|
I .
H
N
=——=Prime.

Instruction Sets Guide

Rev. 21.0

DOC9474-2LA

Instruction

Sets Guide

Second Edition

by
Marilyn Hammond

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes nO responsibility for any €rrors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1987 by Prime Computer, Inc. A1l rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime
INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAN,
PST 100, PT25, PT45, PT65, PIR00, PW1S3, PW200, PW250, RINGNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
6350, 9650, 0655, 9750, 9755, 9950, 9955, and 9955I1 are trademarks of
Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOC9474-11A) January 1985
Update 1 (UPD474-11A) October 1985
Update 2 (UPD9474-12A) February 1986
Update 3 (UPDO474-13A) April 1986
Second Edition (DOCO474-21A) August 1987

CREDITS

Editorial: Thelma Henner

Project Support: The CPU Group
T1llustration: Mingling Chang

Document Preparation: Kathy Normington
Production: dJudy Gordon

ii

HOW TO CRDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Conmnecticut Path
Framingham, MA 01701

Contents

ABOUT THIS BOOK vii
INTRODUCTION
Addressing Modes 1-1
Summary of Datatypes and Applicable
Instructions 1-5

S, R, AND V MODE

Introduction 2-1
Instructions -7
I MODE
Introduction 3-1
Instructions 37
APPENDICES
Cordition Code Information A-1
Addressing Information B-1
Addressing Modes and Formats B-1
Address Traps B-18
Summary B-22
Instruction Summary Charts C-1

Hardware Considerations in Performance D-1

Instruction Weights D-2
Extensions to Instruction Weights D7
Archived Instructions E-1
2455 Instruction Sets F-1

About
This Book

Prime’s 50 Series™ family is a sophisticated group of totally
compatible supermini computers. Its members are the Prime:

6350 ™ 9955 II™ 9955 ™ 9950 ™

o755 ™ 9750 ™ 9655 ™ 9650 ™

2755 ™ 2855 ™ 2550 ™ 2450 ™

2350 ™ 2250 ™ 850 ™ 750 ™
650 ™ 550-II ™ 5§50 ™ 500 ™
450 ™ I450 ™ 400 ™ 350 ™
250-II™ 250 ™ 150 ™

The earlier processors are the 2250, 850, 750, 650, 550-II, 550, 500,
450/, I450, 400, 350, 250-II, 250, and 1850.

The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently and
quickly. This document describes the 50 Series addressing modes and
their instructions from a functional point of view.

NOTES TO THE READER

Several groups of people will find this document useful: engineers,
programmers, designers, and technicians. To read this book, you should
have a basic understanding of computers, but not necessarily of Prime
computers. Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the information
contained in this book to other Prime machines, as well as to the 50
Series machines.

ORGANIZATION OF THIS GUIDE

This guide describes the instructions for S, R, V, and I addressing

modes. Each of these modes is introduced in Chapter 1. This chapter

also presents the 50 Series datatypes and their applicable

instructions. Chapters 2 and 3 contain detailed information about each

instruction —— name, format, mnemonic, and required operands -— and a

complete description of each of the instruction’'s actions.

Chapters 1 through 3 may be summarized as follows:

e Chapter 1 contains brief descriptions of S, R, V, and I addressing
modes as well as a sumary of datatypes with applicable
instructions.

e Chapter 2 is a dictionary of instructions executable in S, R, and V
modes.

e Chapter 3 is a dictionary of instructions executable in I mode.

Apperdix A discusses the condition codes and their interpretation.
Appendix B presents tables of addressing information.
Appendix C contains summary charts of the instructions.

Appendix D discusses hardware considerations in performance and
provides tables of relative instruction weights.

Appendix E has those instructions that have been archived.

Appendix F discusses the instructions sets in relation to the 2455.

viii

PRIME DOCUMENTATTION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.

Convention Explanation Example

UPPERCASE In command formats, words CRL
in uppercase indicate the
names of commands, optioms,
statements, and keywords.
Enter them in uppercase.

lowercase In command formats, words LDA address
in lowercase indicate vari-
ables for which you must
substitute a suitable value.

Brackets Brackets enclose an optional [DISPLACEMENT\16]
(] item.
Apostrophe An apostrophe preceding a ‘200

number indicates that the
number is in octal.

Introduction

This chapter briefly describes the S, R, V, and I addressing modes as
well as introducing their data representations. Each datatype
operation is listed with its S, R, V, and I mode instructioms.

AITRESSING MODES

The 30 Series processors support four addressing modes, each of which
forms addresses differently. Depending on the program and personal
preference, one or two of these modes may be more useful than another.
The three most important modes are:

® V, or virtual

® I, or general register

® R, or relative

The fourth mode —- S, or sectored, mode —— is supported for historical
reasons.

1-1 Second Edition

INSTRUCTION SETS GUIDE

V Mode

V mode performs short and long operations and has a wide variety of
registers to use. A short (16-bit) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment. A long (32-bit) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode

When referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumulators, counters,
or the like. I mode long operations have the same referencing power as
V mode long operations. They can also use immediate forms and five
additional index registers. (This makes a total of 7 index registers
that I mode long operations can use.) The index registers are
specified by the source register field. General register O, however,
cannot be used for indexing.

General register relative (GRR) is an addressing capability added to
32T mode that speeds wup big array accesses and often gives the effect
of using general registers as base registers. (This is sometimes
called IX mode.) The offset is formed in GRR by adding the
displacement to bits 17 to 32 of the source register field. GRR is
used by the I mode instructions ATP and LIP. (GRR is not available for
the earlier processors listed in "About This Book".)

The C language pointer is used by the I mode instructions ACP, CCP,
DCP, ICP, LCC, SCC, and TCNP. The format of this pointer is the same
as the indirect pointer, except that bit 4 is redefined as the B (byte)
bit. When this bit contains O, it indicates that bits 1 to 8 (the left
byte) of an address contain the character to be used; when this bit
contains 1, bits 9 to 16 (the right byte) of an address contain the
character. A null pointer is represented by a O in bits 4 through 32.
(The C language pointer and its instructions are not available for the
earlier processors listed in "About This Book".)

Normal effective address formation uses either a base register,
indirect pointer (IP) or a general register (for GRR addressing) as the
source of the ring field, B bit, and segment number. The C language
pointer is well defined for the IP and GRR form. When the base
register is the source of the B bit, software depends on finding it
reset to =zero, pointing to the leftmost byte. While it is possible to
set the E bit in a base register using 48-bit IPs to specify 32-bit
addresses, this practice is not now done. Future implementations of V
and I modes will force bit 4 to zero during effective address formation
when the source of the segment is a base register; otherwise it will
copy bit 4.

Second Edition 1-2

INTRODUCTION

R Mode

A sector is a block of 512 (1000 octal) contiguous memory locations.
Sector O starts on location O and ends on location '777; Sector 1
begins on location ‘1000 and ends on location '1777; and SO on.

An R mode instruction can reference any location in Sector O, as well
as a group of locations relative to the current value of the program
counter. When the sector bit (S) in an R mode instruction is O, the
instruction can only reference locations in Sector 0. When S is 1, the
instruction references locations relative to the current value of the
program counter. The range of these relative locations is PC - ‘360 to
PC + '377, inclusive.

Note that an R mode instruction that specifies a location in the range

PC - '36l1 to PC - ‘400, inclusive, selects a special addressing code,
such as stack register.

S Mode

Like R mode instructions, S mode instructions contain a sector bit.
Vhen S is 0, references are to Sector O. Vhen S is 1, however,
references are only to those locations within the sector containing the
instruction.

S mode is a holdover from early Prime machines that were based on the
Honeywell 316 and 516 minicomputers. When operating in S mode, the 80
Series processors act exactly as these early machines do.

Summary of Addressing Modes

Table 1-1 summarizes addressing information about S, R, V, and I modes.
For further information, see Chapter 3 of the System Architecture
Reference Guide.

1-3 Secord Edition

INSTRUCTION SETS GUIDE

Table 1-1

Summary of Addressing Modes

I Mode | Address | Addressing Range I# Index! Indirectionl
! | Length | | Regs | Levels

[

I 16S direct | 14 bits | 1024 halfwords | One |

! | | | [

I 16S indirect | 14 bits | 16K halfwords | One | Multiple
I l ! | |

I 328 direct I 15 bits | 1024 halfwords | One |

[[| | |

I 328 indirect ! 15 bits | 32K halfwords | One | Multiple
f | [! [

I 32R direct | 15 bits | 1008 halfwords | One |

I [[[|

| 32R indirect | 15 bits | 32K halfwords | One | Multiple
! [[| I

| 64R direct | 168 bits | 1008 halfwords | One |

I [| | |

| 64R indirect | 16 bits | 64K halfwords | One | One

! | I | I

| 64V 16-bit | 16 bits | 64K halfwords: I One | One

I instructions| | +256 SB relative | |

[| I +256 LB relative | |

| | I +/-256 PC relativel I

| | I +512 PB absolute | I

| | ! | |

I 64V 32-bit | 28 bits | 4 segments* I Two | One

[instructions! | [I

[! | | |

| 64V indirect | 28 bits | 4096 segments* | Two | One

[l ! | |

I 32T all | 28 bits | 12 segments* | Seven | One

1 1 I with GRR** | [

[| [I |

I 32T indirect | 28 bits | 4096 segments* I Seven | One

I
I
|
|
!
!
!
|
I
|
!
|
I
|
|
I
|
I
I
|
!
I
|
[
i
I
I
I
[
|
!
I
|

* All segments contain 128 Kbytes.

** Four segments for the 2
have no GRR capability.

Second Edition

ORM
I

14

arxd earlier processors because they

INTRODUCTION

SUMMARY OF DATATYPES AND APPLICABLE INSTRUCTIONS

The 50 Series systems support several data representations. These
representations fall into the major groups:

e Fixed-point data
¢ Floating-point numbers
o Decimal integers

o Character strings

® Queues

Tables 1-2 and 1-3 list the instructions applicable to the datatype
operations (other than queues) available in S, R, V, and I modes. The
body of each table shows which instructions perform a specific
operation on a specific datatype. For detailed information about each
instruction, refer to the instruction dictionaries in Chapters 2 and 3
of this manual. For further information about datatypes, see Chapter 6
of the System Architecture Reference Guide.

Vhen using Tables 1-2 and 1-3, aa represents the set of arithmetic
conditions [BQ, GE, GT, LE, LT, NE J]. Also, these tables do not
include instructions that operate on CBIT, LINK, the condition codes,
or queues.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1-16 of a 32-bit I mode
genergl register. In addition, A and B represent the S and R mode
16-bit registers; L and E represent the V mode 32-bit registers.

1-5 Second Edition

INSTRUCTION SETS GUITE

Table 1-2
Summary of Datatypes and Applicable S, R, V Mode Instructions

| ! Size of Datatype (in Bits of Register) |
| Operation ! I
I I 186 1 31 | 32 1| 64 |32FP IG4FP |128FP! Decl
[I (A) 1(a/B)1 (L) 1(I/E) 1 (FAC) 1 (DAC) 1 (QAC) 1T (-)1
[1
I Load from memory { ILDA | DLD | IOL | | FLD | DFLDi QFLDI XMVI
| | | l | 1 | [| |
| Store to memory | STA | DST | STL | | FST | DFSTI QFST!I |
| | [! | | | ! | I
{ Add | AID | DAD | ADL ! | FAD | DFAD! QFAD|I XAD!
| [[l | | | | | [
| Subtract | SUB | DSB | SBL | | FSB | DFSBI QFSBI XAD!
| I | | ! I | | | |
I Multiply | MPY | | MPL | | FMP | DFMPI QFMP| XMP|
| | | I | | | ! | I
| Divide | DIV | { DVL | | FDV | DFDVI QFDVI XDVI
I [I | | | | | | [
| Increment I IRS, | | | | | | I |
I I AlA, | | | 1 | I I [
| | ARA | I I } I I] |
| | l | | | | | [|
I Decrement | S1A, I I [[I I | |
| | S2A | | 1 | [! l [
I | ! | | f | | | |
| AND | ANA | | ANL | ! | | I I
[| i [i i i i | |
I R | ORA | I [I | | | l
[| [| | | | | | |
I XOR | ERA | | ERL | | [| | [
| | [I | [[| [[
I Complement | CMA | [| | | | | [
| [[| | [| | l |
| Compare I CAS, | I CLS | | FCS | DFCSI QFC, | XCMI
| | CAZ | | [[| I QFCSI [
[| [| | | | [| |
I Logical test | Laa | | Llaal | LFaa! LFaal l [
! | [| | I | | | l
! Branch | Baa | | BLaa! | BFaa! BFaal | !
[!		[I	(
Logical left shift	ALL	I LIL					
	([l						
Logical right shift	ARL	I IRL			[[
[t			
Arithmetic left shift! ALS	LIS	LLS	[
[a 1			[l			
I Arithmetic right	ARS	IRS	IRS !		!		
i shift i i i i i i i i i							
				' [! l			
Rotate left shift	AIR		LIR			x [

Second Edition

1-6

Table 1-2 (continued)
Summary of Datatypes and Applicable S, R, V Mode Instructions

INTRODUCTION

I
I
I
!
|
!
I
f
f
|
!
I
I
I
I
|
I
|
!
I
!
I
|
I
|
I
!
|
|
|
!
I
!
!
I
I
|
I
I
I
I
I
|
I
I
|
f
!

[Size of Datatype (in Bits of Register)
Operation |
I 161 31 | 32 | 64 |32FP I64FP |128FPI Dec
I (A) 1(A/B)I (L) I1(I/E) I (FAC) 1 (DAC) 1(QAC)! (-)
Rotate right shift ARR IRR

Clear

Clear left

Clear right
Interchange halves

Interchange and
Cclear left

Interchange and
clear right

Two’'s complement
Set sign

Clear sign

Change sign
Convert datatypes:

Integer to
floating point

Floating point
to integer

Binary to decimal
Decimal to binary

Position for integer
divide

Position after
multiply

Skips

CRA

ICA
ICL

ICR

SSM

|
|
|
!
!
I
I
I
I
I
!
|
I
|
!
f
I
I
{
f
SSP |
I
I
I
I
I

FLTAI

I
I
|
|
|
!
!
I
|
!
I
|
!
!
!
I
I
|
|
|
I
|
!
f
!
|
|
!
!
|
f
|
|
|
|
I
I
!
!
I
I
I
I

CRL |ICRLE

CRA | CRL
CRE

ILE

| I
I I
I I
I [
| I
I |
I !
| I
| |
I |
I !
I !
J !
{ |
I |
! |
| I
! |
I I
I I
I |
! |
I I
I I
| I
| I
I I
! [
I |
| |
! !
|

FLTL
INTL QINQ
QIQR
|
XBTD! XBTDI
[I
XDTB! XDTB!
[|
PIDL| PIDL!
| I
l I
PIML PIMLI
I I
[| |
I | FSaal FSaa

I
!
!
|
I
I
!
I
I
|
|
!
|
|
f
!
!
|
f
!
|
|
I
!
|
!
I
I
I
I
I
I
!
!
!
|
|
I
!
I
I

DFCM

!
|
!
i
I
!
I
|
|
|
I
|
I
!
|
I
|
!
I
I
!
|
|
!
I
I
I
|
I
|
|
|
I
I
I
I
I
|
}
|
I
|
i
!
f
[
|
|

| I
I |
| I
I I
I I
I [
| |
I |
| I
! !
{ I
I I
| I
I l
! I
| !
I I
I !
| I
! |
| I
| !
I |
{ !
I I
I I
! I
I !
! I
{ !
{ |
I |
I |
I I
I f
! !
I |
! !
f !
| I
[I
t I
! !

1-7

Second Edition

INSTRUCTION SETS GUIDE

Table 1-3

Summary of Datatypes and Applicable I Mode Instructions

[| Size of Datatype (in Bits of Register) |
[Operation [[
| 181 32 1 64 |I32FP IG4AFP |1128FP! Dec!
| b (z) 1 (R) 1(R/R+1)1(FAC) 1 (DAC) 1 (QAC)! ()1
i !
| Load from memory l'IH | L | | FL | DFL | QFLD! XMVI
| | ! | | I | | |
| Store to memory | STH | ST | | FST | DFST! QFST!I |
! i j ! | | | | I
I Add | AH 1| A | | FA | DFA | QFADI XADI
I | | | | | I | I
| Subtract ' SH | S | | FS | DFS | QFSBI XADI
I | l | ! | | [I
| Multiply | ME | M | | FM | DOFM | QFMPI XMPI
| [f | | ! | ! |
| Divide I TH |1 D | | FDV | DFDVI QFDV! XDVI
I | | | | | | | |
| Increment | IMH, ! IM, | ! i | ! !
| { TH1,i IR1,! | I | i !
! | TH2 | IR2 | | | [! !
! | ! I | I [{ l
I Decrement | TMH, ! IM, | l | | f |
| | DH1, ! IR1,! I I I | [
I | DH2 | TR2 | | | | [!
! 1 I | | | I I !
| AND I'NH I N | | | | I |
| | I [I | | I |
I R Il CH | O | I | | [I
! [| | I | | | |
| XOR I XH | X I | | | | I
I | | | | | | | |
| Complement | CMH | CMR | | | | | [
! [| | | ! | [|
i Compare | CH | C | | FC | DFC | QFC,!| XCMI
| | | | | | t | |
I Logical test | LHaa! Laa | | LFaa! LFaal | |
| ! | | | | | | [
i Branch i BHaai BRaal i BFaai BFaai i i
I | | | ! | [| {
| Logical shift | | SHL | | | | | |
! I f | | I [[|
i Arithmetic shift | | SHA | | I I ! |
			l I I			
Shift right 1	SHR1! SR1		! I I			
		[
Shift right 2	SHR2! SR2					
				!		
Shift left 1	SHL1! SL1			!		
	LHL1I [[

Second Edition

1-8

INTRODUCTION

Table 1-3
Summary of Datatypes and Applicable I Mode Instructions

| | Size of Datatype (in Bits of Register) |
| Operation I |
| I 161 321 64 |32FP I64FP 1128FPI Dec!
I b () 1 (R) 1(R/R+1) 1 (FAC) I (DAC) I1(QAC)! (-)i
I |
| Shift left 2 | SHIR! SI2 | | | I | !
! | LHL2| l | [! I I
I ! | | [| I [[
| Shift left 3 I LHL3| I | | | [|
I | | | I | [| |
| Rotate | | ROT | [| | | |
! ! | | | l I ! !
| Clear I I CR | 1 | | | l
I [| | | [| | I
| Clear left | CRBL! CRHLI ! I ! ! |
! | [| ! | I ! I
| Clear right | CRBRI CRHR! | | | | [
[| | | ! [! I [
I Interchange halves | IRBI IRH I I | | I [[
| ! | | [| I [|
I Interchange and I ICBL! ICHLI [! [[|
I clear left ! | [[[[[l
| [| | [| [| I
I Interchange and | ICBRI ICHRI! | | | I |
I clear right | [| | [| | |
! [| [I | I ! |
| Two's complement | TCH | TC | | FCM | DFCMI QFCM!I |
I | [[| ! ! ! |
| Set sign | SSM | SSM | I I [[|
| | | [[| I | l
| Clear sign | SSP | SSP | | ! | | I
I | [| | | | | [
| Change sign I GHS | CHS | [| ! | [
l | | [[! I [I
| Convert datatypes: | | [[| I [|
I Integer to | FLTH! FLT | | | | | |
I floating point | [| l [[| |
I | [| ! | | I |
| Floating point | INTH| INT | | I | QINQI I
I to integer | [[I [I QIQRI !
| | | [! ! | | [
| Binary to decimal | XBIDI XBTDI XBIDI | | | |
| | | I (DACO) I | | ! |
I Decimal to binary | XDTBI XDTBI XDIBI | l I |
I | | | (DACO)! | l : |
| Position for integer | PITHI PID | PID | | [[|
| divide ! | | [| ! | |
I | 4 ! [| | | |
| Position after multiply! PIMHI PIM | PIM | | ! I !

1-9 Second Edition

S, R, and V Mode

INTRODUCTION

This chapter contains descriptions for all 50 Series instructions used
in S, R, and V modes. In the description of each instruction, you will

find:
[

The instruction mnemonic followed by any arguments.

The name of the instruction.

The bit format of the instruction.

The modes for which the instruction is valid.

Detailed information describing the instruction’s action.

Information about the how the instruction affects LINK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary.
Table 2-1 defines the dictionary notation.

2-1 Second Edition

INSTRUCTION SETS GUILE

Table 2-1
Dictionary Notation

Symbol | Meaning

The A register.

|

1

| 1

| |

| ADDRESS | Encompasses all the elements needed to specify an
| | effective address. This term is used because various
[I addressing types require you to specify the elements
[| in different orders (such as indirect or pre- and
| | post-indexing).

| |

| AP | Address pointer.

| |

I B | The 16-bit B register.

| |

I BR | Base register.

[!

| CB | Class bits.

[[

| CBIT | Bit 1 of the keys.

| !

| DAC | The double precision floating-point accumulator with 48
| | bits of mantissa and 16 bits of exponent.

I |

| Displace-! The number of halfwords to be added to the base register
I memt | to form the effecive address.

I [

I B | The 32-bit E register.

| |

| EA | Effective address.

[[

| F | Floating-point accumulator.

| !

| FAC | The single precision floating-point accumulator with 48
[| bits of mantissa and 16 bits of exponent.

[|

! FAR | Field address register.

[|

| FIR | Field length register.

| [

| Halfword | A 16-bit unit of memory.

| [

I I I Indirect bit.

| |

I L | The 32-bit L register.

1 |

| LINK | Bit 3 of the keys. Not used in S and R modes.

i |

| Offset | The number of halfwords from the starting address of a
! |

segment .

Second Edition 2-2

S, R, AND V MODE

Table 2-1 (continued)
Dictionary Notation

| Symbol | Meaning |
: QAC | The quad precision floating-point accumulator with 96 :
[| bits of mantissa and 16 bits of exponent. |
: skip : Skip next 16-bit halfword before continuing execution. :
: Word : A 32-bit unit of memory. :
: X : The X register (indexing). :
: XB Il Auxiliary base register. :
: Y : The Y register (indexing). :
I: m\n E Specifies the number of bits, n, occupied by field m. E
[| |

Specifies an optional argument.

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
is requested during the execution of an instruction, the processor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, are too long or 0o
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the processor preserves the
state of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the interrupt occurred.
Table 2-2 lists the resumable assembly language instructions.

Table 2-2
Resumable Instructions

I Instructions I
| |
| ARGT XAD XBID XM |
| XDTB XDV XED XMP |
| XMV ZCM ZED ZFIL |
| ZMV ZMVD ZTRN STEX |

2-3 Second Edition

INSTRUCTION SETS GUIDE

These instructions depend on the settings in certain registers to
determine whether they are being executed for the first or another
time. In addition, some registers may be used for intermediate
storage, modifying the previous contents as a side effect. Registers
so modified are noted per instruction description.

Storing Data Into the V and I Mode Instruction Stream

For the 6350 and 9750 to 9955 II, you must wait five instructions
before executing data after any instruction that stores data into
memory. If in doubt about the next five instructions (temporally) to
be executed, use a mode change instruction to the current addressing
mode, such as EB4V, to allow the stored data to be executed. The rest
of the 50 Series has no such restriction.

Instruction Formats

All S, R, and V mode instructions belong to one of the following
instruction types:

e S and R Mode Memory Reference, Short

e V Mode Memory Reference, Short

e R Mode Memory Reference, Long

e V Mode Memory Reference, Long

e V Mode Generic AP (Address Pointer)

e S, R, and V Mode Generic Type A

e S, R, and V Mode Generic Type B

e S, R, and V Mode Shift

e S, R, and V Mode Skip
The format of each instruction type is shown in Figure 2-1.
Short and long memory reference instructions have an opcode in bits 3

to 6. The value of this opcode ranges from 1 to ‘17, inclusive, with
the exception of ‘14, which is reserved for I/0. For opcode ‘15, the X

bit is part of the opcode.

In addition, long memory reference instructions have an opcode
extension contained in bits 13 to 14. Generic AP instructions have a
generic A or B format (where bits 7 to 16 contain the opcode extension)
followed by a 32-bit address pointer.

Second Edition 2-4

S, R, AND V MODE

Generic A and B, shift, and skip instructions are 16 bits long, all of
wvhich form an opcode. The values of bits 1 and 2 determine the basic
instruction type: 11 for Gemeric A, 00 for Generic B, 01 for shifts,
and 10 for skips. Bits 3 to 6 contain 0. Bits 7 to 16 contain an
opcode extension. For shifts, bits 10 to 16 of the opcode extension
contain the two’'s complement of the number of shifts to perform.

1 2 3 67 16

I'T I X1 OP | DISPLACEMENT |

S and R Mode Memory Reference, Short
/

l1 2 3 6 7 8 16

I'T 1 X1 OP | 1 | DISPLACEMENT |

V Memory Mode Reference, Short

l 2 8 6 7 12 13 14 15 16 17 32

R Mode Memory Reference, Long (Extended) Format

1 2 3 6 7 11 12 13 14 15 16 1¥ 32

I'T I X1 OPCODE | 11000 | Y | OPEX | BR | DISPLACEMENT |

33 48

I AUGMENT CODE* [

V Mode Memory Reference, Long Displacement Format

!
I
f
[
|
I
[
!
I
I
|
|
!
|
[
|
I
|
I
[
|
[
|
f
[
|
I
[
[
l
!
!
|
|
[
!
|
I *For quad operations only.
|

|
|
|
[
|
|
|
[
|
[
[
|
|
|
:
|
[
|
|
'T 1 X | OPCODE | 110000 | OPEX | CB | [OPTIONAL DISP] | [
|
a
|
[
|
|
|
|
|
1
|
[
[
r
|
|
|
|
|

S, R, and V Mode Instruction Formats
Figure 2-1

2-5 Second Edition

INSTRUCTION SETS GUIDE

| GENERIC A (R B !

17 20 21 22 23 24 25 32 33

| BIT |« I | O | BR | 00000000 | OFFSET

Generic AP Format

1 6 7 16

I 110000 | OPCODE EXT |

S, R, V Modes Generic A Format

| 000000 | OPCODE EXT |

S, R, V Modes Generic B Format

1 6 7 16

| 010000 | OPCODE EXT |

S, R, V Modes Shift Format

1 67 16

| 100000 | OPCODE EXT |

|
|
I
I
|
i
|
i
|
|
I
I
|
|
|
|
|
|
I
i
|
|
| 1 67 16
|
|
|
|
|
|
|
|
i
I
|
{
|
|
|
|
|
|
|
|
1 S, R, V Modes Skip Format
|

S, R, and V Mode Instruction Formats
Figure 2-1 (continued)

Second Edition 26

S, R, AND V MODE

INSTRUCTIONS

P Ala

Add 1 to A
1100001010000110 (S, R, Vmode form)

Adds 1 to the contents of A and stores the result in A. If A initially
contains (2**15)-1, an integer exception occurs and the instruction
loads -(2**15) into A. If no integer exception occurs, the instruction
resets CBIT to 0. LINK contains the carry-out bit. The condition
codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P AcA
Add 2 to A
1100000011000100 (8, R, Vmode form)

Adds 2 to the contents of A and stores the result in A. If A initially
contains (2**15)-1 or (2**15)-2, an integer exception occurs and the
instruction loads -(2**15)+1 or -(2**15), respectively, into A. If no
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> ABQ address
Add Entry to Bottom of Queue
1100001111001110 (V mode form)
AP\32

Adds the entry contained in A to the bottom of the queue referenced by
the AP. (AP points to the queue’'s QCB.) Sets the condition codes to
reflect BQ if the queue is full, or to NE if not full. lLeaves the
values of CBIT and LINK unchanged. See Chapters 6 and 11 of the
Architecture Reference Guide for more information about queues and
queue operations.

-7 Second Edition

INSTRUCTION SETS GUIDE

P aca
Add CBIT to A
1100001010001110 (S, R, Vmode form)

Adds the value of CBIT to the contents of A and stores the result in A.
If the initial value of A is (2**15)-1 and CBIT is 1, the instruction
loads -(2**15) into A and an integer exception occurs. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction adds CBIT to bit 16 of A.

P> AID address
Add
IX011011000YO00BR\2 (V mode long)
DISPLACEMENT\ 16

IX011011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X0 110 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the 16-bit contents of
the location specified by EA and adds them to the contents of A.
Stores the results in A.

If the resulting sum is less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to O. If the
sum is greater than or equal to 2**15, an integer exception occurs. If
the sum is less than or equal to -(2**15)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 16 bits are the 16 LSBs of the
correct answer, which needs 17 bits to be correctly represented.

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
cordition codes reflect the result of the operation. (See Appendix A.)

Second Edition 2-8

S, R, AND V MODE

P> ADL address
Add Long
IX011011000Y11BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, FA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of L.
Stores the results in L.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
Sum is greater than or equal to 2**31, an integer exception occurs. If
the sum is less than or equal to -(2%*31)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 32 bits are the 32 1SBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

p AL
Add LINK to L
1100001000000000 (V mode form)
Adds the contents of LINK to the contents of L and stores the result in
L. If the initial value of L is (2**31)-1 and LINK is 1, an integer
exception occurs. When an integer exception occurs, the results are of
the opposite sign of the correct answer. In addition, the 32 bits are
the 32 ILSBs of the correct answer, which needs 33 bits to be correctly
represented.

If no integer exception occurs, the instruction resets CBIT to 0. LINK
contains the carry-out bit. The condition codes reflect the result of
the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction adds the value of LINK to bit 32 of L.

2-9 Second Edition

INSTRUCTION SETS GUIDE

P> AIFA far
Add L to FAR
O0O0O000101100F001 (Vmode format)

Adds the two's complement value contained in L to the offset and bit
number fields of FAR and stores the result in the specified FAR.
Ieaves the values of LINK and CBIT indeterminate. The values of the
condition codes remain unchanged.

Figure 2-2 shows the format of L and the specified FAR for this
instruction.

1 32

| Number of bits to add to address pointer |

Format of L

1 16 17 32 33 36

I RING, SEGMENT I OFFSET # I BIT # |

Format of FAR

I, and FAR Format for ALFA
Figure 2-2

ALL n
A Left Logical
0100001100N6 (S, R, Vmode form)

Shifts the contents of A left the appropriate number of bits, bringing
zeros in through bit 16 as needed. CBIT and LINK contain the value of
the last bit shifted out; the values of the other bits shifted out are
lost. ILeaves the values of the condition codes unchanged. See Chapter
6 of the System Architecture Reference Guide for more information about
shifts.

N contains the two’'s complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

Second Edition 2-10

S, R, AND V MODE

D AR n
A Ieft Rotate
0l100001110NM6 (5, R, V mode form)

Shifts the contents of A to the left, rotating bit 1 into bit 16.
Stores the result in A. CBIT and LINK contain the value of the last
bit rotated into bit 186. Leaves the values of the condition codes
unchanged. See Chapter 6 of the System Architecture Reference Guide
for more information about shifts.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P AlSn
A Arithmetic Left Shift
0100001101N6 (S, R, Vmode form)

Shifts the contents of A to the left, bringing zeros in on the right.
Stores the result in A. If bit 1, the sign bit, changes state, the
shift has resulted in a loss of significance and produces an integer
exception. If no integer exception occurs, the instruction resets CBIT
to 0. The value of LINK is indeterminate. Ieaves the values of the
condition codes unchanged. See Chapter 6 of the System Architecture
Reference Guide for more information about shifts.

If an integer exception occurs and bit 8 of the keys contains 0O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> ANA address
AND to A
I1X001111000Y00BR\2 (Vmode long)
DISPLACEMENT\ 16

IX001111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X000 11 DISPLACEMENT\10 (S mode; R, V mode short)
Calculates an effective address, EA. Logically ANDs the 16-bit
contents of the location specified by FA with the contents of A, and

stores the result in A. Ileaves the wvalues of CBIT, LINK, and the
condition codes unchanged.

2-11 Second Edition

INSTRUCTION SETS GUIDE

P> ANL address
AND to A Long
IX001111000Y11BR2 (Vmode form)

Calculates a 32-bit effective address, EA. Logically ANDs the 32-bit
contents of the location specified by EA with the contents of L, and
stores the result in L. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P> ARGT
Argument Transfer
0000000110000101 (V mode form)

Transfers arguments from a source procedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call and argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination procedure must begin with the ARGT
instruction. When the PCL instruction is executed, control transfers
to the destination procedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments are stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the values of CBIT, LINK, and the condition codes are
indeterminate.

ARGT must be the first executable instruction in any destination
procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, you must omit ARGT or you will
destroy the return pointer for PCL, producing indeterminate results.

For more information about argument transfers, refer to the section on
procedure calls in Chapter 8 of the System Architecture Reference
Guide.

P ARL n
A Right Logical
0100000100N6 (S, R, Vmode form)

Shifts the contents of A right the appropriate number of bits, bringing
zeros in through bit 1. CBIT and LINK contain the value of the last
bit shifted out; the values of the other bits shifted out are lost.
Ieaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

Second Edition 2-12

S, R, AND V MODE

00000110N6 (S, R, Vmode form)

Shifts the contents of A to the right, rotating bit 16 into bit 1.
CBIT and LINK contain the value of the last bit rotated into bit 1.
Leaves the values of the condition codes unchanged.

N contains the two’s complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P ARS n
A Arithmetic Right Shift
0100000101N6 (S, R, Vmode form)

Shifts the contents of A to the right arithmetically, shifting copies
of bit 1, the sign bit, into the vacated bits. CBIT and LINK contain
the value of the last bit shifted out; the values of the other bits
shifted out are lost. leaves the wvalues of the condition codes

unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P ATQ address
Add Entry to Top of Queue
1100001111001111 (V mode form)
AP\32

Adds the entry contained in A to the top of the queue referenced by the
AP. (AP points to the queue's QCB.) Sets the condition codes to
reflect BQ if the queue is full, or to NE if not full. Ieaves the
values of CBIT and LINK unchanged. For more information about queues
and queue manipulation, see Chapters 6 and 11 of the System
Architecture Reference Guide.

2-13 Second Edition

TNSTRUCTTON SETS IITDE

P> BCEQ address
Branch on Condition Code EQ

1100001110000010 (V mode form)
ATDRESS\ 16

If the condition codes reflect equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCGE address
Branch on Condition Code GE
1100001110000101 (Vmode form)
ATTRESS\16

If the condition codes reflect greater than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

P> BCGT address
Branch on Condition Code GT
1100001110000001 (V mode form)
ADDRESS\ 16

If the condition codes reflect greater than O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCLE address
Branch on Condition Code LE
1100001110000000 (V mode form)
ATTRESS\16

If the condition codes reflect less than or equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the condition codes reflect
some other condition, execution continues with the next instruction.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-14

S, R, AND V MODE

P> BCLT address
Branch on Condition Code LT
1100001110000100 (V mode form)
ADDRESS\ 16

If the condition codes reflect less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BONE address
Branch on Condition Code NE
1100001110000011 (Vmode form)
AITRESS\ 16

If the condition codes reflect not equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCR address
Branch on CBIT Reset to O
1100001111000101 (V mode form)
ADTRESS\ 16

If CBIT has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. ILeaves the values of CBIT, LINK, and the condition codes
unchanged.

P> BCS address
Branch on CBIT Set to 1
1100001111000100 (V mode form)
ATTRESS\ 16

If CBIT has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value O, execution continues with the next
instruction. ILeaves the values of CBIT, LINK, and the condition codes
unchanged.

2-15 Second Edition

P> BIX address
Branch on Decremented X
1100000111011100 (Vmode form)
ATTRESS\ 16

Decrements the contents of X by one and stores the result in X. If the
decremented value is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to O, execution continues with the
next instruction. ILeaves the values of CBIT, LINK, and the condition
codes unchanged.

P> EBDY address
Branch on Decremented Y
1100000111010100 (V mode form)
ATTRESS\ 16

Decrements the contents of Y by one and stores the result in Y. If the
decremented value is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to O, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

P> BEQ address
Branch on A Equal to O
1100000110001010 (Vmode form)
ATTRESS\ 16

If the contents of A are equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are not equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

P> BFEQ address
Branch on Floating Accumulator Equal to O

1100001110001010 (Vmode form)
ATTRESS\ 16

If the contents of the floating accumulator are equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumilator contents are not equal to O, execution continues with the
next instruction. The condition codes contain the result of the
comparison. (See Appendix A.) ILeaves the values of LINK and CBIT

unchanged .

it o

Second Edition 2-16

S, R, AND V MODE

BFEQ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

P> BFGE address
Branch on Floating Accumulator Greater Than or Equal to O
1100001110001101 (Vmode form)
ATIDRESS\ 16

If the contents of the floating accumulator are greater than or equal
to 0, the instruction loads the specified address into the program
counter. This address must be within the current segment. If the
floating accumulator contents are less than O, execution continues with
the next instruction. The condition codes contain the result of the
comparison. (See Appendix A.) Leaves the values of LINK and CBIT
unchanged. BFGE works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P> BFGT address
Branch on Floating Accumulator Greater Than O
1100001110001001 (Vmode form)
ATIDRESS\ 16

If the contents of the floating accumulator are greater than 0, the
instruction loads the specified address into the program counter. This
address must be within the ocurrent segment. If the floating
accumulator contents are less than or equal to O, execution continues
with the next instruction. The condition codes contain the result of
the comparison. (See Appendix A.) ILeaves the values of LINK and CBIT
unchanged . BFGT works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P> EFLE address
Branch on Floating Accumlator Less Than or Equal to O
1100001110001000 (V mode form)
ATDRESS\ 16

If the floating accumulator contents are less than or equal to O, BFLE
loads the specified address into the program counter. This address
must be within the current segment. If the floating accumlator
contents are greater than O, execution continues with the next
instruction. The condition codes contain the comparison result. (See
Appendix A.) Leaves the values of LINK and CBIT unchanged.

2-17 Second Fdition

TACTDI YN TN QTN (ITTTIR
Al ¥ MAD de D NANS hde Al

ek W00 h L VIS e o

BFLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

P> FEFLT address
Branch on Floating Accumulator Less Than O
1100001110001100 (V mode form)
ATTRESS\ 16

If the contents of the floating accumilator are less than O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumilator contents are greater than or equal to O, execution
continues with the next instruction. The condition codes contain the
result of the comparison. (See Appendix A.) Leaves the values of LINK
and CBIT unchanged. BFLT works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P> EBFNE address
Branch on Floating Accumlator Not Equal to O
1100001110001011 (Vmode form)
ACDRESS\ 16

If the contents of the floating accumulator are not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumilator contents are equal to O, execution continues with the next
instruction. The condition codes contain the result of the comparison.
(See Apperdix A.) Leaves the values of LINK and CBIT unchanged. BFNE
works correctly only on normalized or nearly normalized numbers because
it checks the first 32 fraction bits only for equal to zero and less
than zero. (See Chapter 6 in the System Architecture Reference Guide.)

P> BEGE address
Branch on A Greater Than or Equal to O
1100000110001101 (Vmode form)
ATDRESS\ 16

If the contents of A are greater than or equal to O, the instruction
loads the specified address into the program counter. This address
mist be within the current segment. If the A contents are less than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the

values of LINK and CBIT unchanged. This instruction has the sane

Aot
operaticn as BIGE.

Second Edition 2-18

S, R, AND V MODE

P> BGT address
Branch on A Greater Than O
1100000110001001 (Vmode form)
AITRESS\16

If the contents of A are greater than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are less than or equal
to 0, execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

P> BIX address
Branch on Incremented X
1100001011011100 (V mode form)
ATIDRESS\16

Increments the contents of X by one and stores the result in X. If the
incremented value is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to O, execution continues with the
next instruction. ILeaves the values of CBIT, LINK, and the condition
codes unchanged.

P> BIY address
Branch on Incremented Y
1100001011010100 (V mode form)
ATTRESS\16

Increments the contents of Y by one and stores the result in Y. If the
incremented value is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to O, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

P> BLE address
Branch on A Iess Than or Equal to O
1100000110001000 (V mode form)
ATTRESS\16

If the contents of A are less than or equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the A contents are greater than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

2-19 Second Edition

P> EBLEQ address
Branch on L Equal to O

1100000111000010 (V mode form)
ATTRESS\16

If the contents of L are equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are not equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

P> EBIGE address
Branch on L Greater Than or Equal to O
1100000110001101 (Vmode form)
ATTRESS\16

If the contents of L are greater than or equal to O, the Iinstruction
loads the specified address into the program counter. This address
must be within the current segment. If the L contents are less than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Apperdix A.) Leaves the
values of LINK and CBIT unchanged. This instruction has the same
operation as BGE.

P> BIGT address
Branch on L Greater Than O
1100000111000001 (V mode form)
ADDRESS\ 16

If the contents of L are greater than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are less than or equal
to 0, execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

P> BLLE address
Branch on L Less Than or Equal to O
1100000111000000 (V mode form)
ATTRESS\16

If the contents of L are less than or equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the L contents are greater than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

Second Edition 2-20

S, R, AND V MODE

P> BLLT address
Branch on L Iess Than O
1100000110001100 (V mode form)
ATTRESS\ 16

If the contents of L are less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L. contents are greater than or
equal to O, execution continues with the next instruction. The
condition codes contain the result of the comparison. (See Appendix
A.) Ileaves the values of LINK and CBIT unchanged. This instruction
has the same operation has BLT.

P> EINE address
Branch on L Not Equal to O
1100000111000011 (Vmode form)
ATDRESS\ 16

If the contents of L are not equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Ileaves the
values of LINK and GBIT unchanged.

P> EIR address
Branch on LINK Reset to O
1100001111000111 (V mode form)
ADDRESS\ 16

If LINK has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

P> BLS address
Branch on LINK Set to 1
1100001111000110 (V mode form)
ATDRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value O, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

2-21 Second Edition

INSTRUCTION SETIS GUITE

P> ELT address
Branch on A less Than O
110000011000
ATTRESS\ 16

1100 (Vmode form)

If the contents of A are less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are greater than or
equal to O, execution continues with the next instruction. The
cordition codes contain the result of the comparison. (See Appendix
A.) ILeaves the values of LINK and CBIT unchanged. This instruction
has the same operation as BLIT.

P BMEQ address
Branch on Magnitude Condition EQ :
1100001110000010 (Vmode form)
ADDRESS\ 16

If the condition codes indicate magnitude equal to O, the instruction
loads the specified address into the program counter, like BCER. BMEQ
is intended for magnitude comparisons after a compare or subtract
instruction. This address must be within the current segment. If the
condition codes indicate some other condition, execution continues with
the next instruction. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P> BMGE address
Branch on Magnitude Condition GE
1100001111000110
ADDRESS\ 16

(V mode form)

If LINK has the value 1, the instruction loads the specified address
into the program counter, like BLS. BMGE is used to determine if the
magnitude of the A/L register quantity was greater than or equal to the
memory quantity after a compare or subtract instruction. This address
must be within the current segment. If LINK has the value O, execution
continues with the next instruction. ILeaves the values of CBIT, LINK,
and the condition codes unchanged.

Second Edition 2-22

S, R, AND V MODE

P> BMGT address
Branch on Magnitude Condition GT
1100001111001000
ATITRESS\16

(V mode form)

If LINK is 1 and the condition codes reflect not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If some other condition
exists, execution continues with the next instruction. leaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BMLE address
Branch on Magnitude Condition LE
1100001111001001 (Vmode form)
ATDRESS\ 16

If LINK is O or the condition codes reflect equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If some other condition exists,
execution continues with the next instruction. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

P> BMLT address
Branch on Magnitude Condition LT
1100001111000111 (Vmode form)
ATDRESS\ 16

If LINK has the value O, the instruction loads the specified address
into the program counter, like BIR. BMLT is used to determine if the
magnitude of the A/L register quantity is less than the memory quantity
after a compare or subtract instruction. This address must be within
the current segment. If LINK has the value 1, execution continues with
the next instruction. Ieaves the values of LINK, CBIT, ard the
cordition codes unchanged.

P> EMNE address
Branch on Magnitude Corndition NE
1100001110000011
ATDRESS\ 16

(V mode form)

If the condition codes indicate magnitude not equal to O, the
instruction loads the specified address into the program counter, like
BCNE. BMNE is intended for magnitude comparisons after a compare or
subtract instruction. This address must be within the current segment.
If +the condition codes reflect some other condition, execution
continues with the next instruction. ILeaves the values of CBIT, LINK,
and the condition codes unchanged.

2-23 Second Edition

INSTRUCTION SETS GULILE

P> ENE address
Branch on A Not Equal to O
1100000110001011 (V mode form)
ATTRESS\16

If the contents of A are not equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are equal 1to 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

Second Edition 2-24

S, R, AND V MOLE

P caL
Clear A lLeft Byte
1100001000101000 (S, R, Vmode form)

Clears the left byte of A to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

P> CALF address
Call Fault Handler
0000000111000101 (Vmode form)
AP\32

The address pointer in this instruction is to the ECB of a fault
routine. The instruction uses this pointer to transfer control to the
fault routine as if the transfer were a normal procedure call with no
arguments passed. The values of CBIT, LINK, and the condition codes
are indeterminate. See Chapter 10 of the System Architecture Reference
Guide for more information.

P Car
Clear A Right Byte
1100001000100100 (S, R, Vmode form)

Clears the right byte of A to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

P> CAS address
Compare A and Skip
I1X100111000Y00BEBR2 (Vmode long)
DISPLACEMENT\ 16

IX100111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X100 1 DISPLACEMENT\10 (S mode; R, V mode short)
Calculates an effective address, EA. For 16-bit two's complement

signed values only, compares the contents of the A register to the
contents of the location specified by EA and skips as follows:

Condition Skip
Contents of A > contents of EA. No skip.
Contents of A = contents of EA. Skip 16 bits (one halfword).
Contents of A < contents of EA. Skip 32 bits (two halfwords).

2-25 Second Edition

INSTRUCTION SETS GUIDE

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

p caz
Compare A With O
1100000010001100 (S, R, Vmode form)

Compares the contents of A with 0. Skips as follows:

Condition Skip
Contents of A > O. No skip.
Contents of A = O. Skip 16 bits (one halfword).
Contents of A < O. Skip 32 bits (two halfwords).

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

p CEA
Compute Effective Address
0000000001001001 (S, R mode form)

Interprets the contents of A as a 16-bit indirect address in the
current addressing mode. Calculates an effective address, EA, from the
indirect address and loads the final address into A. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

p CGT
Computed GOTO
0000001011001100 (Vmode form)
INTEGER N\16
BRANCH ADCRESS 1\16

ERANCH ATTRESS (N-1)\16

If the contents of A are greater than or equal to 1 and less than the
specified integer N that follows the opcode, the instruction adds the
contents of A to the contents of the program counter to form an
address. (The program counter points to the integer N following the
opcode.) Loads the contents of the location specified by this address
into the program counter. If the contents of A are not within this
range, the instruction adds integer N to the contents of the program
counter and stores the result in the program counter. The values of
CBIT, LINK, and the condition codes are indeterminate.

Second Edition 2-26

S, R, AND V MODE

Note

Each of the branch addresses following the OGT instruction
specifies a location within the current procedure segment.

P CHS
Change Sign
1100000000010100 (S, R, V mode form)

Complements bit 1 of A. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P> CLS address
Compare L and Skip
IX100111000Y11BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. For 3R2-bit two's complement
signed values only, compares the contents of L to the contents of the
32-bit location specified by EA and skips as follows.

Condition Skip
Contents of L > contents of EA. No skip.
Contents of L = contents of EA. Skip 16 bits (one halfword).

Contents of L < contents of EA. Skip 32 bits (two halfwords).

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

> oA
Complement A
1100000100000001 (S, R, Vmode form)

Forms the one’s complement of the contents of A by inverting the value

of each bit, and stores the result in A. Ieaves the values of CBIT,
LINK, and the condition codes unchanged.

_2-27 Second Edition

INSTRUCTION SETS GULLE

P CrA
Clear A to O
1100000000100000 (S, R, Vmode form)

Clears the contents of A to 0. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

P> CRB
Clear B to O
1100000000001101 (S, R, Vmode form)
1100000000001100

Clears the contents of B to 0. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

Opcode ‘140014 executes both a CRB and a FDEL. This is a
conversion aid for P300 programs. This opcode should not be
used; it is implemented for compatibility’'s sake only.

P> CRE
Clear E to O
1100001100000100 (V mode form)

Clears the contents of E to 0. Ieaves the values of CBIT, LINK, ard
the condition codes unchanged.

P CRL
Clear L to O
1100000000001000O0 (S, R, V mode form)

Clears the contents of L to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

P CRLE
Clear L and E to O
1100001100001000 (V mode form)

Clears the contents of E and L to 0. ILeaves the values of LINK, CBIT,
and the condition codes unchanged.

Second Edition 2-28

S, R, AND V MODE

p Csa
Copy Sign of A
1100000011010000 (S, R, Vmode form)

Sets CBIT equal to the value of bit 1 of A and clears bit 1 of A to O.
The value of LINK is indeterminate. Leaves the values of the condition

codes unchanged.

2-29 Second Edition

INSTRUCTION SETS GUIDE

P> DAD address
Double Add
IX011011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X0 110 DISPLACEMENT\10 (S, R mode form)

Calculates an effective address, EA. Fetches the 31-bit contents of
the location specified by EA and adds them to the 31-bit contents of A
and B. Stores the result in A and B.

If the result is greater than or equal to 2**30, an integer exception
occurs and the instruction loads bit 1 of A with a 1, and bits 2 to 16
of A and bits 2 to 16 of B with (result - (2**30)). Bit 1 of B
contains O.

If the result is less than -(2**30), an integer exception occurs and
the instruction loads bit 1 of A with a O and bits 2 to 16 of A and
bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B
contains O.

If no integer exception occurs, CBIT is reset to O. At the end of the
instruction, LINK contains the carry-out bit. The condition codes
reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Notes

1. Bit 17 of each 3l-bit integer must be 0. If nonzero,
unpredictable results will occur.

2. This instruction executes in double precision mode only.

P EL
Enter Double Precision Mode
0000000000000111 (S, R mode form)

Enters double precision mode by setting bit 2 of the keys to 1.

t IDA, STA, AID, and SUB instructions manipulate 31-bit
integers and are interpreted as DLD, DST, DAD, and DSB, respectively.
Ieaves the values of CBIT, LINK, and the condition codes unchanged. In
V or I mode, bit 2 of the keys has no effect.

