DEVELOPERS' CONFERENCE AND EXPO

APRIL 29-MAY 3, 1996
SAN JOSE, CALIFORNIA



oy

 etiaa AT P

DEVELOPERS’ CONFERENCE

CONFERENCE
PROCEEDINGS

SPONSOKRED y Y

- Annabooks™

PC* Consulting

0-929392-34-5



You are welcome to send us comments or questions
concerning this or other Annabooks products,
or to request a catalog of our other products and seminars.

Annabooks
11838 Bernardo Plaza Court
San Diego, CA 92128-2414

800-462-1042
619-673-0870
619-673-1432 FAX
73204.3405 @ compuserve.com

ISBN 0-929392-34-5

ii



Proceedings of PCI SPRING ‘26
Developers’ Conference and Expo
April 29-May 3, 1996 ¢ San Jose, California

Preface
Ed Solari, PC? Consulting LLC

Session F1
Docking for Mobile Computing
Harish Nayak, Cirrus Logic
The New Digital Media
Tony Sheberman, Intel Corporation
How to Implement a CardBus Solution
Gary Gildersleeve, Cirrus Logic

Session F2
PCI Technology for Industrial Control Systems—Benefits and Issues
Clyde Thomas, Allen-Bradley Company, Inc., Rockwell Automation
Using the PCI Bus for Packet Switching Applications
Raymond Kolment, Teknor Industrial Computers
Impact of PCI Technology on Control Solutions
Edwin Lee, Pro-Log Corporation
Leveraging PCI in Data Acquisition Applications
Richard ]. Burk, Data Translation, Inc.

Session F3
Efficient Use of PCI
Frank Hady, Intel Corporation

Session F4
The Role of CardBus in a PCI Bus Hierarchy
Claude A. Cruz, National Semiconductor Corporation

Session F7
Where Do I Plug the Cable? Solving the Loglcal-Physmal Slot
Numbering Problem

Jeff Autor and Alan Goodrum, Compaq Computer Corporation

Session F8
PowerPC™ Platform
Mike Becker, Motorola
Session F9
The Standard in PCI to PCI Bridges
Tracy Richardson, Digital Semiconductor
Design Issues for PCI-to-PCI Bridges
Thomas L. Anderson and Mark W. Knecht, Virtual Chips, Inc.;
Jacques Wong, Advanced Micro Devices

iii

12

13

17

22

26

44

51

61

71

86



PCI Interrupt Controller for Industry Standard PCI-ISA Bus Architecture
Using PCI-to-PCI Bridge Technology

Ross L. Armstrong, Digital Equipment Corporation
DCM’s PCI-to-PCI Bridge Solution

Kamal Mansharamani, DCM DataSystems

Session F12
PC-DMA and PCI: New Open Standard Blends Both
Dwight D. Riley, Compagq Computer Corporation

Session F13

A PCI Accelerator Architecture for the ADI SHARC DSP
Joseph A. Sgro, Alacron, Inc.

PMC: The PCI Mezzanine Card
Rodger H. Hosking, Pentek, Inc.

DSP and I/0O System Integration for PCI
Jack Carter and Manish Kasliwal, Sonitech International Inc.

Session F14
RACEway Interlink as a PCI Switching Fabric

Barry Isenstein and Bob Blau, Mercury Computer Systems, Inc.
PCI Bus Switching with the PSX

Kent Dahlgren, I-Cube Incorporated

Session 1A
The Future of PCI

Edwin Lee, Ed Lee Executive Workshop
The Future of PCI

Bert Forbes, Ziatech Corporation

Session 1B

PCI and Data Acquisition
Jim Fitzgerald, Keithley MetraByte

Design Considerations for Data Acquisition Hardware on the PCI Bus
Richard ]. Burk, Data Translation, Inc.

The Impact of PCI on the Test and Measurement Industry
Arthur Ryan, National Instruments

Session 1C

Programmable Logic Implementations of PCI
David Ridgeway, Xilinx

PCI Is Not Just for PCs: Embedded Systems Migrate to PCI Architecture
Mike Salameh, PLX Technology, Inc.

Session 1D

PCI Performance Analysis for High-Speed Networking
Peter N. Glaskowsky, Integrated Device Technology, Inc.

The PCI Multi-Function Device: Benefits and Design Considerations
Margit E. Stearns, Symbios Logic, Inc.

Session 2A
XVideo Family for PCI
Bob Goodwin, Parallax Graphics

iv

93

101

109

119

154

160

161

171

178

186

187

191

195

199

200

201

211

214



New Generation Silicon for 3D Graphics on PCI
Neil Trevett, 3Dlabs Inc.

High-Speed DRAMs for PCI Systems
Billy Garrett, Rambus Inc.

Session 2B

Using PCI Interface in Routers
Aamer Mahmood, Cisco Systems

Serial-HIPPI Network Interfaces Using the RoadRunnerPCI ASIC
Michael McGowen, Essential Communications

Session 2C
Computer Makers Roundtable
Donald F. McCook, Dolch Computer Systems

Session 2D
PCI RAID Controllers
K. K. Rao, Mylex Corporation
Embedded RAID Presentation
Scott Jensen, Adaptec
Fast-40 SCSI, Pushing PCI to the Limit
Richard Mourn, Symbios Logic Inc.

Session 3A
What's Good & What’s Bad About Unified Memory Architectures (UMA)
Desi Rhoden, VLSI Technology, Inc.

Session 3B
Leveraging PCI Bus Bandwidth and High Performance CPUs in
Designing MPEG-1 and H.261 Video CODECs

Frank Schapfel, Digital Equipment Corporation
Trimedia—The Processor for PC-Consumer Multimedia

Selliah Rathnam and Gert Slavenburg, Philips Semiconductors
Multimedia Bandwidth Issues Over PCI

Giri Venkat, Yamaha Systems Technology, Inc.

Session 3C
Board Maker’s Roundtable
Steve Cooper, I-Bus

Session 3D
Bus-to-Bus Connections

Stephan Ohr, Computer Design
PCI and Multiprocessing

George P. White, Corollary, Inc.
1394 and PCI

Larry Blackledge, Texas Instruments
CompactPCI™ to STD32

Jim Medeiros, Ziatech Corporation
Serial Storage Architecture: A Low-Cost, High-Speed Serial Connection
for Disk Subsystems

Adge Hawes, IBM Havant

215

225

233

234

243

255

261

262

268

274

275

283

284

285

286

302

312

328



Session 4A

Using a Design Foundation for Flexible and Rapid PCI Interface Development
Leo K. Wong, Altera Corporation

A New FPGA Family for PCI Interface Designs
Brian Small, QuickLogic Corporation

PCI Implementation Kits for ORCA FPGAs: Features and

Design Considerations
James F. Hoff, Lucent Technologies

Session 4B
MPEG Bridges Using T1 Lines
Tom Thorsteinson, Linear Systems Ltd.
High Performance Vision Processing for the PCI Bus
Fernando Serra, Imaging Technology, Inc.
The PCI Bus and Broadcast Quality Video and Audio
Richard A. Kupnicki, Leitch Technology
Board Improves JPEG Compression Using Pre- and Post-Compression
Image Scaling
Harold Schiefer, Ernest Yeung, Steven Hanna, and Lance Greggain,
Genesis Microchip Inc.

Session 4D

PCI Bus Analyzer Simplifies Systems Test & Debugging
Thomas Nygaard, VMETRO, Inc.

PCI: The Bus That Glues?
Mark Bronson, Aeon Systems, Inc.

Latency Issues in PowerPC Reference Platform Architectures
Don Dingee, Motorola Computer Group

PCI Passive Backplane Technologies
Joe Pavlat, Pro-Log Corporation

PCI Shifts in the PC Landscape
Yong Yao, MicroDesign Resources

The ATX Form-Factor
Tim Craven, Intel

Session 5A
BIOS Boot Selection
Frances Cohen, Phoenix Technologies Ltd.
Notebook Docking: Techniques and Considerations
Jim Kelsey, SystemSoft Corporation

Session 5C
Multimedia Roundtable
Bridging the PCI to a Secondary Multimedia Bus:
Can We Plug and Play?
Larry Chisvin, S3 Incorporated

Session 5D
CAD Tools
Jim Lipman, EDN

334

343

347

353
358

366

381

390
394
399
409
440

443

452

454

462

463

464



Getting Quality Products to Market Faster with a Synthesizable PCI Core
David L. Evans, Technical Data Freeway

The Problem of Model Availability for Simulation of Devices and Systems
Dave Apte, Omniview, Inc.

Verifying PCI Bus System at Megahertz Speed
Sanjay Sawant, Quickturn Design Systems

Measuring and Optimizing Performance of PCI Based Designs
Venkatesh Arunarthi, Sand Microelectronics, Inc.

A VHDL Design Approach to a Master/Target PCI Interface
Leo K. Wong and Martin Won, Altera Corporation;
Subbu Ganesan, ZeitNet, Inc.

Late Papers
The GALNET Architecture: A PCI-Based Solution for High Performance
Internetworking
Manuel Alba, Galileo Technology
Using FPGAs for High-Performance PCI
James D. Joseph, Actel Corporation

Author Index
Keyword Index

Participant Index

vii

465

479

485

488

494

500

520

525

527

529






Preface to PCI Spring 96 Proceedings

_ Prior to the development of PCI engineers developing products for the non-PC (Personal
Computer) industry could only select between high performance proprietary buses or standard buses like
VME and Multibus I&II. PC buses like ISA and EISA were simply insufficient for the non-PC industry.
Proprietary buses by definition required development of all key hardware and software components.
Components for VME buses were not always compatible. Multibus I components were compatible, but
became overshadowed by Multibus II which required extensive software development.

The size of the PC industry insured a diverse set of low cost components and an unparalleled
selection of software. However, the lack of easy configuration and low performance of ISA bus; and the
complexity, limitations, and cost of EISA bus did not provide a long term bus to replace proprietary or
other standard buses.

The existence of extensive PC compatible software, appreciation for easy system configuration,
and the ever increasing ASIC functionally set the stage for a new bus standard. PCI began as a bus
definition to provide an easy to configure, low cost, and high performance interconnection between PC
software compatible ASICs. As it was fine turned into a PC industry standard it was expanded to include
definitions for slots and add-in cards. As PCI became integral to mainstream PCs the PCI hardware costs
decreased and the functional diversity of PCI ASICs and add-in cards increased. What evolved was a new
bus standard that brought together performance, building block diversity, low cost, easy configuration, and
compatibility with “limitless” PC compatible software.

In the mobile environment the traditional PCMCIA standard (recently renamed PC-Card 16) is
essentially an extension of low performance ISA bus with configuration enhancements and power-on
installation. The recent enhancement of this standard with CardBus, brings all of the advantages of PCI to
PCMCIA. CardBus is a small form factor version of PCI with the power-on installation.

Most recently, the embedded systems world has also discovered the cost and software advantages,
and building block diversity of PCIL.

It has become impossible for proprietary buses and standard buses like VME or Multibus 1&I1I to
compete with PCI due to the size of dynamics of the PC industry. The ever growing availability of PCI
cards and slots will eventually replace all of the ISA and EISA cards and slots. Similarly, the eventual
availability of combination PC-Card 16 / CardBus slots in the mobile and desktop environments will
facilitate the eventual extinction of PC-Card 16. Consequently, these proceedings contain information
about PCI and CardBus which are the future bus standards with the unique ability to address both the PC
and non-PC industries.

Ed Solari
PC2 Consulting LLC

ix






Docking for Mobile Computing

Harish Nayak, Cirrus Logic, Inc.
Systems Technology Products (STP)

The gap in speed, capacity and functionality
that has separated desktop systems from portable
computers has rapidly narrowed. Today, more and
more mobile computer users are relying on their
portable systems to serve their needs while on the
road and at the office. In this way, they avoid the
problems of file transfers and version tracking that
annoy their dual-computer-using colleagues.

On the road, one can get by with the small
display screens, but in the office, users want larger
screens, and to be able to attach networks, laser
printers, scanners and other peripherals to their
portable systems.

At first, they did so using ad-hoc solutions—
display screen cables connected to monitor ports,
network cables to network ports, and port replica-
tors, where the computer’s I/O ports are replicated
and consolidated into a single port-replication box.
Having to unplug several cables each time one left
on a business trip, then reconnect them each time one
returned, proved to be discouraging. It also created
an opportunity to solve the problem with “docking.”

In essence, a docking set up consists of the
portable system plus a docking station to which are
attached whatever peripherals the user requires.
Docking’s primary feature is its ability to quickly
connect or disconnect the portable system from the
docking station and its peripherals. But docking is far
more than simply a mechanism for rapidly plugging
or unplugging multiple interfaces. It must also ensure
that in the process users cannot inadvertently lose or
damage any data files. As such, docking approaches
are both related to, and limited by, the operating
system’s features and functions, and the I/O buses
involved.

Docking is an evolving technology. With the
advances of new I/0 bus technologies and operating
systems, docking is also advancing toward a fully
automatic, any time, capability.

Docking Stations Today

There are a range of docking solutions in place,
today. They differ in terms of their physical docking
attributes, and their electrical docking requirements.

Physical

A surprise-style docking/ejection mechanism is
one of the simplest but requires that the user make
sure the system is “ready” for docking or undocking.
There is no fail-safe mechanism, here, that permits
either the operating system or basic I/O system
(BIOS) to override the operation. Hence, there is a
risk of losing files.

The VCR-style and locking-style docking/
ejection mechanisms provide a fail-safe system for
docking or undocking. For undocking, an eject but-
ton or icon is pressed or selected which initiates a
series of interactions between the BIOS and various
hardware and software components. The result of
these interactions is putting the computer into a safe
undocking state. Only after the undocking is
approved by all involved is the portable computer
actually ejected.

Electrical

In addition to the various physical manifesta-
tions of docking, there are differences in docking
electrical conditions.

“Cold” docking, for example, refers to a
docking scheme whereby both the computer and
docking station must both be powered down before
docking or undocking can take place. Afterward, the
computer and docking station are powered up, and
the computer must go through a boot up sequence.

A so-called “warm” docking technique permits
the systems to be powered up when docking, but
requires that the computer be in a suspended opera-
tional state before docking or undocking. After dock-
ing or undocking, the computer must still go through
a wake-up process to restore it to an operation-ready



state, or it may require a full reboot, depending upon
the operating system.

In moving toward the ideal—a fully automatic,
any time, docking capability—docking technology
must first progress to the “hot” docking stage. Here,
the computer and docking station are both powered
up, and the computer is operational. The industry is
on the brink of hot docking but there will be varying
degrees of less-than-fully-automatic operation for
a while.

Operating Systems and Docking

There are definite relationships between operat-
ing systems and docking capabilities. For example,
portable computers running DOS and Windows 3.1
are limited to cold and warm docking. These operat-
ing systems simply lack the functional support
needed for hot docking.

Windows 95, however, has provided a founda-
tion for all three types of docking, including hot
docking. Its penchant for hot docking is primarily
due to its dynamic loadable drivers, device enumera-
tion, and operating system-to-BIOS links for
automatically adding and removing resources.

System Buses and Docking

Designers have some choices. They can “dock”
across an ISA-bus infrastructure, or do it across a
PCI-bus infrastructure. There are obvious advantages
to choosing PCI. It is broadband and fast with very
short latency. ISA, on the other hand, is a 1980s
technology, lacking in both bandwidth and speed.

However, ISA does enjoy an important advan-
tage. It is the I/O standard for a large number of
available and economical peripherals. That’s why, for
now, portable computers are being built with both
ISA and PCI, and it’s a good reason to equip a
docking station with a secondary ISA interface, too.

When an ISA bus is present both in the
computer and the PCI-based docking station, it is
referred to as a “dual ISA” design. Both systems—
portable computer and docking station —will take
advantage of PCI-to-ISA bridging to connect ISA
peripherals on both sides of the docking demarcation
line via a PCI bus interface (see figure 1).

In effect, the computer’s ISA bus (primary) is
connected to the docking station’s ISA bus
(secondary) through the PCI bus.

With the approach shown in figure 1, though,
a DMA controller (DMAC) and Programmable
Interrupt Controller (PIC) are implemented on both
sides of the docking line, and they use the same I/O
address space. That poses a problem.

There are two other concerns that must be
addressed in implementing a dual ISA design, too.
The “legacy” peripherals that use the ISA bus
comply with ISA’s Interrupt Request (IRQ)
specifications. And these peripherals are also
designed, in most cases, to use ISA Direct Memory
Access (DMA). However, neither ISA, IRQ nor
ISA DMA is part of the PCI standard.

There are two open-standard mechanisms that
can solve this dilemma. Serialized IRQ, or IRQSER,
is a mechanism for communicating IRQ status
between PCI-to-ISA bridges, and between legacy
components and PCI-to-ISA bridges. Distributed
DMA, or DDMA, is a mechanism for legacy DMA
support on a PCI bus.

The implementation in figure 2 solves both the
ISA TIRQ and DMA legacy support across the PCI
bus through IRQSERp and IRQSERs and the DDMA
mechanism.

Here, only the PCI/ISA bridge in the computer
has a master DMA controller, and all others are
slaves, each having a base register and DRQ/IRQ
definition.



All slave devices positively decode their DMA
I/0 registers. The PCI-to-PCI bridge and secondary
PCI-to-ISA bridges subtractively decode the
unclaimed DMA 1/O registers.

Multichannel- or channel-specific “write” (e.g.,
not on the primary ISA bus) is broadcast by the mas-
ter DMAC. Multichannel- or channel-specific “read”
is also broadcast by the master DMAC. Where it is a
multichannel read, the master DMAC will properly
assemble the bit information, then it will return the
8-bit word during the retry cycle.

Instead of edge-triggered IRQ signals, creating
a risk of glitches during docking, or a need for Q-
switch isolation, the serialized IRQs are passed from
PCI-to-ISA bridge via the PCI-to-PCI bridge. With
this implementation, the PCICLK is stopped during
docking and undocking and the IRQSER signal is
ignored during those times (patent pending).

Issues and Limitations in
Docking Today

To reiterate, there have been step-wise
enhancements to docking technologies as direct
consequences of step-wise improvements in
operating systems and I/O bus infrastructures. For
example, PCI allows us a simple docking interface
with high performance.

The availability and low cost of ISA-
compatible peripherals, and the reality that, for now,
Sound Blaster compatibility requires the ISA inter-
face, necessitates designing the support for ISA and
legacy peripherals in any serious docking solution.

Today’s operating systems, particularly
Windows 95, have set the stage for hot docking by
creating a foundation for it. Many of the plug-and-
play supporting features of Windows 95 play
significant roles in hot docking (e.g., device
enumeration). However, a foundation is meant to be
built upon, and the next generation of the Windows
‘95 family promises to offer an even-more-
comprehensive set of features in support of hot
docking among other functions.

Power management is a critical feature in
battery-powered portable systems. As such, power
management support must be part of any full-
featured docking solution.

Solving Some Problems Addressing
Design, Architecture, and Application
Solutions

Given the ultimate, fully-automatic, any-time
docking objective, we are now far down the road, but
not quite at our destination.

As mentioned earlier, Windows ‘95 has set the
stage for a step-wise leap in docking progress. It sup-
ports a dynamic loading of drivers, device enumera-
tion, and plug-and-play. But Windows ‘95 will only
enumerate the devices connected to PCI bus 0, not
those connected to bus 1. For that to occur, the dock-
ing station would need a plug-and-play BIOS to
enumerate its devices and interact with Windows ‘95
in order to load the drivers dynamically.

The next generation of Windows ‘95 will take
care of the Bus 1 enumeration situation, but in the
meantime, a transparent bus extender (patent pend-
ing) can be used to make two physical PCI buses
look like a single, logical bus 0. There is no bus 0-to-
bus 1 configuration cycle conversion, and no PCI
configuration space involved (see figure 3).

: K
=
2

On-Board or Off-Board?

Hot docking hardware implementations can be
done in two fundamental ways—putting the PCI-to-
PCI bridge on the computer, or putting it onto the
docking station. There are some advantages to taking
the off-board approach.

By adding the bridge to the computer, a
designer has to allow more space, increase the cost,
as well as the power consumption. In addition, the
on-board approach may require Q-switches to isolate
the IRQ signals during docking and undocking
(unless a IRQSER approach is used). This, too, adds
cost. For those users who do not intend to dock their
systems, it is unutilized cost (see figure 4).



‘Notebook ] ON-BOARD
Systom :ompum | DESIGN
Controller I
|
PCI (Computer) :
|
PCl-to- |
PCl i
Bridge l
Docking "border” | ey (Docking Staticn)
Docking
Station
Docking
Suation PCHo-ISA
Fig. &

By putting the PCI-to-PCI bridge on the
docking station (e.g., off-board), docking and
undocking glitches can be isolated from on-board
PCI devices without need of Q-switches (see figure
5). What’s more, there is no pressure on computer
board space, weight, power consumption, or cost.

Notebook | opr-BOARD
Sysem Computer | DESIGN
Controller )

PCI (Computsr) :

RIS W S WD NS G D G e WIS GEED GEER Cw

to- Docking "border”
POl
Bridge

PCl (Docking Station)

Docking
Station

Docking
Station

PCHoiSA

Fig.S

Ensuring network compliance

Since many docked computers will be part of
some networking scheme, there is a need to ensure
that the docked system can be compliant with net-
work requirements.

For example, a computer in sleep mode must be
able to rouse to full operation within a certain time
(e.g., 100 milliseconds) to meet network polling
requirements. This is a significant challenge to be
met by forthcoming docking implementation
approaches.

Easy docking with Windows ‘95

In sum, the advent of the next generation of
Windows ‘95 and the proliferation of PCI peripherals
will take us a long way toward the ideal docking
infrastructure. Meanwhile, the current version of
Windows 95 has already propelled us very far
forward.

Despite some of its evolutionary limitations,
Windows ‘95 is a good basis not only for hot dock-
ing, but for a hot docking scheme that is reasonably
automatic.

Windows 95 is capable of supporting cold,
warm and hot docking techniques, and matched by
hardware that is equally capable of supporting all
three modes, docking station and notebook designers
will have the design flexibility and versatility they
require.



cPu PORTABLE COMPUTER : DOCKING STATION
|
I l
o |
] PCiBus 0 PCU : PCiBus 1
- - o ™ —> ‘ - T
PCV PCV
ISA | ISA
‘Pﬂmuy ISA Secondary ISA
Figure 1
Notebook Computer Docking Station
cPU | ) : [70 Engfnel
Base Reg. | I [Base Reg.
|
|
PCI |
|
[
PCI  PCI
S
IRQSERp | RQSERs
| Py
Master DMAC | ISA
| A
> | <
Primary ISA Secondary ISA
Figure 2




!r' ~ TDGCKINGSTATON '; NOTEBOOK COMPUTER
| SucowoanyPClBus [ yanssansnr | Prary PCl Bus
| e———— PPN s 4 -o-
' I—- — -*'___-—L-
| l
| |
I ’.si" lnosen gﬂ’
RQSER
l (sEconnany) :
' : Scconcany ISA Bus l ) t
l - >
| : t | t
|
: ISAMasTER ISA MasTen | 1A Masten ISAMaSTER
| |
eenernien o = —m—m—/ |
Faune 3
Notebook | ON-BOARD Notebook | OFF-BOARD
System Computer | DESIGN System Computer | DESIGN
Controller | Controller
| |
PCI (Computer) | PCl (Computer) |
: h—-—-n-.—-———-.—-—-l
PCHto- I Cito- Docking "border"
PCl i PCI
Bridge I | Bridge
Docking "border" PCI (Docking Station) PCI (Docking Station)
Docking Docking
Station Station
Docking Docking
Station PClto-ISA Station PCl-to-ISA
Flg. 4 Fig.5




The New Digital Media

Tony Sheberman
Intel Technical Marketing Engineer
Intel Corporation FM3-77
1900 Prairie City Road
Folsom, CA 95661
(916)356-7399/2703 (fax)

The Presentation will cover the similarities and differences of the Miniature Card

to the PC Card and some typical applications for Miniature Card. The Miniature Card
(Minicard) is about one fourth the size of a PCMCIA card. Typical uses include the
storage and exchange of image, text, and voice data for digital cameras, audio recorders,
cellular phones, handheld computers (PDAs), and other portable consumer devices. The
Minicard is also the smallest standard form factor for removable memory-expansion
cards. It can accommodate up to 64 MB of flash, DRAM, or ROM. The card features a
60-connection memory-only bus interface,with a 16-bit-wide, non-multiplexed data bus.
Since the Minicard interface is a subset of the PC Card standard, data can be moved
easily into the PC using a PC card adapter.



How to implement a CardBus solution
Gary Gildersleeve
Cirrus Logic, Inc
3100 West Warren Ave.
Fremont, CA 95438
(510) 252- 6095/6080 (fax)

This article describes how to implement a CardBus bridge host controller solution and some of the
design choices the architect faces. Several terms are used in this article which need a basic definition. For
example, CardBus bridge controller refers to a PCI to PC Card bridge host controller. PC Card 16 refers
to the revision 2.1 compatible PC Cards or R2 Cards which have an ISA type 16 bit data path. PC Card
32 refers to CardBus Cards that have a PCI type interface with a 32 bit data path.

In a basic CardBus subsystem, there are three independent interfaces, which are stated below:
1) Host bus bridge interface ( PCI ). P
2) Socket interface
3) Socket Power control interface

Power Control

-

Socket 0

)y

Host

CardBus I_
L

Socket 1

weow

For most CardBus designs, the host bridge interface signals are directly connected to the
corresponding PCI bus signals. These signals are the multiplexed address/data, control and arbitration
signals and interrupts. Most of the PCI bus signals are direct connections to the CardBus bridge host
controller. Therefore, this article will focus on other areas of the CardBus design. There will be some
discussion brought up in regard to specific signals in the component and layout section. Main areas of
discussion will be the Interrupts, Power control and the optional feature of Zoomed Video (ZV). The last
topic discussed is the testing and verification of the CardBus design. This article is not intended to sway
the reader in anyway upon how to design their notebook system, but rather to help conger up ideas and
possible problems that may occur in a CardBus design.

