EMPIRICAL EXPLORATIONS CF THE LOGIC THEORY
EfmC,ZI"EE: A CASE STUDY IN HEURIZTICS

!ﬁ.o “N(\ 1’ tT. Co ,3 aw a.}»}i
He 4. Simon?

i . v o 2l S
ntern: Joint Computer
elen, Fedbruary 20

7% RUND g

1700 MAIN ST. « SANTA MONICA » CALIFORNIA

#Carnegle Institute of

P-951
1-11-57

SUMMARY

Empirical Exploration cf the Logic Theory Machine

The Logic Theory Machine is a' program that discovers
proofs for thecrems in elementary symbolic logic. It
dces this, not by means cf an algorithm (although such
algcrithms exist), but by using heuristic devices, much
as a human dces. It is being studied as part of a
research effort directed toward understanding the
processes involved in learning, problem-solving,
recognizing patterns, etc. This paper presents the
results cf detailed explorations of the program on
RAND's JOHNNIAC. It describes the program and evaluates
the rcle cf the various methods, and heuristics in
contrivuting to the total problem solving capability of
the machine. (See P-954).

P-951
1-11-57

-l e

EMPIRICAL EXPLORATIONS OF THE LOGIC THEORY MACHINE:
A CASE STUDY IN HEURISTIC

By A. Newell, J. C. Shaw, and H. A. Simon
The RAND Corporation and Carnegie Institute of Technology

This paper 1s a case study in problem solving, repre-
senting part of a program of research on complex information
processing systems. We have specified a system for finding
proofs of thecrems in élementary symbollic logic, and by
programming a computer to these apecificationa, have
cbtained empirical daté on the problem-solving process in
elementary logic. The program is called the Logic Theory
Machine (LT), and it was devised to learn how it is possible
tc sclve difficult problems like proving mathematical
theorems, discovering scientific laws from data, playing
chess, or understanding the meaning of English prose.

The research reported here is aimed at understanding
the complex processes (heuristics) that are effective in
problem sclving. Hence, we are not interested in methods
that guarantee solutions, but which require vast amounts of
computation. Rather, we wish to understand how a mathemati-
clan, for example, is able tc prove a theorem even though he
does not know when he starts how, or if, he is going to

succeed.

P-951
1-11-57

This paper focusses on the pure theory of problem
sclving. In a previous paperl we specified in detail &
program for the Logic Theory Machine; and we shall repeat
here cnly as much of that specificaticn as is needed sc that
the reader can understand cur data. In a companiocn paper2
we consider how computers can be programmed to execute
processes of the kinds called for by LT, a problem that is
interesting in its own right. Similarly, we postpcne to
later papers a discussion of the implications cf our work
for the psychological theory of human thinking and problem
solving. Other areas cf applicaticn will readily occur to
the reader, but here we will limit our attention to the
nature of the problem-solving process itself.

Our research strategy in studying complex systems is
to specify them in detall, program them for digital computers,
and study their behavicr empirically by running them with a
number of variaticns and under a varilety of conditions.

This appears at present the only adequate means todvtain a
thorcugh understanding of their behavior. Although the
problem area with which the present system, LT, deals 1s
fairly elementary, it provides & gcocd example of a difficult
problem -- logic is & subjJect taught in college courses, and
i8 difficult encugh for most humans.

P-931
1-11-57

Cur data ccme from a series of programs run on the
JOHNNIAC, one of RAND's high-speed digital computers. We
will describe the results of these runs, and analyse and
interpret their implicaticns for the problem-solving process.

The Logic Theory Machine in Operation
We shall first give a concrete picture of the Logic

Theory Machine in operation. LT, of ccurse, is a program,
written for the JOHNNIAC, represented by marks on paper or
holes in cards. However, we can think of LT as an actual
physical machine and the operaticn of the program as the

behavior of the machine. One can identify LT with JOHNNIAC
| after the latter has been locaded with the basic program, but
vefore the input of data.

LT's task is to prove thecrems in elementary symbolic
logic, or more precisely, in the sentential calculus. The
sentential calculus 1s a formalized system of mathematics,
consisting of expressions bullt from combinations of basic
symbols. Five of these expressions are taken as axioms, and
there are rules cf inference for generating new theorems from
the axioms and from other theorems. In flavor and form
elementary symbolic logic 1is much liké abstract algebra.
Normally the variables of the system are intexrpreted as
sentences, and the axioms and rules of inference as forma-

lizations of 1ogi¢al cperations, e.g., deduction. However,

P-951
1-11-57

B X0

LT deals with the system &8s a purely formal mathematics, and
we will have no further need of the interpretation. We need
to introduce a smattering of the sentential calculus to
understand LT's task.

There 1s postulated a set of variables p, q, I, «» « « ,
A, B, C, « . « , with which the sentential calculus deals.
These variables can be combined into expressions by means of

connectives. Given any variable p, we can form the expression

"not-p". Given any two variables p and q, we can form the
expression "p or q", or the expression "p implies q", where
"or" and "implies” are the connectives. There are cther
connectives, for example "and", but we will nct need them
in this paper. Once we have formed expressions, these can
be further combined into more complicated expressions. For

example, we can forms

3y

" (p implies not-p) implies not-p." (2.01)

There is also given a set of expressions that are axioms.
These are taken tc be the universally true expressions from

which theorems are to be derived by means of variocus rules of
inference. For the sake c¢f definiteness in our work with LT,
we have employed the system of axioms, definitions, and rules
that 1s used in the Principia Mathematica of Whitehead and

P-951

1-11-87
-5-
Russell. Principia lists five axioms:
(p or p) implies p (1.2)
p implies (q or p) (2.3)
(p or q) implies (q or p) (1.4%)
(p or (q or r)) implies (q or (p or r)) (1.5)

(p implies q)»implies ((r or p) implies (r or q))(1.6)

Given some true theorems one can derive new theorems by
means of three rules of inference: substitution, replacement,
and detachment. ‘

1. By the rule of substitution, any expreasion may
be substituted fér any variable in any theorem, provided the
substitution is made throughout the theorem wherever that
variable appears. Por example, by substitution of "p or q"
for "p", in the second axiom we get the new theorem:

(p or q) implies (q or (p or q)).

2. By the rule of raplaccment,.a connective can be
replaced by its definition, and vice versa, in any of ita
occcurrences. By definition "p implles Q" means the same as
"not-p cr q'. Hence the former expression can always be

replaced by the latter and vice versa. For example from

axiom 1.3, by replacing "implies" with "or", we get the new
theorem:

not-p or (q or p).

51
1-57

| g
Lo
L ¢

3. By the rule of detachment, if "A" and "A implies

B" are theorems, then "B" is a theorem. For example, from:

(p or p) implies p,

((p or p) implies p) implies (p implies p),

we get the new theorem:

p implies p.

Given an expression to prove, ocne starts from the set
of axioms and theorems already proved, and applies the
various rules successively until the desired expression is
produced. The proof is the sequence of expressions, each one
validly derived from the previous ones, that leads from the
axioms and known thecrems to the desired expression.

