proc in segment table 
Exit from uncalled proc 
Stack overflow 
In teger overflow 
Pivision by zero 
Invalid memory reference 
Program interrupted by user 
Runtime support I/O error 
I/0 Error: 
Unimplemented instruction 
Floating poin terror 
String overflow 
Programmed halt 
Illegal heap operation 
Break point 
Incompatible real number size 
Set too large 
Segmen t too large 
Heap expansion error 
Insufficient memory to load code segment 
Unknown I/0 Error # 
Unknown runtime support error 

Appendix B 

1200301:0BB 



I/0 Errors 

B.3. I/O Errors 

o No error 
-17 Control error 
-18 Status error 
-19 Read error 
-20 Write error 
-21 Bad unit 
-22 Unit empty 
-23 Open error 
-24 Close error 
-25 Driver removal error 
-26 Driver resource not found 
-27 Cancelled I/O operation 
-28 Driver not open 
-33 Directory full 
-34 Disk full 
-35 No such volume mounted 
-36 Data transfer error 
-37 Bad file name 
-38 File not open 
-39 End of file 
-40 File positioning error 
-41 Insufficient memory for file operation 
-42 Too many files open 
-43 File not found 
-44 Diskette is write protected 
-45 File is locked 
-46 Volume is locked 
-.:.47 File is in use and cannot be deleted 
-48 Duplicate file name 
-49 File already open with write permission 
-50 Invalid file operation parameter list 
-51 Invalid file reference number 
-52 Error establishing file position 
-53 Mounted volume not on line 
-54 Invalid file open permissions 
-55 Volume already on line 
-56 Invalid drive number 
-57 Not a Macintosh diskette 
-58 Not a Macintosh volume 
-59 Directory corrupted by file system 
-60 Bad master directory block 

1200301:0BB B-3 



ERROR MESSAGES 

-61 
-64 
-65 

-1024 

B-4 

Write permissions error 
Drive not installed 
Drive not on line 
Bad input format 

Appendix B 

1200301:0BB 



Syn tax Errors 

B.4. Syntax Errors 

1 Error in simple type 
2 Identifier expected 
3 unimplemented error 
4 ')' expected 
5 ': expected 
6 This symbol is illegal in this context 
7 Error in parameter list 
8 'OF' expected 
9 '(' expected 

10 Error in type 
11 '[' expected 
12 'J' expected 
13 'END' expected 
14 Semicolon expected 
15 Integer expected 
16 '=' expected 
17 'BEGIN' expected 
18 Error in declaration part 
19 Error in <field-list> 
20 '.' expected 
21 ,*, expected 
22 'INTERF ACE' expected 
23 'IMPLEMENTATION' expected 
24 'UNIT' expected 
49 Case label out of range 
50 Error in constant 
51 ';=' expected 
52 'THEN' expected 
53 'UNTIL' expected 
54 'DO' expected 
55 'TO' or 'DOWNTO' expected in for statement 
56 'IF' expected 
57 'FILE' expected 
58 Error in < factor> (bad expression) 
59 Error in variable 
60 Must be of type 'SEMAPHORE' 
61 Must be of type 'PROCESSID' 
62 Process not allowed at this nesting level 
63 Only main task may start processes 

101 Identifier declared twice 
102 Low bound exceeds high bound 

1200301:0BB B-5 



ERROR·MESSAGES Appendix B 

103 Identifier is not of the appropriate class 
104 Undeclared identifier 
105 Sign not allowed 
106 N urn ber expected 
107 Incompatible subrange types 
108 File not allowed here 
109 Type must not be real 
110 <tagfield> type must be scalar or subrange 
111 Incompatible with <tagfieJd> part 
112 ,Index type must not be real 
113 Index type must be a scalar or a subrange 
114 Base type must not be real 
115 Base type must be a scalar or a subrange 
116 Error in type of standard procedure parameter 
117 Unsatisified forward reference 
118 Forward reference type identifier in variable declaration 
119 Re--specified params not OK for a forward declared procedure 
120 Function result type must be scalar, subrange or pointer 
121 File value parameter not allowed 
122 A forward declared function '5 result type can't be re-specified 
123 Missing result type in function declaration 
124 F -format for reals only 
125 Error in type of standard function parameter 
126 Number of parameters does not agree with declaration 
127 Illegal parameter substitution 
128 Result type does not agree with declaration 
129 Type conflict of operands 
130 Expression is not of set type 
131 Tests on equality allowed only 
132 Strict inclusion,not allowed 
133 File comparison not allowed 
134 Illegal type of operand(s) 
135 Type of operand must be Boolean 
136 Set element type must be scalar or subrange 
137 Set element types must be compatible 
138 Type of variable is not array 
139 Index type is not compatible with the declaration 
140 Type of variable is not record 
141 Type of variable must be file or pointer 
142 unimplemented error 
143 Illegal type of loop control variable 
144 Illegal type of expression 
145 Type conflict 

B-6 1200301:0BB 



Sy n tax Errors 

146 Assignment of files not allowed 
147 Label type incompatible with selecting expression 
148 Su brange bounds must be scalar 
149 Index type must be integer 
150 Assignment to standard function is not allowed 
151 Assignment to formal function is not allowed 
152 No such field in this record 
153 Illegal type of paramet.er for READ 
154 Actual parameter must be a variable 
155 Control variable cannot be formal or non-local 
156 Multidefined case label 
157 Too many cases in case statement 
158 No such variant in this record 
159 Real or string tagfields not allowed 
160 Previous declaration was not forward 
161 Again forward declared 
162 Parameter size must be constant 
163 Missing variant in declaration 
164 Substition of standard proc/func not allowed 
165 Multidefined label 
166 Multideclared label 
167 Undeclared label 
168 Undefined label 
169 Error in base set 
170 Value parameter expected 
171 Standard file was re-declared 
172 Undeclared external file 
173 Fortran procedure or function expected 
174 Pascal function or procedure expected 
175 Semaphore value parameter not allowed 
176 Undefined forward procedure 
182 Nested units not allowed 
183 External declaration not allowed at this level 
184 External declaration not allowed in INTERFACE section 
185 Segment declaration not allowed in INTERFACE section 
186 Labels not allowed in INTERFACE section 
187 Attempt to open library unsuccessful 
188 Unit not declared in previous USES 
189 'USES' not allowed at this nesting level 
190 Unit not in library 
191 Forward declaration was not segment 
192 Forward declaration was segment 
193 Not enough room for this operation 

1200301:0BB B-7 



ERROR MESSAGES Appendix B 

194 
195 
201 
202 
203 
204 
250 
251 
252 
253 
254 
256 
257 
258 
259 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 

B-8 

Flag must be declared at top of program 
Unit not importable 
Error in real number - digit expected 
String constant must not exceed source line 
In teger cons tan t exceeds range 
8 or 9 in octal number 
Too many scopes of nested identifiers 
Too many nested procedures or functions 
Too many forward references of procedure entries 
Procedure too long 
Too many long constants in this procedure 
Too many external references 
Too many externals 
Too many local files 
Expression too complicated 
Diyision by zero 
No case provided for this value 
Index expression out of bounds 
Value to be assigned is au t of bounds 
Element expression out of range 
Ivlaximum segment number exceeded 
Unit name same as program name 
Unit name declared twice 
Invalid array bounds 
Bounds may not be of type real 
Only one dimension may be conformant 
Must be a variable parameter 
Must be a conformant array 
Segment declaration not permitted here 
PROCEDURE, FUNCTION or PROCESS expected 
HOST call not permitted here • . 
May not be formal procedure 
May not be formal parameter 
Invalid file type 
Must be an untyped file 
Segment entry not found 
?l.1ay not be a conformant array index bound 
Must be a string constant 
Must be a variable 
Must be a declared procedure 
May not call the main program 
Ivlay not be an expression 
"Maximum code size exceeded 

1200301:0BB 



Syntax Errors 

328 May not be a conformant array 
329 Structured type too large 
330 Too many array elements 
331 Inline procedure or function not allowed here 
333 Must be declared EXTERNAL to have untyped parameters 
398 Implementation restriction 
399 Illegal language construction or internal compiler error 
400 Illegal character in text 
401 Unexpected end of input 
402 Error in writing code file, not enough room 
403 Error in reading include file 
404 Error in writing list file, not enough room 
405 'PROGRAM' or 'UNIT' expected 
406 Include file not legal 
407 Include file nesting limit exceeded 
408 INTERFACE section not contained in one file 
409 Unit name reserved for system 
410 Disk file read or write error 
500 Assembler Error 

1200301:0BB B-9 



ERROR :MESSAGES . Appendix B 

B-IO 1200301:0BB 



APPENDIX C 
P-CODE TABLES 

C.l. Numerical Listing 

6 66 SLOC: 6 Short 
1 61 SLOC: 1 Sho r t 
2 62 SLOC: 2 Sho r t 
3 63 SLOC: 3 Short 
4 64 SLOC:4 Sho r t 
5 65 SLOC:5 Short 
6 66 SLOC:6 Short 
7 67 S LOC : 7 Sho r t 
8 68 SLOC:8 Short 
9 69 SLOC:9 Sho r t 