Component and layout issues

Component placement is another design issue that should be considered in a CardBus host
controller implementation. Remembering that CardBus is similar in many aspects to the PCI bus. The
timing on the control signals are critical and have stringent requirements (11 ns max.). The CardBus host
controller chip should be placed as closely as possible to the PC Card Connector. It is recommended that
the trace length from the host bridge control to the PC Card socket does not exceed 5”. Loading condition
of these lines should also not exceed the loading specified in the PC Card specification. The CardBus



clock signal (CCLK/A16) should be give special attention since this is the 33 Mhz clock supplied to the
PC Card socket from the CardBus host controller. To ensure a clean clock signal to the CardBus socket, a
double wide trace should be used and additional guard-banding with a ground maybe preferable. To
prevent Cross Talk on neighboring signals extra spacing can be added between the CCLK signal and
other board signals. In the routing of the board good layout practice should be used by avoiding sharp 90
degree corners. Always use 45 degree corners instead. Since there is a lot of simultaneous switching of
signals at the PCI and CardBus interfaces, adequate bypassing of the power supply is essential. This can
be achieved by placing quality capacitors close to the host controller. In a PC Card 16 host controller
design, placement and routing were not as critical to ensure host functionality. The PC Card 16 bus was a
slow bus with few critical timing requirements. As opposed to that in CardBus host design, component
placement and layout considerations are major factors that govern successful operation. . Most of the of
issues stated involve basic design and board layout principles which need to be taken into account in a
CardBus subsystem design.

Interrupts

CardBus host adapters typically support both ISA and PCI interrupts. ISA style interrupts are
active high interrupts. These interrupts are used by PC Card 16 cards and typically are not shared
between devices. Each device that requires an interrupt is assigned its own interrupt signal. PCI
interrupts are active low and are designed to be shared in the system. If a CardBus card is installed in the
socket which is defined as function 0, it is assigned the interrupt INTA#.

There three different mechanisms in which the ISA interrupts can be generated. These methods are
listed below along with a brief description

External Hardware to generate the individual Interrupts
PCI/Way interrupts

PC/PCI interrupts

Individual Interrupt pin from the host

External Hardware method uses two output pins from the host (ISDAT and ISLD) and the PCI system
clock. When a card interrupt in generated, the host then sends out the serial interrupt to the external
hardware via the ISDAT line. Once the serial data is correctly aligned, the ISLD signal is sent to latch in
the data and initiate the ISA interrupt. This is a unidirectional protocol from the host to the external
hardware with no acknowledgment.

PCI/Way interrupt method only requires one pin (IRQSER) from the host controller and the PCI clock.
This bi-directional data stream is use to communicate the state of the interrupt between the host controller
and the core logic. . When an interrupt is generated by the controller, a start pulse is generated to begin
the transaction. Within the start and stop time period, each interrupt is assigned three clocks which are
used to show the state of the interrupt and each interrupt has its own time slot within the start and stop
period.

PC/PCI mode supports the Mobile computing model for serial interrupts. This method requires two pins
( SOUT and SIN ) and the PCI clock to interface the SIC (serial interrupt controller). The number of
interrupts supported is dependent upon the configuration of the SIC. For more information refer to the
mobile computing specification.

Individual Interrupts means that CardBus bridge has dedicated pins for each ISA interrupt.



The choice of interrupt method used is dependent upon the host bridge and core logic that will be used in
the system design.

Voltage Control & Power issues

Earlier host controller designs that only supported PC Card 16 cards could sometimes exclude
mixed voltage support to the PC Card socket without being severely penalized due to the limited number
of low voltage cards in the marketplace. It is no longer feasible for designers to avoid mixed voltage
designs with the trend shifting towards low voltage systems and power saving. Mixed voltage support is
no longer an option for the CardBus controllers. The PC Card Standard specifies that the CardBus
interface can only operate at 3.3V. PC Card socket power control switches are available from many
different manufactures in the marketplace and provide integrated solution for power control. These
switches are used to control the Vcc and Vpp voltage levels of the PC Card socket. These switches come
in either parallel or serial interface. Most of the CardBus host controllers today use the serial power
control switch to free up pins.

Power requirements for the CardBus system is another area the designer needs to be aware of to
determine the total system power requirements. Typically, the designer needs to know the worst case
power requirements for each subsystem. For the CardBus subsystem this can be easily calculated using
the following formulas.

Socket Power = (number sockets) * ( max. voltage of the socket) * ( Amp)
The 1 Amp value is derived from the PC Card Specification that states the maximum rating for pin of the
PC Card socket is 500 ma per pin. 2 * SO0mA = 1A

Host Power = (Highest Voltage applied to Host) * ( 1A)

Using the formulas above, the worst case power requirements for the CardBus host subsystem would be 15
Watt of power dissipation using 5V as the maximum voltage to be used in the system.

ZV (zoomed Video)

The Zoomed Video (ZV) Port is a direct connection between a PC Card and a VGA controller / Audio
DAC. It allows the PC Card to write video data directly to an input port of a graphics controller and audio
data directly to a digital-to-analog converter.

A few of PC Card host adapters are being introduced in to market that are capable of supporting the
proposed ZV Port standard. There are two methods of supporting ZV Port capability. The first method is
termed pass through in which all the ZV Port signals pass directly through the host controller. The
second method is termed “bypass” mode. Bypass mode is where the signals are re-routed from the PC
Card bus directly to the video port. The video port of the graphic controller is termed the “V Port”. This
re-routing is accomplished by tri-stating specific PC Card Bus signals from the PC Card host adapter.
Once these signals are tri-stated by the host controller during ZV Port operation, the ZV Port compliant
PC Card drives video and audio data on the same signals. Video signals from the PC Card are routed to
the ZV Port capable Video controller. Audio signals from the PC Card are routed to the ZV Port
compliant audio DAC in the host system. This mechanism allows for an inexpensive means to add
video/audio capability to a notebook or desktop system without burdening the host bus. Figure 1 shows
block diagram for a typical implementation.

A ZV Port compliant PC Card, when inserted into a PC Card slot, is initialized the same way as a PC

Card 16. This is specified in the PC Card standard. The ZV Port PC Card is thereafter recognized as a
ZV Port card and is programmed accordingly by Card Services. In this example, the Host controller

10



enters into ZV Port mode by tri-stating address pins A[25..4] of the PC Card bus when the Multimedia or
ZV Port enable bit is set.

The address pins are outputs®from the host controller during normal PC Card opération. Tri-stating of the
address pins by the adapter, allows the A[25..4] signals to carry video data and video capture timing
control signals directly to a video controller and the audio signals to the audio DAC.

It should be noted that ZV Port implementations are likely to vary amongst platforms and that Socket
Services software has to be customized to address these variability’s. Controlling output enable inputs of
the external buffers depends upon specific hardware design and Socket Services has to be aware of these
specifics such as the I/O Port addresses.

Validation and Test

Once the design is done a very important aspect is validation and testing of the system. In most cases,
the CardBus host bridge is typically the last subsystem tested and usually given the minimum time
compared to other subsystems like Video controller. The CardBus interface may prove to be an even more
difficult interface to validate. One reason is due to the enormous number of PC Cards in the marketplace.
How can you test to ensure compatibility with every card? Also many of the PC Card 16 cards come with
point enablers that bypass Socket and Card Services that can be a source of a problem. If a certain PC
Card fails, how is one to determine the cause? Is the problem the CardBus bridge, the card manufacture,
software, etc.. One suggestion during system validation is to start the validation of the CardBus bridge
earlier. Plan on carrying out comprehensive tests to verify the bridge interface. Probe and measure the
timing generated by the controller, look for timing violation, noise, Vcc and Ground bounce. Any of
these problem many cause the system layout to change, and cause the design schedule to slip.

TV LCD CRT

SPEAKERS

€O

BC Card
4, Audio
4
::mnu" <@—— Audio
CL-PD6722 <—L-> PC Card —[
~——p | CL-
i EE..':%?’” <4—»| interface || Video |iqg— video
i Decoder
i ? l_ NTSC/PAL
1 19, RF Signal
D e e e e e e e e T 0 = 7
Video & Control

Figure 1

Typical Example of the ZV Port Implementation



PCI Technology for Industrial Control Application
Benefits and Issues

Clyde Thomas
Allen-Bradley Company, Inc., Rockwell Automation

Historically, the large industrial automation vendors have used proprietary bus tech-
nologies in their control solutions. A number of market and technology drivers has cre-
ated interest in using standard and commercially available technologies such as PCIL
This paper presents how one major control vendor, Allen-Bradley (A-B), has adopted
PCI to help introduce a new line of PC-based controllers using existing A-B form fac-
tors and I/O products. The presentation will discuss the benefits of using existing PCI
standards and technologies, and how the use of PCI allowed for shorter development
time as well as access to additional technologies to broaden the application capability
of A-B’s industrial control solutions. In addition, several issues of adopting PCI tech-
nology from the commercial PC-based form factors as well as the emerging
CompactPCI definitions will be addressed.

1. Introduction to Industrial Automation Control Systems and
Traditional Approaches
II.  Drivers for Change in the Industry Automation Market
II. The Role of PCI and Its Suitability for Industrial Control

IV.  Benefits of Using PCI

Unique Design Constraints

Issues Associated with Industrial Application
Close—A Trend Not a Fad

S S <

12



PCI Spring: Industrial Agplications

Using the PCI Bus for Packet

Switching Applications
Ravmond Kolment, PCI Group Leader
Teknor Industrial Compurers Inc

B Abstract:

Present packet switching applications
are normally based on the use of
custom designs. The use of off the shelf
PC products is generally out of the
question. This paper proposes a method
of designing a medium rate
communication switch, using standard
industrial quality products. The use and
application of the PCI bus and available
industrial PC products is demonstrated.

B Background:

The basic architecture for most
digital data communication circuits
is the 7-S-7,, or Time-Space-Time
data switch. This switching
architecture allows messages to be
handled in both the time and space
domain. Most circuit switching
systems and all packet switching
systems use one form or another of
the basic 7-S-T architecture.

T-Stage: A time switch has a finite
amount of memory to store
incoming data packets. These data
packets are subsequently routed to
their intended destinations. The 7-

stage will delay the data, if Figure 1 Typical Communication Switch Architecture.

necessary, to assure that there are

no clashes between concurrent data
packets. A packet that cannot be
immediately routed will be delayed a
short time before being sent to its
destination. This process arbitrates the
packet access to the finite output
resources by scheduling the access to
these resources. This process can be
applied to both packet and circuit
switched data systems.

S-Stage: A space switch provides
independent  concurrent  cross-
connections between inputs and

outputs. The classical operator
switchboard, used in the earlier half of
this century, is an example of an S-
stage. Cross point switches are another
example of the S-stage.

A T-stage that includes multiple inputs
and outputs can perform the operation
of an S-stage, but there are physical
size limitations on this switch
architecture.  The number of
inputs/outputs can cause an electrical
implementation of the circuit to

L]

l Switch l

Controller

become I/O bound, whereas the
physical size of the temporary storage
memory will limit the number of
channels that can be handled by one
circuit assembly.

This is the reason why the 7-S-T
architecture is so popular in switch
designs. A simple 7-S-T" architecture
allows a modular implementation for
switching circuits. This modular
implementation allows a single switch
to be expandable in both the number of
individual input/outputs that can be

serviced and the amount of data that can
be handled by one central switch.

Figure 1 shows the basic architecture
for a typical T-S-T switch. The circuit
includes a Switch Controller that is
used to monitor and control the
operation of the switch. Typical
functions implemented by the Switch
Controller include:

Switch Configuration;

Circuit Synchronization;

Status & Health Monitoring

Billing & Customer Use

Control;

. Circuit Switching Connection
Control;

. Packet/Circuit Switch Priority

Control,

. . . .

® Circuit Implementation:
Present implementations of this

system use proprietary hardware
‘ b= 10 implement most of the switch.
T Staes T-Steeq .. This can be costly to design and
t i manufacture. In many cases, the
design and manufacture of the
T-Stag ~Stagd Switch Controller is based on
current CPU and chipset
1 [S-Stass 1 technologies. Given the constant
st [ state of flux of the CPU market,
—Stag T-Stagd . .

. | = ¢specially the chipset market,
1 ’ the reliable supply of CPU's as
s Switch Controllers becomes a

T-Stag T-Stage concern.

The use of generic hardware can

reduce the overall cost of such a

circuit and remedy the CPU

source supply problem. For
instance if a standard backplane,
cardcage and CPU is used, the cost of
designing the Switch Controller is
eliminated. A switch manufacturer
could concentrate all of their efforts on
designing switch hardware instead of
spending their time redesigning Switch
Controllers. Since the Controller is a
standard product, it can be casily
updated by just simply swapping
boards.

& PCI Bus:
By designing the T-stage components

13



PCI Spring: Industrial A_Qplications

of the switch as PCI compatible
assemblies, the interface between T-
stages can be greatly simplified. The
actual implementation of the S-stage
can _be dome with the PCI bus
architecture. The PCI bus completely
replaces the S-stage.

The PCI bus supports burst transfer
rates up to 33 Mcycles/sec, with data
bus widths up to 64 bits. The bus
therefor yields a peak data rate of ::

- 33Mhz ~ 64bitsicycle
- 2.112Gbits/Sec

R et
Rt

Given that the bus can be used at up to
85% of its bandwidth, which is not
unusual for synchronous access
schemes such as time-division-
multiple-access (TDMA! ), the net
transfer rate of the PCI bus is:

®, - 2.112GbitlSec x 0.85
®,, - 1.795GbitiSec

As a figure of merit, one can compare
this net rate to the number of telephone
channels it can support. An
uncompressed voice channel requires a
channel rate of 64kbit/sec’. The PCI
bus in this recommended application
could support 33,000 simultancous
phone conversations!

Reset

- Idle

Data
Xfr 1st
Module

RUN

Since the probability of using all phone
lines at the same time is quite remote, a
multiplication factor is wused to
determine the total number of lines that
such a switch could handle. If the
probability of a line being used is 0.2,
the total number of lines that can be
serviced by such a system would be
over 165,000.

The use of such a circuit would find
itself applicable to medium rate
services. This would include such
applications as PBX systems which are
commonly installed in medium to large
sized corporations. Since the system
can support expansion by simply
installing more 7-stage elements, a
common system would service many
different clients.

Other medium rate services include
central phone office services. As stated
above, each system could handle up to
33,000 simultaneous calls.

® Software Development:

In the past, the software developed for
data switching circuits was based on
real time operating systems. The
recommended solution discussed in this
paper would maintain the use of this
software database, however, the
development platforms used to write
the application software would be
based on common PC technology.
Because of the close relation between
existing PC platforms and the
recommended solution, the cost of
developing software will come down.

Data
Xfr 3rd
Module

Data
Xfr 2nd
Module

Figure 2 State Diagram of Communication
Circuit.

true for hardware and software
development tools.

Given the state of the art of today's PC
technology and the reliable supply of
industrial quality CPU's, the future
development of data switches will be
readily supported for years to come.

® System Architecture:
To implement the proposed system, the
PCI bus must perform the same
functions performed by the S-stage and
provide interconnections between the
T-stages & Switch Controller.

The circuit will assume one of three
mutually exclusive states (see Figure
2).

Neutral: The Neutral state is initially
invoked after start-up and essentially
forces the
circuit
t o

Control 8
House-
Keeping

Figure 3 Transition Diagram of PCI Bus Events.

! A standard telephone
service uses a sampling rate of 8kHz
at 8 bits/sample.

This is especially evident in
development and coding of commeon
drivers used in such a system. It is also

assume a failsafe operation mode. This
mode affects all of the modules of the
switch.

14



PCI Spring: Industrial Applications

Configuration: The Configuration fT—Stagd
state is used to configure the switch. - ana
This mode is executed sequentially and —T"|T-Stagq |

is not bound by real-time operating
requirements. This state may be used to
perform software downloads from the

PCB Assemblyl

Switch Controller to the T-stage - all ez :
modules. It may also be used to gl T~ Stag

perform offline diagnostics and major
switch reconfigurations.

Run: The Run state requires the system

CB _Assembly

_[T—Stagd

to operate in a synchronous mode.

Figure 3 illustrates the activity during

P PCI
Bus

[T—-Stag

this state. The PCI must perform all of
the functions of the S-stage, and must
also support the communications
between the system modules. This

PCB_Assembly)

process is synchronous, and must not
be interrupted by other processes within

the system.

The run process is invoked from the
neutral state, and is triggered by the
Frame Sync interrupt. The typical
period of this event is 125uS. During
this period of time, the Switch
Controller will command each T-stage
module to send data packets to their
appropriate destination 7-stage. The
dwell time for each module is the same.

Industrial

(Switch
Controller) L€

standard PICMG backplane using a 64
bit PCI extension.

The T-stage modules are custom, in
that they are specific to the switch
implementation, however, the PC and
backplane are based on standard
products. An industrial PC such as
Teknor's PCI-933 can easily implement
the circuit described in this note.
Because of the low bandwidth
requirements of the Switch Controller.
a standard 32 bit PCI interface is
sufficient.

The major advantage of using a PCI-
933, is that operation of PCI

bus. E- i ives and the ISA bus
are concwrrent. This allows the system
designer to base their design on the
multi-master PCI bus. Figure 5

illustrates  the  three

Upon completing the four transfer E—IDE
processes, the Switch Controller will Drive(s)
query each T-stage for status
information and send commands for the Figure 4 Physical Implementation of a 7-S-7 Communication Switch, Implemented with
next Frame Sync cycle. an Industrial PC and PCI bus.
Pentium|. . independent paths of the PCI and ISA
ceu 0 Cache [ ] Physical busses, as well as the system disks.
g-l;::' lemel:: f :x‘:x: ;n ded To maximize the switch traffic over the
implementation of the 7-S-T PCI bus, parallel processing paths must
switch is illustrated in be used. to assure that t!xe PCI
E-IDE System Ethernet |1 Figure 4. This communication  process  i1s - not
Drives |~ | Interface Interface |~ ]  implementation includes interrupted. . L
four PCI T-stage While the system is operating in the

assemblies, an industrial
PC, a PCIUISA bus
backplane (PICMG) and an
Ethernet controller for
system management

PCI Bus ISA Bus

function interface. The
PCL/ISA bus backplane

Figure S Block Diagram of Major Components of the Teknor is implemented with a

PCI-933.

ISA
Bus Ethernet
'ﬂ Controller

Run state, the Switch Controller must
operate independent and in parallel with
the S-stage process. Asynchronous
communications between the Switch
Controller and the Ethernet bus must
not affect the operation the PCI bus. A
T-S-T communication switch based on
the PCI-933 will fulfill all of these
requirements.

15



PCI Sprinig.' Industrial Agplications

Pentium

CPU 4 Cache

i

System Ethernet

Interface Interface |

Since the ISA bus is an integral part of
any PC based system, this blocking can
occur quite often.
System events such as real-time
interrupts and refresh pulses can and do
affect the operation of the PCI bus.

If other peripherals are added to either
the PCI bus or ISA bus, the bandwidth
of the PCI bus is directly affected. In
addition to  this
blocking mechanism,

PCI Bus

ISA Bus

asynchronous system
events such as

Ethernet and disk

PCI-ISA |

A 4

Bridge

A 4

access will directly
affect the synchronous
communication  process
between the T-stage

E-IDE
Drives

Alternate products base their industrial
PC designs on PCI to ISA bridge
implementations (see Figure 6). These
implementations have the disadvantage
of locking up the PCI bus anytime the
ISA bus or disk drives are accessed.

B References:

Figure 6 Block Diagram of Major Components of a CPU Using a
PCI-ISA Bridge Interface.

assemblies.

®Conclusion:

The architecture
developed in this paper demonstrates
the versatility of the PCI bus
architecture. ~ Furthermore,  this
architecture will allow communication
switch designers the flexibility and
choice of using standard Industrial PC

i. PCI Local Bus Specification; Rev. 2.1, Oct. 21, 1994
©PCI Special Interest Group; 1994

it. Local Networks; Franta, W.R & Chlamtac, Imrich
3rd ed. D.C. Heath & Co.; Lexington Mass. 1981

iii. A Study in Data Communication Networks; Kolment, Raymond
Department of Electrical Engineering; New Jersey Institute of Technology

July 1988

products in their new switch designs.
The overall performance of the bus is
quite substantial, and is capable of
taking on bigger and more complicated
tasks.

The use of the Teknor PCI-933 is
compatible with the needs of advanced
communication circuits and is capable
of handling the multi-task environment
of standard switch architectures.

BBiography:

Ray Kolment is the PCI Group Leader
for Teknor Industrial Computers Inc. in
Montreal Quebec. He holds a Masters
Degree in Electrical Engineering from
New Jersey Institute of Technology,
and his major studies include topics in
communications systems. He had
completed his Master's Thesis in
switching theory. Mr Kolment is
presently involved in the definition and
design of advanced computer and
communication products at Teknor
Industrial Computers Inc. 616 Curé
Boivin, Boisbriand, Quebec J7G 2A7
(514)-437-5682.

i~

16



PCI Spring 96 Conference

Session F2: Industrial Applications Forum

Impact of PCI Technology on Control Solutions

by
Edwin Lee (Pro-Log Corporation)

Abstract:

PCI Technology will accelerate the decade long process of replacing systems specifically designed for
industrial applications, including Allen Bradley programmable controllers and VME bus products, with
systems that meet the Intel/Microsoft standards. PCI Technology will help to make the Intel/Microsoft
standards as dominant in control systems as they are in desktop PCS.

PCI Technology bus speeds, I/0O expand-ability, and multi-processing support are ample to concurrently
handle real-time control, graphics intensive data processing, and high speed networking. The driving
forces behind the move to Intel/Microsoft compatible solutions in Control Systems are: economics, the
Mind Bus, and immediate access to the latest improvements in hardware, software, and design tools.

PCI Technology is now available for Control Solutions in three packaging formats: desktop, Passive
backplane, and £OmPACIPLL™] The desktop format provides the most economic and convenient
solutions at the expense of ruggedness and mean-time-to-repair. The Passive backplane format improves
ruggedness and slightly reduces the mean-time-to-repair. £OMPACIPLIcombines the IBM PC electrical
and software standards with the Eurocard packaging standards to produce cost effective systems with the
ruggedness and mean-times-to-repair required by the most demanding applications.

Passive backplane PCI and £OMIPACIPLlare emerging, open standards supported by PICMG, the PCI
Industrial Manufacturers Group. This two year old association already has over 90 member companies,
and includes IBM, DEC, HP, and Force on its Board of Directors. Any company is free to make or buy
products to the standards it supports.

The Industrial Versions of PCI Technology
PCI technology is available in three packages: desktop, Passive Backplane, and CompactPCI (Eurocard).

Desktop computers have been used in control systems for the last decade. Although I don’t have specific
survey data, my estimate from experience and anecdotal data is that ~ 40% of control systems already
use desktop computers because of their convenience and low costs. The trend started a decade ago. For
example, in 1985, one user had already rigged a desktop IBM PC to control part of his process in a
cement mixing plant. He protected the system from dust with a protective plastic covering. His backup
system? His secretary’s computer!

Passive Backplane systems have approximately the same form factor as desktop systems. However, the

1CompactPClI is a registered Trademark of PICMG

17



motherboard is replaced with a plug-in system card and a passive backplane that includes both the PCI
bus and the ISA bus. In addition, the systems have beefed up cooling, beefed up power supplies and far
more rugged packaging. This family of products is already available from dozens of manufacturers,
including Pro-Log.

CompactPllpackages the desktop PC, including the PCI bus, in the Eurocard format.

CompactPll has a passive backplane and a system card. However, high density pin and sleeve
connectors replace the card edge connectors of the desktop packages. The cards sizes are
standardized in 3U and/or 6U Eurocard formats. The cards are locked in place and are supported
on all four edges. The Eurocard packaging, required in Europe for industrial systems and
popularized in this country by VME bus, vastly improves shock and vibration tolerances and
thermal characteristics. The pin and sleeve connectors used by £0MPACIPLlenhance grounding
and shielding which improve performance margins and PCI bus fanout (A system card can drive
7 peripheral cards for each set of bridge chips) and reduce EMI radiation and susceptibility.

Users of £oMIPACIPL/can buy or make products that bring 1/O out the front panel (as is now
typical for Industrial Control systems) or out through a connector to the backplane (as required
by Telecommunications systems to minimize down time during card replacement).

The Economics of PCI Technology

PCI Technology is driven by the >$150 billion desktop PC market. This juggernaut is driving chip
development, chip production, applications development and software development. Products used in
this market have such an overwhelming volume that their costs to produce are the lowest possible.
Furthermore, they are supplied by low margin, aggressively competitive suppliers.

By contrast the Controls market is somewhere around $4 billion (Including telecommunications,
industrial control, instrumentation, and medical electronics). The income stream from the Controls
market is not adequate to sustain leading edge product development (hardware or software) or to produce
products at competitive prices. Furthermore, the traditional suppliers require high margins to support
expensive technical support, sales and service infrastructures, and to earn reasonable profits. The result is
product costs to users that are two to five times that of comparable desktop products.

Apple computer, with its 7% share of the desktop PC market, has a far bigger market than the entire
controls market. However, it hasn’t been able to thrive by competing with the Intel/Microsoft standards.
Motorola has given up on its CPU race with Intel. The income stream for the 680x0 CPUs produced by
Apple, VME bus, and a captive market was not enough to sustain innovation. The Power PC is
Motorola’s fig leaf, not a viable alternative.

Just to clarify the economic perspective: $1.5 billion is the entire market for VME bus hardware,
software and systems this year (fewer than 250 thousand VME bus systems). It is also Intel’s market
share of the PCI system logic chip sets (40 million)! Intel is only one of several suppliers.

The Mind Bus and PCI Technology

The Mind Bus is a term I use to describe a standard set of skills, expectations, and beliefs about
computers held by the hundreds of millions of people who buy and use them. The Mind Bus has been
created by the desktop PC market over the last 15 years. It is shared by engineers, executives, students
and housewives (just to name a few). It’s responsible for Apple’s shrinking market share and with Allen

18



Bradley’s difficulties over the last decade.

The Mind Bus provides common expectations and value references. These expectations and value
references didn’t exist fifteen years ago. They already impact customer preferences in Control Solutions,
and explain the wide use of desktop PC’s in control systems. Because the PCI Technology removes
performance restrictions, the Mind Bus will dominate how designers implement Control Solutions within
five years.

PCI Technology is part of the desktop PC standards and it is part and parcel of the Mind Bus. I don’t
have to sell it or explain it in any detail to engineers or to executives. However, I would have to spend
considerable time and money to sell an alternative to Mind Bus skills, expectations, and beliefs. Just ask
Apple. They are clinging to less than 8% of the market with products that may be easier to use, but don’t
fit mind bus standards. Within a few years we should see the same situation in Control solutions.

Relevant Beliefs of the Mind Bus
Computers are commodities, not esoteric products that require careful selection, special training, and
annual service contracts. Significant elements of this core belief include:

I expect industry standard computers to be cheap and reliable The best buys and latest
innovations are always found in open-architecture, dominant standards supplied by many
competing suppliers. Closed systems dominated computers until 1982. But, since then Wang,
Apple, and IBM simply couldn’t keep up with the rate of innovation and cost reductions
provided by a host of suppliers vigorously competing to supply the IBM PC standards.

