/

_ Y,

A COMMAND STRUCTURE FOR COMPLEX
INFORMATION PROCESSING e T

J. C. Shaw, A. Newell
HO At Simon*’ To 0. Elliﬂ

VP~1277

August 20, 1958

Presented at the Western Joint Computer

. Conference, Los Angeles, May 6, 1958.

*Carnegie Institute of Technology

74 RAND o

1700 MAIN ST. « SANTA MONICA ¢« CALIFORNIA

8- 2048
41—

Summary

Recent research into digitel computer programs

for discovering proofs to theorems in symbolic
logic and playing chess has shown the desirability
of languages better adapted to the requirements of
such non-numeric programming tasks than are
present day machine languages. A command structure
which allows more indirectness in programming and
requires less knowledge of the location and form
of the data is described.

8725228

-1

A COMMAND STRUCTURE FOR COMPLEX
INFORMATION PROCESSING

The general purpose d;gital computer, by virtue of its
large capacity and general-purpose nature, has opened the
poaaibi;ity or’researeh into the nature ef complex mechanisms
per se. The challenge is obvious: we see humans-carryihg
out 1nf@rmation precessing of a'eomplexity that ip traly
baffling. @iven the urge to understand elther how humans do
it, or alternatively, what kinds of mechanisms might accomplish
the same tasks, we turn to the computer as a basic research
tool. We will understand varieties of complex information
processing when we can synthesize them — when we can oreate
mechanisms that perform the same processes.

The last few years have seen & number of attempts at
synthesis of complex processes. These have included programs
to discover proofs for theorems (5, 7), programs to synthesize
music (2), programs to play chess (1, 3), and programs to
simulate the reasoning of particular humans (6). The feasibility
of eyhthesizing complex processes hinges on the feasibllity of
writing programs of the complexity needed to specify these
processes for a computer.- Hence, & limit 1s imposed by the
1imit of complexity that the human programmer can handle. The
measure of this complexity is not absolute, for it depends on
the programming language he uses. The more powerful the
language, the greater will be the complexity of the programs

hefoan write. In our own work, we have sought to inorease the

8520258
— -

upper limit of complexity of the processes we can speclfy by
developing a series of languages, called information processing
languages (IPL's), that reduce significantly the demands made
upon the programmer in his communication with the computer.
Thus, the IPL's represent a series of attempts to construct
sufficiently powerful languages to permit the programming of the
kinds of complex processes mentioned above.

The IPL's designed so far have been realized interpretively
on current computers (4). Adternatively, of course, any such
language can be viewed as a set of specifications for a general—
purpose computer. An IPL can be implemented far more expeditiously
in a computer designed to handle it than by interpretation in
a computer deslgned with a quite different command structure.
The mismatch between the IPL's we have designed and current
computers is appreciable: 150 machine cycles are needed to do
what one feels should take only two or three machine cyéles“e/

The purpose of this paper is to consider an IPL computer -
that 1s, a computer constructed so that its machine language
is an information processing language. We will call this
language IPL-VI, for it is the sixth in the serles of IPL's we

have designed. This version has not been realized interpretively,

but has resulted from conéddering hardware requirements in the

ﬁ{ It will become apparent that the difficulty would not be re—
oved by "compiling” instead of "interpreting", to resurrect a

gset of well-worn distinctions. The operations that are mlsmatched
to current computers must go on during execution of the program.
and hence cannot be complled out.

p-1277

8-20-58

-3~

light of our preogramming experience with the previous languages.

Some limitations must be placed on the investigation. We
will concern ourselves only with the central oomputqr — the
command strueture, the form eof the machine operations, and‘the
general arrangements of the central hardware. We will neglect
rather completely.input/butput and secondary storage systems.
This does net mean these are unimportant or that they present
only simple problems. The problem of secondary storage is
difficult enough for current computing systems; 1t 1s exeeedingly
diffieult for IPL systems, since in such systems internal memery
18 not organized in neat block-like packages for ease of ship-
ment te the secondary store.

Ner i1s it the case that we would place an.order for the IPL
computer we are about to describe without further experience
with 1t. The human organism is limited in its power of visien:
the designer knows not what he begets. IPL's are sufficiently
different from current computer languages that their utility
ean be evaluated only after much programming. Moreover, since
IPL's are designed to specify large complicated pregrams, the
utility of the linguistic devices incorporated in them cannot
be ascertained from simple examples.

One more caution is néeded to provide a proper context for
this paper. Most of the computing world is 8t111 concerned with
esaentially numerical processes, either because the problems
themselves are numerical or because non-numerical problems |
have been appropriately arithmetized. The kinds of problems

we have been concerned with are essentially non-numerical,

pP-1277
8-20-58
T
and we have tried to cope with them without resort to arithmetic
models. Hence the IPL's have not been designed with a view to

carrying out arithmetic with great efficiency.
FUNDAMENTAL GOALS AND DEVICES

The basid aim, then, 18 to construct a powerful programming
language for the class of problems in which we are interested.
Given the émeunt and kind of output desired from the computer, we
wish to reduce the silze and comp}exity of the specification -
the program — that has to be written in order to secure this
output.

The goal 1s to reduce programming effort. This i8 not the
same as reducing the computing effort required to produce the
deslred output from the specificatioen. Programming feasibility
must take precedence over computing economics; since we do not
yet know how to write a program phat will enable a computer te
teach 1itself to play chess, it is premature to ask whethér it
would take such a computer one hour or one hundred hours to make
a move. This ls not meant as an apology, but as support for the
contention that in seeking to write progréms for very large and
complicated tasks the overriding initial coﬁcerns must be to
attain enough flexibility, abbreviation, and automation of the
underlying computing proceéses to make programming feasible. And
these concerns have to do with the power of the programming
language rather than the efficiency of the system that executes
the program.

In the next section we willl begin a straightforward description

p-1277
8-20-58
5
of an IPL computer. To put the details in context, we will dis-—
cuss in the remainder of this section the basic devices that
IPL-VI uses to achleve a measure of power and flexibility. These
devices include: organization of memory into 1list structure,
provision for breakouts, ldentity of data wlth program, two—
stage interpretation, invariance of program during execution,
provision fer responsibility assignments, and centralized
signalling of test results.

List Structure

The most fundamental and characteristic feature of the IPL's
is that they organize memory into list structures, whose arrange-—
ment 1s independent of the actual physical geometry of the
memory cells and which undergo continual change as computatien
proceeds. In all computing systems the topology of memory —
the characteristics of hardware and program that determline what
memory cells can be regarded as "next to" a given cell — plays
a fundamental role in the organization of the infermation
processing. This is obviously true for serial memories, like
tape; 1t is equally true for random access‘memories. In randem
access memories the topological structure derives from the
possibility of performing arithmetic operations on the memory
addresses that make use of the numerical relations among these
addresses. Thus, the cell with address 1435 1s "next to" cell
1436 in the specific sense that the second can be reached from
the first by adding one to the number in a counter.

