
Processor L..A.:...o-~

cu
I C·{

ALS-8 PROGRAM DEVELOPMENT SYSTEM

OPERATOR'S MANUAL

PROCESSOR TECHNOLOGY CORPOPATION
6200 Hollis Street

Emeryville, CA 94608

ID5) '32 8Q.89-'- ~,S) t , -l.b Gt)

(Dcopyright 1977 by Processor Technology Corporation Manual No. 727013

IMPORTANT NOTICE

This co~yrighted software product is distributed on an individual
sale basis for the personal use of the original purchaser only.
No license is granted herein to copy, duplicate, sell or otherwise
distribute to any other person, firm or entity. This software
product is copyrighted and all rights are reserved; all forms
of the program are copyrighted by Processor Technology Corporation.

THREE l-10NTH LIMITED WARRANTY

Processor Technology Corporation warrants this software product to
be free from defects in material and workmanship for a period of
three months from the date originally purchased.

This warranty is made in lieu of any other warranty expressed or
implied and is limited to repair or replacement, at the option of
Processor Technology Corporation, transportation and handling
charges excluded.

To obtain service under the terms of this warranty, the defective
part must be returned, along with a copy of the original bill of
sale, to Processor Technology Corporation within the warranty
period.

The warranty herein extends only to the original purchaser and is
not assignable or transferable and shall not apply to any software
~roduct which has been repaired by anyone other than Processor
Technology Corporation or which may have been subject to altera
tions, misuse, negligence, or accident, or any unit which may
have had the name altered, defaced or removed.

ALS-8 PROGRAM DEVELOPMENT SYSTEM - OPERATOR'S MANUAL

TABLE OF CONTENTS

CHAP'l'ER I General Description ·
CHAPTER II Memory & Program Structure of the ALS-8

CHAPTER III Talking to the ALS-8 ·
CHAPTER IV Memory Related Commands

CHAPTER V Files and File Commands

CHAPTER VI Edit Commands

CHAPTER VII I/O Drivers and Commands

CHAPTER VIII System Commands

CHAPTER IX

CHAPTER X

Command Summary

The ALS-8 Assembler ·
Assembler Error Indications
Assembly Language Instructions
Unconditional Transfers
Conditional Transfers . • . . • • •
Carry Bit Instructions•...
Subroutine Transfers .•.•.
Subroutine Conditional Instructions
16 Bit Operations .•..•••
Stack Operations •
Input/Output Instructions . • .
Interrupt Related Instructions
Variable Storage and the NO OP

SIMULATOR EXTENSION PACKAGE

Operating Manual •...•.•..••
Set Commands . • . . . • • .
Breakpoints and "Real Time Run" Addresses
Input Instructions . .. • • .
Output Instructions • . •
Input/Output Commands ..•
Optional Simulator Entry Point
Other SIM-1 Extension Functions

TXT-2 EXTENSION PACKAGE

Operator's Manual
Editor •..•. ·
Cursor Positioning Command

- i -

1

4

9

12

15

18

21

23

27

.35

37
41
48
48
49
50
51
54
55
56
57
59

62
62
65
66
67
68
69
69

70
70
71

© Copyright 1977 by Processor Technology Corporation Hanual No. 727013

Table of contents (cont.)

TXT-2 EXTENSION PACKAGE (cont.)

Screen Scroll Commands
Direct File Positioning Commands •••
File Modification Commands .••.
Other Commands . . • .
FIND • •
ESET Command

APPENDIX A - Standard System Notes

APPENDIX B - ASSI, Assembly from Input Driver

APPENDIX C - ALS-8 on Cassette and with SOLOS/CUTER

APPENDIX D - SOLOS/CUTER Interface Specifications

- ii -

71
72
73
74
74
75

77

80

81

84

ALS-8 PROGRAM DEVELOPMENT SYSTEM

OPERATOR'S MANUAL

CHAPTER I

The ALS-8 is a single terminal operating system designed
for use with "8080" based micro-computers. The system software
is contained on a printed circuit board in programmable read-only
memory. This same board also has circuitry which will normally
start the operating system once the computer is turned on. This
configuration, called a "turnkey system", eliminates the startup
procedures usually required from the computer's front panel switches.
The fact that the ALS-8 program is always stored in memory, regard
less of power conditions, eliminates the system load or "boot
strapping" normally needed by small machines.

In this manual, the name "ALS-8" will refer not only to the
circuit board but also the operating system program contained on
the board. The manual will describe the many capabilities of. the
ALS-8 and how they are used. Chapter Two also describes the
hardware requirement·s forrunning an ALS-8.

The ALS-8 is a personalized operating system which attempts
to maximize convenience in program development without over
controlling the machine. Operating systems, even the large computer
variety, can be guilty of "over-control" when design assumptions
become user restrictions. The ALS-8 has assumptions incorporated
into its design as must any program, but the ALS-8 allows access to
"parameters" which can redefine these assUmptions. In this way,
various input/output devices or memory configurations can be accommo
dated. Another personalized feature allows the user to expand the
ALS-8 by adding his own functions to it. Each of the initial
operating system .functions resides in its own section of the ALS-8
memory and is activated by a command or word or "key word" sent from
the terminal. Additional functions only have to be given a memory
start address and a name for the associated command. The new func
tion is executed whenever the ALS-8 sees the custom command name
associated with that function.

The ALS-8 relies heavily on the concept of parameters in its
internal design and its command interpretation. The fundamental
idea is contained in the observation that two similar tasks differ
ing by some element should be a single task which modifies its opera
tion based on the value of this "element". A simple example of this
concept is the ALS-8 output formatting routine. A number of printing
terminals are available which could be interfaced to the computer with

(1)

ALS-8, and these terminals often vary in the width of paper
they accept. Some standard widths are 72, 80, 110, and 132
characters per line. It is conceivable then that a separate
ALS-8 package could be written to handle the specific terminal
attached to its computer. The parameter principle suggests
instead that a single ALS-8 be made with provision for defining
or redefining this parameter, the terminal width. This is, in
fact, exactly what is done. Before printing, the output routine
checks this value to see how it should format the output line.
The ALS-8 has several such parameters which it uses to control
its various functions.

This concept of parameters is carried into the command
structure in much the same way. While interpreting a command,
the ALS-8 checks for an optional list of "arguments," which
could be one or two numbers, and for a name enclosed in slash
marks (/). These values are stored in the order found, and if
the function chosen by the command name needs this information
for its own functioning, it retrieves it from a predetermined
location in memory. The only appreciable difference between
arguments and parameters is that arguments are temporarily
stored and only for the current command, while parameters .
describe conditions which may be of interest to lany functions.
Using the features which arise from this princip e, the user can
tailor the operating system to his own personal requirements.

The ALS-8 contains an assembler, file handling routines,
editing, and management functions. The functions within these
logically distinct sections of the operating system can be
combined in many ways to aid in the writing and debugging of
programs. The text for a program, and oftentimes data, is
written from the terminal onto a "file" in memory where it can
be examined, altered, added to, or saved for later. The ALS-8
resident assembler can convert the program text on such a file
into the numeric machine language required by the cPU. This
machine language is then stored by the assembler at some user
designated memory location where it can be run. Up to six of
these files can be manage"d at one time by the ALS-8.

A very important aspect of the ALS-8 in program development
is the fact that any user program has access to all the ALS-8
functions and support routines. For many problems this means
that half the program is written, debugged, and ready as soon
as the computer is powered up. All the user's program must do
is call the already existing routines. Naturally the user
program has to be aware of the conventions and assumptions
associated with the routines that it calls, but it is far
simpler and much faster to learn these than to write such
routines from scratch each time a particular function is needed.
Later sections of this manual will deal with this feature in
detail.

(2)

Another important design feature of the ALS-8 is its ability
to maintain and effectively use a SYSTEM SYMBOL TABLE. The user,
through the appropriate commands, can enter and delete names in
this list or "table". These names carry only an associated number
with them which is interpreted as the value of the label. This
table is accessible to the assembler and any other function (user
program) which cares to reference it. This can be used quite
effectively to link together programs written at different times.
The address (or value) of a certain quantity does not have to be
known at the time that a program is being assembled. Instead,
that program can contain code which looks for this value in the
symbol table.

(3)

CHAPTER II

MEMORY AND PROGRAM STRUCTURE OF THE ALS-8

A structural description of the ALS-8 is given here to define
the minimum hardware requirements and to outline the principles
behind its construction so that the fullest advantage may be taken
of the features available. The program ALS-8 is distributed on the
printed circuit board mentioned in Chapter I, and it is this board
that defines some of the hardware constraints. The program itself
could be used on any 8080 based computer which has retained the 64K
addressing scheme of the 8080 chip. However, the circuit board does
restrict correct mechanical and electrical characteristics available.

The circuit board also determines the location in memory for the
program. The board itself is capable of holding 8K bytes of PROM, of
which the ALS-8 takes over half. This memory page is hardwired on the
board to reside in the last 8K page of memory so that it addresses
from EOOO hex to FFFF hex. The program itself also has memory
requirements; the software assumes that at least 1K of random access
memory (RAM) resides in memory, starting at location DOOO hex.

While this memory configuration is enough to let the ALS-8
operate, it is insufficient for most programming requirements. It
is strongly suggested that a separate memory be provided in the low
part of memory, preferably starting at 0000 to serve as the user's
free space for putting in programs, files and data. This is suggested
because there is very little free space around the DOOO RAM, and it
is also suggested that the system RAM board be 4K (from DOOO to DFFF) .

The ALS-8 is very flexible with regard to peripheral devices,
but it does make some initial assumptions about the terminal which
constitute a hardware requirement. Devices attached to any 8080
based computer identify themselves to the computer with a number
called a "device code". There are 256 possible codes for input de
vices and 256 for output devices. As initialized, it is assumed
that the keyboard is INPUT DEVICE code 1 and that the print mechanism
is OUTPUT DEVICE 1. It is also assumed that the computer, or the
ALS-8 in this case, can retrieve status information about the termi
nal from input 0, the most significant bit, 10000000, represents
the busy status of the output device and the next lower bit,
01000000, has the busy status of keyboard. The terminal printer
is busy when its bit is 0, and the data is assumed available from
the keyboard when its bit is 1. This I/O driver is in the System
RAM area, and it can be changed by the user following system initial
ization; however, since this convention is assumed by a good deal of
the software written for 8080 based computers, it is suggested that
it be followed.

(4)

The ALS-8 keeps a great deal of in'formation in the system
RAM ~rea,,~d to use the ALS-8 to its fullest, the ~eader should
learn how this information is used. In the following discussion
on the system RAM area, it will be assumed that the 4K space
reserved for it is actually filled with memory. The reasons will
become clear as the discussion progresses.

The first block of information in this area occupies addresses
DOOO to D25C and is called the System Global Area. Parameters de
fining or describing I/O devices, program status, and other informa
tion are stored here. Immediately following this is the Custom
Command Table which contains a list of names defined by the user
with the CUSTE command which will be detailed later. Each entry in
this table is paired with an address given when the command was
defined. When the user types in one of these Custom names, the
ALS-8 realizes that it isn't a name from its own command set. It
then searches this custom table, picks up the corresponding address
and performs a subroutine jump (call) to that address. This table
ends at D2FF which leaves room for 22 custom names.

The System Symbol Table follows the custom commands and continues
out to DFFF where the ALS-8 software begins. This table, like the
Custom Command Table, contains names and corresponding sixteen-bit
numbers which are usually thought of as addresses. This is used
most often by the ALS-8 resident assembler, but it is open for use
to any user routine which cares to access it. It allows user routines
to be parameterized so that the routine can access information not
available at the time it is written and assembled. This is es
pecially useful for connecting programs and subroutines written at
much different times. Note that systems having only 1K board at
DOOO will be restricting this System Symbol Table to the area D300
to D377, only sixty-four bytes of memory. This severely limits
the usefulness of this feature.

It was suggested earlier that RAM be placed in the low part of
memory space for the user. This serves to minimize congestion and
the possible memory conflicts arising between the system and user
software. In keeping with this philosophy, special user written
routines designed to handle I/O devices should be stored somewhere
in the system. These routines, called I/O drives, can be put any
where, but should probably be located in the RAM just under the
EOOO start of the ALS-8 program until they are put in more permanent
form. This still gives the System Symbol Table as much room as
possible while maintaining the system/user separation.

The diagram on page (6) summarizes the memory map described
so far and shows the suggested locations for the Video Display
Module and optional memory.

(5)

DFFF

I/O D~IVe:~~
(OPTIONAL)

1

D400 1----1-----SYSTSM SYM~O~ TA~~~

CU$oTOM COMMAND TAE'l..~

SY7TE.M ~i,..O~AL.. A~~A
D¢¢¢

i',

/
II

\
\

\
\

/

I
/

(6)

_ ~.~TO~_
SIMUl,ATOR
50FTWAR~ - - - -f--

Al..S-8 APPROXIMAT~
8K SiZe: OF AL~-a
PROM WARD

SYSTEM R'AM
ARS"A

Vlt/~O PISPL..A Y
MOI7LJL..&:

I K M~MORY E30ARP
- - - -- ----

..r 2K PROM E30ARP
../:' '1' ~

i
USER'S FI\"'~
ANP PROGRAM
AR~A

fOOO

£::000

DOOO

Cc.oo

0000

The separation of system space from user space results
in an upward progression of address values for user memory
and a downward progression for system memory. Future products
have assumed that this policy has been carried out and that
the Video Display Module (VDM) , for instance, is located just
below the DOOO start of system-RAM. This VDM should then start.
at location CCOO hexadecimal. The presence of the VDM in the
COOO-CFFF block means that no 4K board could be placed there.
It is, however, suited to a 2K PROM board and perhaps a lK
memory board, should it become important to fill up this space
completely. The space from 9000 all the way to BFFF has been
marked as the best location for further extensions of the
System. As I/O drivers, loaders and other user software is
developed, it is suggested that they be placed in PROM in the
COOO to C7FF block. Future software packages will assume this
memory structure.

The program structure of the ALS-8 is most easily described
with the aid of the following diagram. The conceptual parts to
the program are shown as parts of a heirarchy not completely
unlike the structure of a government or business. In such a'
diagram, it is assumed that the higher levels are able to command
the lower levels but not the other way around. In the program
sense then, the top most level can calIon any of the routines ~
below as subordinates. It is assumed also in this diagram that
routines on the same level may call each other as needed.

r
I

I
I

AL.-SJ - e I E.XSCU,.IVI! &:Xe:CUTIVE L-EVE:L..
I -- --

~ l ~ r I ! !
AS~M M~P;: CUSi fUNCTION L..EV~L-

(C.OMMANDS.)

---1-- -1- - - --, r- -- -1- -1-
1 1 I I 1 1 1

SUPPORT I I
l..~V~L.. I I

-

1
I

I
I
I I

L_ -I L _________ ~
1./0 P~IVe:~S.

The top level, the executive level in this diagram, represents
the control center. It is this section which controls the
communications with the terminal, decides which function is to
be executed, and reports on errors to the user. Each block on
the function level corresponds to a command from the ALS- 8
'command set. These routines, for efficiency's sake, make heavy

(7)

use of the support routines on the next level, making the
overall package much smaller. These support routines have been
divided into two parts: general support, and I/O drivers. The
I/O drivers are support routines which handle the transfer of
data to or from external devices. They are logically distinct
from the general support routines because only the drivers
handle I/O and because the ALS-8 allows the user to define his
own routines as drivers, thereby adding to this part of the
system. Each new driver added usually has charge of a single
device. Only drivers can be used (as will be described in the
chapter on I/O drivers) to control high speed paper tape
readers, cassette recorders or printers. The custom commands
also add to the structure diagram but do so on the function
level. In addition, they can make use of all the general support,
I/O drivers, or other function level blocks to minimize their own
size and complexity. Other complete, self-contained programs
may be considered custom functions (like BASIC or FOCAL) and
this interaction with support routines or drivers is only a
convenience, not a requirement.

It is important to realize that many of the decisions
made by the ALS-8 in choosing support routines or drivers for
a given task depend on status information kept in the system
RAM area. Although there may be quite a number of I/O driver
routines identified to the system, only one input driver and
one output driver are considered current at anyone time and
their identities are kept in this memory area. Similarly,
certain parameters will influence the flow of control through
the program structure.

(8)

CHAPTER III

TALKING TO THE ALS-8

The command set recognized by the ALS-8 can be naturally
divided into five categories; MEMORY, FILE, EDITING, I/O and
SYSTEM commands. The memory commands are used to enter data
into memory or examine the contents of a section of memory.
Usually these data transfers are between memory and the key
board and printer of the terminal, but with proper equipment
and drivers, the memory commands become a means of saving and
restoring programs. The file commands verify, relocate, and
manage up to six files of information in memory while the edit
commands manipulate the contents of the files. The category
of system commands includes all the commands which define system
parameters, symbols, and drivers. It also contains commands
which execute the assembler, the optional simulator, or any
user designated location.(s) in memory. The following table
lists the command names in their respective categories. The
names marked with an asterisk are commands used only by the
optional VDM Editor or Simulator software packages.