16 6A SLOC:16 Short 
11 68 SLOC: 11 Short 
12 6C SLDC:12 Sho r t 
13 60 SLOC: 13 Short 
14 6E SLOC: 14 Short 
15 6F SLOC: 15 Sho r t 
16 16 SLOC: 16 Sho r t 
17 11 SLOC: 17 Sho r t 
18 12 SLOC:18 Sho r t 
19 13 SLOC:19 Sho r t 
26 14 SLOC:20 Short 
21 15 SLOC:21 Short 
22 16 SLOC:22 Short 
23 17 SLDC:23 Short 
24 18 SLOC:24 Sho r t 
25 19 SLOC:25 Sho r t 
26 lA SLDC:26 Sho r t 
27 18 SLOC:27 Short 
28 1C SLOC:28 Sho r t 
29 10 SLOC:29 Short 
36 1 E SLOC:30 Sho r t 
31 1 F SLOC:31 Sho r t 
32 26 SLOL: 1 Sho r t 
33 21 SLDL:2 Sho r t 
34 22 SLDL:3 Sho r t 
35 23 SLOL:4 Sho r t 
36 24 SLDL:5 Sho r t 
37 25 SLDL:6 Sho r t 
38 26 S LO L: 7 Sho r t 
39 27 SLOL:8 Sho r t 
40 28 SLOL:9 Short 
41 29 SLOL: 16 Sho r t 
42 2A SLOL: 11 Short 
43 28 SLOL:12 Sho r t 
44 2C SLOL: 13 Short 
45 20 SLOL: 14 Short 
46 2E SLOL: 15 Shor t 
47 2F SLOL:16 Sho r t 
48 38 SLOO: 1 Sho r t 
49 31 SLOO:2 Short 
56 32 SLOO:3 Short 
51 33 SLOO 4 Short 
52 34 SLOO:5 Sho r t 

1200301:0CB 

Lood Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Lood Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Lood Word Constant 
Load Word Constant 
Lood Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Word Constant 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco ,Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Loco Word 
Load Globol Word 
Load Global Word 
Load Global Word 
Load Global Word 
Load Global Word 

C-l 



P-CODE TABLES Appendix C 

53 35 SLOO:6 Sho r t Load Global Word 
54 36 S LOO: 7 Sho r t Load Global Word 
55 37 SLOO:8 Short Load Global Word 
56 38 SLOO:9 Short Lood Global Word 
57 39 SLOO: 10 Short Load Global Word 
58 3A SLOO: 11 Short Load Global Word 
59 38 SLDO: 12 Short Load Global Word 
60 3C SLDO: 13 Sho r t Load Globol Word 
61 3D SLDO:14 Sho r t Load Global Word 
62 3E SLOO: 15 Short Load Global Word 
63 3F SLDO:16 Short Load Global Word 
64 40 SSTP Sho r t Store Pocked 
65 41 SLDCD :0 Sho r t Load Ooubleword Constant Zero 
66 42 S LD LO : 1 Short Load Loco I Ooubleword 
67 43 SLOLO: 2 Sho r t Load Loca! Doubleword 
68 44 S LD LO : 3 Short Load Local Ooubleword 
69 45 SLDLO:4 Short Load Locol Ooubleword 
70 46 SLDLO: 5 Sho r t Load Local Doubleword 
71 47 SLOLD: 6 Sho r t Load Local Doubleword 
72 48 SLOOO: 1 Short Load Global Doubleword 
73 49 SLOOO:2 Sho r t Load Global Ooubleword 
74 4A SLOOO:3 Shor t Load Global Ooubleword 
75 48 SLDOO:4 Sho r t Load Global Doubleword 
76 4C SLDOO:5 Sho r t Load Global Doubleword 
77 4D SLOOO:6 Sho r t Load Global Doubleword 
78 4E SLOOD:7 Sho r t Load Global Doubleword 
79 4F SLDOD:8 Short Load Global Ooubleword 
80 50 SINDD:0 Sho r t Index and Load Doubleword 
81 51 SINDD:l Short Index and Load Doubleword 
82 52 SINDO:2 Short Index end Load Doubleword 
83 53 SINOO:3 Sho r t Index and Load Doubleword 
84 54 SINDO: 4 Sho r t Index and Load Doubleword 
85 55 SINOD :5 Short Index and Load Doubleword 
86 56 SINDO :6 Short Index and Load Doubleword 
87 57 SINOO: 7 Sho r t Index and Load Doubleword 
88 58 LOLO Load Local Ooubleword 
89 59 LODO Load Intermediate Ooub!eword 
90 5A LOOO Load GLobal Doubleword 
91 58 lOEO Load External Doubleword 
92 5C INDO load Indirect Doubleword 
93 50 STLD Store Locol Doubleword 
94 5£ STRD Store Intermediate Doubleword 
95 5F SROD Store Global Doubleword 
96 60 SLlA: 1 Short Load Locol Address 
97 61 SLLA: 2 Sho r t Load Local Address 
98 62 SLLA: 3 Short Load Local Address 
99 63 SLLA:4 Sho r t Load Local Address 

1013 64 SLlA:5 Short Load Local Address 
1131 65 S L LA: 6 Sho r t Load Local Address 
102 66 S LLA: 7 Short Load Local Address 
103 67 SLLA:8 Short Load Locol Address 
104 68 SST l: 1 Short Store Local Word 
105 69 SSTL: 2 Short Store Local Word 
106 6A SSTL: 3 Short Store Local Word 
107 68 SSTL:4 Sho r t Store Loco I Word 
108 6C SSTL:5 Short Store Local Word 
109 60 SSTL:6 Short Store Local Word 
110 6E SST L: 7 Short Store Local Word 
111 6F SST L: 8 Short Store Local Word 
112 7'0 SCXG: 1 Short Co I I External Global Procedure 
113 71 SCXG:2 Short Co I I External Global Procedure 
114 72 SCXG:3 Short Co I I External Global Procedure 
115 7.3 SCXG:4 Sho r t Co I I External Global Procedure 
116 74 SCXG:5 Sho r t Co I I External Global Procedure 
117 75 SCXG:6 Sho r t Co I I External Global Procedure 
118 76 SCXG:7 Sho r t Co I I External Global Procedure 
119 77 SCXG:8 Sho r t Co I I External Global Procedure 
120 78 SIND:\) Sho r t Index and Load Word 
121 79 S I NO: 1 Sho r t Index and Load Word 
122 7A SIND:2 Short Index and Load Word 
123 78 SINO,3 Sho r t Index and Load Word 
124 7C SINO:4 Short Index and Load Word 
125 70 SIND:5 ShO r t Index and Load Word 

C-2 1200301:0CB 



126 
127 
128 
129 
130 
131 
132 
'33 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 

7E 
7F 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
SA 
8B 
8C 
80 
8E 
SF 
913 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9B 
9C 
90 
9E 
9F 
AO 
Al 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
B8 
Bl 
B2 
B3 
B4 
85 
B6 
B7 
B8 
B9 
BA 
BB 
BC 
BO 
BE 
BF 
C0 
Cl 
C2 
C3 
C4 
C5 
C6 

1200301:0CB 

SINO:6 
SINO:7 
LOCB 
LOCI 
LCO 
LOC 
LLA 
LOa 
LAO 
LOL 
LOA 
LaD 
UJP 
UJPL 
MPI 
OVI 
STM 
MODI 
CPL 
CPG 
CPI 
CXL 
CXG 
CXI 
RPU 
CPF 
LDCN 
LSL 
LDE 
LAE 
Nap 
LPR 
BPT 
BNOT 
LOR 
LAND 
ADI 
SBI 
STL 
SRO 
STR 
LOB 
NATIVE 
NATINFO 
LEREC 
CAP 
CSP 
SLODl 
SLOD2 
UPACK 
EOUI 
NEal 
LEal 
GEOI 
LEUSW 
GEUSW 
EOPWR 
LEPWR 
GEPWR 
EOBYT 
LEBYT 
GEBYT 
SRS 
SWAP 
TRUNC 
ROUND 
ADR 
SBR 
MPR 
DVR 
STO 
MOV 
DUPR 

Numerical Listing 

Short Index and Lood Word 
Short Index and Load Word 
Load Constant Byte 
Load Constant Word 
Load Constant Offset 
Load Mul i tipte Word Constant 
Load Loco I Address 
Load Global Word 
Lood Global Address 
Load Local Word 
Load Intermediate Address 
Load Intermediate Word 
Uncond i tiona I Jump 
Uncond it i ono I Long Jump 
Multiply Integers 
Divide Integers 
Store Mu It j pI e Words 
Modulo Integers 
Call Local Procedure 
Call Global Procedure 
Call Intermediate Procedure 
Call Locol External Procedure 
Call Global External Procedure 
Call Intermediate External Procedure 
Return From Procedure 
Cal I Procedure Formal 
Load Constant NIL 
Load Stat ic Link 
Load External Word 
Load External Address 
No Operation 
Load Processor Register 
Breakpoint 
Boolean NOT 
Logical OR 
Logical AND 
Add Integers 
Subtract Integers 
Store Loco I Word 
Store Global Word 
Store Intermediate Word 
Load Byte 
Native Code 
Native Cede Information 
Load Current EREC Pointer 
Copy Arrey Parameter 
Copy String Parameter 
Short Load Intermediate Word (parent) 
Short Load Intermediate Word (grandparent) 
Unpack Field From Top Of Stack 
Equal Integer Comparison 
Not Equo! Integer Comparison 
Less Than or Equol Integer Comparison 
Greater Thon or Equal Integer Comparison 
Less Than or Equal Unsigned Word Comparison 
Greater Than or Equal Unsigned Word Comparison 
Equal Set Comparison 
Less Than or Equal Set Comparison (subset) 
Greater Than or Equal Set Comporison (superset) 
Equol Byte Array Comparison 
Less Than or Equol Byte Array Comparison 
Greater Than or Equal Byte Arroy Comporison 
Subronge Set 
Swap Words 
Truncate Real 
Round Reol 
Add Reals 
Subtract Reals 
Mul tiply Reals 
Divide Reals 
Store Word Indirect 
Move Words 
Dupl icate Real 

