IPLEXILS

Plexus Sys3 UNIX Programmer’s Manual -- vol 2C

98-05047.2 May 25, 1984

IPLEXILS oirammers Monaal

Plexus Sys3 UNIX Programmer’s Manual -- vol 2C

98-05047.2 May 25, 1984

PLEXUS COMPUTERS, INC.

2230 Martin Ave.
Santa Clara, CA 95050

408/988-1755

Copyright 1984
Plexus Computers, Inc., Santa Clara, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice. Therefore, Plexus
Computers, Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America

Plexus Sys3 UNIX Programmer’s Manual -- voi 2C

PREFACE

This manual contains a collection of documents that describe specific aspects of the UNIX*
operating system. These include descriptions of special utilities developed at the University of
California at Berkeley including the C shell, edit, ex, and vi.

Additional documents describing the operating system, document preparation tools, and
language tools may be found in the Plexus Sys3 UNIX Programmer’'s Manual -- vol 2A (Plexus
publication #98-05036). Documents describing programming, language, administrative and
maintenance tools are collected in the Plexus Sys3 UNIX Programmer’'s Manual -- vol 2B
(Plexus publication #98-05037).

Both these volumes (2A and 2B) should be used as supplementary documents for the Plexus
Sys3 UNIX Programmer’s Manual -- vol 1A (Plexus publication #98-05045), and Plexus Sys3
UNIX Programmer’s Manual -- vol 1B (Plexus publication #98-05046), the basic reference
manual for the operating system.

Comments
Please address all comments concerning this manual to:

Plexus Computers, Inc.
Technical Publications Depit.
2230 Martin Ave.

Santa Clara, CA 95050
408/988-1755

Revision History
Plexus publication number 98-05047.1 was the first edition.

This edition (98-05047.2) is typeset, and corrects some minor errors.

-

UNIX is a trademark of AT&T Bell Laboratories. Plexus Computers, Inc. is licensed to distribute UNIX under the
authority of AT&T.

e

An Introduction to the C Shell

ABSTRACT

Csh is a new command language interpreter for UNIX systems. It incor-
porates good features of other shells and a history mechanism similar to the
redo of INTERLISP. While incorporating many features of other shells that make
writing shell programs (shell scripts) easier, most of the features unique to csh
are designed more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes capabilities that you can explore after you have become more
acquainted with the shell. Later sections introduce features that are useful, but
not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

May 17, 1984

An Introduction to the C Shell

Introduction

A shell is a command language interpreter. Csh is the name of one particularly useful
command interpreter on UNIX. The primary purpose of csh is to translate command lines typed
at a terminal into system actions, such as invocation of other programs.

This document has four sections. The first two describe how to form command lines to the
shell; these sections are written for people who will use the shell from a terminal, but will not
necessarily write shell scripts. Section 1 describes the basics; Section 2 details more advanced
features. The third section is directed toward those who wish to use the programming facilities
of the shell to write shell scripts. The fourth section describes miscellaneous and less used
features of the shell.

In addition to this document, you need access to the Plexus Sys3 UNIX Programmer’s
Manual -- vol 1. The csh entry in that manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in italics. These are important words: names of
commands, and words that have special meaning in discussing the shell and UNIX. Many of the
words are defined in a glossary at the end of this document. If you don't know what a word
means, you should look for it in the glossary.

Acknowledgements
This document is based on An introduction to the C shell by William Joy.

-2.

1. USING THE SHELL FROM THE TERMINAL

1.1. The Basic Notion of Commands

A shell in UNIX acts mostly as a medium through which other commands are invoked.
While it has a set of built-in commands, which it performs directly, most useful commands are,
in fact, external to the shell. The shell is thus distinguished from the command interpreters of
other systems both by the fact that it is just a user program, and by the fact that it is used
almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system expect a list of strings or words as arguments. Thus the
command

mail bill

consists of two words. The first word, ‘mail’, names the command to be executed, in this case
the mail program, which sends messages to other users. The shell uses the name of the com-
mand in attempting to run it. It looks in a number of directories for a file with the name mail
and expects the file called “mail” to contain the mail program.

The rest of the words of the command are given to the command itself to execute. In this
case the word bill is also specified; this is interpreted by the mail program to be the name of a
user to whom mail is to be sent.

For example, Chris can send mail to Bill as follows.

% mail bill
| have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Chris
%

Here Chris typed a message to send to bill and ended this message with a control-d,
which sent an end-of-file to the mail program. The mail program then transmitted the message.
The characters ‘% ' (per cent sign followed by space) were printed before and after the mail
command by the shell to indicate that the shell was awaiting input.

After typing the ‘% ' prompt, the shell reads command input from the terminal. Chris typed
a complete command ‘mail bil’. The shell then executed the mail program with argument bill
and went dormant waiting for it to complete. The mail program then read input from the terminal
until Chris signalled an end-of-file, after which the shell noticed that mail had completed. It sig-
naled Chris that it was ready to read from the terminal again by printing another ‘% ' prompt.

This is the essential pattern of all interaction with uNIx through the shell. A complete com-
mand is typed at the terminal, the shell executes the command and when this execution com-
pletes, the shell prompts for a new command. If you run the editor for an hour, the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish edit-
ing.

1.2. Flag Arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands
specify file names or user names, some arguments specify optional capabilities of commands.
By convention, such arguments begin with the character . Thus the command

Is
produces a list of the files in the current directory. The option -s is the size option, and
Is -s

causes /s to also give, for each file, the size of the file in blocks of 1024 characters. The

-3-

manual page for each command in the Plexus Sys3 UNix Programmer’s Manual gives the avail-
able options for each command. The /s command has many useful and interesting options.
Most other commands have either no options or only one or two options. It is hard to remember
options of commands that are not used very frequently, so most UNIX utilities perform only one
or two functions rather than having a large number of hard-to-remember options.

1.3. Output to Files

The concepts of standard input and standard output are very important in UNIX. The
default for both is the terminal; this means that unless you tell UNIX otherwise, UNIX expects to
receive input for its commands from the terminal and send output of commands to the terminal.
But often you want to read input from or write output to files rather than simply taking input and
output from the terminal. The shell provides simple ways to accomplish this.