MEMORY FILE EDIT SYSTEM

ENTR FILE DELT IODR
DUMP FILES EDIT (*) SWCH

FCHK LIST MODE
FMOV TEXT ASSI
FIND (*) RNUM ASSM

EXEC
SIMU (*)
AUTO (*)
SYML
SYMLE
SYMLD
STAB
CUST
TERM
FORM
NFOR

The above list represents the default command set
recognized by the ALS-8 executive routine. Individual ALS-8
functions, while operating, will recognize other lines as
inputs. The ENTR command, for example, takes control of the
terminal and expects to receive numeric input data to place in
memory. This function must be given a special character signi
fying the end of input before it will return control to the ALS-8
executive. The ENTR function will not recognize entries from the

(9)

executive's command set. An error message is output to the
terminal when an entry line is unrecognizable.

Other than custom commands which have been covered, the
ALS-8 executive does recognize a command line type not shown
in the command set list. Lines beginning with a number are
assumed to be line entries to a file of information stored in
memory. Files are a very powerful feature of the ALS-8 which
will be thoroughly covered in Chapter V. For the moment it
suffices to note that they contain text (usually program text
for the assembler) and that they normally sequence their contentf
by line numbers. The text you are now reading, however, is an
example of a text file without line numbers using the
optional TXT-2extension to the ALS-8.

A number of the executive commands accept "arguments" as
modifiers for the associated function. The ALS-8 executive
allows a maximum of two numeric values and one ASCII argument
as modifiers to a command. How the arguments are used if they
are used at all, depends on the command chosen. In use, the
arguments are interpreted by the order in which they appear.
Commands using an ASCII argument will expect it to be the fi'rst
argument given. The ASCII argument, usually a name in one of
the many tables used by the ALS-8, also has the requirement that
it must be enclosed in slash marks(/). The following example
shows a number of commands as they might appear with arguments.

ASSM 2000
ASSM 2000 3000
FILE /FNAME/ 100
DUMP 101 110
CUSTE /HACF/307
IODR /TAPES/ DFOO DF80

Most of the ALS-8 functions contain logic to handle
instances where an argument has been omitted. In such
instances a default rule, peculiar to the command and argument
in question, will be applied. The "ASSM" command shown in the
example above can be used with one or two arguments. The
command starts the assembler which begins by checking for a
pair of arguments. It interprets the first argument as the
origin (ORG) address for the program being assembled. The
second argument specifies the starting address for the
assembler's binary output (machine instructions). If this
second argument is missing, the assembler will take the value
given in the first argument for both arguments. The assembler
has no provision for defaulting two arguments so it will
signal an error if the ASSM command is given with no arguments.
Default rules for all executive commands will be given in the
detailed description of these commands in the upcoming chapters.

(10)

Again it is mentioned that the user functions attached to custom
commands have full use of the argument handling support routines1
the treatment of default conditions is naturally up to the
programmer.

Finally, it must be noted that there are some minor rules
to be observed in the use of command inputs with arguments.
The ALS-8 executive needs to separate the characters belonging to
the command from those of the arguments. Similarly, it needs
to separate arguments from one another. The requirement is
therefore put on the user to place at least one blank after the
command word and at least one blank between a pair of numeric
arguments. The slash at the end of an ASCII name argument is
sufficient to separate the name from any following numbers.
Numeric arguments may follow an ASCII argument with no separating
blanks as long as the ASCII argument was terminated with a slash
mark.

Responses from· the ALS-8 in general depend ,upon the command
chosen. For the standard ALS-8 command set, the user is always
assured of a responsei if a response is not a normal duty for a
command, the ALS-8 executive will send the word "READY" to t.he
user's terminal after completing the command. '

(11)

CHAPTER IV

MEMORY RELATED COMMANDS

The simplest commands in the ALS-8 repertoire are the memory
related commands, ENTR and DUMP. They provide a means of changing
and examining memory locations directly from the user's terminal.
The output printing format of the DUMP command has been made com
patible with input format requirements of the ENTR command~ This
permits these commands to be used for saving programs on a mass
storage device and returning it to memory at a later time. This
feature will be covered here and in the chapter on 1/0 drivers.

The ENTR command requires a single argument defining the start
ing address for the data to be entered. The command starts the
corresponding ENTR function which assumes control of the user's
selected input device until receiving the character"/" signifying
the end of the input stream. The actual input to the ENTR function
is a list of values, each between 0 and 255 decimal in magnitude.
These values must be listed in the order they are to be placed in
memory, and each must be separated from adjacent values by at least
one blank. The following shows typical sequences using this .command.
Note that the input list may use any number of lines up to the "I"
mark.

ENTR
20 303
16 12
107 200

I
READY
ENTR
101 200
READY
ENTR 3
o 7/
READY

2001
/

100
55

303

40

100 o

The argument and input list can be in octal, as shown above, or
in hexadecimal depending on the current mode parameter set by the
system class comreand MODE. The MODE command affects the operation
of other ALS-8 commands, not just memory commands. It takes a
single decimal argument, 8 or 16, which is stored in the system
parameter defining the base for command inputs. If any inputs are
received which are impossible to decode with the current base. a
"WHAT?" will be sent to the user's terminal. The ALS-8 initializes
this parameter at start time to 16 and this value is changed only
with MODE. The following shows possible errors associated with the
MODE parameter:

MODE 16
ENTR 156000
WHAT?

(Octal address)

(12)

MODE 8
ENTR CCOD
WHAT?

MODE 16
ENTR BF2

(Hex address)

52 49 EE 4F 52 F6 43 50
5 AO 0 84 E4
43 2 303 22
WHAT?

In the last of the examples, the values up to the error are
properly stored by the ENTR function. The corrected input will have
to restart at the place of the error.

An added feature of the ENTR command is that the present storage
address may be changed during input without having to stop the pro
cess and restart with a new argUment. The "present storage address"
always starts with the value given by the attached argument to ENTR,
and the first input value is put in this location; inputs are placed
in successive locations. The user has an opportunity at the start
of each input line to redefine this current address. If the first
value is followed immediately by a colon(:), it is treated as a new
address rather than a memory value. While this seems only a minor
convenience, it becomes the key to making the output of DUMP com
patible with ENTR input. The following shows the first example of
this chapter rewritten using this feature.

MODE 8
ENTR 100
2 303 55 40 16 12 107 200
303 100 0
2001: 101 200
3: 0 3 /
READY

The DUMP command displays the contents of memory starting at the
address specified in the first argument and continuing to the address
specified by the second. As with ENTR, both the arguments and the
output follow the base parameter set by MODE. The DUMP command can
also be used with just a single argument; in this case it types out
only the location specified in the first argument.

The lines output by the DUMP command each start with the
current address followed by a colon. The remainder of the line
contains the hexadecimal or octal contents of the memory locations
beginning with the printing address. In either the octal or hexa
decimal mode, the DUMP command puts sixteen values on each line.
Because this output is formulated prop~rly for ENTR, those users
with a paper tape punch can save the output directly on tape and
reread it later with ENTR. In this case, the standard ALS-8 I/O
driver could be used. Saving programs on other devices will require

(13)

using special drivers. The following shows a simple example of
DUMP in the hexadecimal mode.

DUMP 40 52

0040: OA D8 D6 07 C9 DB 00 E6 45 00 DC 01 03 02 F8 CF
0050: E6 7F C9

(14)

CHAPTER V

FILES AND FILE COMMANDS

The ALS-8 relies very heavily on the use of files; for they
represent a very powerful way of managing data in text form.
A file is a sequence of information stored in user designated
memory. The information is broken into "lines" which are dupli
cates of the terminal input lines which define them. Each
line, both as it is input and as it is stored in memory, starts
with a line number defining its position in the file relative to
other lines. Lines with the lower line numbers are at the start
or "top", of the file while higher numbered lines have positions
farther "down" in the file. The lines do not have to be entered
in numeric order by the line numbers. The ALS-8 will reposition
other lines to make sure the proper order is kept internally.
Once in memory, files can be renumbered using the RNUM command.

Files are known to the ALS-8 by name and up to six files
can be defined and managed at anyone time. File names may
have up to five characters. Rather than having each file
related command specify which file is to be operated on, the
ALS-8 has the user define "Current File". Using the FILE command,
the user can specify which of his defined files is to be con
sidered "current". All file operations will apply to this file
until the Current File is redefined with the FILE command.

To create a file the user must give a name for the file
and a starting address for it. This is done by using the FILE
command with an ASCII argument for the FILE NAME and a numeric
argument _as the START ADDRESS for that file. In this way, the
FILE command can be used to create a new file as well as make
an already existing file current. File names are kept in the
system RAM area in a table called the "File Name Table".
These names can also be removed from this list of defined files
by using the FILE command; a numeric argument of zero erases
the name from the table but does not affect the memory containing
that file. These file parameters may be restored later with the
FCHK command thereby allowing the user to actually have more than
six files of information in memory at one time. The ALS-8 does
not, however, keep track of more than six. The following shows
three short files being created. Note that the FILE command
used with no arguments returns a message to the terminal defining
the Current File, its start and end addresses.

FILE/ONE/lOa

ONE 100 100 (RETURNED BY ALS-8)
1 This is the first line of file ONE.
26 THIS IS THE SECOND.

(15)

29 Line 3
FILE /TWO/ 200

TWO 200 200

FILE /THREE/ 6Al

THREE 6Al 6Al
10 Dear John,
12 Pay me or I won't be
14 your friend.
15 See you soon,
17 Igor
FILE /TWO/

TWO 200 200
1300 File Two gets this line
1984 UPPER CASE OK.
1000 lower case ok.
2710 End TWO
FILE

TWO 0200 02CO

This example points out a number of requirements and
features omitted in the discussion so far. Line numbers, for
instance, are normally followed by a blank but this is not
required by the editor functions. The example also illustrates
the fact that line numbers do not have to be absolutely con
secutive numbers. File line numbers are always decimal and must
lie in the range 0 to 9999.

A file, "TWO" in the example, can be entered into the File
Name Table and saved during the definition of :THREE" although
it is empty. Later it can be made the current file and infor
mation can be entered into it.

Files naturally have a length as well as a start location
and the user must be careful that, in adding text to a file,
he does not accidentally write file information over a program
or another file. The ALS-8 assumes that the user knows where
file information and programs are located. To help the user
manage his files, the ALS-8 provides three file related
commands: FILES (different from FILE), FMOV, and FCHK.

The FILES command produces a listing of the files in the
File Name Table. This listing includes the start and end
addresses for the files so it is a simple matter for the user
to spot and avoid memory conflicts. Should a memory conflict
threaten, the current file can be moved to a different location
in memory with the FMOV command. FMOV requires only a single
argument defining the destination address for the Current File.
This argument may not be zero, but no other restrictions are
placed on it.

(16)

The last of the file related commands is FCHK which verifies
the internal structure of the Current File and updates the file and
address if necessary. If, for any reason, the file is not proper
ly formatted in memory, FCHK will send the message "FILE ERR"
to the terminal. This command can be very useful in restoring files.
Earlier it ,was mentioned that the contents of a file were not affected
by removing the file's name from the list of defined files. Assum
ing that subsequent operations have not altered the memory contents
for that file's information, FCHK can return it to an active, useful
status. Similarly, the contents of a previously saved file could be
ENTR'ed into memory and reactivated with FCHK. The followi~g example
shows some typical uses of FCHK.

FILE /COPY/ 700

COpy '700 700
FILE /OLD/ 600

OLD 600
10 WAIT
15
20
25
40
FMOV 700

600
IN 377
CMPA
JZ WAIT

RET
END

OLD 700 736

FILES
OLD 700 736
COpy 700 700
FILE /OLD/ 0
FILES

Cbpy 700 700
FILE /COPY/

COpy 700 700
FCHK
COPY 700 736.·
FILES

~., ~'

NEW 600 600
COpy 700 736
FCHK
NEW 600 636
FILE

NEW 600 636

define a file name. Leave empty.

define file "OLD". Store program in it.

move OLD to start of COpy.

OLD is 0 K.

delete OLD from list.
check defined files.

only COpy. thought to be empty.
make it the current file.

redefine end address.
.)

examine file starting at 600.

check Current File, "NEW".

contents recovered.

(17)

CHAPTER VI

EDIT COMMANDS

The ALS--8 contains a number of editing commands ·designed
to manipulate the contents of a file. All of these commands.
operate on the Current File so the user is cautioned to check
the status, and perhaps identity, of the Current File before
using these functions. This, as described in the last chapter,
can be done with the FILE command. All the EDIT commands use
decimal line numbers as arguments where required. (NOTE: These
commands are separate from the optional VDM EDITOR package,
TXT-2, sold by Processor Technology.)

The EDIT command set contains two commands designed to print
the contents of the Current File: LIST and TEXT. The LIST
command outputs the Current File ordered by increasing line
number. It accepts up to two arguments defining the start and
stop line number for the printing. If only one argument is
given, the LIST function assumes that it is only to print the
single line identified by the first argument. When both argu
ments are omitted, the entire file is printed. The following
example exercises these options. (Examples show formatted
output.)

FILE /SMPL/ lA2B
o WAIT EI
0010JMP WAIT+l
0020 * THIS SETS INTERRUPT AND WAITS
0024 END

LIST 0
0000 WAIT EI

LIST
0000
0010
0020
0024

WAIT
JMP
* THIS

EI
WAIT+1

SETS INTERRUPT AND WAITS
END

The TEXT command is very much like LIST; the only
difference is that its output omits the line numbers. This
feature is generally used for files containing regular text
as opposed to program code. This allows letters, notices,
or papers to be printed without line numbers. Since the user
must specify line numbers for arguments in edit commands, the
TEXT command obeys the argument conventions used for LIST.

(18)

The following shows the last example reprinted using TEXT.

TEXT
WAIT EI

JMP WAIT+1
* THIS SETS INTERRUPT AND WAITS

END

The ALS-8 system RAM has two parameters pertaining to
LIST and TEXT; the formatting flag and the terminal width parameter.
"Formatting" refers to the spacing or layout of the printed re
sults from the two functions. A formatting "flag" parameter is a
word in a system RAM which tells LIST or TEXT whether or not they
should rearrange the contents of each line in a form especially
suited to assembly language output. This parameter is controlled
by two system commands: FORM and NFOR, which indicate "formatting"
and "no formatting" respectively. Naturally, a file not containing
a program is more readable when not formatted. The FORM and NFOR
commands require no arguments, and the parameter set by them re
mains in effect until explicitly reset by the user.

The terminal width parameter, set by the command TERM,
contains an integer which represents the line width for the current
output device measured in characters. This parameter has no
influence on LIST or TEXT when the formatting feature is suppressed.
When formatting output for either output command, the terminal
width value determines the extent of formatting. When it is fewer
than 80, minimum formatting is performed. When it is more than
80, the maximum formatting is performed. Terminal width also con
trols the maximum length of input lines as well as the acceptable
line length during FCHK.

The DELT cO,mmand allows the user to delete a line or group of
lines from the Current File. It accepts one or two arguments
identifying the first and last line numbers of the group to be
DELETED FROM THE FILE. When used with only one argument, DELT
assumes that it is only to delete the single line designated by
the first argument. The ALS-8 executive, however, rejects line
numbers input with no line. Thus, line 40 in the following can be
deleted with "DELT 40" or simply 40 followed by a carriage return.

FORM
FILE

A 0280 02AF

(19)

LIST 36 44

0036 DUP LXI H,O
0039 DAD SP
0040 SHLD HOLD
0044 RET
DELT 40

LIST 36 44

0036 DUP LXI H,O
0039 DAD SP
0044 RET

The last command in the edit set is RNUM which renumbers
a file given a start line number and increment. When finished,
the Current File's line numbers will begin with this first
number, and all adjacent line numbers will differ by the value
of the second argument. If the second argument is omitted, the
RNUM function will use five as the increment. The largest value
allowed for this increment is twenty-five. The RNUM function
also will change the increment to one if the line numbers exceed
9000. The example below shows a small program being renumbered.

LIST

0025 INSTAT IN TTS
0030 ANI DR
0035 JZ INSTAT

RNUM 8000 10
TEST 1000 1030

LIST

8000 INS TAT IN TTS
8010 ANI DR
8020 JZ INSTAT

(20)

CHAPTER VII

I/O DRIVERS AND COMMANDS

The tenn "I/O Driver" refers to a routine used to "transfer
textual data between the ALS-8 routines (or user routines) and an
associated input or output device. Its basic duties are to inter
pret a request for data transfer fr9m some calling routine and to
translate it into a sequence of reads or writes suited to the con
ventions assumed by the electronics of the external device. This
relieves the calling routine of the" responsibility of handling
separate conventions for many devices. Conceptually, an ALS-8
routine can ask for data from any input device in the same way
or send data to any output device. It must formulate the request
and simply choos"e the routine to handle the request and the device.

The ALS-8 has a table of driver routines in its system RAM
area and a parameter identifying the current pair of drivers (in
put and output). When an ALS-8 function requires input or out-
put of a character, it uses this parameter to choose the proper
driver. The table for these routines contains a name and pair of
addresses for each entry. The IODRcommand handles entr.ies to and
deletions from this table, as well as defining the "current"
driver and printing out the table's contents. Used with a name
argument of one to five characters and two numeric arguments obey
ing the current value of MODE, the IODR command will enter the
name and addresses into the table. If used with no arguments at
all, IODR prints the contents of the table. Since drivers are
selected as pairs, special functions can be implemented such as read
from high speed paper tape both with and without printout. Entries
can be deleted by using IODR with the entry name as an argument
followed by a single zero argument. The example shows IODR being
used in these ways.