In standard computers we make use of the statlc topology

pP-1277
8-20-58
o b

based on memery addresses to facllitate programming and com-—
putation. Index registers and relative addressing schemes, for
example, make use of program arithmetlc and depend for their
efficacy upon an orderly matehing of the arrangement of informa-—
tion in memory with the topology of the addressing system.

When memory is organized in a list structure, the relation
between information storage and topology is reversed. The
topology of memory is continually modified to adapt to the
changing needs of organization of memory content. No arithmetic
operations on memory addresses are permitted; the topology 1s
built on a single, asymmetric, modifiable, ordinal relation be-
tween pairs of memory cells which we shall call adjacency. The
system contains processes that make use of the adjacency re-—
lations in searching memory, and processes that change these
relations at will and cheaply in the course of processing.

A 1ist structure can be established 1in computer memofy by
assoclating with each word in memory an address that determines
what word is adjacent to it, as far as all the operations of the
computer are concerned. We pay the price in memory space of an
additional address associated with each word, so that we can
change the adjacency relation as quickly as we can change a word
in memory. Having pald this price, however, many of the other
basic features of IPL's are obtained almost without cost:
unlimited hierarchies of subroutines; recursive definition of
processes; variable numbers of operands for processes; and
unlimited complexity of data structure, capable of being created

and modified to any extent at execution time.

P-1277
8-20-58
Bty SO

Breakouts

Languages require grammar-fixed structural features with
the ald of which they can be interpreted. (rammar imposes
constraints on what can be said, or sald simply, in a language.
However, the constraints created by fixed grammatical format
can be alleviated at the cost of introducing an additional
stage of processing — by devices that allow one te "break out"
of the format and to use more general modes of specification
than the format permits. Devices for breakouts exchange process—
ing time for flexibility. Several devices achlieve this in IPL-VI.
Each 18 associated with some plece of format.

As an illustrative example, IPL-VI has a single-address format.
Without breakout devices, this format would permit an inferma—
tien process to operate on only a single operand as input, and
would permit the operand of a process to be specified only by
giving its address. Both of these limitations are remo#ed:
the first by using a special communication 1list to stere operands,
the second by allewing the address for an operand te refer
either to the operand itself or to any process that wlll determine
the operand.

The latter device — which allows broad freedem in the method
of specifying an operand ; illustrates another important facet
of the flexibility problem. Breakouts are of great importance
in redueing the burden of planning that is imposed on the
programmer. It is certainly possible, in principle, to anticilpate
the need for particular operands at partlecular stages of process—

ing, and to provide the operands in such a way that theilr

P-1277
8-20-58
8

addresses are known to the programmer at the appropriate times.
This is the usual way in which machine coding 1s done. However,
such plans are not obtained without cost; they must be created
by the programmer. Indeed, in writing complex programs, the
ereation of the plan of computation 1s the most difficult part
of the job — 1t constitutes the task of "programming" that is
sometimes distinguished from the more routine "coding." Thus,
devices that exchange computing time for a reduction in the
amount of planning required of the programmer provide significant
inereases 1n the flexibility and power of the language.

Identity of Data with Programs

In current computers, the data are comsidered "inert." They

"structure"

are symbols to be operated ubon by the program. All
of the data 13 initially developed in the programmer's head and
encoded implicitly into the programs that work with the data.

The structure 1s embodied in the conventions that determine

what bits the processes will decode, and so on.

An alternative approach is to make the data “"active." All
words in the computer will have the instruetion format; there
will be "data" programs, and the data will be obtained by
executihg these programs. Some of the advantages of this
alternative are obvious: the full range of methods of speciflica-
tion avallable for programs 1s also available for data; a list
of data, for example, may be speclifled by a list of processes

n

that determine the data. Since data are only deslred “on

command" by the processing programs, this approach leads to &

P--127
8-R0-5

G
computer that, although still serial in 1ts control, contains
at any given moment a large number of parallel active programs,
frozen in the midst of operation and walting until called upon
to produce the next operation or plece of data. This ldentity
of data wlth program can be attained only if the preocessing
programs require for their operation no information about the
structure of the data programs - only information about how to
receive the data from them.

Two-stage Interpretation

To identify the operand of an IPL-VI instruction, a designating
operation operates on the address part of the instruction to
produce the actual operand. Thus, depending on what designating
operation 1s speclifled, the address part may itself be the operand,
may provide the address of the operand, or may stand in an even
less direct relation to the operand. The designating operation
may even delegate the actual specification of the operand to
another designating operation.

Invariance of Program During Execution

In order to carry out generalized recufsions, it 18 necessary
to provide for the storage of indefinite amounts of variable in-
formation necessary for the operation of such routines. 1In IPL-VI
all the variable informatidn is stored externally to the
assoclated routine, so that the routine remains unmodified during
execution. The name of a‘routine can appear in the definition
of the routine itself without causing difficulty at execution

time.

P-1277
8-20-58
~10—

Responsibility Asslignments

The automatic handling of sueh processes as erasing a list,
or searching through a list requires some scheme for keeping
track of what part of the 1ist has been processed, and what
part Pas not. For example, in erasing a program contalining a
local subroutine that appears more than once within the program,
care must be taken to erase the subroutine once and only once.
This 1s accomplished by a system for assigning responsibility
for the parts of the 1llst. In general, the responsibility code
in IPL-VI handles these matters without any explicit attention
from the programmer, except in those few situations where the
issue of responsibility 1s the central problem.

Centralized Signalling of Test Results

The structure of the language is simplified by having all
conditional processes set a switch to symbolize thelr output
instead of producing an immediate condltional transfer éf control.
Then, a few specialized processes are defined that transfer
contrel on the basis of the switch setting. By symbolizing and
retaining the conditional information, the gctual transfer can
be postpened to the most convenlent point in the processing.

The flexibility obtained by this device proves especially useful
in dealing with the transmission of conditional Information from
subroutines to the routines that call upon them.

GENERAL ORGANIZATION GF THE MACHINE

The machine we are describing can profitably be viewed as a

"econtrol computer." It consists of a single control unit with

p-127
8-20-5

-11—

access to a large random—access memory. This memory should

contain 102 words or more. If less than 104 words are avallable

in the primary memory, there will probably be too frequent occasions
for transfer of information between primary and secondary storage

to make the system profitable.

The operation of the computer is entirely non-arithmetie,
there being no arithmetic unit. Since arithmetic processes are
not used as the basis of control, as they are in standard
computers, such a unit is inessential, although 1t would be
highly desirable for the computer to have access to one if it
is to be glven arithmetic tasks. The computer is perfectly
capable of proving theorems in loglc or playing chess without
an arithmetic adjunct.

Memory

The memory consists of cells contalning words of fixgd
length. Each word 1s divided into two parts, a symbol and a
link. The entire memory 1s organized into a list structure in
the following way. The link is an address; 1f the link of a word
a is the address of word b, then b is adjacent to a. That is,
the link of a word in a simple list is the address of the next
word in the list.