This is all the backgrocund in symbolic logic needed to
observe LT in operaticn. LT "understands" expressions in
symbolic logic -- that is, there is & simple code for
punching expressions cn cards so they can be fed into the
machine. We give LT the five axioms, instructing it that
these are thecrems it can assume tc be true. LT already
knows the rules of inflerence and the definitions -- how to
substitute, replace and detach. Next we give LT a single
expression, say expression 2.01, and ask LT to find a proof
for 1t. LT works for abcut 10 seconds and then prints out

1:11%s7

-7..

the following proof:
(p implies not-p) implies not-p (thm. 2.01, to be proved)
#1. (A or A) implies A (axiom 1.2)
#2. (not-A or not-A) implies not-A (subs. of not-A for A)

#3. (A implies not A) implies not-A (repl. of "or! with
"implies”)

#4. (p implies not-p) implies not-p (subgin§f p for A;

Next we ask LT to prove a falrly advanced theorem in
Chapter 2 of Principia, theorem 2.45; allowing it to use all
38 theorems proved prior to 2.45. After about 12 minutes,
LT produces the follcwing proof:

not (p or q) implies not-p (thm. 2.45, to be proved)
#1. A implies (A or B) (theorem 2.2)
#2. p implies (p or q) (§u€:. for A, q for
#3. &A implies B) implies (theorem 2.16)

not-B implies not-A)

#4. &p implies (p or q)) implies (subs. p for A, (p or q)
not (p or q) implies not-p) for B in #3)

#5. not (p or q) implies not-p (detach riggg side of #4,
using #2;

Finally, all the thecrems prior to 2.31 are given to LT
(a total of 28); and then LT is asked to prove:

(p or (q or r)) implies ((p or q) or r). (2.31)

51
1

LT works for about 23 minutes and then reports that it
cannot prove 2.31, that it has exhausted ita resources.

Now, what is there in this behavior of LT that needs
to be explained? The specific examples given are difficult
problems for most humans, and most humans do not know what
processes they use to find proofs, if they find them. There
is no known simple procedure that will produce such proofs.
Various methods exist for verifying whether any given expres-
sion is true or false -- the best known procedure being the
method of truth tables -- but these procedures do not produce
a2 prcof in the meaning cf Whitehead and Russell. One can
invent "autqmatic“ procedures for producing proofs, and we
will look at one briefly later, but these turn out to
require computing times of the orders of thousands of years
for the proof of 2.45.

We must clarify why such problems are difficult in the
first place, and then show what features of LT account for
its successes and failures. These Questions will cceupy the

rest of the paper.

Problems, Algorithms, and Heuristics

In describing LT, its environment, and 1ts behavior we
will make repeated use of three concepts. The first of these
is the concept cf problem. Abstractly, a person is given a

1

A\

prcblem if he is given a set of possible sclutions, and a
test for verifying whether a given element of this set is
in fact a sclution tc his problem.

The reascn why problems are problems is that the
criginal set of possible soluticns given to the problem
solver can be very large, the actual scluticns can be
dispersed very widely and rarely throughout it, and the
cost of obtaining each new element and cf testing it can
be very expensive. Thus the problem sclver is not really
"given" the set of possible sclutions; instead he is given
some process for generating the elements of that set in
some order. This generator has properties of 1ts own, not
usually specified in stating the problem -- e.g., there is
asscociated with it a certain cost per element produced, it
may be possible to cpange the order in which it produces
the elements, and sc on. Likewise the verification test has
ccsts and times associated with it. The problem can be
sclved if these ccsts are not toc large in relation to the
time and computing power avaliable for sclution.

One very special and valuable property that a generator
cf scluticns scmetimes has is a guarantee that if the prcblem
has a soluticn, the generatocr will, soconer or later, produce
it. We will call a process that has this property for socme

problem an algorithm for that problem. The guarantee

provided by an algorithm is not an unmixed blessing, of
course, since nothing has been specified about the cost or
time required to produce the solutions. For example, a
simple algorithm for opening a combination safe is to try
all combinatichs, testing each one to see 1f 1t opens the
safe. This algorithm is a typical problem-solving process:
there is a generator that produces new combinations in some
order, and there is a verifier that determines whether each
new combination is in fact a solution to the problem. This
gearch process is an algorithm because it is known that
some combination will open the safe, and because the generator
will exhaust all combinations in & finite interval of time.
The algorithm is sufficiently expensive, however, that a
ccmbination safe can be used to protect valuables even from
pecple whe know the algorithm.

A process that may sclve a given problem, but offers nc
guarantees of doing so, 13 called a hguriatioﬂ/ for that
problem. This lack of a guarantee is not an unmixed evil.
The coat inflicted by the lack of guarantee depends on what

the process costs and what algorithms are available as
alternatives. PFor most run-of-the-mill prcblems we have
cnly heuristics, but occasicnally we have both algorithms
and heuristics as alternatives for solving the same problem.

Scmetimes, as in the problem of finding maxima for simple

P-951
1-11-57

differentiable functions, everyone uses the algorithm cf
setting the f{irst derivitive equal to zerc; no one sets

cut to examine all the pcints on the line one b, cne even

if 1t were possible. Scmetimes, as in chess, everyone plays
by heuristic, since nc cne is able tc carry ocut the algorithm

cf examining all centinuaticns cof the game t¢ termination.

The Problem cf Prcoving Theorems in Logic

Finding a proof for a theorem in symbolic lcgic can be
described as selecting an element from a generated set, as

shown by Figure 1. Consider the set of all possible seqQuences

cf lcgic expressicns -- call i1t E. Certain of these sequences

-- a very small minority -- will be prcofs. A prcof sequence
satlsfies the follcwing test:
Each expressicn in the sequence 1is either
a) one of the accepted thecrems or axioms, cr
b) obtainable from che or twc previcus expressions
in the sequence by application of cme of the three
rules cf inference.

Call the get of sequences that are proofs P. Certain cf the

sequences in E have the expression tc be prcved -- call it X

~- a3 thelir final expresslcn. Call this set cf sequences Tx.
Then, tc find a proof cf a given theorem X means tc select an

element cf E that belcngs tc the intersection cf P and TX'

- P-951
1-11-57
-lla-

SR i e b Sty .
i,

B all sequences of!og‘c\\%
exXpressions \\\\

_— e ~— \

/',.wf“‘ | \”\'v) \‘ ’/ _\ \\

\
\

Ty seauences)
endmg 1n X 1/

o /
T~ " /

/s

/

\\\\\ —Proofs of Xi////
\\\ ,»’//
-

e . g " -~

Figure 1. Relationships between E, P, and TX'

P-951
1-11-57
,"12."

The set B is given implicitly by rules for generating new
sequences of lcglc expreassions.

The difficulty of proving thecrems depends on the
scarcity cf elements in the interssction of P and Tx,
relative to the number of elements in E. Hence, it depends
cn the cost and speed of the avallable generators that
produce elements of E, and on the cost and speed of making
tests that determine whether an element belongs to Tx or P.
The difficulty also depends on whether generators cah be
found that guarnnteebthat any element they produce automati-
cally satisfies some of the conditions. Pinaily, as we
- shall see, the d;rriculby depends heavily on what heuristics
can be found to guide the selection.

A little reflection -- aﬁd experience in trying to
prove theorems -- makes it clear that proof aequences for
specified theorems are rare indeed. To reveal more pracioolé
why proving theorems is difficult, we will construct an
algorithm fcor doing this. The algorithm will be based only

on the tests and definitions given above, and not on any
"deep" inferred properties of symbolic logic. Thus it will

reflect the basic nature cf theQrem proving -- that is, its
nature priocr tc buildingwp sophisticated proof techniques.