IODR /TAPES/ DFOO

TAPES DFOO DF40

DF40

IODR /TVTWT/ DF80 DFCO

TVTWT DF80 DFCO

IODR
SYSIO E200
TAPES DFOO
TVTWT DF80

E240
DF40
DFCO

(21)

IODR /TVTWT/

IODR
SYSIO E200
TAPES DFOO

o

E240
DF40

SYSIO, shown in the above, is the default I/O driver
which handles the main terminal. It remains the current
driver until another from the list is explicitly defined
by IODR in yet another form: IODR with just a name argument.
Making a driver "current" assumes that the corresponding
routines are loaded and ready for use because the subsequent
ALS-8 commands will have switched to using those addresses
for I/O. Assuming that "TAPES" in these examples represents
drivers for a cassette recording unit, data could be loaded
into memory with the following:

IODR /TAPES/
ENTR 200
(the ENTR function will retrieve data from the cassette
and not the terminal keyboard)

The discussion on drivers so far has covered only the
basic duties of drivers. Because the system only has to know
where the routine starts, the programmer has an enormous amount
of flexibility. The driver is a program capable of handling
any number of devices in a single call if desired. It has
access to system parameters and tables so it can check status
words or find file information. When used with functions like
ENTR, the driver can accept data in whatever form the device
will provide it and then reformat it so that the necessary
address and colon are appended to the start of each line. There
is also no restriction that more than one driver can't be
assigned to a single device. One line printer driver might
simply echo the data given to it on the page. Another driver in
the list might count lines so it can automatically skip the
paper folds and print headings at page tops. Similarly, a set
of drivers could exist for communication with the '~M as within
the TXT-2 extension package.

These capabilities are futher enhanced by the fact that
any user program has access to the driver list. It can, if
desired, ignore the "current" driver pair, search the table
for a specific name, retrieve the corresponding addresses and
begin using those routines. To write such a program, the user
must know the addresses of the table, the parameter identifying
the current driver, and the ALS-8 routines which search tables.
The conventions for the routines and memory storage must also
be learned, but the enormous flexibility compensates for the
trouble.

(22)

CHAPTER VIII

SYSTEM COMMANDS

The commands described in this chapter cover a wide range
of functions. ASSM, ASSI, and their derivatives assemble a
program and load the resultant machine instructions into a
designated section of memory. CUST and its derivatives, CUSTE
and CUSTD, manipulate the Custom Command Table stored in system
RAM. SYML, SYMLE and SYMLD are like the CUST set except that
they manage the System Symbol Table in the system RAM. Other
commands in this group define I/O drivers, set system parameters,
and execute routines starting at user defined addresses.

All of the commands related to the ALS-8 resident assembler
accept one or two arguments. The first argument defines the
origin for the program, while the second, if given, specifies
the start address for the machine language output of the assemb
ler. If only one argument is given, the assembler uses it for
both the program origin and the start address for the binary
form of the program. The binary machine language output by the
assembler is known as "object code". It is the only form'
executable by the 8080 CPU. The program text by contrast is
not executable but much more readable for humans. It is called
"source code".

The set of assembler-related commands ASSM, ASSME, ASSMX,
ASSMS, ASSI, ASSIX and ASSIS all produce assembled object code
programs for the program source code. Each has, however, its
own option associated with it. The fourth, and where applic-
able the fifth, character in these command names is used to
select the options to be used on a particular assembly run.
The fourth character, "M" or "I", divides the group into two
sets of four commands. These sets differ in the source they
use for program text. The "M" group uses the Current File as
its source whereas the "I" group reads the source program
through the CURRENT INPUT DRIVER. The fifth character of
the assembly command names control options for the assembler
output listing. If omitted, as in ASSM or ASSI, the listing is
a one-output-line-per-source-line printout identifying errors,
addresses, and machine language values produced from the program's
instructions. An "E" suffix suppresses all printout except for
those lines containing errors. "s" and "X" suffixes list the
contents of the symbol table immediately following the program
source listing. The "X" option adds cross reference information
between program symbol names and the line numbers that they
occurred in. Formatting of the assembler output listing depends
on the parameter defining the terminal width and the "FORM"
switch.

(23)

The CUST command prints out the current contents in the
Custom Command Table. The custom names must be four or five
characters and are considered unique to only four characters.
When a custom name is given to the ALS-8 as a command, this
address is retrieved from the table and the ALS;..8 passes
control to this address (as a subroutine call). Entries to
this table are made with the CUSTE command which requires an
ASCII argument to be used as the new name and an address to be
called for the command. The address argument follows the base
set by the last MODE command. CUSTD deletes custom names from
the table. It requires only the single name argument. Users
are cautioned that the twenty-two custom name limit is their
responsibility to watch as the ALS-8 does not warn when the
number of entries exceeds the table's boundary.

Custom commands can be attached to any kind of program.
The FOCAL and BASIC software packages both load starting at
address zero,so they cannot be in the machine at the same time.
Either could be loaded, though, and its name entered as a
custom command. Both software packages come with a short pro
gram which must beENTR'ed first; this program loads INTEL
format paper tapes. This loader.is then started and the paper
tape data is stored in memory. The following outlines such a
sequence.

MODE 16
ENTR 1800
(type in hexadecimal for INTEL paper tape loader)
/
CUSTE/LOAD/ 1800
LOAD
(start paper tape-when done reading restart ALS-8 at
E060)

READY
CUSTE /FOCAL/ 0
CUST
LOAD 1800 FOCAL a
FOCAL
* (this is the ready asterisk from FOCAL)

The System Symbol Table is managed with the SYML, SYMLE,
and SYMLD commands. SYML, like CUST, only prints out the con
tents of the table. SYMLE and SYMLD enter and delete names and
their associated values from the symbol table. SYMLE requires
a name argument of five letters or less and a numeric argument
representing the symbol's value. SYMLD handles the deletion
of symbol names from the table and, like CUST, requires only
the name argument. Unlike the custom table, the System Symbol
Table is not restricted much by a maximum length. Its physical

(24)

location allows it just over 3K of memory and it is all but
inconceivable that this could be overrun. The user can
effectively set a maximum length of his own by setting up other
tables or drivers in this 3K expanse. The example here shows
two important symbol names being entered into the System Symbol
Table.

/SP/ 6
/PSVJ/ 6

6 PSW 6

SYMLE
SYMLE
SYML
SP
D30E (~nd of Table address printed following listing)

The symbols shown in the example above are needed by the
resident assembler for programs which access the 8080 Stack
Pointer, "SP", or the Program Status Word, "PSW". The
resident assembler can only recognize single letter register
names like B, C, D, E, H, L, and A. The user can define the
SP and PSW symbols in each program he writes or enter them once
in the System Symbol Table for all the assemblies he performs.
The assembler produces a table for the symbols it finds in a
program and this table, inaccessible to the user, is called
the Assembly Symbol Table. It is created from scratch for each
assembly. If the program instructions make reference to a
symbol which has been given no value in the program itself, the
assembler will try to fetch the value from the system's table.
It is a great convenience then to be able to define symbols
once in this System Symbol Table rather than each time in a
program. This makes programs both shorter and more versatile,
since single changes in the symbol table values can affect the
origins, parameters, or subroutine connections for a number
of programs.

The ALS-8 allows the user the freedom of specifying where
the Assembly Symbol Table should start in memory. The STAB
command defines this location from an argument which obeys the
current MODE value. This start location must be defined before
the first assembly is made and it is suggested that this table
be placed at D700 hexadecima1. This puts it well into the
system RAM area leaving over lK for the System Symbol Table.
It also leaves over 2K for the assembly Symbol Table which is
sufficient for all but the largest programs. This assumes
naturally that the area between D700 and EOOO is not full of
I/O driver routines (see Chapter II). The following might be
used to start an assembly.

STAB D700
ASSM lAO

(25)

The loaded output of the assembler, the object code, can
be executed without having to make an entry in the Custom
Command Table. The EXEC command generates a subroutine call
to the addres s specified by its argument. l.\Then finished, the
program at this location only has to generate a return with
the 8080 RET assembly instruction and control will return to
the ALS-8 executive. The argument to the EXEC command naturally
follows the number type specified by the HODE parameter. In
an earlier example, the name "FOCAL" was entered into the
Custom Command Table with an associated address of zero. ~fuen
"FOCAL" was given as a command the address 0 was given control
by the ALS-8. This could also have been done by giving the
command "EXEC 0".

In the event that a program does not automatically return
to the ALS-8, it will be necessary to stop the machine from
the front panel, set the address switches to E060 and hit the
RESET, EXA}IINE, RUN switches. FOCAL, BASIC, and INTEL LOADER
are examples of programs which normally do not have an ALS-8
return. If a user program goes avvry the same procedures can be
used to restart the ALS-8. The user may want to check his
files and data to ascertain whether or not they have been damaged
by the errant program.

(26)

CHAPTER IX

COMMAND SUMMARY

This chapter contains a summary of the ALS-8 commands in
the order they were presented. The reader is advised to con
sult earlier chapters for any details omitted here. Following
chapters will cover the ALS-8 assembly language instruction
set. The descriptions given here use the convention of en
closing an argument in parentheses when it is optional.
Arguments will be signified by lower case names suggestive of
their use; "addrl" for instance, will be an argument repre
senting an address.

ENTR addr

This command reads numeric data from the current input
driver and stores it in consecutive memory locations starting
with the address specified by the argument. The data may
continue for any number of lines; the function will return
control to the ALS-8 executive only when it encounters a
slash (/). At the beginning of every line, the current address
pointer can be changed by specifying a new value followed by a
colon (:). Both the data and addresses are interpreted in
octal or hexadecimal according to the currently defined MODE.
The length of any input line is limited by the current value
of terminal width.

DUMP addrl (addr2)

This command displays the contents of memory from "addrl"
to address "addr2". If only one argument is given, only the
contents of address "addrl" are displayed. The arguments and
printed results obey the number base set by MODE.

MODE base

The argument "base" for this command sets an ALS-8 para
meter which is used in converting binary data to readable form.
The argument is decimal and must be either 8 for octal or 16
for hexadecimal. All ALS-8 arguments representing memory data
or addresses will be affected by this command. Arguments which
specify setting terminal width or line number will always .be
decimal. Initially the ALS-8 assumes a mode of 16.

(27)

FILE COMMANDS

The FILE command has many different forms each with its
own distinct function. The following describes each particular
form. All name arguments may be one to five characters long.

FILE

This form will print the name of the current file, its
start address and end address.

FILE / fname /

This will search through the current list of file names
for "fname". l .. :'hen found, this file will be marked as the current
file and all subsequent file operations vdll be made on it. If
not found, the error message "l-mAT" is sent to the terminal.

FILL /fname/ addr

This enters a file name, "fname", into the list of names
kept in the file table. The argument sets both the start and
stop addresses associated \<7ith the name. If the file already
exists in the table an error message FCON is output to the
SYSIO output device. The file "fname" always becomes the
Current File. Addresss "addr" must not be zero.

FILE /fname/ 0

File "fname" is removed from the file table and forgotten.
There will be no Current File when this coromand is finished.

FILES

The FILES command uses no arguIl1ents. It lists the names,
start and end addresses for all the files known by the ALS-8.
Thjs cOITmand does not affect the status of the Current File.

FCHK

This command checks the structure of the Current File.
It begins at the start address contained in the file table and

(28)

continues until it finds an end of file mark (01 hex.decimal)
or an error. An error is signaled with the message "FILE ERR. '.'
followed by the address of the error. The location of the end
of file mark becomes the end address of the Current File. Using
FCHK, files may be input directly into memory from magnetic
tape or disc and recreated.

FMOV addr

The Current File is moved by this function to memory
locations starting at "addr". The start and end address values
associated with the file are also changed. The copy remains the
Current File and an FCHK is automati.cally performed. If the file
was inadvertently moved to a location without memory, a new file
can be created at the old address and the contents recovered
using the FCHK con~and.

While there is no restriction prohibiting a file from being
moved to an address contained by the original, the user should
note that only the copy will have a valid structure after such
a move.

Text can be input to a file by simply speci.fying the line
number and contents for that li.ne. The line number is an integer
from 0 to 9999 and it normally is followed by one blank. If the
file contains a line with this same number, the new data is
entered in place of the old. The contents of any file can be
interpreted as text or as assembly language source. Lines
intended for the assembler are composed of distinct fields
which are separated by groups of blanks. These fields can be
repositioned during printout by an automatic formatting feature
controlled by the TERM, FORM, and NFOR commands. The TERMINAL
WIDTH parameter also controls the maximum length of lines input
to the file.

TERM width

The ALS-8 parameter representing terminal width is
initially set to 80. The user can, however, reset this at any
time with the TERM command. The decimal argument "width" con
tains the size of the terminal line. This influences not only
output formatting, but also input line length for files (FCHK).
The maximum value for TERM iS~

,.}!'t ~,

FORM

This command sets a parameter in the system RAM for the
ALS-8 which specifies whether or not printed listings of
assembler source or files are to be formatted.

(29)

NFOR

This deactivates the formatting feature described above.
The ALS-8 is initialized to the non-formatted state.

LIST linel (line2)

This is used to print out contents of a file between the
specified line numbers. When only one argument is used, the
single line identified by "linel" is printed. Line numbers
and line number arguments are always decimal numbers. This
cOIDrrland prints the contents of each line following the corre
sponding line number. (When using the optional VDM EDITOR,
the LIST command will list files entered without line numbers.)

TEXT linel (line2)

Like LIST, this command prints file contents from "linell!
to "line2". It does not, however, print out the line numbers
at the start of each line. This is a useful feature for letter
copy. Both TEXT and LIST contain the formatting routine which
is controlled by FORE, NFOR, and TERM.

DELT linel (line2)

DELT removes a line or series of lines from the Current
File starting at line number "linel" and continuing through
"line2". In its single argument form, only the line speci
fied by "linel" is deleted; it is usually easier to delete
single lines, however, by typing the line number followed by
just a carriage return.

RNUM line4fo (increment)

RNUM renumbers the Current File so that its first line
number will be "line4f" and each successive line nurr.ber 'tA7ill be
greater than the last by the quantity defined in "increment".
If "increment" is OlT'itted, RNUM will use a default increment of
five. The largest allowable value for the increment is twenty
five and, regardless of increment value at the outset, RNUM will
use an increment of one after the line numbers reach 9000. RNUM
ends by calling FCHK, thereby checkine the file after renumbering.

ASSEMBLER COMMANDS

The ALS-8 resident assembler is activated with different
options from the eight commands summarized below. Each requires

(30)

an origin which is used as the address from which the routine
must eventually be run. The second argument to each of these
commands is the start address for the storage of the assembled
program. A program "origin" and "load point" must agree if it
is to be run rather than temporarily stored. The variations
in the commands mainly affect 1i.sting length and input source.

ASSM origin (load address)

This form assembles from source contained on the Current
File. If the "load address" argument is omitted, the
assembler will load at the address given by "origin". A full
listing of the assembly and errors is written to the current
output driver.

ASSME origin (load address)

This is the same as ASSM except that only lines con
taining errors are listed.

ASSMS origin (load address)

This form produces a full listing and adds a listing of
the assembler's symbol table to the end. The current values,
usually addresses, of the symbols are also given.

ASSMX origin (load address)

This is a further expansion of ASSMS in that the symbol
table listing provided at the end is cross referenced to file
line numbers. The summ.ary for each symbol then contains its
name, value, and a list of locations which used it.

The four remaining assembler commands ASSI, ASSIE, ASSIS,
ASSIX are similar to the four commands just listed except for
the source of the assembly language code. These four use the
I/O driver selected by IODR for reading the program source.
A special driver is required for this use and the user is
referred to the ALS-8 Specification sheet outlining the re-

Iquirements of this driver.

ASSI
ASSIE
ASSIS
ASSIX

origin
origin
origin
origin

(load
(load
(load
(load

address)
address)
address)
addl:ess)

(31)

assemble with full listing.
assemble. list only errors.
assemble. list with symbol table.
assemble. list with cross

reference table.

STAB address

This command sets the starting location for the Assembler
Symbol Table. This address is not initialized to a usable

",--~,'~.--~'-::7a~~~:P~~d~t"f",~~ command must be called before any assemblies are
I

CUST

This will print out the contents of the Custom Command
Table. Each output line will contain name and address pairs.
The addresses are printed according to the base by HODE and the
end address of the table is printed following the list of names.

CUSTE /cname/ address

This will enter the name, "cname", into the Custom Command
Table with its associated address value. If this name already
exists in the table, it is merely given a new associated value.
The name may be four or five characters long, but it is only
unique to four. Thus "HEART" is the same custom name as "HEAR".
A maximum of twenty-two such names is permitted each requiring
eight bytes of table space. The table must not go beyond D300
or interference with the System Symbol Table ~.;rill result.

CUSTD /cname/

This deletes the specified name from the Custom Command
Table.

EXEC addr

The EXEC command performs a subroutine call to the address
specified by "addr". The argument, being an address, obeys the
number convention set by MODE.

SYHL

This command lists the contents of the System Symbol Table.
The values listed in the name/value pair are assumed to be
addresses and, as such, will follow the current HODE for type.
The names can be one to five characters in length. The end
address of the table is printed following the list of names
and values.

(32)

SYMLE Isnamel addr

SYMLE is used to enter a name and its corresponding value
into the System Symbol Table.