C-3 



P-CODE TABLES 

199 
266 
261 
262 
263 
204 
265 
206 
267 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
2313 
231 
232 
233 
234 
235 
236 
237 
238 
239 
248 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

HI 
11 
12 
13 
14 
15 
16 

C-4 

C7 
C8 
C9 
CA 
C8 
CC 
CD 
CE 
CF 
D0 
01 
02 
03 
D4 
05 
06 
07 
08 
D9 
DA 
DB 
DC 
00 
DE 
DF 
E13 
E 1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
£9 
EA 
EB 
EC 
ED 
EE 
EF 
FO 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FA 
F8 
FC 
FO 
FE 

FF 00 
FF 01 
FF 02 
FF 133 
FF 134 
FF 85 
FF 06 
FF 07 
FF 88 
FF 89 
FF OA 
FF OS 
FF tiC 
FF 00 
FF 0E 
FF OF 
FF 10 

AOJ 
STS 
LOP 
STP 
CHK 
FLT 
EOREAL 
LEREAL 
GEREAL 
LOM 
SPR 
EF J 
NFJ 
FJP 
FJPL 
XJP 
IXA 
IXP 
STE 
INN 
UNI 
INT 
OIF 
SIGNAL 
WAIT 
ASI 
NGI 
OUPW 
ABR 
NGR 
LNOT 
INO 
INC 
EOSTR 
LESTR 
GESTR 
ASTR 
CSTR 
INCI 
DECI 
SCP 11 
SCPI2 
TJP 
LDCRL 
LORL 
STRL 
STOO 
STEO 
AOl2 
SBI2 
MPI2 
OVI2 
INC2 
RED2 
EXTI 
INCBI 
LOCO 
DUPO 
SWAPD 
MDI2 
DEC2 
NEG2 
ABS2 
EQI2 
NEI2 
LEI2 
GEI2 
IXA2 
IXP2 
INCB2 
XJP2 
CHK2 
REXTI 

Adjust Set 
Store Byte 
Lood Pocked Field 
Store Pocked Field 
Range Check 
Float Integer 
Equal Real Comparison 

Appendix C 

Less Than or Equa I Reo I Compor i son 
Greater Than or Equol Real Campor ison 
Lood Mul tiple Words 
Store Processor Register 
Equal Folse Jump 
Not Equol Fol se Jump 
Folse Jump 
Folse Long Jump 
Indexed Jump 
Index Array 
Index POCked Array 
Store External Word 
Set Membership Test 
Set Union 
Set Intersection 
Set Difference 
Signal Semaphore 
Wei t On Semaphore 
Absolute Value Integer 
Negate Integer 
Dupl icate Word 
Absolute Value Real 
Negate Real 
Logical NOT (l's complement) 
Index and Load Word 
Increment Word Address 
Equal String Comparison 
Less Thon or Equal String Comparison 
Greater Than or Equol String Comparison 
Assign String 
Check String Index 
Increment Integer 
Decrement Integer 
Short Col I Intermediate Procedure (parent) 
Short Cal! Intermediate Procedure (grandparent) 
True Jump 
Lood Real Constant 
Load Real 
Store Real 
Store Indirect Doubleword 
Store External Doubleword 
Add I nteger2 
Subtract Integer2 
Multiply Integer2 
Divide Integer2 
Increment Integer2 
Reduce Integer2 to Integer 
Extend Integer To Integer2 
Increment Pointer Wi th Integer Byte Offset 
Load Constant Doubleword 
Dupl icote Ooubleword 
Swap Doublewords 
Modulo Integer2 
Decrement Integer2 
Negate Integer2 
Absolute Value Integer2 
Equal Integer2 Comparison 
Not Equal Integer2 Comparison 
Less Than Or Equal Integer2 Comparison 
Greater Thon Or Equal lnteger2 Comparison 
Index Array Integer2 
Index POCked Array Integer2 
Increment Pointer Wi th Integer2 Byte Offset 
Indexed Jump lnteger2 
Integer2 Rongecheck 
Reversed Extend Integer 

1200301:0CB 



Nltrnerical Listing 

17 FF 11 RFLT Reversed Float Integer 
18 FF 12 FLT2 Float Integer2 
19 FF 13 RFLT2 Reversed Float Integer2 
20 FF 14 ADIU Add Integer Unsigned 
21 FF 15 S81U Subtract Integer Unsigned 
22 FF 16 MPIU Mu It i ply Integer Unsigned 
23 FF 17 DVIU Divide Integer Unsigned 
24 FF 18 MDIU Modulo Integer Unsigned 
25 FF 19 INCU Increment Integer Unsigned 
26 FF lA DECU Decrement Integer Unsigned 
27 FF 18 CHKU Unsigned Integer Rongecheck 
28 FF lC REDU Reduce Integer2 To Unsigned Integer 
29 FF 1 D EXTU Extend Unsigned Integer To Integer2 
30 FF 1 E REXTU Reversed Extend Unsigned Integer To Integer2 
31 FF 1 F FLTU Float Unsigned Integer 
32 FF 20 RFL TU Reversed Float Unsigned Integer 
33 FF 21 LSLW Logical Sh i It Le I t Word 
34 FF 22 LSRW Logical Sh i It Right Word 
35 FF 23 ASRW Ar i thme tic Sh i It Right Word 
36 FF 24 LSLD Logical Sh i It Le t t Doubleword 
37 FF 25 LSRD Logical Sh i It Right Daubleword 
38 FF 26 ASRD A r i t hme tic Sh i I t Right Doubleword 
39 FF 27 LANDO Logical AND Doubleword 
40 FF 28 LORD Logical OR Doubleword 
41 FF 29 LNOTD Logical NOT Doubleword 
42 FF 2A LXORW Logical Exclusive OR Word 
43 FF 28 LXORD Logical Exclusive OR Doubleword 
44 FF 2C PTO Pointer To Word Ott se t 
45 FF 20 OTP Word Ollset To Pointer 
46 FF 2E TRNC2 Truncate Real to Integer2 
47 FF 2F ROND2 Round Real to Integer2 
48 fF 30 Unassigned 
49 Ff 31 Unassigned 
50 ff 32 RCALL Macintosh ROM Co I I 
51 ff 33 PTA Pointer To Absolute Address 
52 ff 34 ATP Absolute Address To Pointer 
53 ff 35 AMOVE Absolute Move Le t t 
54 ff 36 DEREF Dereference Absolute Handle 
55 Ff 37 SETAR Set Ac t ion Routine 

1200301:00B 0-5 



P-CODE TABLES Appendix C 

C.2. Alphabetical Listing 

ASI 
ASR 
ASS2 
AOI 
ADI2 
ADIU 
ADJ 
ADR 
AMOVE 
ASRD 
ASRW 
ASTR 
ATP 
BNOT 
BPT 
CAP 
CHK 
CHK2 
CHKU 
cpr 
CPG 
CPI 
CPL 
CSP 
CSTR 
CXG 
CXI 
CXL 
DEC2 
DECI 
DECU 
DEREF 
DIF 
DUPO 
DUPR 
DUPW 
DVI 
DVI2 
DVIU 
DVR 
EFJ 
EOeYT 
EQ 12 
EOPWR 
EOREAL 
EOSTR 
EOUI 
EXTI 
EXTU 
FJP 
FJPL 
FLT 
FLT2 
FLTU 
GEBYT 
GEI2 
GEPWR 
GEOI 
GEREAL 
GESTR 
GEUSW 
INC 
INC2 
INCB2 
INCBI 
INCI 
INCU 
IND 