The symbol part of a word may also contain an address, and
this may be the address of the first word of another list. ‘As
we indicated earlier, the entire topology of the memory 1is
determined by the links and by addresses located in the symbol
parts of words. The links permit the creation of simple lists

p—-12717
8-20-58
12—

of symbols; the 1links and symbol parts together, the creation
of branching list struectures. |

The topology of memory 1is modified by changing addresses in
links and symbol parts, thereby changing adjacency relations
among words. The modification of link addresses 1s handled
directly by various list processes without the attention of the
programmer. Hence, the memory can be viewed as consisting of
symbol occurrences connected together by mechanlsms or structure
whose character need not be specified.

The basic unit of organization 1s the list — a set of words
linked together in a particular order by means of their link
parts, in the way we explained. The address of the first word

in the sequence 13 the name of the list. A special terminating

symbol, T, whose link is irrelevant, is in the last word on every
list. A simple 1list is illustrated in Flgure 1; its name is
LlOO’ and 1t contains two symbols, S1 and 82.

We have seen that the symbols in a list may themselves
designate the names of other lists.@/ Thug, a list may be a list
of lists, and each of its sublists may be a list of lists.

An example of a 1list structure 1s shown in Figure 2. The
name of the list struqture is the name of the main 1list, L200'

L

contalns two sublists, and LSOO’ plus an ltem of in-

200 L300

formation, 14, that 1is net a name of a liSt. L in its turn

300
consists of item Il plus another sublist, L#OO’ while L500

. The symbols themselves have a special format, seo that they are
not names of lists but designate the names in a manner we shall
describe.

P-1277
8-20-58

13—
contains Jjust information, and 1s not broken out further into
cublists. Each of these lists terminates 1n a word that holds

the symbol T.

Avallable Space Llst

A 1list uses a certain number of cells from memory. Which
cells 1t uses 1s unimportant as long as the right linkages are
set up. In executling programs that continually create new lists
and destroy old ones, two requirements arise. When creating a
1ist, cells in memory must be found that are not otherwise
occupied — that are avallable for the new list. Conversely,
when a 1list is destroyed — when 1t 1s no longer needed in the
system — 1ts cells become avallable for other uses, but some-—
thing must be done to galn access to these avallable cells when
they are needed.

The device we use to accompllish these two logistic functions

is the available space list. All cells that are availaﬁle are

linked together into a single long list. Whenever cells are
needed, they are taken from the front of this avallable space
1list; whenever cells are made avallable, they are inserted on
the front of the available space list Just behind the fixed
reglster that holds the link to the first avallable space. The
operations of "taking" cells from the available space list and
"returning" cells to the avallable space list involve, in each
case, only changes of addresses in a pair of links.

Organization of Central Unilt

Figure 3 shows the speclal registers of the machine and the

P—1277
8-20-58
35—

main information transfer paths. There are four addressable
reglsters that accompllish flxed functions. These are shown as
part of the main memory, but would be fast access registers.
Communication List The system allows the introduction

LO:

of unlimited numbers of processes with variable numbers of

inputs and outputs. The communicatlon of inputs and outputs
among processes 1s centralized 1n a communication list with
known name, LO. All subroutines find their inputs on this list,
and all subroutines put their outputs on this same list.

L.:

1
used are on the available space list: cells can be obtained from

Available Space List All cells not currently being

it when needed and are returned to it when they are no longer
being used.
L,: List of Current Instruction Addresses (CIA) At any

given moment in working sequentlally through a program, there
will be a whole hierarchy of instructions that are in pfocess

or interpretation, but whose interpretation has not been
completed. These will include the instruction currently being
interpreted, the routine to which this inétruction belongs, the
superroutine to which this routine belongs, and so on. The CIA
1ist is the list of addresses of this hierarchy of routines.

The first symbol on the liét gives the address of the instruetion
currently being interpreted; the second symbol glves the address
of the current instruction in the next higher routine, and so on.
In this system 1t proves to be preferable to keep track of the

current instruction being interpreted, rather than the next one.

P-1277
8-20-58
-15-

L List of Current CIA Lists The control sequence 1is

5:
complicated 1n this computer by the existence of numerous

programs which become active when called upon, and whose process-—
ing may be interspersed among other processes. Hence, a single
CIA list does not suffice; there must be such a list for each
program that has not been completely executed. Therefore, 1t 1is
necessary also to have a 1list that gives the names of the CIA
lists that are active. This list 1s L3.

Beslides these speclal addressable registers, three non-—
addressable registers are needed to handle the transfers of
information. Two of these, Rl and R2, are each a full word in
length, and transfer information to and from memory. The
register Rl recelves input from memory; R2 transmits output to
memory. The comparator that provides the information for all
testas takes as 1its input for comparison the symbol in R1 and R2¢
This pair of registers also performs a secondary functidn in
regenerating words in memory: the basic Read operation from
memory ls assumed to be destructive; a non—destrudtive Read
merely shunts the word received from memofy in Rl to R2 and back,
by means of a Write operation, to the same memory cell.

A reglster, A, which holds a single address, controls
references to the memory -lthat 1s, speclfies the memory address
at which a Read or Write operation is to be performed. References
to the four addressable Registers, LO‘to L}, can be made either
by A or directly by the control unit itself; other memory cells

can be referred to only by A. Finally, the computer has a single

p-1277
8-20*§8
~16—

bit register which is used to encode and retain test results.

The Environment

We can now indicate how input/output, secondary storage,
and high speed arithmetic could be handled with sueh a machine.
The machine manipulates symbols: 1t can construct complex
structures, search them, and tell when two symbol oeccurrences
are ldentical. These processes are sufficlent to play chess,
prove theorems, or do most other tasks. The symbols it manipu-—
lates are not "coded"; they simply form a set of arbitrary
distinguishable entities, like a large alphabet.

Thls computer can manipulate things outslde ltself if hard-
ware 1s provided to make some of its symbols refer to outside
objects, and other symbols refer to operations on these objects.
It could do high speed arithmetic, for example, if some of its
symbols were names of words in memory encoded as numbers - in
the usual computer fashlon — and others were names of the
arithmetic operationsQ In such a scheme these words would not
be in the IPL language; they would have some format of their own,
either flxed or floating-point, binary or decimal. They might
occupy the same physical memory as that used by the control
computer. Thus the IPL language would deal with numbers at one
remove — by their names —‘1n much the same manner as the programmer
deals with numbers in a current computer. A similar approach
can be used for manipulating printers, input devices, and so on.

THE WORD AND ITS INTERPRETATION

All words 1n IPL have the same format, shown in Figure 4.

p-1277
8-20-58
~17~
The word a 1s divided into two major parts: the symbol part,
bede, and the link, f. We have observed that the programmer
never deals explicitly with the 1link, although we shall
frequently represent 1t explicitly to show how manipulations

are being accomplished. Since the same symbol can appear in

many words, we may need to speak of the symbol occurrence of the
symbol in the word a. |
A symbol occurrence consists of an operation, b, a designa—

tion operation, ¢, an address, d, and a responsibility code, e.

