

Software Command Reference

IBM Personal Computer
XENIXTM Software
Development System

Programming Family

--....- ------ - -------- -. ---- - - -------------, -
Personal
Computer
Software

First Edition (December 1984)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references ()r information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this pUblication and
for technical information about IBM Personal Computer products should be made to your
authorized IBM Personal Computer dealer or your IBM Marketing Representative.

The following paragraph applies only to the United States and Puerto Rico: A Reader's
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C,
Boca Raton, Florida 33432. IBM may use or distribute any of the information you supply
in any way it believes appropriate with()ut incurring any obligations whatever.

© Copyright International Business Machines Corporation 1984
© Copyright Microsoft Corporation 1983, 1984

IBM Personal Computer XENIX
Library Overview

The XENIXl System has three available products. They are the:

Operating System

Software Development System

Text Formatting System

The following pages outline the XENIX Software Development
System library.

1 XENIX is a trademark of Microsoft Corporation.

iii

XENIX Software Development System

iv

Programmer's
Guide To
Library Functions

XENIX
C Compiler
Reference
Manual

•

•

•

•

,;;" L]:,~'E";~
rH'j~t .•.•

ellts .• ·oft.l1e C
litnming language

Expressions ,and Assignments

, De'scr1ption' of functions and
, ;':statemerits

Software Development
commands (CP)

Command definition
and syntax

System calls and
subroutines (S)

System call and library
function cross reference

A reference to Software Development System commands.
Describes system services in the Operating System kernel.

v

vi

Abou t This Book

This book describes the commands used in the IBM Personal
Computer XENIX Software Development system, and the system
services available in the operating system kernel. The commands
used in the XENIX Software Development system are labled with
the letters (CP) and listed in Section 1. The letter C stands for
command and the letter P stands for programming. The system
services, which include routines and system calls, are labeled with
the letter (S). These commands are listed in Section 2.
Appendix A is a system call and library function cross reference.
Listed in this appendix are the functions found in various
libraries, and the functions that directly invoke system primitives.

In references to other books, (C) stands for Command, (M)
stands for Miscellaneous, and (F) stands for file format sections.
These command are in the IBM Personal Computer XENIX
Command Reference. References to (CT) stand for commands
that come with the optional IBM Personal Computer XENIX
Text Processing System. These commands are in Appendix A of
the IBM Personal Computer XENIX Text Formatting Guide.

vii

Related XENIX Publications

• IBM Personal Computer XENIX Software Development Guide

• IBM Personal Computer XENIX Programmer's Guide to
Library Functions

• IBM Personal Computer XENIX C Compiler Reference
Manual

• IBM Personal Computer XENIX Assembler Reference

• IBM Personal Computer XENIX Installation Guide

• IBM Personal Computer XENIX Visual Shell

• IBM Personal Computer XENIX System Administration

• IBM Personal Computer XENIX Basic Operations Guide

• IBM Personal Computer XENIX Command Reference

viii

Contents

Section 1. Software Development Commands 1-1
Introduction to CP 1-1

ADB(CP) 1-3
ADMIN(CP) 1-14
AR(CP) 1-21
AS(CP) 1-24
CB(CP) 1-27
CC(CP) 1-28
CDC(CP) 1-36
COMB(CP) 1-39
CONFIG(CP) 1-42
CPP(CP) 1-48
CREF(CP) 1-53
CSH(CP) 1-55
CTAGS(CP) 1-82
DELTA(CP) 1-84
DOSLD(CP) 1-88
GET(CP) 1-91
GETS(CP) 1-99
HDR(CP) 1-100
HELP(CP) 1-102
LD(CP) 1-104
LEX(CP) 1-107
LINT(CP) 1-111
LORDER(CP) 1-115
M4(CP) 1-117
MAKE(CP) 1-122
MKSTR(CP) 1-131
NM(CP) 1-134
PROF(CP) 1-136
PRS(CP) 1-138
RANLIB(CP) 1-144
RATFOR(CP) 1-145
REGCMP(CP) 1-147
RMDEL(CP) 1-149
SACT(CP) 1-151
SCCSDIFF(CP) 1-153

ix

SIZE(CP) 1-154
SPLINE(CP) 1-155
STACKUSE(CP) 1-157
STRINGS(CP) 1-159
STRIP(CP) 1-160
TIME(CP) 1-162
TSORT(CP) 1-163
UNGET(CP) 1-164
VAL(CP) 1-166
XREF(CP) 1-169
XSTR(CP) 1-170
YACC(CP) 1-173

Section 2. System Calls and Subroutines 2-1
Introduction to (S) 2-1

A64L(S) 2-10
ABORT(S) 2-12
ABS(S) 2-13
ACCESS(S) 2-14
ACCT(S) 2-16
ALARM(S) 2-18
ASSERT(S) 2-19
ATOF(S) 2-20
BESSEL(S) 2-22
BSEARCH(S) 2-23
CHDIR(S) 2-24
CHMOD(S) 2-26
CHOWN(S) 2-28
CHROOT(S) 2-30
CHSIZE(S) 2-32
CLOSE(S) 2-34
CONV(S) 2-35
CREAT(S) 2-37
CREATSEM(S) 2-40
CTERMID(S) 2-42
CTIME(S) 2-43
CTYPE(S) 2-46
CURSES(S) 2-48
CUSERID(S) 2-57
DBM(S) 2-59
DEFOPEN(S) 2-62
DUP(S) 2-64
ECVT(S) 2-66
END(S) 2-68

x

EXEC(S) 2-69
EXIT(S) 2-74
EXP(S) 2-76
FCLOSE(S) 2-78
FCNTL(S) 2-79
FERROR(S) 2-82
FLOOR(S) 2-84
FOPEN(S) 2-85
FORK(S) 2-87
FREAD(S) 2-89
FREXP(S) 2-90
FSEEK(S) 2-91
GAMMA(S) 2-93
GETC(S) 2-94
GETCWD(S) 2-96
GETENV(S) 2-97
GETGRENT(S) 2-98
GETLOGIN(S) 2-100
GETOPT(S) 2-101
GETPASS(S) 2-104
GETPID(S) 2-105
GETPW(S) 2-106
GETPWENT(S) 2-107
GETS(S) 2-109
GETUID(S) 2-111
HYPOT(S) 2-112
IOCTL(S) 2-113
KILL(S) 2-114
L3TOL(S) 2-116
LINK(S) 2-117
LOCK(S) 2-119
LOCKF(S) 2-120
LOCKING(S) 2-122
LOGNAME(S) 2-126
LSEARCH(S) 2-127
LSEEK(S) 2-129
MALLOC(S) 2-131
MKNOD(S) 2-133
MKTEMP(S) 2-136
MONITOR(S) 2-137
MOUNT(S) 2-139
NAP(S) 2-141
NICE(S) 2-143
NLIST(S) 2-144

xi

OPEN(S) 2-145
OPENSEM(S) 2-149
PAUSE(S) 2-151
PERROR(S) 2-152
PIPE(S) 2-153
PLOCK(S) 2-154
POPEN (S) 2-156
PRINTF(S) 2-158
PROFIL(S) 2-163
PTRACE(S) 2-164
PUTC(S) 2-168
PUTPWENT(S) 2-170
PUTS(S) 2-171
QSORT(S) 2-173
RAND(S) 2-174
RDCHK(S) 2-175
READ(S) 2-177
REGEX(S) 2-179
REGEXP(S) 2-182
SBRK(S) 2-187
SCANF(S) 2-189
SDENTER(S) 2-193
SDGET(S) 2-195
SDGETV(S) 2-197
SETBUF(S) 2-199
SETJMP(S) 2-200
SETPGRP(S) 2-201
SETUID(S) 2-202
SHUTDN(S) 2-204
SIGNAL(S) 2-206
SIGSEM(S) 2-211
SINH(S) 2-213
SLEEP(S) 2-214
SSIGNAL(S) 2-215
STAT(S) 2-217
STDIO(S) 2-219
STIME(S) 2-221
STRING(S) 2-222
SW AB(S) 2-225
SYNC(S) 2-226
SYSTEM(S) 2-227
TERMCAP(S) 2-228
TIME(S) 2-231
TIMES(S) 2-233

xii

TMPFILE(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 • 0 2-235
TMPNAM(S) o. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 2-236
TRIG(S) 0 • 0 0 0 0 0 0 0 0 2-238
TTYNAME(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 2-240
ULIMIT(S) 0000000000000000000.00000000 2-241
UMASK(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 2-243
UMOUNT(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 2-244
UNAME(S) 000000000000000000.00000000 2-246
UNGETC(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 2-248
UNLINK(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 2-249
USTAT(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00. 0 0 0 0 0 0 • 0 2-251
UTIME(S) 0000000000000000000.00000000 2-253
W AIT(S) 0 • 0 0 0 0 0 0 0 0 2-255
W AITSEM(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 2-257
WRITE(S) 000000000000000 0 0 0 0 • 0 0 0 0 0 0 0 0 2-259

Appendix A. System Call and Library Function Cross
Reference•.......... A-I

System Calls 0 • 0 0 0 0 0 0 0 0 0 0 A-I
Extended System Calls 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 A-I
Library Routines 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 A-3

The Standard C Library -libc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-4
The Standard Math Library -libm 0 0 0 0 0 0 0 0 0 0 0 0 A-5
The Default Lex Library - libl 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 A-5
The Default Yacc Library - liby 0 0 0 • 0 0 0 0 0 0 0 0 0 0 A-5
The Terminal Capabilities Library - libtermcap 0 0 A-5
The Screen Manipulation Library -libcurses 0 0 0 0 A-6
The Data Base Management Library - libdbm 0 0 0 A-6

Index•....... Index-l

xiii

xiv

Section 1. Software Development
Commands

Introduction to CP

This section describes the use of individual CP commands
available in the Software Development System. Each command is
labeled with the letters (CP) to distinguish it from commands
available in the IBM Personal Computer XENIX Command
Reference and IBM Personal Computer XENIX Text Formatting
Guide.

The following example command outlines the format of this
section. The EXAMPLE (CP) command is not a real XENIX
command; it is only a sample of how the commands appear in this
section.

EXAMPLE(CP)

Name

example - this is just an example of how this book is organized.

Syntax

Unless otherwise noted, commands described in this section
accept options and other arguments according to the following
syntax:

name [options] [cmdarg]

where:

name The filename or pathname of an executable file

1-1

options A single letter representing a command option. By
convention, most options are preceded with a dash.
Option letters can sometimes be grouped together as in
-abed or alternatively they are specified individually as
in -a -b -e -d. The method of specifying options
depends on the syntax of the individual command. In
the latter method of specifying options, arguments can
be given to the options. For example, the -f option for
many commands often takes a following filename
argument.

emdarg A pathname or other command argument not beginning
with a dash. It may also be a dash alone by itself
indicating the standard input.

See Also

getopt(C), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one
supplied by the system giving the cause for termination, and (in
the case of "normal" termination) one supplied by the program
(see wait(S) and exit(S)). The former byte is 0 for normal
termination; the latter is customarily 0 for successful execution
and nonzero to indicate troubles such as erroneous parameters or
bad or inaccessible data. It is called variously "exit code," "exit
status," or "return code," and is described only where special
conventions are involved.

Comments

Not all commands require options and arguments.

1-2

ADB(CP)

Name

adb - Invokes a general-purpose debugging program

Syntax

'adb~~)f][:pprompt] [oqjfil [coref~l~]]

Description

Adb may be used to examine files and to provide a controlled
environment for the execution of IBM Personal Computer
XENIX programs.

Obifil is normally an executable program file, preferably
containing a symbol table; if there is no symbol table, adb cannot
be used although the file can still be examined. The default for
obifil is a.out. Corefile is assumed to be a core image file produced
after executing obifil; the default for corefile is core.

Requests to adb are read from the standard input and responses
are written to the standard output. If the -w option is present,
both obifil and corefile are created if necessary and opened for
reading and writing so that files can be modified using adb. The
Quit(Ctrl- \) and Interrupt(Del) keys cause adb to return to the
next command. The -p option defines the prompt string. It may
be any combination of characters. The default is an asterisk (*).

In general, requests to adb are of the form:

[address][, count] [command][;]

If address is present, dot is set to address. Initially dot is set to o.
Address is a special expression having the form:

[segment] offset

ADB(CP) 1-3

where segment gives the address of a specific text or data segment,
and offset gives an offset from the beginning of that segment. If
segment is not given, the last segment value given in a command is
used.

The interpretation of an address depends on the context it is used
in. If a subprocess is being debugged, addresses are interpreted in
the usual way in the address space of the subprocess. For further
details of address mapping see "Addresses." For most commands,
count specifies how many times the command will be executed.
The default count is 1.

Expressions

+

A

"

integer

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

An octal number if integer begins with a 0; a
hexadecimal number if preceded by # or Ox ; otherwise a
decimal number.

integer . fraction
A 32-bit floating point number.

'cccc' The ASCII value of up to 4 characters. \ may be used
to escape a '.

< name The value of name, which is either a variable name or a
register name. Adb maintains a number of variables (see
"Variables") named by single letters or digits. If name
is a register name, the value of the register is obtained
from the system header in corefile. The register names
are ax bx cx dx di si bp fI ip cs ds ss es sp . The name fI
refers to the status flags.

symbol A symbol is a sequence of uppercase or lowercase letters,
underscores or digits, not starting with a digit. The

1-4 ADB(CP)

value of the symbol is taken from the symbol table in
objfil. An initial or '" will be prepended (in front of)
to symbol if needed.

symbol
- In C, the true name of an external symbol begins with

. It may be necessary to use this name to distinguish
it from internal or hidden variables of a program.

(exp) The value of the expression exp.

Monadic Operators

*exp The contents of the location addressed by expo

- exp Integer negation.

"'exp Bitwise complement.

Dyadic Operators

Dyadic operators are left-associative and are less binding than
monadic operators.

el + e2 Integer addition.

el - e2 Integer subtraction.

el*e2 Integer multiplication.

el % e2 Integer division.

el &e2 Bitwise conjunction.

el I e2 Bitwise disjunction.

el /\ e2 Remainder after division of e 1 by e2.

el #e2 E1 rounded up to the next multiple of e2.

ADB(CP) 1-5

Commands

Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands?
and / may be followed by *; see "Addresses" for further details.)

? f Locations starting at address in objfil are printed according
to the format f.

/ f Locations starting at address in corefile are printed
according to the format f.

= f The value of address itself is printed in the styles indicated
by the format f (For i format '?' is printed for the parts of
the instruction that refer to subsequent words.)

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While
stepping through a format, dot is incremented temporarily by the
amount given for each format letter. If no format is given, then
the last format is used. The format letters available are:

o 2 Prints 2 bytes in octal. All octal numbers output by
adb are preceded by o.

o 4 Prints 4 bytes in octal.
q 2 Prints in signed octal.
Q 4 Prints long signed octal.
d 2 Prints in decimal.
D 4 Prints long decimal.
x 2 Prints 2 bytes in hexadecimal.

1-6 ADB(CP)

X 4 Prints 4 bytes in hexadecimal.
u 2 Prints as an unsigned decimal number.
U 4 Prints long unsigned decimal.
f 4 Prints the 32-bit value as a floating point number.
F 8 Prints double floating point.
b 1 Prints the addressed byte in octal.
c 1 Prints the addressed character.
C 1 Prints the addressed character using the following

escape convention. Character values 000 to 040 are
printed as an at sign (@) followed by the
corresponding character in the octal range 0100 to
0140. The at sign character itself is printed as @@.

s n Prints the addressed characters until a zero character
is reached.

S n Prints a string using the at sign (@) escape
convention. Here n is the length of the string
including its zero terminator.

Y 4 Prints four bytes in date format (see ctime(S)).
i n Prints as machine instructions. n is the number of

bytes occupied by the instruction. This style of
printing causes variables 1 and 2 to be set to the offset
parts of the source and destination respectively.

a 0 Prints the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type
as indicated below.

/ local or global data symbol.
? local or global text symbol.
= local or global absolute symbol.

A 0 Prints the value of dot in absolute form.
p 2 Prints the addressed value in symbolic form using the

same rules for symbol lookup as a.
to When preceded by an integer, tabs to the next

appropriate tab stop. For example, 8t moves to the
next 8-space tab stop.

ADB(CP) 1-7

rO
nO

Prints a space.
Prints a newline.

" ••• " 0
A

Prints the enclosed string.
Decrements dot by the current increment. Nothing is
printed.

+ Increments dot by 1. Nothing is printed.
Decrements dot by 1. Nothing is printed.

newline
If the previous command temporarily incremented dot, makes
the increment permanent. Repeat the previous command
with a count of 1.

[? I)I value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used, the match is
for 4 bytes at a time instead of 2. If no match is found, dot is
unchanged; otherwise dot is set to the matched location. If
mask is omitted, -1 is used.

[?I 1w value ...
Writes the 2-byte value into the addressed location. If the
command is W, writes 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[?/1m segnum fpos size
Sets new values for the given segment's file position and size.
If size is not given, only the file position is changed. The
segnum must be the segment number of a segment already in
the memory map (see "Addresses"). If? is given, a text
segment is affected; if I, a data segment is affected.

[?/1M segnum fpos size
Creates a new segment in the memory map. The segment is
given file position fpos and physical size size. The segnum
must not already exist in the memory map. If? is given, a
text segment is created; if I, a data segment is created.

> name
Dot is assigned to the variable or register named.

1-8 ADB(CP)

A shell is called to read the rest of the line following '!'.

$ modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.

>f Send output to the file f, which is created if it does not
exist.

r Print the general registers and the instruction addressed by
ip. Dot is set to ip.

f Print the floating registers in single or double length.

b Print all breakpoints and their associated counts and
commands.

c C stack backtrace. If address is given, it is taken as the
address of the current frame (instead of bp). If C is used,
the names and (16 bit) values of all automatic and static
variables are printed for each active function. If count is
given, only the first count frames are printed.

e The names and values of external variables are printed.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o Sets input and output default format to octal.

d Sets input and output default format to decimal.

x Sets input and output default format to hexadecimal.

q Exit from adb.

v Print all nonzero variables in octal.

m Print the address map.

ADB(CP) 1-9

:modifier

Manage a subprocess. Available modifiers are:

br c Set breakpoint at address. The breakpoint is executed count
-1 times before causing a stop. Each time the breakpoint is
encountered, the command c is executed. If this command
sets dot to zero, the breakpoint causes a stop.

dl Delete breakpoint at address.

r [arguments]
Run objfil as a subprocess. If address is given explicitly,
the program is entered at this point; otherwise, the
program is entered at its standard entry point. Count
specifies how many breakpoints are to be ignored before
stopping. Arguments to the subprocess may be supplied on
the same line as the command. An argument starting with
< or > causes the standard input or output to be
established for the command. All signals are turned on
upon entry to the subprocess.

R [arguments]
Same as the r command except that arguments are passed
through a shell before being passed to to the program.
This means shell metacharacters can be used in filenames.

co s The subprocess is continued and signal s is passed to it, see
signal(S). If address is given, the subprocess is continued at
this address. If no signal is specified, the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

s s As for co except that the subprocess is single stepped count
times. If there is no current subprocess, objfil is run as a
subprocess as for r. In this case, no signal can be sent; the
remainder of the line is treated as arguments to the
subprocess.

k The current subprocess, if any, is terminated.

1-10 ADB(CP)

Variables

Adb provides a number of variables. Named variables are set
initially by adb but are not used subsequently. Numbered
variables are reserved for communication as follows:

o The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

On entry, the following are set from the system header in the
corefile. If corefile does not appear to be a core file, these values
are set from obJfil:

b The base address of the data segment.
d The data segment size.
e The entry point.
m The execution type.
D The number of segments.
s The stack segment size.
t The text segment size.

Addresses

Addresses in adb refer to either a location in a file or in memory.
When there is no current process in memory, adb addresses are
computed as file locations, and requested text and data are read
from the obJfil and corefile files. When there is a process, such as
after a :r command, addresses are computed as memory locations.

All text and data segments in a program have associated memory
map entries. Each entry has a unique segment number. In
addition, each entry has the file position of that segment's first
byte, and the physical size of the segment in the file. When a
process is running, a segment's entry has a virtual size that defines
the size of the segment in memory at the current time. This size
can change during execution.

When an address is given and no process is running, the file
location corresponding to the address is calculated as:

ADB(CP) 1-11

effective-file-address = file-position + offset

If a process is running, the memory location is simply the offset in
the given segment. These addresses are valid if and only if:

° < = offset < = size

where size is physical size for file locations and virtual size for
memory locations. Otherwise, the requested address is illegal.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expected, then, for
that file, file position is set to 0, and size is set to the maximum file
size. In this way, the whole file can be examined with no address
translation.

So that adb may be used on large files, all appropriate values are
kept as signed 32-bit integers.

Files

/dev/mem
/dev/swap
a.out
core

See Also

ptrace(S), a.out(F), core(F)

Diagnostics

The message "adb" appears when there is no current command or
format.

Comments about inaccessible files, syntax errors, abnormal
termination of commands, etc.

Exit status is 0, unless last command failed or returned nonzero
status.

1-12 ADB(CP)

Comments

A breakpoint set at the entry point is not effective on initial entry
to the program.

System calls cannot be single-stepped.

Local variables whose names are the same as an external variable
may foul up the accessing of the external.

ADB(CP) 1-13

ADMIN(CP)
Name

admin - Creates and administers sees files.

Syntax

Description

Admin is used to create new sees files and to change parameters
of existing ones. Arguments to admin may appear in any order.
They consist of options, which begin with -, and named files
(note that sees filenames must begin with the characters s.). If
a named file doesn't exist, it is created, and its parameters are
initialized according to the specified options. Parameters not
initialized by an option are assigned a default value. If a named
file does exist, parameters corresponding to specified options are
changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonSeeS
files (last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If the dash - is given, the
standard input is read; each line of the standard input is taken to
be the name of an sees file to be processed. Again, nonSeeS
files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed because the effects of the arguments
apply independently to each named file.

-n

-i[name]

This option indicates that a new sees file is to be
created.

The name of a file from which the text for a new
sees file is to be taken. The text constitutes the

1-14 ADMIN(CP)

-rrel

-t[name]

-fflag

first delta of the file. If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is
encountered. If this option is omitted, the sees file
is created empty. Only one sees file may be
created by an admin command on which the i option
is supplied. U sing a single admio to create two or
more sees files requires that they be created empty
(no -i option). Note that the -i option implies the -0

option.

The reI (release) into which the initial delta is
inserted. This option may be used only if the -i
option is also used. If the -r option is not used, the
initial delta is inserted into release 1. The level of
the initial delta is always 1 (by default initial deltas
are named 1.1).

The name of a file from which descriptive text for
the sees file is to be taken. If the -t option is used
and admio is creating a new sees file (the -0 and/or
-i options also used), the descriptive text filename
must also be supplied. In the case of existing sees
files: a -t option without a filename causes removal
of descriptive text (if any) currently in the sees file,
and a -t option with a filename causes text (if any) in
the named file to replace the descriptive text (if any)
currently in the sees file.

This option specifies a flag, and possibly a value for
the flag, to be placed in the sees file. Several f
options may be supplied on a single admin command
line. The allowable flags and their values are:

b Allows use of the -b option on a get(ep)
command to create branch deltas.

cceil The highest release (that is, "ceiling"), a
number less than or equal to 9999, which
may be retrieved by a get(ep) command
for editing. The default value for an
unspecified c flag is 9999.

ADMIN(CP) 1-15

ffloor The lowest release (that is, "floor"), a
number greater than 0 but less than 9999,
which may be retrieved by a get(CP)
command for editing. The default value for
an unspecified f flag is 1.

dSID The default delta number (SID) to be used
by a get(CP) command.

Causes the "No id keywords (ge6)"
message issued by get(CP) or delta(CP) to
be treated as an irrecoverable error. In the
absence of this flag, the message is only a
warning. The message is issued if no SCCS
identification keywords (see get(CP» are
found in the text retrieved or stored in the
SCCS file.

j Allows concurrent get(CP) commands for
editing on the same SID of an SCCS file.
This allows multiple concurrent updates to
the same version of the SCCS file.

I list A list of releases to which deltas can no
longer be made (get -e against one of these
"locked" releases fails). The list has the
following syntax:

<list> ::= <range> I <list>, <range>
<range>::= RELEASE NUMBER I a

The character a in the list is equivalent to
specifying all releases for the named SCCS
file.

n Causes delta (CP) to create a "null" delta in
each of those releases (if any) being
skipped when a delta is made in a new
release (for example, in making delta 5.1
after delta 2.7, releases 3 and 4 are
skipped). These null deltas serve as
"anchor points" so that branch deltas may
later be created from them. The absence of
this flag causes skipped releases to be

1-16 ADMIN(CP)

- dflag

-a login

nonexistent in the SCCS file, preventing
branch deltas from being created from them
in the future.

qtext User-definable text substituted for all
occurrences of the %Q% keyword in
SCCS file text retrieved by get(CP).

mmod Module name of the SCCS file substituted
for all occurrences of the 0/0M91o keyword
in SCCS file text retrieved by get(CP). If
the m flag is not specified, the value
assigned is the name of the SCCS file with
the leading s. removed.

ttype Type of module in the SCCS file substituted
for all occurrences of % Y% keyword in
SCCS file text retrieved by get(CP).

v [pgm] Causes delta(CP) to prompt for
modification request (MR) numbers as the
reason for creating a delta. The optional
value specifies the name of an MR number
validity checking program (see delta(CP».
(If this flag is set when creating an SCCS
file, the m option must also be used even if
its value is null).

Causes removal (deletion) of the specified flag from
an SCCS file. The - d option may be specified only
when processing existing SCCS files. Several-d
options may be supplied on a single admin command.
See the -f option for allowable flag names.

Dist A list of releases to be "unlocked". See the
-f option for a description of the I flag and
the syntax of a list.

A login name, or numerical XENIX group ID, to be
added to the list of users who may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a options may be used on a single admin

ADMIN(CP) 1-17

command line. As many logins, or numerical group
IDs, as desired may be on the list simultaneously. If
the list of users is empty, anyone may add deltas.

-elogin A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admio command line.

-m[mrlistl The list of modification requests (SeeS) numbers is
inserted into the sees file as the reason for creating
the initial delta in a manner identical to delta(ep).
The v flag must be set and the sees numbers are
validated if the v flag has a value (the name of an
sees number validation program). Diagnostics will
occur if the v flag is not set or sees validation fails.

-y[commentl

-h

-z

The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical to
that of delta(ep). Omission of the -y option results
in a default comment line being inserted in the form:

YY /MM/DD HH:MM:SS by login

The -y option is valid only if the -i and/or -0 options
are specified (that is, a new sees file is being
created).

Causes admin to check the structure of the sees file
(see sccsfile (F)), and to compare a newly computed
checksum (the sum of all the characters in the sees
file except those in the first line) with the checksum
that is stored in the first line of the sees file. Error
diagnostics are produced.

This option inhibits writing on the file, nullifying the
effect of any other options supplied, and is therefore
only meaningful when processing existing files.

The sees file checksum is recomputed and stored in
the first line of the sees file (see -h, above).

1-18 ADMIN(CP)

Files

Note that use of this option on a truly corrupted file
may prevent future detection of the corruption.

The last component of all sees filenames must be of the form
s.file-name. New sees files are created read-only (444 modified
by umask) (see chmod(e)). Write permission in the pertinent
directory is required to create a file. All writing done by admin is
to a temporary x-file, called x.file-name, (see get(ep)), created
with read-only permission if the admin command is creating a new
sees file, or with the same mode as the sees file if it exists.
After successful execution of admin the sees file is removed (if it
exists), and the x-file is renamed with the name of the sees file.
This ensures that changes are made to the sees file only if no
errors occurred.

It is recommended that directories containing sees files be mode
755 and that sees files themselves be read-only. The mode of
the directories allows only the owner to modify sees files
contained in the directories. The mode of the sees files prevents
any modification except by sees commands.

If it should be necessary to patch an sees file for any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor.

Warning: The edited file should always be processed by an
admin -h to check for corruption followed by an admin -z to
generate a proper checksum. Another admin -h is
recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called
z.file-name), which is used to prevent simultaneous updates
to the sees file by different users. See get(ep) for further
information.

ADMIN(CP) 1-19 .

See Also

delta(CP), ed(C), get(CP), help(CP), prs(CP), what(C),
sccsfile(F)

Diagnostics

Use help(CP) for explanations.

1-20 ADMIN(CP)

AR(CP)

Name

ar - Maintains archives and libraries.

Syntax
". ',' .'

.~3i,;; ke]]pq.sit~melafll~nltJnii"~:..
> ":":.: :.~~:~ "~',~ ~"~'./;:::'-'::.' ::;:,~;,t,: <:;; ;C':: ::~: \:': ;<;::;; ::~:,{:;):/ : .. ~:~:;.~~: ~

Description

Ar maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the
link editor though it can be used for any similar purpose.

Key is one character from the set drqtpmx, optionally
concatenated with one or more of vuaibcln. The posname is the
name of a constituent file, and is required when certain keys are
used. Afile is the archive file. The names are constituent files in
the archive file. The meanings of the key characters are:

d Deletes the named files from the archive file. /

r Replaces the named files in the archive file. If the optional
character u is used with r, only those files with modified dates
later than the archive files are replaced. If an optional
positioning character from the set abi is used, the posname
argument must be present and specifies that new files are to
be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

q Quickly appends the named files to the end of the archive
file. Optional positioning characters are invalid. The
command does not check whether the added members are
already in the archive. Useful only to avoid quadratic
behavior when creating a large archive piece by piece.

t Prints a table of contents of the archive file. If no names are
given, all files in the archive are tabled. If names are given,
only those files are tabled.

AR(CP) 1-21

p Prints the named files in the archive.

m Moves the named files to the end of the archive. If a
positioning character is present, the posname argument must
be present and, as in r, specifies where the files are to be
moved.

x Extracts the named files. If no names are given, all files in
the archive are extracted. Unless the optional character n is
used with x, an extracted file's modification date will be set
to the date stored in that file's archive header. In neither
case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file
description of the making of a new archive file from the old
archive and the constituent files. When used with t, it gives a
long listing of all information about the files. When used
with x, it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The
create option suppresses the normal message that is produced
when afile is created.

Local. Normally ar places its temporary files in the directory
/tmp. This option causes them to be placed in the local
directory.

n New. When used with the key character x it sets the
extracted file's modification date to the current date.

When ar creates an archive, it always creates the header in the
format of the local system (see ar(F».

1-22 AR(CP)

Files

/tmp/v* Temporary files

See Also

Id(CP), lorder(CP), ar(F)

Comments

If the same file is mentioned twice in an argument list, it may be
put in the archive twice.

AR(CP) 1-23

AS(CP)

Name

as - XENIX 8086/186/286 Assembler.

Syntax

Description

As assembles 8086/186/286 assembly language source files and
produces linkable object modules. The command accepts one or
more source-files, and assembles each file separately. The source
file names must have the .s extension. The resulting file
containing the object module is given the same base name as the
source, with the .0 extension replacing the .s extension.

There are the following options:

-a Causes the assembler to output segments in alphabetic
order. When omitted, segments are output in the order
they occur.

-d. Creates program listings for both passes of the assembler.
This listing can be used to resolve phase errors between
assembler passes. The -d option is ignored if the -I option
is not in effect.

-I Produces a listing file. The name is the same as the source
filename with an extension of .1st.

Example
as -1 foo.s produces foo.o and foo.1st

-Mu Disables case sensitivity for all names and symbols. This
option makes upper and lowercase letters in names and
symbols indistinguishable to the assembler. This option

1-24 AS(CP)

also causes the symbols defined by the EXTRN and
PUBLIC directives to be output in upper case regardless of
their original spelling.

-Mx Disables case sensitivity for local names and symbols only.
This option is similar to the -Mu option, but does not
affect names and symbols defined by the EXTRN and
PUBLIC directives.

-0 Suppresses the generation of symbol table output at the
end of the listing. (Meaningful only when -1 switch is
used).

-ooutfile
Causes the object output to be placed in the specified file.
No default extension is assumed.

-0 Causes values in the program listing to be displayed in
octal. The default radix is hexadecimal. This option also
applies to error messages.

-r Causes generation of actual 8087/287 instructions instead
of software interrupts for the floating point emulation
package. Object modules created using this option can
only be executed on machines with an 8087 or 287.

-x Directs the assembler to list any conditional block whose
IF condition resolves to false. This option can be
overridden in the source file by using the .TFCOND
directive. This option is ignored if the -I option is not in
effect.

By default, as recognizes 8086 instruction mnemonics only. To
assemble 186, 286, 8087, or 287 instructions, the corresponding
.186, .286c, .286p, .8087, or .287 directive must be given in the
source file.

Files

/bin/as

AS(CP) 1-25

See Also

cc(C),ld(CP)
IBM Personal Computer XENIX Assembler Reference

Comments

Unless the -r is given, as assumes all 8087/287 instructions are to
be carried out using floating point emulation. The -r option
should only be used on machines with an 8087 or 287
coprocessor.

Error messages for the XENIX assembler are listed in IBM
Personal Computer XENIX Assembler Reference.

1-26 AS(CP)

CB(CP)
Name

cb - Beautifies C programs.

Syntax

Description

Cb places a copy of the C program in file (standard input if file is
not given) on the standard output with spacing and indentation
that displays the structure of the program.

CB(CP) 1-27

CC(CP)

Name

cc - Invokes the C compiler.

Syntax

Description

Cc is the XENIX C compiler command. It creates executable
programs by compiling and linking the files named by the
filename arguments. Cc copies the resulting program to the file
a.out.

The filename can name any C or assembly language source file or
any object or library file. C source files must have a ".c"
filename extension. Assembly language source files must have
".s," object files" .0," and library files" .a" as extensions. Cc
invokes the C compiler for each C source file and copies the
result to an object file whose basename is the same as the source
file but whose extension is ".0". Cc invokes the XENIX
assembler as, for each assembly source file and copies the result
to an object file with extension" .0". Cc ignores object and
library files until all source files have been compiled or assembled.
It then invokes the XENIX link editor ld and combines all the
object files it has created together with object files and libraries
given in the command line to form a single program.

Files are processed in the order they are encountered in the
command line, so the order of files is important. Library files are
examined only if functions referenced in previous files have not
yet been defined. Library files must be in ranlib(CP) format, that
is, the first member must be named -.SYMDEF, which is a
dictionary for the library. The library is searched repeatedly to
satisfy as many references as possibie. Oniy those functions that
define unresolved references are concatenated. A number of
"standard" libraries are searched automatically. These libraries
support the standard C library functions and program startup

1-28 CC(CP)

routines. Which libraries are used depends on the program's
memory model (see "Memory Models" below). The entry point
of the resulting program is set to the beginning of the "main"
program function.

There are the following options:

-c Preserves comments when preprocessing a file with -E or
-Po That is, comments are not removed from the
preprocessed source. This option may only be used with-E
or -Po

-c Creates a linkable object file for each source file but does
not link these files. No executable program is created.

-Dname [=string]
Defines name to the preprocessor as if defined by #define in
each source file. The form "-Dname" sets name to 1. The
form "-Dname = string" sets name to the given string.

-dos Creates an executable program for DOS. This program
requires a .EXE extension.

-E Preprocesses each source file as described for -P, but copies
the result to the standard output. The option also places a
#line directive with the current input line number and
source file name at the beginning of output for each file.

-EP Preprocesses each source file as described for -E, but does
not place a#line directive at the beginning of the file.

-F num
Sets the size of the program stack to num bytes. Default
stack size if not given, is 4K-bytes.

-i Creates separate instruction and data spaces for small model
programs. When the output file is executed, the program
text and data areas are allocated separate physical segments.
The text portion will be read-only and may be shared by all
users executing the file. The option is implied when
creating middle or large model programs (not implemented
on all machines).

CC(CP) 1-29

-I pathname
Adds path name to the list of directories to be searched when
an #include file is not found in the directory containing the
current source file or whenever angle brackets « »
enclose the filename. If the file cannot be found in
directories in this list, directories in a standard list are
searched.

-K Removes stack probes from a program. Stack probes are
used to detect stack overflow on entry to program routines.

-L Creates an assembler listing file containing assembled code
and assembly source instructions. The listing is copied to
the file whose base name is the same as the source but whose
extension is ".L". This option suppresses the -S option.

-Ilibrary
Searches library for unresolved references to functions. The
library must be an object file archive library in ranlib format.

-M string
Sets the program configuration. This configuration defines
the program's memory model, word order, data threshold.
It also enables C language enhancements such as advanced
instruction set and keywords. The string may be any
combination of the following (the "s," "m," and "I" are
mutually exclusive):

s

m

e

2

Creates a small model program (default).

Creates a middle model program.

Creates a large model program.

Enables the far and near keywords.

Enables 80286 code generation for compiled C
source files (default).

1-30 CC(CP)

t num Sets the size of the largest data item in the data
group to num. Default is 32,767.

-ND name
Sets the data segment name for each compiled or assembled
source file to name. If not given, the name" DAT A" is
used. -

-NGD name
Sets the data group name for each compiled or assembled
source file to name. If not given, the name "DGROUP" is
used.

-NGT name
Sets the text group name for each compiled or assembled
source file to name. If not given, the name "IGROUP" is
used.

-01 num
Sets the maximum length of external symbols to num.
Names longer than num or 31 are truncated before being
copied to the external symbol table.

-NM name
Sets the module name for each compiled or assembled
source file to name. If not given, the filename of each
source file is used.

-NT name
Sets the text segment name for each compiled or assembled
source file to name. If not given, the name
"module TEXT" is used for middle model, and
" TEXT" for small model.

-0 Invokes the object code optimizer.

-0 filename
Defines filename to be the name of the final executable
program. This option overrides the default name a.out.

-p Preprocesses each source file and copies the result to a file
whose basename is the same as the source but whose
extension is "j". Preprocessing performs the actions
specified by the preprocessing directives.

CC(CP) 1-31

-p Adds code for program profiling. Profiling code counts the
number of calls to each routine in the program and copies
this information to the moo. out file at normal termination of
object program processing. This file can be examined using
the prof(CP) command.

-s Creates an assembly source listing of the compiled C source
file and copies this listing to the file whose basename is the
same as the source but whose extension is ".s". This file is
not suitable for assembly using as(CP). This option
provides code for reading only.

-v string
Copies string to the object file created from the given source
file. This option is often used for version control.

-w Prevents compiler warning messages from being issued.
Same as -W O.

-Wnum
Sets the output level for compiler warning messages. If num
is 0, no warning messages are issued. If 1, only warnings
about program structure and overt type mismatches are
issued. If 2, warnings about strong typing mismatches are
issued. If 3, warnings for all automatic conversions are
issued. This option does not affect compiler error message
output.

-x Removes the standard directories from the list of directories
to be searched for #include files.

Many options (or equivalent forms of these options) are passed to
the link editor as the last phase of compilation. The s, m, and I
configuration options are passed to specify memory requirements.
The -i, -F, and -p are passed to specify other characteristics of the
final program.

The -D and -I options may be used several times on the command
line. The -D option must not define the same name twice. These
options affect subsequent source files only.

1-32 CC(CP)

Memory Models

Cc can create programs for three different memory models: small,
middle, and large. In addition, small model programs can be pure
or impure.

Impure-Text Small Model
These programs occupy one 64K-byte physical segment in
which both text and data are combined. Cc creates impure
small model programs by default. They can also be created
using the -Ms option.

Pure-Text Small Model
These programs occupy two 64K-byte physical segments.
Text and data are in separate segments. The text is read-only
and may be shared by several processes at once. The
maximum program size is 128K bytes. Pure small model
programs are created using the -i and -Ms options.

Middle Model
These programs occupy several physical segments, but only
one segment contains data. Text is divided among as many
segments as required. Special calls and returns are used to
access functions in other segments. Procedural variables
(function pointers) are 32 bits long in middle and large
models. Programs using procedural variables must be
carefully written. These procedural variables must be
declared and used correctly. Text can be any size. Data must
not exceed 64 K bytes. Middle model programs are created
using the -Mm option. These programs are always pure.

Large Model
These programs occupy several physical segments with both
text and data in as many segments as required. Special calls
and returns are used to access functions in other segments.
Special addresses are used to access data in other segments.
Text and data may be any size, but no data item may be
larger than 64 K bytes. Large model programs are created
using the -MI option. These programs are always pure.

Small, middle, and large model object files can only be linked with
object and library files of the same model. It is not possible to
combine small, middle, and large model object files in one
executable program. Cc automatically selects the correct small,

CC(CP) 1-33

middle, or large versions of the standard libraries based on the
configuration option. It is up to the user to make sure that all of
his own object files and private libraries are properly compiled in
the appropriate model. Compilands are put into separate
segments based on their source name. Thus, if you link two
different compilands with the same source name both compilands
will be put in the same segment. Each segment can be as large as
65k bytes. The upper limit on total code space is system
dependent, but is usually greater than 150k bytes.

The special calls and returns used in middle and large model
programs may affect execution time. In particular, the execution
time of a program that makes heavy use of functions and function
pointers may differ noticeably from small model programs.

In both middle and large model programs, function pointers are
32 bits long. In large model programs, data pointers are 32 bits
long. Programs making use of such pointers must be written
carefully to avoid incorrect declaration and use of these variables.
Lint (CP) will help to check for correct use.

The -NM, -NT, -ND, -NGT, -NGD options may be used with
middle and large model programs to direct the text and data of
specific object files to named physical segments. All text having
the same text segment name is placed in a single physical segment.
Similarly, all data having the same data segment name is placed in
a single physical segment.

Files

/bin/cc

See Also

as(CP), ar(CP), Id(CP), lint(CP), ranlib(CP)

Comments

Error messages are produced by the program that detects the
error. These messages are usually produced by the C compiler

1-34 CC(CP)

but may occasionally be produced by the assembler or the link
loader.

All object module libraries must have a current ranlib directory.

Error messages for the C Compiler are listed in IBM Personal
Computer XENIX C Compiler Reference Manual.

CC(CP) 1-35

CDC(CP)

Name

cdc - Changes the delta commentary of an secs delta.

Syntax

Description

Cdc changes the delta commentary for the SID specified by the -r
option, of each named SCCS file.

Delta commentary is defined to be the modification request (MR)
and comment information normally specified via the delta (CP)
command (-m and -y options).

If a directory is named, cdc behaves as though each file in the
directory were specified as a named file, except that nonSCCS
files (last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read (see "Warning"); each line of the standard
input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of
options and file names.

All the described options apply independently to each named file:

-rSID Used to specify the sees IDentification (SID) string of
a delta for which the delta commentary is to be changed.

-m[mrlistl
If the SCCS file has the v flag set (see admin(CP», a list
of MR numbers to be added and/or deleted in the delta
commentary of the SID specified by the -r option may
be supplied. A null MR list has no effect.

1-36 CDC(CP)

MR entries are added to the list of MRs in the same
manner as that of delta(CP). To delete an MR, precede
the MR number with the character! (see "Examples").
If the MR to be deleted is currently in the list of MRs, it
is removed and changed to a "comment" line. A list of
all deleted MRs is placed in the comment section of the
delta commentary and preceded by a comment line
stating that they were deleted.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y option).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character terminates
the MR list.

Note that if the v flag has a value (see admin(CP)), it is
taken to be the name of a program (or shell procedure)
that validates the correctness of the MR numbers. If a
nonzero exit status is returned from the MR number
validation program, cdc terminates and the delta
commentary remains unchanged.

-y[comment]
Arbitrary text used to replace the comment(s) already
existing for the delta specified by the -r option. The
previous comments are kept and preceded by a comment
line stating that they were changed. A null comment has
no effect.

If -y is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output
before the standard input is read; if the standard input is
not a terminal, no prompt is issued. An unescaped
newline character terminates the comment text.