We will call this algorithm the British Museum algorithm, in
recognition of the supposed originatcers of procedures of this

type.

Britiash Museunm 0.

The algorithm oonserucﬁa all poseidble proofs in a
systematic manner, checking each time (a) to eliminate
duplicates, and (b) to see if the final theorem in the
proof coincides with the expression to be proved. With
this algorithm the set of cne-step proofs is identical
with the set of axioms {i.e., each axiom is a one-step proof
of itself). The set of n-step proofs is obtained from the
set of (nél)watap proofs by making all the permissible
substitutions and replacements in the expressions of the
(n-1)-step proofs, and by making all the pcm”xbu detach-
ments of pairs of expressions as permitted by the recursive
definition of proor.ﬁf

Pigure 2 shows how the set of n-step proeofs increases
with n at the very start of the proof-generating process.
This enumeration only extends to replacements of "or" with
"implies", “implies" with "or", and negation of variables
(e.g., "not-p" for "p"). No detachments and no complex B
substitutions (e.g., "q or r" for "p") are included. No
npeciaiizntiona have been made (o,g;, substitution of p for
q in "p or q"). If we include the specializations, which
take three more aﬁcpu, the algorithm will generate an
(estimated) additional 600 thecrems, thus providing a set of

proofs

£
i

Number

100

P-951

1-11-57
-13a-
B p
l/
Inctudes only: /
- substitutions /
? not—p for p)
not—qg for g
P not-r for r
t/j,
repiacements /
or for implies //
o Foy o /
- implies for or J
/7
L V4
o~ /
,.grt/i A T L]

Proof stepc

Figure 2. Number of proofs Generated by First Few

Steps of British Museum Algorithm

P-951

proofs of ll-steps or less containing almost 1,000 theorems,
none of them duplicates,

In order to see how this algorithm would provide proofs
of specified theorems, we can consider ita performance on
the sixty-odd theorems of Chapter 2 of Pringipia. One theorem
(2.01) 18 cbtained in step (4) of the generation, hence is
among the firat 42 theorems proved. Three more (2.02, 2.03,
and 2.04) are cbtained in step (6), hence among the first
115. One more (2.05) i1s cbtained in step (8), hence in the
first 246. Only one more is included in the first 1000,
theorem 2.07. The proofs of all the remainder require
either complex substitutions or detachment.

We have no way at present tc estimate how many proofs
must be generated to include proofs of all theorems of
chapter 2 of Principia. Our best guess is that it might be
a hundred million. MNoreover, apart from the six thecrems
listed, there is no reason to suppose that bh§ proofs of
these thecrems would occur early in the list.

Our information is too poor to estimate more than very
roughly the times required to produce such procfs by the
algorithm; but we can estimate times cf about 16 minutes to
do the firat 250 theorems of Figure 2 (i.e., through step
(8)) assuming processing times comparable with those in LT.
The firat part of the algorithm has an additional special

P-951
1-11-57
-15-

property, which holds only to the point where detachment is
first used: that nc check for duplication is necessary. Thusa
the time of computing the first few thousand proofs only |
increases linearly with the number of theorems generated.

Fcr the theorems requiring detachments, duplication checks
must be made, and the total computing time increases as the
square of the number of expressionsgenerated. At this rate
1t would take hundreds of thousands of years of computation
to generate proofs for the theorems in chapter 2.

The nature of the problem of proving theorems is now
reasonably clear. When sequences of expressions are pro-
duced by a simple and cheap (per element produced) generator,
the chance that any particular sequence is the desired proof
is exceedingly small. This is true even if the generator
produces sequences that always satisfy the most complicated
and restrictive of the sclution conditions -- that each is
a prcof of scmething. The set of sequences 1s so large, and
the desired proof so rare, that no practical amount of

computation suffices to find proofs by means of such an
algorithm. '

The Logic Theory Machine

If LT is tc prove any thecrems at all it must employ some

devices that alter radically the order in which possible proofs

P-951
1-11-57
-16-

are generated, and the way in which they are tested. To
accomplish this, LT gives up almost all the guarantees

enjoyed by the British Museum algorithm. Its procedures
guarantee neither that its proposed sequences are proofs

cf something, nor that LT will ever find the proof, no ‘
matter how much effort is spent. However, they often generate
the desired proof in a reascnable computing time.

Methods

The major type of heuristic that LT uses we call a
method. As yet we have no precise definition of a method
that distinguishes it from all the other types of routines
in LT. Roughly, a methcd is a reascnably self-contained
cperation that, if it works, makes a major and permanent
contribution toward finding a proocf. It is the largest unit
of organization in LT, subordinated only tc the executive
routines necessary to coordinate and select the methods.

The Substituticn Method. This method seeks a proof for
the problem expression by finding an axicm or previocusly
proved theorem that can be transformed, by a series of sub-
stitutions for variables and replacements of connectives,

intc the problem expression.

The Detachmspt Method. This method attempts, using the
rule of detachment, to substitute for the problem expression

P-951
1-11-57
-17-

a new subproblem which, if solved, will provide a proof for
the problem expression. Thus, if the problem expression is
B, the method of detachment searches for an axiom or theorem
of the form "A implies B". If one is found, A is set up as
& new subproblem. If A can be proved, then, since "A implies
B" 1s a theorem, B will alsoc be proved.

The Chaining Methods. These methods use the transitivity
of the relation of implication to create a new subproblem
which, if solved, will provide a proof for the problem
expression. Thus, if the prcblem expression iz "a implies
c", the method of forward chaining searches for an axiom or
theorem of the form "a implies b". If one is found, "b
implies c" 18 set up as a new subproblem. Chaining backward
works analogously: it seeks a theorem of the form "b implies
c", and if one 18 found, "a implies b" is set up asa new
subproblem.

Bach of these methods is an independent unit. They are
alternatives to one another, and can be used in sequence, cne
working on the subproblems generated by ancther. Each of
them produces a major part of a proof. Substitution actually
proves thecrems, and the other three generate subproblems,
which can become the intermediate expressicns in a proof

sequernce.

P-951
~l§- 57

These methods give no guarantee that they will work.
There is no guarantee that a theorem can be found that
can Be used to carry out a proof by the substitution mothod;
or a theorem that will produce a subprcblem by any of the
other three methods. Even if a subproblem is generated,
there 18 no guarantee that it is part of the desired proof
sequence, or even that it is part of any proof sequence
(e.g., 1t can be false). On the other hand, the generated
methods do guarantee that any subproblem generated is part
of a sequence of expressicns that ends in the desired
theorem (this is one of the conditions that a sequence be
a proof). The methods also guarantee that each expression
cf the sequence is derived by the rules of inference f{rcm
the preceding ones (a second condition of proof). What is
nct guaranteed is that the beginning of the sequence can be
completed with axioms or previously proved theorems.

There 1s also no guarantee that the combination of the
four methods, used in any fashion whatsocever and with
unlimited computing effort, ccomprises a sufficient set of
methoeds to prove all theorems. In fact, we have discovered
a theorem (2.13, "p or not-not-nct-p") which the four methods
of LT cannct prove. All the subproblems generated for 2.13
after a certain point are false, and therefore cannot lead tc

a prcof.

