MEMORANDUM

RM-3842-PR
OCTOBER 1963

A COMPARISON OF
LIST-PROCESSING COMPUTER LANGUAGES

Daniel G. Bobrow and Bertram Raphael

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

e DHHDW

SANTA MONICA » CALIFORNIA

MEMORANDUM

RM-3842-PR
OCTOBER 1963

A COMPARISON OF
LIST-PROCESSING COMPUTER LANGUAGES

Daniel G. Bobrow and Bertram Raphael

This research is sponsored by the United States Air Force under Project RAND—
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

1700 MAEN ST. » SANTA MONICA « CALIFORNIA

—iii—

PREFACE

This Memorandum 1is a comparison of four well-known
list-processing computer languages, which are considered
representative of the various list-processing languages
available. List-processing languages are designed to
handle problems involving the manipulation of complex data
structures and which impose computer memory requirements
that change in an unpredictable manner during computation.

The research, sponsored under U. S. Air Force Project
RAND, was aimed at characterizing and evaluating list-
processing languages in general and the four languages
specifically considered; at isolating the areas of appli-
cation for which particular list-processing languages are
best suited; and at providing some criteria for the poten-
tial user in selecting one of the languages for his par-
ticular problem.

The authors, consultants to The RAND Corporation, are
on the staff at the Computation Center, Massachusetts
Institute of Technology.

-—v—

SUMMARY

This Memorandum presents a detailed comparison of
coMIT, IPL-V, LISP 1.5, and SLIP—four well-known com-
puter programming languages which, among them, exhibit
all the principal characteristics of existing list-
processing languages. Important common features of
list-processing languages are reviewed: forms of data
structures which are manipulated; necessity for dynamic
allocation of storage; use of pushdown stores; and use
of recursive operations.

Principal differences between the four languages
under consideration are detalled: representations of
data, both by the programmer and within the machine;
methods for storage allocation; programming formalisms
and special processes avallable, including arithmetic
facilities; and usability in terms of availability,
documentation, learning aids, and debugging facilitles.
A rough comparison shows that the languages discussed
are all of approximately the same speed.

Finally, the authors give some heuristics to aid
in the selection of one of these languages for use in
particular problem applications, concluding that no one
of the languages considered is distinctly superilor over
all possible list-processing applications.

—vii—-

CONTENTS

PREFACE ¢ +v ¢« ¢ o« o o o o o o o o o o o o o o o« Jiii

S UMMARY * * . L] » L L] . - L] - . - L] * - * v
Section

I. INTRODUCTION. ¢ ¢ ¢ o o « o o o o o o o » 1

II. DEFINITIONS OF TERMS. . ¢« + +v o o o & « « 3

III. COMMON FEATURES OF LP LANGUAGES &4

A. Data Representations 4

B. Storage Allocation « U4

C. Pushdown Stores. « « « « « « 5

D. Recursive Operations . . « .« . .. b

IV. DIFFERENCES BETWEEN LP LANGUAGES. 7T

A. Data Structures. « ¢« « ¢« « « T

B. Storage Allocation 13

C. Programming Formalisms 16

D. Usability. . « ¢ ¢« ¢ ¢« ¢« ¢ ¢« ¢« « + . 25

E. Execution Times. . « « ¢« « « « « + « 30

V. CONCLUSIONS « & v v o o o o o o o o« o + . 33
REFERENCES . L] L] . L] L] L] - . L] L] . . . L] L] . L3 L] L] 37

I. INTRODUCTION

In the past five years computer research projects
in such areas as artificial intelligence, simulation of
human cognitive processes, mechanlcal translation,
information retrieval, and operations research have
generated problems involving a form of information
processing which cannot be handled conveniently in any
of the conventional computer programming languages.

"Symbol-manipulating" or "list—processing" computer
languages have been designed to handle these special
processing needs. We shall refer to these languages
as "LP" languages. Many list—processing systems have
been and are being developed, both as independent
computer languages and as extensions of exlsting
languages originally designed for other speclal problem
areas; e.g., algebraic computation and job—shop simula—
tion.

Four well—known LP languages — COMIT, IPL, LISP, and
SLIP — have been selected for detalled study, since
they illustrate almost all of the characteristics of
existing list-processing languages. FLPL,(l) an
early example of an LP language, contained many features
found in the four languages chosen, but since it 1s no
longer in use, it will not be considered. We shall
discuss those versions of the four systems chosen for
which documentation is available and which are implemented
at the present time—1i.,e., COMIT 1, 2-4) IPL-V,
115P 1.5,¢7) ana sr1p.{8) The rirst three of these
languages have been in use for several years. All
four have well—defined formalisms for describing problem
solutions and are currently implemented on existing
digital computers.

The advantages of list—processing languages and some
common properties of these languages have been discussed
by Green.(g) This Memorandum provides some definltions
of terms, a review of the common features of LP
languages, a discussion of the principal differences be—
tween the four languages under consideration, conclusions,
and a comparison chart for reference.

IT. DEFINITIONS OF TERMS

LP languages have been designed to facilitate the
representation and processing of lists, strings,

list structures, and binary trees. These terms are

usually defined as follows:
A list is any sequence of elements.

A string is a list whose elements are not
lists. A string is similar to a vector
or array; that is, a string is an ordered
sequence of elements. However, the
number of elements in the string 1s not
preassigned and may vary during a computer
run. Strings may be used as a convenient
representation of the sentences of a nat—
ural language; i.e., strings of characters
or strings of words.

A list structure is a list whose elements
may themselves be lists. Decision trees,
mathematical equations, and list—process—
ing programs have all been conveniently
represented as list structures.

A binary tree is an extension of the idea
of an ordered pair, with the further pro—
vision that each of the two elements of
the pair may itself be an ordered pair,
and so forth to an arbitrary finite depth.
Such trees have been used to represent
syntactic structures of sentences in
natural language.