In general, if you made the delta, you can change its delta
commentary, or if you own the file and directory you can modify
the delta commentary.

CDC(CP) 1-37

Examples

The following:

cdc -r1.6 -m"b178-12345 !bI77-54321 bI79-00001"
-ytrouble s.file

adds b178-12345 and b179-00001 to the MR list, removes
b177-54321 from the MR list, and adds the comment trouble to
delta 1. 6 of s.file.

The following interactive sequence does the same thing.

cdc -r1.6 s.file
MRs? !bI77-54321 b178-12345 b179-00001
comments? trouble

Warning: If SCCS file names are supplied to the cdc
command via the standard input (- on the command line),
the -m and -y options must also be used.

Files

x -file See delta (CP)

z-file See delta (CP)

See Also

admin(CP), delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help (CP) for explanations.

1-38 CDC(CP)

COMB(CP)

Name

comb - eombines sees deltas.

Syntax

Description

Comb provides the means to combine one or more deltas in an
sees file and make a single new delta. The new delta replaces
the previous deltas, making the sees file smaller than the
original.

Comb does not perform the combination itself. Instead, it
generates a shell procedure that you must save and execute to
reconstruct the given sees files. Comb copies the generated
shell procedure to the standard output. To save the procedure,
you must redirect the output to a file. The saved file can then be
executed like any other shell procedure (see she e)).

When invoking comb, arguments may be specified in any order.
All options apply to all named sees files. If a directory is
named, comb behaves as though each file in the directory were
specified as a named file, except that nonSeeS files (last
component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to
be the name of an sees file to be processed; nonSeeS files and
unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file.

- pSID The sees IDentification string (SID) of the oldest delta
to be preserved. All older deltas are discarded in the
reconstructed file.

COMB(CP) 1-39

-clist A list (see get(CP) for the syntax of a list) ot" deltas to
be preserved. All other deltas are discarded.

-0 F or each get -e generated, this argument causes the
reconstructed file to be accessed at the release of the
delta to be created; otherwise the reconstructed file
would be accessed at the most recent ancestor. Use of
the -0 option may decrease the size of the reconstructed
sees file. It may aiso aiter the shape of the delta tree
of the original file.

- s This argument causes comb to generate a shell procedure
that produces a report for each file giving the filename,
sizes (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original-combined) / original

Before any SCCS files are actually combined, you should use this
option to determine exactly how much space is saved by the
combining process.

If no options are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

Files

comb????? Temporary files

1-40 COMB(CP)

See Also

admin(CP), deIta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Comments

Comb may rearrange the shape of the tree of deltas. It may not
save any space; in fact, it is possible for the reconstructed file to
be larger than the original.

COMB(CP) 1-41

CONFIG(CP)

name

config - configure a XENIX system

Syntax

Description

Config is a program that takes a description of a IBM Personal
Computer XENIX system and generates a file that is a C program
defining the configuration tables for the various devices on the
system.

The -t option requests a short table of major device numbers for
character and block type devices. This can facilitate the creation
of special files.

Note: The -t option does not know about devices that have
aliases. However, the major-device numbers are always
correct.

The -c option specifies the name of the configuration table file;
c.c is the default name.

The -m option specifies the name of the file that contains all the
information regarding supported devices; / etc/master is the
default name. This file is supplied with the IBM Personal
Computer XENIX system and should not be modified unless the
user fully understands its construction.

The user must supply dfile; it must contain device information for
the user's system. This file is divided into two parts. The first
part contains physical device specifications. The second part
contains system-dependent information. Any Hne wiih an asterisk
(*) in column 1 is a comment.

1-42 CONFIG(CP)

All configurations are assumed to have a set of required devices
that must be present to run IBM Personal Computer XENIX,
such as the system clock. These devices must not be specified in
dfile.

First Part of dfile

Each line contains two fields, delimited by blanks and/or tabs in
the following format:

devname number

where devname is the name of the device (as it appears in the
/ etc/master device table), and number is the number (decimal) of
devices associated with the corresponding controller; number is
optional, and if omitted, a default value which is the maximum
value for that controller, is used.

Certain drivers may be provided with the system that are actually
pseudo-device drivers; that is, there is no real hardware associated
with the driver. Drivers of this type are identified in the book or
keyed in.

Second Part of file.

The second part contains three types of lines. Note that all
specifications of this part are required, although their order is
arbitrary.

1. Root / pipe device specification

Each line has three fields:

root devname minor
pipe devname minor

where minor is the minor device number (in octal).

2. Swap device specification

One line that contains five fields as follows:

swap devname minor swplo nswap

CONFIG(CP) 1-43

where swplo is the lowest disk block (decimal) in the swap
area and nswap is the number of disk blocks (decimal) in the
swap area.

3. Parameter specification

One or more lines, each having two fields as follows:

name number

where name is a tunable parameter name, and number is the
desired value (in decimal) for the given parameter. Only names
that have been defined in part 4 of the / etc/master file can be
used; number overrides the default value for the given parameter.
The following is a list of the available parameters:

buffers

sabufs

hashbuf

inodes

files

mounts

coremap

swapmap

pages

calls

procs

Maximum number of external (mapped-out) buffers
available to the kernel. If set to 0, config computes
the optimum number for the system.

Maximum number of internal (non-mapped) buffers
available.

Maximum number of hash buffers.

Maximum number of inodes per file system.

Maximum number of files per file system.

Maximum number of mounted file systems.

Maximum number of core map elements.

Maximum number of swap map elements.

Number of memory pages. On segmented systems
such as the 286, this value should be O.

Maximum number of entries in the system timeout
table.

Maximum number of processes per system.

1-44 CONFIG(CP)

maxproc

texts

clists

locks

shdata

timezone

daylight

cmask

Maximum number of processes per user.

Maximum number of text segments per system.

Maximum number of c1ists per system.

Maximum number of file locks per system.

Maximum number of shared data segments per
system.

Number of minutes difference between the local
timezone and Greenwich Mean Time.

Daylight savings time in effect (1), or not in effect
(0).

Default file creation mask for process O.

maxprocmem
Maximum amount of memory available per process.
This value cannot be greater than 750/0 of total user
memory. If set to 0, config computes the optimum
value.

Example

Suppose we wish to configure a system with the following
devices:

one fixed disk drive controller with one driver
one diskette drive controller with one driver

We must also specify the following parameter information:
root device is a fixed disk (pseudo disk 3)
pipe device is a fixed disk (pseudo disk 3)
swap device is a fixed disk (pseudo disk 2)

with a swplo of 1 and an nswap of 2300
number of buffers is 50
number of processes is 50
maximum number of processes per user ID is 15
number of mounts is 8
number of inodes is 120
number of files is 120

CONFIG(CP) 1-45

number of calls is 30
number of texts is 35
number of character buffers is 150
number of swapmap entries is 50
number of memory pages is 512
number of file locks is 100
timezone is pacific time
daylight time is in effect

The actual system configuration would be specified as follows:
fixed disk 1
diskette 1
root hd 3
pipe hd 3
swap hd 2 0 2300
* Comments may be inserted in this manner
buffers 50
procs 150
maxproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
c1ists 150
swapmap 50
pages (1024/2);
locks 100
timezone (8 *60)
daylight 1

1-46 CONFIG(CP)

Files

/ etc/ master default input master device table
c.c default output configuration table file

See Also

master(F)

Diagnostics

Diagnostics are routed to the standard output and are
self-explanatory.

CONFIG(CP) 1-47

CPP(CP)

Name

cpp - The C language preprocessor

Syntax

Description

Cpp is the C language preprocessor that is invoked as the first
pass of any C compilation using the cc(CP) command. Thus the
output of cpp is designed to be in a form acceptable as input to
the next pass of the C compiler. Therefore, as the C language
evolves, the use of cpp other than in this framework is not
suggested. The preferred way to invoke cpp is through the
cc(CP) command. See m4(CP) for a general macro processor.

Cpp optionally accepts two filenames as arguments. Ifile and
ofile are respectively the input and output for the preprocessor. If
the default is not supplied, it is standard input and standard
output.

The following options to cpp are recognized:

-P

-C

Preprocess the input without producing the line control
information used by the next pass of the C compiler.

By default, cpp strips C-style comments. If the -C option is
specified, all comments (except those found on cpp directive
lines) are passed along.

-Uname
Remove any initial definition of name; where name is a
reserved symbol that is predefined by the particular
preprocessor.

1-48 CPP(CP)

-Dname
-Dname=def

Define name as if by a #define directive. If no =def is given,
name is defined as 1.

-Idir
Change the algorithm for searching for #include files whose
names do not begin with / to look in dir before looking in the
directories on the standard list. Thus, #include files whose
names are enclosed in "" are searched for first in the
directory of the ifile argument, then in directories named in
-I options, and last in directories on a standard list. For
#include files whose names are enclosed in < >, the directory
of the ifile argument is not searched.

Two special names are understood by epp. The name -LINE
is defined as the current line number (as a decimal integer) as
known by epp, and -FILE- is defined as the current filename
(as a C string) as known by epp. They can be used anywhere
(including in macros) just as any other defined name.

All epp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ... , arg) token-string
Notice that there can be no space between name and the (.
Replace subsequent instances of name followed by a (, a list
of tokens separated by commas, and a) by token-string where
each occurrence of an arg in the token-string is replaced by
the corresponding token in the comma-separated list.

#under name
Cause the definition of name (if any) to be forgotten from
now on.

#. I d "r·l " me u e)1 ename
#include <filename>

Include at this point the contents of filename (which will then
be run through epp). When the <filename> notation is used,
filename is only searched for in the standard places. See the
-I option above for more detail.

CPP(CP) 1-49

#line integer-constant ''filename''
Causes cpp to generate line control information for the next
pass of the C compiler. Integer-constant is the line number of
the next line and filename is the file where it comes from. If
filename is not given, the current filename is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef,
or #ifndef). Each test directive must have a matching #endif.

#ifdef name
The lines following appear in the output only if name has
been the subject of a previous #define without being the
subject of an intervening #undef.

#ifndef name
The lines following do not appear in the output only if name
has been the subject of a previous #define without being the
subject of an intervening #undef.

#if defiDed (identifier)
May be used in place of the #if directive. If the identifier is
defined, the directive has a value of 1, otherwise o. This is
frequently used for conditional enviroment-specific text.

#elif constant -expression
Allows for the conditional compilation of portions of the
text. The constant-expression is evaluated and if it is not zero
the text immediately following (until the next elif, else, endif)
is passed to the compiler.

#if constant -expression
Lines following will appear in the output only if the
constant-expression evaluates to nonzero. All binary
non-assignment C operators, the ?: operator, the unary -,
!,and '" operators are all legal in constant-expression. The
precedence of the operators is the same as defined by the C
language. There is also a unary operator defined, that can be
used in constant-expression in these two forms: defined (
name) or defined name. This allows the utility of #ifdef and
#ifndef in a #if directive. Only these operators, integer
constants, and names that are known by cpp should be used
in constant-expression. In particular, the size of operator is not
available.

1-50 CPP(CP)

#else
Reverses the notion of the test directive that matches this
directive. So if lines previous to this directive are ignored,
the following lines appear in the output (and the other way
around).

The test directives and the possible #else directives can be nested.

Files

/usr/inc1ude standard directory for #include files

See Also

cc(CP), m4(CP).

CPP(CP) 1-51

Diagnostics

The error messages produced by cpp are intended to be
self-explanatory. The line number and filename where the error
occurred are printed along with the diagnostic.

Comments

When newline characters were found in argument lists for macros
to be expanded, previous versions of cpp put out the newlines as
they were found and expanded. The current version of cpp
replaces these newlines with blanks to alleviate problems that the
previous versions had when this occurred.

1-52 CPP(CP)

CREF(CP)
Name

cref - Makes a cross-reference listing.

Syntax

"~~~i' [~a(!i1nostux 123]f!1~s. ,

Description

Cref makes a cross-reference listing of assembler or C programs.
The program searches the given files for symbols in the
appropriate C or assembly language syntax.

The output report is in four columns:

1. Symbol

2. Filename

3. Current symbol or line number

4. Text as it appears in the file

Cref uses either an ignore file or an only file. If the -i option is
given, the next argument is taken to be an ignore file; if the -0

option is given, the next argument is taken to be an only file.
Ignore and only files are lists of symbols separated by newlines.
All symbols in an ignore file are ignored in columns 1 and 3 of the
output. If an only file is given, only symbols in that file will
appear in column 1. Only one of these options may be given; the
default setting is -i using the default ignore file (see "Files"
below). Assembler predefined symbols or C keywords are
ignored.

The -s option causes current symbols to be put in column 3. In
the assembler, the current symbol is the most recent name
symbol; in C, the current function name. The -I option causes the
line number within the file to be put in column 3.

CREF(CP) 1-53

The -t option causes the next available argument to be used as the
name of the intermediate file (instead of the temporary file
/tmp/ crt??). This file is created and is not removed at the end of
the process.

The cref options are:

a Uses assembler format (default)
c Uses C format

Uses an ignore file (see above)
Puts line number in column 3 (instead of current symbol)

n Omits column 4 (no context)
o Uses an onry file (see above)
s Current symbol in column 3 (default)
t User-supplied temporary file
u Prints only symbols that occur exactly once
x Prints only C external symbols
1 Sorts output on column 1 (default)
2 Sorts output on column 2
3 Sorts output on column 3

Files

/usr/lib/ cref/* Assembler specific files

See Also

as(CP), cc(CP), sort(C), xref(CP)

Comments

Cref inserts an ASCII DEL character into the intermediate file
after the eighth character of each name that is eight or more
characters long in the source file.

1-54 CREF(CP)

CSH(CP)
Name

csh - Invokes a shell command interpreter with C-like syntax.

Syntax

Description

Csh is a command language interpreter. It begins by executing
commands from the file .cshrc in the home directory of the
invoker. If this is a login shell, it also executes commands from
the file .login there. In the normal case, the shell will begin
reading commands from the terminal, prompting with %.

Processing of arguments and the use of the shell to process files
containing command scripts is described later.

The shell repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of
words is placed on the command history list and then parsed.
Finally each command in the current line is executed.

When a login shell terminates, it executes commands from the file
.logout in the user's home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the
following exceptions. The characters &, I,;, <, >, (,), form
separate words. If doubled in &&, I I, < <, or > >, these pairs
form single words. These parser metacharacters may be made
part of other words, or their special meaning may be overridden
by preceding them with \. A newline preceded by a \ is
equivalent to a blank.

In addition, strings enclosed in matched pairs of quotation marks,
, and' or " and ", form parts of a word; metacharacters in these
strings, including blanks and tabs, do not form separate words.

CSH(CP) 1-55

These quotations have semantics to be described later. Within
pairs of \ or " characters, a newline preceded by a \ gives a true
newline character.

When the shell's input is not a terminal, the character #
introduces a comment that continues to the end of the input line.
It does not have this special meaning when preceded by \ and
placed inside the quotation marks 'and ' or " and ".

Commands

A simple command is a sequence of words, the first of which
specifies the command to be executed. A simple command or a
sequence of simple commands separated by I characters forms a
pipeline. The output of each command in a pipeline is connected
to the input of the next. Sequences of pipelines may be separated
by ; and are then executed sequentially. A sequence of pipelines
may be executed without waiting for it to terminate by following
it with an &. Such a sequence is automatically prevented from
being terminated by a hangup signal; the nohup command need
not be used.

Any of the above may be placed in parentheses to form a simple
command (which may be a component of a pipeline). It is also
possible to separate pipelines with I I or && indicating, as in the
C language, that the second is to be executed only if the first fails
or succeeds respectively. (See "Expressions.")

Substitutions

The following sections describe the various transformations the
shell performs on the input in the order in which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences of
words from previous commands, possibly performing
modifications on these words. Thus, history substitutions provide
a generalization of a redo function.

History substitutions begin with the character! and may begin
anywhere in the input stream if a history substitution is not
already in progress. This! may be preceded by a \ to override its
special meaning; a ! is passed unchanged when it is followed by a

1-56 CSH(CP)

blank, tab, newline, =, or (. History substitutions also occur
when an input line begins with A. This special abbreviation will be
described later.

Any input line that contains history substitution is echoed on the
terminal before it is executed as it could have been typed without
history substitution.

Commands input from the terminal that consist of one or more
words are saved on the history list, the size of which is controlled
by the history variable. The previous command is always retained.
Commands are numbered sequentially from 1.

For example, consider the following output from the history
command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not
usually necessary to use event numbers, but the current event
number can be made part of the prompt by placing a ! in the
prompt string.

With the current event 13, we can refer to previous events by
event number! 11, relatively as in !-2 (referring to the same
event), by a prefix of a command word as in !d for event 12 or !w
for event 9, or by a string contained in a word in the command as
in !?mic? also referring to event 9. These forms, without further
modification, simply reintroduce the words of the specified
events, each separated by a single blank. As a special case !!
refers to the previous command; thus!! alone is essentially a redo.
The form !# refers to the current command (the one being typed
in). It allows a word to be selected from further left in the line, to
avoid retyping a long name, as in !#: 1.

To select words from an event, we can follow the event
specification by a : and a designator for the desired words. The
words of a input line are numbered from 0, the first (usually
command) word being 0, the second word (first argument) being
1, and so on. The basic word designators are:

CSH(CP) 1-57

o First (command) word

n nth argument

/\ First argument, 1

$ Last argument

0/0 Word matched by (immediately preceding) ?s? search

x-y Range of words

-y Abbreviates 0- y

* Abbreviates /\-$, or nothing if only one word in event

x* Abbreviates x- $

x- Like x* but omitting word $

The : separating the event specification from the word designator
can be omitted if the argument selector begins with a /\, $, *, - or
0/0. After the optional word designator can be placed a sequence
of modifiers, each preceded by a colon(:). The following
modifiers are defined:

h Removes a trailing pathname component

r Removes a trailing .xxx component (extracts the root of
a filename)

e extracts the extension of a filename

s/l/r / Substitutes I for r

t Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but does not execute it

q Quotes the substituted words, preventing substitutions

1-58 CSH(CP)

x Like q, but breaks into words at blanks, tabs, and
newlines

Unless preceded by a g, the modification is applied only to the
first modifiable word. In any case, it is an error for no word to be
applicable.

The left side of substitutions are not regular expressions in the
sense of the editors, but rather strings. Any character may be
used as the delimiter in place of /; a \ quotes the delimiter into
the I and r strings. The character & in the right side is replaced by
the text from the left. A \ quotes & also. A null I uses the
previous string either from a I or from a contextual scan string s in
!?s? The trailing delimiter in the substitution may be omitted if a
newline follows immediately, as may the trailing? in a contextual
scan.

A history reference may be given without an event specification,
for example !$. In this case, the reference is to the previous
command unless a previous history reference occurred on the
same line, in which case this form repeats the previous reference.
Thus, !?foo? A!$ gives the first and last arguments from the
command matching ?foo?

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a A. This is equivalent to
!?SA, providing a convenient shorthand for substitutions on the
text of the previous line. Thus AlbAlib fixes the spelling of lib in
the previous command. Finally, a history substitution may be
surrounded with { and } if necessary to insulate it from the
characters that follow. Thus, after Is -ld "'paul we might do !{l}a
to do Is - Id "'paula, while !la would look for a command starting
lao

Quotations With ' and "

The quotation of strings by 'and "can be used to prevent all or
some of the remaining substitutions. Strings enclosed in quotes
are prevented any further interpretation. Strings enclosed in
quotes (") are variable and command expansion may occur.

CSH(CP) 1-59

In both cases, the resulting text becomes (all or part of) a single
word; only in one special case (see"Command Substitution"
below) does a quoted string yield parts of more than one word; ,
quoted strings never do.

A lias Substitution

The shell maintains a list of aliases that can be established,
displayed and modified by the alias and unalias commands. After,
a command line is scanned, it is parsed into distinct commands
and the first word of each command, left-to-right, is checked to
see if it has an alias. If it does, the text that is the alias for that
command is reread with the history mechanism available as
though that command were the previous input line. The resulting
words replace the command and argument list. If no reference is
made to the history list, the argument list is left unchanged.

Thus, if the alias for Is is Is - 1 the command "Is lusr" would map
to "Is - 1 lusr". Similarly, if the alias for lookup was "grep !/\
I etc/passwd" then "lookup bill" would map to "grep bill
I etc/passwd".

If an alias is found, the word transformation of the input text is
performed and the aliasing process begins again on the reformed
input line. Looping is prevented if the first word of the new text
is the same as the old by flagging it to prevent further aliasing.
Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser
metasyntax. Thus, we can alias print 'pr \!* I lpr' to make a
command that paginates its arguments to the line printer.

Variable Substitution

The shell maintains a set of variables, each of which has as its
value a list of zero or more words. Some of these variables are set
by the shell or referred to by it. For instance, the argv variable is
an image of the shell's argument list, and words of this variable's
value are referred to in special ways.

The values of variables may be displayed and changed by using
the set and unset commands. Of the variables referred to by the
shell, a number are toggles; the shell does not care what their
value is, only whether they are set or not. For instance, the

1-60 CSH(CP)

verbose variable is a toggle that causes command input to be
echoed. The setting of this variable results from the -v command
line option.

Other operations treat variables numerically. The at-sign (@)
command permits numeric calculations to be performed and the
result assigned to a variable. However, variable values are always
represented as (zero or more) strings. For the purposes of
numeric operations, the null string is considered to be zero, and
the second and subsequent words of multiword values are
ignored.

After the input line is aliased and parsed, and before each
command is executed, variable substitution is performed, keyed
by dollar sign ($) characters. This expansion can be prevented by
preceding the dollar sign with a backslash (\) except within
double quotation marks (") where it always occurs, and within
single quotation marks (') where it never occurs. Strings quoted
by back quotation marks C) are interpreted later (see "Command
substitution" below) so dollar sign substitution does not occur
there until later, if at all. A dollar sign is passed unchanged if
followed by a blank, tab, or end-of-line.

Input and output redirections are recognized before variable
expansion, and are variable expanded separately. Otherwise, the
command name and entire argument list are expanded together.
It is thus possible for the first (command) word to generate more
than one word, the first of which becomes the command name,
and the rest of which become arguments.

Unless enclosed in double quotation marks or given the"
modifier, the results of variable substitution may eventually be
command and filename substituted. Within double quotation
marks (") a variable whose value consists of multiple words
expands to a portion of a single word, with the words of the
variable's value separated by blanks. When the' modifier is
applied to a substitution, the variable expands to multiple words,
with each word separated by a blank and quoted to prevent later
command or filename substitution.

The following sequences are provided for introducing variable
values into the shell input. Except as noted, it is an error to refer
to a variable that is not set.

CSH(CP) 1-61

$name
$ {name}

Are replaced by the words of the value of variable name,
each separated by a blank. Braces insulate name from
following characters that would otherwise be part of it. Shell
variables have names consisting of up to 20 letters, digits,
and underscores.

If name is not a shell variable, but is set in the environment, that
value is returned (but: modifiers and the other forms given below
are not available in this case).

$name[selector]
$ {name [selector]}

May be used to select only some of the words from the value
of name. The selector is subjected to $ substitution and may
consist of a single number, or two numbers separated by a-.
The first word of a variable's value is numbered 1. If the
first number of a range is omitted, it defaults to 1. If the last
member of a range is omitted, it defaults to $#name. The
selector * selects all words. It is not an error for a range to
be empty if the second argument is omitted or in range.

$#name
$ {#name}

$0

Gives the number of words in the variable. This is useful for
later use in a [selector].

Substitutes the name of the file from which command input is
being read. An error occurs if the name is not known.

$number
$ {number}

Equivalent to $argv[number].

$*
Equivalent to $argv[*].

The modifiers :h, :t, :r, :q, and :x may be applied to the
substitutions above as may :gh, :gt, and :gr. If braces { } appear
in the command form, the modifiers must appear within the
braces. Only one: modifier is allowed on each $ expansion.

1-62 CSH(CP)

The following substitutions may not be modified with: modifiers.

$?name
$ {?name}

Substitutes the string 1 if name is set, 0 if it is not.

$?O

$$

Substitutes 1 if the current input filename is known, 0 if it is
not.

Substitutes the (decimal) process number of the (parent)
shell.

Command and Filename Substitution

Command and filename substitution are applied selectively to the
arguments of built-in commands. This means that portions of
expressions that are not evaluated are not subjected to these
expansions. For commands that are not internal to the shell, the
command name is substituted separately from the argument list.
This occurs very late, after input-output redirection is performed,
and in a child of the main shell.

Command Substitution

Command substitution is indicated by a command enclosed in
back quotation marks. The output from such a command is
normally broken into separate words at blanks, tabs and newlines,
with null words being discarded, this text then replacing the
original string. Within double quotation marks, only newlines
force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word.
Note that it is thus possible for a command substitution to yield
only part of a word, even if the command outputs a complete line.

Filename Substitution

If a word contains any of the characters *, ?, [or {, or begins with
the character""', then that word is a candidate for filename
substitution. This word is then regarded as a pattern and is
replaced with an alphabetically sorted list of filenames that match
the pattern. In a list of words specifying filename substitution, it

CSH(CP) 1-63

is an error for no pattern to match an existing filename, but it is
not required for each pattern to match. Only the metacharacters
*, ?, and [imply pattern matching, the characters'" and { being
more akin to abbreviations.

In matching filenames, the character. at the beginning of a
filename or immediately following a /, as well as the character /
must be matched explicitly. The character * matches any string of
characters, including the null string. The character? matches any
single character. The sequence [...] matches anyone of the
characters enclosed. Within [...], a pair of characters separated
by - matches any character lexically between the two.

The character'" at the beginning of a filename is used to refer to
home directories. Standing alone it expands to the invoker's
home directory as reflected in the value of the variable home.
When'" is followed by a name consisting of letters, digits and -
characters the shell searches for a user with that name and
substitutes the home directory; thus'" ken might expand to
/usr/ken and'" ken/chmach to /usr/ken/chmach. If the
character'" is followed by a character other than a letter or /, or
appears not at the beginning of a word, it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade.
Left-to-right order is preserved, with results of matches being
sorted separately at a low level to preserve this order. This
construct may be nested. Thus "'source/sl/{oldls,ls}.c expands
to /usr/source/sl/oldls.c /usr/source/sl/ls.c, whether or not
these files exist, without any chance of error if the home directory
for source is /usr/ source. Similarly, .. / {memo, *box} might
expand to .. /memo .. /box .. /mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case {, }
and {} are passed unchanged.

Input / Output

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Opens file name (which is first variable, command, and
filename expanded) as the standard input.

1-64 CSH(CP)

« word
Reads the shell input up to a line which is identical to word.
Word is not subjected to variable, filename or command
substitution, and each input line is compared to word before
any substitutions are done on this input line. Unless a
quoting backslash, double, or single quotation mark, or a
back quotation mark appears in word, variable and command
substitution is performed on the intervening lines, allowing \
to quote $, \ and'. Commands that are substituted have all
blanks, tabs, and newlines preserved, except for the final
newline, which is dropped. The resulting text is placed in an
anonymous temporary file, which is given to the command as
standard input.

> name
>! name
>&name
>&! name

The file name is used as standard output. If the file does not
exist, it is created; if the file exists, it is truncated, and its
previous contents are lost.

If the variable noclobber is set, the file must not already exist
or it must be a character special file (for example a terminal
or / dev /null) or an error results. This helps prevent
accidental destruction of files. In this case, the! forms can
be used to suppress this check.

The forms involving & route the diagnostic output into the
specified file as well as the standard output. Name is
expanded in the same way as < input filenames are.

» name
»& name
»! name
»&! name

Uses file name as standard output like > but places output at
the end of the file. If the variable noclobber is set, it is an
error for the file not to exist unless one of the! forms is
given. Otherwise similar to >.

If a command is run detached (followed by &), the default
standard input for the command is the empty file / dev /null.
Otherwise, the command receives the environment in which the

CSH(CP) 1-65

shell was invoked as modified by the input-output parameters and
the presence of the command in a pipeline. Thus, unlike some
previous shells, commands run from a file of shell commands have
no access to the text of the commands by default; rather they
receive the original standard input of the shell. The < <
mechanism should be used to present inline data. This permits
shell command scripts to function as components of pipelines and
allows the shell to block read its input.

Diagnostic output may be directed through a pipe with the
standard output. Simply use the form I & rather than just I.

Expressions

A number of the built-in commands (to be described later) take
expressions, in which the operators are similar to those of C, with
the same precedence. These expressions appear in the @, exit,
if,and while commands. The following operators are available:

I I && I A & == != < = > =< > « »
+-*/%!"'()

Here the precedence increases to the right, with the operators:

== and!=
<=, >=, <, and>
«and »
+ and-
* / and 0/0

forming groups at the same level. The == and != operators
compare their arguments as strings; all others operate on
numbers. Strings that begin with 0 are considered octal numbers.
Null or missing arguments are considered O. The result of all
expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can
appear in the same word; except when adjacent to components of
expressions that are syntactically significant to the parser (& I <
> ()) they should be sUifounded by spaces.

Also available in expressions as primitive operands are command
executions enclosed in { and} and file enquiries of the form -I
name where I is one of:

1-66 CSH(CP)

r Read access
w Write access
x Execute access
e Existence
o Ownership
z Zero size
f Plain file
d Directory

The specified name is command and filename expanded, then
tested to see if it has the specified relationship to the real user. If
the file does not exist or is inaccessible, all enquiries return false,
that is O. Command executions succeed, returning true, that is 1,
if the command exits with status 0, otherwise they fail, returning
false, that is O. If more detailed status information is required, the
command should be executed outside of an expression and the
variable status examined.

Control Flow

The shell contains a number of commands that can be used to
regulate the flow of control in command files (shell scripts) and
(in limited but useful ways) from terminal input. These
commands all operate by forcing the shell to reread or skip in its
input and, due to the implementation, restrict the placement of
some of the commands.

The foreach, switch, and while statements, as well as the if-then
else form of the if statement require that the major keywords
appear in a single simple command on an input line as shown
below.

If the shell's input is not seekable, the shell buffers up input
whenever a loop is being read and performs seeks in this internal
buffer to accomplish the rereading implied by the loop. (To the
extent that this allows, backward goto commands will succeed on
nonseekable inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a built-in
command occurs as any component of a pipeline except the last, it
is executed in a subshell.

CSH(CP) 1-67

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the
alias for name. The final form assigns the specified wordlist
as the alias of name; wordlist is command and filename
substituted. Name is not allowed to be alias or unalias

break
Causes execution to resume after the end of the nearest
enclosing foreach or while statement. The remaining
commands on the current line are executed. Multilevel
breaks are thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Changes the shell's working directory to directory name. If
no argument is given, changes to the home directory of the
user. If name is not found as a subdirectory of the current
directory (and does not begin with j, .j, or .. j), each
component of the variable cdpath is checked to see if it has a
subdirectory name. Finally, if all else fails but name is a shell
variable whose value begins with j, this is tried to see if it is a
directory.

continue
Continues execution of the nearest enclosing while or
foreach. The rest of the commands on the current line are
executed.

default:
Labels the default case in a switch statement. The default
should come after all case labels.

1-68 CSH(CP)

echo wordlist
The specified words are written to the shell's standard
output. An \ c causes the echo to complete without printing
a newline. An \ n in wordlist causes a newline to be printed.
Otherwise the words are echoed, separated by spaces.

else
end
endif
endsw

See the description of the foreach, if, switch, and while
statements below.

exec command

exit

The specified command is executed in place of the current
shell.

exit (expr)
The shell exits either with the value of the status variable
(first form) or with the value of the specified expr (second
form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this
command and the matching end are executed. (Both foreach
and end must appear alone on separate lines.)

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to
terminate it prematurely. When this command is read from
the terminal, the loop is read up once prompting with ?
before any statements in the loop are executed.

glob wordlist
Like echo, but no \ escapes are recognized and words are
delimited by null characters in the output. Useful for
programs that wish to use the shell to filename expand a list
of words.

CSH(CP) 1-69

go to word
The specified word is filename and command expanded to
yield a string of the form label. The shell rewinds its input as
much as possible and searches for a line of the form label:
possibly preceded by blanks or tabs. Execution continues
after the specified line.

history
Displays the history event list.

if (expr) command
If the specified expression evaluates true, the single command
with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest
of the if command. Command must be a simple command,
not a pipeline, a command list, or a parenthesized command
list. Input/output redirection occurs even if expr is false,
when command is not executed.

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true, the commands to the first else are
executed; if expr2 is true, the commands to the second else
are executed, and so on. Any number of else-if pairs are
possible; only one endif is needed. The else part is likewise
optional. (The words else and endif must appear at the
beginning of input lines; the if must appear alone on its input
line or after an else).

logout
Terminates a login shell. This is the only way to log out if
ignoreeof is set.

1-70 CSH(CP)

nice
nice + number
nice command
nice + number command

The first form sets the nice for this shell to 4. The second
form sets the nice to the given number. The final two forms
run command at priority 4 and number respectively. The
super-user may specify negative niceness by using "nice
-number " The command is always executed in a
subshell, and the restrictions placed on commands in simple
if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to
be ignored for the remainder of the script. The second form
causes the specified command to be run with hangups
ignored. Unless the shell is running detached, nohup has no
effect. All processes detached with & are automatically
nohuped. (Thus, nohup is not really needed.)

onintr
onintr -
onintr label

Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts, which is
to terminate shell scripts or to return to the terminal
command input level. The second form onintr - causes all
interrupts to be ignored. The final form causes the shell to
execute a goto label when an interrupt is received or a child
process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are
being ignored, all forms of onintr have no meaning and
interrupts continue to be ignored by the shell and all invoked
commands.

rehash
Causes the internal hash table of the contents of the
directories in the path variable to be recomputed. This is
needed if new commands are added to directories in the path
while you are logged in. This should only be necessary if you
add commands to one of your own directories or if a systems
programmer changes the contents of one of the system
directories.

CSH(CP) 1-71

repeat count command

set

The specified command that is subject to the same
restrictions as the command in the one-line if statement
above, is executed count times. 110 redirection occurs
exactly once, even if count is O.

set name
set name=word
set name{indexl=word
set name=(wordlist)

The first form of the command shows the value of all shell
variables. Variables that have other than a single word as
value print as a parenthesized word list. The second form
sets name to the null string. The third form sets name to the
single word. The fourth form sets the indexth component of
name to word; this component must already exist. The final
form sets name to the list of words in wordlist. In all cases
the value is command and filename expanded.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value

shift

Sets the value of the environment variable name to be value~
a single string. Useful environment variables are TERM, the
type of your terminal and SHELL, the shell you are using.

shift variable
The members of argv are shifted to the left, discarding
argv[l}. It is an error for argv not to be set or to have less
than one word as value. The second form performs the same
function on the specified variable.

1-72 CSH(CP)

source name
The shell reads commands from name. Source commands
may be nested; if they are nested too deeply the shell may
run out of file descriptors. An error in a source at any level
terminates all nested source commands. Input during source
commands is never placed on the history list.

switch (string)
case str}:

breaksw

default:

breaksw
endsw

time

Each case label is successively matched against the specified
string, which is the first command and filename expanded.
The file metacharacters *,?, and [...] may be used in the
case labels, which are variable expanded. If none of the
labels match before a default label is found, the execution
begins after the default label. Each case label and the default
label must appear at the beginning of a line. The command
breaksw causes execution to continue after the endsw.
Otherwise, control may fall through case labels and default
labels, as in C. If no label matches and there is no default,
execution continues after the endsw.

time command
With no argument, a summary of time used by this shell and
its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell
is created to print the time statistic when the command ends.

umask
umask value

The file creation mask is displayed (first form) or set to the
specified value (second form). The mask is given in octal.
Common values for the mask are 002, giving all access to the
group and read and execute access to others; or 022 giving all
access, except no write access for users in the group or
others.

CSH(CP) 1-73

unalias pattern
All aliases whose names match the specified pattern are
discarded. Thus, all aliases are removed by unalias *. It is
not an error if the pattern does not match any alias name.

unhash
Use of the internal hash table to speed location of executed
programs is disabled.

unset pattern

wait

All variables whose names match the specified pattern are
removed. Thus, all variables are removed by unset *; with all
variables removed, the program operates in an unpredictable
manner. It is not an error if the pattern does not match any
variable name.

All child processes are waited for. If the shell is interactive,
an interrupt can disrupt the wait, at which time the shell
prints names and process numbers of all children known to
be outstanding.

while (expr)

end

@

While the specified expression evaluates nonzero, the
commands between the while and the matching end are
evaluated. Break and continue may be used to terminate or
continue the loop prematurely. (The while and end must
appear alone on their input lines.) Prompting occurs here the
first time through the loop as for the foreach statement if the
input is a terminal.

@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If
the expression contains <, >, &, or I , at least this part of the
expression must be placed within parentheses (). The third
f onn assigns the value of expr to the indexth argument of
name. Both name and its indexth component must already
exist.

1-74 CSH(CP)

Assignment operators, such as * = and + =, are available as
in C. The space separating the name from the assignment
operator is optional. Spaces are mandatory in separating
components of expr that would otherwise be single words.

Special postfix + + and - - operators increment and
decrement name respectively, that is @ i + +.

Predefined Variables

The following variables have special meaning to the shell. Of
these, argv, child, home, path, prompt, shell, and status are always
set by the shell. Except for child and status, this setting occurs
only at initialization; these variables will not then be modified
unless done explicitly by the user.

The shell copies the environment variable PATH into the variable
path and copies the value back into the environment whenever
path is set. Thus it is not necessary to worry about its setting
other than in the file .cshrc, as inferior csh processes will import
the definition of path from the environment.

argv

cdpath

child

echo

histchars

Set to the arguments to the shell, it is from this
variable that positional parameters are substituted,
that is $1 is replaced by $argv[l], etc.

Gives a list of alternate directories searched to find
subdirectories in cd commands.

The process number printed when the last
command was forked with &. This variable is unset
when this process terminates.

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For nonbuilt-in
commands, all expansions occur before echoing.
Built-in commands are echoed before command and
filename substitution, because these substitutions
are then done selectively.

Can be assigned a two-character string. The first
character is used as a history character in place of !,
the second character is used in place of the

CSH(CP) 1-75

history

home

ignoreeof

mail

noclobber

nogiob

substitution mechanism. For example, set
histchars=,; will cause the history characters to be
comma and semicolon.

Can be given a numeric value to control the size of
the history list. Any command that has been
referred to in this many events will not be
discarded. A history that is too large may run the
shell out of memory. The last executed command is
always saved on the history list.

The home directory of the invoker, initialized from
the environment. The filename expansion of '"
refers to this variable.

If set, the shell ignores end-of -file from input
devices that are terminals. This prevents a shell
from accidentally being terminated by typing a
Ctrl-D.

The files where the shell checks for mail. This is
done after each command completion, which will
result in a prompt if a specified interval has elapsed.
The shell says "You have new mail," if the file
exists with an access time not greater than its
modify time.

If the first word of the value of mail is numeric, it
specifies a different mail checking interval, in
seconds, than the default, which is 10 minutes.

If multiple mail files are specified, the shell says
"New mail in name" when there is mail in the file
name.

As described in the section "Input/Output,"
restrictions are placed on output redirection to
insure that files are not accidentally destroyed, and
that> > redirections refer to existing files.

If set, filename expansion is inhibited. This is 1110St

useful in shell scripts that are not dealing with
filenames or after a list of filenames has been
obtained and further expansions are not desirable.

1-76 CSH(CP)

nonomatch If set, it is not an error for a filename expansion to
not match any existing files; rather, the primitive
pattern is returned. It is still an error for the
primitive pattern to be malformed, that is echo [
still gives an error.

path Each word of the path variable specifies a directory
in which commands are to be sought for execution.
A null word specifies the current directory. If there
is no path variable, only full pathnames will execute.
The usual search path is /bin, / usr /bin, and., but
this may vary from system to system. For the
super-user, the default search path is / etc, /bin and
/ usr /bin. A shell that is given neither the -c nor
the -t option will normally hash the contents of the
directories in the path variable after reading .cshrc.
and each time the path variable is reset. If new
commands are added to these directories while the
shell is active, it may be necessary to give the rehash
or the commands may not be found.

prompt The string that is printed before each command is
read from an interactive terminal input. If a !
appears in the string it will be replaced by the
current event number unless a preceding \ is given.
Default is %, or # for the super-user.

shell The file in which the shell resides. This is used in
forking shells to interpret files that have execute
bits set, but which are not executable by the system.
(See the description of "Nonbuilt-In Command
Execution" beloW.) Initialized to the
(system-dependent) home of the shell.

status The status returned by the last command. If it
terminated abnormally, 0200 is added to the status.
Abnormal termination results in a core dump.
Built-in commands that fail return exit status 1; all
other built-in commands set status O.

time Controls automatic timing of commands. If set, any
command that takes more than this many cpu
seconds causes a line giving user, system, and real

CSH(CP) 1-77

verbose

times and a utilization percentage that is the ratio of
user plus system times to real time to be printed
when it terminates.

Set by the -v command line option, causes the
words of each command to be printed after history
substitution.

Nonbuilt-In Command Execution

When a command to be executed is found not to be a built-in
command, the shell attempts to execute the command via exec(S).
Each word in the variable path names a directory from which the
shell attempts to execute the command. If it is given neither a -c
nor a -t option, the shell will hash the names in these directories
into an internal table so that it will only try an exec in a directory
if there is a possibility that the command resides there. This
greatly speeds command location when a large number of
directories are present in the search path. If this mechanism has
been turned off (via unhash)~ or if the shell was given a -c or -t
argument, and in any case for each directory component of path
that does not begin with a /, the shell concatenates with the given
command name to form a pathname of a file which it then
attempts to execute.

Parenthesized commands are always executed in a subshel1. Thus,
(cd; pwd) ; pwd prints the home directory; leaving you where
you were (printing this after the home directory), while cd ; pwd
leaves you in the home directory. Parenthesized commands are
most often used to prevent cd from affecting the current shell.

If the file has execute permissions but is not an executable binary
to the system, it is assumed to be a file containing shell commands
and a new shell is spawned to read it.

If there is an alias for shell, the words of the alias are prepended
to the argument list to form the shell command. The first word of
the alias should be the full pathname of the shell (for example
$shell). Note that this is a special, late occurring, case of alias
substitution and only allows words to be prepended to the
argument list without modification.

Argument List Processing

1-78 CSH(CP)

If argument 0 to the shell is -, this is a login shell. The flag
arguments are interpreted as follows:

-c Commands are read from the (single) following argument,
which must be present. Any remaining arguments are
placed in argv.

-e The shell exits if any invoked command terminates
abnormally or yields a nonzero exit status.

-f The shell starts faster, because it will neither search for nor
execute commands from the file .cshrc in the invoker's
home directory.

-i The shell is interactive and prompts for its top-level input,
even if it appears to not be a terminal. Shells are
interactive without this option if their inputs and outputs
are terminals.

-0 Commands are parsed, but not executed. This may aid in
syntactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be
used to escape the newline at the end of this line and
continue onto another line.

-v Causes the verbose variable to be set, with the effect that
command input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are
echoed immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is
executed.

-x Causes the echo variable to be set even before .cshrc is
executed.

After processing of flag arguments, if arguments remain but none
of the -c, -i, -s, or -t options were given, the first argument is
taken as the name of a file of commands to be executed. The
shell opens this file, and saves its name for possible resubstitution

CSH(CP) 1-79

by $0. Since on a typical system most shell scripts are written for
the standard shell (see sh(C)), the C shell will execute such a
standard shell if the first character of a script is not a #, that is if
the script does not start with a comment. Remaining arguments
initialize the variable argv.

