AN INTRODUCTION TO INFORMATION
PROCESSING LANGUAGE V

A. Newell
F, M. Tonge

Mathematics Division
The RAND Corporation

P-1929

March 4, 1960

_ /

Presented at the Association for Computing
Machinery National Conference, Boston,
Massachusetts, September 2, 1959

Reproduced by

The RAND Corporation ® Santa Monica 'e California

The views expressed in this paper are not necessarily those of the Corporation

P-1929
i1
SUMMARY

This paper is an informal introduction to Information
Processing Language V (IPL-V), a symbol and list-structure
manipulating language presently implemented on the IBM 650,
704 and 709, It contains a discussion of the problem context
in which a series of Information Processing Languages has
developed and of the basic concepts incorporated in IPL-V,

A complete descriptlion of the language can be found in the
IPL-V Programmer's Manual.

In addition to the authors of thlis paper, E. A. Felgenbaum
(704 system), N. Saber of the University of Pittsburgh (650
system), G, H. Mealy of The RAND Corporation (formerly Bell
Telephone Laboratories) (704 system), and B, F. Green, Jr.,
and A. K. Wolf of Lincoln Laboratories (7090 system) have
participated in developing IPL-V. The basic ideas stem from
the work of A. Newell, J. C. Shaw and H. A. Simon. C. Hensley
of IBM participated in the early design effort. The support
of the Graduate School of Industrial Administration, Carmegle
Institute of Technology, 1s gratefully acknowledged.

P-1929
1

AN INTRODUCTION TO INFORMATION PROCESSING LANGUAGE V

This paper is an informal introduction to Information
Processing Language V (IPL-V), a symbol and list-structure
manipulating language presently implemented on the IBM 650,
TO4 and 709. It contains a discussion of the problem context
in which a series of Information Processing Languages has
developed and of the basic concepts incorporated in IPL—VJ.

A complete description of the language can be found in the
IPL-V Programmer's Manual (4, 5).

DEVELOPMENT OF THE IPL SERIES ’

There exlst many tasks that men c¢an perform reasonably
well without knowlng in detail how they perform them. Playing
chess, making a business declsion, or proving theorems are
examples. At some level, the computer cean behave only in a
manner that its users have specified. Getting the computer to
play ehess or prove theorems, using the same problem-solving

technlques as humans, poses communication problems with the

1me name "Information Processing Language" was given to
the series in its early days, and seems appropriate. But
certainly LISP (1), FORTRAN List Processing Language (2),
COMIT (3), and others yet to come are just as truly informa-
. tion processing languages as the IPL series.

P-1929
2

machine far beyond those of expressing formal algebraic manip-
ulations. The user must somehow communicate to the machine
his 1ineomplete knowledge of how to behave in these complex
8ituations. The IPL series of programming languages has been
developed as an aid in constructing problem-solving programs
using the adaptive,'cut-and~try methods ("heuristics") char-
acteristie of human behavior--as a researeh tool in the study
of heuristic problem-solving.

IPL-I originated as a language for expressing a theorem-
proving program in the sentential caleulus (6), and was never
implemented on a computer. IPL-II and IPL-III were coded for
The RAND Corporation's JOHNNIAC and used for the Logic
Theorist (7).

Next, a group at Carnegie Institute of Technology prepared
an IPL for the IBM 650 (8), a project that has developed into
IPL-V. At the same time a similar system, IPL-IV, was coded
’for the JOHNNIAC and is being used for a chess program (9) and
a heuristic program to balance production assembly lines (10).
Major programs are being run or debugged in IPL-V in the simu-
lation of human cognitive processes. These 1nclﬁde work in the
fields of disorimination learning (1l1), binary choice (12), and

theorem-proving in certain formal areas (13).

P-1929

The last IPL to date, IPL-VI (1%), was written as an
order code proposal for a computer that would realize an in-
formation processing language direectly, and hence achieve far
more rapid execution than the current interpretive realization

on conventional machines,

PROBLEM INTERESTS

We summarize below the characteristies of problems for
whieh the IPL's were developed. This also indicates the type
of problems for whiech IPL-V is a sensible programming system,

1) The problem basieally involves manipulating symbols
that have other than numerieal meaning and in other than alge-

brale systems.