P-951 .
1-11-57
=19~ "

We have yet no general theory to explain why the mnthod§
tranaform LT into an effective problem solver. That they doé
in conjunction with the other mechanisms to be desoribed
shortly, will be demonstrated amply in the remainder of the
paper. Several recﬁorz may be involved. First, the methods
organize the sequences of individual processing steps into
larger units that can be handled as such. Each procesaing
step can be oriented toward the spescial function it performs
in the unit as a whole, and the units can be manipulated and
organized as entities by the higher-level routines.

Apart from their "unitizing” effect, the methods that
generate subprcblems work "backwards” from the desired theorem
to axioms or known thecorems rather than "fcrward" as did the
British Museum algorithm. Since there is only one theorem
to be proved, but a number of known true thecrems, the
efficacy of working backward may be analogous to the ease
with which a needle can find 1ts way out of a haystack,
compared with the difficulty of someone finding the lone
needle in the haystack.

The e Rout .
In LT the four methods are organized by an executive

routine, whose flow diagram is shown in Pigure 3. (1) When
& new problem is presented to LT, the substitution method is

P-951

1-11-57
-198."'
(Start)

1
Select problem <-~---—-.%--(no more methods) --——— —
Try method = (no more theorems) =————J
= Select thecrem ~
Try it ——=(fail) >

(get new problem)

i

- ‘ / N0 more
iry substitution *)
theor
, \ orems

’ s
L" Select theorem w-———

|
)
Try 1t (forl) —e"

(prcof)

through

Figure 3. General Flow Diagram of LT.

P-951
1-11-57
20~

tried first, using all the axioms and theorems that LT has

~ been tcld to assume, and that are now stored in a theorem

:;;gg. (2) 1If substitution fails, the detachment method is
tried, and as each new subprcblem is created by a successful
detachment, an attempt is made tc prove the new subproblem

g by the substitution methcd. If substitution fails again,

_ the subproblem 1s added to a subproblem 1list. (3) If
detachment fails for all the theorems in the theorem list,

- the same cycle is repeated with forward chaining, and then
with backward chaining: try to create a subproblem; try to
prove it by the substitution method; if unsuccessful, put
the new aubproblem on the list. By the nature of the methods,
if the substitution method ever succeeds with a single sub-
problem, the criginal theorem is proved. ;

(4) If all the methods have been tried on the original
problem and no proof has been produced, the executive routine
selects the next untried subproblem from the subproblem list,
and makes the same sequence of attempts with it. This process
continues until (&) a proof is found, (b) the time allotted
for finding a proof is used up, (¢) there 1s no more avail-
able memory space in the machine, cr (d) nc untried problems
remain cn the subproblem list.

In the three examples cited earlier, the proof of 2.01

((p implies not-p) implies not-p") was cbtained by the

P-951
1-11-57

subatitution method directly, henaefdid not involve use
of the subproblem list. .
The proof of 2.45 (" not (§ or q) smplies nou;;“)

was achieved by an application of the detachment method

followed by a substitution. This proof required LT to
| create a subproblem, and to use the substitution method on
it. It did not require LT ever to select any subproblem
from the subproblem list, since the substituticn was

successful, Figure 4 shows the tree of subproblems aoircnpogd-

I

ing to the proof of 2.45. The subproblems are given in the %
form of a downward branching tree. Bach node 1s @& aubproblc@{
the original problem being the single node at the top. The .
lines radiating down from a node lead to the new anbproblomaz
generated from the subproblem corresponding to the node. ?h&
proof sequence is given by the d;ahcd line: the top link wan?
constructed by the detachment method, and the bottom link by%
the substitution method. The other links extending down ?
from_the original problem lead to other subproblems generated
by the detachment method (but not provable by direct aubati-f
tution) prior to the time LT tried the theorem that lead to
the final proof. ;

LT did not prove theorem 2.31, alsc menticned earlier,
and gave as its reason that 1t could think of nothing more

to do., This means that LT had considered all subproblems on

P-951

1-11+57
-2la~-
not (p ¢r q) imphes not-p
pouy
NS
(’///,"" L ‘/ // \“k \\ \\\.‘ “
- / \ N~
ST / \ \ N
- ~ // / ‘\\ \\\ ~ \-\
// - /// 7 / 1\\‘ \\\\ ‘ ~ .]
e v S ,,/ ‘\ N \\
-~ S / \ .
9] o @ (5 O ko) ©
\
|
)
\
A~
s

Figure 4. Subproblem Tree of Proof by LT of 2.45
(all Previous Theorems Available).

P-951
1-11-s7

-22-

the subprcblem 1ist (there were six in this case)and had no
new subproblems to work on. In none of the examples men-
tioned did LT terminate because of time or space limita-
tions; however, this 1s the most common result in the cases
where LT does not find & proof. Oniy rarely does LT run 6uc
cf things to do.

This section has described the corganization of LT in
terms of methcds. We have still to examine in detall why
it is that this organization, in connection with the addi-
tional mechanisms to be described below, allows LT to prove
theorems with a reasonable amount of'computing effort.

The Matching Process

The times required to generate proofs for even the
simplest theorems by the British Museum algorithm are larger
than the times required by LT by factors ranging from five
(for one particular theorem) to a hundred and upwards. Let
us consider an example rrom.tha earliest part of the kcnern-
tion, where we have detailed information about the algorithm.
The 79th theorem generated by the algorithm (see Figure 2) 1s
theorem 2.02 of Pringipia, cne of the theorems we asked LT to
prove. ‘This theorem -- "p implies (q implies p)" -- 1n ﬁén—ﬂ
erated by the algorithm in about 158 secs. with a sequence of
substitutions and replacements; it is proved by LT in about

P-051 _
1-11~5T
=X S

10 secs. using the method of substitution. The reason for
the difference becomes apparent 1r.w0 focus attention on
axiom 1.3 -- "p implies (q or p)" -- from which the thecrem
is derived in either scheme.

Figure 5 shows the tree of proofs of the first twelve
thecrems obtained from 1.3 by the algorithms. The theorem
2.02 1s node (9) on the tree and is cbtained by substitution
of "not-q" for "qQ" in axiom 1.3 tc reach node (5); and then
by replacing the "(not-q or p)" by "(q implies p)" in (5) |
to get (9). The 9th theorem generated from axiom 1.3 1a'the
79th generated from the five axioms considered together.

This proof is obtained direotly by LT using the following
magching procedure. We compare the axiom with (9), the

expreasion to be provedi

pimplies (q or p) (1.3)
p implies (q implies p) (9)

Pirst, by a direct comparison, LT determines that the
main connectives are identical. Second, LT determines that
the variables to the left of the main connectives are
identical. Third, LT determines that the connectives within
parentheses on the right-hand sides are different. It is
neceasary to replace the "or" with "implies," but in order to
do this (in accordance with the dettnition of implies) thcre;

P-951
1-11-57
-233-

- p 1mplies {(not-g or p)

~=-p implies (g implies p)

Figure 5. Proof Tree of Procof of 2.02 by British
Museum Algorithm (usi axiomsj.