The operation, b, takes as operand a single symbol occurrence,
which we shall call s. The operand, 8, 15 determined by apply-—
ing the designation operation, ¢, to the address, d. Thus the
process determined by a word 1s carried out in two stages: the
first—stage operation (the designation operation) determines an
operand that becomes the input to the second-stage operation.

The Responsibllity Bit

The single bit, e, 1s an essential plece of auxiliary
information. The address, d, in a symbol may be the address of
another list structure. The responeibiliéy code in a symbol
occurrence indicates whether this occurrence 1s "responsible"
for the structure designated by d. If the same address, d,
occurs in more than one wofd, only one of these wlll indicate
reaponsiblility for d.

The main function of the responsibility code 1s to provide
a way of searching a branching 1ist structure so that every

part of the structure will, sooner or later, be reached, and so

P-12717
8-20-58
18~

that no part will be reached twice. The need for a definite
assignment of responsibility for the various parts of the
structure can be seen by éehsidering the process of erasing a
list. Suppose that a list has a sublist that appears twice on
it, but that does not appear anywhere else in memory. When
tﬁe list is erased, the sublist must be erased if 1t is not to
be lost forever - and the space 1t occuples with it. However,
after the sublist has been erased when an occurrence of 1its
name 1s encountered on the l1list, 1t 1s imperative that 1t not
be erased again on the second encounter. Since the words used
by the sublist would have been returned to the avalilable space
1ist prior to the second encounter, only chaos could result
from erasing it again. The responsibility code would indicate
responsibllity, in erasing, for one and only one of the two
occurrences of the name of the sublist.

Detailed conslderation of systems of responsibilitylis
inappropriate in this paper. We belleve that an adequate
system can be constructed with a single bit, although a system
shat will handle merging lists also requifes a responsibility
bit on the link f. The responsibility code 1s essentially
automatlc. The programmer does not need to worry about it
except in those cases where he 1is explieitly seeking to modify
structure.

- Interpretation Cycle

A routine is a 1list of words — that 1s, a list of instructions.
Its name 1s the address of the first word used in the 1list. The

interpretation of a program proceeds according to a very simple

pP-1277
8-20-58
~19-
cycle. An instruction 1s fetched to the control unit. The
deslgnatlion operation is decoded and executed, placing the
location of s in the Address Register, A, of Figure 3. Then
operation b 1s decoded and performed on 8. The cycle 1s then

repeated using f to feteh the next instruction.

THE OPERATION CODES

The slmple Interpretation cycle described above provides
none of the powerful linguistic features that we outlined at
the beginning of the paper: hierarchies of subroutines, data
programs, breakouts, and so on. These features are obtained
through particular b and c operations that modify the sequence
of control. The operation codes will be explained under the
following headings: the designation code, sequence-controlling
operations, save and delete operations, communication list
operations, signal operations, list operations, and other
operatlons. ‘

The Deslgnation Code

The designation operation, ¢, operates on the address, da,
to designate a symbol occurrence, s, that will serve as input,
or operand, for the operation b. The designation operation
places the address of the designated symbol, 8, in the Address
Reglster. '

The designation codes we propose, basing our choice on their
usefulness 1in coding with the IPL's, are shown in Table I. The
first four, ¢=0,1,2, or 3, allow four degrees of directness of

reference. They are usable when the programmer knows in advance

whére the symbol, s, 1s located. To illustrate their definition,

pP~127
8-20-5

~20-

consider an inatruetion 21’ with parts 31, €11 91’ and ey
whiech we can collectively call s,. The address part, d,, of
this instruction may be the address of another instruction
d,=a,; the address part, gé,’of &, may be the address of 25,
and so on. |

The code 01=1 means that s 1s the symbol whose address is
dy, that is, the symbol 85+ In this case the designating
operation puts Ql’ the address of 85, in the Address Register.
The code gl=2 means that s is 55; hence, the operation puts 92’
the address of-g3, in the Address Register. The code ¢,=3 puts
ga,-the address of 54} in the Address Register. Finally,
¢,=0 designates as g.the actual symbol in 8, itself; hence
means that b is to operate on El; Therefore, this operatien
places a; in the Address Register.

The remalning two designation operations, c=4 and 5, introduce
another“kind of flexibility, for they allow the programmér to
delegate the designation of 8 to other parts of the program.

When ci=4, the task of designating s is delegated to the symbol
of the word Qlua « In this case, 8 1s found by applying the
designation operation, S of word 8o, to the address, 92’ of

word a,. An operation of this kind permits the programmer to

be unaware of the way in which the data are arranged structurally
in memory. Notice that the operation permits an indefinite
number of stages of delegation, since 1f we also have geuu,

there wlll be a further delegation of the designation operation

to 93 and 93 in word ga.

P-1277
8-20-58
21—
The last designation operation, c¢=5, provides both for
delegation and a breakout. With cl=5, 91 ls Interpreted as a
process that determines s. Any program whatsoever, having 1its
initial instruction at Ql, can then be written to specify 8.
When this program has been executed, an 8 will have been
designated, and the interpretation will continue by reverting to
the original cycle — that is, by applying El to the 8 that was
Just deslgnated. It 18 necessary to provide a convention for
communicating the result of process Ql to the interpreter. The
conventlion we have used 1is that Ql shall leave the location of

s in L the standard communication cell.

o}
Sequence—Controlling Operations

Table II lists the 35 b operations. The first twelve of
these are the ones that affect the sequence of control. They
accomplish filve quite different functions: exXxecutling a process
(b=1,10), executing variable instructions (b=2), transferring
contrel within a routine (b=3,4,5), transferring control among
parallel program structures (»=0,6,7,8,9), and, finally, stopping
the computer (b=11).

A routine is a list of instructions; its name 1s the address
of the first word in the 1list. To execute a routine, we designate
1ts name (1.e., its name becomes the s of the prévious section)
and apply it to the operation b=1, Execute S. The interpreter
must keep track of the location of the instruction that is being
executed 1in the current routine and return to that location

after completing the execution of the instruction (which, in

general, 1s a subroutine)l All lists end 1n a word containing b=10,

P-1277
8-20-58
—L2—
which terminates the list and returns control to the hilgher
routine in which the subroutine just completed occurred. (The
symbol T is really any symbol with b=10.)

Figure 5 provides a simple 1llustration of the relatiens
between routines and their subroutines. In the course of
executing the routine Llo (1.e., the instructions that constltute
list Llo)’ an instruction, (1’0’L20)’ is8 encountered that is |

interpreted as "execute LQO’"

In the course of executing L20,
an instruction is encountered that is interpreted as "execute L}O'"

Assuming that L contains no subroutines, its instructions will

30
be executed in order until the terminate instruction 1is reached.
Because of the 10 in 1ts b part, this instruction returns control
to the instruction that follows L30 in LEO' When the final word
in L20 is reached, the operatlion code 10 in its b part returns
control to Llo’ which then continues with the instructlon
following Lzoﬂéy This 1s a standard subroutine linkage, 5ut»w1th
all the sequence-control centralized.