I can configure my own system to meet my specific needs by using standard “plug-in” hardware
and software. I expect plug and play capabilities. Users routinely buy and successfully install
third party modems, printers, and scanners. They no longer need to buy all products from a
single supplier, or have suppliers install products or configure systems to specific applications.
The customer thereby assigns little or no value to system configuration and system installation.
Since customers can also update operating systems and applications software, they assign little
value to these traditional, supplier furnished services.

I can successfully use them without studying user manuals or paying for special training by the
manufacturer. User friendly software, built-in tutorials, third party books, or third party courses
and workshops educate customers instead of User Manuals and manufacturer training.

I can buy computers, peripherals, and software through distribution (retail) and get the lowest
prices and most convenience. Buying direct from the manufacturer is more expensive and
produces less effective support.

I can usually service my own computer with the “as needed” backup support of the
manufacturer, distributor, or third party service organization when and if the need arises. A one-
year warranty supported by a telephone hotline is customary and expected. Beyond that, the
failure rate is expected to be low enough that additional service is seldom needed, and annual
service contracts are not cost effective.

Other core beliefs that affect the Control markets are:

Mass produced software is relatively cheap, reliable, and user friendly. It is worthwhile to solve my

19



problem using standard software rather than paying for special purpose software.

The desktop PC has created a value reference for software: price, performance, and user friendliness.
That value reference is improving with time. Special purpose software is orders of magnitude more
expensive, doesn’t work as well, and is seldom as user friendly as the leading software for the PC
standards. The customer asks himself: How can I use a standard word processor, accounting package,
data base, customer contact package, etc. to fit my application? In the past customers would specify their
needs and have software designed to meet them. That software was expensive, had bugs, and was
horrible to maintain or update.

1 expect dramatic improvements in performance/dollar each and every year, therefore I want a system I
can update or replace frequently.

When a customer buys a desktop computer, she expects it to be competitively obsolete within 3 years.
However, its architecture and its low costs give her the viable options to update it or replace it. The old
belief was that the solution should be “competitive” for more than five years.

How the Mind Bus and PCI technology will alter the Controls Solutions

Designers will make commercial chips, operating systems, development systems, and applications
software serve Control Applications. They will accept tradeoffs from the ideal solutions because of the
overwhelming economic and performance benefits of making these tradeoffs. Two examples come to
mind: multi-mastering as implemented on VME bus, and Hot Swap.

PCI technology does not support true multi-mastering as does VME bus. On the VME bus, any
CPU can take over the bus. PCI technology provides a more limited multi-mastering through a
single Host that supports bus mastering for a limited number of peripheral processors. However,
PCI technology has enough capability to solve any control problem. Designers will make PCI
Technology fit their needs, rather than require it to add true peer-peer multi-processing.

Hot Swap, changing a plug-in card without turning power off or rebooting the system, is a Holy
Grail of many control system designers. Its benefit might be to reduce mean time to repair to a
matter of seconds. (I seriously doubt that anyone would actually realize this benefit.) However,
unless Intel makes it a standard feature of PCI chip technology, and unless someone modifies
how Plug and Play software operates, the overwhelming majority (>99%) of control systems will
continue to live without it. Plug and Play software, as it works today, analyzes the peripheral
cards modifies their bioses during boot-up. If a peripheral card is hot swapped there would be not
assurance that it would be compatible with the system unless that system were rebooted.). Of
course there is no feasible way to “hot swap” a Host CPU card.

In my opinion, we will live without Hot Swap for the foreseeable future. Let me put it another
way: should VME bus, for example, successfully implement hot swap, it will not help them
sustain market share in any significant way!

Major accounts for Control Solutions will buy direct, smaller accounts will buy through Distribution.
Major suppliers will trim their overhead by focusing on shipping large quantities of fewer, standard
products to key accounts. Large Distributors will be some of their key accounts. OEMs, Distributors, and
third party organizations (including VARs) will provide depot level and on-site service.

PCI Technology and Legacy busses
In the near-term, PCI Technology has to work with legacy buses, especially the ISA bus. These buses

20



have an established base of peripheral cards and operating software. PCI Technology can theoretically
support as much I/O as anyone would need through PCI/PCI bridge chips. However, this solution is not
yet fully implemented in the desktop world.

In the long run, PCI technology should greatly reduce, or eliminate, ISA usage in the desktop
environment. It should more swiftly eliminate the use of ISA and other legacy buses, including VME, in
the controls environment for a few simple reasons: reduced costs, improved performance, and greater
software compatibility.

PCI Technology is supported, and will continue to be supported, by the latest in hardware and software
tools. VME, for example, has different and far less up-to-date software tools to support it. It is far easier,
far cheaper, and much more productive for suppliers to move their peripheral designs to the PCI bus,
than to bridge the PCI bus to a legacy bus. A bridge is expensive and slows down one or both busses as it
interprets one set of protocols to another. A PCI/VME bridge, for example, is like an English to Chinese
interpreter passing information from one language to the other. Also, in a hybrid system of PCI and VME
you can kiss plug and play goodbye.

What about legacy I/0 busses like Allen Bradley’s data highway? They’ll hang on for years because old-
timers will insist on sticking with what they know and will be able to hoodwink their management into
paying enormous premiums to support their preferences. But new applications should move quickly to
open-architecture I/O busses (like SCSI-2 or PCMCIA) supported by desktop software. There’s a need
for, and probably an opportunity for someone to develop an Industrial I/O bus that takes advantage of
PCI technology.

Conclusions

The Industrial Market is already strongly influenced by the desktop PC. Because of PCI Technology and
the packaging innovations of Passive backplane PCI and £0mpactPC/ Control Solutions will
increasingly depend on the products, skills, and beliefs created by the desktop PC’s. In the next five
years, PCI technology will become the overwhelmingly dominant computer technology in Control
Solutions.

21



LEVERAGING PCI IN DATA ACQUISITION APPLICATIONS
Richard J. Burk
Data Translation, Inc.
100 Locke Drive
Marlboro, MA 01752
(508) 481-3700/3080 (fax)
e-mail: rburk@datx.com

ABSTRACT

PCI’s numerous performance and functional advantages are a critical benefit to data acquisition. Especially in data
acquisition (DAQ) applications where users cannot compromise their data integrity, nor can they afford to compromise
acquisition speed, PCI has emerged as the clear choice. Inherent design features of the PCI bus that boost performance and
productivity in data acquisition include much faster bus speed, ease of installation and configuration, greater expandability and
guarantee of future support. TCC Industries, a manufacturer of cellular phone accessories, recently migrated all of the
company’s testing PCs to PCI systems to achieve a higher degree of accuracy. TCC reduced testing time to 5 seconds using a
PCI data acquisition system, compared with 12-16 seconds using a non-PCI setup. A professor from the University of
Waterloo has invented a new scanning beam confocal microscope that utilizes a PCI-based DAQ board from Data Translation.
This DAQ implementation would not have been possible without PCI’s unique performance advantages.

PCIVS. ISA IN DATA ACQUISITION

When evaluating a PC-based data acquisition system, the current state of technology leaves users faced with a choice
between the ISA (industry standard architecture) bus or the newer PCI (peripheral component interconnect) bus. The
numerous technical and performance advantages of the PCI bus make a PCI-based data acquisition system an easy choice,
although certain applications may be more well-suited to a dedicated ISA-based system.

ISA Drawbacks

Across the ISA bus, applications can move a maximum of 400kS/sec (thousand samples per second). That is to say,
no more than 400,000 data samples can be transferred across the bus -- either to or from memory -- each second. When ISA
peripherals begin to push the bandwidth limits of the ISA bus, the user begins to either pay for on-board memory, or for time
(seen as system delays). Data that cannot be sent immediately across the bus as soon as it comes in must be stored locally or
stalled -- or it is simply lost.

A further limiting factor of this architecture is that ISA peripherals must pass all data through the CPU to system
memory, consuming valuable system overhead as data travels to and from memory. While DMA (direct memory access) has
been utilized to provide direct access to system memory, CPU clock cycles are still being applied to data movement,
essentially stealing time from other applications and system calls. A further resource drag is the ISA memory controller itself,
which grabs CPU time every time it needs to write or read from memory.

For some data acquisition applications, ISA’s 400kS/sec bandwidth clearance can easily be enough, but since data
acquisition applications often require bi-directional data flow, that bandwidth is quickly consumed and application
performance suffers. For example, an application acquiring data from a laser microscope at 300kS/sec, and applying real-time
control to an x/y-table that moves the item beneath the microscope at 200kS/sec, will quickly consume all available
bandwidth and generate an unstable control loop. Dropped data bits force the application to sample data at a lower rate than
the data is coming in, resulting in unstable or inaccurate readings.

PCI: Ideal for DAQ

PCI’s numerous performance and functional advantages are a critical benefit to data acquisition. As data acquisition
has traditionally pushed the limits of system performance, dedicated systems for data acquisition have become a pervasive
mindset in the industry. The emergence of PCI-based systems is changing that mindset, and promises to open up the number
of PC-based data acquisition applications. Especially in data acquisition (DAQ) applications where users cannot compromise
their data integrity, nor can they afford to compromise acquisition speed, PCI has emerged as the clear choice. Inherent design |
features of the PCI bus that boost performance and productivity in data acquisition include much faster bus speed, ease of |
installation and configuration, greater expandability and guarantee of future support.

22 |



Speed, Cost and Time Benefits

PCI peripherals, running asynchronously, can send data along the 32-bit bus at a rate of 66MS/sec (megasamples per
second). In addition, because the PCI architecture enables peripheral boards on the bus to access systems memory directly
without using the CPU, DAQ boards can be acquiring data without wasting CPU overhead. Furthermore, PCI DAQ users can
be acquiring data to memory while at the same time doing analysis in real-time on existing data, all while communicating
with other functions on the network.

Using PCI’s bridging capabilities, multiple PCI buses can be connected, ad infinitum, with standard, off-the-shelf
PCI expansion hardware. This is done via a PCI-to PCI bridge chip, which offers the additional benefit of being able to get
around capacitive load limitations and expand the number of plug-in slots. This enables DAQ users to set up multiple DAQ
boards, and run them all simultaneously, without hitting the PCI bandwidth ceiling. In order to achieve this kind of expansion
with ISA, users would have to add additional machines to their production setup.

Furthermore, a DAQ board plugged into a PCI slot carries its own configuration information in software -- users do
not need to set any jumpers or identify any base addresses -- a common headache with ISA DAQ boards. Not only does this
provide extreme ease of installation and use, but because all hardware settings can be controlled in software, users can easily
customize the configuration of their DAQ system at any stage of their operation.

REAL-WORLD APPLICATIONS OF PCI IN DAQ

A growing number of users are moving their data acquisition applications to the PCI bus, primarily to realize the
benefit of higher throughput. Since performance in many data acquisition applications is directly dependent on throughput, or
how many points of data can be dumped into system memory for analysis, the bandwidth capabilities of the bus correlate
directly to testing accuracy. Marlboro, Mass.-based Data Translation’s new PCI-based data acquisition product line, the PCI-
EZ Series, by design, supports device input up to 1000kS/sec (or 1 megasample per second), giving an immediate 2.5 times
performance increase over their ISA counterparts.

PCI in Telecommunications

Joey Nieves, production engineer for TCC Industries, Inc., a Cerritos, Calif.-based manufacturer of cellular phone
accessories, recently migrated all of the company’s testing PCs to PCI systems to achieve a higher degree of accuracy. TCC
Industries has been using PCI-based data acquisition cards from Data Translation to test and grade high-sensitivity
microphones using RMS (root mean squared) analysis of voltage output, where extremely high-speed acquisition is critical.

“We were initially running two test systems and found that our PCI system was registering more accurate results.
The non-PCI system was dropping data points because of bus bandwidth limitations. It quickly became imperative to upgrade
all our test systems to PCI,” said Nieves.

Nieves explains that during production a variety of variables are introduced which can compromise the sensitivity of
the microphones, and inaccurate grading of these components will significantly impair overall product performance in the
field. “A single millisecond separation in signal pick-up can give us an inaccurate reading. Our PCI-based data acquisition
machines now ensure that data is transferred to memory as fast as it comes in,” said Nieves. Nieves reports that testing time
has been reduced to 5 seconds per unit for each microphone test, compared with 12-16 seconds each with his non-PCI setup.

Nieves is in the process of developing another application for his PCI DAQ implementation which will run a series of
four tests in sequence on each finished unit. Whereas microphone testing was performed prior to final assembly in the past,
Nieves now plans to skip this step until the unit is fully assembled, and test the microphone as part of the final test suite.
Testing of the fully assembled units will save time and ensure a higher degree of quality control. Nieves again compared test
times between two test systems and found that the four-test routine took 10-15 seconds on the PCI system, compared with 25-
30 on his ISA setup. Since he must run up to 1500 units through final testing per day, the time savings is significant.

Nieves reported that it took 2 programmers less than 6 hours to develop this test suite from start to finish using Data
Translation’s visual programming language, DT VEE.

23



PCI in Micrescopy

Another DAQ user leveraging the benefits of PCI is A. E. (Ted) Dixon, Ph.D, from the University of Waterloo.
Dixon has recently formed a new company, called Biomedical Photometrics, that will bring to market a new scanning beam
confocal microscope that utilizes a PCI-based DAQ board from Data Translation.

Confocal microscopy is the process of shining a focused laser beam onto a specimen or subject and measuring the
level of reflected light using an avalanche photo diode (APD), a highly sensitive single-point light sensor. The APD, reading
grayscale only, converts light levels into analog signal levels, which are fed into Data Translation’s 12-bit A/D (analog-to-
digital) converter.

Data from a confocal microscopy device is “point-source” data, whereby each frame is scanned in one pixel at a time
and fed into system memory. Enabled by the high bandwidth of the PCI bus, this device creates a functional imaging
application from a point-source detector, producing a field size and resolution that even a high-end imaging board is not
capable of.

Biomedical Photometrics’ device, for which the company has coined the term MACROscope™, combines the rapid
scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. The
MACROscope proves a significant step forward in microscopy because it can scan a 25-micron-sized object, with a 0.25
micron resolution, as well as being able to scan a 7.5 cm object with 5 micron resolution, producing a zoom ratio of more than
3000.

“With this device, the PCI bus is actually enabling the advancement of microscopy,” said Ted Dixon, president,
Biomedical Photometrics Inc., “as this level of resolution and scanning field in the past simply required too much time to
acquire data.”

The new device will be particularly useful in applications where large specimens must be examined at high
resolutions, and where it is necessary to examine small areas of interest in the specimen at extremely high resolutions.
Possible applications include:

e  biomedical, such as fluorescent gels used in gene sequencing;

e  materials science, such as imaging paper fibers and coatings;

e  semiconductor quality control, such as photoluminescence imaging of compound semiconductor epitaxial layers, wafers
and devices; and

e forensic science, such as latent fingerprint detection, or imaging of fluorescent gels for DNA fingerprinting.

The MACROscope sends data across the PCI bus into system memory at rate of 300 kS/sec. While this data rate
would not, in and of itself, push ISA bandwidth limits (400 kS/sec), the PCI bus provides the extra bandwidth necessary to run
simultaneous control and analysis functions critical to the MACROscope application.

Considered a “slow-scan” system, the single frame rate for an image with a resolution of 512x512 pixels is 5
seconds, and for 2048x2048 resolution, the frame rate is 25 seconds. The higher the resolution, and the wider the scanning
area, the slower the data acquisition, as both resolution and scanning area quickly increases the volume of data points being
sent into the DAQ board. Based on the 2.5x improvement that the PCI bus offers, an ISA-based system would output images
at rates of only 12.5 and 62.5 seconds, depending on the resolution.

Biomedical Photometrics is currently running Data Translation’s 12-bit A/D converter at its top speed, 300 KHz, but
for extremely high resolutions across wide scanning areas, the company will be looking to run Data Translation’s next-
generation converters at upwards of 3 MHz. The PCI bus ensures the viability of this growth path.

Biomedical Photometrics’ implementation benefits from several PCI bus strengths, not the least of which is reduced
cost because the DAQ board requires no on-board memory. “Back when we first started specifying this kind of system, DAQ
boards had to have a memory buffer on the board because the ISA bus couldn’t handle the data fast enough to put through to
system memory, which really drove up the total cost of our system” said Dixon. “The PCI implementation gave us a way to
eliminate the redundant memory and still get the throughput we needed.”

24



PCI performance also enables the use of a 12-bit DAQ (as opposed to 8-bit), giving Biomedical Photometrics
tremendous dynamic range in the data input signal. Using an 8-bit A/D converter, this type of application would typically
result in data bits that are outside the useable range (either too bright or too low), effectively narrowing the dynamic range of
the image data (for example, resulting in only 6 bits of real data). Using a 12-bit A/D converter ensures that even with
unusable data points, the application still ends up with a 10-bit real, dynamic range (even an 8-bit dynamic range would be
acceptable).

This type of dynamic range is especially critical in optical tomography, where the device takes in a series of images
at different focus positions in order to compose a three-dimensional image. In the past, optical tomography required taking a
series of slices, then resetting the analog gain based on the maximum and minimum values, and then going back and taking all
the slices again. Data Translation’s PCI-based A/D converter, an off-the-shelf 12-bit solution, eliminates this time-wasting
step.

Biomedical Photometrics also went with Data Translation’s DAQ board for the ability to select different frame sizes
in software. “Data Translation’s programmable gain feature enables our users to select different frame sizes in software
depending on the particular specimen being viewed,” said Dixon. “Other DAQ board implementations require setting of
Jjumpers in hardware to change gain levels, and we wanted make this instrument as easy to use as possible.” Furthermore,
without programmable gain, the MACROscope would require additional optics to achieve such a high zoom ratio.

Conclusion

PCl is a future trend that has gathered significant momentum in recent years, and shows no signs of letting up, while
the era of ISA is quickly coming to a close. Most new PCI systems are still manufactured with ISA add-in slots, but future
systems will have fewer and fewer of these slots, until they ultimately cease to exist. PCI paves the way for lower cost
products, as manufacturers no longer need to include large amounts of expensive on-board memory to handle large data
transfers.

The PCI bus offers many performance enhancements that make it ideal for high-bandwidth applications, and is sure
to be a significant step forward in PC-based data acquisition. While not many users are buying new ISA-based PCs these
days, a large number of “hand-me-down” ISA systems are making their way down the corporate ranks and into the production
or testing department (typically the lowest level on the corporate PC food chain). Production managers must weigh the
benefits of a new PCI system against an aging ISA system in perfect working order. A growing number of these managers are
realizing that the performance benefits realized in PCI-based data acquisition applications are worth the investment. With
plenty of room for growth into the foreseeable future of the PC, the PCI bus gives users the safest and most robust platform to
build DAQ applications.



Efficient Use of PCI

Frank Hady

Platform Architecture Labs
Intel Corporation

Agenda

Inkel.

u Define PCI Efficiency

u Charting PCI Efficiency

u Rules for an efficient design

u Why you should follow the rules
u Effect of PCI to PCI Bridges

u Conclusions

26

ntgl.



PCI Metrics

u Bus Utilization
— Utilization = (Clocks Used) / (Total Clocks)
* Clock is used if #Frame + #Irdy + #Trdy is True
u Data Throughput

— Thrptpata = Thiptpg) = Thrpteongrol
u PCI Efficiency

— Maximize Thrptp,,
— Minimize utilization
— Optimize system performance

i -AL intgl.

What Isn’t Overhead?

CL
FRKAME#  \
IRDY#

! Overhead Clocks
Idle ] Clocks Used

Data Transfer Clock
- Count scaled by BE#
- Only application data counted

27



PCI Efficiency

Objective: Quantify the efficiency of moving

application data over the PCI bus.

Data Transfer Clocks
PCI Efficiency =
Clocks Used
Thrptp,,, / (PCIBusWidth
PCI Efficiency = paa ( )
Clocks Used
iz,
PC Architecture
Pentium g Processor
Processor Bus
Mem. — Chipset PCI Card
PCl Bus PCI-PCI| PCIlBus
Bridge
Chipset ISA Card PGl Card

| ISA Bus |

28

kgl



PCI Efficiency Charted

1

09 m Overhead PCI Utilization
T mData 10%
08 | 6%
3
5 0.7 +
06 |
j:
2 051 )
‘g‘ 04} PCI Throughput 1
9%,
S 03] 1%
Q
E 02}
mData
0.1 0% | ool
04 QUnused

10 Rd
10 Wr
Int Ack

Mem Rd
Mem Rd Ln
Mem Rd Mit

Mem Wr
Mem Wr inv

56% Efficient I
itz

Command Name

PCI Burst Length and Efficiency

09

08

07

06 1

05 4

04 1

29



PCl Command Usage Charted

B int Ack
BIOWr
mIORd
mMemWr
mMem Wr inval
@ Mem Rd
@mMemRdLn
m Mem Rd Mult

12000

10000

8000

6000

# of Times

0

-
~
N N

@
N 3

Burst Size (Dword)

v <

57

Rules for Efficient PCIl Use

[

Use long bursts

Use memory commands, not /O commands
Implement advanced commands

— Mem Read Line (MRL): 1 cache line reads

— Mem Read Muit (MRM): Multiple cache line reads

— Mem Write Inval. (MWI): Multiple cache line writes
(must be aligned)

u Minimize latency
u Follow the rules, not experiments

[=1

[~

 Intgl.

30



Use Long Bursts

1
0s e Utiizgtion
o 08
2’:‘ 07
T os
§0,5
:0.4 Wlmo;‘x\pm -
g o3t S INIC B- 57% Efficient I
£ 02
01 1
0 n PCI Utzation
° 5 = ES z 9 S x 3%
2 2 E B o8
Command Name 3 05
S os PCI Throughput
. s
NIC A- 30% Efficient] 2
* 0.1
[]
T s ¥ £ & B % 3§
E & 2 §f x 2 @9 &
= € E = €
2 32 4

['¥] £
mtﬁog 4 ! : Command Name r]tel

Use Long Bursts (cont.)

1

09
08
07
06 |
05
04 1
03
02}
0.1
[}

NIC B:
- 16 Dword Bursts
- 65% Efficient Bursts

A

- N M T L O~ ® ® O = N ®m e w &8

- e, e e o - -

Burst Size (Dwords) 07

NIC A: os
- 8 Dword Bursts o4
- 45% Efficient Bursts o

nnnnnnnnnnnnnnnnn

31



Short Bursts = Low Efficiency
0.6

0.5

o
'S

o
w

PCI Efficiency
o
N

4 6.

8

16

gl

10 12 14

Average PCI Burst Size (Dwords)

Chipsets Can Limit Burst Length

08 PCI Utilization
R 08 6%
g.o.v
>
% os Pl Twoughput I Chipset B: 28% Efficient I
03
£ M m—
> 2 s § 2 : 8 % 3 g7 -
; 2 2 ; % e 9o o8
5 i 3 2 08 e ———————
Command Name 04 mm’“’";;’;
[Chipset A7 53% Efficient] @
: s % & & 2 % g
g 3 3 2 2 g
Piitd
Command Name

32

it



Chipset Limited Burst Length

Chipset B

# of Times

Burst Size (Dword) ' Burat Size (Oword)

u Don’t design to a specific chipset

u Follow the rules to achieve high PCI
efficiency on all chipsets

AL infl.

I/O Address Space Accesses

u Poor PCI Efficiency

u Forces Ordering in System
— May serialize CPU
— Serializes Chipset

Intgl.

33



Avoid Expensive /O Commands

1 1

094 |PCINIC A -1/0 Cmds. o,g.l PCINIC B - Mem. Cmds. I

08T [MRM - 68% Ef. o8r
8 o7y o7}
:>>' 064 0.6% -
§ 054 | o5}
S 04+ - 0.44
g osd |I/0Read-7A>Eff.' o3k
2 024 0.2}
0.1 D‘D 014
OE'S:__: = i'ﬁ o :D: =y e
s 3 2 9 = 5 > s 3
0 ®  Command Name = = =

Use Advanced Read Commands

u Memory Read (MR)
— Short reads: 1 or 2 Dwords
— Reads with side effects

u Memory Read Line (MRL)
— Medium Reads: ~ 1 cache line (8 Dwords)

u Memory Read Multiple (MRM)
— Long Reads: > 1 cache line

infel.

34



Which Read Cmds to Use

o Int Ack
aloOwr
@lORd
mMem Wr
mMem Wr Inval
@Mem Rd
mMemRd Ln
mMem Rd Mult

# of Times

il

Read Command - Chipset A

0s Pl Utizaion
o 08
5. NIC B, Chipset A:
I i 57% Efficient
£ o2
0.1
0 PCI Utization
HE T X
= § i : 5 5 07
Command Name ‘g 06}
2 05
S os PCI Throughput
NIC A, Chipset A: £ os “ o
. L 02
57% Efficient t

o ||
S
E

AL = it

10 Rd
1owr '
int Ack

Mem Rd

Mem Rd Ln

Mem Rd Mit
Mo
Mem W Inv

35



Read Commands - Bridge B

09

08
-i 07
9

(1]
g s
o

1

PCI Utilization
3%

NIC B, Chipset B:
40% Efficient

Mem Rd Ln
Mem Rd Mit

PCl Utilization
7%
@a"
PCl Throughput
5% o9
| | .
2 & ® 2 3
i g 2 2 £
i

Command Name nt@]

Read Commands - NIC A

os
05

02

nnnnnnnnnnnnn

NIC A, Chipset A:
-57% Efficient
-16 Dword MRs

T 0 e

NIC A, Chipset B:
-3% Efficient
-All 1 Dword MRs

36

1 2 3 4 5 € 7 8 9 10 1" 12

Burst Size (Dwords)

fntsl.