C-5 

224 
227 

6 
162 
247 

26 
199 
192 
53 
38 
35 

235 
52 

159 
158 
171 
263 

15 
27 

151 
145 
146 
144 
172 
236 
148 
149 
147 

4 
238 

26 
54 

221 
1 

198 
226 
141 
256 

23 
195 
216 
185 

7 
182 
205 
232 
176 
253 

29 
212 
213 
264 

18 
31 

187 
16 

184 
179 
207 
234 
181 
231 
251 

13 
254 
237 

25 
230 

E13 
E3 

FF 06 
A2 
F7 

FF 14 
C7 
CO 

FF 35 
FF 26 
FF 23 

ES 
FF 34 

9F 
9E 
AS 
CB 

FF 0F 
FF 1 B 

97 
91 
92 
90 
AC 
EC 
~4 
95 
93 

FF 64 
EE 

FF 1 A 
FF 36 

DD 
FF 01 

C6 
E2 
80 
FA 

FF 17 
C3 
02 
89 

FF 07 
86 
CD 
[8 
BO 
FD 

FF 10 
D4 
D5 
CC 

FF 12 
FF 1 F 

BS 
FF 0A 

88 
83 
cr 
EA 
85 
E7 
FB 

FF 0D 
FE 
ED 

FF 19 
E6 

Absolute Value Integer 
Absolute Value Real 
Absolute Value Integer2 
Add Integers 
Add Integer2 
Add Integer Unsigned 
Adjust Set 
Add Reals 
Absolute Move Left 
Arithmetic Shift Right Daubleward 
Ari thmetic Shi ft Right Ward 
Assign String 
Absolute Address To Pointer 
Boolean NOT 
Breakpoint 
Copy Array Parameter 
Range Check 
Integer2 Rongecheck 
Unsigned Integer Rongecheck 
Cal I Procedure Formal 
Cal J Global Procedure 
Call Intermediate Procedure 
Coil Local Procedure 
Copy String Parameter 
Check String Index 
Call Global External Procedure 
Call Intermediate External Procedure 
Call Local External Procedure 
Decrement Integer2 
Decrement Integer 
Decrement Integer Unsigned 
Dereference Absolute Hondle 
Set Difference 
Duplicate Doubleword 
Duplicate Real 
Oupl icate Ward 
Divide Integers 
Divide Integer2 
Divide Integer Unsigned 
Divide Reals 
Equol False Jump 
Equol Byte Array Comparison 
Equol Integer2 Comparison 
Equa I Se t Compor i son 
Equal Real Comparison 
Equo! String Comparison 
Equal Integer Comparison 
Extend Integer To Integer2 
Extend Unsigned Integer To Integer2 
Folse Jump 
Folse Long Jump 
Flaot Integer 
Float Integer2 
Float Unsigned Integer 
Greater Thon or Equal Byte Array Comparison 
Greater Thon Or Equo! !nteger2 Comparison 
Greater Than or Equal Set Comparison (superset) 
Greater Thon or Equel Integer Comparison 
Greater Thon or Equo! Reol Comparison 
Greater Than or Equal String Comparison 
Greoter Thon or Equol Unsigned Word Comparison 
Increment Word Address 
Increment Integer2 
I ncrement Po inter Wi th I nteger2 Byte Of fset 
Inc r erne n t Poi n t e r W j t h I n t e 9 e r 8 y teO f f set 
Increment Integer 
Increment Integer Unsigned 
Index and Load Word 

1200301 :OCB 



INOD 
INN 
INT 
IXA 
IXA2 
IXP 
IXP2 
LAE 
LAND 
LANDO 
LAO 
LCO 
LOA 
LDB 
LOC 
LDCB 
LOCO 
LOCI 
LDCN 
LOCRL 
LDE 
LOED 
LDL 
LOLD 
LDM 
LOO 
LOOO 
LDP 
LORL 
LEBYT 
LEI2 
LEPWR 
LEOI 
LEREAL 
LEREC 
LESTR 
LEUSW 
LLA 
LNOT 
LNOTD 
LOO 
LOOD 
LOR 
LORD 
LPR 
LSL 
LSLO 
LSLW 
LSRO 
LSRW 
LXORD 
LXORW 
MDI2 
MOIU 
MODI 
MOV 
MPI 
MPI2 
MPIU 
MPR 
NAT INFO 
NATIVE 
NEG2 
NEI2 
NEOI 
NFJ 
NGI 
NGR 
NOP 
OTP 
PTA 
PTO 
RCALL 

92 
218 
2213 
215 

11 
216 

12 
155 
161 

39 
134 

CL 
136 
167 
131 
128 

13 
129 
152 
242 
154 

91 
135 

88 
2138 
133 

90 
2131 
243 
186 

9 
183 
178 
206 
1713 
233 
180 
132 
229 

41 
137 

89 
160 

40 
157 
153 

36 
33 
37 
34 
43 
42 

3 
24 

143 
197 
140 
249 

22 
194 
169 
168 

5 
8 

177 
211 
225 
228 
156 

45 
51 
44 
50 

1200301 :OCB 

5C 
DA 
DC 
07 

FF 13B 
08 

FF 0C 
9B 
A 1 

FF 27 
86 
82 
88 
A7 
83 
813 

FF 130 
81 
98 
F2 
9A 
5B 
87 
58 
013 
85 
5A 
C9 
F3 
BA 

FF 139 
B7 
B2 
CE 
AA 
E9 
B4 
84 
E5 

FF 29 
89 
59 
AO 

FF 28 
90 
99 

FF 24 
FF 21 
FF 25 
FF 22 
FF 2B 
FF 2A 
FF 133 
FF 18 

8F 
C5 
8C 
F9 

FF 16 
C2 
A9 
A8 

FF 05 
FF 08 

81 
03 
E 1 
E4 
9C 

FF 20 
FF 33 
FF 2C 
FF 32 

Alphabetical Listing 

Load Indirect Doubleword 
Set Membership Test 
Set Intersection 
Index Array 
Index Array Integer2 
Index Pocked Arroy 
Index Packed Array Integer2 
Load External Address 
Logical AND 
Logical AND Ooubleward 
Load Global Address 
Load Constant Offset 
Load Intermediate Address 
Load Byte 
Load Mul itipte Word Constant 
Load Constant Byte 
Load Constant Ooubleword 
Load Constant Ward 
Load Constant NI L 
Load Rea I Cans tant 
Load External Word 
Load External Doubleword 
Load Loco I Word 
Load Local Doubleword 
Load Mul tiple Words 
Load Global Word 
Load GLobal Ooubleward 
Load Packed Field 
Load Real 
Less Than or Equo I By te Ar ray Camp~r i son 
Less Than Or (quo! I nteger2 Campor i son 
Less Than or Equal Set Comparison (subset) 
Less Than or Equal Integer Comparison 
Less Than or Equal Real Comparison 
Load Current EREC Pointer 
Less Than or Equal String Comparison 
Less Than or Equa! Unsigned Word Comparison 
Load Local Address 
Logical NOT (l's complement) 
Logical NOT Ooubleword 
Load Intermediate Word 
Load Intermediate Doubleword 
Logical OR 
Logical OR Doubleword 
Load Processor Register 
Load Stat ic Link 
Logical Shift Left Doubleword 
LogiCal Shift Left Word 
Logical Shift Right Doubleword 
Logical Shi ft Right Word 
Logical Exclusive OR Doubleword 
Logical Exclusive OR Word 
Modulo Integer2 
Modulo Integer Unsigned 
Modulo Integers 
Move Words 
Multiply Integers 
Multiply Integer2 
Multiply Integer Unsigned 
Mul tiply Reols 
Native Code Information 
Native Code 
Negate Integer2 
Not Equal Integer2 Comparison 
Not Equal Integer Comparison 
No t Equo I Fa I se Jump 
Negote Integer 
Negate Real 
No Operat jon 
Word Offset To Pointer 
Pointer To Absolute Address 
Pointer To Word Offset 
Macintosh ROM Call 

C-7 



P~CODE TABLES Appendix C 

RED2 252 FC Reduce Integer2 to Integer 
REDU 28 FF 1 C Reduce Intege r 2 To Unsigned Integer 
REXT I 16 FF 10 Reversed Extend Integer 
REXTU 30 FF 1 E Reversed Extend Unsigned Integer To Integer2 
RFLT 17 FF 11 Reversed Float Integer 
RFLT2 19 FF 13 Reversed Float Integer2 
RFLTU 32 FF 213 Reversed Float Unsigned Integer 
ROND2 47 FF 2F Round Real to Integer2 
ROUND 191 SF Round Real 
RPU 1513 96 Return From Procedure 
581 163 A3 Subtract Integers 
5812 248 F8 Subtract Integer2 
S81U 21 FF 15 Subtract Integer Unsigned 
SBR 193 C1 Subtract Rea Is 
SCP 11 239 EF Short Co I I Intermediate Procedure iparent) 
SCPI2 240 F0 Short Co I I Intermediate Procedure grandparent) 
SCXG: 1 112 713 Sho r t Co I I Ex terna I Global Procedure 
SCXG:2 113 71 Sho r t Ca I I External Global Procedure 
SCXG:3 114 72 Short Co I I External Global Procedure 
SCXG:4 115 73 Sho r t Ca I I External Global Procedure 
SCXG:5 116 74 Sho r t Co I r Ex ternal Global Procedure 
SCXG:6 117 75 Sho r t Co I I External Global Procedure 
SCXG:7 118 76 Shor t Ca I I External Global Procedure 
SCXG:8 119 77 Sha r t Co I I External Globol Procedure 
SETAR 55 FF 37 Set Ac t ion Routine 
SIGNAL 222 DE Signat Semaphore 
SIND:0 120 78 Sho r t Index and Load Word 
SIND:1 121 79 Sho r t Index and Load Word 
SIND:2 122 7A Sho r t Index and Load Word 
SIND:3 123 78 Sha r t Index and Load Word 
SIND:4 124 7C Short Index ond Load Word 
SIND:5 125 7D Sha r t Index and Load Word 
SINO:6 126 7E Sho r t Index and Load Word 
SIND:7 127 7F Sho r t Index and Load Word 
SINDD:0 813 50 Short Index and load Doubleword 
S I NDD: 1 81 51 Sho r t Index and Load Doubleword 
SINDD:2 82 52 Sho r t Index and Load Doubleword 
SINDD:3 83 53 Sha r t Index and Load Doubleword 
SINOD:4 84 54 Sho r t Index and Load Doubleword 
SINDD:5 85 55 Sho r t Index and load Doubleword 
SINOD:6 86 56 Sha r t Index and Load Ooubleword 
SINDD:7 87 57 Sha r t Index and Load Ooubl-eword 
SLDC:0 \) 130 Short Load Word Constant 
SLOC: 1 1 01 Short lood Word Constant 
SLDC:2 2 02 Short Load Word Constant 
SLDC:3 3 133 Sho r t Load Word Constant 
SLOC: 4 4 134 Shor t Load Word Constant 
SlDC: 5 5 05 Short Load Word Con3tant 
SLDC: 6 6 06 Sho r t Load Word Constant 
SLDC: 7 7 07 Short Load Word Constant 
SLOC: 8 8 08 Short Load Word Constant 
SLOC:9 9 09 Short load Word Constant 
SLDC:10 1(l OA Shor t Load Word Constant 
SLOC: 1 1 11 08 Short Load Word Constant 
SLDC:12 12 0C Short load Word Constant 
SlDC:13 13 OD Sho r t Lood Word Constont 
S LDC : 14 14 0E Sha r t Load Word Constant 
SLDC:15 15 13F Sho r t Load Word Constant 
S LOC: 16 16 113 Sha r t Load Word Constant 
SlDC:17 17 11 Sho r t load Word Constant 
SLDC:18 18 12 Short load Word·Constant 
SLDC: 19 19 13 Sho r t Load Word Constant 
SlDC:20 20 14 Short load Word Constant 
SlDC:21 21 15 Shar t load Word Constant 
SlDC:22 22 16 Short Load Word Constant 
SLDC:23 23 17 Short load Word Constant 
SlDC:24 24 18 Short load Ward Constant 
SLDC:25 25 19 Shor t load Word Constont 
SLDC:26 26 1A Shor t load Word Constant 
SlDC:27 27 1 B Sho r t Load Word Constant 
SLOC:28 28 1 C Short Load Word Constant 
SLDC:29 29 10 Short Load Word Constant 
SLDC:30 313 1 E Short load Ward Constant 