The operation code b=2, Interpret s, delegates the interpreta-
tion to the word s. The effect of an instruction contalning b=2
is exactly the same as 1f the 1lnstruction contalned, instead,
the symbol, s, that 1s designated by 1its ¢ and d parts. One
can think of the instruction with b=2 as a variable whose value

is 8. Thus, a routine can be altered by modifying the symboi

occurrence 8, without any modification whatsoever 1n the words

%A Only the b part, b=10, of the terminal word in a routine 1is
sed in the interpretation; the ¢ and d parts are irrelevant.

P-1277
8-20-58
23—
belonging to the routine ltself.

The three operations, b=3, 4, and 5, are standard transfer
operations. The firat 1s an unconditional transfer; the two
others transfer conditionally on the signal blt. As we mentioned
earlier, all binary conditional processes set the. signal either
"on" or "off." 1In order to describe cperations b=0,6,7,8,9 we
need to define the concept of program structure. A program
structure is a routine together with all 1ts subroutines and
designation processes. Such a structure corresponds to a single,
although perhaps cemplex, process. The computer is capable of
holding, at a given time, any number of independent program
structures, and canﬂinterruﬁt any one of these processes, from
time to time, in order to execute one of the others. All of
these struectures are coordinate, or parallel, and the oper-—
ations b=0,6,7,8,9, are used to transfer control (perhaps
conditionally) from the one that 1s currently active to a new
one or to the previously active one. In this sense, the computer
we are deseribing may be viewed as a serial control, parallel
program machine.

Suppose that we are proceeding with the execution of a
particular routine 1n program structure A. Operation b=6 will
transfer control to an independent program structure determined
by 8; call it B. The machine will then begin to execute B.

When it encounters a Stop Interpretation operation (b=0) in B,
control will be returned to the program structure, A, that was

previously active. But the Stop Interpretation operation,

unlike the ordinary termination, b=10, does not mark the end

P-1277
8-20--58
2 Y
of program structure B. At any later point in the execution
of A, control may again be transferred to B, in which case
executlon of the latter program will be resumed from the point
where 1t was lnterrupted by the earlier Stop Interpreting
command. The operation that accomplishes the second transfer
of control from A to B is b=7, Continue Prallel Program 8.
Thus, b=0 18 really an "interrupt" operation, which returns
control to the previous structure, but leaves the structure it
interrupts in condition to continue at a later point. There
can be large numbers of independent program structures all
"open for business" at once, with a single control passing from
one to the other, determining which has access to the processing
facilities, and gradually executing all of them. Operations
b=8 and 9 simply allow the interruption to be conditional on
the test switch.

Notlce that the passage of control from one structufe to
another 1s entirely decentralized — it depends upon the
occurrence of the appropriate b operations in the program
structure that has control.

When control 1is transferred to a parallel program structure,
elither of two outcomes 1s possible. Either a Stop Interpretation
instruetion 1s reached in the structure to which control has
been transferred, or execution of that structure is completéd
and a termination reached. 1In either case, control is returned
to the program structupe that had 1t previously, together with

information as to whether 1t was returned by interruption or

P-12717
8-20-58
—25—
by termination. Thus, b=0 turns the signal bit en when it
returns control; b=1Q in the topmest routine of a structure
turns the signal off.
The operation, b=11l, simply halts. Processing centinues
frem the location where it halted upon receipt of an external
signal, "go."

Save and Delete Operations

The two operations, b=12 and 13, are sufficiently fundamental
to warrant extended treatment. Conslder a word, Lloo' that
contains the symbol 11:

LOCATION SYMBOL LINK
100 L v

The link of Ligor b indicates that the next word helds the
termination operation, b=10. The Save operation (b=12) prevides
& copy of 11 in such a way that 11 can later be recalled, even

if in the meantime the symbol in L100 has been changed. After

the Save operation has been performed on E?LIOO’ we have:

LOCATION SYMBOL LINK
Ly00 I Looo
Looo 1, t

A new cell, whieh happened to be LEOO’ was obtalned during
the Save operation from the available space list, Ll’ and a
copy of Il was put in 1it. We can now change the symbol in L100
without losing 11 irretrievably. Suppose we copy a different
symbol, say 12, inte L106° Then we have:

pP-1277
8-20-58

LOCATION SYMBOL LINK
Ly00 I, Looo
L20o 1 t

Although we have replaced 11 in Lloo’ we can recover Il by
performing the Delete operétion, b=13. Before we show how the
latter is carried out, it will be instructive to show what
happens when the Save operation on L, is iterated. If it is
executed again, it will make a copy of 12. We get:

'LOCATION SYMBOL LINK
L100 Iy L300
L300 I, Lsoo
Looo I t

Notice that the cell Lzoo, in which the copy of symbeol I1
is retained, was not affected appalllby thls second Save |
operation. Only the top cell in the list and the new cell from
the avallable space list are involved in the transaction'of
saving. The same process 1s performed no matter how long the
list that trails out bhelow LlOO‘ thus, we can apply the save
operation as many times as we wish with ooﬁstant processihg
time.

We are now ready to illustrate the Delete operation, b=13,
applied to the symbol I2’1n‘L100° This operation puts the

symbol and link of the second werd in thellist; o,vinto the

Lo
first cell, Lloo* and puts L}OO back on the avallable space

list, with the following result:

pP-1277

8-20-58
27_
LOCATION SYMBOL LINK
Ly00 I, Looo
Logo I t

We have returned to the exact situation we had before we
performed the last Save.

In our description of the Delete operation up te this point,
we have considered only the changes it makes in the "push-down".

11st — in this case, L The operatlon does more than this,

100°
however; Delete s also erases all structures for which the symbol

8 (I1 and I2 in our examples) is responsible. When a copy of a
gymbol 1is made — e.g., the operation that initially replaced Il

by I2 in L100 — the copy 1s not assigned responslbility for the
symbol (we set e=0 in the copy). Thue, no additional erasing

would be required in the particular Delete operation we illustrated.

If, on the other hand, the 12 that was moved into L had been

100
responsible for the structure that could be reached thrdugh it
(1f 1t were the name of a 1list, for example), then a second
Delete operation, putting Il back into LlOO’ would also erase
that list and put all 1ts cells back on thé available spaée list.
Thus Delete 1s also equivalent to Erase a List Structure.

Communication List Operations

In descrlibing a process as a 1list of subprocesses, we have
bypassed entirely the question of inputsland outputs from ﬁhe
processes. Since each subroutine has an arbltrary and variable
number of operands as input, and provides to the routine that

uses 1t an arbitrary number of outputs, some scheme of communica-—

tion 1s required among routines. The communication list, LO’

P-1277
8-20-58
28

accomplishes this function in IPL.

We require that the inputs and outputs to a routine be
symbols. This 1s no real restrictlion since a symbol can be the
name of any list structure whatever. Each routine wlll take as
its inputs the first symbols in the L0 list. That 1s, if a
routine has three inputs, then the first three symbols in L

0
are 1ts inputs. Each routine must remove 1ts inputs from L

0
before terminating wlth b=10, so as to permit the use of the
communication 1list by subsequent routines. Finally, each
routine leaves its outputs at the head of list Lo.