2) The particular storage requirements of the problem-~
solving program cannot be specified in advance; complex data
structures are developed as the program proceeds, For example,
a program (11) for memorizing 1lists of nonsense syllables
builds up a net of diseriminations for recognizing the 4irf-
ferent syllables, The size, shape and elaborateness of this
net depend entirely on the particular list of syllables pre-
sented to the program.

3) The relationships between elements of data are

P*1923

restructured during the program's operation. New assoclations
must be represented and old ones deleted.

4) Te problem-solving process is naturally expressed at
several levels of discourse, each built upon the lower levels.
Thus, in thg ches3s program there 1s a language for talking
about the board and the pleces, a higher language for talking
about particular pleces as a consequence of their position
(for example, bearing on a particular»square),’and a still
higher language for talking about desirable situations (as,
sontrol of the center).

5) The problem-solving procedure will be modified fre-
quently as the program 1s developed and tested. This change
reflects the use of the computer as a means of studying and
learﬁing about the problem. Consequently, the program must
permit easy modification at various levels and with a minimum
of interaction with the rest of the program.

THE IPL COMPUTER
IPL-V is a formal language in terms of which information

can be symbolized and processes specified for manipulating the
information. IPL-V allows two kinds of expressions: data list
structures, which contain the information to be processed, and
routines, which define information prooegsea. We use the term
"IPL Computer" to refer to the IPL-V system as implemented on
one of our object machines--650, TO4, or 709.
The IPL Computer consists of:
1) a set of gells that hold IPL words--known as the
total available space;

P-1929
5
2) a stock of symbols used to form IPL expressions
(within the computer all symbols are addresses,
and thus name cells);
3) a set of primitive processes which the asomputer
can carry out without further IPL 1ntérpretation;
4) an interpreter that interprets routines and per-

forms the processes they define.

REPRESENTATION OF DATA
Symbols., Two types of symbols are available to the pro-

grammer--regional and loeal. Regidnal symbols consist of an
alphabetig character followed by a relative number--as, A27,

€5, (1000, These are the relative symbols of normal program-

- ming usage. Local symbols are expressed as a regional character
-9 followed by an arbitrary number--as, 9-7, 9-100. Local sym-
bols are treated as pure symbolics, with their meaning constant
within a particular IPL expression. The same local symbols are
used with different meanings in different routines or data list
structures, |

All symbols not explicitly used by the programmer, and the
cells they hame, are avallable to the program during processing
and are called internal symbols.

Iists. Generally, a larger unit of data than a single
symbol is needed. In IPL, the list is this unit of data, and
basic processes for manipulating lists exist. Normally, each
cell in use holds an IPL word, consisting of two prefixes, P
and Q, and two symbols, SYMB and LINK., Symbols are linked

P-1929
6

together in lists in the manner indicated in Figure l, which
shows a 1ist of the symbols S1, 82, 83. 10 1is the name of the
1ist and of the cell called the head of the 1ist. The names
of the list cells are internal symbols. The LINK of each cell
holds the name of the cell holding the next symbol on the list.
The final 1ist cell has the termination symbol, O, as its LINK.
By convention, the first symbol on a list is stored in the
first 1list cell, the SYMB part of the head being reserved for

another use. (The internal symbols linking cells of a list
are normally omitted, since they are supplied by the IPL system

and need not concern the programmer.)

Simple List
NAME PQ SYMB LINK

Lo ¢) 36
36 S1 508
508 S2 13
13 S3 0
Figure 1

Thus, several symbols can be associated into a unit of data by
Placing them on a list. "These symbols may be the names of
other lists or of more aomplicatéd structures.

Description Iists. A 1ist can have assoclated with 1t
certain desoriptive‘information that can be added to, altered

or deleted at will. This is accomplished through the deserip-
tion list mechanism. The symbol stored in the head of a list
18 the name of the list's description 1ist. The symbols on a

P-1929
? .

description list are considered in pairs, the first member of
the pair being the attribute and the seeond member being its
value. Each attribute corresponds to a function, with a value
for the particular argument (unit of data) being deseribed.
Thus, for the unit of data "grass" the value of attribute
"eolor" would be "green." Figure 2 illustrates a list, L1,
with symbols S4 and 85, which is deseribed by the two attributes
‘Al and A2. '

Description List

NAME PQ SYMB LINK

Ll 9-1

S4

85 0
9-1 0

Al

vl

A2

ve 0

Figure 2

The IPL-V primitive process "find the value of attribute
Al of L1" would produce the symbol V1. Additional descriptive
information can be associated with a 1list during proeessing by
performing the primitive process that assigns an attribute and
its value to a symbol. Similarly, new values can replace the
present ones, or an attribute and its value can be deleted en-
tirely. The programmer needs nq knowledge of the actual strue-
ture of the deseription list. All necessary processing is done
by the appropriate primitive processes, which search the list
for the desired attribute and take appropriate action.