IIT. COMMON FEATURES OF LP LANGUAGES

A. DATA REPRESENTATIONS

The most important common feature of LP languages
is that they deal with a special kind of data.
Historically, the data used in computers have been
numerical, in the form of either numbers or fixed—
size vectors and arrays of numbers. Recent areas of
computer research require the manipulation of more
complex data structures. The data may contaln symbolic
as well as numeric information, and information 1is
carried by the relational structure as well as the
symbolic content of the data. The basic form of a data
structure in an LP language formalism 1s usually a
string, 1list structure, or binary tree. Occasionally,
the most natural data form for a particular problem
representation is not the same as the baslic form used
in the LP language which has been selected. This 1s
usually not a serious problem since binary trees can
be used to represent list structures, and vice versa,
and strings can be represented by either.

B. STORAGE ALLOCATION

An important common feature of LP languages 1s
that memory space for data structures need not be
preassigned. Storage for each structure 1s allocated
as it is needed. Cells are assigned to a structure
dynamically, and are usually not sequential memory
registers. Each new cell is added to the structure by
creating a link or pointer from within the structure
to the cell.

Since it must be possible to reassign the use of

memory cells during execution of a list—processing
program, every LP language must contain the following:
(a) A store of cells available for use.

(b) Mechanisms for obtaining "new" cells from,
and returning unneeded cells to, that store.

The languages under consideration all maintain the store
of available cells in the form of a list. Basilc
processes withln these languages automatically obtain
cells from this "free storage list," thereby shortening
the 1ist. A cell (or 1list of cells) may be returned

to the free storage 1list, that 1s, "erased,’ when it

is no longer needed for computation. LP languages
differ, as will be discussed below, in the ways in which
cells are erased and the amount of attention which the
user must devote to this erasure process.

The amount of space convenlently availlable for
programs and data is limited by the size of the
computer's core memory. Additional space can be ob—
tained by using auxiliary storage, generally magnetic
tapes. The auxiliary storage facillities available in
the systems under discussion wlll be described below.

C. PUSHDOWN STORES

All four LP languages make use of pushdown stores
or stacks. A pushdown store may be thought of as a
string with the property that only the first element
of the string is accessible. An element may be added
to the store only by "pushing down" the store and placing
the new element on the top of the stack. Conversely,
when the first element 18 removed—1i.e., the stack is

"popped up" —the next element becomes available by
becoming the first element.

D. RECURSIVE OPERATIONS

Programs which operate recursively are often
necessary for constructing or processing list structures
of arbitrary complexity. A recursive subroutine R is
one within which the subroutine R itself may be called.
If this happens, the old values of the arguments and
partial results of R must be preserved while the inner
computation with R proceeds. The values to be saved
are placed in a pushdown store. The most recently
saved partial results will be the first to be
"popped up" —which is the desired order for performing
recursions. Methods for defining recursive subroutines
in particular LP languages will be discussed below.

IV. DIFFERENCES BETWEEN LP LANGUAGES

A. DATA STRUCTURES

In this section, we shall describe in detail the
data structures of the four list-processing languages:
coMIiT, IPL, LISP, and SLIP. For each language, the
programmer's representation of structures and the
representation of these structures within the machine
are considered.

COMIT

Programmer's Representation. The basic structures

manipulated by a COMIT program are strings. The
principal string being manipulated at any time 1s called
the COMIT workspace, and is represented by a linear

sequence of elements, or "constituents,"

separated by
"+". We have, for example:

A + SIMPLE + LINEAR + STRING + OF + CONSTITUENTS
This string may be read from punched cards in the
format shown, or the phrase may be written in the
following simpler format:

A SIMPLE LINEAR STRING OF CONSTITUENTS
When the latter phrase is read, a COMIT string is
creatéd in which each letter and space 1s considered

a constituent (where "—" represents the character "space');

e.g.,
A+—+S+TI+M4P+IAE+—+. . . +0+F+—+C+O+N+S+T+I+T+U+E+N+T+S
Processes available to the programmer allow him to
compress a number of constituents in the workspace into
one constituent; e.g., the individual letters of a word
into the word. All the characters on the keypunch are
availlable to the programmer, and there is no
restriction on the length of an individual constituent.

Constituents in the COMIT workspace may be given
any number of subscripts, and these subscripts given
values. An example of a constituent written with
subscripts is:

TOM/ .25, INTERESTS WINE WOMEN SONG, JOB PROGRAMMER
In this example "25" is a numerical subscript and has
no associated value. (The only way a number may
appear in COMIT is as a numerical subscript.) "INTERESTS"
is a subscript with three associated values; "JOB" has
one. Constituents, subscripts, and values of subscripts
may all be manipulated within COMIT, but although
constituents in the workspace are considered to be
ordered, subscripts and their values are manipulated
as unordered sets.

In a limited sense, the COMIT workspace may be
consldered a list structure with three hierarchical
levels: constituents, subscripts, and values. List
structures of indefinite depth cannot be directly
represented in COMIT.

Internal Representation. In the IBM 7090
implementation of COMIT, strings are represented inter—
nally by linked two—word blocks. One word of the palr
contains BCD code for a constituent, or for part of a

constituent 1if the constituent 1s longer than six letters.
The other word contains a pointer to the next two—

word block and markers indicating whether the item

coded is a complete constituent, the last constituent

in a string, the beginning of a constituent, etc.

IPL
Programmer's Representation. List structures

defined by lists of symbols are the basic units of data
used in IPL. The name of the 1list (an IPL symbol), and

the string of symbols composing that list, determine a
data 1ist. All symbols are either "regional" or "local."
Regional symbols, written as a letter followed by
up to four numerals, may be the names of lists or
storage cells. Local symbols, written as a 9 followed
by up to four numerals, are special symbols used for
naming sublists belonging only to the list structure in
which they appear. Symbols may also be labels for
"data terms," cells containing numeric or alpha—
numeric data. Data terms are manipulated by special
bullt—in routines through reference to their labels.
Internal Representation. In the internal repre—

sentation of IPL structures, each computer word 1is
made up of four segmenfs-——two address—size fields,
called "SYMB" and "LINK"; and two fields of three bits
each, called P and Q. P and Q indicate whether the
word is an element of a list or a data term. If 1t is
a list element, SYMB contains an IPL symbol and LINK
contains the address of the cell containing the next
symbol in the list (an address that the programmer
need not be concerned with). A cell whose LINK = O

is interpreted as the last cell in a list. If the
word is a data term, P and Q indicate the kind of data
in the cell —1i.e., a numerical or BCD term —and SYMB
and LINK contain the data.