C-8 1200301:0CB 



Alphabetical Listing 

SLDC: 31 31 1 F Sho r t Load Word Constant 
SLDCD:8 65 41 Short Load Ooubleword Constant Zero 
SLDL: 1 32 28 Sho r t Load Local Word 
SLDL:2 33 21 Sha r t Load Locol Word 
S LD L : 3 34 22 Sho r t Load Local Word 
S LD L : 4 35 23 Short Load Locol Word 
S LD L : 5 36 24 Short Load Local Word 
SLDL:6 37 25 Short Load Loca! Word 
S LD L: 7 38 26 Sho r t Load Local Word 
SLDL:8 39 27 Short Load Local Word 
SLDL:9 40 28 Short Load Local Word 
SLDL: 10 41 29 Short Load Local Word 
SLDL: 11 42 2A Short Load Local Word 
SLDL: 12 43 2B S ho r t Load Local Word 
SLDL: 13 44 2C Sha r t Load Local Word 
SLDL: 14 45 2D Short Load Locol Word 
SLDL: 15 46 2E Short Load Local Word 
SLDL: 16 47 2F Short Load Local Word 
SLDLD: 66 42 Sha r t Load Local Doubleword 
SLDLD: 2 67 43 Sha r t Load Local Doubleword 
S LD LD : 3 68 44 Sho r t Load Local OoubJeword 
S lD lD : 4 69 45 Short load Local Ooubleword 
SlDLD: 5 713 46 Short load Local Doubleword 
SlDlD:6 71 47 Sho r t Load Locol DoubJeword 
SlDO: 1 48 313 Sho r t Load Globa Word 
SLOO:2 49 31 Short Load Globo Word 
SlOO:3 50 32 Sha r t Load Glabo Ward 
SlDO:4 51 33 Sho r t load Glaba Ward 
SlDO:5 52 34 Short Load Globa Ward 
SLDO:6 53 35 Short Load Globo Word 
SLDO:7 54 36 Sha r t Load Globa Ward 
SLDO:8 55 37 Sho r t Load G lobo Word 
SLOO:9 56 38 Sho r t Load Globa Word 
SLDO:10 57 39 Short Load Globo Word 
SLDO: 11 58 3A Sho r t Load Globa Ward 
SlDO:12 59 38 Short Load Globa Word 
SLOO:13 60 3C Sho r t Load Globa Word 
SLDO:14 61 3D Sho r t Load G lobo Word 
SlOO: 15 62 3E Short Load Globa Word 
SlOO: 16 63 3F Sha r t load Glabo Word 
SLOOO: 1 72 48 Sho r t Load G lobo Doubleword 
SLOOO:2 73 49 Sho r t Load Globo Ooubleword 
SLDOO:3 74 4A Sho r t load Globa Doubleword 
SLOOD:4 75 48 Sho r t Load Glaba DoubJeword 
SLDOD:5 76 4C Sho r t Load Globa Ooubleword 
SlDOD:6 77 40 Short Load G I abo Doubleword 
SLDOD:7 78 4E Sha r t load Global Doubleword 
SLOOO:8 79 4F Short Load Global OoubJeword 
SLLA: 1 96 60 Short Load Local Address 
SLLA:2 97 61 Sha r t Load Loc a I Address 
SLLA:3 98 62 Short Load Local Address 
SLLA: 4 99 63 Sha r t Load local Address 
SLLA :5 108 64 Short Load Local Address 
SLLA:6 HI1 65 Short Load Local Address 
SLLA:7 102 66 Sho r t Load Local Address 
SLLA:8 103 67 Sho r t Load Locol Address 
SLOD 1 173 AD Sha r t Load Intermediate Word 1parent) 
SLOD2 174 AE Sho r t Load Intermediate Word grandparent) 
SPR 2139 D1 Store Processor Regi ster 
SRO 165 A5 Store Global Word 
SROD 95 5F Store Global Ooubleword 
SRS 188 BC SLJbronge Set 
SSTL: 1 104 68 Short Store Local Word 
SSTL:2 1135 69 Sho r t Store Local Word 
SSTL:3 106 6A Sho r t Store Local Word 
SSTL:4 1137 6B Sho r t Store Local Word 
SSTL:5 1138 6C Sha r t Store Local Word 
SSTL:6 109 60 Sho r t Stare Local Word 
SSTL:7 110 6E Short Store Local Word 
SSTL:8 111 6F Short Store Locol Word 
SSTP 64 413 Short Store Pocked 
STB 200 C8 Store Byte 
STE 217 09 Store External Word 

1200301:0CB C-9 



P-CODE TABLES Appendix C 

STEO 246 F6 Store External Ooubleword 
STL 164 A4 Store Local Word 
STLO 93 50 Store Lac a I Doubleword 
STM 142 8E Store Mu I tip Ie Words 
STO 196 C4 Store Word Indirect 
STOO 245 F5 Store I nd i r ee t Doubleword 
STP 202 CA Store Packed Field 
STR 166 A6 Store Intermediate Word 
STRO 94 5E Store Intermediate Doubleword 
STRL 244 F4 Store Real 
SWAP 189 BO Swap Words 
SWAPO 2 FF 02 Swap OoubJewords 
TJP 241 F 1 True Jump 
TRNC2 46 FF 2E Truncate Real to Integer2 
TRUNC 190 BE Truncate Real 
UJP 138 8A Uncond it i ono I ~J ump 
UJPL 139 88 Uncond i tiona 1 Long Jump 
UNI 219 DB Set Union 
UPACK 175 AF Unpack Field From Top Of Stack 
WAIT 223 OF Wa it On Semaphore 
XJP 214 06 Indexed Jump 
XJP2 14 FF 0E Indexed Jump Integer2 

C-10 1200301:0CB 



p-Code Index 

C.3. p-Code Index 

The following list defines the codes used in the p-code index that 
follows. Each code corresponds to the name of a section of the 
P-:M .. ACHINE ARCHITECTURE chapter. 

BAC Byte Array Comparisons 
BLS Byte Load and Store 
CL Constant Loads 
CS Concurrency Support 
DLS Indirect Load and Stores 
ELS External Loads and Stores 
GLS Global Loads and Stores 
IA Integer Arithmetic 
ILS Intermediate Loads and Stores 
JMP Jumps 
LLS Local Loads and Stores 
LO Logical Operators 
:MI Miscellaneous Instructions 
MLS Multiple Word Loads and Stores 
OTC Operand Type Conversion Operators 
PC Parameter Copying 
PF Packed Field Loads and Stores 
RA Real Arithmetic 
RCR Routine Calls and Returns 
SET Set Operators 
SIA Structure Indexing and Assignment 
SO Shift Operators 
STR String Operations 
UA Unsigned Arithmetic 

The following index indicates for each p-code which section of 
the P-MACHINE ARCHITECTURE chapter it may be found in. 