P-1929
8

Deta Terms. Thus, symbols are gilven meaning by the list

that they name and by deseriptive information assoclated with
them. Symbols can also name information beyond the scope of
the Information Processing Language itself--such as integer or
floating point numbers, binary fields, or alphanumeric informa-
tfon. Sueh information is encoded into the cell named by the
symbol being defined and is manipulated by IPL'processes opera-
ting on the symbol. The symbol and the associated encoded in-
formation are known as a data term. Primitive processes in
IPL-V perform arithmetic operations on numerical data terms
and print all types of data terms just mentioned. Other new
types of data terms can be defined and appropriate primitive
processes introduced into the system easily.

List Structures. More complicated units of data can be

defined through the use of local names. A list structure eon-

‘sists of a main list, having a regional or internal name, and
all those structures named on the main list having local names.
Figure 3 1llustrates a data 1list structure consisting of the
main list, L2, deseription list 9-1 with data term 9-10 (the
integer 15) as the value of attribute A5 and sublists 9-7 and
9-5.

P-1929

List Structufe
NAME = PQ SYMB LINK

L2 9-1
9-7
G4

9-1 0
Al
\p!

A5
9-10 ©

0

S4

. 95 o
9-10 1 15
9-5 0

z1

L2 o©

Figure 3

Primitive processes in IPL create, copy, erase and move
to auxiliary storage a 1list structure as a single entity.
Also the necessary processes exist so that a program can sean

and proeess list structures in other ways,

P-1929
10

PUSH DOWN LISTS FOR STORAGE CELLS

The programmer can also use cells as working storage; that
is, he can store symbols in their SYMB part. In this case the
LINK of the storage cell holds the termination symbol.

Often it is desirable to store 1nformation in a storage
cell without destroying the information already in the cell.
For example, as is developed in more detail later, the inter-
preter always holds the name of the cell containing the current
IPL instruction in a particular storage cell, named Hl., If
that instruction designates a subprocess to be interpreted, the
interpreter must keep its locatidn in the subprocess, but with-
out losing its place in the higher routine. Indeed, since the
subprocess may 1£se1f execute a subprocess, and so forth, an
indefinite number of locations in various routines must be
saved.

This problem is resolved through the preserve and restore
operations. To preserve a cell is to take an unused cell from
avallable space and copy into 1t the total contents of the cell
being preserved. The name of this copy cell is then stored in
the LINK of the preserved cell. Other symbols can then be
stored in the cell without destroying its original contents,
The original state of the cell is returned by the inverse oper-
ation, restore. The list of preserved symbols associated with
& cell is called its push down 1list, and the operations preserve
and restore are also called push down and Pop up.

P-1929
11

Figﬁre 4 shows the status of cell Hi, initially holding
K3, immediately after it has been preserved and the symbol Q5
stored in 1t. |

Push Down List

NAME PQ SYMB LINK

Hl1 Q5 387
387 K3 0
Figure 4

Thus, the interpreter, in beginning interpretation of a
subprocess, pushes down Hl before recording the name of the
subprocess as the new cufrent instruction address, And, upon
completing a subprocess, the interpreter pops up Hl to obtain

the last current instruction address of the higher routine.

AVAILAELE SPACE LIST
As 1ists in storage are built up and altered, cells are

continually brought into use and discarded--as in push down
‘and pop up operations. Some system is needed to keep track of
which cells in storage are unused, In IPL all currently un-

used cells are linked together on a list, the available space

1ist, named H2. Any process, or the interpreter, désiring a
cell takes the first one on this list. ILikewise, cells no
longer needed are returned to the avallable space 1list. This
device frees the programmer from problems of memory assignment,
‘and allows him to apply at will various processes that mddify

the structure of memory.

P-1929
12

INTRRPRETATION

Routines. An IPL routine is a 1list of instructions. (The
format of instructions is explained later.) During interpreta-
tion the IPL interpreter examines each instruction word in se-
quence and carries out the process it designates. This process
may be execution of some other routine. The rules for forming
routines in IPL and the manner in whieh interpretation is
mechanized insure that every routine is a eclosed subroutine
usable by any routine, including itself. All routines are
forced into a subroutine format, and all programs into a hier-.
‘archical organization, through a particular mechanization of
the linkage between routines, and econventions about specifica-
tion of parameters and use of working storage.