SYMLD /sname/

This will delete the symbol, "sname", from the System
Symbol Table.

I/O DRIVER COMMANDS

There are only two names in the I/O driver command set but
one, IODR, has many forms. The following summarizes its
functions and describes the other command, SWCH.

IODR /dname/ in out

This form of IODR enters the name "dname" into the I/O
driver table with the two addresses, "in" and "out'~. When this
driver pair becomes active, the ALS-8 functions will try to read
text data through a routine located at the address "in". Simi
larly, output from these functions will be sent to the routine
assumed to be at address "out". This form of the command does
not activate this driver pair, only defines it. If address "in"
is zero 7 followed by a proper output address, the current SYSIO
input driver will be assigned as the input driver. Also, if
the output driver address is zero, the current SYSIO output
driver will be assigned. If the output address is omitted~
after being preceded by a valid input address, a special out
put address will be assigned to allow no output. (BIT BUCKET)

IODR

Used without arguments, this command prints out the con
tents of the I/O driver table. Each line of the printed summary
contains the name, the input driver address, and the output
driver address.

IODR /dname/

This informs the ALS-8 that the default system driver,
SYSIO, is to be used for one more command line. The driver
pair, "dname", is then used until an ALS-8 command returns
control to the executive. This one command delay enables the

(33)

user to choose an ALS-8 function from his terminal before
switching control to the new drivers. SYSIO, the terminal
driver pair, is automatically reactivated at the conclusion
of the ALS-8 function or under error conditions.

SWCH

vJhen used after the above form of IODR, the new drivers
are activated for use by the ALS-8 executive, not an ALS-8
function. The executive then will read a command and any
associated data with these drivers before returning to SYSIO.

(34)

CHAPTER X

THE ALS-S ASSEMBLER

The resident assembler is perhaps the strongest feature
of the ALS-S. It is a program designed to convert the text
for a program into the binary machine code form of a program.
The textual representation, called "source code", is very
readable by humans but only binary form is executable by the
computer hardware. In typical use, the source program is
written onto a file and edited. This is then assembled with
one of the ASSM commands and the resultant binary, or "object
code", is stored in memory. There it can be used as a driver,
a custom command, or a program to be run by the EXEC command.

A ,source program written in assembly language is inter
preted by the assembler on a line-by-line basis. Since files
are also line structured, they become a natural storage area
for program source. (The ASSI command series insures that
ALS-S files are not the only storage medium for programs.)

Each line of the program must conform to certain rules in
'order to be assembled correctly. An asterisk at the start of
a line identifies the line as being a comment and its contents
are not subject to the rules of the assembly language. Lines
without an asterisk are "statements" and these can be divided
into as many as four separate parts called "fields". Each
field has an entirely different function to the assembler.
The first, the "label fifeld", gives a symbolic name to that
line which ~an be referenced by any statement in the program.
The label must start with an alphabetic character in colunm I
of the line (after any file line numbers). It may be any
number, of continuous characters, though the assembler will
ignore all characters beyond the fifth. This means that the
label names "bridge ll • "bridg", and "bridget" will all represent
the same label. All fields are separated from one another by
one or more blanks.

STATEMENTS may contain either symbolic S080 machine
instructions or pseudo-ops. The four fields of each state
ment, NAME,OPERATION, OPERAND and COMMENT are scanned left to
right by the assembler. The assembler requires at least one
blank

NAME OPERATION OPERAND COMMENT

between each field for identification. For automatic formatting
however, the comment field must be preceded by at least TWO
BLANKS. Instructions which use only the operation field as does

(35)

RZ should be followed by a "dummy" operand if comments are
to be used with the statement. (Blanks in the following example
are shown as dashes ["-"] for clarity.)

RZ-.--COMMENTS ADDED AFTER TWO SPACES

CONSTANTS

The ALS-8 Assembler allows the use of constants within
the operand field. Hexadecimal and decimal, as well as
octal constants may be used. When using either octal or hexa
decimal, the value should be followed by a "Q" or "H" to
indicate OCTAL and HEX respectively. When a value does not
include a following identifier, it defaults to DECIMAL but a
"D" may be used for clarity when desired.

MVI A,128
LXI H,2FH
MVI B,40Q
JMP OFFH

Hove 128 decimal to register A.
Move 2F hexadecimal to registers H&L.
Move 40 octal to register B.
Jump to address FF hexadecimal.

As shown by the last example, all constants must beg~n
with a numeric quantity. When hexadecimal values begin with
the letters A-F, they should be preceded by the numeric value
zero.

EXPRESSIONS

An expression is a sequence of one or more SYMBOLS,
CONSTANTS or other expressions separated by arithmetic opera
tors. The ALS-8 Assembler allows the use of four primary opera
tors: ADDITION (+), SUBTRACTION (-), MULTIPLICATION (*) and
DIVISION (/). Expressions are scanned left to right with no
precedence given to any operator. Calculations are made using
16 bit arithmetic (module 65536) and overflow of values is
allowed. Single byte values for immediate instructions (as
with HVI A) must evaluate to a value between -256 to +255 or an
assembler error will result.

MVI A,255D/10H
LDA POTTS/256*OFSET
LXI SP,30*2+STACK

There are two other special operators which may be used
to reference either the right ("» or the left «) byte of a
16 bit value. For example:

< 1234H
> 1234H

evaluates to 12H
evaluates to 34H.

(36)

ASSEMBLER ERROR INDICATIONS

The following error flags are output by the assembler
when the error occurs. As determined by the type of error,
some of the flags are output during pass one to indicate
an invalid assembly.

o OPCODE ERROR The symbol found in the
operation field was not
recognized as a valid 8080
instruction or pseudo operation
of the assembler.

L LABEL ERROR The symbol found in the name
field contains improper
characters.

D DUPLICATE LABEL Two labels with the same name·
within the assembly.

M MISSING LABEL Instruction requiring a label
doesn't have symbol in name field.

V VALUE ERROR Expression in operand field is
outside range required.

U UNDEFINED SYMBOL Name given for operand cannot be
found in syrriliol tables.

S SYNTAX ERROR Syntax of statement does not follow
the requirements of the assembler.

R REGISTER ERROR False name given to register.

A ARGUMENT ERROR Argument for operand improper.

Since the label field is optional, the assembler must have
a convention for identifying the second type of field, the
operation field, when the label i~ missing. The operation field
must, for this reason, be preceded by at least two blanks when
it starts a line. The contents of this field will be a two,
three, or four letter mnemonic chosen from the assembly
language set. This mnemonic defines the general instruction to
be assembled and it uses, where necessary, the third field, the
"operand". to modify or complete the instruction. An "ADD" in

(37)

the operation field tells the assembler that one of the 8080
registers is to be added to the 8080 accumulator.

The fourth possible field i.s the comment field which, as
its name implies, is reserved for comments. The assembler,
then, disregards anything after the third field. In statements
which have no operand field, it is a good idea to precede the
comment with a period followed by two blanks. Since no operand
is required, the period has no affect and the listing will be
properly formatted. Most of the examples in this chapter are
listed as though they were formatted and printed by the TEXT
command. The example below shows how a sample program file
might actually, be input and exist in memory. Blanks are
w-ritten as "-' to show their significance; file line numbers
are also shown.

3-*-THIS-SUBROUTINE-SHIFTS-(H,L)-CIRCULAR-LEFT
5-LUP-XRA-A--CLEAR-THE-CARRY
8--CMP-B--SEE-IF-SHIFT-COL~-DOWN
l3--RZ-.--RETURN-TO-CALLING-:ROUTINE
l4--DCR-B--DECREMENT-COUNT
l6--MVI-A,80H--TEST-MSB-OF-HL
22--ANA-H--COMMENTS-OPTIONAL
2lt·- -DAD-H- - SHIFT-LEFT
26- -JZ-LUP-- IF-l'tSB-t<1AS-ZERO
29--INX-H--CIRCULAR-BIT-IN
35--JMP-LUP
40--END

The above illustrates the fact that "column 1" of each
program statement line must be separated from the file line
by at least one blank. When printed with the TEXT function
the above becomes:

* THIS SUBROUTINE
LUP XRA

CMP
Rz
DCR
MVI
ANA
DAD
JZ
INX
JMP
END

A
B
.
B
A,BOH
H
H
LUP
H
LUP

SHIFTS (H,L) CIRCULAR LEFT
CLEAR THE CARRY
SEE IF SHIFT COUNT DONE
RETURN TO CALLING ROUTINE
DECREMENT COUNT
TEST MSB OF H,L
COMMENTS OPTIONAL
SHIFT LEFT
IF MSB "(-lAS ZERO
CIRCULAR BIT IN

(38)

Instructions in the assembly language manipulate seven
8-bit registers, a 16-bit program counter called "PC",
memory, I/O devices, and a 16-bit stack pointer "SP". Both
the assembler and the hardware use a number convention for
identifying these registers. The numbers 0,1,2,3,4,5, and 7
each represent one of the 8-bit registers. Depending on the
instruction, a 6 can represent memorx, the stack pointer, or
a special program status word, "PSW'. Many of the instructions
assume a destination register for the results they generate and
many will also make assumptions on one of their input operands.
Addition, for example, is handled by the ADD instruction in the
assembly language and it assumes that the contents of register
7, called th~ accumulator, will be added to an eight bit
quantity from memory (6) or the registers (1 through 5). Its
result always goes to register 7. The operand for this register
is a number specifying which 8-bit value is to be added to
register 7. This operand appears in the operand field for the
instruction as shown.

LABL

XAD

ADD
ADD
ADD
ADD

7
o
3
6

DOUBLE THE ACC1~ATOR
ADD IN REGISTER 0
ADD IN REGISTER 3
ADD IN VALUE FROH MEMORY

The assembler uses a pair of tables, the Assembler Symbol
Table and the System. Symbol Table, to find number values
associated with a symbol name. Label names from the label field
are stored into the Assem.bler Symbol Table along with the

. addresses they represent in the object code. Assembling the
short example above would have added the names "LABL" amd "XAD"
to this table. The assembler always has eight entries in this
table, B,C,D,E,H,L,M, and A, for which it has the values 0
through 7. These are the names given to the registers and the
assembler will replace one of these names fourtd in an
instruction with the appropriate register number. The last
example could be rewritten:

LABL

XAD

ADD
ADD
ADD
ADD

A
B
E
M

DOUBLE THE ACCUMULATOR
ADD IN REGISTER B
ADD IN REGISTER E
ADD IN VALUE FROM MEMORY

A number of the 8080 operations use pairs of registers for
l6-bit operands and for these operations, register B is paired
with C, D with E, H with L, and the program status word PSW is

(39)

paired with A. B, D, H, and PSW are the high order bytes in
these values. The instruction DAD, for instance, performs a
"double add" between the (H,L) pair and the (BIC) or (D,E) pair.
The result is stored again in (H,L). For these instructions,
the pair is designated the name of the most significant byte
so the possible DAD instructions are:

DAD B
DAD D
DAD H
DAD H
DAD SP

which are equivalent to:

DAD 0
DAD 2
DAD 4
DAD 6

Note that 6, v-7hich could represent memory, SP, or PS~T, is
taken by the DAD instruction hardware to mean the stack pointer.
"DAD M" or "DAD PSW" are equivalent to "DAD 6" and will then be
treated by the hardv-mre as "add SP to (lI, L) " . Note also the
default list of register names does not include PSW or SP.
These may be entered into either the System Symbol Table with
the SYNLE executive command or into the Assembler Symbol Table
with the EQU assembler instruction (to be described). The
assembler will first try to fetch a value for a symbol from
its own table and I failinf" will then try the System Symbol
Table.

A number of the 8080 instructions are "conditionals"
meaning that the full operation is performed only if a con
dition is met. The program status word, PSW, uses five of its
eight bits to represent the testable conditions. These bits
are called Sign, Zero, Aux, Parity, and Carry, and they reflect
the state of the accumulator after certain instructfons. The
more significant bit of the accumulator is copied to Sign by
certain instructions. Similarly, certa.in instructions will set
the Zero bit (to 1) when the accumulator contains a zero value
and it is reset (to 0) when A is non-zero. Parity is set to 1
when A contains an odd number of binary l's and is reset when
even. The Carry bit's function is most easily described with
the conceptual aid of a ninth bit on the accumulator. Some
instructions will put the opposite (0 for 1; 1 for 0)· of the
carry value into Carry; others will copy carry into Carry.
The reader is again reminded that some instructions do not

(40)

affect the values in PSW regardless of the contents of A.
The actions taken by each instruction. concerning the PSW con
dition bits will be given with the description of each
instruction.

In the upcoming instruction summary, two types of
assembler instructions will be described: executable
instructions and "pseudo-ops". The executable instructions
are those assembly statements which must be converted into
binary object form for eventual execution by the CPU.
Pseudo-ops, or pseudo-operations, have the appearance of
other program statements but do not produce object code for
the CPU. Instead they are used to pass information to the
assembler program itself. "ORG" for instance, is used with its
operand to define the "current address counter" for that
position in the program. being assembled. "END", another pseudo
op, signals the end of the assembly language source codej the
assembler will not try to read or interpret lines beyond the
line containing "END".

ASSEMBLY LANGUAGE INSTRUCTIONS

This section describes the assembly language instructions
and their function ordered by increasing complexity. An
alphabetically ordered summary will be given later with the
object codes generated for each instruction. In the following
description, optional fields will be enclosed in parentheses
and operands for the instructions will be rer.resented by a
short lower case mnemonic. The operand "reg' represents any
constant, symbol, or expression ",ith a value from zero to
seven. This value is used to select one of the seven registers
or memory: B, 'C, D, E, H, L, M, A. Operand "addr" can be an
expression, constant, or symbol which gives a value to be
used as a 16-bit argument, usually an address. A numeric
argument is represented by "const8" and "const" values supplied
for "const 8" must be 8 bits or less in magnitUde.

The following three instructions provide the most direct
means of transferring a-bit data from register to register,
memory to register, or register to nemory. There is no single
instruction to transfer from one memory ·location directly to
another.

. (label) LDA addr LOAD Accumulator

(41)

This instruction fetches a byte from the memory location
specified by "addr". This value is then stored in A. PSW
is not affected.

(label) MOV dreg, sreg move register to register

This instruction moves the contents of the source register,
"sreg", to the destination register "dreg". B, C, D, E, H, L,
M, and A (0 through 7) are legal values for "sreg" and "dreg"
except that both may not specify memory (M). When either "sreg"
or "dreg" specify memory, the CPU uses the contents of the
(H,L) register pair as the address of the memory byte to fetch
or store. Th,e contents, of the source register are not affected.
PSW is also not affected by the instruction.

MOV M,E move contents of E into memory
location specified by (H,L).

MOVER MOV E,B copy B into E
MOV C,M load C from memory

(label) STA addr STORE accumulator
\

STA transfers the contents of the accumulator to the
memory location specified by "addr". PSW is unaffected.

Arithmetic, logical, and comparison operations are
handled by eight instructions. Each of these operations is
assumed to take place between the accumulator and a register
(or memory location) specified in the operand field. All,
except CMP, produce an 8-bit result which is placed in the
accumulator. The program status word bits in PSW are all
affected by any of these instructions.

(label) ADD reg ADD register to accumulator

The value in register "reg" is' added to the accumulator
and PSW is updated. PSW "Carry" is set to 1 if the arithmetic
produces an overflow from the most significant bit (MSB).

(label) SUB reg - Subtract register from A

This instruction subtracts the value specified by "reg"
and places the result in A. The PSW carry bit is set to 1 if
a borrow was necessary during the subtraction; the actual
ninth bit carry, discussed earlier, would actually be zero in
a borrow situation. This is an example of carry being inverted
for storage in Carry.

(42)

(label) ADC reg Add the specified register and
Carry to the Accumulator

The specified register and the current contents of Carry
are added to A and the result is placed in A. This is used
primarily in "multiple precision" additions in which a number
.is actually contained in several (usually adjacent) memory
locations. Such an. addition starts at the low order end of
the two numbers with the Carry bit reset to zero. Successive
additions with ADC on more significant bytes in the numbers
are corrected for overflow from the last (less significant)
addition. .

(label) SBB reg Subtract with borrow from A

This is the mUltiple precision form of SUB. It subtracts
the Carry (borrow) from A as well as the value in "reg". This
is actually done by adding the Carry bit to the value in "reg"
before the subtraction is Dlade. The PSH status bits are
updated after the subtraction.

(label) ANA reg logically AND reg and A

This function performs a Illogical and" (a Boolean multi
plication) on the contents of "reg" and the accumulator.
Conceptually this operation is performed independently on each
bit position of the two operands (A and "reg"). The corre
sponding bit position in the result is set to 1, if,and only if,
both of the operand bits are l's. 00110011 and 01010101 will
leave the value 00010001 in A. The Carry bit is always reset;
other status bits are set or reset according to the result.

(label) ORA reg 10gicB.l1y OR reg and A

This instruction performs a bit-wise "logical or"
(Boolean add) on the accumulator and the specified register.
Each bit of the result is set to 1 if either of the correspon.ding
operand bits is 1. 00110011 OR 01010101 will produce 01110111
for a result. The Carry bit is always reset to zero. Other
status bits are set as dictated by the properties of the result.