Signal Handling

The shell normally ignores quit signals. The interrupt and quit
signals are ignored for an invoked command if the command is
followed by &; otherwise, the signals have the values that the shell
inherited from its parent. The shell's handling of interrupts can
be controlled by onintr. Login shells catch the terminate signal;
otherwise this signal is passed on to children from the state in the
shell's parent. In no case are interrupts allowed when a login shell
is reading the file .logout.

Files

"'/.cshrc

'" /.login

'" /.logout

/bin/sh

/tmp/sh*

/dev/null

/ etc/passwd

Limitations

Read at by each shell at the beginning of
execution

Read by login shell, after .cshrc at login

Read by login shell, at logout

Shell for scripts not starting with a #

Temporary file for < <

Source of empty file

Source of home directories for "'name

Words can be no longer than 512 characters. The number of
arguments to a command that involves filenarne expansion is
limited to 1/6 number of characters allowed in an argument list,
which is 5120, less the characters in the environment. Also,
command substitutions may substitute no more characters than
are allowed in an argument list.

1-80 CSH(CP)

To detect looping, the shell restricts the number of alias
substitutions on a single line to 20.

See Also

access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), environ(M)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

Built-in control structure commands like foreach and while cannot
be used with I, & or ;.

Commands within loops, prompted for by ?, are not placed in the
history list.

It is not possible to use the colon (:) modifiers on the output of
command substitutions.

Csh attempts to import and export the PATH variable for use
with regular shell scripts. This only works for simple cases, where
the PATH contains no command characters.

This version of csh does not support or use the process control
features of the 4th Berkeley Distribution.

CSH(CP) 1-81

CTAGS(CP)

Name

ctags - Creates a tags file.

Syntax

Description

Ctags makes a tags file for vi(C) from the specified C sources. A
tags file gives the locations of specified objects (in this case
functions) in a group of files. Each line of the tags file contains
the function name, the file in which it is defined, and a scanning
pattern used to find the function definition. These are given in
separate fields on the line, separated by blanks or tabs. Using the
tags file, vi can quickly find these function definitions.

If the -x flag is given, ctags produces a list of function names, the
line number and filename on which each is defined, as well as the
text of that line, and prints this on the standard output. With the
-x option no tags file is created. This is a simple index, which can
be printed out as an offline readable function index.

Files whose name ends in.c or.h are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:

-u Causes the specified files to be updated in tags; that is, all
references to them are deleted, and the new values are
appended to the file.

Warning: This option is implemented in a way that is
rather slow; it is usually faster to simply rebuild the
tags file.

-w Suppresses warning diagnostics.

1-82 CTAGS(CP)

The tag main is treated specially in C programs. The tag formed
is created by prepending M to the name of the file, with a trailing
.c if any, removed, and leading pathname components also
removed. This makes use of ctags practical in directories with
more than one program.

Files

tags Output tags file

See Also

ex(C), vi(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

CTAGS(CP) 1-83

DELTA(CP)

Name

delta - Makes a delta (list of changes needed to construct exactly
one version of a file) to an secs file.

Syntax

Description

Delta is used to permanently introduce into the named SCCS file
changes that were made to the file retrieved by get(CP) (called
the generated file, or g-file).

Delta makes a delta to each SCCS file named by files. If a
directory is named, delta behaves as though each file in the
directory were specified as a named file, except that nonSeCS
files (last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read (see Warning); each line of the standard
input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending on
certain options specified and flags (see admin(CP» that may be
present in the sees file (see -m and -y options below).

Options apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only if
two or more versions of the same SCCS file have been
retrieved for editing (get - e) by the same person
(lop-in name)_ The SIn value snecified with the - r , -0--- --------,- ---- --- . ----. - --.a.- - -

keyletter can be either the SID specified on the get
command line or the SID to be made as reported by the
get command (see get(CP». A diagnostic results if the
specified SID is ambiguous or if it is necessary and
omitted on the command line.

1-84 DELTA(CP)

-s Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted, .and unchanged in the SCCS file.

-0 Specifies retention of the edited g-file (normally
removed at completion of delta processing).

-glist Specifies a list (see get(CP) for the definition of list) of
deltas that are to be ignored when the file is accessed at
the change level (SID) created by this delta.

-m[mrlist]
If the SCCS file has the v flag set (see admio(CP»,
then a modification request (MR) number must be
supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see -y
option).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character terminates
the MR list.

Note that if the v flag has a value (see admin(CP)), it is
taken to be the name of a program (or shell procedure)
that will validate the correctness of the MR numbers.
If a nonzero exit status is returned from MR number
validation program, delta terminates (it is assumed that
the MR numbers were not all valid).

-y(comment]
Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment.

If -y is not specified and the standard input is a
terminal, the prompt comments? is issued on the
standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped newline character terminates the
comment text.

DELTA(CP) 1-85

-p Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied. Differences are displayed in a diff(C) format.

Files

All files of the form ?- file are explained in Chapter 6, "SCCS: A
Source Code Control System" in the IBM Personal Computer
XENIX Software Development Guide. The naming convention for
these files is also described there.

g-file

p-file

q-file

x-file

z-file

d-file

Existed before the execution of delta; removed after
completion of delta.

Existed before the execution of delta; may exist after
completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created during the execution of delta; renamed to
secs file after completion of delta.

Created during the execution of delta; removed during
the execution of delta.

Created during the execution of delta; removed after
completion of delta.

/ usr /bin/bdiff
Program to compute differences between the
"retrieved" file and the g-file.

Warning: Lines beginning with an SOH ASCII character
(binary 001) cannot be placed in the SCCS file unless the
SOH is escaped. This character has special meaning to
SCCS (see sccsfile (F)) and will cause an error.

LA,.. get of many sees files, followed by a delta of those files,
"1-.",,,,1;1 1-...0 n'H",,~r1or1 u7ho -tho not- (T""""" ':lt""c ':l l':lrop ':l1'l'lf\llnt f\f
~.l.lVu..l\.l V'-" UVV.1.UvU VV.1..1.V.l,..1. "..I..I.V 6"'&" e,V.L.LV.I. ""'u """ ~"""""'b""" _ __ '-' ...

data. Instead, multiple get/delta sequences should be used.

1-86 DELTA(CP)

If the standard input (-) is specified on the delta command
line, the - m (if necessary) and - y options must also be
present. Omission of these options causes an error.

See Also

admin(CP), bdiff(C), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

DEL TA(CP) 1-87

DOSLD(CP)

Name

dosld - XENIX to MS-DOS cross linker.

Syntax

Description

dosld links the object file(s) given by file to create a program for
execution under MS-DOS. Although similar to Id(CP), dosld has
many options that differ significantly from Id. The options are
described below:

-D DS Allocate. This option instructs dosld to perform DS
allocation. It is generally used in conjunction with the -H
option.

-H Load high. This option instructs dosld to set a field in the
header of the executable file to tell MS-DOS to load the
program at the highest available position in memory. It is
most often used with programs in which data precedes
code in the memory image.

-L Include line numbers. This option instructs dosld to
include line numbers in the listing file (if any). Note that
dosld cannot put line numbers in the listing file if the
source translator hasn't put them in the object file.

-M Include public symbols. This option instructs dosld to
include public symbols in the list file. The symbols are
sorted twice, lexicographically and by address.

-c Ignore case. This option instructs dosld to treat upper and
lower case characters in symbol names as identicaL

1-88 DOSLD(CP)

-Fnum
Set stack size. This option should be followed by a
hexadecimal number. Dosld uses this number for the size
in bytes of the stack segment in the output file.

-Snum
Set segment limit. This option should be followed by a
decimal number between 1 and 1024. The number sets the
limit on the number of different segments that may be
linked together. The default is 128. Note that the higher
the value given, the slower the link will be.

-d Runtime debug information. This option instructs dosld to
print information about what it is doing at runtime.

-mfilename
Create map file. This option should be followed by a
filename. Dosld creates a file with the given name in which
it puts information about the segments and groups in the
executable. Additionally, public symbols and line numbers
will be listed in this file if the -M and -L options are given.

-01 num
Set name length. This option should be followed by a
decimal number. The option instructs dosld to truncate all
public and external symbols longer than num characters.

-0 filename
Name output file. This option should be followed by a
filename which dosld uses as the name of the executable
file it creates. The default name is a.out.

-u name
Name undefined symbol. This option should be followed
by a symbol name. Dosld enters the given name into its
symbol table as an undefined symbol. The -u option may
appear more than once on the command line.

-w Windows option. This option instructs dosld to alter its
normal behavior in the following ways: (1) combine all
code segments together into a single code segment; (2)
replace all long calls with short calls; and (3) replace all
long jumps with short jumps.

DOSLD(CP) 1-89

-G Ignore group associations. This option instructs dosld to
ignore any group definitions it may find in the input files.
This option is provided for compatibility with old versions
of MS-LINK; generally, it should never be used.

As with Id, the files passed to dosld may be either XENIX-style
libraries (objects collected using ar(CP) and indexed using
ranlib(CP» or ordinary 8086 object files. Unless the -u option
appears, at least one of the files passed to dosld must be an
ordinary object file. Libraries are searched only after all the
ordinary object files have been processed.

Files

/ usr /bin/ dosld

See Also

ar(CP), as(CP), cc(CP), Id(CP), ranlib(CP)

1-90 DOSLD(CP)

GET(CP)

Name

get - Gets a version of an sees file.

Syntax

!I:~: "g!~~~~o~~~~ltHI~~f~t~~. t~kJ~TI:ffIWE
Description

Get generates an ASeII text file from each named sees file
according to the specifications given by its options, which begin
with -. The arguments may be specified in any order, but all
options apply to all named sees files. If a directory is named,
get behaves as though each file in the directory were specified as a
named file, except that nonSeeS files (last component of the
pathname does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an sees file
to be processed. Again, nonSeeS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file
whose name is derived from the sees filename by simply
removing the leading s. ; (see also "Files," below).

Each of the options is explained below as though only one sees
file is to be processed, but the effects of any option apply
independently to each named file.

-rSID The SCCS IDentification string (SID) of the version
(delta) of an sees file to be retrieved.

-ccutoff
Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

GET(CP) 1-91

No changes (deltas) to the SCCS file that were created
after the specified cutoff date-time are included in the
generated ASCII text file. Units omitted from the
date-time default to their maximum possible values; that
is, -c7502 is equivalent to -c750228235959. Any
number of nonnumeric characters may separate the
various two-digit pieces of the cutoff date-time. This
feature allows you to specify a cutoff date in the form:
"-c77/2/2 9:22:25".

-e Indicates that the get is for editing or making a change
(delta) to the SCCS file via a subsequent use of
delta(CP). The -e option used in a get for a particular
version (SID) of the sees file prevents further getcs for
editing on the same SID until delta is executed or the j
(joint edit) flag is set in the secs file (see admin(CP».
Concurrent use of get -e for different SIDs is always
allowed.

If the g-file generated by get with an -e option is
accidentally ruined in the editing process, it may be
regenerated by reexecuting the get command with the -k
option in place of the -e option.

SCCS file protection specified via the ceiling, floor, and
authorized user list stored in the SCCS file (see
admin(CP» are enforced when the -e option is used.

-b Used with the -e option to indicate that the new delta
should have an SID in a new branch. This option is
ignored if the b flag is not present in the file (see
admin(CP» or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no successors on the SCCS
file tree.)

Note: A branch delta may always be created from a
nonleaf delta.

-ilist A list of deltas to be included (forced to be applied) in
.L.1 _______ .L! ____ ~.Ll __ __ ~ _____ .L_...l £~1_ 'T"1 __ 1.!_~1_ __ L_
lIl~ (,;r~allUIl Ul Ul~ g~Il~nll~U 111~. 111~ tt.:n lla:s Ult;

following syntax:

list> ::= <range> I <list>, <range>

1-92 GET(CP)

<range> :: = SID I SID - SID

SID, the SCCS Identification of a delta, may be in any
form described in Chapter 6, "SCCS: A Source Code
Control System," in the IBM Personal Computer
XENIX Software Development Guide

-x list A list of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the -i option
for the list format.

-k Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The-k
option is implied by the -e option.

-I[p] Causes a delta summary to be written into an I-file. If
-Ip is used, an I-file is not created; the delta summary is
written on the standard output instead. See "Files" for
the format of the I-file.

-p Causes the text retrieved from the SCCS file to be
written on the standard output. No g-file is created. All
output that normally goes to the standard output goes to
file descriptor 2 instead, unless the - s option is used, in
which case it disappears.

-s Suppresses all output normally written on the standard
output. However, irrecoverable error messages (which
always go to file descriptor 2) remain unaffected.

-m Causes each text line retrieved from the SCCS file to be
preceded by the SID of the delta that inserted the text
line in the secs file. The format is: SID, followed by a
horizontal tab, followed by the text line.

-0 Causes each generated text line to be preceded with the
%M% identification keyword value (see below). The
format is: %MO/o value, followed by a horizontal tab,
followed by the text line. When both the -m and -0

options are used, the format is: %M% value, followed
by a horizontal tab, followed by the -m option generated
format.

GET(CP) 1-93

-g Suppresses the actual retrieval of text from the sees
file. It is primarily used to generate an l-file~ or to verify
the existence of a particular SID.

-t Used to access the most recently created (top) delta in a
given release (for example, - r1), or release and level
(for example, - r1.2).

-aseq-no.
The delta sequence number of the sees file delta
(version) to be retrieved (see sccsfile(F)). This option is
used by the comb (ep) command; it is not particularly
useful and should be avoided. If both the -r and -a
options are specified, the -a option is used. eare should
be taken when using the -a option in conjunction with
the -e option, because the SID of the delta to be created
may not be what you expect. The -r option can be used
with the - a and -e options to control the naming of the
SID of the delta to be created.

For each file processed, get responds (on the standard output)
with the SID being accessed and with the number of lines
retrieved from the sees file.

If the -e option is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated.
If there is more than one named file or if a directory or standard
input is named, each filename is printed (preceded by a newline)
before it is processed. If the -i option is used, included deltas are
listed following the notation "Included"; if the -x option is used,
excluded deltas are listed following the notation "Excluded".

Identification Keywords

Identifying information is inserted into the text retrieved from the
sees file by replacing identification keywords with their value
wherever they occur. The following keywords may be used in the
text stored in an sees file:

1-94 GET(CP)

Keyword
%M %

%1%

%R%
%L %
%B%
%S %
%D%

%HO/o
0/0 T %
%E %

%G %

%U%

%F%
%p%

%Q%

%CO/o

O/OZO/O

%W%

Value
Module name: either the value of the m flag in the
file (see admin(CP» or, if absent, the name of the
SCCS file with the leading s. removed.
sees identification (SID)
(% R % • % L % . % B % . % S %) of the retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created
(YY/MM/DD).
Date newest applied delta was created
(MM/DD/YY).
Time newest applied delta was created
(HH:MM:SS).
Module type: value of the t flag in the SCCS file
(see admin(CP».
SCCS filename.
Fully qualified SCCS filename.
The value of the q flag in the file (see admin(CP».
Current line number. This keyword is intended for
identifying messages output by the program such as
"this shouldn't have happened" type errors. It is not
intended to be used on every line to provide sequence
numbers.
The four-character string @(#) recognizable by
what(C).
A shorthand notation for constructing what (C)
strings for IBM Personal Computer XENIX program
files. % WO/o = %Z% %M % <horizontal-tab> %10/0

GET(CP) 1-95

Keyword
%A %

Files

Value
Another shorthand notation for constructing what (e)
strings for nonXENIX program files.
o/Q A % = % Z % % y % % M % % 10/0 % Z %

Several auxiliary files may be created by get. These files are
known generically as the g-file, I-file, p-file, and z-file. The letter
before the hyphen is called the tag. An auxiliary filename is
formed from the sees filename: the last component of all sees
filenames must be of the form s.module-name; the auxiliary files
are named by replacing the leading s with the tag. The g-file is an
exception to this scheme: the g -file is named by removing the s.
prefix. For example, for the file s.xyz.c, the auxiliary filenames
would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the
current directory (unless the -p option is used). A g-file is
created in all cases, whether or not any lines of text were
generated by the get. It is owned by the real user. If the - k
option is used or implied, the g-file's mode is 644; otherwise the
mode is 444. Only the real user need have write permission in the
current directory.

The I-file contains a table showing which deltas were applied in
generating the retrieved text. The I-file is created in the current
directory if the -I option is used; its mode is 444 and it is owned
by the real user. Only the real user need have write permission in
the current directory.

Lines in the I-file have the following format:

• A blank character if the delta was applied; * otherwise.

• A blank character if the delta was applied or wasn't applied
and ignored; * if the delta wasn't applied and wasn't ignored.

• A code indicating a ~~speciar~ reason why the delta was or
was not applied:

"I":Inc1uded

1-96 GET(CP)

"X":Excluded

"C":Cut off (by a - c option).

• Blank.

• SCCS identification (SID).

• Tab character.

• Date and time (in the form YY /MM/DD HH:MM:SS) of
creation.

• Blank.

• Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an
-e option along to delta. Its contents are also used to prevent a
subsequent execution of get with an -e option for the same SID
until delta is executed or the joint edit flag, j, (see admio(CP» is
set in the SCCS file. The p-file is created in the directory
containing the SCCS file, and the effective user must have write
permission in that directory. Its mode is 644 and it is owned by
the effective user. The format of the p-file is: the gotten SID,
followed by a blank, followed by the SID that the new delta will
have when it is made, followed by a blank, followed by the login
name of the real user, followed by a blank, followed by the
date-time the get was executed, followed by a blank and the - i
option if it was present, followed by a blank and the - x option if
it was present, followed by a newline. There can be an arbitrary
number of lines inthe p-file at any time; no two lines can have the
same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (two-bytes) process ID of the
command (that is, get) that created it. The z-file is created in the
directory containing the SCCS file for the duration of get. The
same protection restrictions as those for the p-file apply for the
z-file. The z-file is created mode 444.

GET(CP) 1-97

See Also

admin(CP), deIta(CP), help(CP), prs(CP), what(C), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Comments

If the effective user has write permission (either explicitly or
implicitly) in the directory containing the SCCS files, but the real
user doesn't, only one file may be named when the - e option is
used.

1-98 GET(CP)

GETS(CP)

Name

gets - Gets a string from the standard input.

Syntax

Description

Gets can be used with csh(CP) to read a string from the standard
input. If string is given, it is used as a default value if an error
occurs. The resulting string (either string or as read from the
standard input) is written to the standard output. If no string is
given and an error occurs, gets exits with exit status 1.

See Also

line(C), csh(CP)

GETS(CP) 1-99

HDR(CP)

Name

hdr - Displays selected parts of object files.

Syntax

Description

Hdr displays object file headers, symbol tables, and text or data
relocation records in human-readable formats. It also prints out
seek positions for the various segments in the object file.

A.out, x.out, and x.out segmented formats and archives are
understood.

The symbol table format consists of six fields. In a.out formats
the third field is missing. The first field is the symbol's index or
position in the symbol table, printed in decimal. The index of the
first entry is zero. The second field is the type, printed in
hexadecimal. The third field is the s seg field, printed in
hexadecimal. The fourth field is the symbol's value in
hexadecimal. The fifth field is a single character that represents
the symbol's type as in nm(CP), except C common is not
recognized as a special case of undefined. The last field is the
symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is
the symbol ID, or index, in decimal. This field is used for external
relocations as an index into the symbol table. It should reference
an undefined symbol table entry. The third field is the position,
or offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment referenced in the relocation: text, data, bss, or EXT
for external. The fifth field is the size of relocation: byte, word
(twobytes), or long. The last field indicates, if present, that the
relocation is relative.

1-100 HDR(CP)

If short form relocation is present, the format consist of three
fields. The first field is the relocation command in hexadecimal.
The second field contains the name of the segment referenced,
text or data. The last field indicates the size of relocation: word
or long.

Options and their meanings are:

-h Causes the object file header and extended header to be
printed out. Each field in the header or extended header is
labeled. This is the default option.

-d Causes the data relocation records to be printed out.

-t Causes the text relocation records to be printed out.

-r Causes both text and data relocation to be printed.

-p Causes seek positions to be printed out as defined by
macros in the include file, <a.out.h> .

-s Prints the symbol table.

-S Prints the file segment table with a header. (Only
applicable to x.out segmented executable files.)

See Also

a.out(F), om (CP)

HDR(CP) 1-101

HELP(CP)
Name

help - Asks for help about sees commands.

Syntax

Description

Help finds information to explain a message from an sees
command or explain the use of a command. Zero or more
arguments may be supplied. If no arguments are given, help
prompts for one.

The arguments may be either message numbers (which normally
appear in parentheses following messages) or command names.
The following types of arguments are:

type 1

type 2

type 3

Begins with nonnumerics, ends in numerics. The
nonnumeric prefix is usually an abbreviation for the
program or set of routines that produced the message
(for example, ge6, for message 6 from the get
command).

Does not contain numerics (as a command, such as
get)

Is all numeric (for example, 212)

1-102 HELP(CP)

The response of the program is the explanatory information
related to the argument, if there is any.

When all else fails, try "help stuck".

Files

/ usr /lib /help Directory containing files of message text.

HELP(CP) 1-103

LD(CP)

Name

ld - Invokes the link editor.

Syntax

Description

Ld is the IBM Personal Computer XENIX link editor. It creates
an executable program by combining one or more object files and
copying the executable result to the file a.out. The filename must
name an object or library file. These names must have the" .0"

(for object) or ".a" (for archive library) extensions. If more than
one name is given, the names must be separated by one or more
spaces. If errors occur while linking, Id displays an error message;
the resulting a.out file is unexecutable.

Ld concatenates the contents of the given object files in the order
given in the command line. Library files in the command line are
examined only if there are unresolved external references
encountered from previous object files. Library files must be in
ranlib(CP) format, that is, the first member must be named

.SYMDEF, which is a dictionary for the library. Ld ignores
the modification dates of the library and the .SYMDEF
entry, so if object files have been added to the library since

.SYMDEF was created, the link may result in an "invalid
object module."

The library is searched iteratively to satisfy as many references as
possible and only routines that define unresolved external
references are concatenated. Object and library files are
processed at the point they are encountered in the argument list,
so the order of files in the command line is important. In general,
all object files should be given before library files. Ld sets the
entry point of the resulting program to the beginning of the first
routine.

1-104 LD(CP)

The following options are:

-Anum
Creates a stand-alone program whose expected load address
(in hexadecimal) is num. This option sets the absolute flag
in the header of the a.out file. Such program files can only
be executed as stand-alone programs.

-Fnum
Sets the size of the program stack to num bytes. Default
stack size if not given, is 2K bytes.

-i Creates separate instruction and data spaces for small model
programs. When the output file is executed, the program
text and data areas are allocated separate physical segments.
The text portion will be read-only and shared by all users
executing the file.

-Ms Creates small model program and checks for error, such as
fixup overflow. This option is reserved for object files
compiled or assembled using the small model configuration.
This is the default model if no -M option is given.

-Mm Creates middle model program and checks for errors. This
option is reserved for object files compiled or assembled
using the middle model configuration. This option implies
-i.

-MI Creates a large model program and checks for errors. The
option is reserved for object files compiled using the large
model configuration. This option implies -i.

-oname
Sets the executable program filename to name instead of
a.out.

Ld should be invoked using the cc(CP) instead of invoking it
directly. Cc invokes Id as the last step of compilation, providing
all the necessary C-Ianguage support routines. Invoking Id
directly is not recommended because failure to give command line
arguments in the correct order can result in errors.

LD(CP) 1-105

Files

/bin/ld

See Also

as(CP), ar(CP), cc(CP), ranlib(CP)

Comments

The user must make sure that the most recent library versions
have been processed with ranlib(CP) before linking. If this is not
done, Id cannot create executable programs using these libraries.

Error messages for the XENIX Software Development System are
listed in IBM Personal Computer XENIX Software Development
Guide.

1-106 LD(CP)

LEX(CP)

Name

lex - Generates programs for lexical analysis.

Syntax

Description

Lex generates programs to be used in simple lexical analysis of
text. A file lex.yy.c is generated which, when loaded with the lex
library, copies the input to the output except when a string
specified in the file is found. If a string is found, the
corresponding program text is executed.

The input file contains strings and expressions to be searched for,
and C text to be executed when strings are found. Multiple files
are treated as a single file. If no files are specified, standard input
is used.

The options must appear before any files. The options are:

-c Indicates C actions and is the default.

-t Causes the lex.yy.c program to be written instead to
standard output.

-v Provides a one-line summary of statistics of the machine
generated.

-n Suppresses the - summary.

Strings and Operators

Lex strings may contain square brackets to indicate character
classes, as in [abx-z] to indicate a, b, x, y, and z. The operators *,

LEX(CP) 1-107

+, and? mean respectively any nonnegative number of, any
positive number of, and either zero or one occurrences of, the
previous character or character class. Thus, [a-zA-Z] + matches a
string of letters. The character. is the class of all ASCII
characters except newline. Parentheses for grouping and vertical
bar for alternation are also supported. The notation r {d, e } in a
rule indicates between d and e instances of regular expression r. It
has higher precedence than /, but lower than *, ?, +, and
concatenation. The character "at the beginning of an expression
permits a successful match only immediately after a newline, and
the character $ at the end of an expression requires a trailing
newline. The character / in an expression indicates trailing
context; only the part of the expression up to the slash is returned
in yytext, but the remainder of the expression must follow in the
input stream. An operator character may be used as an ordinary
symbol if it is within" symbols or preceded by \.

Routines and Variables

Matching is done in order of the strings in the file. The actual
string matched is left in yytext, an external character array. Three
subroutines defined as macros are expected: inputO to read a
character; unput(c) to replace a character read; and output(c) to
place an output character. They are defined in terms of the
standard streams, but you can override them. The program
generated is named yylexO, and the library contains a mainO,
which calls it. The action REJECT on the right side of the rule
causes this match to be rejected and the next suitable match to be
executed; the function yymoreO accumulates additional characters
into the same yytext; and the function yyless(p) pushes back the
portion of the string matched beginning at p, which should be
between yytext and yytext + yyleng. The macros input and output
use files yyin and yyout to read from and write to, defaulted to
stdin and stdout, respectively. The external names generated by
lex all begin with the prefix yy or VY.

Lex File Format

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes % 0/0, it is copied into the external
definition area of the lex.yy.c file. All rules should follow a % 0/0,
as in yacc(CP). Lines preceding % % that begin with a nonblank

1-108 LEX(CP)

character define the string on the left to be the remainder of the
line; it can be called out later by surrounding it with n. Note that
braces do not imply parentheses; only string substitution is done.

Certain table sizes for the resulting finite state machine can be set
in the definitions section:

0/op n
number of positions is n (default 2000)

°/on n
number of states is n (500)

°/ot n
number of parse tree nodes is n (1000)

°/oa n
number of transitions is n (3000)

The use of one or more of the above automatically implies the -v
option, unless the -n option is used.

Example

D
%°/0
if
[a-z]+
O{D}+
{D}+
"++"
"+"
"/*" {

[0-9]

printf("IF statement \n");
printf("tag, value %s\n",yytext);
printf("octal number %s \n" ,yytext);
printf("decimal number %s\n",yytext);
printf("unary op \n");
printf("binary op \n");
loop:
while (inputO != '*');
switch (input 0)

}

{
case' I': break;
case '*': unput('*');
default: go to loop;
}

LEX(CP) 1-109

See Also

yacc(CP)
IBM Personal Computer XENIX Software Development Guide

Comments

This program translates its input into C source code, which in
segmented programming environments, is suitable for compiling
as a small model program only (see cc(CP)).

1-110 LEX(CP)

LINT(CP)

Name

lint - Checks C language usage and syntax.

Syntax

~.\.!~1i!~~~~~r~~];flil~.::·l·i:·~:\··l.i

Description

Lint attempts to detect features of the C program file that are
likely to be bugs, nonportable, or wasteful. It also checks type
usage more strictly than the C compiler. Among the things that
are currently detected are unreachable statements, loops not
entered at the top, automatic variables declared and not used, and
logical expressions whose value is constant. Moreover, the usage
of functions is checked to find functions that return values in
some places and not in others, functions called with varying
numbers of arguments, and functions whose values are not used.

If more than one file is given, it is assumed that all the files are to
be loaded together; they are checked for mutual compatibility. If
routines from the standard library are called from file, lint checks
the function definitions using the standard lint library IUbc.ln. If
lint is invoked with the -p option; it checks function definitions
from the portable lint library llibport.ln.

Any number of lint options may be used, in any order. The
following options are used to suppress certain kinds of
complaints:

-a Suppresses complaints about assignments of long values to
variables that are not long.

-b Suppresses complaints about break statements that cannot
be reached. (Programs produced by lex or yacc will often
result in a large number of such complaints.)

LINT(CP) 1-111

-c Suppresses complaints about casts that have questionable
portability.

-h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

-u Suppresses complaints about functions and external
variables used and not defined, or defined and not used.
(This option is suitable for running lint on a subset of files
of a larger program.)

-v Suppresses complaints about unused arguments in
functions.

-x Does not report variables referred to by external
declarations but never used.

The following arguments alter lint's behavior:

-n Does not check compatibility against either the standard or
the portable lint library.

-p Attempts to check portability to other dialects of C.

-llibname
Checks functions definitions in the specified lint library.
For example, -1m causes the library llibm.ln to be checked.

The -D, -U, and -I options of cc(CP) are also recognized as
separate arguments.

Certain conventional comments in the C source change the
behavior of lint. These are:

/*NOTREACHED*/
At appropriate points, stops comments about unreachable
code.

/*V ARARGSn * /
Suppresses the usual checking for variable numbers of
arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is
taken to be o.

1-112 LINT(CP)

I*ARGSUSED*I
Turns on the -v option for the next function.

I*LINTLIBRARY* I
Shuts off complaints about unused functions in this file.

Lint produces its first output on a per source file basis.
Complaints regarding included files are collected and printed after
all source files have been processed. Finally, information
gathered from all input files is collected and checked for
consistency. At this point, if it is not clear whether a complaint
stems from a given source file or from one of its included files, the
source filename will be printed followed by a question mark.

Files

lusr /lib /lint[12] Program files

/ usr /lib /llibc.1n, / usr /lib /llibport.1n, / usr /lib /llibm.1n,
/usr/lib/llibdbm.1n, /usr/lib/llibtermlib.1n

Standard lint libraries (binary format)
/ usr /lib /llibc, / usr /lib /llibport, / usr /lib /llibm, / usr /lib /llibdbm,
/ usr /lib Illibtermlib

Standard lint libraries (source format)

/usr/tmp/*lint* Temporaries

LINT(CP) 1-113

See Also

cc(CP)

Comments

Exit(S), and other functions that do not return, are not
understood. This can cause incorrect error messages.

1-114 LINT(CP)

LORDER(CP)

Name

lorder - Finds ordering relation for an object library.

Syntax

Description

Lorder creates an ordered listing of object filenames, showing
which files depend on variables declared in other files. The file is
one or more object or library archive files (see ar(CP)). The
standard output is a list of pairs of object filenames. The first file
of the pair refers to external identifiers defined in the second.
The output may be processed by tsort(CP) to find an ordering of
a library suitable for one-pass access by Id(CP).

Example

The following command builds a new library from existing .0

files:

ar cr library 'lorder *.0 I tsort'

Files

*symref, *symdef Temp files

LORDER(CP) 1-115

See Also

ar(CP), Id(CP), tsort(CP)

Comments

Object files whose names do not end with .0, even when
contained in library archives, are overlooked. Their global
symbols and references are attributed to some other file.

1-116 LORDER(CP)

M4(CP)
Name

m4 - Invokes a macro processor.

Syntax

;t~~l[~fii:~n~I Jjil~~];,;

Description

M4 is a macro processor intended as a front end for Ratfor, C,
and other languages. Each of the argument files is processed in
order; if there are no files, or if a filename is -, the standard input
is read. The processed text is written on the standard output.

The options and their effects are:

-e Operates interactively. Interrupts are ignored and the
output is unbuffered.

-s Enables line sync output for the C preprocessor (# line
...)

-Bint Changes the size of the push-back and argument
collection buffers from the default of 4096.

-Hint Changes the size of the symbol table hash array from the
default of 199. The size should be prime.

-Sint Changes the size of the call stack from the default of 100
slots. Macros take three slots, and nonmacro arguments
take one.

-Tint Changes the size of the token buffer from the default of
512 bytes.

To be effective, these flags must appear before any filenames and
before any -D or -U flags:

M4(CP) 1-117

-Dname[= val]
Defines name to valor to null in val's absence.

-Uname
Undefines name.

Macro Calls

Macro calls have the form:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If a
defined macro name is not followed by a (, it is deemed to have
no arguments. Leading unquoted blanks, tabs, and newlines are
ignored while collecting arguments. Potential macro names
consist of alphabetic letters, digits, and underscore , where the
first character is not a digit. -

Left and right single quotation marks are used to quote strings.
The value of a quoted string is the string stripped of the quotation
marks.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. Macro evaluation
proceeds normally during the collection of the arguments, and any
commas or right parentheses that happen to turn up within the
value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed
back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be
redefined but, once this is done, the original meaning is lost.
Their values are null unless otherwise stated.

define The second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $ n in the replacement text, where n is
a digit, is replaced by the n -th argument. Argument
o is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all

1-118 M4(CP)

undefine

defn

pushdef

popdef

ifdef

shift

change quote

the arguments separated by commas; $@ is like $*,
but each argument is quoted (with the current
quotation marks).

Removes the definition of the macro named in its
argument.

Returns the quoted definition of its argument(s). It
is useful for renaming macros, especially built-ins.

Like define, but saves any previous definition.

Removes current definition of its argument(s),
exposing the previous one if any.

If the first argument is defined, the value is the
second argument, otherwise the third. If there is no
third argument, the value is null. The word XENIX
is predefined in m4.

Returns all but its first argument. The other
arguments are quoted and pushed back with commas
in between. The quoting nullifies the effect of the
extra scan that will subsequently be performed.

Changes quotation marks to the first and second
arguments. The symbols may be up to five
characters long. Changequote without arguments
restores the original values (that is, V).

change com Changes left and right comment markers from the
default # and newline. With no arguments, the
comment mechanism is effectively disabled. With
one argument, the left marker becomes the argument
and the right marker becomes newline. With two
arguments, both markers are affected. Comment
markers may be up to five characters long.

divert M4 maintains 10 output streams, numbered 0-9.
The final output is the concatenation of the streams
in numerical order; initially stream 0 is the current
stream. The divert macro changes the current output

M4(CP) 1-119

undivert

divnum

dnl

ifelse

iner

deer

eval

len

stream to its (digit-string) argument. Output
diverted to a stream other than 0 through 9 is
discarded.

Causes immediate output of text from diversions
named as arguments or all diversions if no argument.
Text may be undiverted into another diversion.
Undiverting discards the diverted text.

Returns the value of the current output stream.

Reads and discards characters up to and including
the next newline

Has three or more arguments. If the first argument
is the same as the second, the value is the third
argument. If not, and if there are more than four
arguments, the process is repeated with arguments 4,
5, 6 and 7. Otherwise, the value is either the fourth
string, or if it is not present, null.

Returns the value of its argument incremented by 1.
The value of the argument is calculated by
interpreting an initial digit-string as a decimal
number.

Returns the value of its argument decremented by 1.

Evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, -, *, /,
0/0, /\ (exponentiation), bitwise &, I, /\, and "';
relationals; parentheses. Octal and hex numbers may
be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third
argument may be used to specify the minimum
number of digits in the result.

Returns the number of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or -1 if the
second argument does not occur.

1-120 M4(CP)

substr

translit

include

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of
the substring. A missing third argument is taken to
be large enough to extend to the end of the first
string.

Transliterates the characters in its first argument
from the set given by the second argument to the set
given by the third. No abbreviations are permitted.

Returns the contents of the file named in the
argument.

sinclude Identical to include, except that it says nothing if the
file is inaccessible.

syscmd Executes the XENIX command given in the first
argument. No value is returned.

sysval Is the return code from the last call to syscmd.

make temp Fills in a string of XXXXX in its argument with the
current process ID.

m4exit Causes immediate exit from m4. Argument 1, if
given, is the exit code; the default is O.

m4wrap Argument 1 is pushed back at final EOF; example:
m4wrap('c1eanupO ')

errprint Prints its argument on the diagnostic output file.

dumpdef Prints current names and definitions, for the named
items, or for all if no arguments are given.

traceon With no arguments, turns on tracing for all macros
(including bUilt-ins). Otherwise, turns on tracing for
named macros.

traceoff Turns off trace globally and for any macros
specified. Macros specifically traced by traceon can
be untraced only by specific calls to traceoff.

M4(CP) 1-121

MAKE(CP)

Name

make - Maintains, updates, and regenerates groups of programs.

Syntax

Description

Following is a brief description of all options and some special
names:

-f makefile
Description filename. Makefile is assumed to be the
name of a description file. A filename of - denotes the
standard input. The contents of makefile will override
built-in rules.

-p Prints out the complete set of macro definitions and
target descriptions.

-i Ignores error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE
appears in the description file.

-k Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

-s Silent mode. Does not print command lines before
executing. This mode is also entered if the fake target
name .SILENT appears in the description file.

-r Does not use the built-in rules.

-0 No execute mode. Prints commands, but does not
execute them. Even lines beginning with an @ are
printed.

1-122 MAKE(CP)

-b Compatibility mode for old makefiles.

-e Environment variables override assignments within
makefiles.

-t Touches the target files (causing them to be up-to-date)
rather than issues the usual commands.

-q Question. The make command returns a zero or nonzero
status code depending on whether the target file is or is
not up-to-date.

-d Debug mode. Prints out detailed information on files and
times examined .

. DEFAULT
If a file must be made but there are no explicit commands
or relevant built-in rules, the commands associated with
the name .DEFAULT are used if it exists .

. PRECIOUS
Dependents of this target will not be removed when
Quit(Ctrl- \) or Interrupt(Del) keys are pressed .

. SILENT
Same effect as the -s option .

. IGNORE
Same effect as the -i option.

Make executes commands in makefile to update one or more
target names. Name is typically a program. If no -f option is
present, makefile, Makefile, s.makefile, and s.Makefile are tried in
order. If makefile is -, the standard input is taken. More than
one -f make file argument pair may appear.

Make updates a target only if it depends on files that are newer
than the target. All prerequisite files of a target are added
recursively to the list of targets. Missing files are deemed to be
out of date.

Makefile contains a sequence of entries that specify
dependencies. The first line of an entry is a blank-separated,
nonnulllist of targets, then a :, then a (possibly null) list of

MAKE(CP) 1-123

prerequisite files or dependencies. Text following a ; and all
following lines that begin with a tab are shell commands to be
executed to update the target. The first line that does not begin
with ,a tab or # begins a new dependency or macro definition.
Shell commands may be continued across lines with the
<backslash><newline> sequence. (#) and newline surround
comments.

The following makefile says that pgm depends on two files a.o
and b.o, and that they in turn depend on their corresponding
source files (a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell.
A line is printed when it is executed unless the -s option is
present, or the entry .SILENT: is in make file, or unless the first
character of the command is @. The -0 option specifies printing
without execution; however, if the command line has the string
$(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under "Environment"). The -t (touch)
option updates the modified date of a file without executing any
commands.

Commands returning nonzero status normally terminate make. If
the -i option is present, or the entry .IGNORE: appears in
makefile, or if the line specifying the command begins with
<tab> <hyphen>, the error is ignored. If the -k option is
present, work is abandoned on the current entry but continues on
other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old
version of make) to run without errors. The difference between
the old version of make and this version is that this version
requires all dependency Hnes to have a (possibly null) command
associated with them. The previous version of make assumed, if
no command was specified explicitly, the command was null.

1-124 MAKE (CP)

INTERRUPT and QUIT cause the target to be deleted unless the
target depends on the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such. The environment
variables are processed before any make file and after the internal
rules; thus, macro assignments in a make file override environment
variables. The -e option causes the environment to override the
macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except -f, -p, and -d) defined
for the command line. Further, upon invocation, make "invents"
the variable if it is not in the environment, puts the current
options into it, and passes it on to invocations of commands.
Thus, MAKEFLAGS always contains the current input options.
This proves very useful for "super-makes". In fact, as noted
above, when the -0 option is used, the command $(MAKE) is
executed anyway; hence, one can perform a make -0 recursively
on a whole software system to see what would have been
executed. This is because the -0 is put in MAKEFLAGS and
passed to further invocations of $(MAKE). This is one way of
debugging all of the makefiles for a software project without
actually doing anything.

Macros

Entries of the form string 1 = string2 are macro definitions.
Subsequent appearances of $(string1 [: subst1 =[subst2]]) are
replaced by string2. The parentheses are optional if a single
character macro name is used and there is no substitute sequence.
The optional :subst 1 = subst2 is a substitute sequence. If it is
specified, all nonoverlapping occurrences of substl in the named
macro are replaced by subst2. Strings (for the purposes of this
type of substitution) are delimited by blanks, tabs, newline
characters, and beginnings of lines. An example of the use of the
substitute sequence is shown under "Libraries."

MAKE(CP) 1-125

Internal Macros

Five internally maintained macros are useful for writing rules for
building targets:

$* The macro $* stands for the filename part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@ The $@ macro stands for the full target name of the
current target. It is evaluated only for explicitly named
dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module that is out of date with
respect to the target (that is, the "manufactured"
dependent filename). Thus, in the .c.o rule, the $< macro
would evaluate to the .c file. An example for making
optimized .0 files from .c files is:

.c.o:
cc -c -0 $*.c

or:
.c.o:

cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the
make file are evaluated. It is the list of prerequisites that
are out of date with respect to the target; essentially, those
modules which must be rebuilt.

$ % The $ % macro is only evaluated when the target is an
archive library member of the form lib(file.o}. In this case,
$@ evaluates to lib and $% evaluates to the library
member, file.o.

Four of the five macros can have alternative forms. When an
uppercase D or F is appended to any of the four macros, the
meaning is changed to "directory part" for D and "file part" for
F. Thus, $(@D) refers to the directory part of the string $@. If
there is no directory part, ./ is generated. The only macro
excluded from this alternative form is $?

1-126 MAKE(CP)

Suffixes

Certain names (for instance, those ending with .0) have default
dependents such as .c, .s, etc. If no update commands for such a
file appear in makefile, and if a default dependent exists, that
prerequisite is compiled to make the target. In this case, make has
inference rules which allow building files from other files by
examining the suffixes and determining an appropriate inference
rule to use. The current default inference rules are:

.c .C'" .sh .sh'" .c.o .C"'.O .C"'.C .s.O .s"'.O .y.o .y"'.O .l.o .1"'.0

.y.C .Y"'.C .l.c .c.a .c"'.a .s"'.a .h"'.h

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To
print out the rules compiled into the make on any machine in a
form suitable for recompilation, the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string, which
printf(S) prints when handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile(F».
Thus, the rule .c"'.o would transform an sees e source file into
an object file (.0). Because the s. of the sees files is a prefix, it
is incompatible with make's suffix point-of -view. Hence, the tilde
is a way of changing any file reference into an sees file
reference.

A rule with only one suffix (that is .c:) is the definition of how to
build x from x.c. In effect, the other suffix is null. This is useful
for building targets from only one source file (for example, shell
procedures, simple e programs).

Additional suffixes are given as the dependency list for
.SUFFIXES. Order is significant; the first possible name for
which both a file and a rule exist is inferred as a prerequisite.

The default list is:

.SUFFIXES: .0 .c .y .1 .s

MAKE(CP) 1-127

Here again, the above command for printing the internal rules
displays the list of suffixes implemented on the current machine.
Multiple suffix lists accumulate; .SUFFIXES: with no
dependencies clears the list of suffixes.