Corresponding to each external symbol 1s the
address of some cell within the computer; that cell may
itself be a list cell. A 1list cell contains a symbol
(address) in SYMB and the address of another cell in
LINK. Thus, except for data terms, IPL words can be
thought of as binary trees; i1.e., ordered pairs of
addresses, each of which can name another ordered pair.
However, by convention the IPL programmer generally
uses the LINK of a cell only to point to the cell

~10-

containing the next item in a list, or to mark the end
of a 1list. Therefore, the usual internal IPL data
structure is a binary tree representation of a list
structure.

LISP

Programmer's Representation. The basic elements
in LISP are called atomic symbols, or atoms, and are
strings of not more than 30 letters and/or numerals.

The LISP programmer can link atomic symbols in binary
trees or in list structures.

A binary tree may be represented explicitly by
means of the "dot notation," where (A.B) 1s an ordered
pair of the atoms A and B. In place of A or B (or
both) the programmer may place any dotted pailr of dotted
pairs, etc., and thus explicitly define a binary tree;

€80y

((E.F) . (H. (J.K)))

A LISP programmer can represent lists of atoms and
lists of lists, etc., by means of the "list notation,"
which uses commas or spaces as syntactic markers.

One example of the notation for a list acceptable in
LISP is:

(PEOPLE, (BOYS, (TOM, DICK)), (GIRLS, (JANE)), (OTHERS,()))

Sublists are not named, but rather inserted directly
into a list. The above 1list contains four elements; the
last element is a list of two elements — one the atom
OTHERS, and the other an empty list.

The 1list notation and the dot notation may be used
interchangeably and simultaneously, with the understand—
ing that a list (S1, S2,...,8n) is equivalent to the
dotted pair

-1

(s1 . (s2 (Sn . NIL) ...))

The atom NIL plays a special role as a terminator of
lists (it is defined to be equivalent to the empty
list), Just as a LINK of O serves as a terminator in
IPL.

Internal Representation. LISP is similar to IPL
in its internal representation, in that each data
structure cell uses two address—size fields for

pointers to sub—expressions. The internal representa—
tion for a binary tree in dot notation is an equivalent
binary tree of computer cells. The representation for
a list structure is the same as the representation for
1ts equivalent dotted—pair binary tree.

An atomic symbol 1is represented internally by a
special type of list called a property list which
contains a speclal mark in 1its first cell. This 1list
contains the external representation of the atom and
some other special information. All of these are
accessible to the programmer.

Atoms whose names begin with a numeral, such as
1.342, are made into special atoms within the system,
and are recognized as numbers by distinctive markers
on their property lists.

SLIP

Programmer's Representation. The basic data ele—
ments in SLIP are numbers and alphanumeric character
strings whose length depends upon the word-length of the
computer being used. These elements are organized into
list structures which may be manipulated by the program.

SLIP differs markedly from the other languages
discussed in that it is not an autonomous system, but

—~1o—

rather a set of subroutines embedded within a FORTRAN—
type language. As a result, numerical data may be
represented and manipulated using FORTRAN conventions.
Also, the external representation of data 1s not fixed.
Hollerith data can be read and inserted into lists
according to a format statement. A routine is avall-—
able which will create internal list structures from
an external form similar to the LISP list notation.
(Both IPL and LISP have special mechanisms for reading
information in any format, but for most problems it is
more convenlent to put the data into the standard format
than to write a special "read" program.)

Internal Representation. The internal representa—
tion of a list structure is also different in SLIP. An
item on a 1list 1is represented by a pair of adjacent

cells in memory. The first cell of the pair contains
two address—length flelds and a two—bit field which
identifles the type of item. The address—length flelds,
called the left and right links of the module, contain
pointers to the previous item on the 1list and the next
item on the 1list, respectively. The second cell of

each pair contains the actual 1list item, which may be
elther a full word of data or a pointer to a sublist.
For each 1list a special palr of cells is created, called
the header of the 1list. All references to a list as a
whole are actually pointers to its header. The

links of the header point to the first and last elements
of the 1list, gilving access to both ends of this
symmetric list. Thus, internally a list structure in
SLIP is a circular symmetric structure which may be
traversed easlily in either direction.

B. STORAGE ALLOCATION

In this section we shall discuss the mechanisms
available in each of the four LP languages for returning
unneeded cells to a free storage list, using pushdown
stores and auxiliary storage.

COMIT

Maintenance of Free Storage. The COMIT formalism
makes 1t 1mpossible for the programmer to keep track
of the actual list structures manlipulated internally
by the computer. Thus, erasures must be handled by
the system. In the course of carrylng out the list
processing specified in a COMIT program, the COMIT
interpreter keeps track of all storage cells used and
returns them to the free storage 1list completely
automatically as soon as thelr contents become unnecessary.

Pushdown Storage. In COMIT a string may be
manipulated in the workspace, or 1t may be transferred
to or from a temporary storage area called a '"shelf."
While the string is in the workspace, any part of it
is accessible for manipulation by the program. However,
a string on a COMIT shelf may only be used as a form
of pushdown store. It is somewhat more general than a
normal stack, in that elements may be "pushed down" onto
elther end of the string, although they can only be
"popped up" from the beginning of the string.

Auxiliary Storage. COMIT has a mechanism for
writing out onto tape and reading back into the work—
space arbitrary data strings.

IPL

Maintenance of Free Storage. In IPL the programmer

has complete control of (and responsibility for)
creating and erasing list structures. By convention,
every sublist is "local" to a single list structure.
The programmer usually specifies that the structure be
erased (or otherwise processed) as a unit. Failure
to explicitly erase unneeded list structures in IPL
is a programming error and results in a loss of memory
space for further computation.