_f:§§1~
1-11-57

muat be a negation sign before the variable that precedes the
"or"., Hence, LT first replaces the "q" on the right-hand
side with "not-q" to_ get the required negaticn sign, obcain-‘
ing the expression (5). Now LT can change the “or" to
"implies", and determines that the resulting expression is
identical with (9).

The matching process allowed LT to proceed directly down
the branch from (1) through (5) to (9) without even explorlné
the other branches. Quantitativcly, it looked at only two E
expressicns instead of eight, thus reducing the work of
comparison by a factor of four. Actually, the saving is eveﬁ
greater, since the matching procedure does not deal with
whole expressions, but with a single pair of elements at s
time.

An important source of efficiency in chevmntching proceia
is that it proceeds compcnent-wise, obtaining at each étep a
feedback cf the results of a substitution or replacement thaq
can be used to guide the next step. This feedback keeps thef
search on the right branch of the tree of pcssible expressions.
It is not important for an efficient search that the goal be .

kncwn from the beginning; it is crucial that hints of "warmepr"

or "colder" ccour as the search procaadag/ CiSSQly related to
this feedback is the fact that where LT is called on to make ‘

a substitution or replacement at any step, it can determine

P-951
1-11-57

immediately what variable cor connective to substitute or
replace by direct comparison with the prcblem expression,
and withouf search.

Thus far we have assumed that LT knows at the beginning
that 1.3 1s the appropriate axiom to use. Without this
informaticn, it would begin matching with each axiom in
turn, abandoning it for the next one if the matching should
prove impossible. For example, if it tries to match the
theorem against axiom 1.2, it determines almost immediately
(on the second test) that "p or p" cannot be made into "p"
by substitution. Thus, the matching process permits LT to
abandon unprofitable lines of search as well as guiding it
tc correct substitutions and replacements.

Matching in the Substitution Method. The matching
process is an essential part of the substitution method.
Withocut 1t, the substitutiocn method is Jjust that part of the
British Museum algorithm that uses cnly replacements and
substitutions. With it, LT is able, either directly or in
ccmbination with the other methods, to prove many thecrems

with reasonable effort.
Tc cbtain data on its perfcrmance, LT was given the
task of proving in seQuence the first 52 theorems of Princi-

pia. In each case, LT was given the axioms plus all the

P-951
1-11-57

theorems previcusly proved in Chapter 2 as the material from
which to work (regardless cf whether LT had proved the
theorems 1tse1f).1/

Of the 52 theorems, proofs were found for a total 38
(73%). These proofs were cbtained by variocus combinations
¢f methods, but the substitution method was an essential
compcnent cof all of them. Seventeen of these proofs --
almcst a half -- were accomplished by the substitution method
alone. Subjectively evaluated, the theorems that were proved
by the substitution method alone have the appearance of
"corollaries” of the thecrems they are derived from; they
cccur fairly close tc them in the chapter, generally requiring
three or fewer attempts at matching per theorem proved (54
attempts for 17 theorems).

The performance of the substitution method on the sub-
problems is somewhat different, due, we think, to the kind
of selectivity implicit in the order of theorems in Principia.
In 338 attempﬁs at solving subproblems by substitution, there
were 21 successes (6.2%). Thus, there was about cne chance
in three cf pfovins an original problem directly by the
substituticn method, but cnly about cne chance in sixteen of
8c proving & subprcblem generated from the original problem.

Matching in Detachment and Chalning. So far the

matching process has been ccnsidered cnly as a part of the

51
1

substitutiocn method, but it is alsc an esasential compcnent

of the cther three methods. In detachment, for example, a
theorem of form "A implies B" is sought, where B 1s identical
with the expression to be proved. The chances of finding
such a theorem are negligible unless we allow some modifica-
ticn of B tc make it match the thecrem to be proved. Hence,
ocnce a theorem i1s selected from the thecrem list, its right-
hand subexpression is matched against the expressicn to be
proved. An analogous procedure is used in the chaining
methods.

We can evaluate the performance of the detachment and
chaining methods with the same sample of problems used for
evaluating the substitution method. However, a successful
match with the former three methcds generates a subproblem
and dces not directly prove the theorem. With the detachment
method, an average of 3 new subproblems were generated for
each application of the method; with forward chaining the
average was 2.7; and with backward chaining the average was
2.2. For all the methcds, this represents about one sub-
problem per 7-1/2 theorems tested (the number of theorems
available varied slightly).

As in the case of substitution, when these three methods
were applied to the criginal problem, the chances of success

were higher than when they were applied to subproblems. When

P-951
1-11-57

applied to the criginal problem, the number of subproblems
generated averaged 8 to 9; when applied tc subproblems
derived from the original, the number to subproblems generated
fell to an average of 2 <1 3.

In handling the first 52 problems in Chapter 2 of
Principia, seventeen theogems were prcved in one step --
that is, in cne applicaticn cf substituticn. Nineteen
theorems were prcved in two steps, 12 by detachment followed
by substituticn, and 7 by chaining forward fcllowed by
substitution. Two others, were proved in three steps. Hence,
38 thecrems were proved in all. There are no two step prcofs
by backward chaining, since -- for two step proofs only --
if there is a prcof by backward chaining, there is alsc cne
by forward chaining. In 14 cases LT falled to find a proof.
Most of these unsuccessful attempts were terminated by time
or space limitations. One of these 14 thecrems we know LT
cannct prove, and cne other we believe it cannot prove. Of
the remaining twelve, most of them can be proved by LT if

it has sufficient time and memory (see section on subprcblems,

however).

Similarity Tests and Descripticns.

Matching eliminates enough of the trial and error in

substitutions and replacements to make LT into a successful

P-951
1-11-87
-29-

prcblem solver. Matching permeates all of the methods, and
withcut 1t none of them would be useful within practical
amounts of computing effort. However, a large amount of
search 1s still used in finding the correct thecrems with
which matching works. Returning to the performance of LT

in Chapter 2, we find that the overall chances of a particular
matching belng successful are .3% for substitution, 13.4%

for detachment, 13.8% for forward chaining, and G.4% for
backward chaining.

The amount of search through the thecrem list can be
reduced by interposing a screening process that will reject
any theorem for matching that has low likelihcod of success.
LT has such a screening device, called the similarity test.

Twe loglc expressions are defined to be similar if both

their left-hand and right-hand sides are equal, with respect
to, (1) the maximum number of levels from the main connective
tc any variable; (2) the number of distinct variables; and
(3) the number of variable places. Speaking intuitively,

twoe logic expressions are "similar" if they look alike, and

lock alike if they are similar. Consider for'example:

(p or q) implies (q or p) (1)
p implies (q or p) (2)
r implies (m implies r). (3)

P-951
1-11-57
-30-

By the definition of similarity, (Z) and (3) are similar,
but (1) is not similar to either (2) or (3).

In all cf the methods, LT applies the similarity tests
to all expressions tc be matched, and only applies the
matching routine if the expressions are similar; otherwise
it passes on toc the next thecrem in the theorem list. The
similarity test reduces substantially the number of matchings
attempted, as the numbers in Table 1 show, and correspondingly
ralses the probability of a match if the matching 1s attempted.
The effect is particularly'strong in substitution, where the
similarity test reduces the matchings attempted by a factor
of ten, and increases the probability cf a successful match
by a factor of ten. PFor the other methods attempted
matchings were reduced by a factor of four or five, and the

probability of a match increased by the same factor.