Inference Rules

The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules to permit
the inclusion of optional matter in any resulting commands. For
example, CFLAGS, LFLAGS, and YFLAGS are used for compiler
options to cc(CP), lex(CP), and yacc(CP) respectively. Again,
the previous method for examining the current rules is
recommended.

The inference of prerequisites can be controlled. The rule to
create a file with suffix .0 from a file with suffix .c is specified as
an entry with .c.o: as the target and no dependents. Shell
commands associated with the target define the rule for making a
.0 file from a .c file. Any target that has no slashes in it and starts
with a dot is identified as a rule and not as a true target.

Libraries

If a target or dependency name contains parentheses, it is
assumed to be an archive library, the string within parentheses
referring to a member within the library. Thus lib(file.o) and
$(LIB)(file.o) both refer to an archive library that contains file.o.
(This aSSUlues the LIB maCiO has been previously defined.) The
expression $(LIB)(filel.o file2.o) is not legal. Rules pertaining to
archive libraries have the form .XX.a where the XX is the suffix
from which the archive member is to be made. The current
implementation requires the XX to be different from the suffix of

1-128 MAKE(CP)

the archive member. Thus, one cannot have lib(file.o) depend
upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib: lib (file 1.0) lib(file2.0) lib (file3 .0)
@echo lib is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a: rule listed above is built into make and is
unnecessary in this example. A more interesting, but more limited
example of an archive library maintenance construction follows:

lib: lib (file 1.0) lib(file2.o) lib (file 3 .0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The
$? list is defined to be the set of object filenames (inside lib)
whose C source files are out of date. The substitution mode
translates the .0 to .c. (One cannot transform to .C'") Note also,
the disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds up
archive library maintenance considerably. This type of construct
becomes very cumbersome if the archive library contains a mix of
assembly programs and C programs.

Files

[Mm]akefile

s.[Mm]akefile

See Also

sh(C)

MAKE(CP) 1-129

Comments

Some commands return nonzero status inappropriately; use -i to
overcome the difficulty. Commands that are directly executed by
the shell, notably cdC C), are ineffectual across newlines in make.
The syntax (lib(filel.o file2.o file3.o) is illegal. You cannot build
lib(file.o) fromfile.o. The macro $(a:.o=.c"') is not available.

1-130 MAKE(CP)

MKSTR(CP)

Name

mkstr - Creates an error message file from C source.

Syntax

11ii~tr[-1 mes~qgefileprefix file

Note: All the arguments except the name of the file to be
processed are unnecessary.

Description

Mkstr is used to create files of error messages. Its use can make
programs with large numbers of error diagnostics much smaller,
and reduce system overhead in running the program as the error
messages do not have to be constantly swapped in and out.

Mkstr will process each specified file, placing a massaged version
of the input file in a file whose name consists of the specified
prefix and the original name. The optional dash (-) causes the
error messages to be placed at the end of the specified message
file for recompiling part of a large mkstred program.

A typical mkstr command line is

mkstr pi strings xx *.c

This command causes all the error messages from the C source
files in the current directory to be placed in the file pistrings and
processed copies of the source for these files to be placed in files
whose names are prefixed with xx.

To process the error messages in the source to the message file,
mkstr focuses on the string 'error('" in the input stream. Each
time it occurs, the C string starting at the ,,,, is placed in the
message file followed by a null character and a newline character;
the null character terminates the message so it can be easily used
when retrieved, the newline character makes it possible to

MKSTR(CP) 1-131

sensibly cat the error message file to see its contents. The
massaged copy of the input file then contains an [seek pointer into
the file, which can be used to retrieve the message. For example,
the command changes:

error("Error on reading", a2, a3, a4);

into

error(m, a2, a3, a4);

where m is the seek position of the string in the resulting error
message file. The programmer must create a routine error, which
opens the message file, reads the string, and prints it out. The
following example illustrates such a routine.

Example

char efilname[] = "/usr/lib/pi strings";
int efil = -1; -

error(al, a2, a3, a4)
{

}

char buf[256];

if (efil < 0) {

}

efil = open(efilname, 0);
if (efil < 0) {

}

oops:
perror(efilname);
exitO;

if (lseek(efil, (long) aI, 0) I I read(efil, buf, 256) <= 0)
goto oops;

printf(buf, a2, a3, a4);

1-132 MKSTR(CP)

See Also

Iseek(S), xstr(CP)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

MKSTR(CP) 1-133

NM(CP)

Name

nm - Prints name list.

Syntax

Description

Nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each
object file in the archive is produced. If no file is given, the
symbols in a.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined), A (absolute),
T (text segment symbol), D (data segment symbol), B (bss
segment symbol), S (segment name), C (common symbol), or K
(8086 common segment). If the symbol table is in segmented
format, symbol values are displayed as segment:offset. If the
symbol is local (nonexternal) the type letter is in lowercase. The
output is sorted alphabetically.

Options are:

-a Print only absolute symbols.

-c Print only C program symbols (symbols that begin with
'_') as they appeared in the C program.

-g Print only global (external) symbols.

-0 Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each uutput line
rather than only once.

-0 Print symbol values in octal.

1-134 NM(CP)

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-s Sort by size of symbol and display each symbol's size
instead of value. The last symbol in each text or data
segment may be assigned a size of O. This option implies
the -i and -0 options.

-s Switch the display format. If the symbol table is in
segmented format, print values in non-segmented format.
If not segmented, print values in segmented format.

-u Print only undefined symbols.

-v Also describe the object file and symbol table format.

Files

a.out Default input file

See Also

are CP), ar(F), a.out(F)

NM(CP) 1-135

PROF(CP)

Name

prof - Displays profile data.

Syntax

Description

Prof interprets the file mon.out produced by the monitor
subroutine. Under default modes, the symbol table in the named
object file (a.out default) is read and correlated with the mon.out
profile file. For each external symbol, the percentage of time
spent executing between that symbol and the next is printed (in
decreasing order), together with the number of times that routine
was called and the number of milliseconds per call.

If the -a option is used, all symbols are reported rather than just
external symbols. If the -I option is used, the output is listed by
symbol value rather than decreasing percentage.

To cause calls to a routine to be tallied, the -p option of cc must
have been given when the file containing the routine was
compiled. This option also arranges for the mon.out file to be
produced automatically.

Files

mon.out For profile

a.out For namelist

1-136 PROF(CP)

See Also

monitor(S), profil(S), cc(CP)

Comments

Beware of quantization errors.

If you use an explicit call to monitor(S) you will need to make sure
that the buffer size is equal to or smaller than the program size.

PROF(CP) 1-137

PRS(CP)

Name

prs - Prints an sees file.

Syntax

Description

Prs prints, on the standard output, all or part of an sees file (see
sccsfile(F)) in a user supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a
named file, except that nonSeeS files (last component of the
pathname does not begin with s.), and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an XENIX
file or directory to be processed; nonSeeS files and unreadable
files are silently ignored.

Arguments to prs, which may appear in any order, consist of
options, and filenames.

All the described options apply independently to each named file:

-d[dataspec]
Used to specify the output data specification. The
dataspec is a string consisting of sees file data
keywords (see "Data Keywords") interspersed with
optional user-supplied text.

-r[SID] Used to specify the sees IDentification (SID) string
of a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

-e Requests information for all deltas created earlier than
and including the delta designated via the -r option.

1-138 PRS(CP)

-I Requests information for all deltas created later than
and including the delta designated via the -r option.

-a Requests printing of information for both removed,
that is, delta type = R, (see rmdel(ep» and existing,
that is, delta type = D, deltas. If the -a option is not
specified, information for existing deltas only is
provided.

Data Keywords

Data keywords specify which parts of an sees file are to be
retrieved and output. All parts of an sees file (see sccsfiIe(F»
have an associated data keyword. There is no limit on the number
of times a data keyword may appear in a dataspec.

The information printed by prs consists of the user-supplied text
and appropriate values (extracted from the sees file) substituted
for the recognized data keywords in the order of appearance in
the dataspec. The format of a data keyword value is either simple,
in which keyword substitution is direct, or multiline, in which
keyword substitution is followed by a newline.

User-supplied text is any text other than recognized data
keywords. A tab is specified by \ t and newline is specified by
\n.

PRS(CP) 1-139

TABLE 1. sees Files Data Keywords

Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type DorR S

:1: SSCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S
:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq =#) :DS: :DS: ... S
:Dx: Deltas excluded (seq =#) :DS: :DS: ... S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S

1-140 PRS(CP)

TABLE 1. SCCS Files Data Keywords (Continued)

Keyword Data Item File Section Value Format

:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list FI,~gs text M
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S

:LK: Locked releases :R: ... S
:Q: User defined keyword text S
:M: Module name text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :1: S
:ND: Null delta flag yes or no S
:FD: File descriptive text Comments text M
:BD: Body B~?y text M
:GB: Gotten body text M
:W: A form of what(C) string N/A :Z::M: \t:I: S
:A: A form of what(C) string N/A :Z:: Y: :M: :I::Z: S
:Z: what(C) string delimiter N/A @(#) S
:F: SCCS filename N/A text S

:PN: SCCS file pathname N/A text S

*:DT:=:DT::I::D::T::P::DS::DP:

PRS(CP) 1-141

The following example:
prs -d"Users and/or user IDs for :F:are: \n:UN: "s.file

may produce on the standard output:
Users and/or user IDs for s.file are:
xyz
131
abc

The following:
prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:"
-r s.file

may produce on the standard output:
Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:
prs s.file

may produce on the standard output:
D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only option
allowed to be used with the special case is the -a option.

Files

/ tmp / pr?????

1-142 PRS(CP)

See Also

admin(CP), delta(CP), get(CP), help(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

PRS(CP) 1-143

RANLIB(CP)

Name

ranlib - Converts archives to random libraries.

Syntax

Description

Ranlib converts each archive to a form that can be utilized more
rapidly by the linker, by adding a table of contents named
__ .SYMDEF to the beginning of the archive.

See Also

Id(CP), ar(CP), copy(C), settime(C)

Comments

The user must make sure that the most recent library versions
have been processed with ranlib before linking. If this is not done,
Id(CP) cannot create executable programs using these libraries.
Sufficient temporary file space must be available in / tmp.

1-144 RANLIB(CP)

RATFOR(CP)

Name

ratfor - Converts rational FORTRAN into standard FORTRAN

Syntax

catfor [option] [filename . . • 1·

Description

Ratfor converts a rational dialect of FORTRAN into standard
irrational FORTRAN. Ratfor provides control flow constructs
essentially identical to those in C:

statement grouping:
{statement; statement; statement}

decision-making:
if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement
}

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break [n]
next [n]

and some additional syntax to make programs easier to read and
write:

Free form input:
multiple statements/line; automatic continuation

RATFOR(CP) 1-145

Comments:
this is a comment

Translation of relationals:
>, >=, etc., become .GT., .GE., etc.

Return (expression)
returns expression to caller from function

Define:
define name replacement

Include:
include filename

The option -b causes quoted strings to be turned into 27H
constructs. -C copies comments to the output, and attempts to
format it neatly. Normally, continuation lines are marked with an
& in column 1; the option -6x makes the continuation character x
and places it in column 6.

Comments

This program translates its input into C source code, which in
segmented programming environments, is suitable for compiling
as a small model program only (see cc(CP)).

1-146 RATFOR(CP)

REGCMP(CP)
Name

regcmp - Compiles regular expressions.

Syntax

r:eg~~~ [-]
~. ~~ ~;:. ';. ~~ i ,~~.~ :;!: ;:"~ : :

Description

Regcmp, in most cases, precludes the need for calling regcmp (see
regex(S» from C programs. This saves on both execution time
and program size. The command regcmp compiles the regular
expressions in file and places the output in file.i. If the - option is
used, the output is placed in file.c. The format of entries in file is
a name (C variable), followed by one or more blanks followed by
a regular expression enclosed in double quotation marks.

The output of regcmp is C source code. Compiled regular
expressions are represented as extern char vectors. File. i files
may thus be included in C programs, or file.c files may be
compiled and later loaded. In the C program that uses the regcmp
output, regex (abc, line) applies the regular expression named
abc to line. Diagnostics are self-explanatory.

Examples

name "([A-Za-z][A-Za-zO-9_]*)$01l

te 1 noll \ ({O ,I} ([2 - 9] [01] [1 -9]) $0 \) {O ,I} * II
1I([2-9][0-9]{2})$I[-]{O,l}"
1([0-9]{4})$2"

In the C program that uses the regcmp output:

regex(telno, line, area, exch, rest)

applies the regular expression named telno to line.

REGCMP(CP) 1-147

See Also

regex(S)

Comments

This program translates its input into C source code, which, in
segmented programming environments, is suitable for compiling
as a small model program only (see cc(CP)).

1-148 REGCMP(CP)

RMDEL(CP)

Name

rmdel - Removes a delta from an sees file.

Syntax
" " " ,

:rritd~F-t SID "files ...

Description

Rmdel removes the delta specified by the SID from each named
sees file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named sees
file. In addition, the SID specified must not be that of a version
being edited for the purpose of making a delta. That is, if a p-file
exists for the named sees file, the SID specified must not appear
in any entry of the p-filec (see get(ep»).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that nonSeeS
files (last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to
be the name of an sees file to be processed; nonSCeS files and
unreadable files are silently ignored.

Files

x-file See delta(ep)

z-file See delta(CP)

RMDEL(CP) 1-149

See Also

delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

1-150 RMDEL(CP)

SACT(CP)

Name

sact - Prints current SCCS file editing activity.

Syntax

:,~ac~liles

Description

Sact informs the user of any impending deltas to a named SCCS
file. This situation occurs when get(CP) with the -e option has
been previously executed without a subsequent execution of
delta(CP).

If a directory is named on the command line, sact behaves as
though each file in the directory were specified as a named file,
except that nonSeCS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with
each line being taken as the name of an sces file to be
processed.

The output for each named file consists of five fields separated by
spaces:

Field 1

Field 2

Field 3

Field 4

Field 5

Specifies the SIn of a delta that currently exists in the
sces file to which changes will be made to make the
new delta.

Specifies the SIn for the new delta to be created.

Contains the logname of the user who will make the
delta that is, executed a get for editing.

Contains the date that get -e was executed.

Contains the time that get -e was executed.

SACT(CP) 1-151

See Also

delta(CP), get(CP), unget(CP)

Diagnostics

Use heip(CP) for explanations.

1-152 SACT(CP)

SCCSDIFF(CP)
Name

sccsdiff - Compares two versions of an SCCS file.

Syntax

..... sccsditf ~rSlDr -rSID'4 [:-pll~snlfileS,

Description

Sccsdiff compares two versions of an SCCS file and generates the
differences between the two versions. Any number of SCCS files
may be specified, but arguments apply to all files.

-rSID? SID1 and SID2 specify the deltas of an SCCS file that
are to be compared. Versions are passed to bdiff(C) in
the order given.

-p Pipe output for each file through pr(C).
-sn n is the file segment size that bdiff will pass to diff(C).

This is useful when diff fails due to a high system load.

Files

Itmpl get????? Temporary files

See Also

bdiff(C), get(CP), heJp(CP), pr(C)

Diagnostics

I file: No differences (If the two versions are the same).

Use heJp(CP) for explanations.

SCCSDIFF(CP) 1-153

SIZE(CP)
Name

size - Prints the size of an object file.

Syntax

Description

Size prints the (decimal) number of bytes required by the text,
data, and bss portions, and their sum in decimal and hexadecimal,
of each object-file argument. If no file is specified, a.out is used.

See Also

a.out(F)

1-154 SIZE(CP)

SPLINE(CP)

Name

spline - Interpolates smooth curve.

Syntax

SpliIte [option] . . .

Description

Spline takes pairs of numbers from the standard input as abcissas
and ordinates of a function. It produces a similar set, which is
approximately equally spaced and includes the input set, on the
standard output. The cubic spline output has two continuous
derivatives, and enough points to look smooth when plotted.

The following options are recognized, each as a separate
argument:

-a Supplies abscissas automatically (they are missing from the
input); spacing is given by the next argument, or is
assumed to be 1 if next argument is not a number.

-k The constant k used in the boundary value computation:

" k' "k ' y 0= Y b ... ,y n = Y n-l

is set by the next argument. By default k = O.

-n Spaces output points so that approximately n intervals
occur between the lower and upper -x limits. (Default n =
100.)

-p Makes output periodic, that is matches derivatives at ends.
First and last input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits.
Normally these limits are calculated from the data.
Automatic abcissas start at lower limit (default 0).

SPLINE (CP) 1-155

Diagnostics

When data is not strictly monotone in x, spline reproduces the
input without interpolating extra points.

Comments

A limit of1000 input points is silently enforced.

1-156 SPLINE(CP)

STACKUSE(CP)

Name

stackuse - Determines stack requirements for C programs.

Syntax
..:,. - < .,

;l·"~ntstart~yfu:l[... tfal¢ref J I -s"libstackJlfile
,<.,)L:......:".("»'>' ~"'/,>'~ .', "'~. : ," ;";'~' ;", ... : ""~: "'>,~,.:' :/ ") .·i "'.. . < ... ' ':;.;: : ~'ii<'" ":",

Description

Stackuse determines the stack requirements of one or more C
language programs. It displays the name of the main routine in a
file, its stack requirements in bytes, and the number of recursive
routines. All command line switches are optional.

-m startsym
Print only the specified start ("main") symbol. If this
option is not specified all start symbols (those that are not
called by anybody) will be printed.

-r fakeref
Uses the named file fakeref as a fake references file. The
format is: parent child. The special parent .LEAF is a
meta-parent meaning all leaf nodes.

-s libstack
Uses the named file as library of costs for external
routines. The format is: subr stack. The special subr
.UNDEF is a metasubroutine meaning all undefined
routines.

-a Print data for all symbols, not just start symbols.

The -r and -s options may be repeated an arbitrary number of
times. The effect is additive rather than destructive. In the case
of duplicate definitions, the first is used.

Lines of the -r and -s files that begin with a pound sign (#) are
treated as comments and otherwise ignored.

STACKUSE(CP) 1-157

Diagnostics

Usage (fatal).

Redefinitions in -r and -s files or in the source (warning).

Presence of routines for which no stack value is provided
(warning).

Files

/ usr /lib / stackuse / * Passes, libraries

/tmp/* Temporary Y files used by passes.

Comments

For the libstack and fakeref files, a comment character (#) is
used.

1-158 STACKUSE(CP)

STRINGS(CP)

Name

strings - Finds the printable strings in an object file.

Syntax

,,~~~g~,l+Jt':Q)(- number] file

Description

Strings looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a
newline or a null character. Unless the - flag is given, strings only
looks in the initialized data space of object files. If the - 0 flag is
given, each string is preceded by its decimal offset in the file. If
the - number flag is given, number is used as the minimum string
length rather than 4.

Strings is useful for identifying random object files and many
other things.

See Also

hd(C), od(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

STRINGS(CP) 1-159

STRIP(CP)
Name

strip - Removes symbols and relocation bits.

Syntax

Description

Strip removes selected parts of an object file, including the
header, text, data, relocation records, and symbol table. Strip
works directly on the named files; nothing is written to the
standard output.

Strip is typically used to remove symbol table and relocation
information from a file after debugging has been completed. It
also is useful for creating a compact namelist file in which text
and data have been removed.

-d Strip data and the data relocation records.

-e Strip the extended header.

-h Strip the header and extended header.

-r Strip all relocation records except the x.out short form.

-s Strip the symbol table.

-S Strip the segment table.

-t Strip text and the text relocation records.

-x Strip all relocation records.

Strip has the same effect as the -s option of Id. If no options are
given, the -r and -s options are implied.

1-160 STRIP(CP)

Although strip can be used to remove an x.out header from an
80286 relocatable file, it cannot be used to remove run-time
relocation records.

Files

Itmpl s* Temporary file

See Also

Id(CP), a.out(F)

STRIP(CP) 1-161

TIME(CP)

Name

time - Times a command.

Syniax

Description

The given command is executed; after it is complete, time prints
the elapsed time during the command, the time spent in the
system, and the time spent in execution of the command. Times
are reported in seconds.

The times are printed on the standard output.

See Also

times(S)

1-162 TIME(CP)

TSORT(CP)

Name

tsort - Sorts a file topologically.

Syntax

tsort[file]

Description

Tsort produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the
input file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated
by blanks. Pairs of different items indicate ordering. Pairs of
identical items indicate presence, but not ordering.

See Also

lorder(CP)

Diagnostics

Odd data: An odd number of fields is in the input file.

Comments

The sort algorithm is quadratic, which can be slow if you have a
large input list.

TSORT(CP) 1-163

UNGET(CP)

Name

unget - Undoes a previous get of an sees file.

Sy~ltax

unget

Description

Unget undoes the effect of a get -e done before creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that nonSeeS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with
each line being taken as the name of an sees file to be
processed.

Options apply independently to each named file.

-rSID

-s

-n

Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the "new
delta".) The use of this option is necessary only if two
or more versions of the same sees file have been
retrieved for editing by the same person (login name).
A diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the
intended delta's SID.

Causes the retention of the file that would normally be
removed from the current directory.

1-164 UNGET(CP)

See Also

deita(CP), get(CP), sact(CP)

Diagnostics

Use help(CP) for explanations.

UNGET(CP) 1-165

VAL(CP)

Name

val - Validates an sees file.

Syntax

val-

Description

Val determines if the specified file is an sees file meeting the
characteristics specified by the optional argument list. Arguments
to val may appear in any order. The arguments consist of options,
which begin with a -, and named files.

Val has a special argument, -, which causes reading of the
standard input until an end-of-file condition is detected. Each
line read is independently processed as if it were a command line
argument list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single
eight-bit code upon exit as described below.

The options are defined as follows. The effects of any option
apply independently to each named file on the command line:

-s

-rSID

The presence of this argument silences the diagnostic
message normally generated on the standard output
for any error that is detected while processing each
named file on a given command line.

The argument value SID (SeeS IDentification String)
is an sees delta number. A check is made to
determine if the SID is ambiguous (For example rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc., which may exist) or invalid (For

1-166 VAL(CP)

example r 1.0 or r 1.1.0 are invalid because neither
case can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to
determine if it actually exists.

-mname The argument value name is compared with the SCCS
%MOlo keyword in file.

-ytype The argument value type is compared with the SCCS
0/0 Y% keyword in file.

The eight-bit code returned by val is a disjunction of the possible
errors, that is, can be interpreted as a bit string where (moving
from left to right) set bits are interpreted as follows:

bit 0 = Missing file argument.

bit 1 = Unknown or duplicate option.

bit 2 = Corrupted SCCS file.

bit 3 = Can't open file or file not SCCS.

bit 4 = SID is invalid or ambiguous.

bit 5 = SID does not exist.

bit 6 = °10 YOlo -y mismatch.

bit 7 = °loM% -m mismatch

Note that val can process two or more files on a given command
line and in turn can process multiple command lines (when
reading the standard input). In these cases, an aggregate code is
returned, a logical OR of the codes generated for each command
line and file processed.

See Also

admin(CP), delta(CP), get(CP), prs(CP)

VAL(CP) 1-167

Diagnostics

Use help(CP) for explanations.

Comments

Val can process up to 50 files on a single command line.

1-168 VAL(CP)

XREF(CP)

Name

xref - Cross-references C programs.

Syntax

'~e~;;tftle . .. J
.'/;": "'

Description

Xref reads the named files or the standard input if no file is
specified and prints a cross-reference consisting of lines of the
form:

identifier filename line numbers ...

Function definition is indicated by a plus sign (+) preceding the
line number.

See Also

cref(CP)

XREF(CP) 1-169

XSTR(CP)

Name

xstr - Extracts strings from C programs.

Syntax

Description

Xstr maintains a file strings into which strings in component parts
of a large program are hashed. These strings are replaced with
references to this common area. This serves to implement shared
constant strings, most useful if they are also read-only.

The command
xstr -c name

extracts the strings from the C source file in name, replacing
string references by expressions of the form (&xstr[number]) for
some number. An appropriate declaration of xstr is prepended to
the file. The resulting C text is placed in the file x.c, to be
compiled. The strings from this file are placed in the strings data
base if they are not there already. Repeated strings and strings
that are suffices of existing strings do not cause changes to the
data base.

After all components of a large program have been compiled, a
file xs.c declaring the common xstr space can be created by a
command of the form:

xstr -c name 1 name2 name3

This xs.c file should then be compiled and loaded with the rest of
the program. If possible, the array can be made read-only
(shared), saving space and swap overhead.

Xstr can also be used on a single file. A command

1-170 XSTR(CP)

xstr name

creates files x.c and xs.c as before, without using or affecting any
strings file in the same directory.

It may be useful to run xstr after the C preprocessor if any macro
definitions yield strings or if there is conditional code that
contains strings that may not, in fact, be needed. Xstr reads from
its standard input when the argument - is given. An appropriate
command sequence for running xstr after the C preprocessor is:

cc -E name.c I xstr -c
cc -c x.c
mv x.o name.o

Xstr does not touch the file strings unless new items are added;
thus make can avoid remaking xs.o unless truly necessary.

Files

strings Data base of strings

x.c Massaged C source

xS.c C source for definition of array "xstr"

/tmp/xs*
strings

Temporary file when "xstr name" doesn't touch

See Also

mkstr(CP)

XSTR(CP) 1-171

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

If a string is a suffix of another string in the data base, but the
shorter string is seen first by xstr, both strings are placed in the
data base when just placing the longer one there will do.

1-172 XSTR(CP)

YACC(CP)

Name

yacc - Invokes a compiler-compiler.

Syntax

Description

Yaee converts a context-free grammar into a set of tables for a
simple automaton, which executes an LR(1) parsing algorithm.
The grammar may be ambiguous; specified precedence rules are
used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to
produce a programyyparse. This program must be loaded with the
lexical analyzer program, yylex, as well as main and yyerror, an
error handling routine. These routines must be supplied by the
user; lex(CP) is useful for creating lexical analyzers usable by
yace.

If the -v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report on conflicts
generated by ambiguities in the grammar.

If the -d flag is used, the file y. tab. h is generated with the #define
statements that associate the yace-assigned "token codes" with
the user-declared "token names". This allows source files other
than y.tab.c to access the token codes.

Files

y.output

y.tab.c

y.tab.h Defines for token names

YACC(CP) 1-173

yacc.tmp, yacc.acts Temporary files

/usr/lib/yaccpar Parser prototype for C programs

See Also

lex(CP)

Comments

Because filenames are fixed, at most one yacc process can be
active in a given directory at a time.

This program translates its input into C source code, which in
segmented programming environments, is suitable for compiling
as a small model program only (see cc(CP».

1-174 YACC(CP)

Section 2. System Calls and Subroutines

Introduction to (S)

This section describes all the system services. System services
include all routines or system calls that are available in the
operating system kernel. These services are labled with the letter
(S). These routines are available to a C program automatically as
part of the standard library libc. A Synopsis listing the function's
name, type, arguments, and declarations of the arguments, is
given for each system call and subroutine. Other routines are
available in a variety of libraries. On 8086/88 and 80286
systems, versions for small, middle, and large model programs are
provided (that is, three of each library).

To use routines in a program that are not part of the standard
library libc, the appropriate library must be linked. This is done
by specifying -lname to the compiler or linker, where name is the
name listed below. For example -1m, and -Itermcap are
specifications to the linker to search the named libraries for
routines to be linked to the object module. The names of the
available libraries are:

c The standard library containing all system call interfaces,
standard I/O routines, and other general purpose services.

m The standard math library.

termcap

curses

Routines for accessing the termcap data base describing
terminal characteristics.

Screen and cursor manipulation routines.

dbm Data base management routines.

2-1

Most services that are part of the operating system kernel have
one or more error returns. An error condition is indicated by an
otherwise impossible returned value. This is almost always -1; the
individual descriptions specify the details. An error number is
also made available in the external variable errno. Errno is not
cleared on successful calls, so it should be tested only after an
error has been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or super-user. It is
also returned for attempts by ordinary users to do things
allowed only to the super-user.

2 EN OENT No such file or directory
This error occurs when a filename is specified and the file
should exist but doesn't, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by
pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. If
execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error
condition.

5 EIO I/O error

2-2

Some physical 110 error. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
110 on a special file refers to a subdevice that does not exist,
or beyond the limits of the device. It may also occur when,
for example, a tape drive is not on-line or no disk pack is
loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5120 bytes is presented to a
member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number (see a.out(F)).

9 EBADF Bad file number:
Either a file descriptor refers to no open file, or a read
(respectively write) request is made to a file that is open only
for writing (respectively reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the
user is not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, or sbrk, a program asks for more space than
the system is able to supply. This is not a temporary
condition; the maximum space size is a system parameter.
The error may also occur if the arrangement of text, data,
and stack segments requires too many segmentation registers
or if there is not enough swap space during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to
use an argument of a system call.

2-3

15 ENOTBLK Block device required
A nonblock file was mentioned where a block device was
required, for example, in mount.

16 EBUSY Device busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It also occurs if an
attempt is made to enable accounting when it is already
enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context,
for example, link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call
to a device; for example, read a write-only device.

20 ENOTDIR Not a directory
A nondirectory was specified where a directory is required,
for example in a path prefix or as an argument to chdir(S).

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (for example, dismounting a
nonmounted device; mentioning an undefined signal in signal,
or kill; reading or writing a file for which Iseek has generated
a negative pointer). Also set by the math functions described
in the (S) entries of this manual.

23 ENFILE File table overflow

2-4

The system's table of open files is full, and temporarily no
more onens can he accented. --- - - - - r - -_.- - - ~ -

24 EM FILE Too many open files
No process may have more than 20 file descriptors open at a
time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program that is
currently open for writing (or reading). Also, an attempt to
open for writing a pure-procedure program that is being
executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit(S).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left
on the device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error is
returned if the signal is ignored.

33 EDOM Math arg out of domain of func
The argument of a function in the math package is out of the
domain of the function.

2-5

34 ERANGE Math result not representable
The value of a function in the math package is not
representable within machine precision.

35 EUCLEAN File system needs cleaning
An attempt was made to mount(S) a file system whose
super-block is not flagged clean.

36 EDEADLOCK Would deadlock
A process' attempt to lock a file region would cause a
deadlock between processes vying for control of that region.

37 ENOTNAM Not a name file
A creatsem(S), opensem(S), waitsem(S), or sigsem(S) was
issued using an invalid semaphore identifier.

38 ENA V AIL Not available
An opensem(S), waitsem(S) or sigsem(S) was issued to a
semaphore that has not been initialized by a call to
creatsem(S). A sigsem was issued to a semaphore out of
sequence; that is, before the process has issued the
corresponding waitsem to the semaphore. An nbwaitsem was
issued to a semaphore guarding a resource that is currently in
use by another process. The semaphore on which a process
was waiting has been left in an inconsistent state when the
process controlling the semaphore exits without relinquishing
control properly, that is, without issuing a waitsem on the
semaphore.

39 EISNAM A name file
A name file (semaphore, shared data, etc.) was specified
when not expected.

Definitions

Process ID

Each active process in the system is uniquely identified by a
positive integer called a process iD. The range of this ID is fronl ° to 30,000.

Parent Process ID

2-6

A new process is created by a currently active process; see
fork(S). The parent process ID of a process is the process ID of
its creator.

Process Group ID

Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This
ID is the process ID of the group leader. This grouping permits
the signaling of related processes; see kill(S).

Tty Group ID

Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group IDS. This
grouping is used to terminate a group of related process upon
termination of one of the processes in the group; see exit(S) and
signal(S).

Real User ID and Real Group ID

Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group
ID that are used to determine file access permissions (see below).
The effective user ID and effective group ID are equal to the
process's real user ID and real group ID respectively, unless the
process or one of its ancestors evolved from a file that had the
set-user-ID bit or set-group ID bit set; see exec(S).

Super-User

A process is recognized as a super-user process and is granted
special privileges if its effective user ID is o.

2-7

Special Processes

The processes with a process ID of 0 and a process ID of 1 are
special processes and are referred to as procO and procl.

ProcO is the scheduler. Procl is the initialization process (init).
Proc 1 is the ancestor of every other process in the system and is
used to control the process structure.

Filename

Names consisting of up to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character
values excluding 0 (null) and the ASCII code for a / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of
filenames because of the special meaning attached to these
characters by the shell. Likewise, the high-order bit of the
character should not be set.

Pathname and Path Prefix

A pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a filename. A
filename is a string of 1 to 14 characters other than the ASCII
slash and null, and a directory name is a string of 1 to 14
characters (other than the ASCII slash and null) naming a
directory.

If a pathname begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

A slash by itself names the root directory.

Uniess specifically stated otherwise, the null pathname is treated
as if it named a nonexistent file.

2-8

Directory

Directory entries are called links. By convention, a directory
contains at least two links,. and., referred to as dot and dot-dot
respectively. Dot refers to the directory itself and dot-dot refers
to its parent directory.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root directory
and a current working directory for the purpose of resolving
pathname searches. A process's root directory need not be the
root directory of the root file system. See chroot(C) and
chroot(S).

File Access Permissions

Read, write, and execute/search permissions on a file are granted
to a process if one or more of the following is true:

The process's effective user ID is super-user.

The process's effective user ID matches the user ID of the
owner of the file and the appropriate access bit of the
"owner" portion (0700) of the file mode is set.

The process's effective user ID does not match the user ID of
the owner of the file, and the process's group ID matches the
group of the file and the appropriate access bit of the
"group" portion (070) of the file mode is set.

The process's effective user ID does not match the user ID of
the owner of the file, and the process's effective group ID
does not match the group ID of the file, and the appropriate
access bit of the "other" portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied. See
chmod(C) and chmod(S).

See Also

intro(C)

2-9

A64L(S)

Name

a641, 164a - Converts between long integer and base 64 ASCII.

Synopsis

Description

These routines are used to maintain numbers stored in base 64
ASCII. This is a notation by which long integers can be
represented by up to six characters; each character represents a
"digit" in a radix 64 notation.

The characters used to represent "digits" are:

o

/ 1

0-9 2-11,

A-Z 12-37

a-z 38-63.

2-10 A64L(S)

A641 takes a pointer to a null-terminated base 64 representation
and returns a corresponding long value. L64a takes a long
argument and returns a pointer to the corresponding base 64
representation.

Comments

The value returned by 164a is a pointer into a static buffer, the
contents of which are overwritten by each call.

A64L(S) 2-11

ABORT(S)

Name

abort - Generates an lOT fault.

Synopsis

Description

Abort causes an 110 trap signal (SIGIOT) to be sent to the calling
process. This usually results in termination with a core dump.

Abort can return control if the calling process is set to catch or
ignore the SIGIOT signal; see signal(S).

See Also

adb(CP), exit(S), signal(S)

Diagnostics

If an aborted process returns control to the shell (sh(C», the
shell usually displays the message "abort - core dumped".

2-12 ABORT(S)

ABS(S)

Name

abs - Returns an integer absolute value.

Synopsis

Description

Abs returns the absolute value of its integer operand.

See Also

fabs in f1oor(S)

Comments

If the largest negative integer supported by the hardware is given,
the function returns it unchanged.

ABS(S) 2-13

ACCESS(S)

Name

access - Determines accessibility of a file.

Synopsis

Description

Path points to a pathname naming a file. Access checks the
named file for accessibility according to the bit pattern contained
in amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit
pattern for amode can be formed by adding any combination of
the following:

04 Read
02 Write
01 Execute (search)
00 Check existence of file

Access to the file is denied if one or more of the following is true:

A component of the path prefix is not a directory.
[ENOTDIR]

Read, write, or execute (search) permission is requested for a
null pathname. [ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

Write access is requested for a file on a read-only file system.
[EROFS]

2-14 ACCESS(S)

Write access is requested for a pure procedure (shared text)
file that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested
access. [EACCES]

Path points outside the process's allocated address space.
[EFAULT]

Access checks the permissions for the owner of a file by checking
the "owner" read, write, and execute mode bits. For members of
the file's group, the "group" mode bits are checked. For all
others, the "other" mode bits are checked.

Return Value

If the requested access is permitted, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the
error.

See Also

chmod(S), stateS)

Comments

The super-user (root) may access any file, regardless of
permission settings.

ACCESS(S) 2-15

ACCT(S)

Name

acct - Enables or disables process accounting.

Synopsis

Description

Acct is used to enable or disable the system's process accounting
routine. If the routine is enabled, an accounting record is written
on an accounting file for each process that terminates. A process
can be terminated by a call to exit or by receipt of a signal that it
does not ignore or catch; see exit(S) and signal(S). The effective
user ID of the calling process must be super-user to use this call.

Path points to the pathname of the accounting file. The
accounting file format is given in acct(F).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acct will fail if one or more of the following is true:

The effective user ID of the calling process is not super-user.
[EPERM]

An attempt is being made to enable accounting when it is
already enabled. [EBUSY]

A component of the path prefix is not a directory.
[ENOTDIR]

One or more components of the accounting file's pathname
do not exist. [ENOENT]

2-16 ACCT(S)

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file.
[EACCES]

The named file is a directory. [EACCES]

The named file resides on a read-only file system. [EROFS]

Path points to an illegal address. [EFAULT]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

accton(C), acctcom(C), acct(F)

ACCT(S) 2-17

ALARM(S)

Name

alarm - Sets a process's alarm clock.

Synopsis

Description

Alarm sets the calling process's alarm clock to sec seconds. After
sec "real-time" seconds have elapsed, the alarm clock sends a
SIGALRM signal to the process; see signaI(S).

Although alarm does not wait for the signal after setting the alarm
clock, pause(S) may be used to make the calling process wait.

Alarm requests are not stacked; successive calls reset the calling
process's alarm clock.

If sec is 0, any previously made alarm request is canceled.

Return Value

Alarm returns the amount of time previously remaining in the
calling process's alarm clock.

See Also

pause(S), signal(S)

2-18 ALARM(S)

ASSERT(S)

Name

assert - Helps verify validity of program.

Synopsis

#mclude <asseri.h>

asserl(expression);

Description

This macro is useful for putting diagnostics into programs under
development. When it is executed, if expression is false, it prints

Assertion failed: file name, line nnn

on the standard error file and exits. Name is the source filename
and nnn the source line number of the assert statement.

Comments

To suppress calls to assert, use the option "-DNDEBUG" when
compiling the program; see cc(CP)).

ASSERT(S) 2-19

ATOF(S)

Name

atof, atoi, atol - Converts ASCII to numbers.

Synopsis

Description

These functions convert a string pointed to by nptr to floating,
integer, and long integer numbers respectively. The first
unrecognized character ends the string.

Atof recognizes a string of the form:

[+ I -] digits[. digits] [e I E [+ I -] digits]

where the digits are continguous decimal digits. Any number of
tabs and spaces may precede the string. The + and - signs are
optional. Either e or E may be used to mark the beginning of the
exponent.

Atoi and atol recognize strings of the form:

[+ I -] digits

where the digits are contiguous decimal digits. Any number of
tabs and spaces may precede the string. The + and - signs are
optional.

2-20 ATOF(S)

See Also

scanf(S)

Comments

There are no provisions for overflow.

ATOF(S) 2-21

BESSEL(S)
Name

jO, jl, jn, yO, yl, yn - Performs Bessel functions.

Synopsis

Description

These functions calculate Bessel functions of the first and second
kinds for real arguments and integer orders.

Comments

Negative arguments cause yO, yl, and yn to return a huge negative
value.

2-22 BESSEL(S)

BSEARCH(S)
Name

bsearch - Performs a binary search.

Synopsis

'~t1~~;*b~~arc~(}{~y,;'base~nel, ,widtlr,compar)
'c~~*key;"., ' "'. ' ,
chat*base- " ::,:" :,: "'" '.' 1",
iritnel, width;
mt(*compar)o ;

Description

Bsearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating the
location at which a datum may be found. The table must be
previously sorted in increasing order. The first argument is a
pointer to the datum to be located in the table. The second
argument is a pointer to the base of the table. The third is the
number of elements in the table. The fourth is the width of an
element in bytes. The last argument is the name of the
comparison routine. It is called with two arguments that are
pointers to the elements being compared. The routine must
return an integer less than, equal to, or greater than 0, depending
on whether the first argument is to be considered less than, equal
to, or greater than the second.

Return Value

If the key cannot be found in the table, a value of 0 is returned.

See Also

Isearch(S), qsort(S)

BSEARCH(S) 2-23

CHDIR(S)

Name

chdir - Changes the working directory.

Synopsis

Description

Path points to the pathname of a directory. Chdir causes the
named directory to become the current working directory, the
starting point for path searches for pathnames not beginning with
/.

Chdir will fail and the current working directory will be
unchanged if one or more of the following is true:

A component of the pathname is not a directory.
[ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the
pathname. [EACCES]

Path points outside the process's allocated address space.
[EFAULT]

2-24 CHDIR(S)

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chroot(S)

CHDIR(S) 2-25

CHMOD(S)

Name

chmod - Changes mode of a file.

Synopsis

Description

Path points to a pathname naming a file. Chmod sets the access
permission portion of the named file's mode according to the bit
pattern contained in mode.

Access permission bits for mode can be formed by adding any
combination of the following:

04000 Set user ID on execution
02000 Set group ID on execution
01000 Save text image after execution
00400 Read by owner
00200 Write by owner
00100 Execute (or search if a directory) by owner
00040 Read by group
00020 Write by group
00010 Execute (or search) by group
00004 Read by others
00002 Write by others
00001 Execute (or search) by others

To change the mode of a file, the effective user ID of the process
must match the owner of the file or must be super-user.

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

2-26 CHMOD(S)

If the effective user ID of the process is not super-user or the
effective group ID of the process does not match the group ID of
the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing, mode bit 01000
prevents the system from abandoning the swap-space image of
the program-text portion of the file when its last user finishes with
the file. Thus, when the next user executes the file, the text need
not be read from the file system but can simply be swapped in,
saving time. Many systems have relatively small amounts of swap
space, and the same-text bit should be used sparingly, if at all.

Chmod will fail and the file mode will be unchanged if one or
more of the following is true:

A component of the path prefix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The effective user ID does not match the owner of the file
and the effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space.
[EFAULT]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chown(S), mknod(S)

CHMOD(S) 2-27

CHOWN(S)

Name

chown - Changes the owner and group of a file.

Synopsis

Description

Path points to a pathname naming a file. The owner ID and group
ID of the named file are set to the numeric values contained in
owner and group respectively.

Only processes with an effective user ID equal to the file owner
or super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000
respectively, are cleared.

Chown fails and the owner and group of the named file remains
unchanged if one or more of the following is true:

A component of the path prefix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The effective user ID doeS not rIlatch the owner of the fHe,
and the effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

2-28 CHOWN(S)

Path points outside the process's allocated address space.
[EFAULT]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chmod(S)

CHOWN(S) 2-29

CHROOT(S)

Name

chroot - Changes the root directory.

Synopsis

Description

Path points to a pathname naming a directory. Chroot causes the
named directory to become the root directory, the starting point
for path searches for pathnames beginning with /.

To change the root directory, the effective user ID of the process
must be super-user.

The" .. " entry in the root directory is interpreted to mean the root
directory itself. Thus," .. " cannot be used to access files outside
the root directory.

Chroot fails and the root directory remains unchanged if one or
more of the following is true:

Any component of the pathname is not a directory.
[ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

Path points outside the process's allocated address space.
[EFAULT]

2-30 CHROOT(S)

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chdir(S), chroot(C)

CHROOT(S) 2-31

CHSIZE(S)

Name

chsize - Changes the size of a file.

Synopsis

Description

Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call. Chsize changes the size of the file associated
with the file descriptor fildes to be exactly size bytes in length.
The routine either truncates the file or pads it with an appropriate
number of bytes. If size is less than the initial size of the file, all
allocated disk blocks between size and the initial file size are
freed.