Thus suppose we wish to save the current date in a file called ‘now’. The command
date

prints the current date on our terminal. This is because our terminal is the default standard out-
put for the date command and the date command prints the date on its standard output. The
shell lets us redirect the standard output of a command through a notation using the metachar-
acter ‘>’ and the name of the file where output is to be placed. Thus the command

date > now

runs the date command such that its standard output is the file ‘now’ rather than our terminal.
Thus this command places the current date and time in the file ‘now’. Note that the date com-
mand is unaware that its output is going to a file rather than to our terminal. Date sends its
results to standard output, however that standard output is currently defined--terminal or file or
other device or whatever. The shell performed this redirection before the command began exe-
cuting.

Note also that the file ‘now’ need not have existed before the date command was exe-
cuted; the shell would have created the file if it did not exist. And if the file did exist? If it had
existed previously, these previous contents would have been discarded! A C-shell option
noclobber exists to prevent this from happening accidentally; it is discussed in section 2.2.

1.4. Metacharacters in the Shell

The shell has a large number of special characters (like ‘>") that indicate special func-
tions. We say that these notations have syntactic and semantic meaning to the shell. In gen-
eral, most characters that are neither letters nor digits have special meaning to the shell. We
shall shortly learn a means of quotation, which allows us to create words that contain metachar-
acters and to thus work without constantly worrying about whether certain characters are meta-
characters.

Note that the C-shell is only reading input when it has prompted with ‘% ". Thus metachar-
acters normally have effect only then. So, for example, we need not worry about placing shell
metacharacters in a letter we are sending via mail.

1.5. Input from Files; Pipelines

We learned above how to route the standard output of a command to a file. We can also
route the standard input of a command from a file. This is not often necessary, however, since
most commands will read from a file name given as argument. For example, we can give the
command

sort < data

to run the sort command with standard input from the file ‘data’. But we would more likely say

sort data

and let the sort command open the file ‘data’ for input itself, since this is less to type.
We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the
standard input, it would sort lines as we typed them on the terminal until we typed a control-d to
generate an end-of-file.

We can even combine the standard output of one command with the standard input of the
next, i.e. to run the commands in a sequence known as a pipeline. This is an extremely useful
feature. For instance, the command

Is -s

normally produces a list of the files in our directory with the size, in 1024-byte blocks, of each.
If we are interested in learning which of our files is largest, we may wish to have this list sorted
by size rather than by name--Is by default sorts by name. We could investigate the many
options of Is to see if one lists in order of size, but we would eventually discover that no such
option exists. Instead the shell lets us use a couple of simple options of the sort command,
combining it with /s to get what we want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus
Is -s | sort -n

specifies that the output of the /s command run with the option -s is to be piped to the com-
mand sort run with the numeric sort option. This would give us a sorted list of our files by size,
but with the smallest first. We could then use the -r reverse sort option and the head command
in combination with the previous command doing

Is -s | sort -n -r | head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We
have run this to the standard input of the sort command asking it to sort numerically in reverse
order (largest first). This output has then been run into the command head which gives us the
first few lines of its standard input. In this case we have asked head for the first 5 lines. Thus
this command gives us the names and sizes of our 5 largest files.

The metanotation introduced above is called the pipe mechanism. Commands separated
by ‘|’ characters are connected together by the shell and the output of each functions as the
input of the next. The leftmost command in a pipeline normally takes its standard input from the
terminal and the rightmost places its standard output on the terminal. Other examples of pipe-
lines will be given later when we discuss the history mechanism; one important use of pipes
illustrated there is in the routing of information to the line printer.

1.6. Filenames

Many commands need the names of files as arguments. UNIX pathnames consist of a
number of components separated by /. Each component except the last names a directory in
which the next component resides. Thus the pathname

/etc/motd

specifies a file in the directory ‘etc’, which is a subdirectory of the root directory /. Within this
directory the file named is ‘motd’, which stands for ‘message of the day’. Filenames that do not
begin with /' are interpreted starting at the current working directory. This directory is, by
default, your home directory and can be changed dynamically by the chdir or cd change direc-
tory command.

-5-

Most filenames consist of a number of alphanumeric characters and ‘.’s. In fact, all print-
ing characters except /' may appear in filenames. However, non-alphabetic charcters usually
do not belong in filenames, because many of these have special meaning to the shell. The
character ‘.’ is not a shell-metacharacter and is often used as the prefix with an extension of a
basename. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a root portion of a name (a root portion being that part of the
name that is left when a trailing " and following characters, which are not *.’, are stripped off).
The file ‘prog.c’ might be the source for a C program, the file ‘prog.o’ the corresponding object
file, the file ‘prog.errs’ the errors resulting from a compilation of the program and the file
‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the metanotation
prog.”

This word is expanded by the shell, before the command to which it is an argument is executed,
into a list of names that begin with ‘prog.’. The character ™' here matches any sequence (includ-
ing the empty sequence) of characters in a file name. The names that match are sorted into the
argument list to the command alphabetically. Thus the command

echo prog.”
echoes the names
prog.c prog.efrs prog.o prog.output

Note that the names are in lexicographic order here, different from the way we listed them
above. The echo command receives four words as arguments, even though we only typed one
word as an argument directly. The four words were generated by filename expansion of the
metasyntax in the one input word.

Other metanotations for filename expansion are also available. The character ‘?” matches
any single character in a filename. Thus

echo ? ?? ??7?

echoes (i.e., writes on standard output) a line of filenames; first those with one-character
names, then those with two-character names, and finally those with three-character names.
The names of each length will be independently lexicographically sorted.

Another mechanism consists of a sequence of characters between " and . This metase-
quence matches any single character from the enclosed set. Thus

prog.[co]
will match
prog.c prog.o

in the example above. We can also place two characters astride a ‘- in this notation to denote a
range. Thus

chap.[1-5]
might match files
chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. This is shorthand for
chap.[12345]

and otherwise equivalent.

-6-

Note that if a list of argument words to a command (an argument list) contains filenare
expansion syntax, and if this filename expansion syntax fails to match any existing file names,
then the shell considers this to be an error and prints a diagnostic

No match.