Read Commands - NIC B

o NIC B, Chipset B:
- -40% Efficient
0 -Huge MRL
o o
"“’2'—‘aﬂﬂﬂm'fuss‘i‘mf;ﬁ%%kk;ﬂﬁzz

NIC B, Chipset A: ”

-57% Efficient 0s

-Large MRL 02

" R N B 1

- S5SEESEFRG5555635F 5538
LVD oY, anmms;.?as’)sxsﬁr: 8§38

Use Advanced Write Commands

u Memory Write
— Short writes: < 1 cache line
— Long unaligned writes
— Writes ending in incomplete cache lines
— Do not terminate to start a MWI
u Memory Write Invalidate
— Long cache line aligned writes

&AL infgl

37



Write Commands - Chipset A

NIC B, Chipset A:
66% Efficient

08 Pt Uiization
08 2%
i 0.7
3 06
05
% 04 PCl Throughput
$ 0 3% 1%
- 0.2
0.1
0 - | | .
2 S 3 2 z 2 H
A A LRI A
L)
i b
D05
ki 04
g 03
w 02
0.1
]
¥
i

Write Commands

Mem Rd Mit

Mem Wr

Mem Wr inv

10Rd
ow I

Int Ack

Chipset B

1

§o

-

3 04
i1 3,. 3
NIC A, Chipset B:
38% Efficient

PCI Utilization
%
>
e NIC B, Chipset B:
roug o
1% 60% Efficient
@ PCI Utilization
© 08 8% 4%
o7
'; 06
2 o0s
5 PCI Throughput |
£ 0 8% 0%
202
01
olm M
g 5 3 z 3
§ ¢ = 3 £
§ 0§ H

38

kgl



Write Commands - NIC A

o NIC A, Chipset B:
- - 38% Efficient
. - 4 Dword Bursts
D VA o~

NIC A, Chipset A: -

-50% Efficient 04

-10 Dword Bursts ::

Write Commands - NIC B

1

(1]

os

o7

NIC B, Chipset B:
-60% Efficient

0s

os -Large MWI Bursts
03 1
oz 09
0,: R . ~ LA\ 08
—'hsczaan.sagmz‘ofwz»a:saaa;: :A:
NIC B, Chipset A: 0s
-66% Efficient o4
-Large MW and - AJ\
MWI Bursts or
0 & A A
—v~eceeansn:nesseamz.:

Burst Size (Dwords) ﬁ ﬁ n

39



PCI to PCI Bridges

uP
| rocessor Bus

Mem. — Chipset No Bridge

Chipset ISA Card

| ISA Bus |

PCI Bus

PCI| Bus PCI-PCI
Bridge I

On Bridge

it

09

07

3 @ On Bridge:
% o Pol Thrughput 53% efficient

w 02
01
o

5

i;i8d
§

P
i

No Bridge:
75% Efficient

W
Int Ack

e o o
a2 388

Fraction of Used Cycle
b

°o o0 090

= N v s

Por ggten

Mem Rd
Rd

5 3 §




PCI to PCI Bridge - Reads

Commands Observe

HEEEE

12000

| No Bridge-8 Clk Latency I

| On Bridge-15 Clk Latency I

LT I
P
L P

-

“1 Ave. First Word Catené
#Cmds Observe

“ & 8 2 3 -1 8
Ave. First Word Latenc

1]

—t
1000

wosbod

nnnnnn

0

° 3

Clks/Command

|
"T2RE&EUBIRINRRSSY

107

u Adds 7 Clks in read latency dropping PCI Eff from 75% to 53%
u Future bridges may minimize this latency, but not eliminate it

intsl.

Read Latency and 64 bit PCI

Maximum Acheivable PCI Throughpu
(Mbytes/sec)

t T + t 1 y u t + u
o N < o © o

-

N
Latency + x PCI Clks

41



PCI to PCI Bridge - Writes

' -
! i

o e
§ 06 j }
e O On Bridge:
g " 80% Efficient
w 02 i |
01 ; i :
o P 4 i pal Utilization
T s g £ z 3 : sl :
I AN T LI I B e B
1 : os | ‘:
3 0e T
3 . 04 : ;
No Brldge.. '§°-’ | ol
92% Efficient i | @ |
0.1 N H
0 - . i !
2 s 5 % ' & & 3
Pz ofozoe e s
3 i £

e gl

{@intAck
‘-'0 Wr
|@loRd
‘.Mﬁm Wr
}.Mam Wr inval
i@Mem Rd

’.Mum RdLn
mMem Rd Mult

# of Times

w X
~ e o

Burst Size (Dword)

Burst Size (Dword) ¢ 583 m

u Bridge turns 65 Dword Bursts into 8 Dword bursts, dropping
efficiency from 92% to 80%

u  Write posting minimizes drop in efficiency
u Future PCI to PCI bridges may eliminate this problem

42



Conclusion

u PCI Efficiency is the metric (Dwords/PCIClks)
— Optimize your designs to this metric
— Consider other designs by this metric

u The Chipset/PCl card combination determines PCI
efficiency (Don’t Optimize for a single chipset!!)

u Current PCI-PCI bridges impact PCI Efficiency

u Achieve high efficiency across platforms by:
— Implementing PCI Advanced Commands

— Use Memory Commands, not I/O Commands
-~ Use long bursts

-~ Minimize read start latency

o
L il

43



THE ROLE OF CARDBUS IN A PCI BUS HIERARCHY
Claude A. Cruz
National Semiconductor Corporation
333 Western Avenue, M/S 10-26
S. Portland, ME 04106
(207) 775-8318; FAX: (207) 761-6137
ccruz@fmis02.nsc.com

Abstract

CardBus is a high-speed 32-bit interface defined by the PC Card standard. This point-to-point architectural
“cousin” of PCI shares PCI’s signals, synchronous protocol, and performance levels. These similarities give CardBus
a natural place in a PCI system’s bus hierarchy (see Figure 1).

Early CardBus implementations utilize a PCI-to-CardBus controller which is located on a platform’s level-0 PCI
bus. This controller acts as a “bridge” which maps CardBus resources onto portions of a PCI-based host system’s
memory, I/O and Configuration address spaces. The bridge allows PCI bus cycles to be sent “downstream” from CPU
to PCI agents, or “upstream” to the CPU. Thus, the PCI-to-CardBus bridge performs the same function as a PCI-to-
PCI bridge; both support the hierarchical connection of multiple PCI-protocol busses.

This paper will sketch the close relationship between CardBus and PCI, as motivation for why these two busses
fill complementary roles in a PCI bus hierarchy. We will then explore three of the several possible roles of CardBus
within such a bus hierarchy:

e CardBus as a link between a host-system PCI bus and a higher-level PCI bus residing on a CardBus PC Card;

e CardBus as a docking link between a host PCI bus and a “dock-side” higher-level PCI bus; and

e CardBus as a conduit for high-bandwidth video data flowing between a CardBus card and a host system’s PCI-
resident main memory or video memory.

cpu|  PChBased Personal Computer| o
| [ Fostiocaius . | Hierarchy
|HostBridggef Level

| PCLHto-PCI | | PCI Agent(s)| |PCHo-CardBus|

Bridge €g.5i0) | | Brage |
CardBus CardBus
;@ Socket0 Socket 1
(Levet-1 (Level-1
Mm’ Busl! B "m’ Bus’}
L L #2)
............. — f ..................... ‘ . : ‘
| cardBus-to-PCI | CardBus-to-PCl
| Interface | Interface
Level-1 PCI Bus #0  Level1 PCIBUS #1 | Lovert PerBus#2
| . |
: PCl Agent(s) PCIl Agent(s)
PCl Agent(s) | (g LAN) | (e.g. Video) |
CardBus Card | | Docking Station

Figure 1: PCI Bus Hierarchy

44



CardBus and PCI

Over the last two years or so, the Personal Computer Memory Card Industry Association (PCMCIA) standards
body has developed an interface which extends the popular PC Card add-in standard. This “CardBus” interface
extends both the performance and the functionality of the older “PC Card-16” interface. While the latter is ISA-like
in its signaling and protocols, CardBus was deliberately designed to work seamlessly with the more recent PCI bus.
Apart from electrical-environment differences, the similarity between CardBus and PCI is so marked that we may
usefully think of CardBus as “point-to-point hot-insertable PCI” (see Figure 2). (By “hot insertion” we mean the
ability to insert a PC Card into an operating platform, or to remove the card, without disrupting system operation).

PERFORMANCE Pl CardBus
Data/Address Width (bits) 32/64 32
Max. Clock Rate (MHz) 33/66 33
Peak Transfer Rate (MB/sec) 132/264 132
Bus-Master Capability YES YES

CONFIGURATION
Hot-Insertion Support YES
Boot-Up Configuration Support YES
Dynamic (Run-Time) Configuration YES
Configuration-Software Level High
(Card/Socket Services)
POWER MANAGEMENT
Operating Voltage(s)
Card-Clocking Hardware Support
MECHANICAL DESIGN
Card Form-Factor
(ISA-Like) (Credit-Card-Size)
Connector Type 120-Pin Unshielded 68-Pin Shielded
Card Bridge Hardware Required NO YES

Figure 2: Comparison of CardBus and PCI

CardBus retains all of the major attributes of PCI--- particularly its synchronous nature, multiplexed address/data
lines, multi-master capability, local-bus performance levels (up to 33 MHz operations at 32-bit data/address width),
joint master/target transaction control, and integrated system resource-configuration capability. While CardBus is not
restricted to usage in PCI-based systems, it is there that it especially shines.

Systems are now beginning to implement the hierarchical bus capability which PCI offers. This is especially true
of high-end systems such as servers, in which higher-level PCI busses are needed to support high-bandwidth I/O
activity and/or to allow overlapped activity on multiple busses. This hierarchical capability also allows systems to
accommodate more PCI agents than the half-dozen or so which PCI’s electrical loading rules allow on any one bus.

The constituent busses of such a hierarchy can be connected to or isolated from one another through “PCI-to-PCI
bridge” devices. From the programming perspective, these bridges allow portions of a system’s memory- and I/O
address spaces to be mapped onto the host processor’s (flat) memory and I/O spaces. System configuration software
accomplishes this by programming address-space “windows” in the bridge hardware with the upper and lower
address limits of each address block. This configuration is normally accomplished at POST time, though PC Card-
equipped systems must be able to do this repeatedly as PC Cards are inserted into or removed from the host platform.

A PCl-to-CardBus bridge performs exactly the same task as is described above, in order to map PC Card-resident
resources into the host system. With minor differences (e.g. a 4-Byte I/O-window resolution and granularity, vs.
PCI’s 4-Kbyte resolution and granularity), a CardBus bridge simply acts as one of the inter-bus gateways in a
hierarchical PCI system. Such a device typically supports two CardBus sockets, effectively adding two independent
“branches” to the system bus “tree”. Note that a system may include several such bridges, and that the PC Card
standard requires each CardBus socket to support both CardBus cards and PC Card-16 cards.



The major difference between a PCI-to CardBus bridge and a PCI-to-PCI bridge is that the latter implements a
full normal PCI bus on its secondary (“downstream”) interface, while a CardBus bridge is limited to a single
downstream load. (The PCMCIA committee is in the process of relaxing this requirement somewhat to allow a single
additional “stub” connection, as we will discuss later). In spite of this electrical loading limitation, CardBus makes
provisions for “multi-function” PC Cards, in which several distinct functions (analogous to PCI agents) can share a
single CardBus card-side interface.

Host-generated PCI Configuration bus cycles can be targeted at specific on-card functions (each of which has its
own set of Configuration registers), just as they can with any PCI agent. These function Configuration registers
include base-address registers which can be used to assign each function one or more sub-portions of the address
blocks mapped by the CardBus bridge windows. Each CardBus-card function’s Configuration registers also include a
pointer to a standardized set of “CardBus function” registers which are used to control and communicate with that
function (e.g. to support PC Card insertion and removal notification, remote “wake-up” events, etc.).

System-level power management is taking on ever-increasing importance in computing platforms, and especially
in mobile systems (for which extended battery life is a requisite). The “PCI Mobile” standard defines a “CLKRUN#"
signal and associated protocol, through which a PCI bus clock can be turned off and on as needed to conserve
dynamic-switching power; the system CPU and individual PCI agents on the bus negotiate for control of the clocking.
The CardBus standard includes a “CCLKRUN#” mechanism which is pattemed on the CLKRUN# protocol. Using
this, systems which implement CCLKRUN# can extend power management to agents which reside on CardBus cards.

PCI and CardBus thus share this important power-management mechanism, which can be implemented throughout a
bus hierarchy.

Continuing the Bus Hierarchy onto CardBus Cards

We have seen how a PCI-to-CardBus bridge maps PC Card-resident resources onto the host’s address spaces, and
how a host can configure multiple card functions via PCI Configuration bus cycles. In all of this, PC Card functions
behave just like PCI agents located downstream of a PCI-to-PCI bridge. Each such function can claim bus cycles
within its programmed address windows. Conceptually, the card’s CardBus interface “fans out” CardBus
transactions to all of the card’s functions, as if they resided on a local (PCI) bus.

A PC Card CardBus interface must satisfy CardBus loading requirements, even though there may be multiple
functions on the card. This means that it may be necessary to buffer the card’s CardBus interface en route to the
several functions. The card’s CardBus interface must also combine the function-interrupt lines from the various
functions, to drive the interface’s single CINT line. (Since the interrupt line is shared by all functions on the card,
software must poll for the source of an active interrupt. This can be done in accordance with the existing PC Card
multi-function interrupt-sharing protocol.) Similarly, the card’s CardBus interface must combine the card status-
change line from all functions to drive a single interface CSTSCHG interface signal.

The system configuration mechanisms of PCI and CardBus are essentially identical, as shown in Figure 3. Both
busses support “Type-0" Configuration bus-cycles, which are used to configure agents which reside on the bus which
receives the Type-0 cycle. The upper 21 address bits of a Type-0 cycle are used to select a particular device (i.e. a
PCI agent on a PCI bus, or a CardBus card on a CardBus interface). The lower address bits are used to direct
Configuration cycles to a particular function (within a multi-function device), and to a particular Configuration
register within that function.

Both PCI and CardBus also support “Type-1" Configuration bus-cycles, which can be relayed down the bus
hierarchy to destinations which lie behind bridge devices. When a Type-1 Configuration cycle reaches its target bus,
it is converted to a Type-0 cycle, which is then processed as previously described. This allows devices to be found,
classified and configured anywhere within the bus hierarchy. A particular usage of this mechanism also allows PCI
“Special” cycles to be sent to destinations throughout the bus hierarchy. Special cycles can be used in lieu of
dedicated special-purpose hardware signals, to perform tasks like information broadcasts.

Throughout the hierarchy, PCI-to-PCI bridges and PCI-to-CardBus bridges include Configuration registers which
are used to assign unique numbers to each system bus. Bridges also contain other Configuration registers which
specify what range of bus numbers lie behind each particular bridge. A piece of system software called a “bus
enumerator” is used to catalog system resources and program the preceding Configuration registers; this usually is
done at POST time, but must be redone as PC Cards are inserted into or removed from the system.

46



(IDSEL - Only one bit can be “1”) Register #

L Device # Function Register #

(Undefined) Function|  pogister #

?l (Reserved) Device # Register #

Figure 3: PCI and CardBus Configuration Addressing

In early CardBus cards, the card’s functions may be viewed as terminal “leaves” of that branch of the system bus
tree which lies downstream of a PCI-to-CardBus bridge. However, the bridge’s PCI header includes a subordinate-
bus Configuration register similar to that found on PCI-to-PCI bridges. This register can be programmed so as to
indicate that multiple busses lie downstream of the bridge. It should be possible to build a card-resident CardBus-to-
PCI interface, such that the card contains a local full PCI bus which can be populated with normal PCI agents; this
would effectively continue the system’s bus hierarchy onto the CardBus card. Since this is not a practical alternative
in the near-term, we will not explore it further here.

Linking Platform and Dock Busses via CardBus

At present, specialized PCI-to-PCI bridges are being used as a mechanism for linking (“docking”) a portable
computer to a PCI-based “docking station”, as illustrated in Figure 4a. (Earlier docking approaches used ISA-based
mechanisms). In this application, a PCI-to-PCI bridge provides the necessary address-mapping facilities, and an
associated set of buffers are used to electrically connect the bridge’s “downstream” interface to the docking station.
This electrical connection/isolation capability is referred to as “hot insertion”.

A PCI-to-CardBus bridge has inherent hot-insertion and dynamic configuration capabilities, making it an ideal
candidate for docking applications (see Figure 4b). With a CardBus bridge, external isolation buffers are
unnecessary, and existing CardBus system software (Card and Socket Services) provides a means for dynamically
managing dock-resident resources as docking and undocking occur. The dock’s resources (PCI agents) can be
identified, configured and used by host-resident system software (e.g. a PCI bus enumerator), with the CardBus
docking connection serving as a link in the combined host/dock PCI bus hierarchy.

Using a CardBus bridge as a docking medium entails dealing with essentially the same issues as using such a
bridge to continue the system bus hierarchy onto a card-resident PCI bus. In this case, though, the downstream bus
resides in a docking station, rather than on a CardBus card. The dock can be fitted with a CardBus interface which
can be used to generate functional interrupts and status-change signals to the mobile-platform processor. The dock’s
PCI bus can support PCI agents such as video controllers, storage-media controllers, and various connectivity
adapters. In addition, if required, a PCI-to-ISA bridge can be added to the dock’s PCI bus, to support legacy
hardware and software. (Note that the new industry-standard “PCIway” serialized interrupt and distributed DMA
mechanisms provide purely PCI-based means to support ISA legacy functions, potentially eliminating the need for
actual ISA hardware).

This docking approach uses standardized CardBus hardware and software mechanisms to support dynamic system
reconfiguration following docking and undocking; moreover, it does so in a way that is fully consistent with the

47



system’s PCI bus hierarchy. The host’s CardBus socket controller fulfills the same functions as three separate blocks
in a PCI-to-PCI docking interface: isolation buffers, PCI bridge and status-change generator. These benefits make
CardBus-based docking of PCI platforms and docks more attractive than today’s more ad-hoc approaches.

ISA Dock

HostACPU Bus
IRQs [ISABus

Status-Change
Interrupts

-

-

Interrupts frorﬂ Dock
(INTs, SINT or Special INT)

SINT

Host :
PCI Bus
Platform Servicel > Dock
Lines
Figure 4a: Docking via PCI-to-PCI Bridge
Hostj CPU Bus ISA Dock
IRQs ISABus

Serialized Interrupts (Optioqnal )

SINT
Status-Change Interrupts

Interrupts from Dock
(INTs, SINT or
Special Inlerrgfvt)

PCI INT: i
4 s -

Host PCIBus

P Ia tf orm - Service] > DOCk

Lines

Figure 4b: Docking via PCI-to-CardBus Bridge

Perhaps the biggest issues with this style of docking center on mechanical engineering issues, rather than on
docking functionality problems. For this approach to support standardized docking across platforms and docking
stations, manufacturers would have to agree on placement of the CardBus docking socket, as well as on how to
handle any remaining non-CardBus “side-band” lines, such as serialized-interrupts (SIRQ) and service connections.
(Use of a normal CardBus socket and connector are assumed, since the CardBus electrical specifications probably
cannot be met using a connector cable). In addition, system manufacturers would need to see benefits to them in
adopting a standardized docking approach, which would decrease the value of proprietary docking solutions. Still,
the potential flexibility and cost-reduction benefits to the end-user are clear.

CardBus and PCI Multi-Media Busses

CardBus is a useful adjunct in multi-media-capable PCI systems (see Figure 5). CardBus cards can be used to
add or enhance video and audio capabilities to a system. As an example, a video “front-end” may be implemented on
a CardBus card. In this arrangement, a PCI-to-CardBus bridge must provide a bandwidth-efficient video “gateway”
from the Card onto the host’s PCI bus(ses). To prevent the video data from consuming excessive bandwidth on the
host’s level-0 PCI bus (potentially on Paths A or B below), the CardBus bridge can direct video data onto a secondary
host PCI bus (Path C), or onto a specialized video “side-band” path, as is done in Zoom Video (Path D). In this video
application, CardBus serves as an important data-routing element within a system’s overall bus hierarchy.

43



Multi-media applications can consume a considerable amount of bus bandwidth. If high-resolution, real-time
video data flows over a system’s primary PCI bus, it can detract from bandwidth which is needed by the system CPU.
Conversely, CPU utilization of the primary bus can interfere with video-subsystem performance by introducing
excessive video-data transfer latency, or by leaving inadequate bandwidth for the video data.

j it

Level-0 PCI Bus (Path A: (Path B: :
Interactive Non-Interactive
Video) Video)

(Path C: Level-1 PCI Bus)

>

—-— — o e e—— o e . s e

(Path D: “Side-band” Path)

Figure S: CardBus as a Multi-Media Bus

In a hierarchical PCI system, it is possible to direct high-bandwidth I/O or memory traffic over a secondary PCI
bus, thus avoiding or greatly reducing the impact of this traffic on the primary bus. Such an arrangement is depicted
for paths C and D in Figure 4. In path C, a PCI-to-CardBus bridge can be used to direct the video data onto a
secondary PCI bus which is connected to the system’s video controller. This requires a PCI-to-CardBus host-side
controller which supports two distinct PCI interfaces, as well as CardBus sockets. In path D, the video flows over a
“side-band” path which circumvents the bridge altogether; the bridge simply provides bus isolation to keep the video
data apart from the rest of the bus hierarchy. In either arrangement, the video data is kept from interfering with the
system’s primary bus.

Note that multi-media applications present special problems for system bus design. In particular, both audio data
and video data demand that certain timing constraints be met, or audio/video performance can be compromised (e.g.
video “tearing”, choppy audio, etc.). Meeting these timings requires careful analysis of the system busses, as well as
appropriate design of bus arbiters and device buffers. This problem is substantially easier to solve on a dedicated
multi-media secondary PCI bus, rather than on the overall system bus.

PCI devices include required Configuration registers which can be used to tune device timing characteristics, such
as maximum bus-acquisition latency, minimum tenure as master, and minimum acceptable bus-acquisition frequency.
CardBus Configuration registers provide these same capabilities. Bus arbiters can be designed to devote a given
fraction of total bandwidth to particular devices, so that they can equitably share a bus. Jointly, these mechanisms
provide designers a relatively high (though not absolute) measure of control over bus utilization. However, proper
usage of these mechanisms is application-dependent, and may be crudely supported by system software (e.g. BIOS).

Software Support for the Bus Hierarchy
As we have seen, there is much hardware synergy between CardBus and PCI. To take advantage of this, though,
applications must be supported by adequate system software. Today’s system software cannot yet completely provide

this support.

As mentioned earlier, a PCI BIOS includes a bus enumerator which is used to find all PCI devices in a system, as
well as all PCI busses in a multi-bus hierarchical system. The enumerator assigns unique numbers to all busses, and

49



writes these numbers to the primary-bus Configuration register of each such device. For bridge devices, such as PCI-
to-PCI bridges and PCI-to-CardBus bridges, the enumerator also writes the assigned bus numbers to each bridge’s
Secondary Bus Number and Subordinate Bus Number Configuration registers. This device configuration activity
captures a particular system’s topology (connectivity pattern), and makes it available to software.

In a PCI system without CardBus, the bus enumerator is invoked once after system boot-up, nermally at POST
(power-on self-test) time. This is consistent with the fact that the resources in such a system do not change over time.
The situation is much more complex when the system can change due to CardBus card insertion or removal. In that
case, the bus-enumeration process has to be repeated with each card insertion or removal. Doing this involves adding
mechanisms for detecting card events; this is the purpose of the CardBus (and PC Card-16) “status-change” signal.

PC Card software supports dynamic system configuration. “Socket Services” is a hardware-dependent software
layer which operates by making calls on lower-level BIOS functions. (Note that BIOS is tailored for a particular
system). Socket Services allows a hardware-independent “Card Services” layer to manipulate a particular PC Card
bridge and a particular type of PC Card in a standardized manner, by making calls on Socket Services functions.
Some Card Services functions can be used to ascertain the resources needed by a particular PC Card, such as
interrupt level, Vec and Vpp voltages and currents, DMA channels, etc. This is done when a PC Card “registers”
itself with Card Services after card insertion. Other Card Services functions can be used to allocate and free such
resources for use by PC Cards.

The boundaries between BIOS, OS and PC Card software are changing. The trend, which is driven by Microsoft,
appears to be toward integration of BIOS functions into an OS “hardware Abstraction Layer” (or “HAL”), as well as
absorption of PC Card functions into the OS itself. This trend is not yet complete; for example, Windows 95 does
not include native support for CardBus (though it remains compatible with various implementations of CardBus-
capable Card and Socket Services. The direction appears clear, though. Over time, operating systems promise to
provide uniform support for the various elements of a PCI hierarchy, be they PCI agents or CardBus cards.

Summary

CardBus is a natural complement to PCI in implementing a hierarchical PCI bus structure. CardBus and PCI
share the same system resource-configuration mechanism, and these busses are well-matched in terms of
performance. PCI-to-PCI bridges allow a set of PCI busses to be connected in a static (i.e. hard-wired) topology, so
that these buses can subsequently be either connected to or isolated from one another under program control. PCI-to-
CardBus bridges allow portions of a bus hierarchy to be dynamically added to or removed from the system, either on
CardBus cards or on a PCI-based docking station.

The CardBus hardware standard supports this through a “hot-insertion” capability, automatic card-type
determination, socket status-change and interrupt mechanisms, and a robust connector and card form-factor
definition. In addition, the CardBus software standard (which consists of “Metaformat”, “Socket Services” and
“Card Services”) prescribes a method for handling dynamic resource configuration and management. Taken together,
PCI and CardBus constitute a unified solution to the needs of hierarchical PCI-based systems.

Author’s Biography

Claude Cruz is a PCMCIA Product Architect with National Semiconductor Corporation in South Portland, Maine,
where he focuses on CardBus-related products. Mr. Cruz has extensive digital systems design experience, including 11
years as an IBM designer and technologist, and 7 years as a consultant in parallel-processing and DSP systems, neural
networks, fuzzy logic and Al. He holds a double BS in Electrical and Biomedical Engineering from the University of
Southern California, and a joint MS in these same fields from the University of Illinois at Champaign-Urbana.

50 |
|



WHERE DO | PLUG THE CABLE?
SOLVING THE LOGICAL-PHYSICAL SLOT NUMBERING PROBLEM

Jeff Autor and Alan Goodrum
Compaq Computer Corporation
PO Box 692000
Houston TX 77269-2000
jautor@bangate.compaq.com agoodrum@bangate.compaqg.com

ABSTRACT

As the number of identical PCI devices performing unique functions in one server increases, it
becomes increasingly difficult to physically identify a specific PCI device. This paper will explain the
need for communicating to the user the unique physical location of a specific PCI device, specifically the
chassis and slot numbers. New PCI-to-PCI bridge registers designed to help solve this problem and defined
in the upcoming revision to the PCI-to-PCI Bridge Architecture Specification are described. The algorithm
for a proposed PCI BIOS call is also presented. The new BIOS call uses the new bridge registers to
convert between logical bus and device number and physical chassis and slot number.

THE NEED FOR SLOT NUMBERS

The PCI standard has been able to deliver on the “plug and play” promise by requiring that any
compliant device be able to accept any valid resource configuration at power-up. PCI BIOS assigns
resources at power-up, automatically allocating system resources without conflict. However, unlike
previous standards, the PCI standard does not include the concept of a “slot,” that is, a physical geographic
description of a device’s location within the system.