ABI 
ABR 
ABS2 
ADI 
ADI2 
ADIU 

1200301:0CB 

IA 
RA 
IA 
IA 
IA 
UA 

ADJ 
ADR 
AMOVE 
ASRD 
ASRW 
ASTR 

SET 
RA 
SIA 
SO 
SO 
STR 

ATP 
BNOT 
BPT 
CAP 
CHK 
CHK2 

OTC 
LO 
RCR 
PC 
IA 
IA 

C-11 



P-CODE TABLES Appendix C 

CHKU UA INC SIA LEUSW LO 
CPF RCR INC2 IA LLA LLS 
ePG RCR INCB2 SIA LNOT La 
CPI RCR INCBI SIA LNOTD La 
CPL RCR INCI IA LaD ILS 
CSP PC INCU UA LODD ILS 
CSTR STR IND DLS LOR LO 
CXG RCR INDD D1S LORD La 
CX] RCR INN SET LPt{ MJ 
CXL RCR INT SET 1SL RCR 
DEC2 IA IXA SIA LSLD SO 
DECI IA IXA2 SIA 1SLW SO 
DECU UA IXP SlA LSRD SO 
DEREF OTC IXP2 SIA LSRW SO 
DIF SET LAB ELS LXORD La 
DUPD MJ LA.l\JD LO LXORW La 
DUPR 1vfl LA.:,I\JDD La MDI2 IA 
DUPW MI LAO GLS MDIU UA 
DVI IA LCO CL MODI IA 
DV12 IA LDA ILS MOV SIA 
Dvm UA LDB BLS MPI IA 
DVR RA LDC MLS MPI2 IA 
EFJ JMJ:> LDCB CL 1vlPIU UA 
EQBYT BAC LDCD CL MPR ItA 
EQI2 IA LDCI CL NATINFO :rvn 
EQPWR SET LDCN CL NATlv'E :rvn 
EQREAL HA LDCRL :MLS NEG2 IA 
EQSTR STR LDE ELS NEl2 IA 
EQUJ IA LDED ELS NEQI IA 
EXTI OTC LDL LLS NFJ JMP 
EXTU OTC LDLD LLS NGI IA 
FJP JMP LDM :NILS NGR RA 
FJPL JMP LDO GLS Nap MI 
FLT OTC LDOD GLS OTP OTC 
FLT2 OTC LDP PF PTA OTC 
FLTU OTC LDRL MLS PTO OTC 
GEBYT BAC LEBYT BAC RCALL MJ 
GEI2 IA LEI2 IA RED2 OTC 
GEPWR SET LEPWR SET REDU OTC 
GEQI IA LEQI IA REXTI OTC 
GEREAL RA LEREAL RA REXTU OTC 
GESTR STR LEREC :rvn RFLT OTC 
GEUSW LO LESTR, STH RFLT2 OTC 

C-12 1200301:0CB 



p-Code Index 

RFLTU OTC SWAPD :M.I 
ROND2 OTC TJP JMP 
ROUND OTC TRNC2 OTC 
RPU RCR TRUNC OTC 
sm IA UJP JMP 
SBl2 lA UJPL JMP 
SBlU UA UN! SET 
SBn RA UPACK PF 
SCPll RCR WAlT CS 
SCPI2 IWR X.JP JMP 
SCXGn RCR X,JP2 JMP 
SETAR :M.I 
SIGNAL CS 
S1NDn DLS 
S1NDDn DLS 
SLDCn CL 
SLDCDO CL 
SLDLn LLS 
SLDLDn LLS 
SLDOn GLS 
SLDODn GLS 
SLLAn LLS 
SLODI ILS 
SLOD2 ILS 
SPR :M.I 
SRO GLS 
SROD GLS 
SRS SET 
SSTLn LLS 
SSTP PF 
STB BLS 
STE ELS 
STED ELS 
STL LLS 
STLD LLS 
STM MLS 
STO DLS 
STOD DLS 
STP PF 
STR 1LS 
STRD ILS 
STRL MLS 
SWAP MI 

1200301:0CB C-13 



V-CODE TABLES Appendix C 

C-14 1200301:0CB 



INDEX 

***, 10-17 

ab"., 4-3, 4-12 
absadr, 4-3, 4-18, 4-19, 

5-8, 5-9 
absmove, 4-3, 4-20, 5-8, 

5-10,5-26 
absnil, 5-9 
activation record, 10-3 
adr, 2-51, 4-3, 4-18, 5-9 
Application Heap Zone, 9-2, 

9-3, 9-5, 9-6, 9-7, 
9-10, 9-11, 9-12, 
9-13 

grow zone function, 9-10 
ApplLimit, 9-6, 9-10, 9-12 
attach, 4-6 

backing up disks, 1-4 
band, 4-3, 4-15 
bnot, 4-3, 4-15, 4-16 
boolean, 2-50, 5-13 
bootst;-ap, 2-10, 2-12, 2-45 

errors, 2-18, 2-45 
bor, 4-3, 4-15 
break facility, 2-9, 2-23 
bundle bit, 2-17, 2-51, 

2-52, 5-7 
bxor, 4-3, 4-15 

1200301:010 

ch,!:.,4-12 
Clipboard, 3-1, 3-3, 3-11, 

3-13 
close, 2-51 
ClrErrHandler, 2-48 
compilation unit, 7-2, 9-4 
Compiler, 1-2,2-2,2-25, 

2-27, 2-37, 2-43 
backend errors, 2-8 
example listing, 2--8 
fatal errors, 2-7, 2-8 
input resource file, 2-4, 

2-12 
input text file, 2-3 
interpreting listings, 2-8 
listing file, 2-5, 2-7, 2-8 
output code file, 2-3, 

2-7 
progress report, 2-5 
startup questions, 2-2 
syntax error 

reporting, 2-5 
termination, 2-3, 2-4, 

2-5,2-7 
compiler options, 2-5, 4-35 

$B Begin Conditional 
Comp, 4-38, 4-43 

$C Copyright, 4-38 
$D Conditional Comp 

Flag, 4-38, 4-43 
default settings, 4-37 
$D Symbolic 

Debugging, 4-38 
$E End Conditional 

Comp, 4-38, 4-43 

I-I 



Index 

$1 INCLUDE File, 4-39 
$1 I/O Check, 4-39 
$L Compiled 

Listing, 4-40 
$N Native Code 

Generation, 4-41 
$P Page, 4-41 
$Q Quiet, 4-41 
$R2 and $R4 Real 

Size, 4-42 
$R Range Checking, 4-41 
$T Title, 4-42 
$U Use Library, 4-42 
$U User Program, 4-43 

concurrency, 9-9, 10-20 
process cancelation, 2-47 
subsidiary tasks, 9-6, 

9-12 
task queues, 10-23 
task switch, 10-24 

constant pool, 10-12 
ControlMgr, A-17 
CURPROC, 10-31 
cursor, 2-33, 2-36, 3-6 
CURTASK, 10-23, 10-31 

Debugger, 2-8, 2-9, 2-11, 
2-13,2-21,2-22, 
2-47,2-50,8-1 

,break points, 8-7 
changing the frame of 

reference, 8-15 
command codes, 8-21 
command format, 8-3 
command summary, 8-21 
current activation 

record, 8-5 
current address, 8-5 
disassembling p

code, 8-9 
display ing registers, 8-15 

1-2 

display options, 8-5, 
8-18 

examining memory, 8-10 
exanllnmg 

variables, 8-12 
installation, 8-2 
interaction 

procedure, 2-47,2-50 
modifying memory, 8-10 
modifying variables, 8-12 
single stepping, 8-8 
symbolic debugging, 8-5 

Debug Runtime, 1-3,2-11, 
2-19,2-43,7-2 

DECOPS routine, 10-99 
derefhnd, 4-:~, 4-19, 5-8, 

5-10, 5-27 
DeskMgr, A-20 
desktop, 2-17, 2-25, 2-37, 

2-51,2-53,5-7 
DialogMgr, A-21 
disk swap boxes, 5-29, 9-7, 

9-9 
disk swapping, 2-29, 2-37 
dispose, 2-24, 9-4 
div, 4-11 
drive numbers, 2-29, 2-37 

Editor, 1-2, 2-5, 2-25, 
2-27,3-1 

basic editing, 3-3 
deleting text, 3-3 
entering text, 3-3 
file size limit, 3-2 
multiple files, 3-5 
scrolling, 3-2, 3-8 
selecting text, 3-5 

Editor Commands 
Edit, 3-3, 3-11, 3-12 
File, 3-2, 3-3, 3-4, 3--6, 

3-10 

1200301:010 



Find, 3-15 
Font, 3-4, 3-17 
Format, 3-4, 3-]6 
Search, 3-4, 3-14 
Size, 3-4, 3-18 

ejecting disks, 2-34 
Empty Program, ]-3, 2-4, 

2-1],2-12,2-13, 
2-43, 2-45, 2-46, 
2-52,6-3,6-4,6-13 

Environment Record 
(EREC), 10-2, 10-19, 
10-22, 10-31 

Environmen t Vector 
(EVEC), 10-2, 10-15, 
10-19, 10-32 

Err'orhandl.CODE, 1-3 
Error Handling unit, 2-31, 

2-46, 2-52, 5-28 
interface, 2-47 

ErrToMessage, 2-49 
EventMgr, A-24 
executing programs, 2-25 
execution error, 10-25 
Executive, 1-2,2-9,2-25 
exit, 2-49, 2-50 
extend, 4-13 
external, 4-7, 4-25, 4-25, 

5-30 
External Code Pool 

Region, 9-5, 9-13 

Faulthandler process, 9-9, 
9-10,9-11,9-12, 
9-13 

faults, 9-1, 9-5, 10-24 
detection, 9-9 
heap, 5-23, 5-27, 9-9, 

9-10,9-12,9-13 
segment, 5-23, 5-27, 

9-9, 9-11, 10-24 

1200301:010 

Index 

stack, 5-23,5-27,9-9, 
9-12, 10-24 

FileMgr, A-25 
files 

accessing, 2-28 
data files, 2-31 
data fork, 2-2, 2-10, 

2-18,2-:34 
disk files, 2-32, 2-33 
icons, 2-31, 2-53 
limits on open files, 2-34 
namIng 

conventions, 2-28, 
2-29, 2-30, 2-37 

opening, 2-37 
open permissions, 2-32 
resource fork, 2-2, 2-11, 

2-18, 2-34, 2-44 
signature, 2-44, 2-47, 

2-51,2-52 
simultaneous opens, 2-32 
standard icons, 2-31 
temporary, 2-31 
text files, 2-31 
types, 2-31, 2-47, 2-51, 