Also note that the character .’ at the beginning of a filename is treated specially. Neither
“ or ‘?" or the [‘] mechanism will match it. This prevents accidental matching of the filenames
‘.’ and ‘.." in the current directory, which have special meaning to the system, as well as other
files such as .cshrc, which are not normally visible. We will discuss the special role of the file
.cshre later.

Another filename expansion mechanism gives access to the pathname of the home direc-
tory of other users. This notation consists of the character **’ followed by another user’s login
name. For instance the word ‘“bill' would map to the pathname ‘/mnt/bill’ if the home directory
for ‘bill' were in the directory /mntbill. Since, on large. systems, users may have login direc-
tories scattered.over many different disk volumes with different prefix directory nanves, this nota-
tion provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ‘™" alone, e.g. “"/mbox’. This notation is
expanded by the shell into the file ‘mbox’ in your home directory. This can be very useful if you
have used chdir to change to another user's directory and have found a file you wish to copy
using cp. You can do

cp thatfile ©
which will be expanded by the shell to
cp thatfile /mnt/bill

i.e., the copy command interprets this as a request to make a copy of ‘thatfile’ in the directory
‘/mnt/bill. The ' notation doesn't, by itself, force named files to exist. This is useful, for exam-
ple, when using the cp command, e.g.

cp thatfile “/saveit

A mechanism using the characters ‘{" and ‘}’ abbreviates a set of words that have com-
mon parts but cannot be abbreviated by the above mechanisms because they are not files, or
are the names of files that do not yet exist. This mechanism will be described much later, in
section 4.2, as it is used much less frequently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharac-
ter pose a problem in that we cannot use them directly as parts of words. Thus the command

echo *

does not echo the character **'. It either echoes a sorted list of filenames in the current direc-
tory, or prints the message ‘No match’ if there are no files in the current directory.

The recommended mechanism for placing characters that are neither numbers, digits, /',
‘.’ or ““’ in an argument word to a command is to enclose it with single quotation characters ‘',
e.g.

2 X4

echo

The history mechanism of the shell uses the special character ‘', so ‘I cannot be escaped in
this way. It and the character ‘' itself can be preceded by a single ‘\' to prevent their special
meaning. These two mechanisms suffice to place any printing character into a word that is an
argument to a shell command.

1.8. Terminating Commands

When you are running a command from the shell and the shell is waiting for it to complete,
there are a couple of ways in which you can force such a command to complete. For instance if
you type the command

cat /usr/man/docs/csh/csh

the system prints this document on your terminal. This will continue for several minutes unless
you stop it. You can send an INTERRUPT signal to the cat command by hitting the DEL or RUBOUT
key on your terminal. Actually, hitting this key sends this INTERRUPT signal to all programs run-
ning on your terminal, including your shell. The shell normally ignores such signals, however, so
that the only program affected by the INTERRUPT is cat. Since cat does not take any precautions
to catch this signal the INTERRUPT causes it to terminate. The shell notices that cat has died
and prompts you again with ‘% . If you hit INTERRUPT again, the shell just repeats its prompt,
since it catches INTERRUPT signals but continues to execute commands anyway. If the shell
went away like cat, this would log you out.

Many other programs terminate when they get an end-of-file from their standard input.
Thus the mail program in the first example above was terminated when we hit a control-d,
which generates an end-of-file from the standard input. The shell also terminates when it gets
an end-of-file printing ‘logout’; UNIX then logs you off the system. Since this means that typing
too many control-d's can accidentally log you off, the shell has a mechanism for preventing this.
This ignoreeof option is discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command terminates without our typing a control-d. This is because it read to the
end-of-file of our file ‘prepared.text’. We could also have done

cat prepared.text | mail bill

since the cat command would then have written the text through the pipe to the standard input
of the mail command. When the cat command completed it would have terminated, closing
down the pipeline and the mail command would have received an end-of-file from it and ter-
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could also have been stopped by sending an INTERRUPT.

If you write or run programs that are not fully debugged, then you may want to stop them
somewhat ungracefully. This can be done by sending them a QuIT signal, generated by a
control-\. This usually provokes the shell to produce a message like:

a.out: Quit -- Core dumped

indicating that a file ‘core’ has been created containing information about the program a.out's
state when it ran amuck. You can examine this file yourself, or forward information to the main-
tainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6), then these commands
ignore INTERRUPT and QuUIT signals at the terminal. To stop them you must use the kill program.
See section 2.6 for an example.

1.8. What Now?

We have so far seen a number of mechanisms of the shell and learned something about
the way in which it operates. The remaining sections will go further into the internals of the
shell, but you will surely want to try using the shell before you go any further. To get the C shell
as your login shell, your entry in the file /etc/passwd must be modified. /etc/passwd is writable
only by the superuser, so you may have to get your system administrator to perform the change.
The last field of each line in /etc/passwd is the shell field. No entry in this field means this user

-8-

has the regular shell, /bin/sh. This field of your line must be modified to read /usr/plx/csh. You
will get the C shell the next time you log in. It's a good idea to have your .login and .cshrc files
set up appropriately before you try the C shell, so your terminal will behave properly.

You can also invoke a csh by typing ‘/usr/pix/csh’. This gives you a temporary C shell, and
you may return to your login shell by typing control-d.

Much of the discussion in thi$¢ manual so far is applicable to ‘/bin/sh’ as well as the C shell.
The next section will introduce many features particular to csh so you should change your shell
to csh before you begin reading it.

2. DETAILS ON THE SHELL

2.1. Shell Startup and Termination

When you login, the shell is placed by the system in your home directory and begins by
reading commands from a file .cshrc in this directory. All shells that you may create during
your terminal session read from this file. We will later see what kinds of commands are usefully
placed there. For now we need not have this file and the shell does not complain about its
absence.