Pushdown Storage. The IPL system provides

several instructions for operating on pushdown stores.
However, since no distinction is made in internal
representation between stacks and lists, the programmer
may treat either structure either way. One usually decides
to consider certain IPL symbols as the names of push—
down storage cells and others as the names of lists.
However, it 1is possible, for example, to delete the
first element of a list by executing a "pop—up-stack"
instruction with the name of the 1list as the input.
Auxiliary Storage. IPL has a mechanism for writing
out and reading back arbitrary data structures. The
use of this method for obtaining more free space is

simplified by a "trap—when—available—space—is—low"
mechanism. Programs also may be stored in blocks on
auxiliary storage. A block is automatically brought
into core memory as soon as any program in it is needed.

LISP

Maintenance of Free Storage. LISP is similar to
COMIT in that it is unnecessary, and usually extremely
difficult, for the programmer to keep track of the actual
storage used by his program. The ways in which cells
become linked during a LISP run is so complicated
that even the LISP system does not keep track of the

cells. Instead, the LISP system keeps using new cells
until free storage is depleted, at which time a
"garbage collector" sweeps through memory identifying
those structures which are referenced by the program in
its present state and reclaiming the rest for a new
free storage list. This garbage collection process is
somewhat time—consuming, but seems to be worthwhile in
view of the fact that 1t frees both the programmer and
the system from the detalled bookkeeping which would
otherwise be necessary.

Pushdown Storage. In LISP, although the user is not
directly concerned with specific pushdown operations,
the system requires pushdown storage for its own

purposes (e.g., controlling recursion). This pushdown
storage is maintained, not as a list of cells linked
from one to the next by pointers, as in most of the

data lists described above, but rather as a sequential
block of memory locations with a single pointer to its
current "top." This procedure introduces an efficiency
in the use of pushdown operations at the expense of
minor rigidity in space alloeation; namely, an arbiltrary
division of total storage into "available (1list
structure) space" and "pushdown storage."

Auxiliary Storage. LISP has no auxiliary storage
facility.

SLIP

Maintenance of Free Storage. As in IPL, SLIP
leaves responsibility for erasing unnecessary lists with

the programmer; however, no distinction is made between
main lists and sublists. The system allows multiple

use of any list, and solves the erasure problem by
placing, in the header of every list, a "reference count"

which indicates the number of times that list is named 1n
existing data structures. Each SLIP erasure of a
cell naming a list reduces the reference count of that
list, and when this count reaches zero the list cells
are returned to the free storage list. The process of
returning a list of cells to the free storage list 1s much
faster in SLIP than in IPL because in IPL 1t 1s necessary
to read through all the cells of a list in order to locate
its end; in SLIP the location of the end of a list 1is
immediately available from the header of the list.
Furthermore, the SLIP system does not take time to erase
a sublist of an erased list structure until the cells of
that sublist are really needed; i.e., until the cell naming
the sublist appears at the top of the free storage list.
Pushdown Storage. No distinction is made in SLIP
between pushdown storage and ordinary lists. Polnters

may reference the interior of any list, and information

may be added to or removed from either end of any

list through use of "push" and "pop" instructions.
Auxiliary Storage. SLIP, like COMIT, can

transmit arbitrary data struetures between core memory

and auxiliary storage.

C. PROGRAMMING FORMALISMS

Most computer programming languages may be described
in the following terms:
(1) Description of processes which operate on the
data;

(2) Specification of flow of control from one
process to another;

(3) Communication of arguments (inputs) from one
process to another;

(4) Combination of processes into more complex
processes (use of subroutines).

17—

In addition, LP languages have various degrees of
facility for handling special kinds of processes,
including recursive, self-modifying, and arithmetic
procedures. In the following we shall describe these
features of the four languages from the programmer's
point of view.

COMIT

Basic Program Format. The basic unit of a COMIT
program is the COMIT "rule" which usually defines a
desired transformation of a particular data string

(called "the workspace"). The transformation is
specified, not by giving a procedure (sequence of
instructions) for modifying the data, but rather by
describing the desired input and output forms of the
data. When a rule 1s executed, the workspace 1is

searched until a substring is found which matches the
input form of the rule. The COMIT interpreter then
transforms that substring into the output form specified
by the rule, and control is transferred to a rule whose
name 1is given at the end of the current rule. If no
matching substring can be found, the workspace 1s left
unchanged and control proceeds to the next rule in
sequence. Rules may also specify selection of workspace
elements by means of their subscripts, and specify changes
to the subscripts and subscript values. The string in
the workspace is the only input for transformation rules,

but rules may also give iInstructions for transferring
data strings between the workspace and various
temporary storage '"shelves." Groups of rules may be
used as subroutines, 1if properly organized according
to somewhat awkward linkage conventions.

Special Processes. Recursive processes may be

—]18—

described in COMIT but the techniques, which involve
saving partial results and subroutine returns on push—
down shelves, are clumsy to express in the formalism.

Programs are self-modifiable only in the limited sense
that pre—programmed rules may be chosen for execution by
computations which find names of those rules in the
workspace.

Arithmetic is extremely awkward in COMIT since
arithmetic arguments and results can only be integers
and must be located as subscripts of workspace items.

However, the need for these special kinds of
processes seems to arise very rarely in those problems
best suited to COMIT; i.e., those which involve string
rather than l1list structure manipulations.

A special feature of COMIT which 1s useful in
language processing is the "list rule'" —a device which
enables rapid dictionary search. When workspace items
are to be looked up in a dictionary—like 1list, the list
may be made into a "list rule." The elements in the 1list
are sorted by the COMIT system, which then performs
searches in a logarithmic rather than a linear fashion.

IPL

Basic Program Format, An IPL routine consists of

a list of instructions with occasional two—way branches.
The flow of control is always to the next sequential in—
struction, except at a branch point, where the choice is
determined by the contents of a test—cell which may be
set by the program. A routine terminates when the end

of the branch being executed 1s reached. An instruction
may be the name of a basic operation which, when executed,
changes the state of a storage stack or data list, or

it may be the name of another routine. In the latter
case, the named routine 1s executed until termination

—19—

and then control returns to the next instruction in
the calling routine. The executed routine may in turn
contain instructions which execute other routines, and
so on indefinitely. There is no distinction between a
main program and a subroutine, since any routine may
execute any other. The IPL interpreter keeps track
of the current instruction location by means of a push—
down store, and terminates only when the highest—level
routine terminates. The programmer is responsible for
explicitly communicating arguments between routines
(by placing them in a pushdown store called the
"communication cell”), and avolding conflicts 1in
references to temporary results (usually by including
instructions in appropriate places to "push down" or
"pop up" storage cells which are used independently at
different levels).