Desktop Computers

In a standard desktop
computer, there are usually few
PCI expansion slots and rarely
multiple instances of the same
device, making it easy to identify
physically any particular device.
The typical desktop includes slots
for a graphic controller, a network
controller, and mass storage
controller. There is one connector
for each, and using shape and size
alone, the cables can be
successfully attached to proper
devices. With PCI the
configuration process executes
each time the machine powers on,
so resource conflicts do not occur,
even if a controller has been
exchanged or a new controller
added.

Figure 1—Desktop computer applications typically have few external
connections and no duplicate connectors, simplifying the connection
process. This one has only a video monitor and LAN.

51



Figure 2—A typical server (center) may have identical electrical connections to multiple storage subsystems
(across the top), and multiple identical electrical connections to different LAN segments (bottom).

Servers

Identifying a particular physical device becomes confusing with PCI-based network servers. A PCI-
based server typically contains a large number of PCI expansion slots, averaging six to eight slots by mid-
1996. These expansion slots are likely to be filled with multiple, sometimes identical controller-types that
provide support for network segments, and multiple disk channels. Servers containing four or more disk
controllers or five network controllers are not uncommon, especially in large database configurations.
While one disk controller may connect to a number of SCSI disks, another may control multiple tape
drives. One network controller may connect to hundreds of systems in an office building, while another
network controller handles a connection to the Internet.

With PCI, the user no longer needs to manually allocate interrupts or memory address ranges.
However, there are still situations in which a user must identify a particular controller both logically and
physically. For example:

1. When plugging in an external cable, the user must identify the correct connector.

2. When configuring items such as the operating system, device drivers, and protocol stacks, the
software will require a way to identify the device. For example, when configuring network
controllers, the user must typically specify a controller (identified by slot number), and then assign
a network address and the protocols to use with that controller.

3. When a controller of any type fails in a system, software such as diagnostic tools must have a way
to communicate which controller has failed so that the user can physically replace it.

52



Consider the following example: A PCI server with two identical Ethernet controllers has one
controller cabled to a small number of workstations. The other controller is cabled to an Ethernet backbone
that runs throughout the company. To properly configure all the software running on the server, the two
network controllers must be assigned TCP/IP addresses. The user must match a software configuration
parameter (the IP address) to a piece of hardware (one of the two controllers). Without a unique identifier
such as a slot number, the user has no constant identifier that is guaranteed to remain the same no matter
how the rest of the system is reconfigured.

The system software, of course, can uniquely identify each controller logically, by a PCI bus number
and device number. The problem is presenting this information to the user, so that the user can physically
locate the controller.

Why Can’t the User Use Bus and Device Number?

Although the PCI bus number and device number do uniquely identify each controller, this identifier
falls short of the user’s needs in two areas. First, the slot number is a familiar paradigm for users. Users
already understand the concept of “slot number.” Instructing a user to install a controller “at bus 0, device
4” would require a shift in the user’s thought process. The slot number provides an intuitive method for
the user to physically identify a controller.

But more importantly, using PCI bus numbers and device numbers as an identification method is
deficient for another reason: PCI bus numbers do not necessarily remain constant. When multiple PCI host
bridges, or PCI-to-PCI bridges are embedded in the system, there are multiple buses to enumerate, and
these numbers can change when the system is reconfigured. Because bus numbers are assigned during the
boot process, just like other system resources, there is no guarantee that they will remain constant across
boot cycles. Thus, if the user configures software to use a controller found on “bus number 2, device
number 7,” and later adds another controller that happens to have its own PCI bus embedded, then any bus
number beyond bus 0 will potentially
be reassigned. The reassignments are

based on the location of the controller, 0 byte | PCI Bus Number 00h
and in what order the system’s BIOS 1 byte | PCI Device Number (in upper 5 bits) | 58h
finds and configures PCI devices 2 byte | Link value for INTA# 3
during the boot process. If bus number 3 word | IRQ bit-map for INTA# OFFFFh
2 is reassigned to bus number 3, then 5 byte | Link value for INTB# 4
the user’s software configuration would g ]‘)"’(;rd En?(bt;ma? fOIIi\II’II‘\ICT#]?# 2FFFFh
: e ink value for
be incorrect, as would any slot 9 wotd IRQ bit-map for INTC# OFFFFh
markings or configuration notes he 1 b .
yte Link value for INTD# 4
may have madc. to h.elp lc?cate the 12 word | IRQ bit-map for INTD# OFFFFh
device. A physical identifier, suchasa | 14 byte | Physical Slot Number 5
slot number, remains constant across 15 byte | Reserved 0
boot cycles, and therefore provides a 16 byte | PCI Bus Number 0Ch
better solution to the problem. 17 byte | PCI Device Number (in upper 5 bits) | 70h
18 byte Link value for INTA# 5
19 word | IRQ bit-map for INTA# OFFFFh
SLOT NUMBERS IN THE IRQ 21 byte | Link value for INTB# 6
ROUTING TABLE 22 word | IRQ bit-map for INTB# OFFFFh
24 byte Link value for INTC# 5
These types of challenges brought 25 word | IRQ bit-map for INTC# OFFFFh
about the creation of the IRQ Routing 27 byte | Link value for INTD# 6
Table call in the PCI BIOS, which was 28 word | IRQ bit-map for INTD# OFFFFh
added to the PCI BIOS Specification, 30 byte | Physical Slot Number 6
Revision 2.1. Using the bus number 31 byte | Reserved 0
and device number, software can 32.xx Additional PCI Device Entries
perform a table lookup to retrieve Figure 3—An excerpt from a typical IRQ Routing Table defining
information about how each device in how PCI interrupts are connected for devices in the main chassis.
the main chassis is wired. One of the This table can be used to translate between PCI bus and device

number, and slot number for, devices in the main chassis.

53



fields defined in the IRQ Routing Table is the device’s slot number, as shown in Figure 3. The software
uses the information in the IRQ Routing Table to translate the physical slot number into PCI bus number
and device number for devices in the main chassis.

PCI EXPANSION SYSTEMS

A PCI expansion system can be described as an external cabinet containing PCI expansion slots, which
connects to a server through one or more PCI-to-PCI bridges, as shown in Figure 4. Expansion systems are
a recent addition to the PCI product landscape, because they are only useful in server environments where
large numbers of 1/O controllers (i.e., disk controllers, network and communications controllers) are used.
A network file server may require these expansion cabinets when all PCI slots in the server are already in
use.

Expansion cabinets complicate the problem of physically locating a device. Not only does the user
need to locate a connector in a specific slot, he must also search multiple external cabinets for the
controller. Furthermore, slots in expansion cabinets cannot be included in the IRQ Routing Table because
the BIOS has no way of determining what expansion system might be installed by the user.

Figure 4—1In a PCI expansion system additional PCI slots are provided in a separate cabinet, further
complicating the problem of unique physical identification of a device. The slot numbering proposal assigns a
unique “Chassis Number” to each cabinet.

A COMPREHENSIVE SLOT NUMBERING PROPOSAL

Since the IRQ Routing Table solves the slot numbering problem in the main chassis, what is required
is a standard method for determining slot number in a PCI expansion system. In mid 1995, Compaq
Computer Corporation began circulating for review within the PCI community a proposal for a general
solution to this problem. The hardware required to support this proposal is being included in Revision 1.1
of the PCI-to-PClI Bridge Architecture Specification. At the time of this printing Revision 1.1 is nearing

54




the review process within the PCI-to-PCI Bridge Subcommittee. A standard BIOS call which uses the new
hardware and the IRQ Routing Table is being proposed to the PCI BIOS Subcommittee as well. The
following discussion presents the hardware aspects of the proposal, followed by the software aspects.

The New Registers

If we assume that the gateway to an expansion system is always a PCI-to-PCI bridge, then the logical
place to define a standard solution to the slot numbering problem for expansion systems is the bridge.
However, before a new standard feature could be added to the PCI-to-PCI bridge programming model,
another problem had to be solved. The standard bridge Configuration Space Header was full, so additional
space had to be reserved. As shown in Figure 5, configuration addresses FOh through FFh are defined by
the proposal to provide additional standard configuration space. Bit 15 in the Bridge Control Register
(3Eh) can be read to determine whether this additional space is supported. The two new registers shown in
Figure 5, the Chassis Number register and the Expansion Slot register provide the necessary information to
make the device number to slot number conversion.

31 16 15 8 7 0
Reserved | Chassis Number | Expansion Slot | FOh
Reserved F4h
Reserved F8h
Reserved FCh

Figure 5—The two newly defined registers for slot numbering are located in a newly defined extension to the
standard Configuration Space Header for PCI-to-PCI bridges.

Each cabinet in the system which contains PCI slots is assigned a unique chassis number, with the host
system assigned chassis number 0. The new Chassis Number register in the PCI-to-PCI bridge contains a
single 8-bit number that designates the chassis number in which the slots on the bridge’s secondary bus
reside. Multiple PCI buses contained in the same chassis should be assigned the same chassis number.

The Chassis Number register can be initialized either by the power-up system configuration software
or by hardware. If the register is to be initialized by software, then the register will be read-write, and can
either be non-volatile or can be initialized to 0 at power-up. If software determines that the register is read-
write and the value is 0, or equals another chassis’ number, then software will assign a new chassis
number. If the register is initialized by hardware, then the register will be read-only, and the system
designer must provide a means for the user to change the chassis number if there is a conflict.

7 6 5 4 3 2 1 0
Reserved Slots Expansion Slots Provided FOh
Follow
Parent

Figure 6—Expansion Slot Register. The information encoded in this register includes the number of expansion
slots provided directly behind this bridge, and the Slots Follow Parent bit that indicates whether multiple
bridges with expansion slots are cascaded within one chassis.

The details of the Expansion Slot Register are shown in Figure 6. Bits 4-0 of the Expansion Slot
Provided field contains the binary encoded value of the number of expansion slots which are provided
directly on the secondary bus of this bridge. If no expansion slots are implemented behind a particular
bridge, then this register should be initialized to O.

To understand how the Slots Follow Parent bit is used it is first necessary to consider how PCI
expansion systems might be configured. Figure 7 illustrates one such system. The bridge that controls the
first slot in the expansion chassis (Bridge A in Figure 7) is referred to as the “parent” bridge. Its Slots
Follow Parent bit is set to 0 to indicate that it is the parent. Additional bridges whose slot numbers follow

55



the parent slots (Bridges B and C in Figure 7) are referred to as “child” bridges, and their Slots Follow
Parent bits will be set to 1.

Because the Expansion Slot Register provides the power-up system configuration software with vital
information about the physical arrangement of the system, this register must be initialized before the
power-up system configuration software runs. This generally implies that the Expansion Slot register must
be initialized by hardware. The means by which the system designer programs this information into the
hardware is not specified, and is, therefore, left to the creativity of the bridge designer. The simplest
approach would be to initialize the register contents with the state of certain device package pins at RST#
time. However, more elaborate schemes involving shift registers or even serial EEPROMs could reduce
pin count or provide more flexibility and convenience to the user at the cost of increased hardware
complexity.

Finding Chassis and Slot Number

Chassis numbers are established by the system configuration software each time the system is
reconfigured. The main chassis is always chassis 0, and expansion chassis numbers are stored in the
Chassis Number registers in the appropriate bridges. After the system has been initialized, any software
needing the chassis number for a device can first check the IRQ Routing Table to determine whether the
device is in chassis 0. If not, the software must then find the bridge whose secondary bus number matches
the bus number of the device in question. If this bridge supports expansion slots, then the chassis number
can be read directly from the Chassis Number register. If this bridge does not support expansion slots, i.e.
it is an embedded bridge, then the chassis number is read from the bridge which supports the slot in which
the embedded bridge is installed.

The slot number of a device in the main chassis can be found just as simply as chassis number by
looking in the IRQ Routing Table. However, in an expansion chassis the slot number of a device must be
calculated from the device number and Slots Provided Register. The following assumptions are made to
calculate the slot number for a device in a PCI expansion system:

1. Slot numbers within each expansion chassis start at 1 and increment sequentially.
2. The PCI device number for each expansion slot starts at 1 and increments sequentially.

3. If an expansion system has multiple child bridges with the same parent bridge, then the child
bridge with the lower slot numbers must also have the lower device number on the parent bus.

To calculate the slot number for a device in an expansion chassis the software must first find the bridge
whose secondary bus number matches the device’s bus number. If the Slots Follow Parent bit is not set in
this bridge (this is a parent bridge), then the slot number is equal to the PCI device number. If the Slots
Follow Parent bit is set in this bridge (this is a child bridge), the software calculates the slot number by
adding the following three numbers:

1. Device number for this device.
2. Value from the Expansion Slots Provided field from the parent bridge.

3. Value from the Expansion Slots Provided field from all other child bridges of this parent, whose
device numbers are less than the device number of this child bridge.

If the slot numbering algorithm encounters a bridge that does not support the Chassis Number and
Expansion Slot Registers, then it is assumed that there are no expansion slots behind that bridge. All
devices behind that bridge will inherit the same slot number as the bridge itself. In this way a card such as
a multi-headed NIC or SCSI controller will report the same slot number for all devices on that card.



Figures 8 and 9 illustrate an algorithm of finding chassis and slot numbers for devices in an expansion
chassis. The algorithm starts at the top of the configuration hierarchy and scans every device,
accumulating chassis and slot information until the designated device is encountered.

A Slot Numbering Example

The diagram shown in Figure 7 contains all the elements that can effect the numbering of PCI
expansion slots. It represents a single, external expansion chassis, which would be connected to the system
via the PCI-to-PCI bridge on the left side (the arrow indicates the connection to the system). Above each
expansion slot is the Slot Number that would be physically labeled on the slot. The other numbers shown
are the PCI Device Numbers that would be assigned to each (potential) device in the chassis.

The first PCI-to-PCI bridge (left side of the diagram) has four PCI expansion slots on its secondary
interface (Bus 1). Since the Slots Follow Parent field (labeled “Follow” in the diagram) is not set, these
slots must be the first slots within the chassis, and are therefore numbered 1 through 4. Also on Bus 1 is an
embedded PCI device located at Device Number 5.

PCI Bridge
G
Chassis: #1
Follow: Yes
7 # Slots: 3

Slot Numbers
1

2 3 4
PCI Bridge E g E E PCI Bridge
: —— "A" uBn
1

Chassis: #1 Bus 1 Chassis: #1
Follow: No 2 3 4 ] I Follow: Yes
# Slots: 4 6 # Slots: 3

Device Numbers
Embedded
PCI Device

5

Figure 7—PCI expansion chassis containing a hierarchy of bridges and devices. Bridge A is the “parent” since
its slots come first and its Slots Follow Parent bit is reset. Bridges B and C are “children” since their slots
number sequentially after Bridge A, and their Slots Follow Parent bit is set. Bridge B’s device number must
come before Bridge C’s since Bridge B’s slots number first.

At Device Number 6 is a PCI-to-PCI bridge, which reports three expansion slots on its secondary
interface. This child bridge reports the same Chassis Number as the parent bridge, and its slots should
follow those of the parent bridge. Since this bridge is the lowest numbered bridge device on Bus 1, its slots
follow the parent bridge before higher-device numbered bridges. Therefore, its slots are numbered 5, 6,
and 7.

The final device on Bus 1, Device Number 7, holds another PCI-to-PCI bridge, also reporting three
expansion slots. Because its slots follow the parent bridge, the slots are numbered 8, 9, and 10.

The “Find PCI Slot Number”’ BIOS Call

The slot numbering proposal includes the addition of a “Find PCI Slot Number” BIOS call to simplify
the conversion between bus-device numbers and chassis-slot numbers for those operating systems that use
the BIOS. Operating systems that do not use the BIOS will be able to do the same conversions by
duplicating this algorithm within the operating system itself.

“Find PCI Slot Number” uses the IRQ Routing Table to find slot numbers in the main chassis (chassis
0), and uses the algorithm in Figures 8 and 9 for expansion chassis.

57




bus_number =0,
device_number = 0,
slot_number=0

Is bus_number >
Bus Number?

y Retum failure

Increment Device found
device_number, (bus, device
slot_number match?)

Is this device a

Is slot_number >
Slots Provided?

Bus

Retum Chassis,

§

Embedded Siot
Yes
v
Execute Bridge Retum Chassis,
subroutine Slot Number

device_number =0

Figure 8—Flowchart for “Find PCI Slot Number” BIOS Function.

58



Bridge subroutine

Are slots provided
by this Bridge?

chassis_number =
Chassis Number

s there a Chassis
Number?

Yes

d

If the Bridge does not
provide slots behind it, then
it must be an embedded |-
bridge on a PCl adapter

~ No

Do the slots follow
he parent Bridge?

No—»  slot_number=0

Yes

v

slot_number = Slots
Provided by parent
bridge

Return to main routine

Figure 9—Flowchart for “Bridge Found” subroutine for the “Find PCI Slot Number” BIOS Function.

The Future of PCI Slot Numbering

As mentioned previously, the hardware necessary to support this proposal in PCI expansion chassis is
being added to version 1.1 of the PCI-to-PCI Bridge Architecture Specification. This same revision also
specifies how Delayed Transactions work with PCI bridges. Compagq is encouraging multiple PCI-to-PCI
bridge vendors to include the slot numbering register in their new Delayed Transaction bridge designs,
even before the new revision of the bridge specification is released. Designers of PCI expansion chassis
will naturally want to upgrade their products to take advantage of the performance gain of the new Delayed
Transaction bridges as soon as they are available. When they do, we strongly encourage them to select a
bridge that includes the hardware necessary to support PCI slot numbering.

Now that the hardware support is being implemented, support for a new BIOS call needs to be added.
Compagq has already begun circulating a proposal within the user communities for review and comment.
The proposal would add a “Find PCI Slot Number” in the next revision of the PCI BIOS Specification.
Although the new hardware for slot numbering can be used without the new BIOS call, the inclusion of the
new call will simplify the delivery of an accurate implementation of the algorithm, especially in areas such
as diagnostics, system management utilities and BIOS-compatible advanced operating systems.

59



We expect that advanced network operating systems will not wait for the introduction of the hardware
registers for the expansion chassis or for the BIOS call. These OS vendors will begin to implement the
algorithm shown above immediately. Since slot numbers were added to the IRQ routing table in the
August 1994 release of version 2.1 of the PCI BIOS Specification, solutions for the main chassis will
already work with the current BIOS. When expansion chassis with the new bridge registers become
available, numbering slots in the expansion chassis will work, too. Device driver and application writers
should watch closely for developments from their OS vendor.

SUMMARY

As the number of PCI slots grows to accommodate multiple identical controllers performing unique
functions, it has become difficult to physically identify a particular controller. The inclusion of the slot
number in the PCI BIOS IRQ Routing Table, and the Chassis Number and Expansion Slot Registers in new
PCI-to-PCI bridge implementations will enable the translation from the logical bus and device number to
the physical chassis and slot number for all controllers in the system.

THE AUTHORS

Jeff Autor is a Systems Software Engineer at Compaq Computer Corporation. He has been designing
and developing system management products for Compaq for the last five years. As part of the NetWare
device driver development team, he co-designed Compaq’s SNMP MIB, software for Compaq’s Server
Manager product, and most recently the Compaq ProLiant servers. He is currently working on systems
management software for next-generation PCI-based server products. Jeff received a Bachelor’s degree in
Computer Engineering from the University of Illinois at Urbana-Champaign.

Alan Goodrum is a Principle Member of the Technical Staff in Compaq’s Systems Division. He
currently is involved with development of new technology which will be needed by file, print, and
application servers several years in the future. Previously he was a senior architect in several hardware
product development groups in the Systems Division since its creation in 1991, and a senior engineer at
Compagq since 1985. Alan received his BSEE in 1975 and MSEE in 1984 from the University of Houston,
where he has been a guest instructor.



Z
Q
=i
g
s
(7%
o
a.
£
o
5
o
O
o
[
ES
]
a




What Is PowerPC Platform:?

v PowerPC Platform supporting all PowerPC operating systems
¥ Open architecture built by any vendor with NO special licensing fees

Vv PowerPC Platform will run ALL applications developed for today’s
PowerPC systems including PowerMac systems

9

3
g
<

‘ g
Other OEM

= S LA

IM Apple PowerMacs Motorola

PowerPC Platiorm PRESENTATION - 2




€9

- Combining PowerPC Efforts
plentatlons_

601/ 603/ 604
Uni/MP
PCI

PC 1/I0

ARC Firmware

PowerMacs /

601 / 603 / 604 f,?,?;:ﬁ:
Proprietary logic PCI

Apple /IO - PC and Apple I/O
NuBUS & PCI Bus Open Firmware
Open Firmware pe

PowerPC Platform

splication Software Compatibility Across All Platforms
o D e ———— 1996

n n r PowerPC Platform PRESENTATION - 3 @



¥9

PowerPC Platform Block Dia 'ram

Mac Specific
B CHRP Specific
L L Std PC devices

PowerPC Plattorm PRESENTATION - 4




PowerPC Platform Initial Im;_)lementation

Available from Motorola SPS

#lac Toclbox ROM
[64-Dit Durst RO :
L2 Socket
ROM DIMM Sockst

Processor-10-RPCH Graphics
Brdge s \Maov’

COpuional Second
LCx Processor

S0x Fdicroprosessor

72-pin SN
sotkets

ADB Mouse

llotorola
MPC106

. PCl Bus
2epl= 1 G Contreller
HYDRA ‘ SoundBiaster Audio

$9

PCl-t0-i84 PCiSus
3ndae Kaster

UMCEB56 ISE PCi Siots
' ISA Bus
Super + O !

Controller
SMCFSCA7C335 - fSA Slots : '

Mouse

oo . e
- MOTOROLA
W Motorola Confidential Proprietary @




99

—

Available from Motorola
PowerPC Platiorm Compliant
Interface to 601, 603 and 604

Integrated DRAM controller for
EDO and Page Mode DRAM

Integrated L2 cache controller
for Asynchronous and

BurstRAM.

PCI interface

Power Management Logic
Parity or ECC support
Sum CMOS, 3.3 Voit

304 pin Ball-Grid Array
Package

1st silicon in August,85
Mass Production Q1,96

60X Data Bus

Processor to PCI Brid e

¥ PowerPC 60X to PCI Bridge

B 60X Address Bus b

‘ 60X Control Bus

60X Interface

TSRS

L2 Cache
Controller

nterface

&

Control

Control

PCI Address/ Data

PCl Co

Data




L9

V¥ PCl to ISA Bridge

to ISA Bridge

— Available from Winbond Systems Lab

=~ PowerPC Platform Compliant
~ PCI (Rev 2.1) Compliant

— Integrated Dual channel bus master

IDE controller

- Integrated DMA, Interrupt controller

and timer

— Supports PCI arbiter with host bridge

and 5 PC| masters

— Power Management Logic
— 208 pin QFP package
— 1st silicon in October

PCl Bus

L | PCl Arbiter

ORNEARTSAT P

1 1SA Interface

PCi interface

PowsrPC Piatform PRESENTATION - 7



¥ Apple Peripheral Chip (HYDRA)

89

‘Apple Peripheral Chip

R

PCI Bus interface PCl Bus

- Integrated MPIC controller to support
dual processor

— Integrated SCSI controlier Interface

— Integrated SCC controller for Local
Talk

— Integrated ADB controller for Keyboard
and mouse

— 160 pin QFP package
— 1st silicon in October

PowetPC Piatiorm PRESENTATION - 8 ‘ ~



69

| OSLicensi—ng for PowerPC Platform

- !
A A o R N e S R s

v Apple will license Mac OS, mcludmg ROM code, to ANY
OEM developing PowerPC Platform system

ROM SIMM Containing Mac Toolbox

on the PowerPC Platform motherbdard

V¥ Other OS licensing follows normal X86 business model

O L g B A g A A 3 S A B B S L ) B (0 B s L B A L G A
PowerPC Platform PRESENTATION - 9
PowerPC | W) mororoLa



0L

: ' :

e S s s

V¥ OS Independent
— Required to Boot Mac OS on PowerPC Piatform
— Veneer Available to Boot Windows NT ’
— Bi-Endian Firmware Callbacks

V Features
— Boot Time Debugger for Firmware and Drivers
— Plug and Play via FCode Drivers

V Processor/Bus Independent
— Single Peripheral Driver for Multiple Platforms
— IEEE Bindings for PCl and ISA

V Industry Standard
— {EEE P1275 Standard for Boot Firmware A
— ANSI Forth Programming Language Standard

PowerPC Plattorm PRESENTATION - 10









€L

EI Low Cost Vanant of 21050

152 PCI to PCI Bridge

/33 Volt Design - 5.0 Volt I/O_Tollerant - 160 P|n PQFP

D Supports 4 Dewces Wlthout E»xternal Loglc

J 4 Req/Gnt and Clk Slgnals_



1

The New
2115x PCI to PC1 Eridige Eami]:y







Other Benefits of the 2115x
Enhanced Buffer Architecture




igital Semiconductor
ridge Produ

21153
256 PBGA

32/32 bit
208 PQFP

32/32 bit
160 PQFP







6L

read

.23:7

Lol
data

qu

ue

—

 — fromupstreampostedwrite queue

Read Buffers

7
ot
% z& SR

ath

.....

 T2Bytes

H

dt o

st q‘l‘xeue:‘:_

o sec’ond;‘ary'ad’,,,_;

-

write

— LE T

queue




2115x Family Upstream Datapath




Primary PCI Secondary PCI "Other Product
Interface Features Interface Features Features

Delayed Write | Read Delayed

Write | Read s
H H k

Buffer | Buffer Transaction Buffer | Buffer Transaction GPIO |Package}

Queue Queue

3 entries ] 3 entries

121152 *| . 3 entries , 3 entries

3 entries . 3 entries
















DESIGN ISSUES FOR PCI-TO-PCI BRIDGES

Thomas L. Anderson and Mark W. Knecht
Virtual Chips, Inc.
2107 North First St.
San Jose, CA 95131
(408) 452-1600
e-mail: toma@vchips.com
e-mail: markk@vchips.com

Jacques Wong
Advanced Micro Devices
P. O. Box 3453, M/S 59
Sunnyvale, CA 94088
(408) 749-4918
e-mail: jacques.wong@amd.com

Abstract

As use of the PCI Bus has become more
widespread, the number of devices needing PCI
support and the number of PCI buses per
system has increased. The PCl-to-PCI bridge
has developed from a niche technology into an
essential component in many types of systems.
Design of an effective PCI-to-PCI bridge is not
straightforward. This paper discusses some of
the issues facing bridge designers and some key
decisions that must be made to develop an
effective solution. The topics discussed include
PCI 2.1 requirements, bridge latency, support
for asynchronous clock domains, interrupt
handling and support for PC “legacy” devices
behind a bridge.