The b operations 14 through 19 are used for communication
in and out of Lo. Their one common feature 1s that, whenever
they put a symbol 1in LO’ they save the symbel already there -
that 18, they push down the symbols already "stacked" in Lge
Likewlise, whenever a symbol is moved from Lo to memory, the
symbol below 1t in L "pops up" to become the top ohe.&f

The four operations, b=14, 15, 16, and 17, are the main in-

out operations for L Two options are provided, depending on

O.
whether the programmer wishes to retain the s in memory (b=14 and 16)
or destroy it (b=15 and 17).5|

Operation b=18 is a special input to aid in the breakout

designation operation, ¢=5. Recall that the latter operation

Y. To be precise, the responsibility bit travels with a symbol
when it is moved. Hence, for example, b=16 and 17, do not,
unlike the Delete operation, erase the structure for which lLo
is responsible.

g& The move in operation 15 has the same significance as in 16
nd 17; the responsibility bit moves with the symbol, and the
symbol previously in the location of 8, 18 recalled.

P-1271
8-20-58
29—
requires d to place the location of s, the symbol it determines,
in LO' Operation 18 allows the process d .to accomplish this.
Operation b=19 provides the means for creating structures.
It takes a cell, say Lgoo, from available space, and puts its
name — as the symbol (o,O,Laoo) — in the location of the
designated symbol, 8. The symbel s, previously in this location

is pushed down and saved.

Signal Operations

Ten b operations are primarily inveolved in setting and
manipulating the signal bit. Observe that the test of equality
(b=20 and 21) is identity of symbols. Since there 1s nething
in the system that prevides a natural ordering of symbols,
inequality tests like s>1L,, are 1mpossib1e«g/ It 18 necessary
to be able to detect the responsibility bit (b=22), since
there aré occaslons when the explieit structure of lists is

~impertant, and net just the Informatioen they designate. Finally,
although the signal blt is just a single switch, it 18 necessary
to have two symbols, one corresponding to "signal on" and the
other to "signal off" (b=26 and 27), so that the information in
the signal can be retained for later use (b=28 and 29).

The sense of the signal is not arbitrary. In general "off"
is used to mean that a process "falled," "did not find," or the
like. Thus, in operations b=6 and 7, the:failure to find a
Stop Interpretation operation sets the~éignal to "eff." Likewise,
the end of a 118t will be symbolized by setting the signal to"off."

§- By 1L, we mean the symbol in Lo

P—1277
8--20-58
3 O

List Operatlions

Both the Save and Delete operations are used to manipulate
lists, but besides these, several others are needed. The three
operations, b=30, 31, 32, allow for search over list struetures.
They can be paraphrased as: Get the Referent, Turn Down the
Sublist, and Get the Next Word of the List. They all have in
common that they replace a known symbol with an unknown symbol. -
This unknown symbol need not exist; that is, the symbol referred
to may contain a b=10 operation, which means that the end of
the list has been reached. Consequently, the signal 1s always
set "on" if the symbel is found, and "off" if it 1s not found.
One of the virtues of the common signal is apparent at this
point, since, if the programmer knows that the symbol exists,
he will simply ignore the signal. Instruction formats that
provide for additional addressges for conditional transfers
would force the programmer to attend tb the condition evén if 1t
only meant leaving a blank space in the program.

To illustrate how these search operations work, Figure 6
shows a l1list of 1lists, L}OO’ and a known cell, Lloo’ Cell Lloo
contains the reference to the list structure. The programmer

does not know how the 1list, L is referenced. He wants to

300’
find the last symbol on the last list of the structure. His

first step is (30,1,L100) which replaces the reference by the
name of the list, L}OO' He then searches down to the end of

list L by doing a series of operations: (32,1,L100). Each

300
of these replaces one locatlon on the list by the next one.

P-1277
8-20+-58
31—
In fact, a leop is required, since the length of the list is
unknown. Hence, after each Find the Next Word operation, he
must transfer, on the basis of the signal, back to the same
operation if the end of the list hasn't been reached. The net
result, when the end of the list is reached, is that the lacation
of the last word on list L300 rests in Lloo' Since in this
example he wants to go down to the end of the sublist of the
last word on the main list, he next performg (31,1,L100). This
operation replaces the location of the last word with the name
of the last list, L700' Now the search down the sublist is re—
peated until the end is again reached, at this point the location
of the last symbol on the last 1list is in L,.,,, as desired. The
sequence of code follows:
LOCATION SYMBOL LINK
b ¢ da
30,1,L100
Lggs 32,1800
4,0,L888
31,1,L100

L 32,1,L

100

999
The operations, b=33 and 34, allew for inserting symbols in a

999
4,0,L

list elither before or after the aymbol depignated. The lists
in this system are one—way: although there 1s always a way
of finding the symbol that follows a designated symbol, there
18 no way of finding the symbol that precedes a designated

P-1277
8-20-58
32
symbol. The Insert Before operation does not violate this rule.
In both operations 33 and 34, a cell is obtained from the |
avallable space list and inserted after the word holding the
designated symbol. (This 1s identical with the first step of the
Save operation.) In the Insert Before operation (b=33) the
designated symbol, s, is copled into the new cell, and lLo is
moved into the previous location of 8. In Insert After (3354),.
the designated symbol 1s left unchanged, and lLO is moved Into

the new cell. In both cases 1L, is moved, that is, 1t no longer

0
remains at the head of the communication llst.

@ther Operations

This completes our account of the baslc complement of
operations for the IPL computer. These form a sufficlent set
of operations to handle a wide range of non-numerical problems.
To do arithmetic efficlently, one would elther add another set
of b's covering the standard arithmetic operations or deél with
these operations externally via a breakout operation on b (not
formally defined here) that would move a full symbol into a
special register for hardware interpretation relative to external
machines: adders, printers, tapes, etc.

The set of operations has not been described for reading and

writing the various parts of the word: Db, ¢, d, e, and [

(although 1t may be possible to automatizé this last completely).
These operations rarely occur, and it seemed best to lgnore them
as well as the input—output operations in the interest of simple

presentation.

pP-1277
8-20-58
35

INTERPRETATION -

In this section we will describe in general terms the
machine interpretation required to carry out the operation codes
we have prescribed. There 1s not space to be exhaustive, and we
will proceed by dilscussling selected examples.

Direct Deslgnation Operations

Filgure 7 shows the information flows for ¢=2, an operation .
that 1s typlcal of the first four designation operations. These
flows follow a simple, fixed Interpretation sequence. Assume
that instruetion (_,2,Lloo) is inside the control unit. The
contents of LlOO are brought into Rl, the input register, then
transferred to Rg, the output register, and back to L100 again.
The d part of R, now contalns the location of s, and this
location 1s transferred from R2 to the Address reglster.