Special Processes. Recursion is reasonably easy

in IPL since any routine may execute 1tself as a
subroutine, provided it first "pushes down" all its
partial results.

Program modification is possible since the names of
routines are ordinary IPL-V symbols and the system
provides an instruction for executing a routine whose
name is obtained from the data. Basic operations
included in the IPL system make it possible to construct
arbitrary lists; in particular, an IPL program may
construct a list at run—time which is in the correct
format for a routine, and then execute that routine.
Since a program may also manipulate existing routines
(by treating them as special data lists), IPL programs
are completely self-modifiable.

Arithmetic is made possible in IPL through use of
a special group of instructions for manipulating data

—20~

terms. The formalism is somewhat confusing since one
must always refer to the IPL symbol which names the
cell containing a number, rather than refer to the
number itself. Since the P and Q parts of a data term
cell are used to specify the kind of data contained,
the data itself only occupies part of the cell and must
be in some speclal format. IPL arithmetic instructions
must interpret these formats as well as carry out their
operations, and are therefore extremely slow.

Two additional special features have proved
quite useful to many IPL programmers — "description—
1ist processes” and "generators." Any list may have
associated with it a "description—list" —a 1ist of
pairs of elements. Basic IPL operations can add pairs
to description lists; others retrieve the second
element of a pair on a description—list, given the
first element and the names of the main list. Thus,
description—list operations simulate an assoclative
memory containing arbitrary descriptive information
for any IPL list.

Frequently a programmer wishes to perform the
Same operations on each member of a sequence of symbols,
where jJust the process of producing the next symbol in
the sequence requires a complicated program. This
latter program may be written in the form of a
"generator,”" which can be used to generate a particular
kind of sequence of symbols as inputs for any other
program. For example, one may write a generator to
generate the third symbol on each sublist of any
specified list structure. The generator frees the
programmer from having to worry about changing contexts;
l.e., conflict between generator and main program in the
use of temporary storage.

21—

LISP

Basic Program Format. LISP programs consist of

functions, rather than sequences of instructions or
descriptions of data forms. In order to be evaluated,
a function must be glven its specified number and

types of arguments; from these 1t constructs a single
data structure which is its value. The basic functions
in the system produce values which are easily obtained
from their arguments; e.g., the value may be a
particular subexpression of an argument, or a list

of the arguments. New functions may be defined by
combining bullt—in functions in certain ways described
below. A complete LISP program generally consists of

a set of function definitions followed by the applica—
tion of these functions to particular data structures
as arguments. The values of these functions are the
results of the computer run. Functions may be combined
in the following ways:

(1) Composition. The value of a function may
itself be an argument of some function,
so that the inner function must be evaluated
before the main function can be evaluated.
This nesting of functions may occur to
any depth.

(2) Conditional Expressions. This 1s an n-way
branch, similar to the Algol statement,

if p, then e, else 1f P, then e, ...,
of arbitrary length, where the p's are
predicates (functions whose possible
values are the special truth—-value
symbols "T" and "F"), and the e's are
any LISP expressions. The value of the
conditional 1s the value of the e
following the first p whose value 1s "T".

(3) Recursion. A LISP recursive function
is a function defined by a conditional

—D2 D

expression, part of which requires an
evaluation of the entire function (for
different values of its arguments).

For example, the factorial function may
be defined by a LISP translation of the
following:

"

n! is defined by,

if n = O then value is 1;

else value is the value of n+[(n — 1)t 1"
The second use of the "!" symbol automati-—
cally refers to the entire definition. We
have used the function 'factorial" here
because of its familiarity. Although
"factorial" can be defined without using
recursion, other functions which can only
be defined recursively are Jjust as easily
expressible in LISP. The programmer need
never be concerned with such details as
precisely how data structures are manipu—
lated, which temporary results may be
erased, and what information must be
saved 1in pushdown storage.

Speclal Processes. Recursion is extremely easy to
use in LISP, and in fact is one of the basic methods for
defining functions (see above).

In the LISP formalism function definitions are
represented by list structures; i.e., functions are

structurally equivalent to data. Also, the basic system
includes an evaluate function which interprets its
argument as a list representation for a function, and
executes the function. Therefore, programs are
completely self-modifiable in the sense that, at
execution time, function definitions may be changed, or
created, and then applied to arguments.

The LISP system contains a fairly complete set of
basic arithmetic functions which are easy to use if
one can become accustomed to Polish prefix, rather than
the usual infix notation for algebraic expressions.
However, since LISP numbers are atomic symbols whose

numeric values must be found on their property lists
before any actual arithmetic is performed, LISP
arithmetic is significantly slower than, say, FORTRAN
arithmetic.

A useful property of LISP is that one may include
functionals, or functions whose arguments may include
function definitions. For example, one may define a
function of two arguments "maplx;fl," whose value 1s a
list of the values of the function f applled to each
element of the list x.

Another special feature of LISP is the "program
feature." This is useful for those occasions when
operations should be performed which are awkward to
express in the basie function and conditional—expression
notation; e.g., labeling temporary results to avoid
duplicate computations, and executing functions which
are needed for thelr effects rather than values, such
as input—output operations. In the "program feature,"
a function is defined by a list of program steps with
FORTRAN-like mechanisms for assigning values to
variables and controlling sequence of operations.

SLIP

Basic Program Format. SLIP consists of a set of
pseudo—functions which may be added to any basic FORTRAN
system ('"pseudo" because they change internal structures
as well as return values). SLIP programs are like those
in IPL in the sense that they consist of sequences of
instructions to manipulate internal structures; the
programmer has the same problems of keeping track of
processed expressions, erasing or protecting data, etc.