(label) XRA reg logical EXCLUSIVE OR reg and A

XRA is a bit-wise logical "exclusive-OR" function for the

(43)

OPERANDS, A and "reg". Each bit of the result will be 1 if one
(and only one) of the corresponding operand bits is 1. The oper
and values 00110011 and 01010101 produce an "exclusive-OR" result
in the accumulator of 01100110. PSW status bits are handled as
in M~A, ORA. This function is often used to clear the accumulator
and Carry wi th an "XRA A".

(label) CMP reg Compare A to Reg

This instruction performs an 8 bit unsigned compare of the values
in A and "Reg" ~ The following status results:

(A) < (Reg) Carry is ~, zero is reset

(A) = (Reg) Carry is reset, zero is set

(A) > (Reg) Carry is reset, zero is reset

A compare is actually done by internally subtracting "Reg" from A
but storing the result.

There are eight instructions much like the register operations
described above, and they are called the Immediate Instructions.
They differ from register operations in that a register (or memory)
value is not used as an operand. Instead, the operands are the ac
cumulator as before, and an eight bit value which is given in the
operand field of the instruction. This operand value may be the
result of an expression, the value of a symbol, of a constant, as
long as the magnitude of the value does not exceed eight bits. As
with register operations, all PSW bits are affected by these in
structions.

(label) ADI constS - add value of const8 to A

The S-bit value of "constS" is added to the accumulator. As
in ADD, its register operation counterpart, all PSW bits are
affected.

(label) SUI constS - subtract immediate from A

The immediate value is subtracted from A. PSW bits, including
Carry, follow conventions of SUB.

(label) ACI const8 - add value and Carry to A

"ConstS" and the Carry bit are added to A. PSW is affected.

(44)

(label) SBI const8 - subtract immediate with borrow

This instruction subtracts Carry bit and immediate value.

(label) ANI const8 - AND the immediate with A.

ANI performs a logical AND on the immediate value and the
accumulator. It is often used to isolate certain bits in A
for testing. The logical operation is described in ANA.

(label) ORI const8 - immediate OR with A

This function performs a logical OR on the immediate value
and register A.

(label) XRI const8 -immediate exclusive OR on A

This produces an exclusive-OR result from A and the value
following. See XRA

(label) CPI const8 - compare immediate with A

This performs a compare of Register A with the CONSTS.
See CMP.

There are several other commands which affect the contents
of the 8 bit registers. They have been separated since they
behave differently with respect to the program status word, psw.
Note that these instructions affect some condition bits and not
others.

(label) MVI reg,const8 - move value into register

This instruction is similar in some ways to the immediate
instructions though it does not affect the PSW. The S-bit
value of "constS" is moved into the specified register.

(45)

(label) INR reg increment register

The register specified by "reg" is incremented by one
and all the PSW bits except CARRY are updated.

(label) nCR reg decrement register

The register, or memory location addressed by the H & L
registers, is decremented by 1. As with INR, all PSW bits
except carry are affected.

(label) CHA complement the accumulator

This instruction reverses each bit of the accumulator.
l's become O's and O's become l's. The PSW is not affected.

There are four instructions used to shift the contents
of accumulator. Each of these instructions shifts the con
tents only one place left or right depending on the particular
instruction. None of the shifts affect any PSW bits except
carry. The direction "right" or "left" in these descriptions
assumes that the more significant bits of the accumulator lie
to the left.

(label) RLC rotate left, through carry

This is a circular left shift in which the carry bit
receives the bit value shifted from the most significant bit
of the accumulator. This same value shifted into carry is
also shifted into the least significant bit of A. 01101110
becomes 11011100 after the shift and the Carry bit is left
as O. Another shift of this value gives 10111000 and a Carry
value of 1.

(label) RRC rotate right, through carry

This shift is a right shift similar to RLC except the
least significant bit is shifted to Carry and the MSB
position.

(46)

(label) RAL 9 bit shift left

This function shifts the accumulator one place left.
The most significant bit is shifted into Carry as in RLC, but
the old value of Carry is shifted into the low end of the reg
A. Shifting 01101110 with a value of 1 in Carry produces
11011101 and a Carry of O. A second shift of this data
produces 10111010 and a Carry of 1.

(label) RAR 9 bit right shift

The accumulator contents are shifted one place right
with the least significant bit being sent to Carry and the
old value of carry being shifted into the MBB of the accumu
lator.

(label) LDAX regbd load A from memory (indexed)

The accumulator is loaded with the value from memory
whose address is obtained from the register pairs (B,C) or
(D,E). The operand, "regbd", can then only equal "B" or "D".

(label) STAX regbd store A into memory (indexed)

The contents of A are stored in memory at the address
given by the (B,C) or (D,E) register pairs. The pair is
chosen by the operand "regbd" which may only be "B" or "D".

The 8080 is also equipped with a full set of transfer
instructions which have the ability to alter the flow of a
program through execution. There are three categories of
transfers: "jumps", "subroutine related instructions", and
"interrur,t transfers". Of the ten jump instructions, only
two are 'unconditional transfers" meaning that the execution
sequence of the program is al't<7ays altered by them. The
"conditional transfers", on the other hand, examin.e the status
word PSW to see if the proposed jump is to be made. If the
condition bits of the PSW do not meet the requirements of the
instructions,no transfer is made and the program will resume
execution at the next instruction in memory.

(47)

UNCONDITIONAL TRANSFERS

(label) JMP addr

This instruction always transfers control to the address
in memory specified by the operand field, "addr". The next
instruction to be executed will be the one starting at this
address.

(label) PCHL

This performs the same function as the JMP instruction
except the address for the transfer is taken from the Hand L
pair of registers and not the operand field. Generally this
instruction is used to branch to a routine in memory whose
address has been located in a table. It could be used to
branch to a computed address, but any small errors in the
calculation could produce some mysterious bugs.

CONDITIONAL TRANSFERS

(label) JZ addr Jump if zero

JZ examines the status bit "ZERO" of the PSW and transfers
to the address "addr" if this bit is set to 1. This 1 in the
ZERO bit represents a zero value in a register at the last time
the condition bits were set by an instruction. Most of the in
structions affecting the PSW reflect the status of the accumu
lator, register A, though a few (INR DCR) will change the ZERO
bit and others when their result goes to any of the registers.

(label) JNZ addr Jump if non-zero

This instruction also examines the ZERO bit of the PSW,
but it transfers when the last pertinent result was a non-zero
value. A non-zero result resets the ZERO status bit to O.

(label) JP addr Jump if plus (non-minus)

JP examines the SIGN bit within the PSW and transfers

(48)

when this bit is zero. A zero for the SIGN bit represents
a positive value for the last pertinent operation.

(label) JM addr Jump if minus

JM examines the SIGN bit and transfers when it represents
a negative value (minus) for the last result.

(label) JC addr Jump if CARRY

This ins'truction jumps if the CARRY bit has been set
on the last operation. For addition operations, a jtmp is
made if the sum of the two operands has exceeded the limit of
8-bit numbers. The overflow bit is stored in the PSW bit,
CARRY. Subtractions requiring a "borrow" will also set this
CARRY.

(label) JNC addr Jump if no CARRY

A jump to the address, "addr", is made if the last
operation did not produce a CARRY.

(label) JPE addr Jump if PARITY even

The PARITY bit of the PSH is "even" when the number of
bits set to 1 in the result is even. This instruction
transfers to "addr" when this condition exists.

'(label) JPO addr Jump if PARITY odd

JPO transfers to the address "addr" when the PARITY
bit in the PSW represents a result with odd parity. Parity
is generally used to verify data transmitted from an external
device.

CAFRY BIT INSTRUCTIONS

There are two special instructions which manipulate only

(49)

the status of the CARRY bit in the PSW. These will affect
all CARRY related conditionals as well as the addition, sub
traction, and shift instructions which use CARRY. These two
instructions are frequently used to return a simple status
condition from a subroutine.

(label) STC set CARRY (to 1)

This instruction sets the value of CARRY to 1. No
other condition bits are affected by this command.

(label) CMC complement CARRY

CMC reverses (complements) the current value of CARRY.
If CARRY equaled 1, this instruction will change it to a o.
If CARRY was 0, CMC changes it to a 1.

SUBROUTINE TRANSFERS

A transfer to a subroutine is made with one of the CALL
instructions described below. When a CALL instruction is
made, two addresses become important. The "transfer address",
the address of the subroutine being called, is contained in
the operand field of the CALL instruction. Program control
will be transferred to this address immediately following the
ca11. As the call is being made, however, a "return address"
is computed and stored on the next position of the stack.
When the subroutine is finished, it can execute one of the
RETURN instructions which will fetch this address from the
stack (pop the stack) and a jump will be made to this address.
This return address represents the location of the instruction
immediately following the call instruction which gave control
to the subroutine. Subroutine calls within subroutines store
their return addresses at successive stack locations so the
corresponding return instructions can properly locate their
return addresses.

As with the jump instructions, both the CALL and RETURN
operations are divided into unconditiona1s and conditionals
with the same suffix convention as used with Jt~s.

(label) CALL addr call the subroutine at "addr"

(50)

This instruction performs an unconditional subroutine
call to the address specified by the operand "addr" .

.
(label) RET return to address found on

stack

RET pops a value off the stack which it uses as a
transfer address for a jump. Since it always retrieves its
"operand" from the stack, it does not need anything in the
operand field. This return is unconditional.

SUBROUTINE CONDITIONAL INSTRUCTIONS

The reader is reminded that only certain instructions
influence the condition bits of the PSW (program status
word). A full description is given at the beginning of this
chapter.

(label) CZ addr call if last result equaled 0

This instruction calls the routine located at address
"addr" if the ZERO bit of the PSW is set to 1 representing
a zero result in the last operation.

(label) CNZ addr call if last result was
non-zero

A call is wade if the last PSW related operation
produced a non-zero result.

(label) CP addr call if result positive

This instruction examines the status of the SIGN bit
within the PSW and performs a subroutine call if this bit
indicates a positive result from the last instruction.

(label) C~1 addr

(51)

call if negative result
(minus)

CM calls the routine at address if the SIGN bit is set
representing a negative result from the last PSW related
instruction.

(label) CC addr call if CARRY

CC calls the subroutine at "addr" if the CARRY bit has
been set to 1. CARRY is set to 1 when there is a carry
from an addition, a borrow from a subtraction, or there is
a bit 1 produced by one of the shift or Carry instructions.

(label) CNC addr call if no CARRY

This instruction calls the subroutine at address "addr"
if the CARRY bit is zero.

(label) CPE addr call if PARITY even

This instruction calls "addr" if the PARITY bit was
reset by the last PSW related operation. "Resetting" PARITY
is equivalent to making it a zero. Even parity for a result
indicates that it contained an even number of binary l's
(and D's).

(label) CPO addr call if PARITY = 1,
"parity odd"

The subroutine call is made if the PARITY bit of the
PSW is set to 1 indicating "odd parity".

(label) RZ return if last result
was zero

A return from subroutine is made if the last result
recorded in the PSt-J was a zero.

(label) RNZ

(52)

return if last result was
non-zero

This instruction returns from the present subroutine if
the last result was non-zero,

(label) RP return if positive

A return, using the address pulled off the stack is
made if the last result had a zero sign (was positive).

(label) RM return if minus

This returns from the routine if the last result
was minus.

(label) RC return if CAP~Y (=1)

This instruction performs a subroutine if the PSW
bit CARRY is set to 1. CAPRY is set by the Carry
instructions, shifts, additions with overflow, or sub
tractions with borrow~.

(label) RNC return if no CARRY
(=0)

RNC returns if there was no CARRY generated from the
last instruction. See the above instruction.

(label) RPE return if PARITY even

A return is executed if the value of the PARITY is
o indicating even parity in the last operation.

(label) RPO return if PARITY odd

Another instruction, RST, also performs transfers, but
it is rarely used as such. It will be described later with
the interrupt related instructions.

(53)

l6-BIT OPERATIONS

A number of the 8080 functions can perform arithmetic
operations on l6-bit values stored in register pairs. The
Band C registers form a pair as do D,E and H,L; the Stack
Pointer, SP, is used as a fourth possible operand for these
instructions. None of these instructions affect any of the
condition bits.

(label) LHLD addr - load E,L ~'lith the values
at "addr"

This instruction moves two bytes froo memory into the
H,L register pair. The operand, "addr", identifies the address
of the byte to be transferrp-dto the L register and the next
memory address is used for H.

(label) SHLD addr - store H,L into memory at "addr"

The contents of theL register are moved to the address
specified by "addr" and the contents of the H register are
moved to memory location "addr+l".

(label) LXI rp,const - store l6-bit constant in pair "rp'

The register pair "rp" is given a l6-bit value as deter
mined by the second operand, "const". Numerically the operand
"rp" must equal 0,2,4,6 whi.ch are generally represented by the
symbolic names B,D,H, SP. Either operand may be an expression
acceptable to the assembler which will produce a register pair
integer or a l6-bit value for those operand positons.

(label) INX rp - increment register pair "rp"

This instruction adds one to the register pair specified
by the operand "rp". No condition bits are affected even if
carries are produced internally for the operation

(label) DCX rp - decrement register pair "rp"

(54)

DCX subtracts one from the register pair "rp". As with
INX and the other l6-bit instructions, none of the condition
bits in PSW are affected.

(label) DAD rp - add rp to H,L

This performs a l6-bit add between the operand register
pair, "rpli, and the H,L registers; the result is stored in
the H,L pair. The operand can be B,C (liB"), D,E ("D") , H,L
("HIt) , or SP.

(label) XCHG - exchange the contents of
D,E with H,L

XCHG swaps the contents of the D,E register pair with
the contents of the n,L pair.

STACK OPERATIONS

The "stack" is an area in memory identified and manipu
lated through the l6-bit address held in the "Stack Pointer",
SP. As previously described, it is used by the subroutine
related instructions, "CALL" and "RET" (and their conditional
relatives). In operation, a l6-bit value, an address for the
subroutine instructions; is sent to the memory locations
identified by the address in the SP. The specific locations
chosen are SP-l for the "most significant" byte and SP-2 for
the lower order byte. The SP contents are then decremented
by two to be ready for the next stack operation. Such an
operation is called a "push" and the reverse operation where
data is removed from the stack is known as a "pop". Note
that the pointer moves "down" in memory with successive
pushes and moves "up" for pops.

The operations about to be described give the programmer
direct control of the stack and its pointer. The stack can
be a very versatile data storage area for particular appli
cations, but the programmer must be careful that the data
stored in the stack is not confused with the retuxnaddresses
stored there from subroutine calls.

Two of the stack instructions use a register pair
operand which will be denoted by "rp" in the following. This
operand identifies B,C, D,~, H,L, AND PSW,A. In the last
case, the Program Status Word is placed at location SP-l and

(55)

the accumulator is placed at SP-2 for stack pushes. This
form of saving the PSW is necessary for interrupt handling
or some subroutine calling sequences.

(label) PUSH rp - push contents of rp onto stack

The contents of the register pair "rp" are placed on the
stack and the pointer, SP, is decremented by 2. Numerically,
"rp" must be 0,2,4,6 which represent the pairs, B,C,D,E,H,L and
PSW,A.

(label) POP rp - pop data from stack into rp

Data is removed from the stack and placed into the registers
identified by the operand "rp". The ordering of the bytes taken
from the stack follows the same rules used for PUSH. The pointer
SP is incremented by 2 at the end of the operation.

(label) SPHL - move H,L contents into SP

The contents of the H,L pair are moved into the stack
pointer, destroying its previous contents. This provides a
convenient way of changing the SP during a program, thereby
allowing two or more stacks to exist at one (one data, one
subroutine control, etc.). The SP is usually initialized by
the LXI instructions.

(label) XTHL - exchange SP and H,L contents

The contents of the H,L register pair are exchanged with
the.two bytes at the top of the stack (as pointed to by the SP).

INPUT/OUTPUT INSTRUCTIONS

The two input/output instructions for the 8080, IN and
OUT, both operate on the accumulator contents. The operand

(56)

field is used to define a "device code" which identifies
the external device which is to produce or receive an 8-bit
value. This device number can be any number between 0 and
377 octal. Each device attached to the computer has such
a number assigned at the time it is wired to the machine
and the device code given in the I/O command must equal that
of the device before it will respond. Reading a non-existent
device number with the IN instruction will put an octal 377
in the\a~cumulator.

(label) IN dev - read device number "dev"

The external device with input device number "dev" will
return an 8-bit value which is stored in the accumulator.
None of the PSW condition bits are affected. The default·
input device for the ALS-8 is assumed to be device 1 and its
status (busy or idle) is accessible through input device O.

(label) OUT dev - send contents of A to device
"dev"

The contents of the accumulator A are sent to the out
put device numbered "dev". The ALS-8 assumes by default
that an output device 1 exists and that its condition can be
checked also through input device zero.

INTERRUPT RELATED INSTRUCTIONS

The 8080 is prepared to accept signals from external
devices which can alter its program flow. This is invaluable
for handling certain types of sporadic or slow devices. It
can allow the CPU to work on a program without worrying
constantly about the status of devices. This is accomplished
with the aid of the"Interrupt Enable Flag". also known as
"INTE" . When this flag is on (enabled) a device can force
an interrupt which initiates a sequence of events in the
computer. The "INTE" flag is innnediately disabled to keep
other devices from confusing things while the first interrupt
is being handled. The CPU is then required to take an
instruction (8-bits only) from the interrupting device. exe
cute it and then continue. Special hardware can be attached
to the computer which will cause the CPU to jump to any
predetermined location in memory. Without this special
"vector interrupt" hardware, the normal convention has the

(57)

interrupting device issue a Restart instruction which is a
subroutine, like jump to one of eight possible memory
locations: 0, 10,20,30,40,50,60,70 octal. At the location
specified by the vector hardware or th«:a restart, there should
be a subroutine capable of handling the interrupt condition.
The restart instruction ("RST") pushes a return address onto
the stack so the program which was operating can be properly
resumed with an RET instruction executed in the interrupt
routine.