Execute Subroutine (h=1)

When Execute s 1s to be interpreted, the Address register
already contains the location of 8, which was brought in during
the first stage of the interpretation cycle. L2, the Current
Instruction Address 1ist (CIA), holds the address of the
instruction containing the Execute order. A Save operation is
performed on Ly, and 8 1s transferred into L,, which ends the
operation. The result is to have the interpreter interpret
the first 1nstruction on the sublist next? and to proceed down
it in the usual fashion. Upon reaching the terminate operation,
b=10, the delete operatlon is performed on 1L2; thus bringing

back the original instruction address from which the subroutine
was executed. Now, when the interpretation cycle 1s resumed,

P-127
8r25248
~Bl_

it will proceed down the original 1list. Thus, the two oper-
ations, save and delete, perform the baslic work in keeping track

of subroutine linkage.

Parallel Programs

A single program structure — that is, a routine with all 1its
subroutines, and thelr subroutines and so on — requires a CIA
list in order to keep track of the sequence of control. If we
wish to have a number of independent program structures, we must
have a CIA 1list for each. L3 is the fixed reglster which holds
the name of the current CIA 1list. The name of the CIA 1list for
the program structure which 1ls to be reactivated on completion
or interruption of the current program structure is the second

item on the L, list, and so on. Therefore, the L} list 1is

3
approprlately called the current CIA list list. The Save and
Delete operations are used to manipulate L3 analogously to
thelr use with L2 described above.

Table III glves a more complete schemat of the interpretation
cycle. It has s8till been necessary to represent only selected

b operations.

DATA PROGRAMS

In the section on list operations we described a search of
a list. There the data were passive; the processing program
dictated Jjust what steps were taken in coyering the list. Let
us consider a similar situation, shown in Figure 8, where we
have a working cell, LﬁOO’ which contains the name of a list,

L L300 is a data program. There 18 a program that wants to

300°

P-1277
8-20-58
—35—
process the data of L300; which is a sequence of symbols. This
program knows LIOO' To obtaln the first symbol of data, it does
(6’1’L100) -~ that is, "execute the parallel program whose name

1"

is in Lmoo. The result is to create a CIA list, LSOO’ put its
name in LlOO’ and fire the program. Some sort of:processing will
ocecur, as indicated by the blank.words of L}OO' Presumably this
has something to do with determining what the data are, although
it might be some bookkeeping on L}OO'S experlience as a data file.
Eventually L., is reached, which contains'(o,l,LBOO). This
operation stops the interpretation, and returns contrel to the.
original processing program. The first symbol of data is defined
to be ILBOO‘ The processing program can designate»thia by 4L100’
~8lnee the sequence of‘gfh prefixes in LlOO and L500 pass along
the interpretation until it ultimately becomes 1L800' Now the
processing program can do whatever it likes with the data. It
remains completely oblivious of the processing and strudture that
were involved in determining what was the first symbol of data.
Similarly, although it is not shown, the processing program 1is
able to get the second symbol of data at any time simply by

doing a "continue parallel program lLlOO“ (b=7).

One virtue of the use of data programs 1s the solution 1%
offers for "interpolated" lists. In working on & chess program,
for example, one has varilous lists of men} pawns, pleces, pieces
that can move more than one square, rooks, queens, and so on.

One would like a list of all men.. There already exists a list of

all pleces and a 1list of all pawns. We would like to "compose"

these 1lists into a single long list. However, we do not wish ‘

P41277
8-20-58
—~36—

to lose the ldentity of elther of the short lists, since they
are stlll used separately. We would like to form a list whose
elements are the two lists, but such that, when we search this
list of 1lists, it looks like a single long 1list: Further — and
this 13 the necessary condition for doing this successfully — we
cannot afford to make the program that uses this "1ist of lists"
know the structure. The operation Execute s (b=1) is precisely.
the operation needed to accomplish this task in a data program.
It says "turn aside and go down the sublist s. Since it does
not have the operation b=0, it is not "data." It is simply
"punctuation" that describes the structure of the data list, and
allows the appropriate symbols to be designated. Figure 9 shows
a data 1list of the kind we have just described. We have taken
the llberty of writing in the names of the chessmen.

The streteh of code below shows the use of a data program
for a "table look up" operation. The table has arbitrar&
arguments, each of which has a symbol for its value. We have
used Al, A2, and 80 on to represent the arguments. To find the
value corresponding to argument A5, for example, we put A5 in
the communication cell with (14,0,A5). Then we execute the data
program with (6,O,L100). Control now lies with the table, which
tests each argument against the symbol in the communication
lists - 1.e., A5 — and sets the signal accordingly. The prdgram
stops interpreting (b=8) at the word holding the value only if
the arguments are the same. In this case 1t would stop,

designating L)SO' If no entry was found, of course, control

P-1277
8-20~58
37
would return te the inquiring program with the signal off.
LOGATION SYMBOL LINK
8’0,1‘300
20,0,1\2
8,0,L320
20,O,A5
8,0,

L300

Lsso
CONCLUSION

The purpose of this paper has been to outline a cemmand
structure for complex information processing, follewing some of
the concepts we have been using in a series of interpretive
languages, called IPL's. The ultimate test of a command Btrueture
is the problems 1t allows one to solve that would not have been
solved if the coding language were not avallable. At least two
different factors operate to keep problems from being sdlved on
computers: the difficulty of specification, and the effort
required to do the processing. The primary features of this
command structure have been almed at the»specificétion problem.
We have tried to specify the language requirements for complex
coding, and then see what hardware organization allowed their
mechaniiation. All the features of delegation, indirect
refereneing, and breakout imply a good deal of 1nterpretatién
for each machine instruetion. Similarly, the parallel program
structure requires additional processing to set up CIA lists,

and when a data symbol 1s designated, there is delegated

P-1277
8-20-58
~38—
interpreting through several words, each of which exacts 1ts
toll of machine time. If one were solely concerned with machine
efficiency, one would require the programmer to so plan and
arrange his program that direct and uniform processes would
suffice. Considering the size of current computers and thelr
continued rate of growth toward megaword memories and micro—
second operations, we bellieve that the limitatlon already lies
with the programmer with his limited capacity to concelve and
plan complicated programs. We certainly know this to be true of
our own efforts to program theorem proving programs and chess
playing programs, where the IPL languages — or theilr equlvalent
in flexibility and power — have been a necessary tool.
Considering the amount of interpretation, and the fact that
interpretation uses the same operatlons as are avallable to the
programmer, e.g., the save and delete operations — one can think
of alternative ways to realize an IPL computer. At one éxtreﬁe
are interpretive routines on current computers, — the method we
'have been using. This is costless of hardware, but expensive in
computing time. One could also a&d special operations to a
standard repertoire to facilitate an interpretive version of the
language. Probably much more frultful is the addition of a small
amount of very fast storage to speed up the interpreter. Finally,
one could wire in the programs for the operations to get more
speed yet. It 18 not clear that there 1s any arrangement more
direct than the wired in program because of the need of the

interpreter to use the whole capabllity of 1ts own operation code.