Second Edition 2-30

S, R, AND V MODE

P> IFAD address
Double Precision Floating Add
IX011011000Y10BR\2 (Vmode long)
DISPLACEMENT\ 16

IX011011000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the double precision number
in the location specified by EA to the 64-bit contents of the DAC.
(See Chapter 6 of the System Architecture Reference Guide for more
information.) Normalizes the result and loads it into the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

For 7860 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P DreM
Double Precision Floating Complement
1100000101111100 (R, Vmode form)

Forms the two’'s complement of the double precision number in the DAC
and normalizes it if necessary. (See Chapter 6 of the System
Architecture Reference Guide.) Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-31 Second Edition

INSTRUCTION SETS GUILE

P> DFCS address
Double Precision Floating Point Compare and Skip
IX100111000Y10BR\ (V mode long)
DISPLACEMENT\ 16

IX100111000010CB\?2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, FA. Compares the DAC contents (see
Chapter 6 of the System Architecture Reference Guide) to the contents
of the 64-bit location specified by EA and skips as follows.

Condition Skip
DAC contents > EA contents. No skip.
DAC contents = EA contents. Skip 16 bits (one halfword).
DAC contents < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.
On some processors, DFCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract
operation, resulting in a proper comparison.

P> DFDV address
Double Precision Floating Point Divide
IX111111000Y10BR\2 (V mode long)
DISPLACEMENT\ 16

IX111111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the DAC
by the contents of the location specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Normalizes the result and stores
the whole quotient in the DAC. An overflow or a divide by O causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition 2-32

S, R, AND V MODE

P> DFID address
Double Precision Floating Point Load
IX001011000Y10BR2 (Vmode long form)
DISPLACEMENT\ 16

IX001011000010CB\2 (R mode long form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Ioads the 64-bit contents of the
location specified by EA into the DAC. (See Chapter 6 of the System
Architecture Reference Guide.) Ieaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the DAC.

P> DFLX address
Double Precision Floating Point Load Index
I0110111000Y10BR\2 (Vmode long)
DISPLACEMENT\ 16

I0110111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the index register, X, with
four times the 16-bit contents of the location specified by EA. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

DFLX cannot do indexing. See Appendix B for more information.

P> DFMP address
Double Precision Floating Point Multiply
IX111011000Y10BR\2 (V mode long)
DISPLACEMENT\ 16

IX111011000010CB\ (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the contents of the
DAC by the 64-bit contents of the location specified by EA. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result, if necessary, and stores it in the DAC. An overflow causes a
floating-point exception; if none occurs, CBIT is reset to 0. The
values of LINK and the condition codes are indeterminate.

2-33 Second Edition

INSTRUCTION SETS GUITE

If a floating-point exception occurs and bit 7 of the keys contains a
1, the DFMP instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P DFSB address
Double Precision Floating Point Subtract
IX011111000Y10EBR\ (V mode long)
DISPLACEMENT\ 16

IX011111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the locations specified by EA from the contents of the DAC. (See
Chapter 6 of the System Architecture Reference Guide.) Loads the
result in the DAC. An overflow causes a floating-point exception. If
no floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P> DFST address
Double Precision Floating Point Store
IX010011000Y10BR\2 (V mode long)
DISPLACEMENT\ 16

IX010011000010CB\?2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Stores the contents of the DAC
into the location specified by EA. (See Chapter 6 of the System
Architecture Reference Guide.) Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

Second Edition 2-34

S, R, AND V MODE

P> DIV address
Divide
IX111111000000GB\2 (R mode long)
[DISPLACEMENT\16]

IX1111 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Divides the 31-bit contents of A
and B by the 16-bit contents of the location specified by EA. Stores
the 16-bit quotient in A and the 16-bit remainder in B. The sign of
the remainder equals the sign of the dividend.

Overflow occurs when the quotient is less than -(2**15) or greater than
(2**15)-1. An overflow or a divide by O causes an integer exception.
If no integer exception occurs, CBIT is reset to 0. This instruction
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs when bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> DIV address
Divide
IX111111000Y00BR2 (Vmnode long)
DISPLACEMENT\ 16

IX1111DISPIACEMENT\10 (V mode short)

Calculates an effective address, EA. Divides the contents of L by the
16-bit contents of the location specified by EA. Stores the 16-bit
quotient in A and the 16-bit remainder in B. The sign of the remainder
equals the sign of the dividend.

When the quotient is less than -(2**15) or greater than (2**15)-1, an
overflow occurs, causing an integer exception. A divide by O also
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. This instruction leaves the wvalues of LINK and the
condition codes indeterminate.

If the integer exception occurs when bit 8 of the keys is O, the
instruction sets CBIT to 1. If bit 8 is 1, the instruction sets CBIT
tol and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

2-35 Second Edition

INSTRUCTION SETS GUIDE

P> DID address
Double Load
IX001011000000CB\2 (R mode long)
[DISPLACEMENT\16]

T X 0O 10 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, FA. Loads the 16-bit contents of the
location specified by EA into A, and the 16-bit contents of the
location specified by EA+l into B. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Note

This instruction executes only in double precision mode.

p IRN
Double Round From Quad
0100000011000000 (V mode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains 0, the instruction ends. If bits 50 to 96 of QAC are
not O, or bit 48 of QAC contains 1, the instruction adds the value of
bit 49 to that of bit 48 (unbiased round) and clears bits 49 to 96 of
QAC to 0. If any other condition exists, no unbiased rounding occurs
but bits 49 to 96 of QAC are still cleared to 0. After any rounding
and clearing occurs, the instruction normalizes the result and loads it
into bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If IRN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

Second Editicn 2-36

S, R, AND V MODE

P IRNM
Double Round From Quad Towards Negative Infinity
1100000101111001 (Vmode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains O, the instruction ends. If bits 49 to 98 of QAC
contain zeros, the instruction emds. In any other case, the
instruction clears bits 49 to 96 to O, normalizes the result, and
places it in bits 1 to 64 of QAC.

The value of CBIT is unchanged. The values of LINK and the condition
codes are indeterminate.
Note
If TRNM is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> IRNP
Double Round From Quad Towards Positive Infinity
0100000011000001 (Vmode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains O, the instruction ends. If bits 49 to 96 of QAC
contain zeros, the instruction emds. In any other case, the
instruction adds 1 to the value contained in bit 48 of QAC, clears bits
49 to 9 to 0, the instruction normalizes the result and places it in
bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets GBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If IRNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-37 Second Edition

INSTRUCTION SETS GUILE

IRNZ
Double Round From Quad Towards Zero
0100000011000010 (Vmode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains O, the instruction ends. If bits 49 to 96 of QAC
contain zeros and bit 1 contains 1, the instruction adds 1 to the value
contained in bit 48 of QAC, clears bits 49 to 96 to O, normalizes the
result and places it in bits 1 to 64 of QAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If TRNZ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p IRX
Decrement and Replace X
1100000010001000 (8, R, Vmode form)

Decrements the contents of X by 1 and stores the result in X. Skips
the next memory location if the decremented value is 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P> DSB address
Double Subtract
IX011111000000CB\2 (R mode long)
[DISPLACEMENT\16]

IXO0 111 DISPLACEMENT\10 (S mode; R mode short)
Calculates an effective address, FEA. Fetches the 3l-bit integer
contained in the locations specified by EA and EA+1l and subtracts it

from the 31-bit integer contained in A and B. Stores the result in A
and B.

Second Edition 2-38

S, R, AND V MCDE

If the result is greater than or equal to 2**30, an integer exception
occurs and the DSB instruction loads bit 1 of A with 1, and bits 2 to
16 of A and 2 to 16 of B with the absolute value of (result - (2**30)).
Bit 1 of B must be O.

If the result is less than -(2**30), an integer exception occurs and
the instruction loads bit 1 of A with a O, and bits 2 to 16 of A ard
bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B
must be O.

If no integer exception occurs, CBIT is reset to 0. At the end of the
instruction, LINK contains the borrow bit. The condition codes reflect
the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Notes

1. Bit 17 of each 31-bit integer must be O or indeterminate
results occur.

2. This instruction executes in double precision mode only.

3. To negate a 31-bit integer, subtract it from O.

P> DST address
Double Store
IX010011000000CB\2 (R mode long)
[DISPIACEMENT\16]

I X010 O DISPLACEMENT\10 (S mode; R mode short)
Calculates an effective address, EA. Stores the contents of A at the
location specified by EA, and the contents of B at the location
specified by EA+l. Leaves the values of CBIT, LINK, and the condition
codes unchanged.
Note

This instruction executes only in double precision mode.

-39 Second Edition

INSTRUCTION SETS GUIDE

P> DVL address
Divide Long
IX111111000Y11BR\2 (Vmoude long)
DISPLACEMENT\16

Calculates an effective address, EA. Divides the 64-bit contents of L
and E by the 32-bit contents of the location specified by EA. Stores
the quotient in L and the remainder in E. An overflow or divide by O
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. The values of LINK and the condition codes are
indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This note applies only to the 150/250, 450/550/250-II, I450-II,
and 2250 processors. When the value ‘040000 ‘000000 000000
‘000000 is divided by ‘100000 ‘000000, the quotient overflows
the hardware (and sets the CBIT to 1) in the early stage of the
algorithm even though the final result is not in overflow
(100000 ‘000000).

Second Edition 240

S, R, AND V MODE

p E16S
Enter 168S Mode
O0O0O0O0O00000001001 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 000. Subsequent S mode instructions
may now be interpreted, and 16S address calculations may be used to
form effective addresses. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

p E3RI
Enter 32I Mode
0000001000001000 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 100. Subsequent I mode instructions
may now be interpreted, and 32I address calculations may be used to
form effective addresses. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

P E32R
Enter 32R Mode
0000001000001011 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to Oll. Subsequent R mode instructions
may now be interpreted, and 32R address calculations may be used to
form effective addresses. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

P E32S
Enter 32S Mode
0000000000001011 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 001. Subsequent S mode instructions
may now be interpreted, and 32S address calculations may be used to
form effective addresses. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

P E64R
Enter 64R Mode
0000001000001001 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 010. Subsequent R mode instructions
may now be interpreted, and 64R address calculations may be used to
form effective addresses. LILeaves the values of CBIT, LINK, and the
condition codes unchanged.

241 Second Edition

INSTRUCTION SETS GUILE

p Esav
Enter 64V Mode
0000000000001000 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 110. Subsequent V mode instructions
may now be interpreted, and 64V address calculations may be used to
form effective addresses. lLeaves the values of CBIT, LINK, and the
cordition codes unchanged.

P> EAA address
Effective Address to A
IX000111000001CB\2 (R mode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into A. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

P> EAFA far,address
Effective Address to FAR
O0O0O000101100FARO000 (Vmode form)
AP\32

Builds a 36-bit EA from the 32-bit address pointer contained in the
instruction and loads it into the specified FAR. The AP bit field is
processed and loaded into the bit portion of the FAR for direct access;
indirection uses the bit field in the indirect pointer (if any).
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Figure 2-3 shows the format of the EA loaded into the specified FAR.

1 16 17 32 33 36

| RING, SEG | WORD # | BIT # |

EA Format for EAFA
Figure 2-3

P> EAL address
Effective Address to L
IX000111000Y01BEBR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into L. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-42

S, R, AND V MODE

P> EALB address
Effective Address to IB
IX101111000Y10BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into LB. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> EAXB address
Effective Address to XB
IX101011000Y10BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into XB. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> EIO address
Execute I/0
I0110011000Y01BR2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Executes bits 17 to 32 of FA as
if the bits were an extended PIO instruction. If execution is
successful, the instruction sets the condition codes as follows:

18

Meaning
28] Successful INA, OTA, or SKS instruction
NE Unsuccessful INA, OTA, or SKS; all OCP

leaves the values of LINK and CBIT unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P> ENB
Enable Interrupts
0O000000100000001 (S, R, Vmode form)

Enables interrupts by setting bit 1 of the modals to 1. Interrupts

remain inhibited for the next instruction. Ieaves the values of CBIT,
LINK, and the condition codes unchanged.

243 Second Edition

INSTRUCTICN SETS GUIDE

Note

ENB is a restricted instruction.

P> ENEL
Enable Interrupts (Local)
0000000100000001 (S, R, Vmode form)

This 850 instruction performs the same actions as ENB except that it is
performed specifically for the local processor. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

ENBL is a restricted instruction.

P> ENBM
Enable Interrupts (Mutual)
0000000100000000 (S, R, Vmode form)

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor releases this lock and
enables interrupts. ILeaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

p> ENBP
Enable Interrupts (Process)
0D000000100000010 (S, R, Vmode form)

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

Second Edition 244

S, R, AND V MODE

P> ERA address
Exclusive (R to A
IX010111000Y00BR\2 (Vmode long)
DISPLACEMENT\ 16

IX010111000000CB\2 (R mode long)
[DISPLACEMENT\16]

IX 010 1DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Exclusively ORs the contents of
the location specified by EA and the contents of A. Stores the results
in A. Ileaves the values of CBIT, LINK, and the condition codes
unchanged.

P> ERL address
Exclusive Or to L
IX010111000Y11B\2 (Vmode long)
DISPLACEMENT\16

Calculates an effective address, EA. Exclusively ORs the contents of L
with the contents of the 32-bit location specified by EA. Stores the
results in L. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.

av]
N
(&)

Second Edition

INSTRUCTION SETS GUIDE

P> FAD address
Floating Point Add
IX011011000Y01BR\2 (Vmode long)
DISPLACEMENT\ 16

IX011011000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the location
specified by EA to the contents of the FAC. (See Chapter 6 of the
System Architecture Reference Guide.) Stores the result in the FAC and
normalizes it if necessary. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

FCDQ
Floating Point Convert Double to Quad
1100000101111001 (V mode form)

Clears FACl to 0. Ileaves the values of CBIT, LINK, and the condition
codes unchanged.
Note
If FCDQ is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

» FoM
Floating Point Complement
1100000101011000 (R, Vmode form)

Forms the two’'s complement of the FAC mantissa and normalizes the
result if necessary. (See Chapter 6 of the System Architecture
Reference Guide.) Stores the result in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition 2-46

S, R, AND V MOCE

P> FCS address
Floating Point Compare and Skip
IX100111000Y01BR\2 (Vmode long)
DISPLACEMENT\16

IX100111000001CB\2 (R mode long)
[DISPLACEMENT\16 1]

Calculates an effective address, EA. In rounding mode, the instruction
rounds the contents of DAC, then compares the rounded value to the
contents of the memory location specified by EA. In normal mode, no
rounding occurs before the compare. (See Chapter 6 of the System
Architecture Reference Guide for more information.) The compare
results in a skip as follows:

Condition Skip
FAC contents > EA contents. No skip.
FAC contents = FA contents. Skip 16 bits (one halfword).
FAC contents < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.

On some processors, FCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

p FOBL
Floating Point Convert Single to Double
1100000000001110 (Vmode form)

Converts the single precision floating-point number in the floating
accumulator to a double precision floating-point number by loading
zeros into bits 33 to 48 of the floating accumilator. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

2-47 Second Edition

INSTRUCTION SETS GUIDE

P> FDV address
Floating Point Divide
IX111111000Y01BEBR\2 (V mode long)
DISPLACEMENT\ 16

IX111111000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the FAC
by the contents of the location specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Normalizes the result if
necessary and stores it in the FAC. A divide by O or an overflow
causes a floating-point exception. If no floating-point exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

The location specified by EA must contain a normalized
floating-point number. An unnormalized divisor can cause an
€error.

P> FID address
Floating Point Load
IX001011000Y01BR\2 (V mode long)
DISPLACEMENT\ 16

IX001011000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates a 32-bit effective address, EA. Loads the 32-bit contents
in the location specified by EA into the FAC without normalizing. (See
Chapter 6 of the System Architecture Reference Guide.) Ieaves the
values of LINK, CBIT, and the condition codes unchanged.

p FLOT
Convert Integer to Floating Point
1100000101101000 (R mode form)

Converts the 31-bit integer contained in A and B to a normalized
floating-point number and stores the result in the floating
accumulator. The values of CBIT, LINK, and the condition codes are
indeterminate.

Second Edition 248

S, R, AND V MOTE

p FLTA
Convert Integer to Floating Point
1100000101011010 (Vmode form)

Converts the 16-bit integer in A to a floating-point number and stores
the result in the floating accumulator. The values of CBIT, LINK, and
the condition codes are indeterminate.

p FLTL
Convert Long Integer to Floating Point
1100000101011101 (Vmode form)

Converts the 32-bit integer in L to a floating-point number and stores
the result in the floating accumulator. The values of CBIT, LINK, and
the condition codes are indeterminate.

P> FILX address
Floating Load Index
I0110111000Y01BR\ (V mode long)
DISPLACEMENT\ 16

I0110111000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, FA. Loads the index register, X, with
two times the 16-bit contents of the location specified by EA. Ieaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

FIX cannot do indexing. See Appendix B for more information.

P> FMP address
Floating‘ Point Multiply
IX111011000Y01BR\2 (Vmodelong)
DISPLACEMENT\ 16

IX111011000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the contents of the
FAC by the contents of the location specified by EA. (See Chapter 6 of
the System Architecture Reference Guide.) Normalizes the result if
necessary and stores it in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

249 Second Edition

INSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a
1, the FMP instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

p FRN
Floating Point Round
1100000101011100 (R, Vmode form)

This instruction operates on and stores all results in the floating
accumilator.

For the 2350 to the 9955 II, the following actions occur. If bits 1 to
48 contain O, then bits 49 to 64 are cleared to 0. If bits 24 and 25
both contain 1, then 1 is added to bit 24, bits 25 to 48 are cleared to
0, and the result is normalized. If bit 25 contains 1 and bits 26 to
48 are not equal to O, then 1 is added to bit 24, bits 25 to 48 are
cleared, and the result is normalized.

For the earlier systems listed in “"About This Book", the following
actions occur. If bits 1 to 48 contain O, then bits 49 to 64 are
cleared to 0. Otherwise, bit 25 is added to bit 24, bits 25 to 48 are
cleared to O, and the result is normalized.

For all systems, if no floating point exception occurs, sets CBIT to O.
The values of LINK and the condition codes are indeterminate.

If a floating point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P FRNM
Floating Point Round Towards Negative Infinity
0100000011010000 (Vmode form)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, the instruction ends. If bits 25 to 48 of
DAC contain zeros, the instruction ends. In any other case, the
instruction clears bits 25 to 48 to O, normalizes the result, and
places it in DAC. If no floating-point exception occurs, the
instruction resets CBIT to 0. The values of LINK and the condition
codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If Dbit ¥ contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
(See Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-50

S, R, AND V MODE

P> FRNP
Floating Point Round Towards Positive Infinity
0100000011000011 (Vnode form)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, the instruction ends. TIf bits 25 to 48 of
DAC contain zeros, the instruction ends. In any other case, the
instruction adds 1 to the value contained in bit 24 of DAC, clears bits
25 to 48 to O, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P FRNZ
Floating Point Round Towards Zero
0100000011010001 (Vmode form)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, the instruction ends. If bits 25 to 48 of
DAC are not zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to =zero,
normalizes the result, and places it in DAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit % contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-51 Second Edition

INSTRUCTION SETS GULLE

P> FSB address
Floating Point Subtract
IX011111000Y01BER\ (V mode long)
DISPLACEMENT\ 16

IX011111000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, FA. Subtracts the 32-bit contents of
the locations specified by EA from the contents of the FAC. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result if necessary and stores it in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to O. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the PSB instruction sets CBIT to 1. If bit ¥ contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P FSGT
Floating Point Skip on F Greater Than O
1100000101001101 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are greater than 0. Leaves the value of LINK and CBIT
unchanged. The values of the condition codes are indeterminate. FSGT
works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

p FSLE
Floating Point Skip on F Less Than or Equal to 0
1100000101001100C (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are less than or equal to 0. leaves the values of LINK and
CBIT unchanged. The values of the condition codes are indeterminate.
FSLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less tl)ua.n zero. (See Chapter 6 in the System Architecture Reference
Guide.

Second Edition 2-82

S, R, AND V MODE

p FoMI
Floating Point Skip on F Minus
1100000101001010 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are less than 0. Ieaves the values of LINK and CBIT
unchanged. The values of the condition codes are indeterminate. FSMI
works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero amd
less tl)ua.n zero. (See Chapter 6 in the System Architecture Reference
Guide.

P Favz
Floating Point Skip on F Not O
1100000101001001 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are less than or equal to 0. Ieaves the values of LINK and
CBIT unchanged. The values of the condition codes are indeterminate.
FSNZ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero amd
less tl)la.n zero. (See Chapter 6 in the System Architecture Reference
Guide.

P FSPL
Floating Point Skip on FAC Plus
1100000101001011 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are greater than or equal to 0. Ieaves the values of LINK
and CBIT unchanged. The values of the condition codes are
indeterminate. FSPL works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P FST address
Floating Point Store
IX010011000Y01BR\2 (V mode long)
DISPLACEMENT\ 16

IX010011000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Stores the contents of the FAC
into the 32-bit location specified by EFA. (See Chapter 6 of the System
Architecture Reference Guide.) If the exponent contained in the FAC is
too large to be expressed in 8 bits, a floating-point exception (store

2-53 Second Edition

INSTRUCTION SETS GUIDE

exception) occurs. If no floating-point exception occurs, the
instruction resets CBIT to 0. At the emd of the instruction, the
values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information. In either case, a floating-point exception leaves the
contents of the memory location in an indeterminate state.

This instruction does not normalize the result before loading it into
the specified memory location unless rounding is enabled.

P FSZE
Floating Point Skip on F Equal to O
1100000101001000 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator equal O. ILeaves the values of LINK and CBIT unchanged.
The values of the condition codes are indeterminate. FSZE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to zero and less than
zero. (See Chapter 6 in the System Architecture Reference Guide.)

Second Edition 2-54

S, R, AND V MODE

p HT
Halt
00000000O0COOOOOOO (8, R, V mode form)

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
stopped. The supervisor terminal indicates a halt. leaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
specified by the RSAVPTR. The contents of RSAVPTR can be accessed by
an LDIR/STIR instruction with address '40037. The registers are saved
in their physical order. (See Chapter 9 of the System Architecture
Reference Guide for the format of these register files.) The saved
register file order is shown in Table 2-3.

Table 2-3
Order of Saved Registers after HLT

| 6350, I @350 to 2755, [|
I 9750 to 9955 II | 9650 and 9655 | Earlier Systems* |
| |
User Reg Set 3 t User Reg Set 1	User Reg Set 2	
User Reg Set 4	User Reg Set 2	User Reg Set 1
User Reg Set 1	User Reg Set 3	IMx Reg File
! User Reg Set 2	User Reg Set 4 I Microcode Reg File	
Microcode Reg File,	User Reg Set 5	
I Set 2	User Reg Set 6	[
Indirect Reg Set I User Reg Set 7	!	
Microcode Reg File,	User Reg Set 8	
[Set 1	IMx Reg File [
IMx Reg File	Microcode Reg File,	
I Set 1l I		
! | Microcode Reg File, | [
! I Set 2 [|

* The earlier systems are listed in "About This Book". Of these,
the 850 has two ISPs. For each ISP, the order of saved registers
is identical to the order shown for the rest of the 50 Series.

Note

This is a restricted instruction.

2-85 Second Edition

TNCTRTIOMTON Q'E'T‘C‘ TN
LLVO LIVUN L L\ AV s

p 14B
Interchange A and B
0O000000010000001 (8, R, Vmode form)

Interchanges the contents of A and B. ILeaves the values of LINK, CBIT,
and the condition codes unchanged.

p 1cA
Interchange Bytes of A Register
1100001011100000 (S, R, Vmode form)

Interchanges the bytes of A. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

p ICL
Interchange Bytes and Clear Left
1100001001100000 (S, R, Vmode form)

Interchanges the bytes of A, then clears the left byte to 0. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

ICR

Interchange Bytes and Clear Right
1100001010100000 (8, R, Vmode form)

Interchanges the Dbytes of A, then clears the right byte to 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

> IiE
Interchange L and E
1100001100001100 (S, R, Vmode form)

Interchanges the values of E and L. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Second Edition 2-56

S, R, AND V MODE

P> IMA address
Interchange Memory and A
IX101111000Y00BR\2 (Vmode long)
DISPLACEMENT\ 16

IX101111000000CB\2 (R mode long)
[DISPLACEMENT\16]

IX1011 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Interchanges the contents of A
and the contents of the location specified by EA. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

The IMA instruction is nonatomic, and, especially for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the STAC instruction instead.

P> INA function,device
Input to A
10110 0 FUNCTION\4 DEVICE\8
Valid for modes S, R

Loads data from the specified device into A. Ieaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P> INBC address
Interrupt Notify Beginning, Clear Active Interrupt
0000001010001111 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue.
Issues a CAI pulse to clear the currently active interrupt, and enables
interrupts. The values of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

2-57 Second Edition

INSTRUCT1ION SETS GUITE

Note
INBC is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P> INBN address
Interrupt Notify Beginning
0000001010001101 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue, and
enables interrupts. Does not issue a CAI pulse to clear the currently
active interrupt. The values of CBIT, LINK, and the condition codes
are indeterminate. A process exchange will occur if the notified
process is of a higher priority than the interrupted process. See
Chapter 9 of the System Architecture Reference Guide for more
information.

Note
This is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P INEC address
Interrupt Notify End, Clear Active Interrupt
0000001010001110 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue. Issues a
CAT pulse to clear the currently active interrupt, and enables
interrupts. The values of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

Second Edition 2-58

S, R, AND V MODE

Note
INEC is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P> INEN address
Interrupt Notify End
0000001010001100 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, Dbits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue, and enables
interrupts. Does not issue a CAI pulse to clear the currently active
interrupt. The values of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

Note
This is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

p H
Inhibit Interrupts
0O000001000000001 (S, R, Vmode form)

Inhibits interrupts by setting bit 1 of the modals to O. Inhibits
interrupts until an enable interrupts instruction executes. The
processor ignores any interrupt requests that are made over the I/0
bus. This instruction takes effect immediately. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

2-59 Second Edition

TNSTRUCTION SETS GUITE

p INHL
Inhibit Interrupts (Local)
0000001000000001 (S, R, Vmode form)

This 850 instruction performs the same actions as INH does. Leaves the
values of CBIT, LINK,and the condition codes unchanged.

Note

This is a restricted instruction.

p M
Inhibit Interrupts (Mutual)
0000001000000000 (S, R, Vmode form)

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

p NP
Inhibit Interrupts (Process)
0000001000000010 (S, R, Vmode form)

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the
other processor and then sets the lock and inhibits interrupts. Ieaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

Second Edition 2-60

S, R, AND V MODE

p K
Input Keys
0000000000100011 (S, R mode form)

Loads the contents of the S and R mode keys into A. Reads the
low-order 8 bits of the floating exponent (address trap location 6)
register along with the high-order 8 bits of the keys register. Ileaves
the values of CBIT, LINK, and the condition codes unchanged.

p T
Convert Floating Point to Integer
1100000101101100 (S, R mode form)

Converts the double precision floating-point number contained in the
floating accumulator to a 31-bit integer and stores the result in A and
bits 2 to 16 of B. Bit 1 of B (bit 17 of the result) is forced to O.
Ignores the fractional portion of the floating-point number. Overflow
occurs if the value in the floating accumulator is less than —2**30 or
greater than (2**30)-1. If overflow occurs, a floating-point exception
occurs. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P> INTA
Convert Floating Point to Integer
1100000101011001 (Vmode form)

Converts the double precision number contained in the floating
accumlator to a 16-bit integer and stores the result in A. Ignores
the fractional portion of the floating-point number. For example, 4.5
is converted to <4 and +4.5 is converted to +4. Overflow occurs if the
value in the floating accumulator is less than -2**15 or greater than
(2**15)-1. If overflow occurs, a floating-point exception occurs. If
no floating-point exception occurs, CBIT is reset to O.

At the end of this instruction, the B register contents are
indeterminate. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-61 Second Edition

INSTRUCTION SEIS GUIE

P INTL
Convert Floating Point to Long Integer
1100000101011011 (Vmode form)

Converts the double precision floating-point number contained in the
floating accumulator to a 32-bit integer and stores the result in L.
Ignores the fractional portion of the floating-point number contained
in the floating accumulator. For example, —4.5 is converted to 4 and
+4.5 is converted to +4. Overflow occurs if the floating-point number
is less than -2**31 or greater than (2**31)-1. If overflow occurs, a
floating-point exception occurs. If no floating-point exception
occurs, CBIT is reset to 0. The values of LINK and the cordition codes
are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P> IRS address
Increment and Replace Memory
IX101011000Y00BEBR\2 (V mode long)
DISPLACEMENT\16

IX101011000000CB\2 (R mode long)
[DISPLACEMENT\16]

TX101O0 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the contents of the
location specified by EA, adds 1 (a 16-bit increment), and stores the
result back in the location specified by EA. Skips the next location
if the incremented value is 0. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

P IRIC
Interrupt Return, Clear Active Interrupt
0000000110000011 (V mode form)

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS. Issues a CAI pulse to clear the currently
active interrupt, and enables interrupts.

Note
s~ 4 o -, 4 ~ S
This is a restricted instruction

Second Edition 2-62

S, R, AND V MODE

p IRTN
Interrupt Return
0000000110000001 (V mode form)

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWFB and PSWKEYS, and enables interrupts. Does not issue a
CAI pulse to clear the currently active interrupt.

Note

This is a restricted instruction.

1100 (S, R, Vmode form)

Increments the contents of X by 1 and stores the result in X. Skips
the next 16-bit halfword if the incremented value is 0. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

p ITIB
Invalidate STLB Entry
0O000000110001101 (Vmode form)

Invalidates the STLB entry that corresponds to the virtual address
contained in L. The values of CBIT, LINK, and the condition codes are
indeterminate. You must execute this instruction whenever you change
the page table entry for the given address.

If you change an SDW or DTAR (explained in Chapter 4 of the System
Architecture Reference Guide), you usually have to invalidate the
entire STLB by issuing the instruction PTILB. A O in the segment number
portion of L invalidates the IOTLB entry corresponding to the address
specified by L.

Note

This is a restricted instruction.

263 Second Edition

INSTRUCTION SETS GUIDE

P JIIX address
Jump and Decrement X
I0110111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts 1 from the contents of
the index register, X. If the decremented value does not equal O, the
instruction loads EA into the program counter. If the decremented
value is equal to O, execution continues with the next sequential
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing. See Appendix B for more
information.

P JIX address
Increment X and Jump if Not Equal to O
I0110111000011CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds 1 to the contents of the
index register, X. If the incremented value does not equal O, the
instruction loads EA into the program counter. If the incremented
value is equal to O, execution continues with the next sequential
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing.

P IMP address
Jump
IX000111000Y00BR\2 (V mode long)
DISPLACEMENT\ 16

IX000111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 O O 1 DISPLACEMENT\10 (S mode; R, V mode short)
Calculates an effective address, EA. ILoads EA into the program

counter. Iesves the wvalues of CBIT, LINK, and the condition codes
unchanged.

Second Edition 264

S, R, AND V MODE

P> JST address
Jump and Store
IX100011000Y00BR\2 (V mode long)
DISPLACEMENT\ 16

IX100011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X1 0 0 O DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the
program counter in the location specified by EA. Execution continues
at the location EA+1.

The JST instruction truncates the return address according to the
addressing mode before storing it. The high-order bits of the memory
location are not affected by the store. This allows you to preset the
I or X bits in some modes as follows:

Mode Allowed Presets
168 I, X
325, 32R I
64R, 64V none
Note

JST cannot be wused in shared code. In Ring O, JST inhibits
interrupts during execution of the next instruction.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

P JISX address
Jump and Save in X
I1110111000Y11BR\2 (Vmode long)
DISPLACEMENT\ 16

I1110111000011CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Increments the contents of the
program counter by 1 and loads the result into X. ILoads EA into the
program counter. For the 750 and 850, if the value of CB is 2 or 3,
then the next 16 bits are skipped. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

2-65 Second Edition

INSTRUCTICN SETS GUIDE

Note
JSX cannot do indexing. See Apperndix B for more information.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

P JISXB address
Jump and Save in XB
IX110011000Y10BRY (V mode long)
DISPLACEMENT\ 16

IX110011000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. ILoads the contents of the program
counter into XB. Ioads FA into the program counter. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This instruction can make subroutine calls outside the current
segment as well as within.

P JSY address
Jump and Save in Y
IX110011000YO00REBR\ (V mode long)
DISPLACEMENT\ 16

I X110 O DISPLACEMENT\16 (V mode short)
Calculates an effective address, FA. Loads Y with the location number
of the program counter. ILoads EA into the program counter. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.
Note
This instruction may call only those subroutines residing in

the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

Second Edition 2-66

S, R, AND V MCDE

» LCEQ

Load A on Condition Code EQ
1100001101000011 (Vmode form)

If the condition codes reflect an equal to condition, the instruction
loads A with a 1. If the condition codes reflect a not equal
condition, the instruction loads A with a 0. [Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

P ICGE
Ioad A on Condition Code GE
1100001101000100 (V mode form)

If the condition codes reflect a greater than or equal to condition,
the instruction loads A with a 1. If the condition codes reflect a
less than condition, the instruction loads A with a 0. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

p ICGT
Load A on Condition Code GT
1100001101000101 (V mode form)

If the condition codes reflect a greater than condition, the
instruction loads with a 1. If the condition codes reflect a less than
or equal to condition, the instruction loads A with a 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

»LGLE
Ioad A on Condition Code LE
1100001101000001 (V mode form)

If the condition codes reflect a less than or equal to condition, the
instruction loads A with a 1. If the condition codes reflect a greater
than condition, the instruction loads A with a 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

p LCLT
Ioad A on Condition Code LT
1100001101000000 (V mode form)

If the condition codes reflect a less than condition, the instruction
loads A with a 1. If the condition codes reflect a greater than or
equal to condition, the instruction 1loads A with a 0. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

267 Second Edition

R et e et P e AW

Ioad A on Condition Code NE
1100001101000010 (V mode form)

If the condition codes reflect a not equal condition, the instruction
loads A with a 1. If the condition codes reflect an equal condition,
the instruction loads A with a O. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

P LDA address
Load A
IX001011000YO00BR2 (Vmode long)
DISPLACEMENT\ 16

IX001011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0010 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. 1Ioads the contents of the
location specified by EA into A. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

p LIC flr
Load Character
OOO0O000101100FIR0O010 (Vmode form)

If the contents of the specified FIR are nonzero, the instruction
fetches the single character pointed to by the appropriate FAR and
loads it into bits 9 to 16 of A. VWhen the FAR's bit field contains O,
it specifies the left byte (bits 1 to 8) of the 16-bit addressed
quantity; when the bit field contains 8, the right byte (bits 9 to 16)
is specified. This instruction loads zeros into bits 1 to 8 of A.
Updates the contents of the appropriate FAR by 8 so that they point to
the next character. Decrements the contents of the specified FIR by 1.
Sets the condition codes to NE.

If the contents of the specified FIR are O, the instruction sets the
condition codes to EQ.

The instruction leaves the values of CBIT and LINK unchanged.
Note

This instruction uses FARO when FLRO is specified, and FARI
when FIR1 is specified.

Second Edition 2-68

S, R, AND V MOCE

P> LDL address
Load Long
IX001011000Y11BR\2 (V mode form)
DISPLACEMENT\ 16

Calculates a long (32-bit) effective address, EA. Loads the 32-bit
contents of the location specified by EA into L. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

P> IDIR address
Load L From Addressed Register
IX010111000Y01BR\2 (Vmode form)
DISPLACEMENT\16

Calculates a 32-bit (1-word) effective address, FA. Loads L with the
contents of the register file location specified by the offset portion
of EA. Bit 2 and bit 12 of the offset portion of EA determine the
actions of this instruction:

Bit 2 Bit 123 Action

1* — Ignore bit 1 and bits 3 to 9. The offset
portion of EA specifies an absolute register
number from O to '377.

O* 1 Bits 13 to 16 of the offset portion of EA
specify one of the registers '20 to ‘37 in the
current register set.

0] 0] Bits 13 to 16 of the offset portion of EA
specify one of the registers O to ‘17 in the
current register set.

*This is a restricted instructionm.
leaves the values of CBIT and LINK unchanged; the values of the

condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information on register sets.

269 Second Edition

INSTRUCTIICN SETS GUilo

P> LIX address
Load X
I11110111000Y00BR2 (Vmode long)
DISPLACEMENT\16

I1110111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I1110 1 DISPLACEMENT\10 (S, R, V mode short form)

Calculates an effective address, EA. Loads X, the index register, with
the contents of the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged. For 750 and 850
processors in R mode only, if CB contains 2 or 3, the first 16 bits of
the next instruction will be skipped.

Note

IIX cannot specify indexing, though an address calculated in
the indirect chain may do so in 16S mode. See Appendix B for
more information.

P> 1IDY address
Load Y
I1110111000Y01BR2 (Vmode form)
DISPALCEMENT\ 16

Calculates an effective address, EA. Loads Y with the contents of the
location specified by EA. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

IDY cannot do indexing. See Appendix B for more information.

> LR
Load A on A Equal to O

1100000100001011 (S, R, Vmode form)

If the contents of A are equal to O, the instruction loads A with a 1.
If the contents of A are not equal to O, the instruction loads A with a
0. leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

Second Edition 2-70

S, R, AND V MODE

p IF
Load False
1100000100001110 (S, R, Vmode form)

Loads A with a 0. Leaves the values of LINK and CBIT unchanged. The
values of the condition codes are indeterminate.

> LFEQ
Load A on F Equal to O

1100001001001011 (Vmode form)

If the contents of the floating accumlator are equal to O, the
instruction loads A with a 1. If the F contents are not equal to O,
the instruction loads A with a C. ILeaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) LFEQ works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P LFGE
Load A on Floating Accumulator Greater Than or Equal to O
1100001001001100 (Vmode form)

If the contents of the floating accumulator are greater than or equal
to O, the instruction loads A with a 1. If the F contents are less
than O, the instruction loads A with a 0. ILeaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGE works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

P LFGT
Load A on Floating Accumulator Greater Than O
1100001001001101 (Vmode form)

If the contents of the floating accumlator are greater than O, the
instruction loads A with a 1. If the F contents are less than or equal
to O, the instruction loads A with a 0. Ieaves the values of LINK and
CBIT wunchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGT works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

_2-71 Second Edition

INSTRICTTON SETS (ATTTIR

P IFIE
Load A on Floating Accumulator Less Than or Equal to O
1100001001001001 (V mode form)

If the contents of the floating accumlator are less than or equal to
O, the instruction loads A with a 1. If the F contents are greater
than 0, the instruction loads A with a 0. Ieaves the values of ILINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFLE works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

p ILFLI flr,data
Load FIR Tmmediate
O00O000101100FIR011 (Vmode form)
INTEGER\ 16

Loads the 16-bit, unsigned integer contained in bits 17 to 32 (the
second halfword) of the instruction into the specified FIR. Clears the
upper bits of the FIR. lLeaves the values of CBIT, LINK, the condition
codes, and the associated FAR unchanged.

p LFLT
Load A on Floating Accumulator Less Than O
1100001001001000 (V mode form)

If the contents of the floating accumulator are less than O, the
instruction loads A with a 1. If the F contents are greater than or
equal to O, the instruction loads A with a O. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFLT works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

P LFNE
Load A on Floating Accumulator Not Equal to O
1100001001001010 (Vmode form)

If the contents of the floating accumulator are not equal to O, the
instruction loads A with a 1. If the F contents are equal to O, the
instruction loads A with a 0. Ieaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) LFNE works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

Second Edition 2-72

S, R, AND V MODE

» IGE
Load A on Greater Than or Equal to O
1100000100001100 (S, R, Vmode form)

If the contents of A are greater than or equal to O, the instruction
loads A with a 1. If the contents of A are less than O, the
instruction loads A with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) This instruction has the same opcode as LIGE.

p IGT
Load A on Greater Than O
1100000100001101 (S, R, V mode form)

If the A contents are greater than O, the instruction loads A with 1.
If the A contents are less than or equal to O, the instruction loads A
with 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P> LIOT address
Load IOTLB
O0O00000000100100 (V mode form)
AP\32

Loads a specified IOTLB entry. The following list shows the contents
of the LIOT entry and the origin of the information.

Origin Description
AP in LIOT Virtual address in I/O segment (calculated from EA).

Page table Physical address (translation of virtual address)
obtained from I/O segment. If the fault bit is set
to 1, a page fault occurs.

L register Target virtual address containing the segment number
and page number to be used by procedures accessing
this information. This is used to help invalidate
the proper locations in the cache. The segment

number and low-order 10 bits (offset number in the
page) are ignored.

The values of CBIT, LINK, and the condition codes are indeterminate.

Note

LIOT is a restricted instruction.

_2-73 Second Edition

INSTRUCTION SETS GUIDE

p LIE
Load on A Less Than or Equal to O
1100000100001001 (S, R, Vmode form)

If the contents of A are less than or equal to O, the instruction loads
A with 1. If the A contents are greater than O, the instruction loads
A with 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

P LI

Ioad A on L Equal to O
1100001101001011 (Vmode form)

If the contents of L are equal to O, the instruction loads A with a 1.
If the contents of L are not equal to O, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

p LIGE
Load A on L Greater Than or Equal to O
1100000100001100 (V mode form)

If the contents of L are greater than or equal to O, the instruction
loads A with a 1. If the contents of L are less than O, the
instruction loads A with a 0. Ieaves the values of LINK and CBIT
unchanged. The condition codes contain the result of the comparison.
(See Apperdix A.) This instruction has the same op code as IGE.

LIGT
Ioad A on L Greater Than O
1100001101001101 (V mode form)

If the L contents are greater than O, the instruction loads A with 1.
If the L contents are less than or equal to O, the instruction loads A
with 0. ILeaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

Second Edition 2-74

S, R, AND V MODE

p LiLn
Long Left Logical
0100001000N6 (8, R, Vmode form)

Shifts the contents of A and B to the left, bringing zeros into bit 16
of B. Shifts bits out of bit 1 of B into bit 16 of A. CBIT and LINK
contain the value of last bit shifted out of A; the values of all
other bits shifted out of A are lost. Ieaves the values of the
condition codes unchanged.

N contains the two’'s complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p LLIE
Ioad A on L Less Than or Equal to O
1100001101001001 (V mode form)

If the contents of L are less than or equal to O, the instruction loads
A with 1. If the L contents are greater than O, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

p LIIT
Ioad A on L Iess Than O
1100000100001000 (V mode form)

If the contents of L are less than O, the instruction loads A with 1.
If the L contents are greater than or equal to O, the instruction loads
A with 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LLT.

P LINE
Ioad A on L Not Equal to O
1100001101001010 (V mode form)

If the contents of L are not equal to O, the instruction loads A with a
1. 1If the contents of L are equal to O, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

275 Second Edition

TANICTDIW Y TANT CNC (ITT 1R
Lk ALY DA ddais

AW ISRV EY MoAv

p LIRn
Long Left Rotate
0100001010N6 (S, R, Vmode form)

Shifts the contents of A and B left, rotating bit 1 of A into bit 16 of
B. Bit 1 of B shifts into bit 16 of A. CBIT and LINK contain a copy
of the last bit rotated into bit 16 of B. Leaves the values of the
condition codes unchanged.

N contains the two’'s complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

p LiSn
Long left Shift
0100001001N6 (Vmode form)

Shifts the 32-bit integer in L left arithmetically, bringing zeros into
bit 32. Bits shifted out of bit 1 are lost. If bit 1 changes state,
it is interpreted as an overflow and causes an integer exception. If
no integer exception occurs, CBIT is reset to 0. The values of LINK
and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

p LiSn
Long Left Shift
0100001001N6 (S, R mode form)

Shifts the 31-bit integer contained in A and B left arithmetically,
bringing zeros into bit 16 of B. Bit 1 of B does not take part in the
shift; bit 2 of B is shifted into bit 16 of A. Bits shifted out of
bit 1 of A are lost. If bit 1 of A changes state, it is interpreted as
an overflow and causes an integer exception. If no integer exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Second Edition 2-76

S, R, AND V MCDE

}LLT
Ioad on A Iess Than O
1100000100001000 (S, R, Vmode form)

If the contents of A are less than 0, the instruction loads A with 1.
If the A contents are greater than or equal to O, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LLLT.

P INE
Load on A Not Equal to O
1100000100001010 (S, R, Vmode form)

If the contents of A are not equal to O, the instruction loads A with a
1. If the contents of A are equal to O, the instruction loads A with a
0. Ieaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

p LPID
Load Process ID
0000000110001111 (V mode form)

Loads the process ID from bits 1 to 10 of A into RPID (the process ID
register). This contains the 10 most significant bits of the user's
address space. ILeaves the values of CBIT, LINK, and the condition
codes unchanged.

The RPID data is used to update the process ID field of an STLB entry
as required. This RPID data is later used during subsequent memory
accesses to verify that STLB data is still wvalid (STLB hit) or not
(SILB miss). This register is for internal machine operation, and
should not normally be modified by the user.

Note

This is a restricted instruction.

P> LPSW address
Load PSW
0O000000111001001 (V mode form)
AP\32

Changes the status of the processor by loading new values into the

program counter, keys, and modals. Inhibits interrupts for one
instruction.

-7 Second Edition

TNSTRUOTTON SETS CITITR

VAT ke WA\ e ke Y AAd RS NA S ki

Addresses a 64-bit (4-halfword) block at the specified location. The
block has the following.

Offset in Block Contents
1to2 New program counter (ring, segment, offset
numbers)
3 New keys
4 New modals

LPSW loads the program counter and keys of the currently running
process with the contents of the first three offsets (bits 1 to 48),
then loads the processor modals with the contents of the fourth offset
(bits 49 to 64).

The new value of bit 15 in the keys, the in-dispatch bit, can
temporarily halt execution of the current process. This bit is altered
by software only during a cold or warm start. If bit 15 is O, the
currently executing process will continue to execute, but at a location
defined by the new value of the program counter. If bit 15 is 1, the
processor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the process that was
temporarily halted, note that execution resumes at the point defined by
the value of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals are associated with the processor,
not the process.

This instruction loads the 64 bits (four halfwords) of the register set
that the STIR instruction cannot correctly load. STIR does not update
the separate hardware registers the processor uses to maintain
duplicate information for optimization.

Never use this instruction to change bits 9 to 11 of the modals. These
bits specify the current user register set. This means that if you do
not know the current value of these bits, you must do the following
each time you want to execute an LPSVW.

1. Inhibit interrupts.
2. Read the current values of modal bits 9 to 11 (use LILR).

3. Mask the old values of the modal bits into the new information.

4. Ioad the new information into the modals with an LPSW.
For the two common uses of LPSW, you do not have to perform this
sequence, since the values of modal bits 9 to 11 are predictable. When

you use LPSW after a Master Clear to turn on processor exchange mode,

sl ol Ll TGL LU LD LL LA

Second Edition 2-78

S, R, AND V MOCE

bits 9 to 11 are 010 because the processor is always initialized to
register set 2. When you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored by the break because these
values are still correct.

Also note that you should not use LPSW to set bits 16 (the save done
bit) or 15 (the in-dispatcher bit) of the keys, unless you are merely
loading status following a fault, check, or interrupt. When issuing
LPSW after a Master Clear, make sure you load zeros into both of these
bits.

Note

LPSW is a restricted instruction. This instruction inhibits
interrupts during execution of the next instruction.

P IRL n
Long Right Logical
0100000000N6 (S, R, Vmode form)

Shifts the contents of A and B right, bringing zeros into bit 1 of A.
Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain the value of
the last bit shifted out of B; the values of all other bits shifted
out of B are lost. ILeaves the values of the condition codes unchanged.

N contains the two’'s complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P IRR n
Long Right Rotate
0100000010N6 (8, R, V mode form)

Shifts the contents of A and B right, rotating bit 16 of B into bit 1
of A. Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain a
copy of the last bit rotated from B to A. ILeaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p IRSn
Iong Right Shift
0100000001N6 (Vmode form)

Shifts the 32-bit integer contained in L right arithmetically. Shifts

copies of bit 1, the sign bit, into each of the vacated bits. CBIT and
LINK contain the value of the last bit shifted out of L; the values of

_2-79 Second Edition

INSTRUCTION SETS GUIDE

all other bits shifted out are lost. Ieaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p IRSn
Long Right Shift
0100000001N6 (S, R mode form)

Shifts right arithmetically the 31-bit integer contained in A and B,
leaving bit 1 of A unaffected. Bit 1 of B does not take part in the
shift; bit 16 of A is shifted into bit 2 of B. Shifts copies of bit 1
of A into each of the vacated bits. CBIT and LINK contain the value of
the last bit shifted out of B; the values of all other bits shifted
out of B are lost. ILeaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p T
Load True
1100000100001111 (S, R, Vmode form)

loads A with a 1. Ieaves the values of LINK and CBIT unchanged. The
values of the condition codes are indeterminate.

Second Edition 2-80

S, R, AND V MODE

P MPL address
Multiply Long
IX111011000Y11BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, FA. Multiplies the 32-bit integer in
L by the 32-bit integer in the location specified by EA. Stores the
64-bit result in L and E. The 150/250, 450/550/250-II, I450-II, and
”250 processors leave the CBIT and LINK unchanged. The other 50 Series
processors reset the CBIT to O and leave the value of LINK
indeterminate. For all 50 Series processors, the condition codes are
unchanged. MPL cannot cause overflow or generate an integer exception.

P MPY address
Multiply
IX111011000Y00BR\2 (Vmode long)
DISPLACEMENT\ 16

IX 1110 DISPLACEMENT\10 (V mode short)

Calculates an effective address, EA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location specified by EA. Stores the
32-bit result in A and B. Resets the CBIT to 0. The value of LINK is
indeterminate. Leaves the values of the condition codes unchanged.

Note

This instruction cannot cause overflow.