Introduction

The PCI Bus has been widely adopted for a
number of excellent reasons. Its precise
specification and rich suite of transactions were
key factors for early adopters. However, the
physical expandability of the bus was limited by
the drive characteristics and loading
specifications chosen in the original PCI
definition. Most manufacturers have found that
modern silicon and packaging technologies limit
their product solutions to no more than three
compliant loads on the PCI bus. While this limit
was acceptable for the first PCI-based personal
computers, it is insufficient to support many
applications demanded by today’s system users.

86

The PCI SIG, working together with some of the
interested silicon and systems manufacturers,
developed a specification for the first PCI-to-PCI
bridge. This specification was released in April
of 1994 and has proven valuable in the rise of
both commercially and privately developed
bridging solutions. Through the use of PCI-to-
PCI bridges, system manufacturers have been
able to provide the extra PCI connectivity that is
needed in high-end server applications and is
becoming more necessary in today’s desktop
solutions.

This flexibility of the PCI specification has
proven to be an additional incentive for adoption
of PCI. Bridges provide a virtually unlimited
ability to add additional PCI buses in
hierarchical fashion. However, factors such as
the latency of transactions across bridges and the
flexibility in clocking the downstream buses can
have a major effect on the performance and
utility of a multi-bridge system.

The design of a PCI-to-PCI bridge entails
tradeoffs in a number of key areas. Failure to
make these tradeoffs correctly has resulted in the
commercial failure of some bridging based
product solutions.  Further, the continued
evolution of the PCI specification and the
increasing demands of PCl-based systems have
produced some new challenges for designers.
This paper reviews some basic design issues for
PCI-to-PCI bridges, discusses some recent
changes in the types of bridging solutions



available, and outlines some major issues for the
future.

Baseline Features and Issues

A basic PCI-to-PCI bridge supports two
complete PCI buses; the primary bus is closest to
the host processor and the source of
configuration transactions while the secondary
bus is effectively produced by the bridge itself.
The bridge must be capable of acting as a master
or target on either bus in a complementary
fashion. When the bridge acts as a target on
either bus, it must act as a master on the other
bus in order to pass transactions to the final
target. As such, a pure bridge provides no
peripheral device functionality itself but acts
merely as an agent to propagate transactions
from one PCI bus to the other. When no
communication is needed between the primary
and secondary buses, a PCI-to-PCI bridge must
allow independent, concurrent transactions on
both buses. It is only when a device on one bus
needs to communicate with a device on the other
bus that the bridging function is activated.

Even this baseline level of functionality raises
some interesting design issues. The distinction
between the two buses means that a bridge
generally will not have equivalent interfaces on
its two sides. The primary side interface must be
capable of handling configuration transactions
from the host processor and either taking
appropriate action itself or passing the
transactions on to devices on the secondary bus.
This distinction in the operation of the primary
and secondary interfaces of the bridge creates
limitations in the use of the bridge.

For example, a PCI-to-PCI bridge is not very
useful as a mechanism for connecting two
separate, but equal processing environments. It
is capable of accepting configuration
transactions only from the host connected to the
primary bus, relegating the other host to a
subordinate  status. A  more intelligent
mechanism for differentiating the upstream and
downstream addressing environments would be
valuable in some system architectures.

Since the PCI-to-PCI bridge effectively creates
the secondary bus, it usually provides some basic
support features. For example, the bridge may
include the arbitration logic for the secondary

87

bus so that a dedicated external arbiter is not
required. This is entirely analogous to the
arbitration support provided by the chipset or
host interface that creates the primary PCI bus.
The bridge will often provide the clock for the
secondary bus if it is to run synchronously with
the primary bus. The bridge can buffer the
primary side PCI clock and provide multiple
copies in order to support the other devices on
the secondary bus.

PCI Timing Design

Of course, the bridge designer must also deal
(twice) with the baseline design challenges of
any PCl-compliant interface. Operating within
the 7ns setup time on key signals can be one of
the most daunting tasks in many PCI projects. It
is most often the address decoding that consumes
the largest portion of the available setup time.
Since bridges that attempt to be compliant with
all optional aspects of the PCI-to-PCI Bridge
Architecture Specification have multiple address
ranges to decode, the difficulty of meeting the
setup time is greater than for a standard PCI
device.

Care should be taken in the specification of a
PCI-to-PCI  bridge to define its target
environment and applications.  Eliminating
address decoders that are not necessary in the
target system will help the designer to meet the
PCI setup timing. As with any PCI interface,
best performance is achieved with the fastest
assertion of the device select and target ready
signals.

If, for instance, a bridge is to be used in an
environment in which memory addressing is
limited to 32 bits, then support of the
Prefetchable Upper 32 bit registers (Base &
Limit) should be excluded from that bridge’s
configuration space. A similar trade-off can be
made with the /O addressing when bridging in
an X86 based machine. Since the X86
compatible processors provide addressing
capability for only 64KB of I/O space, there is
no requirement to support the I/O Base and 1/0
Limit Upper 16 Bit registers. While each of
these decoders by itself might appear to be an
insignificant burden on the performance design
of a bridge, their cumulative effect is often great
and can affect both the timing specification and
the timing margin in the final product.



The clock insertion delay from the clock input
pin to the state elements actually helps meet PCI
bus setup requirements. However, the PCI bus
also has strict requirements for hold time. It is
fairly common to ease the hold time problem by
using a minimally-delayed input clock for
signals from the PCI bus, and then using clock
buffers or a clock trunk to provide clocks to the
rest of the bridge. A small clock insertion delay
minimizes the skew between the input clock and
the clocks at the internal state elements, thereby
reducing the chance of races and hold time
violations. As with any PCI interface design,
delay elements are usually required on the fastest
paths. Additionally, the PCI requirement for
correct operation at very low frequencies
prevents the use of a Phase-Locked Loop (PLL)
to reduce internal clock skew

Latency across the bridge is another dimension
of performance affected by the requirements of
PCI timing. Even if a bridge achieves fast
assertion of device select it still can be difficult
to achieve a one-cycle latency from one bus to
the other. The combination of the PCI bus 7ns
setup time and 1lns clock-to-out requirement
means that very little time is available around a
single register stage to perform all logical
functions needed for bridge operation.

Burst Performance of PCI-to-PCI Bridges

For PClI systems to obtain maximum
performance, the PCI bus must be able to operate
as it was intended when originally specified: as a
burst bus. Reasonable burst performance is best
achieved when the bridge holds multiple data
words in FIFOs. Commercially available PCI-
to-PCI bridges, to date, have had very shallow
FIFOs and this has hindered the burst
performance of the bus whenever the bridge is
either the target or the initiator of the transaction.
Technical papers presented at WinHEC and
elsewhere have suggested that, for some chipsets
to perform at or near the limits of the PCI
specification, burst length should be at least 32
double-words of data. While this suggests that
FIFO structures in a bridge should be at least this
deep, that is only part of the story.

For more optimum performance, bridge FIFOs
should be deep enough to allow for arbitration of
the target PCI bus without stalling the device on

88

the initiating interface. The arbiter for the
primary PCI bus, for fairness reasons, provides
no special treatment for the bridge. Assuming
that any given PCI interface may have as many
as four devices operating on it, the bridge may
have to wait for all other devices on the interface
to access and transfer using the PCI bus prior to
gaining access for its own purposes. If system
software sets up the PCI device’s latency timer
values high enough to satisfy the burst
performance criteria of the chipset then the
bridge may find itself waiting for many tens, if
not hundreds, of PCI clock cycles, prior to
beginning its transfers on the bus. As 1/O
bandwidths available from disk and networking
interfaces increase, and other PCI devices opt for
longer bursts, PCI-to-PCI bridges will be
required to significantly deepen their FIFOs to
support high bandwidth I/O streams operating
across their interfaces.

Having multiple FIFOs is also an essential part
of a robust bridge design. It is possible, with a
good deal of complex logic, to configure a single
FIFO to handle a variety of transactions at the
same time. It is simpler and better for
performance to have four FIFOs, a separate read
and write FIFO for each of the two directions
(primary target to secondary master and
secondary target to primary master). Separating
the FIFOs in this way fosters a clean design style
in which the control and datapath for the two
directions are symmetrical and as independent as
possible.

Maintaining Data Consistency on Interrupts

As FIFOs are deepened in PCI-to-PCI bridges to
improve burst performance, new problems are
seen in the area of interrupt processing. PCl-to-
PCI bridges are not required to handle any of the
interrupts generated by the devices downstream
of them. The bridge user community has
identified system problems that were caused by
interrupts being delivered to the system prior to
the data being delivered to memory.

In systems that use token passing techniques to
improve interrupt handling performance, a
device may generate a token and write it to
memory, and then generate an interrupt to
inform the processor that it has completed its
task. This sort of operation can significantly
improve interrupt handling, especially when



interrupts are shared. If the token is still residing
in a posting FIFO internal to the bridge when the
interrupt hits the processor, then the processor
will check memory and not find the token, at
which point the interrupt is effectively lost.

This problem is potentially best solved in the
device that generates the interrupt itself, as long
as the bridge behind which it resides is properly
designed. If the device that has written the token
to memory performs a read of the token location
in memory, then the bridge is forced, by
ordering rules, to flush the FIFO before allowing
the read transaction to proceed, thus
guaranteeing correct operation. This sort of
improvement in the basic system level operation
of PCI devices will help, but PCI-to-PCI bridges
will continue to operate with 2.0 compliant
devices behind them that do not implement these
sorts of safeguards. It is for this reason that
bridge designers should consider implementation
of interrupt handling logic for maintaining the
consistency of the data in memory.

New PCI-to-PCI bridge architectures could
eliminate some of the problems discussed above
through the wuse of intelligent interrupt
monitoring and gating circuitry. This circuitry
could be as simple as flushing FIFOs anytime an
interrupt occurs. While this may seem like
unnecessary overhead to the bridge designers
today, the handling of hardware interrupts in
systems of the future will certainly be more
complicated as the number of PCI devices
increases.

Challenges of Asynchronous Design

Most hostbus-to-PCI and PCI-to-PCI bridges are
designed synchronously, with both sides of the
bridge running on the primary side clock. This
has resulted in some undesirable effects due to
the secondary bus being tied to the primary bus.
In some cases, as processor speed has increased,
I/O performance has decreased if convenient
clock multiples were not available. For example,
a 100-MHz processor conveniently drives a
30nS PCI bus while a 125-MHz processor
conveniently drives a 40nS PCI bus. With
synchronous PCI-to-PCI bridge designs, this
means that all PCI buses in the hierarchy would
be running at 25-MHz, or nearly 25% slower
than the I/O devices on these buses were
designed to run. While PCI itself was supposed

89

to decouple the design of 1/O devices from the
design of the processor, this is one area where
their performance may be definitively linked.
Because of situations such as these, it is desirable
to have the option to support independent clocks
on both sides of a bridge.

If the two sides of a PCI-to-PCI bridge are to
have completely independent clocks then the
designer must pay careful attention to all the
issues associated with asynchronous design.
This would include not only the data path, but all
areas involving signaling between the primary
and secondary state machines. The presence of
FIFOs in the bridge can aid in the
synchronization process; each FIFO may be
filled at one clock rate and emptied in the other
clock domain. While asynchronous design does
pose some difficulties in today’s synthesis-
centered design environments, it should be
addressed if the highest performance metrics are
to be met.

It is convenient for the clocking of the PCI
devices downstream of a PCI-to-PCI bridge to be
handled by the bridge itself. Today’s successful
bridging products offer a reasonable minimum
level of support for synchronous buses. Bridge
clocking circuits can be enhanced to include
support for externally provided asynchronous
clocks and control of clock outputs for power
management.

Challenges of PCI 2.1

The introduction of the 2.1 revision of the PCI
Specification introduced a few new challenges to
all PCI designers. Specifically for bridges, the
delayed transaction feature has proved to be a
major issue. This is evident from the delays
suffered by the PCI-to-PCI Bridge Working
Group as they have worked diligently to release
the 2.1 revision of the PCI-to-PCI Bridge
Architecture Specification.

Delayed transactions were developed to provide
a more bounded time period for individual
transactions on the PCI bus. Whereas in the
previous revisions of the specification there was
no limit to the amount of time that a target might
hold the bus prior to beginning the transfer of
data, the 2.1 revision of the specification placed
a 16 clock limit on the delay until the first data
transaction. If a device finds itself unable to



begin transfer of the data in that time period,
then the device must store sufficient information
to allow it to release the PCI bus, continue on
with the transaction, recognize the same
transaction when it is retried and then respond
appropriately. A read or write transaction
requires that the address, command and byte
enables be stored, while a write also requires the
data to be saved to insure proper response to a

retry.

This mechanism provides individual PCI devices
with more potential access to the bus, with no
additional silicon overhead, if they can always
guarantee transfer of at least the first data
transaction within this 16 clock boundary. For
bridges though, the story is quite different. The
very nature of a bridge means that it has no data
on the devices operating behind it, and in fact
may be posed with many layers of PCI bus
hierarchy. The bridge therefore cannot
guarantee a response within the 16 clock limit
and must have significant delayed transaction
capabilities if it is to maintain system
performance. This aspect of operation has
significantly complicated bridge design in the
short term.

Delayed transactions in a PCI-to-PCI bridge fall
under a number of categories as they proceed
toward completion. The PCI specification
defines five such categories:

PMW, or Posted Memory Write
DRR, or Delayed Read Request
DWR, or Delayed Write Request
DRC, or Delayed Read Completion
DWC, or Delayed Write Completion

The PCI specification determines that any 2.1
compliant device may create a queue for these
delayed transactions, and that the queue may be
as deep as required. The specification then
further defines that some transactions may, for
performance reasons, be allowed to complete out
of order, at least from the point of view of the
bridge itself. This mechanism is known as The
Ordering Rules.

The operation of a specific bridge product
defines which of the optional Ordering Rules the
bridge will implement. Extreme care must be
taken in this area of the specification since
potential deadlock or live lock conditions can

90

arise. Significant work was done by the PCI SIG
for the release of the 2.1 specification, and still,
it is reported, that the PCI-to-PCI bridge
Working Group found many inconsistencies in
these rules with respect to PCI-to-PCI bridges.
The bridge designer must be wary of the
problems posed, work through all possible
scenarios, and test these cases as thoroughly as
possible in simulation.

Legacy Devices Behind Bridges

As the PCI bus has become nearly ubiquitous in
PC systems, many designers are anticipating the
gradual phase-out of the ISA bus. However, it
seems unlikely that the ISA bus legacy devices
(serial port, parallel port, floppy disk drive,
interrupt controller, etc.) will disappear even as
the ISA bus itself becomes extinct. The
standards for these devices date back to AT-class
systems and users have come to rely on their
presence and compatibility. Since these devices
have specific hard-wired addresses, they cannot
be simply mapped to new locations by PCI
configuration commands, nor can they be moved
to new addresses without sacrificing AT
compatibility. The original Bridge Architecture
Specification takes this into account by
specifying that none of the legacy addresses
required for AT compatibility should exist
downstream of a PCI-to-PCI bridge unless the
bridge is configured for ISA compatibility. In
this model all ISA compatibility must exist in
one, and only one, portion of the system bus
hierarchy.

A new set of specifications, developed by a
group of silicon and system companies, proposes
the use of two evolutionary technologies. These
technologies are known as Distributed DMA and
Serial  Interrupts. With  the  successful
introduction of these proposals, AT class
compatibility in the areas of the traditional DMA
and interrupt servicing can be maintained even
while the peripheral devices are located
downstream of a  PCl-to-PCI  bridge.
Unfortunately these two specifications do not
tackle the problems associated with truly
distributing the ISA legacy devices themselves to
distinct locations in the hierarchy. For improved
user configurability, resulting in fewer technical
support questions, all PCI slots in a machine
should meet a minimum level of functionality



independent of the board level product that is
plugged into them.

For PC-AT compatible machines, a limited set of
I/O address range decoding would need to be
supported to allow legacy devices to be moved
to any level of the PCI bus hierarchy. While this
list may not be extensive, and since some of
these technologies may be obsolete in the near
future, the list should be used only as a potential
checklist. The hexadecimal I/O addresses for the
most standard legacy peripherals and system
devices are:

DMA : 000-00F, 0C0-0DF
IRQ : 020 - 021, 0A0 - 0A1
Timers : 040 - 043, 048 - 04B
System Ports : 061, 092

IDEL1 : 1F0 - 1F7, 3F6

IDE2 : 170 - 177, 376
Floppy : 3F0 - 3F5, 3F7
Parallel Ports :

3BC - 3BE, 378 - 37A, 278 - 27A
e  Serial Ports :

3F8 - 3FF, 2F8 - 2FF

The additional decoding logic required for the
legacy devices does imply additional difficulties
when attempting to operate within the 7ns setup
time requirements of the PCI specification. In
most cases the bridge will not achieve fast
assertion of the device select signal.

Arbitration for High Performance Operation

As isocronous data streams become more
commonplace in the PC of tomorrow, devices
will need access to the bus in the most timely
manner possible. While the delayed transaction
capabilities of the 2.1 specification go a long
way towards guaranteeing appropriate use of the
bus once a device has gained access, this alone
will not get a device onto the bus to begin the
transfer. A well designed and integrated
arbitration unit is necessary if the bridge is to
maintain high system performance at the lowest
overall system cost. The PCI 2.1 specification
outlines a reasonable set of criteria for designing
a multi-level arbiter. Future bridge designs
should implement this as a baseline set of
functionality, and then develop creative ways to
help devices gain access based on time-slicing.
It would be appropriate for the next revision of
the PCI-to-PCI bridge specification to make

91

arbitration programming a defined mechanism
so that system BIOS manufacturers could work
toward supporting one solution. Today’s bridges
use individual programming mechanisms which
require specific BIOS or driver support. It
would be valuable to have a consistent
programming model, supported by all BIOS
manufacturers, that could guarantee high
performance on the secondary bus of a bridge,
without the system integrator having to resort to
independent solutions.

A Checklist for Advanced Operation

Determining whether a bridge is appropriate for
any given system design is of course the
responsibility of the system architecture and
integration team. The authors offer the following
list of points for the team to consider when
choosing a PCI-to-PCI bridge device.

e Baseline operation as defined by the PCI
SIG is appropriate for the system under
development. No additional features are
required for correct system operation.

e The bridge is compliant with the memory
and I/O addressing portions of the PCI
SIG Bridge Architecture Specification

appropriate for the system under
development.

e The bridge contains data buffering
sufficient to  support the  burst

performance of all /O and computing
devices that will be transferring data
across its level of the hierarchy.

e The bridge offers appropriate mechanisms
for maintaining data consistency during
all forms of interrupt processing, be they
register based or token based.

e The bridge 1is able to operate
asynchronously across its interfaces to
enable the highest performance operation
possible on both interfaces.

e The bridge implements an appropriate
PCI 2.1 delayed transaction queue for
both the upstream and downstream sides
of the bridge.



e  The bridge allows the system architects an
appropriate degree of freedom in the
placement of AT class legacy devices,
allowing for end user configuration
options.

e The bridge integrates all downstream
clocking and arbitration  functions
necessary to support high performance
transaction on its secondary interface. The
arbitration unit must support the needs of
isocronous data streams crossing its level
of the busing hierarchy.

PCI-to-PCI bridge designers should have a
strong understanding of the system requirements
for their bridge products if maximum
performance is to be achieved. Bearing in mind
that some of the above points may be mutually
exclusive, the designers should include those
features satisfying those requirements.

The Authors

Thomas L. Anderson is Vice President of
Engineering at Virtual Chips, the leading
supplier of synthesizable PCI cores and PCI
verification environments. He was previously an
Engineering Manager in the I/O and Network
Division of Advanced Micro Devices.

Mark W. Knecht is a senior architect at Virtual
Chips, designing PC system solutions. He was
previously a Senior Member of Technical Staff
at Advanced Micro Devices, where he developed
PCI-based multi-function I/O devices.

Jacques Wong is a Senior Designer in the I/O
and Network Division of Advanced Micro
Devices. He has been a lead engineer on
numerous projects involving SCSI, Ethernet and
PCI bridge technologies.

92



PCI Interrupt Controller

for Industry Standard PCI-ISA Bus Architecture using
PClI-to-PCl Bridge Technology

Ross L. Armstrong
Digital Equipment Corporation [Scotland] Lid.,
Masshlt Industial Estate,

Ayr, Scotiand. KA6 68E.

Fax: [44] 1292 889241

o-mail: ramatrong@neebit.onot.dec.com

The demand for more Peripheral Computer Interconnect [PCI] device configurations beyond the limit set in the PCI
local bus specification has prompted the development of several PCI-PCI bridge solutions. This paper describes a new
PCI Industrial Computer Manufacturers Group {PICMG] PCI-ISA bus architecture implementation using Digital
Equipment Corporation [Digital] PCI-PCI bridge technology. Layered PCI bus architectures, PCI interrupt lutency
implications and performance optimisations for PCI-PCI bridge designs are discussed. Reference will be made (o
Digital' s family of 64 bit Alpha Single Board Computers {[SBC| and PCI-ISA backplanes which have been specifically
designed to address multiple, low cost, high performance PCI requirements associated with high speed

communications and graphics in embedded applications.

Overview

Digital’s Embedded and Real-time line of business has
developed a seriss of modular computing products
supporting an open systems environment based upon
the PICMG PCI-ISA SBC standard. Two goals of the
Digital Modular Computing Componeat [DMCC]
program were to

e dovelop a number of PCI based backplane
products that would enable customers to
procure and configure industry standard PCI

and ISA T/O option cacds.

e provide extensive PCI 1/O option card slots
and maintain  optimum  bandwidth/
performance for bridged slots.

Whilst the former requiroment was a simple
undertaking, the latter provided a greater challenge to
the platform designers. Reduction in bandwidth,
however moderate, could be encountered due to
software or hardware inefficiencies i.e. degraded
intorrupt secvicing  (latency) or propagation/timing
delay due to the bridge implementation.

The choico of Digital PCI-PCI bridge chip adequately
meets the required timing specification, however
intecrupt lines derived from secondary bus devices arc
not routed through the Digital PCI-PCI bridge chip.

Copyright Digital Equipment Corporation, 1996

93

This allowed the designers to thoroughly review and
improve upon the standard interrupt binding strategy
for PCI buses, where multiple devices might have to
share interrupt lines.

The PICMG single board computer connector has only
four intccrupt linos assigned to it: INTA#, INTB#,
INTC# and INTD#, as does each PCI slot connector.

A routing or binding strategy is required to connect
between the PCI option T/O and the SBC INTxif line it
uses when rcquesting an interrupt.

In hardware terms, Figure 1 PICMG Single PCI Bus
[nterrupt Binding, shows how this structure is intended
to be provided.

Figure 1 PICMG Single PCI Bus Interrupt Binding

Al

The IDSEI line per slot is assigned 1o AD{31:28] as per
the PICMG Specification. These are used to identify
device numbers as given in the configuration address.



The system firmware (or BIOS) code mnst assume an
interrupt binding architecture for its environment. The
PICMQ specified binding for the primary PCI bus (PCI
Bus 0] is shown in Figure 1, i.e. it is hard coded.
Because only the firmware (or BIOS) knows how the
PCI INTx# lines are routed to the system controller, a
mechanism is requircd to inform the operating system
device driver of an interrupt occurrenco. This
mechanism typioally requires a chained ‘software’
search of each devicc using a specific hardware
intorrupt ta identify the source,

This can be achieved by cither having the
firmware/BIOS pall all PCI devices to determine which
originated the intorrupt request and then initiate the
correct interrupt service routine gor alternatlvely have
the operating system kernel interrupt dispatch routine
sequentially oall each individual device interrupt
service routine until the correct source has been
identified and serviced. [The latter cxample is
implemented by Microsoft Windows NT].

The binding structure hecomes even more congosted
when additional (bridged) PCI buses are implemented
in accordance with the PCI-to-PCI Bridge Architecture
Specification Revision 1.0. Their PCI bus intcrrupts
must be connected as per Figure 2 Secondary PCI Bus
Interrupt Binding.

Figure 2 Secondary PCI Bus Interrupt Dinding

This secondary binding architecture must be overlaid
upon the respective primary slot binding that the
bridge now occupics. The not effect being illustrated in
the example for one PCl-to-PCI bridge in Figurc 3
PCI-t0-PCI Bridge Implementation.

Copyright Digital Bquipment Corporation, 1996

94

Figure 3 PCl40-PCl Bridge Implementation

The usc of the wire-OR [somctimes also known as
shared) binding design, means that the polling and
decodle of an interrupt request can be significantly losg
than _optimal. The latency for this operation is also
unpredictable ic. with N PCI slots, detcrmining the
originator of the PCI interrupt request could take a
minimum of I, up to a maximum of (N-1) bus read
cycles.

An alternative solution was invostigated in order to
improve upon this industry standard binding
architecture if PCI interrupt latency performance was
not o be compromised in large PCI systems. [Any
proposal would take cognisance of, and retain support
for, the raditional wire-OR scheme.]

The design goal was to provide improved performance
while maintaining an open system architecture capable
of supporting both existing and alternative modes.

interrupt Controller
Assumptionse/Limitations

The interrupt controller must be able 1o support up to 4
primary PCI devices. A primary PCI device being
either a PCI bridge or a physical connector. Each PCI
bridge can have up to 4 secondary deviccs
implemented behind the bridge.

The largest configuration would mcan a maximum of
16 individual PCI connectors, as demonstrated in
Pigure 4 Maximum Allowable PCI Configuration.



Figure 4 Maximum Allowable PCI Configuration

Oged Devioe

PR Dugs
PohPG: e vot POl oc1
Graige 4 Oevine Deviae Davine

This implies a maximum of 64 PCI interrupt sources.
A controller that can service all of thesc product
scenarios, or some subset thercof, must do the
following:

e support up to 4 primary devices

o be ablo to identify whether a primary device is
cither

« an on-board PCI-PC'T bridge (with up to 4
‘bridged’ secondary connectors behind it)
OR

« aphysical connector

e be able to uniquely identify each of the 16
potential interrupts that can be gencrated from
a PCI bridged device (i.e. four interrupts from
each of the 4 secondary devices) AND

¢ bo able to uniquely identify each of the 4
potential interrupts that come from a physical
connector

This implics that the controller will have the following:

s g register (or similar) 10 detail whether a
primary devico is a physical connector or an
on-board PCI-PCI bridge

o aregister (or similar) for each primary device
(i.e. 4 in total) to provide status for cach PCI
interrupt supported by that primary device.
Note that the requircments for a bridged
device are very diffecent from a non-bridged
dovice and the format of the register will be
differont for each case.

e a register (or similar) to identify which
primary device caused an interrupt (i.c. to
prevent having to read all 4 interrupt registers
to determine the interrupt source).

The backplanes developed as part of the DMCC
progtam are intended for use with many operating
systems and non-Alpha single board computers.