The syntax of SLIP 1s that of FORTRAN, with flow
of control determined by "IF" and "GO TO" statements.
The FORTRAN nesting of functions gives SLIP a LISP-
like power for composition of list-processing functions.
The SLIP "reader" mechanisms give the programmer the
ability to set up pointers which can automatically be
stepped forward or backward through list structures in
fairly complicated ways. Whether the additional power
and flexibility offered by these mechanisms are worth
their cost in additional memory space taken ur by the
SLIP internal data representation, and therefore how
SLIP compares to IPL as a pure list-processing formalism,
will not become clear until more programming experience
is gained in using the SLIP language.

Special Processes. Recursion in SLIP may be done
almost as easily as in IPL through use of a special
"visit" function and the FORTRAN "assign" statement. The
programmer still must specify explicitly the arguments
to be transmitted and the temporary results to be
saved.

A SLIP program may be "self-modifying" in the
following limited sense: The order in which preprogramming
segments of routines are executed may be determined
at run—time by means of arbitrary symbol-manipulating
procedures. More general program modification is not
possible since the FORTRAN compiler is unavaillable at
run—time.

The arithmetic facllity of SLIP is exactly that of
FORTRAN, which of course 1is superior to that of any of
the pure LP languages. If a problem involving extensive
arithmetic processing were programmed in COMIT, IPL,
or LISP, then the arithmetic portion of the program would
be harder to read than the corresponding FORTRAN

statements., In addition, if SLIP FORTRAN-—compiled arith—
metic operations were to be used for "production runs,"
much computer time would be saved compared to using the
corresponding operations in the other LP languages. SLIP,
which provides list—processing facilities as part of an
algebraic compiler, is designed for those problems which
require an intermingling of symbol manipulation and exten—
sive arithmetic processing.

A substantial part of the SLIP system consists of
functions for character—manipulation and bilt—-manipulation.
These partial—word operations may be used in conjunction
with or independently of the SLIP list—processing mechanisms.

D. USABILITY

The "usability" of a computer language depends upon
the avallability of the language on an accessible computer,
and the difficulty of learning the language and debugging
programs in it. The relative ease with which new program—
ming languages may be learned and used depends upon several
things, including the quality of the documentation, the
quality of the instructor (if any), and the background
and interests of the student, as well as the particular
characteristics of the languages. More obJjective factors
include extent of documentation and automatic debugging aids.

In this section we shall discuss the available imple—
mentations, the documentation, and the special alds avail—
able for learning and using each of the four languages.

COMIT

Implementation. COMIT is implemented on the IBM 7090
and IBM 704 as follows: A compiler translates the COMIT
rules into an intermediate machine representation; an inter—
preter then executes this form of the program. Instructions
are available for installing a COMIT system under an exist—
ing "monitor" or "automatic operator" system.

Y-

COMIT II, which will be released shortly, will have
a much faster compiler than the present COMIT. It will
also allow the use of FORTRAN—compiled subroutines and
more flexible use of subscripts.

Documentation and Difficulty. COMIT is probably the
easlest LP language to learn, due to both its simple

formalism and 1ts excellent manual, Introduction to

COMIT Programming. The well-organized COMIT Programmers

Reference Manual is also available. A program which

grades the solutions to COMIT programming problems
and an elaborate set of diagnostics built into the
system also aid the novice programmer. There are no
automatlc devices for helping a programmer locate
logical errors, but various debugging aids may be
easily written in COMIT.

IPL.

Implementation. IPL 1s available as an interpretive
system on the IBM 7090, Control Data 1604, UNIVAC 1105,
Bendix G—20, Philco 2000, AN/FSQ—-%2, and IBM 650.*

A compiler for the 7090 version was written experimentally,
but was discarded since the resulting object code

occupied much more space and ran only slightly faster
than the interpreted version.

The IBM 7090 version of the IPL system is itself
a subroutine so that it may easily be included in any
monitor system.

Documentation and Difficulty. IPL is an easily

obtainable and widely used LP language. The programming
manual' > consists of two parts,** "Elements of IPL

*See Refs. 5 and 6 for further information.

**¥A new edition of the IPL-V Manual is being completed
at the time of this writing.

—27—

Programming" and "Programmers Reference Manual." The
"Reference” section is quite usable. The "Elements' is
an adequate teaching aid, but leaves some things to be
desired if it is to be used without a teacher. Coding
problems, their solutions, and "TIPL," a grading
program for these solutions will be available with the
new edition of the manual. Experience at summer
institutes held at The RAND Corporation indicates that
these problems and TIPL can be of great assistance in
an IPL programming eourse. The IPL system has several
convenient built—in facilities for aiding in program
debugging. These 1lnclude both selective and snapshot
trace facilities. IPL is very much like a machine
language for some symbol-manipulating machine; therefore,
an experienced programmer would probably find it much
easier to learn than would a novice in the computer
business. Since an IPL program describes symbol
manipulation at a very basic level, the programmer has
to do considerable detailed bookkeeping. The lack of
mnemonic symbols is an annoying anachronism.

LISP

Implementation. The only LISP 1.5 system
currently available consists of a monitor, interpreter,
and compiler for the IBM 7090 (although other LISP
systems are being prepared). The compiler may be
erased, ignored, or used to translate function defini-
tions from list structure form into machline language
subroutines. The monitor controls restoration of
avallable space and initilation of independent function
evaluations. Compiled and interpreted functions commun—
icate with each other automatically. Annotated "FAP"
listings are avallable which describe the changes which

o8-

must be made in order to install LISP under a monitor
system.