The maximum file size as set by ulimit(S) is enforced when chsize
is called, rather than on subsequent writes. Thus chsize fails, and
the file size remains unchanged if the new changed file size would
exceed the ulimit.

Return Value

On successful completion, a value of 0 is returned. Otherwise,
the value -1 is returned and errno is set to indicate the error.

See Also

createS), dupeS), Iseek(S), open(S), pipe(S), ulimit(S)

2-32 CHSIZE(S)

Comments

In general if chsize is used to expand the size of a file, when data
is written to the end of the file, intervening blocks are filled with
zeros. In a few rare cases, reducing the file size may not remove
the data beyond the new end-of-file.

CHSIZE(S) 2-33

CLOSE(S)

Name

close - Closes a file descriptor.

Synopsis

Description

Fildes is a file descriptor obtained from a ere at, open, dup, fcntl, or
pipe system call. Close closes the file descriptor indicated by
fildes.

Close will fail if fildes is not a valid open file descriptor.
[EBADF]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

createS), dupeS), exec(S), fcntl(S), open(S), pipe(S)

2-34 CLOSE(S)

CONV(S)

Name

toupper, tolower, toupper, tolower, toascii - Translates
characters. - -

Synopsis

.' #include. <ctype.h>'·

inltoupper (c)
intc;

Description

Toupper and to lower convert the argument c to a letter of opposite
case. Arguments may be the integers -1 through 255 (the same
values returned by getc(S)). If the argument of toupper
represents a lowercase letter, the result is the corresponding
uppercase letter. If the argument of tolower represents an
uppercase letter, the result is the corresponding lowercase letter.
All other arguments are returned unchanged.

toupper and tolower are macros that accomplish the same
thing as toupperand tolower but have restricted argument values
and are faster. toupper requires a lowercase letter as its
argument; its result is the corresponding uppercase letter.

CONV(S) 2-35

tolower requires an uppercase letter as its argument; its result is
the corresponding lowercase letter. All other arguments cause
unpredictable results.

Toascii converts integer values to ASCII characters. The function
clears all bits of the integer that are not part of a standard ASCII
character; it is intended for compatibility with other systems.

See Also

ctype(S)

Comments

Because toupper and tolower are implemented as macros,
they should not be used where unwanted side effects may occur.
Removing the toupper and tolower macros with the #undef
directive causesthe corresponding library functions to be linked
instead. This allows any arguments to be used without worry
about side effects.

2-36 CONV(S)

CREAT(S)

Name

creat - Creates a new file or rewrites an existing one.

Synopsis

h!t~I'~~ttD~t~, ,m()~~)
dltlr:~J)a*b;' :;: '

·.'iIit:$i»4¢:;' :,: s·

Description

Creat creates a new ordinary file or prepares to rewrite an existing
file named by the pathname pointed to by path.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
process's effective user ID, the file's group ID is set to the
process's effective group ID, and the access permission bits (that
is, the low-order 12 bits of the file mode) are set to the value of
mode. Mode may have the same values as described for chmod(S),
Creat then modifies the access permission bits as follows:

All bits set in the process's file mode creation mask are
cleared. See umask(S).

The "save text image after execution bit" is cleared. See
chmod(S).

On successful completion, a nonnegative integer, namely the file
descriptor, is returned and the file is open for writing even if the
mode does not permit writing. The file pointer is set to the
beginning of the file. The file descriptor is set to remain open
across exec system calls. See fcntI(S). No process may have
more than 20 files open simultaneously. A new file may be
created with a mode that forbids writing.

Creat will fail if one or more of the following is true:

CREAT(S) 2-37

A component of the path prefix is not a directory.
[ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The pathname is null. [ENOENT]

The file does not exist and the directory in which the file is to
be created does not permit writing. [EACCES]

The named file resides or would reside on a read-only file
system. [EROFS]

The file is a pure procedure (shared text) file that is being
executed. [ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [EISDIR]

Twenty file descriptors are currently open. [EMFILE]

Path points outside the process's allocated address space.
[EFAULT]

Return Value

On successful completion, a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

2-38 CREAT(S)

See Also

close(S), dupeS), Iseek(S), open(S), read(S), umask(S), write(S)

Comments

Open(S) is preferred to create

CREAT(S) 2-39

CREATSEM(S)
Name

creatsem - Creates an instance of a binary semaphore.

Synopsis

Description

Creatsem defines a binary semaphore named by sem name to be
used by waitsem(S) and sigsem(S) to manage mutualiY exclusive
access to a resource, shared variable, or critical section of a
program. Creatsem returns a unique semaphore number
sem num which may then be used as the parameter in waitsem
and sigsem calls. Semaphores are special files of 0 length. The
filename space is used to provide unique identifiers for
semaphores. Mode sets the accessibility of the semaphore using
the same format as file access bits. Access to a semaphore is
granted only on the basis of the read access bit; the write and
execute bits are ignored.

A semaphore can be operated on only by a synchronizing
primitive, such as waitsem or sigsem, by creatsem, which initializes
it to some value, or by opensem, which opens the semaphore for
use by a process. Synchronizing primitives are guaranteed to be
executed without interruption once started. These primitives are
used by associating a semaphore with each resource (including
critical code sections) to be protected.

The process controlling the semaphore should issue:

sem_num = creatsem("semaphore", mode);

to create, initialize, and open the semaphore for that process. All
other processes using the semaphore should issue:

2-40 CREATSEM(S)

sem_num = opensem("semaphore");

to access the semaphore's identification value. Note that a
process cannot open and use a semaphore that has not been
initialized by a call to creatsem, nor should a process open a
semaphore more than once in one period of execution. Both the
creating and opening processes use waitsem and sigsem to use the
semaphore sem_num.

See Also

opensem (S), waitsem (S), sigsem (S) .

Diagnostics

Creatsem returns the value -1 if an error occurs. If the semaphore
named by sem name is already open for use by other processes,
errno is set to EEXIST. If the file specified exists but is not a
semaphore type, errno is set to ENOTNAM. If the semaphore
has not been initialized by a call to creatsem, errno is set to
ENAVAIL.

Comments

After a creatsem you must do a waitsem to gain control of a given
resource.

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX 1 versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

UNIX is a trademark of AT & T Technology Inc.

CREATSEM(S) 2-41

CTERMID(S)

Name

ctermid - Generates a filename for a terminal.

Synopsis

Description

Ctermid returns a pointer to a string that, when used as a
filename, refers to the controlling terminal of the calling process.

If (int) s is zero, the string is stored in an internal static area, the
contents of which are overwritten at the next call to ctermid, and
the address of which is returned. If (int) s is nonzero, sis
assumed to point to a character array of at least L ctermid
elements; the string is placed in this array and the value of sis
returned. The manifest constant L ctermid is defined in
<stdio.h>.

Comments

The difference between ctermid and ttyname(S) is that ttyname
must be given a file descriptor, and it returns the actual name of
the terminal associated with that file descriptor, while ctermid
returns a magic string (I dev Itty) that refers to the terminal if
used as a filename. Thus ttyname is useless unless the process
already has at least one file open to a terminal.

See Also

ttyname(S)

2-42 CTERMID(S)

CTIME(S)

Name

ctime, localtime, gmtime, asctime, tzset - Converts date and time
to ASCII.

Synopsis

~.e~e(~;<·
lon~f~etock;'«<:': .~.

<. s~~t,;;;~"«~loclllt~el~I~~k).
loltg~cl~~k; ::;.": ;::; '.. .;:

, .". . :.', .: ; :. . '~l ,.;,: . ~. '.";

Description

Ctime converts a time pointed to by clock (such as returned by
time(S» into ASCII and returns a pointer to a 26-character string
in the following form:

Sun Sep 16 01:03:521973\n\.0

If necessary, fields in this string are padded with spaces to keep
the string a constant length.

CTIME(S) 2-43

Localtime and gmtime return pointers to structures containing the
time as a variety of individual quantities. These quantities give
the time on a 24-hour clock, day of month (1-31), month of year
(0-11), day of week (Sunday = 0), year (since 1900), day of year
(0-365), and a flag that is nonzero if daylight saving time is in
effect. Localtime corrects for the time zone and possible daylight
saving time. Gmtime converts directly to Greenwich time
(GMT), which is the time the XENIX system uses.

Asctime converts the times returned by localtime and gmtime to a
26-char'acter ASCII string and returns a pointer to this string.

The structure declaration for tm is defined in /usr/include/time.h.

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (for example, in
Eastern Standard Time (EST), timezone is 5*60*60); the external
integer variable daylight is nonzero if and only if the standard
U.S.A. Daylight Saving Time conversion should be applied.

If an environment variable named TZ is present, asctime uses the
contents of the variable to override the default time zone. The
value of TZ must be a three-letter time zone name, followed by a
number representing the difference between local time and
Greenwich time in hours, followed by an optional three-letter
name for a daylight time zone. The difference can be a negative
number if the current location is east of England. For example,
the setting for New Jersey would be EST5EDT. The effects of
setting TZ are thus to change the values of the external variables
timezone and daylight. In addition, the time zone names contained
in the external variable:

char *tzname[2] = {"EST","EDT"};

are set from the environment variable. The function tzset sets the
external variables from TZ ; it is called by asctime and may also
be called explicitly by the user.

2-44 CTIME(S)

See Also

tbne(S),getenv(S), envrron(~)

Comments

The return values point to static data whose contents are
overwritten by each call.

CTIME(S) 2-45

CTYPE(S)

Name

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii - Classifies characters.

Synopsis

Description

These macros classify ASCII -coded integer values by table
lookup. Each returns nonzero for true, zero for false. Isascii is
defined on all integer values; the rest are defined only where
isascii is true and on the single non-ASCII value EOF (see
stdio(S».

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

c is a letter.

c is an uppercase letter.

c is a lowercase letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a-f].

c is an alphanumeric.

c is a space, tab, carriage return, newline, vertical
tab, or form feed.

c is a punctuation character (neither control nor
alphanumeric) .

2-46 CTYPE(S)

isprint

isgraph

iscntrl

isascii

See Also

ascii(M)

c is a printing character, octal 40 (space) through
octal 176 (tilde).

c is a printing character, like isprint except false for
space.

c is a delete character (octal 177) or ordinary control
character (less than octal 40).

c is an ASCII character, code less than 0200.

CTYPE(S) 2-47

CURSES(S)

Name

curses - Performs screen and cursor functions.

Synopsis

Description

These routines give the user a method of updating screens with
reasonable optimization. They keep an image of the current
screen, curser, and the user modifies this image by modifying the
standard screen, stdscr, or by setting up a new screen. The refresh
and wrefresh routines make the current screen look like the
modified one. To initialize the routines, the routine initscr must
be called before any of the other routines that deal with windows
and screens are used.

The routines are linked with the loader options -Icurses and
-Itermcap.

See Also

termcap(M), stty(C), setenv(S)
IBM Personal Computer XENIX Programmer's Guide to Library
Functions

Functions

Note: Some of the following functions use y,x coordinates.
Thp " 'T~ri~hlp inrli{'<;Itp.C! rAUT -:lnrl tt-.p. v ,1", ... ",1-.1"" ';rori';"nt-aC' v J ... _.a. ~""''-''.L'-'' ~.L"&'~..I."""""""'''''''U .L '"',.,. ""'.L.1.""- "'.1..1.\..1 ~ Y UJ. .I.UU.l\,.l .lJ..lu.J."",a ... ",~

column.

2-48 CURSES(S)

int addch(ch)
char ch;

Adds a character to stdscr.

int addstr(str)
char *str;

Adds a string to stdscr.

int box(win,vert,hor)
WINDOW *win;
char vert, hor;

Draws a box around a window.

int crmodeO
Sets cbreak mode.

int c1earO
Clears stdscr.

int c1earok(win,state)
WINDOW *win;
bool state;

Sets clear flag for win.

int c1rtobotO
Clears to bottom on stdscr.

int c1rtoeolO
Clears to end of line on stdscr.

int delchO
Deletes character from stdscr.

int deletelnO
Deletes line from stdscr.

int delwin(win)
WINDOW *win;

Delete win.

int echoO
Sets echo mode.

CURSES(S) 2-49

int era~eO
Erase stdscr.

int getchO
Gets a char through stdscr.

int getstr(str)
char *str;

Gets a string through stdscr.

int gettmodeO
Gets tty modes.

int getyx(win,y,x)
WINDOW *win;
int x,y;

Gets current (y,x) position of win.

int inchO
Gets char at current (y,x) co-ordinates.

WINDOW *initscrO
Initializes screens.

int insch(c)
char ~;

Inserts character in stdscr.

int insertlnO
Inserts blank line in stdscr.

int leaveok(win,state)
WINDOW *win;
bool state;

Sets leave flag for win.

int longname(termbuf ,name)
char *termbuf, *name;

Gets long name from termbuf.

int move(y,x)
int y,x;

Moves to (y,x) on stdscr.

2-50 CURSES(S)

int mvaddch(y,x,ch)
int Y,x;
char ch;

Moves to (y,x) and adds character ch

int mvaddstr(y,x,str)
int Y,X;
char *str;

Moves to (y,x) and adds string str

int mvcur(lasty ,iastx,newy ,newx)
int iasty, iastx, newy, newx;

Moves cursor the from (lasty,lastx) to (newy ,newx).

int mvdeich(y,x)
int y,x;

Moves to (y,x) and deletes character from stdscr

int mvgetch(y,x)
int y,x;

Moves to (y,x) and gets a char through stdscr

int mvgetstr(y ,x,str)
int y,x;
char *str;

Moves to (y,x) and gets a string through stdscr

int mvinch(y,x)
int y,x;

Moves to (y,x) and gets char at current co-ordinates

int mvinsch(y,x,c)
int y,x;
char C;

Moves to (y,x) and inserts character in stdscr

int mvwaddch(win, y,x,ch)
WINDOW *win;
int y,x;
char ch;

Moves to (y,x) in win and adds character ch

CURSES(S) 2-51

int mvwaddstr(win,y ,x,str)
WINDOW *win;
int y,x;
char *str;

Moves to (y,x) in win and adds string str

int mvwdelch(win,y,x)
WINDOW *win;
int y,x;

Moves to (y,x) in win and deletes the character

int mvwgetch(win,y,x)
WINDOW *win;
int y,x;

Moves to (y,x) in win and gets a character

int mvwgetstr(y ,x,str)
WINDOW *win;
int y,x;
char *str;

Moves to (y,x) in win and gets a string

int mvwin(win,y,x)
WINDOW *win;
int y,x;

Moves upper corner of win to (y,x)

int mvwinch(win,y ,x)
WINDOW *win;
int y,x;

Moves to (y,x) in win and gets character at current
co-ordinates

int mvwinsch(win,y,x,c)
WINDOW *win; .
int y,x;
char c;

Moves to (y,x) in win and inserts character

WINnow *n£\UTUTin{J;n£\~ ~nl~ h£\....;... "h;... ,,\
y ~ """"", .""""f'" .'t' ••• , ~, " .. Io3'u'"'6... J ,11'"'60.1. A..,I

int lines, cols, begin y, begin x; - -
Creates a new window. -

2-52 CURSES(S)

int nlO
Sets newline mapping.

int nocrmodeO
U nsets cbreak mode.

int noechoO
Unsets echo mode.

int nontO
U nsets newline mapping.

int norawO
Unsets raw mode.

int overiay(winl,win2)
WINDOW *winl, *win2;

Overlays winl on win2.

int overwrite(wiol,win2)
WINDOW *winl, *win2;

Overwrites winl on top of win2.

int printw(fmt,arg 1 ,arg2, ...)
char *fmt;

Prints args on stdscr.

int rawO
Sets raw mode.

int refreshO
Makes current screen look like stdscr.

int resttyO
Resets tty flags to stored value.

int savettyO
Stored current tty flags.

iot scanw(fmt,argl,arg2, ...)
char *fmt;

Scans for args through stdscr.

CURSES(S) 2-53

int scroll(win)
WINDOW *win;

Scrolls win one line.

int scrollok(win,state)
WINDOW *win;
bool state;

Sets scroll flag.

int setterm(name)
char *name;

Sets term variables for name.

int standendO
Clears standout mode of stdscr.

int standoutO
Sets standout mode for characters in subsequent output to
stdscr.

WINDOW *subwin(win,lines,cols,begin y,begin x)
WINDOW *win; --
int lines, cols, begin y, begin x;

Creates a subwindow in win.

int touchwin(win)
WINDOW *win;

Prepares win for complete update on next refresh.

int unctrl(ch)
char ch;

Printable version of ch.

int waddch(win,ch)
WINDOW *win;
char ch;

Adds char to win.

int waddstr(win,str)
WINDOW *win;
char *str;

Adds string to win.

2-54 CURSES(S)

int wclear(win)
WINDOW *win;

Clear win.

int wclrtobot(win)
WINDOW *win;

Clears to bottom of win.

int wclrtoeol(win)
WINDOW *win;

Clears to end of line on win.

int wdelch(win)
WINDOW *win;

Deletes current character from win.

int wdeleteln(win)
WINDOW *win;

Deletes line from win.

int werase(win)
WINDOW *win;

Erase win.

int wgetch(win)
WINDOW *win;

Gets a char through win.

int wgetstr(win,str)
WINDOW *win;
char *str;

Gets a string through win.

int winch(win)
WINDOW *win;

Gets char at current (y,x) in win.

int winsch(win,c)
WINDOW *win;
char c;

Inserts character c in win.

CURSES(S) 2-55

int winsertln(win)
WINDOW *win;

Inserts a blank line in win.

int wmove(win,y,x)
WINDOW *win;
int y,x;

Sets current (y,x) co-ordinates on.

int wprintw(win,fmt,argl,arg2, ...)
WINDOW *win;
char *fmt;

Print args on win.

int wrefresh(win)
WINDOW *win;

Makes screen look like win.

int wscanw(win,fmt,argl,arg2, ...)
WINDOW *win;
char *fmt;

Scans for args through win.

int wstandend(win)
WINDOW *win;

Clears standout mode for win.

int wstandout(win)
WINDOW *win;

Sets standout mode for characters on subsequent output to
win.

See Also

termcap(M), stty(C), setenv(S)
IBM Personal Computer XENIX Programmer's Guide to Library
Functions

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

2-56 CURSES(S)

CUSERID(S)
Name

cuserid - Gets the login name of the user.

Synopsis

Description

Cuserid returns a pointer to string that represents the login name
of the owner of the current process. If (inl) s is zero, this
representation is generated in an internal static area, the address
of which is returned. If (int) s is nonzero, s is assumed to point to
an array of at least L cuserid characters; the representation is
left in this array. Themanifest constant L cuserid is defined in
<stdio.h>.

Diagnostics

If the login name cannot be found, cuserid returns NULL; if s is
nonzero in this case, \ 0 will be placed at *s.

CUSERID(S) 2-57

See Also

getiogin(S), getpwent in getpwent(S)

Comments

Cuserid uses getpwnam (see getpwent(S)); thus the results of a
user's call to the latter is obliterated by a subsequent call to the
former.

2-58 CUSERID(S)

DBM(S)
Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs database
functions.

Synopsis

Description

These functions maintain key/content pairs in a database. The
functions will handle very large databases and will access a keyed
item in one or two file system accesses. The functions are
obtained with the loader option -Idbm.

Keys and contents are described by the datum typedef. A datum
specifies a string of dsize bytes pointed to by dptr. Arbitrary
binary data, as well as normal ASCII strings, is allowed. The
database is stored in two files. One file is a directory containing a
bit map and has" .dir" as its suffix. The second file contains all
data and has ". pag" as its suffix.

DBM(S) 2-59

Before a database can be accessed, it must be opened by dbminit.
At the time of this call, the Files /ile.dir and /ile.pag must exist.
(An empty database is created by creating zero-length" .dir" and
".pag" files.)

Once open, the data stored under a key is accessed by fetch and
data is placed under a key by store. A key (and its associated
contents) is deleted by delete. A linear pass through all keys in a
database may be made, in an (apparently) random order, by use
of firstkey and nextkey. Firstkey returns the first key in the
database. With any key, nextkey will return the next key in the
database. This code will traverse the database:

for(key=firstkeyO;key.dptr!=NULL; key=nextkey(key)

Diagnostics

All functions that return an in! indicate errors with negative
values. A zero return indicates O.K. Routines that return a
datum indicate errors with a null (0) dptr.

Comments

The .pag file will contain holes, so that its apparent size is about
four times its actual content. Older UNIX systems may create
real file blocks for these holes when touched. These files cannot
be copied by normal means (cp, cat, tp, tar, ar) without filling in
the holes.

Dptr pointers returned by these subroutines point into static
storage, which is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the
internal block size (currently 512 bytes). Moreover all
key / content pairs that hash together must fit on a single block.

Store returns an error if block off fills with inseparable data.

Delete does not physically reclaim file space, although it does
make it available for reuse.

2-60 DBM(S)

The order of keys presented by firstkey and nextkey depends on a
hashing function.

These routines are not reentrant, so they should not be used on
more than one database at a time.

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

DBM(S) 2-61

DEFOPEN(S)
Name

defopen, defread - Reads default entries.

Synopsis

Description

Defopen and defread are a pair of routines designed to allow easy
access to default definition files. XENIX is normally distributed
in binary form; the use of default files allows OEMS or site
administrators to customize utility defaults without having the
source code.

Defopen opens the default file named by the pathname in
filename. Defopen returns null if it is successful in opening the
file, or the fopen failure code (errno) if the open fails.

Defread reads the previously opened file from the beginning until
it encounters a line beginning with pattern. Defread then returns
a pointer to the first character in the line after the initial pattern.
If a trailing newline character is read, it is replaced by a null byte.

When all items of interest have been extracted from the opened
file, the program may call defopen with the name of another file
to be searched, or it may call defopen with NULL, which closes
the default file without opening another.

Files

The XENIX convention is for a system program xyz to store its
defaults (if any) in the file / etc/ default/xyz.

2-62 DEFOPEN(S)

Diagnostics

Defopen returns zero on success and nonzero if the open fails.
The return value is the errno value set by fopen(S).

Defread returns NULL if a default file is not open, if the
indicated pattern could not be found, or if it encounters any line
in the file greater than the maximum length of 128 characters.

DEFOPEN(S) 2-63

DUP(S)
Name

dup, dup2 - Duplicates an open file descriptor.

Synopsis

Description

Fildes is a file descriptor obtained from a ereat, open, dup, fentl, or
pipe system call. Dup returns a new file descriptor having the
following in common with the original:

Same open file (or pipe).

Same file pointer (that is, both file descriptors share one file
pointer).

Same access mode (read, write, or read/write).

The new file descriptor is set to remain open across exec system
calls. See fentl(S).

Dup returns the lowest available file descriptor. Dup2 causes
fildes2 to refer to the same file as fildes. If fildes2 already
referred to an open file, it is closed first.

Dup will fail if one or more of the following is true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty file descriptors are currently open. [EMFILE]

2-64 DUP(S)

Return Value

On successful completion, a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

See Also

createS), cIose(S), exec(S), fcntl(S), open(S), pipe(S)

Comments

Dup2 is an IBM Personal Computer XENIX improvement and
may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. Dup2 must be linked with the compiler/linker option
-Ix.

DUP(S) 2-65

ECVT(S)

Name

ecvt, fcvt, gcvt - Performs output conversions.

Synopsis

Description

Ecvt converts the value to a null-terminated string of ndigit ASCII
digits and returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored
indirectly through deept (negative means to the left of the
returned digits). If the sign of the result is negative, the word
pointed to by sign is nonzero, otherwise it is zero. The low-order
digit is rounded.

Fevt is identical to eevt, except that the correct digit has been
rounded for FORTRAN F format output of the number of digits
specified by ndigits.

Gevt converts the value to a null-terminated ASCII string in buf
and returns a pointer to buf. It attempts to produce ndigit
significani digiis in FORTRAN F format if possible, otherwise E
format, ready for printing. Trailing zeros may be suppressed.

2-66 ECVT(S)

See Also

printf(S)

Comments

The return values point to static data whose content is
overwritten by each call.

ECVT(S) 2-67

END(S)

Name

end, etext, edata - Last locations in program.

Synopsis

Description

These names do not refer to either routines or locations with
interesting contents. The address of etext is the first address
above the program text, edata above the initialized data region,
and end above the uninitialized data region.

See Also

brk(S), malloc(S).

Warning: No assumptions should be made with respect to
the ordering of the program text, initialized data, and
uninitialized data regions. For example, you can not assume
that the addresses following the address of etext will
reference the uninitialized data region.

No assumptions can be made concerning the contiguity of
information within a region. A region may be split among
different parts of memory. Therefore, no assurance can be
made that addresses within a region are consecutive.

2-68 END(S)

EXEC(S)

Name

execl, execv, execle, execve, execlp, execvp - Executes a file.

Synopsis

Description

Exec in all its forms transforms the calling process into a new
process. The new process is constructed from an ordinary,
executable file called the "new process file". There can be no
return from a successful exec because the calling process is
overlaid by the new process.

Path points to a pathname that identifies the new process file.

File points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment
line "PATH =" (see environ(M)). The environment is supplied
by the shell (see sh(C».

EXEC(S) 2-69

ArgO, argl, ... , argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present, and it
must point to a string that is the same as path (or its last
component).

Argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new
process. By convention, argv must have at least one member, and
it must point to a string that is the same as path (or its last
component). Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process.
Envp is terminated by a null pointer.

File descriptors open in the calling process remain open in the
new process, except for those whose close-on-exec flag is set; see
fcntl(S). For those file descriptors that remain open, the file
pointer is unchanged.

Signals set to terminate the calling process are set to terminate the
new process. Signals set to be ignored by the calling process are
set to be ignored by the new process. Signals set to be caught by
the calling process are set to terminate the new process; see
signal(S).

If the set-user-ID mode bit of the new process file is set (see
chmod(S», exec sets the effective user ID of the new process to
the owner ID of the new process file. Similarly, if the
set-group-ID mode bit of the new process file is set, the effective
group ID of the new process is set to the group ID of the new
process file. The real user ID and real group ID of the new
process remain the same as those of the calling process.

Profiling is disabled for the new process; see profll(S).

The new process also inherits the following attributes from the
calling process:

Nice value (see nice(S»

Process ID

2-70 EXEC(S)

Parent process ID

Process group ID

tty group ID (see exit(S) and signal(S))

Trace flag (see ptrace(S) request 0)

Time left until an alarm clock signal (see alarm(S))

Current working directory

Root directory

File mode creation mask (see umask(S))

File size limit (see ulimit(S))

utime, stime, cutime, and cstime (see times(S))

From C, two interfaces are available. Execl is useful when a
known file with known arguments is being called; the arguments
to execl are the character strings constituting the file and the
arguments. The first argument is conventionally the same as the
filename (or its last component). A 0 argument must end the
argument list.

The execv version is useful when the number of arguments is
unknown in advance. The arguments to execv are the name of the
file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0
pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is
conventionally at least 1 and the first member of the array points
to a string containing the name of the file.

EXEC(S) 2-71

Argv is directly usable in another execv because argv [argc] is 0.

Envp is a pointer to an array of strings that constitute the
environment of the process. Each string consists of a name, an
"=", and a null-terminated value. The array of pointers is
terminated by a null pointer. The shell sh(C) passes an
environment entry for each global shell variable defined when the
program is called. See environ(M) for some conventionally used
names. The C run-time start-off routine places a copy of envp in
the global cell environ, which is used by execv and execl to pass
the environment to any subprograms executed by the current
program. The exec routines use lower-level routines as follows to
pass an environment explicitly:

exec1e(file, argO, argl, ... , argn, 0, environ);
execve(file, argv, environ);

Execlp and execvp are called with the same arguments as execl
and execv, but duplicate the shell's actions in searching for an
executable file in a list of directories. The directory list is
obtained from the environment.

The following are example calls to each exec:

execl("/bin/sh", "sh", "-e", argv[l],O);
execle("/bin/sh", "-e", argv[1] ,0, environ);
exeelp(lls", 11s", (ehar*)O);
exeev("/bin/eat", argv);
exeeve("/bin/eat", argv, environ);
exeevp(argv[l], &argv[l]);

Exec will fail and return to the calling process if one or more of
the following is true:

One or more components of the new process file's pathname
do not exist. [ENOENT]

A component of the new process file's path prefix is not a
directory. [EN OTD IR]

Search permission is denied for a directory listed in the new
process file's path prefix. [EACCES]

The new process file is not an ordinary file. [EACCES]

2-72 EXEC(S)

The new process file mode denies execution permission.
[EACCES]

The new process file has the appropriate access permission,
but has an invalid magic number in its header or some other
executable file format inconsistency [ENOEXEC]

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.
[ETXTBSY]

The new process requires more memory than is allowed by
the memory model used or the system-imposed maximum.
[ENOMEM]

The number of bytes in the new process's argument list is
greater than the system-imposed limit of 5120 bytes.
[E2BIG]

The new process file is not as long as indicated by the size
values in its header. [EFAULT]

Path, argv, or envp points to an illegal address. [EFAULT]

Return Value

If exec returns to the calling process, an error has occurred; the
return value will be -1 and errno will be set to indicate the error.

See Also

exit(S), fork(S)

EXEC(S) 2-73

EXIT(S)

Name

exit - Terminates a process.

Synopsis

Description

Exit terminates the calling process. All of the file descriptors
open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is
notified of the calling process's termination and the low-order 8
bits (that is, bits 0377) of status are made available to it; see
waiteS).

If the parent process of the calling process is not executing a wait,
the calling process is transformed into a "zombie process." A
zombie process is a process that only occupies a slot in the
process table, it has no other space allocated either in user or
kernel space. The process table slot that it occupies is partially
overlaid with time accounting information (see <sys/proc.h>) to
be used by times(S).

The parent process ID of all of the calling process's existing child
processes and zombie processes is set to 1. This means the
initialization process (see introduction(S» inherits each of these
processes.

An accounting record is written on the accounting file if the
system's accounting routine is enabled; see acct(S).

If the process ID, tty group ID, and process group ID of the
calling process are equal, the SIGHUP signal is sent to each
processes that has a process group ID equal to that of the calling
process.

2-74 EXIT(S)

See Also

signal(S), waiteS)

Warning

See Warning in signal(S)

EXIT(S) 2-75

EXP(S)

Name

exp, log, pow, sqrt, loglO - Performs exponential, logarithm,
power, square root functions.

Synopsis

Description

Exp returns the exponential function of x.

Log returns the natural logarithm of x.

Pow returns xy.

Sqrt returns the square root of x.

See Also

intro(S), hypot(S), sinh(S)

2-76 EXP(S)

Diagnostics

Exp and pow return a huge value when the correct value would
overflow. A truly outrageous argument may also result in errno
being set to ERANGE. Log returns a huge negative value and
sets errno to EDOM when x is nonpositive. Pow returns a huge
negative value and sets errno to EDOM when x is nonpositive and
y is not an integer, or when x and yare both zero. Sqrt returns 0
and sets errno to EDOM when x is negative.

EXP(S) 2-77

FCLOSE(S)

Name

fclose, fflush - Closes or flushes a stream.

Synopsis

Description

Fclose causes any buffers for the name stream to be emptied and
the file to be closed. Buffers allocated by the standard
input/ output system are freed.

Fclose is performed automatically upon calling exit(S).

Fflush Causes any buffered data for the named output stream to be
written to that file. The stream remains open.

These functions return 0 for success and EOF if any errors are
detected.

See Also

c1ose(S), fopen(S), setbuf(S)

2-78 FCLOSE(S)

FCNTL(S)

Name

fcntl - Controls open Files.

Synopsis

Description

Fcntl provides for control over open files. Fildes is an open file
descriptor obtained from a creat, open, dup, fcntl, or pipe system
call.

The cmds available are:

F DUPFD Returns a new file descriptor as follows:

Lowest numbered available file descriptor greater
than or equal to argo

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both
file descriptors share one file pointer).

Same access mode (read, write, or read/write).

Same file status flags (that is, both file descriptors
share the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(S)
system calls.

FCNTL(S) 2-79

F GETFD Gets the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is 0, the file
remains open across exec; otherwise, the file is
closed upon execution of exec.

F SETFD Sets the close-on-exec flag associated with fildes to
the low-order bit of arg (0 or 1 as above).

F GETFL Gets file status flags.

F SETFL Sets file status flags to argo Only certain flags can
be set.

Fcntl fails if one or more of the following is true:

Fildes is not a valid open file descriptor. [EBADP]

Cmd is P DUPPD and 20 file descriptors are currently
open. [EMPILE]

Cmd is P DUPPD and arg is negative or greater than 20.
[EINVAL]

Return Value

On successful completion, the value returned depends on cmd as
follows:

F DUPFD A new file descriptor

F GETFD Value of flag (only the low-order bit is defined)

F SETFD Value other than-l

F GETFL Value of file flags

F SETFL Value other than -1

2-80 FCNTL(S)

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

See Also

ciose(S), exec(S), open(S)

FCNTL(S) 2-81

FERROR(S)

Name

ferror, feof, clearerr, fileno - Determines stream status.

Synopsis

Description

Ferror returns nonzero when an error has occurred reading or
writing the named stream, otherwise zero. Unless cleared by
ciearerr, the error indication lasts until the stream is closed.

Feof returns nonzero when end-of-file is read on the named input
stream, otherwise zero.

Clearerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the
stream; see open (S) .

2-82 FERROR(S)

Ferror, feof, and fUeno are implemented as macros; they cannot
be redec1ared.

See Also

open(S),fopen(S)

FERROR(S) 2-83

FLOOR(S)

Name

floor, fabs, ceil, fmod - Performs absolute value, floor, ceiling and
remainder functions.

Synopsis

Description

Floor returns the largest integer (as a double precision number)
not greater than x.

Fabs returns I x I .

Ceil returns the smallest integer not less than x.

Fmod returns the number f such that x = iy +f, for some integer
i~ and 0 :5 f < y.

See Also

abs(S)

2-84 FLOOR(S)

FOPEN(S)
Name

fopen, freopen, fdopen - Opens a stream.

Synopsis

Description

Fopen opens the file named by filename and associates a stream
with it. Fopen returns a pointer to be used to identify the stream
in subsequent operations.

Type is a character string having one of the following values:

r Open for reading.

w Create for writing.

a Append; open for writing at end of file, or create for
writing.

r+ Open for update (reading and writing).

w+ Create for update.

a+ Append; open or create for update at end of file.

FOPEN(S) 2-85

Freopen substitutes the named file in place of the open stream. It
returns the original value of stream. The original stream is closed,
regardless of whether the open call ultimately succeeds.

Freopen is typically used to attach the preopened constant names
stdin, stdout, and stderr to specified files.

Fdopen associates a stream with a file descriptor obtained from
open, dup, creat, or pipe(S). The type of the stream must agree
with the mode of the open file. The type must be provided,
because the standard I/O library has no way to query the type of
an open file descriptor. Fdopen returns the new stream.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an
intervening fseek, rewind, or an input operation that encounters
the end of the file.

See Also

open(S), fcIose(S)

Diagnostics

Fopen and freopen return the pointer NULL if filename cannot be
accessed.

2-86 FOPEN(S)

FORK(S)

Name

fork - Creates a new process.

Synopsis

Description

Fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process)
except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (that is,
the process ID of the parent process).

The child process has its own copy of the parent's file
descriptors. Each of the child's file descriptors shares a
common file pointer with the corresponding file descriptor of
the parent.

The child process's utime, stime, cutime, and cstime are set to
0; see times(S).

The time left on the parent's alarm clock is not passed on to
the child.

Fork returns a value of 0 to the child process.

Fork returns the process ID of the child process to the parent
process.

Fork will fail arid no child process will be created if one or more
of the following is true:

FORK(S) 2-87

The system-imposed limit on the total number of processes
under execution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes
under execution by a single user would be exceeded.
[EAGAIN]

Not enough memory is available to create the forked image .
. [ENOMEM]

Return Value

On successful completion, fork returns a value of 0 to the child
process, and returns the process ID of the child process to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errno is set to indicate the
error.

See Also

exec(S), wait(S)

2-88 FORK(S)

FREAD(S)

Name

fread, fwrite - Performs buffered binary input and output.

Synopsis

Description

Fread reads, into a block beginning at ptr, nit ems of data of the
type of *ptr from the named input stream. It returns the number
of items actually read.

Fwrite appends, at most, nitems of data of the type of *ptr,
beginning at ptr, to the named output stream. It returns the
number of items actually written.

See Also

read(S), write(S), fopen(S), gete(S), pute(S), gets(S), puts(S),
printf(S), seanf(S)

FREAD(S) 2-89

FREXP(S)

Name

frexp, ldexp, modf - Splits floating-point number into a mantissa
and an exponent.

Synopsis

Description

Frexp returns the mantissa of a double value as a double quantity,
x, of magnitude less than 1, and stores an integer n such that value
= x *2 * * n indirectly through eptr.

Ldexp returns the quantity value*(2**exp).

Modf returns the positive fractional part of value and stores the
integer part indirectly through iptr.

2-90 FREXP(S)

FSEEK(S)

Name

fseek, ftell, rewind - Repositions a stream.

Synopsis

Description

Fseek sets the position of the next input or output operation on
the stream. The new position is at the signed distance offset bytes
from the beginning, the current position, or the end of the file,
according to the value of ptmame: 0, 1, or 2.

Fseek undoes any effects of ungetc(S).

After fseek or rewind, the next operation on an update file may be
either input or output.

Ftell returns the current value of the offset relative to the
beginning of the file associated with the named stream. The
offset is measured in bytes.

Rewind (stream) is equivalent to fseek (stream, OL, 0).

FSEEK(S) 2-91

See Also

Iseek(S), fopen(S)

Diagnostics

Fseek returns nonzero for improper seeks, otherwise zero.

2-92 FSEEK(S)

GAMMA(S)

Name

gamma - Performs log gamma function.

Synopsis

Description

Gamma returns In I r (I x I) I . The sign of r (I x I) is returned in
the external integer signgam. The following C program fragment
might be used to calculate r:

y = gamma (x);
if (y > 88.0)

error ();
y = exp (y) * signgam;

Diagnostics

For negative integer arguments, a huge value is returned, and
errno is set to EDOM.

GAMMA(S) 2-93

GETC(S)

Name

getc, getchar, fgetc, getw - Gets character or word from a stream.

Synopsis

Description

Getc returns the next character from the named input stream.

GetcharO is identical to getc (stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it
may therefore be used as an argument. Fgetc runs more slowly
than getc but takes less space per invocation.

Getw returns the next word from the named input stream. It
returns the constant EOF upon end-of -file or error but because
that is a valid integer value, feof and ferror(S) should be used to
check the success of getw. Getw assumes no special alignment in
the file.

See Also

ferror(S), fopen(S), fread(S) , gets(S) , putc(S), seanf(S)

2-94 GETC(S)

Diagnostics

These functions return the integer constant EOF at the
end-of-file or on a read error.

Comments

Because getc is implemented as a macro, stream arguments with
side effects are treated incorrectly. In particular, "getc(*f++)"
doesn't work properly.

GETC(S) 2-95

GETCWD(S)

Name

getcwd - Gets pathname of current working directory.

Synopsis

Description

Getcwd returns a pointer to the current directory pathname. If
pnbuf is a NULL pointer, getcwd will obtain maxlen bytes of space
using malloc(S). In this case, the pointer returned by getcwd may
be used as the argument in a subsequent call to free(S) (See
malloc(S).) If pnbuf is not a NULL pointer, the pathname is
placed in the space pointed to by pnbuf and pnbuf is returned.

In all cases, the value of maxlen must be at least two greater than
the length of the pathname to be returned.

See Also

pwd(CP), malloc(S), popen(S).

Diagnostics

Returns NULL with errno set if maxlen is not large enough, or if
an error occurs in a lower-level function.

Comments

maxlen must be 2 more than the true length of the pathname.

2-96 GETCWD(S)

GETENV(S)

Name

getenv - Gets value for environment name.

Synopsis

Description

Getenv searches the environment list (see environ(M)) for a string
of the form name = value and returns value if such a string is
present, otherwise 0 (NULL).

See Also

sh(C), exec(S)

GETENV(S) 2-97

GETGRENT(S)

Name

getgrent, getgrgid, getgrnam, setgrent, endgrent - Get group file
entry.

Synopsis

Description

Getgrent, getgrgid and getgrnam each return pointers. The format
of the structure is defined in /usr/include/grp.h.

The members of this structure are:

gr_name The name of the group.

gr -yasswd The encrypted password of the group.

gr_gid The numerical group ID.

gr_mem Null-terminated vector of pointers to the
individual member names.

2-98 GETGRENT(S)

Getgrent reads the next line of the file, so successive calls may be
used to search the entire file. Getgrgid and getgrnam search from
the beginning of the file until a matching gid or name is found, or
end-of-file is encountered.

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. Endgrent may be called to close the
group file when processing is complete.

Files

/etc/group

See Also

getlogin(S), getpwent(S), group(M)

Diagnostics

A null pointer (0) is returned on end-of-file or error.

Warning: All information is contained in a static area, so it
must be copied if it is to be saved.

GETGRENT(S) 2-99

GETLOGIN(S)
Name

getlogin - Gets login name.

Synopsis

Description

Getlogin returns a pointer to the login name as found in
/ etc/utmp. It may be used with getpwnam to locate the correct
password file entry when the same user ID is shared by several
login names.

If getlogin is called within a process that is not attached to a
terminal device, it returns NULL. The correct procedure for
determining the login name is to call cuserid or to call getlogin
and, if it fails, to call getpwuid.

Files

/etc/utmp

See Also

cuserid(S), getgrent(S), getpwent(S), utmp(M)

Diagnostics

Returns NULL if name not found.

Warning: The return values point to static data whose
content is overwritten by each call.

2-100 GETLOGIN(S)

GETOPT(S)

Name

getopt - Gets option letter from argument vector.

Synopsis

Description

Getopt returns the next option letter in argv that matches a letter
in optstring. Optstring is a string of recognized option letters; if a
letter is followed by a colon, the option is expected to have an
argument that mayor may not be separated from it by
whitespace. Optarg is set to point to the start of the option
argument on return from getopt.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (that is, up to the first
nonoption argument), getopt returns EOF. The special option-
may be used to delimit the end of the options; EOF is returned,
and -- is skipped.

Diagnostics

Getopt prints an error message on stderr and returns a question
mark (?) when it encounters an option letter not included in

GETOPT(S) 2-101

optstring.

Examples

The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b, and the options f and 0, both of which require
arguments:

main (argc, argv)
int argc;
char **argv;
{

int C;
extern int optind;
extern char *optarg;

while ((c = getopt (argc, argv, "abf:o:")) !=EOF)
switch (c) {
case I a I :

if (bflg)
errflg++;

else

break;
case I b I :

aflg++;

if (a fl g)
errflg++;

else

break;
case If I:

bproc();

ifile = optarg;
break;

2-102 GETOPT(S)

}

case 10
1

:

ofile optarg;
bufsiza = 512;
break;

case I? I :
errflg++;

}
if (errflg) {

fpri ntf (stderr, "usage: . . . ") ;
exit ();

}
for(optind < argc; optind++) {

if (access (argv[optindJ, 4)) {

GETOPT(S) 2-103

GETPASS(S)
Name

getpass - Reads a password.

Synopsis

Description

Getpass reads a password from the file / dey /tty, or if that cannot
be opened, from the standard input, after prompting with the
null-terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most eight characters.

Files

/dev/tty

Warning: The return value points to static data whose
content is overwritten by each call.

2-104 GETP ASS(S)

GETPID(S)

Name

getpid, getpgrp, getppid - Gets process, process group, and parent
process IDs.