Copyright Digital Equipment Corporation, 1996

95

Therefore, they must also be compliant with the shared
Interrupt scheme as defined in the PICMG PCI-ISA
Card Edge Connector Proposal for Single Board
Computer [SBC| Specification, Revision 2.0 and PCI-
PCI Bridge Board Edge Connector for Single Board
Computer Specification.

To meet this two fold requirement the proposed
controller supports two unique modes of aperation with
some means of switching between them. For
convenience this was determined to be software
selectable.

The default mode, at power-up, makes the backplanc
compliant to the PICMG specification. This will be
known as PICMG Mode.

Operating systems [OS] wishing to make use of the
interrupt  controller must cxplicitly switch, via
software, 1o the desired mode of oporation.

A bonus of this design is that the hardware is (in
simple terms) a form of hardware intcrrupt acoclerator
usable by multiple operating sysicms and hardware
platforms, if their corrosponding BIOS or firmware
code is appropriately configured. This mode is known
as the Accolorator Mode.

Generic Architecture

The basic form of tho Intecrupt controller is shown in
Figure 5 DMCC Inaterrupt Controller Block Diagram.
The interrupt controlier is split into multiple functional
blocks, each section’s usage being dependent on tho
desired mode of operation; cither PICMG Mode or
Accolerator Mode. These modes are mutually exclusive
and are discussed in the following scctions.

Figure S DMCC Interrupt Controller Black Diagram

The example and illustrations used throughout this
paper refer to a specific DECchip 21064A PICMG



PCI-ISA single board computer implementation. The
concepts are generic and can be fully utilised by
alternative platforms. In Figure S, the intcrrupt
controller functionality is shown within the shadcd
arca and is physically locatcd on the backplane; the
System 1/O and CPU being resident on the actual SBC.

PICMG Mode

This is the default mode for the [nterrupt Controller on
power-up. The Register Logic blacks are disabled and
all inputs are fed into the Interrupt Routing Logic
block. It implements the necessary binding to be
compliant with the appropriats PICMG specification
(as per figures 1 & 2) and addresses the routing for 64
individual interrupt request lines to 4 outputs i.e. the
four SBC INTx#. When in this mode the Interrupt
Controller appoars as shown in Figure 6 DMCC
Interrupt Controller Block Diagram - PICMG Mode.

Interrupt Registers

The Master Interrupt Register and Interrupt Rogisters 1
through 4 are not available and have no meaning when
accessed (i.e. writes are not stored and reads give
indetorminable rosults).

Configuration Register

The Configuration Register again has no real meaning
in this mode, however it is always active sincs it is tho
means to switch to Accelerator mode. See later for
details on how this is achieved.

PCI Interrupt Routing

In PICMG mode, PCU device interrupts are taken
directly to the Interrupt Routing Logic whero they arc
simply wire-or’d, to provido INTA, INTB, INTC and
INTD, as specified in the PICMG PCI-ISA Card Edyge
Connector Proposal for Single Board Computer [SBC|
Specification, Revision 2.0 and PICMG PCI-PCI
Bridge Board Edge Connector Proposal for Single
Board Computer [SBC], Revision 1. These aro routed
to the Systom [/O IRQ lines in the demonstration
oxample provided,

Copyright Digital Equipment Corporation, 1996

Figure 6 DMCC Interrupt Controller Block Dingram -
PICMG Mode

PC1 Devien ¢
(16 dterrn oo *
PCIDeviced J 5
16 Interrupta) 44
PCIDevies 1 3 4224 :
(16 Mo
PCIDmise | 3 30K ;
(16 wenvpin S R .
S e
Piiiles 7 m;'
' v 33 o o'
SEEEE 3 g "ot " 2>
o P
e '
1732
A
Mo

Accelerator Mode

The interrupt controller or Accolerator Mode can only
be enabled via software. To enable this mode, the
Control Register must bo writien to, prior Lo enabling
intorrupts,

When in this mode the Interrupt Controlicr looks as
shown in Figure 7 DMCC lnterrupt Controller Block
Diagram - Accelerator Mode.

Figure 7 DMCC Interrupt Controller Block Diagranm -
Accelerator Mode

The softwarc sequence for enabling Accelerator Mode
Is shown in Figure 8 Accelerator Mode - Software
Bnabling Sequence.

96



Figure 8 Accelerator Mode - Softwure Enabling Sequence

[Vower ON'n
PICMG Mode

All Registers are implemented as 32 bit registers
addressable in ISA space. [The interrupt controlier
could as easily have been implemented as a PCI dovice,
however it would then be counted as a full PCI device
load and could have had an adverse impact on the total
10-Toad Limit].

Configuration and Master interrupt Reglster

Table 1 Configuration and Master Interrupt Registce
defines the rogister bit allocation. The Configuration
Register is always active and is the only mecans of
controlling the Interrupt Controller’s behaviour. The
Configuration and Master Interrupt Register is located
at ISA I/O address 0500h - 0503h.

Apart from having the mode enable bit [MODE], it
also stores the high order ISA /O address bits tor
Intorrupt Registers 1 through 4 [ADR[15:4]], The low
arder address bits [ADR[3:0]] are fixed ar 0000, 0100,
1000, {100 rospectively.

The backplane configuration details are stored in
CFG{4:1), (bits [19:16] of the Configuration Registcr),
defining which primary PCI slots ars connectors and
which are bridge chips i.e. which bave four versus
sixteen potentially active intecrupt lines.

Table 1 Configuration and Master Intsrrupt Regisier

a{A[A]ATalaJAIATATAla]al Tl el elm] pln M] t{1n
qnopnnnnopnnvernocannnn:uxnau«nn
R|RIRIR[R|RIRIRIRIR[RIAIC|GIGIOID] 1 |KIR|B]BIN]NININ]BIB| TiT|T|T
Hijejajejriogeirisisi4i41312; 1{R|BID{S|3]3|T{T{TiT|S|8]{D]{C[B|A
3j43j2|1fe N ]n|cnl»\ I

In PICMG Mode, the PCIRB bit defines whether the four
INTx# interrupts are routed to the System [/O or
whether the one PCI interrupt line is routed directly to
the CPU. In typical PICMG applications ISA intcrrupts
are heavily used and the PCIE bit can frec up to four
ISA interrupts. It is always set in Accelerator Mode.

MSKEN is used to support interrupt polling. When
enabled the interrupt status bits in the four interrupt
registers are dependent upon their corresponding

Copyright Digital Bquipment Corporation, 1996

97

MASK bits. When disabled they match the status of the
interrupt source.

The Master Interrupt Register is only cnabled when in
accelerator mode. This register gets its input from tho 4
Interrupt Registers and is used w0 determinc which
Interrupt Register should be read to find the source of
the PCI interrupt.

INTID:AJ retlects the swatus of the corresponding
Interrupt Register(4:1] i.e. INTD status is the logical
OR'ing of the sixtcen Interrupt Status bits stored in
Interrupt Register 4. INT[D:A] can be corrospondingly
masked by MINT[D:A}.

In this way the PCI interrupt source can be determined
in two ISA read cycles; onc to the Master Interrupt
Register and one 1o the specific Intcrrupt Register.

Interrupt Registers[4:1]

Each of the 4 Interrupt Registecs represent a primary
PCI device. The following table maps the primary PCI
device to it's associated Intecrapt rogisters. The address
of those Interrupt registers is defined by the contents of
the ADR bits in tho Configucation Register.

Table 2 Interrupt Registcr Mapping dcfines the
Configuration Space Address for cach of the primary
PCI devices and gives an example of possible ISA 1/0
address’ for each Interrupt register.

0514h - 0517h
0S18h - 051Bh
051Ch - 031Fh

The exact format of cach intcrrupt rogister is
dependont on whether a primary PCI device is a
physical PCI conncctor or a PCI-PCI bridge. The
format of Interrupt Register 1 through 4 is defincd by
the CFG bits within the Configuration Registcr. This
can be used to determine the exact contiguration of the
backplane, and hence the number of potentially active
interrupt lines. Table 3 Interrupt Registers(4:1].dcfines
the register bit allocation.

Table 3 Interrupt Registers(4:1].




If the primary PCI device is a vonnector the Interrupt
Register only requires to store the swtus and MASK
bits for four Interrupt lines i.e. only bits [3:0] and
[19:16] have any meaning.

Figure 9 Inserrupt / Mask Operation

rosenione

.

When the primary PCI device is a PCI-PCI bridge, the
corresponding Interrupt Register must store the status
of up to 16 interrupt lines for 4 secondary connectors
implemented behind the PCI-PCI bridge and also the
MASK bits for cach individual interrupt line i.e. all
{31:0] bits are valid.

The interrupt STATUS bits (15:0] are AND‘d with
their corresponding 16 Interrupt Register MASK bits.
The results of cach AND operation ars then OR'd
together to form a single INTx# signal that is routed
the Master Interrupt Register, us illustrated in Figure 9
Interrupt / Mask Operation.

Note : If a multi-function option card (i.e. an option
with a bridge) Is plugged into a physical connector,
there is support for the 4 primary Intecrupts from
behind it’s on-board bridge. If more than four
interrupts arc used (i.e. via sharing) they are not
supponed.

Accelerator Interrupt Decode
Hardware Interrupt Architecture

In Accelerator Mode, INT[D:A] in the Master Intcrrupt
Register reflects the status of the corresponding
Intecrupt Register[4:1] ie. INT{D:A] status is tho
logical OR’ing of the sixteen Interrupt Status bits
stored in each Tnterrupt Register [4:1).

This two stage interrupt register strategy allows rapid
decoding of the intetrupt source without expanding any
individual register set beyond 32 bits.

Copyright Digital Equipment Corporation, 1996

Figure 10 Interrupt Decode Schematics

Regncr 81 'h#
: £y -
hl-fwmn r—l_—'&
———————— 1
fomarrgt egonr 18 7]

The INTID:A}J interrupt status bits are AND‘d with
their corresponding 4 Master Interrupt Register MASK
bits. The results of cach AND operation are then OR’d
together to form the PCI interrupt requost signal that is
routed to a single IRQ on the CPU, as illustrated in
Figure 10 Interrupt Decode Schematics.

The final logical routing of the Master Interrupt
register is not limited by the MSKEN bit status.
Routing of the INT[D:A)] interrupts is only detcrmined
by the value of the interrupt status bit and it’s
corresponding mask bit.

Firmware/BIOS Interrupt Decode

The interrupt accelerator  decode  architecturo
influences the host CPU firmwarg/BIOS, and is usually
transparent to the larget operating system. The
firrmware/BIOS must implement a decode routinc as
per Figure 11 Software Decode Steps.

Figure 11 Sofiware Decode Step: - Accelerutor Mode

‘;‘ Wiksieupt Regueet L)
3 ibes

IR P AL u)
nuom ;,
lmmupt Heglater ;
RIS ;3
'i‘ nmﬂ
MWIM.I “

Ar

AYTI7I9 BAIIIF IR

i DECODR whch
?

', o

Inwrupitine
o (g G091 TR AN “

R
?
Peicw m

Two Dus READ CYCLES

e

The predictable and repeatable time to dispatch the
appropriate intcrrupt veetor (service routino), aftor
receipt of an interrupt request is two bus read cycles.
The decode operation logically occurs in parallel with
the read cycle,

98



Interrupt Latency

The interrupt dispaich latency is the elapsed time from
receipt of an intecrupt request [0 dispatch to the
interrupt service routine,

The intecrupt service latency is tho elapsed time from
entry of tho interrupt service routine 19 its completion.

Exact interrupt latency, for a given system
configuration, will bo operating system dependent i.e.
the interrupt service latency may vary significanly
between operating systems even when the dispatch
latency in firmware/BIOS is identical.

Operating systems vary in interrupt service routine
efficiency and can be equally dissimilar across
hardware platforms. The interrupt accelerator
optimises the hardware aspect of this process.

PICMG Mode

The wire-OR’d binding strategy is not optimal in large
PCI slot configurations and most PCI-PCI bridge
implementations.

It directly impacts the achievabls interrupt dispatch
latency, and some interrupt service methodologies [0.8.
round robin, etc.] can further reduce efficiency in these
types of environments.

The dispatch latency is also unpredictable i.e. with N
PCI slots, determining the originator of the PCI
interrupt cequest conld take a minimum of 1, up to a
maximum of (N-1) bus read cycles.

Figure 12 Software Decade Sieps - PICMG Mode

3
3 55435504 ¢l o3 33 s,um!i |
Bl POLL WrotPCI skt i
i 1 lsaity Oviginater §

ORI IR

sy
.3.11 intrrupt Roquset s;g

IS

E

91

U sasmum (w1) BUS RRAD voita ’

The interrupt dispatch latency in vory large systoms
can rosult in severe degradation of the system
performance. This is caused by I/O devices ‘stalling’
because they cannot get serviced efficiently. In extremo
configurations, a particular device may ‘never’ get it’s
interrupt serviced, resutting in failure of that

Copyright Digital Bquipment Corporation, 1996

99

functionality e.g. a network card may ‘drop’ in-coming
packets or a serial line may ‘drop’ received characters.

Accalerator Mode

The accelerator architecture offers predictable and
consistent interrupt dispatch latency resulting in
higher performance for large PCl configurations,
Predlictability is key in most real-time applications.

The corresponding accelerator interrupt  dispasch
latency is always two Bus rcad cycles.

Physical Implementation

This paper is not intended o imply any particular
physical implementation. The generic functionality for
a PICMG application can he implcmented cither as an
ISA or PCI based device, howover it could also be
supported in alternative bus architectures.

Summary

Standard motherboard implementations provide PCI
intcerupt binding [for the firmware/BIOS] decode in
the physical etch routing.

This binding structure becomes congestxi when
additional [bridged) PCT buses are implemented in the
system. This means that the polling and decode of an
interrupt request can he significantly less than optimal.
The interrupt latency is also unpredictable.

The proposed interrupt accelerator design described in
this paper resulis in the predictable, ropeatable
[consistont] and Improved interrupt dispatch latency,
key for real-time applications.

Acknowledgements

The DMCC program was the co-operative effort of a
large number of engincers whose initiatives have
contributed to this paper. Thanks in particular 1o Alan
Milne, Scan McGrane, Robin Alexander, Vikas
Sontakke and John Lenthall, all of whom have worked
within the E&Rt engineering design team to casure the
successful product implementation of the concepts
detailed in this paper.

References
1. PCI Local Bus Specification, Revision 2.0
2. PICMG, PCIFISA Card Edge Connector

Proposal for Single Board Computers,
Revision 2,0



3. PICMG, PCI-PCI Bridge Board Bdge
Connector Proposal for Single Board
Computers, Revision 1.01

4. PCI 10 PCI Bridge Archiwecture Specification,
Revision 1.0

Author

Ross Armstrong, the Project Leader for the Digital
Modular Computing Components {DMCC] program, is
a principal hardware design engineer with Digital’s
Embedded and Real-time [E&R1] engineering
organisation. Ross holds a B.Sc. (Eng.) Hon's from
Aberdeen University and a joint Master of Technology
Management [M.T.M.] from Strathclyde and Heriot
Watt Universities.

Copyright Digital Equipment Corporation, 1996

100



DCM’S PCI-TO - PCI BRIDGE SOLUTION
Kamal Mansharamani
DCM DATASYSTEMS
Vikrant Tower
4, Rajendra Place
New Delhi - 110008, India
91-11-5737397/575573 1(fax)
email: dcmds@giasdlO1.vsnl.net.in

1.0 Abstract

The PCI bus has now become a defacto industry
standard. Its high bandwidth makes it very
attractive for high performance server and
multimedia applications. However, the high
speed of the bus also puts a limitation on its
expansion capability. A PCI system can have
only three to four expansion slots. This can
become a severe limitation for contemporary
applications.

The PCI bus can support a load of upto ten
devices. Each device on the motherboard is one
load, while each device on an add-on card is two
loads. Since, each motherboard has typically two
to three on board PCI devices, this means that a
motherboard can have only three to four
expansion slots. The PCI bus also imposes
limitations on the add-on cards. Each add-on
card can present only one PCI load to the bus.
This can also severely limit the functionality
that can be offered on PCI add-on cards.
Currently, there are a variety of PCI chips in
the market including SCSI, Ethernet, VGA etc.
However, only one of these devices can be
present on the PCI add-on card.

There is clearly a need to enhance the
functionality of PCI systems both in terms of
the expansion capability of motherboards, as
well as the functionality of the add-on cards.
The PCI-to-PCI bridge provides a solution for
both these requirements

This paper will discuss the technical issues
encountered in the design of a high performance
PCI-to-PCI bridge chip. Thereafter, DCM’s
PCI-to-PCI bridge chip and its architecture will
be presented.

101

2.0 Introduction

A PCI-to-PCI bridge connects between two PCI
buses and allows expansion of the PCI bus. A
PCI-to-PCI bridge chip expands the electrical
capacity of the PCI bus. It can be connected to
the PCI bus closest to the Host CPU and used to
increase the expansion capability of the system.
In fact, multiple PCI bridges can be connected
on the bus to provide theoretically unlimited
expansion capability (Fig 1). The PCI-to-PCI
bridge can also be used to increase the
functionality of the add-on cards. One can build
Multi-function combo cards (Fig 2) with
functions like Ethernet, SCSI and Graphics
support. It is also possible to build Multi
channel cards like Multi channel SCSI or Multi
port Ethernet boards. '

In fact, a PCI-to-PCI bridge can go much
beyond increasing the electrical loading
capability of the systems. A bridge can also
isolate the traffic on both the sides. It can also
allow concurrent operations on the primary as
well as the secondary bus (Fig 3). The
transactions between master #0 and target #0 on
the primary bus can go on concurrently with the
transactions between master #1 and target #1 on
the secondary bus. This can tremendously
increase the bandwidth of the system. For
example, if we have a graphics and a video
device on the secondary PCI bus then the
transactions between the two can take place
without crossing the PCI bridge. The bridge
chip can also boost the performance of the
system by incorporating features like posted
write, read pre-fetch etc.



PCI Expansion Slots

CPU
Level 2
Cache
System .
Memory Core Logic
ISA/ EISA
Expansion Graphics
Bridge
— ] an — ]
ISA / EISA Expansion Slots PCI Expansion Slots
Fig. 1

Primary PCI Bus

LAN/SCSI
Chip

LAN/SCSI
Chip

102

]

RS,

N A D S R OB AR



Primary
Master

Primary
Target

Ny

Primary PCI Bus

DCM PCI Bridge

Secondary PCl Bus
Secondary
Master

Secondary
Target

Fig. 3

3.0 Design Issues

Let us now look at the issues involved in the
design of a PCI-to-PCI bridge. The design of the
bridge chip would have to necessarily look at the
following issues:-

- Transparency
- Compatibility
- Compliance

- Performance

3.1 Transparency

The PCI-to-PCI bridge would have to be totally
transparent to the system. It should make no
difference whether a device is connected before
the bridge or after the bridge. The system should
not need any device drivers to support the bridge
chip.

103

3.2 Compatibility

A major compatibility issue in terms of PCI-to-
PCI bridge design is the issue related to support
of VGA compatible devices. These issues are
mainly related to ISA compatible addressing and
palette snooping. In order to support the VGA
device downstream of a PCI-to-PCI bridge, the
bridge must have the capability to be configured
to recognize the ISA compatible addresses used
by the VGA devices. The bridge must also
support configurations where a graphics device
downstream of a bridge needs to snoop VGA
palette accesses.

3.3 Compliance
Some of the major compliance requirements for
a PCI - to - PCI bridge chip are listed below.

3.3.1 The PCI-to-PCI bridge must be
compliant with the PCI Local Bus Specification.
This would essentially mean the following:-

3.3.1.1  The bridge must adhere to the
electrical loading limits for all the PCI signals.
This means that the PCI bridge is limited to
present a single load per connection.

33.1.2 The bridge must maintain data
coherency and consistency when transactions
cross the bridge in either direction.

33.2 The bridge must comply with the
current PCI-to-PCI  Bridge  Architecture
Specification. Some of the required capabilities
are as follows:-

3.3.2.1 The bridge must support configuration
space conforming to PCI-to-PCI bridge header
format.

3.3.2.2 The bridge must support memory
mapped I/O address space.

3.3.2.3 The bridge must have hierarchical
configuration support.

3.3.3 The bridge designs which support
arbiter on the secondary bus must be designed to
prevent deadlocks.



34 Performance

Performance is a major consideration in the
design of a PCI-to-PCI bridge chip. In fact, it is
possible to significantly improve the
performance of a system by properly designing
the bridge chip. Some of the design elements
which can boost performance are as follows :-

- High Speed FIFO Design

The ability of the FIFO to support transfers with
every PCI clock in either direction is a very
crucial parameter in the design of the bridge
chips. The FIFO needs to be designed in a way
to support 1-1-1 transfers concurrently in either
direction.

- Increased Buffer Size

The size of the FIFO buffer also plays an
important role in determining the performance
of the bridge chip. The FIFO should have
sufficient depth to be able to support sustained
transfers in either direction. The FIFO design
which includes the FIFO architecture and the
FIFO depth plays a very crucial role in
determining the performance of the bridge.

- Support for Delayed Transactions

Support for Delayed transactions is one of the
important features which has been added in the
PCI Revision 2.1 specifications. Delayed
transactions are used normally while accessing
slow devices. One of the major advantages of
delayed transactions is that the bus is not held in
wait states while an access is being completed
on a slow device. Delayed transactions are used
for all those commands which can complete on
the target bus before completing on the
originating bus. A delayed transaction is
composed of three phases :

1. Request by the master

2. Completion of the request by the target

3. Completion of the request by the master
During the first phase, the master would

generate a request on the primary bus. The
bridge would decode the cycle, latch the

information required to complete the access and
terminate with a retry.

During the second phase the bridge would
independently complete the access on the
secondary bus. The bridge would store the data
and the status pertaining to the delayed request.

During the third phase, the master would
successfully arbitrate for the bus, acquire it, and
reissue the original request. The bridge would
decode the cycle and provide to the master the
stored data and status.

- Multiple Delayed Transactions

The bridge chips also have the capability to
support multiple delayed transactions to improve
the system performance and also to meet the
initial latency requirements. The most important
requirement for supporting multiple delayed
transactions is that the ordering of the
transactions be maintained and the deadlocks be
avoided.

- Transaction Ordering

The rules on transaction ordering accomplish
three things.

First of all, they ensure ordering of write results,
which means that ordering is maintained across
the system.

Secondly, they allow for posting of transactions
which improves system performance.

Thirdly, the rules also prevent bus deadlock
conditions.

- Combining, Merging, and Collapsing

Bridges can also convert a transaction with
single or multiple data phases into a larger
transaction to optimize data transfer on the PCI
bus. The various terms used for this are defined
as: Combining, Collapsing and Merging.

Combining

Combining takes place whenever sequential
memory write transactions are combined using a
single PCI transaction by using linear burst
ordering. Combining takes place within the
bridge and the target sees the data in the same
order in which the originating master generated
it.



Byte Merging

Byte merging occurs whenever mcmory writes
consisting of bytes and words are combined into
DWORDS. Byte merging should only be done
when the bytes in the data phase are within the
prefetchable address range.

Cacheline Merging

This occurs whenever a sequence of memory
writes are merged into a single cacheline.
Collapsing

Collapsing occurs whenever a sequence of
memory writes to the same location are
collapsed into a single bus transaction.

Collapsing is normally not permitted in PCI
bridges except in very specific conditions.

4.0 DCM’S PCI - to - PCI Bridge
Solution

DCM DATASYSTEMS has designed a high
performance PCI - to - PCI bridge chip. It
supports the following features:-

4.1 Features

e  Supports two 32-bit PCI Rev 2.1 buses

e  Supports Delayed Transactions

e  Stores upto three Delayed Transactions

e  Supports maximum clock speed of 33 MHz

e Implements PCI Rev 2.1 Drivers

e Provides concurrent primary and secondary
bus operation

e Conditionally forwards the following
transactions :
— Memory read and write transactions in
either direction

— I/O read and write transactions in
either direction

105

— Configuration read and  write
transactions in the  downstrcam
direction

— Configuration write transactions to
special cycles in cither direction

Supports memory transaction filtering
through two programmable memory address
regions - one prefetchable and one non-
prefetchable

Supports 64-bit addressing

Supports read prefetching for memory read
transactions

Provides extensive buffering for - writes and
reads - both in Up Stream and Down
Stream directions

Provides upto 88 bytes of write posting for
memory write transactions

Provides upto 72 bytes of read data
buffering

Provide I/O transaction filtering through
one programmable memory I/O address
region

Provides ISA mode for I/0 transaction
filtering

Provides two programmable video graphics
adapter (VGA) bits that support forwarding
of VGA memory and I/O addresses, or
forwarding of VGA palette I/O writes

Provides master latency timers and target
wait timers, for each PCI interface, which
limit the amount of latency on either bus
Provides concurrent resource lock operation
Propagates locks across the Bridge

Provides five secondary PCI bus clock

outputs

Provides the following optional central
functions :



— Programmable rotation arbitration o Supports Perr and Serr signals through
function supporting upto six secondary error checking functionality
bus masters

— Secondary PCI bus parking at the
Bridge

Secondary PCI BUS

Secondary b
Interface Errof N Secondary
Generation & Arbiter

Checking

i -

Secondary
Interface
Timers /
Counters

'y
: {
Primar .
Clock Interface l)E,rron Primary to Secondary to

: e Secondary Primary Data
Buffer G;’:'I‘:f;';; & Data Path Path

Secondary
Interface ||
Control Logic

Primary
Interface Configurati
Timers/ Space
Counters

Primary
Interface  [«—»
Control Logic| 4

< Primary PCI BUS ‘

Fig. 4
4.2 Architecture Primary to Secondary Data Path
The block diagram of DCM’s PCl-to-PCI This block contains the logic for driving the data
bridge chip is shown in Fig-4. It consists of the received on the Primary bus onto the Secondary

following major blocks:-

106



bus. It also contains the logic and the buffers for
write posting as well as read pre-fetching.

Secondary to Primary Data Path

This block drives the data received on the
Secondary bus onto the primary bus. This block
also contains the logic as well as the buffers for
write posting as well as read pre-fetching.

Fig 5 shows an exploded version of the primary
to secondary and secondary to primary data
paths. Each data path supports logic element
and FIFOs to support posted write, read pre-
fetch and support for delayed transactions. The
FIFOs are designed in such a way to support 1-
1-1 transfers in both the directions.