Linkage -~ the Current Instruction Address List. As was

mentioned above, the address of the cell holding the current
instruetion is stored in a particular cell, Hl. If this in-
~struction designates a subprocess to be interpreted, Hl is
pushed down before interpretation of the subprocess begins and
"is popped up after that interpretation is completed. Thus,
the return linkage for a routine is held in ‘the push down list
associated with Hl, called the Current Instruction Address
1ist. The programmer simply designates the subprocess to be
executed by name; linkage is handled automatically by the
interpreter.

Specification of Inputs and Outputs -- the Communieation

Cell. The inputs to any process are specified by storing them

P-1929
13

in the Communication Cell, named HO. HO is preserved before
each Input is entered, so that the set of inputs to a process
are the top symbols in HO's push down 1list. By convention,
each process removes its inputs from HO. Likewise, each
process leaves any outputs it produces in HO.

Working Storage. A set of ten cells, WO-W9, are reserved

for Public Working Storage (through a process may use any
avallable cell for ﬁorking storage 1f it so desires.) If
routines using a public working storage cell first preserve
the cell, thus adding the information in the cell to the push
down 1list assoclated with the cell, and when through restore
the cell, any routine ean execute any routine, including 1t-
self, as a subprocess without the danger that its information
in working storage will be violated.

By convention, the Communication Cell and the Public
Working Storage are safe cells. That is, any process using
them 1s morally bound to first preserve them and when finished
restore them. This explicit handling of the context in which
a routine operates offers flexibility in several ways: outputs
6f & process can be left in the Communicat;on Cell as inputs of
a later one; each routine is an independent subroutine with
respect to working storage. It has the drawback of requiring
explicelt handling of each safe cell used.

Test Cell. Many processes, in addition to producing other
outputs, result in the information "yes" or "no"; as, "yes, I

have found the location of that symbol on this list," or "no,

P-lQig

these two symbols are not identical."” The results of such
binary decisions are symbolized in the Test Cell, H5 (+ for
"yes" and - for "no").

Instruction Format. Each instruction of a routine is ex-

pressed as an IPL word. The proceés to be carried out is des-
*ignated by the prefixes P and Q and by SYMB. LINK is the name
of the next cell on the routine list,

The Q prefix specifies a designation operation to be per-
formed upon SYMB. The result of this operation 1is the desig-
nated symbol, S. This designation operation is a form of

indirect addressing. The three degrees of designation avail-
able in IPL-V are 1llustrated in Figure 5.

Designation Operation

Q=0 S = SYMB

Q=1 8 = Symbol in cell named SYMB

Q=2 S = Symbol in cell named by symbol in cell
named SYMB. |

Por example, given the following two cells:

NAME PQ SYMB LINK
co BO
BO Ko

we have as the designated symbol, S:

0CO = CO
1C0 = BO
2C0 = KO

" Figure 5

P-1929
15

The P prefix specifies the operation to be performed upon

the designated symbol. These operations aceomplish the setup,

exeeution and cleanup of routines. The eight P prefixes are

‘explained in Figure 6.

P =0

Operation Code

EXECUTE S. S is assumed to name a routine or a
primitive. The process it specifies 1s carried out.

INPUT S. The Communication Cell HO is preserved;
then a eopy of S is put in HO.

OUTPUT TO S. A copy of the symbol in HO (hereafter
abbreviated as (0)) is put in cell S; then HO is
restored.

RESTORE S. The symbol most recently placed in the
push down list of cell S 1s moved into S; the ocur-
rent symbol in S is lost,

PRESERVE S. A copy of the symbol in cell S is
placed in the push down list of S; the symbol re-
mains in S.

REPLACE (0) BY S, A copy of S is put in HO; the
ecurrent (0) is lost. (This 1s analogous to the
normal "load accumulator.")

COPY (0) IN S. A copy of (0) 1s put in cell S; the
current symbol in S is lost and (0) is unaffected.
(This is analogous to the normal "store accumulator.")

BRANCH TO S IF H5 -. If HS5 18 +, LINK names the cell
containing the next instruction to be performed.
(This is the normal - sequence of instructions,) If
HS 18 -, then S names the cell containing the next
instruction to be performed.