P> MPY address
Multiply
IX111011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X111 O0 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location specified by EA. Loads the
3l-bit result in A and B. If the multiplier and multiplicand are both
-(2**15), an integer exception occurs. If no integer exception occurs,
CBIT is reset to 0. The value of LINK is indeterminate. For the 2350
to 9955 II, the condition codes are unchanged. For the earlier
processors listed in “"About This Book", the values of the condition
codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets GCBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-81 Second Edition

TNSTRUCTION SEIS GULilE

P> NFYB address
Notify to Beginning
0000001010001001 (Vmode form)
AP\32

Notifies the semaphore at the address specified by the address pointer
in the instruction. Uses LIFO (last in, first out) queueing. Does not
clear the currently active interrupt. The values of CBIT, LINK, and
the condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P NFYE address
Notify to End
0000001010001000 (V mode form)
AP\32

Notifies the semaphore at the address specified by the address pointer
in the instruction. Uses FIFO (first in, first out) queueing. Does
not clear the currently active interrupt. The values of CBIT, LINK,
and the condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P NoP
No Operation
0000000000000001 (S, R, Vmode form)

Does nothing. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Second Edition 2-82

S, R, AND V MODE

P> OCP function,device
Output Control Pulse
001100 FUNCTION\4 DEVICE\6 (S, R mode form)

Sends a control pulse to perform the specified function to the
specified device. This instruction never skips. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P> ORA address
Inclusive OR
IX001111000Y10BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, FA. Logically ORs the contents of the
location specified by FA and the contents of A and stores the result in
A. Ieaves the values of CBIT, LINK, and the condition codes unchanged.

P> OTA function,device
Output From A
111100 FUNCTION\4 DEVICE\6 (S, R mode form)

Transfers data from A to the specified device. Ieaves the values of
CBIT, LTNK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

p O
Output Keys
0000000100000101 (S, R mode form)

Stores the contents of A in the keys. Loads CBIT, LINK, and the
condition codes as a result of the operation. Loads the low-order 8
bits of the floating exponent (address trap location 6) register with
the low-order 8 bits of A. If this instruction is executed in Ring O,
it inhibits interrupt during execution of the next instruction.

2-83 Second Edition

TNSTRIICTTON SETS GUIDE

P> PCL address
Procedure Call
IX100011000Y10BR\2 (Vmode form)
DISPLACEMENT\ 16

Sets CBIT, LINK, and the condtion codes to the values contained in the
ECB. See Chapter 8 of the System Architecture Reference Guide for a
complete description of this instruction.

Note

When arguments are to be transferred to the called procedure,
this instruction uses X and Y, destroying the previous contents
of these registers. XB is updated if an AP has the S bit = 0.
The contents of X, Y, and XB remain unchanged if no arguments
are transferred. The contents of the condition codes, CBIT,
and LINK are not correctly saved in the ECB along with the rest
of the caller’s keys.

p pID

Position for Integer Divide
0000000010001001 (8, R mode form)

Moves the contents of bits 2 to 16 of A into bits 2 to 16 of B. Clears
bit 1 of register B to O and extends the sign contained in bit 1 of A
into bits 2 to 16 of A. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

p PIDA
Position for Integer Divide
0000000001001101 (Vmode form)

Moves the conmtents of bits 1 to 16 of A into bits 17 to 32 of L.
Extends the sign contained in bit 1 of A into bits 2 to 16 of A.
leaves the values of CBIT, LINK, and the condition codes unchanged.

p rIL
Position for Integer Divide Long
0000000011000101 (Vmode form)

Moves the contents of L into E and extends the sign contained in bit 1

of I into bits 2 to 32 of L. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

Second Edition 2-84

S, R, AND V MODE

p PIM
Position After Multiply
0000000010000101 (S, R mode form)

Moves bits 2 to 16 of B into bits 2 to 16 of A. This converts a 31-bit
integer to a 16-bit integer. Ieaves the values of CBIT, LINK, and the
cordition codes unchanged. Overflow does not cause an integer
exception.

P PIMA
Position After Multiply
0000000000001101 (Vmode form)

Moves bits 17 to 32 of L into bits 1 to 16 of A. This converts a
32-bit integer to a 16-bit integer. An integer exception occurs if
there is an overflow. (This occurs if bits 1 to 17 of L contain a
value other than all zeros or all ones before the move.) If no integer
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

To position bits 17 to 32 of L in A, PIMA can modify all 32
bits of L. Since A and B overlap L, this swap means that the
contents of B are indeterminate at the end of this instruction.

p PIML
Position After Integer Multiply Long
0000000011000001 (Vmode form)

Moves the contents of bits 1 to 32 of E into bits 1 to 32 of L. This
converts a 64-bit integer to a 32-bit integer. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-85 Second Edition

ettt LY iy R

}PR'I’N
Procedure Return
0000000110001001 (V mode form)

Deallocates the stack frame created for the executing procedure and
returns to the environment of the procedure that called it.

To deallocate the frame, the instruction stores the current value of
the stack base register into the free pointer. It then restores the
caller's state by loading the caller’'s program counter, stack base
register, linkage base register, and keys with the values contained in
the frame being deallocated. Sets bits 15 to 16 of the keys to O.

loads the ring number in the program counter with the current ring
number to allow outward returns but prevent inward returns.

PTLB
Purge TLB
0000000000110100 (Vmode form)

1, contains the address of a physical page, right justified. Based on
the value of L bit 1, PILB purges either the first 128 locations or a
single location. If L bit 1 contains a 1, the instruction performs a
complete purge. If L bit 1 contains a O, the instruction purges the
page specified by L. Leaves the values oOf CBIT, LINK, and the
condition codes indeterminate. See Chapters 1, 4, and 11 of the System
Architecture Reference Guide for more information about the STLB and
IOTLB.

Note
This is a restricted instruction.

On the 750, 850, and 2350 to 9955 II, insert a CRE (Clear E)
instruction before PTLB. Since PTLB uses E as a pointer, the
CRE zeros E before PTLB manipulates it. If an interrupt occurs
during PTLB's execution, E points to the location PILB is
currently purging. PILB leaves the contents of E in an
undefined state at the end of its execution.

Second Edition 2-86

S, R, AND V MODE

P> QFAD address
Quad Precision Floating Add
IX010111000Y10BR\2 (V mode long)
DISPLACEMENT\16
0O0000O0OO0O0O00CO0OO0O0O10

Calculates an effective address, FA. Adds the 112-bit, quad precision
number contained in the locations specified by EA to the contents of
QAC. (See Chapter 6 of the System Architecture Reference Guide.)
Normalizes the result and loads it into QAC. An overflow or underflow
causes a floating-point exception. If no floating-point exception
occurs, the instruction resets GBIT to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFAD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P QreM
Quad Precision Floating Complement
1100000101111000 (V mode form)

Forms the two’'s complement of the value contained in QAC and normalizes
it if necessary. (See Chapter 6 of the System Architecture Reference
Guide.) Stores the result in QAC. An underflow or overflow causes a
floating-point exception. If no floating-point exception occurs,
resets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFCM is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-87 Second Edition

INSTRICTION SETS GUITE

P QFCS address
Quad Precision Floating Point Compare and Skip
IX010111000Y10BR\ (V mode long)
DISPLACEMENT\ 16
0000000000000O0110

Calculates an effective address, EA. Compares the contents of QAC (see
Chapter 6 of the System Architecture Reference Guide) to the 112-bit
contents of the location specified by EA and skips as shown below.

Condition Skip
QAC > EA contents. No skip.
QAC = FA contents. Skip 16 bits (one halfword).
QAC < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.
On some processors, QFCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note
If QFCS is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFDV address
Quad Precision Floating Point Divide
IX010111000Y10BR\S (V mode long)
DISPLACEMENT\ 16
0000000000000 101

Calculates an effective address, EA. Divides the contents of QAC by
the 112-bit contents of the location specified by EA. Normalizes the
result and stores the whole quotient into QAC. An overflow, underflow,
or divide by O causes a floating-point exception. If there is no
floating-point exception, resets CBIT to O. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition 2-88

S, R, AND V MODE

Note

If QFDV is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFLD address
Quad Precision Floating Point Load
IX010111000Y10BR\ (V mode long)
DISPLACEMENT\ 16
0000O00OO0OOOO0OOOOOOO

Calculates an extended, augmented effective address, EA. Performs one
of the following actions with the value contained in the location
specified by EA. Loads bits 1 to 112 into QAC and zeros QAC bits 113
to 128, or loads 128 bits into QAC. In either case, no normalization
occurs. (See Chapter 6 of the System Architecture Reference Guide for
more information.) Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

If QFID is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFIX address
Quad Precision Floating Point Load Index
I0110111000Y11BR\2 (V mode long)
DISPLACEMENT\ 16

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA to the left three times to multiply the
contents by eight. Shifts in zeros on the right and shifts data out on
the left first through bit 2 and then bit 1. Ieaves the values of
CBIT, LINK, and and the condition codes unchanged.

Note
QFLX cannot do indexing. See Appendix B for more information.
If QFLX is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-89 Second Edition

TAICTDITSPTAIN Qe (T
NALY MDA A AW

Ak $0J A L VNSNS e o]

P> QFMP address
Quad Precision Floating Point Multiply
IX010111000Y10EBR\2 (Vmode long)
DISPLACEMENT\ 16
0000000000000100

Calculates an effective address, FA. Multiplies the contents of QAC by
the 112-bit contents of the location specified by EA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result if
necessary and stores it into QAC. An overflow or underflow causes a
floating-point exception. If there is no floating-point exception, the
instruction resets CBIT to 0. The values of LINK and the condition
codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If Dbit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFMP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFSB address
Quad Precision Floating Point Subtract
IX010111000Y10BEBR\ (V mode long)
DISPLACEMENT\ 16
0000000000000O011

Calculates an effective address, FA. Subtracts the contents of the
locations specified by EA from the 112-bit contents of QaC. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result if necessary and loads it into QAC. An overflow or underflow
causes a floating-point exception. If there is no floating-point
exception, the instruction resets CBIT to O. The values of LINK and
the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Secord Edition 2-90

S, R, AND V MCCE

Note

If QFSB is used for any earlier system listed in "About This
Book", an wunimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

QFST address

Quad Precision Floating Point Store
IX010111000Y10BR\ (V mode long)
DISPLACEMENT\ 16

00000000000000O01

Calculates an effective address, EA. Stores the 128-bit contents of
QAC into the 128 bits of memory specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Ieaves the values of CBIT, LINK,

and the condition codes unchanged.

>

Note

This instruction does not normalize the result before storing
it into the specified memory location.

If QFST is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

QING
Quad to Integer, in Quad Convert

1100000101111010 (V mode form)

Strips the fractional portion of QAC as described in Table 2-4.

2-91 Second Edition

TNCSTDITTTON S AT TR
ek V2 N ¥ Ntdd e NS el

A A VIS e b L1

Table 24
QIQ Actions
Exponent Value I Action
'337 <= Exp No operation.

|
|
'200 < Exp < '337 | If sign >= O, strip fractional part of QAC
| for result.

| If sign < O and fractional part <> O, strip
| fractional part of QAC and increment

| integer portion of QAC by 1.

| If sign < O and fractional part = O, no

| action 1s done.

!

!

!

l

!

|

‘200 = Exp If sign >= 0, result = O.
If sign < O and bits 2 to 96 = 0, result = -1.
If sign < 0 and bits 2 to 96 <> 0, result = 0.
'200 > Exp Result = O.
The QINQ instruction can cause a floating-point exception; an

exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to 0. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QINQ is wused for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P QIR
Quad to Integer, in Quad Convert Rounded
1100000101111011 (Vmode form)

ips the fractional portion of QAC as described in Table 2-5.

Secord Edition 2-92

S, R, AND V MODE

Table 2-5
QIQR Actions
| Exponent Value I Action
‘337 <= Exp No operation.

‘177 < Exp < '337 | If sign >= 0, round.*
If sign < O and fractional part <> 0.5,**

|

| [

! [

| l

I [

| I rourd and strip the fractional part

| [of QAC.

[[

[Exp = '177 | If sign >= 0, result = O.

| I If sign < O and bits 2 to 96 = 0, result = -1.
| I If sign < O and bits 2 to 96 <> 0, result = O.
[| For all cases inCrement integer part by 1 if

! I it exists and the most significant bit of

[I QAC = 1.

[|

|

Exp < '177 | The result is O.

* Rounding occurs if the MSB of the QAC fraction is 1. For example,
add the MSB of the QAC fraction to itself and carry out to the QAC
integer.

** 0.5 implies a QAC fraction with the MSB = 1 and all other bits = O.

The QIR instruction can cause a floating-point exception; an
exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to O. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QIR is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-93 Second Edition

TATCHTIDT T YN TN L¥T TTTIR
ALVMD LIVULL LAY Su.LS umu.n_uu

P> RBQ address
Remove Entry From Bottom of Queue
1100001111001101 (Vmode form)
AP\32

The address pointer in this instruction points to the QCB for a queue.
The instruction removes the entry from the bottom of the referenced
queue and loads it into A. If the queue is not empty, sets the
condition codes to NE; if empty, resets A to O and sets the condition
codes to BQ. Leaves the values of CBIT and LINK unchanged.

RCB
Reset CBIT to O
1100000010000000 (S, R, Vmode form)

Resets CBIT to O. Ieaves the values of LINK and the condition codes
unchanged.

P RMC
Reset Machine Check Flag to O
0000000000010001 (8, R, Vnode form)

Resets the MCM flag (bits 15 to 16 of the modals) to O. ILeaves the
values of CBIT, LINK, and the condition codes unchanged. Inhibits
interrupts during execution of the next instruction.

Note

This is a restricted instruction.

P> RRST address
Restore Registers
0000000111001111 (Vmode form)
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. The save area format is
shown in Table 2-6. Restores the contents of the general, floating,
and XB registers from this save area. Bits 1 to 16 of the save area
are a save mask, whose format appears in Figure 2-4. A mask bit value
of 1 means that the corresponding register had nonzero contents that
have been saved in the save area; a mask bit value of O means that the
corresponding register’'s contents were 0. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

Second Edition 2-%

S, R, AND V MODE

Table 2-6
RRST Save Area Format

Offset # | Contents

I |
I [
| 1 | Save mask I
I 2to5 | FR1l (F) |
! 6to9 | FRO |
i 10to 11l | X, GR? !
I 12 to 13 | GRB I
Il 14tol15 1Y, S, GRS I
I 15 tol7 | GR4 |
I 18to 19 | E, GR3 I
I 20to 21 | A, B, L, GR2 |
I 22 t0 23 ! GR1 I
I 24 to 25 | GRO I
I 26 to 27 | XB |

1 4 5 67 8 9 10 11 12 13 14 1516

10000 | FR1 I FROI X I -1 Y I -1 EI LBA I — |

Save Mask Format, RRST and RSAV Instructions
Figure 24

P> RSAV address
Save Registers
0000000111001101 (Vmode form)
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. The save area format is
shown in Table 2-7. Bits 1 to 16 of the save area are a save mask,
whose format appears in Figure 2-5. This instruction sets the mask bit
of each register as follows: to 1 if the register’'s contents have a
nonzero value; to O if a O value. Saves the nonzero contents of the
general, floating, and XB registers in the save area. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

2-95 Second Edition

TACTDIMTAN QR (ITTTR
ALV LIV UL LAY DA \AV ek

Table 2-7
RSAV Save Area Format

! 1 | Save mask !
! 2 to B | FR1 (F) |
I 6 to 9 I FRO |
{ 10 to 11 | X, GR? |
I 12 to 13 | GRB I
I 14t015 1 Y, S, GRS I
I 15 to 17 | GR4 |
18 to 19	E, GR3
20t0 21	A, B, L, GR2
22 to 23	GR1
24 to 25	GRO
26 to 27	XB

1 4 5 67 8 9 10 11 12 13 14 15 16

| OO0 | FR1 I FROI X I -1 Y I -1 E I L,B,A | — |

Save Mask Format, RRST and RSAV Instructions
Figure 2-5

P> RIQ address
Remove Entry From Top of Queue
1100001111001100 (Vmode form)
AP\32

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into A. If the queue is empty, the instruction resets A to O
and the condition codes to EQ; if not empty, sets the condition codes
to NE. leaves the values of CBIT and LINK unchanged.

P RTS
Reset Time Slice
0000000101001001 (Vmode form)
valid for the 550-II, 750, 850, I450, and new processors.

The A register contains a negative value representing the number of
milliseconds in the new time slice. The time slice is determined by
counting ITH up every 1.024 milliseconds wuntil zero, when the time

= e

Second Edition 2-96

S, R, AND V MODE

slice ends. Therefore, ITH is the two's complement of the number of
milliseconds remaining in the time slice. The elapsed timer contains
the total number of 1.024 millisecond units that have elapsed since
process creation plus the full count of the current time slice.
Combining ITH and ET by addition gives the total elapsed time.

RTS adds the current value of the interval timer (locations 16 to 17 of
the PCB) to the contents of the elapsed timer (locations 10 to 11 of
the PCB), then subtracts the contents of A from the sum of the timers.
Stores the result in the elapsed timer. Loads the contents of A into
the interval timer. ILeaves the contents of A unchanged. The values of
CBIT, LINK, and the condition codes are unchanged.

The addition performed by this instruction is equivalent to the
following series of instructions.

IDA ITH /* load A with the contents of ITH
SUB RV /* subtract reset value (in RV) from contents of A

PIDA /* sign extend the contents of A into L bits 17 to 32
SRC /* skip next 16-bit halfword if CBIT is O (no overflow)
CMA /* complement A

ADL ET /* add contents of L and contents of ET

STL ET /* store contents of L in ET

IDA RV /* load A with reset value

STA ITH /* store the reset value into ITH

Note

RTS is a restricted instruction.

2-97 Second Edition

TNSTRICTTON SETS GITITE

p sS1a
Subtract 1 From A
1100000001001000 (S, R, Vmode form)

Subtracts 1 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15), an integer exception occurs, and
the instruction loads (2*¥*15)-1 into A. If no overflow occurs, the
instruction resets CBIT to 0. LINK contains the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P s2a
Subtract 2 From A
1100000011001000 (8, R, Vmode form)

Subtracts 2 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15)-1 or —-2**15, an integer exception
occurs and the instruction loads (2**15)-1 or (2**15)-2, respectively,
into A. If no overflow occurs, the instruction resets CBIT to 0. LINK
contains the borrow bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P SARn
Skip on A Register Bit Reset to O
100000001011N4 (S, R, Vmode form)

Skips the next 16-bit halfword if bit n in register A contains O.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of O indicates bit 1; 1, bit 2;
and so on.
Note

The assembler converts n to the octal equivalent of bit number
minus 1.

Second Edition 2-98

S, R, AND V MODE

P SaSn
Skip on A Register Bit Set to 1
1000001010114 (S, R, Vmode form)

Skips the next 16-bit halfword if bit n in register A contains 1.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of O indicates bit 1, and so on.

Note

The assembler converts n to the octal equivalent of bit number
minus 1.

P> SBL address
Subtract Long
IX011111000Y11BR\2 (V mode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Subtracts the 32-bit integer in
the location specified by EA from the contents of L. Stores the
results in L. If the result is greater than (2**31)-1, an integer
exception occurs and the instruction loads bit 1 of L with a 1 and bits
2 to 32 with (result - (2**31)).

If the result is less than -(2**31), an integer exception occurs and
the instruction loads bit 1 of L with a O and bits 2 to 32 with the
negative of (result + (2**31)).

If no overflow occurs, the instruction resets CBIT to O. The
instruction loads LINK with the borrow bit. The condition codes
reflect the outcome of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P scB
Set CBIT to 1
1100000110000000 (S, R, V mode form)

Sets the wvalue of CBIT to 1. The value of LINK is indeterminate.
Leaves the values of the condition codes unchanged.

2-99 Second Edition

INSTRUCTION SETS GUIDE

P SGL
Enter Single Precision Mode
0000000000000101 (8, R mode form)

Enters single precision mode by resetting bit 2 of the keys to O.
Subsequent ILDA, STA, AID, and SUB instructions manipulate 16-bit
integers. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

P SGT
Skip on A Greater Than O
1000000010010000 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are
greater than 0. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

P SKPn
Skip
1000000000000000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the specified condition is
met. Ieaves the wvalues of CBIT, LINK, and the condition codes
unchanged.

This instruction allows you to test for several conditions. The table

below shows the conditions available to test and information about the
associated instruction.

Second Edition 2-100

S, R, AND V MODE

Table 2-8
SKP Conditions

Mnem | Opcode | Condition

| [
| |
| NOP | 101000 | No operation. I
| SKP | 100000 | Unconditional skip. |
| SLT | 101400 | Skip on bit 1 of A equal to 1. l
I SGE 1 100400 | Skip on bit 1 of A equal to O. [
| SIN | 101100 | Skip on bit 16 of A equal to 1. [
| SLZ | 100100 | Skip on bit 16 of A equal to O. |
| SNE | 101040 | Skip on A not equal to O. I
| SEQ | 100040 | Skip on A equal to O. [
I SS1* | 101020 | Skip on sense switch 1 set to 1. [
I SR1* | 100020 ! Skip on sense switch 1 reset to O. [
I SS2* | 101010 | Skip on sense switch 2 set to 1. [
I SRR* | 100010 | Skip on sense switch 2 reset to O. |
I SS3* | 101004 | Skip on sense switch 3 set to 1. I
| SR3* | 100004 | Skip on sense switch 3 reset to O. !
I SS4* | 101002 | Skip on sense switch 4 set to 1. |
I SR4* | 100002 | Skip on sense switch 4 reset to O. [
| SSS* | 101036 | Skip on any sense switches set to 1. |
I SSR* | 100036 | Skip on all sense switches reset to O. |
I SSC | 101001 | Skip on CBIT set to 1. |
I SRC | 100001 | Skip on CBIT reset to O. |

Note

*These are restricted instructions.

You do not have to specify the unique mnemonic to test a particular
condition; you can specify the SKP mnemonic and give the correct bit
configuration for bits 7 to 16 of the desired test. Make sure that you
set bit 7 of the SKP instruction properly: if it contains a 1, the
skip occurs if any of the specified conditions are true; if it
contains a O, the skip occurs if all of the specified conditions are
false.

P> SKS function,device
Skip on Condition Satisfied
011100 FUNCTION\4 DEVICE\6 (S, R mode form)

Tests for the condition specified in the function field of the
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged. See Chapter 11 of the System Architecture Reference Guide
for more information.

2-101 Secornd Edition

VI A AV e e VAl Y BSdd ke S WA

Note

SKS is a restricted instruction.

p SLE
Skip if A Less Than or Equal to O
1000001010010000 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are less
than or equal to 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

p SIN
Skip on LSB of A Nonzero
1000001001000000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if bit 16 of A is 1. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

p sz
Skip on LSB of A Zero
1000000001000000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the bit 16 in A equals O.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

P SMCR
Skip on Machine Check Reset to O
1000000010000000 (S, R, Vmode form)

Skips the next 16-bit halfword if the machine check flag is 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.
Note
If the processor is operating in machine check mode, this

instruction has no meaning; it executes as an unconditional
skip.

Second Edition 2-102

S, R, AND V MODE

P SMCs
Skip on Machine Check Set to 1
1000001010000000 (S, R, Vmode form)

Skips the next 16-bit halfword if the machine check flag is 1. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

If the processer is operating in machine check mode, this
instruction has no meaning; it executes as a NOP.

p SMI
Skip on A Minus
1000001100000000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are less
than 0. Ieaves the wvalues of CBIT, LINK, and the condition codes
unchanged.

p SNz
Skip on A Nonzero
1000001000100000 (S8, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are not
equal to 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

P srL
Skip on A Plus
1000000100000000 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are
greater than or equal to 0. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

P SrC
Skip on CBIT Reset to O
1000000000000001 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of CBIT is O.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

2-103 Second Edition

TACHTMITI YNTAMT OTING ATTTTIR
AV LINVUACL LVAY DDA W UVl as

p ssc
Skip on CBIT Set to 1
1000001000000001 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of CBIT is 1.
leaves the values of CBIT, LINK, and the condition codes unchanged.

P sSsM
Set the Sign of A Minus
1100000101000000 (S, R, Vmode form)

Sets bit 1 of A to 1. Iecaves the values of CBIT, LINK, and the
condition codes unchanged.

p sSSP

Set the Sign of A Plus
1100000001000000 (S, R, Vmode form)

Sets bit 1 of A to O. Ieaves the values of CBIT, LINK, and the
cordition codes unchanged.

P sssy
Store System Serial Number
0100000011001000 (V mode form)

This instruction is applicable only for the 2350 to the 9985 II. A
14-character system identifier programmed into the processor during
manufacturing consists of a 2-character plant location code followed by
a 12-digit number. (These characters and numbers are in 7-bit ASCII
format.) SSSN writes this system identifier into a 16-halfword block
at the address specified by the XB register. (A halfword is 16 bits.)
The first 8 halfwords of this block hold the system serial number
string as provided by manufacturing; the remaining halfwords are
reserved for future expansion and are O.

Ieaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

If SSSN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-104

S, R, AND V MODE

P> STA address
Store A Into Memory
IX010011000Y00BR\2 (V mode long)
DISPLACEMENT\ 16

IX010011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X010 0 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the A
register in the location specified by EA. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

P> STAC address
Store A Conditionally
0000001010000000 (V mode form)
AP\32

Compares the contents of B with the contents of the location referenced
by the specified address pointer. If the two values are equal, the
instruction stores the contents of A into that referenced location. If
the two values are not equal, execution continues with the next
instruction. Ieaves the values of CBIT and LINK unchanged. Sets the
condition codes to EQ if the store occurs and to NE if not.

The comparison and store will not be separated by execution of other
instructions. This means that no instruction can alter the contents of
the specified memory location between the compare and the store.

Note

This instruction is useful when two cooperating, sequential
brocesses are manipulating shared data. It is interlocked
against direct memory I/O; this means you can use it to
interlock a process with a DMA, DMC, or IMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/0.

p SIC fir
Store Character
OOOO0OO0O0101101FIR010 (V mode form)

If the contents of the specified FIR are nonzero, the instruction
stores the contents of bits 9 to 16 of A into the character byte
pointed to by the appropriate FAR. Updates the contents of the
appropriate FAR so that they point to the next character. Decrements
the contents of the specified FIR by 1. Sets the condition code NE.

2-105 Second Edition

TNSTRUCTION SETS GUIDE

If the contents of the specified FIR are O, the STC instruction sets
the cordition code EQ and does not store a character.

The STC instruction leaves the values of LINK and CBIT unchanged.

Note

When the instruction specifies FIRO, FARO is used; FIR1, FARI.

P STEX
Stack Extend
0000001011001101 (Vmode form)

Extends the length of the procedure stack.

A and B contain a 32-bit number specifying the halfword size of the
extension. (A halfword is 16 bits.)

The firmware rounds up the number specified by A and B to an even
number of halfwords. The instruction uses this value to allocate a
block of memory to the procedure stack. The extension and the initial
stack do not have to be contiguous, since there may not have been
enough room left in the initial stack to contain a complete frame.

The instruction returns a segment number/offset number in A and B that
specifies the starting address of the extension.

The extension is automatically deallocated when the current procedure
completes execution. There is no limit on the number of extensions you
can make.

A stack fault occurs if there is no room for the extension. The values
of CBIT, LINK, and the condition codes are indeterminate. See Chapters
8 and 10 of the System Architecture Reference Guide for more
information about this instruction, stacks, and stack faults.

P> STFA far,address
Store FAR
000000101101 FAROO0O (Vmode form)
AP\32

Stores the specified FAR contents as a hardware recognizable indirect
pointer at the memory location referenced by the specified address
pointer. If the bit number field of that FAR contains O, the
instruction stores the first 32 bits (2 halfwords) of the pointer and
clears the pointer’'s extend bit to 0. If the bit number field of that
FAR does not contain O, the instruction saves all 48 bits (three
halfwords) of the pointer and sets the pointer's extend bit to 1.
Ieaves the values of CBIT, LINK, and the condition codes indeterminate.

Second Edition 2-106

S, R, AND V MCDE

P> STL address
Store Long
IX010011000Y11BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of I in the
32-bit location specified by EA. leaves the values of CBIT, LINK, and
the condition codes unchanged.

P> STIC address
Store L Conditionally
0000001010000100 (V mode form)
AP\32

Calculates an effective address, EA. Stores the contents of L into the
32-bit location specified by EA if and only if the contents of the
specified location equal the contents of E. Ieaves the values of CBIT
and LINK unchanged. The condition codes reflect the result of the

comparison. (See Appendix A.)

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/0; this means you can use it to
interlock a process with a IMA, DMC, or IMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/0.

P> STIR address
Store L Into Addressed Register
IX001111000Y01BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates a 32-bit (1-word) effective address, EA. Stores the
contents of L into the register location specified by the offset
portion of EA. Bit 2 and bit 12 of the offset portion of EA determine
the actions of this instruction as follows.

2-107 Second Edition

TNGMTTIYMTON QN MTITIR
AAVO LIV b VALY MO AW Al

STIR leaves the values of CBIT and LINK unchanged;
condition codes are indeterminate. See Chapter 9 of the

Bit 2 Bit 12 Action

1* - Ignore bit 1 and bits 3 to 9. The offset

portion of EA specified an absolute register

number from O to '377.

o* 1 Bits 13 to 16 of the offset portion of EA

specify one of the registers ‘20 to ‘37 in the

current register set.

0 0 Bits 13 to 16 of the offset portion of EA

specify one of the registers O to '17 in the

current register set.

*Thigs is a restricted instruction.

the values of the
System

Architecture Reference Guide for more information about register sets.

>

Note

Do not use the STIR instruction to write into the keys or
modals. You can use LPSW or a mode control operation to change
either of these registers. Under no circumstances should you
try to change the value of the current register set bits
contained in the modals.

In addition, do mnot change the contents of the procedure base
register (PB) with this instruction. Use either LPSW or a
control transfer. Loading any value other than O into PBL will
change future effective address calculations for the currently
running process.

STPM
Store Processor Model Number
0000000000010100 (V mode form)

Stores the CPU model number and microcode revision number in an

8-halfword field.

the field. The format of the field is shown in Table 2-9.

Second Edition 2-108

(A halfword is 16 bits.) XB contains a pointer to

S, R, AND V MODE

Table 2-9
STPM Memory Field Format

| Halfword | Name

| Description

I
I
!
I
|
|
I
!
|
|
|
I
I
|
!
I
|
I
I
[
I
!
|
|
I
I
|
I
|
I
|
|
I
I
I

1l to2 Processor | Contains a code specifying the machine:
Model OL - 400/500, no 15L - 9950
Number Rev B microcode 16L - 9650

1L - 400, Rev. B 17L - 2550
microcode 18L - 9955
2L - Reserved 19L - 9750
3L - 350 21L - 2350
41, - 450/550 2L - 2655
5L - 750 3L - 9655
6L - 650 5L ~ 2450
7L - 250 30L - 9955 IT
8L - 850 31L - 2755
OL - 250-I1 34L - 8350
10L - 550-I1 421, — 9755
11L - 2250
Offset 3:

I
f |
| |
| I
{ I
I J
I !
| !
I |
! I
| I
I |
I I
[!
I |
{ !
3 to 4 | Microcode |
| Revision | Bits 1 to 8 Reserved
I i
! [
| f
I I
| I
I |
I |
I I
J I
| I
[|
| I
I I
| !
I I
| !

5 Processor | Specifies options enabled for this machine:

Line Bits 1 to 16 Reserved; must be O
Bit 16 Marketing segment
specification bit

6 Extended To be implemented.
Microcode
D

7 to 8 — Reserved for future use.

Bits 9 to 16 Manufacturing microcode
revision number
Offset 4:
Bits 1 to 16 Engineering microcode
revision number

This instruction leaves the values of CBIT, LINK, and the condition

codes unchanged.

Note

STPM is a restricted instruction.

2-109 Second Edition

TACMMTYINT AT MG FTTTTIR
AAVOLIVULUL LAY DA IV s

STT™
Store Process Timer
0000000101001 000 (V mode form)

Valid for the 550-II, 850, I450, and 2350 to 9955 II.

The current process time is represented by the sum of the 32-bit
elapsed time (stored in the PCB) and the 32-bit interval timer
(contained in the CPU hardware). Bit 17 of the elapsed time is
equivalent in weight to bit 1 of the interval time. This operation is
equivalent to the following sequence of instructions.

IDIR PB% + '25 /* Get PCB address.

AL = '10L /* Offset of elapsed time.

STL TEMP1 /* Elapsed time address —> Temp.
LDIR PB% + '30 /* Read timer.

IAB /* Store low order

STA XB% + 2 /* 16 bits.

IAB /* Adjust

PIDA /¥ weighting.

AL TEMP1, * /* Add elapsed time.

STL XB% + O

Ieaves the values of the CBIT, LINK, and condition codes indeterminate.
This instruction is not implemented on the 2350.

P> STX address
Store X
I0110111000Y00BR2 (Vmode long)
DISPLACEMENT\16

I0110111000000CB\2 (R mode long)
{ DISPLACEMENT\16]

I0 110 1DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of X at the
location specified by EA. ILeaves the values of CBIT, LINK, and the
cordition codes unchanged.

Note

STX cannot directly specify indexing, though an address in the
indirection chain may do so in 16S mode. See Apperdix B for

HOE A

Second Edition 2-110

S, R, AND V MODE

p sTY
Store Y
I1110111000Y10RR2 (V mode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of Y at the
location specified by EA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The STY instruction camnot do indexing. See Appendix B for
more information.

P> SUB address
Subtract
IX011111000Y00BRR\2 (Vmodelong)
DISPLACEMENT\ 18

IX011111000000CB\2 (R mode long)
[DISPLACEMENT\16]

IX0111 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, FEA. Fetches the 16-bit integer
contained in the location specified by FA and subtracts them from the
contents of A. Stores the results in A.

If the result is greater than or equal to 2**15, an integer exception
occurs and the instruction sets CBIT to 1 and loads bit 1 of A with a 1
and bits 2 to 16 with (result minus (2**15)).

If the result is less than —2**15, an integer exception occurs and the
instruction loads bit 1 of A with O and bits 2 to 16 with the negative
of (result + (2**15)).

If no overflow occurs, the instruction resets CBIT to 0. LINK contains
the carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-111 Second Edition

TATCUTIDTIOTY T Tn“p
J..LIL)J.I\UV.LIQ’\I Su‘.s (;L..___

P SVC

Supervisor Call
0000000101000101 (S, R, V mode form)

Supervisor call. Generates a directed fault. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

This instruction allows you to make an operating system request that is
addressing mode independent. By software convention, this instruction
sends an operation code and pointers to the operating system to
generate a fault. For more information, refer to Chapter 10 of the
System Architecture Reference Guide.

P SZE

Skip on A Zero
1000000000100000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A equal O.
leaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-112

S, R, AND V MODE

P TAB
Transfer A to B
1100000011001100 (V mode form)

Transfers the contents of A into B. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

p TAK
Transfer A to Keys
0000001000001101 (V mode form)

Moves a copy of the contents of A into the keys. Loads CBIT, LINK, and
the condition codes as a result of the operation. Resets bits 15 to 16
of the keys to O.

Note

If the new contents of the keys specifies a new addressing
mode, the new mode takes effect with the instruction
immediately following TAK.

P TAX
Transfer A to X
1100000101000100 (V mode form)

Loads X with a copy of the contents of A. Ieaves the values of CBIT,
LINK, and the condition codes unchanged.

P TAY

Transfer A to Y
1100000101000101 (V mode form)

Loads Y with a copy of the contents of A. Ieaves the values of CBIT,
LINK, and the condition codes unchanged .

P TBA
Transfer B to A
1100000110000100 (V mode form)

Transfers a copy of the contents of B to A. Leaves the values of CBIT,
LINK, and the condition codes unchanged .

2-113 Second Edition

TATCTMTTIOY e TR
J—L‘L’.anu.&l.mz Su.&S GVM

p TCA
Two's Complement A
1100000100000111 (8, R, Vmode form)

Forms the two’'s complement of the contents of A and stores the result
in A. If the number to be complemented is -2**15, an integer exception
occurs and the instruction loads -2**15 into A. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

p TCL
Two's Complement Long
1100001010001000 (Vmode form)

Forms the two's complement of the contents of L and stores the result
in L. If the number to be complemented is -2**3l, an integer exception
occurs and the instruction loads -2**31 inmto L. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

TFLL flr
Transfer FIR to L
000000101101FIR0O11 (Vmode form)

Transfers the contents of the specified FIR imto L as an unsigned,
32-bit integer. Clears bits 1 to 11 of L to 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

p TKA
Transfer Keys to A
0000001000000101 (Vmode form)

Moves a copy of the keys into A. Ieaves the values of CBIT, LINK, amnd
the condition codes unchanged.

Second Edition 2-114

S, R, AND V MODE

p TILFL fir
Transfer L to FIR
OOOO0O0OO0O101101FROO01 (V mode form)

Transfers the 32-bit unsigned integer contained in I into the specified
FIR. Clears bits 1 to 11 of L to O s0 that bits 1 to 6 of the
Specified FIR will be 0. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

This instruction allows you to load the specified FIR with a
value computed at execution time. The maximum allowable
integer you can load is 2**20. This number is 21 bits wide and
equals the number of bits in a 64K segment .

P> TSTQ address
Test Queue
1100001111101111 (V mode form)
AP\32

The address pointer in this instruction is to the QCB of a queue. This
instruction tests the referenced queue and sets A to equal the number
of items in the queue. Sets the condition codes to BQ when the queue
is empty. If the queue is not empty, sets the condition codes to NE.
leaves the values of CBIT and LINK unchanged.

P A
Transfer X to A
1100001000011100 (V mode form)

Transfers a copy of the contents of X to A. Ieaves the values of CBIT,
LINK, and the condition codes unchanged.

p TYA

Transfer ¥ to A
1100001001010100 (V mode form)

Transfers a copy of the contents of Y to A. ILeaves the values of CBIT,
LINK, and the condition codes unchanged.

2-115 Second Edition

TACYNTMITIAMTAAT O TR
LAVO LIVUAL L A\ ALY U.L.:.l.s GL.A—LAU

P> WAIT address
Wait
0000000011001101 (Vmode form)
AP\32

The address pointer in this instruction is to a 16-bit semaphore
counter, C. The instruction increments C. If C is greater than O,
either the resource is not available, or the event has not occurred.
The instruction removes the PCB from the ready list, suspending the
process, and adds it to the wait list associated with the semaphore.
It then makes the register set available, turns off the process timer,
and goes to the dispatcher to find another process to run. The
dispatcher enables interrupts.

If C is less than or equal to O, the currently executing process
continues.

If the instruction places the PCB on the wait 1list, no general
registers are saved. This means that a process cannot depend on these
registers to be intact after this instruction occurs. This instruction
potentially clears the general, floating, and XB registers.

Ieaves CBIT, LINK, and the condition codes unchanged .

For more information about semaphores, the dispatcher, PCBs, and wait
lists, refer to Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

Second Edition 2-116

S, R, AND V MODE

P xAD
Decimal Add
0000001001000000 (V mode form)

Performs a decimal arithmetic operation under control of FARO, FAR1,
ard L.

FARO contains the address of field 1. FARl contains the address of
field 2. L contains the control word; fields B and C of the control
word specify the decimal operation to be performed, as shown in Table
2-10.

‘Table 2-10
XAD Decimal Operations

I B 1 C I Operation | Destination |
| l
Ot O 1 +F1+F2 | F2 I
I 01 11 4+F1-F2 I F2 !
11 01 -F1+F2 | F2 |
1111 -F1-F2 | F2 !

The scale differential field in the control word specifies the
difference in the decimal point alignment between F1 and F2:

SD Relation of Fl and F2
SD>0 Fl1 >F2
SD=0 Fl =F2
SD<0 Fl <F2

If the T Dbit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

If the add operation results in an overflow, a decimal exception
occurs. If no overflow occurs, the instruction sets CBIT to O to
indicate success.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

2-117 Second Edition

INSTRUCTION SEIS GUIDE

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, FAR1, FIRO,
and FIR1. At the end of the XAD instruction, the contents of these
registers is indeterminate. The value of LINK is indeterminate. The
condition codes reflect the state of F2 after the decimal operation.

(See Appendix A.)

P> XBID
Binary to Decimal Conversion
0000001001100101 (Vmode form)

Converts a binary number to a decimal number. FARO contains the
decimal field address. L contains the control word.

This instruction uses fields A, E, and H in the control word. H
specifies the length of the binary number and its location:

H Length Location
0 16 bits EH register
1 32 bits E register

2 64 bits DAC register

Converts the specified binary integer to a decimal integer and stores
the result in the location specified by FARO. Overflow results in a
decimal exception. If no overflow occurs, the instruction resets CBIT
to 0. Leaves the value of LINK indeterminate. The values of the
condition codes are indeterminate.

The registers used are GRO, GR1, GR3 (E), GR4, GRS, FARO, and FIRO. At
the end of the instruction, the contents of these registers are
indeterminate.

When the source register contains a null string, the destination
register will contain all zeros.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FLR1, or FACI.

Second Edition 2-118

S, R, AND V MODE

P xca
Exchange and Clear A
1100000001000100 (S, R, V mode form)

Interchanges the contents of registers A and B, then clears A to O.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

P xCB
Exchange and Clear B
1100000010000100 (S, R, V mode form)

Interchanges the values of A and B and then clears B to 0. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

> xo
Decimal Compare
0000001001000010 (V mode form)

Compares two decimal numbers and sets the condition codes depending on
the result of the compare.

FARO contains the address of field 1 (F1). FARl contains the address
of field 2 (F2). L contains the control word. This instruction uses
fields A, B, C, E, F, G, and H of the control word.

Compares the two specified numbers. The instruction uses the G field
of the control field to adjust the two numbers before the compare:

G Decigsion

>0 Low-order digits of F1 only affect the initial borrow
from the low-order digit of F2.

<0 Assume Fl is zero-extended with low zeros.

The registers used are GRO, GR1, GR3 (E), GR4, GRS, FIRO, and FIR1. At
the end of this instruction, the contents of these registers are
indeterminate. The CBIT is reset to O when there is no decimal
exception. (This instruction cannot cause & decimal exception.)
Leaves the value of LINK indeterminate. The condition codes reflect
the result of the compare, as follows.

2-119 Second Edition

INSTRIICTTON SETS GUIDE

cC Test Result

GT F2 > Fl

R F2 = F1

LT F2 < F1
p XOTB

Decimal to Binary Conversion
0000001001100110 (V mode form)

Converts a decimal string to a binary string.
FARO contains the address of the decimal string. L contains the

control word: this instruction uses the A, E, and H fields. Field H
specifies the length of the binary string and its location:

H Length Destination Register
00 16 bits A register

01 32 bits L register

10 64 bits LIE

Converts the decimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. Leaves the value of LINK unchanged. The values of
the condition codes are indeterminate.

The registers used are GRO, GR1, GR3 (E), GR4, GRG, FARO, and FIRO. At
the end of this instruction the contents of these registers are
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FIR1, or FACL.

Second Edition 2-120

S, R, AND V MODE

p xov
Decimal Divide
0000001001000111 (Vmode form)

Divides a decimal number, D2, by another, D1, and stores the quotient
and remainder in the location of D2.

FARO contains the address of D1. FARl contains the address of D2. L
contains the control word; this instruction uses fields AL B, C, E, F,
H, anrd T.

Both decimal numbers must be in trailing sign embedded format. In
addition, DR must contain a number of leading zeros equal to the length
of D1.

The instruction divides the two numbers. After the divide, the
location of DR contains the quotient of length (D2 length - D1 length)
followed by the remainder of length (D1 length). Since DR had leading
zeros, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

The registers used are GRO, GR1, GR3 (E), GR4, GRG, FARO, FAR1, FIRD,
and FIR1. At the end of this instruction, the contents of these
registers are indeterminate.

If D1 is O, overflow occurs which causes a decimal exception. Decimal
exceptions also occur if D1 or D2 have the incorrect data type or if
the length of DR is less than that of D1. If no overflow occurs, CBIT
is reset to 0. At the end of the instruction, LINK and the condition
codes contain undefined results.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

P> XEC address
Execute
IX000111000Y10BR?2 (V mode long)
DISPLACEMENT\ 16

IX000111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Executes the instruction found at
EA, but does not transfer control to that location. Ieaves the values
of CBIT, LINK, and the condition codes modified as specified by the
executed instruction.

2-121 Second Edition

TNCSTOTITCTTTON QFTS (ITTNR
REAIY) ALY IR A N i

PRIV AVEY

The XEC instruction has limited application since all instructions
cannot be executed in this way. The XEC instruction is wuseful for
16-bit register generic instructions such as shifts, rotates, clears,
interchanges, and NOPs.

The following instruction types should not be used with XEC since they
may not execute properly or will produce undefined results:
instructions that change the address mode, program counter, Or
instruction stream; instructions that cause arithmetic faults;
decimal or character instructions; and generic skips.

p XED
Numeric Edit
0000001001001010 (Vmode form)

Edits the contents of a string under control of a subprogram.

The registers used are L, XB, FARO, FAR1, and FIRO. At the end of the
instruction, the contents of these registers and the CBIT, LINK, and
condition codes are indeterminate.

FARO contains the address of the source string. The source string must
be leading separate sign type and must have at least the same number of
decimal digits and the decimal point alignment as called for in the
edit subprogram.

FAR1 contains the address of the destination string. Bits 1 to 8 of A
contain the floating character; bits 9 to 16, the status register.
Bits 1 to 8 of B contain the number of remaining bytes to be processed
(used if a fault or interrupt occurs). Bits 9 to 16 of B contain the
suppression character whose initial value is determined by bit 12 of
the keys ('240 if bit 1 contains 0; ‘40 if bit 12 contains 1). XB
contains the address of the edit subprogram.

The instruction uses an edit subprogram to alter a source string and
store the edit result in a destination location(s). To set up, perform
a decimal move to correct the type, alignment, and length of the number
to be edited. Next, use a ICEQ instruction to set up the initial
contents of the register.

Each 16-bit halfword in the edit subprogram has the format shown in
Figure 2-6.

Second Edition 2-122

S, R, AND V MODE

1 2 34 8 9 16

I'L 1 00 | E I M !

Edit Subprogram Halfword Format
Figure 2-6

where L is 1 if this 16-bit halfword is the last halfword
in the subprogram,
O if it is not the last halfword;
E is a suboperator;
M is a suboperator modifier.

The XED instruction uses several variables internally to control the
edit subprogram. These are shown in Table 2-11.

Table 2-11
XED Internal Variables

Var | Definition

Zero suppression character; contained in B. Initial
value is the space character ('240 or ‘40, deperding
on whether bit 12 of the keys contains O or 1.

value is not defined.

Sign of the source field. The first character fetch

[|
l |
| [[
| ! [
| | |
I ! |
I FC | Floating edit character; contained in A. Initial [
| | |
| ! |
| | |
| I sets up the value of this variable. |
| [[
| |

SIG | End zero suppression flag.

There are 17 edit suboperators, shown in Table 2-12.

2-123 Second Edition

INSIRUCTION SETS GUILE

Table 2-12
XED Suboperators

| Subop | Mnem | Name and Description

|
|
00 2S | Zero Suppress. Fetches M digits from the source !
| field consecutively, each time checking SIG. If |
| SIG is 1, copies the digit into the destination |
| string. If SIG is O and the digit is not O, [
| inserts the floating character (if defined) |
| and copies the digit into the destination field. i
| If SIG is O, the digit is not O, and the |
| floating character is not defined, sets the SIG |
| flag and copies the digit into the destination. |
| If SIG and the digit are both O, substitutes l
| SC for the O digit in the destination field. I
o1 IL. | Insert Literal. Copies M into the [
| destination string. Increments XB and FAR1 by 1.!
SS | Set Suppress Character. Sets SC to M and |
| increments XB by 1. [
03 ICS | Insert Character. If SIG is 1, copies M into the |
| destination string. If SIG is O, copies SC into !
| the destination string. Increments XB and FARl |
I by 1. [
| Insert Digits. If SIG is O, and FC is defined, |
| copies FC and M digits into the destination fieldl
| then sets SIG to 1. Increments XB by 1, FARO by |
| M, and FAR1 by M+l. If SIG is O and FC is not |
| defined, sets SIG to 1 and copies M digits from |
| the source to the destination; increments XB by |
| 1 and both FARO and FAR1 by M. If SIG is 1, !
| copies M digits from the source to the [
| destination and increments XB by 1 and both FARO |
| and FAR]1 by M. !
05 ICM | Insert Character if Minus. If SIGN = 1, copies !
| M into the destination string. If SIGN =1, I
| copies SC into the destination string. [
| Increments both SB and FAR] by 1. |
ICP | Insert Character if Plus. If SIGN =0, copies M |
| into the destination string. If SIGN =1, |
| copies SC into the destination string. [
| Increments both SB and FAR] by 1. |
| Set Floating Character. Sets FC to M and [
| increments XB by 1. [
10 SFP | Set Floating if Plus. If SIGN = O, sets FC to M. |
l If SIGN = 1, sets FC to SC. Increments XB by 1. |
| Set Floating if Minus. If SIGN = 1, sets FC to M. |
[1. |

If SIGN = 0, sets FC to SC. Increments XB by

|
!
f
|
|
!
!
l
!
I
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
!
|
|
!
I
!
|
I
|
I
!
|
|
!
i
1l
I

|
I
|
I
!
|
!
I
l
|
!
!
I
f
f
|
|
|
I
{
|
I
I
I
!
I
|
|
|
I
!
|
|
I
!
I
|
I
|
|
|
!
l

Second Edition 2-124

S, R, AND V MODE

Table 2-12
XED Suboperators (continued)

Name and Description

12

13

15

16

17

IS

Set Floating to SIGN. If SIGN = 0, sets FC to
'?53. If SIGN = 1, sets FC to ‘255. Increments
XB by 1.

Jump if Zero. If the condition flag in A = O,
increments XB by 1. If the condition flag in A
= 1, adds M to XB and then increments XB by 1.

Fill with Suppression Characters. Copies SC
M times into the destination string. Increments
XB by 1 and FAR1 by M.

Set Significance. If SIG = 0 and FC <> O, inserts
FC into the destination string, sets SIG to 1,
and increments XB and FAR1 by 1. If SIG = O and
FC = 0, sets SIG to 1 and increments XB and FAR1
by 1. If SIG = 1, increments XB by 1.