Synopsis

Description

Getpid returns the process ID of the calling process. Most
often getpid is used to generate unique temporary files.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

See Also

exec(S), fork(S), intro(S), setpgrp(S), signal(S)

GETPID(S) 2-105

GETPW(S)

Name

getpw - Gets password for a given user ID.

Synopsis

Description

Getpw searches the password file for the uid, and fills in buf with
the corresponding line; it returns nonzero if uid could not be
found. The line is null-terminated. Uid must be an integer value.

Files

/etc/passwd

See Also

getpwent(S), passwd(M)

Diagnostics

Returns nonzero on error.

Warning: This routine is shown only because it is included in
some non-PC XENIX systems; it should not be used with PC
XENIX. See getpwent(S) for routines to use instead.

2-106 GETPW(S)

GETPWENT(S)

Name

getpwent, getpwuid, getpwnam, setpwent, endpwent - Gets
password file entry.

Synopsis

Description

Getpwent, getpwuid, and getpwnam return a pointer to a structure
containing the fields of an entry line in the password file. The
structure of a password entry is defined in /usr/include/pwd.h.

The fields have meanings described in passwd(M). (The
pw_ comment field is unused.)

Getpwent reads the next line in the file, so successive calls can be
used to search the entire file. Getpwuid and getpwnam search
from the beginning of the file until a matching uid or name is
found, or EOF is encountered.

A call to setpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the
password file when processing is complete.

GETPWENT(S) 2-107

Files

/ etc/ passwd

See Also

getlogin (S), getgrent (S), passwd (M)

Diagnostics

Null pointer (0) returned on EOF or error.

Warning: All information is contained in a static area so it
must be copied if it is to be saved.

2-108 GETPWENT(S)

GETS(S)

Name

gets, fgets - Gets a string from a stream.

Synopsis

':#itlclude<:stdio.h>

.' ;ctiiti~ets'($):H '.
:'~lli.if'~s;L';'

,:char ~rgets'(S:, ·n;strealtl}
.~_~.:~sr';'i\::: ii: .::>:"";' .. ,"~':'

BII ;~\;~~t~'; ;~');:~;:'
" <\;; \.\, ,,<":

Description

Gets reads a string into s from the standard input stream stdin.
The function replaces the newline character at the end of the
string with a null character before copying to s. Gets returns a
pointer to s.

Fgets reads characters from the stream until a newline character is
encountered or until n -1 characters have been read. The
characters are then copied to the string s. A null character is
automatically appended to the end of the string before the string
is copied. Fgets returns a pointer to s.

See Also

ferror(S), fopen(S), fread(S), gete(S), puts(S), seanf(S)

GETS(S) 2-109

Diagnostics

Gets and fgets return the constant pointer NULL upon end-of-file
or error.

Comments

Gets deletes the newline ending its input, but fgets keeps it.

2-110 GETS(S)

GETUID(S)

Name

getuid, geteuid, getgid, getegid - Gets real user, effective user, real
group, and effective group IDs.

Synopsis

;ljbi'~ettlicf()'
"'.\ ;<~,::;' ::> .. '.<;"'":' .",: :-' '~":,

Jf~;"~ ,~~;,~,
!;~~~L~~
tii#!~~~
Description

The real user ID identifies the person who is logged in. This is in
contra distinction to the effective user ID which determines the
access permission at the moment.

Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

See Also

introduction(S), setuid(S)

GETUID(S) 2-111

HYPOT(S)
Name

hypot, cabs - Determines Euclidean distance.

Synopsis

Description

Hypot and cabs return:
sqrt(x*x + y*y)

Both take precautions against unwarranted overflows.

See Also

sqrt in exp(S)

2-112 HYPOT(S)

IOCTL(S)

Name

ioctl - Controls character devices.

Synopsis

Description

loctl performs a variety of functions on character special files
(devices). The writeups of various devices in Section M IBM
Personal Computer XENIX Command Reference discuss how ioctl
applies to them.

loctl fails if one or more of the following is true:

Fildes is not a valid open file descriptor. [EBADF]

Fildes is not associated with a character special device.
[ENOTTY]

Request or arg is not valid. See tty(M). [EINVAL]

Return Value

If an error has occurred, a value of -1 is returned and errno is set
to indicate the error.

See Also

tty(M)

IOCTL(S) 2-113

KILL(S)

Name

kill - Sends a signal to a process or a group of processes.

Synop~is

Description

Kill sends a signal to a process or a group of processes specified
by pid. The signal that is to be sent is specified by sig and is either
one ffom the list given in signal(S), or O. If sig is 0 (the null
signal), error checking is performed, but no signal is actually sent.
This can be used to check the validity of pid.

The effective user ID of the sending process must match the
effective user ID of the receiving process unless the effective user
ID of the sending process is the super-user, or the process is
sending to itself.

The processes with J process ID of 0 and a process ID of 1 are
special processes (see introduction(S») and are referred to below
as procO and procl respectively.

If pid is greater than zero, sig is sent to the process whose process
ID is equal to pid. Pid may equal 1.

If pid is 0, sig is sent to all processes, excluding procO and proc1,
whose process group ID is equal to the process group ID of the
sender.

If pid is -1 and the effective user ID of the sender is not
super-user, sig is sent to all processes, excluding procO and procl,
whose real user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user,
sig is sent to all processes excluding procO and procl.

2-114 KILL(S)

If pid is negative but not -1, sig is sent to all processes whose
process group ID is equal to the absolute value of pid.

Kill fails and no signal is sent if one or more of the following is
true:

Sig is not a valid signal number. [EINVAL]

No process can be found corresponding to that specified by
pid. [ESRCH]

The sending process is not sending to itself, its effective user
ID is not super-user, and its effective user ID does not match
the real user ID of the receiving process. [EPERM]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

IdIl(C), getpid(S), setpgrp(S), signal(S)

KILL(S) 2-115

L3TOL(S)

Name

13tol, Itol3 - Converts between three-byte integers and long
integers.

Synopsis

Description

L3tol converts a list of n three-byte integers packed into a
character string pointed to by cp into a list of long integers
pointed to by lp.

Ltol3 performs the reverse conversion from long integers (Ip) to
three-byte integers (cp).

These functions are useful for file system maintenance where the
block numbers are three bytes long.

See Also

file system (F)

2-116 L3TOL(S)

LINK(S)

Name

link - Links a new filename to an existing file.

Synopsis

Description

Pathl points to a pathname naming an existing file. Path2 points
to a pathname giving the new filename to be linked. Link makes a
new link by creating a new directory entry for the existing file
using the new name. The contents of the existing file can then be
accessed using either name.

Link fails and no link is created if one or more of the following is
true:

A component of either patl1 prefix is not a directory.
[ENOTDIR]

A component of either path prefix does not exist.
[ENOENT]

A component of either path prefix denies search permission.
[EACCES]

The file named by pathl does not exist. [ENOENT]

The link named by path2 already exists. [EEXIST]

The file named by pathl is a directory and the effective user
ID is not super-user. [EPERM]

The link named by path2 and the file named by pathl are on
different logical devices (file systems). [EXDEV]

LINK(S) 2-117

Path2 points to a null pathname. [ENOENT]

The requested link requires writing in a directory with a
mode that denies write permission. [EACCES]

The requested link requires writing in a directory on a
read-only file system. [EROFS]

Path points outside the process's allocated address space.
[EFAULT]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

See Also

In(C), unlink(S)

2-118 LINK(S)

LOCK(S)

Name

lock - Locks a process in primary memory.

Synopsis

Description

If the flag argument is nonzero, the process executing this call is
not swapped except if it is required to grow. If the argument is
zero, the process is unlocked. This call may only be executed by
the super-user.

Comments

Locked processes interfere with the compaction of primary
memory and can cause deadlock. Systems with small memory
configurations should avoid using this call. It is best to lock
processes soon after booting because that will tend to lock them
into one end of memory.

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix. Plock provides the same function as lock and it is
recommended for portability.

LOCK(S) 2-119

LOCKF(S)

Name

lockf - Provide semaphores and record locking on files.

Synopsis

Description

Lockf locks a specified region of the file given by the file
descriptor, fildes, against access by all other processes. Other
processes that attempt to use the locked region either return an
error, or wait until the region is unlocked. More than one region
in a file can be locked. When the process closes the file (or
terminates) all locks are removed.

The function argument specifies what action to take. The possible
values are:

F ULOCK
Unlock a locked region.

FLOCK
Lock the region for exclusive use. If the region is not
available, the calling process sleeps until the region is
available.

F TLOCK
Test for locks, then lock the region for exclusive use. If the
region is not available, lockf returns immediately and sets
errno to EACCESS.

2-120 LOCKF(S)

F TEST
Test the region for other process locks. This argument is
used to determine whether or not another process has placed
a lock on the specified region.

The size argument is the number of contiguous bytes to be locked
or unlocked. The region to be locked starts at the current
position in the file and extends forward for a positive size and
backward for a negative size. If the size is 0, the region extends
from the current position in the file to the current or future end of
the file.

A process can create overlapping regions if desired. It cannot
overlap regions locked by other processes. Adjacent regions
locked by the same process are always combined into a single
region.

A process can unlock all or part of any locked region. When
regions are not fully unlocked, the remaining regions are still
locked by the process. If the center of a locked region is
unlocked, lockf creates two new locked regions from the
remaining portions of the original region.

Return Values

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error. If a
lock request is made and the table of active locks is full, errno is
set to EDEADLK. If an attempt to unlock the center section of a
locked region is made when no active lock table entries are
available, errno is set to EDEADLK. If fildes is not a valid open
file descriptor, errno is set to EBADF.

See Also

open(S), creat(S), read(S), write(S), close(S).

LOCKF(S) 2-121

LOCKING(S)
Name

locking - Locks or unlocks a file region for reading or writing.

Synopsis

Description

Locking allows a specified number of bytes in a file to be
controlled by the locking process. Other processes that attempt
to read or write a portion of the file containing the locked region
may sleep until the area becomes unlocked, depending on the
mode in which the file region was locked. A process that
attempts to write to or read from a file region that has been
locked against reading and writing by another process (using the
LK LOCK or LK . NBLCK mode) will sleep until the region of
the file has been released by the locking process. A process that
attempts to write to a file region that has been locked against
writing by another process (using the LK RLCK or
LK NBRLCK mode) will sleep until the region of the file has
been released by the locking process; but a read request for that
file region will proceed normally.

A process that attempts to lock a region of a file that contains
areas that have been locked by other processes will sleep if it has
specified the LK LOCK or LK RLCK mode in its lock
request but will return with the error EACCES if it specified
LK NBLCK or LK NBRLCK.

Fildes is the value returned from a successful creat, open, dup, or
pipe system call.

2-122 LOCKING(S)

Mode specifies the type of lock operation to be performed on the
file region. The available values for mode are:

LK UNLCK
Unlocks the specified region. The calling process releases a

region of the file it had previously locked.

LK LOCK
Locks the specified region. The calling process will sleep

until the entire region is available if any part of it has been
locked by a different process. The region is then locked for
the calling process and no other process may read or write in
any part of the locked region (lock against read and write).

LK NBLCK
Locks the specified region. If any part of the region is

already locked by a different process, returns the error
EACCES instead of waiting for the region to become
available for locking (nonblocking lockrequest).

LK RLCK
Same as LK LOCK except that the locked region may be

read by other processes (read permitted lock).

LK NBRLCK
Same as LK NBLCK except that the locked region may be

read by other processes (nonblocking, read permitted lock).

The locking utility uses the current file pointer position for the
locking of the file segment. So a typical sequence of commands
to lock a specific range within a file might be as follows:

fd=open("datafile" ,0 RDWR);
Iseek(fd,200L,0); -
locking(fd, LK_LOCK, 200L);

Accordingly, to lock or unlock an entire file a seek to the
beginning of the file (position 0) must be done and then a locking
call must be executed with a size of 0.

Size is the number of contiguous bytes to be locked or unlocked.
The region to be locked starts at the current offset in the file. If
size is 0, the entire file (up to a maximum of 2 to the power of 30
bytes) is locked or unlocked. Size may extend beyond the end of

LOCKING(S) 2-123

the file, in which case only the process issuing the lock call may
access or add information to the file within the boundary defined
by size.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process's locked
area. Thus, calls to locking, read, or write scan for a deadlock
before sleeping on a locked region. An error return is made if
sleeping on the locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked region for the same process. When this occurs,
or when adjacent regions are locked, the regions are combined
into a single area if the mode of the lock is the same (that is:
either read permitted or regular lock). If the mode of the
overlapping locks differ, the locked areas will be assigned,
assuming that the most recent request must be satisfied.

Thus, if a read-only lock is applied to a region, or part of a region,
that had been previously locked by the same process against both
reading and writing, the area of the file specified by the new lock
is locked for read only, while the remaining region, if any, remains
locked against reading and writing. There is no arbitrary limit to
the number of regions that may be locked in a file. There is,
however, a system-wide limit on the total number of locked
regions. This limit is 200 for XENIX systems.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process.
Release of the center section of a locked area requires an
additional locked element to hold the separated section.

If the lock table is full, an error is returned, and the requested
region is not released. Only the process that locked the file region
may unlock it. An unlock request for a region that the process
does not have locked, or that is already unlocked, has no effect.
When a process terminates, all locked regions controlled by that
process are unlocked.

If a process has done more than one open on a file, all locks put
on the file by that process is released on the first close of the file.

2-124 LOCKING(S)

Although no error is returned if locks are applied to special files
or pipes, read/write operations on these types of files ignore the
locks. Locks may not be applied to a directory.

See Also

creat(S), open(S), read(S), write(S), dup(S), close(S), Iseek(S)

Diagnostics

Locking returns the value (int) -1 if an error occurs. If any
portion of the region has been locked by another process for the
LK LOCK and LK RLCK actions and the lock request is to
testonly, errno is set to EACCES. If the file specified is a
directory, errno is set to EACCES. If locking the region would
cause a deadlock, errno is set to EDEADLOCK. If there are no
more free internal locks, errno is set to EDEADLOCK.

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix. Lockf provides the same function as locking and it is
recommended for portability to other UNIX versions.

LOCKING(S) 2-125

LOGNAME(S)
Name

logname - Finds login name of user.

Synopsis

Description

Logname returns a pointer to the null-terminated login name. It
uses the string found in the LOGNAME variable from the user's
environment. .

Files

/ etc/ profile

See Also

env(C), login(M), profile(M), environ(M)

2-126 LOGNAME(S)

LSEARCH(S)

Name

lsearch - Performs linear search and update.

Synopsis

Description

Lsearch is a linear search routine generalized from Knuth (6.1)
Algorithm Q. It returns a pointer into a table indicating the
location at which a datum may be found. If the item does not
occur, it is added at the end of the table. The first argument is a
pointer to the datum to be located in the table. The second
argument is a pointer to the base of the table.

The third argument is the address of an integer containing the
number of items in the table. It is incremented if the item is
added to the table. The fourth argument is the width of an
element in bytes. The last argument is the name of the
comparison routine. It is called with two arguments that are
pointers to the elements being compared. The routine must
return zero if the items are equal, and nonzero otherwise.

LSEARCH(S) 2-127

Comments

Unpredictable events can occur if there is not enough room in the
table to add a new item.

See Also

bsearch(S), qsort(S)

2-128 LSEARCH(S)

LSEEK(S)

Name

lseek - Moves read/write file pointer.

Synopsis

Description

Fildes is a file descriptor returned from a creat, open, dup, or fcntl
system call. Lseek sets the file pointer associated with fildes as
follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

On successful completion, the resulting pointer location, as
measured in bytes from the beginning of the file, is returned.

Lseek will fail and the file pointer remains unchanged if one or
more of the following is true:

Fildes is not an open file descriptor. [EBADF]

Fildes is associated with a pipe or fifo. [ESPIPE]

Whence is not 0, 1 or 2. [EINV AL and SIGSYS signal]

The resulting file pointer would be negative. [EINVAL]

LSEEK(S) 2-129

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

Return Value

On successful completion, a nonnegative integer indicating the file
pointer value is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

See Also

createS), dupeS), fcntl(S), open(S)

2-130 LSEEK(S)

MALLOC(S)

Name

malloc, free, realloc, calloc - Allocate main memory.

Synopsis

Description

Malloc and free provide a simple general-purpose memory
allocation package. Malloc returns a pointer to a block of at least
size bytes beginning on a word boundary.

The argument free is a pointer to a block previously allocated by
malloc; this space is made available for further allocation, but its
contents are left undisturbed.

Unpredictable results can occur if the space assigned by malloc is
overrun or if some random number is handed to free.

Malloc allocates the first contiguous reach of free space found in a
circular search from the last b10ck allocated or freed, coalescing
adjacent free blocks as it searches. It calls sbrk (see sbrk(S)) to
get more memory from the system when there is no suitable space
already free.

MALLOC(S) 2-131

Realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents are unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call
of malloc, reaDoc, or calloc; thus sequences of free, malloc, and
reaDoc can exploit the search strategy of MaDoc to do storage
compaction.

Calloc allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

Diagnostics

Malloc, realloc and calloc return a null pointer (0) if there is no
available memory or if the area has been detectably corrupted by
storing outside the bounds of a block. When reaDoc returns 0, the
block pointed to by ptr may be destroyed.

2-132 MALLOC(S)

MKNOD(S)
Name

mknod - Makes a directory or a special or ordinary file.

Synopsis

Description

Mknod creates a new file named by the pathname pointed to by
path. The mode of the new file is initialized from mode. Where
the value of mode is interpreted:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 Directory
0050000 Name special file
0060000 Block special
0100000 or 0000000 Ordinary file

0004000 Set user ID on execution

0002000 Set group ID on execution

0001000 Save text image after execution

0000777 Access permissions; constructed
from the following

0000400 Read by owner
0000200 Write by owner
0000100 Execute (search on directory) by owner
0000070 Read, write, execute (search) by group
0000007 Read, write, execute (search) by others

Values of mode other than those above are undefined and should
not be used.

MKNOD(S) 2-133

The file's owner ID is set to the process's effective user ID. The
file's group ID is set to the process's effective group ID.

The low-order nine bits of mode are modified by the process's file
mode creation mask; all bits set in the process's file mode creation
mask are cleared. See umask(S). If mode indicates a block,
character, or name special file, then dey is a
configuration-dependent specification of a character or block I/O
device. If mode does not indicate a block, character, or name
special file, dey is ignored. For block and character special files,
dey is the special file's device number. For name special files, dey
is the type of the name file, either a shared memory file or a
semaphore.

Mknod may be invoked only by the super-user for file types other
than named pipe special.

Mknod will fail and the new file will not be created if one or more
of the following is true:

• The process's effective user ID is not super-user. [EPERM]

• A component of the path prefix is not a directory.
[ENOTDIR]

• A component of the path prefix does not exist. [ENOENT]

• The directory in which the file is to be created is located on a
read-only file system. [EROFS]

• The named file exists. [EEXIST]

• Path points outside the process's allocated address space.
[EFAULT]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

2-134MKNOD(S)

See Also

mkdir(C), mimod(C), chmod(S), creatsem(S), exec(S), sdget(S),
umask(S), filesystem(F)

Comments

Semaphore files should be created with the creatsem(S) system
call.

Shared data files should be created with the sdget(S) system call.

MKNOD(S) 2-135

MKTEMP(S)

Name

mktemp - Makes a unique filename.

Synopsis

Description

Mktemp replaces template with a unique filename and returns a
pointer to the name. The template should look like a filename
with six trailing X's, which will be replaced with the current
process ID'preceded by a zero.

See Also

getpid(S)

2-136 MKTEMP(S)

MONITOR(S)
Name

monitor - Prepares execution profile.

Synopsis

Description

Monitor is an interface to profileS). Lowpe and bighpe are the
addresses of two functions; buffer is the address of a
user-supplied array of bufsize short integers. Monitor arranges to
record in the buffer a histogram of periodically sampled values of
the program counter and of counts of calls of certain functions.

The lowest address sampled is that of lowpe and the highest is just
below highpe. At most, nfune call counts can be kept; only calls
of functions compiled with the profiling option -p of ee(CP) are
recorded. For the results to be significant, especially where there
are small, heavily used routines, it is suggested that the buffer be
no more than a few times smaller than the range of locations
sampled.

To profile the entire program, it is sufficient to use

extern etextO;

monitor((int(*)O)2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text.

To stop execution monitoring and write the results on the file
mon.out, use:

monitor((int(*) 0)0);

MONITOR(S) 2-137

prof(CP) can then be used to examine the results.

Files

mon.out

See Also

cc(CP), prof(CP), profil(S)

Comments

An executable program created by cc -p automatically includes
calls for monitor with default parameters; monitor needn't be
called explicitly except to gain fine control over profiling.

2-138 MONITOR(S)

MOUNT(S)
Name

mount - Mounts a file system.

Synopsis

Description

Mount requests that a removable file system contained on the
block special file identified by spec be mounted on the directory
identified by dire Spec and dir are pointers to pathnames.

On successful completion, references to the file dir refer to the
root directory on the mounted file system.

The low-order bit of rwflag controls write permission on the
mounted file system; if 1, writing is forbidden; otherwise writing
is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount fails if one or more of the following is true:

• The effective user ID is not super-user. [EPERM]

• Any of the named files does not exist. [ENOENT]

• A component of a path prefix is not a directory.
[ENOTDIR]

• Spec is not a block special device. [ENOTBLK]

• The device associated with spec does not exist. [ENXIO]

• Dir is not a directory. [ENOTDIR]

MOUNT(S) 2-139

• Spec or dir points outside the process's allocated address
space. [EFAULT]

• Dir is currently mounted on someone's current working
directory, or is otherwise busy. [EBUSY]

• The device associated with spec is currently mounted.
[EBUSY]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

mount (C), umount(S)

2-140 MOUNT(S)

NAP(S)
Name

nap - Suspends execution for a short interval.

Synopsis

Description

The current process is suspended from execution for at least the
number of milliseconds specified by period, or until a signal is
received.

Return Value

On successful completion, a long integer indicating the number of
milliseconds actually slept is returned. If the process received a
signal while napping, the return value will be -1, and errno will be
set to EINTR.

NAP(S) 2-141

Comments

This function is driven by the system clock, which in most cases
has a granularity of tens of milliseconds.

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

See Also

sleep(S)

2-142 NAP(S)

NICE(S)

Name

nice - Changes priority of a process.

Synopsis

Description

Nice adds the value of incr to the nice value of the calling process.
A process's nice value is a positive number for which a higher
value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

Nice does not change the nice value if incr is negative and the
effective user ID of the calling process is not super-user.
[EPERM]

Return Value

On successful completion, nice returns the new nice value minus
20. Note that nice is unusual in the way return codes are handled.
It differs from most other system calls in two ways: the value -1
is a valid return code (in the case where the new nice value is 19),
and the system call either works or ignores the request; there is
never an error.

See Also

nice(C), exec(S)

NICE(S) 2-143

NLIST(S)
Name

nlist - Gets entries from name list.

Synopsis

Description

Nlist examines the name list in the given executable output file
and selectively extracts a list of values. The name list consists of
an array of structures containing names, types, and values. The
list is terminated with a null name. Each name is looked up in the
name list of the file. If the name is found, the type and value of
the name are inserted in the next two fields. If the name is not
found, both entries are set to O. See a.out(F) for a discussion of
the symbol table structure.

See Also

a.out(F), xlist(S)

Diagnostics

Nlist returns -1 and sets all type entries to 0 if the file cannot be
read, is not an object file, or contains an invalid name list.
Otherwise, nlist returns O. A return value of 0 does not indicate
that any or all symbols were found.

2-144 NLIST(S)

OPEN(S)

Name

open - Opens file for reading or writing.

Synopsis

>,. '''':~ni~~tLlI>

. nitr~ ····.;~,~tfi,>Qflag[,tDode])
·ch< .'. . ~,; i<:r<

··tilton. ··ij:mode· .~':::.:.:~; "g?/: ?:":"

Description

Path points to a pathname naming a file. Open opens a file
descriptor for the named file and sets the file status flags
according to the value of oflag. Oflag values are constructed by
ORing flags from the following list (only one of the first three
flags below may be used):

o RDONLY
Open for reading only.

o WRONLY
Open for writing only.

o RDWR
-Open for reading and writing.

o NDELAY
-This flag may affect subsequent reads and writes. See

read(S) and write(S).

When opening a FIFO with 0 RDONL Y or
o WRONL Y set: -

OPEN(S) 2-145

If 0 NDELAY is set:
An open for reading-only returns without delay. An
open for writing-only returns an error if no process
currently has the file open for reading.

If 0 NDELAY is clear:
An open for reading-only blocks until a process opens
the file for writing. An open for writing-only blocks
until a process opens the file for reading.

When opening a file associated with a communication line:

If 0 NDELAY is set:
The open returns without waiting for carrier.

If 0 NDELAY is clear:
The open blocks until carrier is present.

o APPEND
-If set, the file pointer is set to the end of the file before each

write.

o CREAT
-If the file exists, this flag has no effect. Otherwise, the file's

owner ID is set to the process's effective user ID. The file's
group ID is set to the process's effective group ID, and the
low-order 12 bits of the file mode are set to the value of
mode modified as follows (see creat(S))

All bits set in the process's file mode creation mask are
cleared. See umask(S).
The qsave text image after execution bit" of the mode is
cleared. See chmod(S).

o TRUNC
-If the file exists, its length is truncated to 0 and the mode and

owner are unchanged.

o EXCL
-If O_EXCL and O_CREAT are sei, open fails if ihe file

exists.

2-146 OPEN(S)

o SYNCW
-Every write to this file descriptor is synchronous; that is,

when the write system call ends, data is guaranteed to have
been written to disk.

On successful completion, a nonnegative integer, the file
descriptor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See fcntl(S).

No process may have more than 20 file descriptors open
simultaneously.

The named file is opened unless one or more of the following is
true:

• A component of the path prefix is not a directory.
[ENOTDIR]

• 0 CREA T is not set and the named file does not exist.
[ENOENT]

• A component of the path prefix denies search permission.
[EACCES]

• Oflag permission is denied for the named file. [EACCES]

• The named file is a directory and Oflag is write or read/write.
[EISDIR]

• The named file resides on a read-only file system and oflag is
write or read/write. [EROFS]

• Twenty file descriptors are currently open. [EMFILE]

• The named file is a character special or block special file, and
the device associated with this special file does not exist.
[ENXIO]

OPEN(S) 2-147

• The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write. [ETXTBSY]

• Path points outside the process's allocated address space.
[EFAULT]

• 0 CREAT and O_EXCL are set, and the named file
exists. [EEXIST]

• 0 NDELA Y is set, the named file is a FIFO,
O-WRONL Y is set, and no process has the file open for
reading. [ENXI 0]

Return Value

On successful completion, a nonnegative integer, namely a file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

See Also

cIose(S), createS), dupeS), fcntl(S), Iseek(S), read(S), write(S)

Comments

The O-SYNCW flag is an IBM Personal Computer XENIX
improvement and may not be present in all UNIX versions.

2-148 OPEN(S)

OPENSEM(S)

Name

opensem - Opens a semaphore.

Synopsis

Description

Opensem opens a semaphore named by sem name and returns
the unique semaphore identification numbersem num used by
waitsem and sigsem. Creatsem should always be called to initialize
the semaphore before the first attempt to open it.

Warning: It is not advisable to open the same semaphore
more than once. Though it is possible to do this, it may
result in a serious deadlock.

See Also

creatsem (S), waitsem (S), sigsem (S)

Diagnostics

Opensem returns the value -1 if an error occurs. If the semaphore
named does not exist, errno is set to ENOENT. If the file
specified is not a semaphore file (that is, a file previously created
by a process using a call to creatsem), errno is set to ENOTNAM.
If the semaphore has become invalid because of inappropriate
use, errno is set to ENA V AIL.

OPENSEM(S) 2-149

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

2-150 OPENSEM(S)

PAUSE(S)

Name

pause - Suspends a process until a signal occurs.

Synopsis

i"i~t:pa~s~ ,0
,;".:.: '~2>··"· ., -:,.~

Description

Pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the
calling process.

If the signal causes termination of the calling process, pause does
not return.

If the signal is caught by the calling process and control is
returned from the signal catching function (see signal(S», the
calling process resumes execution from the point of suspension
wi th a return value of -1 from pause and errno set to EINTR.

See Also

alarm(S), kill(S), signal(S), wait(S)

PAUSE(S) 2-151

PERROR(S)

Name

perror, sys_errlist, sys_nerr, errno - Send system error
messages.

Synopsis

=1i~~)l~;;:;~'SE
, ."' ~': ; .. ",. ,<

Description

Perror produces a short error message on the standard error,
describing the last error encountered during a system call from a
C program. First, the argument string s is printed, then a colon,
then the message and a newline. To be of most use, the argument
string should be the name of the program that incurred the error.
The error number is taken from the external variable errno, which
is set when errors occur but not cleared when correct calls are
made.

To simplify variant formatting of messages, the vector of message
strings sys errlist is provided; errno can be used as an index in
this table to get the message string without the newline.
Sys nerr is the largest message number provided for in the table;
it should be checked because new error codes may be added to
the system before they are added to the table.

See Also

introduction (S)

2-152 PERROR(S)

PIPE(S)

Name

pipe - Creates an interprocess pipe.

Synopsis

Description

Pipe creates an 110 mechanism called a pipe and returns two file
descriptors in the array fildes. Fildes [0] is opened for reading and
fildes [1] is opened for writing. The descriptors remain open
across fork(S) system calls, making communication between
parent and child possible.

Writes up to 5120 bytes of data are buffered by the pipe before
the writing process is blocked. A read on file descriptor fildes [0]
accesses the data written to fildes [1] on a first-in-first-out basis.

No process may have more than 20 file descriptors open
simultaneously.

Pipe fails if 19 or more file descriptors are currently open.
[EMFILE]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

sh(C), read(S), write(S), fork(S), popen(S)

PIPE(S) 2-153

PLOCK(S)

Name

plock - Lock process, text, or data in memory.

Synopsis

Description

Plock allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data
segments (process lock) into memory. Locked segments are
immune to all routine swapping. Plock also allows these segments
to be unlocked. The effective user ID of the calling process must
be the root user to use this call. Op specifies the following:

PROCLOCK
Lock text and data segments into memory.

TXTLOCK
Lock text segment into memory.

DATLOCK
Lock data segment into memory.

UNLOCK
Remove all process locks.

Plock will fail and not perform the requested operation if one or
more of the following is true:

The effective user ID of the calling process is not root. [EPERM]

Op is equal to PROLOCK and a process lock, a text lock, or a
data lock already exists on the calling process. [EINV AL]

2-154 PLOCK(S)

Op is equal to TXTLOCK and a text lock, or a process lock
already exists on the calling process. [EINVAL]

Op is equal to DATLOCK and a data lock, or a process lock
already exists on the calling process. [EINV AL]

Op is equal to UNLOCK and no type of lock exists on the
calling process. [EINVAL]

Return Value

On successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also

exec(S), exit(S), fork(S)

PLOCK(S) 2-155

POPEN(S)

Name

popen, pclose - Initiates I/O to or from a process.

Synopsis

Description

The arguments to popen are pointers to null-terminated strings
containing, respectively, a shell command line and an I/O mode,
either "r" for reading or "w" for writing. Popen creates a pipe
between the calling process and the command to be executed.
The value returned is a stream pointer that can be used (as
appropriate) to write to the standard input of the command or
read from its standard output.

A stream opened by popen should be closed by pclose, which
waits for the associated process to terminate and returns the exit
status of the command. Because open files are shared between
processes, a type "r" command may be used as an input filter, and
a type "w" command may be used as an output filter.

See Also

pipe(S), wait(S), fclose(S), fopen(S), system(S)

2-156 POPEN(S)

Diagnostics

Popen returns a null pointer if files or processes cannot be created
or if the shell cannot be accessed.

Pclose returns -1 if stream is not associated with a popened
command.

Comments

Only one stream opened by popen can be in use at once. Buffered
reading before opening an input filter may leave the standard
input of that filter mispositioned. Similar problems with an
output filter may be forestalled by careful buffer flushing; see
fclose(S).

POPEN(S) 2-157

PRINTF(S)

Name

printf, fprintf, sprintf - Format output.

Synopsis

Description

Printf places output on the standard output stream stdout. Fprintf
places output on the named output stream. Sprintf places output,
followed by the null character (\0), in consecutive bytes starting
at s; it is the user's responsibility to ensure that enough storage is
available. Each function returns the number of characters placed
(not including the \ 0 in the case of sprintf), or a negative value
if an output error was encountered.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string that
contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each
of which results in fetching of zero or more args. The results are
undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are ignored.

Each conversion specification is introduced by the character 0/0.
After the %, the following appear in sequence:

2-158 PRINTF(S)

Zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum field
width. If the converted value has fewer characters than the
field width, it is padded on the left (or right, if the
left-adjustment flag described below has been given) to the
field width. If the field width is preceded with a "0" (for
example % 04), the converted value is padded with zeroes. If
the width is preceded with a blank (for example 0;6 4), the
value is preceded with blanks. Padding with zeroes may be
applied to numeric conversions only. Strings and characters
cannot be zero padded.

A precision that gives the minimum number of digits to
appear for the d, 0, U, x, or X conversions, the number of
digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for
the g conversion, or the maximum number of characters to be
printed from a string in s conversion. The precision takes the
form of a period (.) followed by a decimal digit string; a null
digit string is treated as zero.

An optional I specifying that a following d, 0, U, x, or X
conversion character applies to a long integer argo

A character that indicates the type of conversion to be
applied.

A field width or precision may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the
field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen, so the args specifying
field width or precision must appear before the arg (if any) to be
converted.

The flag characters and their meanings are:

+

The result of the conversion will be left-justified
within the field.

The result of a signed conversion will always begin
with a sign (+ or -).

PRINTF(S) 2-159

blank

If the first character of a signed conversion is not a
sign, a blank will be prepended to the result. This
implies that, if the blank and + flags both appear,
the blank flag is ignored.

This flag specifies that the value is to be converted to
an alternate form. For c, d, s, and u conversions, the
flag has no effect. For 0 conversion, it increases the
precision to force the first digit of the result to be a
zero. For x (X) conversion, a nonzero result has Ox
(OX) prepended to it. For e, E, f, g, and G
conversions, the result always contains a decimal
point, even if no digits follow the point (normally, a
decimal point appears in the result of these
conversions only if a digit follows it). For g and G
conversions, trailing zeroes are not removed from the
result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X

f

e,E

The integer arg is converted to signed decimal,
unsigned octal, decimal, or hexadecimal notation (x
and X), respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum
number of digits to appear; if the value being
converted can be represented in fewer digits, it is
expanded with leading zeroes. The default precision
is 1. The result of converting a zero value with a
precision of zero is a null string (unless the
conversion is 0, x, or X and the # flag is present).

The float or double arg is converted to decimal
notation in the style "[-]ddd.ddd", where the number
of digits after the decimal point is equal to the
precision specification. If the precision is missing,
six digits are output; if the precision is explicitly 0,
no decimal point appears.

The float or double arg is converted in the style
"[-]d.ddde±dd," where there is one digit before the
decimal point and the number of digits after it is
equal to the precision; when the precision is missing,
six digits are produced; if the precision is zero, no

2-160 PRINTF(S)

decimal point appears. The E format code produces
a number with E instead of e introducing the
exponent. The exponent always contains exactly two
digits.

g,G The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the
precision specifying the number of significant digits.
The style used depends on the value converted: style
e will be used only if the exponent resulting from the
conversion is less than -4 or greater than the
precision. Trailing zeros are removed from the
result; a decimal point appears only if it is followed
by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer)
and characters from the string are printed until a null
character (\ 0) is encountered or the number of
characters indicated by the precision specification is
reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null character
are printed.

0/0 Print a % ; no argument is converted.

In no case does a nonexistent or small field width cause truncation
of a field; if the result of a conversion is wider than the field
width, the field is simply expanded to contain the conversion
result. Characters generated by printf and fprintf are printed as if
putchar had been called (see putc(S».

Examples

To print a date and time in the form "Sunday, July 3, 10:02,"
where weekday and month are pointers to null-terminated strings:

printfC'%s, %s %d, %.2d:%.2d",
weekday, month, day, hour, min);

To print 'fT to five decimal places:

PRINTF(S) 2-161

printf("pi = %.5f", 4*atan(1.0));

See Also

ecvt(S),putc(S), scanf(S)

2-162 PRINTF(S)

PROFIL(S)

Name

profil - Creates an execution time profile.

Synopsis

Description

Buff points to an area of core whose length (in bytes) is given by
bufsiz. After this call, the user's program counter is examined
each clock tick, where a clock tick is some fraction of a second
given in machine(M}. Offset is subtracted from it, and the result
multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of
pc's to words in buff; 077777 (octal) maps each pair of
instruction words together. 02(octal) maps all instructions onto
the beginning of buff (producing a noninterrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of O. Profiling is turned off when an
exec is executed, but remains on in both child and parent after a
fork. Profiling is turned off if an update in buff would cause a
memory fault.

See Also

prof(CP}, monitor(S}

PROFIL(S) 2-163

PTRACE(S)

Name

ptrace - Traces a process.

Synopsis

Description

Ptrace provides a means by which a parent process may control
the execution of a child process. Its primary use is in the
implementation of breakpoint debugging; see adb(CP). The child
process behaves normally until it encounters a signal (see
signal(S) for the list), at which time it enters a stopped state and
its parent is notified via wait(S).

When the child is in the stopped state, its parent can examine and
modify its "memory image" using ptrace. Also, the parent can
cause the child either to terminate or continue, with the possibility
of ignoring the signal that caused it to stop. The form of the addr
argument is:

struct saddr {
unsigned short sa seg;
long sa_off;

} *addr;

which allows the caller to specify segment and offset in the
process address space.

The request argument determines the precise action to be taken
by ptrace and is one of the following:

2-164 PTRACE(S)

o This request must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that
stipulates that the child should be left in a stopped state on
receipt of a signal rather than the state specified by fune;
see signal(S). The pid, addr, and data arguments are ignored,
and a return value is not defined for this request. Peculiar
results will ensue if the parent does not expect to trace the
child.

The remainder of the requests can only be used by the parent
process. For each, pid is the process ID of the child. The child
must be in a stopped state before these requests are made.

1, 2 The word at location addr in the address space of the
child is returned to the parent process. If I and D space
are separated, request 1 returns a word from I space, and
request 2 returns a word from D space. If I and D space
are not separated, either request 1 or request 2 may be
used with equal results.

Sa seg contains the selector for the Local Descriptor
Table (LDT), the word at location sa off in the LDT is
returned. The data argument is ignored. These two
requests fail if addr is not the start address of a word, in
which case, a value of -1 is returned to the parent process
and the parent's errno is set to EIO.

3 With this request, the word at location addr in the child's
USER area in the system's address space (see
<sys/user.h» is returned to the parent process. When
executed in a segmented environment, sa seg is ignored.
The data argument is ignored. This request fails if addr is
not the start address of a word or is outside the USER
area, in which case a value of -1 is returned to the parent
process and the parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argument
is written into the address space of the child at location
addr. If I and D space are separated, request 4 writes a
word into I space, and request 5 writes a word into D
space. If I and D space are not separated, either request
4 or request 5 may be used with equal results.

PTRACE(S) 2-165

On successful completion, the value written into the
address space of the child is returned to the parent.
These two requests fail if addr is a location in a pure
procedure space and another process is executing in that
space, or addr is not the start address of a word. Upon
failure a value of -1 is returned to the parent process and
the parent's errno is set to EIO.

6 With this request, a few entries in the child's USER area
can be written. Data gives the value that is to be written
and addr is the location of the entry. The few entries that
can be written follow:

-The general registers
-Any floating-point status registers

7 This request causes the child to resume execution. If the
data argument is 0, all pending signals including the one
that caused the child to stop are canceled before it
resumes execution. If the data argument is a valid signal
number, the child resumes execution as if it had incurred
that signal and any other pending signals are canceled.

The sa seg of addr must be zero and the sa off must be
(int *) r On successful completion, the value of data is
returned to the parent. This request fails if data is not 0
or a valid signal number, in which case a value of -1 is
returned to the parent process and the parent's errno is
set to EIO.

8 This request causes the child to terminate with the same
consequences as exit(S).

9 Execution continues as in request 7; however, as soon as
possible after execution of at least one instruction,
execution stops again. The signal number from the stop is
SIGTRAP. This is part of the mechanism for
implementing breakpoints. The exact implementation and
behavior is somewhat CPU dependent.

As indicated, these calls (except for request 0) can be used only
when the subject process has stopped. The wait system call is used

2-166 PTRACE(S)

to determine when a process stops; in such a case the termination
status returned by wait has the value 0177 to indicate stoppage
rather than genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent exec(S) calls. If a traced process calls
exec, it stops before executing the first instruction of the new
image showing signal SIGTRAP.

Errors

Ptrace will in general fail if one or more of the following is true:

Request is an illegal number. [EIO]

Pid identifies a child that does not exist or has not executed a
ptrace with request O. [ESRCH]

A return value of -1 does not always indicate an error. To resolve
this ambiguity, the errno variable is cleared on each call to ptrace.
If the return value is -1, there is no error unless errno is nonzero.

Comments

The implementation and precise behavior of this system call is
inherently tied to the specific CPU and process memory model in
use on a particular machine. Code using this call is likely to not be
portable across all implementations without some change.

System calls cannot be single-stepped. If a ptrace call requests a
single step through a system call, the trace bit is cleared, and the
user program runs to completion or until it encounters an
explicitly set breakpoint.

See Also

adb(CP), exec(S), signal(S), waiteS), machine(M)

PTRACE(S) 2-167

PUTC(S)
Name

putc, putchar, fputc, putw - Put a character or word on a stream.

Synopsis

Description

Putc appends the character c to the named output stream. It
returns the character written.

Putchar (c) is defined as putc (c, stdout).

Fputc behaves like putc but is a genuine function rather than a
macro; it may therefore be used as an argument. Fputc runs more
slowly than putc, but takes less space per invocation.

Putw appends the word (that is, integer) w to the output stream.
Putw neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the
output does not refer to a terminal; this default may be changed

2-168 PUTC(S)

by setbuf(S). The standard stream stderr is by default unbuffered
unconditionally, but use of freopen (see fopen(S)) will cause it to
become buffered; setbuf, again, will set the state to whatever is
desired. When an output stream is unbuffered, information
appears on the destination file or terminal as soon as written;
when it is buffered, many characters are saved up and written as a
block. See fflush in fclose(S).

See Also

fclose(S), ferror(S), fopen(S), fread(S), getc(S), printf(S), puts(S)

Diagnostics

These functions return the constant EOF upon error. Because
this is a valid integer, ferror(S) should be used to detect putw
errors.

Comments

Because putc is implemented as a macro, the stream argument
with side effects is not treated correctly.

PUTC(S) 2-169

PUTPWENT(S)
Name

putpwent - Writes a password file entry.

Synopsis

Description

Putpwent is the inverse of getpwent(S). Given a pointer to a
passwd structure created by getpwent (or getpwuid or getpwnam),
putpwent writes a line on the stream f. The line matches the
format of /etc/passwd.

See Also

passwd(M), getpwent(S)

Diagnostics

Putpwent returns nonzero if an error was detected during its
operation, otherwise zero.

2-170 PUTPWENT(S)

PUTS(S)
Name

puts, fputs - Puts a string on a stream.

Synopsis

Description

Puts copies the null-terminated string s to the standard output
stream stdout and appends a newline character.

Fputs copies the null-terminated string s to the named output
stream.

Neither routine copies the terminating null character.

Diagnostics

Both routines return EOF on error.

PUTS(S) 2-171

See Also

ferror(S), fopen(S), fread(S), gets(S), printf(S), putc(S)

Comments

Puts appends a newline, fputs does not.