Pigure 6

P-1929
16

Interp*etive cjcle. The 1nterpreter t&kes a gr*egram and
1nte:'pretu 1t 3-:: & sequence of primitive processes, exeeuting

;each ef these in tum. This interpretive process consists ot‘:

,the c;ole of operations 111ustratad by the flow diagram in

Fisure T
Intéxfpm tive Cycle -
Q.
,ﬁ*f'?w";“: ;";;'";”““'"z‘ v = Get rout'ine hﬂ'
. fnverpret @ [Q=6,7 | from auxillary|
Q"l)“ i R Q.E,'Jon-n 2 Q= 3:-4
, S e
“Transfer to | | Get S ! Fﬁonitoﬁ
primitive ‘ S - action;
- e R R I iy
A
{ - - o . . : e e e o s
{. - Interpret S —J
It'v S .
- P=l, 13, ,,,6 P=7 P=0
Execute] | Test| [Test pral o
P op B . 8 hames ;aw»[ﬁesaend
f f . i ’ ‘ primitive o :
. H54 s @
[Trenerer |
~1to primi- |
Lit.ive S |
Ma L._.. Afivanee R i ‘ 1

[
- LINK#O

Flgure 7

P-1929
17

BASIC PROCESSES
The IPL-V system includes approximately 150 basic proces-
ses, While elearly not a minimal set--indeed, some of the

basic processes are soded in IPL-V itself--experience with
earlier IPL's 1ndicatesﬁthat this 18 a useful one. The several
classes of basie processes are described below.

The GENERAL preocesses include such instructions as "no
operation,” "test if two symbols are identical," "set the signal
in H5 plus,"” and "halt."

Among the DESCRIPTION LIST processes are "find the value of
an-attribute of an object," "assign a new value to an attribute,"
and "erase an attribute and its value."

\The PUBLIC WORKING STORAGE processes make it possible to
presérve, restore, or move symbols from the Commnnicatiog Cell
into several of the W's with one operation.

The LIST processes include such operations as "loeate the
next symbol on a list," "insert a symbol on a list," "erase a
list structure,” and "copy a list structure."

The ARITHMETIC processes contain such operations as "add,"
"mltiply,"” and "test 1f a greater than b."” The system also
includes a basic operation that generates random numbers within
a specified range.

Through the DATA PREFIX processes the programmer can
identify the various types of symbols and data terms present in
. the system and so construct other list structure processes.
These processes include "test if a symbol names a data term,"
and "make & symbol local."

P-1929
18

The AUXILIARY STORACE processes enable the programmer to
"p4le" data 1ist structures in auxiliary storage and to "move"
filed data intc immediate storage.

The INPUT-OUTPUT processes permit reading or‘writing &ata
list structureé using any peripheral equipment present on the
object ecomputer. Data punched out on cards or written on ex-
ternal tapes is in the appropriate form for re-entry either at
leading or by the read process, Full eontrol of print column
and line spacing is available within the IPL system.

Repetitive operations can be handled in IPL-V with loops,
utilizing the ooaditiahal bransh, or by a special class of
processes, called generators. A generator is a process that
produses a sequence of outputs and applies to each output a
specified proeess, !he proecess that the generator applies 1s
an input to the generator and is called the subprocess. The
generator is assoeiated with the kinﬁ of sequence it produces,
and will apply any subproeess to the elements of the sequence.
(e subprosess must obey a system convention on how to signal
the generator to continue or stop producing elements.) Thus,
the generstor, just like the "iteration" statements of algebraic
sompilers, accomplishes a separation of the "produsction of ele-
ments” part of a loop from the "processing" part.

The subpreeess is executed for eaech element of the output
sequence as though it were a continuation of the process firing
the generator (the superprocess)--that is, as though the
generator had made no use of the Commmiecation Cell or Publie

P-1929
19

Working Storage. Generators are different from all other IPL
processes in that two contexts of information in working
storage must coexist in the computer--that of the generator
and that of the superprocess and subprocess. There is an al-
ternation of both control and context between the generator -
and the subprocess. To produce an element of the sequence,
the generator must be in control and its context should oceupy
the W's; to process the element, the subprocess must be in
control and its context (the context of the super-routine)
should oceupy the W's, Hence the striect hierarchy of routines
and subroutines is violated, and specilal pains have to be taken
to see that information remains safe and that each proeess
works in its appropriate cecontext.