5-3 
unique signatures, 2-53 

Finder, 2-17, 2-25, 2-45, 
2-51, 2-52, 2-53, 
2-54,5-7 

FIRST program, 1-5 
FlushEvents, 5-23 
FontMgr, A-29 
FrMacBool,5-13 
FrSmall, 5-13 

GetIndString, 5-10 
GetNextEvent, 2-34 
GetOSEvent, 2-34 
GetStackSlop, 2-51 
gotoxy, 4-4, 4-5 

I-3 



Index 

grafports, 2~32, 2~35 
Grow, 1~3, 5~8, 5~31 
Grow.R, 1~3, 5-31 
grow zone functions, 9~10 

halt, 2~24 
handle, 5~10 

dereference, 5--10, 5~27 
hardware requirements, 1~1 
heap, 10-2 
HeapEnd, 9-5, 9-10, 9-12, 

9-13 
heap expansion error, 9-12 
heap zones, 9-11 
HideCursor, 5-24 

icons, 2-17, 2-31, 2-37, 
2-51,2-53,6-7, 
6-11 

Imagewriter printer, 2-5 
tab expansion, 2-32 

implementation, 2-40, 
2-42 

InitApplZone, 5-22 
InitCursor, 5-24 
InitDialogs, 5-23 
InitFonts, 5-23 
InitGraf, 5--23 
InitWindows, 5--24 
input, 2-32, 4-6 
lns£de Macintosh, 2-28, 

2-29,2-52,5-1, 
5-7,5-8,5-9,5-10, 
5-20,5-25,5--27, 
6-1,6-5,6-6,9-10, 
9-11 

integer2, 4-3, 4-8, 4-10, 
4-15,4-16, 5-8, 
5-11 

integer, 4~10, 4--15, 4~15 

1-4 

integer2 
comparisons, 4-10 
constants, 4-9 
conversions, 4-13 
operations, 4-11 
routines, 4-12 
subrange types, 4-9 
usage, 4-8 
values, 4-8 

interface, 2-40, 2-42 
Internal Code Pool 

R.egion, 9-5 
In terpreter Program Counter 

(IPC), 10-22, 10-32 
interrupt button, 2-9 
interrupts, 4-6 
I/O errors, 2-7 
I/O operations, 2-32 

ioresult values, 2-33 
keyboard, 2-32 

IORESULT, 10-32 
ioresult, 2-33, 2-47, 4-6, 

4-39 
IorToMessage, 2-49 

keyboard 
special sequences, 2-34 

keyboard, 4-6 

Librarian, 1-3, 2-14, 2-19, 
2-25,2-27,2-37, 
2-42,2-43,7-1, 
9-5 

menu, 7-4 
library code files, 2-14, 

2-20, 2-34, 2-38, 
2-41, 2-42, 2-43 

Library Files list, 2-14, 
2-15,2-17,2-19, 
2-20,7-1,7-2 

1200301:010 



Lisa computer, 2-10 
locate, 4-3, 4-19, 5-8, 5-9, 

5-15,5-25 
long integer, 10-95 
LONGOPS unit, 10-98 

MacBool, 5-13 
MacCore, A-31 
MacData, A-32 
MacErrors, A-33 
Mac Interface, 1-3 
Macintosh 

debuggers, 9-3 
device names, 2-30 
File Manager, 2-28, 2-37 
grow zone 

functions, 9-10 
interrupt button, 2-9 
Memory Manager, 2-44, 

9-5,9-7,9-10, 
9-11,9-12 

Operating System, 2-15, 
2-28, 2-34, 2-35, 
4-3,4-17 

stack sniffer, 9-5 
Macintosh, 0-5, ]-4, 2-25, 

3-5 
Macintosh Interface 

Units, 5-1 
accessing globals, 5-27 
booleans,5-13 
differences, 5-20 
enumerated types, 5-17 
example program, 5-31 
intialization,5-23 
organization, 5-1 
packed data, 5-14, 5-18 
parameters, 5-7 
pointers, 5-8, 5-9, 5-11 
procedure parameter 

restrictions, 5-25 

1200301:010 

Index 

procedure 
parameters, 5-15 

use at compile time, 5-3 
use at runtime, 5-5 
variable 

parameters, 5-12 
Mac Library, 1-2,2-14, 

5-5 
MacPaint,2-34 
MacsBug, 2-10, 9-3 
MacWorks, 2-10, 9-3 
MacWrite, 2-2, 3-11, 3-17 
main task 

stack, 9-2, 9-5, 9-9, 
9-10 

mark,2-24 
Mark Stack Control Word 

(MSCW), 10-4 
Mark stack Pointer 

(MP), 10-22, 10-32 
master pointer blocks, 2~44 
maxint2, 4-9 
memlock, 9-7, 9-11 
Memory Collector, 9-10, 

9-11, 9-12,9-13 
Memory Manager, 5-20 

master pointers, 5-21 
restrictions, 5-21, 5-22 
strategy of use, 5-22 

MemoryMgr, A-35 
memswap, 9-7 
MenuMgr, A-38 
mod, 4-11 

new, 9-4 
NewHandle, 9-11 
Ne,vWindow, 5-24 

odd 4-7 4-12 4-15 --' , , 
offset, 4-3,4-18 

1-5 



Index 

ord, 4-3, 4-4, 4-7, 4-12, 
4-15,4-17 

OSType, "5-19 
OsTypes, A-41 
OsUtijities, A-44 
output, 2-32, 4-5 

Packages, A-47 
Pascal Data Asea, 2-19, 

2-21,4-17,5-21, 
5-25, 9-3, 9-5 

Pascal Folder, 2-11, 2-27 
Pascal heap, 2-19, 2-21, 

9-4,9-5,9-9,9-10, 
9-12 

Pascal Heap Block, 2-44, 
9-3,9-4,9-10, 
9-12,9-13 

Pascal Runtime, 1-2,2--11, 
2-19,2-43,7-2 

PBIOMgr, A-51 
p-code, 2-10, 9-4, 9-11, 

10-1 
p-System, 4-4 
Performance Monitor, 2-11, 

2-13,2-47, 2-50, 
8-1,8-25 

p-Machine, 1-2, 2-11, 
2-44, 2-45, 9-3, 
9-4, 9-9, 10-1 

pmachine, 4-3, 4-5, 4-20 
p-Machine Emulator 

(PME), 10-1 
PmStartStop, 2-50 
Point, 5-19 
pointer, 4-3, 4-18 
pred, 4-3, 4-12 
PrintDriver, A-57 
PrintMgr, A-54 
process, 2-50, 9-5, 9-9 
program, 2-42, 9-1, 9-3, 

9-4, 9--5 

1-5 

p-Systern, 4-1, 4-4 

QdTypes, A-58 
QuickDraw, 2-32, 2-35, 

A-50 
character drawing 

pen, 2-32, 2-33, 
2-36 

QUlCKSTART,2-20 

read, 2-32, 4-13 
readln, 2-32, 4-13 
R.EADYQ, 10-23, 10-32 
ReAllocHandle, 9-11 
reduce, 4-14 
reladr, 4-3, 4-18, 4-19, 

5-9 
release, 2-24, 9-4 
relocation list, 10-14 
required files, 2-11, 2-18, 

2-44 
locations, 2-12 

reset, 2-29, 2-32, 2-37 
ResMgr, A-57 
resources, 2-10, 2-12, 2-13, 

2-14,2-18, 2-43, 
5-1,5--4 

attribute byte, 5-5 
definition, 5-4 
identifiers, 5-5 
names, 5-5 

ResrvMem, 9-12 
rewrite, 2-29, 2-32, 2-37, 

2-51 
RMaker, 1-3, 2--10, 2-13, 

2-14,2-18,2-25, 
2-27,2-43,2-52, 
5-1 

comments, 5-2 
errors, 5-13 

1200301:010 



file name 
conventions, 5-2, 5-3 

generating Pascal 
compiler input, 5-13 

include statement, 5-4 
input file, 5-2 
output file, 5-2 
syntax, 5-6 
type statement, 5-4 

round,4-13 
routine dictionary, 10-11 
runtime errors, 2-9, 2-21, 

2-45 
fatal, 9-11, 9-12, 9-13 

Runtime Files, 2-11 
Runtime Options, 2-13, 

2-15 
default settings, 2-13 

Runtime Support 
Library, 2-11, 2-14, 
2-15,2-19,2-20, 
2-21, 2-31, 2-32, 
2-33, 2-35, 2-42, 
2-43, 2-44, 2-46, 
9-1, 9-3, 9-5, 9-6, 
9-7 

bootstrap, 9-3 
composition, 9-13 
icons, 2-11 
KERNEL unit, 9-4, 

9-9,9-10 
startup errors, 2-18, 

2-19 
Runtime Support 

Package, 9-3 
bootstrap, 9-9 

ScrapMgr, A-70 
screen window 

title, 2-12 
segment, 2-38, 2-40, 9-4, 

9-10, 9-11, 10-4, 

1200301:010 

Index 

10-9 
con trolling residency, 9-7 
handles to, 9-5 
host, 7-2 
intersegment calls, 9-5 
location, 9-5 
names, 9-5 
number of routines, 9-4 
principal, 9-4 
structure, 9-4 
subsidiary, 7-2, 9-4 

segmen t dictionary, 10-4 
Segment Information Block 

(SIB), 10-2, 10-18 
segment reference list, 10-15 
selecting text, 3-5 
selective uses 

declaration, 5-5 
semaphore, 10-21 
separate compilation, 2-41 
Serial, A-71 
serial devices, 2-7, 2-12, 