Insert Sign. If SIGN = O, copies ‘253 into the
destination string. If SIGN = 1, copies ‘255
into the destination string. Increments XB by 1.

Suppress Digits. Fetches M digits from the source
string and checks if they are ‘260. If the source
digit = ‘280, inserts SC into the destination
string. If the source digit <> ‘260, copies the
source digit into the destination string.
Increments XB by 1 and both FARO and FAR1 by M.

Embed Sign. Fetches M digits from the source
string. If SIGN = O, copies each digit into the
destination string. If SIGN = 1, embeds a minus
sign into each digit before copying it into the
destination string. Table 6-15 shows the
characters used to represent the sign/digit
combinations. A } symbol represents negative O.

2-125 Second Edition

INSTRUCTION SETS GUILE

> xvp
Decimal Multiply
0000001001000100 (Vmode form)

Multiplies one decimal number, M, by another, D1, and stores the result
in D2's location in memory. M is right justified in field DR at the
start of the operation.

FARO contains the address of D1. FARl1 contains the address of DR. L
contains the control word; this instruction uses fields A, B, C, E, F,
G, H, and T. Field G, the scale differential, must contain the number
of decimal digits in M.

The number of decimal digits in DR is greater than or equal to the
number of decimal digits in D1 plus the number of decimal digits in M
(specified by G). Normally, the digits to the left (more significant
side) of M are zeros. If this is not the case, then a partial product
field is added in.

The instruction multiplies M by Dl and stores the result in the
location specified by FARl. The result of the multiply is:

D1l x M + partial product field
The partial product field is equal to:
length(D2) - M.

The partial product field is left Justified in DR's location. The
maximum partial product added in per traverse of the multiplicand is:

source digits + multiplier digits processed

There is also an implied weighting of the partial product field. The
weighting is:

10 ** multiplier digits
If the T bit is set to 1, the results are forced positive. See Chapter

6 of the System Architecture Reference Guide for more information about
decimal arithmetic.

A decimal exception occurs if there are more potential or actual
product digits than there is space in DR.

The registers used are GRO, GR1l, GR3 (E), GR4, GRG, FARO, FARl, and XB.
At the end of this instruction, the contents of these registers are
indeterminate. Overflow causes a decimal exception; if no overflow
occurs, resets CBIT to 0. LINK contains undefined results. At the end
of the instruction, the condition codes reflect the state of the
result. (See Appendix A.)

If a decimal exception occurs and bit 11 of the keys contains a O, the
XMP instruction sets CBIT to 1. If Dbit 11 contains a 1, the

Second Edition 2-126

S, R, AND V MODE

instruction sets CBIT to 1 and causes a decimal exception fault. See
Chapter 10 of the System Architecture Reference Guide for more
information.

P v
Decimal Move
0000001001000001 (V mode form)

Moves a string of characters from one location to another.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. L contains the control word; this
instruction uses fields A, B, D, E, F, G, H and T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, changes the the sign of the source field during the move.
If the D field in the control word is 1 and the scale differential is
greater than O, the instruction rounds the source field during the
move. If the scale differential (from the H field) is less than 0, the
instruction pads the source field with SD +trailing =zeros before
transferring.

Since the T bit is used by all systems for this instruction, the result
is forced positive if this bit is set to 1.

The registers used are GRO, GR1l, GR2 (L), GR3 (E), GR4, GRB, FARO,
FAR1, FIRO, and FIR1. At the end of this instruction, the contents of
these registers are indeterminate.

A decimal exception occurs if there are more non-zero source digits
than there is room in the destination, after any padding. If there is
no decimal exception, CBIT is reset to 0. leaves the value of LINK
indeterminate. The values of the condition codes reflect the state of
the destination field after the move. (See Appendix A.)

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. If no exception
occurs, the instruction sets CBIT to O. See Chapter 10 of the System
Architecture Reference Guide for more information about decimal
exceptions.

Note

The source and destination strings may not overlap in memory.

2-127 Second Edition

TNCTDI TN QR (ITTTIR
e’ N ¥ WSdd e el

VAT ke A VNSNS e e A

> zcM
Compare Character Field
0000001001001111 (Vmode form)

Compares two fields and sets the condition codes depending on the
result of the compare.

FARO contains the address of field 1 (F1). FLRO contains an integer
specifying the length of Fl. FARl contains the address of field 2
(F2). FIR1 contains an integer specifying the length of F2.

The instruction compares the contents of F1 and F2 on a byte by byte
basis. If the fields are not of equal length, the instruction
automatically extends the shorter string with space characters. A
space character is ‘240 or ‘40 when bit 12 of the keys contains O or 1,
respectively. Sets the condition codes as a result of the compare:

Result of Compare Set Condition Codes

Fl1 > F2 GT
Fl = F2 28]
Fl < F2 LT

The registers used are GR3 (E), GR4, FARO, FAR1, FLRO, and FIR1; at
the end of this instruction, the contents of these registers are
indeterminate.

When the instruction completes execution, the values of CBIT and LINK
are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

p ZED

Character Field Edit
0000001001001001 (Vmode form)
Controls an edit subprogram.
Uses the registers FARO, FARl, FIRO, and XB. At the end of this

instruction the contents of these registers are indeterminate. ILeaves
the values of CBIT, LINK, and the condition codes indeterminate.

Second Edition 2-128

S, R, AND V MODE

FARD contains the address of the source string. FLRO specifies the
length of the source string. FARl contains the address of the
destination string. XB contains the address of the edit subprogram.

The instruction uses the edit subprogram to alter the source string,
then loads the edited result into the destination string. The
subprogram, addressed by the contents of XB, contains a 1list of
commands, each with the format shown in Figure 2-7:

1 2 6 7 8 9 16

I'L 1 00000 ! E | M |

ZED Subprogram Word Format
Figure 2-7

where L is 1 if this command is the last command in the subprogram,
0 if it is not;
E is the edit opcode;
M is the edit modifier.

Bits 2 to 6 must be 0.

M, the operator modifier, specifies information E uses when editing the
source string. (See Table 2-13.)

E, the edit suboperator, specifies the operation to be performed on the
source string. Available values for E are shown in Table 2-13.

2-129 Second Edition

TINSTRUCTTON SETS (ATTTR

Table 3-16
ZED Suboperators

| Subop | Value |

!
|
|
|
I
I
[
I
|
!
!
!
!
!
!
!
|
|
|
1
!
!
|
I
|
I
I
|
|
I
|
I
I

Action

CPC

|
I
I
I
!
!
!
I
I
|
|
|
|
!
!
i
I
SKC |
I
|
|
I
I
I
!
!
!
I
|
I
I
|

00

0]

10

11

!
I
!
I
I
!
I
I
I
I
I
I
I
|
I
|
|
I
[
|
!
!
!
|
!
|
|
!
!
|
I
I

Copies characters from the source string into the
destination string.
string is greater than the contents of the M field,
then CPC moves a total of M source characters into
the destination string, increments FARO and FARl by
by M, increments XB by 1, and decrements FIRO by M.
If the length of the source string is less than the
the contents of the M field, then CPC moves the
rest of the source string into the destination
string, and then pads the remaining space to be
filled with spaces.
by FIRO and FAR1 by M, increments XB by 1, and
and decrements FLRO by FLRO (so FLRO = 0).

If the length of the source

(See note.) Increments FARO

Inserts M into the destination string and
increments both XB and FARL by 1.

Skips characters in the source string. If the
remaining length of the source string is greater
than or equal to the contents of the M field, then
SKC skips over the next M characters of the source
field by incrementing FARO by M and decrementing

If the remaining length of the source
string is less than the contents of the M field,
SKC skips over FIRO characters in the source string
by incrementing FARO by FIRO and decrementing FLRO
by FIRO (FIRO = 0).

FIRO by M.

X8 by 1.

In either case, SKC increments

Inserts M spaces (see note) into the destination
string, increments FAR1l by M, and increments XB

by 1.

Second Edition

Note

A space is '240 or ‘40, depending on whether bit 12 of the keys
This instruction uses GR3, GR4, the FARs, and the

is 0 or 1.
FIRs during its operation.

Since ZED does not save the

contents of these registers before using them, any data
contained in them is overwritten when this instruction
executes, unless you save it ahead of time.

2-130

S, R, AND V MODE

P ZFIL
Fill Field With Character
0O000001001001110 (V mode form)

Stores a character into a series of destination bytes.

Bits 9 to 16 of L contain the character to be stored. FARl contains
the starting address of the destination field (byte aligned). FIR1
contains an integer specifying the length of the destination field (in

bytes).

The instruction stores the character specified in L in each byte of the
destination field. If FIR1 contains O, no operation takes place.
Ieaves the values of CBIT, LINK, and the condition codes indeterminate.

The registers used are GR3 (E), GR4, FARO, FAR1l, FLRO, and FIRl; at
the end of this instruction, the contents of these registers are
indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

p MV
Move Character Field
0O000001001001100 (V mode form)

Moves a character field from one location to another.

FARO contains the address of the source string (byte aligned). FLRO
specifies the length in bytes, N, of the source string. FAR1l contains
the address of the destination string (byte aligned). FIR1 specifies
the length in bytes, M, of the destination string.

Compares N and M. If N is less than M, the instruction moves the
contents of the source string into the destination string followed by
M-N space characters. (A space character is ‘240 or ‘40 when bit 12 of
the keys is O or 1, respectively.) If the destination string is
shorter, the instruction moves the first M characters of the source
string into the destination string.

When the instruction completes, the values of FARO, FAR1, FIRO, FIR1,
CBIT, LINK, and the condition codes are indeterminate.

2-131 Second Edition

INSTRUCTION SETS GUILE

Note

The ZMV instruction uses GR3, GR4, the FARs, and the FIRs
during its operation. Since ZMV does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of +time. This instruction does not work with
overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

P zMvD
Move Characters Between Equal Length Strings
0000001001001101 (Vmode form)

Moves characters from one string to another of equal length.

FARO contains the address of the source string. FAR1 contains
address of the destination string. FIRl contains the number
characters to move, N.

The instruction moves N characters from the source string to
destination string. Characters are moved from Ilower addresses
higher addresses.

The registers used are GR3 (E), GR4, FARO, FAR1, FIRO, and FIR1;
the end of this instruction, the contents of these registers
indeterminate. The values of CBIT, LINK, and the condition codes
indeterminate.

Note

The ZMV instruction uses GR3, GR4, the FARs, and the FIRS
during its operation. Since ZMVD does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time. This instruction does not work with
overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

Second Edition 2-132

the
of

the
to

at

S, R, AND V MODE

P> ZTRN
Character String Translate
0000001001001000 (V mode form)

Translates a string of characters and stores the translations in the
specified destination.

FARO contains the address of the source string (byte aligned). FARl
contains the address of the destination string (byte aligned). FIR1
specifies the length of the source and destination strings. XB
contains the starting address of a translation table. Each byte in the
*56-byte table contains an alphabetic character.

The ZTRN instruction uses the address in FARO to reference a character.
It interprets this character as an integer, adding it to the contents
of XB to form an address into the translation table. The instruction
takes the referenced character in the translation table and writes it
into the location specified by FAR1. After storing the character, the
instruction increments the contents of FARO and FAR1 by 1, decrements
the contents of FIR1 by 1, and repeats the operation until FIR1
contains O.

At the end of the instruction, FARO and FAR1 point to the location that
follows the last byte of the source and destination strings,
respectively. FIR1 contains O. ILeaves the values of XB, CBIT, LINK,
and the condition codes unchanged.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

2-133 Second Edition

I Mode

INTRODUCTION

This chapter contains descriptions for all 50 Series instructions used
in T mode. In the descripticn of each instruction, you will find:

The instruction mnemonic followed by any arguments.

The name of the instruction.

The bit format of the instruction.

Detailed information describing the instruction’s actionm.

Information about the how the instruction affects LINK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary.
Table 3-1 defines the dictionary notation.

3-1 Second Edition

TAICTTY T AT O FTTTTIR
AAVID LIV L LVAY LA D \aV AL

Table 3-1
Dictionary Notation

Symbol | Meaning

A | The 16-bit A register.
|

ATTRESS | Encompasses all the elements needed to specify an
| effective address. This term is used because various
| addressing types require you to specify the elements
i in different orders (such as indirect or pre- and
| post-indexing).
[

AP | Address pointer.
|

B | The 16-bit B register.
|

BR | Base register.
l

CBIT | Bit 1 of the keys.
[

DAC | The double precision floating-point accumilator with 48
|
I

bits of mantissa and 16 bits of exponent.
Displace-! The number of halfwords to be added to the base register

ment | to form the effective address.

IR : Destination register (normal register specifier).

E : The 32-bit E register.

EA : Effective address.

F : Floating-point accumulator.

FAC : The single precision floating-point accumulator with 48
| bits of mantissa and 16 bits of exponent.

FAR : Field address register.

FIR : Field length register.

GRn : A 32-bit general register, where n is O through 7.

Halfword : A 16-bit unit of memory.

I : Indirect bit.

L : The 32-bit L register.

LINK :BitBofthekeys. Not used in S and R modes.
[

Second Edition 3-2

I MODE

Table 3-1 (continued)
Dictionary Notation

| Symbol | Meaning !
: Offset | The number of halfwords from the starting address of a :
I I segment. [
: PB I| The procedure base register. :
: QAC : The quad precision floating-point accumulator with 96 :
I | bits of mantissa and 16 bits of exponent. |
: R : A 32-bit general register. :
: T : Bits 1 to 16 of a general register. :
: skip : Skip next 16-bit halfword before continuing execution. ll
: SR : Source register (or index if memory reference). :
ll ™ : Tag modifier. Bits used in I mode effective address :
! I calculation to specify indirection, indexing, etc. l
: X : The X register (indexing). |I
|| XB l| Auxiliary base register. :
: Word : A 32-bit unit of memory. :
: Y II The Y register (indexing). :
E m\n : Specifies the number of bits, n, occupied by field m. E

[
[| |

Specifies an optional argument.

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
is requested during the execution of an instruction, the processor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, are too long or too
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the processor preserves the
state of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the interrupt occurred.
Table 3-2 lists the resumable assembly language instructions.

3-3 Second Edition

TNSTRIICTION SETS GUIDE

Table 32
Resumable Instructions

Instructions

XDITB XDV XED XMP
MV zCcM ZED ZFIL

|
—— |
ARGT XAD XBTD XCM |
!
|
PAAY ZMVD ZTRN STEX |

These instructions depend on the settings in certain registers to
determine whether they are being executed for the first or another
time. In addition, some registers may be used for intermediate
storage, modifying the previous contents as a side effect. Registers
so modified are noted per instruction description.

Storing Data Into the 6350 and 9750 to 9955 II Instruction Stream

After any instruction that stores data into memory, you must wait five
instructions before executing data. If in doubt about the next five
instructions (temporally) to be executed, a mode change instruction to
the current addressing mode, such as E32I, allows the stored data to be
executed.

Instruction Formats

All I mode instructions belong to one of the following instruction
types:

e I Mode Memory Reference

e I Mode Special Memory Reference

e I Mode Generic AP (Address Pointer)

o I Mode Register Gemeric

e I Mode Register Generic Branch

e Generic A and B (see below)
The format of each instruction type is shown in Figure 3-1.
Memory reference instructions have the opcode in bits 1 to 6. Special
memory reference instructions (for floating point) have the opcode in

bits 2, 3, 7, and 9; bit 8 specifies the floating accumulator. Some
memory reference and special memory reference instructions have

Second Edition 34

I MODE

register-to-register and/or immediate forms. Such instructions are so
identified in this I Mode Instruction Dictionary.

The immediate form of a memory reference instruction has a 16-bit
literal in bits 17 to 32 instead of a 16-bit displacement.
Register-to-register forms are 16 bits long, since they have no
displacement. Bits 7 to 9 specify the destination register and bits 12
to 14 specify the source register.

The immediate form of a special memory reference instruction has a
16-bit encoding in bits 17 to 32 instead of a 16-bit displacement. The
register-to-register form is 16 bits long, since it has no
displacement. Bit 8 specifies the floating-point destination
accumulator and bits 12 to 14 specify the index register or the
floating-point source register (in bit 13).

Generic AP instructions have a generic format (where bits 10 to 16
contain the opcode extension) followed by a 32-bit address pointer.

Register gemeric instructions are 16 bits long and have an opcode in
bits 10 to 16. The value of bits 1 to 6 is 011000; bits 7 to 9
specify a general register.

Register generic branch instructions are 32 bits long and have an
opcode in bits 10 to 16. The value of bits 1 to 6 is 00100; bits 7 to
9 specify a general register. Bits 17 to 32 contain a displacement.

Generic A and B instructions that do not reference the A, B, E, or L
registers are also used in I Mode. See Chapter 2, Figure 2-1 for the
format of these instructions. Instructions defined in I mode for this
class are included in this instruction dictionary.

1 67 910 11 12 14 15 16 17 32

| OPCODE | DEST REG | TM | SOURCE REG OR INDEX | BR | DISP |

I Mode General Memory Reference Format*

* This instruction type also has a register-to-register and

[
|
|
|
|
|
|
!
|
|
I immediate form as explained in the text.
|

I Mode Instruction Formats
Figure 3-1

3~5 Second Edition

INSTRUCTION SETS GUIDE

1 2 34 6 7 8 9 1011 12 14 15 16 17 32

I O1 OP 1 110 | OP | DESF | OP | T™M ISRC REG CR ITX! BR | DISP |

I Mode Special Memory Reference (Floating Point) Format*

1 2 34 67 9101112 14 15 16 17

32

' 11 OP 1 110 | OP | TM | REG OR INDEX | BR i DISPLACEMENT |

I Mode Special Memory Reference (General Register) Format

1 16

| GENERIC OR REGISTER GENERIC |

17 20 2l 22 23 24 25 32 33

48

I Mode Generic AP Format

1 67 910 16

| 011000 | REG | OPCODE |

I Mode Register Generic Format

1 67 910 16 17 32

| 001000 | REG | OPCODE | DISPLACEMENT |

I Mode Register Generic Branch Format

* This instruction type also has a register-to-register and

[
|
[
!
|
|
|
[
[
[
l
|
|
|
[
[
!
|
I
I
i
[
[
I
| | BIT | I | O | BR | 00000000 | OFFSET
|
|
I
I
[
|
|
[
!
[
|
!
|
|
i
|
|
|
|
i
[
!
I immediate form as explained in the text.
|

|
|
|
|
!
I
|
I
!
I
!
I
I
I
|
]
|
I
I
|
!
!
|
!
|
!
|
|
I
|
I
|
!
|
I
{
|
!
I
|
I
I
|
I
!
|
f
I
I

I Mode Instruction Formats
Figure 3-1 {continued)

Second Edition 3-8

I MODE

INSTRUCTIONS

P> A R,address
Add Fullword
0000 10 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of the
specified R. Stores the results in the specified R.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**31, an integer exception occurs. If
the sun is less than or equal to -(2**31)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 32 bits are the 32 LSBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> ABQ r,address
Add Entry to Bottom of Queue
011000RWB31011100
AP\32

Adds the entry contained in the specified r to the bottom of the
referenced by the AP. (AP points to the queue’s QCB.) Sets the
condition codes to reflect BQ if the queue was full, or to NE if not
full. Ieaves the values of CBIT and LINK unchanged.

37 Second Edition

INSTRUCI'ION SEIS GULLE

P> ACP destination-R,source-R
Add C Pointer
10110 1IR\3 TM\2 SR\3 BR\2

Adds the two's complement number contained in the specified source R to
the C language pointer in the specified destination R. Stores the
result in the C pointer in the same destination R. Ieaves the values
of the CBIT, LINK, and condition codes unchanged.

Addition is done to segment-number|offsetibyte, producing a new pointer
with an updated segment-number|offset byte. Adding a positive integer
that causes the segment-number field to overflow will modify the ring
field. Adding a negative integer that causes the segment-number field
to underflow will also modify the ring field. R contents that do not
cause the segment number to overflow will not modify the ring field.
No overflow is detected or indicated.

Note

While of the memory referencing form, this instruction is only
defined for register-to-register and immediate address
formation. (See Appendix B.)

If ACP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p AR R
Add LINK to Register
011000R30001100

Adds the contents of LINK to the contents of R and stores the result in
R. If there is an overflow, an integer exception occurs. If no
integer exception occurs, CBIT is reset to O. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

Second Edition

A

I MODE

P> AH r,address
Add Halfword
001010 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Fetches the 16-bit contents of
the location specified by FA and adds them to the contents of the
specified r. Stores the results in the specified r.

If the resulting sum is 1less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to 0. If the
Sum is greater than or equal to 2**15, an integer exception occurs. If
the sum is less than or equal to —(2**15)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 16 bits are the 16 ISBs of the
correct answer (that needs 17 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> AIP R,address
Add Indirect Pointer
111101IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Adds the value contained in the specified R to the 32-bit value
contained in the location specified by EA. Stores the result in the
specified R. Checks these contents for a pointer fault.

This pointer fault is generated when the contents of the nemory
location to be added to the specified R contain a pointer fault (bit 1
contains 1).

If this pointer fault occurs, the pointer to the memory location is
saved in FAIIR (SB + 11) as well as bits 1 to 16 of the contents of
that memory location FCODEH (SB + 10). After completion of the fault
handling mechanism, the instruction can be re-executed. (See Chapter
10 of the System Architecture Reference Guide.)

3-9 Second Edition

TNCTDTICTTON Q' rQ CITTNR
e Nt ¥ Btdd e B AT i

VA e b WA NS e e

An overflow produces an integer exception. If no integer exception
occurs, CBIT is reset to 0. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

Note

ATP should weaken the ring field against the ring field of the
effective address. This is not done on some current
processors, but will be done on all future processors.

If ATP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> ARFA far,R
Add Register to FAR
0O11000R3111FAROO1

Adds the bit address in the specified R to the contents of the
specified FAR. Stores the result in the FAR. Leaves the values of
CBIT and LINK indeterminate. ILeaves the values of the condition codes
unchanged.

P> ARGT
Argument Transfer
0000000110000101

Transfers arguments from a source procedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call axd argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination procedure must begin with the ARGT
instruction. When the PCL instruction is executed, control transfers
to the destination procedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments are stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the values of CBIT, LINK, and the condition codes are
indeterminate.

ARGT must be the first executable instruction in any destination
procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, you must omit ARGT or you will

Sl o e

Second Edition 3-10

I MODE

destroy the return pointer for PCL, producing indeterminate results.
For information about argument transfers, refer to the procedure calls
section in Chapter 8 of the System Architecture Reference Guide.

P> ATQ r,address
Add Entry to Top of Queue
0O011000R\31011101
AP\32

Adds the entry contained in the specified r to the top of the queue
referenced by the AP. (AP points to the queue’s QCB.) Sets the
condition codes to reflect BEQ if the queue was full, or to NE if not
full. ILeaves the values of CBIT and LINK unchanged .

3-11 Second Edition

INSTRUCTION SETS GITTTE

P> BCEQ address
Branch on Condition Code EQ

1100001110000010
ATTRESS\ 16

If the condition codes reflect equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
cordition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCGE address
Branch on Condition Code GE
1100001110000101
ATTRESS\ 16

If the condition codes reflect greater than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged .

P> BOGT address
Branch on Condition Code GT
1100001110000001
ATTRESS\ 16

If the condition codes reflect greater than O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCLE address
Branch on Condition Code LE
1100001110000000
ATTRESS\16

If the condition codes reflect less than or equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the condition codes reflect
some other condition, execution continues with the next instruction.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 3-12

I MOCE

P> BCLT address
Branch on Condition Code LT
1100001110000100
ATTRESS\16

If the condition codes reflect less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCNE address
Branch on Condition Code NE
1100001110000011
ATTRESS\16

If the condition codes reflect not equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCR address
Branch on CBIT Reset to O
1100001111000101
ATTRESS\ 16

If CBIT has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

P> BCS address
Branch on CBIT Set to 1
1100001111000100
AITRESS\ 16

If CBIT has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value O, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged .

3-13 Second Edition

ATTIT TETYT TETVY
INSTRUCTICN SETS GUIDE

Pp> EBFEQ f,address
Branch on Floating Accumulator Equal to O
0O010000F01010010
ATTRESS\ 16

If the specified floating accumulator contents are equal to 0, BFEQ
loads the specified address (in the current segmemt) into the program
counter; if they are not equal to O, execution continues with the next
instruction. The condition codes reflect the comparison. (See
Appendix A.) ILeaves the LINK and CBIT unchanged. BFEQ works correctly
only on normalized or nearly normalized numbers, because it checks the
first 32 fraction bits only for equal to O and less than 0. (See the
System Architecture Reference Guide, Chapter 6.)

P> BFGE f,address
Branch on Floating Accumulator Greater Than or Equal to O
0O010000F01010101
ATTRESS\ 16

If the specified floating accumulator contents are greater than or
equal to O, BFGE loads the specified address (in the current segment)
into the program counter; if they are less than O, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Apperdix A.) Ieaves the LINK and CBIT unchanged. BFGE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See the System Architecture Reference Guide, Chapter 6.)

P BFGT f,address
Branch on Floating Accumulator Greater Than O
0O010000F01010001
ADDRESS\ 16

If the specified floating accumulator contents are greater than 0, BFGT
loads the specified address (in the current segment) into the program
counter; if they are less than or equal to O, execution continues with
the next instruction. The condition codes reflect the comparison.
(See Appendix A.) leaves the LINK and CBIT unchanged. BFGT works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See the System Architecture Reference Guide, Chapter 6.)

Second Edition 3-14

I MODE

P> BFLE f,address
Branch on Floating Accumulator Less Than or Equal to O
0O0010000F01010000
ATTRESS\ 16

If the specified floating accumilator contents are less than or

to O, BFLE loads the specified address (in the current segment) into
the program counter; if they are greater than 0, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) LILeaves the LINK and CBIT unchanged. BFLE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See Chapter 6 in the System Architecture Reference Guide.)

P> BFLT f,address
Branch on Floating Accumulator Iess Than O
0O010000F0O01010100
ATRESS\ 16

If the specified floating accumulator contents are less than 0, BFLT
loads the specified address (in the current segment) into the program
counter; 1if they are greater than or equal to O, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) 1Ieaves the LINK and CBIT unchanged. BFLT works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See the System Architecture Reference Guide, Chapter 6.)

P> BFNE f,address
Branch on Floating Accumulator Not Equal to O
0O0O10000F01010011
ATDRESS\ 16

If the specified floating accumulator contents are not equal to O, BFNE
loads the specified address (in the current segment) into the program
counter; if they are equal to O, execution continues with the next
instruction. The condition codes reflect the comparison. (See
Apperdix A.) leaves the LINK and CBIT unchanged. BFNE works correctly
only on normalized or nearly normalized numbers, because it checks the
first 32 fraction bits only for equal to O and less than 0. (See the
System Architecture Reference Guide, Chapter 6.)

3-15 Second Edition

TANCIDTIMTAT QLmMC CTTT TR
AIND LAV UL LAY DA D A s

P> BHDL r,address
Branch on Half Register Decremented by 1
O0O1000RWB1100100
ACTRESS\ 16

Decrements the specified r contents by 1 and stores the result in the
specified r. If the decremented value is not equal to O, BHD1 loads
the specified address (in the current segment) into the program
counter. If that value is equal to O, execution continues with the
next instruction. lLeaves the CBIT, LINK, and condition codes
unchanged.

P BHD2 r,address
Branch on Half Register Decremented By 2
0O0O1000RWB31100101
ATTRESS\ 16

Decrements the specified r contents by 2 and stores the result in the
specified r. If the decremented value is not equal to O, BHDR loads
the specified address (in the current segment) into the program
counter. If that value is equal to O, execution continues with the
next instruction. ILeaves the CBIT, LINK, and condition codes
unchanged.

P BHD4 r,address
Branch on Half Register Decremented By 4
O0O1000RWB31100110
ADDRESS\ 16

Decrements the specified r contents by 4 and stores the result in the
specified r. If the decremented value is not equal to O, BHDZ Loads
the specified address (in the current segment) into the program
counter. If that value is equal to O, execution continues with the
next instruction. Ieaves the CBIT, LINK, and condition codes
unchanged.

> BHEQ r,address
Branch on Half Register Equal To O
0OO0O1000RB31001010
AITRESS\ 16

If the specified r contents are equal to O, BHEQ loads the specified
address (in the current segment) into the program counter; if they are
not equal to O, execution continues with the next instruction. Sets

the condition codes to the comparison result. (See Appendix A.)
leaves the CBIT and LINK unchanged.

Second Edition 3-16

I MODE

P> BHGE r,address
Branch on Half Register Greater Than or Equal To O
O0O1000R31001101
ATTRESS\ 16

If the specified r contents are greater than or equal to O, BHGE loads
the specified address (in the current segment) into the program
counter; 1if they are less than O, execution continues with the next
instruction. Sets the condition codes to the result comparison. (See
Appendix A.) ILeaves the CBIT and LINK unchanged.

P> EHGT r,address
Branch on Half Register Greater Than O
OO1000R31001001
ATDRESS\ 16

If the contents of the specified r are greater than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are less than
or equal to O, execution continues with the next instruction. Sets the
cordition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

P> BHI1 r,address
Branch on Half Register Incremented by 1
0O0O1000RB1100000
ATTRESS\ 16

Increments the contents of the specified r by 1 and stores the result
in the specified r. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P> BHI2 r,address
Branch on Half Register Incremented by 2
O0O1000R31100001
ATTRESS\ 16

Increments the contents of the specified r by 2 and stores the result
in the specified r. If the incremented value is not equal to O, the
instruction loads the the specified address into the program counter.
This address must be within the current segment. If the incremented
value is equal to O, execution continues with the next instruction.
leaves the values of CBIT, LINK, and the condition codes unchanged.

3-17 Second Edition

INSTRUCTION SEIS GUILE

P> BHI4 r,address
Branch on Half Register Incremented by 4
O0O1000RW31100010
ATTRESS\ 16

Increments the contents of the specified r by 4 and stores the result
in the specified r. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P> BHLE r,address
Branch on Half Register less Than or Equal to O
OO1000R31001000
ATTRESS\16

If the contents of the specified r are less than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the contents of r are
greater than 0O, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
Ieaves the values of CBIT and LINK unchanged.

P> BHLT r,address
Branch on Half Register Less Than O
OO1000RWB31001100
ATIDRESS\ 16

If the contents of the specified r are less than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are greater
than or equal to O, execution continues with the next instruction.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Leaves the values of CBIT and LINK unchanged.

P EHNE r,address
Branch on Half Register Not Equal To O
O0O1000R31001011
ATDRESS\16

If the contents of the specified r are not equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are equal to
0, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

Second Edition 3-18

I MODE

P> EBIR address
Branch on LINK Reset to O
1100001111000111
ATTRESS\ 16

If LINK has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

P> BLS address
Branch on LINK Set to 1
1100001111000110
ADDRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value O, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged .

P> EMEQ address
Branch on Magnitude Condition EQ

1100001110000010
ATDRESS\ 16

If the condition codes indicate magnitude equal to O, the instruction
loads the specified address into the program counter, like BCEQ. BMEQ
is intended for magnitude comparisons after a compare or subtract
instruction. This address must be within the current segment. If the
condition codes indicate some other condition, execution continues with
the next instruction. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P> BMGE address
Branch on Magnitude Condition GE
1100001111000110
ADTRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter, like BLS. BMGE is used to determine if the
magnitude of the register quantity was greater than or equal to the
memory quantity after a compare or subtract instruction. This address
must be within the current segment. If LINK has the value O, execution
continues with the next instruction. Ieaves the values of CBIT, LINK,
and the condition codes unchanged.

3-19 Second Edition

INSTRUCTION SETS GUILE

P> BMGT address
Branch on Magnitude Condition GT
1100001111001000
ATTRESS\16

If LINK is 1 and the condition codes reflect not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If some other condition
exists, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P BMLE address
Branch on Magnitude Condition LE
1100001111001001
ATTRESS\ 16

If LINK is O or the condition codes reflect equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If some other condition exists,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

P> BMLT address
Branch on Magnitude Condition LT
1100001111000111
ATTRESS\ 16

If LINK has the value O, the instruction loads the specified address
into the program counter, like BIR. BMLT is used to determine if the
magnitude of the register quantity is less than the memory quantity
after a compare or subtract instruction. This address must be within
the current segment. If LINK has the value 1, execution continues with
the next instruction. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P BMNE address
Branch on Magnitude Condition NE
1100001110000011 (Vmode form)
ADDRESS\ 16

If the condition codes indicate magnitude not equal to O, the
instruction loads the specified address into the program counter, like
BONE. BMNE is intended for magnitude comparisons after a compare Or
subtract instruction. This address must be within the current segment.
If the condition codes reflect some other condition, execution
continues with the next instruction. Ieawves the values of CBIT, LINK,
and the condition codes unchanged.

Second Edition

Cirl
1AV]
(@]

I MODE

P> ERER R,bit #,address
Branch on Register Bit Reset
001000R\301 BIT\S
ATTRESS\ 16

Bits 12 to 16 of the instruction contain a value between '‘O0 and '37.
This value specifies the bit position in the register to be tested. A
value of '0O0 corresponds to bit 1; ‘Ol, bit 2; and so on.

If the specified bit position contains O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the specified bit position contains 1,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

P> ERBS R,bit #,address
Branch on Register Bit Set
001000R\30O0 BIT\5
ATTRESS\ 16

Bits 12 to 16 of the instruction contain a value between ‘00 and '37.
This value specifies the bit position in the register to be tested. A
value of ‘00 corresponds to bit 1; ‘Ol, bit 2; and so on.

If the specified bit position contains 1, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the specified bit position contains O,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

P> ERD1 R,address
Branch on Register Decremented by 1
0O0O1000RWB31011100
ATTRESS\16

Decrements the contents of the specified R by 1 and stores the result
in the specified R. If the decremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to O, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

321 Second Edition

TAICMTMTYITAAT OTYNCG FATTTIYR
LAV ALDVVA L LVAY Dl VAL

P> ERD2 R,address
Branch on Register Decremented by 2
O0O1000RWB1011101
ATDRESS\ 16

Decrements the contents of the specified R by 2 and stores the result
in the specified R. If the decremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P> ERD4 R,address
Branch on Register Decremented by 4
O0O1000RWB1011110
ATDRESS\ 16

Decrements the contents of the specified R by 4 and stores the result
in the specified R. If the decremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P BREQ R,address
Branch on Register Equal to O
O0O1000RWB1000010
ATDRESS\ 16

If the contents of the specified R are equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are not equal to
0, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) ILeaves the
values of CBIT and LINK unchanged.

P ERGE R,address
Branch on Register Greater Than or Equal to O
O0O1000R31000101
ATTRESS\ 16

If the contents of the specified R are greater than or equal to O, the
instruction loads the specified address into the program counter. This

address must be within the current segment. If the R contents are less

than 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

I MODE

P> ERGT R,address
Branch on Register Greater Than O
OO1000R31000001
ADTRESS\ 16

If the contents of the specified R are greater than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are less than or
equal to O, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

P> ERI1 R,address
Branch on Register Incremented by 1
O0O1000RW31011000
ADDRESS\ 16

Increments the contents of the specified R by 1 and stores the result
in the specified R. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P> BRI2 R,address
Branch on Register Incremented by 2
OO0O1000RWB31011001
ATIDRESS\ 16

Increments the contents of the specified R by 2 and stores the result
in the specified R. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

P> BRI4 R,address
Branch on Register Incremented by 4
OO0O1000R31011010
ATDRESS\ 16

Increments the contents of the specified R by 4 and stores the result
in the specified R. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

3-23 Second Edition

PSRl T ORI R LR S 1 Y

P> BRIE R,address
Branch on Register Less Than or Equal to O
O0O1000R31000000O0
ATTRESS\ 16

If the contents of the specified R are less than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the R contents are
greater than 0, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
leaves the values of CBIT and LINK unchanged.

P> ERLT R,address
Branch on Register Less Than O
O0O1000RW31000100
ATDRESS\16

If the contents of the specified R are less than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are greater than
or equal to O, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Ieaves the values of CBIT and LINK unchanged.

P> BRNE R,address
Branch on Register Not Equal to O
OO1000R31000011
ADCRESS\16

If the contents of the specified R are not equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are equal to O,
execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

Second Edition 3-24

I MODE

P> C R,address
Compare Fullword
11000 1IR\3 ™M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the 32-bit value
contained in the specified R to the 32-bit value contained in the
location specified by EA. The comparison is done by subtracting the
contents of the the memory location from the contents of the register.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Ieaves the value of CBIT unchanged. LINK contains the
carry-out bit.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> CAIF address
Call Fault Handler
0000000111 000101
AP\32

The address pointer in this instruction points to the ECB of a fault
routine. CALF uses this pointer to transfer control to the fault
routine as if the transfer were a normal procedure call with no
argunents passed. The values of CBIT, LINK, and the condition codes
are indeterminate. See Chapter 10 of the System Architecture Reference
Guide for more information.

P> CCP destination-R,source-R
Compare C Pointer
10010 1DIR\3 TM\2 SR\3 BR\2

Compares the C language pointer in the specified source R to the C
language pointer in the specified destination R. Ignores the pointer
fault and ring bits during the comparison. ILeaves the values of CBIT
and LINK unchanged. Sets the condition codes to the outcome of the
comparison as follows.

Condition CcC
Contents of destination-R > contents of source-R. GT
Contents of destination-R = contents of source-R. R
Contents of destination-R < contents of source-R. LT

3-25 Second Edition

INSTRUCTION SETS GUIDE

Note

While of the memory referencing form, the CCP instruction is
only defined for register-to-register address formation. (See
Appendix B of the Instruction Sets Guide.) The immediate form
of this instruction is undefined, Dbut the preferred
implementation is a UII for the immediate form.

If CCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p GTr
Computed GOTO
011000R30010110
INTEGER N\16
BRANCH ATTRESS 1\16

ERANCH ADTRESS N-1\16

If the contents of the specified r are greater than or equal to 1 and
less than the specified integer N that follows the opcode, the
instruction adds the contents of r to the contents of the program
counter to form an address. (The program counter points to the integer
N following the opcode.) Loads the contents of the location specified
by this address into the program counter. If the contents of r are not
within this range, the instruction adds integer N to the contents of
the program counter and stores the result in the program counter. Each
of the branch addresses following the instruction specifies a location
within the current procedure segment. The values of CBIT, LINK, and
the condition codes are indeterminate.

P CH r,address
Compare Halfword
111001IDR\3 TM\2 SR\2 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the value contained in
the specified r to the 16-bit value contained in the location specified
by EA. Ileaves the wvalue of CBIT unchanged. LINK contains the
carry—-out bit. The condition codes reflect the result of the

comparison. (See Appendix A.)
Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

Second Edition 3-26

I MODE

P CIHS R

Change Sign
0O11000R30100000

Complements bit 1 of the specified R. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

p GHTr
Camplement r
011000RWB30100101

Forms the one's complement of the contents of the specified r by
inverting the value of each bit and stores the result in r. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

> R R
Complement R
0O11000RB30100100

Forms the one’'s complement of the contents of the specified R by
inverting the value of each bit amd stores the result in R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

CR R
Clear R to O
O11000RB30101110

Clears the specified R to 0. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

Loads zeros into bits 1 to 8 of the specified R. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

P CRER R
Clear R High Byte 2 Right
011000R30110011

Loads zeros into bits 9 to 16 of the specified R. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

3-27 Second Edition

INSTRUCTION SETS GUIDE

}CRHLR
Clear R left Halfword
011000RB30101100

Clears bits 1 to 16 of the specified R to 0. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

Pp CRHR R
Clear R Right Halfword
0O11000RB30101101

Clears bits 17 to 32 of the specified R to 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

P CRR
Copy Sign
0O011000RWB30100001

Copies the value of bit 1 of the specified R into CBIT, and then loads

O into bit 1 of R. The value of LINK is indeterminate. Leaves the
condition codes unchanged.

Second Edition 3-28

I MODE

P> D R,address
Divide Fullword
110010 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the 64-bit value
contained in the specified R and R+1 by the 32-bit value contained in
the location specified by EA. Stores the quotient in the specified R
and the remainder in R+1l. Overflow may occur if the quotient is less
than -(2**31) or greater than (2**31)-1. Overflow and divide by O
cause an integer exception.

If no integer exception occurs, CBIT is reset to 0. The instruction
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs and bit 8 in the keys contains O, the
instruction sets CBIT to 1; if bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

Note

R must specify an even register. This instruction also has a
register-to-register and an immediate form. See Appendix B for
more informationm.

p DRBIE f
Convert Single to Double Floating Point
0110000F01000110

Converts the single precision number in the specified floating-point
accumulator to a double precision one by zeroing bits 32 to 48 of the
floating-point accumulator. Stores the result in the floating-point
accumulator. Leaves the values of CBIT, LINK, and the condition codes
unchanged. Overflow or underflow cannot occur.

p ICP R
Decrement C Pointer
0O11000RWB31110000

Decrements the C language pointer in the specified R by 1 byte.
Decrementing a O offset reduces the segment number by 1. Decrementing
segment number O, offset 0, byte O generates a pointer to the maximum
segment number, the maximum offset, and byte 0. ILeaves the CBIT, LINK,
and the condition codes unchanged. For C pointer details, see Chapter
1 and Appendix B of this guide.

3-29 Secord Edition

INSTRUCTION SETS GUIDE

Note

If DCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

» DFA f,address
Double Floating Add
0011101F1T™M2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
specified DAC to the contents of the location specified by EA. Stores
the result in the DAC. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to 0. The values
of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets GBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p IFC f,address
Double Floating Compare
0001101F1TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the contents of the
specified DAC to the contents of the location specified by EA. Leaves
the values of CBIT and LINK unchanged. Sets the condition codes to the
outcome of the comparison.

Condition cC
Contents of DAC > contents of location specified by EA. GT
Contents of DAC = contents of location specified by EA. BR
Contents of DAC < contents of location specified by EA. LT

On some processors, DFC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:

Second Edition 3-30

I MODE

first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p IFCM f
Double Floating Complement
0110000F01100100

Forms the two’'s complement of the double precision, floating-point
number contained in the specified DAC and normalizes it if necessary.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, GBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

P> DFD f,address
Double Floating Divide
0111100F1T™M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the
specified DAC by the contents of the location specified by EA.
Normalizes the quotient if necessary. Stores the result in the DAC.
An overflow or divide by to causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The wvalues of
LTNK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

3-31 Second Edition

— B e e W W e A VAR Y Bt e B

P> DFL f,address
Double Floating Load
O0O01100F1TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. ILoads the 64-bit contents of the
location specified by EA into the specified DAC without normalizing the
result. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

The IFL instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> DFM f,address
Double Floating Multiply
0101101F 1 T™\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the 64-bit contents of
the location specified by EA by the contents of the specified DAC.
Normalizes the result if necessary. Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to O. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P IDFS f,address
Double Floating Subtract
0101100F1TM2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the location specified by EA from the contents of the specified DAC.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

Second Edition 3-32

I MODE

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

The DFS instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> DFST f,address
Double Floating Point Store
0011100F 1 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of the
specified DAC into the location specified by EA. ILeaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

P> IH R,address
Divide Halfword
111010IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the 32-bit dividend
contained in the specified R by the 16-bit value contained in the
location specified by EA. Stores the quotient in bits 1 to 16 of R and
the remainder in bits 17 to 32 of R. The sign of the remainder equals
the sign of the dividend. If the quotient is less than -(2**15) or
greater than (2**15)-1, an overflow occurs and causes an integer
exception. If no integer exception occurs, CBIT is reset to 0. The
values of LINK and the condition codes are indeterminate.

If an integer exception occurs and bit 8 in the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

3-33 Second Edition

INSTRUCTION SETS GUIDE

Note

The DH instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

D mHir

Decrement T by 1
011000R31011000

Decrements the contents of r by 1 and stores the result in r. If an
overflow occurs, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. LINK reflects the value of the carry. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P H2r
Decrement r by 2
0O11000R31011001

Decrements the contents of r by 2 and stores the result in r. If an
overflow occurs, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. LINK reflects the value of the carry. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
DH2 instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P DM address
Decrement Memory Fullword
110110000 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Subtracts 1 from the 32-bit integer contained in the specified location
and stores the result back in the specified location. ILeaves the
values of LINK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

Second Edition 3-34

I MODE

P> IMH address
Decrement Memory Halfword
111110000 T™\2 SR\3 ER\2
DISPLACEMENT\ 16

Subtracts 1 from the 16-bit integer contained in the specified location
and stores the result back in the specified location. Ieaves the
values of LINK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

P IRl R
Decrement Register by 1
O11000R31010100

Decrements the contents of R by 1 and stores the result in R. An
overflow causes an integer exception. If no integer exception occurs,
CBIT is reset to 0. LIMK contains the value of the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P R2R
Decrement Register by 2
0O011000RWB31010101

Decrements the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception. If no integer
exception occurs, CBIT is reset to 0. LINK contains the value of the
borrow bit. The condition codes reflect the result of the operation.

(See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
IR2 instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

> RN
Double Round From Quad
0100000011000000

Converts the 112-bit value in QAC to a double precision floating-point
number. If @AC contains O, the instruction ends. If bits 50 to 98 of
QAC are not zero, or bit 48 of QAC contains 1, the instruction adds the
value of bit 49 to that of bit 48 (unbiased round) and clears bits 49
to 96 of QAC to 0. If any other condition exists, no unbiased rounding

3-35 Second Edition

INSTRUCTION SETS GUIDE

occurs, but bits 49 to 96 of QAC are still cleared to 0. After any
rounding and clearing occurs, the instruction normalizes the result and
loads it into bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If TRN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p IRNM
Double Round From Quad Towards Negative Infinity
1100000101111001

Converts the 112-bit value in QAC to a double precision floating-point
mumber. If QAC contains O, or if bits 49 to 96 of QAC contain zeros,
the instruction ends. In any other case, the instruction clears bits
49 to 96 to 0, normalizes the result, and places it in bits 1 to 64 of

QAC.

The value of CBIT is unchanged. The values of LINK and the condition
codes are indeterminate.

Note
If DIRNM is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p IRNP
Double Round From Quad Towards Positive Infinity
0100000011000001

Converts the 112-bit value in QAC to a double precision floating point
number. If QAC contains O, or if bits 49 to 96 of QAC contain zeros,
the instruction ends. In any other case, the instruction adds 1 to the
value contained in bit 48 of QAC, clears bits 49 to 96 to O, normalizes
the result, and places it in bits 1 to 64 of QAC.

Second Edition 3-36

I MODE

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If IRNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P IRNZ
Double Round From Quad Towards Zero
0l00000011000010

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains O, the instruction ends. If bits 49 to 98 of
QAC contain zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 48 of QAC, clears bits 49 to 96 to 0, normalizes
the result, and places it in bits 1 to 64 of QC. If any other
condition exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If IRNZ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

3-37 Second Edition

LTV St R SR-R WV AT B RS g

E16S
Enter 18S Mode
00000000CO0O0O0O01001

Sets bits 4 to 6 of the keys to 000. Subsequent S mode instructions
may now be interpreted, and 16S address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

p Ez2I
Enter 32I Mode
0000001000001000

Sets bits 4 to 6 of the keys to 100. Subsequent I mode instructions
may now be interpreted, and 32I address calculations may be used to
form effective addresses. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

P E3R
Enter 32R Mode
0000001000001 011

Sets bits 4 to 6 of the keys to Ol1l. Subsequent R mode instructions
may now be interpreted, and 32R address calculations may be used to
form effective addresses. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

}EBZS
Enter 32S Mode
0000000000001 011

Sets bits 4 to 6 of the keys to 001. Subsequent S mode instructions
may now be interpreted, and 32§ address calculations may be used to
form effective addresses. leaves the values of CBIT, LINK, and the
condition codes unchanged.

P E64R
Enter 64R Mode
0O000001000001001

Sets bits 4 to 6 of the keys to 010. Subsequent R mode instructions
may now be interpreted, and 64R address calculations may e used to
form effective addresses. Ieaves the wvalues of CBIT, LINK, and the
condition codes unchanged.

Second Edition 3-38

I MODE

P Ecav
Enter 64V Mode
0000000000001000

Sets bits 4 to 6 of the keys to 110. Subsequent V mode instructions
may now be interpreted, and 64V address calculations may be used to
form effective addresses. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P> EAFA far,address
Effective Address to FAR
OOO0O0OO0OO0101100F0QO0OO
AP\32

Builds a 36-bit EA from the 32-bit address pointer contained in the
instruction and loads it into the specified FAR. The AP bit field is
processed and loaded into the bit portion of the FAR, for direct
acoess. Indirection uses the bit field in the indirect pointer (if
any). Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Figure 3-2 shows the format of the EA loaded into the specified FAR.

1 16 17 32 33 36

| RING, SEG | WORD # | BIT # |

EA Format for EAFA
Figure 3-2

P> EALB address
Effective Address to LB
100110010 ™\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into IB. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

3-39 Second Edition

P> EAR R,address
Effective Address to Register
110011DR\3 TM\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an effective address, FA. Loads the 32-bit EA into the
specified R. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

P> EAXB address
Effective Address to XB
101110010 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA, and loads it into XB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P> EIO address
Execute I/0
011100 IR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Executes bits 17 to 32 of EA as
if they were a PIO instruction. If execution is successful, the
instruction sets the condition codes as follows:

18

Meaning
o8] Successful INA, OTA, or SKS instruction
NE Unsuccessful INA, OTA, OR SKS; any OCP
leaves the values of LINK and CBIT unchanged. For more information

about I/0 operations, see Chapter 11 of the System Architecture
Reference Guide.

Note

This is a restricted instruction.

Second Edition 3-40

I MODE

p =B
Enable Interrupts
0000000100000001

Enables interrupts by setting bit 1 of the modals to 1. Inhibits
interrupts for one instruction. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

This is a restricted instruction.