A login shell, executed after you login to the system, will, after it reads commands from
.cshrc, read commands from a file .login also in your home directory. This file contains com-
mands you wish to do each time you login to the UNIX system. A .login file might look some-
thing like:

tset -d adm3a
set history=20
set time=3

This file contains four commands to be executed by UNIX each time the user logs in. The first is
a tset command, which informs the system that this user usually dials in on a Lear-Siegler
ADM-3A terminal. The next two set commands are interpreted directly by the shell and affect the
values of certain shell variables to modify the future behavior of the shell. Setting the variable
time tells the shell to print time statistics on commands that take more than a certain threshold
of machine time (in this case 3 CPU seconds). Setting the variable history tells the shell how
much history of previous command words it should save in case the user wishes to repeat or
rerun modified versions of previous commands. This mechanism involves a certain overhead,
so the shell does not set this variable by default. The value of 20 is a reasonably large value to
assign to history. More casual users of the history mechanism would probably set a value of 5
or 10. The use of the history mechanism will be described subsequently.

After executing commands from .login, the shell reads commands from your terminal,
prompting for each with ‘% '. When it receives an end-of-file from the terminal, the shell prints
‘logout’ and executes commands from the file ‘.logout’ in your home directory. After that the
shell dies and UNIx logs you off the system. If the system is not going down, you receive a new
login message. In any case, after the ‘logout’ message, the shell from which the end-of-file was
received is doomed and takes no further input from the terminal.

2.2. Shell Variables

The shell maintains a set of variables. We saw above the variables history and time,
which had values ‘20’ and ‘3". In fact, each shell variable has as value an array of zero or more
strings. Shell variables may be assigned values by the set command. This command has
several forms, the most useful of which was given above and is

set name=value

Shell variables may store values that are to be reintroduced into commands later through a
substitution mechanism. The shell variables most commonly referenced are, however, those
that the shell itself refers to. By changing the values of these variables, you can directly affect
the behavior of the shell.

One of the most important variables is the variable path. This variable contains a
sequence of directory names where the shell searches for commands. The set command shows
the value of all variables currently defined (we usually say set) in the shell. The default value for
path will be shown by set to be

-10 -

% set

argv

home /mnt/bill

path (. /bin /usr/bin)
prompt %

shell /bin/csh
status O

%

This notation indicates that the variable path points to the current directory .’ and then ‘/bin’ and
‘/usr/bin’. Commands that you may write might be in *.’ (usually one of your directories). The
most heavily used system commands live in /bin’. Less heavily used system commands live in
‘fusr/bin’.

A number of useful programs that are not part of standard UNIXx SYSTEM Hli--including
csh--live in the directory ‘/usr/plx’. If you want all shells that you invoke to have access to these
new programs, place the command

set path=(. /usr/plx /bin /usr/bin)

in your file .cshrc in your home directory. Try doing this and then logging out and back in and
do

set

again to see that the value assigned to path has changed.

Other useful built-in variables are the variable home, which shows your home directory,
and the variable ignoreeof, which can be set in your .login file to tell the shell not to exit when it
receives an end-of-file from a terminal. To logout from UNIX with ignoreeof set you must type

logout

This is one of several variables that the shell does not care about the value of, only whether
they are set or unset. Thus to set this variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

Both set and unset are built-in commands of the shell.
Finally, some other useful built-in shell variables are noclobber and mail. The metasyntax
> filename

which redirects the output of a command, overwrites and destroys the previous contents of the
named file. In this way you may accidentally overwrite a valuable file. If you prefer that the
shell not automatically overwrite files in this way you can

set noclobber

in your .login file. Then trying to do
date > now

would cause a diagnostic if ‘now’ existed already. You could type
date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!"is a special metasyntax indicat-
ing that clobbering the file is all right.

If you receive mail frequently while you are logged in, and wish to be informed of the
arrival of this mail, you can put a command

-11 -

set mail=/usr/mail/yourname

in your .login file. Here you should change ‘yourname’ to your login name. The shell looks at
this file every 10 minutes to see if new mail has arrived. If you receive mail only infrequently,
you are better off not setting this variable; it only delays the shell’s response to you.

The use of shell variables to introduce text into commands, which is most useful in shell
command scripts, will be introduced in section 2.4.

2.3. The Shell's History List

The shell can maintain a history list into which it places the words of previous commands.
You can use a metanotation to reintroduce commands or words from commands in forming new
commands. This mechanism can repeat previous commands or correct minor typing mistakes
in commands.

Consider the following transcript:

% Is -l shell.proc

-rw-r--r-- 1 sandy 6506 Jan 19 20:05 shell.proc
% chmod 755 '$

chmod 755 shell.proc

Here we asked for a long (-) listing of the file ‘shell.proc’ and were told, among other things, that
it was not executable. We need to change the permissions attached to it, so we execute a
chmod command on ‘1$'. ‘!$’ is a history notation that means the last word of the last command
executed, in this case ‘shell.proc’. The shell performed this substitution and then echoed the
command (‘chmod 755 shell.proc’) as it would execute it. Suppose now that we want to verify
that the permission changes were made by doing another ‘ls -I'. We can do

% Yl '
-rwxrwxrwx 1 sandy 6506 Jan 19 20:05 shell.proc
%

We repeat the /s -1 command with the history notation ‘!II', which repeats the last command that
began with a word of which ‘I’ is a prefix.

The form ‘! re-executes the last command. Another useful command form is ‘tlhstrhs’,
which performs a substitution similar to that in ed or ex. Thus in this example,

% cat “bill/csh/sh..c

/mnt/bill/csh/sh..c: No such file or directory
% 1..1.

cat “bill/csh/sh.c

#include "sh.h"

char “pathlist]] = { SRCHP
%

we used the substitution to correct a typing mistake, and then rubbed the command out after we
saw that we had found the file we wanted. The substitution changed the two ‘.’ characters to a
single ‘.’ character.

After this command we might do

% V| lpr
cat “bill/csh/sh.c | lpr

to put a copy of this file on the line printer, or (immediately after the cat that worked above)

-12-

% pr!$ | lpr
pr “bill/csh/sh.c | Ipr
%

More advanced forms of the history mechanism also exist. Substitutions themselves may
be modified, so you can say (after the first successful cat above).

% cd '$:h
cd “bill/csh
%

The trailing “:h’ on the history substitution here causes only the head portion of the pathname
reintroduced by the history mechanism to be substituted. This and related mechanisms are
used less often than the forms above.

A complete description of history mechanism features is given in the C shell manual entry
in the Plexus Sys3 UNiX Programmer’s Manual.