Primary to Primary to
> Seconda_ry Dela_yed > Secondary >
Transaction Register Address Control
File rp-
Primary to Secondary _
» Posted Write Address & Data FIFO g
Primary to Secondary
Primary-to-Secondary Delayed Read Data —-
FIFO
P
Secondary to
. P::‘:;‘%ZFZ s A Primary Delayed L
-~ Control ~ Transaction Register -
Bl File
<
< Segondary to Primary | ¢
Posted Write Address & Data FIFO
A Secondary to Primary
il Delayed Read Data FIFO ¢
Fig.5

Primary Control

Primary Control consists of the control logic and
the state machines to handle all the transactions

107

initiated on the primary interface. It consists of
the following logic elements:-

- Primary Interface Control Logic

- Primary Interface Timers/Counters



- Primary Interface Error generation and
checking

Secondary Control

Secondary Control is used to handle all the
transactions initiated on the secondary bus. It
also consists of an arbiter for arbitrating the
requests on the secondary bus. It consists of the
following elements:-

- Secondary Interface Control Logic

- Secondary Interface Timers/Counters

- Secondary Interface Error generation and
checking

- Secondary arbiter

Configuration Space

Configuration  space  consists of the

configuration registers for the bridge.

108

5.0 Conclusion

The high bandwidth offered by the PCI systems
coupled with the availability of high
performance CPU’s like the Intel Pentium Pro,
DEC Alpha and the IBM Power PC has now
made it possible to configure high performance
systems for server as well as Multi-media
applications. The only limitation on the PCI bus
is its expansion capability. A typical PCI system
would have only three to four expansion slots. In
addition, the PCI add-on cards can have only
one PCI device on the board. This creates a
severe limitation on the expansion capability of
PCI motherboards and the functionality of PCI
add-on boards. The PCI-to-PCI bridge offers a
solution to both these problems. In addition,
properly designed PCI -to-PCI bridges can
significantly boost the performance of PCI
systems. The tremendous potential promised by
PCI systems can be fully realized by the PCI-to-
PCI bridge chips.



PC-DMA AND PCI: NEW OPEN STANDARD BLENDS BOTH
Dwight D. Riley
Systems Technology Development
Compaq Computer Corporation
MS 100505
20555 S.H. 249
Houston, TX 77070-2698
Fax (713) 518-0025
e-mail: driley@bangate.compaqg.com

ABSTRACT

A serious impediment to the development of PCI-only systems is the requirement for compatibility with
existing PC DMA devices like floppy disk controllers, 16-bit PC Cards (PCMCIA cards), and sound cards. On
December 1, 1995, seven system and chipset manufacturers published a new open standard, Distributed DMA
Support for PCI Systems, which defines a DMA architecture that is software compatible with PC DMA controllers
yet works without using any sideband signals.

INTRODUCTION

The PCI bus has become the standard peripheral bus of choice, taking over the market quickly since its
introduction by Intel in 1992. It is used in all kinds of computers, from supercomputers to portables. However,
despite its numerous successes it has been unable to replace the traditional PC expansion buses (ISA, EISA, and
Micro-Channel). These buses have not disappeared because the PCI bus was designed assuming an expansion bus
would exist to provide PC legacy functions such as DMA.

DMA was first introduced on the ISA bus in the original PC in 1981. DMA provided a mechanism for the
processor to off-load the work of moving I/O data between an I/O device and system memory. The microprocessor
still had to configure the block data transfer between the I/O device and memory, but the actual data transfer and its
termination were handled solely by the DMA controller. Not only did it reduce the processor’s workload, it also
increased overall bus bandwidth. This increase in bandwidth was a result of the DMA Controller’s ability to
perform a “fly-by” transfer: an I/O read done simultaneously with a memory write, or an I/O write done
simultaneously with a memory read. To perform the same task, the processor would have to run two bus cycles.

With the wide acceptance of the PCI bus, there has been a natural migration of ISA devices to PCI. This
migration, however, has not been able to include legacy PC DMA devices without losing software compatibility.

THE PROBLEM

The legacy DMA Controller was implemented using two Intel 8237s, each of which provided four separate
DMA channels. The 8237s were connected in a cascaded configuration, providing a total of seven DMA Channels
as illustrated in Figure 1. The first 8237 provided support for channels 0 through 3, while the second 8237 provided
support for channels 5 through 7. Channel 4 of the second 8237 was used to link the two 8237s together.

Bringing PC DMA to the PCI bus has a single fundamental requirement that must be met: the need to
maintain the legacy 8237 DMA programming model. This requires a solution that retains the I/O register
interface provided by the pair of 8237s. It also requires a solution that provides a bus mastering service to replace
the DMA controller functionality - mimicking the old DRQ and DACK# protocol and running I/O and memory
cycles on behalf of the DMA device. In addition, it requires that the shared, multi-channel DMA registers be
isolated so that the DMA channels could be separated on the PCI bus. This is because the PCI bus does not allow
multiple devices to drive different data bits for a single access.

109



DRQ7 » HOLD

DACK7# ¢ HLDA
DRQ6 ——————N  Primary
DACK6# DMA
gRAgf(s# < Controller
8237
DR4 [—1 (8237)
DACK4#
HOLD
DRQ3
DACK3# Secondary HLDA
DRQ2 DMA
DACK2#
DRQI Controller . MRDCH#
DACK1# (8237 » MWTC#
DRQO
DACKO# ¢

Figure 1: Legacy DMA Controller. ISA systems contained two cascaded 8237s.

The Distributed DMA specification resolves all these issues and breaks the legacy hardware model of a
centralized DMA controller, building instead on the fundamentals of the PCI bus mastering model. There are
several advantages to the Distributed DMA approach:

1. It provides the ability to separate and isolate the various DMA channels so that they can exist
singularly in the PCI devices, tightly coupled to their I/O devices. The result is the removal of the
DMA DRQ/DACK# signals from the PCI connection to a private I/O bus that exists behind the
Distributed DMA Channel.

2. It does not require any sideband signals, thereby complying with the existing PCI bus specification.
This scheme is flexible enough to work from a generic PCI plug-in slot.

3. Itis fully PCI compatible even across PCI bridges, an attractive feature for PCI-only systems that use
at least one PCI to PCI bridge to increase PCI bus connectivity.

4. It allows for mobile PC docking across the PCI bus with no additional sideband signals.

It removes the long I/O cycle portion of the transfer (which takes up to 1 s on ISA) from the PCI bus.
PCI bandwidth is only used for the faster system memory access portion of the transfer.

6. Distributed DMA can also co-exist with an existing legacy DMA Controller on the standard expansion
bus. This allows for upgrading existing PCI systems to support Distributed DMA.

7. New drivers can be written to exploit PCI bus performance by communicating directly to the
Distributed DMA Channel interfaces.

8. Distributed DMA also provides for 32-bit extensions to the legacy DMA Controller’s programming
model, thereby facilitating porting 32-bit DMA devices from EISA and Micro-Channel.

110



THE SOLUTION

There are two fundamental ideas to implementing Distributed DMA. The first is to isolate the DMA
channels as Distributed PCI Channels. The second is to map all legacy DMA accesses to these new isolated DMA
channels via a Remap Engine. Both the Distributed PCI Channels and the Remap Engine are illustrated in Figure 2.
These fundamental ideas can be implemented using three main components:

1. The Distributed PCI Channel’s PCI Target Logic. A standard PCI target responsible for configuring
the Distributed PCI Channel and the I/O device.

2. The Distributed PCI Channel’s PCI Initiator Logic. A standard PCI bus master responsible for
moving data between memory and the I/O device.

3. The Distributed DMA Remap Engine. Logic responsible for maintaining legacy software

compatibility.
Distributed PCI Channel
PCI
PCI Initiator 7/0]
logic private VO device
bus
Memory 1 PCI Target | ——F—-——
Cycles Logic 1/0 Config Cycle
Remap

Engine L__,

Distributed PCI Channel

! 1
! 1
' 1/0 Config Cycle !
1 PCI target |
H .
H logic :
' DRQ 1
/0 '
Memory I JPCI Iitiator DACK# device 1
Cycles | logic !
' private I/O !
1
1 bus 1

Figure 2 -- A Distributed DMA System. This diagram illustrates the Remap Engine block and two
Distributed PCI Channels. The top illustrates an integrated design while the bottom illustrates a more
traditional protocol using DRQ/DACK#.

The Distributed PCI Channel

The Distributed PCI Channels combine specially defined target and initiator logic as illustrated in Figure 2.
One or more original I/O devices are connected to these modules via some private interfaces. The interfaces could
be a full legacy bus (e.g. to implement an ISA or PCMCIA bridge) or some private interface contained within a chip
(e.g. to implement an audio card).

Distributed PCI Channel Target -- PCI Target Logic
The first major component of a Distributed DMA system, as shown in Figure 2, is the PCI Target Logic of
the Distributed PCI Channel. It contains configuration registers for the DMA transfers and the mechanism for

programming the I/O device. Like any PCI device using I/O addressing, it contains a Configuration Space Header
defining its I/O base addresses. This is used to set up a separate 16-byte I/O window of registers for that channel, as

111



listed in Table 1. The register definitions are similar to those of the legacy DMA Controller, but they only operate
on one channel. In addition, the programming interface is also extended to support 32-bit addressing.

Table 1 -- Distributed PCI Channel’s /O Map. Arrows show legacy DMA channel 0 I/O space being mapped
into the new Distributed PCI Channel I/O space

Second 82_37 Eo_ur Chanpels Distributed PCI Channel I/0 Map

e

5

Base Address  [7:0] & [15:8]

0000h |W 0 Base Address [7:0] W

0000h |R 0 Current Address [7:0] & [15:8] % Current Address [7:0] R 00h
0001h |W 0 Base Count [7:0] & [15:8] \ Base Address [15:8] w 0lh
0001h |R 0 Current Count  [7:0] & [15:8] Current Address [15:8] |R 0lh
0002h |W 1 Base Address  [7:0] & [15:8] Base Address [23:16] |W 02h
0002h |R 1 Current Address [7:0] & [15:8] Current Address [23:16] [R 02h
0003h |W 1 Base Count [7:0] & [15:8] *Base Address [31:24] [W 03h
0003h |R 1 Current Count  [7:0] & [15:8] *Current Address [31:24] |R 03h
0004h |W 2 Base Address  [7:0] & [15:8] Base Word Count [7:0] A\ 04h
0004h |R 2 Current Address [7:0] & [15:8] Current Word Count [7:0] R 04h
0005h |W 2 Base Count [7:0] & [15:8] Base Word Count  [15:8] [|W 05h
0005h |R 2 Current Count  [7:0] & [15:8] Current Word Count [15:8] |R 05h
0006h |W 3 Base Address  [7:0] & [15:8] *Base Word Count  [23:16] |W 06h
0006h |R 3 Current Address [7:0] & [15:8] *Current Word Count [23:16] |R 06h
0007h |R/W 3 Base Count [7:0] & [15:8] Reserved W 07h
0007h |R/'W 3 Current Count  [7:0] & [15:8] Reserved R 07h
0008h |W 0,1,2,3 |Command Command W 08h
0008h |R 0,1,2,3 |Status Status R 08h
000%h |W 0,1,2,3 |Request Request W 0%h
000Ah |R 0,1,2,3 |Mask Reserved R 0Ah
000Bh |W 0,1,2,3 |Mode Mode W OBh
000Ch |W 0,1,2,3 |Clear Byte Pointer Reserved w 0Ch
000Dh |{W 0,1,2,3 |Master Clear Master Clear W 0Dh
000Dh |R N/A  |Temporary Reserved N/A | CEh
000Eh |W 0,1,2,3 |Clear Mask Mask R/W | OFh
000Fh |R/W ] 0,1,2,3 |Multi-Channel Mask (* Optional)

0087h |R/W 0 Low Mem. Page [23:16]

0083h |R/W 1 Low Mem. Page [23:16]

0081h [R/'W 2 Low Mem. Page [23:16]

0082h |R/'W 3 Low Mem. Page [23:16]

This new programming model is designed for easy legacy DMA Controller compatibility, and allows new
Distributed PCI Channel driver software to borrow existing 8237 legacy code. This reusability of existing legacy
DMA drivers to drive what is effectively a new standard programming model for PCI masters has several benefits:

1. It builds on an existing knowledge base resulting in a greater pool of people, experts, to choose from
when it comes time to port existing PC DMA drivers to true native PCI bus masters' drivers.

2. The majority of the changes required to write a Distributed PCI Channel driver only require changing
the address location of the I/O device. That is, replacing the existing fixed legacy 8237 I/O addresses
to a new set of [/O addresses that are offset from a programmable base.

As shown in Table 1, the DMA registers Command, Status, Request, Mode and Master Clear are
duplicated in function by each Distributed PCI Channel at offsets 08h, 08h, 09h, OBh, and ODh, respectively. The
Mask, Clear Mask, and Multi-Channel Mask registers are all mapped into a single register called Mask at offset OFh.
Unlike the original DMA controller registers, these are restricted to only affect a single channel.

112



The Address low and high bytes are directly accessible (no Byte Pointer controlling access through one
register), and the Low Page registers are included to provide 24 bits of address at offsets 00h, 01h and 02h.
Similarly, the Word Count low and high bytes are separated and mapped to offsets 04h and 05h. In addition to the
legacy addressing support, bits were added to optionally allow 32-bit addresses and 24-bit word counts. These
extensions allow for 4 GB of addressable memory space and a transfer count as high as 16 MB.

The Clear Byte Pointer register is not needed since the Address and Word Count low and high bytes are
individually accessible. The Temporary register is also not needed, because it does not affect channel configuration.
The DMA Remap Engine will provide Temporary register support.

Configuring the DMA 1/0 Device

The Distributed DMA specification does not control how to configure the DMA I/O device that is serviced
by the Distributed PCI Channel. However, the standard PCI configuration base address registers should provide the
necessary I/O space required to configure the I/O device that is serviced by a Distributed PCI Channel.

Some legacy DMA I/O devices, however, must carry their fixed legacy I/O addresses to the PCI bus. As
such these devices must be placed on the primary PCI bus and positively decode these addresses in order to
maintain legacy compatibility. For example, system audio compatibility requires legacy I/O address 0220h and
0240h. If this device is placed on the primary PCI bus it can positively decode these addresses before the standard
expansion bus bridge claims the cycles.

Designs that must continue support of certain legacy I/O addresses may be required to support both the PCI
programmable base address register scheme as well as a fixed legacy I/O addressing mode. This allows the design
to be initialized as a generic PCI master with a relocatable I/O address range as its default. If the system needs to
support the legacy mode, these devices can be reconfigured to use their fixed legacy I/O address decode ranges. The
system software must resolve I/O conflicts on PCI when operating these devices in their legacy I/O decode modes.

Distributed Channel Initiator -- PCI Initiator Logic

The second major component of a Distributed DMA system, as shown in Figure 2, is the PCI Initiator
Logic of the Distributed PCI Channel. This PCI Initiator Logic is responsible for servicing the DMA I/O device.
For example, an I/O device requests a DMA transfer by signaling the Initiator Logic. If programmed correctly (with
the channel enabled and unmasked), the Initiator Logic responds and begins PCI memory read or write transfers on
behalf of the I/O device, using the programmed address, word count, and mode. If the I/O device is an ISA-based
design, the request is made with a DRQ signal, the response is expected on a DACK# signal, and the transfers to the
I/O device should be ISA I/0 reads and writes. The I/O device may have some other interface; the communication
protocol to the I/O device is undefined by the Distributed DMA specification.

To increase performance, the PCI Initiator Logic can buffer and later burst write data. It can also read a
full 32 bits at a time or perform burst read-ahead to increase read performance. Note that PCI bandwidth is only
used for the memory transfer portion of the transfer. The I/O transfer (if it even exists) is not seen on the PCI bus.

The Remap Engine

The third major component of a Distributed DMA system, as shown in Figure 2, is the Remap Engine. Its
function is to provide the appearance to the software that the channels are linked together in an identical fashion to
the legacy DMA Controller programming model, even though the Distributed PCI Channels are in fact isolated.

The Remap Engine accomplishes this by capturing the PCI cycles which would otherwise access an 8237
register and spawning other PCI cycles that actually access the Distributed PCI Channels. These spawned cycles are
used by the Remap Engine to update or gather status from the Distributed PCI Channels when a legacy DMA
register is accessed.

113



For example, Figure 3 illustrates that when the Status register at I/0 address 0008h is accessed, four cycles
are spawned. Each of the Distributed PCI Channels returns two bits of status: the terminal count (TC) replicated on
bits 0-3 and channel request (REQ) replicated on bits 4-7.

o oy [ [
T O O A T

l

Channel 3 Channel 3 Channel 2 Channel 2 Channel 1 Channel 1 Channel 0 Channel 0
REQ TC REQ TC REQ TC REQ TC

Channel 0 TC
Channel 1 TC
Channel 2 TC
Channel 3 TC

Channel 3 REQ

Remap Engine assembles the
four read into a single byte

Figure 3 -- Distributed DMA status read data merge. Shows the status read data merge from four
Distributed PCI Channels.

The actual sequence is illustrated in Figure 4, with the following steps:

e Step 1 -- The initial PCI read of the legacy Status register occurs on the PCI bus. As a direct result of the
processor’s initial request, the Remap Engine will respond with a PCI delayed transaction reply (a Retry).

e Step 2 -- The Remap Engine will then arbitrate for the PCI bus, and spawn a PCI read access to Distributed PCI
Channel at I/0 location 1008h (which was previously assigned to channel 0). The return data is then stored in a
temporary holding register.

e  Step 3 -- The Remap Engine makes another request and runs a PCI read from the Distributed PCI Channel at
I/O location 4008h (previously assigned to channel 1). This Distributed PCI Channel is illustrated as existing
on a secondary PCI bus behind a PCI-to-PCI bridge. The return data, consisting of the Terminal Count and the
Request Bit, is then merged into the temporary holding register as illustrated in Figure 3 using the logical
channel assignment as a guide to the correct bit positions.

e  Steps 4 & 5 -- The Remap Engine accesses Distributed PCI Channels at I/O locations 1018h, and 1028h,
assigned to channels 2 and 3 respectively. As each read completes, that Status data is merged into the
temporary holding register, using the channel’s logical assignment as a guide to the correct bit positions. The
result is a reassembled multi-channel legacy Status register in the Remap Engine.

e  Step 6 -- When the requesting PCI agent repeats the original I/O read transaction, the content of the temporary
holding register is returned as the legacy Status register, thereby completing the delayed transaction cycle.

114



CPU

host bus Remap
Engine
ch0 = 1008h Distributed
chl = 4008h PCI Ch
Host - annel
) ch2 = 1018h 1028h
Bridge ch3 = 1028h
® ® : ©) primary PCI
4
® ®
Distributed Distributed
PCI Channel gﬁ d;CI PCI Channel
1008h 1018h
econdary PCI
Distributed
PCI Channel
4008h

Figure 4 -- Status read, with four spawned cycles

Note that the Remap Engine is free to be placed anywhere on the primary PCI bus using delayed
transactions to hide the I/O mapping. For better performance, the Remap Engine can be designed into the host
bridge, eliminating the need for the retry cycles (step 1 and step 6 in the above example).

The Distributed DMA specification recommends two techniques for configuring the Remap Engine with
logical channel assignments for the Distributed PCI Channel. The two techniques are:

1. The Remap Engine uses a single base address from which 128 bytes of contiguous /0 space are reserved for
the Distributed PCI Channels. This 128 byte of I/O space is then divided into 16-byte I/O blocks. Each of the
16-byte blocks corresponds to a different channel, with offsets 00h through OFh for Channel 0, offset 10h
through 1Fh for channel 1, etc. A 16-byte hole is left for channel 4, which is not usable. The I/O base address
of each Distributed PCI Channel must be programmed to make that channel’s I/O map occupy the appropriate
16-byte block.

2. The Remap Engine has separate base address registers for each channel, thus removing the restriction that the
1/0O spaces for the Distributed PCI Channels be in consecutive 16-bytes blocks. This technique allows for a
more generic solution that can facilitate the PCI to PCI bridge requirement that I/O space assignments must be
done in 4 Kbyte blocks.

Table 2 and Table 3 show the legacy I/0 address mapping for channels 0-3, along with the number of
spawned cycles that the Remap Engine issues for each legacy access. Channels 5-7 are similar, with the maximum
number of spawned cycles being 3 instead of 4. This is because channel 4 is used only for providing cascading
support for channels 0-3; the channel is never used for I/O devices. This table assumes that Channel 4’s cascading
effects are ignored. » '

115



Table 2 -- Spawned cycles for the Secondary DMA channels 0-3 Control register access.
5 Ba g’ g

0008h w Command 4 writes

0008h R Status 4 reads 08h
0009h W Request 1 write 0%h
000Ah w Mask 1 write OFh
000Bh W Mode 1 write 0Bh
000Ch W Clear Byte Pointer 0 write N/A
000Dh w Master Clear 4 writes 0Dh
000Dh R Temporary 0 reads N/A
000Eh w Clear Mask 4 writes OFh
000Fh R/W | Multi-Channel Mask 4 R/Ws OFh

Table 3-- Spawned cycles for the Secondary DMA channels 0-3 Base Address and Word Count register access.
e R s e Tz R %

e 2 R !ﬁc So 3£
0000h 0002h 0004h 0006h W/R | Base Address Low [7:0] 1 00h
0000h 0002h 0004h 0006h W/R | Base Address High [15:8] 1 0lh
0087h 0083h 0081h 0082h W/R _| Low Mem. Page [23:16] 1 02h
0001h 0003h 0005h 0007h W/R | Word Count Low [7:0] 1 04h
0001h 0003h 0005h 0007h W/R | Word Count High [15:8] 1 05h

Supporting the Cascading Effect of Channel 4

The Distributed DMA Support for PCI System revision 6.0 specification does not address supporting the
cascading effect of channel 4 on channels 0-3. In the legacy DMA Controller channel 4 is not a usable DMA
channel, and must be configured in cascade mode at system initialization. However, the channel 4 registers are still
accessible, and some can be modified without reconfiguring the channel’s cascade mode. This means channel 4
settings can have an effect on channels 0, 1, 2, and 3.

For example, if channel 4 is masked, Secondary DMA channels 0-3 are also effectively masked. Taking
advantage of this global effect, though unorthodox, is still very much “PC legal.” The following legacy Primary
DMA registers can cascade onto channels 0-3:

e Command Register (Port 00DOh). A write to disable channels 4-7 must also disable channels 0-3. A write
to enable channels 4-7 must also enable channels 0-3 if they were disabled only due to a previous write to
disable channels 4-7.

e Single Mask Bit (Port 00D4h). A write to mask channel 4 must also mask channels 0-3.
o Multi-Channel Mask Bit (Port 00DEh). A write which masks channel 4 must also mask channels 0-3.

o Master Clear (Port 00DAh). A write access masks and enables channels 4-7. This transaction must be
handled as if a combination of Command and Multi-Channel Mask writes occurred.

Supporting this cascading effect of channel 4 on channels 0-3 requires the Remap Engine use a more
complicated mapping algorithm for updating the Distributed PCI Channels.

116



First, the Remap Engine needs to track the Primary and Secondary DMA Controller’s Command register
enable bit and the mask bits for channels 0-3 and channel 4. They must be tracked from system initialization to
guarantee that both the Remap Engine and the Distributed PCI Channels remain coherent.

Any write access to legacy DMA addresses 00D4h, 00DAh, or 00DFh which result in channel 4 being
masked require the following modification to the Remap Engine algorithm:

1. The standard update to the Primary DMA channels 5, 6, and 7 takes place as usual with the channel 4 tracking
bit also being updated. In addition, new spawned cycles must set the mask bits of channels 0-3 to reflect
channel 4 being masked. Note that the original mask status for channels 0-3 is not lost, as the Remap Engine
has been recording their status in a tracking bit.

2. New accesses to the Secondary DMA channels 0-3 that affect their mask status no longer result in spawned
cycles. Instead, the Remap Engine just updates its mask tracking bits. As long as channel 4 remains masked,
the corresponding bits in the Distributed PCI Channels will reflect this configuration.

3. If a write access to legacy DMA registers 00D4h, 00DAh or 00DFh results in channel 4 being unmasked, the
Primary DMA channels 5, 6, and 7 are again updated as usual. This time, the Remap Engine must update the
Secondary DMA channels (0, 1, 2, and 3) with its tracking bit values. Note that just because channel 4 is
unmasked does not automatically result in channels 0, 1, 2 and 3 being unmasked; instead, their recorded
individual states are restored.

4. Only when channel 4 is unmasked does the system return to a “standard” configuration mode where the
individual mask settings for channels 0-3 control their channels’ mask status.

Similar to the effect of channel 4 on the mask bits is the effect of channel 4 being disabled. For example,
when channel 4 is disabled, Secondary DMA channels 0, 1, 2, and 3 must also be disabled. When channel 4 is re-
enabled, the Remap Engine uses the tracking bit for the enable status of Secondary DMA channels 0-3 to update the
enable bits for Secondary DMA channels 0, 1, 2, and 3.

Upgrading Existing PCI Systems to Support Distributed DMA

Field upgrades for Distributed DMA require the systems to provide at least one primary PCI bus slot. In
addition, the legacy expansion bus must be connected to PCI via a subtractive decode agent. Specifically, the
legacy DMA registers must be decoded using the PCI’s subtractive decoding techniques. From this standard PCI
slot a Distributed PCI Channel and Remap Engine upgrades can be retrofitted to any existing PCI system.

In such a system the Distributed PCI Channel interface is identical to that described above, however, the
Remap Engine’s algorithm must to be modified to accommodate the legacy DMA Controller on the expansion bus.
The Remap Engine intercepts all legacy DMA Controller’s register accesses, as defined earlier, claiming these
cycles before the subtractive agent, and spawning cycles to the Distributed PCI channels. After the Distributed PCI
Channels are serviced, the Remap Engine reissues the original host access to the legacy DMA Controller’s register
onto the PCI bus. This time the expansion bus will accept the cycle as a subtractive agent and update the 8237s
accordingly. The Remap Engine must guarantee that any reissued commands never unmask or activate any legacy
DMA channels that were claimed by a Distributed PCI Channel. After the reissued cycle is complete the Remap
Engine waits for the requesting PCI agent to return thereby completing the delay transaction cycle.

The Performance Issue
Table 4 compares the theoretical performance of Distributed DMA versus legacy DMA on ISA.

Distributed DMA significantly improves the overall system performance while maintaining full PC compatibility
with the legacy DMA Controller.

117



Table 4 -- ISA vs. Distributed DMA Performance

08 8

8-bit
16-bit 1.6 15
16-bit type F 4 30
32-bit Not available 30
32-bit burst Not available 100-132

However, Distributed DMA carries a performance cost due to mapping and expanding the legacy DMA I/O
accesses to multiple Distributed PCI Channels. The greatest performance cost occurs when the share register<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>