P> ENBL
Enable Interrupts (Local)
0O00CO0O0O0O1000000D01

This 850 instruction performs the same actions as ENB, except that it
is performed specifically for the local processor. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

D> ENBM
Enable Interrupts (Mutual)
O000000100000000

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

341 Second Edition

INSTRUCTION SETS GUIDE

P> ENBP
Enasble Interrupts (Process)
0000000100000010

For the 850, a processor checks the availability of the process
exchange lock. If available, the process releases this lock amd
enables interrupts. ILeaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

Second Edition 342

I MODE

P> FA f,address
Floating Add
0011101FO ™2 SR\3 ER\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
specified FAC to the 32-bit contents of the location specified by EA.
(See Chapter 6 of the System Architecture Reference Guide.) Stores the
result in the FAC. An overflow causes a floating-point exception. If
no floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate. If a floating-point
exception occurs and bit 7 of the keys contains a 1, the instruction
sets CBIT to 1. If bit 7 contains a O, the instruction sets CBIT to 1
and causes a floating-point exception fault. See Chapter 10 of the
System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> FC f,address
Floating
0001101FO0 T2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the contents of the
specified FAC to the contents of the location specified by EA. ILeaves
the values of LINK and CBIT unchanged. Sets the condition codes to
reflect the outcome of the comparison:

Condition cc
Contents of FAC > contents of location specified by EA. GT
Contents of FAC = contents of location sSpecified by EA. 28
Contents of FAC < contents of location specified by EA. T

On some processors, FC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note
The FC instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

343 Second Edition

INSTRUCTION SETS GUIDE

» raQ

Floating Point Convert Double to Quad
1100000101111001

Clears FACl to O. Leaves the values of CBIT, LINK, and the condition
codes unchanged.
Note
If FCDQ is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P FoM f
Floating Point Complement
0110000F010000C0CO

Forms the two's complement of the contents of the FAC and normalizes
the result if necessary. (See Chapter 6 of the System Architecture
Reference Guide.) Stores the result in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

P> FD f,address
Floating Divide
0111100FO0T™?2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the
specified FAC by the contents of the location specified by EA. (See
Chapter 6 of the System Architecture Reference Guide.) Stores the
result in the FAC and normalizes if necessary. A divide by O or an
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to O. The values of LINK and the
condition codes are indeterminate.

If a floating—point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. 'or more
information, see Chapter 10 of the System Architecture Reference Guide.

Second Edition 244

I MODE

Note

The FD instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> FL f,address
Floating Load
0001100FO0 T2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Converts the single precision
operand to double precision and loads the result into the specified FAC
without normalizing it. Leaves the contents of CBIT, LINK, and the
condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p FIT £,R
Convert Integer to Floating Point
0O11000R3100F101

Converts the integer contained in R to a floating-point number and
stores the result in the specified FAC. The values of CBIT, LINK, and
the condition codes are indeterminate.

> FLTH f,r
Convert Halfword Integer to Floating Point
O11000R3100FO010

Converts the halfword integer comtained in r to a floating-point number
and stores the result in the specified FAC. The values of CBIT, LINK,
and the condition codes are indeterminate.

P FM f,address
Floating Multiply
0101101FO0TM\2 SR\3 ER\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the 32-bit contents of
the location specified by EA by the contents of the specified FAC.
(See Chapter 6 of the System Architecture Reference Guide.) Normalizes
the result, if necessary, and stores it in the FAC. An exponent

3-45 Second Edition

INSTRUCTION SETS GUILDE

overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to O. The values of LINK and the
cordition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

The FM instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p FRN f
Floating Round
0110000F01000111

This instruction operates on and stores all results in the floating
accumulator.

For the 2350 to 9955 II, the following actions occur. If bits 1 to 48
contain O, then bits 49 to 64 are cleared to 0. If bits 24 and 25 both
contain 1, then 1 is added to bit 24, bits 25 to 48 are cleared to o,
and the rvesult is normalized. If bit 25 contains 1 and bits 26 to 48
are not equal to O, then 1 is added to Dbit 24, bits 25 to 48 are
cleared, and the result is normalized.

For the earlier systems listed in “About This Book", the following
actions occur. If bits 1 to 48 contain O, then Dbits 49 to 64 are
cleared to 0. Otherwise, bit 25 is added to bit 24, bits 25 to 48 are
cleared to 0, and the result is normalized.

For all systems, if no floating-point exception occurs, resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Second Edition 346

I MODE

P FRWM f
FLoating Point Round Towards Negative Infinity
0O110000F01100110

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, or if bits 25 to 48 of DAC contain Zeros,
the instruction ends. In any other case, the instruction clears bits
25 to 48 to 0, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P> FRNP f
Floating Point Round Towards Positive Infinity
0110000F01100101

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, or if bits 25 to 48 of DAC contain Zeros,
the instruction ends. In any other case, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to O, normalizes
the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. 1If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P FRNZ £
Floating Point Round Towards Zero
0110000F01100111

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, the instruction ends. If bits 25 to 48 of
DAC are not zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to 0, normalizes
the result, and places it in DAC. If any other condition exists, mno
rounding occurs.

If no floating-point exception ocours, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

347 Second Edition

TNSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a
1, FRNZ sets CBIT to 1. If bit 7 contains a O, the instruction sets
CBIT to 1 and causes a floating-point exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> FS f,address
Floating Subtract
0101100FO0 T™M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, FA. Subtracts the 32-bit contents of
the location specified by EA from the contents of the specified FAC.
(See Chapter 6 of the System Architecture Reference Guide.) Normalizes
the result, if necessary, and stores it in the FAC. An overflow causes
a floating-point exception. If no floating-point exception occurs,
CBIT is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> FST f,address
Floating Store
0011100FO0 T2 SR\3 BR\2
DISPIACEMENT\16

Calculates an effective address, EA. Stores the contents of the
specified FAC into the 32-bit location specified by EA. (See Chapter 6
of the System Architecture Reference Guide.) The result 1is normalized
only if rounding is enabled. If the exponent contained in the FAC is
too large to be expressed in 8 bits, a floating-point exception (store
exception) occurs. If no exception occurs, the instruction resets CBIT
to O. At the end of the instruction, the values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information. In either case, a floating-point exception leaves the
contents of the memory location in an indeterminate state.

Second Edition 348

I MODE

p HLT
Halt

0Oo00c0OO0OOOOOOOOOOODO

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
stopped. The supervisor terminal indicates a halt. Ieaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
specified by the RSAVPTR. The contents of RSAVPTR can be accessed by
an LDAR/STAR instruction with address ‘40037. The registers are saved
in their physical order. (See Chapter 9 of the System Architecture
Reference Guide for the format of these register files.) The saved
register file order is shown in Table 3-3.

Table 3-3
Order of Saved Registers After HLT

| 8350, | @350 to 2755, | |
| 9750 to 9955 II I 9650 and 9655 | Earlier Systems* |
I [
| User Reg Set 3 I User Reg Set 1 | User Reg Set 2 [
| User Reg Set 4 | User Reg Set 2 I User Reg Set 1 [
| User Reg Set 1 I User Reg Set 3 | IMx Reg File !
| User Reg Set 2 I User Reg Set 4 | Microcode Reg File |
| Microcode Reg File, | User Reg Set 5 l |
I Set 2 | User Reg Set 6 [I
I Indirect Reg Set | User Reg Set 7 | !
| Microcode Reg File, | User Reg Set 8 [|
[Set 1 | IMx Reg File [I
| IMx Reg File | Microcode Reg File, | [
| I Set 1l | |
[| Microcode Reg File, | I
[I Set 2 | |

* The earlier systems are listed in "About This Book". Of these,
the 850 has two ISPs. For each ISP, the order of saved registers
is identical to the order shown for the rest of the 50 Series.

Note

This is a restricted instruction.

349 Second Edition

- AT T YT A

NSTRUCTICI SBELIS GUILE

P> I R,address
Interchange Register and Memory Fullword
10000 1DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Interchanges the 32-bit value
contained in the specified R with the 32-bit value contained in the
location specified by EA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The I instruction is non-atomic, and, especially for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the STCD instruction instead.

This instruction also has a register-to-register form. See
Appendix B for more information.

D ICBL T
Interchange Bytes and Clear lLeft
011000R30110101

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r, then
loads O into bits 1 to 8 of r. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

p ICERR T
Interchange Bytes and Clear Right
011000R30110110

Interchanges bits 1 to 8 and bits 9 to 16 of the specified T, then
loads zeros into bits 9 to 16 of r. Ieaves the values of CBIT, LINK,
and the condition codes unchanged.

p ICHL R
Interchange Halfwords and Clear Left
011000R30110000

Interchanges the contents of bits 1 to 16 and bits 17 to 32 of the

specified R, then loads =zeros into bits 1 to 16 of R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Second Edition

(V3]
|
[9)]
O

I MODE

p ICHR R
Interchange Halfwords and Clear Right
0O011000R\30110001

Interchanges the contents of bits 1 to 16 and bits 17 to 32 of the
specified R, then loads =zeros into bits 17 to 32 of R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

p ICPR
Increment C Pointer
011000RB31110111

Increments the C language pointer in the specified R by 1 byte.
Incrementing the largest offset adds 1 to the segment number.
Incrementing the largest segment number with the largest offset
generates a pointer to segment O, offset O, byte 1. ILeaves the CBIT,
LINK, and the condition codes unchanged. (For C pointer details, see I
Mode in Chapter 1 and 32 I Mode in Appendix B of this guide.)

Note
If ICP is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> IH r,address
Interchange r and Memory Halfword
10100 1IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, FA. Interchanges the value contained
in the specified r with the 16-bit value contained in the location
specified by EA. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

Note
The IH instruction is non-atomic, and, especially for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the STCH instruction instead.

This instruction also has a register-to-register form. See
Appendix B for more information.

3-51 Second Edition

)
I

INSTRUCTION SETS

p mHlr
Increment r by 1
0O11000R31010110

Increments the contents of the specified r by 1 and stores the result
inr. An overflow causes an integer exception. If no integer
exception occurs, CBIT is reset to 0. LINK reflects the state of the
carry. The condition codes reflect the result of the operation. (See
Apperdix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

p 2
Increment T by 2
011000R31010111

Tncrements the contents of the specified r by 2 and stores the result
in r. An overflow causes an integer exception to occur. If no integer
exception occurs, CBIT is reset to 0. LINK reflects the state of the
carry. The condition codes reflect the result of the operation. (See

Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P IM address
Increment Memory Fullword
100110000 T™2 SR\3 BR\Q
DISPLACEMENT\ 16

Adds 1 to the 32-bit integer contained in the specified location and
stores the result back in the specified location. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
operation. (See Appendix A.)

Second Edition 3-52

I MODE

P IMH address
Increment Memory Halfword
101110000 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Adds 1 to the 16-bit integer contained in the specified location and
stores the result back in the specified location. Ieaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
operation. (See Appendix A.)

P> INBC address
Interrupt Notify Beginning, Clear Active Interrupt
0000001010001111
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue.
Issues a CAI pulse to clear the currently active interrupt, and enables
interrupts.

The values of CBIT, LINK, and the condition codes are indeterminate. A
process exchange will occur if the notified process is of a higher
priority than the interrupted process. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note
INBC is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P> INBN address
Interrupt Notify Beginning
0000001010001101
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue, and
enables interrupts. Does not issue a CAI pulse to clear the currently
active interrupt.

3-53 Second Edition

The values of CBIT, LINK, and the condition codes are indeterminate. A
process exchange will occur if the notified process is of a higher
priority than the interrupted process. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note
INBN is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P> INEC address
Interrupt Notify End, Clear Active Interrupt
0000001010001110
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue. Issues a
CAI pulse to clear the curremtly active interrupt, and enables
interrupts.

The values of CBIT, LINK and the condition codes are indeterminate. A
process exchange will occur if the notified process is of a higher
priority than the interrupted process. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note
INEC is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P INEN address
Interrupt Notify End
0000001010001100
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified

Second Edition 3-54

I MODE

process at the end of the appropriate priority level queue, and enables
interrupts. Does not issue a CAI pulse to clear the currently active
interrupt.

The values of CBIT, LINK, and the condition codes are indeterminate. A
process exchange will occur if the notified process is of a higher
priority than the interrupted process. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note
This is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

p INH
Inhibit Interrupts
0O0000O0O10000000O01

Inhibits interrupts by resetting bit 1 of the modals to O. Inhibits
interrupts until an enable interrupts instruction executes. The
processor ignores any interrupt requests that are made over the I/O
bus. This instruction takes effect immediately. ILeaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

p INHL
Inhibit Interrupts (Local)
0000001000000001
This 850 instruction performs the same actions as INH does. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.
Note

INHL is a restricted instruction.

3-55 Second Edition

INSTRUCTION SETS GUIDE

INHM
Inhibit Interrupts (Mutual)
0O0O00O001000000C0CO

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

P INHP
Inhibit Interrupts (Process)
0o0O0O001000000010

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the
other processor, and then sets the lock and inhibits interrupts. It
also inhibits interrupts in the local processor. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

INK r
Input Keys
011000R30111000

Loads the contents of the I mode keys into the specified r. Leaves the
values of CBIT, LINK, and the condition codes unchanged. Reads the
low-order 8 bits of the S register along with the high-order 8 bits of
the keys register.

p INT £,R
Convert Floating Point to Integer
0O11000R3100FO011

Converts the double precision floating-point number contained in the
specified floating accumulator to a 32-bit integer and stores the
result in R. Ignores the fractional part of the floating-point number.
For example, +4.5 is converted to +4 and —4.5 is converted to —4.

Second Edition 3-56

I MODE

Overflow occurs if the value in the floating accumilator is less than
—2**3l or greater than (2**31)-1. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

p INTH f,r
Convert Floating Point Number to Halfword Integer
0O11000R3100FO001

Converts the double precision floating-point number contained in the
specified floating accumulator to an integer and stores the result in
r. Ignores the fractional portion of the floating-point number. For
example, +4.5 is converted to +4 and 4.5 is converted to 4. Overflow
occurs if the value in the floating accumulator is less than -2**15 or
greater than (2**15)-1. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to O.

At the end of this instruction, the contents of R bits 17 to 32 are
indeterminate. The wvalues of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

p IR1R
Increment Register by 1
0O11000R31010010

Increments the contents of the specified R by 1 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, CBIT is reset to 0. LINK contains the carry-out bit.
'I’hf); condition codes reflect the result of the operation. (See Appendix
A.

If an integer exception occurs and bit 8 in the keys contains O, the
IRl instruction sets CBIT to 1. If bit 8 contains 1, the instruction
sets CBIT to 1 and causes an integer exception fault. (See Chapter 10
of the System Architecture Reference Guide.)

3-57 Second Edition

AP ALV s d Y RSddi RS wA

p IRRR
Increment Register by 2
O11000R31010011

Increments the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, CBIT is reset to 0. LINK contains the carry-out bit.
The condition code contains the result of the operation. (See Appendix
A.)

If an integer exception occurs and bit 8 in the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

p IRBr
Interchange r Bytes
0O11000RWB30110100

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

IRH R
Interchange Register Halves
0O11000R30101111

Interchanges the contents of bits 1 to 16 and bits 17 to 32 of the
specified R. leaves the values of CBIT, LINK, and the condition codes
unchanged.

P IRTC
Interrupt Return, Clear Active Interrupt
o0oo0o0O000110000011

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS. Issues a CAI pulse to clear the currently
active interrupt, and enables interrupts.

Note

IRTC is a restricted instruction.

Second Edition 3-58

I MODE

P IRTN
Interrupt Return
0000000110000001

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS, and enables interrupts. Does not issue a
CAI pulse to clear the currently active interrupt.

Note

This is a restricted instruction.

p ITiB
Invalidate STLB Entry
0000000110001101

Invalidates the STIB entry that corresponds to the virtual address
contained in GRR2. The values of CBIT, LINK, and the condition codes
are indeterminate. You must execute this instruction whenever you
change the page table entry for the given address.

If you change an SDW or DTAR (explained in Chapter 4 of the System
Architecture Reference Guide), you wusually have to invalidate the
entire STLB by issuing the instruction PTLB. A O in the segment number
portion of GRR invalidates the IOTLB entry corresponding to the address
specified by GR2.

Note

This is a restricted instruction.

3-59 Second Edition

INSTRUCTION SETS GUIDE

P IMP address
Jump
101110001 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into the program
counter. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

P ISR r,address
Jump to Subroutine
111011IR\3 TM\2 SR\3 BR\R
DISPLACEMENT\ 16

Calculates an effective address, FA. Saves the 16-bit halfword number
position of the return address in the specified r. Ioads the program
counter with the current segment location specified by bits 17 to 32 of
the EA. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction is useful for calling routines within the
current segment only.

P JISXB address
Jump and Save in XB
110110001 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Loads the contents of the program
counter into XB. Loads EA into the program counter. ILeaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

JSXB can make subroutine calls outside the current segment as
well as within.

Second Edition 3-60

I MODE

P> L R,address
Load Full Word
0 00O0O01IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads EA into the specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> 1CC r,address
Load C Character
100101 DR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates a C language pointer and uses it to load a single character
into bits © to 16 of the specified r. If bit 4 of the C pointer
contains O, bits 1 to 8 of the location contain the character to be
loaded; if bit 4 of the pointer contains 1, bits 9 to 16 of the
location contain the character.

Clears bits 1 to 8 of r, but leaves bits 17 to 32 of R unchanged. Sets
the condition code BQ to 1 (indicating equal to 0) when O is loaded;
resets BQ to O (indicating not equal to zero) for all other characters.
The state of the LT condition code is indeterminate. Testing the
results should be done using either BCEQ or BCNE branches only. Leaves
the values of CBIT and LINK unchanged.

Note

The ICC instruction is valid only for general register relative
and indirect forms of address formation. Other forms of
address formation (including indexing) do not reliably generate
the C language pointer.

In particular, do not use the register-to-register or immediate
form with the LCC instruction because it would be interpreted
as a CCP instruction. (ICC and CCP share the same opcode, but
CCP uses the register-to-register form; the immediate form of
CCP is undefined, but the preferred implementation is a UII
(unimplemented instruction.)

Direct addressing, however, will obtain the first byte (of two)
pointed to by the effective address. This assumes that the
base register used was loaded with a conventional 32-bit IP
with the E bit reset.

3-61 Second Edition

TATOMMTI INTAAT OTING AT TR
AIVODLOVU UL LVAY DL IV Ll

If I0C is used for any earlier system listed in "About This
Book", a UII fault occurs. (See Chapter 10 of the System
Architecture Reference Guide.)

p ICQ T
Load Register on Condition Code BEQ
011000R31101011

If the cordition codes reflect an equal to O condition, the instruction
loads the specified r with a 1. If they reflect a not equal to O
condition, the instruction loads r with a 0. ILeaves the values of
CBIT, LINK, and the condition codes unchanged.

p ICGE r
Load Register on Condition Code GE
011000R31101100

If the condition codes reflect a greater than or equal to O conditionm,
the instruction loads the specified r with a 1. If they reflect a less
than O condition, the instruction loads r with a 0. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

ICGT ¢
Load Register on Condition Code GT
0O11000R31101101

If the condition codes reflect a greater than O condition, the
instruction loads the specified r with a 1. If they reflect a less
than or equal to O condition, the instruction loads r with a 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

p ICIETr
Load Register on Condition Code LE
011000R31101001

If the condition codes reflect a less than or equal to O condition, the
instruction loads the specified r with a 1. If they reflect a greater
than O condition, the instruction loads r with a 0. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Second Edition 362

I MODE

p ICITr
Load Register on Condition Code LT
011000R31101000

If the condition codes reflect a less than O condition, the instruction
loads the specified r with a 1. If they reflect a greater than or
equal to O condition, the instruction loads r with a 0. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

p IONE r
Load Register on Condition Code NE
011000RB31101010

If the condition codes reflect a not equal to O condition, the
instruction loads the specified r with a 1. If they reflect an equal
to O condition, the instruction loads r with a 0. Leawves the values of
CBIT, LINK, and the condition codes unchanged.

P> IDAR R,address
Load Addressed Register
10010 0IR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates a 3R2-bit (1-word) effective address, EA. Loads the
specified R with the contents of the register file location specified
by the offset portion of EA. Bit 2 and bit 12 of the offset portion of
EA determine the actions of this instruction.

Bit 2 Bit 12 Action
1* —— Ignore bits 1 and 3 to 9. The offset portion of
EA specifies an absolute register number from O
to '377.
O* 1 Bits 13 to 16 of the offset portion of EA

specify one of the registers ‘20 to ‘37 in the
current register set.

0] 0 Bits 13 to 16 of the offset portion of EA
specify one of the registers O to ‘17 in the
current register set.

*This is a restricted instruction.
Leaves the values of CBIT and LINK unchanged; the wvalues of the

condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information about register sets.

3-63 Second Edition

INSTRUCTION SETS GUIiDE

Note

If the current ring is not O and EA is outside the range of O
to '17, inclusive, any access causes an RXM violation.

p 1IC flr,r
Load Character
0Ol11000RWB111FIRO1O0

If the contents of the specified FIR are nonzero, the instruction
fetches the single character pointed to by the appropriate FAR and
loads it into bits 9 to 16 of r. When the FAR's bit field contains O,
it specifies the left byte (bits 1 to 8) of the 16-bit addressed
quantity; when the bit field contains 8, the right byte (bits 9 to 16)
is specified. This instruction loads zeros into bits 1 to 8 of r.
Updates the contents of the FAR by 8 (one byte) so that they point to
the next character. Decrements the contents of the specified FIR Dby 1.
Sets the condition codes to NE. ILeaves the values of CBIT and LINK
unchanged .

If the contents of the specified FIR are O, the instruction sets the
condition codes to EQ.

Note

This instruction uses FARC when FIRO is specified, and FARl
when FIR1 is specified.

P> IFQR
Load Register on Equal to O
011000R30000011

If the contents of the specified R are equal to O, the instruction
loads r with a 1. If not equal to O, the instruction loads r with a O.
leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

p LFr
logic Set False
0O11000R30001110

Loads the specified r with 0. ILeaves the values of LINK and CBIT
unchanged. The values of the condition codes are indeterminate.

Second Edition 364

I MODE

p IFRQ f,r
Load Register on Floating Accumuilator Equal to O
Ol11000R3001FO011

If the contents of the specified floating accumulator are equal to O,
the instruction loads the specified r with a 1; if not equal to O, the
instruction loads r with a 0. ILeaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.

(See Appendix A.)

LFEQ works correctly only on normalized or nearly normalized numbers,
because it checks fraction bits 1 to 32 only for equal to O and less
than 0. (See the System Architecture Reference Guide, Chapter 6.)

p LFGE f,r
Load Register on Floating Accumulator Greater Than or Equal to O
O11000R3001F100

If the contents of the specified floating accumulator are greater than
or equal to O, the instruction loads the specified r with a 1; if less
than O, the instruction loads r with a 0. Leaves the wvalues of LINK
and CBIT unchanged. The condition codes reflect the result of the

comparison. (See Appendix A.)

LFGE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

> IFGT f,r
Load Register on Floating Accumulator Greater Than O
O11000RWB001F101

If the contents of the specified floating accumulator are greater than
0, the instruction loads the specified r with a 1; if less than or
equal to O, the instruction loads r with a 0. Ileaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the

comparison. (See Appendix A.)

LFGT works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

3-65 Second Edition

TNSTRUCTION SETS

p LFIE f,r
Load Register on Floating Accumulator Less Than or Equal to O
0O11000RWB001FO0O01

If the contents of the specified floating accumulator are less than or
equal to O, the instruction loads the specified r with a 1; if greater
than O, the instruction loads r with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

}LFLIflr,data.
Load FIR Tmmediate
O0O0O000101100FO011
INTEGER\ 16

Loads the 16-bit, unsigned integer contained in bits 17 to 32 (the
second halfword) of the instruction into the specified FIR. Clears the
upper bits of the FIR. ILeaves the values of CBIT, LINK, the condition
codes, and the associated FAR unchanged.

P IFIT £,
Load Register on Floating Accumulator Less Than O
0O11000RWB3001FO0OO0O

If the contents of the specified floating accumulator are less than O,
the instruction loads the specified r with a 1; if greater than or
equal to O, the instruction loads r with a 0. Ieaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the

comparison. (See Appendix A.)

LFLT works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

p IFNE f,T
Load Register on Floating Accumulator Not Equal to O
O11000RB001FO010

If the contents of the specified floating accumulator are not equal to
O, LFNE loads the specified r with a 1; if equal to O, LFNE loads r
with a 0. Ieaves the values of LINK and CBIT unchanged. The condition
ocodes reflect the result of the comparison. (See Appendix A.)

Second Edition 3-66

I MODE

LFNE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

P IGER
Load Register on Greater Than or Equal to O
0O11000R\30000100

If the contents of the specified R are greater than or equal to O, the
instruction loads r with a 1; if less than O, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P IGTR
Load Register on Greater Than O
O11000R30000101

If the contents of the specified R are greater than O, the instruction
loads r with a 1; if less than or equal to O, the instruction loads r
with a 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P> I1H r,address
Load Halfword
00100 1IR\3 T™M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 16-bit contents
contained in the location specified by EA into r. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

LH also has a register-to-register and an immediate form. (See
Appendix B.)

p LHEQ T
Ioad r on EQ
0O11000RB30001011

If the contents of the specified r are equal to O, the instruction
loads r with a 1; if not equal to O, the instruction loads r with a O.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

3-67 Second Edition

INSTRUCTION SETS GUIDE

P LHGE r
Ioad r on GE
0O11000R230000100O0

If the contents of the specified r are greater than or equal to O, the
instruction loads r with a 1; if less than O, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P IHGT r
Ioad r on GT
0O011000R30001101

If the contents of the specified r are greater than O, the instruction
loads r with a 1; if less than or equal to O, the instruction loads r
with a 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P> 1HL1 r,address
Load Halfword Shifted lLeft by 1
000 100 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Shifts the contents of the
location specified by EA left one bit and stores the result in the
specified r. (Shifts zero into the vacated bit.) Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

IHL] also has a register-to-register form. (See Appendix B.)

P 1HI2 r,address
Load Halfword Shifted Left by 2
00110 0IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA left two bits and stores the result in the
specified r. (Shifts zeros into the vacated bits.) ILeaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

IHI2 also has a register-to-register form. (See Appendix B.)

Second Edition 368

I MODE

P> IHL3 r,address
Load Halfword Shifted Left by 3
01110 17IR\3 T™\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA left three bits and stores the result in the
specified r. (Shifts zeros into the vacated bits.) ILeaves the values
of CBIT, LINK, and the condition codes unchanged.

Note
LHL3 also has a register-to-register form. (See Appendix B.)
If IHL3 is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P IHET
Ioad r on 1E
0O11000RB30001001

If the contents of the specified r are less than or equal to O, the
instruction loads r with a 1; if greater than O, the instruction loads
T with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

> HIT T
load r on LT
0O11000R30000000

If the contents of the specified r are less than 0, the instruction
loads r with a 1; if greater than or equal to O, loads r with a O.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

p IHNE r
load r on NE
011000R30001010

If the contents of the specified r are not equal to O, the instruction
loads r with a 1; if equal to O, the instruction loads r with a O.
leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

3-69 Second Edition

INSTRUCTIIOIN SBEIsS GULLD

P> LIOT address
Load IOTLB
00000O0O0OO0OO0O100100
AP\32

Loads a specified IOTLB entry. Table 34 shows the contents of the
LIOT entry and the origin of the information. The values of CBIT,
LINK, and the condition codes are indeterminate.

Table 34
LIOT Data
| Origin | Description I
|~ |
! AP in LIOT Virtual address in I/0 segment (calculatedl
from the EA). [
Page table Physical address (translation of the
virtual address) obtained from I/0
segment. If the fault bit is set
to 1, a page fault occurs.
Target virtual address. This is the

procedures accessing this information.
This is used to help invalidate the
proper locations in the cache. The
segnent number and the low-order 10
bits (offset number in the page) are

!
|
|
!
!
1
|
| segmwent number and page number of the
|
|
|
1
l
I ignored.

|
]
!
|
|
!
virtual address that will be used by [
|
I
|
|
!

Note

This is a restricted instruction.

P> LIP R,address
Ioad Indirect Pointer
110101IR\3 TM\2 SR\3 BR\2
{ DISPLACEMENT\16]

Calculates an effective address, FA. Loads the value contained in the
location specified by EA into the specified R. Checks these contents
for a pointer fault.

This pointer fault 1is generated when the contents of the memory
location to ke loaded into the specified R contain a pointer fault (bit
1 contains 1).

I MODE

If this pointer fault occurs, the pointer to the memory location is
saved in FAITR (SB + 11) as well as bits 1 to 18 of the contents of
that memory location FCODEH (SB + 10). After completion of the fault
handling mechanism, the instruction can be re-executed. (See Chapter
10 of the System Architecture Reference Guide.)

Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

LIP should weaken the ring field against the ring field of the
effective address. This is not done on some current
processors, but will be done on all future processors.

If LIP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p LIE R
Load Register on Less Than or Equal to O
O11000R\30000001

If the contents of the specified R are less than or equal to 0, the
instruction loads r with a 1. If the contents of R are greater than O,
the instruction loads r with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.

(See Appendix A.)

p LITR
Load Register on Less Than O
0O11000R30000000

If the contents of the specified R are less than O, the instruction
loads r with a 1. If the contents of R are greater than or equal to O,
the instruction loads r with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.

(See Appendix A.)

P> INE R
Load Register on Not Equal to O
011000R30000010

If the contents of the specified R are not equal to O, the instruction
loads r with a 1; if equal to O, the instruction loads r with a O.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

3-71 Second Edition

coo0O000110001111

Loads the process ID from bits 1 to 10 of GR2 into RPID (the process ID
register, which contains the 10 most significant bits of the user’s
address space). leaves the values of CBIT, LINK, and the condition
codes unchanged.

The RPID data is used to update the process ID field of an STLB entry
as required. This RPID data is later used during subsequent memory
accesses to verify that STIB data is still wvalid (STIB hit) or not
(STLB miss). This register is for internal machine operation, and
should not normally be modified by the user.

Note

LPID is a restricted instruction.

P LPSW address
Load PSW
0000000111001001
AP\32

Changes the status of the processor by loading new values into the
program counter, keys, and modals. Inhibits interrupts for one
instruction.

Addresses a 64-bit (4-halfword) block at the specified location. The
block has the following format.

Offset in Block Contents
1to2 New program counter (ring, segment, offset numbers)
3 New keys
4 New modals

Loads the program counter and keys of the currently running process
with the contents of the first three offsets (bits 1 to 48), then loads
the processor modals with the contents of the fourth offset (bits 49 to
64).

The new value of bit 15 in the keys, the in-dispatch bit, can
temporarily halt execution of the current process. This bit is altered
by software only during a cold or a warm start. If bit 15 is O, the
currently executing process will continue to execute, but at a location
defined by the new value of the program counter. If bit 15 is 1, the

Second Edition 372

I MODE

processor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the process that was
temporarily halted, execution resumes at the point defined by the value
of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals are associated with the processor,
not the process.

The LPSW instruction loads the 64 bits (four halfwords) of the register
set that the STIR instruction cannot correctly load. STIR does not
update the separate hardware registers the processor uses to maintain
duplicate information for optimization. Never use the LPSW instruction
to change bits 9 to 11 of the modals. These bits specify the current
user register set. This means that if you do not know the current
value of these bits, you must do the following each time you want to
execute an LPSW:

1. Inhibit interrupts.

2. Read the current values of modal bits 9 to 11 with an IDIR ‘24
instruction.

3. Mask the old values of the modal bits into the new information.
4. Load the new information into the modals with an LPSV.

For the two common uses of LPSW, you do not have to perform this
sequence, since the values of modal bits 9 to 11 are predictable. When
you use LPSW after a Master Clear to turn on processor exchange mode,
bits 9 to 11 are 010 because the processor is always initialized to
register set 2. VWhen you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored by the break because these
values are still correct.

You should not use LPSW to set bits 16 (the save-done bit) or 15 (the
in-dispatcher bit) of the keys, unless you are merely loading status
following a fault, check, or interrupt. When issuing LPSW after a
Master Clear, make sure you load zeros into both of these bits.

Note

This is a restricted instruction.

p IiTr
Logic Set True
O11000R30001111

Loads the specified r with 1. Leaves the values of LINK and CBIT
unchanged. The values of the condition codes are indeterminate.

3-73 Second Edition

CANTIAC AT AAY ATITO ST TTTY

INSTRUCTION SETS GUILE

P> M R,address
Multiply Fullword
100010 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the 32-bit value
contained in the location specified by EA by the 32-bit value contained
in the specified R. Stores the 64-bit result in the specified R and
R+1. The least significant bit of the result is contained in bit 32 of
R+1. The 150/250, 450/550/250-1I, I450-II, and 2250 processors leave
the CBIT and LINK unchanged. The other 50 Series processors reset the
value of the CBIT to O and leave the value of LINK indeterminate. For
all 50 Series processors, the condition codes are unchanged. This
instruction cannot cause an overflow or generate an integer exception.

Note
R must be an even numbered register.

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P M r,address
Multiply Halfword
101010 R\3 T™M\2 SR\3 ER\2
[DISPLACEMENT\16]

Calculates an effective address, FA. Multiplies the 16-bit value
contained in the location specified by FA by the 16-bit value contained
in the specified r. Stores the 32-bit result in R. Bit 32 of R
contains the least significant bit of the result. The value of the
CBIT is reset to 0. The value of LINK is indeterminate, and the
condition codes are unchanged. This instruction cannot cause an
overflow or generate an integer exception.

Note

MH r also has a register-to-register and an immediate form.
See Apperdix B for more information.

Second Edition 3-74

I MODE

P> N R,address
AND Fullword
0000 11DIR\3 T™M\2 SR\3 ER\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Logically ANDs the value
contained in the specified R with the 32-bit value contained in the
location specified by EA. Stores the result in the specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> NFYB address
Notify to Beginning
00000010100010021
AP\32

Notifies on semaphore at address specified in second and third
halfwords of the instruction. Uses LIFO (last in, first out) queueing.
Does not clear the currently active interrupt. The values of CBIT,
LINK, and the condition codes are indeterminate. For more information,
see Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

P> NFYE address
Notify to End
0000001010001 000
AP\32

Notifies on semaphore at the address specified in second and third
halfwords of the instruction. Uses FIFO (first in, first out)
queueing. Does not clear the currently active interrupt. The values
of CBIT, LINK, and the condition codes are indeterminate. For more
information, see Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

3-75 Second Edition

INSTRUCTIGN SETS GUIDE

P> NH r,address
AND Halfword
0010 11IR\3TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Logically ANDs the value
contained in the specified r with the 16 bit value contained in the
location specified by EA. Stores the result in r. ILeaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

NH also has a register-to-register and an immediate form. See
Appendix B for more information.

p NOP
No Operation
00000000000000GOQ1

Does nothing. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Second Edition 376

I MCDE

P> O R,address
CR Fullword
010011IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, FA. Logically ORs the value contained
in the specified R with the 32-bit value contained in the location
specified by EA. Stores the result in the specified R. Ileaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register amd an
immediate form. See Appendix B for more information.

P> OH r,address
CR Halfword
011011R\3 TM\2 SR\2 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. lLogically ORs the value contained

in the specified r with the 16-bit value contained in the location

specified by EA. Stores the result in r. Ieaves the values of CBIT,

LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p O~
Output Keys
0O11000R30111001

Stores the contents of the specified r in the keys. Resets bits 15 to
16 of the keys to 0. Loads CBIT, LINK, and the condition codes from
the specified r as a result of the operation. If this instruction is
executed in Ring O, it inhibits interrupts during execution of the next
instruction.

3-77 Second Edition

TNSTRUCTION SETS GUILE

P> PCL address
Procedure Call
100110001 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

See Chapter 8 of the System Architecture Reference Guide for a complete
description of this instruction. Sets CBIT, LINK, and the condition
codes to the values contained in the ECB.

Note

When arguments are to be transferred to the called procedure,
this instruction uses GR5 and GRY, destroying the previous
contents of these registers. XB is updated if an AP has the S
bit = 0. The contents of GRS, GR7, and XB remain unchanged if
no arguments are transferred. The contents of the condition
codes, CBIT, and LINK are not correctly saved in the ECB along
with the rest of the caller’'s keys.

p PIDR
Position for Integer Divide
011000R30101010

Positions a register for integer divide. Loads the contents of the
specified R into R+l. Extends the sign of R (bit 1) into bits 2 to 32
of R. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

R must be a even numbered register.

p PIIH r
Position r for Integer Divide
011000R30101011

Moves the contents of the specified r (bits 1 to 16 of R) into bits 17

to 32 of R. Extends the contents of bit 1 of r into bits 2 to 16 of R.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 378

I MODE

p PIMR
Position After Multiply
0O11000R30101000

Checks bit 1 of R+l to see if it is the same as all the bits in the
specified R, and then moves the contents of R+l into R. If bit 1 of
R+l was not the same as all the bits in R, an overflow occurs which
causes an integer exception. If no integer exception occurs, CBIT is
reset to O. The values of LINK and the condition codes are
indeterminate.

If an integer exception occurs and bit 8 in the keys contains O, the
PIM instruction sets CBIT to 1. If bit 8 contains 1, the instruction
sets CBIT to 1 and causes an integer exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

R must be an even numbered register.

p PIMH T
Position r after Multiply
0O11000R30101001

Checks the contents of bit 17 of the specified R to see if it has the
same value as do all of bits 1 to 16 of R, and then moves the contents
of bits 17 to 32 into bits 1 to 16. If bit 17 was different from all
of bits 1 to 16, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note
To position bits 17 to 32 of R in bits 1 to 16 of R, PIMH can

modify all 32 bits of R, meaning that the contents of bits 17
to 32 of R are indeterminate at the end of this instruction.

3-79 Second Edition

TATCUTMITINITANY CITATICY TTTYR?
JINOLIVUL L AVAY 1Dl (;'U.A-I..Al.l

p> PRIN
Procedure Return
0000000110001 001

Desllocates the stack frame created for the executing procedure and
returns to the environment of the procedure that called it.

To deallocate the frame, the instruction stores the current value of
the stack base register into the free pointer. It then restores the
caller’s state by loading the caller’'s program counter, stack base
register, linkage base register, and keys with the values contained in
the frame being deallocated. Sets bits 15 to 16 of the keys to O.

loads the ring number in the program counter with the logical OR
(weaker) of the saved program counter ring and the current ring number.
This process prevents inward returns but also allows returns from gated
calls to work properly.

p> PTIB
Purge TLB
0000000000110100

GR2 contains the address of a physical page, right justified. Based on
the value of GR2 bit 1, PTLB purges either the first 128 locations of
the STIB (i.e., not the IOTLB), or a specified physical page. If GRR
bit 1 contains a 1, the instruction performs a complete purge. If GR2
bit 1 contains a O, the instruction purges the page specified by GR2.
Ieaves the values of CBIT, LINK, and the condition codes indeterminate.
See Chapters 1, 4, and 11 of the System Architecture Reference Guide
for more information about the STLB and IOTLB.

Note
This is a restricted instruction.

On the 750, 850, 2350 to 9955 II, insert a CRE (Clear E)
instruction before PTLB. Since PTLB uses E (GR3 in I mode) as
a pointer, the CRE zeros GR3 before PILB manipulates it. If an
interrupt occurs during PTLB's execution, GR3 points to the
location PTLB is currently purging. PILB leaves the contents
of GR3 in an undefined state at the end of its execution.

Second Edition 3-80

I MODE

P> QFAD address
Quad Precision Floating Add
011110110 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. Adds the 112-bit, quad precision
number contained in the locations specified by EA to the contents of
QAC. (See Chapter 6 of the System Architecture Reference Guide.)
Normalizes the result, if necessary, and loads it into QAC. An
overflow or underflow causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LTNK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

If QFAD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFC address
Quad Precision Floating Compare
100110111 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. Compares the contents of QAC
(explained in Chapter 6 of the System Architecture Reference Guide) to
the 112-bit contents of the location specified by EA. Ieaves the
values of CBIT and LINK unchanged. Sets the condition codes (CC) to
the outcome of the comparison as shown below.

Condition «C
Contents of QAC > contents of location specified by EA. GT
Contents of QAC = contents of location specified by EA. R
Contents of QAC < contents of location specified by EA. r

On some processors, QFC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

3-81 Second Edition

INSTRUCTION SETS GUIDE

Note

If QFC is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P QFCM
Precision Floating Complement
1100000101111000

Forms the two's complement of the value contained in QAC. (See Chapter
6 of the System Architecture Reference Guide.) Normalizes the result,
if necessary, amd stores it in QAC. An underflow or overflow causes &
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

If QFCM is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFDV address
Quad Precision Floating Point Divide
100110110 T2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Divides the contents of QAC by
the 112-bit contents of the location specified by EA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result, if
necessary, and stores the whole quotient into QAC. An overflow,
underflow, or divide by to causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition

Crl
o)
N

I MODE

Note

If QFDV is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFLD address
Quad Precision Floating Load
011110100 T™M\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an extended, augmented effective address, FA. Performs one
of the following actions with the value contained in the location
specified by EA. Loads bits 1 to 112 into QAC and zeros QAC bits 113
to 128, or loads 128 bits into QAC. In either case, there is no
normalization of the result. (See Chapter 6 of the System Architecture
Reference Guide for more information.) Ieaves the values of CBIT,
LINK, and the condition codes unchanged.

Note

If QFLD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFMP address
Quad Precision Floating Point Multiply
100110101 T™M\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Multiplies the contents of QAC by
the 112-bit contents of the location specified by FA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result, if
necessary, and stores it into QAC. An overflow or underflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets GCBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

3-83 Second Edition

INSTRUCTION SETS GUIDE

Note

If QFMP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) faumlt occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFSB address
Quad Precision Floating Point Subtract
011110111 T™M2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. Subtracts the 112-bit contents of
the locations specified by EA from the contents of QAC. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result, if
necessary, and loads it into QAC. An overflow or underflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to O. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFSB is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFST address
Quad Precision Floating Store
011110101 T™M\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an effective address, EA. Stores the contents of QAC into
the 128 bits of memory specified by FA. Ieaves the values of LIXK,
CBIT, and the condition codes unchanged.

Note

QFST does not normalize the result before storing it into the
specified memory location.

If QFST is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

Second Edition 3-84

I MODE

> QR
Quad to Integer, in Quad Convert
1100000101111010

Strips the fractional portion of QAC as described in Teble 3-5.

Table 3-5
QINQ Actions
Exponent Value | Action
‘337 <= Exp No operation.

!

|
| !
| I
‘200 < Exp < '337 | If sign >= O, strip fractional part of QAC [
I for result. I
| If sign < O and fractional part <> 0, strip |
| fractional part of QAC and increment |
| integer portion of QAC by 1. [
| If sign < O and fractional part = O, no [
[action is done. |
I I
I I
[[
I |
| |
I I

‘200 = Exp If sign >= 0, result = 0.
If sign < O and bits 2 to 96 = 0 result = -1.
If sign < 0 and bits 2 to 96 <> 0 result = O.
'200 > Exp Result = O.

QINQ can cause a floating-point exception. This exception does not
alter the contents of QAC. If no exception occurs, the instruction
resets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets GBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QINQ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

3-85 Second Edition

INSTRUCTION SETS GUILE

P QIR
Quad to Integer, in Quad Convert Rounded
1100000101111011

Strips the fractional portion of QAC as described in Table 3-6.

Table 3-6
QIQR Actions
| Exponent Value | Action
'337 <= Exp No operation.

'177 < Exp < '337 | If sign >= O, round.*
If sign < 0 and fractional part <> 0.5,**
round and strip the fractional part

of QAC.

|
|
|
|
|
[
!
Exp = ‘177 | If sign >= 0, result = O.
| If sign < O and bits 2 to 96 = O, result = -1.
| If sign < O and bits 2 to 96 <> 0, result = 0.
| For all cases increment integer part by 1 if
| it exists and the most significant bit of
[
|
|

QAC = 1.

|
|
|
|
I
I
|
|
|
|
|
]
I
|
|
| The result is O.

Exp < ‘177 |

* Rounding occurs if the MSB of the QAC fraction is 1. For example,
add the MSB of the QAC fraction to itself and carry out to the QAC
integer.

** 0.5 implies a QAC fraction with the MSB = 1 and all other bits = O.

QIQR can cause a floating-point exception. This exception does not
alter the contents of QAC. If no exception occurs, the instruction
sets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the QIQR instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Referemnce Guide for more
information.

Second Edition

i
3

I MODE

Note

If QIQR is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

3-87 Second Edition

TATCHTMTIAINITAAT OTITN ATTTTYD
LINDLNVULL LAY OO0 VLD

P> RBQ r,address
Remove Entry From Bottom of Queue

011000RWB31011011
AP\32

The address pointer in this instruction points to the QCB for a dqueue.
The instruction removes the entry from the bottom of the referenced
queue and loads it into the specified r. If the queue was not empty,
this instruction sets the condition codes to reflect not equal to. If
the queue was empty, resets r to O and sets the condition codes to
reflect equal to. Leaves the values of CBIT and LINK unchanged.

P RCB
Reset CBIT to O
1100000010000000

Resets CBIT to O. Ieaves the values of LINK and the condition codes
unchanged.

P RMC
Reset Machine Check Flag to O
0000000000010001

Resets the machine check mode (bits 15 to 16 of the modals) to O.
leaves the values of CBIT, LINK, and the condition codes unchanged.
Inhibits interrupts for the next instruction.

Note

This is a restricted instruction.

P> ROT R,address
Rotating Shift
010100 DIR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as
a shift command, as shown in Table 3-7.

Second Edition 3-88

I MODE

Table 3-7
EA Format for ROT Shift Command

Bits | Value | Interpretation

indicates a shift of 64 places; of -1,
1 place; of 63, 63 places; and SO on.

| l
| I
[17 I 0 | Shift left. [
| i1 | Shift right. |
I [| |
[18 I 0 | Word shift (32 bits). |
| I 1 | Halfword shift (16 bits). [
| | | |
' 19to 2B | - Ignored. I
[I |
137 to 3 | — Values specify the two’s complement of the |
| [I
! | [
| I |

|

|

i

f number of bits to shift. A value of O
|

|

Uses EA to perform a rotating shift on the contents of the specified R.
Stores the shifted result in R. CBIT and LINK contain the value of the
last bit shifted out. Ieaves the wvalues of the condition codes
unchanged.

P> ERST address
Restore Registers
0000000111001 111
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. Restores the contents of
these registers from this save area.

The save area format is shown in Table 3-8. Bits 1 to 16 of the save
area are a save mask, whose format appears in Figure 3-3. A mask bit
value of 1 means that the corresponding register had nonzero contents
that have been saved in the save area; a mask bit value of O means
that the corresponding register’s contents were 0. ILeaves the values
of CBIT, LINK, and the condition codes unchanged.

3-89 Second Edition

INSTRUCTION SETS GUIDE

Table 3-8
RRST and RSAV Save Area Format

Offset # | Contents

| I
! I
| 1 | Save mask |
I 2to5 | FRl (F) [
| 6 to9 | FRO [
I 10011 | X, GRY !
I 12 to 13 | GR6 |
I 14tol5 | Y, S, GRS |
i 15 to 17 | GR4 i
| 18 to 19 | E, GR3 |
| 20t0o 21 | A, B, L, GR2 |
I 22 t0 23 | GR1 !
i 24 to 235 | GRO |
| 26 to 27 | XB I

1 4 5 67 8 9 10 11 12 13 14 15 16

10000 IFR1 IFRO IGR7 IGR6 IGR5 IGR4 IGR3 IGR2 IGR1 IGRO |

Save Mask Format, RRST and RSAV Instructions
Figure 3-3

P> RSAV address
Save Registers
0000000111001101
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. Saves the nonzero
contents of these registers in the save area.

The save area format is shown in Table 3-8. Bits 1 to 16 of the save
area are a save mask, whose format appears in Figure 3-3. This
instruction sets the mask bit of each register as follows: to 1 if the
register’'s contents have a nonzero value; to O if a O value. Ieaves
the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 3-90

I MODE

P> RIQ r,address
Remove Entry Fram Top of Queue
O11000R31011010
AP\32

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into the specified r. If the queue was not empty, the
instruction sets the condition codes to reflect not equal to 0. If the
queue was empty, resets r to O and sets the condition codes to reflect
equal to. Leaves the values of CBIT and LINK unchanged.

P RTS

Reset Time Slice
0000000101001 001

Valid for the 550-II, 750, 850, I450, and new processors.

GR2H (bits 1 to 16) contain a negative value that represents the number
of milliseconds in the new time slice. The time slice is determined by
counting ITH up every 1.024 milliseconds until zero when the time slice
ends. Therefore, ITH is the two's complement of the number of
milliseconds remaining in the time slice. The elapsed timer contains
the total number of 1.024 millisecond units that have elapsed since
process creation plus the full count of the current time slice.
Combining ITH and ET by addition gives the total elapsed time.

RTS adds the current value of the interval timer (locations 16 to 17 of
the PCB) to the contents of the elapsed timer (locations 10 to 11 of
the PCB), then subtracts the contents of GR2H from the sum of the
timers. Stores the result in the elapsed timer. Ioads the contents of
GRRH into the interval timer. Leaves the contents of GR2H unchanged.
The values of CBIT, LINK, and the condition codes are unchanged. The
addition performed by this instruction is equivalent to the following
series of instructions:

IH O,ITH /* Load GRO with contents of ITH.
SH 0,2 /* Subtract reset value in GR2H from GRO contents
PITH O /* 8ign extend the contents of GROH into bits
/¥ 17 to 32 of GRO.
SRC /* Skip next 16-bit halfword if CBIT is O.
0] /* Complement GRO.
O0,ET /* Add ITH and ET.
ST O,ET /* Store result in ET.
STH 2,ITH /* Store GR2 contents in ITH.

Note

RTS is a restricted instruction.

3-91 Second Edition

INSTRUCTION SETS GUIDE

P> S R,address
Subtract Fullword
010010 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 32-bit value
contained in the location specified by EA from the value contained in
the specified R. Stores the result in the specified R. If overflow
occurs, an integer exception results. If no integer exception occurs,
CBIT is reset to O. LINK contains the borrow bit. The condition codes
reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction also has a register-to-register amd an
immediate form. See Appendix B for more information.

P scB
Set CBIT to 1
1100000110000000

Sets the value of CBIT to 1. The wvalue of LINK is indeterminate.
Leaves the values of the condition codes unchanged.