2.4. Aliases

The shell has an alias mechanism that can simplify the commands you type, supply
default arguments to commands, or perform transformations on commands and their arguments.
The alias facility is similar to the macro facility of many assemblers.

Some of the features obtained by aliasing can also be obtained using shell command files,
but these take place in another instance of the shell and cannot directly affect the current shell’s
environment. Thus commands such as chdir, which must be done in the current shell, may not
work the way you expect.

As an example, suppose you wish to use a new version of the mail program. The new
program is called ‘Mail’, and the standard mail program continues to be called ‘mail’. If you
place the shell command

alias mail Mail
in your .login file, the shell will transform an input line of the form
mail bill

into a call on ‘Mail'. More generally, suppose we wish the command ‘Is’ to always show sizes of
files, that is to always do '-s’. We can do

aliaslisls -s
or even
alias dir Is -s
creating a new command syntax ‘dir’, which does an ‘ls -s'. If we say
dir “bill
then the shell translates this to
Is -s /mnt/bill

Thus the alias mechanism can provide deafult arguments and short names for commands,
and can define new short commands in terms of other commands. You can also define aliases
that contain multiple commands or pipelines, showing where the arguments to the original com-
mand are to be substituted using the facilities of the history mechanism. Thus the definition

aliascd ‘cd \!" ;Is *

does an Is command after each change directory (cd) command. We enclosed the entire alias
definition in**’ characters to prevent most substitutions from occurring and the character *;’ from

-13 -

being recognized as a parser metacharacter. The ‘I here is escaped with a ‘\’ to prevent it from
being interpreted when the alias command is typed in. The '\!"" here substitutes the entire argu-
ment list to the pre-aliasing cd command, without giving an error if there were no arguments.
The ‘;’ separating commands is used here to indicate that one command is to be done and then
the next. Similarly the definition

alias whois “grep \!t /etc/passwd”

defines a command that looks up its first argument in the password file.

2.5. Detached Commands; > > and > & Redirection

A few more metanotations are useful. The metacharacter ‘& may be placed after a com-
mand, or after a sequence of commands separated by ‘;’ or |. This causes the shell not to wait
for the commands to terminate before prompting again. We say that they are detached or
background processes. Thus

% pr “bill/csh/sh.c | lpr &
5120

5121

%

Here the shell printed two numbers and came back very quickly rather than waiting for the pr
and /pr commands to finish. These numbers are the process numbers assigned by the system
to the pr and /Jpr commands.t

Since havoc would result if a command run in the background were to read from your ter-
minal at the same time as the shell does, the default standard input for a command run in the
background is not your terminal, but an empty file called ‘/dev/null. Commands run in the back-
ground are also made immune to INTERRUPT and QUIT signals that you may subsequently gen-
erate at your terminal.”

If you intend to log off the system before the command completes you must run the com-
mand immune to HANGUP signals. This is done by placing the word ‘nohup’ before each program
in the command, i.e.:

nohup man csh | nohup lpr &

In addition to the standard output, commands also have a diagnostic output that is nor-
mally directed to the terminal even when the standard output is directed to a file or a pipe. You
may occasionally want to direct the diagnostic output along with the standard output. For
instance, you may want to redirect the output of a long-running command into a file and have a
record of any error diagnostic it produces. The command

command > & file

accomplishes this. The ‘'>&’ here tells the shell to route both the diagnostic output and the
standard output into ‘file’. Similarly you can give the command

command |& Ipr
to route both standard and diagnostic output through the pipe to the line printer daemon /pr. #

tRunning commands in the background like this tends to slow down the system and is not a good idea if the
system is overloaded. When overloaded, the system will just bog down more if you run a large number of
processes at once.

*if a background command stops suddenly when you hit INTERRUPT or QUIT it is likely a bug in the back-
ground program.

#A command form

command >4&! file
exists, and is used when noclobber is set and file already exists.

-14 -

Finally, you can use the form
command > > file
to place output at the end of an existing file.t

2.6. Useful Built-in Commands
We now describe a few of the useful built-in commands of the shell.

The alias command described above assigns new aliases and shows existing aliases.
With no arguments it prints the current aliases. It may also be given an argument such as

alias Is

to show the current alias for, in this case, ‘Is’.

The cd and chdir commands are equivalent; they change the working directory of the
shell. An experienced UNIX user usually makes a subdirectory for each of his projects and
places all files related to each project in the appropriate subdirectory. Thus after you login you
can do

% pwd

/mnt/bill

% mkdir newpaper
% chdir newpaper
% pwd
/mnv/bill/newpaper
%

after which you will be in the directory newpaper. You can return to your ‘home’ login directory
by doing just

chdir

with no arguments. We used the pwd (print working directory) command to show the name of
the current directory. The current directory is usually a subdirectory of your home directory.
Thus, the home directory (here /mnt/bill') path forms the prefix of the new directory name. In
the example above, /mnt/bill’ forms the prefix of /mnt/bil/newpaper’.

The echo command prints its arguments. It is often used in shell scripts or as an interac-
tive command to see what filename expansions will yield.

The history command shows the contents of the history list. The numbers given with the
history events can be used to refer to previous events that are difficult to refer to using the con-
textual mechanisms introduced above. There is also a shell variable called prompt. By placing
a ‘!’ character in its value the shell there substitutes the index of the current command in the his-
tory list. You can use this number to refer to this command in a history substitution. Thus you
could

set prompt="\! % *
Note that the ‘I’ character had to be escaped here even within '*' characters.

The logout command terminates a login shell that has ignoreeof set.

The repeat command repeats a command. Thus to make 5 copies of the file one in the
file five you could do

t1f noclobber is set, then an error will result if file does not exist; otherwise the shell will create file if it
doesn't exist. A form

command > >! file
makes it not be an error for file to not exist when noclobber is set.