To handle this special housekeeping, the GENERATOR HOUSE-~
KEEPING processes are provided. These précesses insure that
the generator's context 1s hidden away before the subprocess 1is
executed, and returned to the W's after the subprocess is com-
Pleted. The programmer uses these processes in coding genera-
tors. Some generally useful generators--"generate the symbols
on a 1ist," "generate the cells of a data list structure” and
"generate the cells of a tree structure"--are included among
the basle list processes.

It is possible to prepare additional machine language
routines and append these to the basic system, entering them
with other programs during loading. These machine language
routines will generally be coded in the assembly system ap-
propriate to the.objeet machine and assembled prior to IPL
loading.

P-1929
20

OPERATING AIDS

Debugging aids include selective tracing of any routines
desired, snapshots of any data (including system cells) at the
beginning and/or end ef tracing, and a post mortem dump of any
data. The system also insludes provision for saving the pro-
gram on tape or cards for later restart,

AN EXAMPLE OF IPL CODING

As a simple example of soding in IPL, oonsidér the problem
of testing 1f a given symbol occurs in a given tree. A tree‘is
'a 11st structure in which no sublist occurs more than once.

The 1list strueture of FPigure 3 is a tree.

We shall eode this problem in two ways--first using the
basic process for meving down a list eell by cell (J60), then
using the basic process for generating the cells of a tree
strusture (J102),

The basic proeesses required are given below. (Just ae
(0) stands for the symbol in HO, (1) indicates the symbol one
down in HO's push down 1list, (2) the symbol two down, and so
forth.)

J50: PRESERVE WO, THEN MOVE (0) INTO WO.

J60: LOCATE NEXT SYMBOL AFTER CELL (0). (0) is assumed

to be the name of a cell. If the next cell exists
(LINK of (0) not a termination symbol), the output
(0) 18 the name of the next cell and H5 1is set +.
If LINK is a termination symbol, then the output
(0) 18 the name of the last cell--i.e., input (0)--
and H5 set -, |

Jl32:

J2:

J30:

J131:

J5:
J8:

Jl02:

P-1929
21

TEST IF (0) IS A LOCAL SYMBOL. Set H5 + 1if (0)

is local; set H5 - 1f not.

TEST IF SYMBOL (O) = SYMBOL (1). Set H5 + if
equal; set H5 - Af not,

RESTORE WO. (Same as 30WO.)

TEST IF (0) NAMES A DATA TERM. Set H5 + if (0)

is data term; set H5 - if not.

REVERSE THE SIGN OF H5.

RESTORE HO. (Same as 30HO).

GENERATE CELLS OF TREE (1) FOR SUBPROCESS (0).

The subprocess named (0) is performed successively
with the names of each of the cells of the tree
(1) as input. The order 1s that the cells of each
sublist are generated before going on with the
higher list, The subprocess signals the generator
to continue by setting H5+; it signals the generator
to stop by setting H5-. The generator terminates
with H5+ 1f it was not stopped by the subprocess,
and with H5- if it was stopped. Also, H5 is set

+ to the subprocess if the input cell is the head

of a sublist, and 18 set - otherwise.

Formally, EO 1s defined as:

EO:

TEST IF SYMBOL (0) OCCURS IN TREE (1). Set H5 +
1r (0) occurs; set H5 - if it does not.

P-1929
22

First, EO using J60 to move down the 1list examining each
symbol:

NAME PQ SYMB LINK COMMENTS N
EO J50 Push down WO and move the test

symbol to WO,
9-3 J60 Locate the next cell of the tree
70 9-1 If no more cells, exit with H5-
12 HO Input the symbol in the next
list cell
11 WO Input the teat symbol
Jz Test 1if symbols are the same
70 9=-2 If same, exit with H5+
9-1 30 HO J30 Discard 1list reference, pop up WO,
9«2 12 HO Input 1ist symbol again
J132 Test if local
70 g=3 If not local, continue down this
list
12 HO Input l1list symbol again
J131 Test if names data term
70 9-3 If data term, continue down this
list
12 HO If not data term, names sublist
11 WO Input the test symbol
EO Apply this process to sublist

70 9=3 g-1 If found on sublist, exit with H5+

This same routine, using J102 to produce the cells of the

1list structure:

NAME PQ SYMB LINK COMMENTS

EO J50 Push down WO and move the test
symbol to WO,
10 9-10 Input the name of the subprocess
J102 Generate cells of tree for sub-

process 9-10,
J5 J30 Reverse final sign, pop up WO

9-10 T0 J8 If head, discard without examining
52 HO Input symbol on 1list, destroying
cell reference
11 WO Input test symbol

J2 J5 Test 1f identical; reverse sign

Note that the subproecess reverses the sign produced by J2
for 1ts signal to the generator. If the two symbols were

P-1929
23

identical, the subprocess must stop the generator, and so
changes the + to -, If the symbols were not identical, the -
generator must continue and so the appropriate signal from the
fsubprocess is +., The superroutine EO reverses the generator's
signal since the subprocess would stop the generator (with H5-)
only if 1t found the test symbol.

A _FINAL REMARK

While the value of this system can be adequately assessed
only through its use, we feel that we have gained considerably
by this approach to symbol manipulaﬁion. We have gained the
flexibility to do many interesting tasks, tasks that could not
be done in any straightforward way in more machine-oriented
programming systems, Both complex structures and complex
processes can be desighated by a single symbol and manipulated
as single units. We have shaped the system to do easily those
information processing tasks in which we are interested and
which we found difficult to specify in other commonly used
programming languages.,

We have paid in operating speed and storage utilization.
This payment 18 quite severe for standard arithmetic manipula-
tions, for which eonventional computers were specifically de-
signed., It becomes less severe as the programs and data
Kmanipulations become more complex, and elaborate housekeeping

conventions of some sort are required, no matter what the

programming system,

-

10,

11.

P-1929

REFERENCES

MeCarthy, J., Recursive Functions of Symbolic Expressions
and their Computation by Machine (The LISP Programming
System), " rterly Progress Report No. 5%; Research
Laboratory o ectronies, Massachusetts stitute of
Technology, Cambridge, Massachusetts, April 15, 1959,

Gelernter, H., The FORTRAN List Processing Language, IBM
dittoed’papér, 1959, £

Yngve, V., "A Programming Language for Mechanical Transla-
tion," Mechanical Translation, Vol. 5, 1, July, 1958.

Newell, A., F. M. Tonge, E. A, Feigenbaum, G. H. Mealy,
N. Saber, B. F, Green, Jr., and A. K, Wolf, Information

Processi La e V Manual, Section I: The Elements
) rogramming, e orporation - Paper -1097,
1960,)

Newell, A., F, M, Tonge, E, A. Feigenbaum, G. H. Mealy,
N. Saber, B. F. Green, Jr., and A. K. Wolf, Information

Processing La e V Manual, Seetion II: Programmers?
Reference Hénuag, The RAND Carporationj Paper P-1018,

1900,

Newell, A., and H, A, Simon, "The Logic Theory Machine,"
Translation on Information Theory, Vol., IT-2, No. 3,
IRE, September, 190506.

Newell, A.’ and J, C., Shaw, "Programming the Logic Theory
Machine, " Prooeedings of the %%57 Western Joint Computer

Conference, » February, 1957.

Hensley, C. B., A. Newell, and F, M, Tonge, GEO IPL
Information Processing Lan e, C.I.P., Working Paper
Ro. 9, Carnegle Iﬁnﬁgguii o% Ethnology, April 30, 1958
(aitto).

Newell, A,, J. C, Shaw, and H. A. Simon, "Chess Playing
Programs and the Problem of Complexity," IBM Journal of
Research and Development, Vol. 2, 4, Oectober, 1958.

Tonge, F. M,, Summa of a Heuristie Line Balanoi
Procedure, The Corporation- Paper P- » 1959.

Feigenbaum, E. A., An Information Process Theory of
Verbal lLearn The RAND CorporaEIonﬁ %aperf P-§SI7,
October, I§5%. '

P-1929
25

'12, Feldman, J., Analysis of Predictive Behavior in a Pwo-
Cholce Situation, Unpublishe octora ssertation,

Carnegle Ins te of Technology, 1959,

13, Néwell, A., J. C, Shaw, and H. A. Simon, Report on a
General Problem-Solving Program, The RANﬁEUEFEEFE€1QQ¢

L ¥

1%, Shaw, J. C., A. Newell, H. A. Simon, and T. 0. Ellis, "A
Command Structure for Complex Information Processing,™

Proceedings of the 1958 Western Joint Computer Conference,
IRE, Way, 1958.

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