P> SCC r,address
Store C Character
101101IR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Uses the C language pointer to store a single character from bits 9 to
16 of the specified r into a location in memory. (Bits 1 to 8 of r are
not modified and do not affect this operation.) When bit 4 of the C
pointer contains O, the character is stored into bits 1 to 8 of the
address; if bit 4 of the pointer contains 1, the character is stored
into bits 9 to 16 of the address. Leaves the values of the CBIT, LINK,
and condition codes unchanged.

Note
The SCC instruction is valid only for genmeral register relative
and indirect forms of address formation. Other forms of
address formation (including indexing) do not reliably generate
the C language pointer.

Second Edition 3-9R

I MODE

In particular, do not use the immediate or register-to-register
form with the SCC instruction because it would be interpreted
as an ACP instruction. (SCC and ACP share the same opcode, but
ACP uses the Iimmediate and register-to-register form.)
However, direct addressing will obtain the first byte (of two)
pointed to by the effective address. This assumes that the
base register used was loaded with a conventional 32-bit IP
with the E bit reset.

If SCC is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> SH r,address
Subtract Halfword
011010 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 16-bit wvalue
contained in the location specified by EA from the value contained in
the specified r and stores the result in r. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to O.
LTNK contains the borrow bit. The condition codes reflect the result
of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

The SH instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> SHA R,address
Arithmetic Shift
00110 1IR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as
a shift command, as shown in Table 3-9.

3-93 Second Edition

INSTRUCTION SETS GUILE

Table 3-9
EA Format for SHA Shift Command

Bits | Value | Interpretation

the number of bits to shift. A value
of 0 indicates a shift of 64 places;
of -1, 1 place; of -63, 63 places;
and so on.

| |
I |
I 17 I 0 | Shift left. [
i i1 | Shift right. !
| 1 | |
| 18 | O | Word shift (32 bits). |
[| 1 | Halfword shift (16 bits). |
| [| [
l 19 to 286 | -— | Ignored. l
l i | |
| 27 to 32 | ——— | Values specify the two's complement of |
| 1 | |
| 1 [|
[| I I
[| | |

Uses EA to perform an arithmetic shift on the contents of the specified
R, and stores the result of the shift in R.

For a right shift, CBIT and LINK contain the value of the last bit
shifted out. The values of all other shifted-out bits are lost.

For a left shift, an overflow causes an integer exception. If there is
no integer exception, CBIT is reset to 0. The value of LINK is
indeterminate.

All shifts leave the values of the condition codes unchanged.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> SHL R,address
Logical Shift
00010 1IR\3 T™M\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FEA. Interprets bits 17 to 32 of EA as
a shift command, as shown in Table 3-10.

Second Edition 3-H4

I MODE

Table 3-10
EA Format for SHL Shift Command

Bits | Value | Interpretation

the number of bits to shift. A value
of O indicates a shift of 64 places;
of -1, 1 place; of -63, 63 places;
and so on.

[|
| |
| 17 I 0 | Shift left. |
[I 1 | Shift right. [
! | | |
[18 I 0 | Word shift (32 bits). |
| I 1 | Halfword shift (16 bits). [
| | |
F'19to28 | — Ignored. |
[[[
I &7 to 38 | — Values specify the two's complement of |
| | |
I | !
[| [
[[|

Uses EA to perform a logical shift on the contents of the specified R.
Stores the shifted result in R. CBIT and LINK contain the value of the
last bit shifted out. The values of all other shifted-out bits are
lost. Leaves the values of the condition codes unchanged.

p SHLl r
Shift r lLeft 1
011000R30111110

Shifts the contents of the specified r to the left one bit and stores
the result in r. CBIT and LINK contain the value of the bit shifted
out. ILeaves the values of the condition codes unchanged.

p sH2r
Shift r Ieft 2
0O11000R30111111

Shifts the contents of the specified r to the left two bits and stores
the result in r. CBIT and LINK contain the value of the last bit
shifted out. The value of the first bit shifted out is lost. Ieaves
the values of the condition codes unchanged.

3-95 Second Edition

TAICHTIMTI M T AT O FATTTTYD
2dVMO LIV L LAY DLAD TV

1
OR\31010000

Shifts the contents of the specified r to the right one bit and stores
the result in r. CBIT and LINK contain the value of the bit shifted
out. Ieaves the values of the condition codes unchanged.

SHR2 r
Shift r Right 2
011000RB31010001

Shifts the contents of the specified r to the right two bits and stores
the result in r. CBIT and LINK contain the value of the last bit
shifted out. The value of the first bit shifted out is lost. Ieaves
the values of the condition codes unchanged.

P s R
Shift Register Left 1
011000R\30111010

Shifts the contents of the specified R to the left one bit and stores
the result in R. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

SI2 R
Shift Register Left 2
011000RWB0111011

Shifts the contents of the specified R to the left two bits and stores
the result in R. CBIT and LINK contain the wvalue of the last bit
shifted out; the wvalue of the first bit shifted out is lost. ILeaves
the values of the condition codes unchanged.

P> SR1R
Shift Register Right 1
011000R30111100

Shifts the contents of the specified R to the right one bit and stores

the result in R. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

Second Edition 3-96

I MODE

p SR2 R

Shift Register Right 2

O11000R30111101
Shifts the contents of the specified R to the right two bits and stores
the result in R. CBIT and LINK contain the wvalue of the last bit
shifted out; the wvalue of the first bit shifted out is lost. Ieaves
the values of the condition codes unchanged.

P SsM R
Set Sign Minus
011000R30100010

Sets bit 1 of the specified R to 1. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

P> SSP R
Set Sign Plus
011000R30100011

Resets bit 1 of the specified R to 0. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

P> SssN
Store System Serial Number
0100000011001000

This instruction is applicable only for the 2350 to the 9955 II. A
14-character system identifier programmed into these processors during
manufacturing consists of a 2-character plant location code followed by
a 12-digit number. (These characters and numbers are in 7-bit ASCII
format.) SSSN writes this system identifier into a 16-halfword block
at the address specified by the XB register. (A halfword is 16 bits.)
The first 8 halfwords of this block hold the system serial number
string as provided by manufacturing; the remaining halfwords are
reserved for future expansion and are O.

Leaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

If SSSN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

3-97 Second Edition

INSTRUCTION SETS GUIDE

P> ST R,address
Store Fullword
01000 1IR\3 T™M\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of the
specified R into the location specified by EA. Leaves the values of
the CBIT, LINK, and condition codes unchanged.

P> STAR R,address
Store Addressed Register
101100 IR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates a 32-bit (word) effective address, EFA. Stores the contents
of the specified R into the register location specified by the offset
portion of EA. Bit 2 and bit 12 of the offset portion of EA determine
the actions of this instruction, as shown in Table 3-11.

Table 3-11
STAR Actions

Bit 2 | Bit 12 | Action

1*

Ignore bits 1 and 3 to 9. The offset portion
of EA specifies an absolute register number
from O to '377.

|

1

|

|

| Bits 13 to 16 of the offset portion of EA

| specify one of the registers ‘20 to ‘37 in

| the current register set.

|
0] | Bits 13 to 16 of the offset portion of EA
| specify one of the registers O to ‘17 in
|

|
|
|
|
|
|
L
l
|
|
|
|
! the current register set.

|
I
I
I
!
|
f
|
I
I
I

*This is a restricted instruction.

Ieaves the values of CBIT and LINK unchanged. The values of the
condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information about register sets.

Second Edition 3-98

I MODE

Note

Do not use the STAR instruction to write into the procedure
base, keys, or modals. You can use LPSW to change any of these
three registers. In addition, you can use a control transfer
to change the procedure base, or a mode control operation to
change the keys or modals. Under no circumstances should you
try to change the value of the current register set bits
contained in the modals.

If the current ring is not O and EA is outside the range of O
to ‘17 inclusive, any access causes an RXM violation.

p SIC flr,r
Store Character
O11000R\3111FIR110

If the contents of the specified FIR are nonzero, the instruction
stores the contents of bits 9 to 16 of the specified r into the
character byte address contained in the associated FAR. Updates the
contents of the appropriate FAR so that they point to the next
Character. Decrements the contents of the specified FIR by 1. Sets
the condition codes to NE.

If the contents of the specified FIR are O, the instruction sets the
condition codes to BQ and does not store a character.

The instruction leaves the values of LINK and CBIT unchanged.

Note

When the instruction specifies FIRO, FARO is used. When the
instruction specifies FIR1, FAR1 is used.

P> STCD R, address
Store Conditional Fullword
0O11000R31011111
AP\32

Compares the contents of R+l and the contents of the 32-bit location
referenced by the specified address pointer. If the two values are
equal, the instruction stores the contents of R in that referenced
location. If the two values are not equal, execution continues with
the next instruction. STCD is an interlocked operation, guaranteed to
work in a multiprocessor.

Leaves the values of CBIT and LINK unchanged. The condition codes
indicate reflect the result of the comparison. (See Appendix A.)

3-99 Second Edition

INSTRUCTION SETS GUIDE

Note

R must be an even numbered register.

P> STCH r,address
Store Conditional Halfword
011000RWB31011110
AP\32

Compares the contents of bits 17 to 32 of the specified R with the
contents of the location referenced by the specified address pointer.
If the two values are equal, the instruction stores the contents of r
into that referenced location. If the two values are not equal,
execution continues with the next instruction. ILeaves the values of
CBIT and LINK unchanged. Sets the condition codes to EQ if the store
occurs and to NE if not.

The comparison and store will not be separated by execution of other
instructions. Therefore, no instruction can alter the contents of the
specified memory location between the compare and the store.

Note

This instruction is useful when two cooperating, sequential
processes are menipulating shared data. It is interlocked
against direct memory I/0. This means you can use it to
interlock a process with a DMA, IMC, or DMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/0.

P STEX R
Stack Extend
011000R30010111

Extends the length of the procedure stack. The designated R contains a
32-bit number that specifies the halfword size of the extension. (A
halfword is 16 bits.)

The firmware rounds up the number contained in the specified R to an
even number of halfwords. The instruction uses this value to allocate
a block of memory to the procedure stack. The extension and the
initial stack segment do not have to be contiguous, since there may not
have been enough room left in the initial stack to contain a complete
frame.

Returns a segment number/offset number in the specified R that
specifies the starting address of the extension. The extension is
automatically deallocated when the current procedure completes
execution. There is no limit on the number of extensions you can make.

Second Edition 3-100

I MODE

A stack fault occurs if there is no room for the extension. The values
of CBIT, LINK, and the condition codes are indeterminate. See Chapters
8 and 10 of the System Architecture Reference Guide for more
information about this instruction, stacks, and stack faults.

P> STFA far,address
Store FAR
OO0O000101101FAROO0D
AP\32

Stores the specified FAR contents as a hardware recognizable indirect
pointer at the memory location referenced by the specified address
pointer. If the bit number field of the specified FAR contains O, the
instruction stores the first 32 bits (two halfwords) of the pointer and
Clears the pointer's extend bit to 0. If the bit number field of the
specified FAR does not contain O, the instruction saves all 48 bits
(three halfwords) of the pointer and sets the pointer’s extend bit to
1. Ieaves the values of CBIT, LINK, and the condition codes
indeterminate.

P> STH r,address
Store Halfword
01100 1IR\3 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of the
specified r into the 16-bit location specified by EA. Lleaves the
values of CBIT, LINK, and the condition codes unchanged .

P> STPM
Store Processor Model Number
000000000001 0100O0

Stores the CPU model number and microcode revision number in an

8-halfword field. (A halfword is 16 bits.) XB contains a pointer to
the field in memory. Table 3-12 shows the format of the field.

3-101 Second Edition

Table 3-12
STPM Memory Field Format

| Halfword | Name | Description I
| |
I 1to2 | Processor | Contains a code specifying the machine: [
] | Model I OL - 400/500, no 15L - 9950 i
I | Number l Rev B microcode 16L - 9650 |
I | | 1L - 400, Rev. B 17L - 2550 i
! l | microcode 18L - 9955 |
! ! ! 2L - Reserved 19L - 9750 |
1 | | 3L - 350 21L - 2350 |
| [| 41, - 450/550 22L - 2655 |
i | | 5L - 750 23L - 9655 |
| [| 6L - 650 25L — 2450 |
I | I 7L - 250 30L - 9955 II |
| (| 8L - 850 31L - 2755 9
I I I 9L - 250-I1 34L - 6350 |
l l | 10L - 550-I1 42L, ~ 9755 |
I | I 11L - 2250 |
| | | i
| 3 to4 | Microcode | Offset 3: i
I | Revision | Bits 1l to 8 Reserved |
| [| Bits 9 to 16 Manufacturing microcode 1
! I [revision number [
I [| Offset 4: |
[I | Bits 1 to 16 Engineering microcode |
[| ! revision number |
I ! | |
I 5 | Processor | Specifies options enabled for this mechine: |
| | Line | Bits 1 to 15 Reserved; must be O |
! | I Bit 16 Marketing segment |
I [| specification bit [
I | | |
1 6 | Extended | To be implemented. |
! | Microcode | I
[| ID | |
(I [|
I 7to8 | — | Reserved for future use. x

The STPM instruction leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

STPM is a restricted instruction.

Second Edition 3-102

I MODE

>STI‘M
Store Process Timer
0000000101001 000

Valid for the 550-II, 850, I450, and 2350 to 9955 II.

The current process time is represented by the sum of the 32-bit
elapsed time (stored in the PCB) and the 32-bit interval timer
(contained in the CPU bardware). Bit 17 of the elapsed time is
equivalent in weight to bit 1 of the interval time. This operation is
equivalent to the following sequence of instructions. (Register O is
not actually modified by the STIM instruction.)

IDAR O, PB% + '25 /* Get PCB address.

A 0, = '10L /* Offset of elapsed time.

ST O, TEMP1 /* Elapsed time address -> Temp.
IDAR 0, PB% + ‘30 /* Read timer.

IRH 0] /* 8Store low order

STH O, XB% + 2 /* 16 bits.

TRH 0 /* Adjust

PITH 0 /* weighting.

A O, TEMP1, * /* Add elapsed time.

ST O, XB% + 0

Leaves the values of the CBIT, LINK, and condition codes indeterminate.
This instruction is not implemented on the 2250.

p svC

Supervisor Call
0000000101000101

Supervisor call. Generates a directed fault. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

This instruction allows you to make an operating system request that is
addressing mode independent. By software convention, this instruction
sends an operation code and pointers to the operating system to
generate a fault. For more information, refer to Chapter 10 of the
System Architecture Reference Guide.

3-103 Second Edition

C
Two's Complement Register
011000R30100110

Forms the two's complement of the contents of the specified R and
stores the result in R. An overflow causes an integer exception. If
there is no integer exception, CBIT is reset to O. The value of LINK
is indeterminate. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P TCHTr
Two's Complement r
011000R30100111

Forms the two’'s complement of the contents of the specified r and
stores the result in r. An overflow causes an integer exception. If
there is no integer exception, CBIT is reset to 0. The value of LINK
is indeterminate. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

p TCNP address
Test C Null Pointer
111110110 ™2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Tests bits 4 to 32 of the C
language pointer in the location specified by EA for zero. When these
bits are zero, this instruction sets the condition codes equal to zero;
otherwise the condition codes are set not equal to zero. The values of
the CBIT and LINK are unchanged.

Note

R Y P

The TCNP instruction also has a register addressing form. The
syntax and format for this form of is:

TCNP R
011000RB31111000

Second Edition 3-1

¢
b

I MODE

(The expected form for TCNP register addressing would be
111110110008R\300

but this is, in fact, unimplemented.)

If TCNP is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> TFIR flr,R
Transfer FIR to Register
O11000RWB111FIRO11

Transfers the contents of the specified FIR into the specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

P T™ address
Test Memory Fullword
100110100 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Sets the condition codes
according to the numerical value of the 32-bit contents of the location
Specified by EA. (See Appendix A.) Ieaves the values of LINK and CBIT
unchanged.

P TMH address
Test Memory Halfword
101110100 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. Sets the condition codes
according to the numerical value of the contents of bits 1 to 16 of the
location specified by EA. (See Appendix A.) Ieaves the values of LINK
and CBIT unchanged.

P TRFL flr,R
Transfer Register to FIR
O11000RB3111FIR101

Transfers the contents of R into the specified FIR. Clears bits 1 to

11 of R to O so that bits 1 to 6 of the specified FIR will be O.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

3-105 Second Edition

INSTRUCTION SETS GUIDE

Note

The TRFL instruction allows you to load the specified FIR with
a value camputed at execution time. The maximum allowable
integer you can load is 2**20. This number is 21 bits wide and
equals the number of bits in a 64K segment.

P TSTQ r,address
Test Queue
011000RB31000100
AP\32

The address pointer in this instruction points to the QCB of a dueue.
This instruction tests the referenced queue and sets r to equal the
number of items in the queue. Sets the condition codes to EQ when the
queue is empty. If the queue is not empty, the instruction sets the
condition codes to NE. Leaves the values of CBIT and LINK unchanged.

Second Edition 3-106

I MOCE

P WAIT address
Wait
0000000011001101
AP\32

The address pointer in this instruction points to a 16-bit semaphore
counter, C. The instruction increments C. If C is greater than O,
either the resource is not available, or the event has not occurred.
Removes the PCB from the ready list, suspending the process, and adds
it to the wait list associated with the semaphore. It then makes the
register set available, turns off the process timer, and goes to the
dispatcher to find another process to run. The dispatcher enables
interrupts.

If C is less than or equal to 0O, the currently executing process
continues.

If the instruction places the PCB on the wait 1ist, no general
registers are saved. This means that a process cannot depend on these
registers to be intact after this instruction occurs. This instruction
potentially clears the general, floating, and XB registers.

Leaves CBIT, LINK, and the condition codes unchanged.

For more information about semaphores, the dispatcher, PCBs, and wait
lists, refer to Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

3-107 Second Edition

INSTRUCTION SETS GUIDE

P> X R,address
Exclusive CR Fullword
100011DIR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Performs an exclusive OR of the
contents of the specified R with the 32-bit value contained in the
location specified by EA. Stores the result in the specified R.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p xaD
Decimal Add
0000001001000000

Performs a decimal arithmetic operation under control of FARO, FARI,
and GR2.

FARO contains the address of field 1. FARl contains the address of
field 2. GR2 contains the control word; fields B and C of the control
word specify the decimal operation to be performed, as shown in Table
3-13.

Table 3-13
XAD Decimal Operations

B | CB | Operation | Destination

! |
| !
I 01 0O | +F1+F2 I F2 I
| | | | !
01 1 1| +F1-F2 I Fo !
| ! | I |
I'1 10 | -F1+F2 | F2 !
! | | | |
1111 | -F1-FQ I FR I

The scale differential field in the control word specifies the
difference in the decimal point alignment between F1 and F2, as
follows:

Second Edition 3-108

I MODE

SD Relation of F1 and F2
SD>0 Fl1 > F2
SD=0 Fl =F2
SD<0 Fl <F2

If the T bit is set to 1, the results are forced positive. If the add
operation results in an overflow, a decimal exception occurs. If no
overflow occurs, the XAD instruction resets CBIT to O to indicate
success.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

The registers used are GRO, GR1, GR3, GR4, GRS, FARO, FAR]1, FLRO, and
FIR1. At the end of the instruction, the contents of these registers
are indeterminate. The value of LINK is also indeterminate. The
condition codes reflect the state of F2 after the decimal operation.

(See Appendix A.)

P XBID
Binary to Decimal Conversion
0000001001100101

Converts a binary number to a decimal number. FARO contains the
decimal field address. GR2 contains the control word. This
instruction uses fields A, E, and H of the control word. H specifies
the length of the binary number and its location, as follows:

H Length Location
0 16 bits GR3 register, high side
1 32 bits GR3 register

2 64 bits DAC1 register

Converts the specified binary integer to a decimal integer and stores
the result in the location specified by FARO. Ieaves the values of
LINK indeterminate. Overflow results in a decimal exception. If no
overflow occurs, resets CBIT to 0. The values of the condition codes
are indeterminate.

The registers used are GRO, GR1, GR3, GR4, GRS, FARO, and FIRO. At the
instruction’s end, the contents of the registers are indeterminate.

3-109 Second Edition

When the source register contains all zeros, the destination register
will contain all zeros.

If a decimal exception occurs and bit 11 of the keys contains & 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note
The XBTD instruction does not use or modify FAR1, FIR1, or
FACL.
P xeM

Decimal Compare
0000001001000010

Compares two decimal numbers and sets the condition codes depending on
the result of +the compare. Uses the G field of the control field to
adjust the two numbers before the compare, as follows:

G Field Decision

>0 Low-order digits of Fl1 only affect the initial
borrow from the low-order digit of F2.

<0 Assume Fl1 is zero-extended with low zeros.

FARO contains the address of field 1 (F1). FAR1 contains the address
of field 2 (FR). GR2 contains the control word. This instruction uses
fields A, B, C, E, F, G, and H of the control word.

The registers used are GRO, GRl, GR3, GR4, GRG, FIRO, and FIR1. At the
end of this instruction, the contents of these registers are
indeterminate. When there is no decimal exception, CBIT is reset to O.
(This instruction cannot cause a decimal exception.) Leaves the value
of LINK indeterminate. The condition codes reflect the result of the
comparison, as follows.

cC Test Result
GT F2 > Fl
BQ F2 = F1
T F2 < Fl

Second Edition 3-110

I MODE

P xoTB
Decimal to Binary Conversion
0000001001100110

Converts a decimal string to a binary string. FARO contains the
address of the decimal string. GR2 contains the control word.

This instruction uses the A, E, and H fields. Field H specifies the
length of the binary string and its location, as shown below.

H Length Destination Register
00 16 bits GR2H

01 32 bits GR2

10 64 bits GR2/GR3

Converts the decimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. If no decimal exception occurs, the instruction
sets CBIT to O. The values of LINK and the condition codes are
indeterminate.

The registers used are GRO, GR1, GR3, GR4, GR6, FARO, and FIRO. At the
end of the instruction, the contents of these registers are
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
Sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FLR1l, or FACl.

p xov
Decimal Divide
0000001001000111

Divides a decimal number, D2, by another, D1, and stores the quotient
and remainder in the location of IR.

FARO contains the address of D1. FAR1 contains the address of DR2. L

contains the control word. This instruction uses fields A, B, C, E, F,
and H.

3-111 Second Edition

TNSTDUCTTION SETS GO

VAT e de WA\ e che AR Y - _—

Both decimal numbers must be in trailing sign embedded format. In
addition, D2 must contain a number of leading zeros equal to the length
of Dl.

The XDV instruction divides the two numbers. After the divide, the
location of D2 contains the quotient of length (D2 length - D1 length)
followed by the remainder of length (D1 length). Since D2 had leading
zeros, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

The registers used are GRO, GR1l, GR3, GR4, GRG, FARO, FARl, FIRO, and
FIR1. At the end of the instructions, the contents of these registers
are indeterminate.

At the end of the instruction, the condition codes, LINK, FARO, and
FAR]1 contain undefined results. If no overflow occurs, CBIT is reset
to O.

If DI is O, overflow occurs and causes a decimal exception. Decimal
exceptions also occur if D1 or D2 has the incorrect data type or if the
length of D2 is less than that of D1. If no decimal exception occurs,
the instruction resets CBIT to O.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes & decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

P x@
Numeric Edit
0000001001001010

Edits the contents of a string under control of a subprogram. The
registers used are GR2, XB, FARO, FAR1, and FIRO. At the end of the
instruction, the contents of these registers and the CBIT, LINK, and
condition codes are indeterminate.

FARO contains the address of the source string. The source string must
be leading separate sign type and must have at least the same number of
decimal digits and the decimal point alignment as called for in the
edit subprogram.

FAR] contains the address of the destination string. Bits 1 to 8 of
GR2 contain the floating character; bits 9@ to 16, the status register.
Bits 17 to 24 of GR2 contain the number of remaining bytes to be
processed (used if a fault or interrupt occurs). Bits 25 to 32 of GRR
contain the suppression character whose initial value is determined by
bit 12 of the keys ('240 if bit 12 contains O; ‘40 if bit 12 contains
1). XB contains the address of the edit subprogram.

Second Edition 3-112

I MODE

The instruction uses an edit subprogram to alter a source string and
Store the edit result in a destination location(s). To set up, perform
a decimal move to correct the type, alignment, and length of the number
to be edited. ©Next, use a LCEQ instruction to set up the initial
contents of the register.

Each 16-bit halfword in the edit subprogram has the format shown in
Figure 3-4, where:

L is 1 if this 16-bit halfword is the last halfword
in the subprogram,
O if it is not the last halfword;
E is a suboperator;
M is a suboperator modifier.

1 2 34 89 16

I'L 1 00 | E | M [

Edit Subprogram Halfword Format
Figure 34

The XED instruction uses several variables internally to control the
edit subprogram. These are shown in Table 3-14. There are 17 edit
suboperators, shown in Table 3-15.

3-113 Second Edition

TNSTDITTON SETS CITTNRE
b and e N N bt

VAT ke h VIS e ! .

s

Table 3-14
XFD Internal Variables

Var | Definition

_——— - == =

| Zero suppression character; contained in B. Initial
| value is the space character ('240 or '40 if bit 12
| of the keys contains 0 or 1, respectively).
FC | Floating edit character; contained in GR2. Initial
I value is not defined.
| Sign of the source field. The first character fetch
| sets up the value of this variable.
| End zero suppression flag.

Table 3-15
XED Suboperators

| Subop | Mnem | Name and Description

|

I 00 28
! !

| |

I |

! !

| !

| !

| |

I |

! |

| I
()] I IL
| I

I 02 | 8S
| I

I 03 | ICS
I I

| |

[|

I 04 | ID
! !

I |

I !

I |

I I

! !

! I

I |

| I

[
|
Zero Suppress. Fetches M digits from the source |
field comsecutively, each time checking SIG. If |
SIG is 1, copies the digit into the destination |
string. If SIG is O and the digit is not O, [
inserts the floating character (if defined) |
and copies the digit into the destination field. |
If SIG is O, the digit is not O, and the |
floating character is not defined, sets the SIG |
flag and copies the digit into the destination. |
If SIG and the digit are both O, substitutes |
SC for the O digit in the destination field. [
Insert Literal. Copies M into the |
destination string. Increments XB and FAR1 by 1.
Set Suppress Character. Sets SC to M and |
increments XB by 1. I
Insert Character. If SIG is 1, copies M into the |
destination string. If SIG is O, copies SC into |
the destination string. Increments XB and FAR1 |
by 1. |
Insert Digits. If SIG is O, and FC is defined, l
copies FC and M digits into the destination field!
then sets SIG to 1. Increments XB by 1, FARO by |
M, and FAR] by M+l. If SIG is O and FC is not |
defined, sets SIG to 1 and copies M digits from |
the source to the destination. Increments XB by |
1 and both FARO and FAR1 by M. If SIG is 1, |
copies M digits from the source to the |
destination and increments XB by 1 and both FARO |
and FAR1 by M. |

Second Edition

3-114

I MODE

Table 3-15 (continued)
XED Suboperators

Mnem | Name and Description
IcM

[
I
| Insert Character if Minus. If SIGN = O, copies [
I M into the destination string. If SIGN = 1, !
| copies SC into the destination string. |
| Increments both SB and FAR1 by 1. |
ICP | Insert Character if Plus. If SIGN = O, copies M |
| into the destination string. If SIGN =1, [
I copies SC into the destination string. [
| Increments both SB and FARL by 1. |
| Set Floating Character. Sets FC to M and l
I increments XB by 1. [
| Set Floating if Plus. If SIGN = 0, sets FC to M. |
[If SIGN = 1, FC to SC. Increments XB by 1. |
| Set Floating if Minus. If SIGN = 1, sets FC to M. |
I If SIGN = O, sets FC to SC. Increments XB by 1. |
| Set Floating to SIGN. If SIGN = O, sets FC to |
! '283. If SIGN = 1, sets FC to ‘255. Increments |
I XB by 1. |
| Jump if Zero. If the condition flag in A = O, |
| increments XB by 1. If the condition flag in A |
I =1, adds M to XB and then increments XB by 1. I
FS | Fill with Suppression Characters. Copies SC I
I M times into the destination string. Increments |
I XB by 1 and FAR] by M. |
| Set Significance. If SIG = 0 and FC <> 0, inserts |
I FC into the destination string, sets SIG to 1, [
I and increments XB and FARL by 1. If SIG = O and |
I FC =0, sets SIG to 1 and increments XB and FAR1 |
I by 1. If SIG =1, increments XB by 1. [
| Insert Sign. If SIGN = O, copies ‘253 into the [
| destination string. If SIGN = 1, copies ‘255 |
| into the destination string. Increments XB by 1.
| Suppress Digits. Fetches M digits from the source |
| string and checks if they are '260. If the sourcel
I digit = ‘260, inserts SC into the destination |
I string. If the source digit <> ‘260, copies the
I source digit into the destination string.
|
|
|
|
|
|
1
[

IS

[
|
Increments XB by 1 and both FARO and FARl by M. |
Embed Sign. Fetches M digits from the source [
string. If SIGN = O, copies each digit into the |
destination string. If SIGN = 1, embeds a minus |
sign into each digit before copying it into the |
destination string. Table 6-15 shows the l
characters used to represent the sign/digit [
combinations. A } symbol represents negative 0. |

3-115 Second Edition

TAICNTIITIAMT/ AT OTINMC FATTTTYD
LA LIVULL LAY DL GVl

P> XH r,address
Exclusive OR Halfword
10101 1IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16 |

Calculates an effective address, FA. Performs an exclusive OR of the
contents of the specified r with the 16-bit value contained in the
location specified by EA. Stores the result in r. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p xMP
Decimal Multiply
0000001001000100

Multiplies one decimal number, M, by another, D1, and stores the result
in D2's location in memory. M is right justified in field DR at the
start of the operation.

FARO contains the address of D1. FARl contains the address of DR. GR2
contains the control word; this instruction uses fields A, B, C, E, F,
G, H, and T. Field G, the scale differential, must contain the number
of decimal digits in M.

The number of decimal digits in DR is greater than or equal to the
number of decimal digits in D1 plus the number of decimal digits in M
(specified by G). Normally, the digits to the left (more significant
side) of M are zeros. If this is not the case, then a partial product
field is added in.

The instruction multiplies M by Dl and stores the result in the
location specified by FAR1. The result of the multiply is:

Dl x M + partial product field
The partial product field is equal to:
length(D2) - M.

The partial product field is left justified in DR‘'s location. The
meximm partial product added in per traverse of the multiplicand is:

source digits + multiplier digits processed

Second Edition 3-116

I MODE

There is also an implied weighting of the partial product field. The
weighting is:

10 ** multiplier digits

If the T bit contains a 1, the results are forced positive.

The registers used are GRO, GR1l, GR3, GR4, GRG, FARO, FARl, and XB. At
the end of this instruction, the contents of these registers are
indeterminate. At the end of the XMP instruction, the condition codes
reflect the state of the result. (See Appendix A.) Overflow causes a
decimal exception. If no overflow occurs, XMP resets CBIT to 0. LINK
contains undefined results.

A decimal exoeption occurs if there are more potential or actual
product digits than there is space in DR. If a decimal exception
occurs and bit 11 of the keys contains a 0, the instruction sets CBIT
to 1. If bit 11 contains a 1, the instruction sets CBIT to 1 and
causes a decimal exoeption fault. See Chapter 10 of the System
Architecture Reference Guide for more information.

p v
Decimal Move
0000001001000001

Moves a string of characters from one location to another.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. GR2 contains the control word.
This instruction uses fields A, B, D, E, F, G, H, and T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, the instruction changes the sign of the source field during
the move. TIf the D field in the control word is 1 and the scale
differential is greater than O, the instruction rounds the source field
during the move. If the scale differential (from the H field) is less
than O, the instruction pads the source field with SD trailing zeros
before transferring.

If the T bit is set to 1, the result will be forced positive.

An overflow causes a decimal exception. If no decimal exception
occurs, the instruction resets CBIT to 0. At the end of the
instruction, LINK, FARO, and FARl1 contain undefined results. The
values of the condition codes reflect the state of the destination
field after the move. (See Appendix A.)

3-117 Second Edition

INSTRUCTICN SETS GUIDE

If a decimal exception occurs and bit 11 of the keys contains a O, the
XMV instruction sets CBIT to 1. If Dbit 11 contains a 1, the
instruction sets CBIT to 1 and causes a decimal exception fault. See
Chapter 10 of the System Architecture Reference Guide for more
information about decimal exceptions.

Note

The source ard destination strings may not overlap in memory.

Second Edition 3-118

I MODE

> zoM
Compare Character Field
0000001001001111

Compares two fields and sets the comdition codes depending on the
result of the compare. Uses registers GR3, GR4, FARO, FARI, FIRO, and
FIR1. At the end of this instruction, the contents of these registers
are indeterminate.

FARO contains the address of field 1 (F1). FIRO contains an integer
specifying the length of F1. FARl contains the address of field 2
(F2). FIR] contains an integer specifying the length of F2.

The instruction compares the contents of F1 and F2 on a byte by byte
besis. If the fields are not of equal length, the instruction
automatically extends the shorter string with space characters. Sets
the condition codes as a result of the comparison, as follows:

Result of Compare Set Condition Codes

F1 > F2 GT
F1 = F2 R
Fl1 < F2 LT

When the instruction completes execution, the values of CBIT and IINK
are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any date contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

P 2D
Character Field Edit
0000001001001 001

Controls an edit subprogram.

Uses the registers GR3, GR4, FARO, FAR1, and FLRO. At the end of this
instruction the contents of these registers are indeterminate. ILeaves
the values of CBIT, LINK, and the condition codes indeterminate.

FARO contains the address of the source string. FIRO specifies the
length of the source string. FARl contains the address of the

3-119 Second Edition

INSTRUCTION SETS GUILE

destination string. XB contains the address of the edit subprogram.

The ZED instruction uses the edit subprogram to alter the source
string, then loads the edited result into the destination string. The
subprogram, addressed by the contents of XB, contains a list of
commands, each with the format shown in Figure 3-5, where:

L is 1 if this command is the last command in the subprogram,
0 if it is not;

E is the edit opcode;

M is the edit modifier.

1 2 6 7 8 9 16

I L1 00000 ¢ E | M !

ZED Subprogram Word Format
Figure 3-5

Bits 2 to 6 must be O.

M, the operator modifier, specifies information E uses when editing the
source string. (See Table 3-16.)

E, the edit suboperator, specifies the operation to be performed on the
source string. Table 3-16 shows the available values for E.

Second Edition 3-120

I MODE

Table 3-16
ZED Suboperators

I Subop | Value | Action

CPC 00 | Copies characters from the source string into the
| destination string. If the length of the source
| string is greater than the contents of the M field,
| then CPC moves a total of M source characters into
| the destination string, increments FARO and FAR1 by
| by M, increments XB by 1, and decrements FILRO by M.
| If the length of the source string is less than the
| the contents of the M field, then CPC moves the
| rest of the source string into the destination
| string, and then pads the remaining space to be
I filled with spaces. (See note.) Increments FARO
| by FIRO and FAR1 by M, increments XB by 1, and
| and decrements FIRO by FIRO (so FIRO = 0).
|
INL 01 | Inserts M into the destination string and
| increments both XB and FAR1 by 1.
|
SKC 10 | Skips characters in the source string. If the
| remaining length of the source string is greater
| than or equal to the contents of the M field, then
| SKC skips over the next M characters of the source
| field by incrementing FARO by M and decrementing
| FIRO by M. If the remaining length of the source
| string is less than the contents of the M field,
| SKC skips over FLRO characters in the source string
| by incrementing FARO by FLRO and decrementing FIRO
| by FIRO (FIRO = 0). In either case, SKC increments
l
|
|
[
|

XB by 1.

Inserts M spaces (see note) into the destination
string, increments FAR1 by M, and increments XB

by 1.

BIK 11

I
| |
I |
I I
I I
I I
I I
| !
] I
| !
! |
| |
I I
| |
| !
! I
! I
| !
! I
| !
| |
1 |
i !
[I
| I
| !
| I
I I
I !
| I
| I
| I
I !

Note

A space is ‘240 or ‘40, depending on whether bit 12 of the keys
is O or 1. This instruction uses GR3, GR4, the FARs, and the
FIRs during its operation. Since ZED does not save the
contents of these registers before using them, any data
contained in them is overwritten when this instruction
executes, unless you save it ahead of time.

3-121 Second Edition

TAICITMITINT AT QTANG FTTTTYD
LAVOLOVUVLL LAY D1y JVLL

p ZFIL
Fill Field with Character
0000001001001 110

Stores a character into a series of destination bytes. Uses registers
GR3, GR4, FARO, FAR1, FIRO, and FIRl. At the end of this instruction,
the contents of these registers are indeterminate.

Bits 9 to 168 of GR2 contain the character to be stored. FAR1l contains
the starting address of the destination field (byte aligned). FIR1
contains an integer specifying the length of the destination field (in

bytes).

The instruction stores the character specified in GR2 in each byte of
the destination field. If FIR1 contains O, no operation takes place.
leaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

P> 2M address
Zero Memory Fullword
100110011 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. ILoads O into the 32-bit location
specified by EA. lLeaves the values of CBIT, LINK, and the condition
codes unchanged.

P 2MH address
Zero Memory Halfword
101110011 T2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. ILoads O into the 16-bit location

specified by EA. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

Second Edition 3-122

I MODE

> v
Move Character Field
0000001001 001100

Moves a character field from one location to another. Uses registers
GR3, GR4, FARO, FAR1, FIRO, and FIR1. At the end of this instruction,
the contents of these registers are indeterminate.

FARO contains the address of the source string (byte aligned). FIRO
specifies the length in bytes, N, of the source string. FAR1 contains
the address of the destination string (byte aligned). FIR1 specifies
the length in bytes, M, of the destination string.

Compares N and M. If N is less than M, the instruction moves the
contents of the source string into the destination string followed by
M-N space characters. A space character is ‘240 or ‘40 when bit 12 of
the keys is O or 1, respectively. If the destination string is
shorter, the instruction moves the first M characters of the source
string into the destination string.

¥When the instruction completes, the values of FARO, FAR1, FLRO, FIR1,
CBIT, LINK, and the condition codes are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since 2ZMV does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

This instruction does not work with overlapping strings. See
Chapter 6 of the System Architecture Reference Guide for more
information.

P zMvD
Move Characters Between Equal Length Strings
0000001001001101

Moves characters from one string to another of equal length. Uses
registers GR3, GR4, FARO, FARl, FIRO, and FIRl. At the end of this
instruction, the contents of these registers are indeterminate.

FARD contains the address of the source string. FARl contains the
address of the destination string. FIRl contains the number of
characters to move, N.

The instruction moves N characters from the source string to the

destination string. Characters are moved from lower addresses to
higher addresses.

3-123 Second Edition

TNCTDT ST TON S’E'T‘Q CITTNE

e VAT e e VNS NS e e A Y ded e B NA

When the ZMVD instruction completes, the values of FARO, FARl, FIRO,
FIR1, CBIT, LINK, and the condition codes are indeterminate.

Note

The ZMVD instruction uses GR3, GR4, the FARs, and the FIRs
during its operation. Since ZMVD does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time.

This instruction does not work with overlapping strings. See
Chapter 6 of the System Architecture Reference Guide for more
information.

P> ZTRN
Character String Translate
0000001001001000

Translates a string of characters and stores the translations in the
specified destination. Uses registers GR3, GR4, FARD, FAR], FIRO, and
FIR1l. At the end of this instruction, the contents of these registers
are indeterminate.

FARO contains the address of the source string (byte aligned). FAR1
contains the address of the destination string (byte aligned). FIRL
specifies the length of the source and destination strings. XB
contains the address of a translation table. Each byte in the 256-byte
table contains an alphabetic character.

The instruction uses the address in FARO to reference a character. It
interprets this character as an integer, adding it to the contents of
XB to form an address into the translation table. The instruction
takes the referenced character in the translation table and writes it
into the location specified by FAR1l. After storing the character, the
instruction increments the contents of FARO and FARlL by 1, decrements
the contents of FIRl by 1, and repeats the operation until FIR1
contains O.

At the end of the instruction, FARO and FAR1 point to the location that
follows the last byte of the source and destination strings,
respectively. FLR1 contains 0. ILeaves the values of XB, CBIT, LINK,
and the condition codes unchanged.

Second Edition 3-124

I MODE

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

3-125 Second Edition

APPENDICES

Condition Code

Information

Bits 9-10 of the keys contain the condition codes. Many arithmetic,
branch, skip, jump, and other instructions set these bits to indicate
the result of a test (result is less than O, for example), to indicate
whether a value is positive or negative, and so on. Other instructions
use the condition code values as Boolean values. The instruction
entries in Chapters 2 and 3 of this manual also describe how an
instruction affects the state of these bits.

The LT condition code (bit 9 of the keys) contains the extended sign
for arithmetic and comparison operations. The extended sign is the
sign of the result as if the operation had been done on a machine of
infinite precision; thus, LT shows the correct sign of the result
despite any overflow. For logic operations, LT reflects the sign of
the result.

The BQ condition code (bit 10 of the keys) shows whether or not a 16-
or 32-bit result is equal to O.

Table A-1 shows condition code interpretation for comparison,
arithmetic, and logic operations.

A-1 Second Edition

TATOTMTIAMT/ T OTING ATTTTYD
LINOLINVULLLUIN O0L0 Guvilin

Table A-1

Interpretation of Condition Codes

I
I
|
I
I
I
|
i
i
I
|
|
I
I
I
!
f
I
I
[
!

1T, 1) | | |
Value | Comparison | Arithmetic | Logic
00 | Register >0 | Signed result > 0O | Result <> O,
| Register > EA | Unsigned result <> 0 | High-order bit =
| Reg 1 > Reg 2 | |
+ + ————%
01 | Register =0 i Result = O i Result = O,
| Register = EA | | High-order bit =
| Reg 1 = Reg 2 | [
10 | Register <O Result < O | Result <> 0O,
| Register < EA | High-order bit =
| Reg 1 < Reg 2 |
11 | Not working Possible if largest Not working
|
|
[
|
|

added to itself.
(CBIT is set to 1
as well, to

I
negative number is |
|
[
[
indicate overflow.) |

Second Edition

Addressing

Information

As noted in Chapter 1, the 50 Series processors support several kinds
of addressing: direct addressing, indexed addressing, indirect
addressing, indirect indexed addressing, and general register relative
addressing. In addition, these processors also have several modes of
addressing, each of which forms addresses differently.

ATTRESSING MODES AND FORMATS

The addressing modes are listed below. Their formats and address
formation are supplied in this Appendix.

® 64V Mode, Short Form

® 64V Mode, Long Form and Indirect Form
® 321 Mode

® 32R Mode

® O©64R Mode

® 16S Mode

® 325 Mode

Address trap information is also provided at the end of this Apperdix.

B-1 Second Edition

VA ek VAT N e et Y e e

64V Mode Short Form

Figure B-1 and Table B-1 display and explain 64V mode short form
instructions.

1 2 3 6 7 8 16

I T 1 X1 OP I S| DISPLACEMENT !

Instruction Format

| ATTRESS l

Indirect Pointer Format

64V Mode Formats, Short Form
Figure B-1

Table B-1
64V Mode Short Form Summary

t I 1 X1 S| Disp | Inst Type | Example | Form of EA |
| [
0101 01 O-'7@ | Direct | IDA ATR | RBEG |
l ! | | '10-'377 | Direct | | SB+D [
l [| | '400-'7?77 | Direct@@ | | LB+D |
0ot 11 0| O-'7@ | Indexed | IDA ATR,X | REG, if D+X<'7;@ |
i | I i | | | SB+D+X, if D+X>'7@ |
| | | | '10-'377 | Indexed | | SB+D+X [
[[1 | '400-'7?7 | Indexed@@ | | LB+D+X |
1110101 O-'7@ | Indirect | LDA AIR,* | I(REG) [
I | 1 b '10-'77? | Indirect 1 | I(PB+D) [
111101 O-'7 | Indirect, | LDA AIR,X* | I(REG), if D+X<'%7;@!
I N | preindexed | | I(PB+D+X), [
| | | | [I I if D+X>'7@ |
[! [| ‘10-'?? | Indirect, ! IDA ATR,X* | I(PB+D+X) I
| | I | | preindexed | | |
| | | | "100-'777 | Indirect, | LDA ATR,*1 | I(PB+D)+X [
n [[| | postindexed ! | |
I O1 O 1 |'-340-'+377| Direct | IDA ATR | P+D I
01 11 1 1'-380-'+377! Indexed | ILDA AIR,1 | P+D+X I
1101 1 1'-340-'+377! Indirect | IDA AIR,* | I(P+D) [
11111 1 '-340-'+3771 Indirect, | IDA ATR,1* | I(P+D+X) [
| | [a | | [

| preindexed

Second Edition B-2

AIDRESSING INFORMATION

Notes to Table B-1

@ This table assumes segmented mode (modals bit 14 = 1). For
nonsegmented mode, the displacement range is O to ‘37,
rather than O to ‘7. This means that the range ‘10 to ‘377
changes to ‘40 to '377 in nonsegmented mode. The range ‘400
to ‘777 remains unchanged.

@ In these address forms, the displacement offsets the
contents of IB by ‘400 (bit 8=1). To compensate for this,
set the contents of LB to the current value of the 1link
frame minus ‘400. For example, if the segment number in 1B
is ‘4002 and the offset number in the displacement is
177400, the offset of ‘400 gives the location of the link
frame as segment number ‘4002, offset number O.

This mode allows one level of indexing, and one of indirection.

REG refers to a location in the register file. See Address
Traps at the end of this chapter.

The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, STX, and STY

do not do indexing. The effective address is formed as if
bit 2 = 0.

B-3 Second Edition

TAICOMTIINTAT CTOMG 71T e
AAVDLOWAL L AVAY DLIL D AV debAl

64V Mode, Long Form and Indirect Form

Figure B-2 and Table B2 display and explain 64V mode long and indirect
form instructions.

1 2 3 6 7 111213141516 17 32

' T 1 X1 OP 111000 | Y | XX | BR | DISP |

33 48

I AUGMENT COCE* [

Instruction Format

1 2 3 4 5 16 17 32

| F 1 RING | O | SEGMENT | OFFSET I

32-bit Indirect Pointer Format

1 2 3 4 5 16 17 32 33 36 37 48

| P | RING | 1 | SEGMENT | OFFSET | BIT# | RESERVED |

!
|
I
|
!
|
I
|
|
I
|
|
|
I
!
|
|
|
|
!
i
I
I
|
|
f
|
48-bit Indirect Pointer Format** !
I

* For quad operations only.

** This indirect format is used only by a few instructions;
most use the 32-bit form.

64V Mode Formats, Long Form and Indirect Form
Figure B-2

Second Edition B4

ATTRESSING INFORMATION

Table B-2
64V Mode Long Form, Indirect Summary

I 1 X1 Y| BRI Instruction Type ! Example | Form of EA |
!

O1'01 01 OO0 | Direct | ILDA ATR | PB/D |
| I I 01 | | | SB+D |

| I I 10 | [| ILB+D |

[I I 11 1 I | XB+D |
OIOIIIOOIIndmcedbyY | IDA ATR,Y | PB/D+Y f
| | I 01 | | | SB+D+Y [

l | I 10 | | | IB+D+Y [

[! 11 1 [| XB+D+Y |
011101 00! Indexed by X | LDA ATR,X | PB/D+X [
| I I O | | | SB+D+X l

| | I 10 | [| ILB+D+X |

| l 111 | | XB+D+X [
O11 111 00! Indirect | ILDA AIR, * | I(PB/D) |
[| | 01 | [I T(SB+D) |

| [I 10 | [I I(LB+D) |

[[I 11 | | I I(XB+D) I
110101 00! Preindexed by Y | LDA AIR,Y* | I(PB/D+Y) |
[| I 01 | | | I(SB+D+Y) |

| [I 10 | [| I(LB+D+Y) |

| 1 I 11 | [I T(XB+D+Y) |
110111001 Postindexed by Y | IDA ATR,*Y | I(PB/D)+Y |
| [I 01 | | I I(SB+D)+Y |

! [I 10 | [I I(IB+D)+Y |

| | I 11 | | | I(XB+D)+Y |
111101 00! Preindexed by X | LDA AIR,X* I I(PB/D+X) |
| | I 01 | | I T(SB+D+X) [

[| I 10 | | | I(LB+D+X) [

[| | 11 | [I I(XB+D+X) [
11111100 Postindexed by X | IDA ATR,*X | I(PB/D)+X |
[| I 01 | | I I(SB+D)+X |

| [| 10 | | | I(IB+D)+X |

| | P11 | | | I(XB+D)+X |

Notes to Table B-2

The processor performs X and Y indexing and 32-bit word
(inter-segment) indirection.

PB/D indicates that the displacement is relative to the origin
of PB. PB specifies the segment number (the offset must be 0);
the displacement specifies the offset.

All displacements are within the range O to '1v777v.

B-5 Second Edition

TATOITMTIAIMTAAT QI3NG FTTTTYR
LINOLANVULL LUAY DOl aviiw

The instructions DFLX, FLX, JSX, LOX, LDY, QFLX, STX, and STY
do not do indexing. The effective address is formed as shown
in Table B-3. Bit 2, the X bit, is used as part of the opcode
in these instructions.

Table B-3
Address Formation for Nonindexing Instructions

HORO~RORO =

[

Instruction Type !

|
Direct !
Direct |
Direct |
Direct |
I(A) {
I(A) l
I(a) I
I(A) l

HHREFR~RO00O0
HHOORFLOO b4

Notes to Table B-3

For the earlier processors listed in “About This Book", see
Apperdix B for information on their address formation for
nonindexing instructions.

The symbol A in Table B-3 represents the value calculated from

the base register (PB, SB, LB, or XB) and displacement in the
instruction.

Second Edition B-6

AITRESSING INFORMATION

321 Mode

Figure B-3 and Table B4 display and explain 32I mode instructions.