(label) EI - enable interrupts

This instruction enables the interrupt flag, "INTE".
Devices att.empting to interrupt while this flag is disabled
will be ignored by the CPU and its related hardware; INTE
is automatically disabled when an interrupt occurs.

(label) DI - disable interrupts

This disables the interrupt flag, preventing any devices
from altering program flow with an interrupt. The computer is
in the disabled state when the front panel switch "RESET" is
activated. For machines with no interrupting devices, the
INTE light on the front panel can be used by these instructions
to signal certain program states such as "program done" or
"error".

(label) RST n - call routine at location n*8

This transfer instruction generates a subroutine call
to an address which is computed·from the operand "n". The
operand, which must itself be between 0 and 7 in magnitude,
is mUltiplied by 8 to produce one of the following addresses:
0,10,20,30,40,50,60,70 octal. The subroutine call is then
made to this address with the return address being stored on
the stack as in any other subroutine call. An "RET" in the
subroutine located by the RST will return control to an
address pulled from the stack. Devices using this instruction
during interrupt put the 8-bit equivalent of this instruction
on the data lines for the CPU to execute.

(58)

(label) HLT - halt the CPU and wait for
interrupt

The CPU is completely stopped by this instruction and
can only be reactivated by an interrupt. Should the inter
rupt flag happen to be disabled at the time this instruction
executes, the whole machine must be reset from the front panel.
The halt condition is reflected in the front panel light
marked "HLTA".

VARIABLE STORAGE AND THE NO OP

The instructions presented so far represent operations
or functions within the 8080 hardware. The ALS-8 assembler
converts the textual form of these instructions into a
binary form which will be executed by the hardware. The
assembler also recognizes a number of instructions which do
not produce "executable" code. In general, this class of
assembler instructions defines storage arrangements, addresses,
or contents for the program under construction. These in
structions are called "Pseudo-ops" (being "false" in the sense
that they don't produce executable code).

An instruction, the NOP, generates a binary instruction
of zero which is ignored by the execution hardware. It is
sometimes used in programs to "pad" areas of code where
changes are expected to be made via the front panel. The
versatility of the ALS-8 makes thi~ unnecessary, but the
instruction can still be used to generate zero bytes for
variable storage. As will be shown, there are instructions
from the pseudo-op set which can allocate blocks of memory
for variables much more easily than successive NOP's.

(label) NOP - do nothing. (reserve this space)

This assembly language instruction corresponds to an
operation code (binary) of zero which is ignored by the CPU
when executed.

(label) DS amount - reserve an "amount" of memory

This pseudo-op reserves a number of successive memory

(59)

(label) DB n - define contents for single byte

This instruction reserves a single memory location and
defines for it a value as determined by the operand "n". The
value of the operand must not exceed eight bits,

(label) DW n - define word and contents
(16-b)

The operand for this instruction is evaluated as a 16-bit
quantity and stored in two memory locations. The least sig
nificant byte of the quantity is stored at the "current
address" and the most significant is stored below it.

(label) ASC #string# - put character string in memory

This puts a string of characters into successive memory
locations starting at the current location and continuing until
the entire string has been put in memory. The special symbols
1ft at either end of the above example are called "delimiters";
they define the beginning and end of the ASCII character string.
The assembler uses the first non-blank character found after
the mnemonic "ASC" as the delimiter. The string is defined
as starting immediately after the first delimiter and ending
just before the second occurrence of the delimiter. Characters
to the right of the second delimiter are assumed to be comments.
A carriage return will act as the second delimiter in cases
where it is omitted. When formatting is used, the string must
not contain two or more successive spaces within the first
four characters.

(label) EQU n - assign value n to symbol "label"

The symbol in the label field for this instruction is
entered into the assembler's symbol table with the 16-bit

(60)

value found in the operand field. Note that both the label
field and an operand field are required for this instruction.

COM (symbol) - enter symbol into system
symbol table

The symbol must be previously defined and is entered into
the System Symbol Table.

NLST - suppress printed output of
assembly listing

This instruction sets a flag in the assembler which will
suppress the printing listing from this line until that flag
is reset by the LST instruction. Neither NLST or LST may have
a label field.

LST - begin assembly listing

This reactivates the listing feature \'lhich will remain
on until turned off by NLST. If the listing feature is al
ready active when this instruction is encountered, it is simply
ignored. Neither NLST or LST affect memory position or contents
in any way.

END - marks the end of the program

This instruction is a signal to the assembler that no more
statements are to be assembled from the current device or
file being assembled. For programs being assembled from a
file in memory, this instruction is not necessary as the end-of
file mark performs the same function.

(61)

SIMULATOR EXTENSION PACKAGE

OPERATION MANUAL

The SIM-l Extension Package for the ALS-8 is a
program designed to "run" 8080 machine language in the
same manner as the 8080 computer running the simulator
program. Because the Simulator is an operating program,
the user has full control of the "run" allowing powerful
program debugging as well as a direct view of the computer's
operation. Since each instruction, as well as its effects,
can be viewed on a single step basis, the Simulator repre
sents an ideal "teaching" machine for 8080 Micro-Computer
operation.

By using the Simulator commands, the user can modify
or display storage, set simulated 8080 flags and registers,
perform or test input and output operations, set and reset
breakpoints and realtime run addresses, as well as trace
program flow.

The Simulator is entered from the ALS-8 by giving the
SIMU command. On entry the program does a carriage return/
linefeed on the last selected output device, followed by an
asterisk prompt. The last selected MODE also remains in
effect and is used by the Simulator.

After giving the prompt, the simulator is ready to
receive a command indicating the operation desired. Some
commands, such as "run" (G for go), start operation of the
software computer. Prior to running the program, however,
certain' commands allow the operator to set the PROGRAM
COUNTER or REGISTERS in order to set the proper conditions
for the simulation prior to the simulated computer start-up .

. SET COMMANDS

P address(H,Q,D) - - SET PROGRAl1 COUNTER

Set program counter to the value of
"address". Conversion of the parameter
is determined by the last selected "MODE'
or by the following, optional, parameter.

(62)

S regx:value (regy=value ..) --SET REGISTER VALUE

Set register "x,y .. " to "value" where
value given according to 110DE or following
parameter (H-HEX,Q-OCTAL,D-DECIMAL).
Multiple assignments per line are allowed;
however, eC:lch register name must be
followed by the equal sign and then the
selected value. The next register name
must then be preceded by a space. Valid
register names are A,B,C,D,E,H,L with "s"
and "F" used to indicate the Stack Pointer
and Flags (PSW) respectively.

All commands can be used any time the Simulator has given
a prompt. While running, the program checks the front panel
switches as well as the SYSIO i.nput port for display and/or
break indicators. Control "X" causes the Simulator to stop
running and return to the command mode.

The two high-order sense switches determine the display
mode of the simulator as it simulates the running program. If
no breakpoint has been set, these switches are interpreted as
follows:

Sl.vITCHES

7 6

o o

o I

I o

I I

DISPLAY MODE
**

SINGLE STEP MODE
Execute one instruction and display on
.current output device. If C/X is input
to the System input driver, then return to
the command mode. If any other character
is received)then execute and display one
more instruction.

CONTINUOUS RUN (With Display)
Execute and display each instruction
until receiving C/X.

Execute and display one instruction;
then return to the command mode.

Force return to command mode from any
Simulator condition.

(63)

The output display from the Simulator indicates the
current status of the software 8080 as well as the current
conditions of the program. The display is initialized to
follow the last MODE setting but may be changed to decimal
by giving a simulator mode command.

The display cons1sts of the current location of the
program counter followed by the FLAGS as set by the last
instruction executed. These are then followed by each of
the registers and the current memory location pointed to by
the H & L registers. The stack pointer and instruction just
executed then end the display. This is illustrated below.

PPPP CZSPI AA BB CC DD EE HH LL MM SSSS Bl B2 B3 .

Where: PPPP -is the address of the simulated instruction.
The display shows results following execution
of the instruction.

C - Carry Flag (0 or 1)
Z - Zero Flag
S - Sign Flag
P - Parity Flag
I - Interdigit Carry Flag

AA - Accumulator
BB - Register B
CC - C
DD - D
EE - E
HH - H
LL - L

(reg A)

MM - Memory contents pointed to by HL
SSSS - Current address of the Stack Pointer

Bl - Current instruction
B2 - Byte two of the instruction (if used)
B3 - Byte three of the instruction (if used)

In addition to this display, the operator may dump
selected memory locations or enter data to memory locations
using the D~~ and ENTR commands.

D address (address) This command dumps the contents
of address to address following the
conventions of the ALS-8 dump command.

(64)

E address Enter data to memory following ALS-8
ENTR conventions.

The GO command starts the simulator at the ct'.rrent value
of the program counter. It is used to initially start simu
lation as well as continuing after stopping.

G Go-- Start simulation

X Exit-- Return to ALS-8

At this point, the user is advised to write a short pro
gram and assemble it to a known location in memory. After
obtaining a listing, the Simulator commands described so far
should be used in actual practice.

BREAKPOINTS AND "REAL TIME RUN" ADDRESSES

Running a simulation with the display on is normally
used only through the problem areas of the program. In order
to reach these areas, or to test values during a program loop,
a BREAKPOINT is set to stop simulation and display only at
the address given by the breakpoint. The breakpoint is not
cleared at each display so program loops may be checked re
peatedly by giving. a new GO command following each display.
Also, if single step operation is again desired, the break
point should be cleared prior to giving the GO command.

B address

CB

SET BREAKPOINT

Breakpoint is set to "address" and the
simulator will display each time the
program reaches this address.

CLEAR BREAKPOINT

The sense switches are interpreted as follows when a
breakpoint is set:

SWITCHES

7 6

o o

DISPLAY MODE

Execute program until breakpoint is reached;
display current status and return to
command after giving prompt.

(65)

o
1

1

1

o

1

Same as above.

Execute only one instruction and return
to command mode.

Unconditional return to command mode.

Some sub-routines require a speed of operation beyond that
of the Simulator. In order to meet this requirement, the Real
Time mode of operation should be used. If the real time address
is that of an 8080 CALL instruction, the simulator will make a
REAL TIME CALL to that location, effectively giving up control.

R address

CR

INPUT INSTRUCTIONS

SET REALTIME RUN ADDRESS

CLEAR REALTIME RUN ADDRESS

During simulation input operations can be performed in
three different modes, SIMULATED, REALTI~m and PRE-SET. Each
method is used depending on the information needed by the user.

SIMULATED

If an input instruction is encountered during the simu
lation for a port defined as SIMULATED, the Simulator will stop
and obtain input values from the operator. The following infor
mation is printed prior to receiving input:

INPUT PORT n=

Where "n" equals the port given in the program being run
by the simulator. The simulator stops to the right of the
equals sign and waits for input from the operator. Since input
goes to the accumulator, the value input must lie in the range
0-255.

REALTIME INPUT

If an input instruction is encountered during the simu-

(66)

lation for a port defined as REALTIME, the simulator will
obtain the required input directly from the indicated port.
This operation is identical to the standard 8080 obtaining
input.

PRE-SET INPUT

The preset option allows any input port to have a value
preset between 0 and 255.

OUTPUT INSTRUCTIONS

Program output, during simulation, can take one of three
forms for any desired output port. These options, SIMULATED,
ASCII or REALTIME, are selected depending on the information
required by the user.

SIMULATED

If an output instruction is encountered during simulation
for an output port defined as SIMULATED, the Simulator will
indicated that an output hasoccurred to the indicated port.
This includes both the port number and output value as indi
cated below. (No actual output to the port occurs.)

OUTPUT PORT n=NN

Where "n" equals the port number and NN equals the value
that would have been sent to the port.

ASCII OUTPUT

The ASCII output option is similar to Simulated output
except the value "NN" is output as an ASCII character. If
the value is a control Character, its output is identical to
Simulated operation.

REALTIME OUTPUT

As implied, REALTIME OUTPUT sends the value to the indi
cated port just as though the actual 8080 were operating.

(67)

INPUT/OUTPUT COMMANDS

IC portn

IS portn value

IR portn

CI

OC portn

OA portn

OR portn

CO

DISPLAY MODE

SET SIMULATED INPUT PORT

Set "portn" to SIMULATED mode.
(All ports are in this mode on first
entry to the simulator)

SET PRESET PORT

Set "portn" to PRESET "value"

SET REALTIME PORT

Set "portn" to realtime mode.

Clear all input port assignments
and set all to simulated mode.

SET SIMULATED OUTPUT PORT

Set "portn" to Simulated. All ports
are initialized to this mode on entry
to the simulator.

SET ASCII OUTPUT PORT

Set "portn" to simulated ASCII output.

SET REALTIME OUTPUT PORT

Define "portn" as realtime port.

CLEAR ALL OUTPUT DEFINITIONS

The display mode of the Simulator is normally determined
by the ALS-8 MODE on entry to simulation. This, being either
octal or hexadecimal, usually presents the proper information
required by the operator. The Simulator has one additional
display mode, DECIMAL, which can be selected at any time during
simulation.

This mode command "M" will select Decimal output if it
is followed by the value 10 (20 if entry mode was octal).

(68)

OPTIONAL SIMULATOR ENTRY POINT

Often, during simulator operation, it is desirable to
return to the ALS-8. In order to return to the simulator
without clearing I/O port definitions, it is required that
the command SIMU followed by any non-blank character be used.
SIMUS is recommended. This allows the exact conditions on
exit to be restored upon re-entry.

OTHER SIM-l EXTENSION FUNCTIONS

AUTO COMMAND

Every ALS-8 contains code to recognize commands other
than the standard set. AUTO is one such command whose actual
operating code is contained in the SIM-l Extension Package
(making it rather dangerous for those without.it to use the
AUTO command). In use, the AUTO command allows input to
standard ALS-8 files with the AUTO code adding the line numbers.

COMMAND FORM:

When used without the optional parameter "n", the AUTO
command will start sequencing line numbers beginning at one
and incrementing by one for each additional line. If the
optional parameter is included, then line numbers will begin
one beyond the last line in the current file. The parameter
"n" can be any value between 0 and 7 with no significance
placed on what the value is. Return from the driver to the
standard ALS-8 is made by depressing the "ESC" key as the
first character of a line. (Note: If there are NO LINES IN
A FILE, do not use the optional parameter.)

As a note of interest, the code comprising the AUTO command
represents a special I/O driver implemented to pre-process
input from the selected I/O driver. This is, of course, a
driver on top of a driver, but then the ALS-8 was designed for
such nonsense.

(69)

TXT-2 EXTENSION PACKAGE

OPERATORt MANUAL

The TXT-2, an optional extension to the ALS-S, opens
a new dimension to the powerful file operation and manage-
ment of the ALS-S. In addition to an EDITOR, the TXT-2 also
contains a VDM output driver and the FIND command. Code for
one additional function is also within the package, though
the name of the command is not known to the ALS-S (a minor
matter). The use of these commands will be described following
the descripti'on and operating procedure of the EDITOR.

EDITOR

The TXT-2 converts the contents of the "current" ALS-S
file into a continuous display on the VDM screen. Single
letter control character commands allow cursor, as well as
direct file line movement, on the screen. Since all file
operations are direct and the contents of the file are always
displayed on the screen, editing becomes a simple matter
either with or without file line numbers.

~"'>;f .".

'\ :'Uponentry, the EDITOR program takes control of the current
V' ALS-S File and displays the file contents (or lack thereof)

on the screen sixteen lines at a time. Command keys are pro
vided to roll through the file or to position the cursor over
any character within the file (even in a position where none
exists). Also provided are controls to insert and delete
characters or lines as required by the result desired.

As with all memory files, a file beginning and end address
exist. The TXT-2 EDITOR also has one additional parameter, a
value indicating the end of assigned memory. This parameter
can be given any value and is used to prevent a file from
growing beyond assigned bounds.

"" '"
"?The EDITOR is entered by using the EDIT command of the

ALS-S. The current file is displayed on the screen and if
there are less than sixteen lines, a number of fill characters.
As lines are added, these fill characters disappear off the
bottom of the screen.

Since a file must first exist, the user must create or

(70)

select a file prior to entering the EDITOR. The ALS-8 FILE
command is used for these operations.

In the explanation that foJlows, the user is urged to
try each command on an actual file. No words can describe
the visual effect each operation performs on the screen.
For best "learning" results, the file should haveJor be
given, at least thirty-two lines.

Fri£;;\w,t.o_-using the editor, the end of assigned memory
parameter should bes'et to 'a known value. The paramE'ter can
be set to a null value by giving the command EXECFFF3 (HEX).
This nullifies the proper operation of the parameter and a
further explanation will cover the correct usage later in
the manual.