P-1277
8-20-58
...39..

REFERENCES

Bernstein, A., A Chess Playing Program for the IBEM 704,
Proceedings of the 1958 Western Joint Computer Conference,
May 1958.

Brooks, F. P., An Experiment in Musical Composition,
Institute of Radlo Engineers Transactions on Electrical
Computers, vol. EC-b, No.3, September 1957.

Kister, J., Experiments in Chess, Journal Assoclation for
Computing Machinery, 4%, 2, April 1957.

Newell, A,, J. C. Shaw, Programming the Loglc Theory

Machine, Proceedings of the Western Joint Computer Con-
ference, 1RE, February 1957,

Newell, A., J. C. Shaw, H. A, Simon, Empirical Explorations
of the Loglc Theory Machine, Proceedings of the Western
Joint Computer Conference, IRE, February 1957.

Newell, J. C, Shaw, H, A, Simon, The Elements of a Theory
of Human Problem Solving, Psychology Review, 65, March 1958,

Newell, A., H., A. Simon, The Loglc Theory Machilne,
Transactions on Information Theory, vol. IT-2, No.3, Sept
September 1956, '

P-1277
8-20-58
-40-

Table I Table of ¢ Operations (Designation Operations).

e Nature of operation for (a)=b c d e

3 (a) 1s the symbol s.

1 d is the address of the symbol s.

2 d is the address of the address of the symbol s.

3 d is the address of the address of the address of the
symbol s.

4 d 1s the address of the designating instruction that

determines s.

5 d 1s the address (name) of a process that determines s.

P-1277
8-20-58
- =h3-

Table II Table of b Operations.

b

Nature of Operation

Sequence—control operations

N U & W N = O

9
10
11

Stop interpreting; return to previous program structure.
Execute process named s.

Interpret instruction 8.

Transfer control to location 8.

Transfer control to location 8, if signal is en.
Transfer control to location s, if signal is off.

Execute parallel program 8; turn signal on 1if stops;
off if not.

Continue parallel program 8; turn signal on if stops;
off if not.

Stop interpreting, if signal is on.
Stop interpreting, if signal is off.
Terminate.

Halt; proceed on go.

Save and delete operations

12
13

Save 8.

Delete s (and everything for which 8 1s responsible).

Communlcation list operations

14
15
16
17
18

Copy 8 1lnto communication 1list, saving 1LO.

Move 8 into communication 1list, saving lLO.
Move 1L, into location of s, saving s.
Move lLO into location of s, destroying s.

Copy location of s into communication list, saving lLO.

- P=1277

8-—20-58
4o
19 Create a new symbol in location of s, saving s.
Signalling operations
20 Turn signal on if gylLo, off i1f not.
21 Turn signal on 1if gleo, off 1f not; delete lLo.
22 Turn signal on if 8 1s responsible, off if not.
23 Turn signal on. |
24 Turn signal off.
25 Invert signal.
26 Copy signal into location of s.
27 Copy signal into locatlion of 8, saving s.
28 Set slgnal according to s.
29 Set signal according to s; delete s.
‘List Operations
30 Replace g by the symbol designated by s, and turn signal
on; if symbol doesn't exist %2?10), leave s and turn

signal off.

.31 Replace 8 by the symbol in d of 8 and turn signal'on; ir
symbol doesn't exist, leave 8 and turn signal off.

32 Replace s by the location of the next symbol after d of
8 and turn signal on (8 replaced by "O,4, (f, part of
d of 8,"); 1f next symbol does not exist, leave s and
Turn signal off. -

33 Insert lLO before 8 (move symbol from communication list).

3y Insert lLO after s (move symbol from communication 1list).

P-1277
8-20-58
43

Table II1I1 The Interpretation Cycle

1. Feteh the current instruction acecording to the current
instruction address (CIA) of the currrent CIA list.

2. Decode and execute the ¢ operation:

If ¢=3 replace d by d part of the word at address d,
reduce ¢ to gee"and continue.

If ¢=2 replace d by d part of the word at address d,
reduce ¢ to ¢=1 and continue.

If c=1 put d in the Address Reglister and go to step 3.
If ¢=0 put CIA in the Address Reglster and go to step 3.

If ¢=4 replace ¢, d by the ¢, d parts of the word at
address d and go to step 2.

If ¢=5 mark CIA "incomplete," save it, set a new CIA=d,
and go to step 1.
3. Decode and execute the b operation:

(Some of the b operations which affect the interpretation
cycle follow.)

If b=0 turn the signal on, delete CIA and go to sfep L,

If b=1 save CIA, set a new CIA=d part of s and go to step 1.
If b=2 replace b, ¢, d by 8 and go to step 2.

If b=3 replace CIA by the d

part of 8 and go to step 1.
If b=10 delete CIA.

If no CIA "pops up" turn signal off, delete CIA
and go to step 4.

I1f "popped up" CIA is marked "incomplete" fetch
the current instruction again, move 1LO into
Address Reglster and go to step 3.

Otherwise go to step 4.

4, Replace CIA by the f part of the current instruction and go
to step 1.

P-1277
8-20-58
T

I--l()O SI B S;z o T

Fig.l— A simple list

L200

Lsoo P~ T

L4o0o

Fig. 2— A list structure

’gh”

89-02-¢g
LL21-d

Communication List

Avqiloble Space List

R, | — .
| CIA List

CCIA List List

COMPARATOR

l—» MEMORY

el
- e
P

ADDRESS |

Fig. 3— Machine information transfer paths

_9.’.‘-

86-02-8
Llzt-d

afbfef d TJe[f

. Location of word

. Operafion code
. Designation code
. Address field

. Responsibility code
. Link to next word

-~ ® 00 0AQa

Fig. 4 — IPL word format

- L=

86-02-g
INFALY

Fig. 5—A simple subroutine hierarchy

~81-(-..

84-02-g
Llet-d

L1oo

L200o

O,,Looo L3000, 0, Laoo

!

[]
— .

0,0, L3oo | 0,0, Lsoo L700

.

g
N

!

— |e—{ 5"}

0,0, L7o00

|

T

Fig. 6——¥Example of finding last item of last sublisf

—6.'7

-8
~d

86-02

Lllet

R1 = ____Looo L1oo
! ‘
R, MEMORY
S L 200
ADDRESS

Fig. 7 — Information transfers in C—2 operaticn

Before 8, 1, L‘OO After 81 1s L1OO

L1oo

0,0, L300 Lioo |0, 4, Lsoo L300

L500[0,4, L700

(CIA)

— —

L700/0,1, Ls

o
@)

h

Fig. 8— Example of a data program

-16-

G-02-g

Tiatia

Lioo[,0,Looo (1,0, L300 ’——’ T

L200| 0,0, King L3oo| 0,0, Pawn
0, O, Queen 0O, O, Pawn
0, 0, K-Rook 0,0, Pawn

! !

Fi.g.9——Applicotion of a data program to chess

G-02-8
-d

..39_.
L2t

7

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52