1 67 910 1112 14 15 16 17 32

Il OP | DR | T™ | SR | BR | DISPLACEMENT |

Instruction Format*

1 2 3 4 5 16 17 32

I'F I RING | O | SEGMENT | OFFSET |

Indirect Pointer Format (Short Form)

1 2 3 4 5 16 17 32 33 36 37 48

I'F 1 RING | 1 | SEGMENT | OFFSET | BIT# | RESERVED |

Indirect Pointer Format (Long Form)

I'F I RING | B | SEGMENT | OFFSET |

C Language Pointer**

1 16 17 3R

I INSTRUCTION BITS 17 TO 32 I ZERCES |

Immediate Type 1***
1 16 17 32

| SIGN EXTENSION | INSTRUCTION BITS 17 TO 32 I

Immediate Type 2***
1 89 56 57 64

I BITS 17 TO 24 | ZERCES I BITS 25 TO 32 |

I
|
!
|
!
|
I
I
|
!
I
I
!
|
I
!
I
I
|
I
!
I
| 1 2 3 4 5 16 17 32
!
!
!
I
I
I
|
!
[
!
|
I
I
!
I
!
I
|
I
I
J
[

Immediate Type 3 (Floating Point)***, **xx

321 Mode Formats
Figure B-3

B-7 Second Edition

TATCUTMITIAMT/AAT QOTANG ATTTTYD
ANOLIVWWLLLLLY DGLY Uvilln

%

X %

X % %

X %%

Notes to Figure B-3

TM is the tag modifier which, in combination with the &SR
and BR fields, specifies the instruction type.

The C language pointer is not available for the earlier
processors listed in "About This Book".

The instruction specifies the immediate type to use.
During instruction execution, the processor forms the
immediate in the appropriate format and stores it
internally for use in the operation as shown in Figure B-3.

Bits 1 to 8 of Immediate Type 3 are formed from I mode
instruction bits 17 to 24; bits 57 to 64 from I mode
instruction bits 25 to 32.

Table B4
321 Mode Summary

| BR | Instruction Type | EA (Segment)! EA (Offset)

(@) 0OO00O0O0OHFHFDMDUW é

(@]

Indirect

Indirect postindexed
Indirect

Indirect preindexed
Direct

Indexed
Register-to-register
Immediate type 1
Immediate type 2

| I(5 to 16)
|
|
!
|
[
[
|
|
Immediate type 3 | —=
[
|
!
I
|
l
|
[
l
|

I(5 to 18)
I(5 to 168)
I(5 to 18)
BrR(5 to 16)
BR(5 to 16)

I(D+BR)

I(D+BR)
I(D+BR+SRH)
D+BR
D+BR+SRH

2

» modboT%0%0%0 | 8
0

|

[

|

]

I

|

|

|

I

|

| Floating register

| source (FRO)

| Undefined; generates

| UII (unimplemented

| instruction) fault

| Floating register

| source (FR1)

| Undefined; generates

| UII fault

| General register

| relative (undefined |
| for the earlier |
| processors listed inl
| "About This Book") |

)

2

(v}

x
I
|
|
|
|
|
1
|
|
|
|
—_— | ———

|
|
|
|
|
|
SR(5 to 16) |
!

|

|

|

Note to Table B4

(I(D+ER))+SRH

ADDRESSING INFORMATION

32R Mode
Figure B-4 and Table B-5 display and explain 32R mode instructions.

1 2 3 6 7 8 16

I'T 1 X1 OP | S| DISPLACEMENT |

Short Instruction Format

1 2 3 6 7 1213 14 15 16

T X1 OP 11100001 OP | CB |

16-bit Long Instruction Format

1 2 3 6 7 1213 1415 16 17 32

32-bit Long Instruction Format

1 2 16

I ATXRESS I

Indirect Pointer Format

1 2 16

IO AITRESS [

|
|

I

[

!

[

I

I

I

i

|

I

!

|

|

|

|

|

|

I I'T 1 X1 OP 1 110000t OP | CB | DISP |
|

|

|

I

I

{

I

|

I

|

!

|

I

|

|

|

I

[Final Effective Address Format*
[
{

I
[
|
|
!
|
|
I
I
I
[
[
I
!
I
I
!
I
!
I
I
|
I
I
|
l
|
|
I
I
[
|
|
I
|
I
{
[
I
I

32R Mode Formats
Figure B4

B-9 Second Edition

TATAUTITIAINMIT AT QTANQ FATTTTD
INSTRUCTIGIN oEIn Uil

Note to Figure B4

The final form of an effective address in 32R mode is only 15
bits wide. Special hardware exists to truncate the effective

address to this length. The program counter,

however,

is a

full 16 bits wide. Multilevel indirection is a feature of

32R mode.
Table B-5
32R Mode Summary

' T 1 X1 S I CB I Displacement | Instruction Type |Form of EAl
[|
010101 — 1 0 to ‘777 | Direct i O/D f
011101 — | 0 to '7r7 | Indexed | O/D+X I
1110101t —1 0 to '7v7 | Indirect | I(0/D) |
1111101 — | 0 to '77 | Indirect, preindexed | I(O/D+X) |
1111101 — 1| ‘100 to'7r? | Indirect, postindexed I IT(O/D)+X |
010111 — |'-30 to '+377! Direct { P+D |
011111 — 1'-360 to '+377! Indexed | P+D+X I
1110111 — 1'-380 to '+3771 Indirect | I(P+D) |
111111 — 1'-380 to '+377! Indirect postindexed | I(P+D)+X |
0101112 1 e | @Postincrement | SP !
0111112 | —_— | @Postincrement, indirect,! I(SP)+X |
oo | I | postindexed [|
P11 01112 | — | @Postincrement, indirect | I(SP) I
fF 0101113 | — | #Predecrement | SP-1 I
Frotr1i1113 1 — | #Predecrement, indirect, | I(SP-1)+XI
I I | [postindexed | !
11101113 1 — | #Predecrement, indirect | I(SP-1) |
0101110 1 0to '1v7re? | *Direct, long reach I D |
f 0111110 | 0to 1777 | *Indexed, long reach | D+X |
11101110 | 0to '17rrre | *Indirect, long reach I I(D) |
11111110 1 0to 177777 | *Indirect, preindexed, | I(D+X) |
! | [| l [long reach [|
11111112 1| 0to 1777 | *Indirect, postindexed, | I(D)+X |
f I | | I | long reach | I
0101111 1 0to 1777 | *Direct, stack relative | D+SP I
10111111 | 0to ‘17rr? | *Indexed, stack relative | D+SP+X |
11101111 | 0to 177 | *Indirect, stack relativel I(D+SP) |
11111111 1| 0to '177rrr | *Indirect, preindexed | I(D+SP+X)|
[| | | I [stack relative I |
1111113 1| 0to 177777 | *Indirect, postindexed | I(D+SP)+XI
| | | [| [|

stack relative

Second Edition

B-10

ATTRESSING INFORMATION

Notes to Table B-5

* These instruction types use the 32-bit long format shown in
Figure B4.

@ These instruction types use the 16-bit long format shown in
Figure B4. They also increment the contents of SP by 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure B4. They also decrement the contents of SP by 1
during EA formation.

For all instruction types listed above, address traps can occur
when any part of the EA formation results in an address in the
range O to ‘7 (segmented mode) or O to ‘37 (unsegmented mode).
See the end of this chapter for more information.

The processor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector O.

The instructions DFLX, FLX, JSX, LIX, LDY, QFLX, STX, and STY
do not do indexing. The processor treats the X bit as & 0 to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, S, and CB as 0113, the
processor interprets it as 0013.

B-11 Second Edition

TATCNTINT I/ YT T T TTTHR
J—“DL&\W.&J.(}I uua.s G\IM

64R Mode

Figure B-5 and Table B-6 display and explain 64R mode instructions.

1 2 3 6 7 8 16

I T1 X! OP I S DISP (

Short Instruction Format

1 2 3 6 7 12 13 14 15 16

I T1 X1 OP 1110000 OP | CB |

16-bit Long Instruction Format

1 2 3 6 7 12 13 1415 16 17 32

| T 1 X1 OP 1110000 ! OP | CB | DISP |

32-bit Long Instruction Format

| ATDRESS |

I
|
|
i
f
i
|
[
I
|
!
|
|
|
|
!
I
!
|
I
|
!
1
|
i
!
|
f
{
| Indirect Pointer Format*
|

|
!
|
!
|
|
I
I
I
I
!
!
|
|
!
i
!
|
!
I
|
f
I
!
|
|
|
I
|
!
|

*Only a single level of indirection is possible in 64R mode.

64R Mode Formats
Figure B-5

Second Edition B-12

ATTRESSING INFORMATION

Table B-6
64R Mode Summary

I1 X181 CBI Displacement | Instruction Type |Form of EAI
[
OIro0o1 01 — 1 0 to ‘777 | Direct I 0/D l
OI11101 — | 0 to 777 | Indexed | O/D+X |
110101 — 1 0 to 777 | Indirect I I(0/D) |
111101 — | 0 to 77 | Indirect, preindexed | I(O/D+X) |
111101 —1 100 to '777 | Indirect, postindexed I I(O/D)+X |
0O1rorli — 1'-30 to '+377! Direct | P+D |
01111t —1'-360 to '+377! Indexed [P+D+X I
110111 — 1'-380 to '+377! Indirect | I(P+D) I
111111 -—1'-360 to '+3771 Indirect postindexed | I(P+D)+X |
Ororl1i 2 1 - | @Postincrement | SP |
oOr1i1112 1 — | @Postincrement, indirect,! I(SP)+X |
| ! [[! postindexed ! I
1101112 | — | @Postincrement, indirect | I(SP) l
101113 1 — | #Predecrement I SP-1 |
Or11113 1 -— | #Predecrement, indirect, | I(SP-1)+XI
b [[postindexed [|
1101113 | -— | #Predecrement, indirect | I(SP-1) |
0101110 | 0to 177777 | *Direct, long reach I D |
0111110 1 0to 177777 | *Indexed, long reach | D+X |
1101110 1 0to 177777 | *Indirect, long reach I I(D) [
1111110 1 0to 177777 | *Indirect, preindexed, | I(D+X) |
[[| | I long reach | [
1111112 10to 177777 | *Indirect, postindexed, | I(D)+X |
| | | | [long reach I |
0101111 t0to ‘177777 | *Direct, stack relative | D+SP !
0111111 I 0to '17rrr? | *Indexed, stack relative | D+SP+X |
1101111 1 0to 177777 | *Indirect, stack relativel I(D+SP) |
1111111 10to 177777 | *Indirect, preindexed | I(D+SP+X)!|
I | | | t stack relative | |
1111113 1 0to 177777 | *Indirect, postindexed | I(D+SP)+X!

| [I I [|

stack relative

B-13 Second Edition

oD e VA A e Y m e e e

Notes to Table B8

For all the instruction types listed in Table B-6, address
traps can occur when any part of the EA formation results in an
address in the range O to ‘7 (segmented mode) or O to '37
(unsegmented mode). See the end of this chapter for more
information.

* These instruction types use the 32-bit long format shown in
Figure B-5.

@ These instruction types use the 16-bit long format shown in
Figure B-5. They also increment the contents of SP by 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure B-5. They also decrement the contents of SP by 1
during EA formation.

The processor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector O.

The instructions DFIX, FIX, JSX, LIK, LDY, QFLX, STX, and STY
do not do indexing. The processor treats the X bit as a 0 to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, S, and CB as 0113, the
processor interprets it as 0013.

Second Edition B-14

ADTRESSING INFORMATION

16S Mode
Figure B-6 and Table B-7 display and explain 16S mode instructions.

1 2 3 6 7 8 16

I'T1 X1 OP | S| DISPLACEMENT I

Instruction Format

1 2 3 16

Indirect Pointer Format

1 2 3 16

01 O ADTRESS [

Final Effective Address Format

I
I
I
|
!
I
I
I
!
|
I
FPI 1 X | ADDRESS I I
I
|
I
I
I
I
|
I
I
I
|

16S Mode Formats
Figure B6

Note to Figure B-6

The final form of effective addresses in S mode are only 14
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

B-15 Second Edition

TAICHTITIAITAMT OTmMc FTTTT IR
AV LIVULL LVAY VLA avadad

Table B-7
16S Mode Summary
I T1 X1 S| Disp | Instruction Type | Example |EA Form |
l [
01 0t 01 Oto 'v7 | Direct | LDA AR | O/D I
101 0111 Oto '7r7 | Direct | IDA AR { C/D |
1011101 Oto 7 | Indexed | IDA AIR,1 | O/D+X |
011111 Oto 77 | Indexed | IDA ATR,1 | C/D+X |
I'11 0101 Oto 777 | Indirect | ILDA ATR,* | I(O/D) |
i 110111 Oto '777 i Indirect | IDA AIR,* | I(C/D) |
111101 Oto 777 | Indirect preindexed | ILDA AIR,1* | I(D+X) |
111111 Oto 777 | Indirect preindexed | IDA AIR,1* | I(D+X) |

Notes to Table B-7

The processor performs indexing before resolving each level of
indirection.

This mode allows multiple levels of both indexing and
indirection.

The instructions, LK and STX, cannot do indexing. The
effective address is formed as if bit 2 = O.

0/D indicates that the displacement is within Sector 0; C/D,
within the current sector.

Second Edition B-16

ATDRESSTNG INFORMATION

325 Mode
Figure B-7 and Table B-8 display and explain 32S mode instructions.

1 2 3 6 7 8 16

I'T 1 X1 OP | S| DISPLACEMENT [

Instruction Format

Indirect Pointer Format

IO | ADDRESS [

|
|

|

I

|

I

I

|

!

[

{

I I I 1 ATTRESS |
|

I

|

[

I

|

|

I

|

| Final Effective Address Format
[

32S Mode Formats
Figure B-7

Note to Figure B-7

The final form of effective addresses in S mode are only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

B-17 Second Edition

4

INSTRUCTION SEIS GUILE
Table B-8
32S Mode Summary
P I 1T X1 S I Disp | Instruction Type | Example |EA Form |
| [
0101 01 Oto vy | Direct i LDA ATR i 0/D I
0Ot 01 11 Oto '77 | Direct | LDA AR | C/D |
011101 Oto 777 | Indexed | ILDA ATR,1 | O/D+X |
011111 Oto 7?77 | Indexed | LDA AIR,1 | C/D+X |
1110101 Oto 777 | Indirect | IDA AIR,* | I(0O/D) |
110111 Oto 77 ! Indirect | ILDA AIR,* | I(C/D) i
1111101 Oto 77 | Indirect preindexed | LDA AIR,1* | I(D+X) |
1’11110 1100 to ‘777 | Indirect postindexed! LDA AIR,*1 | I(D)+X |
111111 Oto 777 | Indirect postindexed! LDA AR,*1 | I(D)+X |
Notes to Table B-8

The processor performs indexing before resolving each level of

indirection.

This mode allows one level of indexing, and multiple levels of

indirection.

The instructions, ILDX and STX, cannot do indexing. The

effective address is formed as if bit 2 = O.
ATTRESS TRAPS

Several of the summaries in the last section specifyd special cases of
EA formation when the address is within a particular range. This range
of addresses correspords to registers within the current user register
set in the register file. (See Chapter 9 of the System Architecture
Reference Guide.) 1In segmented mode, this range is 'O to '7; in
nonsegmented mode, ‘O to '37. This range of addresses for segmented
and nonsegmented modes is referred to as the ATR, or address trap
range, throughout this section.

The registers within the user register set contain information, such as
general, base, floating-point, and index registers, and system status
and control information. Each time any part of the EA formation
generates an address within the ATR, an address trap aborts any read or
write to a memory location and instead references the specific
register.

"ot o e S e P ey PP P P

Table B-9 summarizes when address +traps occur

addressing and instruction types.

)

Second Edition B-18

AITRESSING INFORMATION

Table B-9

Address Trap Information

Mode | Inst Type |

Action

16S | Memory I
328 | referencel
32R | |
64R |

I
| Generic
I
| Generic AP

I

|

]

]

I

I

]

I
32-bit I
memory |
reference!
]

|

format]
]

]

|

I

|

|

I

|

16-bit
indi |

32-bit

I
I

|

|

I

I

I

|

|

|

I |

| |

| |

| 64V |

| }

| I

I I

| I Short
| {

| I

| |

| I

I I

I !

I | indirect
I [
[

321 | All types

Address trap occurs if the EA falls
within the ATR (address trap range).
The instruction format or length has
no bearing.

Address traps never occur.
Address traps do not occur when the

processor is fetching the address
pointer.

See Table B-10.

Address traps occur if the EA falls
within the ATR.

[
I
I
!
I
!
|
!
|
|
|
|
|
Address traps never occur. |
|
|
[
|
(
I
|
[
I
Address traps never occur. |
|

[

I

Address traps never occur.

When bits 17 to 32 of the program counter contain a value within the
AIR and the processor is reading an instruction, an address trap always
occurs. The only exception to this is if the machine is operating in

321 mode.

When the processor executes short format instructions in 64V mode,
address traps can occur during operand fetches or indirect fetches.
Table B-10 lists the conditions that must be present for an address

trap to occur.

B-19 Second Edition

TATCHTMTIAINTANT OTAXTCY 7 TTTTYND
SAVOD LIV L LUAY VLAY \ VLM
Table B-10

Address Trap Action for Short Format
Instructions, 64V Mode

H
n

Disp | Action

0Oto 'Y
‘10 to ‘37

|

[
| Takes address trap. |
| Takes address trap only if I
| segmentation is off. |
i Cannot take address trap. |
| Takes address trap if EA (P+D) is |
| within the ATR. |
| Takes address trap if D+X is I
| within the ATR. If D+X is |
| oubtside the ATR, the EA is [
| SB (seg #) | D+X (for the 750, |
| 850, and 2350 to 9955 II; or |
| SB (seg #) | D+X+SB (offset #) |
| (for all other machines). [
| Cannot take address trap; EA is |
| SB+D+X (for 750, 850, and I
I |
! |
[[
| |
[I
! !
| |
| I
| |
| [
I !
| |
| I
| |

(ol o]

'40 to ‘377
-'340 to +'377

OO OO o)

(@] [eNa) (oNe)
= O

—

0 to AIR

From ATR to '377

2350 to 9955 II).
All other machines take address
trap if D+X is within the AIR.
Cannot teke address trap.
Takes address trap if EA (P+D+X)
is within the ATR.
Takes address trap if D is
within the ATR.*
Takes address trap if EA
((P+D)) is within the ATR.*
Takes address trap if D<'100 and
D+X is within the ATR.*
Takes address trap if EA (P+D)
is within the ATR.*

‘400 to 77V
-'340 to +'377

0 to '777

o O

-'340 to +'377
O to 'r77

-'340 to +'377

Note to Table B-10

* The indirect address also takes an address trap if EA is
within the AIR.

If an instruction specifies a write operation that could potentially
cause an address trap, the instruction loads the data to be written
into a ‘temporary register. If a trap occurs, the routine aborts the
write to memory. It loads the specified register file location with
the contents of the temporary register.

Second Edition B-20

AITRESSING INFORMATION

If the instruction specifies a read operation that causes an address
trap, the trap routine aborts the memory read and fetches the contents

of a register file location.

The trap routine loads the cache from the
register file data and allows the processor one cache access before
invalidating the cache location.

Table B-11 shows the address trap locations and the registers to which

they correspond.

Chapter 9 of the System Architecture Reference Guide.

Address Trap/Register File Correspondence

Table B-11

For more information on the register file, see

I AT | S and R Modes | V Mode

l

I'0 I X | X

'L 1 A | A, IH

| '2 | B I 1L

'3 1 8 [4

I ‘4 | FACbits 1 to 16 | FAC bits 1 to 16
I ‘5 | FAC bits 17 to 32 | FAC bits 17 to 32
| ‘6 | FAC exponent | FAC exponent
I '?7 1 PC, LSBs | PC, LSBs

| '10* | DTAR3H | DTAR3H

| ‘11* | FOODEH | FCODEH

I '12*% | FAIIRL | FADDRL

| "13* | |

I '14* | | SBH

I "156% | | SBL

I '18* | | LBH

L1e* | LBL

| ‘0% | IMA cell ‘20H | DMA cell ‘20H
I ‘R1* | IMA cell ‘20L | DMA cell '20L
I '22* | IMA cell '22H | IMA cell ‘22H
I '23* | IMA cell ‘22L | IMA cell ‘22L
I '24* | IMA cell '24H | DMA cell '24H
I '25* | IMA cell '24L | IMA cell '24L
I '20* | DMA cell ‘26H | DMA cell ‘26H
I '27* | IMA cell ‘26L | IMA cell '26L
I '30* | IMA cell '3CH | DMA cell ‘3CH
| '31* | IMA cell ‘30L | DMA cell ‘30L
I '32* | IMA cell ‘32H | IMA cell ‘32H
I '33* | IMA cell '32L | IMA cell '32L
I '34* | IMA cell '34H | DMA cell '34H
I '35* | IMA cell '34L | DMA cell '34L
I '36* | IMA cell '36H | IMA cell '36H
I '37* | IMA cell '36L | DMA cell '36L

B-21

Second Edition

TAICITMITY /AT OIS 7TTTTYD
LAV LINUL L LVAY LA W TV LA

Note to Table B-1l

* These correspond to user register file
locations only in nonsegmented mode.

SUMMARY

The fields of a memory reference instruction specify information used
to form an effective address. These fields specify which information
is to be used in the formation, how the formation is to be dorne,
and — in conjunction with the rest of the program —- the addressing
mode under which the address is to be formed. Depending on the
segmentation mode and the EA formation, addresses can reference
registers within the current user register file as well as memory
locations.

Second Edition B-22

Instruction Summary
Charts

This appendix contains two instruction summary charts: one for S, R,
and V modes; another for I mode. Each chart contains a list of
instructions for the Prime 50 Series processors. (Appendix E lists
those instructions that have been archived.) Each instruction is
followed by its octal code, format, function, addressing mode, CBIT,
LINK, and condition code information, and a one-line description of the
instruction.

The columns in each chart are as follows:

R Restrictions:
Blank Regular instruction.
R Instruction causes a restricted mode fault if
executed in other than Ring O.
P Instruction may cause a fault depending on
address.
Mnem A mnemonic name recognized by the assembler PMA.

Opcode Octal operation code portion of the instruction.
RI Register (R) and Tmmediate (I) forms, if available.

C-1 Second Edition

Form Format of instruction:

Mnemonic Definition

AP Address Pointer
EBRAN Branch
CHAR Character
DECI Decimal
GEN Generic
R General Register —- non Memory Reference
IERN I Mode Branch
MR Memory Reference —— Non I Mode
MRFR Memory Reference -— Floating Register
MRGR Memory Reference -— General Register
MRNR Memory Reference —- Non Register
PIO Programmed I/0
RGEN Register Generic
SHFT Shift
Func Function of instruction:

Mnemonic Definition

ADMOD Addressing Mode

ERAN Branch

CHAR Character

CLEAR Clear Field

CPIR C Language Pointer

DECI Decimal Arithmetic

FIELD Field Register

FLPT Floating Point Arithmetic
GRR General Register Relative
INT Integer

INTGY Integrity

I0 Input/Output

KEYS Keys

LOGIC Logical Operations

LTSTS Logical Test and Set
MCTL Machine Control

MOVE Move

PCTLJ Program Control and Jump
PRCEX Process Exchange

QUEUE Queue Control

SHTFT Register Shift

SKIP Skip

Second Edition c-2

INSTRUCTION SUMMARY CHARTS

M Addressing modes of instructions:
Mode Name
S Sectored
R Relative
v Virtual (64V)
I 32T
C How instruction affects the CBIT and LINK.
Code Definition

*xXOOVOOOPD NN+~ |

CBIT and LINK are unchanged

CBIT = unchanged; LINK = carry

CBIT = overflow status; LINK = carry

CBIT = overflow status; LINK = indeterminate
CBIT = shift extension; LINK = shift extension
CBIT = result; LINK = indeterminate

CBIT and LINK are indeterminate

CBIT and LINK are loaded by the instruction
CBIT = result; LINK = unchanged

CBIT = unchanged; LINK = indeterminate

CBIT and LINK values vary among processors;
see individual instruction description

CC How instruction affects the condition codes.

Description

0O

Definition

Condition codes are unchanged.

Condition codes are set to reflect the result
of arithmetic operation or compare.

Condition codes are set to reflect result of
branch, compare, or logicize operand state.
Condition codes are indeterminate.

Condition codes are loaded by instruction.
Condition codes show special results for this
instruction.

A brief description of the instruction.

Table C-1 contains a summary of S, R, and V mode instructions. Table
C-2 is a summary of I mode instructions. Instructions that have been
archived are not in either of these tables; see Apperdix E for them.

C-3 Second Edition

INSTRUCTION SETS GUIDE

Table C-1

S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C CC Description

AlA 141206 GEN INT SRV 2 1 Add One to A

A2A 140304 GEN INT SRV 2 1 Add Two to A

ABQ 141716 AP QUEUE V - 7 Add Entry to Bottom of Queue

ACA 141216 GEN INT SRV 2 1 Add CBIT to A

ATD 06 MR INT SRV 2 1 Add

ADL 06 03 MR INT v 2 1 Add long

ADLL 141000 GEN INT v 2 1 A ILINK to L

ALFA O 001301 GEN FIEID V 6 - AMLtoFARDO

ATFA 1 001311 GEN FIEID V 6 - AAdLtoFAR1

ALL 0414XX SHFT SHIFT SRV 4 - A Left Logical

AIR 0416XX SHFT SHIFT SRV 4 - A Left Rotate

ALS 0415XX SHFT SHIFT SRV 3 - A Arithmetic left Shift

ANA 03 MR IOGIC SRV - - AND to A

ANL, 03 03 MR IOGIC V - - AND to A Long

ARGT 000605 GEN PCIIJ V 6 5 Argument Transfer

ARL 0404XX SHFT SHIFT SRV 4 - A Right Logical

ARR 0406XX SHFT SHIFT SRV 4 - A Right Rotate

ARS 0405XX SHFT SHIFT SRV 4 - A Arithmetic Right Shift

ATQ 141717 AP QUEUE V - 7 Add Entry to Top of Queue

BCEQ 141602 BRAN ERAN V - - Branch on Condition Code EQ

BOGE 141605 BRAN BRAN V - ~- Branch on Condition Code GE

BCGT 141601 BRAN BRAN V - - Branch on Condition Code GT

BCLE 141600 BRAN BRAN V - -~ Branch on Condition Code LE

BCLT 141604 BRAN BRAN V — - Branch on Condition Code LT

BCNE 141603 BRAN BRAN V — - Branch on Condition Code NE

BCR 141705 BRAN BRAN V - - Branch on CBIT Reset to O

BCS 141704 BRAN BRAN V - - Branch on CBIT Set to 1

BOX 140734 BRAN BRAN V - - Branch on Decremented X

BDY 140724 BRAN BRAN V - - Branch on Decremented Y

BEQ 140612 BRAN BRAN V - 4 Branch on A Equal to O

BFEQ 141612 BRAN BRAN V - 4 Branch on F Equal to O

BFGE 141615 BRAN BRAN V - 4 Branch on F Greater Than or
Equal to O

BFGT 141611 BRAN BRAN V -~ 4 Branch on F Greater Than O

BFLE 141610 ERAN BRAN V - 4 Branch on F ILess Than or
Equal to O

BFLT 141614 BRAN BRAN V - 4 Branch on F Less Than O

BFNE 141613 BRAN EBRAN V - 4 Branch on F Not Equal to O

BGE 140615 BRAN BRAN V - 4 Branch on A Greater Than or
Equal to O

BGT 140611 BRAN EBRAN V - 4 Branch on A Greater Than O

BIX 141334 BRAN BRAN V - - Branch on Incremented X

BIY 141324 BRAN BRAN V - - Branch on Incremented Y

BLE 140610 BRAN ERAN V - 4 Branch on A less Than or
Equal to O

BLEQ 140702 BRAN BRAN V - Branch on L Equal to O

Second Edition

c4

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary
R Mnem Opcode Form Func M C CC Description

BIGE 140615 BRAN BRAN V - 4 Branch on L Greater Than or
Equal to O

BIGT 140701 BRAN BRAN V - 4 Branch on L Greater Than O

BLLE 140700 BRAN EBRAN V - 4 Branch on L Less Than or
Equal to O

BLLT 140614 BRAN ERAN V - 4 Branch on L Less Than O

BLNE 140703 ERAN ERAN V - 4 Branch on L Not Equal to O

BIR 141707 BRAN ERAN V - - Branch on LINK Reset to O

BLS 141706 BRAN BRAN V - - Branch on LINK Set to 1

BLT 140614 BRAN BRAN V - 4 Branch on A less Than O

BMEQ 141602 BRAN ERAN V - - Branch on Magnitude
Condition EQ

BMGE 141706 BRAN EBRAN V - - Branch on Magnitude
Condition GE

BMGT 141710 BRAN BRAN V - — Branch on Magnitude
Condition GT

BMLE 141711 BRAN EBRAN V - - Branch on Magnitude
Condition LE

BMLT 141707 BRAN ERAN V - - Branch on Magnitude
Condition LT

BMNE 141603 BRAN ERAN V - - Branch on Magnitude
Condition NE

BNE 140613 BRAN EBRAN V - 4 Branch on A Not Equal to O

CAL 141050 GEN CLEAR SRV - - Clear A Left Byte

CALF 000705 AP PCTLI V 6 5 Call Fault Handler

CAR 141044 GEN CLEAR SRV - - Clear A Right Byte

CAS 11 MR SKIP SRV 1 1 Compare A and Skip

CAZ 140214 GEN SKIP SRV 1 1 Compare A with O

CEA 000111 GEN PCTLJ SR - - Compute Effective Address

QGT 001314 GEN BRAN V 6 5 Computed GOTO

CHS 140024 GEN INT SRV - - Change Sign

CLS 1103 MR IOGIC V 1 1 Compare L and Skip

CMA 140401 GEN LOGIC SRV - - Complement A

CRA 140040 GEN CLEAR SRV - - Clear A to O

CRB 140015 GEN CLEAR SRV - - Clear B to O

CRE 141404 GEN CLEAR V - Clear Eto O

CRL 140010 GEN CLEAR SRV - - Clear L to O

CRLE 141410 GEN CLEAR V - - Clear L and E t0o O

csA 140320 GEN MOVE SRV 5 - Copy Sign of A

DAD 06 MR INT SR 2 1 Double Add

DBL 000007 GEN INT SR - - Enter Double Precision Mode

DFAD 06 02 MR FLPT RV 3 5 Double Precision Floating
Add

DFCM 140574 GEN FLPT RV 3 5 Double Precision Floating
Complement

DFCS 1102 MR FLPT RV 6 5 Double Precision Floating

Compare and Skip

C-5 Second Edition

LAt A S A

Table C-1 (continued)
V Mode Instruction Summary

R Mnem Opcode Form

Func M C CC Description

DFDV 17 02

DFLD 02 02
DFILX 15 02
DFMP 16 02
DFSB 07 02
DFST 04 02
DIV 17
DIV 17
oD 02

RN 040300
DRNM 140571

IRNP 040301

CRNZ 040302
RX 140210
DSB o7

DST 04
DVL 17 03

E16S 000011
E32I 001010
E32R 001013
E328 000013
EG4R 001011
Ec4V 000010
EAA 0101

EAFA O 001300
EAFA 1 001310
EAL 0l 01
EALB 13 02
EAXB 12 02
R EIO 14 01
R ENB 000401
R ENBL 000401
R ENBM 000400
R ENBP 000402

50QRsEE5ER%500REEE%%%) B B BE%5E5 5 5 5 5 5 B

ERA 05
ERL 05 03 MR
FAD 06 01 MR

FLPT RV 3 5 Double Precision Floating

Divide

FLPT RV - - Double Precision Floating
Load

FLPT V - - Double Precision Floating
Load Index

FLPT RV 3 5 Double Precision Floating
Multiply

FLPT RV 3 5 Double Precision Floating
Subtract

FLPT RV - - Double Precision Floating
Store

INT \% 3 5 Divide

INT SR 3 5 Divide

MOVE SR - - Double Load

FLPT V 3 5 Double Round From Quad

FLPT V 8 5 Double Round From Quad
Towards Negative Infinity

FLPT V 3 5 Double Round From Quad
Towards Positive Infinity

FLPT V 3 5 Double Round From Quad
Towards Zero

SKIP SRV - - Decrement and Replace X

INT SR 2 1 Double Subtract

MOVE SR - - Double Store

INT \% 3 5 Divide Long

AIMOD SRV - - Enter 16S Mode

ADMOD SRV - - Enter 32I Mode

ADMOD SRV -~ - Enter 32R Mode

ATMOD SRV - - Enter 32S Mode

ATMOD SRV - - Enter 64R Mode

ADMOD SRV - - Enter 64V Mode

MOVE R - - Effective Address to A

FIEID V - - Effective Address to FAR O

FIEID V - - Effective Address to FAR 1

PCTLI V - - Effective Address to L

PCTLI V - - Effective Address to LB

PCTLI V - - Effective Address to XB

I0 v - 7 Execute I/0

I0 SRV - - Enable Interrupts

I0 SRV - - Enable Interrupts (Local)

I0 SRV - - Enable Interrupts (Mutual)

I0 SRV - - Enable Interrupts (Process)

IOGIC SRV - - Exclusive (R to A

IOGIC V - - Exclusive (R to L

FLPT RV 3 5 Floating Add

Second Edition

C-6

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary
R Mnem Opcode Form Func M C CC Description
FCDQ 140571 GEN FLPT V - - Floating Convert Double to
Quad
FCM 140530 GEN FLPT RV 3 5 Floating Complement
FCS 1101 MR FLPT RV 6 5 Floating Compare and Skip
FDBL 140016 GEN FLPT V - - Floating Convert Single to
Double
FDV 17 01 MR FLPT RV 3 § Floating Divide
FID 02 01 MR FILPT RV - - Floating Load
FLOT 140550 GEN FLPT R 6 5 Convert Integer to Floating
Point
FLTA 140532 GEN FLPT V 6 5 Convert Integer to Floating
Point
FLTL 140535 GEN FLPT V 6 5 Convert Long Integer to
Floating Point
FIX 1501 MR FLPT RV - - Floating Load Index
FMP 1601 MR FLPT RV 3 5 Floating Multiply
FRN 140534 GEN FLPT RV 3 5 Floating Round
FRNM 040320 GEN FLPT V 3 5 Floating Round Towards
Negative Infinity
FRNP 040303 GEN FLPT V 3 5 Floating Round Towards
Positive Infinity
FRNZ 040321 GEN FLPT V 3 5 Floating Round Towards Zero
FSB 07 01 MR FLPT RV 3 5 Floating Subtract
FSGT 140515 GEN FLPT RV - 5 Floating Skip If Greater
Than O
FSLE 140514 GEN FLPT RV - 5 Floating Skip If Less Than
or Equal to O
FSMI 140512 GEN FLPT RV - 5 Floating Skip If Minus
FSNZ 140511 GEN FLPT RV - 5 Floating Skip If Not Equal
to O
FSPL 140513 GEN FLPT RV - 5 Floating Skip If Plus
FST 0401 M FLPT RV 3 5 Floating Store
FSZE 140510 GEN FLPT RV - 5 Floating Skip If Equal to O
R HLT 000000 GEN MCIL SRV - - Halt
IAB 000201 GEN MOVE SRV - - Interchange A and B
ICA 141340 GEN MOVE SRV - - Interchange Bytes of A
ICL 141140 GEN MOVE SRV - - Interchange Bytes and Clear
Left
ICR 141240 GEN MOVE SRV - - Interchange Bytes and Clear
Right
ILE 141414 GEN MOVE V - - Interchange L and E
IMA 13 MR MOVE SRV - - Interchange Memory and A
R INA 54 PIO IO SR - - Input to A
R INBC 001217 AP PRCEX V 6 5 Interrupt Notify Beginning,
Clear Active Interrupt
R INBN 001215 AP PRCEX V 6 5 Interrupt Notify Beginning

Second Edition

INSTRUCTION SETS GUITE
Table C-1 (continued)
S, R, V Mode Instruction Summary
R Mnem Opcode Form Func M C CC Description
R INEC 001216 AP PRCEX V 6 5 Interrupt Notify End, Clear
Active Interrupt
R INEN 001214 AP PRCEX V 6 5 Interrupt Notify End
R INH 001001 GEN IO SRV - - Inhibit Interrupts
R INHL 001001 GEN IO SRV - - Inhibit Interrupts (Local)
R INHM 001000 GEN IO SRV - - Inhibit Interrupts (Mutual)
R INHP 001002 GEN IO SRV - - Inhibit Interrupts (Process)
INK 000043 GEN KEYS SR - - Input Keys
INT 140554 GEN FLPT R 3 5 Convert Floating Point to
Integer
INTA 140531 GEN FLPT V 3 5 Convert Floating Point to
Integer
INTL 140533 GEN FLPT V 3 5 Convert Floating Point to
Integer Long
IRS 12 MR SKIP SRV - - Increment and Replace Memory
R IRTC 000603 GEN IO v 7 6 Interrupt Return, Clear
Active Interrupt
R IRIN 000601 GEN IO \ 7 6 Interrupt Return
IRX 140114 GEN SKIP SRV - - Increment and Replace X
R ITLB 000815 GEN MCTL V 6 5 Invalidate STLB Entry
JIX 15 02 MR PCTLJ R - - Jump and Decrement X
JIX 15 08 MR PCTLI R - - Jump and Increment X
JMP 01 MR PCTLI SRV - - Jump
JST 10 MR PCTLJ SRV - - Jump and Store
JSX 35 03 MR PCTLJ RV - - Jump and Save in X
JSKB 14 02 MR PCTLT V - - Jump and Save in XB
JSY 14 MR PCTLI V - - Jump and Save in Y
1CEQ 141503 GEN LTSTS V - - Load A on Condition Code EQ
ICGE 141504 GEN LTSTS V - - Load A on Cordition Code GE
1CGT 141505 GEN LISTS V - - Load A on Condition Code GT
ICLE 141501 GEN LTSTS V - - Load A on Condition Code LE
I1CLT 141500 GEN LTSTS V - - Load A on Condition Code LT
ICNE 141502 GEN LISTS V - - Load A on Condition Code NE
DA 02 MR MOVE SRV - - Iload A
IDC O 001302 CHAR CHAR V - 7 Load Character
IDC 1 001312 CHAR CHAR V - 7 Load Character
1oL 0R 03 MR MOVE V - - Load Long
P IIIR 0501 MR MOVE V - 5 Load from Addressed Register
IX 35 00 MR MOVE SRV - - Load X
DY 35 01 MR MOVE V - - Load Y
LEQ 140413 GEN LTSTS SRV - 4 Load A on A Equal to O
LF 140416 GEN LTSTS SRV - 5 Load False
IFEQ 141113 GEN LISTS V - 4 Load Aon F Equal to O
LFGE 141114 GEN LTSTS V - 4 Load A on F Greater Than or
Equal to O
LFGT 141115 GEN LTSTS V - 4 Load A on F Greater Than O

Second Edition

Cc-8

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary
R Mnem Opcode Form Func M C CC Description
LFLE 141111 GEN LTSTS V - 4 Ioad A on F Less Than or
Equal to O
LFLT O OOl1303 BERAN FIEID V - - Load FIR O Tmmediate
LFLI 1 001313 ERAN FIEID V - - Load FIR 1 Immediate
LFLT 141110 GEN LTSTS V - 4 Ioad A on F Less Than O
LFNE 141112 GEN LTSTS V - 4 ILoad A on F Not Equal to O
IGE 140414 GEN LISTS SRV - 4 Load A on A Greater Than or
Equal to O
IGT 140415 GEN LTSTS SRV - 4 Load A on A Greater Than O
R LIOT 000044 AP MCTL V 6 5 Load IOTLB
LLE 140411 GEN LTISTS SRV - 4 Load A on A Less Than or
Equal to O
LILEQ 141513 GEN LTSTS V - 4 Ioad L on A Equal to O
LIGE 140414 GEN LTSTS V - 4 Load L on A Greater Than or
Equal to O
LIGT 141515 GEN LTSTS V - 4 Ioad L on A Greater Than O
LIL 0410XX SHFT SHIFT SRV 4 - Iong Left Logical
IIIE 141511 GEN LTSTS V - 4 Ioad L on A Less Than or
Equal to O
LLLT 140410 GEN LTSTS V - 4 Ioad L on A Less Than O
LINE 141512 GEN LTSTS V - 4 Load L on A Not Equal to O
LIR 0412XX SHFT SHIFT SRV 4 - Long Left Rotate
LIS 0411XX SHFT SHIFT SRV 3 5 Long Left Shift
T 140410 GEN LTSTS SRV - 4 Load A on A less Than O
LNE 140412 GEN LTSTS SRV - 4 Load A on A Not Equal to O
R LPID 000617 GEN MCIL V - - Load Process ID
R LPSW 000711 AP MCTL Vv 7 6 Load Process Status Word
IRL 0400XX SHFT SHIFT SRV 4 - Long Right Logical
IRR 0402XX SHFT SHIFT SRV 4 - Long Right Rotate
IRS 0401XX SHFT SHIFT SRV 4 - Long Right Shift
LT 140417 GEN LTSTS SRV - 5 Load True
MPL 16 03 MR INT \% * - Multiply Long
MPY 16 MR INT \% 3 - Multiply
MPY 16 MR INT SR 3 * Multiply
R NFYB 001211 AP PRCEX V 6 5 Notify
R NFYE 001210 AP PRCEX V 6 5 Notify
NOP 000001 GEN MCTL SRV - - No Operation
R OCP 14 PIO IO SR - - Output Control Pulse
CRA 0302 MR LOGIC V - - Inclusive (R
R OTA 74 PIO IO SR - - Output from A
OIX 000405 GEN KEYS SR 7 6 Output Keys
PCL 1002 MR PCTLI V 6 5 Procedure Call
PID 000211 GEN INT SR - - Position for Integer Divide
PIDA 000115 GEN INT \% - - Position for Integer Divide
PIDL 000305 GEN INT \% - ~— Position for Integer Divide
Long
PIM 000205 GEN INT SR - - Position after Multiply

C-9 Second Edition

Table C-1 (continued)
S, R, V Mode Instruction Summary

=

R Mnem Opcode Form Func cC Description

t0 0

C
PIMA 000015 GEN INT v 3 5 Position after Multiply
PIML 000301 GEN INT v 3 5 Position after Multiply Long
PRTN 000611 GEN PCTLJ V 7 6 Procedure Return
R PILB 000064 GEN MCTL V 6 5 Purge TIB
QFAD 522 MR FLPT V 3 5 Quad Precision Floating Add
QFCM 140570 GEN FLPT V 3 5 Quad Precision Floating
Complement
QFCS 526 M FLPT V 6 5 Quad Precision Floating
Compare and Skip
QFDV 525 MR FILPT V 3 5 Quad Precision Floating
Divide
QFLD 520 MR FLPT V - - Quad Precision Floating
Load
QFLX 67 MR FLPT V - - Quad Precision Floating
Load Index
QFMP 524 M FLPT V 3 5 Quad Precision Floating
Multiply
QFSB 523 MR FLPT V 3 5 Quad Precision Floating
Subtract
QFST 521 MR FLPT V - - Quad Precision Floating
Store
QINQ 140572 GEN FLPT V 3 5 Quad to Integer, in Quad
Convert
QIR 140573 GEN FLPT V 3 5 Quad to Integer, in Quad
Convert Rounded
RBQ 141715 AP QUEUE V - 7 Remove Entry from Bottom of
Queue
RCB 140200 GEN KEYS SRV 8 - Reset CBIT to O
R RMC 000021 GEN INTGY SRV - - Reset Machine Check Flag
RRST 000717 AP MCIL V - - Restore Registers
RSAV 000715 AP MCTL V - - Save Registers
RIQ 141714 AP QUEUE V - 7 Remove Entry from Top of
R RTS 000511 GEN MCTL V - - Reset Time Slice
S1A 140110 GEN INT SRV 2 1 Subtract 1 from A
SR2A 140310 GEN INT SRV 2 1 Subtract 2 from A
SAR 10026X GEN SKIP SRV - - Skip on A Register Bit Reset
to O
SAS 10126X GEN SKIP SRV - - Skip on A Register Bit Set
tol
SBL 07 03 MR INT v 2 1 Subtract Long
SCB 140600 GEN KEYS SRV 5 - Set CBIT to 1
SGL 000005 GEN INT SR - - Enter Single Precision Mode
SGT 100220 GEN SKIP SRV - - Skip on A Greater Than O
SKP 100000 GEN SKIP SRV - - Skip
R SKS 34 PIO IO SR - - Skip on Condition Satisfied

Second Edition C-10

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary
R Mnem Opcode Form Func M C CC Description
SLE 101220 GEN SKIP SRV - - Skip on A Less Than or Equal
to O
SIN 101100 GEN SKIP SRV - - Skip on LSB of A Nonzero
SLZ 100100 GEN SKIP SRV - - Skip on LSB of A Zero
SMCR 100200 GEN INIGY SRV - - Skip on Machine Check Reset
to O
SMCS 101200 GEN INTGY SRV - - Skip on Machine Check Set
to 1l
SMI 101400 GEN SKIP SRV - - Skip on A Minus
SNZ 101040 GEN SKIP SRV - -~ Skip on A Nonzero
SPL 100400 GEN SKIP SRV - - Skip on A Plus
SRC 100001 GEN SKIP SRV - - §Skip on CBIT Reset to O
SSC 101001 GEN SKIP SRV - - Skip on CBIT Set to 1
SSM 140500 GEN INT SRV - - Set Sign of A Minus
SSP 140100 GEN INT SRV - - Set Sign of A Plus
SSSN 040310 GEN MCTL V 6 5 Store System Serial Number
STA 04 MR MOVE SRV - - Store A into Memory
STAC 001200 AP MOVE V - 7 Store A Conditionally
SIC O 001322 CHAR CHAR V - 7 Store Character
SIC1 001332 CHAR CHAR V - 7 Store Character
STEX 001315 GEN PCTLJ V 6 5 Stack Extend
STFA O 001320 * AP FIEID V - - Store FAR O
STFA 1 001330 AP FIEID V - - Store FAR 1
STL 0403 MR MOVE V - - Store Long
STLC 001204 AP MOVE Vv - 7 Store L Conditionally
P STIR 0301 MR MOVE V - 5 Store L into Addressed
Register
R STPM 000024 GEN MCTL V - — Store Processor Model Number
STTM 000510 GEN MCIL V 6 5 Store Process Timer
STX 15 MR MOVE SRV - - Store X
STY 35 02 MR MOVE V - - Store Y
SUB ov MR INT SRV 2 1 Subtract
SvC 000505 GEN ©PCTLJ SRV - - Supervisor Call
SZE 100040 GEN SKIP SRV - - skip on A Zero
TAB 140314 GEN MOVE V - - Transfer A to B
TAK 001015 GEN KEYS V 7 6 Transfer A to Keys
TAX 140504 GEN MOVE V - - Transfer A to X
TAY 140505 GEN MOVE V - - Transfer AtoY
TBA 140604 GEN MOVE V - - Transfer B to A
TCA 140407 GEN INT SRV 2 1 Two’'s Complement A
TCL 141210 GEN INT V 2 1 Two's Complement Long
TFLL O 001323 GEN FIEID V - - Transfer FIR O to L
TFLL 1 001333 GEN FIEID V - - Transfer FIR 1 to L
TKA 001005 GEN KEYS V - - Transfer Keys to A
TLFL. O 001321 GEN FIEID V - - Transfer L to FIR O
TLFL 1 001331 GEN FIEID V - - Transfer L to FIR 1
TSTQ 141757 AP QUEUE V - 7 Test Queue

C-11

Second Edition

INSTRUCTION SETS GUIDE

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C CC Description
TXA 14103¢ GEN MOVE V - - Transfer X to A
TYA 141124 GEN MOVE V - - Transfer Y to A

R VWAIT 000315 AP PRCEX V - - Wait
XAD 001100 DECI DECI V 3 1 Decimal Add
XBTID 001145 DECI DECI V 3 5 Binary to Decimal Conversion
XCA 140104 GEN MOVE SRV - - Exchange and Clear A
XCB 140204 GEN MOVE SRV - - Exchange and Clear B
XCM 001102 DECI LECI V - 1 Decimal Compare
XDIB 001146 DECI DECI V 3 5 Decimal to Binary Conversion
v 001107 DECI DECI V 3 5 Decimal Divide
XEC 0102 MR PCTLJ RV - - Execute
XED 001112 DECI DECI V - - Numeric Edit
XMP 001104 DECI IDECI V 3 1 Decimal Multiply
XMV 001101 DECI DECI V 3 1 Decimal Move
ZCM 001117 CHAR CHAR V 6 7 Compare Character Field
ZED 001111 CHAR CHAR V - — Character Field Edit
ZFIL 001116 CHAR CHAR V 6 5 Fill Field With Character
MV 001114 CHAR CHAR V 6 5 Move Character Field
ZMVD 001115 CHAR CHAR V 6 5 Move Characters Between