-15-

repeat 5 cat one > > five

The setenv command sets variables in the environment. Thus
setenv TERM adm3a

sets the value of the environment variable TERM to ‘adm3a’. A user program printenv prints out
the environment. It might then show:

% printenv
HOME /usr/bill
SHELL /bin/csh
TERM adm3a
%

The source command forces the current shell to read commands from a file. Thus
source .cshrc

causes any changes to .cshrc to take effect before the next time you login.
The time command can time a command no matter how much CPU time it takes. Thus

% time cp five five.save
0.0u 0.3s 0:01 26%
% time wc five.save
1200 6300 37650 five.save
1.2u 0.5s 0:03 55%
%

indicates that the cp command used less that 1/10th of a second of user time and only 3/10th of
a second of system time in copying the file ‘five’ to ‘five.save’. The command word count wc,
which counts the number of words, character and lines in ‘five.save’, used 1.2 seconds of user
time and 0.5 seconds of system time in 3 seconds of elapsed time. The percentage ‘55%' indi-
cates that over this period of 3 seconds, our command ‘wc’ used an average of 55 percent of
the available cPu cycles of the machine. This is a very high percentage and indicates that the
system is lightly loaded.

The unalias and unset commands remove aliases and variable definitions from the shell.

The wait command can be used after starting processes with ‘&' to see quickly if they
have finished. If the shell responds immediately with another prompt, they have. Otherwise you
can wait for the shell to prompt, at which point they will have finished, or interrupt the shell by
sending a RUBOUT or DELETE character. If the shell is interrupted, it prints the names and
numbers of the processes it knows to be unfinished. Thus:

% nroff paper | Ipr &
2450
2451
% wait
2451 |lpr
2450 nroff
wait: Interrupted.
%

You can check again later by doing another wait, or see which commands are still running
by doing a ps. As ‘time’ will show you, ps is fairly expensive. It is thus counterproductive to run
many ps commands to see how a background process is doing.t

tHf you do you are usurping with these ps commands the processor time the job needs to finish, thereby de-
laying its completion!

-16 -

If you run a background process and decide you want to stop it you must use the kill pro-
gram. You must use the process id number(s) (PIDs) of the process(es) you wish to kill. (If you
don't know, do a ps). Thus to stop the nroff in the above pipeline you would do

% kill 2450

% wait

2450: nroff: Terminated.
%

" Here the shell printed a diagnostic that we terminated ‘nroff’ only after we did a wait. If we want
the shell to discover the termination of all processes it has created we must, in general, use
wait.

2.7. What Else?

This concludes the basic discussion of the shell for terminal users. The programming
features of the shell are described in the next section. One especially useful feature discussed
later is the foreach built-in command, which can be used to run the same command sequence
with a number of different arguments.

If you intend to use UNIX a lot, you should look through the rest of this document and the
shell manual pages to become familiar with the other facilities available to you.

-17 -

3. SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS

3.1. Introduction

Rather than inputting commands one at a time to the shell, you can place commands in
files and cause these commands to be read and executed. Using these command files, you can
put long command sequences in motion without having to wait for each one to complete serially;
arithmetic and loop control constructs are also available. An added plus is that you can use all
the expansion and substitution facilities of your editor to create these files quickly. These com-
mand files are called shell scripts. We here detail those features of the shell useful to the writ-
ers of such scripts.

3.2. Make

Note what shell scripts are not useful for. The program make is very useful for maintain-
ing a group of related files or performing sets of operations on related files. For instance, a
large program consisting of one or more files can have its dependencies described in a
makefile, which contains definitions of the commands used to create these different files when
changes occur. Definitions of the means for printing listings, cleaning up the directory in which
the files reside, and installing the resultant programs are easily and most appropriately placed in
this makefile. Shell scripts are less suitable for this kind of maintenance.

Similarly when working on a document, a makefile may be created that defines how dif-
ferent versions of the document are to be created and which options of nroff or troff are
appropriate.

3.3. Invocation
A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and ‘..." is replaced by
a sequence of arguments. The shell places these arguments in the variable argv and then
begins to read commands from the script. These parameters are then available through the
same mechanisms used to refer to any other shell variables.

If you make the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e., begin the file with a ‘#’ char-
acter) then a ‘/usr/pix/csh’ is automatically invoked to execute ‘script’ when you type

script

If the file does not begin with a ‘#’ then the standard shell /bin/sh’ executes it. This allows you
to convert your older shell scripts to use csh at your convenience.

A complication arises, however, when you run shell scripts under the C shell in UNIX SYS-
TEM Il or Plexus Sys3. The C shell was written to be used with UNIX Version 7, the release
before SYSTEM III, upon which Plexus Sys3 is based. Many standard Sys3 commands are
actually shell scripts, and some begin with the comment character, so they look like C shell
scripts to the C shell. But Sys3 contains commands not found in Version 7, so some of these
shell scripts call commands the C shell has never heard of, and can't execute. Such commands
fail when run under the C shell. Therefore, if you run the C shell with Sys3, you should set your
environment variable SHELL to /bin/sh, so any shell scripts are automatically run by the Sys3
shell. If you really want the C shell to execute your shell script, you can explicitly execute it with
‘csh’ or put the call to ‘csh’ within the script.

-18 -

3.4. Variable Substitution

After each input line is broken into words, and history substitutions are done on it, the
input line is parsed into distinct commands. Before each command is executed, variable substi-
tution is done on these words. Keyed by the character ‘$’, this substitution replaces the names
of variables by their values. Thus

echo $argv

when placed in a command script causes the current value of the variable argv to be echoed to
the output of the shell script. Argv may not be unset at this point.

A number of notations are provided for accessing attributes of variables. The notation
$7name

expands to ‘1’ if name is set or to ‘0’ if name is not set. This is the fundamental mechanism
used for checking whether particular variables have been assigned values. All other forms of
reference to undefined variables cause errors.

The notation
$#4name
expands to the number of elements in the variable name. Thus

% set argv=(a b ¢)
% echo $?argv

1

% echo $#argv

3

% unset argv

% echo $?argv

0

% echo $argv
Undefined variable: argv.
%

You can also access the components of a variable that has several values. Thus
$argv([1]
gives the first component of argv or, in the example above, ‘a’. Similarly
$argv[$4#targv]
would give ‘c’.
Other notations useful in shell scripts are
$n
(where n is an integer) as a shorthand for
$argvin]
(the nth parameter) and
¢
which is a shorthand for
$argv
The form

$$

expands to the process number of the current shell. Since this process number is unique in the

-19 -

system it can be used in generation of unique temporary file names.