Documentation and Difficulty. LISP is quite
different from any other programming system; this
probably largely accounts for the popular belief that
it is an extremely difficult language to learn.
Actually, for a completely naive user, LISP is probably
no more difficult to learn than IPL or SLIP; it may
be less difficult if the user 1s mathematically
inclined. A programmer experlienced in conventional
computer languages may have particular difficulty in
breaking old hablits in order to think in LISP terms.
Unfortunately, the only documentation for LISP is the
LISP 1.5 Programmer's Manua1(7) which 1s adequate
for reference purposes but not very good as a text.
However, considerable digging for information may pay
off 1n the long run since the LISP formalism has
certain distinct programming advantages. LISP gives
the programmer a powerful notation for describing
recursive processes, yet frees him from concern about
protection of arguments and maintenance of free storage.
Thus, for one who knows the language, it is signifiicantly
easier to describe many complex symbol-manipulating
processes in LISP than in any other available formalism.
Since programs are described at a high level and most
detall work 1s handled automatically, LISP programs
are generally quite easy to debug, especially with the
use of LISP's "trace" feature. This trace gives the
values of the arguments of a funetion each time the
function 18 entered, and the value obtained for these
arguments.

SLIP

Implementation. SLIP consists of a set of FORTRAN
subroutines, most of which are written in FORTRAN. 1In
order to get a SLIP system working on any machine which
has a FORTRAN or FORTRAN—-llke compiler available but for
which SLIP is not yet available, one must hand-code a few
speclal subroutines. This is an easlier job than that of
writing a complete interpreter or compiler for one of the
other LP languages. Notice that SLIP is then automatically
included in any FORTRAN monitor system and thereby avoids
a frequent source of conflict between user and computer
installation management. Since SLIP 1s Jjust a set of sub—
routines, only those which will be used must actually be
provided for any particular computer run. Thus, for example,
1f character—-manipulation functions are not needed they may
be omitted, leaving room for a longer initial availlable
space list. Complete SLIP systems already exist for IBM
7090 FORTRAN II, Control Data 1604 FORTRAN, and the Stan—
ford version of BALGOL. Others are in preparation.‘

Documentation and Difficulty. SLIP is a new system.
Its only documentation at this writing is a preliminary
report, Symmetric List Processor, which is somewhat in—
complete. A SLIP manual is scheduled to be published soon
in the Communications of the ACM. Various improvements in
the language and i1ts implementations are now in progress.

However, the language 1s really Jjust FORTRAN wlith some
frills; any FORTRAN programmer (and there are a great many!)
can become a list—processing programmer simply by learning
the frills, a much easier process than learning a completely
new ''foreign" language. Unfortunately, the "mnemonic" names
for SLIP functions are obscure since they must obey FORTRAN
naming restrictions. Actual list—processing operations are
carried out at the same level of detail in both SLIP and
IPL, and therefore may be Jjust as diffilcult conceptually in
both.

No special debugging aids are avallable in SLIP
except the basic FORTRAN diagnostics.
E. EXECUTION TIMES

It is extremely difficult to obtain definite
information concerning the relative speeds of LP
languages. One would have to choose problems which
could be solved equally well (whatever that means) in
each of the languages being compared; obtain independent
solutions in each language by programmers of the same
caliber; record accurate times in systems with no
built—in timing mechanisms; and decide how to weight time
for execution vs. compilation, assembly, tape—spinning,
ete. To our knowledge, no such comparison has yet been
attempted. However, in order to Justify an intuitive
feeling that running times for the various languages are
at least in the same ballpark, and therefore that
speed of execution is only a minor consideration in
comparison with ease of programming and debugging,
especlally for research applications, the following
experiments were conducted:

(1) Ackerman's function,(lo) a highly recursive

arithmetic function of two arguments, was

programmed and executed for the same argu-—
ments in COMIT, IPL, LISP, and SLIP (IBM

7000 versions).

(2) A routine used in the Logic Theorist(ll)
was programmed and executed in IPL and
LISP. This program creates a list
structure of names of Boolean expressions
based on the structures of these expressions.

The results of these experiments are given in
Table I. The reader 1s reminded that Table I gives
approximate information about specialized problems.

Table I

APPROXIMATE TIME COMPARISONS

Ackerman's function of 3,3

List-structure building

Language COMIT IPL LISP SLIP IPL LISP
Time to compile 15 sec? 10 seca 8 seca 20 seca b 10 seca
or assemble
Execution time 20 seca 9 sec 5 sec 2.6 sec 2 min 40 sec
Print-out Time 1 min 10 seca
Approximate
number.of 0 0a 0 12 12a 6
debugging
runs®

aParticularly approximate estimate; i.e., +50%.

bPre-assembled program was used.

cRough estimate for an experienced programmer.

-1 {-—-

—30—

It may be used as a rough gulde, but should not be
considered a valid basis for any general conclusions.

V. CONCLUSIONS

Table II, the comparison chart on the next two
pages, summarizes the detalls presented in this
Memorandum. In this section we present heuristics we
feel are important in choosing the LP language best sulted
for a particular problem. Almost any problem can be
coded in any of the four languages discussed, or for that
matter, in almost any programming system, including
binary machine language, provided the programmer 1s
sufficiently clever and ambitious. In choosing a
language, one should consider the characteristics of both
the problem and the programmer. Intimate knowledge by
the programmer of any one of the LP languages will
probably be an overriding factor toward the cholce of
that language for any LP problem. With this in mind,
let us look at problem characteristics which tend to
make a solution more easily expressible in one of the
languages than in any of the others.

If the data is in the form of strings of alphanumeric
characters —e.g., natural language text —and the
operations to be performed on thls data are string manip-
ulations, such as substitution, rearrangement, and
duplication, then COMIT 1is a natural cholice of a
programming language. If extensive arithmetic or statisti-—
cal operations are also to be performed, then COMIT's
awkward arithmetic facllities would be a hindrance, and
if these operations constitute the bulk of the task, then
perhaps the superior FORTRAN arithmetic in SLIP would make
1t worthwhile to use SLIP, even for the string manipula-
tions. (However, we understand that COMIT II, soon to be
available for the 7090, will have facility for incorporat—
ing FORTRAN—compiled functions.)

COMPARISON CHART

34

Table II

LANGUAGE
COMIT IPL LISP SLIP
ITEM
What are data
representations? .
Strings of items Lists of elements SZ?ggél%p§¥g;§§;- Parenthesized

Programmer :

Internal:

which may have
subscripts.

which name data
terms or other
lists.

sized list struc-
tures and dotted
pairs) .

list structures.

Linked two-word
blocks.