2-172 PUTS(S)

QSORT(S)
Name

qsort - Performs a sort.

Synopsis

Description

Qsort is an implementation of the quicker-sort algorithm. The
first argument is a pointer to the base of the data; the second is
the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine. It is called
with two arguments, which are pointers to the elements being
compared. The routine must return an integer less than, equal to,
or greater than 0, according to whether the first argument is to be
considered less than, equal to, or greater than the second.

See Also

sort (C), bsearch(S), Isearch(S), string(S)

QSORT(S) 2-173

RAND(S)
Name

rand, srand - Generates a random number.

Synopsis

Description

Rand uses a mUltiplicative congruential random number generator
with period 232 to return successive pseudo-random numbers in
the range from 0 to 215_1.

The generator is reinitialized by calling srand with 1 as argument.
It can be set to a random starting point by calling srand with an
unsigned integer in argument seed.

2-174 RAND(S)

RDCHK(S)
Name

rdchk - Checks to see if there is data to be read.

Synopsis

;;4e~);
"';"'-: ,',"~' ." / '

Description

Rdchk checks to see if a process will block if it attempts to read
the file designated by fdes. Rdchk returns 1 if there is data to be
read or if it is the end of the file (EOF). In this context, the
proper sequence of calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes);

See Also

read(S)

Diagnostics

Rdchk returns -1 if an error occurs (for example, EBADF), 0 if
the process will block if it issues a read, and 1 if it is ok to read.
EBADF is returned if a rdchk is done on a semaphore file or if the
file specified doesn't exist.

RDCHK(S) 2-175

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

2-176 RDCHK(S)

READ(S)
Name

read - Reads from a file.

Synopsis

Description

Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call.

Read attempts to read nbyte bytes from the file associated with
fildes into the buffer pointed to by buf.

On devices capable of seeking, read starts at a position in the file
given by the file pointer associated with fildes. Upon return from
read, the file pointer is incremented by the number of bytes
actually read.

Devices that are incapable of seeking always read from the
current position. The value of a file pointer associated with such
a file is undefined.

On successful completion, read returns the number of bytes
actually read and placed in the buffer; this number may be less
than nbyte if the file is associated with a communication line (see
ioctl(S) and tty(M)) or if the number of bytes left in the file is less
than nbyte bytes. A value of 0 is returned when an end-of-file has
been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read returns a O.

READ(S) 2-177

If a NDELA Y is clear, the read blocks until data is written
to thefile or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no
data currently available:

If O_NDELAY is set, the read returns a O.

If a NDELAY is clear, the read blocks until data becomes
available.

Read fails if one or more of the following is true:

Fildes is not a valid file descriptor open for reading.
[EBADF]

Buf points outside the allocated address space. [EF AULT]

Return Value

On successful completion, a nonnegative integer is returned,
indicating the number of bytes actually read. Otherwise, a -1 is
returned, and errno is set to indicate the error.

See Also

creat(S), dupeS), fcnd(S), iocd(S), open(S), pipe(S), tty(M)

Comments

Reading a region of a file locked with locking causes read to hang
indefinitely until the lock~d region is unlocked.

2-178 READ(S)

REGEX(S)

Name

regex, regcmp - Compile and execute regular expressions.

Synopsis

Description

Regemp compiles a regular expression and returns a pointer to the
compiled form. Malloe(S) is used to create space for the
compiled expression. It is the user's responsibility to free
unneeded space so allocated. A zero return from regemp indicates
an incorrect argument. Regemp(CP) has been written to
generally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. Regex
returns zero on failure or a pointer to the next unmatched
character on success. A global character pointer loel points to
where the match began. Although regemp and regex were derived
from the editor, ed(C), the syntax and semantics have been
changed slightly. The following are the valid symbols and their
associated meanings.

[]*. A These symbols retain their current meaning.

$ Matches the end of the string, \ n matches the newline.

Within brackets the minus means through. For example,
[a-zl is equivalent to [abed ... xyzl. The - can appear as
itself only if used as the last or first character. For
example, the character class expression []-] matches the
characters] and -.

REGEX(S) 2-179

+ A regular expression followed by + means "one or more
times". For example, [0-9] + is equivalent to
[0-9][0-9]*.

{m} {m,} {m,u}
Integer values enclosed in n indicate the number of
times the preceding regular expression is to be applied.
m is the minimum number and u is a number less than
256, which is the maximum. If only m is present (for
example, {m}), it indicates the exact number of times
the regular expression is to be applied. {m,} is analogous
to {m,infinity}. The plus (+) and star (*) operations are
equivalent to {I,} and {a,} respectively.

(•••)$0

(...)

The value of the enclosed regular expression is to be
returned. The value is be stored in the (0 + 1)th
argument following the subject argument. Ten enclosed
regular expressions are allowed. Regex makes its
assignments unconditionally.

Parentheses are used for grouping. An operator, for
example *, +, {}, can work on a single character or a
regular expression enclosed in parenthesis. For
example: (a*(cb+)*)$0.

By necessity, all of the above defined symbols are speciaL They
must, therefore, be escaped to be used as themselves.

Examples

Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr=regcmp(IIA\n",O)),cursor);
free(ptr);

This example matches a leading newline in the subject string
pointed at by cursor.

Example 2:

2-180 REGEX(S)

char retO[9];
char *newcursor, *name;

name = regcmp(I([A-Za-z][A-za-zO-9_]{O,7})$O",O);
newcursor = regex(name,1123Testing321",retO);

This example matches through the string "Testing3" and returns
the address of the character after the last matched character
(cursor+ 11). The string "Testing3" is copied to the character
array retO.

Example 3:

#include "file.i"
char *string, *newcursor;

newcursor = regex(name,string);

This example applies a precompiled regular expression in file.i
(see regcmp(CP) against string.

See Also

ed(C), regcmp(CP), malloc(S)

Comments

The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required. The
following user-supplied replacement for malloc(S) reuses the same
vector, saving time and space:

}

/ * user's program * /

malloc(n)
{

static int rebuf[256];
return rebuf;

REGEX(S) 2-181

REGEXP(S)

Name

regexp - Regular expression compile and match routines.

Synopsis

Description

This page describes general-purpose regular expression matching
routines in the form of ed(C), defined in /usr/include/regexp.h.
Programs such as ed(C), sed(C), grep(C), expr(C), and others
that perform regular expression-matching use this source file.
Therefore, only this file needs to be changed to maintain regular
expression compatibility.

Programs that include this file must have the following five
macros declared before the "#include <regexp.h>" statement.
These macros are used by the compile routine.

GETCO Return the value of the next character in the regular
expression pattern. Successive calls to GETCO
return successive characters of the regular
expression.

2-182 REGEXP(S)

PEEKCO Return the next character in the regular expression.
Successive calls to PEEKCO return the same
character (which should also be the next character
returned by GETCO).

UNGETC(c) Cause the argument c to be returned by the next call
to GETCO (and PEEKCO). No more than one
character of pushback is ever needed and this
character is guaranteed to be the last character read
by GETCO. The value of the macro UNGETC(c) is
always ignored.

Enter(pointer)

ERROR(val)

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

This macro is used on normal exit of the compile
routine. The value of the argument pointer is a
pointer to the character after the last character of the
compiled regular expression. This is useful to
programs that have memory allocation to manage.

This is the abnormal return from the compile routine.
The argument val is an error number (see table
below for meanings). This call should never return.

MEANING
Range endpoint too large.
Bad number.
" \ digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \ { \}.
{ expected after \.
First number exceeds second in \ { \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile
routine but is useful for programs that pass down different

REGEXP(S) 2-183

pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs that call functions to input
characters or have characters in an external array can pass down a
value of «char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is 1 more that the highest address that the
compiled regular expression may be placed. If the compiled
expression cannot fit in (endbuf - expbuf) bytes, a call to
ERROR(50) is made.

The parameter eof is the character that marks the end of the
regular expression. For example, in ed(C), this character is
usually a I.

Each program that includes this file must have a #define
statement for INIT. This definition is placed right after the
declaration for the function compile and the opening brace ({).
It is used for dependent declarations and initializations. It is also
used to set a register variable to point the beginning of the regular
expression so that this register variable can be used in the
declarations for GETCO, PEEKCO,and UNGETCO. Otherwise,
INIT can be used to declare external variables that might be used
by GETCO, PEEKCO,and UNGETCO. See the example of the
declarations taken from grep(C).

There are other functions in this file that perform actual regular
expression matching, one of which is the function step. The call
to step follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to
be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
that was obtained by a call of the function compile.

The function step returns 1 if the given string matches the regular
expression, and it returns zero if the expressions do not match. If
there is a match, two external character pointers are set as a side
effect to the call to step. The variable set in step is loci. This is a

2-184 REGEXP(S)

pointer to the first character that matched the regular expression.
The variable loe2 ~ which is set by the function advance, points to
the character after the last character that matches the regular
expression. Thus if the regular expression matches the entire line,
loc 1 points to the first character of string and loe2 points to the
null at the end of string.

Step uses the external variable eire!, which is set by compile if the
regular expression begins with ". If this is set, step only tries to
match the regular expression to the beginning of the string. If
more than one regular expression is to be compiled before the the
first is executed, the value of eire! is saved for each compiled
expression and eire! is set to that saved value before each call to
step.

The function advance is called from step with the same arguments
as step. The purpose of step is to step through the string argument
and call advance until advance returns a 1 indicating a match, or
until the end of string is reached. If you want to constrain string
to the beginning of the line in all cases, you do not need to call
step; simply call advance.

When advance encounters a * or \ { \} sequence in the regular
expression, it advances its pointer to the string to be matched as
far as possible and recursively calls itself trying to match the rest
of the string to the rest of the regular expression. As long as there
is no match, advance backs up along the string until it finds a
match or reaches the point in the string that initially matched the
\ { \} . It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character
pointer loes is equal to the point in the string at sometime during
the backing up process, advance breaks out of the loop that backs
up and returns zero. This is used by ed(C) and sed(C) for
substitutions done globally (not just the first occurrence, but the
whole line) so, for example, expressions like s/y*/ /g do not loop
forever.

The routines ecmp and getrange are trivial and are called by the
routines previously mentioned.

REGEXP(S) 2-185

Examples

The following is an example of how the regular expression macros
and calls look from grep(C):

#define INIT register char *sp = instring;
(*sp++) #define GETCO

#define PEEKCO
#define UNGETC(c)
#define Enter(c)
#define ERROR(c)

#include <regexp.h>

(*sp)
(--sp)

return;
regerrO

compile(*argv, expbuf, &expbuf[ESIZE],'\O');

Files

if(step(linebuf, expbuf))
succeedO;

/usr/include/regexp.h

See Also

ed(C), grep(C), sed(C).

Comments

The handling of eire! is awkward.
The routine ecmp is equivalent to the Standard I/O routine
strncmp and should be replaced by that routine.

2-186 REGEXP(S)

SBRK(S)

Name

sbrk, brk - Change data segment space allocation.

Synopsis

Description

Sbrk and brk are used to dynamically change the amount of space
allocated for the calling process's data segment; see exee(S). The
change is made by resetting the process's break value. The break
value is the address of the first location beyond the end of the
data segment. The amount of allocated space increases as the
break value increases.

Sbrk adds iller bytes to the break value and changes the allocated
space accordingly. Iller can be negative, in which case the amount
of allocated space is decreased.

In large model programs, if iller is greater than the number of
unallocated bytes remaining in the current data segment, sbrk
automatically allocates all the requested bytes in a new data
segment. This guarantees that the requested bytes reside entirely
in one segment. If iller is negative and equal to the number of
allocated bytes in the current data segment, the segment is
automatically freed for other use. If iller is greater than the
number of allocated bytes, the segment is freed, and the
additional bytes are removed from the next data segment
containing space allocated by sbrk.

SBRK(S) 2-187

Sbrk fails without making any change in the allocated space if
such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimit(S».
[ENOMEM]

Brk sets the the current break value to addr, and changes the
allocated space accordingly. Brk fails if the address references a
data segment that does not exist or if it references beyond the
maximum possible size of the current data segment.

Return Value

On successful completion, sbrk and brk return pointers to the
beginning of the allocated space. Otherwise, a value of -1 is
returned and errno is set to indicate the error. In large model
programs, if sbrk allocates a new data segment, the return value is
the starting address of that new segment.

See Also

exec(S)

Comments

In large model programs, the call "sbrk(O)" does not necessarily
return the starting address of the next sbrk call. In particular, if
the next call causes an additional data segment to be allocated,
the break values returned by these two calls will not be the same.
The return value from "sbrk(O)" should only be regarded as a
marker for the original end of data.

2-188 SBRK(S)

SCANF(S)

Name

scanf, fscanf, sscanf - Convert and format input.

Synopsis

Description

Scanf reads from the standard input stream stdin. Fscanf reads
from the named input stream. Sscanf reads from the character
string s. Each function reads characters, interprets them
according to a format, and stores the results in its arguments.
Each expects, as arguments, a control string format described
below, and a set of pointer arguments indicating where the
converted input should be stored.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain:

1. Blanks, tabs, or newlines, which cause input to be read up to
the next nonwhitespace character.

2. An ordinary character (not %), which must match the next
character of the input stream.

SCANF(S) 2-189

3. Conversion specifications, consisting of the character 0/0, an
optional assignment suppressing character *, an optional
numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next
input field; the result is placed in the variable pointed to by the
corresponding argument unless assignment suppression was
indicated by *. An input field is defined as a string of nonspace
characters; it extends to the next inappropriate character or until
the field width, if specified, is filled.

The conversion character indicates the interpretation of the input
field; the corresponding pointer argument must usually be of a
restricted type. The following conversion characters are allowed:

% A single % is expected in the input at this point; no
assignment is done.

d A decimal integer is expected; the corresponding
argument should be an integer pointer.

o An octal integer is expected; the corresponding argument
should be an integer pointer.

x A hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

s A character string is expected; the corresponding
argument should be a character pointer pointing to an
array of characters large enough to accept the string and a
terminating \0, which will be added automatically. The
input field is terminated by a space character or a
newline.

c A character is expected; the corresponding argument
should be a character pointer. The normal skip over
space characters is suppressed in this case; to read the
next nonspace character, use % Is. If a field width is
given, the corresponding argument should refer to a
character array; the indicated number of characters is
read.

e,f A floating-point number is expected; the next field is
converted accordingly and stored through the

2-190 SCANF(S)

corresponding argument, which should be a pointer to a
float. The input format for floating-point numbers is an
optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field
consisting of an E or an e, followed by an optionally
signed integer.

Indicates a string that is not to be delimited by space
characters. The left bracket is followed by a set of
characters and a right bracket; the characters between the
brackets define a set of characters making up the string.
If the first character is not a caret (,,), the input field
consists of all characters up to the first character that is
not in the set between the brackets. If the first character
after the left bracket is a ", the input field consists of all
characters up to the first character that is in the set of the
remaining characters between the brackets. The
corresponding argument must point to a character array.

The conversion characters d, 0, and x may be capitalized and/or
preceded by I to indicate that a pointer to long rather than to int is
in the argument list. Similarly, the conversion characters e and f
may be capitalized and/or preceded by I to indicate that a pointer
to double rather than to float is in the argument list.

Scanf conversion terminates at EOP, at the end of the control
string, or when an input character conflicts with the control
string. In the last case, the offending character is left unread in
the input stream. This is very important to remember, because
subtle errors can occur when not taking this into account.

Scanf returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early
conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOP is
returned.

Examples

The call:

int i; float X; char name[50];
scanf ("%d%f%s ", &i, &x, name);

SCANF(S) 2-191

with the input line:

25 54.32E-1 thompson

will assign to i the value 25,
to x the value5.432,
and name will contain thompson \ 0

The call:

int i; float X; char name[50J;
scanf (1%2d%f%*d%2s", &i, &x, name);

with input:

56789 0123 45a72

will assign 56 to i, 789.0 to x, skip 0123, and place
the string 45 \ 0
in name.

The next call to getchar (see getc(S» will return a.

See Also

atof(S), getc(S), printf(S)

Diagnostics

These functions return EOF on end of input and a short count for
missing or illegal data items.

Comments

The success of literal matches and suppressed assignments is not
directly determinable.

Trailing whitespace (including a newline) is left unread unless
matched in the control string.

2-192 SCANF(S)

SDENTER(S)
Name

sdenter, sdleave - Synchronize access to a shared data segment.

Synopsis

Description

Sdenter is used to indicate that the current process is about to
access the contents of a shared data segment. The actions
performed depend on the value of flags. Flags values are formed
by DRing together entries from the following list:

SD NOWAIT
If another process has called sdenter but not sdleave for the
indicated segment, and the segment was not created with
the SD UNLOCK flag set, returns an error instead of
waiting for the segment to become free.

SD WRITE
Indicates that the process wants to write data to the shared
data segment.

Sdleave is used to indicate that the current process is done
modifying the contents of a shared data segment.

Only changes made between invocatations of sdenter and sdleave
are guaranteed to be reflected in other processes. Sdenter and
sdleave are very fast; consequently, it is recommended that they

SDENTER(S) 2-193

be called frequently rather than leave sdenter in effect for any
period of time. In particular, system calls should be avoided
between sdenter and sdleave calls.

The fork system call is forbidden between calls to sdenter and
sdleave if the segment was created without the SD UNLOCK
flag. -

Return Value

Successful calls return O. Unsuccessful calls return -1, and errno
is set to indicate the error.

See Also

sdget(S), sdgetv(S)

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

2-194 SDENTER(S)

SDGET(S)

Name

sdget,sdfree- Attach and detach a shared data segment.

Synopsis

Description

Sdget attaches a shared data segment to the data space of the
current process. The actions performed are controlled by the
value of flags. Flags values are constructed by ORing flags from
the following list:

SD RDONLY
Attach the segment for reading only.

SD WRITE
Attach the segment for both reading and writing.

SD CREAT
If the segment named by path exists, this flag has no effect.
Otherwise, the segment is created according to the values
of size and mode. Read and write access to the segment is
granted to other processes based on the permissions passed
in mode, and functions the same as those for regular files.
Execute permission is meaningless. The segment is
initialized to contain all zeroes.

SDGET(S) 2-195

SD UNLOCK
If the segment is created because of this call, the segment
is made so that more than one process can be between
sdenter and sdleave calls.

Sdfree detaches the current process from the shared data segment
that is attached at the specified address. If the current process
has done an sdenter but not a sdleave for the specified segment, an
sdleave is done before detaching the segment.

When no process remains attached to the segment, the contents
of that segment disappear, and no process can attach to the
segment without creating it by using the SD_CREAT flag in
sdget.

Return Value

On successful completion, the address at which the segment was
attached is returned. Otherwise, -1 is returned, and errno is set to
indicate the error. Errno is set to EINV AL if a process does an
sdget on a shared data segment to which it is already attached.

Comments

Use of the SD UNLOCK flag on systems without hardware
support for shared data may cause severe performance
degradation.

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

See Also

sdenter(S), sdgetv(S)

2-196 SDGET(S)

SDGETV(S)

Name

sdgetv, sdwaitv - Synchronizes shared data access.

Synopsis

Description

Sdgetv and sdwaitv may be used to synchronize cooperating
processes that are using shared data segments. The return value
of both routines is the version number of the shared data segment
attached to the process at address addr. The version number of a
segment changes whenever some process does an sdleave for that
segment.

Sdgetv simply returns the version number of the indicated
segment.

Sdwaitv forces the current process to sleep until the version
number for the indicated segment is no longer equal to vnmn.

Return Value

On successful completion, both sdgetv and sdwaitv return a
positive integer that is the current version number for the
indicated shared data segment. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

SDGETV(S) 2-197

See Also

sdenter(S),sdget(S)

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler jlinker
option -Ix.

2-198 SDGETV(S)

SETBUF(S)

Name

setbuf - Assigns buffering to a stream.

Synopsis

Description

Setbuf is used after a stream has been opened but before it is read
or written. It causes the character array buf to be used instead of
an automatically allocated buffer. If buf is the constant pointer
NULL, input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from maUoc(S) upon the first
getc(S) or putc(S) on the file, except that output streams directed
to terminals and the standard error stream stderr are normally not
buffered.

A common source of error is allocation of buffer space as an
"automatic" variable in a code block and then failing to close the
stream in the same block.

See Also

fopen(S),getc(S),maUoc(S),putc(S)

SETBUF(S) 2-199

SETJMP(S)
Name

setjmp, longjmp - Performs a nonlocal "goto".

Synopsis

Description

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjrnp saves its stack environment in env for later use by longjrnp.
It returns value O.

Longjrnp restores the environment saved by the last call of setjrnp.
It then returns in such a way that execution continues as if the call
of setjrnp had just returned the value val to the corresponding call
to setjrnp. The routine that calls setjrnp must not itself have
returned in the interim. Longjrnp cannot return the value O. If
longjrnp is invoked with a second argument of 0, it will return 1.
All accessible data have values as of the time longjmp was called.
The only exception to this are register variables. The value of
register variables are undefined in the routine that called setjrnp
when the corresponding longjrnp is invoked.

See Also

signal(S)

2-200 SET JMP(S)

SETPGRP(S)

Name

setpgrp - Sets process group ID.

Synopsis

Description

Setpgrp sets the process group ID of the calling process to the
process ID of the calling process and returns the new process
group ID.

Return Value

Setpgrp returns the value of the new process group ID.

See Also

exec(S), fork(S), getpid(S), introduction(S), kill(S), signal(S)

SETGRP(S) 2-201

SETUID(S)
Name

setuid, setgid - Sets user and group IDs.

Synopsis

Description

Using setuid is comparable to having an s instead of an x in the
execute field for the file owner. When this system call is run, it is
given the permissions corresponding to the file owner. For
example, the author of a game program can make the program
setuid to the owner. This enables the owner to update a score file
that is otherwise protected from other user's access.

The real user (group) ID of the current process is set to the
argument uid (gid). Both the effective ID and the real ID are set.
The real user ID identifies the person that is logged in. This is in
contra distinction to the effective user ID, which determines the
access permission at this time. These calls are only permitted to
the super user, unless the argument is the real ID or effective ID.

Setuid is used to set the real user ID and effective user ID of the
calling process.

Setgid is used to set the real group ID and effective group ID of
the calling process.

Setuid (setgid) will fail if the real user (group) ID of the calling
process is not equal to uid (gid) and its effective user ID is not
super-user. [EPERM]

2-202 SETUID(S)

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

getuid(S), introduction(S)

SETUID(S) 2-203

SHUTDN(S)
Name

shutdn - Flushes block I/O and halts the CPU.

Synopsis

Description

Shutdn causes all information in core memory that should be on
disk to be written out. This includes modified super-blocks,
modified inodes, and delayed block I/O. The super-blocks of all
writable file systems are flagged 'clean', so that they can be
remounted without cleaning when XENIX is rebooted. Shutdn
then prints "Normal System Shutdown" on the console and halts
the CPU.

If sblk is nonzero, it specifies the address of a super-block which
will be written to the root device as the last I/O before the halt.
This facility is provided to allow file system repair programs to
supersede the system's copy of the root super-block with one of
their own.

Shutdn locks out all other processes while it is doing its work.
However, it is recommended that user processes be ended (see
kilI(S» before calling shutdn as some types of disk activity could
cause file systems to not be flagged "clean".

The caller must be the super-user.

See Also

fsck(C), haltsys(C), shutdown(C), mount(S), kill(S)

2-204 SHUTDN(S)

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

SHUTDN(S) 2-205

SIGNAL(S)

Name

signal - Specifies what to do on receipt of a signal.

Synopsis

Description

Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and fune specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP 01 Hangup
SIGINT 02 Interrupt
SIGQUIT 03* Quit
SIGILL 04* Illegal instruction (not reset when caught)
SIGTRAP 05* Trace trap (not reset when caught)
SIGIOT 06* I/O trap instruction
SIGEMT 07* Emulator trap instruction
SIGFPE 08* Floating-point exception
SIGKILL 09 Ki 11 (cannot be caught or ignored)
SIGBUS 10* Bus error
SIGSEGV 11* Segmentation violation
SIGSYS 12* Bad argument to system call
SIGPIPE 13 Write on a pipe with no one to read it
SIGALRM 14 Alarm clock
SIGTERM 15 Software termination signal
SIGUSRI 16 User-defined signal 1
SIGUSR2 17 User-defined signal 2
SIGCLD 18 Death of a child(see Warning below)
SIGPWR 19 Power fail(see Warning below)

2-206 SIGNAL(S)

See below for the significance of the asterisk in the above list.

Func is assigned one of three values: SIG DFL, SIG IGN, or
a function address. The actions prescribedby these values of are
described below.

The SIG DFL value causes termination of the process on receipt
of a signal. Upon receipt of the signal sig, the receiving process is
to be terminated with the following consequences:

1. All of the receiving process's open file descriptors are closed.

2. If the parent process of the receiving process is executing a
wait, it is notified of the termination of the receiving process
and the terminating signal's number is made available to the
parent process; see wait(S).

3. If the parent process of the receiving process is not executing
a wait, the receiving process is transformed into a zombie
process (see exit(S) for definition of zombie process).

4. The parent process ID of each of the receiving process's
existing child processes and zombie processes is set to 1.
This means the initialization process (see introduction(S))
inherits each of these processes.

5. An accounting record is written on the accounting file if the
system's accounting routine is enabled; see acct(S).

6. If the receiving process's process ID, tty group ID, and
process group ID are equal, the signal SIGHUP is sent to all
of the processes that have a process group ID equal to the
process group ID of the receiving process.

7. A "core image" is made in the current working directory of
the receiving process if sig is one for which an asterisk
appears in the above list and the following conditions are
met:

The effective user ID and the real user ID of the receiving
process are equal.

SIGNAL(S) 2-207

An ordinary filenamed core exists and is writable or can be
created. If the file must be created, it has a mode of 0666
modified by the file creation mask (see umask(S)), a file
owner ID that is the same as the effective user ID of the
receiving process, a file group ID that is the same as the
effective group ID of the receiving process

The SIG IGN value causes the process to ignore a signal. The
signal sig is to be ignored. Note that the signal SIGKILL cannot
be ignored.

A function address value causes the process to catch a signal.
Upon receipt of the signal sig, the receiving process is to execute
the signal-catching function pointed to by func. The signal
number sig is passed as the only argument to the signal-catching
function. The consequences are:

1. Upon return from the signal-catching function, the receiving
process resumes execution at the point it was interrupted and
the value of func for the caught signal is set to SIG DFL
unless the signal is SIGILL, SIGTRAP, SIGCLD, or
SIGPWR.

2. When a signal that is to be caught occurs during a read, a
write, an open, or an ioctl system call on a slow device (like a
terminal; but not a file), during a pause system call, or during
a wait system call that does not return immediately because
of the existence of a previously stopped or zombie process,
the signal catching function is executed and the interrupted
system call returns a -1 to the calling process with errno set
to EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending
SIGKILL signal.

Signal fails if one or more of the following is true:

Sig is an illegal signal number, including SIGKILL.
[EINVAL]

Func points to an illegal address. [EFAULT]

2-208 SIGNAL(S)

Return Value

On successful completion, signal returns the previous value of func
for the specified signal sig. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

See Also

1d1l(C), 1d1l(S) , pause(S), ptrace(S), wait(S), setjrnp(S).

Warning: Two other signals that behave differently than the
signals described above exist in this release of XENIX; they
are:

SIGCLD 18 Death of a child (not reset when caught)
SIGPWR 19 Power fail (not reset when caught)

These signals will continue to behave as described below; they are
included only for compatibility with other versions of UNIX.
Their use in new programs is strongly discouraged.

For these signals, func is assigned one of three values:
SIG DFL, SIG IGN, or a function address. The actions
prescribed by these values are as follows:

SIG DFL- ignore signal
The signal is to be ignored.

SIG IGN-ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process's child processes do not create zombie
processes when they terminate; see exit(S).

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as
that described above for func equal to function address. The
same is true if the signal is SIGCLD except that while the
process is executing the signal-catching function, any
received SIGCLD signals are queued and the signal-catching
function is continually reentered until the queue is empty.

The SIGCLD affects two other system calls (wait(S), and exit(S»
in the following ways:

SIGNAL(S) 2-209

wait If the fune value of SIGCLD is set to SIG IGN and a
wait'is executed, the wait blocks until all oTihe calling
process's child processes terminate; it then returns a
value of ~1 with errno set to ECHILD.

exit If in the exiting process's parent process the fune value
of SiGCLD is set to SiG iGN, the exiting process
does not create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that
may be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be
caught.

Comments

The defined constant NSIG in signal.h standing for the number of
signals i~ always at h~ast one greater than the actual number.

2-210 SIGNAL(S)

SIGSEM(S)

Name

sigsem - Signals a process waiting on a semaphore.

Synopsis

Description

Sigsem signals a process that is waiting for the semaphore
sern num that it may proceed and use the resource governed by
the Semaphore. Sigsem is used in conjunction with waitsem(S) to
allow synchronization of processes wishing to access a resource.
One or more processes may waitsem on the given semaphore and
are put to sleep until the process that currently has access to the
resource issues a sigsem call. If there are any waiting processes,
sigsem causes the process that is next in line on the semaphore's
queue to be rescheduled for execution. The semaphore's queue is
organized in first-in-first-out (FIFO) order.

See Also

creatsem(S), opensem(S), waitsem(S)

Diagnostics

Sigsem returns the value (int) -1 if an error occurs. If sem num
does not refer to a semaphore type file, errno is set to
ENOTNAM. If sem num has not been previously opened by
opensem, errno is set to EBADF. If the process issuing a sigsem
call is not the current "owner" of the semaphore (that is, if the
process has not issued a waitsem call before the sigsem), errno is
set to ENAVAIL.

SIGSEM(S) 2-211

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

2-212 SIGSEM(S)

SINH(S)

Name

sinh, cosh, tanh - Perform hyperbolic functions.

Synopsis
~'::' ' .. ~', <

:#melud.e<math~h>

,)tJ~dlil~,;:,S~llb/(X)
, doijb'~ x';:!;: .;: '.

;d!jbi~.§~~~.(:t)
, 'd9~~I~~~J::;:::;;'

Description

These functions compute the designated hyperbolic functions for
real arguments.

Diagnostics

Sinh and cosh return a huge value of appropriate sign when the
correct value would overflow.

SINH(S) 2-213

SLEEP(S)

Name

sleep - Suspends execution for an interval.

Synopsis

Description

The current process is suspended from execution for the number
of seconds specified by the argument. The actual suspension time
may be less than that requested because scheduled wakeups occur
at fixed 1-second intervals, and any caught signal terminates the
sleep following execution of that signal's catching routine. Also,
the suspension time may be longer than requested by an arbitrary
amount because of the scheduling of other activity in the system.
The value returned by sleep is the "unslept" amount (the
requested time minus the time actually slept) in case the caller had
an alarm set to go off earlier than the end of the requested sleep
time or premature arousal because of another caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling sleep; if the sleep time
exceeds the time till such alarm signal, the process sleeps only
until the alarm signal would have occurred, and the caller's alarm
catch routine is executed just before the sleep routine returns, but
if the sleep time is less than the time till such alarm, the prior
alarm time is reset to go off at the same time it would have gone
off without the intervening sleep.

See Also

alarm(S), nap(S), pause(S), signal(S)

2-214 SLEEP(S)

SSIGNAL(S)

Name

ssignal, gsignal - Implement software signals.

Synopsis

":"~' :,: "P::;f·: .. l;:, ;'t~: ;.~:'~;; !~; :"

,}btt ;' , "ig~~~ction»t)
· :'ifit;: ~~aeti~j;I,~r); ,,' .

:',

,:;i~f ~~i~~t·($1g);.;,
: .. ·~tf~I~:! ,:"::: '. ,

Description

Ssignal and gsignal implement a software facility similar to
signal(S). This facility is used by the standard C library to enable
the user to indicate the disposition of error conditions and is also
made available to the user for his own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. An action for a
software signal is established by a call to ssignal, and a software
signal is raised by a call to gsignal.. Raising a software signal
causes the action established for that signal to be taken.

The first argument to ssignal is a number identifying the type of
signal for which an action is to be established. The second
argument defines the action; it is either the name of a (user
defined) action function or one of the manifest constants
SIG DFL (default) or SIG IGN (ignore). Ssigmll returns the
action previously established for that signal type; if no action has
been established or the signal number is illegal, ssignal returns
SIG DFL.

Gsignal raises the signal identified by its argument, sig:

SSIGNAL(S) 2-215

If an action function has been established for sig, that action
is reset to SIG DFL and the action function is entered with
argument sig. Gsignal returns the value returned to it by the
action function.

If the action for sig is SIG IGN, gsignal returns the value 1
and takes no other action.-

If the action for sig is SIG DFL, gsignal returns the value 0
and takes no other action.-

If sig has an illegal value or no action was ever specified for
sig, gsignal returns the value 0 and takes no other action.

Comments

There are some additional signals with numbers outside the range
1 through 15 that are used by the standard C library to indicate
error conditions. Thus, some signal numbers outside the range 1
through 15 are legal, although their use may interfere with the
operation of the standard C library.

2-216 SSIGNAL(S)

STAT(S)

Name

stat, fstat - Get file status.

Synopsis

Description

Path points to a pathname naming a file. Read, write or execute
permission of the named file is not required, but all directories
listed in the pathname leading to the file must be searchable. Stat
obtains information about the named file.

Similarly, fstat obtains information about an open file known by
the file descriptor fildes, obtained from a successful open, ere at,
dup, f cnti, or pipe system call.

Buf is a pointer to a stat structure into which information is
placed concerning the file. The contents of the structure pointed
to by buf is defined in the <sys/stat.h> include file (see stat(F».

Several XENIX functions cause the status information of a given
file to be updated. The last access time (st atime) for a file is
updated by the following system calls: creat(S), mknod(S),
pipe(S), utime(S), and read(S). The last modification time
(st_mtime) is updated by: creat(S), mknod(S), pipe(S), utime(S),

STAT(S) 2-217

and write(S). The last change of status st ctime for a file is
updated by: chmod(S), chown(S), creat(Sr,-link(S), mknod(S),
pipe(S), utime(S), and write(S).

The device identification value (st rdev) contains the device
major and minor numbers for the given file only if that file is a
character or block special file. If the file is a shared memory or
semaphore file, it contains the type code. Note that the file
lusrlincludelsysltypes.h contains the macros majorO and minorO
for extracting major and minor numbers from st rdev. See
stat(F) for the semaphore and shared memory type code values
S INSEM and S INSHD.

Stat fails if one or more of the following is true:

• A component of the path prefix is not a directory.
[ENOTDIR]

• The named file does not exist. [ENOENT]

• Search permission is denied for a component of the path
prefix. [EACCES]

• Buf or path points to an invalid address. [EFAULT]

Fstat fails if one or more of the following is true:

• Fildes is not a valid open file descriptor. [EBADF]

• Buf points to an invalid address. [EFAULT]

Return Value

On successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chmod(S), chown(S), creat(S), link(S) , mknod(S), time(S),
unlink(S)

2-218 STAT(S)

STDIO(S)
Name

stdio - Performs standard buffered input and output.

Synopsis

Description

The stdio library contains an efficient, user-level I/O buffering
scheme. The in-line macros getc(S) and putc(S) handle
characters quickly. The macros getchar, putchar, and the
higher-level routines fgetc, fgets, fprintf, fputc, fputs, fread,
fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use getc
and putc; they can be freely intermixed.

A file with associated buffering is called a "stream" and is
declared to be a pointer to a defined type FILE. Fopen(S) creates
certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. Normally, there
are three open streams with constant pointers declared in the
"include" file and associated with the standard open files:

stdin Standard input file
stdout Standard output file
stderr Standard error file

A constant "pointer" NULL designates the null stream.

An integer constant EOF is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual
descriptions for details).

Any program that uses this package must include the header file
of pertinent macro definitions, as follows:

#include <stdio.h>

STDIO(S) 2-219

Most of the functions and constants mentioned in this section of
the manual are declared in that "include" file and are described
elsewhere. The constants and the following "functions" are
implemented as macros (redeclaration of these names is perilous):
getc, getchar, putc, putchar, feof, ferror, and fileno.

See Also

open(S), c1ose(S), read(S), write(S), ctermid(S), cuserid(S),
fclose(S), ferror(S), fopen(S), fread(S), fseek(S), getc(S), gets(S),
popen(S), printf(S), putc(S), puts(S), scanf(S), setbuf(S),
system(S), tmpnam(S)

Diagnostics

Invalid stream pointers can disrupt the program, possibly
including program termination. Individual function descriptions
describe the possible error conditions.

2-220 STDIO(S)

STIME(S)

Name

stime - Sets the time.

Synopsis

Description

Stime sets the system's idea of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT
January 1, 1970.

Stime will fail if the effective user ID of the calling process is not
super-user. [EPERM]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

See Also

time(S)

STIME(S) 2-221

STRING(S)
Name

strcat, strncat, strcmp, strncmp, strcpy, strncpy, stden, strchr,
strrchr, strpbrk, strspn, strcspn, strtok, strdup - Perform string
operations.

Synopsis

2-222 STRING(S)

Description

These functions operate on null-terminated strings. They do not
check for overflow of any receiving string.

Strcat appends a copy of string s2 to the end of string st. Strncat
copies at most n characters. Both return a pointer to the
null-terminated result.

Strcmp compares its arguments and returns an integer greater
than, equal to, or less than 0, according as st is lexicographically
greater than, equal to, or less than s2. Strncmp makes the same
comparison but looks at most n characters.

Strcpy copies string s2 to st, stopping after the null character has
been moved. Strncpy copies exactly n characters, truncating or
null-padding s2; the target may not be null-terminated if the
length of s2 is n or more. Both return st.

Strlen returns the number of nonnull characters in s.

Strehr (strrchr) returns a pointer to the first (last) occurrence of
character e in string s, or NULL if c does not occur in the string.
The null character terminating a string is considered to be part of
the string.

Strpbrk returns a pointer to the first occurrence in string st of any
character from string s2, or NULL if no character from s2 exists
in sl.

STRING(S) 2-223

Strspn (strcspn) returns the length of the initial segment of string
sl, which consists entirely of characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence of zero or
more text tokens separated by spans of one or more characters
from the separator string s2. The first call (with pointer sl
specified) returns a pointer to the first character of the first
token, and will have written a NULL character into sl
immediately following the returned token. Subsequent calls with
zero for the first argument work through the string sl in this way
until no tokens remain. The separator string s2 may be different
from call to call. When no token remains in sl, a NULL is
returned.

Strdup returns a pointer to a duplicate copy of the string pointed
to by s. The duplicate string is automatically allocated storage
using a malloc(S) system call. This call allocates the exact number
of bytes needed to store the string and its terminating null
character.

Comments

Strcmp uses native character comparison, which is signed on some
machines, unsigned on others.

All string movement is performed character-by-character, starting
at the left. Thus overlapping moves toward the left work as
expected, but overlapping moves to the right may yield surprises.

2-224 STRING(S)

SWAB(S)

Name

swab - Swaps bytes.

Synopsis

s'W~b.(fr9~,to, nbytes)
cbar*froDl, *to;
int nbytes;

Description

Swab copies nbytes pointed to by from to the position pointed to
by to, exchanging adjacent even and odd bytes. It is useful for
transporting binary data between machines that differ in the
ordering of bytes. Nbytes should be even.

SW AB(S) 2-225

SYNC(S)

Name

sync - Updates the super-block.

Synopsis

Description

Sync causes all information in memory that should be on disk to
be written out. This includes modified super-blocks, modified
inodes, and delayed block I/O.

It should be used by programs that examine a file system, for
example fsck(C), df(C), etc.

The writing, although scheduled, is not necessarily complete on
return from sync.

See Also

sync(C)

2-226 SYNC(S)

SYSTEM(S)
Name

system - Executes a shell command.

Synopsis

Description

System passes the string to a new invocation of a shell (see
sh(e». The shell reads and executes the string as if it had been
typed as a command at a terminal, then returns the exit status of
the command to the calling process. The calling process waits
until the shell has returned a status before proceeding with
execution.

See Also

sh(e), exec(S)

Diagnostics

System stops if it can't execute sh (e).

SYSTEM(S) 2-227

TERMCAP(S)

Name

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - Performs terminal
functions.

Synopsis

Description

These functions extract and use capabilities from the terminal
capability data base termcap(M). These are low level routines;
see curses(S) for a higher level package.

2-228 TERMCAP(S)

Tgetent extracts the entry for terminal name into the buffer at bp.
Bp should be a character buffer of size 1024 and must be retained
through all subsequent calls to tgetnum, tgetflag, and tgetstr.
Tgetent returns -1 if it cannot open the termeap file, 0 if the
terminal name given does not have an entry, and 1 if all goes well.
It will look in the environment for a TERMCAP variable. If
found, and the value does not begin with a slash, and the terminal
type name is the same as the environment string TERM, the
TERMCAP string is used instead of reading the termcap file. If it
does begin with a slash, the string is used as a pathname rather
than / etc/termcap. This can speed up entry into programs that
call tgetent, as well as to help debug new terminal descriptions or
to make one for your terminal if you can't write the file
/ etc/termcap.

Tgetnum gets the numeric value of capability id, returning -1 if is
not given for the terminal. Tgetflag returns 1 if the specified
capability is present in the terminal's entry, 0 if it is not. Tgetstr
gets the string value of capability id, placing it in the buffer at
area, advancing the area pointer. It decodes the abbreviations for
this field described in termeap(M), except for cursor addressing
and padding information.

Tgoto returns a cursor addressing string decoded from em to go to
column desteol in line destline. It uses the external variables UP
(from the up capability) and BC (if be is given rather than bs) if
necessary to avoid placing \n , Ctrl-D or NULL in the returned
string. (Programs that call tgoto should be sure to turn off the
T AB3 bit (see tty(M)), because tgoto may now output a tab.
Note that programs using termcap should in general turn off
TAB3 anyway because some terminals use Ctrl-I for other
functions, such as nondestructive space.) If a % sequence is
given that is not understood, tgoto returns "OOPS".

Tputs decodes the leading padding information of the string ep;
affent gives the number of lines affected by the operation, or 1 if
this is not applicable, oute is a routine that is called with each
character in turn. The external variable ospeed should contain the
output speed of the terminal as encoded by stty(C). The external
variable PC should contain a pad character to be used (from the
pc capability) if a NULL is inappropriate.

TERMCAP(S) 2-229

Files

/usr/lib/libtermcap.a -ltermcap library
/ etc/termcap data base

See Also

curses(S), terEncap(~), tty(~)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

These routines can be linked by using the linker option - ltermcap.

2-230 TERMCAP(S)

TIME(S)

Name

time, ftime - Get time and date.

Synopsis

Description

Time returns the current system time in seconds since 00:00:00
GMT, January 1, 1970.

If tloc (taken as an integer) is nonzero, the return value is also
stored in the location to which tloc points.

Ftime returns the time in a structure (see "Return Value" beloW.)

Time fails if tloc points to an illegal address. [EF AULT]
Likewise, ftime fails if tp points to an illegal address. [EFAULT]

Return Value

On successful completion, time returns the value of time.
Otherwise, a value of -1 is returned, and errno is set to indicate
the error.

The ftime entry fills in a structure pointed to by its argument, as
defined by <sys/timeb.h>:

TIME(S) 2-231

/*
* Structure returned by ftime system call
*/

struct timeb {

};

time t time;
unsigned short millitm;
short timezone;
short dstflag;

Note that the timezone value is a system default timezone and not
the value of the TZ environment variable.

The structure contains the time since the epoch in seconds, up to
1000 milliseconds of more-precise interval, the local time zone
(measured in minutes of time westward from Greenwich), and a
flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year.