Thecrems Passed Per Cent Per Cent
Method Considered Similarity Matched Similar of Matched
Test Considered of

Similar
Substitution 11,298 282 37 8.8 3.7
Detachment 1,591 210 25.5 21.7
Chain. Forward g 200 120 23.0 0.0
Chain. Baclkward 673 146 63 1.7 43,2

Table 1

Statistics of Similarity Tests
and Matching

These figures reveal a gross, but not necessarily a
net, gain in performance through the use of the similarity
test. There are two reascns why all the gross gain may not
be realized. First, the similarity test is only a heuristic.
It offers no guarantee that it will let through cnly
expressions that will subsequently match. The similarity
test also offers no guarantee that it will not reject ex-
pressions that would match if attempted. The similarity
test does not often commit this type of error (corresponding
tc & type II statistical error), as will be shown later.
However, even rare occurrences cf such errors can be ccstly.
One example cceurs in the proof of thecrem 2.07:

. p implies (p or p) (2.07)

This thecrem is proved simply by substituting p for q in
axiom 1.3:

p implies (q or p). (1.3)
However, the similarity test, because it demands equality
in the number of distinct variables on the right-hand side,
calls 2.07 and 1.3 dissimilar because 2.07 contains only p
while 1.3 contains p and q. LT discovers the proof through
chaining forward, where it checks for a direct match before
creating the new subproblem, but the prcof 1s about five times

as expensive as when the similarity test is omitted.

The second reason why the gross gain will not all be
realized is that the similarity test is not costless, and in
fact for those theorems which pase the test the cost of the
similarity test must be pald in addition to the cost of the
matching. We will examine these ooafa in the next section
when we consider the effort LT expends.

Experiments have been carried out with a weaker similar-
ity test, which compares only the number of variable places
on both sides of the expression. This test will not commit
the particular type 1I error cited above, and 2.07 is proved
by substitution using it. Apart from this, the modification
had remarkable little effect on performance. On a sample of
ten problems it admitted only 10% more similar theorems and
about 10% more subproblems. The reason why the two tests do
not differ more radically is that there ;s & high correlation

among the descriptive measures.

Effort in LT

S0 far we have focussed entirely on the performance
characteristics of the heuristics in LT, except to point out
the tremendous difference between the computing effort required
by LT and by the British Museum algorithm. However, it 1is

clear that each additional test, search, description, and the

P-951
1-11-57
-33-

like, has 1ts costs in ccmputing effort as well as 1ts gains
in perfcrmance. The costs must always be balanced against
the performance gains, since there are always alternative
heuristics which could be added to the system in place of
those being used. In this section we will analyse the
computing effort used by LT. The memory space used by the
various processes also constitutes a cost, but cne that will
nct be discussed in this paper.

Measuring Effort. LT is written in an interpretive
language or pseudo code, which is described in the companion
paper tc this cne. LT is defined in terms cf a set of
primitive operations, which, in turn, are defined by sub-
routines in JOHNNIAC machine language. These primitives
provide a convenient unit cf effcrt, and all effort measure-
ments will be given in terms of totél number of primitives
executed. ?he relative frequencies of the different primi-
tives are reasonably constant, and, therefcre, the total
number of primitives is an adequate index of effort. The
average tire per primitive 1s quite constant at about 30
milliseconds, althcugh for very low totals (less than 1000

primitives) a figure cf abcut 2¢ milliseccnds seems better.

Computing Effcrt and Performance. On a priori grounds

we would expect the amount of computing effort required to

sclve a logic prcblem to be roughly propcrticnal to the total

P-951
1-11-57

number of theorems examined (i.e., tested for similarity, if
there 1s a similarity routine; cr tested for matching, if
there 1s not) by the various methods in the course of solving
the problem. 1In fact, this turns out tc be & reasonably good
predictor of effort; but the fit to the data 18 much improved
i1f we assign a greater weight to theorems considered for
detachment and chaining than to theorems considered for
substitution.

Actual and predicted efforts are compared below (with
the full similarity test included, and excluding thecrems
proved by substitution) on the assumption that the number of
primitives per theorem considered is twice as great for
chaining as for substitution, and three times as great for
detachment. About 45 primitives are executed per theorem
considered with the substitution method (hence 135 with
detachment and 90 with chaining). As the table shows, the
estimates are generally accurate within a few per cent, except

for theorem 2.06, fcor which the estimate is too low.

Total Primitives (in thousands)

Thecrem Actusal Estimate
2.06 3.2 ¢.8
E.gg 4,3 4.4
20 305 3‘3
2.11 2.2 2.2

1£19247
-35-

2.13 24.5 24 .6

2.1 3.8 3.2

2.12 12. 13.6

2-1 3 'l 35'8

2.25 11.1 11.5
Table 2

Effcrt Statistics with "Precompute Description” Routine

There 1s an additional scurce of variation noct shown in
the thecrems selected for Table 2. The descriptions used in
the similarity test, must be computed from the logic expressicns.
Since the descriptions of the theorems are used over and over
again, LT computes these at the start of a prcblem and stcres
the values with the thecrems, so they dc not have to be
computed again. Hcwever, as the number cf theorems increases,
the space devoted to storing the precomputed descriptions
beccmes prohibitive, and LT switches to recomputing them
each time it needs them. With recomputaticn, the problem
effort is still roughly proporticnal to the total number of
theorems ccnsidered, but now the number of primitives per
thecrem is arcund 70 for the substitution methed, 210 for
detachment, and 140 for chaining.

Our analysis cf the effort statistics shcws, then, that
in the firat approximaticn the effort required tc procve a
thecrem 1s prcporticnal tc the number cf thecrems that have tc

be ccnsidered befcre a proof 1s found -- the number of theorems

P-951
l-él—57

considered is an effort measure for evaluating & heuristic.
A good heuristic, by securing the consideration of the
"right" thecrems early in the proof, reduces the expected
number cf thecrems to be ccnsidered before a prcof is found.

Evaluation of the Similarity Test. As we noted in the

previcus section, tc evaluate an improved heuristic, acccunt
must be taken of any additional computation that the improve-
ment lntrcduces. The net advantage may be less than the
gross advantage -- or the extra computing effort may actually
cancel out the gross gain in selectivity. We are now in a
pcsition to evaluate the similarity routines as preselectcrs
of thecrems for matching.

A number of theorems were run, first with the full
similarity rcutine, then with the mcdified similarity
routine (which tests cnly the number of variable placea),
and finally with no similarity test at all. We also made
some compariscns with both precomputed and recomputed
descriptions.

When descriptions are precomputed, the ccmputing effort
18 less with the full similarity test than without it -- the
factor of saving ranging from 10% to 60% (e.g.. 3534,5206 for
thecrem 2.08). However, if LT must recompute the descriptions

every time, the full similarity testis actually more expensive

than nc similarity test at all (e.g., 26,739/22,914 for
thecrem 2.45).

The mcdified similarity test fares somewhat better.
Fcr example, in prcving 2.45 1t requires only 18,035
primitives compared to the 22,91#% for no similarity test
{see the paragraph above). These comparisons involve
reccmputed descriptions; we have no figures fcr precomputed
descriptions, but the additional saving appears small since
there is much less tc compute with the abridged than with
the full test.