One minor difference between ‘$n' and ‘$argvin] should be noted here. The form
‘$argv[n]’ yields an error if n is not in the range ‘1-$#argv’ while ‘$n’ never yields an out-of-
range-subscript error. This is for compatibility with the way older shells handled parameters.

Note also that it is never an error to give a subrange of the form ‘n-’; if there are less than
n components of the given variable then no words are substituted. A range of the form ‘m-n’
likewise returns an empty vector without giving an error when m exceeds the number of ele-
ments of the given variable, provided the subscript n is in range.

3.5. Expressions

Expressions in the shell must be able to be evaluated based on the values of variables;
otherwise, the shell wouldn't be able to do anything interesting. All the arithmetic operations of
the language C are available in the shell with the same precedence that they have in C. In par-
ticular, the operations ‘=="and '!=' compare strings and the operators ‘&&’ and || implement
the Boolean ‘and’ and ‘or’ operations.

The shell also allows file enquiries of the form
-? filename
where ‘?’ is replaced by a number of single characters. For instance the expression primitive
-e filename
tells whether the file ‘filename’ exists. Other primitives test for read, write and execute access
to the file, whether it is a directory, or has non-zero length.

You can also test whether a command terminates normally by a primitive of the form *{
command }', which returns true, i.e. ‘1’, if the command succeeds (exiting normally with exit
status 0), or ‘0’ if the command terminates abnormally (with exit status non-zero). If you need
more detailed information about the execution status of a command, execute it and in the next
command examine the variable ‘$status’. Since ‘$status’ is set by every command, it is very
transient. It can be saved if it is inconvenient to use it only in the single command immediately
following.

For a full list of expression components available see the manual entry for the shell.

3.6. Sample Shell Script

A sample shell script that makes use of the expression mechanism of the shell and some
of its control structure follows:

-20-

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory “/backup if they differ from the files
already in “/backup

#

set noglob

foreach i ($argv)

if ($i:r.c != $i) continue # not a .c file so do nothing

if (! -r “/backup/$i:t) then
echo $i:t not in backup... not cp\ “ed
continue

endif

cmp -s $i “/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i “/backup/$i:t
endif
end

This script makes use of the foreach command, which causes the shell to execute the
commands between the foreach and the matching end for each of the values given between ‘('
and ‘)’ with the named variable (in this case /) set to successive values in the list. Within this
loop we may use the command break to stop executing the loop and continue to prematurely
terminate one iteration and begin the next. After the foreach loop the iteration variable (i in this
case) has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members of argv.
This is a good idea, in general, if the arguments to a shell script are filenames that have already
been expanded or if the arguments may contain filename expansion metacharacters. You can
also quote each use of a ‘¢’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form
if (expression) then
command
endif

The placement of the keywords here is somewhat flexible.t
The shell does have another form of the if statement

tLeaving out the ‘then’ aitogether works, for example. The ‘then’ may also be put on a separate line, as fol-
lows:

it (expression) # Produces diagnostic but works!
then

command
endit

but this produces a diagnostic to the effect that the command ‘then’ cannot be found. The following format is
not currently acceptable to the shell:

it (expression) then command endit #Won’'t work

-21-

if (expression) command
which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve
‘I', ‘& or *;’ and must not be another control command. The second form requires the final *\' to
immediately precede the end-of-line.

The more general if statements abave also admit a sequence of else-if pairs followed by a
single else and an endif, e.g.:

if (expression) then

commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is ‘' modifiers. We can use the modif-
ier “:r' here to extract a root of a filename. Thus if the variable i has the value ‘foo.bar’ then

% echo $i $i:r
foo.bar foo
%

shows how the ‘:r' modifier strips off the trailing .bar’. Other modifiers will take off the last com-
ponent of a pathname leaving the head ":h’ or all but the last component of a pathname leaving
the tail :t’. These modifiers are fully described in the csh manual entry. You can also use the
command substitution mechanism described in section 4.3 to perform modifications on strings
to reenter the shell’'s environment. Since each usage of this mechanism involves the creation of
a new process, it is much more expensive than the *:' modification mechanism.* Finally, we note
that the character '#’ lexically introduces a shell comment in shell scripts (but not from the ter-
minal). All subsequent characters on the input line after a ‘#’' are discarded by the shell. This
character can be quoted using ‘*’ or ‘\’ to place it in an argument word.

3.7. Other Control Structures

The shell also has control structures while and switch similar to those of C. These take
the forms

while (expression)
commands
end

and

“Note also that the current implementation of the shell limits the number of '’ modifiers on a ‘$’ substitution to
1. Thus

% echo $i $i:h:t
/a/blc /a/b:t
%

does not do what one would expect.

-22.

switch (word)

case stri:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to
exit from a switch while break exits a while or foreach loop. A common mistake in csh scripts
is to use break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying Input to Commands

Commands run from shell scripts receive by default the standard input of the shell that is
running the script. Thus it is different from previous shells running under UNIX. It allows shell
scripts to participate fully in pipelines, but mandates extra notation for commands that take inline
data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As
an example, consider this script, which runs the editor to delete leading blanks from the lines in
each argument file

% cat deblank

deblank -- remove leading blanks
foreach i ($argv)

ed- $i << ‘EOF’

1,8s/1[1"/

w

q

‘EQOF*

end

%

The notation ‘< < “EOF ~’ means that the standard input for the ed command is to come from
the text in the shell script file up to the next line consisting of exactly ‘’EOF ". The fact that the
‘EOF is enclosed in ‘*’ characters, i.e. quoted, causes the shell not to perform variable substitu-
tion on the intervening lines. In general, if any part of the word following the ‘< <’ is quoted,
then these substitutions are not performed. In this case, since we used the form ‘1,$’ in our edi-
tor script, we needed to insure that this '$’ was not variable-substituted. We could also have
insured this by preceding the ‘$’ here with a '\, i.e.:

-23.

1\$s/1[17/
but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts
If our shell script creates temporary files, we may wish to catch interruptions of the shell
script so that we can clean up these files. We can then do
onintr label

where /abel is a label in our program. If an interrupt is received the shell will do a ‘goto label’
and we can remove the temporary files and then do a exit command (which is built into the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(1)
e.g. to exit with status ‘1'.