2-30,2-35 
.AIN, 2-13, 2-30, 2-33 
.AOUT, 2-13, 2-30, 

2-33 
.BIN, 2-30, 2-33 
.BOUT, 2-30, 2-33 
nonstandard, 2-30 
open permissions, 2-33 

SetApplBase, 5-22 
SetApplLimit, 5-22 
SetErrHandler, 2-47 
SetFileSignature, 2-51 
SetFileType, 2-51 
SetGrowZone, 5-22 
setlength, 4-3,4-14 
Set Options, 1-2, 1-4, 

2-10,2-13, 2-14, 
2-15,2-25, 2-27, 
2-52,7-1 

SetPmlnteraction, 2-50 

1-7 



Index 

SetPort, 5-24 
SetPtrSize, 9-12 
SetStackSlop, 2-51, 5-28 
shiftleft, 4-3, 4-15, 4-16 
shiftright, 4-3, 4-15, 4-16 
signal, 10-24 
sizeof, 4-3, 4-23 
SmallBool, 5-13 
Sound, A-73 
special devices, 2-30, 2-35 

backspace 
characters, 2-36 

backspace key, 2-32 
bells, 2-36 
carriage returns, 2-36 
.CONSOLE, 2-30, 2-32, 

2-35,2-36 
.DBGTERM, 2-12, 2-13, 

2-30, 2-32, 2-35, 
8-2 

line feeds, 2-36 
reading characters, 2-33 
special keystrokes, 2-34 
.SYSTERM, 2-30, 2-32, 

2-35 
tab expansion, 2-32 
tabs, 2-36 

~, 4-12 
stack, 10-2 
Stack Pointer (SP), 10-22, 

10-33 
stack slop, 2-37, 2-47, 

2-51, 5-28, 5-29, 
9-6 

adjustment, 9-7 
default setting, 5-29 
minimum setting, 5-29 

stack sniffer, 5-30 
Standard Pascal, 4-2, 4-8, 

4-9 
ISO standard, 4-2 

standard procedures, 2-51, 
10-87 

1-8 

standard resources, 2-10, 
2-11, 2-12, 2-13, 
2-18,2-43 

start, 2-50, 9-6 
Startup options, 2-12, 2-15, 

2-16 
default settings, 2-45 

substitution types, 5-8 
succ, 4-3,4-12 

tab expansion, 2-32, 2-36 
Task Information Block 

(TIB), 9-6, 10-21 
TBoxUtils, A-75 
TBTypes, A-77 
TElnit, 5-24 
TextEdit, A-79 
ToMacBool,5-13 
Top Of Stack (TOS), 10-34 
ToSmall, 5-13 
trunc,4-5,4-10,4-13 

UCSD Pascal, 2-11, 4-1 
absolute pointers, 4-18 
array indexing, 4-8 
assignment 

compatibility, 4-10 
bit manipulation, 4-3, 

4-7,4-12,4-15 
case label constants, 4-8 
case statement, 4-8 
comments, 4-36 
compiler, 2-2 
conditional 

compilation, 4-43 
conformant arrays, 4-2, 

4-30 
declaration ordering, 4-2 
enhancements, 4-2, 

4-14,4-23 

1200301:010 



extensions, 4-8, 4-9, 
4-13,4-14,4-15, 
4-17,4-20,4-25 

for statemen t, 4-8 
include files, 4-39 
in-line procedures, 4-3, 

4-25, 9-8 
interface conform an t 

arrays, 4-2, 4-3'1 
intrinsics, 2-28, 2-32, 

2-37, 4-3, 4-4, 
4-12,4-13,4-14, 
4-17,4-20,4-23, 
9-4,9-7,9-13 

language changes, 4-4 
limits on open files, 2-34 
long integers, 4-3, 4-5, 

4-9,4-10,4-13 
Macintosh 1/0,2-32 
offsets, 4-17 
operator 

precedence, 4-11 
pointer comparisons, 4-4 
pointer 

manipulation, 4-3, 
4-17 

pointers, 4-17, 9-3 
predeclared 

identifiers, 4-5 
procedural 

parameters, 4-2 
processes, 9-5 
selective uses 

declaration, 4-2, 
4-26 

standard functions, 4-3, 
4-7,4-10,4-12, 
4-13,4-15 

standard 
procedures, 4-13 

type compatibility, 4-9, 
4-10 

1200301:010 

Index 

type-precedence, 4-13 
unit I/O, 4-4, 4-5 
uses declaration, 2-14, 

4-42 
UCSD PascalI, 1-2,3-18 
UCSD Pascal 2, 1-2 
The UCSD Pascal 

Handbook, 1-8, 2-2, 
2-28, 2-H, 2-42, 
2-43,4-1,4-4, 9-7 

unit, 2-41, 2-42, 9-4 
unitbusy,4-4 
unitclear, 4-4 
unitread,4-4 
units, 2-38 
unitstatus,4-4 
unitwait, 4-4 
unitwrite, 4-4 
uses, 5-3 

vardispose, 9-4 
varnew, 9-4 
version number string, 2-12, 

2-44 
volume names, 2-29 

by drive number, 2-29 

wait, 10-24 
WindowMgr, A-81 
write, 2-32 
writeln, 2-32 

1-9 



J-10 1200301:010 



· USUS: UCSDp-System User's Society 

USUS: UCSD p-System User's Society 

USUS is the society devoted to users of the p-System and UCSD 
Pascal. Its goal is to promote and influence the development of 
the p-System and UCSD Pascal, as well as to help users learn 
more about their systems. 

USUS provides both formal and informal opportunities for 
members to communicate with and learn from each other. Its 
semiannual national meetings and quarterly newsletters feature 
technical presentations and discussions as well as news about the 
p-System and its derivatives. Electronic mail bulletin boards 
put you in touch with a member network that can provide 
up-to-the-minute information, and special interest groups zero 
in on specific problem areas. USUS also supports a Software 
Exchange Library from which members can obtain software 
source code for a nominal reproduction charge. 

USUS stands for the UCSD p-System User's Society and IS 

pronounced "use us." It is nonprofit and vendor independent. 

As a user of UCSD Pascal, USUS is for you. USUS links you 
with a community of users who share your interests. The 
following benefits are available to USUS members: 

SOFTWARE EXCHANGE LIBRlillY 
Tools, games, aides 
Pascal SOU Tee 
Nominally priced 

INFORMATIVE NATIONAL MEETINGS 
Tu torials 
Technical presentations 
Special interest group meetings 
Low-cost software library access 
Hardware/software demonstrations 
Query IImajor vendors" 



USUS:UCSD p-System User's Society 

HELP VIA ELECTRONIC COMMUNICATlONS 
CompuServejMUSUS SIG 

Bulletin board 
Data bases 
Software library 

Telemail 

USEFUL QUARTERLY NEWSLETTER 
Technical articles and updates 
SIG reports 
Software vendor directory 
Library catalog listings 
Organizational news 

ACTIVIST SPECIAL INTEREST GROUPS 

TECHNICAL .ARCHI"Y'E 



USUS MEMBERSHIP APPLICATION 

I am applying for: 

B $25 individual membership (North } .. merica residents) 
$40 individual membership (For those residing 

outside North A.rnerica; includes $15 airmail 
service surcharge.) o $500 organizational membership 

Name -----------------------------------------------
Address ____________________________________________ ___ 

City ____________ State __ Zi p ____ Coun try __________ _ 

Phone ( ___________ TWX/Telex/EMail ____________ _ 

Title/ Affiliation _________________________ _ 

Option: 0 Do not print my phone number in USUS rosters. 
Option: 0 Print only my name and country in USUS rosters. 
Option: 0 Do not release my name on mailing lists. 

Computer System: 

~ 
Z-80 
6502/ Apple 
9900 
68000 

o 8080 o 6800 

B 8086/8088 
MicroEngine 

B PDP /LSI-11 
6809 

o Z8000 o IBM PC o Macintosh DOther ______________ _ 



USUS MEMBERSHIP APPLICATION 

I am interested in the following Committees/Special Interest 
Groups (SIGs): 

Advanced System Editor SIG 
Sage SIG 
IBM Display Writer SIC 
Application Developer's SIG 
Technical Issues Committee 
Mettings Committee 
DEC SIG 
UCSD Pascal Compatability SIG 
Pu blications Committee 

Graphics SIG 
Apple SIG 
Software Exchange Library 
IBM PC SIG 
Communications SIC 
Texas Instruments SIC 
Modula-2 SIC 
File Access SIG 
Word Processing SIG 

I am. willing to volunteer some time and/or talent in the 
following area( s): 

Mail completed application with check or money order payable to 
USUS and drawn on a U.S. bank or U.S. office, to 
Secretary,USUS, P.O. Box 1148, La Jolla, CA 92038, USA. 