Thus the similarity test is rather marginal, and does
not prcvide anything like the factors of imprcovement achieved
by the matching process, although we have seen that the
performance figures seem to indicate much mcre substantial
gains. The reascon for the discrepancy is not difficult to
find. 1In a sense, the matching process cansists of two
parts. One 1is a testing part that locates the differences
between elements and diagncses the corrective action tc be

taken. The other part comprises the processes cf substituting

and replacing. The latter part is the majcr expense in a
matching that works, but most cof this effort is saved when
the matching fails. Thus matching turns cut to be inexpen-
sive for precisely thcse expressicns that the similarity test

excludes.

P-951
1-11-57

PRy -,

Subproblems

LT can prove a great many thecrems in symbolic logle.
However, there are numerous thecrems that LT cannct prove,
and we may describe LT és having reached a plateau in its
prcblem solving ability.

Pigure 6 shows the amount of effort required for the
problems LT solved ocut of the sample of 52. Almcst all the
prcofs that LT found tock less than 320,000 primitives of
effort. Amcng the numercus attempts at proofs that went
beyond this effort limit, cnly a few succeeded, and these
required a total effort that was very much greater.

The predominance of short proofs is even more striking
than the approximate upper limit of 30,000 primitives
suggests. The proofs by substitution -- almost half of the
total -- required about 1,000 primitives or less each. The
effort required fcr the longest proof -- 89,000 primitives
--18 some 250 times the effort required for the short proofs.
We estimate that tc prove the 12 additiocnal thecrems that wci
believe LT can prove requires the effort limit toc be extended
.to about a million primitives.

Prom these data we infer that LT's power as a problem
solver 1s largely restricted tc problems of a certain class. .

While 1t is logically possible for LT to solve others by

» 20
©
S 15
Q.
° 10
[¢3]
e
& 5 -
-
Z
0
O
Figure 6.

P-951
1-11-57
-38a-~

maddas g an

I0 20 30 40 50 60 70 80 90 100
Effort (thousands of primitives)
Distribution of LT's Proofs by Effort.

Data Includes all Proofs from Attempts on the
first 52 Theorems in Chapter 2 of Principia.

P-951
1-11-57
-39- .

large expenditures of effort, major adjustments are needed
in the program to extend LT's pcwers to essentially new
clasces cf problems. We believe that this situation is
typical: good heuristics produce differences in performance
of large orders of magnitude, but invariably a "plateau" is
reached that can be surpassed only with quite different
heuristics. These new heuristics will again make differences
of crders of magnitude. In this section we shall analyse
LT's difficulties with thcse theorems it cannot prove, with
a view to indicating the general type of heuristic that
might extend its range of effectiveness.

The Subprcblem Tree.

Let us examine the prcof of theorem 2.17 when all the
_.preceding theorems are available. This is the proof that cost

© LT 189,000 primitives. It is reproduced below, using

chaiding as a rule of inference (eéch chaining could be
expanded intoc twc detachments, to conform strictly to the

system of Principia).

{not-q implies not-p) implies

(p implies q) (thm. 2.17, tc be proved)
#1. A implies not-nct-A (thm. 2.12)
#2. p implies not-not-p (subs. p for A in #1)
#3. (A implies B} implies (thm. 2.06)
{ B implies C) implies (A implies .
A implies C))

1-11-57
-40-
#4. (p implies not-not-p) implies (subs. p for A,
(not-not-p implies q) implies not-not-p for B
p implies q)) : q for C in #3)
#5. {not-not—p implies q) implies (det. #4 from #3)
p implies q)
#6. {not-h implies B; implies (thm. 2.15)
not-B implies A
#7. {not—q implies notop; implies (subs. q for A,
not-not-p implies q) _not-p for B)
#8. (not-q implies not-p)implies (chain #7 and #5)

(pimplies. q) ‘

The proof is longer than either of the two given at
the beginning cf the paper. In terms qf LT's methods it
takes three steps instead of two or one: a forward chaining,
a detachment and a substituticn. This leads tc the not
surprising notion -- given human experience -- that length
of proof is an important variable in determining total
effort: short proofs will be easy and long prcofs difficult,
and difficulty will increase more than proportionately with
length of procf. Indeed, all the one-step proof's require
500 to 1500 primitives, while the number of primitives for
two-step proofs ranges from 3,000 to 50,000. Further, LT
has cbtained only six procfs longer than two steps, and
these require from 10,000 tc 90,000 primitives.

The significance of length cof proof can be seen by
comparing Figure 7, which gives the proof tree for 2.17, with

P-951
1-11-57
-40a -

(not-g implies not-p) tmphes (p implies q)

Figure 7.

Subproblem tree of Proof by LT of 2.17
(all previous theorems available).

- P-951 .
1-11-57

| Pigure 4, which gives the proof tree for 2.45, a tﬁcﬁstop
proof. In going one step deeper in the case of 2.17, LT

s e o s e

. had to geherace and examine many more subprcblems. A compar-
| ison of the varicus statistics of the proofs contirna this %
statement: the problems are roughly similar in other tisgocté
(e.g., in effort per thecrem considered), hence the dirrerenén
in total effort can bo attributed largely to chc difference é
in number of aubproblqns generated. !
Let us examine some more evidence for this conclusion. |
~ Pigure 8 shows the subprcblem tree for the proof of 2.27
| from the axioms, which 18 the only four-step proof LT has
achieved tc date. The tree reveals 1nmadiataly'uhy LT was !
ablc;bb find the proof. Instead of branching widely at oach%
point, multiplying rapidly the number of subproblems to ;
be locked at, LT in this case only generates a fev subproblena
at each point, and thus manages to penetrate tc a dcpth of
four steps with a reascnable amount of effort (38,367 '
przuieivos) If this tr&e had branshnd as the other two did,
LT would have had to process about 250 subproblems before §
arrivinz at a proof, and the total effort would have bean at |
least 250,000 primitives. The statistics quoted earlier on i
the errectivenoas of subpvoblem generation support the seneval
hypothesis that the number of subproblems to be examined |

increases mnre or less exponentially with the depth of the ‘:

1

O——

P-951
1-11-57
=h81la-

p imphes {(p;mmies glimplies q)

N\,
7 AN
, / A \":
s \\
Vi N\
Ve
s AN
/ S
s/ N
7/ AN
/F\)\
/ 7
/ / \
// \ ’
/ \
/ \
/

o
©
pa—g s

/
/

/o

,(5‘

\ t'\
ll \ \; \
Ly b \g \ |

!
i
|
1
|

\
\ \
\
\
\\\

AN
b b

D

Figure 8. Suﬁproblem Tree of Proof by LT of 2.27
(using the axioms).

P-951
lfll"57
42~

proof.

The difficulty is that LT uses an algorithmic procedure
to govern its generation of subproblems. Apart from a few _
subprcblems excluded by the Type II errors of the aimilaritj
test, the procedure guarantees that all subproblems that
can be generated by detachment and chaining will in fact be
obtained (duplicaticns are eliminated). LT alsoc uses an
algorithm to determine the order in which it will try to
solve subproblems. The subproblems are considered in ordnri
of generation, sc that a proof will not be missed through
failure to consider a subprcblem that has been generated.