3.10. What Eise?

Other features of the shell are useful to writers of shell procedures. The verbose and
echo options and the related -v and -x command line options can help trace the actions of the
shell. The -n option causes the shell only to read commands and not to execute them.

Note that csh does not execute shell scripts that do not begin with the character ‘#'--that
is, shell scripts that do not begin with a comment.

Another quotation mechanism using ‘"’ allows only some of the expansion mechanisms we
have so far discussed to occur on the quoted string and serves to make this string into a single
word as '’ does. See the manual entry for more information.

-24 -

4. MISCELLANEOUS, LESS GENERALLY USEFUL, SHELL MECHANISMS ﬂm

4.1. Loops at the Terminal; Variables as Vectors

You may occasionally want to use the foreach control structure at the terminal to aid in
performing a number of similar commands. For instance, three shells were once in use on the
Cory UNIX system at Cory Hall at UC Berkeley: ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the
number of persons using each shell, one could issue the commands

% grep -c csh$ /etc/passwd
27

% grep -¢ nsh$ /etc/passwd
128

% grep -c -v sh$ /etc/passwd
430

%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i (‘sh$’ ‘csh$’ “-v sh$")
? grep -c $i /etc/passwd

? end

27

128

430

%

Note here that the shell prompts for input with ‘? * when reading the body of the loop.

Very useful with loops are variables that contain lists of filenames or other words. You =
can, for example, do)

% set a=('ls’)
% echo $a
csh.n csh.rm
% Is

csh.n

csh.rm

% echo $#a
2

%

The set command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within **’ characters is converted by the shell to a list of words.
You can also place the *’ quoted string within ‘"’ characters to take each (non-empty) line as a
component of the variable. This prevents the lines from being split into words at blanks and
tabs. A modifier “x' can later expand each component of the variable into another variable,
splitting it into separate words at embedded blanks and tabs.

4.2. Braces { ... } in Argument Expansion

Another form of filename expansion involves the characters ‘{" and ‘}". These characters
specify that the contained strings, separated by *,’, are to be consecutively substituted into the
containing characters and the results expanded left to right. Thus

A{str1,str2,...strn}B

expands to)

-25.-

AstriB Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively
(i.e. nested). The results of each expanded string are sorted separately, left to right order being
preserved. If no other expansion mechanisms are used, the resulting filenames need not exist.
This means that this mechanism can be used to generate arguments that are not filenames, but
have common parts.

A typical use of this would be
mkdir ~/{hdrs,retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is most
useful when the common prefix is longer than in this example, i.e.

chown bin /usr/{bin/{ex,edit},lib/{ex1.1strings,how_ex}}

This command changes the ownership of all the following files: /usr/bin/ex, /usr/bin/edit,
/usr/lib/ex1.1strings, and /usr/lib/how_ex.

4.3. Command Substitution

A command enclosed in **' characters is replaced, just before filenames are expanded, by
the output from that command. Thus it is possible to do

set pwd="pwd"
to save the current directory in the variable pwd or to do
ex ‘grep -l TRACE ~.c’

to run the editor ex supplying as arguments those files whose names end in ‘.c’ and have the
string ‘TRACE' in them.”

4.4. Other Details Not Covered Here

Sometimes you may need to know the exact nature and order of different substitutions
performed by the shell. The exact meaning of certain combinations of quotations is also occa-
sionally important. These are detailed fully in the manual section.

The shell has a number of command line option flags that are mostly of use in writing UNIX
programs and debugging shell scripts. See the manual entry for a list of these options.

*Command expansion also occurs in input redirected with '< <’ and within ‘™ quotations. Refer to the shell
manual section for full details.

-26 -

Appendix - Special Characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressions. See the csh manual entry for a complete list.

Syntactic metacharacters

; 2.4 separates commands to be executed sequentially

| 1.5 separates commands in a pipeline

() 2236 brackets expressions and variable values

& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters
/ 1.6 separates components of a file’s pathname
? 1.6 expansion character matching any single character
1.6 expansion character matching any sequence of characters
] 1.6 expansion sequence matching any single character from a set
1.6 used at the beginning of a filename to indicate home directories
{} 4.2 used to specify groups of arguments with common parts

P IR

Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character
‘ 1.7 prevents meta-meaning of a group of characters

4 4.3 like , but allows variable and command expansion

Input/output metacharacters
< 1.3 indicates redirected input
> 1.5 indicates redirected output

Expansion/substitution metacharacters

$ 3.4 indicates variable substitution

! 2.3 indicates history substitution

: 3.6 precedes substitution modifiers

1 2.3 usedin special forms of history substitution
4.3 indicates command substitution

.

Other metacharacters
3.6 begins a shell comment
- 1.2 prefixes option (flag) arguments to commands

Glossary

-27.

This glossary lists the most important terms introduced in the introduction to the shell and
gives references to sections of this document for further information about them. References of
the form ‘pr (1)’ indicate that the command pr is in the Plexus Sys3 unix Programmer’'s Manual
in section 1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this

manual.

alias

argument

argv

background

bin

break

built-in

Your current directory has the name ‘.’ as well as the name printed by the com-
mand pwd. The current directory *." is usually the first component of the search
path contained in the variable path;, thus commands that are in .’ are found
first (2.2). The character .’ is also used in separating components of filenames
(1.6). The character ‘.’ at the beginning of a component of a pathname is
treated specially and not matched by the filename expansion metacharacters
™, and ‘[‘] pairs (1.6).

Each directory has a file *.." in it, which is a reference to its parent directory.
After changing into the directory with chdir, i.e.

chdir paper
you can return to the parent directory by doing
chdir ..

The current directory is printed by pwd (2.6).

An alias specifies a shorter or different name for a UNIX command, or a
transformation on a command to be performed in the shell. The shell has a
command alias, which establishes aliases and can print their current values.
The command unalias is used to remove aliases (2.6).

Commands in UNIX receive a list of argument words. Thus the command
echoabc

consists of a command name ‘echo’ and three argument words ‘a’, ‘b’ and ‘c’
(1.1).

The list of arguments to a command written in the shell language (a shell script
or shell procedure) is stored in a variable called argv within the shell. This
name is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>