See Also

date(C), time(S), ctime(S)

Comments

Since ftime does not return the correct timezone value, its use is
not recommended. See ctime(S) for accurate use of the TZ
variable.

Ftime is an IBM Personal Computer XENIX improvement and
may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. Ftime must be linked with the compiler/linker option
-Ix.

2-232 TIME(S)

TIMES(S)
Name

times - Gets process and child process times.

Synopsis

'~~~~t~~~\~.'~~~ltiJi~S~b>~··
.,.rill~I",~.~·. ~:sfslti~~s.~h>

Description

Times fills the structure pointed to by buffer with time-accounting
information. The contents of the structure is:

struct tms {
time t tms utime; -
time t tms stime; - -
time t tms cutime; - -
time t tms cstime; -

} ;
This information comes from the calling process and each of its
terminated child processes for which it has executed a waiteS).

All times are in clock ticks where a tick is some fraction of a
second defined in machine(M).

Tms utime is the CPU time used while executing instructions in
the user space of the calling process.

Tms stime is the CPU time used by the system on behalf of the
calling process.

Tms cutime is the sum of the tms utimes and tms cutimes of
the child processes.

TIMES(S) 2-233

Tms cstime is the sum of the tms stimes and tms cstimes of
the child processes.

Times fails if buffer points to an illegal address. [EFAULT]

Return Vaiue

On successful completion, times returns the elapsed real time, in
clock ticks, since an arbitrary point in the past, such as the system
start-up time. This point does not change from one invocation of
times to another. If times fails, a -1 is returned and errno is set to
indicate the error.

See Also

exec(S), fork(S), time(S), wait(S), machine(M)

2-234 TIMES(S)

TMPFILE(S)

Name

tmpfile - Creates a temporary file.

Synopsis

Description

Tmpfile creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically
be deleted when the process using it terminates. The file is
opened for update.

See Also

createS), unlink(S), fopen(S), mktemp(S), tmpnam(S)

TMPFILE(S) 2-235

TMPNAM(S)
Name

tmpnam - Creates a name for a temporary file.

Synopsis

Description

Tmpnam generates a filename that can safely be used for a
temporary file. If (int) s is zero, tmpnam leaves its result in an
internal static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If (int) sis
nonzero, s is assumed to be the address of an array of at least
L tmpnam bytes; tmpnam places its result in that array and
returns s as its value.

Tmpnam generates a different filename each time it is called.

Files created using tmpnam and either fop en or creat are only
temporary in the sense that they reside in a directory intended for
temporary use, and their names are unique. It is the user's
responsibility to use unlink(S) to remove the file when its use is
ended.

See Also

creat(S), unlink(S), fopen(S), mktemp(S)

Comments

If called more than 17,576 times in a single process, tmpnam starts
recycling previously used names.

2-236 TMPNAM(S)

Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using
tmpnam or mktemp and the filenames are chosen so as to render
duplication by other means unlikely.

TMPNAM(S) 2-237

TRIG(S)

Name

sin, cos, tan, asin, acos, atan, atan2 - Perform trigonometric
functions.

Synopsis

Description

Sin, cos and tan return trigonometric functions of radian
arguments. The magnitude of the argument should be checked by
the caller to make sure the result is meaningful.

Asin returns the arc sin in the range - rr /2 to rr /2.

Acos returns the arc cosine in the range 0 to 'TT.

Atan returns the arc tangent of x in the range -'TT /2 to 'TT /2.

2-238 TRIG(S)

Atan2 returns the arc tangent of y/x in the range -'fT to 'fT.

Diagnostics

Arguments of magnitude greater than 1 cause asin and acos to
return value O.

Comments

These routines can be linked with the linker option -1m.

TRIG(S) 2-239

TTYNAME(S)

Name

ttyname, isatty - Finds the name of a terminal.

Synopsis

Description

Ttyname returns a pointer to the null-terminated pathname of the
terminal device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, 0
otherwise.

Files

/dev/*

Diagnostics

Ttyname returns a null pointer (0) if fildes does not describe a
terminal device in directory / dev.

Comments

The return value points to static data whose contents are
overwritten by each call.

2-240 TTYNAME(S)

ULIMIT(S)
Name

ulimit - Gets and sets user limits.

Synopsis

:' Jo~gW~t ~qpld~' g~wIfulit)·'
'mfemd;;~:' i

J~~gl!~wlDnit;:

Description

This function provides for control over process limits. The cmd
values available are:

UL GFILLIM
Gets the process's file size limit. The limit is in units of

512-byte blocks and is inherited by child processes. Files of
any size can be read.

UL SFILLIM
Sets the process's file size limit to the value of newlimit. Any

process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. Ulimit
fails and the limit is unchanged if a process with an effective
user ID other than super-user attempts to increase its file size
limit. [EPERM]

UL GMEMLIM
Gets the maximum possible break value. If the process is a

large model 80286 program, the largest possible data size (in
bytes) is returned. See sbrk(S).

ULIMIT(S) 2-241

UL GTXTOFF
Gets the number of bytes between the beginning of user text

and the text address given by newlimit. In this case, newlimit
must have type

int(*newlimit)O;

Return Value

On successful completion, a nonnegative value is returned.
Otherwise, a value of -1 is returned, and errno is set to indicate
the error. EINVAL indicates an invalid cmd value.

See Also

sbrk (S), chsize (S), write (S)

Comments

The file limit is only enforced on writes to regular files. Tapes,
disks, and other devices of any size can be written.

2-242 ULIMIT(S)

UMASK(S)

Name

umask - Sets and gets file creation mask.

Synopsis

.• ~;illt ;iunas~: (cmask):<
;:fut:emask-i

" .,' ,; ',: .. "

Description

Umask sets the process's file mode creation mask to cmask and
returns the previous value of the mask. Only the low-order nine
bits of cmask and the file mode creation mask are used.

Return Value

The previous value of the file mode creation mask is returned.

See Also

mkdir(C), mknod(C), sh(C), chmod(S), mknod(S), open(S)

UMASK(S) 2-243

UMOUNT(S)

Name

umount - Unmounts a file system.

Synopsis

Description

Umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted.
Spec is a pointer to a pathname. After unmounting the file
system, the directory upon which the file system was mounted
reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount fails if one or more of the following is true:

• The process's effective user ID is not super-user. [EPERM]

• Spec does not exist. [ENXIO]

• Spec is not a block special device. [ENOTBLK]

• Spec is not mounted. [EINV AL]

• A file on spec is busy. [EBUSY]

• Spec points outside the process's allocated address space.
[EFAULT]

2-244 UMOUNT(S)

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

See Also

mount(C), mount(S)

UMOUNT(S) 2-245

UNAME(S)

Name

uname - Gets name of current XENIX system.

Synopsis

Description

Uname stores information identifying the current XENIX system
in the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h>:

struct utsname {

};

char sysname[9];
char nodename[9];
char release[9];
char version[9];
unsigned short sysorigin;
unsigned short sysoem;
long sysserial;

Uname returns a null-terminated character string naming the
current XENIX system in the character array sysname. Similarly,
nodename contains the name that the system is known by on a
communications network. Release and version further identify the
operating system. Sysorigin and sysoem identify the source of the
XENIX version. Sysserial is a software serial number that may be
zero if unused.

Uname fails if name points to an invalid address. [EFAULT]

2-246 UNAME(S)

Return Value

On successful completion, a nonnegative value is returned.
Otherwise, -1 is returned, and errno is set to indicate the error.

See Also

uname(C)

Comments

Not all fields may be set on a particular system.

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions ..

UNAME(S) 2-247

UNGETC(S)

Name

ungetc - Pushes character back into input stream.

Synopsis

Description

Ungetc pushes the character c back on an input stream. The
character is returned by the next getc call on that stream. Ungetc
returns c.

One character of pushback is guaranteed, provided something has
been read from the stream and the stream is actually buffered.
Attempts to push EOF are rejected.

Fseek(S) erases all memory of pushed back characters.

See Also

fseek(S), getc(S), setbuf(S)

Diagnostics

Ungetc returns EOF if it can't push a character back.

2-248 UNGETC(S)

UNLINK(S)

Name

unlink - Removes directory entry.

Synopsis

" ij;t','t..iuhkI(P~tti~l,;
: .. : .. ,.char::*natb·;.' "'::.'

'::,;':, ... y,. ",,'" '.,'

Description

Unlink removes the directory entry named by the pathname
pointed to by path.

The named file is unlinked unless one or more of the following is
true:

• A component of the path prefix is not a directory.
[ENOTDIR]

• The named file does not exist. [ENOENT]

• Search permission is denied for a component of the path
prefix. [EACCES]

• Write permission is denied on the directory containing the
link to be removed. [EACCES]

• The named file is a directory and the effective user ID of the
process is not super-user. [EACCES]

• The entry to be unlinked is the mount point for a mounted
file system. [EBUSY]

• The entry to be unlinked is "." or " . . . " in the root
directory of a mounted filesystem. [EBUSY]

• The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed. [ETXTBSY]

UNLINK(S) 2-249

• The directory entry to be unlinked is part of a read-only file
system. [EROFS]

• Path points outside the process's allocated address space.
[EFAULT]

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file
ceases to exist. If one or more processes have the file open when
the last link is removed, the removal is postponed until all
references to the file have been closed.

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

rm(C), ciose(S), Iink(S), open(S)

2-250 UNLINK(S)

USTAT(S)

Name

us tat - Gets file system statistics.

Synopsis

Description

Ustat returns information about a mounted file system. Dev is the
major/minor (1 byte each) device number identifying a device
containing a mounted file system. (See the makedev, major, and
minor macros in the types.h file for more details). Buf is a pointer
to a ustat structure that includes the following elements:

daddr_t f_tfree; /* Total free blocks * /
ina t f tinode; /* Number of free inodes * /
char f fname[6]; /* Filsys name * /
char f_fpack[6]; /* Filsys pack name * /

One example of this call is:

ustat(makedev(major(x),minor(y)),buf);

where x and yare 2-byte integers representing the major and
minor device numbers.

Ustat fails if one or more of the following is true:

Dev is not the device number of a device containing a
mounted file system. [EINV AL]

USTAT(S) 2-251

Buf points outside the process's allocated address space.
[EFAULT]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

See Also

stat(S), fiiesystem(F)

Comments

When using file systems from previous versions of UNIX, fsck(C)
must be run on the file system before mounting. Otherwise the
ustat system call does not work correctly. This only needs to be
done once.

2-252 USTAT(S)

UTIME(S)
Name

utime - Sets file access and modification times.

Synopsis

Description

Path points to a pathname naming a file. Utime sets the access
and modification times of the named file.

If times is NULL, the access and modification times of the file are
set to the current time. A process must be the owner of the file or
have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf
structure, and the access and modification times are set to the
values contained in the designated structure. Only the owner of
the file or the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1,1970.

struct utimbuf {
time t actime; / * access time * /
time t modtime; /* modification time * /

};

Utime fails if one or more of the following is true:

• The named file does not exist. [ENOENT]

UTIME(S) 2-253

• A component of the path prefix is not a directory.
[ENOTDIR]

• Search permission is denied by a component of the path
prefix. [EACCES]

• The effective user iD is not super-user and not the owner of
the file and times is not NULL. [EPERM]

• The effective user ID is not super-user and not the owner of
the file and, times is NULL and write access is denied.
[EACCES]

• The file system containing the file is mounted read-only.
[EROFS] Times is not NULL and points outside the
process's allocated address space. [EFAULT]

• Path points outside the process's allocated address space.
[EFAULT]

Return Value

On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

See Also

stateS)

27:254 UTIME(S)

WAIT(S)
Name

wait - Waits for a child process to stop or terminate.

Synopsis

Description

Wait suspends the calling process until it receives a signal that is
to be caught (see signal(S» or until anyone of the calling
process's child processes stops in a trace mode (see ptraee(S)) or
terminates. If a child process stopped or terminated before the
call on wait, return is immediate.

If stat loe (taken as an integer) is nonzero, 16 bits of
information called "status" are stored in the low-order 16 bits of
the location pointed to by stat loe. Status can be used to
differentiate between stoppedand terminated child processes and,
if the child process terminated, status identifies the cause of
termination and passes useful information to the parent. This is
accomplished as following:

If the child process stopped, the high-order 8 bits of status
are zero, and the low-order 8 bits are set equal to 0177.

If the child process terminated because of an exit call, the
low-order 8 bits of status are zero and the high-order 8 bits
contain the low-order 8 bits of the argument that the child
process passed to exit; see exit(S).

If the child process terminated because of a signal, the
high-order 8 bits of status are zero, and the low-order 8 bits

WAIT(S) 2-255

contain the number of the signal that caused the termination.
In addition, if the low-order seventh bit (that is, bit 200) is
set, a "core image" will have been produced; see signal(S).

If a parent process terminates without waiting for its child
processes to terminate, the parent process ID of each child
process is set to 1. This means the initialization process inherits
the child processes; see introduetion(S).

Wait fails and returns immediately if one or more of the following
is true:

The calling process has no existing unwaited-for child
processes. [ECHILD]

Stat_loe points to an illegal address. [EFAULT]

Return Value

If wait returns because of a signal, a value of -1 is returned to the
calling process and errno is set to EINTR. If wait returns because
of a stopped or terminated child process, the process ID of the
child is returned to the calling process. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

See Also

exee(S), exit(S), fork(S), pause(S), signal(S)

Warning: See "Warning" in signal(S).

2-256 WAIT(S)

WAITSEM(S)
Name

waitsem, nbwaitsem - A wait and check access to a resource
governed by a semaphore.

Synopsis

wait$em'{sem num)
in t selilnum.· '. T

~ :~

nblfaltsem{sem num)
,~*.,,~em~~um; -

Description

Waitsem gives the calling process access to the resource governed
by the semaphore sem num. If the resource is in use by another
process, waitsem puts the process to sleep until the resource
becomes available; nbwaitsem returns the error ENAVAIL.
Waitsem and nbwaitsem are used with sigsem to allow
synchronization of processes wishing to access a resource. One
or more processes may waitsem on the given semaphore and are
put to sleep until the process that currently has access to the
resource issues sigsem. Sigsem causes the process that is next in
line on the semaphore's queue to be rescheduled for execution.
The semaphore's queue is organized in first-in-first-out (FIFO)
order.

See Also

creatsem(S), opensem(S), sigsem(S)

Diagnostics

Waitsem returns the value (int) -1 if an error occurs. If
sem_num has not been previously opened by a call to opensem or

W AITSEM(S) 2-257

creatsem, errnQ is set to EBADF. If sem Dum does not refer to a
semaphore type file, errno is set to ENOTNAM. All processes
waiting (or attempting to wait) for the semaphore when the
proc~ss controlling the semaphore exits without relinquishing
control (thereby leaving the resource in an undeterminate state),
return with errno set to ENAVAJL. If a process does two
waitsems in a row without doing an intervening sigsem, errno is set
to EINVAL.

Comments

This feature is an IBM Personal Computer XENIX improvement
and may not be present in all UNIX versions. The application
developer should consider the impact to portability when using
this feature. This routine must be linked with the compiler/linker
option -Ix.

2-258 W AITSEM(S)

WRITE(S)

Name

write - Writes to a file.

Synopsis

Description

Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by
buf to the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from write, the file pointer is incremented by the number of
bytes actually written.

On devices incapable of seeking, writing always takes place
starting at the current position. The value of a file pointer
associated with such a device is undefined.

If the a APPEND flag of the file status flags is set, the file
pointer is set to the end of the file before each write.

Write fails and the file pointer remains unchanged if one or more
of the following true:

Fildes is not a valid file descriptor open for writing.
[EBADF]

An attempt is made to write to a pipe that is not open for
reading by any process. [EPIPE and SIGPIPE signal]

WRITE(S) 2-259

An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size. See
ulimit(S). [EFBIG]

Buf points outside the process's allocated address space.
[EFAULT]

If a write requests that more bytes be written than there is room
for (for example, the uimit (see ulimit(S)) or the physical end of a
medium), only as many bytes as there is room for are written.
For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes will return 20. The
next write of a nonzero number of bytes gives a failure return
(except as noted below).

If the file being written is a pipe (or FIFO), no partial writes are
permitted. Thus, the write fails if a write of nbyte bytes would
exceed a limit.

If the file being written is a pipe (or FIFO) and the
o NDELAY flag of the file flag word is set, write to a full pipe
(or FIFO) returns a count of o. Otherwise (0 NDELAY
clear), writes to a full pipe (or FIFO) block until space becomes
available.

Return Value

On successful completion, the number of bytes actually written is
returned. Otherwise, -1 is returned, and errno is set to indicate
the error.

See Also

createS), dupeS), Iseek(S), open(S), pipe(S), ulimit(S)

Comments

Writing a region of a file locked with locking causes write to hang
indefinitely until the locked region is unlocked.

2-260 WRITE(S)

Appendix A. System Call and Library
Function Cross Reference

This section lists the functions found in various libraries, and the
functions that directly invoke system primitives.

System Calls

access fstat mount stat
acct getpid nice stime
alarm getpgrp open sync
brk getppid pause time
chdir getuid pipe times
chmod geteuid plock ulimit
chown getgid profil umask
chroot getegid ptrace umount
close ioctl read uname
creat kill sbrk unlink
dup link setgid ustat
exit lockf setpgrp utime
fcntl lseek setuid wait
fork mknod signal write

Extended System Calls

chsize nap sdgetv waits em
creatsen nbwaitsem sdenter
dup2 opensem sdleave
ftime rdchk sdwaitv
lock sdget shutdn
locking sdfree sigsem

A-I

A-2

Note: Extended System Calls are included at link time by
specifying -Ix to the compiler or linker.

Library Routines

The following libraries are provided as standard with Xenix. On
8086/88 and 286 systems, versions for Small, Middle, and Large
model programs are provided (for example, three of each library).

They are included at link time by specifying -lname to the
compiler or linker, where name is the name listed below less the
lib prefix. For example -1m, and -Itermcap.

libc

libx

libm

libl

liby

libtermcap

libtermlib

libcurses

libdbm

The standard library containing all system call
interfaces, Standard I/O routines, and other
general purpose services. Libc is the default
library and need not be explicitly specified.

Extended system calls that may not be present in
other UNIX implementations.

The standard math library.

Library for use with programs produced by lex.

Library for use with programs produced by yacc.

Routines for accessing the termcap data base
describing terminal characteristics.

The same as libtermcap.

Screen and cursor manipulation routines

Data base management routines

A-3

The Standard C Library - libc

a64l free islower rewind
abort freopen isprint scanf
abs frexp ispunct setbuf
asctime fscanf isspace setgrent
assert fseek isupper setjmp
atof ftell isxdigit setpwent
atoi fwrite l3tol sleep
atol fxlist l64a sprintf
bsearch gcvt ldexp srand
calloc getc 10caItime sscanf
clearerr getchar logname ssignal
ctermid getenv longjmp strcat
ctime getgrent lsearch strchr
cuserid getgrgid Itol3 strcmp
defopen getgrnam malloc strcpy
defread getlogin mktemp strcspn
ecvt getopt modf strdup
endgrent getpass monitor strlen
endpwent getpw nlist strncat
fclose getpwent pclose strncmp
fcvt getwnam perror strncpy
fdopen getpwuid popen strpbrk
feof gets printf strrchr
ferror getw putc strspn
fflush gmtime putchar strtok
fgetc gsignal putpwent swab
fgets isalnum puts system
fileno is alpha putw tmpfile
fopen isascii qsort tmpnam
fprintf isatty rand toascii
fputc iscntrl realloc tolower
fputs is digit regcmp toupper
fread is graph regex ttyname

tzset
ungetc
xlist

A-4

The Standard Math Library - libm

acos
asin
atan
atan2
cabs
ceil
cos
cosh
exp

fabs
floor
fmod
gamma
hypot
jO
jl
jn
log

loglO
pow
sin
sinh
sqrt
tan
tanh
yO
yl
yn

The Default Lex Library - libl

main
yyless
yywrap

The Default Yace Library - liby

main
yyerror

The Terminal Capabilities Library - libtermcap

tgetent
tgetflag
tgetnum
tgetstr
tgoto
tputs

A-5

The Screen Manipulation Library - Iibcurses

curses

The nata Base Management Library - Iibdbm

A-6

dbminit
delete
fetch
firstkey
nextkey
store

Index

A

abort(S) 2-12
abs(S) 2-13
absolute value function

See abs(S)
See floor(S)

absolute value integer
See abs(S)
See floor(S)

accesseS) 2-14
accessibility of file

See accesseS)
acct(S) 2-16
acos(S)

See trig(S)
adb(CP) 1-3
admin(CP) 1-14
alarm clock set

See alarm(S)
alarm(S) 2-18
alias substitution 1-60
allocate main memory

See malloc(S)
ar(CP) 1-21
archive and library
maintenance

See ar(CP)
archives to libraries

See ranlib(CP)
as(CP) 1-24
ASCII to numbers

See atof(S)
ASCII(64) to long integer

See a641(S)
asctime(S)

See ctime(S)

asin(S)
See trig(S)

assembler (XENIX)
See as(CP)

assert(S) 2-19
assign buffer to stream

See setbuf(S)
atan(S)

See trig(S)
atan2(S)

See trig(S)
atof(S) 2-20
atoi(S)

See atof(S)
atol(S)

See atof(S)
attach data segment

See sdget(S)
a641(S) 2-10

B

beautify C programs
See cb(CP)

bessel functions
See bessel(S)

bessel(S) 2-22
binary input, output (buffered)

See fread(S)
binary search

See bsearch(S)
brk(S)

See sbrk(S)

Index-l

bsearch(S) 2-23
buffered I/O

See stdio(S)

c

C compiler
See cc(CP)

C language preprocessor
See cpp(CP)

C language syntax (check)
See lint (CP)

C programs (beautified)
See cb(CP)

cabs(S)
See hypot(S)

calloc(S)
See malloc(S)

cb(CP) 1-27
cc(CP) 1-28
cdc(CP) 1-36
ceil(S)

See floor(S)
ceiling function

See floor(S)
change delta commentary

See cdc(CP)
change mode of file

See chmod(S)
change owner and group of file

See chown(S)
change priority

See nice(S)
change root directory

See chroot(S)
change size of file

See chsize(S)
change working directory

See chdir(S)

Index-2

character back into input
stream

See ungetc(S)
character device control

See ioctl(S)
chdir(S) 2-24
check C language syntax

See lint(CP)
check for read data

See rdchk(S)
child process time

See times(S)
chmod(S) 2-26
chown(S) 2-28
chroot(S) 2-30
chsize(S) 2-32
classify characters

See ctype(S)
clearerr(S)

See ferror(S)
close a stream

See fclose(S)
close file descriptor

See close(S)
close(S) 2-34
comb(CP) 1-39
combine SCCS deltas

See comb(CP)
command substitution 1-63
compare versions of SCCS file

See sccsdiff(CP)
compile expressions

See regex(S)
compile regular expressions

See regcmp(CP)
compile routines

See regexp(S)
config(CP) 1-42
configure XENIX system

See config(CP)
conv(S) 2-35
corefile 1-3
cos(S)

See trig(S)

cosh(S)
See sinh(S)

cpp(CP) 1-48
creat(S) 2-37
create binary semaphore

See creatsem(S)
create error message file

See mkstr(CP)
create interprocess pipe

See pipe(S)
create new file

See creat(S)
See mknod(S)

create new process
See fork(S)

create SCCS files
See admin(CP)

create tags file
See ctag(CP)

create unique filename
See mktemp(S)

create version (SCCS file)
See delta(CP)

creatsem(S) 2-40
cref(CP) 1-53
cross linker, XENIX to
MS-DOS

See dosld(CP)
cross-ref erence listing

See cref(CP)
csh(CP) 1-55
ctags(CP) 1-82
ctermid(S) 2-42
ctime(S) 2-43
ctype(S) 2-46
curses(S) 2-48
cursor functions

See curses(S)
cuserid(S) 2-57

D

data keywords 1-139
data segment space

See sbrk(S)
database functions

See dbm(S)
date and time to ASCII

See ctime (S)
dbmint(S)

See dbm(S)
debugging program

See adb(CP)
default entries

See defopen(S)
defopen 2-62
defread(S)

See defopen(S)
delete(S)

See dbm(S)
delta (removal)

See rmdel(CP)
delta commentary 1-36
delta(CP) 1-84
display object files

See hdr(CP)
dosld(CP) 1-88
dup(S) 2-64
duplicate file descriptor

See dup(S)
dup2(S)

See dup(S)
dyadic operators 1-5

E

ecvt(S) 2-66
edata(S)

See end(S)

Index-3

end(S) 2-68
endgrent(S)

See getgrent(S)
endpwent(S)

See getpwent(S)
errno(S)

See perror(S)
error message file

See mkstr(CP)
errors in <errno.h>

See introduction(S)
etext(S)

See end(S)
Euclidean distance

See hypot(S)
execl(S) 2-69
execle(S)

See exec(S)
execlp(S)

See exec(S)
execute file

See exec(S)
execution profile

See monitor(S)
execution time profile

See profileS)
execv(S)

See exec(S)
execve(S)

See exec(S)
execvp(S)

See exec(S)
exit(S) 2-74
exp(S) 2-76
exponential functions

See exp(S)
extract string

See xstr(CP)

Index-4

F

fabs(S)
See floor(S)

fclose(S) 2-78
fentl(S) 2-79
fcvt(S)

See ecvt(S)
fdopen(S)

See fopen(S)
feof(S)

See ferror(S)
ferror(S) 2-82
fetcheS)

See dbm(S)
fflush(S)

See fclose(S)
fgetc(S)

See getc(S)
fgets(S)

See gets(S)
file access and modification

times
See utime(S)

file creation mask
See umask(S)

file system statistics
See ustat(S)

filename for terminal
See ctermid(S)

filename substitution 1-63
fileno(S)

See ferror(S)
find login name

See logname(S)
firstkey(S)

See dbm(S)
floating-point number split

See frexp(S)
floor(S) 2-84
fmod(S)

See floor(S)

fopen(S) 2-85
fork(S) 2-87
format input

See scanf(S)
format output

See printf(S)
fprintf(S)

See printf(S)
fputc(S)

See putc(S)
fputs(S)

See puts(S)
fread(S) 2-89
free(S)

See malloc(S)
freopen(S)

See fopen(S)
frexp(S) 2-90
fscanf(S)

See scanf (S)
fseek(S) 2-91
fstat(S)

See stateS)
ftell(S)

See fseek(S)
ftime(S)

See time(S)
fwrite(S)

See fread(S)

G

gamma(S) 2-93
gcvt(S)

See ecvt(S)
get a version of an SCCS file

See get(CP)
get characters from stream

See getc(S)
get group file

See getgrent(S)
get login name

See getlogin(S)
get name list entries

See nlist(S)
get option letter

See getopt(S)
get password

See getpw(S)
get password file

See getpwent(S)
get pathname

See getcwd(S)
get process IDs

See getpid(S)
get real,effective,group IDs

See getuid(S)
get string from stream

See gets(S)
get value for environment name

See getenv(S)
get(CP) 1-91
getc(S) 2-94
getchar(S)

See getc(S)
getcwd(S) 2-96
getegid(S)

See getuid(S)
getenv(S) 2-97
geteuid(S)

See getuid(S)
getgid(S)

See getuid(S)
getgrent(S) 2-98
getgrgid(S)

See getgrent(S)
getgrnam(S)

See getgrent(S)
getlogin(S) 2-100
getopt(S) 2-101
getpass(S) 2-104
getpgrp(S)

See getpid(S)
getpid(S) 2-105

Index-5

getppid(S)
See getpid(S)

getpw(S) 2-106
getpwent(S) 2-107
getpwnam(S)

See getpwent(S)
getpwuid(S)

See getpwent(S)
gets(CP) 1-99
gets(S) 2-109
getuid(S) 2-111
getw(S)

See getc(S)
gmtime(S)

See ctime(S)
goto, nonlocal

See setjmp(S)
gsignal(S)

See ssignal(S)

H

halt cpu
See shutdn(S)

hdr(CP) 1-100
help(CP) 1-102
history substitutions 1-56
hyperbolic functions

See sinh(S)
hypot(S) 2-112

I

identify current system
See uname(S)

ignore file 1-53
inference rules 1-128

Index-6

internal macros 1-126
interpolate smooth curve

See spline(CP)
interpreter, command language

See csh(CP)
Introduction(S) 2-1
ioct1(S) 2-113
lOT fault

See abort(S)
isalnum(S)

See ctype(S)
isalpha(S)

See ctype(S)
isascii(S)

See ctype(S)
isatty(S)

See ttyname(S)
iscntr1(S)

See ctype (S)
isdigit(S)

See ctype (S)
isgraph(S)

See ctype(S)
islower(S)

See ctype(S)
isprint(S)

See ctype (S)
ispunct(S)

See ctype(S)
isspace(S)

See ctype(S)
isupper(S)

See ctype(S)
isxdigit(S)

See ctype (S)

J

jn(S)
See bessel(S)

jO(S)
See bessel(S)

j1(S)
See bessel(S)

K

kill(S) 2-114

L

last locations in program
See end(S)

Id(CP) 1-104
Idexp(S)

See frexp(S)
lex(CP) 1-107
lexical analysis

See lex(CP)
lexical structure 1-55
library and archive

maintenance
See ar(CP)

linear search
See Isearch(S)

link editor
See Id(CP)

link to existing file
See link(S)

link(S) 2-117
lint(CP) 1-111
10caltime(S)

See ctime(S)
lock data in memory

See plock(S)
lock process in primary

memory

See 10ck(S)
lock record on files

See 10ckf(S)
lock text in memory

See plock(S)
10ck(S) 2-119
lock,unlock file region

See 10cking(S)
10ckf(S) 2-120
10cking(S) 2-122
logeS)

See exp(S)
logarithm functions

See exp(S)
login name

See cuserid(S)
10gname(S) 2-126
log10(S)

See exp(S)
long integer to 64 ASCII

See a641(S)
10ngjmp(S)

See setjmp(S)
10rder(CP) 1-115
Isearch(S) 2-127
Iseek(S) 2-129
Itol3 (S)

See 13tol(S)
13tol(S) 2-116
164a(S)

See a641(S)

M

macro calls 1-11 7
macro processor

See m4(CP)
main memory allocation

See malloc(S)
make directory

Index-7

See mknod(S)
make(CP) 1-122
MAKEFLAGS 1-125
malloc(S) 2-131
match routines

See regexp(S)
mknod(S) 2-133
mkstr(CP) 1-131
mktemp(S) 2-136
modf(S)

See frexp(S)
monadic operators 1-5
monitor(S) 2-137
mount a file system

See mount(S)
mount(S) 2-139
move read/write file pointer

See Iseek(S)
m4(CP) 1-117

N

napeS) 2-141
nbwaitsem(S)

See waitsem(S)
nextkey(S)

See dbm(S)
nice(S) 2-143
nlist(S) 2-144
nm(CP) 1-134

o

object filenames (listing)
See lorder(CP)

objfil 1-3
only file 1-53

Index-8

open a stream
See fopen(S)

open file
See open(S)

open files control
See fcntl(S)

open semaphore
See opensem(S)

open(S) 2-145
opensem(S) 2-149
output conversions

See ecvt(S)

p

password read
See getpass(S)

pause(S) 2-151
pc1ose(S)

See popen(S)
perror(S) 2-152
pipe(S) 2-153
plock(S) 2-154
popen(S) 2-156
pow(S)

See exp(S)
power functions

See exp(S)
print editing activity

See sact(CP)
print name list

See nm(CP)
print SCCS file

See prs(CP)
print size (object file)

See size (CP)
printf(S) 2-158
priority change

See nice(S)
process accounting

See acct(S)
processing suspended

See napeS)
prof(CP) 1-136
profileS) 2-163
profile data

See prof(CP)
profile, execution

See monitor(S)
profile, execution time

See profileS)
prs(CP) 1-138
pseudo-ops 1-25
ptrace(S) 2-164
put characters on stream

See putc(S)
put string on stream

See puts(S)
putc(S) 2-168
putchar(S)

See putc(S)
putpwent(S) 2-170
puts(S) 2-171
putw(S)

See putc(S)

Q

qsort(S) 2-173

R

rand(S) 2-174
random number

See rand(S)
ranlib(CP) 1-144
ratfor(CP) 1-145

rational FORTRAN to
standard

See ratfor(CP)
rdchk(S) 2-175
read default entries

See defopen(S)
read from file

See read(S)
read password

See getpass(S)
read string from input

See gets(CP)
read(S) 2-177
realloc(S)

See malloc(S)
regcmp(CP) 1-147
regcmp(S)

See regex(S)
regenerate programs (groups)

See make(CP)
regex(S) 2-179
regexp(S) 2-182
remainder function

See floor(S)
remove a delta

See rmdel(CP)
remove directory entry

See unlink(S)
reposition stream

See fseek(S)
rewind(S)

See fseek(S)
rewrite file

See createS)
rmdel(CP) 1-149

s
sact(CP) 1-151
sbrk(S) 2-187

Index-9

scanf(S) 2-189
sccsdiff(CP) 1-153
sdenter(S) 2-193
sdfree(S)

See sdget(S)
sdget(S) 2-195
sdgetv(S) 2-197
sdleave(S)

See sdenter(S)
sdwaitv(S)

See sdgetv(S)
semaphore opened

See opensem(S)
semaphores on files

See 10ckf(S)
send error message

See perror(S)
send signal to process

See kill(S)
set group ID

See setpgrp(S)
set time

See stime(S)
set user, group ID

See setuid(S)
setbuf(S) 2-199
setgid(S)

See setuid(S)
setgrent(S)

See getgrent(S)
setjmp(S) 2-200
setpgrp(S) 2-201
setpwent(S)

See getpwent(S)
setuid(S) 2-202
shell command (execute)

See system(S)
shutdn(S) 2-204
signal handling

See signal(S)
signal process for semaphore

See sigsem(S)
signal(S) 2-206
sigsem(S) 2-211

Index-to

sineS)
See trig(S)

sinh(S) 2-213
size(CP) 1-154
sleep(S) 2-214
software signaling

See ssignal (S)
sort

See qsort(S)
sort topologically

See tsort(CP)
spline (CP) 1-155
sprintf(S)

See printf(S)
sqrt(S)

See exp(S)
square root functions

See exp(S)
srand(S)

See rand(S)
sscanf(S)

See scanf(S)
ssignal(S) 2-215
stack requirements

See stackuse(CP)
stackuse(CP) 1-157
start I/O

See popen(S)
stateS) 2-217
statistics, file system

See ustat(S)
status of file

See stateS)
status of stream

See ferror(S)
stdio(S) 2-219
stime(S) 2-221
store(S)

See dbm(S)
strcat(S)

See string(S)
strchr(S)

See string(S)
strcmp(S)

See string(S)
strcpy(S)

See string(S)
strcspn(S)

See string(S)
strdup(S)

See string(S)
stream status

See ferror(S)
string operations

See string(S)
string(S) 2-222
strings(CP) 1-159
strip(CP) 1-160
strlen(S)

See string(S)
strncat(S)

See string(S)
strncmp(S)

See string(S)
strncpy(S)

See string(S)
strpbrk(S)

See string(S)
strrchr(S)

See string(S)
strspn(S)

See string(S)
strtok(S)

See string(S)
suffixes 1-127
suspend calling process

See waiteS)
suspend process until signal

See pause(S)
suspend processing

See sleep(S)
swab(S) 2-225
swap bytes

See swab(S)
sync(S) 2-226
synchronize access to data

segment
See sdenter(S)

synchronize data access
See sdgetv(S)

sys_errlist(S)
See perror(S)

sys_nerr(S)
See perror(S)

system(S) 2-227

T

tags file
See ctag(CP)

tan(S)
See trig(S)

tanh(S)
See sinh(S)

temporary file
See tmpfile(S)

temporary file naming
See tmpnam(S)

terminal filename
See ctermid(S)

terminal functions
See termcap(S)

terminal name (find)
See ttyname(S)

terminate process
See exit(S)

tgetent(S)
See termcap(S)

tgetflag(S)
See termcap(S)

tgetnum(S)
See termcap(S)

tgetstr(S)
See termcap(S)

tgoto(S)
See termcap(S)

three-byte to long integers
See 13tol(S)

Index-II

time and date to ASCII
See ctime(S)

time (CP) 1-162
time(S) 2-231
time, child process

See times (S)
times(S) 2-233
tmpfile(S) 2-235
tmpnam(S) 2-236
toascii(S)

See conv(S)
tolower(S)

See conv(S)
topological sort

See tsort(CP)
toupper(S)

See conv(S)
tputs(S)

See termcap(S)
trace process

See ptrace(S)
translates characters

See conv(S)
trigonometric functions

See trig(S)
tsort(CP) 1-163
ttyname(S) 2-240
tzset(S)

See ctime(S)

u

ulimit(S) 2-241
umask(S) 2-243
umount a file system

See umount(S)
umount(S) 2-244

Index-12

uname(S) 2-246
unget(CP) 1-164
ungetc(S) 2-248
unlink(S) 2-249
update programs (groups)

See make(CP)
update super-block

See sync(S)
user limits

See ulimit(S)
ustat(S) 2-251
utime(S) 2-253

v

val(CP) 1-166
variable substitution 1-60
verify validity of program

See assert(S)
version of SCCS file

See get(CP)

w

wait and check access to
resource

See waitsem(S)
waiteS) 2-255
waitsem(S) 2-257
write password

See putpwent(S)
write(S) 2-259

x

XENIX to MS-DOS
See dosld(CP)

xref(CP) 1-169
xstr(CP) 1-170

y

yacc(CP) 1-173
yn(S)

See bessel(S)
yO(S)

See bessel(S)
yl(S)

See bessel(S)

Index-13

Index-14

--------- -------- - ---- - - ----------_.-
Reader's Comment Form

XENIXTM
Software Command Reference

The Personal Computer
Programming Family

6138822

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

adel

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJalj Pia.:!

aldelS lOU op aseald

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

adel

© IBM Corporation 1984
All rights reserved .

International Business
Machines Corporation
PO. Box 1328-S
Boca Raton , Florida 33432

Printed in the
United States of America

6138822

--------- ------- ---- - - ----------- - ill

Software Command Reference

IBM Personal Computer
}(E~I}(TMSofrware

Development System

Software development tools , including
language translators, source code
management tools, a C compiler, a
debug facility and a linker for combin
ing modules into finished programs.
The C compiler generates code for
DOS or the IBM Personal Computer
XENIXT

" Operating System.

Software required:

IBM Personal Computer
XEN IX'M Operating
System

Software included:

Three 1.2MB diskettes

System requirements:

IBM Monochrome or Color
Display or equivalent (with
appropriate adapter)

~
IBM Personal Computer
ArM -(\ 512KB RAM memory

IBM 20MB fixed disk

IBM 1.2MB diskette drive

Note:
XENIX is a trademark of Microsoft
Corporation.

© IBM Corporation 1984
All rights reserved.

International Business
Machines Corporation
P.O. Box 1328-S
Boca Raton, Florida 33432

Printed in the
United States of America

6024209

International Business Machines Corporat ion
IBM Program license Agreement

Boca Raton. Florida 33432

You should carefully read the followmg terms and condillOns before openmg thIS
dlskelle package. Openmg thIS dlskelle package mdicates your acceptance of these
terms and COnditIOns. If you do not agree with them. you should promprly relUm rhe
package unopened. and your money WIll be refunded.

IBM provides this program and licenses its use In the United States and Puerto RIco
You assume responsibility for the selection of the program to achieve your Intended
results, and for the Installation, use and results obtained from the program
License

You may
a. use the program on a single machine:
b . copy the program Into any machine readable or printed form for backup or mod·

Iflcatlon purposes In support of your use of the program on the single machine ICer·
taln programs, however, may Include mechanisms to limit or inhibit copying They
are marked "copy protected ").

c. modify the program and/or merge It Into another program for your use on the single
machine (Any portion of this program merged Into another program will continue to
be subject to the terms and conditions of this Agreement. I, and.

d. transfer the program and license to another party If the other party agrees to accept
the terms and conditions of this Agreement If you transfer the program. you must
at the same time either transfer all copies whether In printed or machine-readable
form to the same party or destroy any copies not transferred; this Includes all mod
ifications and portions of the program con tamed or merged into other programs
You must reproduce and Include the copYright notice on any copy. modification or

portion merged Into another program
You may nor use. copy, modtfy, or transfer the program. or any copy. modtf,ca/lon

or merged portIOn, In whole or m part, except as expressly proVIded for In this license
If you transfer possession of any copy, modtf,ca/lon or merged portion of the pro

gram CO another party, your l,cense is automatically termmated
Term

The license IS effective until terminated. You may terminate It at any other time by
destrOYing the program together With all copies, modifications and merged portions In

any form It will also terminate upon conditions set forth elsewhere In thiS Agreement
or If you fall to comply With any term or cond ition of thiS Agreement. You agree upon
such termination to destroy the program together With all copies. modifications and
merged portions In any form
Limited Warranty

The program is provided " as is " without warranty of any kind. either
expressed or implied, including, but not limited to the implied warranties of
merchantability and fitness for II particular purpose. The entire risk as to the
quality and performance of the program is with you. Should the program
prove defective. you (and not IBM or an authorized Personal Computer
dealer) assume the entire cost of a/l necessary servicing. repair or
correction.

Some states do not allow the exclusion of implied warranties. so the
above exclusion may not apply to you. This warranty gives you specific legal
rights and you may also hllve other rights which vary from state to state.

IBM does not warrant that t he functions contained in the program will
meet your requirements or that the operation of the program will be unin
terrupted or error free .

However. IBM warrants the diskette(s) or cassettes on which the program
is furnished. to be free from defects in materials and workmanship under nOf

mal use for a period of ninety (90) days from the date of delivery to you as
evidenced by a copy of your receipt .
Limitations of Remedies

IBM's entire liability and your exclUSive remedy shall be'
, . the replacement of any diskette or cassette not meeting IBM's "limited Warranty"

and which IS returned to IBM or an authorized IBM Personal Computer dealer
With a copy of your receipt

or
2 . If IBM or the dealer IS unable to deliver a replacement diskette or cassette which IS

free of defects In matenals or workmanship, you may terminate thiS Agreement by
returning the program and your money will be refunded

In no event WIll IBM be /table 10 you for any damages. including any lost proftts.
lose savmgs or other mCldental or consequential damages af/smg out of the use or
mabl/tty 10 use such program even tf IBM or an authorized IBM Personal Computer
dealer has been adVIsed of the posslbl/tty of such damages. or for any clatm by any
other parry

Some states do not allow (he limll8uon or exclUSIOn of liability for mCldencal or
consequenual damages so the above /fmfl8C10n or exclusion may not apply to you
General

You may not sublicense, assign or transfer the license or the program except as
expressly prOVided In thiS Agreement Any attempt otherWise to sublicense, assign or
transfer any of the rights, duties or obligations hereunder IS VOid

ThiS Agreement Will be governed by the laws of the State of FlOrida
Should you have any questions concerning thiS Agreement, you may contact IBM

by writing to IBM Personal Computer. Sales and SerVice, POBox 1328-W Boca
Raton. FlOrida 33432.

You acknowledge rhat you have read this agreement. understand It and agree to be
bound by ItS terms and condtltons. You further agree that It IS the complete and
exclUSive statement of the agreement between us which supercedes any proposal or
pflor agreement, oral or wfltten, and any other communications between us relatmg
10 the subject mailer of thIS agreement

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	1-163
	1-164
	1-165
	1-166
	1-167
	1-168
	1-169
	1-170
	1-171
	1-172
	1-173
	1-174
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	2-252
	2-253
	2-254
	2-255
	2-256
	2-257
	2-258
	2-259
	2-260
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	replyA
	replyB
	x_Back
	x_slipCase1
	x_slipCase2