Because of these systematic principles incorportiod in
the executive program, and because the methods, applied to
a thecrem 1list averaging thirty expressions in length, ,
generate a large number of subproblema, LT must f£ind a rare.
sequence that leads to a proof by searching through a very
large set of such sequences. For proofs of cne step, this |
is no problem at 2ll; for proofs cf twc steps, the set %o
be examined is still of reasonable size in relation to the
camputing power available. For proofs of three steps, the |
size cof the search already presses LT against its computing |
1imits; and if one or two additional steps are added the
amount cf search required tc find a proof exceeds any amount
of computing power that could practically be made available.

| i O]
t

57

The set of subprcblems generated by the Logic Theory
Machine, however large it may seem, is exceedingly selective
and rich in proofs compared with the set through which the
British Museum algorithm searches. Hence, the latter algorithm
could find proofs in a reascnable time for cnly the simplest
theorems; while proofs for a much larger number are accessible
with LT. The line dividing the possible frocm the impcssible
for any given problem-solving procedure is relatively sharp,
hence a further increase in prcblem-solving power -- compa-
rable tc that obtained in passing from the British Museum
algorithm to LT -- will require a correaponding enrichment
cf the heuristic.

Modification of the Logic Theory Machine

There are many possible ways to modify LT sc that it
can find proofs of more than two steps in a reasonable and
insightful way, instead of by brute force. First, the unit
coat of processing subproblems can be substantially
reduced so that a given computing effort will handle nany
more subproblems. (This dces not, perhaps, change the
"brute force” character of the process, but makes it feasible
in terms of effort.) Seccnd, LT can be modified so that it
will select for processing only subproblems that have a
high probability of leading to a proof. One way to do this

P-951
]~ -
LT

is to screen subproblems before they are put on the sub-
problem list, and eliminate the unlikely cnes altogether.
Another way is to reduce selectively the number cf sub-
problems generated.

For example, to reduce the number of subproblems
generated, we may limit the liats of theorems available for
generating them. That this approach may be effective is
suggested by the statistics we have already cited, which
show tlhat the number of subprcblems generated by a methcd
per theorem examined is relatively constant (about cne
subproblem per seven thecrems).

An impression of how the number of available thecrems
affects the generation of subproblems may be gained by
ccmparing the prcof trees of 2.17 (Figure 7) and 2.27
(Figure 8). The broad tree for 2.17 was produced with a
list of twenty theorems, while the deep tree for 2.27 was
produced with a list of only five theorems. The smaller
theorem 1ist in the latter case generated fewer subproblems
at each application of ocne of the methods.

Ancther example of the same point is provided by two
proofs of theorem 2.48 cbtained with different lists of
available thecrems. In the one case, 2.48 was proved
starting with all prior theorems on the theorem list; in
the other case it was proved starting only with the axioms

P-951
1-11-57

and theorem 2.16. We had conjectured that the proof would
be more difficult to obtain under the latter conditions,
since a longer proof chain would have to be constructed
than under the former. In this we were wrong: with the
ionger theorem list, LT proved theorem 2.4%8 in two steps,
employing 51,450 primitives of effort. With the shorter
list, LT proved the theorem in three steps, but with only
18,558 primitives -- one-third as many as before. Examina-
ticn of the first proof shows that the many "irrelevant"
theorems on the list took a great deal of processing effort,
The compariscn provides a dramatic demonstraticn of the fact
that a problem sclver may be encumbered by toc much informa-
ticn, just as he may be handicapped by too little.

We have only touched on the pcssibilities fopr moedifying
LT, and have seen some hints in LT's current behavior sbout
their potential effectiveness. All of the avenues mentioned
earlier appear to cffer worthwhile modifications of the
program. We hope to report on these explorations at a
later time.

Conclusion

In this paper we have provided data on the performance
cf a complex information-processing system that is capable
of finding proofs for theorems in elementary symbolic logic.

PT951
2

We have used these data tc analyse and illustrate the
difference between systematic, algorithmic processes, on
the cne hand, and heuristic problem-sclving processes, on
the cther. We have shown how heuristics give the program
power to sclve problems in & reaachable computing time that
could be sclved algorithmically cnly in large numbers of
years. Finally, we have assessed the limitations of the
present program of the Logic Theory Machine and have
indicated some of the directions that improvement would
have to take to extend its pcwers to problems at new levels
of difficulty.

Our explcrations of the Logic Theory Machine represent
a step in a program of research on complex information-
prccessing systems that is aimed at develcping & theory cf
such systems and applying that theory tc such fields as
computer programming, and human 1e£rn1ng and problem

sclving.

P-951
1-11-57
_u7-

Pootnotes

1. Allen Newell and Herbert A. Simon, "The Logic
Theory Machine: a Complex Informaticn Processing System,"
Institute of Radic Engineers, Transactions on Informaticn
Thecry, Vclume IT-2, No. 3, September, .

2. A. Newell and J. C. Shaw, "Prcgramming the Legic
Theory Machine," THESE PROCEEDINGS, pp.

3. For easy reference we have numbered axioms and
theorems to correspcend to their numbers in rincipia
Mathematica §Cambr1dge: the University Precs, 2nd edition,

ol. 1, 5).

4. As a noun, "heuristic" 1s rare and generally means
the art of discovery. The adjective "heuristic" is defined
by Webster as: serving to discover or find out. It 18 in
this sense that 1t 1s used in the phrase "heuristic process”
or "heuristic method." For conciseness, we will use
"heuristic" in this paper as a noun syncnymous with "heuristic
process.” No cther English word appears to have this
meaning.

5« A number of fussy but not fundamental pcints must
be taken care of in constructing the algorithm. The phrase
"all permissible substitutions” needs to be qualified, for
there is an infinity of these. Care must be taken nct to
duplicate expressions that differ only in the names cf their
variables. We will not go into details here, but simply
state that these difficulties can be removed. The essential
feature in constructing the algorithm is to allow cnly one
thing tc happen in generating each new expressicn, i.e., cne
replacement, substitution of "not-p" for "p", etc.

€. The following analogy may be instructive. Changing
the symbols in a logic expression until the "right" expres-
Sion is obtained is like turning the dials on a safe until
the right combination is obtained. Suppcse two safes, each
with ten dials and ten numbers cn a dial. The first safe
gives a signal (& "click") when any given dial 1s turned to
the correct number; the second safe clicks ocnly when all ten
dials are correct. Trial-and-errorsearch will cpen the
first safe, on the average, in 50 trials; the seccnd safe,
in five billion trials.

P-951
1-11-57
-48-

7. The version of LT used for seeking solutions of the
52 problems included a similarity test (see next sectiocn).
Since the matching process 1s more impcrtant than the simi-
larity test, we have.presented the facts about matching
first, using adjusted statistics. A notion of the sample
8izes can bhe gained from Table 1. The sample was limited
to the first 52 of the 67 theorems. in Chapter 2 of Principia
because of memory limitations of JOHNNIAC.

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	11a
	12
	13
	13a
	14
	15
	16
	17
	18
	19
	19a
	20
	21
	21a
	22
	23
	23a
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	38a
	39
	40
	40a
	41
	41a
	42
	43
	44
	45
	46
	47
	48