Equal Length Strings

ZTRN 001110 CHAR CHAR V - - Character String Translate

Second Edition

C-12

INSTRUCTION SUMMARY CHARTS

Table C-2
I Mode Instruction Summary

Mnem Opcode RI Form Func C CC Description

A 02 RI MRGR INT 2 1 Add Fullword

ABQ 134 AP QUEUE - 7 Add Entry to Bottom of Queue

ACP 55 RI &R CPIR - - Add C Pointer

ADIR 014 RGEN INT 2 1 Add LINK to R

AH 12 RI MRGR INT 2 1 Add Halfword

ATP 75 MRGR GRR 2 1 Add Indirect Pointer

ARFA 0 161 RGEN FIEID - - Add R to FAR O

ARFA 1 171 RGEN FIEID - - Add R to FAR 1

ARGT 000605 GEN PCTLJ 6 5 Argument Transfer

ATQ 135 AP QUEUE - 7 Add Entry to Top of Queue

BCEQ 141602 BRAN BRAN - - Branch on Condition Code EQ

BCGE 141605 BRAN BRAN - - Branch on Condition Code GE

BCGT 141601 BRAN BRAN - - Branch on Cordition Code GT

BCLE 141600 BRAN BRAN - - Branch on Condition Code LE

BCLT 141604 BRAN BRAN - - Branch on Condition Code LT

BCNE 141603 BRAN BRAN - - Branch on Condition Code NE

BCR 141705 BRAN BRAN - - Branch on CBIT Reset to O

BCS 141704 BRAN BRAN - - Branch on CBIT Set to 1

BFEQ 122 IBRN BRAN - 4 Branch on F Equal to O

BFGE 125 IBRN BRAN - 4 Branch on F Greater Than or
Equal to O

BFGT 121 IBRN BRAN - 4 Branch on F Greater Than O

BFLE 120 IBRN BRAN - 4 Branch on F less Than or
Equal to O

BFLT 124 IBRN BRAN - 4 Branch on F Iess Than O

BFNE 123 IBRN BRAN - 4 Branch on F Not Equal to O

BHD1 144 IBRN BRAN - - Branch on r Decremented by 1

BHDR 145 IBRN BRAN - - Branch on r Decremented by 2

BHD4 146 TBRA BRAN - - Branch on r Decremented by 4

BHEQ 112 TBRN BRAN - 4 Branch on r Equal to O

BHGE 115 IBRN BRAN - 4 Branch on r Greater Than or
Equal to O

BHGT 111 IBRN BRAN - 4 Branch on r Greater Than O

BHT1 140 IBRN BRAN - - Branch on r Incremented by 1

BHI2 141 IBRN BRAN - - Branch on r Incremented by 2

BHT4 142 IBRN BRAN - - Branch on r Incremented by 4

BHLE 110 IBRN BRAN - 4 Branch on r less Than or
Equal to O

BHLT 114 IBRN BRAN - 4 Branch on r Less Than O

BHNE 113 IBRN BRAN - 4 Branch on r Not Equal to O

BIR 141707 BRAN BRAN - - Branch on LINK Reset to O

BLS 141706 BRAN BRAN - - Branch on LINK Set to 1

BMEQ 141602 BRAN BRAN - - Branch on Magnitude Condition
EQ

BMGE 141706 BRAN BRAN - - Branch on Magnitude Condition

GE

C-13 Second Edition

TNQTDIVINTAN QTMQ (ITTTNR
ALY RS A A AW b

PR VRS RV VNN

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func C CC Description

EMGT 141710 BRAN BRAN - - Branch on Magnitude Condition
GT

BMLE 141711 BRAN BRAN - - Branch on Magnitude Condition
LE

BMLT 141707 BRAN BRAN - - Branch on Magnitude Condition
LT

BMNE 141603 BRAN BRAN - - Branch on Magnitude Condition
NE

ERBR 040077 IBRN BRAN - - Branch on Register Bit Reset
to O

ERBS 000-037 IERN BRAN - - Branch on Register Bit Set
tol

ERD1 134 IBRN BRAN - - Branch on R Decremented by 1

BRDR 135 TBRN BRAN - - Branch on R Decremented by 1

BRD4 136 IBRN BRAN - - Branch on R Decremented by 4

BREQ 102 IBRN BRAN - 4 Branch on R Equal to O

BRGE 105 IERN BRAN - 4 Branch on R Greater Than or
Equal to O

BRGT 101 IBRN BRAN - 4 Branch on R Greater Than O

BRI1 130 IBRN BRAN - - Branch on R Incremented by 1

BRI2 131 IBRN BRAN - - Branch on R Incremented by 2

BRI4 132 IBRN BRAN - - Branch on R Incremented by 4

BRLE 100 IERN BRAN - 4 Branch on R Iess Than or
Equal to O

BRLT 104 IERN BRAN - 4 Branch on R Less Than O

ERNE 103 IBRN BRAN - 4 Branch on R Not Equal to O

C 61 RI MRGR INT 11 Fullword

CALF 000705 AP PCTLI 6 5 Call Fault Handler

CCP 45 R @R CPIR - 1 Compare C Pointer

CGT 026 RGEN BRAN 6 5 Computed GOTO

CH 71 RI MRGR INT 11 Halfword

CHS 040 RGEN INT - — Change Sign

cMH 045 RGEN ILOGIC - - lement T

R 044 RGEN IOGIC - - Complement R

CR 056 RGEN CLEAR - - Clear R to O

CRBL 062 RGEN CILEAR - - Clear R High Byte 1 Right

CRER 063 RGEN CLEAR - - Clear R High Byte 2 Right

CRHL 054 RGEN CLEAR - - Clear R Left Halfword

CRHR 055 RGEN CLEAR - - Clear R Right Halfword

CSR 041 RGEN MOVE 5 - Copy Sign of R

D 62 RI MRGR INT 3 5 Divide Fullword

DBLE 106 RGEN FLPT - - Convert Single to Double
Precision Floating

DCP 180 RGEN CPIR - Decrement C Pointer

DFA 15,17 RI MRFR FLPT 3 5 Double Precision Floating Add

DFC 05,07 RI MRFR FLPT - 1 Double Precision Floating

Compare

Second Edition

C-14

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func C CC Description
DFCM 144 RGEN FLPT 3 5 Double Precision Floating
Complement
DFD 61,33 RI MRFR FLPT 3 5 Double Precision Floating
Divide
DFL 01,03 RI MRFR FLPT - - Double Precision Floating
Load
DFM 25,27 RI MRFR FLPT 3 5 Double Precision Floating
Multiply
DFS 21.23 RI MRFR FLPT 3 5 Double Precision Floating
Subtract
DFST 11,13 MRFR FLPT - - Double Precision Floating
Store
H 72 RI MRGR INT 3 5 Divide Halfword
DH1 130 RGEN INT 2 1 Decrement r by 1
DH2 131 RGEN INT 2 1 Decrement r by 2
b ;| 60 MRNR INT - 1 Decrement Memory Fullword
IMH 70 MRNR INT - 1 Decrement Memory Halfword
IR1 124 RGEN INT 2 1 Decrement R by 1
R2 125 RGEN INT 2 1 Decrement R by 2
RN 040300 GEN FLPT 3 5 Double Round From Quad
DRNM 140571 GEN FLPT 8 5 Double Rourd From Quad
Towards Negative Infinity
DRNP 040301 GEN FLPT 3 5 Double Round From Quad
Towards Positive Infinity
IRNZ 040302 GEN FLPT 3 5 Double Round From Quad
Towards Zero
El16S 000011 GEN AMMOD - - Enter 16S Mode
E321 001010 GEN ADMOD - - Enter 32I Mode
E32R 001013 GEN AIMOD - - Enter 32R Mode
E32S 000013 GEN AIMOD - - Enter 325 Mode
E64R 001011 GEN ADMOD - - Enter 64R Mode
E64V 000010 GEN AMMOD - - Enter 64V Mode
EAFA O 001300 AP FIEID - - Effective Address to FAR O
EAFA 1 001310 AP FIEID - - Effective Address to FAR 1
EALB 42 MRNR PCTLd - - Effective Address to LB
EAR 63 MRGR PCILJ - - Effective Address to R
EAXB 52 MRNR PCTLJ - - Effective Address to XB
R EIO 34 MRGR IO - Execute I/0
R ENB 000401 GEN IO - - Enable Interrupts
R ENBL 000401 GEN IO - - Enable Interrupts (Local)
R ENBM 000400 GEN IO - - Enable Interrupts (Mutual)
R ENBP 000402 GEN IO - - Enable Interrupts (Process)
FA 014,16 RI MRFR FLPT 3 5 Floating Add
FC 04,06 RI MRFR FLPT - 1 Floating Compare
FCDQ 140571 GEN FLPT - - Floating Convert Double to
Quad
FCM 100 RGEN FLPT 3 5 Floating Complement

C-15

Second Edition

INSTRUCTICN SETIS GUIDE

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func C CC Description
FD 30,32 RI MRFR FLPT 3 5 Floating Divide
FL 00,02 RI MRFR FLPT - - Floating Load
FLT 105,11 RGEN FLPT 6 5 Convert Integer to Floating
Point
FLTH 102,11 RGEN FLPT 6 5 Convert Halfword Integer to
Floating Point
FM 24,26 RI MRFR FLPT 3 5 Floating Multiply
FRN 107 RGEN FLPT 3 5 Floating Rourd
FRNM 146 RGEN FLPT 3 5 Floating Round Towards
Negative Infinity
FRNP 145 RGEN FLPT 3 5 Floating Round Towards
Positive Infinity
FRNZ 147 RGEN FLPT 3 5 Floating Round Towards Zero
FS 20,22 RI MRFR FLPT 3 5 Floating Subtract
FST 10,12 MRFR FLPT 3 5 Floating Store
R HIT 000000 GEN MCTL - - Halt
I 41 R MRGR MOVE - - Interchange R and Memory
Fullword
ICBL 065 RGEN MOVE - - Interchange Bytes and Clear
Left
ICER 066 RGEN MOVE - - Interchange Bytes and Clear
Right
ICHL 060 RGEN MOVE - - Interchange Halfwords and
Clear Left
ICHR 061 "RGEN MOVE - - Interchange Halfwords and
Clear Right
ICP 167 RGEN CPIR - - Increment C Pointer
IH 51 R MRGR MOVE - - Interchange r and and Memory
Halfword
IHl 126 RGEN INT 2 1 Increment r by 1
IH2 127 RGEN INT 2 1 Increment r by 2
M 40 MRNR INT - 1 Increment Memory Fullword
MH 50 MRNR INT - 1 Increment Memory Halfword
R INBC 001217 AP PRCEX 6 5 Interrupt Notify Beginning,
Clear Active Interrupt
R INBN 001215 AP PRCEX 6 5 Interrupt Notify Beginning
R INEC 001216 AP PRCEX 6 5 Interrupt Notify End, Clear
Active Interrupt
R INEN 001214 AP PRCEX 6 5 Interrupt Notify Emd
R INH 001001 GEN 10 - - Inhibit Interrupts
R INHL 001001 GEN IO - - Inhibit Interrupts (Local)
R INHM 001000 GEN IO - - Iphibit Interrupts (Mutual)
R INHP 001002 GEN IO - - Inhibit Interrupts (Process)
K 070 RGEN KEYS - - Input Keys
INT 103,11 RGEN FLPT 3 5 Convert Floating Point to
Integer
Second Edition C-16

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

Mnem Opcode RI Form Func C CC Description

INTH 101,11 RGEN FLPT 3 5 Convert Floating Point to
Halfword Integer

IRl 122 RGEN INT 2 1 Increment R by 1

IR2 123 RGEN INT 2 1 Increment R by 2

IRB 064 RGEN MOVE - - Interchange r Bytes

IRH 0587 RGEN MOVE - - [Interchange R Halves

IRTC 000603 GEN IO 7 6 Interrupt Return, Clear
Active Interrupt

IRTN 000601 GEN 10 7 6 Interrupt Return

ITLB 000615 GEN MCTL 6 5 Invalidate STLB Entry

JMP 51 MRNR PCTLJ - - Jump

JSR 73 MRGR PCTLJ - - Jump to Subroutine

JSXB 61 MRNR PCTLI - Jump and Save in XB

L 01 RI MRGR MOVE - - ILoad

1.C 45 MRGR CPIR - Load C Character

ICEQ 153 RGEN LTSTS - - Load r on Condition Code BQ

ICGE 154 RGEN LTSTS - - Load r on Condition Code GE

ICGT 155 RGEN LISTS - - Load r on Condition Code GT

ILCLE 151 RGEN LTSTS - - Load r on Condition Code LE

ICLT 150 RGEN LISTS - - Load r on Condition Code LT

ICNE 152 RGEN LISTS - - Load r on Condition Code NE

IDAR 44 MRGR MOVE - 5 Load from Addressed Register

IDC O 162 RGEN CHAR - 7 Load Character

IDC1 172 RGEN CHAR - 7 Load Character

LEQ 003 RGEN LTSTS - 4 ILoad r on R Equal to O

LF 016 RGEN LTSTS - 5 ILoad False

LFEQ 023,03 RGEN LTSTS - 4 Ioad r on F Equal to O

LFGE 024,03 RGEN LISTS - 4 Load r on F Greater Than or
Equal to O

LFGT 025,03 RGEN LISTS - 4 Load r on F Greater Than O

LFLE 021,03 RGEN LTSTS - 4 Load r on F less Than or
Equal to O

LFLI O 001303 BRAN FIEID - - Load FIR O Immediate

LFILI 1 001313 BRAN FIFID - - Load FIR 1 Immediate

LFLT 020,03 RGEN LTSTS - 4 Load r on F Iess Than O

LFNE 022,03 RGEN LTSTS - 4 Load r on F Not Equal to O

IGE 004 RGEN LTSTS - 4 Load r on R Greater Than or
Equal to O

1GT 005 RGEN LTSTS - 4 Load r on R Greater Than O

IH 11 RI MRGR MOVE - - ILoad Halfword

LHEQ 013 RGEN LTSTS - 4 ILoad r on r Equal to O

LHGE 004 RGEN LTSTS - 4 ILoad r on r Greater Than or
Equal to O

LHGT 015 RGEN LTSTS - 4 Load r on r Greater Than O

LHL1 04 R MRGR MOVE - - Load Halfword Shifted left

by 1

C-17

Second Edition

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func C CC Description

LHIR 14 R MRGR MOVE - - Load Halfword Shifted Left
by 2
LHL3 35 R MRGR MOVE - - Load Halfword Shifted Left
by 3
LHLE 0l1 RGEN ILTSTS - 4 Load r on r Less Than or
Equal to O
LHLT 000 RGEN LTSTS - 4 Load r on r Less Than O
LHNE 012 RGEN ITSTS - 4 Load r on r Not Equal to O
R LIOT 000044 AP MCTL. 6 5 Load IOTLB
LTP 65 MRGR GRR - - Load Indirect Pointer
LIE 001 RGEN ITSTS - 4 Load r on R Less Than or
Equal to O
LLT 000 RGEN ILTSTS - 4 load r on R Less Than O
LNE 002 RGEN ILTSTS - 4 Load r on R Not Equal to O
R LPID 000817 GEN MCTL - - Load Process ID
R LPSW 000711 AP MCTL. 7 6 Load Process Status Word
LT 017 RGEN LTSTS - 5 Load True
M 42 RI MRGR INT * - Multiply Fullword
MH 52 RI MRGR INT 3 5 Multiply Halfword
N 03 RI MRGR ILOGIC - - AND Fullword
R NFYB 001211 AP PRCEX 6 5 Notify
R NFYE 001210 AP PRCEX 6 5 Notify
NH 13 RI MRGR IOGIC - - AND Halfword
NOP 000001 GEN MCTL. - - No Operation
0 23 RI MRGR ILOGIC - - OR Fullword
CH 33 RI MRGR IOGIC - - OR Halfword
OTIK 071 RGEN KEYS 7 6 Output Keys
PCL 41 MRNR PCTLJ 6 5 Procedure Call
PID 052 RGEN INT - - Position for Integer Divide
PITH 053 RGEN INT - - Position r for Integer
Divide
PIM 050 RGEN INT 3 5 Position after Multiply
PIMH 051 RGEN INT 3 5 Position r after Multiply
PRTN 000611 GEN PCTLJ 7 6 Procedure Return
R PILB 000064 GEN MCIL. 6 5 Purge TLB
QFAD 36 MRFR FLPT 3 5 Quad Precision Floating Add
QFC 47 RI MRFR FLPT - 7 Quad Precision Floating
Compare
QFCM 140570 GEN FLPT 3 5 Quad Precision Floating
Complement
QFDV 46 MRFR FLPT 3 5 Quad Precision Floating
Divide
QFLD 34 MRFR FLPT - - Quad Precision Floating Load
QFMP 5 MRFR FLPT 3 5 Quad Precision Floating
Multiply
QFSB 37 MRFR FLPT 3 5 Quad Precision Floating
Subtract

Second Edition C-18

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func C CC Description
QFST 35 MRFR FLPT - - Quad Precision Floating Store
QINQ 140572 GEN FLPT 3 5 Quad to Integer, in Quad
Convert
QIR 140573 GEN FLPT 3 5 Quad to Integer, in Quad
Convert Rounded
RBQ 133 AP QUEUE - 7 Remove Entry from Bottom
of Queue
RCB 140200 GEN KEYS 8 - Reset CBIT to O
R RMC 000021 GEN INTGY - - Reset Machine Check Flag to O
ROT 24 MRGR SHIFT 4 - Rotate
RRST 000717 AP MCTL - - Restore Registers
RSAV 000715 AP MCTL - - Save Registers
RIQ 132 RGEN QUEUE - 7 Remove Entry from Top of
Queue
R RTS 000511 GEN MCTL. - - Reset Time Slice
S 22 RI MRGR INT 2 1 Subtract Fullword
SCB 140600 GEN KEYS 5 - Set CBIT to 1l
SCC 55 MRGR CPTR - - Store C Character
SH 32 RI MRGR INT 2 1 Subtract Halfword
SHA 15 MRGR SHIFT 4 - Shift Arithmetic
SHL 05 MRGR SHIFT 4 - Shift Logical
SHL1 075} RGEN SHIFT 4 - Shift R left 1
SHL2 orr RGEN SHIFT 4 - Shift R ILeft 2
SHR1 120 RGEN SHIFT 4 - ¢Shift R Right 1
SHR2 121 RGEN SHIFT 4 - Shift R Right 2
SL1 ov2 RGEN SHIFT 4 - Shift R Left 1
SL2 073 RGEN SHIFT 4 - Shift R left 2
SR1 Ov4 RGEN SHIFT 4 - ¢Shift R Right 1
SR2 075 RGEN SHIFT 4 - GShift R Right 2
SSM 042 RGEN INT - - Set Sign Minus
SSP 043 RGEN INT - - Set Sign Plus
SSSN 040310 GEN MCTL 5 Store System Serial Number
ST 21 MRGR MOVE - - Store Fullword
P STAR 54 MRGR MOVE - 5 Store into Addressed Register
SIC 0 166 RGEN CHAR - 7 Store Character
SIC1 176 RGEN CHAR - 7 Store Character
STCD 137 AP MOVE - 7 Store Conditional Fullword
STCH 136 AP MOVE - 7 Store Conditional Halfword
STEX 0_7 RGEN PCTLJ 6 5 Stack Extend
STFA 0 001320 AP FIELD - - Store FAR O
STFA 1 001330 AP FIEID - - Store FAR 1
STH 31 MRGR MOVE - - Store Halfword
R STPM 000024 GEN MCIL - - Store Processor Model Number
STTM 000510 GEN MCTL 6 5 Store Process Timer
SvC 000505 GEN PCTLJ - - Supervisor Call
C 046 RGEN INT 3 1 Two’'s Complement R
TCH 074 RGEN INT 3 1 Two's Complement r
C-19 Second Edition

Table C-2 (continued)

I Mode Instruction Summary

R Mnem Opcode RI Form Func C CC Description
TCNP 76 R MRNR CPIR - 1 Test C Null Pointer
TFIR O 163 RGEN FIEID - - Transfer FIR O to R
TFIR 1 173 RGEN FIEID - - Transfer FIR 1 to R
™ 44 MRNR MCTL. - 1 Test Memory Fullword
TMH 54 MRNR INT - 1 Test Memory Halfword
TRFL O 165 RGEN FIELD - - Transfer R to FIR O
TRFL 1 175 RGEN FIEID - - Transfer R to FIR 1
TSTQ 104 RGEN QUEUE - 7 Test Queue
R VAIT 000315 AP PRCEX - - Wait
X 43 RI MRGR ILOGIC - - Exclusive OR Fullword
XAD 001100 DECI DECI 3 1 Decimal Add
XBTD 001145 DECI DECI 3 5 Binary to Decimal Conversion
XCM 001102 DECI DECI - 1 Decimal Compare
XDTB 001146 DECI DECI 3 5 Decimal to Binary Conversion
Xov 001107 DECI IECI 3 5 Decimal Divide
XED 001112 DECI DECI - - DNumeric Edit
XH 53 RI MRGR IOGIC - - Exclusive OR Halfword
XMP 001104 DECI DECI 3 1 Decimal Multiply
XMV 001101 DECI DECI 3 1 Decimal Move
ZCcM 001117 CHAR CHAR 6 7 Compare Character Field
ZED 001111 CHAR CHAR - - Character Field Edit
ZFIL 001116 CHAR CHAR 6 5 Fill Field With Character
™ 43 MRNR CLEAR - - Clear Fullword
ZMH 53 MRNR CLEAR - - Clear Halfword
MV 001114 CHAR CHAR 6 5 Move Character Field
ZMVD 001115 CHAR CHAR 6 5 Move Characters Between Equal
Length Strings
ZTRN 001110 CHAR CHAR - - Character String Translate
Second Edition C-20

Hardware
Consideration in
Performance

Several hardware considerations have bearing on performance. First,
some instructions execute faster than others. To identify these, this
document lists the relative instruction weights for V and I modes.
Special note is made of preferred load/store, arithmetic, and bulk data
move instructions for optimum execution times. Second, the type of
address formation also affects execution times. To identify these,
this appendix shows the relative weights of different address
formations; the performance penalties for unaligned data, cache miss,
STLB miss, and address traps are also shown. Recommendations are given
for how to use all of this information when coding in PMA or a high
level language.

Performance of emitted code or assembler coding of identified
time-crucial routines requires some knowledge of instruction execution
times. Prime has never given these out before for many reasons:

® Prime’'s 50 Series Processors are an entire line of machines that
have differing performances.

® The execution time of an instruction is based on many events
such as addressing mode and data alignment, making this a
complex issue.

¢ Contractual guarantees based on published times are certain to
be wrong because of the previous point.

® There is a bad correlation of instruction times to MIPs in fact,

but not in the minds of the press. Hence we would mislead by
giving specific times.

D-1 Second Edition

TATONTMITYINIT/AAT OTXTH e
LIND LVUL L LAY uu.l.s Gv.u—-u

Having said that, nevertheless, tuners must tune. The following tables
represent relative "best case" weights for the "perfect" 50 Series
machine. No actual machine has exactly this balance, but the 6350 and
9955 IT come close.

INSTRUCTION WEIGHTS

To use these tables, locate the desired mnemonic and note its weight in
units. The following abbreviations are used.

A —- Equal to O if there are no PCL arguments. Equal to 8+6*n where
n is the number of arguments.

D — The number of destination digits.

N —— In shift instructions, the number of shifts to perform. In
decimal and character instructions, the number of digits or
characters involved.

S —— The number of source digits.

4 —— The number of non-zero destination digits.

Second Edition D-2

HARDWARE CONSIDERATIONS IN PERFORMANCE

Table D-1
V Mode Instruction Weights

Mnem

Units

Mnem

| Mnem Units

Units

14
14
3
9
4
2
8
2
7
5
5
5
2
2
2
2
2
2
1
10
1
11
1
1
3
2
4
4
4
4
2
4
4
3
3
37
3
3
3
3
+2
3
3
3

3322533223313143914.1111121668&22565%45092788888
© — — — H

Second Edition

D-3

Table D-1 (Continued)
V Mode Instruction Weights

| Mnem Units | Mnem Units | Mnem Units | Mnem Units
l

i IMCM 4 | QFST 19 | SR3 10 | TAX 1

| INE 3 I QINQ 55 | SR4 10 i TAY 1

| ILPID 6 | QIQR 56 | SRC 3 | TBA 1

| LPSW 14 i RBQ 20 I SS1 10 | TCA 2

{ IRL N+2 | RCB 1 I SS2 10 | TCL 2

I IRR N+2 | RMC 15 | SS3 10 | TFLL 3

| IRS N+2 | RRST 44 | S4 10 | TKA 3

| LT 2 | RSAV 85 i SSC 3 | TLFL 2

| MPL 13 I RIQ 18 | SSM 1 | TSTQ 7

| MPY 8 | RTS 10 | SSP 1 | TXA 1

| NFYB 35 I S1A 1 | SSR 10 | TYA 1

| NFYE 35 | S2A 1 | SSS 10 | WAIT 58

| NOP 1 i SAR 3 | SSSN 37 | XAD 76+3*N

I CRA 1 | SAS 3 | STA 2 | XBTD 40+5*N

I OTK 9 | SBL 1 | STAC 8 | XCA 2

| PCL 40+A | SCB 1 i STC 12 | XCB 2

| PIDA 2 { SGT 3 | STEX 9 | XCM 80+2*N

| PIDL 3 | SKP 7 i STFA 8 | XDTB 40+5*N

| PIMA 3 | SLE 3 | STL 2 | XDV 90+65*#
| PIML 4 | SLN 3 | STIC 9 | XEC 9

i PRTN 16 | SLZ 3 | STLR 13 | XED Varies

| PTLB 400 | SMCR 5 | STPM 12 | XMP 88+15*S*D
I QFAD 56 | SMCS 5 | STTM 17 | XMV 80+3*N

| QFCM 10 | SMI 3 | STX 2 | ZCM 20+N

I QFCS 39 I SNR 10 | STY 2 { ZED Varies

| QFDV 489 | SNS 10 I SUB 1 | ZFIL, 14+0.5*N
| QFLD 14 | SNZ 3 | SVC 36 | ZMV 18+0.75*N
| QFLX 2 | SPL 3 | SZE 3 | ZMVD 14+0.75*N
| QFMP 65 | SR1 10 | TAB 1 | 2ZTRN 14+8*N

| QFSB 57 | SR2 10 | TAK 3 |

|
!
I
|
|
|
|
I
|
|
!
|
|
|
i
|
I
!
|
I
|
|
|
|
|
|
!
|
[
|
|
|

Second Edition

HARDWARE CONSIDERATIONS IN PERFORMANCE

Table D-2
I Mode Instruction Weights

Units | Mnem Units | Mnem

Mnem

Units

8
8
8
8
8
8
3
2
1
1
12
4
3
4
4
4
10
6
38
Q
15
10
9
14
7
11
12
4
3
0
4
1
1
1
1
3
4
1
1
3
3
40
35
40
35
3
6

Second Edition

D-5

INSTRUCILON SETS

Table D-2 (Continued)
I Mode Instruction Weights

Mnem Units | Mnem Units | Mnem Units | Mnem Units
INE

| |
| |
| 3 | QFIV 489 | SHRR 2 1 TMH 1
| LPID 6 | QFID 14 | SLl 1 | TRFL 2
| LPSW 14 | QFMP 65 | SI2 1 | TSIQ 7
| LT 2 | QFSB 57 | SRl 1 | WAIT 58 |
| M 13 | QFST 19 | SR2 2 1 X 1
MH 8	QI 55	SSM 1	XAD 76+3*N
N 1	QIR 56	SSP 1	XBID 40+5*N
NFYB 35	RBQ 20	SSSN 37	XOM 80+2*N
NFYE 35	RCB 1	ST 2	XDTB 40+5*N
NH 1	RMC 15	STAR 13	XDV 90+65*#
NOP 1	ROT N2	STC 12	XED Varies
0 1	RRST 44	SICD 9 I XH 1	
OH 1	RSAV 85	STCH 9	XMP 88+15*S*D
OTK 9	RIQ 18	STEX 9	XMV 8O+3*N
PCL 40+A	RTS 10	STFA 8 1 ZCM 204N	
PID 3 1S 1	STH 2	ZED Varies	
PIDH 2	SCB 1	STPM 12	ZFIL 14+0.5*N
PIM 4	SC 5	STTM 17 1 ZM 2	
PIMH 3	SH 1	sWC 36	ZMH 2
PRIN 16	SHA N2	TC 2	ZMV 18+0.75*N
PTLB 400	SHL N2	TCH 2	ZMVD 14+0.75*N
QFAD 56	SHLl 1	TONP 2	ZTRN 14+8*N
QFC 24	SHI2 1	TFIR 3	
QFOM 10	SHR1 1 1M 1 l		

Examination of the V and I mode instruction weights shows that certain
instructions have much activity in them and thus take much longer to
complete execution. Such instructions include STLR/LDIR and STAR/LDAR
(both 13/11 units) that store/load the L register into the addressed
register. Other such instructions are RSAV/RRST (44/85 units) that
save/restore all registers.

Other instructions are very fast, such as the long loads (LDL and L) &t
one unit each.

Prime processor designers have worked hard to make the instructions
that "feel" fast be fast. "Cute" uses of instructions are usually
punished by reduced performance. An example Of “cute" instruction use
is IDX# 2 instead of STL Temp, IIX Temp+l. Clever use exploits the
address modes and multiple index registers to save instructions.
Clever use of registers can save stores, but shuffling data from one
register to another (even in I mode) to save a store has little value.

Second Edition D6

HARDWARE CONSIDERATIONS IN PERFORMANCE

Restricted instructions are shown in these tables. Even though several
of these are heavily weighted, they are not discussed here since they
are Ring O instructions.

Also, short integer (16-bit) instructions take less time to execute
than long integer (32-bit) ones, particularly in the case of multiplies
and divides. For V mode, long integer arithmetic mnemonics end in "L",
such as MPL and DVL, while short integer ones do not, as in MPY and
DIV. I mode short integer mnemonics end in "H" (half register), such
as MH and DH, while long integer ones are simply M and D for multiply
long and divide long.

For all processors, be sure to use the ZMVD (Move Characters between
Equal Length Strings) instruction when moving bulk data. ZMVD is the
most efficient means for data moving. All of Prime software is
learning to use this instruction for bulk data transfers. Prime
processors are optimized for ZMVD.

The adventage of using these tables of weighted instruction times is
obvious if you are programming in PMA. If you are programming in a
high level language such as FORTRAN or Pascal, however, you first need
to generate an expanded listing when you are compiling your source
program. Such a listing shows the PMA code that the compiler generated
for each source statement. Simple arithmetic will show the approximate
relative weights that each source statement takes.

EXTENSIONS TO INSTRUCTION WEIGHTS

Unfortunately, no simple calculation can accurately produce the actual
instruction time of any modern machine (including all of Prime’'s, of
course). Many factors influence the execution of a single instruction.
The most important is, of course, the processor type. However, many
other factors also affect execution time. Address formation and
virtual memory considerations are shown in Table D-3. Other factors
are harder to describe and so are deemed less important. Among them
are I/0 (IMx) and process exchange activity, interprocessor locking (on
the P850), memory refresh, ECCC's, etc.

Table D-3 shows that indexing adds no further time to the basic
instruction while indirection adds 1 unit. Unaligned data also adds 1
unit, so be sure to align data on even word (32-bit) boundaries in
common blocks. Prime software provides for proper data alignment if
possible. Address traps add considerably more time to instruction
execution. Read or write address traps add 8 units apiece, and should
be avoided. An address trap is invoked in V mode short instructions if
the final address is to memory from O to 7. The trap is to register
file locations.

A tirme penalty is paid whenever there is a cache miss (13 units) or an
STLB miss (31 units), since the virtual-to-physical address translation
process has to occur. The more pages used in a program, the higher the
probability of a cache miss, STLB miss or a page fault. As a rule of

D-7 Second Edition

INSTRUCTION SELS GUILE

thumb to keep these delays down, ensure that your programs have their
most frequently-used subroutines loaded together —- do not load

subroutines on an alphabetic basis.

Table D-3

Comparative Weighting

Address Formation High End for 321 Mode

Vanilla
Indexed
Reg-Reg
Immediate
Indirect
Indirect
Unaligned
Cache miss
STLB miss

Worst case

IDA+ 6

DFST TEMP

STA+ ©6

DFLD TEMP

Address Traps:

1,FOO
1,FO0, 2

1,P$FOO, *
1,P$F00, *2
1,FOO
1,FO0
1,FOO

H 2 & 2 v v v v v v

1,P$FOO, *

DA TEMP+3

STA TEMP+3

1 unit
1 unit
1 unit
1 unit
2 units
2 units
2 units
14 units
32 units

179 units

(Four STLB and Cache misses, Indirect, I.P.

9 units

6 units

9 units

4 units

"Normal" cache hit rate of 98 percent
“Normal" STLB hit rate of 99 percent

(postindexed)

(1 only)
(1 only)

(Read address trap)

(Better practice)

(Write address trap)

(Better practice)

Second Edition

Archived Instructions

This appendix contains archived S, R, V, and I mode instructions.
These instructions support options that are no longer offered, or they
support functions that are no longer used. Table E-1 contains a
summary of the archived instructions. (This table is in the same
format as those in Apperdix C.) The descriptions of these instructions
follow Table E-1.

Table E-1
Archived Instruction Summary

R Mnem Opcode Form Func M C CC Description

R CAI 000411 GEN IO SRVI - - Clear Active Interrupt
CREP 02 MR PCTILJ R - - (Call Recursive Entry
Procedure
CXCS 001714 GEN MCTL VI 6 5 Control Extended Control
Store
R EMCM 000503 GEN INTGY SRVI - - Enter Machine Check Mode
ENIR 01 03 MR PCTLT R - - Enter Recursive Procedure
Stack
R ESIM 000415 GEN IO SRVI - - Enter Standard Interrupt Mode
R EVIM 000417 GEN IO SRVI - - Enter Vectored Interrupt Mode
JEQ 0203 MR PCTLJ R - - Jump on A Equal to O
JGE 07 03 MR PCTLJ R - — Jump on A Greater Than or
Equal to O

E-1 Second Edition

TAICNITDTIINMTAAY ONG ATTTR
AL LOWLL LAY DDA AVl

Table E-1 (continued)
Archived Instruction Summary

R Mnem Opcode Form Func M C CC Description
JGI 0503 MR PCTIJ R - - Jump on A Greater Than O
JIE 04 03 MR PCTLJ R - - Jump on A Less Than or Equal
to O
JLT 0603 MR PCTLJ R - — Jump on A Less Than O
JNE 0303 MR PCTLI R - - Jump on A Not Equal to O
R IMCM 000501 GEN INIGY SRVI - - Leawve Machine Check Mode
LWCS 001710 GEN MCTL VI 6 5 Load Writable Control Store
R MDEI 001304 GEN INIGY VI 6 5 Memory Diagnostic Enable
Interleave
R MDIT 001305 GEN INTGY VI 6 5 Inhibit Interleaved
R MDIW 001324 GEN INIGY VI 6 5 Write Interleaved
R MRS 001306 GEN INIGY VI 6 5 Read Syncrome Bits
R MDWC 001307 GEN INTGY VI 6 5 Load Write Control Register
MIA 64 MRGR MCTL I - - Microcode Entrance
MIA 1201 MR MCTL V - - Microcode Entrance
MIB 74 MRGR MCTL I —~ Microcode Entrance
MIB 1301 MR MCTL Vv - — Microcode Entrance
NRM 000101 GEN INT SR 8 - Normalize
RIN 000105 GEN PCTLJ SR - - Return
SCA 000041 GEN INT SR - - Load Shift Count into A
R SNR 10024X GEN SKIP SRV - - Skip on Sense Switch N Reset
to O
R SNS 10124X GEN SKIP SRV - - Skip on Sense Switch N Set
tol
R SR1 100020 GEN SKIP SRV - - Skip on Sense Switch 1 Reset
to O
R SR2 100010 GEN SKIP SRV - - Skip on Sense Switch 2 Reset
to O
R SR3 100004 GEN SKIP SRV - - Skip on Sense Switch 3 Reset
to O
R SR4¢ 100002 GEN SKIP SRV - - Skip on Sense Switch 4 Reset
to O
R SS1 101020 GEN SKIP SRV - - Skip on Sense Switch 1 Set
to 1
R SS2 101010 GEN SKIP SRV - - Skip on Sense Switch 2 Set
to 1
R SS3 101004 GEN SKIP SRV - - Skip on Sense Switch 3 Set
to 1l
R SS4 101002 GEN SKIP SRV - - Skip on Sense Switch 4 Set
to 1l
R SSR 100036 GEN SKIP SRV - - Skip on All Sense Switches
Reset to O
R SSS 101036 GEN SKIP SRV - - Skip on Any Sense Switches
Set to 1
VIRY 000311 GEN INTGY SRVI 6 5 Verify
WCS 0016XX GEN MCTL RVI - - Write Control Store

XVRY 001113 MCTL GEN VI 6 5 Verify XIS

Second Edition E-2

ARCHIVED INSTRUCTIONS

CAI
Clear Active Interrupt
0000000100001001 (S, R, V, Imode form)

Clears the current active interrupt. Effective only in wvectored
interrupt mode. Inhibits interrupts for one instruction. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

P> CREP address
Call Recursive Entry Procedure
IX100011000010CB\2 (R mode form)
[DISPLACEMENT\16]

Increments the contents of the program counter and loads the result
into the location following the one specified by the current value of
the R mode stack pointer. Calculates an effective address, EA, and
loads it into the program counter. Execution continues with the
location specified by the new value of the program counter.

This instruction performs subroutine linkage for reentrant or recursive
procedures. CREP stores the return address in bits 17-32 (the second
halfword) of a stack frame created by the ENTR instruction, rather than
in the destination address as JST does. Ieaves the values of CBIT,
LINK, and the condition codes indeterminate.

P CXCS
Control Extended Control Store
0000001111001100 (V, I mode form)

Moves the A register contents to the control register on the writable
control store board. ILeaves the values of CBIT, LINK, and the
cordition codes indeterminate.

P EMoM
Enter Machine Check Mode
0000000101000011 (S, R, V, Imde form)

Enters machine check mode 3 by loading 3 into modal bits 15-16. This
mode enables the reporting of all errors. The actions taken upon an
error depend on whether the machine was in process exchange mode or
not.

E-3 Second Edition

INSTRUCTION SETS GUILE

The instruction inhibits interrupts during execution of the next
instruction. Ieaves the values of CBIT, LINK, anxd the condition codes
unchanged. See Chapter 10 of the System Architecture Referemce Guide
for more information about checks.

If an error occurs in process exchange mode, the microcode stores the
machine state in the appropriate check vector and transfers control to
that vector, automatically dropping back to machine check mode O.

If an error occurs when the machine is not in process exchange mode,
the following actions occur. If the appropriate check vector contains
a nonzero value, the processor jumps indirectly through this vector to
the check routine. If the check vector location contains O, the
machine halts.

Note

This is a restricted instruction.

p ENTR n
Enter R Mode Recursive Procedure Stack
IX000111000011cCB\2 (R mode long form)
[DISPLACEMENT\16]

Creates a save area n halfwords long. (A halfword is 16 bits.) Saves
the current value of the R mode stack pointer in the first halfword of
the save area. The starting address of the save area is:

(contents of R mode stack pointer) - n

This means that the instruction creates a stack frame containing n
locations, and that the first location points to the previous frame.

The ENTR instruction leaves the values of CBIT, LINK, and the condition
codes unchanged.

P> ESIM
Enter Standard Interrupt Mode
0000000100001101 .(S, R, V, I mode form)

Enters standard interrupt mode by resetting bit 2 of the modals to O.
Inhibits interrupts for one instruction. ESIM is meaningless when the
system is in process exchange mode (that is, the value of modal bit 13
is 1). All interrupts use location '63. The processor services
interrupts according to their relative positions on the I/0 bus. Lower
devices have higher priority. Inhibits interrupts during execution of
the next instruction. ILeaves the values of CBIT, LINK, and the
condition codes unchanged. Refer to Chapter 10 of the System
Architecture Reference Guide for more information about interrupts.

Second Edition E4

ARCHIVED INSTRUCTIONS

Note

ESIM is a restricted instruction.

p EVIM
Enter Vectored Interrupt Mode
0000000100001111 (8, R, V, Inode form)

Enters vectored interrupt mode by setting bit 2 of the modals to 1.
EVIM is meaningless when the system is in process exchange mode (that
is, the value of modal bit 13 is 1). The processor services interrupts
according to their relative positions on the I/0 bus. Lower devices
have higher priority. Interrupts occur through a location specified by
the interrupting device. Inhibits interrupts during execution of the
next instruction. Ieaves the values of LINK, CBIT, and the condition
codes unchanged. Refer to Chapter 10 of the System Architecture
Reference Guide for more information about interrupts.

Note

This is a restricted instruction.

P> JEQ address
Jump on A Equal to O
IX001011000011cCB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads EA into the program counter
if the contents of A are equal to 0. If the contents of A are not
equal to O, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P JIGE address
Jump on A Greater Than or Equal to O
IX011111000011CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are greater
than or equal to O, the instruction loads EA into the program counter.
If the contents of A are less than 0O, execution continues with the next
instruction. Ieaves the contents of CBIT, LINK, and the condition
codes unchanged.

E-5 Second Edition

TS MLV N e el A RS A

P> JIGT address
Jump on A Greater Than O
IX010111000011CB2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are greater
than O, the instruction loads EA into the program counter. If the
contents of A are less than or equal to O, execution continues with the
next instruction. ILeaves the contents of CBIT, LINK, and the condition
codes unchanged.

P> JLE address
Jump on A Less Than or Equal to O
IX010011000011cCB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are less
than or equal to O, the instruction loads EA into the program counter.
If the contents of A are greater than O, execution continues with the
next instruction. Ieaves the contents of LINK, CBIT, and the condition
codes unchanged.

P JLT address
Jump on A ILess Than O
IX011011000011CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are less
than O, the instruction loads EFA into the program counter. If the
contents of A are greater than O, execution continues with the next
instruction. Leaves the contents of CBIT, LINK, and the condition
codes unchanged.

P> JINE address
Jump on A Not Equal to O
IX001111000011cCB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A do not equal
O, the instruction loads EA into the program counter. If the contents
of A are equal to O, execution continues with the next instruction.
Ieaves the contents of CBIT, LINK, and the condition codes unchanged.

Second Edition E-6

ARCHIVED INSTRUCTIONS

P IMCM
Ieave Machine Check Mode
0000000101000001 (8, R, V, I mode form)

Leaves machine check mode by setting bits 15-16 of the modals to 00.
If a machine parity error occurs in this mode, the hardware sets the
machine check flag but no check (V mode) or interrupt (S, R modes)
occurs. Inhibits the machine for one instruction. ILeaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

P LWCS
Load Writable Control Store
0000001111001 000 (V, I mode form)

Loads the writable control store portion of the extended control store
board from the memory block pointed to by XB. The control register
loaded by CXCS modifies this instruction. Leaves the values of CBIT,
LINK, and the condition codes indeterminate.

> MOET
Memory Diagnostic Enable Interleave
00000O01011000100 (V, I mode form)

Enables the memory interleave facility. Leaves the values of LINK,
CBIT, and the condition codes unchanged.
Note

This is a restricted instruction.

» MpII
Memory Diagnostic Inhibit Interleave
0000001011000101 (V, I mode form)
Inhibits the memory interleave facility. ILeaves the values of LINK,
CBIT, ard the condition codes unchanged.
Note

This is a restricted instruction.

E-7 Second Edition

INSTRUCTION SETS GUIDE

p MDIVW

Memory Diagnostic Write Interleaved

000000101101 0100 (v, I mode form)
Writes interleaved memory. ILeaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

P MRS
Memory Diagnostic Read Syndrome Bits
00000O01011000110 (V, I mode form)
Reads memory syndrome bits. Leaves the values of LINK, CBIT, and the
condition codes unchanged.
Note

This is a restricted instruction.

> MDWC
Memory Diagnostic Load Write Control Register
0000001011000111 (V, I mode form)

Writes memory control register. Leaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This is a restricted instruction.

P MIA
Microcode Execute A
IX101011000Y01BR\2 (V mode long form)
DISPLACEMENT\ 16

11010 0 IR\3 TM\2 SR\3 BR\2 (I mode form)
[DISPLACEMENT\16]

This instruction currently causes a UII fault. If implemented, this
instruction is for user-written microcode. For more information about
UII, refer to Chapter 10 of the System Architecture Reference Guide.

Second Edition E-8

ARCHIVED INSTRUCTICONS

p MIB
Microcode Execute B
IX101111000Y01BR\2 (V mode long)
DISPLACEMENT\ 16

111100 IR\3 TM\2 SR\3 BR\2 (I mode form)
[DISPLACEMENT\16]

This instruction currently causes a UII fault. If implemented, this
instruction is for user-written microcode. For more information about
UII, refer to Chapter 10 of the System Architecture Reference Guide.

P NrM
Normalize
0000000001000001 (S, R mode form)

Shifts the 31-bit integer in A and B to the left arithmetically,
shifting in Os into bit 16 of B. The shift does not affect bit 1 of B
or bit 1 of A. The instruction shifts bits out of bit 2 in A until the
value of bit 2 is opposite the value of bit 1 in A. Loads bits 9-16 of
the S and R mode keys with the number of shifts performed.

Normalizing O on all machines results in the following: =zeros are
loaded in bits 9-16 of the keys; bit 1 of the B register is ignored in
the test for =zero. Bit 1 of the B register may be reset or left

unchanged, depending on the processor.

Leaves the values of CBIT and the condition codes unchanged; the value
of LINK is indeterminate.

Note

Since the bits shifted out of bit 2 in A contain copies of the
sign of the 31-bit number, the shift results in no loss of
information.

P RN
Return
0000000001 000101 (R mode form)

Returns control from a P300 recursive procedure to the calling routine.
To do this, RIN fetches the return address from the second halfword of
the previous stack frame and loads the result in the program counter.
RIN then transfers halfword 1 (the pointer to the preceding stack
frame) to the S register. (A halfword is 16 bits.)

(8)+1 —> P
(s) > s

E-9 Second Edition

TNQSTDIINTAN e CITTTIR
a ALY DA D AV

L IV S Vi)

If the return address is 0, (S) is unchanged and a PSU (Procedure Stack
Underflow) fault is taken (interrupt through location ‘75 in physical
memory is taken on the Prime 300). ILeaves the values of LINK, CBIT,
and the condition codes unchanged.

Note

This instruction reverses the actions done by CREP and ENIR.

P sca
ILoad Shift Count Into A
00000000001 00001 (S, R mode form)
Loads the contents of bits 9-16 of the keys into bits 9-16 of A.
Clears bits 1-8 of A to 0. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.
Note

The SCA instruction is used with NRM.

P SR n

Skip on Sense Switch N Reset to O

100000001010N4 (S, R, Vmode form)
Skips the next sequential 16-bit halfword if the contents of sense
switch N are 0. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

N specifies the sense switch to test.

Note

This is a restricted instruction.

P sns
Skip on Sense Switch N Set to 1
100000101010N\¢ (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
nes N i

ves the va

N specifies the sense switch to test.

Second Edition E-10

ARCHIVED INSTRUCTIONS

Note

SNS is a restricted instruction.

P SRl

Skip on Sense Switch 1 Reset to O
1000000000010000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
1 is 0. Leaves the values of CBIT, LINK, and the condition codes

unchanged.
Note

This is a restricted instruction.

P SRrR2
Skip on Sense Switch 2 Reset to O
1000000000001000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
2 is 0. leaves the values of CBIT, LINK, and the condition codes

unchanged.
Note

This is a restricted instruction.

P SR3
Skip on Sense Switch 3 Reset to O
1000000000000100 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
3 is 0. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

Note

This is a restricted instruction.

E-11 Second Edition

INSTRUCTION SETS GUILE

P Sre
Skip on Sense Switch 4 Reset to O

1000000000000010 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
4 is 0. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.
Note

This is is a restricted instruction.

p ss1
Skip on Sense Switch 1 Set to 1

1000001000010000 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
1 is 1. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.
Note

This is a restricted instruction.

p ss2
Skip on Sense Switch 2 Set to 1

1000001000001000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
2 is 1. ILeaves the values of CBIT, LINK, and the condition codes

unchanged.
Note

This is a restricted instruction.

p ss3
Skip on Sense Switch 3 Set to 1

1000001000000100 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
3 is 1. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.

Second Edition E-12

ARCHIVED INSTRUCTIONS

Note

This is a restricted instruction.

P ss4

Skip on Sense Switch 4 Set to 1
1000001000000010 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of sense switch
4 is 1. lLeaves the values of CBIT, LINK, and the condition codes

unchanged.
Note

This is a restricted instruction.

P Ssr
Skip on All Sense Switches Reset to 0
1000000000011110 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the values of sense
switches 1, 2, 3, and 4 are all 0. Ieaves the values of CBIT, LINK,

and the condition codes unchanged.
Note

This is a restricted instruction.

P sSss
Skip on Any Sense Switches Set to 1

1000001000011110 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the values of sense
switches 1, 2, 3, and 4 are all 1. Ieaves the values of CBIT, LINK,

and the condition codes unchanged.

Note

This is a restricted instruction.

E-13 Second Edition

TATCETIMTY T/ AT OTAING FTTTTIYID
LINDLOUVLLLIVAY LLAY TVl

P vIRY
Verify 0311 opcode
0000000011001001 (S, R, Vmode form)

Executes the verification routine. If there is a failure of any kind,
the processor goes on to the next instruction with the number of the
test that failed in register A. If there are no errors, the processor
skips the next sequential instruction.

If the processor does not have the verification routine, this
instruction executes as no-op.

p WCs n
¥ritable Control Store
0000001110M6 (R, V, I mode form)

Reserved set of 64 op codes to serve as microcode entrances, where n is
O through 63.

P XVRY
XIS Board Verify 1113 opcode
0000001001001011 (S, R, Vmode form)

XVRY executes a Prime 500 microcode diagnostic routine tht checks the
integrity of the XIS board. If the XIS board is not functional, the
processor does not skip the next instruction and the A register holds
the failed micro-diagnostic test number. If the processor passes the
verify instruction, it skips the next instruction.

The codes and tests are:

'72 Data Move Test - Load and Unload XIS Board
'?3 Normalize Test - Adjust Test

'?4 Binary Multiply

'?5 Binary Divide

‘7?6 Decimal Arithmetic

Second Edition E-14

2455 Instruction Sets

The 2455 processor has now been added to the Prime 50 Series computers.
This new processor shares the architecture and operating system that is
common to all 50 Series processors and makes the 50 Series a line of
completely upward-compatible and downward-compatible systems.

The implementation of the common architecture, however, can be slightly
different for each member of the 50 Series, allowing the different
brocessors to address a wide variety of user needs while remaining

compatible.

The architectural implementation of the 2455 is identical to that of
the 2755 processor. This means that instruction set features that
apply to the 2755 apply equally well to the 2455. The only exception
to this is the STPM (Store Processor Model) instruction: the processor
model number code for the 2455 is 32L (decimal).

F-1 Second Edition

SURVEY

READER RESPONSE FORM
Instruction Sets Guide DOC9474-21LA

Your feedback will help us continue to improve the quality, accuracy, and organization

of our publications.

1. How do you rate this document for overall usefulness?

O excellent O very good 0O good Q fair a poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare t equivalent manuals produced by other computer

companies?
O Much better O Slightly better O About the same
O Much worse 0O Slightly worse 0O Can't judge

5. Which other companies’ manuals have you read?

Name: Position:

Company:
Address:

Postal Code:

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

Postage will be paid by:

Prime.

Attention: Technical Publications

Bidg 10
Prime Park, Natick, Ma. 01760

I

JURTARNTNAAO

DOC34%74-2LH

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	reply
	replyA
	replyB
	xBack