CURSOR POSITIONING COMMANDS
********************************* .' ,

The keys, A, S , W , Z , form a ~i'~~~l~; on the input keyboard.
When pressed simultaneously witll't"ne CONTROL KEY, they will
move the cursor as indicated below.

CONTROL/ W
A
S
Z

move cursor up
move cursor left
move cursor right
move cursor down

Any character input, other than control characters, will
normally replace the character at the current cursor position.
The "normally" condition is placed on this statement to allow
for the character insert mode to be described later.

CONTROL/ Q CURSOR HOME COMMAND

In addition to the "triangle" movement controls, the TXT-2
also includes a "HOME" key which sets the cursor to position
zero on line seven. Do not use this control unless there are
at least seven lines on the screen.

SCREEN SCROLL COMMANDS

Screen scroll commands are provided to allow the file to

(71)

be "rolled" through the screen area until the desired file
line is reached. E~command key corresponds to a position
relative to the~~1?-J~_~9 previously described.

~-Vl~-",,_~#,---i'·-·,,)

CONTROL/ E scroll up one line
X scroll down one line
R scroll up sixteen lines
C scroll down sixteen lines

DIRECT FILE POSITIONING COMMANDS

In addition to cursor positioning controls, the TXT-2
also contains code to receive and search for specific text
within the file. The editor FIND command (different than
the ALS-8 find command) is CONTROL/ O.

CONTROL/ 0 editor text search

Upon depressing the search command, the screen will blank
and a colon (:) prompt will appear. At this point, the editor
is waiting for an input line of one or more characters from
the operator. This input can contain up to thirty-nine
characters. Anyoccurrence of these characters within the file,
regardless of preceding or following characters, will represent
a find. Therefore, only enough characters to uniquely define
the desired text need be input. As an example, "the qu" can be
used to locate a line in the file containing "the quick brown
fox" .

After receiving a carriage return following the input text,
the editor will search the file from the beginning forward for
anoccurrence of the text input by the user. Upon finding the
line, the editor will position the line containing the text at
the first line on the screen. If no occurrence was found within
the file, the editor will return to the first line of the file
for screen presentation.

CONTROL/ I continue search

If anoccurrence was found and the user wishes to continue
the search, the continue command should be used. This command
causes the editor to pick up the first file line off the
bottom of the screen and to continue the search from there.

Any text on the screen is not searched.

FILE MODIFICATION COMMANDS

CONTROL/ T character insert mode switch (on-off-on ...)

Normal file characters, input from the terminal, are
placed in the file in either of two modes. These modes,
normal and insert, are alternately selected using the
insert mode control.

When off, characters are placed at the present cursor
position and the cursor moves to the right one place. When
on~however, characters are inserted into the file at the
current cursor position, moving the character at that position
and the rest of the file right.

CONTROL/ H delete character command

The delete character command removes the character at the
current cursor position and moves the remaining portion of
the line to the left.

CONTROL/ B insert line command

The line insert control moves the current cursor line
down and inserts a blank line in its place. The cursor is
moved to the first character position of the new line.

CONTROL/ P delete line command

This control removes the current cursor line from the
file.

CONTROL/ J (linefeed) blank remaining line and scroll up

Linefeed deletes all characters on the current cursor line
from the current cursor position to the right. The file also

scrolls up one line and the cursor moves to the first position
on the new line.

CONTROL I M (Carriage Return) scroll up and insert one line

Carriage return scrolls up one line and inserts a blank
line in the file. The cursor is moved to the first character
position of the new line.

OTHER COMMANDS

CONTROL I F exit command

On EXIT, the editor clears the screen and does an FCHK on
the file prior to returning to the ALS-8 executive. For long
files some delay may be experienced (about 1/2 second) before
receiving the "READY" message.

CONTROL I Y repeat command

The repeat command requires two keystrokes following the
command. The first represents the command or character to be
repeated, while the second is the number of repeat increments.

The repeat increment is offset by an ASCII bias to allow
the numbers 1-9 to represent their actual values. All other
characters have an equivalent value as determined by their
ASCII representation.

CONTROL/Y-----» COM}~D OR CHARACTER------» # OF REPEATS

OTHER FUNCTIONS PROVIDED BY THE EXTENSION PACKAGE

FIND

As was mentioned, the TXT-2 extension also contains code

for the ALS-8 FIND COMMAND. This command gets an input string
from the user and prints all occurre~s of the string within
the current file.

After receiving the FIND command, followed by a carriage
return, a colon (:) prompt will print on the current output
device. At this point, the desired string is input, once
agai~ followed by a carriage return. Following this, all
occurrenoesof the string will print out on the current output
driver.

ESET COMMAND

The VDM EDITOR uses a parameter to limit the maximum
address the file may reach. Code has been included within
the TXT-2 to set this value, but no corresponding command
has been provided. The standard ALS-8 CUST command can be
used to insert this command if the following sequence is
executed:

6- i

CUS~/~,~,ET / FFF3

After :t::h.i,.s-/the command ESET, followed by an address, will
set the parameter to the value of the address given. It
should be noted that the file may reach but not exceed this
value.

VDM DRIVER

Also included in the TXT-2 package is a driver to allow \
the ALS-8 to use the VDM as an output device. This driver is
in PROM allowing access at all times. The address for the
driver is FE77 (hex) and the IODR command is used to enter
the name in the DRIVER TABLE. For use as a stand-by driver,
the following sequence is recommended;

IODR /VDM/ input address FE77

The driver may also be made the SYSTEM DRIVER by using
the following sequence:

IODR /SYSIO/ 0 FE77

(75)

, (
I.

The standard terminal output driver can then be assigned
as a hard-copy supplemental driver by using the following:

IODR /PNTR/ 0 DOA9

The VDM driver is especially suited to commanding the
ALS-8, and it is recommended that it be changed to the SYSIO
driver right after system initialization. The following
special keys are implemented in the driver:

CONTROL/ Z
A
S

clear screen
turn cursor on or off
set display speed prior to operation

The display speed command will output the message: SPEED?
on the VDM screen whenever it is given. The user should respond
with a value between 1 and 9 indicating the display speed desired.
A value of 1 represents approximately 2000 lines per second while
9 is rather slow at 3 characters per second.

The speed may also be changed any time during output by
pressing the corresponding key between 1 and 9. :r'h~disl2~~¥
can also pestoppedby depressing the "space bar". Orice

"'"-Stopped; any character other than speed vCifues or" another space
bar will continue the output at the same speed. The space bar
will allow one character to be printed for each sequential space
character received.

During all output operations with either the standard ALS-8
terminal driver, or with the VDM driver, a test for the ESC
character is made. If received, all output will be discontinued
and a return made to the SYSIO driver with a "READY" message.

When the built-in VDH driver is first activated, the screen
must be cleared (CTL-Z) and the speed set (CTL-S) to initialize
the VDM. For example:

IODR /SYSIO/
X

Control-Z
Control-S

o FE77
Type anything to switch drivers and
it will display: "What?"
Clear the screen
and set the speed.

(76)

APPENDIX A - STANDARD SYSTEM NOTES

1. System Entry Points

There are three primary entry points into the ALS-8 system.
The first is used to perform system initialization such as
when the system is first powered on, or when the ALS-8 is
first loaded. The second entry point is used to only partially
reset the system while keeping some of the internal tables intact
for later use. The third entry point is used to return control
to the ALS-8 monitor. The entry points are:

Address (hex)

E024

EOOO

E060

Use

This is the entry point which will completely
initialize the ALS-8 system. The various
tables and data within the system RAM area
will be initialized.

This entry point will perform a partial
system reset initializing only the system
standard I/O drivers in the system RAM area.

This entry point is used to return control
to the ALS-S. This entry point requires a
valid stack pointer but will set the stack
pointer after use.

2. Standard System I/O Drivers

The ALS-S makes use of a SYSTEM driver pair known as "SYSIO".
This driver pair is composed of an Input driver and an Output
driver. When the ALS-S is initialized, these drivers, the
name "SYSIO", and their addresses are moved from the ALS-8
to the system RAM area. Changes may be made to these drivers,
or other drivers may be addressed to support non-standard
devices.

The addresses of the SYSIO drivers at initialization are at
four locations, two each for Input and Output. The first
location is the address of the current I/O driver and the
second is the address of the drivers associated with the
named driver pair "SYSIO". Each address occupies two bytes,
with the low order byte of the address followed by the high
order byte.

Current Input Driver
SYSIO Input Driver
Current Output Driver
SYSIO Output Driver

DOCD (addresses are in hex)
0094
DODO
0096

The standard system Input driver is located at 0098, and the
Output driver is located at DOA9. A special input status

(77)

D098
~09a
D09d
0098
DOgS
0098
D098
DOgS
0098
D09B
DOgE
D09E
DOAO
00402
DOA3
DOA4
~OA!&
DOA6
DOA8
DOAg
DOA9
DOA9
DOA~
DOAC
DOAF
OOBl
D083
~OB5
;lOBa
)OBA
)OBC
)OBE
)OCO
)OC2
)OC~

IOC3
)OC3
10C~
IOC3
IOC3
IOC3
IOC3

AV
UTP8
STA

APPENDIX A (cont)

CD
CA

routine must also be available at location DOA4 and must pass
back a ZERO flag only when no character is waiting to be
input. The standard system I/O drivers are restored from
the ALS-8 to the system RAM area whenever the system is
reset or initialized (entry points E024 or EOOO). The follow
ing is an assembly listing of the standard system I/O drivers
to be used as an aid both in understanding how the drivers
work and how to write other drivers.

0001 •
0002 •

. 0003 * ALS-8 SYSTEM I/O DRIVERS
0004 •
0005 •
0006 *
0007 • INPUT DRIVER
0008 •

A4 DO 0009 INP8 CALL STAT GET STATUS
98 DO 0010 JZ INP8 LOOP UNTIL AVAILABLE

00 11 *
DB 01 0012 IN UDATA GET DATA FROM INPUT PORT
E6 7F 0013 ANI 121 STRIP OFF PARITY
ijl 00]/,1 Mall B,A elll: coey HI AltERNAtE BEGIStER
C9 0015 RET

0016 *
DB 00 oon SIAI IN IISIA
E6 40 0018 ANI DAV TEST FOR DATA AVAILABLE
C9 0019 RET

0020 I

0021 • OUTPUT DRIVER
0022 *

CD AU DO 0023 allIed CAI.I. SIAI GEI INEilI SIAIliS
CA B8 DO 0024 JZ NOCHR JUMP IF NO INPUT HAS BEEN RECEIVED
DB 01 0025 IN UDATA GET CHARACTER
E6 lE 0026 ANI 12l
FE 1B 0021 CPI ESC IS IT AN ESCAPE?
CA 60 EO 0028 JZ EORMS IF SO CHANGE DRIVER AND OUTPUT "READY
DS 00 002~ NOCtiB IN IISIA.
E6 80 0030 ANI TBE IS PORT READY FOR OUTPUT?
CA B8 DO 0031 JZ NOCHR
18 00~2 MOV A,B GEI C~AIUCIEB EOR OilIlmx
D3 01 0033 OUT UDATA
C9 0034 RET

00~5 *
0036 UDATA EQU 1 DATA PORT NUMBER
0037 USTA EQU 0 STATUS PORT NUMBER
00~8 DAll EQII !lOH DAlA A¥JILABLE AI BII 6
0039 TBE EQU 80H TRANSMITTER BUFFER EMPTY AT BIT 1
0040 ESC EQU lBH ESCAPE CHARACTER
0041 *
0042 •

0040 ESC OOlS HIEB DOg8 NOCHB DOB8
DOA9 STAT DOA4 TBE 0080 UDATA 0001
0000

(78)

~

APPENDIX A (cont.)

3. System Return Points

The ALS-S transfers control to a routine with a standard CALL
instruction for either the EXEC command or a custom command.
The CALL'd routine may use the stack, and (if used properly)
may return to the ALS-S via a standard RET instruction. The
ALS-S stack provides for 16 levels of stacking.

When a routine is CALL'd, two parameters are communicated
between the routine and the ALS-S. These parameters, known
as SWCH1 and SWCH3, are used to decide if the "READY" message
is to be displayed and if the I/O drivers are to be automatically
switched back to the SYSIO driver pair.

When SWCH1 is not zero on returning to the ALS-S, the "READY"
message will be displayed and the SYSIO driver pair will be
selected. Only when SWCH1 is zero is SWCH2 considered.
When SWCH2 is not zero (and SWCH 1 is zero) no message will
be displayed, and the I/O drivers will remain as they were.
When SWCH2 is zero (and so is SWCH1) the SYSIO I/O drivers
will be selected and a CRLF will be issued. SWCH1 is located
at DOFD and SWCH2 is located at DOFE. These two parameters
afford control over I/O driver selection.

There are five standard return points back into the ALS-S
when a standard RET instruction is not used. These various
return points may be used as an alternate method of returning
to the ALS-S, but the stack must be usable.

Name Address Function

EORMS E060 This is the normal return point. The SYSIO
drivers will be selected, then the message "READY"
will be displayed.

EOR EOB7 The ALS-S will perform all the SWCH1 and SWCH2
tests as if a standard RET instruction had been
issued.

EORNS EOD1 The current driver will remain in control, and
only a CRLF will be issued.

WHAT E7DD The SYSIO driver will be selected, then the
message "WHAT?" will be displayed.

MESS E7EO The SYSIO driver will be selected, then the message
as pointed to by the HL register pair will be dis
played. This message must terminate with a
CR (00 hex) •

(79)

APPENDIX B - ASSI, Assembly from Input Driver

The ASSI command allows an assembly to be performed by reading the
source data from a user-supplied Input driver rather than from
the current source file in memory. A typical example of this
application is when it is necessary to assemble a program from
cassette tape which would otherwise not fit within the existing
memory ..

The ASSI command uses the current input driver to retrieve the sour
data. Instead of inputting one byte at a time as would a standard
input driver, the input driver for the ASSI command inputs one en
tire source line each time the driver is called. For this reason,
an ASSI input driver probably would not function for any other
purpose.

Each time the input driver is called it must pass one entire line
into memory beginning at location D1E4 (hex). If line numbers
are to be passed as well, the ASCII characters for the numbers
should be placed into memory beginning at location D1DF (hex) for
four bytes. A line begins at location D1E4 (this is known as
"IBUF") and terminates with a CR (OD hex) •

The assembler requires two passes of the source file in order to
complete an assembly. Therefore, the Input driver must make some
provision both for detecting the end of the first pass as well as
for rewinding the source data so that the entire source data may be
passed to the assembler a second time. When the end of the source
is detected, the input driver must pass a line containing " END"
to the assembler so that the assembler will know that the end of a
pass has been reached.

(80)

APPENDIX C - ALS-S on Cassette and with SOLOS/CUTER

ALS-S is distributed on various media, including CUTS format
cassette. This cassette consists of one file which loads into
memory beginning at location DFSO through the end of the ALS-S
(nearly FFFF, the end of memory address space). Although the
ALS-S program actually begins at EOOO, a short program resides in
front of the ALS-S which establishes the necessary linkages with
either SOLOS or CUTER. This program resides at the very end of the
ALS-S system RAM area and also contains special I/O drivers which
provide compatible operation with either SOLOS, CUTER or other
compatible surrogate.

When the ALS-S cassette is first loaded and executed at location
DFSO, the I/O drivers will be properly altered so that the
standard SYSIO I/O drivers will function properly with SOLOS/CUTER,
a "STAB 0700" will be simulated, and the begin address of the
SOLOS/CUTER jump table will be used to simulate an "ESET" command.
An assembly listing of this initialization program follows. The
SYSIO I/O drivers will be altered within the ALS-S itself, so
that whenever the ALS-8 is later reset (via entry at either E024
or EOOO) the updated SYSIO drivers compatible with SOLOS/CUTER
will be moved into the system RAM area.

The ALS-S cassette contains only one file called "ALS-8". To load
and execute this file under either SOLOS or CUTER:

1. Be certain that 12K of RAM esists from 0000 through FFFF.

2. Place the ALS-8 cassette into the cassette playback unit.

3. Enter "XEQ ALS-S" to either SOLOS or CUTER. The tape
will now read in, and the ALS-8 initialization program
will automatically be executed.