Binary trees (i.e.,
two address fields
per word) usually
representing list
structures.

Binary trees;
i.e., two address
fields per word.

Headed lists of
two-word blocks
linked both ways.

Are common sublists

No, but this is
unimportant to

Yes; by convention
each is '"local"
to a particular

All structures
and substructures

Only headed lists
can be used as

allowed? the user. structure for can be referenced
copying and freely. sublists.
erasing purposes.
11 By the programmer Automatically by
How are cells no ZhrougE ErEEE" —ﬂ§3253§3—63¥1ec_ By the programmer

longer needed made

available?

Automatically as
soon as they are

available.

statements in the
program.

tion'" when free
storage is ex-
hausted.

throug erase
statements in the
program.

What are the aux-

iliary storage
facilities?

Data may be written
and read from
magnetic tape.

Data and blocks of
programs may be
written on and
read from magnetic
tape.

None available.

Data may be writ-
ten and read from
magnetic tape.

What is the form

of a program?

A labeled sequence
of rules for
string transfor-
mations.

Lists of basic in-
structions and
names of sub-
routines.

Definitions of
LISP-functions,
and functions ap-
plied to argu-
ments.

FORTRAN program
with special
FORTRAN pseudo-
functions.

-35—

Table II (Continued)

symbols be used?

LANGUAGE
COMIT IPL LISP SLIP
ITEM
Very easily, part-
Are recursive oper- ly because tem-
porary results With some diffi-

ations definable Awkwardly. Yes. are saved auto- culty.

and usable? matically during

- recursion.

Can a program .

modify itself? Slightly. Yes. Yes. Slightly.
Can mnemonic
— Yes. No. Yes. Only those allowed

by FORTRAN.

How is the arith-
metic facility?

Very poor; numbers

" must be integer

subscripts of
string symbols.

Poor; awkward re-
presentation and
slow interpretive
execution.

Fair; Polish nota-
tion for repre-
sentation. All
numbers indirect-
ly addressed at
execution.

Good; i.e., FOR-
TRAN arithmetic.

Implementation.

IBM 709/7090
IBM 704/7040

IBM 709/7090
Control Data 1604
Bendix G-20
Philco 2000

IBM 650

UNIVAC 1105
AN/FSQ-32

IBM 709/7090

FORTRAN and hand-
coded FORTRAN
functions for
IBM 709/7090 and
Control Data 1604/

Documentation and

Teaching Aids.

Excellent Intro-
duction to COMIT
Programming and
Reference ﬁanual,
marking program

for sample prob-
lems.

Elements of IPL

Programmina and a
eference nual,
marking program

for sample prob-
lems.

LISP 1.5 Reference
Manual and anno-
tated FAP list-
ing.

SLIP report con-
taining not ex-
tensively tested
programs.

_36__

If some string manipulation is to be done, but pro—
cessing of complex 1list structures is also needed, LISP is
probably a good language to use. There is documented and
available a LISP function, "METEOR,"(lg) which performs
COMIT-type string manipulations and allows full use of
other LISP facilities.

Very recursive processes are most easlly expressed in
the LISP formalism, and programmers with mathematical train—
ing will probably find it the most natural. Extensive ex—
perlence at Hughes Aircraft has indicated that LISP is a
good language for expressing solutions to LP problems and
testing ideas for solutions. Then, if the ideas prove
feasible, more efficlent production programs or ones in—
corporating auxiliary storage may be constructed in another
language using the LISP program essentlially as a flowchart.

Programs working with complex 1list structures and need—
ing auxiliary storage to handle large amounts of data should
probably be written in IPL or SLIP. It is difficult to
choose between these two languages, except that much more
background information and documentation is available for
IPL that for the newcomer, SLIP. For ease of insertion of
an LP language into a monitor system and for programmers
brought up on a FORTRAN diet, SLIP 1is an excellent starting
language. A principal disadvantage of SLIP is that very
little experience has been accrued with 1it, and, further,
Some care must be taken to fool a too clever FORTRAN compiler.

To reiterate, no one of these LP languages is distinctly
superior over the entlire range of problems for which LP
techniques are needed. They all provide a sufficient
number of built—in operations so that a programmer may
directly express and deal with his own problem in the for—
malism of the chosen language without having to prepare
many basic utility routines.

10.

11.

12.

REFERENCES

Gelernter, H., et al., "A Fortran—Compiled List
Processing Language," J. ACM, Vol. 7, No. 2,
April 1960, pp. 87-101.

Introduction to COMIT Programming, Research
Laboratory of Electronics and MIT Computation
Center, MIT Press, Cambridge, Massachusetts, 1961.

COMIT Programmers Reference Manual, MIT Press,

Cambridge, Massachusetts, 1961.

Yngve, Victor H., "COMIT," Comm. ACM, Vol. 6, No. 3,
March 1963, pp. 8334,

Newell, Allen, (ed.), Information Processing
Language—V Manual, Prentice—Hall, Englewood
CIiffs, New Jersey, 1961 (being revised).

Newell, Allen, "Documentation of IPL-V," Comm. ACM,
Vol. 6, No. 3, March 1963, pp. 86-89.

McCarthy, J., et al., LISP 1.5 Programmer's Manual,
MIT Computation Center and Research Laboratory of
Electronics, 1962.

Weizenbaum, J., "Symmetrie List Processor,” Comm.
ACM, Vol. 6, No. 9, September 1963.

Green, B.F., "Computer Languages for Symbol
Manipulation,”" IRE Trans. on Human Factors in
Elec., VO].. HFE—Q, NO. 1, Ma.I'Ch 1961, pp. 2'—3.

Kleene, S.C., Introduction to Metamathematics, Van
Nostrand, Princeton, New Jersey, 1952.

Stefferud, Einar, The Logic Theory Machine: A

Model Heuristic rogram, e RAND Corporation,
3 3 2 me 30

Bobrow, D.G., METEQR: A LISP Interpreter for String
Transformations, Memo 51, Artificia telligence
Project, Research Laboratory of Electronics and

MIT Computation Center, Cambridge, Massachusetts,
April 29, 1963,

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