4. Once the initialization program completes, the ALS-8
. will display the message "READY".

(81)

APPENDIX C (cont.)

pF80
DF80 23
DF81 7E
DF82 FE C3
DF84 C2 24 EO
DF87 2E 1F
DF89· 7E
DF8A FE 3A
DF8C C2 24 EO
DF8F 7C
DF90 32 DO DF
D.F93 32 FC DF
DF96 2E 00
DF98 2B
DF99 22 91 D1
DF9C 21 E9 DF
DF9F 22 A1 D1
DFA2 21 00 D7
DFA5 22 4F EO
DFA8 21 D8 DF
DFAB 22 DE E1
DFAE 21 EA DF
DFB1 22 EO E1
DFB4 21 EE E1
DFB7 11 C7 OF
DFBA 06 11

DFBC
DFBC 1A
DFBD 77
DFBE 23
DFBF 13
DFCO 05
DFC1 C2 BC DF
DFC4 C3 24 EO

00A4

OFC7
DFC7 3A FF DF
DFCA B7
DFCB C2 B2 DR
OFCE CD 1F 'CGff
DFD1 c8
DFD2 32 FF DF

DFD5
DFD5 3E 40
OFD7 C9

0011

0010 •
0020 *
0030 *
0040 •

THIS PROGRAM IS LOADED AT THE VERY E~n n~ THE
ALS-8 DOOO RA~ AREA. BECAUSE IT I~ A PART OF T~F.
ALS-8 FILE ON CASSETTE TAPE, IT PERFORMS PRIMARY
INITIALIZATION OF THE ALS-8 FOR EITHER SOLOS OR
CUTER. 0050 •

0060 •
0070 •
0080 START
0090
0100 . /'
0110 Y
0120
0130
0140
0150
0160

EQUm THE. ALS-8 F'ILR REGINS EXFClI"!'Im' '-IE~F.
INX H CHECK BYTE 1 nF SOLOS/CUTER JUMP TARLE
MOV A,M THIS MUST BE A 'JMP'
CPI OC3H IF NOT THEN THIS CANNOT BE SOLnS/CUTER
JfiZ Ak~a ~IQ--USE NORMAL ALS8. I/O DRIVERS
MVI L,>SINP NOW CHECK THE SIMP ROUTINE
MOV A,M THIS MUST BE A 'LDA'
CPI 3AH IF NOT THEN THIS ISN'T SOLOS/CUTER EITHE~
JNZ ALS8 NO--STD I/O DRIVERS THEN
MbV 'A~ R' ",MG'ET THE ADDRESS OF SOLOS/CUTEll

_ STA XXINP+2 RELOCATE THE INPUT CALL W/IN STAT
_§J'..A _.!XOUT+2 W THE OUTPUT CALL W/IN OUTP8

0170
0180
0190
0200
0210 j
0220
0230
0240
0250
0260
0270
0280
0290
0300
()o310
0320
0330

MVI L,O PREP TO GET SOLOS/CUTER MINUS ONE (. l
DCX H NOW IS MI .. ~ ~.UUSS~ O~. ~L-::;' . I A....I-..f '\ -(ICy
BaLD 'w.~U-.JJlS..l'..~LUEFOR ·ESET ~ vvn',.J,'

. LXI H, RET PT' TO T-iff.f'U'P.~RU~'1ffoN .
'il' SHk!l,._Cl1t!t __ ..J!Q.l!!1;~~>, . .!'.2JLf~\J,:;!1..JlURlNJ,t_Wl..-
(., XI H, OD700H PI~K A DUMMY STAB VALUE
\.:LD STA6.NQ,W ALS8 WILL GET IlllIT'ED TO ft. "SA~E" STAB

r LXI H,INP8 GET THE AODR OF THE INPUT RnUTI~E
II SHLD PTRS POST NEvi ADDRF.SSES INTO ALS-8

:; . LXI H, OUTPS l(CSO 1'1'1E OUTPUT ROUTINE .A !)!)R
v SHLD PTRS+2 AND POST IT TOO
--T~r R, MVlO PI t:1"~.RE; 1(') MOVE 2t1JD DATA

LXI D,MVFH THE STAT ROUTINE IS MOVED
MVI B,MVLEN THIS IS THE NUMBER OF RYTES TO MOV~

0340 LP1
0350

EQU • LOOP TO MOVE THE ENTIRE STAT FOUTINE
LDAX D GET ONE RYTE

0360
0370
0380
0390
0400
0410
0420 •
0430 •
0440 *
0450 *

MOV M,A MOVE IT
INX H NEXT
INX D
DCR B DO IT PROPER NUMBER O~ BYTES
JNZ LPl MOVE ENTIRE ROUTINE
JtJfP' Ar.:~-n.r!'I'IALIZATION IS ALL DONE---START IT UP---

0460 * THESE ARE THE 1/0 DRIVERS THAT WILL MA~E TH~ ALS-8
0470 • BE COMPATIBLE WITH SOLOS/CUTER/CONSOLo
0480 *
0490 *
0500 *
0510 *
0520 *
0530 *

THIS ROUTINE WILL BE THE STATUS ROUTINE
THIS IS PLACED INTO THE ALS-8 PROPER,
BUT IS FINALLY PLACED INTO SYSTEM RAM AT LOCATION
DOA4.

0540 STAT EQU
0550 *
0560 MVFM EQU
0570 LDA
0580 ORA
0590 JNZ
0600 XXINP CALL
0610 RZ
0620 STA
0630 STAT2 EQU
0640 HVI
0650 RET
0660 HVLEN EQU
0670 *
0680 •
0690 •

ODOA4H THE STAT ROUTINE WILL BE HERE

$ THIS CODE WILL BE MOVED FROM HERE
CHAR SEE IF STATUS ALREADY GOTTEN
A IS THE STATUS ALREADY THERE
STAT2-MVFM+STAT YES--SAY SO AGAIN AND AGAIN AND AGA
SINP GET STATUS AND/OR CRAR

CHAR
$
A,40H

NO CHAR AVAILABLE
POST !fHS cr-~AR IS WAIT.ING
CHAR ALREADY WArTING
PASS BACK SOMB NON-ZERO CRAR
AND STATUS IS NOW COMPLETE

$-MVFM . THIS IS THE LENGTH OF THE CODE TO MOVE

(82)

APPENDIX C (cont.)

DFD8
DFD8 CD A4 DO
DFDB CA D8 DF
DFDE 3A FF DF
DFE1 E6 7F
DFE3 47
DFE4 AF
DFE5 32 FF DF
DFE8 78
DFE9 C9

DFEA
DFEA CD A4 DO
DFED CA FA DF
DFFO C5
DFF1 CD D8 DF
DFF4 FE 1B
DFF6 C1
DFF7 CA, 60 EO

DFFA ,
DFFA CD 19 ,-CO! \.... ./

DFFD 78---
DFFE C9

DFFF 00

ALS8
CHAR
CTLU
EORMS
ESET
INP8
LP1
MVFM
MVLEN
MVTO
NOCHR
OUTP8
PTRS
RET
SINP
SOUT
STAB
START
STAT
STAT2
XXINP
XXOUT

C01F
C019

E024
E060
E04F
D191
D1A1
E1DE
E1EE

E024
DFFF
D1A1
E060
0191
DFD8
DFBC
DFC7
0011
E1EE
DFFA
DFEA
E1DE
DFE9
C01F
C019
EO-4F
DF80
DOA4
DFD5
DFCE
DFFA

0700 * THESE Rou'i'niEs EXIST AT THE TOP OF THE
0710 * 0000 4K BLOCK OF MEMORY.
0720 *
0730 *
0740 INP8
0750
0760
0770
0780
0790
0800
0810
0820
0830 RET
0840 *
0850 *
0860 *
0870 OUTP8
.0880
0890
0900
0910
0920
0930
0940
0950 NOCHR
0960 XXOUT
0970
0980
0990 *
1000 *

EQU
CALL
JZ
LDA
ANI
MOV
XRA
STA
MOV
RET

EQU
CALL
JZ
PUSH
CALL
CPI
POP
JZ
EQU
CALL
MOV
RET

$
STAT
INP8
CHAR
7FH
B,A
A
CHAR
A,B

$
STAT
NOCHR
B
INP8
1BH
B
EORMS
$
SOUT
A,B

INPUT ROUTINE
GET STATUS
WAIT FOR A KEY
WHEN KEY IS HIT, IT WILL BE HERE
CLEAR HI BIT IN CASE
PASS CHAR BACK IN REG B
BUT WE ALSO HAVE TO CLEAR CHAR WAITING
NO CHAR IS WAITING NOW
ALSO PASS BACK CHAR IN REG A
CHAR IN A AND B (ALRO USED FOR JUST A "RET")

CHA~ACTER OUTPUT ROIITINE
IS THERE BY CHANCE A C~AR WAITING
NO--THEN JUST DO AN OUTPUT
SAVE CHAR TO BE OUTPUT
GET THE CHAR THAT IS THERE
IS IT AN ESCAPE?
RESTORE CHAR TO BE OUTPUT 1ST
YES--THEN ABORT AND SAY READY
NOW WE CAN OUTPUT'CHAR IN REG R
OUTPUT THE CHAR
AND RETURN SAME CHAR IN REG A ALSO
CHAR IS OUT NOW

1010 CHAR DB 0 O=NO CHAR IS WAITING, ELSE IT IS THE CHAR
1020 ********* END OF PROGRAM ************
1030 *
1040 *
1050 SINP EQU
1060 SOUT EQU
1070 *
1080 ALS8
1090 EORMS
1100 STAB
1110 ESET
1120 CTLU
1130 PTRS
1140 MVTO
1150 *
1160 *
1170 *

0120 0160 0410

EQU
EQU
EQU
EQU
EQU
EQU
EQU

0570 0620 0770 0810
0240
0940
0220
0270 0760 0910
0400
0320 0590 0660
0330
0310
0890
0290
0280 0300
0230
0130 0600
0960
0260

0590 0750 0880
0590
0180
0190

OC01FH SOLOS STANDARD INPUT ROUTINE
OC019H SOLOS STANDARD OUTPUT ROUTINE

OE024H
OE060H
OE04FH
OD191H
OD1A1H
OE1DEH
OE1EEH

(83)

ALS-8 INITIAL ENTRY POINT
ALS8 RETURN IF ESCAPE IS HIT
THE STAB GETS INIT'ED HERE
ESET VALUE STORED HERE
CTL-U DURING EDIT ROUTINE ADDR HERE
PTRS TO INP8 AND OUTP8 W/IN ALsa
THE STAT ROUTINE W/IN THE ALsa

Appendix D

SOLOS/CUTER Interface Specifications

The SOLOS/CUTER interface is based on:

1. A predefined set of 'pseudo' I/O ports allowing
software compatibility and providing an easy means
of supporting any I/O device.

2. A well defined set of register usage conventions.

3. A system jump table of entry points.

4. A defined tape format including headers and CRC
characters.

Both SOLOS and CUTER observe and support these specifications
such that any program written using this interface will func
tion (except for specific device dependencies) under the
control of either SOLOS or CUTER. A part of the interface
specifications also allows a user written SOLOS/CUTER surro
gate. Such a surrogate, when properly written, will allow
a program written for SOLOS/CUTER to function with the surro
gate.

The first aspect of the interface is that of the pseudo ports.
The basic SOLOS/CUTER interface allows the support of four
'pseudo' I/O ports (0 - 3). These pseudo ports are logical
ports providing a reference for the program only. System
input (keyboard) and output (display) are directed via
these pseudo ports. The STANDARD definition for pseudo
ports is:

Pseudo Port

o
1
2
3

Input

Keyboard
Serial input
Parallel input
User defined input

Output

VDM Display
Serial output
Parallel output
User defined output

These pseudo ports allow device independent I/O. Provided that
device dependent character sequences are not used, an I/O
request to pseudo port 0 appears to the requesting program
to be the same as a request to pseudo port 1,2 or 3. What
this means is that, although four pseudo ports are defined
in the interface specifications, a user written surrogate
would not need to decode pseudo ports.

(84) © 1977 Software Technology Corporation

Appendix D (cant.)

The second aspect of the SOLOS/CUTER interface is the defined
register usage. Each of the system entry points has specific
register requirements which will be discussed later.

Whenever a program is executed via SOLOS/CUTER the stack pointer,
the stack, and registers HL are defined as follows:

1. The Stack Pointer (register SP) is valid and offers
a useable stack. The size of this stack is not specified
but should be adequate for at least a few calls. The
executed program is expected to establish its own
stack;, however, some stack should be available.

2. The stack itself should be established such that:

(a) A "RET" instruction can be used as an exit
by the executing program.

(b) The locations at Stack Pointer -1 and -2 in
memory contain the address of the executed
program itself. This information can be
accessed by machine code similar to:

LXI
DAD
MOV

H,-1
SP
A,M

A constant minus one.
HL=SP-1 now.
A=our own high address.

Code such as this can be used to allow a
routine to be made self-relocating to a
256 byte boundary.

3. Registers HL contain the address of the SOLOS/CUTER
jump table. Because this jump table may be located
at any 256 byte boundary in memory, register L will
be zero. Register H can then be used to alter the
executing program accordingly. As noted later, the
jump table also provides an indication whether the
program is executing on a Sol or other computer.

The third aspect of the SOLOS/CUTER interface is the jump table.
By making all system requests via this jump table, an executed
program can be made compatible between SOLOS, CUTER or other
properly written surrogate. The jump table is described on
the following page. A more complete description is contained
in the SOLOS/CUTER User's Manual.

(85)

Appendix D (cont.)

SOLOS/CUTER JUMP TABLE

Address Label Length Brief Description

xxOO START 1 This byte allows power-on reset for
SOLOS. It is 00 hex on a Sol; 7F hex
on other than a Sol.

xx01 INIT 3 This is a "JMP" to the power-on reset.

xx04 RETRN 3 Enter at this point to return control
from an executing program.

xx07 FOPEN 3 Byte access file open.

xxOA FCLOS 3 Byte access file close.

xxOD RDBYT 3 Byte access read one byte.

xx10 WRBYT 3 Byte access write one byte.

xx13 RDBLK 3 Read an entire file into memory.

xx16 WRBLK 3 Write an entire file from memory.

xx19 SOUT 3 Standard character output routine. This
must be an "LOA" pointing to the byte
containing the current system output
pseudo port value.

xx1C AOUT 3 Character output to pseudo port specified
in register "A".

xx1F SINP 3 Standard character input routine. This
must be an "LDA" pointing to the byte
containing the current system input
pseudo port value.

xx22 AINP 3 Character input to pseudo port specified
in register "A".

The most often used routines are: RETRN, SOUT and SINP. Other
entry pojnts mayor may not be used.

(86)

Appendix D (cant.)

JUMP TABLE INPUT ENTRY POINTS

SINP

AINP

address xx1F

This entry point will set register "A" to the current
system input pseudo port. This must be an "LDA"
instruction. After loading register "A", this entry
point proceeds by executing "AINP" described below.

address xx22

This entry point is used to input one character or
status information from any pseudo port. On entry
register "A" indicates the desired pseudo port. I

Because this entry point is a combination status/get
character routine, it is the user's responsibility
to interpret return flags properly. When a character
is not available, the zero flag will be set. When a
character is available, the zero flag will be reset
and the character will be returned in the "A" register.
As an example, the following code will wait for a
character to be entered:

LOOP CALL
JZ

SINP
LOOP

...

get status or the character
status says character not
available yet
character is in register "A"

JUMP TABLE OUTPUT ENTRY POINTS

SOUT

AOUT

address xx19

This entry point will set register "A" to the current
system output pseudo port. This must be an "LDA"
instruction. After loading register "A", this entry
point proceeds by executing "AOUT" described below.

address xx1C

This entry point is used to output the character in
the liB" register to the pseudo port specified by the
value in the "A" register. On return, the PSW and
register "A" are undefined. All other registers are
as they were on entry. A user written output routine
(AOUT surrogate) may buffer or delay the output as
required for the supported device.

(87)

Appendix D (cont.)

The fourth aspect of the SOLOS/CUTER interface is the format in
which the data is recorded on tape. When data is written to tape,
it is referred to logically as a "file". Each file has
its own header which describes the file. On cassette tape, each
header is followed by the file itself. The file itself is
written to tape in segments of 1 to 256 bytes. Each segment
is immediately followed by a Cyclic Redundancy Check character
(the CRe). The following is the general format of one file on
cassette tape:

I

File
Preamble Header The File

1 A B C D H F I GI H

Where:

A. Preamble

Preceding every file header is a special
preamble. This is a series of at least ten nulls
(zeroes) followed by a one (01 hex). This
special sequenc~ and only this sequence, indi
cates a probable file header follows.

B. File Header

This is the 16 byte file header. The layout of
a file header is:

NAME ASC
DB

TYPE DB

'ABCDE' A 5 character file name.
o Should always be zero.
'B'+80H File type character. If bit

7=1, this is a non-executable
data file.

LENGTH Number of bytes in file.

~

SIZE DW
ADDR DW FROM Address file is to be read into

or written from.
XEQ DW EXEC Execution beginning address.

DS 3 Space not currently used.

C. File Header CRC

This is the CRC character for the file header.
If, when reading a file header, the CRC character
is not correct, then the file header is to be
ignored. A search would then be made for a new
preamble (A above) •

(88)

Appendix D (cont.)

D. File Segment First

This is the first segment of the file itself.
A segment is from 1 to 256 bytes. In this
example, this segment is 256 bytes.

E. File Segment One CRC

This is the CRC character for the preceding seg
ment-- in this example, the preceding 256 bytes.

F. File Segment Last

This is the last segment of the file. In this
example, this is 44 bytes. Therefore, the
length of this file is 256+44=300 bytes.

G. File Segment Last CRC

This is the CRC character for the preceding
segment--in this example, the preceding 44 bytes.

H. Interfile GAP

This is a gap between files and is typically a
clear carrier for about five seconds.

CRC Computation

The CRC character is computed for each segment or header.
The following code performs the CRC computation assuming:
Register IIA" is the character just written to tape, and
Register IIC II is the final CRC. ' Register C should be set
to zero prior to writing the first character of a segment.
After writing the last character of a segment and executing
this code, Register "c" is the CRC character for this
segment.

An 8080 Subroutine to do CRC Computation

DOCRC EQU $ A=NEXT character and C=CRC
SUB C
MOV C,A
XRA C
CMA
SUB C
MOV C,A·
RET

(89)

)

ProcessorTechnology Corporation 7100 Johnson Industrial Dr've. Pleasanton, CA 94566 Manual Number 727013

